Science.gov

Sample records for adjustment time scale

  1. Multi-Scale 7DOF View Adjustment.

    PubMed

    Cho, Isaac; Li, Jialei; Wartell, Zachary

    2017-02-13

    Multi-scale virtual environments contain geometric details ranging over several orders of magnitude and typically employ out-of-core rendering techniques. When displayed in virtual reality systems this entails using a 7 degree-of-freedom (DOF) view model where view scale is a separate 7th DOF in addition to 6DOF view pose. Dynamic adjustment of this and other view parameters become very important to usability. In this paper, we evaluate how two adjustment techniques interact with uni- and bi-manual 7 degree-of-freedom navigation in DesktopVR and a CAVE. The travel task has two stages, an initial targeted zoom and a detailed geometric inspection. The results show benefits of the auto-adjustments on completion time and stereo fusion issues, but only in certain circumstances. Peculiar view configuration examples show the difficulty of creating robust adjustment rules.

  2. Retroactive Adjustment of Perceived Time

    ERIC Educational Resources Information Center

    Patel, Minal; Chait, Maria

    2011-01-01

    Accurately timing acoustic events in dynamic scenes is fundamental to scene analysis. To detect events in busy scenes, listeners must often identify a change in the "pattern" of ongoing fluctuation, resulting in many ubiquitous events being detected later than when they occurred. This raises the question of how delayed detection time affects the…

  3. Adjustments to the ICVGT scale of INRIM

    NASA Astrophysics Data System (ADS)

    Steur, P. P. M.; Giraudi, D.

    2013-09-01

    At the 8th Temperature Symposium the results have been presented for the Interpolating Constant Volume Gas thermometer at INRIM (then IMGC), featuring a cryogenic pressure transducer, with an expanded uncertainty of less then 1.5 mK. However, for its fixed points this scale still relied on a NPL calibration as carried by rhodium-iron thermometer 232324. After the clarification, in 2005, by the Consultative Committee on Thermometry (CCT) of the definition of the equilibrium hydrogen (e-H2) triple point this scale was due to be adjusted for the isotopic content in the e-H2 fixed point cell. Only when this thermometer was re-calibrated in 2010 at INRIM at the three fixed points of the ICVGT was this adjustment performed, being the isotopic composition of the hydrogen cell known. With the start of the Neon Project in 2005, it became clear that a second adjustment would soon be needed, once the CCT will have decided on the way to deal with the isotopic composition of neon. The paper presents the experimental data of 2010, discusses the stability of the thermometer, and the size of the correction at the hydrogen point and of the likely correction (and its uncertainty) to be applied to the neon point, the isotopic composition of this cell being known as well.

  4. Adjustments to the ICVGT scale of INRIM

    SciTech Connect

    Steur, P. P. M.; Giraudi, D.

    2013-09-11

    At the 8{sup th} Temperature Symposium the results have been presented for the Interpolating Constant Volume Gas thermometer at INRIM (then IMGC), featuring a cryogenic pressure transducer, with an expanded uncertainty of less then 1.5 mK. However, for its fixed points this scale still relied on a NPL calibration as carried by rhodium-iron thermometer 232324. After the clarification, in 2005, by the Consultative Committee on Thermometry (CCT) of the definition of the equilibrium hydrogen (e-H2) triple point this scale was due to be adjusted for the isotopic content in the e-H2 fixed point cell. Only when this thermometer was re-calibrated in 2010 at INRIM at the three fixed points of the ICVGT was this adjustment performed, being the isotopic composition of the hydrogen cell known. With the start of the Neon Project in 2005, it became clear that a second adjustment would soon be needed, once the CCT will have decided on the way to deal with the isotopic composition of neon. The paper presents the experimental data of 2010, discusses the stability of the thermometer, and the size of the correction at the hydrogen point and of the likely correction (and its uncertainty) to be applied to the neon point, the isotopic composition of this cell being known as well.

  5. Validity of the Premorbid Adjustment Scale

    PubMed Central

    Brill, N.; Reichenberg, A.; Weiser, M.; Rabinowitz, J.

    2008-01-01

    Background: The aim of the current study was to test the predictive and concurrent validity of the Premorbid Adjustment Scale (PAS) by comparing it with another similar but more elaborate retrospective measure and with data collected during late adolescence. Methods: We compared PAS late adolescence scores (age 16–18 years) of 91 males with schizophrenia or schizoaffective disorder with data on behavior collected in adolescence, before the first psychotic episode as part of standardized Draft Board screening, and with the same measure readministered during adulthood and modified to collect the same data again retrospectively. Results: The correlation of the PAS social withdrawal and social relations items with the social behavior scale of the Draft Board were .76 and .80, respectively, for the concurrent ratings and .52 and .53, respectively, for the data collected at age 17 years. The correlation of the PAS school achievements and school adjustment items with the functioning in structured environments scale of the Draft Board were .71 and .72, respectively, for the concurrent ratings and .43 and .47, respectively, for the data collected at age 17 years. Conclusions: Our results support the predictive and concurrent validity of the PAS and the validity of self-reported data on premorbid functioning in persons with schizophrenia. PMID:18032397

  6. Family Adjustment Measure: Scale Construction and Validation

    ERIC Educational Resources Information Center

    Daire, Andrew P.; Dominguez, Vanessa N.; Carlson, Ryan G.; Case-Pease, Jenene

    2014-01-01

    We administered the Family Adjustment Measure to 368 parents of children with special needs to identify positive adjustment. We randomly split the sample to conduct exploratory factor analysis ("n" = 194) and confirmatory factor analysis ("n" = 174). Results indicated four possible subscales and that explain 51% of the variance.

  7. Ensemble Pulsar Time Scale

    NASA Astrophysics Data System (ADS)

    Yin, D. S.; Gao, Y. P.; Zhao, S. H.

    2016-05-01

    Millisecond pulsars can generate another type of time scale that is totally independent of the atomic time scale, because the physical mechanisms of the pulsar time scale and the atomic time scale are quite different from each other. Usually the pulsar timing observational data are not evenly sampled, and the internals between data points range from several hours to more than half a month. What's more, these data sets are sparse. And all these make it difficult to generate an ensemble pulsar time scale. Hence, a new algorithm to calculate the ensemble pulsar time scale is proposed. Firstly, we use cubic spline interpolation to densify the data set, and make the intervals between data points even. Then, we employ the Vondrak filter to smooth the data set, and get rid of high-frequency noise, finally adopt the weighted average method to generate the ensemble pulsar time scale. The pulsar timing residuals represent clock difference between the pulsar time and atomic time, and the high precision pulsar timing data mean the clock difference measurement between the pulsar time and atomic time with a high signal to noise ratio, which is fundamental to generate pulsar time. We use the latest released NANOGRAV (North American Nanohertz Observatory for Gravitational Waves) 9-year data set to generate the ensemble pulsar time scale. This data set is from the newest NANOGRAV data release, which includes 9-year observational data of 37 millisecond pulsars using the 100-meter Green Bank telescope and 305-meter Arecibo telescope. We find that the algorithm used in this paper can lower the influence caused by noises in timing residuals, and improve long-term stability of pulsar time. Results show that the long-term (> 1 yr) frequency stability of the pulsar time is better than 3.4×10-15.

  8. Pulsar time scale

    SciTech Connect

    Il'in, V.G.; Llyasov, Yu.P.; Kuz'min, A.D.; Pushkin, S.B.; Palii, G.N.; Shabanova, T.V.; Shchitov, Yu.P.

    1984-05-01

    In this article a new time scale is proposed, that of pulsar time PT which is based on the regular sequence of time intervals between pulses of a pulsar's radio emissions. In discussing variations in the arrival times of pulsar radio emissions, three kinds of variations in the radiation periods are described. PSR 0834 + 06 is used as the basic reference pulsar. Time scales are also determined for reference pulsars PSR 0905 + 08 and 1919 + 21. The initial parameters for the three reference pulsars needed for managing a PT scale are presented. The basic PT scale is defined as the continuous sequence of time intervals between radio-emission pulses of the basic reference pulsar.

  9. Fuel injection pump with adjustable timing

    SciTech Connect

    Nakamura, H.; Abe, N.

    1987-04-28

    A fuel injection pump is described comprising: a pump body; a plunger disposed in the pump body for reciprocating within the pump body; and a pre-stroke adjusting mechanism disposed in the pump body and operatively connected with the plunger for adjusting an effective pre-stroke of the plunger.

  10. Irreversibility time scale.

    PubMed

    Gallavotti, G

    2006-06-01

    Entropy creation rate is introduced for a system interacting with thermostats (i.e., for a system subject to internal conservative forces interacting with "external" thermostats via conservative forces) and a fluctuation theorem for it is proved. As an application, a time scale is introduced, to be interpreted as the time over which irreversibility becomes manifest in a process leading from an initial to a final stationary state of a mechanical system in a general nonequilibrium context. The time scale is evaluated in a few examples, including the classical Joule-Thompson process (gas expansion in a vacuum).

  11. Factorial invariance of the Dyadic Adjustment Scale across gender.

    PubMed

    South, Susan C; Krueger, Robert F; Iacono, William G

    2009-12-01

    The Dyadic Adjustment Scale (DAS; G. B. Spanier, 1976) is the most widely used inventory of relationship satisfaction in the social sciences, yet the question of whether it is measuring the same concept in men and women has never been addressed. In the current study, the authors examined the factor structure of the DAS in a sample of 900 currently married couples who participated in the Minnesota Twin Family Study. Confirmatory factor analysis was applied to a second-order factor solution with Spanier's four factors (Dyadic Consensus, Dyadic Satisfaction, Dyadic Cohesion, Affectional Expression) loading on one higher order factor (Relationship Adjustment), to test for measurement invariance across gender. The second-order solution was relatively invariant across gender, even when taking into account the nonindependent nature of the data. This suggests that the best conceptualization of the DAS is one of a gender-invariant measure of marital adjustment with four distinct subfactors and that differences between men and women on any of these constructs can be interpreted by both clinicians and researchers as true mean differences rather than measurement bias.

  12. Time Scales: Terrestrial

    NASA Astrophysics Data System (ADS)

    Petit, G.; Murdin, P.

    2000-11-01

    Terrestrial time is at present derived from atomic clocks. The SI second, the unit of time of the international system of units, has been defined since 1967 in terms of a hyperfine transition of the cesium atom and the best primary frequency standards now realize it with a relative uncertainty of a few parts in 1015, which makes it the most accurately measurable physical quantity. INTERNATIONAL A...

  13. Time scale independent signal transmission

    NASA Astrophysics Data System (ADS)

    Faltin, L.

    1980-05-01

    The paper presents a method which permits the conversion of time scale variations occurring during signal transmission into time shifts proportionally related to these variations. It is demonstrated that the method can be used to reject the adverse effects of the time scale variations (such as wow and flutter in magnetic tape recordings) and/or to determine the scale change exactly (such as would be required in Doppler signal processing). Finally, it is noted that since the system performance degrades with rising frequency of the time scale distortions, an upper bound for this frequency is derived.

  14. Evolution of Time Scales

    DTIC Science & Technology

    2006-12-01

    estimates of ET, and it did not include relativistic effects. 5. ATOMIC TIME Following the appearance of the first operational Caesium beam frequency...with Wm Markowitz and R. G. Hall at the USNO, determined the frequency of the NPL Caesium standard with respect to the second of ET. Photographs of the...known UT2 determined from optical observations made at the USNO. This information was used to calibrate the Caesium beam atomic clock at NPL. The

  15. Compact Star Time Scales

    NASA Astrophysics Data System (ADS)

    Swank, J. H.

    1996-12-01

    A major goal of RXTE is to investigate the fastest timing signals from compact stars, especially neutron stars and black holes. Signals have now been found from many (at least nine) low mass X-ray binaries containing neutron stars in the frequency range (100-1200 Hz) expected for the rotation period of the neutron star after being spun up by accretion over a long period. The kilohertz frequency domain for these sources is simpler than the domain of oscillations below about 50 Hz in that a few isolated features can dominate over white noise. However there are three main features to consider (not all present at the same time) and at least two are quasiperiodic with varying widths and frequencies. Several models are pitting their predictions against the behavior of these features, but the bursters, especially, appear to be revealing the neutron stars's spin. It is consistent with our beliefs that no black hole candidate has shown the same complex of signals, although at least one QPO frequency of a few hundred Hz could be expected in black hole candidates by analogy to the 67 Hz observed from GRS 1915+105. The observations also provide critical tests of the interpretions of the lower frequency (5-50 Hz) QPO and the variable noise seen in both low magnetic field neutron stars and black hole candidates. The kilohertz features have not been seen from the accreting pulsars with relatively high magnetic fields, but high luminosity pulsars (such as last year's transient, GRO J1744-28) reveal signatures of the dynamic interaction between the accretion flow, the magnetic field, and perhaps the neutron star surface in addition to their coherent pulsations.

  16. The feasibility and application of gray scale adjustment method in high temperature digital image correlation

    NASA Astrophysics Data System (ADS)

    Wang, Shen; Yao, Xue Feng; Su, Yun Quan; Liu, Wei

    2017-02-01

    In this paper, the basic principle and application of linear gray scale adjustment method are investigated in high temperature digital image correlation (DIC) technology. First, the simple linear gray scale adjustment method is proposed, which can adjust the gray scale value of the saturated pixels and diminish the correlation error caused by the saturated pixels. Then, both the simulated high temperature images and DIC correlation results before and after the gray scale adjustment are provided and analyzed to verify its effectiveness, in which the displacement error decreased from 0.1 pixels to 0.04 pixels after the linear gray scale adjustment for high temperature images. Finally, the linear gray scale adjustment method is used to extract the displacement with high accuracy in high temperature experiment of SiC specimen, and the displacement error decreased from 0.5 pixels to 0.1 pixels after the linear gray scale adjustment.

  17. Neural Basis of Adaptive Response Time Adjustment during Saccade Countermanding

    PubMed Central

    Pouget, Pierre; Logan, Gordon D.; Palmeri, Thomas J.; Boucher, Leanne; Paré, Martin; Schall, Jeffrey D.

    2011-01-01

    Humans and macaque monkeys adjust their response time adaptively in stop signal (countermanding) tasks, responding slower after stop-signal trials than after control trials with no stop signal. We investigated the neural mechanism underlying this adaptive response time adjustment in macaque monkeys performing a saccade countermanding task. Earlier research showed that movements are initiated when the random accumulation of presaccadic movement-related activity reaches a fixed threshold. We found that a systematic delay in response time after stop signal trials was accomplished not through a change of threshold, baseline, or accumulation rate, but instead through a change in the time when activity first began to accumulate. The neurons underlying movement initiation have been identified with mathematical accumulator models of response time performance. Therefore, this new result provides surprising new insights into the neural instantiation of stochastic accumulator models and the mechanisms through which executive control can be exerted. PMID:21880921

  18. Reciprocal Relations between Children's Sleep and Their Adjustment over Time

    ERIC Educational Resources Information Center

    Kelly, Ryan J.; El-Sheikh, Mona

    2014-01-01

    Child sleep and adjustment research with community samples is on the rise with a recognized need of explicating this association. We examined reciprocal relations between children's sleep and their internalizing and externalizing symptoms using 3 waves of data spanning 5 years. Participants included 176 children at Time 1 (M = 8.68 years; 69%…

  19. Diesel engine fuel injection pump capable of injection timing adjustment

    SciTech Connect

    Wakasa, S.; Okazaki, T.

    1987-12-15

    A diesel engine fuel injection pump capable of injection timing adjustment is described comprising: (a) housing means; (b) a plunger assembly reciprocably mounted within the housing means and defining a pumping chamber therein; (c) the housing means having defined therein a fuel inlet port to the pumping chamber in a predetermined position in the longitudinal direction of the pumping chamber; (d) drive means for reciprocably moving the plunger assembly within the pumping chamber between a first extreme position; (e) the plunger assembly being formed of at least two transversely split segments movable toward and away from each other within limits and including resilient means biasing the segments of the plunger assembly toward each other; and (f) the housing means further including a timing fluid inlet port for introduction of a timing fluid under variable pressure between the segments of the plunger assembly to move the plunger assembly segments away from each other to an extent that timing fluid pressure is counterbalanced by force of the resilient means for controllably varying the distance therebetween and, in consequence, for varying the prestroke of the plunger assembly solely in response to variation of the timing fluid pressure to effect adjustment of injection timing.

  20. Convergence methods on time scales

    NASA Astrophysics Data System (ADS)

    Turan, Ceylan; Duman, Oktay

    2013-10-01

    In this paper, we introduce the concepts of lacunary statistical convergence and strongly lacunary Cesàro summability of delta measurable functions on time scales and obtain some inclusion results between them. We also display some examples containing discrete and continuous cases.

  1. Detecting Anchoring-and-Adjusting in Survey Scales

    ERIC Educational Resources Information Center

    McIntyre, Joe

    2014-01-01

    Proper survey design is essential to obtain reliable, replicable data from research subjects. One threat to inferences drawn from surveys is anchoring-and-adjusting. Tversky and Kahnemann (1974) observed that participants' responses to questions depended systematically on irrelevant information they received prior to answering. It is important for…

  2. Atomic time scales and pulsars

    NASA Astrophysics Data System (ADS)

    Petit, G.

    2014-12-01

    I review the atomic time scales generated by the BIPM, International Atomic Time TAI and the realization of Terrestrial Time TT(BIPM). TT(BIPM) is shown to be now accurate to within a few 10..16 in relative frequency and the performances of TAI and TT(BIPM) are compared. Millisecond pulsars have a very regular period of rotation and data from several pulsars may be used to realize an ensemble pulsar timescale. It is shown that a pulsar timescale may detect past instabilities in TAI. However TT(BIPM) is much more stable than TAI and should be used as a reference in pulsar analysis. Since the beginning of regular millisecond pulsar observations in the 1980s, primary standards and atomic time have gained one order of magnitude in accuracy every ~ 12 years, and this trend should continue for some time.

  3. A properly adjusted forage harvester can save time and money

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A properly adjusted forage harvester can save fuel and increase the realizable milk per ton of your silage. This article details the adjustments necessary to minimize energy while maximizing productivity and forage quality....

  4. Time Scales in Particulate Systems

    NASA Astrophysics Data System (ADS)

    Zhang, Duan

    2013-06-01

    While there are many interests of studying interactions of individual particles, macroscopic collective behavior of particles are our main interest in many practical applications. In this talk, I will give a brief overview of the multiscale methods connecting the physics at individual particles to macroscopic quantities and averaged equations. The emphasis will be on dense dissipative particulate systems, such as powders. Unlike conservative particle systems, such as molecular systems, in a dissipative particle system the concept of thermodynamic equilibrium is not very useful unless in very special cases, because the only true thermodynamically equilibrium state in these systems is the state in which nothing moves. Other than idealized simple systems, mesoscale structures are common and important in many practical systems, especially in dissipative systems. Spatial correlations of these mesoscale structures, such as force chains in dense granular system, particle clusters and streamers in fluidized beds have received some recent attentions, partly because they can be visualized. This talk will emphasize the effects of time correlations related to the mesoscale structures. To consider time correlations and history information of the system, I will introduce the mathematical foundation of the Liouville equation, its applicability and limitations. I will derive the generalized Liouville equations for particulate systems with and without interstitial fluids, and then use them to study averaged transport equations and related closures. Interactions among the time scale of particle interactions, the time scale of the mesocale structures, and the time scale of the physical problem as represented by strain rate will be discussed. The effect of these interactions on the closure relations will be illustrated. I will also discuss possible numerical methods of solving the averaged equations, and multiscale numerical algorithms bridging the particle level calculations to

  5. 9 CFR 201.71 - Scales; accurate weights, repairs, adjustments or replacements after inspection.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 9 Animals and Animal Products 2 2011-01-01 2011-01-01 false Scales; accurate weights, repairs... AGRICULTURE REGULATIONS UNDER THE PACKERS AND STOCKYARDS ACT Services § 201.71 Scales; accurate weights, repairs, adjustments or replacements after inspection. (a) All scales used by stockyard owners,...

  6. 9 CFR 442.3 - Scale requirements for accurate weights, repairs, adjustments, and replacements after inspection.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 9 Animals and Animal Products 2 2010-01-01 2010-01-01 false Scale requirements for accurate... PROCEDURES AND REQUIREMENTS FOR ACCURATE WEIGHTS § 442.3 Scale requirements for accurate weights, repairs, adjustments, and replacements after inspection. (a) All scales used to determine the net weight of meat...

  7. 9 CFR 442.3 - Scale requirements for accurate weights, repairs, adjustments, and replacements after inspection.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 9 Animals and Animal Products 2 2014-01-01 2014-01-01 false Scale requirements for accurate... PROCEDURES AND REQUIREMENTS FOR ACCURATE WEIGHTS § 442.3 Scale requirements for accurate weights, repairs, adjustments, and replacements after inspection. (a) All scales used to determine the net weight of meat...

  8. 9 CFR 201.71 - Scales; accurate weights, repairs, adjustments or replacements after inspection.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 9 Animals and Animal Products 2 2013-01-01 2013-01-01 false Scales; accurate weights, repairs... AGRICULTURE REGULATIONS UNDER THE PACKERS AND STOCKYARDS ACT Services § 201.71 Scales; accurate weights, repairs, adjustments or replacements after inspection. (a) All scales used by stockyard owners,...

  9. 9 CFR 442.3 - Scale requirements for accurate weights, repairs, adjustments, and replacements after inspection.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 9 Animals and Animal Products 2 2011-01-01 2011-01-01 false Scale requirements for accurate... PROCEDURES AND REQUIREMENTS FOR ACCURATE WEIGHTS § 442.3 Scale requirements for accurate weights, repairs, adjustments, and replacements after inspection. (a) All scales used to determine the net weight of meat...

  10. 9 CFR 442.3 - Scale requirements for accurate weights, repairs, adjustments, and replacements after inspection.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 9 Animals and Animal Products 2 2013-01-01 2013-01-01 false Scale requirements for accurate... PROCEDURES AND REQUIREMENTS FOR ACCURATE WEIGHTS § 442.3 Scale requirements for accurate weights, repairs, adjustments, and replacements after inspection. (a) All scales used to determine the net weight of meat...

  11. 9 CFR 201.71 - Scales; accurate weights, repairs, adjustments or replacements after inspection.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 9 Animals and Animal Products 2 2014-01-01 2014-01-01 false Scales; accurate weights, repairs... AGRICULTURE REGULATIONS UNDER THE PACKERS AND STOCKYARDS ACT Services § 201.71 Scales; accurate weights, repairs, adjustments or replacements after inspection. (a) All scales used by stockyard owners,...

  12. 9 CFR 201.71 - Scales; accurate weights, repairs, adjustments or replacements after inspection.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 9 Animals and Animal Products 2 2012-01-01 2012-01-01 false Scales; accurate weights, repairs... AGRICULTURE REGULATIONS UNDER THE PACKERS AND STOCKYARDS ACT Services § 201.71 Scales; accurate weights, repairs, adjustments or replacements after inspection. (a) All scales used by stockyard owners,...

  13. 9 CFR 201.71 - Scales; accurate weights, repairs, adjustments or replacements after inspection.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 9 Animals and Animal Products 2 2010-01-01 2010-01-01 false Scales; accurate weights, repairs... AGRICULTURE REGULATIONS UNDER THE PACKERS AND STOCKYARDS ACT Services § 201.71 Scales; accurate weights, repairs, adjustments or replacements after inspection. (a) All scales used by stockyard owners,...

  14. 9 CFR 442.3 - Scale requirements for accurate weights, repairs, adjustments, and replacements after inspection.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 9 Animals and Animal Products 2 2012-01-01 2012-01-01 false Scale requirements for accurate... PROCEDURES AND REQUIREMENTS FOR ACCURATE WEIGHTS § 442.3 Scale requirements for accurate weights, repairs, adjustments, and replacements after inspection. (a) All scales used to determine the net weight of meat...

  15. Measuring Dyadic Adjustment: New Scales for Assessing the Quality of Marriage and Similar Dyads

    ERIC Educational Resources Information Center

    Spanier, Graham B.

    1976-01-01

    This study reports on the development of the Dyadic Adjustment Scale, a new measure for assessing the quality of marriage and other similar dyads. This factor analytic study suggests four empirically verified components of dyadic adjustment to be used as subscales (dyadic satisfaction, dyadic cohesion, dyadic consensus and affectional expression).…

  16. Does movement planning follow Fitts' law? Scaling anticipatory postural adjustments with movement speed and accuracy.

    PubMed

    Bertucco, M; Cesari, P

    2010-11-24

    We wanted to determine whether movement planning followed Fitts' law by investigating the relationship between movement planning and movement performance in experienced dancers executing a typical classical ballet step in which the big toe was pointed to targets at different distances and of different widths so as to obtain several indices of difficulty (ID). Movement time, velocity and variability at the target were the variables of movement performance kinematics; movement planning was evaluated by analysis of anticipatory postural adjustments (APAs) to assess their modulation at different IDs. Movement time and peak of velocity were found to scale with the ID only when individual movement distance across target widths was entered into the analysis. APA magnitude and duration both scaled according to movement parameters but not in the same way. APA magnitude scaled with movement velocity, while APA duration was sensitive to the amplitude-to-accuracy ratio following the ID for movements performed in the shortest time interval when on-line feedback control is probably not available. Here we show that timing of muscle activation acts as an independent central command that triggers fine-tuning for speed-accuracy trade-off.

  17. Development and Validation of Social Provision Scale on First Year Undergraduate Psychological Adjustment

    ERIC Educational Resources Information Center

    Oluwatomiwo, Oladunmoye Enoch

    2015-01-01

    This study examined the development and validation of socio provision scale on first year undergraduates adjustment among institution in Ibadan metropolis. The study adopted a descriptive survey design. A sample of 300 participants was randomly selected across institutions in Ibadan. Data were collected using socio provision scale (a =0.76),…

  18. The Tenacious Goal Pursuit and Flexible Goal Adjustment Scales: Examination of Their Validity

    ERIC Educational Resources Information Center

    Mueller, Daniel J.; Kim, Kyung

    2004-01-01

    This study tested the unidimensionality of the Tenacious Goal Pursuit (TGP) and Flexible Goal Adjustment (FGA) scales and examined the relationships of the factors measured in these scales with two criterion constructs (happiness and self-acceptance) and with age in a sample 292 adults (ranging from 50 to 90 years). Confirmatory factor analyses…

  19. Reach-Scale Channel Adjustments to Channel Network Geometry in Mountain Bedrock Streams

    NASA Astrophysics Data System (ADS)

    Plitzuweit, S. J.; Springer, G. S.

    2008-12-01

    Channel network geometry (CNG) is a critical determinant of hydrological response and may significantly affect incision processes within the Appalachian Plateau near Richwood, West Virginia. The Williams, Cherry, and Cranberry Rivers share drainage divides and their lower reaches flow atop resistant, quartz-rich sandstones. The lower two-thirds of the Cranberry and Williams Rivers display linear profiles atop the sandstones; whereas the Cherry is concave upwards atop the sandstones. Because lithologies and geological structures are similar among the watersheds, we tested whether differences in CNGs explain the profile shapes and reach-scale channel properties. Specifically, we quantified CNG by calculating reach- specific area-distance functions using DEMs. The area-distance functions were then converted into synthetic hydrographs to model hydrological responses. The Cherry River exhibits a classic dendritic drainage pattern, producing peaked hydrographs and low interval transit times. The Cranberry River displays a trellis-like drainage pattern, which produces attenuated hydrographs and high interval transit times. The upstream reaches of the Williams River have a dendritic drainage pattern, but the lower two-thirds of the watershed transitions into an elongated basin with trellis-like CNG. Reach gradients are steeper in the lower reaches of the Williams and Cranberry Rivers where hydrographs are attenuated. In contrast, peaked hydrographs within the Cherry River are associated with lower reach gradients despite resistant sandstone channel beds. Trellis-like CNG may restrict the ability of downstream reaches within the Williams and Cranberry Rivers to achieve the critical discharge needed to cause incision during floods (all other things being equal). If so, increased reach gradients may be hydraulic adjustments that compensate for comparatively low discharges. We are now applying the synthetic hydrographs to HEC-RAS flow models generated from field channel

  20. Stability of Rasch Scales over Time

    ERIC Educational Resources Information Center

    Taylor, Catherine S.; Lee, Yoonsun

    2010-01-01

    Item response theory (IRT) methods are generally used to create score scales for large-scale tests. Research has shown that IRT scales are stable across groups and over time. Most studies have focused on items that are dichotomously scored. Now Rasch and other IRT models are used to create scales for tests that include polytomously scored items.…

  1. Adjustment Scales for Children and Adolescents: Factorial Validity in a Canadian Sample

    ERIC Educational Resources Information Center

    Canivez, Gary L.; Beran, Tanya N.

    2009-01-01

    The core syndrome factor structure of the Adjustment Scales for Children and Adolescents (ASCA) was examined with a sample of 375 randomly selected Canadian youths in a large western city. The 6 ASCA core syndrome raw scores produced an identical two-factor solution as observed in samples of American youths. Principal axis exploratory factor…

  2. Adjustment Scales for Children and Adolescents and Native American Indians: Factorial Validity Generalization for Ojibwe Youths

    ERIC Educational Resources Information Center

    Canivez, Gary L.

    2006-01-01

    Replication of the core syndrome factor structure of the "Adjustment Scales for Children and Adolescents" (ASCA; P.A. McDermott, N.C. Marston, & D.H. Stott, 1993) is reported for a sample of 183 Native American Indian (Ojibwe) children and adolescents from North Central Minnesota. The six ASCA core syndromes produced an identical…

  3. Evaluation of a New Mean Scaled and Moment Adjusted Test Statistic for SEM

    ERIC Educational Resources Information Center

    Tong, Xiaoxiao; Bentler, Peter M.

    2013-01-01

    Recently a new mean scaled and skewness adjusted test statistic was developed for evaluating structural equation models in small samples and with potentially nonnormal data, but this statistic has received only limited evaluation. The performance of this statistic is compared to normal theory maximum likelihood and 2 well-known robust test…

  4. Replication of the Adjustment Scales for Children and Adolescents Core Syndrome Factor Structure

    ERIC Educational Resources Information Center

    Canivez, Gary L.

    2004-01-01

    Independent examination and replication of the core syndrome factor structure of the Adjustment Scales for Children and Adolescents (ASCA; McDermott, Marston, & Stott, 1993) is reported. A sample of 1,020 children were randomly selected from their classroom and rated on the ASCA by their teacher. The six ASCA core syndromes produced a…

  5. Trinidad and Tobago National Standardization of the Adjustment Scales for Children and Adolescents

    ERIC Educational Resources Information Center

    McDermott, Paul A.; Watkins, Marley W.; Rhoad, Anna M.; Chao, Jessica L.; Worrell, Frank C.; Hall, Tracey E.

    2015-01-01

    Given relevant cultural distinctions across nations, it is important to determine the dimensional structure and normative characteristics of psychological assessment devices in each focal population. This article examines the national standardization and validation of the Adjustment Scales for Children and Adolescents (ASCA) with a nationally…

  6. Spatial scale of local breeding habitat quality and adjustment of breeding decisions.

    PubMed

    Doligez, Blandine; Berthouly, Anne; Doligez, Damien; Tanner, Marion; Saladin, Verena; Bonfils, Danielle; Richner, Heinz

    2008-05-01

    Experimental studies provide evidence that, in spatially and temporally heterogeneous environments, individuals track variation in breeding habitat quality to adjust breeding decisions to local conditions. However, most experiments consider environmental variation at one spatial scale only, while the ability to detect the influence of a factor depends on the scale of analysis. We show that different breeding decisions by adults are based on information about habitat quality at different spatial scales. We manipulated (increased or decreased) local breeding habitat quality through food availability and parasite prevalence at a small (territory) and a large (patch) scale simultaneously in a wild population of Great Tits (Parus major). Females laid earlier in high-quality large-scale patches, but laying date did not depend on small-scale territory quality. Conversely, offspring sex ratio was higher (i.e., biased toward males) in high-quality, small-scale territories but did not depend on large-scale patch quality. Clutch size and territory occupancy probability did not depend on our experimental manipulation of habitat quality, but territories located at the edge of patches were more likely to be occupied than central territories. These results suggest that integrating different decisions taken by breeders according to environmental variation at different spatial scales is required to understand patterns of breeding strategy adjustment.

  7. The social adjustment scale-self-report: psychometric properties for older adults.

    PubMed

    Zweig, Richard A; Turkel, Elihu

    2007-12-01

    To assess the reliability and validity of the Social Adjustment Scale-Self-Report for older adults, 129 community dwelling elderly ranging in age from 63 to 87 years (M=72.3 yr., SD=5.0) were surveyed using a modified version of the scale. The average internal consistency of subscales was satisfactory (mean coefficient alpha=.62). Overall social functioning impairment (total score) was associated with measures of depression (Beck Depression Inventory, r =.58) and global psychiatric symptoms (Brief Symptom Inventory, r = .55). Older adults scored higher on Marital role, Family Unit role, and overall social functioning impairment compared to mixed-age adults assessed in previous research, and higher on marital role impairment but similarly on overall social functioning when compared with a mixed-age sample from primary care. The modified Social Adjustment Scale-Self-Report has acceptable psychometric characteristics for research use with older adults, and select subscales may account for findings of age-related differences.

  8. Review of time scales. [Universal Time-Ephemeris Time-International Atomic Time

    NASA Technical Reports Server (NTRS)

    Guinot, B.

    1974-01-01

    The basic time scales are presented: International Atomic Time, Universal Time, and Universal Time (Coordinated). These scales must be maintained in order to satisfy specific requirements. It is shown how they are obtained and made available at a very high level of precision.

  9. Time scale in quasifission reactions

    SciTech Connect

    Back, B.B.; Paul, P.; Nestler, J.

    1995-08-01

    The quasifission process arises from the hindrance of the complete fusion process when heavy-ion beams are used. The strong dissipation in the system tends to prevent fusion and lead the system towards reseparation into two final products of similar mass reminiscent of a fission process. This dissipation slows down the mass transfer and shape transformation and allows for the emission of high energy {gamma}-rays during the process, albeit with a low probability. Giant Dipole {gamma} rays emitted during this time have a characteristic spectral shape and may thus be discerned in the presence of a background of {gamma} rays emitted from the final fission-like fragments. Since the rate of GDR {gamma} emission is very well established, the strength of this component may therefore be used to measure the timescale of the quasifission process. In this experiment we studied the reaction between 368-MeV {sup 58}Ni and a {sup 165}Ho target, where deep inelastic scattering and quasifission processes are dominant. Coincidences between fission fragments (detected in four position-sensitive avalanche detectors) and high energy {gamma} rays (measured in a 10{close_quotes} x 10{close_quotes} actively shielded NaI detector) were registered. Beams were provided by the Stony Brook Superconducting Linac. The {gamma}-ray spectrum associated with deep inelastic scattering events is well reproduced by statistical cooling of projectile and target-like fragments with close to equal initial excitation energy sharing. The y spectrum associated with quasifission events is well described by statistical emission from the fission fragments alone, with only weak evidence for GDR emission from the mono-nucleus. A 1{sigma} limit of t{sub ss} < 11 x 10{sup -21} s is obtained for the mono-nucleus lifetime, which is consistent with the lifetime obtained from quasifission fragment angular distributions. A manuscript was accepted for publication.

  10. Effects of Timing of Adversity on Adolescent and Young Adult Adjustment.

    PubMed

    Kiff, Cara J; Cortes, Rebecca; Lengua, Lilana; Kosterman, Rick; Hawkins, J David; Mason, W Alex

    2012-06-01

    Effects of Timing of Adversity on Adolescent and Young Adult Adjustment Abstract Exposure to adversity during childhood and adolescence predicts adjustment across development. Further, adolescent adjustment problems persist into young adulthood. This study examined relations of contextual adversity with concurrent adolescent adjustment and prospective mental health and health outcomes in young adulthood. A longitudinal sample (N = 808) was followed from age 10 through 27. Perceptions of neighborhood in childhood predicted depression, alcohol use disorders, and HIV risk in young adulthood. Further, the timing of adversity was important in determining the type of problem experienced in adulthood. Youth adjustment predicted adult outcomes, and in some cases, mediated the relation between adversity and outcomes. These findings support the importance of adversity in predicting adjustment and elucidate factors that affect outcomes into young adulthood.

  11. Coherent Risk-Adjusted Decisions Over Time: a Bilevel Programming Approach

    DTIC Science & Technology

    2015-03-23

    AFRL-AFOSR-VA-TR-2015-0310 Coherent Risk -Adjusted Decisions Over Time: a Bilevel Programming Approach Jonathan Eckstein RUTGERS THE STATE UNIVERSITY...14/2015 4. TITLE AND SUBTITLE Final Project Report: Coherent Risk -Adjusted Decisions over Time: a Bilevel Programming Approach 5a. CONTRACT NUMBER...tested two techniques for approximating a time-inconsistent risk -averse objective function with a time-consistent one. We also investigated rolling

  12. The IERS and Adjustments to Coordinated Universal Time

    DTIC Science & Technology

    2014-01-01

    is formulated by the Bureau International des Poids et Mesures (BIPM) using time comparisons obtained from atomic clocks and is the standard for...5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER 5e. TASK NUMBER 5f. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES...U.S. Naval Observatory, ,Washington,,DC, 20392 8. PERFORMING ORGANIZATION REPORT NUMBER 9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES

  13. Accuracy Validation of Large-scale Block Adjustment without Control of ZY3 Images over China

    NASA Astrophysics Data System (ADS)

    Yang, Bo

    2016-06-01

    Mapping from optical satellite images without ground control is one of the goals of photogrammetry. Using 8802 three linear array stereo images (a total of 26406 images) of ZY3 over China, we propose a large-scale and non-control block adjustment method of optical satellite images based on the RPC model, in which a single image is regarded as an adjustment unit to be organized. To overcome the block distortion caused by unstable adjustment without ground control and the excessive accumulation of errors, we use virtual control points created by the initial RPC model of the images as the weighted observations and add them into the adjustment model to refine the adjustment. We use 8000 uniformly distributed high precision check points to evaluate the geometric accuracy of the DOM (Digital Ortho Model) and DSM (Digital Surface Model) production, for which the standard deviations of plane and elevation are 3.6 m and 4.2 m respectively. The geometric accuracy is consistent across the whole block and the mosaic accuracy of neighboring DOM is within a pixel, thus, the seamless mosaic could take place. This method achieves the goal of an accuracy of mapping without ground control better than 5 m for the whole China from ZY3 satellite images.

  14. Long term stability of atomic time scales

    NASA Astrophysics Data System (ADS)

    Petit, G.; Arias, F.

    2015-03-01

    We review the stability and accuracy achieved by the reference atomic time scales TAI and TT(BIPM). We show that they presently are in the low 10-16 in relative value, based on the performance of primary standards, of the ensemble time scale and of the time transfer techniques. We consider how the 1 × 10-16 value could be reached or superseded and which are the present limitations to attain this goal.

  15. Validation of the Narrative Emplotment Scale and its correlations with well-being and psychological adjustment.

    PubMed

    Hill, Eric D; Terrell, Heather K; Hladkyj, Steven; Nagoshi, Craig T

    2009-11-01

    Two studies examined correlates of the Narrative Emplotment Scale (NES), which measures the extent to which individuals perceive chance events and unchosen experiences as meaningfully connected. In Study 1 (N=99), the NES demonstrated adequate test-retest stability and good internal reliability. The scale was positively related to paranormal beliefs, mystical experiences, and absorption. In Study 2 (N=342), personality measures indicative of external locus of control, intrinsic religiosity, well-being, satisfaction with life, and a measure of frequency of coincidence experience were all positively correlated with narrative emplotment, providing further support for the construct validity of the scale. In terms of the question of whether meaning making is predictive of better or worse psychological adjustment, analyses indicated that the relationship between narrative emplotment and psychological adjustment was moderated by individual differences in coping strategies. Path analysis indicated that emplotment was a mediator of the pathway between religiosity and well-being. Emplotment had a negative effect on well-being through chance locus of control. These analyses suggest that this type of meaning-making is an important variable for understanding religious/spiritual beliefs and their influence on psychological adjustment.

  16. Adolescent Time Attitude Scale: Adaptation into Turkish

    ERIC Educational Resources Information Center

    Çelik, Eyüp; Sahranç, Ümit; Kaya, Mehmet; Turan, Mehmet Emin

    2017-01-01

    This research is aimed at examining the validity and reliability of the Turkish version of the Time Attitude Scale. Data was collected from 433 adolescents; 206 males and 227 females participated in the study. Confirmatory factor analysis performed to discover the structural validity of the scale. The internal consistency method was used for…

  17. Mouse Activity across Time Scales: Fractal Scenarios

    PubMed Central

    Lima, G. Z. dos Santos; Lobão-Soares, B.; do Nascimento, G. C.; França, Arthur S. C.; Muratori, L.; Ribeiro, S.; Corso, G.

    2014-01-01

    In this work we devise a classification of mouse activity patterns based on accelerometer data using Detrended Fluctuation Analysis. We use two characteristic mouse behavioural states as benchmarks in this study: waking in free activity and slow-wave sleep (SWS). In both situations we find roughly the same pattern: for short time intervals we observe high correlation in activity - a typical 1/f complex pattern - while for large time intervals there is anti-correlation. High correlation of short intervals ( to : waking state and to : SWS) is related to highly coordinated muscle activity. In the waking state we associate high correlation both to muscle activity and to mouse stereotyped movements (grooming, waking, etc.). On the other side, the observed anti-correlation over large time scales ( to : waking state and to : SWS) during SWS appears related to a feedback autonomic response. The transition from correlated regime at short scales to an anti-correlated regime at large scales during SWS is given by the respiratory cycle interval, while during the waking state this transition occurs at the time scale corresponding to the duration of the stereotyped mouse movements. Furthermore, we find that the waking state is characterized by longer time scales than SWS and by a softer transition from correlation to anti-correlation. Moreover, this soft transition in the waking state encompass a behavioural time scale window that gives rise to a multifractal pattern. We believe that the observed multifractality in mouse activity is formed by the integration of several stereotyped movements each one with a characteristic time correlation. Finally, we compare scaling properties of body acceleration fluctuation time series during sleep and wake periods for healthy mice. Interestingly, differences between sleep and wake in the scaling exponents are comparable to previous works regarding human heartbeat. Complementarily, the nature of these sleep-wake dynamics could lead to a better

  18. EVALUATION OF A NEW MEAN SCALED AND MOMENT ADJUSTED TEST STATISTIC FOR SEM.

    PubMed

    Tong, Xiaoxiao; Bentler, Peter M

    2013-01-01

    Recently a new mean scaled and skewness adjusted test statistic was developed for evaluating structural equation models in small samples and with potentially nonnormal data, but this statistic has received only limited evaluation. The performance of this statistic is compared to normal theory maximum likelihood and two well-known robust test statistics. A modification to the Satorra-Bentler scaled statistic is developed for the condition that sample size is smaller than degrees of freedom. The behavior of the four test statistics is evaluated with a Monte Carlo confirmatory factor analysis study that varies seven sample sizes and three distributional conditions obtained using Headrick's fifth-order transformation to nonnormality. The new statistic performs badly in most conditions except under the normal distribution. The goodness-of-fit χ(2) test based on maximum-likelihood estimation performed well under normal distributions as well as under a condition of asymptotic robustness. The Satorra-Bentler scaled test statistic performed best overall, while the mean scaled and variance adjusted test statistic outperformed the others at small and moderate sample sizes under certain distributional conditions.

  19. A ’Smart’ Molecular Sieve Oxygen Concentrator with Continuous Cycle Time Adjustment.

    DTIC Science & Technology

    1996-04-01

    A ’smart’ molecular sieve oxygen concentrator (MSOC) is controlled by a set of computer algorithms . The ’smart’ system automatically adjusts...determine if concentrator performance could be controlled by computer algorithms which continuously adjust concentrator cycle time. A two-bed... Computer algorithms or decision process were developed which allowed the software to control concentrator cycle time. Step changes in product flow from 5

  20. Retaining Large and Adjustable Elastic Strains of Kilogram-Scale Nb Nanowires

    SciTech Connect

    Hao, Shijie; Cui, Lishan; Wang, Hua; Jiang, Daqiang; Liu, Yinong; Yan, Jiaqiang; Ren, Yang; Han, Xiaodong; Brown, Dennis E.; Li, Ju

    2016-02-10

    Individual metallic nanowires can sustain ultra-large elastic strains of 4-7%. However, achieving and retaining elastic strains of such magnitude in kilogram-scale nanowires are challenging. Here, we find that under active load, ~5.6% elastic strain can be achieved in Nb nanowires embedded in a metallic matrix deforming by detwinning. Moreover, large tensile (2.8%) and compressive (-2.4%) elastic strains can be retained in kilogram-scale Nb nanowires when the external load was fully removed, and adjustable in magnitude by processing control. It is then demonstrated that the retained tensile elastic strains of Nb nanowires can increase their superconducting transition temperature and critical magnetic field, in comparison with the unstrained original material. This study opens new avenues for retaining large and tunable elastic strains in great quantities of nanowires and elastic-strain-engineering at industrial scale.

  1. Observing Reality on Different Time Scales

    NASA Astrophysics Data System (ADS)

    Alyushin, Alexey

    2005-10-01

    In the first part of the paper, I examine cases of acceleration of perception and cognition and provide my explanation of the mechanism of the effect. The explanation rests on the conception of neuronal temporal frames, or windows of simultaneity. Frames have different standard durations and yield to stretching and compressing. I suggest it to be the cause of the effect, as well as the ground for differences in perceptive time scales of living beings. In the second part, I apply the conception of temporal frames to model observation in the extended time scales that reach far beyond the temporal perceptive niche of individual living beings. Duration of a frame is taken as the basic parameter setting a particular time scale. By substituting a different frame duration, we set a hypothetical time scale and emulate observing reality in a wider or a narrower angle of embracing events in time. I discuss the status of observer in its relation to objective reality, and examine how reality does change its appearance when observed in different time scales.

  2. Cortical delta activity reflects reward prediction error and related behavioral adjustments, but at different times.

    PubMed

    Cavanagh, James F

    2015-04-15

    Recent work has suggested that reward prediction errors elicit a positive voltage deflection in the scalp-recorded electroencephalogram (EEG); an event sometimes termed a reward positivity. However, a strong test of this proposed relationship remains to be defined. Other important questions remain unaddressed: such as the role of the reward positivity in predicting future behavioral adjustments that maximize reward. To answer these questions, a three-armed bandit task was used to investigate the role of positive prediction errors during trial-by-trial exploration and task-set based exploitation. The feedback-locked reward positivity was characterized by delta band activities, and these related EEG features scaled with the degree of a computationally derived positive prediction error. However, these phenomena were also dissociated: the computational model predicted exploitative action selection and related response time speeding whereas the feedback-locked EEG features did not. Compellingly, delta band dynamics time-locked to the subsequent bandit (the P3) successfully predicted these behaviors. These bandit-locked findings included an enhanced parietal to motor cortex delta phase lag that correlated with the degree of response time speeding, suggesting a mechanistic role for delta band activities in motivating action selection. This dissociation in feedback vs. bandit locked EEG signals is interpreted as a differentiation in hierarchically distinct types of prediction error, yielding novel predictions about these dissociable delta band phenomena during reinforcement learning and decision making.

  3. Coarse-scaling adjustment of fine-group neutron spectra for epithermal neutron beams in BNCT using multiple activation detectors

    NASA Astrophysics Data System (ADS)

    Liu, Yuan-Hao; Nievaart, Sander; Tsai, Pi-En; Liu, Hong-Ming; Moss, Ray; Jiang, Shiang-Huei

    2009-01-01

    In order to provide an improved and reliable neutron source description for treatment planning in boron neutron capture therapy (BNCT), a spectrum adjustment procedure named coarse-scaling adjustment has been developed and applied to the neutron spectrum measurements of both the Tsing Hua Open-pool Reactor (THOR) epithermal neutron beam in Taiwan and the High Flux Reactor (HFR) in The Netherlands, using multiple activation detectors. The coarse-scaling adjustment utilizes a similar idea as the well-known two-foil method, which adjusts the thermal and epithermal neutron fluxes according to the Maxwellian distribution for thermal neutrons and 1/ E distribution over the epithermal neutron energy region. The coarse-scaling adjustment can effectively suppress the number of oscillations appearing in the adjusted spectrum and provide better smoothness. This paper also presents a sophisticated 9-step process utilizing twice the coarse-scaling adjustment which can adjust a given coarse-group spectrum into a fine-group structure, i.e. 640 groups, with satisfactory continuity and excellently matched reaction rates between measurements and calculation. The spectrum adjustment algorithm applied in this study is the same as the well-known SAND-II.

  4. Time scales involved in emergent market coherence

    NASA Astrophysics Data System (ADS)

    Kwapień, J.; Drożdż, S.; Speth, J.

    2004-06-01

    In addressing the question of the time scales characteristic for the market formation, we analyze high-frequency tick-by-tick data from the NYSE and from the German market. By using returns on various time scales ranging from seconds or minutes up to 2 days, we compare magnitude of the largest eigenvalue of the correlation matrix for the same set of securities but for different time scales. For various sets of stocks of different capitalization (and the average trading frequency), we observe a significant elevation of the largest eigenvalue with increasing time scale. Our results from the correlation matrix study can be considered as a manifestation of the so-called Epps effect. There is no unique explanation of this effect and it seems that many different factors play a role here. One of such factors is randomness in transaction moments for different stocks. Another interesting conclusion to be drawn from our results is that in the contemporary markets the emergence of significant correlations occurs on time scales much smaller than in the more distant history.

  5. Scaling and Multiscaling in Financial Time Series

    DTIC Science & Technology

    2007-11-02

    Prescribed by ANSI Std Z39-18 Outline 1/ A brief overview of financial markets • Basic definitions and problems related to finance • Scaling in finance 2...quantitative finance • Rational investment and risk management - Price dynamics - Risk quantification and control - Financial instruments: derivatives... finance • Supported by empirical observations • Practical interests. - Stability over time scales (by aggregation) - The same model is valid over a wide

  6. Global scale precipitation from monthly to centennial scales: empirical space-time scaling analysis, anthropogenic effects

    NASA Astrophysics Data System (ADS)

    de Lima, Isabel; Lovejoy, Shaun

    2016-04-01

    The characterization of precipitation scaling regimes represents a key contribution to the improved understanding of space-time precipitation variability, which is the focus here. We conduct space-time scaling analyses of spectra and Haar fluctuations in precipitation, using three global scale precipitation products (one instrument based, one reanalysis based, one satellite and gauge based), from monthly to centennial scales and planetary down to several hundred kilometers in spatial scale. Results show the presence - similarly to other atmospheric fields - of an intermediate "macroweather" regime between the familiar weather and climate regimes: we characterize systematically the macroweather precipitation temporal and spatial, and joint space-time statistics and variability, and the outer scale limit of temporal scaling. These regimes qualitatively and quantitatively alternate in the way fluctuations vary with scale. In the macroweather regime, the fluctuations diminish with time scale (this is important for seasonal, annual, and decadal forecasts) while anthropogenic effects increase with time scale. Our approach determines the time scale at which the anthropogenic signal can be detected above the natural variability noise: the critical scale is about 20 - 40 yrs (depending on the product, on the spatial scale). This explains for example why studies that use data covering only a few decades do not easily give evidence of anthropogenic changes in precipitation, as a consequence of warming: the period is too short. Overall, while showing that precipitation can be modeled with space-time scaling processes, our results clarify the different precipitation scaling regimes and further allow us to quantify the agreement (and lack of agreement) of the precipitation products as a function of space and time scales. Moreover, this work contributes to clarify a basic problem in hydro-climatology, which is to measure precipitation trends at decadal and longer scales and to

  7. Estimating Child Sleep From Parent Report of Time in Bed: Development and Evaluation of Adjustment Approaches

    PubMed Central

    Lundahl, Alyssa; Molfese, Dennis L.; Waford, Rachel N.; Roman, Adrienne; Gozal, David; Molfese, Victoria J.; Ferguson, Melissa C.

    2014-01-01

    Objective To develop and evaluate adjustment factors to convert parent-reported time in bed to an estimate of child sleep time consistent with objective measurement. Methods A community sample of 217 children aged 4–9 years (mean age = 6.6 years) wore actigraph wristwatches to objectively measure sleep for 7 days while parents completed reports of child sleep each night. After examining the moderators of the discrepancy between parent reports and actigraphy, 3 adjustment factors were evaluated. Results Parent report of child sleep overestimated nightly sleep duration by ∼24 min per night relative to actigraphy. Child age, gender, and sleep quality all had small or nonsignificant associations with correspondence between parent report and actigraph. Empirically derived adjustment factors significantly reduced the discrepancy between parent report and objective measurement. Conclusions Simple adjustment factors can enhance the correspondence and utility of parent reports of child sleep duration for clinical and research purposes. PMID:24781412

  8. Effect of Adjusting Pseudo-Guessing Parameter Estimates on Test Scaling When Item Parameter Drift Is Present

    ERIC Educational Resources Information Center

    Han, Kyung T.; Wells, Craig S.; Hambleton, Ronald K.

    2015-01-01

    In item response theory test scaling/equating with the three-parameter model, the scaling coefficients A and B have no impact on the c-parameter estimates of the test items since the cparameter estimates are not adjusted in the scaling/equating procedure. The main research question in this study concerned how serious the consequences would be if…

  9. Structure of Student Time Management Scale (STMS)

    ERIC Educational Resources Information Center

    Balamurugan, M.

    2013-01-01

    With the aim of constructing a Student Time Management Scale (STMS), the initial version was administered and data were collected from 523 standard eleventh students. (Mean age = 15.64). The data obtained were subjected to Reliability and Factor analysis using PASW Statistical software version 18. From 42 items 14 were dropped, resulting in the…

  10. Testing the Short and Screener versions of the Social Adjustment Scale-Self-report (SAS-SR).

    PubMed

    Gameroff, Marc J; Wickramaratne, Priya; Weissman, Myrna M

    2012-03-01

    The 54-item Social Adjustment Scale-Self-report (SAS-SR) is a measure of social functioning used in research studies and clinical practice. Two shortened versions were recently developed: the 24-item SAS-SR: Short and the 14-item SAS-SR: Screener. We briefly describe the development of the shortened scales and then assess their reliability and validity in comparison to the full SAS-SR in new analyses from two separate samples of convenience from a family study and from a primary care clinic. Compared to the full SAS-SR, the shortened scales performed well, exhibiting high correlations with full SAS-SR scores (r values between 0.81 and 0.95); significant correlations with health-related quality of life as measured by the Short Form 36 Health Survey; the ability to distinguish subjects with major depression versus other psychiatric disorders versus no mental disorders; and sensitivity to change in clinical status as measured longitudinally with the Symptom Checklist-90 and Global Assessment Scale. The SAS-SR: Short and SAS-SR: Screener retained the areas assessed by the full SAS-SR with fewer items in each area, and appear to be promising replacements for the full scale when a shorter administration time is desired and detailed information on performance in different areas is not required. Further work is needed to test the validity of the shortened measures.

  11. A scale on beliefs about children's adjustment in same-sex families: reliability and validity.

    PubMed

    Frias-Navarro, Dolores; Monterde-I-Bort, Hector

    2012-01-01

    In this study, we developed a new instrument named Scale Beliefs about Children's Adjustment on Same-Sex Families (SBCASSF). The scale was developed to assess of the adults' beliefs about negative impacts on children who are raised by same-sex parents. An initial pool of 95 items was generated by the authors based on a review of the literature on homophobia and feedback from several focus groups. Research findings, based on a sample of 212 university students (mean age 22 years, SD = 8.28), supported the reliability and validity of the scale. The final versions of the SBCASSF included items reflecting the following two factors: individual opposition (α = .87) and normative opposition (α = .88). Convergent validity of the scale is demonstrated by predictable correlations with beliefs about the cause of same-sex sexual orientation and the support for gay and lesbian rights. Our study reveals a strong positive association between high scores on SBCASSF and beliefs that the origin of same-sex sexual orientation is learned and opposition to gay and lesbian rights.

  12. CARINA data synthesis project: pH data scale unification and cruise adjustments

    NASA Astrophysics Data System (ADS)

    Velo, A.; Pérez, F. F.; Lin, X.; Key, R. M.; Tanhua, T.; de La Paz, M.; Olsen, A.; van Heuven, S.; Jutterström, S.; Ríos, A. F.

    2010-05-01

    Data on carbon and carbon-relevant hydrographic and hydrochemical parameters from 188 previously non-publicly available cruise data sets in the Artic Mediterranean Seas (AMS), Atlantic Ocean and Southern Ocean have been retrieved and merged to a new database: CARINA (CARbon IN the Atlantic Ocean). These data have gone through rigorous quality control (QC) procedures to assure the highest possible quality and consistency. The data for most of the measured parameters in the CARINA database were objectively examined in order to quantify systematic differences in the reported values. Systematic biases found in the data have been corrected in the data products, three merged data files with measured, calculated and interpolated data for each of the three CARINA regions; AMS, Atlantic Ocean and Southern Ocean. Out of a total of 188 cruise entries in the CARINA database, 59 reported pH measured values. All reported pH data have been unified to the Sea-Water Scale (SWS) at 25 °C. Here we present details of the secondary QC of pH in the CARINA database and the scale unification to SWS at 25 °C. The pH scale has been converted for 36 cruises. Procedures of quality control, including crossover analysis between cruises and inversion analysis are described. Adjustments were applied to the pH values for 21 of the cruises in the CARINA dataset. With these adjustments the CARINA database is consistent both internally as well as with the GLODAP data, an oceanographic data set based on the World Hydrographic Program in the 1990s. Based on our analysis we estimate the internal consistency of the CARINA pH data to be 0.005 pH units. The CARINA data are now suitable for accurate assessments of, for example, oceanic carbon inventories and uptake rates, for ocean acidification assessment and for model validation.

  13. Accuracy metrics for judging time scale algorithms

    NASA Technical Reports Server (NTRS)

    Douglas, R. J.; Boulanger, J.-S.; Jacques, C.

    1994-01-01

    Time scales have been constructed in different ways to meet the many demands placed upon them for time accuracy, frequency accuracy, long-term stability, and robustness. Usually, no single time scale is optimum for all purposes. In the context of the impending availability of high-accuracy intermittently-operated cesium fountains, we reconsider the question of evaluating the accuracy of time scales which use an algorithm to span interruptions of the primary standard. We consider a broad class of calibration algorithms that can be evaluated and compared quantitatively for their accuracy in the presence of frequency drift and a full noise model (a mixture of white PM, flicker PM, white FM, flicker FM, and random walk FM noise). We present the analytic techniques for computing the standard uncertainty for the full noise model and this class of calibration algorithms. The simplest algorithm is evaluated to find the average-frequency uncertainty arising from the noise of the cesium fountain's local oscillator and from the noise of a hydrogen maser transfer-standard. This algorithm and known noise sources are shown to permit interlaboratory frequency transfer with a standard uncertainty of less than 10(exp -15) for periods of 30-100 days.

  14. A Dynamically Computed Convective Time Scale for the Kain–Fritsch Convective Parameterization Scheme

    EPA Science Inventory

    Many convective parameterization schemes define a convective adjustment time scale τ as the time allowed for dissipation of convective available potential energy (CAPE). The Kain–Fritsch scheme defines τ based on an estimate of the advective time period for deep con...

  15. Reliability and validity of the work and social adjustment scale in phobic disorders.

    PubMed

    Mataix-Cols, David; Cowley, Amy J; Hankins, Matthew; Schneider, Andreas; Bachofen, Martin; Kenwright, Mark; Gega, Lina; Cameron, Rachel; Marks, Isaac M

    2005-01-01

    The Work and Social Adjustment Scale (WSAS) is a simple widely used 5-item measure of disability whose psychometric properties need more analysis in phobic disorders. The reliability, factor structure, validity, and sensitivity to change of the WSAS were studied in 205 phobic patients (73 agoraphobia, 62 social phobia, and 70 specific phobia) who participated in various open and randomized trials of self-exposure therapy. Internal consistency of the WSAS was excellent in all phobics pooled and in agoraphobics and social phobics separately. Principal components analysis extracted a single general factor of disability. Specific phobics gave less consistent ratings across WSAS items, suggesting that some items were less relevant to their problem. Internal consistency was marginally higher for self-ratings than clinician ratings of the WSAS. Self-ratings and clinician ratings correlated highly though patients tended to rate themselves as more disabled than clinicians did. WSAS total scores reflected differences in phobic severity and improvement with treatment. The WSAS is a valid, reliable, and change-sensitive measure of work/social and other adjustment in phobic disorders, especially in agoraphobia and social phobia.

  16. Hemispheric Asymmetries in Substorm Recovery Time Scales

    NASA Technical Reports Server (NTRS)

    Fillingim, M. O.; Chua, D H.; Germany, G. A.; Spann, James F.

    2009-01-01

    Previous statistical observations have shown that the recovery time scales of substorms occurring in the winter and near equinox (when the nighttime auroral zone was in darkness) are roughly twice as long as the recovery time scales for substorms occurring in the summer (when the nighttime auroral region was sunlit). This suggests that auroral substorms in the northern and southern hemispheres develop asymmetrically during solstice conditions with substorms lasting longer in the winter (dark) hemisphere than in the summer (sunlit) hemisphere. Additionally, this implies that more energy is deposited by electron precipitation in the winter hemisphere than in the summer one during substorms. This result, coupled with previous observations that have shown that auroral activity is more common when the ionosphere is in darkness and is suppressed when the ionosphere is in daylight, strongly suggests that the ionospheric conductivity plays an important role governing how magnetospheric energy is transferred to the ionosphere during substorms. Therefore, the ionosphere itself may dictate how much energy it will accept from the magnetosphere during substorms rather than this being an externally imposed quantity. Here, we extend our earlier work by statistically analyzing the recovery time scales for a large number of substorms observed in the conjugate hemispheres simultaneously by two orbiting global auroral imagers: Polar UVI and IMAGE FUV. Our current results are consistent with previous observations. The recovery time scales are observed to be longer in the winter (dark) hemisphere while the auroral activity has a shorter duration in the summer (sunlit) hemisphere. This leads to an asymmetric energy input from the magnetosphere to the ionosphere with more energy being deposited in the winter hemisphere than in the summer hemisphere.

  17. Special Issue on Time Scale Algorithms

    DTIC Science & Technology

    2008-01-01

    unclassified Standard Form 298 (Rev. 8-98) Prescribed by ANSI Std Z39-18 IOP PUBLISHING METROLOGIA Metrologia 45 (2008) doi:10.1088/0026-1394/45/6/E01...special issue of Metrologia presents selected papers from the Fifth International Time Scale Algorithm Symposium (VITSAS), including some of the...Paris at the BIPM in 2002 (see Metrologia 40 (3), 2003) • 5th Symposium: in San Fernando, Spain at the ROA in 2008. The early symposia were concerned

  18. Time Scales, Coherency, and Weak Coupling.

    DTIC Science & Technology

    1980-10-01

    U. S. Department of Energy, Electric Energy Systems Division, under Contract EX-76-C-01-2088; in part by the National Science Foundation under Grant...for the degree of Doctor of Philosophy in Electrical Engineering in the Graduate College of the University of Illinois at Urbana-Champaign, 1980... Electrical Engineering University of Illinois at Urbana-Champaign, 1980 In this thesis we study a relation between time scales and structural properties of

  19. A comment on the use of flushing time, residence time, and age as transport time scales

    USGS Publications Warehouse

    Monsen, N.E.; Cloern, J.E.; Lucas, L.V.; Monismith, Stephen G.

    2002-01-01

    Applications of transport time scales are pervasive in biological, hydrologic, and geochemical studies yet these times scales are not consistently defined and applied with rigor in the literature. We compare three transport time scales (flushing time, age, and residence time) commonly used to measure the retention of water or scalar quantities transported with water. We identify the underlying assumptions associated with each time scale, describe procedures for computing these time scales in idealized cases, and identify pitfalls when real-world systems deviate from these idealizations. We then apply the time scale definitions to a shallow 378 ha tidal lake to illustrate how deviations between real water bodies and the idealized examples can result from: (1) non-steady flow; (2) spatial variability in bathymetry, circulation, and transport time scales; and (3) tides that introduce complexities not accounted for in the idealized cases. These examples illustrate that no single transport time scale is valid for all time periods, locations, and constituents, and no one time scale describes all transport processes. We encourage aquatic scientists to rigorously define the transport time scale when it is applied, identify the underlying assumptions in the application of that concept, and ask if those assumptions are valid in the application of that approach for computing transport time scales in real systems.

  20. Liquidity crises on different time scales.

    PubMed

    Corradi, Francesco; Zaccaria, Andrea; Pietronero, Luciano

    2015-12-01

    We present an empirical analysis of the microstructure of financial markets and, in particular, of the static and dynamic properties of liquidity. We find that on relatively large time scales (15 min) large price fluctuations are connected to the failure of the subtle mechanism of compensation between the flows of market and limit orders: in other words, the missed revelation of the latent order book breaks the dynamical equilibrium between the flows, triggering the large price jumps. On smaller time scales (30 s), instead, the static depletion of the limit order book is an indicator of an intrinsic fragility of the system, which is related to a strongly nonlinear enhancement of the response. In order to quantify this phenomenon we introduce a measure of the liquidity imbalance present in the book and we show that it is correlated to both the sign and the magnitude of the next price movement. These findings provide a quantitative definition of the effective liquidity, which proves to be strongly dependent on the considered time scales.

  1. Liquidity crises on different time scales

    NASA Astrophysics Data System (ADS)

    Corradi, Francesco; Zaccaria, Andrea; Pietronero, Luciano

    2015-12-01

    We present an empirical analysis of the microstructure of financial markets and, in particular, of the static and dynamic properties of liquidity. We find that on relatively large time scales (15 min) large price fluctuations are connected to the failure of the subtle mechanism of compensation between the flows of market and limit orders: in other words, the missed revelation of the latent order book breaks the dynamical equilibrium between the flows, triggering the large price jumps. On smaller time scales (30 s), instead, the static depletion of the limit order book is an indicator of an intrinsic fragility of the system, which is related to a strongly nonlinear enhancement of the response. In order to quantify this phenomenon we introduce a measure of the liquidity imbalance present in the book and we show that it is correlated to both the sign and the magnitude of the next price movement. These findings provide a quantitative definition of the effective liquidity, which proves to be strongly dependent on the considered time scales.

  2. Multidimensional scaling of musical time estimations.

    PubMed

    Cocenas-Silva, Raquel; Bueno, José Lino Oliveira; Molin, Paul; Bigand, Emmanuel

    2011-06-01

    The aim of this study was to identify the psycho-musical factors that govern time evaluation in Western music from baroque, classic, romantic, and modern repertoires. The excerpts were previously found to represent variability in musical properties and to induce four main categories of emotions. 48 participants (musicians and nonmusicians) freely listened to 16 musical excerpts (lasting 20 sec. each) and grouped those that seemed to have the same duration. Then, participants associated each group of excerpts to one of a set of sine wave tones varying in duration from 16 to 24 sec. Multidimensional scaling analysis generated a two-dimensional solution for these time judgments. Musical excerpts with high arousal produced an overestimation of time, and affective valence had little influence on time perception. The duration was also overestimated when tempo and loudness were higher, and to a lesser extent, timbre density. In contrast, musical tension had little influence.

  3. Family and Center Contributions to the Adjustment of Infants in Full-Time Day Care.

    ERIC Educational Resources Information Center

    Ainslie, Ricardo C.

    1990-01-01

    Two studies examine moderators of adjustment in children who have been in full-time day care since infancy. Results suggest that, for children in child care of reasonably good quality, home variables may be more important than center variables in moderating security of attachment. (BB)

  4. Shyness-Sensitivity, Aggression, and Adjustment in Urban Chinese Adolescents at Different Historical Times

    ERIC Educational Resources Information Center

    Liu, Junsheng; Chen, Xinyin; Li, Dan; French, Doran

    2012-01-01

    The market-oriented economic reform in China over the past two decades has resulted in considerable changes in social attitudes regarding youth's behaviors. This study examined the relations of shyness and aggression to adjustment in Chinese adolescents at different historical times. Participants came from two cohorts (1994 and 2008) of…

  5. Adjustment of sleep and the circadian temperature rhythm after flights across nine time zones

    NASA Technical Reports Server (NTRS)

    Gander, Philippa H.; Myhre, Grete; Graeber, R. Curtis; Lauber, John K.; Andersen, Harald T.

    1989-01-01

    The adjustment of sleep-wake patterns and the circadian temperature rhythm was monitored in nine Royal Norwegian Airforce volunteers operating P-3 aircraft during a westward training deployment across nine time zones. Subjects recorded all sleep and nap times, rated nightly sleep quality, and completed personality inventories. Rectal temperature, heart rate, and wrist activity were continuously monitored. Adjustment was slower after the return eastward flight than after the outbound westward flight. The eastward flight produced slower readjustment of sleep timing to local time and greater interindividual variability in the patterns of adjustment of sleep and temperature. One subject apparently exhibited resynchronization by partition, with the temperature rhythm undergoing the reciprocal 15-h delay. In contrast, average heart rates during sleep were significantly elevated only after westward flight. Interindividual differences in adjustment of the temperature rhythm were correlated with some of the personality measures. Larger phase delays in the overall temperature waveform (as measured on the 5th day after westward flight) were exhibited by extraverts, and less consistently by evening types.

  6. Time Ephemeris and General Relativistic Scale Factor

    NASA Astrophysics Data System (ADS)

    Fukushima, Toshio

    2010-11-01

    Time ephemeris is the location-independent part of the transformation formula relating two time coordinates such as TCB and TCG (Fukushima 2009). It is computed from the corresponding (space) ephemerides providing the relative motion of two spatial coordinate origins such as the motion of geocenter relative to the solar system barycenter. The time ephemerides are inevitably needed in conducting precise four dimensional coordinate transformations among various spacetime coordinate systems such as the GCRS and BCRS (Soffel et al. 2003). Also, by means of the time average operation, they are used in determining the information on scale conversion between the pair of coordinate systems, especially the difference of the general relativistic scale factor from unity such as LC. In 1995, we presented the first numerically-integrated time ephemeris, TE245, from JPL's planetary ephemeris DE245 (Fukushima 1995). It gave an estimate of LC as 1.4808268457(10) × 10-8, which was incorrect by around 2 × 10-16. This was caused by taking the wrong sign of the post-Newtonian contribution in the final summation. Four years later, we updated TE245 to TE405 associated with DE405 (Irwin and Fukushima 1999). This time the renewed vale of LC is 1.48082686741(200) × 10-8 Another four years later, by using a precise technique of time average, we improved the estimate of Newtonian part of LC for TE405 as 1.4808268559(6) × 10-8 (Harada and Fukushima 2003). This leads to the value of LC as LC = 1.48082686732(110) × 10-8. If we combine this with the constant defining the mean rate of TCG-TT, LG = 6.969290134 × 10-10 (IAU 2001), we estimate the numerical value of another general relativistic scale factor LB = 1.55051976763(110) × 10-8, which has the meaning of the mean rate of TCB-TT. The main reasons of the uncertainties are the truncation effect in time average and the uncertainty of asteroids' perturbation. As a compact realization of the time ephemeris, we prepared HF2002, a Fortran

  7. Time ephemeris and general relativistic scale factor

    NASA Astrophysics Data System (ADS)

    Fukushima, Toshio

    2010-01-01

    Time ephemeris is the location-independent part of the transformation formula relating two time coordinates such as TCB and TCG (Fukushima 1995). It is computed from the corresponding (space) ephemerides providing the relative motion of two spatial coordinate origins such as the motion of geocenter relative to the solar system barycenter. The time ephemerides are inevitably needed in conducting precise four dimensional coordinate transformations among various spacetime coordinate systems such as the GCRS and BCRS (Soffel et al. 2003). Also, by means of the time average operation, they are used in determining the information on scale conversion between the pair of coordinate systems, especially the difference of the general relativistic scale factor from unity such as LC. In 1995, we presented the first numerically-integrated time ephemeris, TE245, from JPL's planetary ephemeris DE245 (Fukushima 1995). It gave an estimate of LC as 1.4808268457(10) × 10-8, which was incorrect by around 2 × 10-16. This was caused by taking the wrong sign of the post-Newtonian contribution in the final summation. Four years later, we updated TE245 to TE405 associated with DE405 (Irwin and Fukushima 1999). This time the renewed vale of LC is 1.48082686741(200) × 10-8 Another four years later, by using a precise technique of time average, we improved the estimate of Newtonian part of LC for TE405 as 1.4808268559(6) × 10-8 (Harada and Fukushima 2003). This leads to the value of LC as LC = 1.48082686732(110) × 10-8. If we combine this with the constant defining the mean rate of TCG-TT, LG = 6.969290134 × 10-10 (IAU 2001), we estimate the numerical value of another general relativistic scale factor LB = 1.55051976763(110) × 10-8, which has the meaning of the mean rate of TCB-TT. The main reasons of the uncertainties are the truncation effect in time average and the uncertainty of asteroids' perturbation. The former is a natural limitation caused by the finite length of numerical

  8. Time Ephemeris and Relativistic Scaling of Ephemerides

    NASA Astrophysics Data System (ADS)

    Fukushima, Toshio

    2009-05-01

    Time ephemeris is the location-independent part of the transformation formula relating two time coordinates such as TCB and TCG. It is computed from the corresponding (space) ephemerides providing the relative motion of two spatial coordinate origins associated such as the motion of geocenter relative to the solar system barycenter. The time ephemerides are inevitablly needed in conducting a precise four-dimensional coordinate transformation among various spacetime coodrinate systems such as the GCRS and BCRS. Also, by means of the time average operation, it is useful in determining the information on scale conversion between the pair of coordinate systems, especially scale conversion factors such as LC. In 1995, we presented the first numerically-integrated time ephemeris, TE245, from JPL's planetary ephemeris DE245 (Fukushima 1995, A&Ap, 294, 895-906). Four years later, we updated it to TE405 associated with DE405 (Irwin and Fukushima 1999, A&Ap, 348, 642-652). The former gave an estimate of LC, the scale conversion factor between TCB and TCG, as 1.4808268457(10) x 10-8. Meanwhile the latter renewed it as 1.48082686741(200) x 10-8. Another four years later, by using a precise technique of time avarage, we improved the estimate as 1.4808268559(6) x 10-8 (Harada and Fukushima 2003, AJ, 126, 2557-2561). The main reasons of these uncertainties are the truncation effect in time average and the uncertainty of asteroids' perturbation. The former is a natural limitation caused by the finite length of numerical planetary ephemerides and the latter is due to the uncertainty of masses of some heavy asteroids. In the talk, we review the post-Newtonian formulas to integrate time ephemerides as well as some practical details on their numerical integration. Also, we explain two kinds of techniques of time average. One is a semi-numerical approach as explained in 1991 A&Ap article and the other is purely numerical as given in 2003 AJ paper.

  9. Controlling Discrete Time T-S Fuzzy Chaotic Systems via Adaptive Adjustment

    NASA Astrophysics Data System (ADS)

    Nian, Yibei; Zheng, Yongai

    In order to overcome typical drawbacks of the OGY control, i.e. the long waiting time for control to be applied and the accessible turning system parameter in advance, this paper presents a new chaos control method based on Takagi- Sugeno (T-S) fuzzy model and adaptive adjustment. This method represents a chaotic system by linear models in different state space regions based on T-S fuzzy model and then stabilize the linear models in different state space regions by the adaptive adjustment mechanism. An example for the Henon map is given to demonstrate the effectiveness of the proposed method.

  10. Deciphering Time Scale Hierarchy in Reaction Networks.

    PubMed

    Nagahata, Yutaka; Maeda, Satoshi; Teramoto, Hiroshi; Horiyama, Takashi; Taketsugu, Tetsuya; Komatsuzaki, Tamiki

    2016-03-03

    Markovian dynamics on complex reaction networks are one of the most intriguing subjects in a wide range of research fields including chemical reactions, biological physics, and ecology. To represent the global kinetics from one node (corresponding to a basin on an energy landscape) to another requires information on multiple pathways that directly or indirectly connect these two nodes through the entire network. In this paper we present a scheme to extract a hierarchical set of global transition states (TSs) over a discrete-time Markov chain derived from first-order rate equations. The TSs can naturally take into account the multiple pathways connecting any pair of nodes. We also propose a new type of disconnectivity graph (DG) to capture the hierarchical organization of different time scales of reactions that can capture changes in the network due to changes in the time scale of observation. The crux is the introduction of the minimum conductance cut (MCC) in graph clustering, corresponding to the dividing surface across the network having the "smallest" transition probability between two disjoint subnetworks (superbasins on the energy landscape) in the network. We present a new combinatorial search algorithm for finding this MCC. We apply our method to a reaction network of Claisen rearrangement of allyl vinyl ether that consists of 23 nodes and 66 links (saddles on the energy landscape) connecting them. We compare the kinetic properties of our DG to those of the transition matrix of the rate equations and show that our graph can properly reveal the hierarchical organization of time scales in a network.

  11. Scaling laws from geomagnetic time series

    USGS Publications Warehouse

    Voros, Z.; Kovacs, P.; Juhasz, A.; Kormendi, A.; Green, A.W.

    1998-01-01

    The notion of extended self-similarity (ESS) is applied here for the X - component time series of geomagnetic field fluctuations. Plotting nth order structure functions against the fourth order structure function we show that low-frequency geomagnetic fluctuations up to the order n = 10 follow the same scaling laws as MHD fluctuations in solar wind, however, for higher frequencies (f > l/5[h]) a clear departure from the expected universality is observed for n > 6. ESS does not allow to make an unambiguous statement about the non triviality of scaling laws in "geomagnetic" turbulence. However, we suggest to use higher order moments as promising diagnostic tools for mapping the contributions of various remote magnetospheric sources to local observatory data. Copyright 1998 by the American Geophysical Union.

  12. Evaluation of Logjam Scour in the Context of Reach-scale River Channel Adjustments

    NASA Astrophysics Data System (ADS)

    Hanrahan, T. P.; Vernon, C. R.

    2012-12-01

    River channel modifications for protection, enhancement and restoration often include flow resistance elements such as large wood and rock structures. Evaluating the effectiveness of these modifications in achieving design objectives can be confounded by river channel adjustments occurring at larger spatial scales throughout the reach of interest. Engineered logjams are one example where the design objectives typically include riverbed scour and the creation of pools. We surveyed riverbed elevations before and after the installation of engineered logjams, and compared those measurements to predictions from empirical scour equations. Riverbed elevations throughout the reach were also surveyed along cross-sections before and after restoration activities. River channel expansion and contraction throughout the reach was measured by mapping the unvegetated channel boundary for a period of years before and after restoration. Maximum riverbed scour immediately adjacent to the engineered logjams was 1.27 m, while maximum riverbed aggradation was 1.88 m. General riverbed scour and aggradation throughout the study reached was much larger, ranging from 2.71 m of scour to 2.96 m of aggradation. Over a period of 4 years, the channel expanded throughout the area of logjam installation, with increases in channel width ranging from 25.2 m to 58.2 m. Results from this study highlight the importance of considering large scale interactions between vegetation and river morphodynamics in the planning and implementation of river channel modifications.

  13. Effect of time-activity adjustment on exposure assessment for traffic-related ultrafine particles.

    PubMed

    Lane, Kevin J; Levy, Jonathan I; Scammell, Madeleine Kangsen; Patton, Allison P; Durant, John L; Mwamburi, Mkaya; Zamore, Wig; Brugge, Doug

    2015-01-01

    Exposures to ultrafine particles (<100 nm, estimated as particle number concentration, PNC) differ from ambient concentrations because of the spatial and temporal variability of both PNC and people. Our goal was to evaluate the influence of time-activity adjustment on exposure assignment and associations with blood biomarkers for a near-highway population. A regression model based on mobile monitoring and spatial and temporal variables was used to generate hourly ambient residential PNC for a full year for a subset of participants (n=140) in the Community Assessment of Freeway Exposure and Health study. We modified the ambient estimates for each hour using personal estimates of hourly time spent in five micro-environments (inside home, outside home, at work, commuting, other) as well as particle infiltration. Time-activity adjusted (TAA)-PNC values differed from residential ambient annual average (RAA)-PNC, with lower exposures predicted for participants who spent more time away from home. Employment status and distance to highway had a differential effect on TAA-PNC. We found associations of RAA-PNC with high sensitivity C-reactive protein and Interleukin-6, although exposure-response functions were non-monotonic. TAA-PNC associations had larger effect estimates and linear exposure-response functions. Our findings suggest that time-activity adjustment improves exposure assessment for air pollutants that vary greatly in space and time.

  14. Effect of time-activity adjustment on exposure assessment for traffic-related ultrafine particles

    PubMed Central

    Lane, Kevin J; Levy, Jonathan I; Scammell, Madeleine Kangsen; Patton, Allison P; Durant, John L; Mwamburi, Mkaya; Zamore, Wig; Brugge, Doug

    2015-01-01

    Exposures to ultrafine particles (<100 nm, estimated as particle number concentration, PNC) differ from ambient concentrations because of the spatial and temporal variability of both PNC and people. Our goal was to evaluate the influence of time-activity adjustment on exposure assignment and associations with blood biomarkers for a near-highway population. A regression model based on mobile monitoring and spatial and temporal variables was used to generate hourly ambient residential PNC for a full year for a subset of participants (n=140) in the Community Assessment of Freeway Exposure and Health study. We modified the ambient estimates for each hour using personal estimates of hourly time spent in five micro-environments (inside home, outside home, at work, commuting, other) as well as particle infiltration. Time-activity adjusted (TAA)-PNC values differed from residential ambient annual average (RAA)-PNC, with lower exposures predicted for participants who spent more time away from home. Employment status and distance to highway had a differential effect on TAA-PNC. We found associations of RAA-PNC with high sensitivity C-reactive protein and Interleukin-6, although exposure-response functions were non-monotonic. TAA-PNC associations had larger effect estimates and linear exposure-response functions. Our findings suggest that time-activity adjustment improves exposure assessment for air pollutants that vary greatly in space and time. PMID:25827314

  15. The British Sign Language Versions of the Patient Health Questionnaire, the Generalized Anxiety Disorder 7-Item Scale, and the Work and Social Adjustment Scale

    ERIC Educational Resources Information Center

    Rogers, Katherine D.; Young, Alys; Lovell, Karina; Campbell, Malcolm; Scott, Paul R.; Kendal, Sarah

    2013-01-01

    The present study is aimed to translate 3 widely used clinical assessment measures into British Sign Language (BSL), to pilot the BSL versions, and to establish their validity and reliability. These were the Patient Health Questionnaire (PHQ-9), the Generalized Anxiety Disorder 7-item (GAD-7) scale, and the Work and Social Adjustment Scale (WSAS).…

  16. Flexible sampling large-scale social networks by self-adjustable random walk

    NASA Astrophysics Data System (ADS)

    Xu, Xiao-Ke; Zhu, Jonathan J. H.

    2016-12-01

    Online social networks (OSNs) have become an increasingly attractive gold mine for academic and commercial researchers. However, research on OSNs faces a number of difficult challenges. One bottleneck lies in the massive quantity and often unavailability of OSN population data. Sampling perhaps becomes the only feasible solution to the problems. How to draw samples that can represent the underlying OSNs has remained a formidable task because of a number of conceptual and methodological reasons. Especially, most of the empirically-driven studies on network sampling are confined to simulated data or sub-graph data, which are fundamentally different from real and complete-graph OSNs. In the current study, we propose a flexible sampling method, called Self-Adjustable Random Walk (SARW), and test it against with the population data of a real large-scale OSN. We evaluate the strengths of the sampling method in comparison with four prevailing methods, including uniform, breadth-first search (BFS), random walk (RW), and revised RW (i.e., MHRW) sampling. We try to mix both induced-edge and external-edge information of sampled nodes together in the same sampling process. Our results show that the SARW sampling method has been able to generate unbiased samples of OSNs with maximal precision and minimal cost. The study is helpful for the practice of OSN research by providing a highly needed sampling tools, for the methodological development of large-scale network sampling by comparative evaluations of existing sampling methods, and for the theoretical understanding of human networks by highlighting discrepancies and contradictions between existing knowledge/assumptions of large-scale real OSN data.

  17. Cratering time scales for the Galilean satellites

    NASA Technical Reports Server (NTRS)

    Shoemaker, E. M.; Wolfe, R. F.

    1982-01-01

    An attempt is made to estimate the present cratering rate for each Galilean satellite within the correct order of magnitude and to extend the cratering rates back into the geologic past on the basis of evidence from the earth-moon system. For collisions with long and short period comets, the magnitudes and size distributions of the comet nuclei, the distribution of their perihelion distances, and the completeness of discovery are addressed. The diameters and masses of cometary nuclei are assessed, as are crater diameters and cratering rates. The dynamical relations between long period and short period comets are discussed, and the population of Jupiter-crossing asteroids is assessed. Estimated present cratering rates on the Galilean satellites are compared and variations of cratering rate with time are considered. Finally, the consistency of derived cratering time scales with the cratering record of the icy Galilean satellites is discussed.

  18. Parametric instabilities in picosecond time scales

    SciTech Connect

    Baldis, H.A.; Rozmus, W.; Labaune, C.; Mounaix, Ph.; Pesme, D.; Baton, S.; Tikhonchuk, V.T.

    1993-03-01

    The coupling of intense laser light with plasmas is a rich field of plasma physics, with many applications. Among these are inertial confinement fusion (ICF), x-ray lasers, particle acceleration, and x-ray sources. Parametric instabilities have been studied for many years because of their importance to ICF; with laser pulses with duration of approximately a nanosecond, and laser intensities in the range 10{sup 14}--10{sup 15}W/cm{sup 2} these instabilities are of crucial concern because of a number of detrimental effects. Although the laser pulse duration of interest for these studies are relatively long, it has been evident in the past years that to reach an understanding of these instabilities requires their characterization and analysis in picosecond time scales. At the laser intensities of interest, the growth rate for stimulated Brillouin scattering (SBS) is of the order of picoseconds, and of an order of magnitude shorter for stimulated Raman scattering (SRS). In this paper the authors discuss SBS and SRS in the context of their evolution in picosecond time scales. They describe the fundamental concepts associated with their growth and saturation, and recent work on the nonlinear treatment required for the modeling of these instabilities at high laser intensities.

  19. Monitoring scale scores over time via quality control charts, model-based approaches, and time series techniques.

    PubMed

    Lee, Yi-Hsuan; von Davier, Alina A

    2013-07-01

    Maintaining a stable score scale over time is critical for all standardized educational assessments. Traditional quality control tools and approaches for assessing scale drift either require special equating designs, or may be too time-consuming to be considered on a regular basis with an operational test that has a short time window between an administration and its score reporting. Thus, the traditional methods are not sufficient to catch unusual testing outcomes in a timely manner. This paper presents a new approach for score monitoring and assessment of scale drift. It involves quality control charts, model-based approaches, and time series techniques to accommodate the following needs of monitoring scale scores: continuous monitoring, adjustment of customary variations, identification of abrupt shifts, and assessment of autocorrelation. Performance of the methodologies is evaluated using manipulated data based on real responses from 71 administrations of a large-scale high-stakes language assessment.

  20. Incremental Real-Time Bundle Adjustment for Multi-Camera Systems with Points at Infinity

    NASA Astrophysics Data System (ADS)

    Schneider, J.; Läbe, T.; Förstner, W.

    2013-08-01

    This paper presents a concept and first experiments on a keyframe-based incremental bundle adjustment for real-time structure and motion estimation in an unknown scene. In order to avoid periodic batch steps, we use the software iSAM2 for sparse nonlinear incremental optimization, which is highly efficient through incremental variable reordering and fluid relinearization. We adapted the software to allow for (1) multi-view cameras by taking the rigid transformation between the cameras into account, (2) omnidirectional cameras as it can handle arbitrary bundles of rays and (3) scene points at infinity, which improve the estimation of the camera orientation as points at the horizon can be observed over long periods of time. The real-time bundle adjustment refers to sets of keyframes, consisting of frames, one per camera, taken in a synchronized way, that are initiated if a minimal geometric distance to the last keyframe set is exceeded. It uses interest points in the keyframes as observations, which are tracked in the synchronized video streams of the individual cameras and matched across the cameras, if possible. First experiments show the potential of the incremental bundle adjustment w.r.t. time requirements. Our experiments are based on a multi-camera system with four fisheye cameras, which are mounted on a UAV as two stereo pairs, one looking ahead and one looking backwards, providing a large field of view.

  1. Time warp edit distance with stiffness adjustment for time series matching.

    PubMed

    Marteau, Pierre-François

    2009-02-01

    In a way similar to the string-to-string correction problem, we address discrete time series similarity in light of a time-series-to-time-series-correction problem for which the similarity between two time series is measured as the minimum cost sequence of edit operations needed to transform one time series into another. To define the edit operations, we use the paradigm of a graphical editing process and end up with a dynamic programming algorithm that we call Time Warp Edit Distance (TWED). TWED is slightly different in form from Dynamic Time Warping (DTW), Longest Common Subsequence (LCSS), or Edit Distance with Real Penalty (ERP) algorithms. In particular, it highlights a parameter that controls a kind of stiffness of the elastic measure along the time axis. We show that the similarity provided by TWED is a potentially useful metric in time series retrieval applications since it could benefit from the triangular inequality property to speed up the retrieval process while tuning the parameters of the elastic measure. In that context, a lower bound is derived to link the matching of time series into downsampled representation spaces to the matching into the original space. The empiric quality of the TWED distance is evaluated on a simple classification task. Compared to Edit Distance, DTW, LCSS, and ERP, TWED has proved to be quite effective on the considered experimental task.

  2. EDITORIAL: Special issue on time scale algorithms

    NASA Astrophysics Data System (ADS)

    Matsakis, Demetrios; Tavella, Patrizia

    2008-12-01

    This special issue of Metrologia presents selected papers from the Fifth International Time Scale Algorithm Symposium (VITSAS), including some of the tutorials presented on the first day. The symposium was attended by 76 persons, from every continent except Antarctica, by students as well as senior scientists, and hosted by the Real Instituto y Observatorio de la Armada (ROA) in San Fernando, Spain, whose staff further enhanced their nation's high reputation for hospitality. Although a timescale can be simply defined as a weighted average of clocks, whose purpose is to measure time better than any individual clock, timescale theory has long been and continues to be a vibrant field of research that has both followed and helped to create advances in the art of timekeeping. There is no perfect timescale algorithm, because every one embodies a compromise involving user needs. Some users wish to generate a constant frequency, perhaps not necessarily one that is well-defined with respect to the definition of a second. Other users might want a clock which is as close to UTC or a particular reference clock as possible, or perhaps wish to minimize the maximum variation from that standard. In contrast to the steered timescales that would be required by those users, other users may need free-running timescales, which are independent of external information. While no algorithm can meet all these needs, every algorithm can benefit from some form of tuning. The optimal tuning, and even the optimal algorithm, can depend on the noise characteristics of the frequency standards, or of their comparison systems, the most precise and accurate of which are currently Two Way Satellite Time and Frequency Transfer (TWSTFT) and GPS carrier phase time transfer. The interest in time scale algorithms and its associated statistical methodology began around 40 years ago when the Allan variance appeared and when the metrological institutions started realizing ensemble atomic time using more than

  3. Valve timing adjusting mechanism for internal combustion engine for adjusting timing of intake valve and/or exhaust valve corresponding to engine operating conditions

    SciTech Connect

    Akassaka, A.; Suga, S.; Sawada, T.

    1989-03-14

    A valve timing adjusting mechanism for an internal combustion engine is described, comprising: a camshaft carrying a cam for driving one of an intake valve and an exhaust valve, the camshaft having a section formed with first helical gear teeth; a cam pulley engaging a timing belt driven by the engine for rotation in synchronism with engine revolution, the cam pulley having second helical gear teeth; a ring gear having inner and outer helical gear teeth engageable with the first and second gear teeth of the camshaft and the cam pulley; first means for defining an enclosed chamber facing one planar face of the ring gear and connected with a fluid pressure source to receive pressurized fluid therefrom; a spring means associated with the other planar face of the ring gear for exerting an initial biasing force on the ring gear in opposition to the force due to the pressure on the ring gear from the enclosed chamber; and second means for controlling the fluid pressure introduced into the enclosed chamber in accordance with engine operating conditions so as to shift the ring gear between two positions.

  4. Time Horizon and Social Scale in Communication

    NASA Astrophysics Data System (ADS)

    Krantz, D. H.

    2010-12-01

    In 2009 our center (CRED) published a first version of The Psychology of Climate Change Communication. In it, we attempted to summarize facts and concepts from psychological research that could help guide communication. While this work focused on climate change, most of the ideas are at least partly applicable for communication about a variety of natural hazards. Of the many examples in this guide, I mention three. Single-action bias is the human tendency to stop considering further actions that might be needed to deal with a given hazard, once a single action has been taken. Another example is the importance of group affiliation in motivating voluntary contributions to joint action. A third concerns the finding that group participation enhances understanding of probabilistic concepts and promotes action in the face of uncertainty. One current research direction, which goes beyond those included in the above publication, focuses on how time horizons arise in the thinking of individuals and groups, and how these time horizons might influence hazard preparedness. On the one hand, individuals sometimes appear impatient, organizations look for immediate results, and officials fail to look beyond the next election cycle. Yet under some laboratory conditions and in some subcultures, a longer time horizon is adopted. We are interested in how time horizon is influenced by group identity and by the very architecture of planning and decision making. Institutional changes, involving long-term contractual relationships among communities, developers, insurers, and governments, could greatly increase resilience in the face of natural hazards. Communication about hazards, in the context of such long-term contractual relationships might look very different from communication that is first initiated by immediate threat. Another new direction concerns the social scale of institutions and of communication about hazards. Traditionally, insurance contracts share risk among a large

  5. Time with Peers from Middle Childhood to Late Adolescence: Developmental Course and Adjustment Correlates

    PubMed Central

    Lam, Chun Bun; McHale, Susan M.; Crouter, Ann C.

    2014-01-01

    This study examined the developmental course and adjustment correlates of time with peers from age 8 to 18. On 7 occasions over 8 years, the two eldest siblings from 201 European American, working- and middle-class families provided questionnaire and/or phone diary data. Multilevel models revealed that girls’ time with mixed/opposite-sex peers increased beginning in middle childhood, but boys’ time increased beginning in early adolescence. For both girls and boys, time with same-sex peers peaked in mid-adolescence. At the within-person level, unsupervised time with mixed/opposite-sex peers longitudinally predicted problem behaviors and depressive symptoms, and supervised time with mixed/opposite-sex peers longitudinally predicted better school performance. Findings highlight the importance of social context in understanding peer involvement and its implications for youth development. PMID:24673293

  6. Controlling Time-Dependent Confounding by Health Status and Frailty: Restriction Versus Statistical Adjustment.

    PubMed

    McGrath, Leah J; Ellis, Alan R; Brookhart, M Alan

    2015-07-01

    Nonexperimental studies of preventive interventions are often biased because of the healthy-user effect and, in frail populations, because of confounding by functional status. Bias is evident when estimating influenza vaccine effectiveness, even after adjustment for claims-based indicators of illness. We explored bias reduction methods while estimating vaccine effectiveness in a cohort of adult hemodialysis patients. Using the United States Renal Data System and linked data from a commercial dialysis provider, we estimated vaccine effectiveness using a Cox proportional hazards marginal structural model of all-cause mortality before and during 3 influenza seasons in 2005/2006 through 2007/2008. To improve confounding control, we added frailty indicators to the model, measured time-varying confounders at different time intervals, and restricted the sample in multiple ways. Crude and baseline-adjusted marginal structural models remained strongly biased. Restricting to a healthier population removed some unmeasured confounding; however, this reduced the sample size, resulting in wide confidence intervals. We estimated an influenza vaccine effectiveness of 9% (hazard ratio = 0.91, 95% confidence interval: 0.72, 1.15) when bias was minimized through cohort restriction. In this study, the healthy-user bias could not be controlled through statistical adjustment; however, sample restriction reduced much of the bias.

  7. Development and Validation of a Brief Version of the Dyadic Adjustment Scale With a Nonparametric Item Analysis Model

    ERIC Educational Resources Information Center

    Sabourin, Stephane; Valois, Pierre; Lussier, Yvan

    2005-01-01

    The main purpose of the current research was to develop an abbreviated form of the Dyadic Adjustment Scale (DAS) with nonparametric item response theory. The authors conducted 5 studies, with a total participation of 8,256 married or cohabiting individuals. Results showed that the item characteristic curves behaved in a monotonically increasing…

  8. Assessing Changes in Socioemotional Adjustment across Early School Transitions--New National Scales for Children at Risk

    ERIC Educational Resources Information Center

    McDermott, Paul A.; Watkins, Marley W.; Rovine, Michael J.; Rikoon, Samuel H.

    2013-01-01

    This article reports the development and evidence for validity and application of the Adjustment Scales for Early Transition in Schooling (ASETS). Based on primary analyses of data from the Head Start Impact Study, a nationally representative sample (N = 3077) of randomly selected children from low-income households is configured to inform…

  9. Bundle block adjustment of large-scale remote sensing data with Block-based Sparse Matrix Compression combined with Preconditioned Conjugate Gradient

    NASA Astrophysics Data System (ADS)

    Zheng, Maoteng; Zhang, Yongjun; Zhou, Shunping; Zhu, Junfeng; Xiong, Xiaodong

    2016-07-01

    In recent years, new platforms and sensors in photogrammetry, remote sensing and computer vision areas have become available, such as Unmanned Aircraft Vehicles (UAV), oblique camera systems, common digital cameras and even mobile phone cameras. Images collected by all these kinds of sensors could be used as remote sensing data sources. These sensors can obtain large-scale remote sensing data which consist of a great number of images. Bundle block adjustment of large-scale data with conventional algorithm is very time and space (memory) consuming due to the super large normal matrix arising from large-scale data. In this paper, an efficient Block-based Sparse Matrix Compression (BSMC) method combined with the Preconditioned Conjugate Gradient (PCG) algorithm is chosen to develop a stable and efficient bundle block adjustment system in order to deal with the large-scale remote sensing data. The main contribution of this work is the BSMC-based PCG algorithm which is more efficient in time and memory than the traditional algorithm without compromising the accuracy. Totally 8 datasets of real data are used to test our proposed method. Preliminary results have shown that the BSMC method can efficiently decrease the time and memory requirement of large-scale data.

  10. A biogenic CO2 flux adjustment scheme for the mitigation of large-scale biases in global atmospheric CO2 analyses and forecasts

    NASA Astrophysics Data System (ADS)

    Agustí-Panareda, Anna; Massart, Sébastien; Chevallier, Frédéric; Balsamo, Gianpaolo; Boussetta, Souhail; Dutra, Emanuel; Beljaars, Anton

    2016-08-01

    Forecasting atmospheric CO2 daily at the global scale with a good accuracy like it is done for the weather is a challenging task. However, it is also one of the key areas of development to bridge the gaps between weather, air quality and climate models. The challenge stems from the fact that atmospheric CO2 is largely controlled by the CO2 fluxes at the surface, which are difficult to constrain with observations. In particular, the biogenic fluxes simulated by land surface models show skill in detecting synoptic and regional-scale disturbances up to sub-seasonal time-scales, but they are subject to large seasonal and annual budget errors at global scale, usually requiring a posteriori adjustment. This paper presents a scheme to diagnose and mitigate model errors associated with biogenic fluxes within an atmospheric CO2 forecasting system. The scheme is an adaptive scaling procedure referred to as a biogenic flux adjustment scheme (BFAS), and it can be applied automatically in real time throughout the forecast. The BFAS method generally improves the continental budget of CO2 fluxes in the model by combining information from three sources: (1) retrospective fluxes estimated by a global flux inversion system, (2) land-use information, (3) simulated fluxes from the model. The method is shown to produce enhanced skill in the daily CO2 10-day forecasts without requiring continuous manual intervention. Therefore, it is particularly suitable for near-real-time CO2 analysis and forecasting systems.

  11. 26 CFR 1.754-1 - Time and manner of making election to adjust basis of partnership property.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 26 Internal Revenue 8 2010-04-01 2010-04-01 false Time and manner of making election to adjust..., Subchapter K, Chapter 1 of the Code § 1.754-1 Time and manner of making election to adjust basis of... sections 734(b) and 743(b) if it files an election in accordance with the rules set forth in paragraph...

  12. Fracture-based Fabrication of Normally-closed, Adjustable and Fully Reversible Micro-scale Fluidic Channels

    PubMed Central

    Huang, Jiexi; Matsuoka, Toshiki; Thouless, M.D.; Takayama, Shuichi

    2014-01-01

    Adjustable fluidic structures play an important role in microfluidic systems. Fracture of multilayered materials under applied tension has been previously demonstrated as a convenient, simple and inexpensive approach to fabricate nano-scale adjustable structures; here, we demonstrate how to extend this concept to the micro-scale. We achieve this by a novel pairing of materials that leverages fracture mechanics to limit crack formation to a specified region, allowing us to create size-controllable and adjustable microfluidic structures. We demonstrate that this technique can be used to fabricate ‘normally-closed’ microfluidic channels that are completely reversible, a feature that is challenging to achieve in conventional systems without careful engineering controls. The adjustable microfluidic channels are then applied to mechanically lyse single cells, and subsequently manipulate the released nuclear chromatin, creating new possibilities for epigenetic analysis of single cells. This simple, versatile and robust technology provides an easily accessible pathway to construct adjustable microfluidic structures, which will be useful in developing complex assays and experiments even in resource-limited settings. PMID:24942855

  13. Millenial scale changes in flood magnitude and frequency and the role of changes in channel adjustment.

    NASA Astrophysics Data System (ADS)

    Croke, Jacky; Thompson, Christopher; Denham, Robert; Haines, Heather; Sharma, Ashneel; Pietsch, Timothy

    2016-04-01

    With access to only limited gauging records (~ 37 years in eastern Australia), Australia like many parts of the globe is heavily constrained in its ability to meaningfully predict the magnitude and frequency of extreme flood events. Flood inundation data gathered during recent floods (2011 and 213) now forms an essential insight into how landscapes may respond to future floods and to guide planning and policy. This study presents the first singe-catchment flood reconstruction analyses in a region of recognised hydrological variability, as characterised by alternating extremes of floods and droughts. The resultant 'Big Flood' data set consists of a unique combination of high-resolution topographic data on landscape changes during recent floods, and a detailed reconstruction of both the timing and estimated magnitude of past food events derived using OSL dating of flood deposits from a range of sedimentary environments. While distinct flood and drought 'phases' are recognisable over the timescale of several thousand years, the extent to which these reflect changes in flood magnitude and/or frequency remains complicated by catchment-specific geomorphology. Issues of flood sample preservation are discussed in this talk within the context of geomorphic setting and notably non-linear variations in the capacity for channel adjustment. This talk outlines the key factors which must be considered in evaluating the role of climate, landuse change and geomorphology in informing flood risk management in Queensland.

  14. Time Scales, Bedforms and Bedload Transport

    NASA Astrophysics Data System (ADS)

    Dhont, B.

    2015-12-01

    Bedload transport rates in mountain streams may exhibit wide fluctuations even under constant flow conditions. A better understanding of bedload pulses is key to predict natural hazards induced by torrential activity and sediment issues in mountainous areas. Several processes such as bedforms migration, grain sorting and random particles' trajectories are evoked as the driving agents of pulse formation and development. Quantifying the effects of these processes is a difficult task. This work aims to investigate the interactions between bedload transport and bedform dynamics in steep gravel-bed rivers. Experiments are carried out in a 17-m long 60-cm wide flume inclined at an angle of 2.7%. The bed is initially flat and made of homogenous natural gravel with a mean diameter of 6 mm. We imposed 200 identical hydrographs (of 1 hr duration) at the flume inlet (the bed surface was not flattened out during these cycling floods). The input hydrograph and the input sediment discharge are nearly triangular. Bed topography is measured after each flood using ultrasound sensors while the bedload transport rate is steadily monitored at the outlet using accelerometers (accelerometers fixed on metallic plates record the impacts of the grains flowing out of the flume). For the sake of comparison, a similar experiment consisting of 19 floods of 10 hours is carried out under constant supply conditions. We show that accelerometers are a cost effective technique to obtain high-frequency bedload discharge data. Spectral analysis of the bedload timeseries is used to highlight the different time scales corresponding to different bedload transport processes. We show that long timeseries are necessary to capture the different processes that drive bedload transport, including the resilience time after a perturbation of the bed. The alternate bars that develop and migrate along the flume are found to significantly influence bedload transport rate fluctuations.

  15. An optimal modification of a Kalman filter for time scales

    NASA Technical Reports Server (NTRS)

    Greenhall, C. A.

    2003-01-01

    The Kalman filter in question, which was implemented in the time scale algorithm TA(NIST), produces time scales with poor short-term stability. A simple modification of the error covariance matrix allows the filter to produce time scales with good stability at all averaging times, as verified by simulations of clock ensembles.

  16. Calculating disability-adjusted-life-years lost (DALYs) in discrete-time.

    PubMed

    Larson, Bruce A

    2013-08-08

    Disability-adjusted-life-years lost (DALYs) is a common outcome metric for cost-effectiveness analyses, and the equations used for such calculations have been presented previously by Fox-Rushby and Hanson (see, e.g., "Health Policy and Planning 16:326-331, 2001"). While the equations are clear, the logic behind them is opaque at best for a large share of public health practitioners and students. The objective of this paper is to show how to calculate DALYs using a discrete time formulation that is easy to teach to students and public health practitioners, is easy to apply for those with basic discounting skills, and is consistent with the discounting methods typically included on the costing side of cost-effectiveness analysis. A continuous-time adjustment factor is derived that can be used to ensure exact consistency between the continuous and discrete time approaches, but this level of precision is typically unnecessary for cost-effectiveness analyses. To illustrate the approach, both a new, simple example and the same example presented in Fox-Rushby and Hanson are used throughout the paper.

  17. Speech perception at positive signal-to-noise ratios using adaptive adjustment of time compression.

    PubMed

    Schlueter, Anne; Brand, Thomas; Lemke, Ulrike; Nitzschner, Stefan; Kollmeier, Birger; Holube, Inga

    2015-11-01

    Positive signal-to-noise ratios (SNRs) characterize listening situations most relevant for hearing-impaired listeners in daily life and should therefore be considered when evaluating hearing aid algorithms. For this, a speech-in-noise test was developed and evaluated, in which the background noise is presented at fixed positive SNRs and the speech rate (i.e., the time compression of the speech material) is adaptively adjusted. In total, 29 younger and 12 older normal-hearing, as well as 24 older hearing-impaired listeners took part in repeated measurements. Younger normal-hearing and older hearing-impaired listeners conducted one of two adaptive methods which differed in adaptive procedure and step size. Analysis of the measurements with regard to list length and estimation strategy for thresholds resulted in a practical method measuring the time compression for 50% recognition. This method uses time-compression adjustment and step sizes according to Versfeld and Dreschler [(2002). J. Acoust. Soc. Am. 111, 401-408], with sentence scoring, lists of 30 sentences, and a maximum likelihood method for threshold estimation. Evaluation of the procedure showed that older participants obtained higher test-retest reliability compared to younger participants. Depending on the group of listeners, one or two lists are required for training prior to data collection.

  18. Dialysis Dose Scaled to Body Surface Area and Size-Adjusted, Sex-Specific Patient Mortality

    PubMed Central

    Kapke, Alissa; Port, Friedrich K.; Wolfe, Robert A.; Saran, Rajiv; Pearson, Jeffrey; Hirth, Richard A.; Messana, Joseph M.; Daugirdas, John T.

    2012-01-01

    Summary Background and objectives When hemodialysis dose is scaled to body water (V), women typically receive a greater dose than men, but their survival is not better given a similar dose. This study sought to determine whether rescaling dose to body surface area (SA) might reveal different associations among dose, sex, and mortality. Design, setting, participants, & measurements Single-pool Kt/V (spKt/V), equilibrated Kt/V, and standard Kt/V (stdKt/V) were computed using urea kinetic modeling on a prevalent cohort of 7229 patients undergoing thrice-weekly hemodialysis. Data were obtained from the Centers for Medicare & Medicaid Services 2008 ESRD Clinical Performance Measures Project. SA-normalized stdKt/V (SAN-stdKt/V) was calculated as stdKt/V × ratio of anthropometric volume to SA/17.5. Patients were grouped into sex-specific dose quintiles (reference: quintile 1 for men). Adjusted hazard ratios (HRs) for 1-year mortality were calculated using Cox regression. Results spKt/V was higher in women (1.7±0.3) than in men (1.5±0.2; P<0.001), but SAN-stdKt/V was lower (women: 2.3±0.2; men: 2.5±0.3; P<0.001). For both sexes, mortality decreased as spKt/V increased, until spKt/V was 1.6–1.7 (quintile 4 for men: HR, 0.62; quintile 3 for women: HR, 0.64); no benefit was observed with higher spKt/V. HR for mortality decreased further at higher SAN-stdKt/V in both sexes (quintile 5 for men: HR, 0.69; quintile 5 for women: HR, 0.60). Conclusions SA-based dialysis dose results in dose-mortality relationships substantially different from those with volume-based dosing. SAN-stdKt/V analyses suggest women may be relatively underdosed when treated by V-based dosing. SAN-stdKt/V as a measure for dialysis dose may warrant further study. PMID:22977208

  19. Detection of crossover time scales in multifractal detrended fluctuation analysis

    NASA Astrophysics Data System (ADS)

    Ge, Erjia; Leung, Yee

    2013-04-01

    Fractal is employed in this paper as a scale-based method for the identification of the scaling behavior of time series. Many spatial and temporal processes exhibiting complex multi(mono)-scaling behaviors are fractals. One of the important concepts in fractals is crossover time scale(s) that separates distinct regimes having different fractal scaling behaviors. A common method is multifractal detrended fluctuation analysis (MF-DFA). The detection of crossover time scale(s) is, however, relatively subjective since it has been made without rigorous statistical procedures and has generally been determined by eye balling or subjective observation. Crossover time scales such determined may be spurious and problematic. It may not reflect the genuine underlying scaling behavior of a time series. The purpose of this paper is to propose a statistical procedure to model complex fractal scaling behaviors and reliably identify the crossover time scales under MF-DFA. The scaling-identification regression model, grounded on a solid statistical foundation, is first proposed to describe multi-scaling behaviors of fractals. Through the regression analysis and statistical inference, we can (1) identify the crossover time scales that cannot be detected by eye-balling observation, (2) determine the number and locations of the genuine crossover time scales, (3) give confidence intervals for the crossover time scales, and (4) establish the statistically significant regression model depicting the underlying scaling behavior of a time series. To substantive our argument, the regression model is applied to analyze the multi-scaling behaviors of avian-influenza outbreaks, water consumption, daily mean temperature, and rainfall of Hong Kong. Through the proposed model, we can have a deeper understanding of fractals in general and a statistical approach to identify multi-scaling behavior under MF-DFA in particular.

  20. Noether theorem for Birkhoffian systems on time scales

    NASA Astrophysics Data System (ADS)

    Song, Chuan-Jing; Zhang, Yi

    2015-10-01

    Birkhoff equations on time scales and Noether theorem for Birkhoffian system on time scales are studied. First, some necessary knowledge of calculus on time scales are reviewed. Second, Birkhoff equations on time scales are obtained. Third, the conditions for invariance of Pfaff action and conserved quantities are presented under the special infinitesimal transformations and general infinitesimal transformations, respectively. Fourth, some special cases are given. And finally, an example is given to illustrate the method and results.

  1. Time scales in Galveston Bay: An unsteady estuary

    NASA Astrophysics Data System (ADS)

    Rayson, Matthew D.; Gross, Edward S.; Hetland, Robert D.; Fringer, Oliver B.

    2016-04-01

    Estuarine time scales including the turnover, particle e-folding time, the age (calculated with a passive tracer), and residence time (calculated with Lagrangian particles) were computed using a three-dimensional hydrodynamic model of Galveston Bay, a low-flow, partially stratified estuary. Time scales were computed during a time period when river flow varied by several orders of magnitude and all time scales therefore exhibited significant temporal variability because of the unsteadiness of the system. The spatial distributions of age and residence time were qualitatively similar and increased from 15 days in a shipping channel to >45 days in the upper estuary. Volume-averaged age and residence time decreased during high-flow conditions. Bulk time scales, including the freshwater and salinity turnover times, were far more variable due to the changing river discharge and salt flux through the estuary mouth. A criterion for calculating a suitable averaging time is discussed to satisfy a steady state assumption and to estimate a more representative bulk time scale. When scaled with a freshwater advective time, all time scales were approximately equal to the advective time scale during high-flow conditions and many times higher during low-flow conditions. The mean age, Lagrangian residence, and flushing times exhibited a relationship that was weakly dependent on the freshwater advective time scale demonstrating predictability even in an unsteady, realistic estuary.

  2. A self-adjusting compliant bilateral control scheme for time-delay teleoperation in constrained environment

    NASA Astrophysics Data System (ADS)

    Chen, Zhang; Liang, Bin; Zhang, Tao

    2016-05-01

    When teleoperations are implemented in the constrained environment, the lack of environment information would lead to contacts and undesired excessive contact forces, which are more evident with the existence of time delays. In this paper, a hybrid compliant bilateral controller is proposed to deal with this problem. The controller adopts a self-adjusting selecting scheme to divide the subspaces online. The master and slave manipulators are synchronized in the position subspace through an adaptive bilateral control scheme. At the same time, the slave manipulator is controlled by a local sliding mode impedance controller in order to achieve the desired compliant motion when contacting with the environment. Theoretical analysis proves the stability of the hybrid bilateral controller and concludes the transient performance of the teleoperators. Simulations are carried out to verify the effectiveness of the proposed approach. The results show that the control goals are all achieved.

  3. A Quaternary Geomagnetic Instability Time Scale

    NASA Astrophysics Data System (ADS)

    Singer, B. S.

    2013-12-01

    Reversals and excursions of Earth's geomagnetic field create marker horizons that are readily detected in sedimentary and volcanic rocks worldwide. An accurate and precise chronology of these geomagnetic field instabilities is fundamental to understanding several aspects of Quaternary climate, dynamo processes, and surface processes. For example, stratigraphic correlation between marine sediment and polar ice records of climate change across the cryospheres benefits from a highly resolved record of reversals and excursions. The temporal patterns of dynamo behavior may reflect physical interactions between the molten outer core and the solid inner core or lowermost mantle. These interactions may control reversal frequency and shape the weak magnetic fields that arise during successive dynamo instabilities. Moreover, weakening of the axial dipole during reversals and excursions enhances the production of cosmogenic isotopes that are used in sediment and ice core stratigraphy and surface exposure dating. The Geomagnetic Instability Time Scale (GITS) is based on the direct dating of transitional polarity states recorded by lava flows using the 40Ar/39Ar method, in parallel with astrochronologic age models of marine sediments in which O isotope and magnetic records have been obtained. A review of data from Quaternary lava flows and sediments yields a GITS comprising 10 polarity reversals and 27 excursions during the past 2.6 million years. Nine of the ten reversals bounding chrons and subchrons are associated with 40Ar/39Ar ages of transitionally-magnetized lava flows. The tenth, the Guass-Matuyama chron boundary, is tightly bracketed by 40Ar/39Ar dated ash deposits. Of the 27 well-documented excursions, 14 occurred during the Matuyama chron and 13 during the Brunhes chron; 19 have been dated directly using the 40Ar/39Ar method on transitionally-magnetized volcanic rocks and form the backbone of the GITS. Excursions are clearly not the rare phenomena once thought

  4. Effects of Timing of Adversity on Adolescent and Young Adult Adjustment

    ERIC Educational Resources Information Center

    Kiff, Cara J.; Cortes, Rebecca C.; Lengua, Liliana J.; Kosterman, Rick; Hawkins, J. David; Mason, W. Alex

    2012-01-01

    Exposure to adversity during childhood and adolescence predicts adjustment across development. Furthermore, adolescent adjustment problems persist into young adulthood. This study examined relations of contextual adversity with concurrent adolescent adjustment and prospective mental health and health outcomes in young adulthood. A longitudinal…

  5. Use of age-adjusted rates of suicide in time series studies in Israel.

    PubMed

    Bridges, F Stephen; Tankersley, William B

    2009-01-01

    Durkheim's modified theory of suicide was examined to explore how consistent it was in predicting Israeli rates of suicide from 1965 to 1997 when using age-adjusted rates rather than crude ones. In this time-series study, Israeli male and female rates of suicide increased and decreased, respectively, between 1965 and 1997. Conforming to Durkheim's modified theory, the Israeli male rate of suicide was lower in years when rates of marriage and birth are higher, while rates of suicide are higher in years when rates of divorce are higher, the opposite to that of Israeli women. The corrected regression coefficients suggest that the Israeli female rate of suicide remained lower in years when rate of divorce is higher, again the opposite suggested by Durkheim's modified theory. These results may indicate that divorce affects the mental health of Israeli women as suggested by their lower rate of suicide. Perhaps the "multiple roles held by Israeli females creates suicidogenic stress" and divorce provides some sense of stress relief, mentally speaking. The results were not as consistent with predictions suggested by Durkheim's modified theory of suicide as were rates from the United States for the same period nor were they consistent with rates based on "crude" suicide data. Thus, using age-adjusted rates of suicide had an influence on the prediction of the Israeli rate of suicide during this period.

  6. Linking Response-Time Parameters onto a Common Scale

    ERIC Educational Resources Information Center

    van der Linden, Wim J.

    2010-01-01

    Although response times on test items are recorded on a natural scale, the scale for some of the parameters in the lognormal response-time model (van der Linden, 2006) is not fixed. As a result, when the model is used to periodically calibrate new items in a testing program, the parameter are not automatically mapped onto a common scale. Several…

  7. TACImager: a high frame rate 320 x 256 SPAD time to amplitude converter array with adjustable time zoom

    NASA Astrophysics Data System (ADS)

    Finlayson, Neil; Parmesan, Luca; Dutton, Neale A. W.; Calder, Neil J.; Henderson, Robert K.

    2016-10-01

    Single-photon avalanche diodes (SPADs) in the form of high-resolution imaging pixel arrays are used in 3D cameras, motion-tracking, biomedical and time-correlated single photon counting (TCSPC) applications. Rapid spatial and temporal zoom onto objects of interest is an attractive feature. We present here novel high-speed time-zoom functionality achieved with the digital readout mode of the TACImager, a 256 x 256 TCSPC image sensor array based on sample and hold Time to Amplitude Converter (TAC) pixels. A column-parallel flash Analogue to Digital Converter (ADC) is implemented in the TACImager to support fast digital readout, allowing per-pixel, 3-bin TCSPC histogramming at frame rates of 4 kfps. New results related to this high-speed mode of operation are presented. The TACImager utilises a global ramp voltage as a timing reference, allowing time-zoom to be achieved through dynamic adjustment of comparator voltages, ramp offset voltages and ramp waveforms. We demonstrate the influence of fixed pattern noise in the pixels and column parallel ADCs on the results.

  8. On time scales and time synchronization using LORAN-C as a time reference signal

    NASA Technical Reports Server (NTRS)

    Chi, A. R.

    1974-01-01

    The long term performance of the eight LORAN-C chains is presented in terms of the Coordinated Universal Time (UTC) of the U.S. Naval Observatory (USNO); and the use of the LORAN-C navigation system for maintaining the user's clock to a UTC scale is described. The atomic time scale and the UTC of several national laboratories and observatories relative to the international atomic time are reported. Typical performance of several NASA tracking station clocks, relative to the USNO master clock, is also presented.

  9. Dynamic Adjustment of Stimuli in Real Time Functional Magnetic Resonance Imaging

    PubMed Central

    Feng, I. Jung; Jack, Anthony I.; Tatsuoka, Curtis

    2015-01-01

    The conventional fMRI image analysis approach to associating stimuli to brain activation is performed by carrying out a massive number of parallel univariate regression analyses. fMRI blood-oxygen-level dependent (BOLD) signal, the basis of these analyses, is known for its low signal-noise-ratio and high spatial and temporal signal correlation. In order to ensure accurate localization of brain activity, stimulus administration in an fMRI session is often lengthy and repetitive. Real-time fMRI BOLD signal analysis is carried out as the signal is observed. This method allows for dynamic, real-time adjustment of stimuli through sequential experimental designs. We have developed a voxel-wise sequential probability ratio test (SPRT) approach for dynamically determining localization, as well as decision rules for stopping stimulus administration. SPRT methods and general linear model (GLM) approaches are combined to identify brain regions that are activated by specific elements of stimuli. Stimulus administration is dynamically stopped when sufficient statistical evidence is collected to determine activation status across regions of interest, following predetermined statistical error thresholds. Simulation experiments and an example based on real fMRI data show that scan volumes can be substantially reduced when compared with pre-determined, fixed designs while achieving similar or better accuracy in detecting activated voxels. Moreover, the proposed approach is also able to accurately detect differentially activated areas, and other comparisons between task-related GLM parameters that can be formulated in a hypothesis-testing framework. Finally, we give a demonstration of SPRT being employed in conjunction with a halving algorithm to dynamically adjust stimuli. PMID:25785856

  10. Least squares adjustment of large-scale geodetic networks by orthogonal decomposition

    SciTech Connect

    George, J.A.; Golub, G.H.; Heath, M.T.; Plemmons, R.J.

    1981-11-01

    This article reviews some recent developments in the solution of large sparse least squares problems typical of those arising in geodetic adjustment problems. The new methods are distinguished by their use of orthogonal transformations which tend to improve numerical accuracy over the conventional approach based on the use of the normal equations. The adaptation of these new schemes to allow for the use of auxiliary storage and their extension to rank deficient problems are also described.

  11. Scale-Adjusted Metrics for Predicting the Evolution of Urban Indicators and Quantifying the Performance of Cities.

    PubMed

    Alves, Luiz G A; Mendes, Renio S; Lenzi, Ervin K; Ribeiro, Haroldo V

    2015-01-01

    More than a half of world population is now living in cities and this number is expected to be two-thirds by 2050. Fostered by the relevancy of a scientific characterization of cities and for the availability of an unprecedented amount of data, academics have recently immersed in this topic and one of the most striking and universal finding was the discovery of robust allometric scaling laws between several urban indicators and the population size. Despite that, most governmental reports and several academic works still ignore these nonlinearities by often analyzing the raw or the per capita value of urban indicators, a practice that actually makes the urban metrics biased towards small or large cities depending on whether we have super or sublinear allometries. By following the ideas of Bettencourt et al. [PLoS ONE 5 (2010) e13541], we account for this bias by evaluating the difference between the actual value of an urban indicator and the value expected by the allometry with the population size. We show that this scale-adjusted metric provides a more appropriate/informative summary of the evolution of urban indicators and reveals patterns that do not appear in the evolution of per capita values of indicators obtained from Brazilian cities. We also show that these scale-adjusted metrics are strongly correlated with their past values by a linear correspondence and that they also display crosscorrelations among themselves. Simple linear models account for 31%-97% of the observed variance in data and correctly reproduce the average of the scale-adjusted metric when grouping the cities in above and below the allometric laws. We further employ these models to forecast future values of urban indicators and, by visualizing the predicted changes, we verify the emergence of spatial clusters characterized by regions of the Brazilian territory where we expect an increase or a decrease in the values of urban indicators.

  12. Scale-Adjusted Metrics for Predicting the Evolution of Urban Indicators and Quantifying the Performance of Cities

    PubMed Central

    Alves, Luiz G. A.; Mendes, Renio S.; Lenzi, Ervin K.; Ribeiro, Haroldo V.

    2015-01-01

    More than a half of world population is now living in cities and this number is expected to be two-thirds by 2050. Fostered by the relevancy of a scientific characterization of cities and for the availability of an unprecedented amount of data, academics have recently immersed in this topic and one of the most striking and universal finding was the discovery of robust allometric scaling laws between several urban indicators and the population size. Despite that, most governmental reports and several academic works still ignore these nonlinearities by often analyzing the raw or the per capita value of urban indicators, a practice that actually makes the urban metrics biased towards small or large cities depending on whether we have super or sublinear allometries. By following the ideas of Bettencourt et al. [PLoS ONE 5 (2010) e13541], we account for this bias by evaluating the difference between the actual value of an urban indicator and the value expected by the allometry with the population size. We show that this scale-adjusted metric provides a more appropriate/informative summary of the evolution of urban indicators and reveals patterns that do not appear in the evolution of per capita values of indicators obtained from Brazilian cities. We also show that these scale-adjusted metrics are strongly correlated with their past values by a linear correspondence and that they also display crosscorrelations among themselves. Simple linear models account for 31%–97% of the observed variance in data and correctly reproduce the average of the scale-adjusted metric when grouping the cities in above and below the allometric laws. We further employ these models to forecast future values of urban indicators and, by visualizing the predicted changes, we verify the emergence of spatial clusters characterized by regions of the Brazilian territory where we expect an increase or a decrease in the values of urban indicators. PMID:26356081

  13. Scale-dependent intrinsic entropies of complex time series.

    PubMed

    Yeh, Jia-Rong; Peng, Chung-Kang; Huang, Norden E

    2016-04-13

    Multi-scale entropy (MSE) was developed as a measure of complexity for complex time series, and it has been applied widely in recent years. The MSE algorithm is based on the assumption that biological systems possess the ability to adapt and function in an ever-changing environment, and these systems need to operate across multiple temporal and spatial scales, such that their complexity is also multi-scale and hierarchical. Here, we present a systematic approach to apply the empirical mode decomposition algorithm, which can detrend time series on various time scales, prior to analysing a signal's complexity by measuring the irregularity of its dynamics on multiple time scales. Simulated time series of fractal Gaussian noise and human heartbeat time series were used to study the performance of this new approach. We show that our method can successfully quantify the fractal properties of the simulated time series and can accurately distinguish modulations in human heartbeat time series in health and disease.

  14. Timing signatures of large scale solar eruptions

    NASA Astrophysics Data System (ADS)

    Balasubramaniam, K. S.; Hock-Mysliwiec, Rachel; Henry, Timothy; Kirk, Michael S.

    2016-05-01

    We examine the timing signatures of large solar eruptions resulting in flares, CMEs and Solar Energetic Particle events. We probe solar active regions from the chromosphere through the corona, using data from space and ground-based observations, including ISOON, SDO, GONG, and GOES. Our studies include a number of flares and CMEs of mostly the M- and X-strengths as categorized by GOES. We find that the chromospheric signatures of these large eruptions occur 5-30 minutes in advance of coronal high temperature signatures. These timing measurements are then used as inputs to models and reconstruct the eruptive nature of these systems, and explore their utility in forecasts.

  15. Modeling orbital changes on tectonic time scales

    NASA Technical Reports Server (NTRS)

    Crowley, Thomas J.

    1992-01-01

    Geologic time series indicate significant 100 ka and 400 ka pre-Pleistocene climate fluctuations, prior to the time of such fluctuations in Pleistocene ice sheets. The origin of these fluctuations must therefore depend on phenomena other than the ice sheets. In a previous set of experiments, we tested the sensitivity of an energy balance model to orbital insolation forcing, specifically focusing on the filtering effect of the Earth's geography. We found that in equatorial areas, the twice-yearly passage of the sun across the equator interacts with the precession index to generate 100 ka and 400 ka power in our modeled time series. The effect is proportional to the magnitude of land in equatorial regions. We suggest that such changes may reflect monsoonal variations in the real climate system, and the subsequent wind and weathering changes may transfer some of this signal to the marine record. A comparison with observed fluctuations of Triassic lake levels is quite favorable. A number of problems remain to be studied or clarified: (1) the EBM experiments need to be followed up by a limited number of GCM experiments; (2) the sensitivity to secular changes in orbital forcing needs to be examined; (3) the possible modifying role of sedimentary processes on geologic time series warrants considerably more study; (4) the effect of tectonic changes on Earth's rotation rate needs to be studied; and (5) astronomers need to make explicit which of their predictions are robust and geologists and astronomers have to agree on which of the predictions are most testable in the geologic record.

  16. Rapid Adjustment of Circadian Clocks to Simulated Travel to Time Zones across the Globe.

    PubMed

    Harrison, Elizabeth M; Gorman, Michael R

    2015-12-01

    Daily rhythms in mammalian physiology and behavior are generated by a central pacemaker located in the hypothalamic suprachiasmatic nuclei (SCN), the timing of which is set by light from the environment. When the ambient light-dark cycle is shifted, as occurs with travel across time zones, the SCN and its output rhythms must reset or re-entrain their phases to match the new schedule-a sluggish process requiring about 1 day per hour shift. Using a global assay of circadian resetting to 6 equidistant time-zone meridians, we document this characteristically slow and distance-dependent resetting of Syrian hamsters under typical laboratory lighting conditions, which mimic summer day lengths. The circadian pacemaker, however, is additionally entrainable with respect to its waveform (i.e., the shape of the 24-h oscillation) allowing for tracking of seasonally varying day lengths. We here demonstrate an unprecedented, light exposure-based acceleration in phase resetting following 2 manipulations of circadian waveform. Adaptation of circadian waveforms to long winter nights (8 h light, 16 h dark) doubled the shift response in the first 3 days after the shift. Moreover, a bifurcated waveform induced by exposure to a novel 24-h light-dark-light-dark cycle permitted nearly instant resetting to phase shifts from 4 to 12 h in magnitude, representing a 71% reduction in the mismatch between the activity rhythm and the new photocycle. Thus, a marked enhancement of phase shifting can be induced via nonpharmacological, noninvasive manipulation of the circadian pacemaker waveform in a model species for mammalian circadian rhythmicity. Given the evidence of conserved flexibility in the human pacemaker waveform, these findings raise the promise of flexible resetting applicable to circadian disruption in shift workers, frequent time-zone travelers, and any individual forced to adjust to challenging schedules.

  17. Elderly Fallers Enhance Dynamic Stability Through Anticipatory Postural Adjustments during a Choice Stepping Reaction Time

    PubMed Central

    Tisserand, Romain; Robert, Thomas; Chabaud, Pascal; Bonnefoy, Marc; Chèze, Laurence

    2016-01-01

    In the case of disequilibrium, the capacity to step quickly is critical to avoid falling in elderly. This capacity can be simply assessed through the choice stepping reaction time test (CSRT), where elderly fallers (F) take longer to step than elderly non-fallers (NF). However, the reasons why elderly F elongate their stepping time remain unclear. The purpose of this study is to assess the characteristics of anticipated postural adjustments (APA) that elderly F develop in a stepping context and their consequences on the dynamic stability. Forty-four community-dwelling elderly subjects (20 F and 24 NF) performed a CSRT where kinematics and ground reaction forces were collected. Variables were analyzed using two-way repeated measures ANOVAs. Results for F compared to NF showed that stepping time is elongated, due to a longer APA phase. During APA, they seem to use two distinct balance strategies, depending on the axis: in the anteroposterior direction, we measured a smaller backward movement and slower peak velocity of the center of pressure (CoP); in the mediolateral direction, the CoP movement was similar in amplitude and peak velocity between groups but lasted longer. The biomechanical consequence of both strategies was an increased margin of stability (MoS) at foot-off, in the respective direction. By elongating their APA, elderly F use a safer balance strategy that prioritizes dynamic stability conditions instead of the objective of the task. Such a choice in balance strategy probably comes from muscular limitations and/or a higher fear of falling and paradoxically indicates an increased risk of fall. PMID:27965561

  18. Scaling the Martian Walls of Time

    NASA Astrophysics Data System (ADS)

    Thornton, Nikki; Yagloski, Joseph; Fledderman, Joe; OMarr, Gregg; Weber, Ben; Carlins, Chris; Krishna, Shubh; Sloan, Kevin; Merriman, Taite; Borowski, David

    2000-01-01

    On Earth, when scientists want to investigate planetary history they take a core sample, with deeper fragments corresponding to older materials. In essence, descending through sedimentary layers is like going back in time. But creating a robot capable of taking samples more than a few meters below the planetary surface is still beyond the current available technology. The cliffhanger idea takes advantage of the natural surface features of Mars to explore the history of the planet without digging. So interesting and difficult questions can be answered not with the brute force of a drill, but with creative mission design. Penn State University HEDS-UP team has designed a novel Mars mission approach. A main Lander with a Rover and a Cliffhanger will land near cliffs of Valles Mariners. Especially design cannon (gas, guided munitions or rocket) will deploy a long rope into the canyon. The rover will carry the cliffhanger to the edge of Valles Marineris following the rope, attach the cliffhanger to the rope. The Cliffhanger will then climb a 2 km down the rope and will allow the team to study sedimentary layers of rock on the side of the cliff. Samples and high-resolution images will be taken and delivered to the Lander for further investigation (optical multispectral imaging microscope, spectrometry) and sending the results to Earth. The robot has been designed to have the capability for locomotion at any angle (including somewhat uphill slopes) but maximum effective After the mission of rope-climbing is completed, the Rover am Lander will embark on another long-term mission to provide meteorological and geological data over a long period of time (long-term Mars Observatory), and perform acoustic and seismic experiments on the surface of Mars in preparation for human arrival.

  19. Within-Semester Stability and Adjustment Correlates of the Multidimensional Perfectionism Scale.

    ERIC Educational Resources Information Center

    Rice, Kenneth G.; Dellwo, Jacqueline P.

    2001-01-01

    Subscale scores from R.O. Frost, P. Marten, C. Lahart, and R. Rosenblate's (1990) Mulitdimensional Perfectionism Scale were found to be moderately stable over a 10-week period. Associations between perfectionism and self-esteem, depression, and academic integration yielded mixed support for the criterion-related validity of the scores from this…

  20. On stabilisability of nonlinear systems on time scales

    NASA Astrophysics Data System (ADS)

    Bartosiewicz, Zbigniew; Piotrowska, Ewa

    2013-01-01

    In this article, stabilisability of nonlinear finite-dimensional control systems on arbitrary time scales is studied. The classical results on stabilisation of nonlinear continuous-time and discrete-time systems are extended to systems on arbitrary time scales with bounded graininess function. It is shown that uniform exponential stability of the linear approximation of a nonlinear system implies uniform exponential stability of the nonlinear system. Then this result is used to show a similar implication for uniform exponential stabilisability.

  1. Time scales of tunneling decay of a localized state

    SciTech Connect

    Ban, Yue; Muga, J. G.; Sherman, E. Ya.; Buettiker, M.

    2010-12-15

    Motivated by recent time-domain experiments on ultrafast atom ionization, we analyze the transients and time scales that characterize, aside from the relatively long lifetime, the decay of a localized state by tunneling. While the tunneling starts immediately, some time is required for the outgoing flux to develop. This short-term behavior depends strongly on the initial state. For the initial state, tightly localized so that the initial transients are dominated by over-the-barrier motion, the time scale for flux propagation through the barrier is close to the Buettiker-Landauer traversal time. Then a quasistationary, slow-decay process follows, which sets ideal conditions for observing diffraction in time at longer times and distances. To define operationally a tunneling time at the barrier edge, we extrapolate backward the propagation of the wave packet that escaped from the potential. This extrapolated time is considerably longer than the time scale of the flux and density buildup at the barrier edge.

  2. The timing of the Black Sea flood event: Insights from modeling of glacial isostatic adjustment

    NASA Astrophysics Data System (ADS)

    Goldberg, Samuel L.; Lau, Harriet C. P.; Mitrovica, Jerry X.; Latychev, Konstantin

    2016-10-01

    We present a suite of gravitationally self-consistent predictions of sea-level change since Last Glacial Maximum (LGM) in the vicinity of the Bosphorus and Dardanelles straits that combine signals associated with glacial isostatic adjustment (GIA) and the flooding of the Black Sea. Our predictions are tuned to fit a relative sea level (RSL) record at the island of Samothrace in the north Aegean Sea and they include realistic 3-D variations in viscoelastic structure, including lateral variations in mantle viscosity and the elastic thickness of the lithosphere, as well as weak plate boundary zones. We demonstrate that 3-D Earth structure and the magnitude of the flood event (which depends on the pre-flood level of the lake) both have significant impact on the predicted RSL change at the location of the Bosphorus sill, and therefore on the inferred timing of the marine incursion. We summarize our results in a plot showing the predicted RSL change at the Bosphorus sill as a function of the timing of the flood event for different flood magnitudes up to 100 m. These results suggest, for example, that a flood event at 9 ka implies that the elevation of the sill was lowered through erosion by ∼14-21 m during, and after, the flood. In contrast, a flood event at 7 ka suggests erosion of ∼24-31 m at the sill since the flood. More generally, our results will be useful for future research aimed at constraining the details of this controversial, and widely debated geological event.

  3. Dose-Weighted Adjusted Mantel-Haenszel Tests for Numeric Scaled Strata in a Randomized Trial

    PubMed Central

    Gansky, Stuart A.; Cheng, Nancy F.; Koch, Gary G.

    2011-01-01

    A recent three-arm parallel groups randomized clinical prevention trial had a protocol deviation causing participants to have fewer active doses of an in-office treatment than planned. The original statistical analysis plan stipulated a minimal assumption randomization-based extended Mantel-Haenszel (EMH) trend test of the high frequency, low frequency, and zero frequency treatment groups and a binary outcome. Thus a dose-weighted adjusted EMH (DWAEMH) test was developed with an extra set of weights corresponding to the number of active doses actually available, in the spirit of a pattern mixture model. The method can easily be implemented using standard statistical software. A set of Monte Carlo simulations using a logistic model was undertaken with (and without) actual dose-response effects through 1000 replicates for empirical power estimates (and 2100 for empirical size). Results showed size was maintained and power was improved for DWAEMH versus EMH and logistic regression Wald tests in the presence of a dose effect and treatment by dose interaction. PMID:21709814

  4. Positive change following adversity and psychological adjustment over time in abused foster youth.

    PubMed

    Valdez, Christine E; Lim, Ban Hong Phylice; Parker, Christopher P

    2015-10-01

    Many foster youth experience maltreatment in their family-of-origin and additional maltreatment while in foster care. Not surprisingly, rates of depression are higher in foster youth than the general population, and peak during ages 17-19 during the stressful transition into adulthood. However, no known studies have reported on whether foster youth perceive positive changes following such adversity, and whether positive change facilitates psychological adjustment over time. The current study examined components of positive change (i.e., compassion for others and self-efficacy) with depression severity from age 17 to 18 as youth prepared to exit foster care. Participants were youth from the Mental Health Service Use of Youth Leaving Foster Care study who endorsed child maltreatment. Components of positive change and severity of abuse were measured initially. Depression was measured initially and every three months over the following year. Latent growth curve modeling was used to examine the course of depression as a function of initial levels of positive change and severity of abuse. Results revealed that decreases in depression followed an inverse quadratic function in which the steepest declines occurred in the first three months and leveled off after that. Severity of abuse was positively correlated with higher initial levels of depression and negatively correlated with decreases in depression. Greater self-efficacy was negatively associated with initial levels of depression and predicted decreases in depression over the year, whereas compassion for others was neither associated with initial depression nor changes in depression. Implications for intervention, theory, and research are discussed.

  5. Liquidity spillover in international stock markets through distinct time scales.

    PubMed

    Righi, Marcelo Brutti; Vieira, Kelmara Mendes

    2014-01-01

    This paper identifies liquidity spillovers through different time scales based on a wavelet multiscaling method. We decompose daily data from U.S., British, Brazilian and Hong Kong stock markets indices in order to calculate the scale correlation between their illiquidities. The sample is divided in order to consider non-crisis, sub-prime crisis and Eurozone crisis. We find that there are changes in correlations of distinct scales and different periods. Association in finest scales is smaller than in coarse scales. There is a rise on associations in periods of crisis. In frequencies, there is predominance for significant distinctions involving the coarsest scale, while for crises periods there is predominance for distinctions on the finest scale.

  6. Liquidity Spillover in International Stock Markets through Distinct Time Scales

    PubMed Central

    Righi, Marcelo Brutti; Vieira, Kelmara Mendes

    2014-01-01

    This paper identifies liquidity spillovers through different time scales based on a wavelet multiscaling method. We decompose daily data from U.S., British, Brazilian and Hong Kong stock markets indices in order to calculate the scale correlation between their illiquidities. The sample is divided in order to consider non-crisis, sub-prime crisis and Eurozone crisis. We find that there are changes in correlations of distinct scales and different periods. Association in finest scales is smaller than in coarse scales. There is a rise on associations in periods of crisis. In frequencies, there is predominance for significant distinctions involving the coarsest scale, while for crises periods there is predominance for distinctions on the finest scale. PMID:24465918

  7. Multiple time scale complexity analysis of resting state FMRI.

    PubMed

    Smith, Robert X; Yan, Lirong; Wang, Danny J J

    2014-06-01

    The present study explored multi-scale entropy (MSE) analysis to investigate the entropy of resting state fMRI signals across multiple time scales. MSE analysis was developed to distinguish random noise from complex signals since the entropy of the former decreases with longer time scales while the latter signal maintains its entropy due to a "self-resemblance" across time scales. A long resting state BOLD fMRI (rs-fMRI) scan with 1000 data points was performed on five healthy young volunteers to investigate the spatial and temporal characteristics of entropy across multiple time scales. A shorter rs-fMRI scan with 240 data points was performed on a cohort of subjects consisting of healthy young (age 23 ± 2 years, n = 8) and aged volunteers (age 66 ± 3 years, n = 8) to investigate the effect of healthy aging on the entropy of rs-fMRI. The results showed that MSE of gray matter, rather than white matter, resembles closely that of f (-1) noise over multiple time scales. By filtering out high frequency random fluctuations, MSE analysis is able to reveal enhanced contrast in entropy between gray and white matter, as well as between age groups at longer time scales. Our data support the use of MSE analysis as a validation metric for quantifying the complexity of rs-fMRI signals.

  8. Extreme reaction times determine fluctuation scaling in human color vision

    NASA Astrophysics Data System (ADS)

    Medina, José M.; Díaz, José A.

    2016-11-01

    In modern mental chronometry, human reaction time defines the time elapsed from stimulus presentation until a response occurs and represents a reference paradigm for investigating stochastic latency mechanisms in color vision. Here we examine the statistical properties of extreme reaction times and whether they support fluctuation scaling in the skewness-kurtosis plane. Reaction times were measured for visual stimuli across the cardinal directions of the color space. For all subjects, the results show that very large reaction times deviate from the right tail of reaction time distributions suggesting the existence of dragon-kings events. The results also indicate that extreme reaction times are correlated and shape fluctuation scaling over a wide range of stimulus conditions. The scaling exponent was higher for achromatic than isoluminant stimuli, suggesting distinct generative mechanisms. Our findings open a new perspective for studying failure modes in sensory-motor communications and in complex networks.

  9. Different Patterns of Sexual Identity Development over Time: Implications for the Psychological Adjustment of Lesbian, Gay, and Bisexual Youths

    PubMed Central

    Rosario, Margaret; Schrimshaw, Eric W.; Hunter, Joyce

    2010-01-01

    Despite research documenting variability in the sexual identity development of lesbian, gay, and bisexual (LGB) youths, it remains unclear whether different developmental patterns have implications for the psychological adjustment of LGB youths. The current report longitudinally examines whether different patterns of LGB identity formation and integration are associated with indicators of psychological adjustment among an ethnically diverse sample of 156 LGB youths (ages 14 – 21) in New York City. Although differences in the timing of identity formation were not associated with psychological adjustment, greater identity integration was related to less depressive and anxious symptoms, fewer conduct problems, and higher self-esteem both cross-sectionally and longitudinally. Individual changes in identity integration over time were associated with all four aspects of psychological adjustment, even after controlling for rival hypotheses concerning family and friend support, gay-related stress, negative social relationships, and other covariates. These findings suggest that difficulties in developing an integrated LGB identity may have negative implications for the psychological adjustment of LGB youths and that efforts to reduce distress among LGB youths should address the youths’ identity integration. PMID:19916104

  10. Modes and emergent time scales of embayed beach dynamics

    NASA Astrophysics Data System (ADS)

    Ratliff, Katherine M.; Murray, A. Brad

    2014-10-01

    In this study, we use a simple numerical model (the Coastline Evolution Model) to explore alongshore transport-driven shoreline dynamics within generalized embayed beaches (neglecting cross-shore effects). Using principal component analysis (PCA), we identify two primary orthogonal modes of shoreline behavior that describe shoreline variation about its unchanging mean position: the rotation mode, which has been previously identified and describes changes in the mean shoreline orientation, and a newly identified breathing mode, which represents changes in shoreline curvature. Wavelet analysis of the PCA mode time series reveals characteristic time scales of these modes (typically years to decades) that emerge within even a statistically constant white-noise wave climate (without changes in external forcing), suggesting that these time scales can arise from internal system dynamics. The time scales of both modes increase linearly with shoreface depth, suggesting that the embayed beach sediment transport dynamics exhibit a diffusive scaling.

  11. The limit order book on different time scales

    NASA Astrophysics Data System (ADS)

    Eisler, Zoltán; Kertész, János; Lillo, Fabrizio

    2007-06-01

    Financial markets can be described on several time scales. We use data from the limit order book of the London Stock Exchange (LSE) to compare how the fluctuation dominated microstructure crosses over to a more systematic global behavior.

  12. NEA Scout Solar Sail: Half-scale Fold Time Lapse

    NASA Video Gallery

    In this time lapse, the Near-Earth Asteroid Scout (NEA Scout) CubeSat team rolls a half-scale prototype of the small satellite's solar sail in preparation for a deployment test. During its mission,...

  13. Mentoring, Competencies, and Adjustment in Adolescents: American Part-Time Employment and European Apprenticeships

    ERIC Educational Resources Information Center

    Vazsonyi, Alexander T.; Snider, J. Blake

    2008-01-01

    Based on the conceptual argument that the European apprenticeship might explain cross-national variability in adolescent adjustment, the current investigation tested the relationships between mentoring experiences, namely joint activities with mentors as well as perceived mentoring behaviors by unrelated adults in the work setting, and measures of…

  14. Covariate Adjustment Strategy Increases Power in the Randomized Controlled Trial With Discrete-Time Survival Endpoints

    ERIC Educational Resources Information Center

    Safarkhani, Maryam; Moerbeek, Mirjam

    2013-01-01

    In a randomized controlled trial, a decision needs to be made about the total number of subjects for adequate statistical power. One way to increase the power of a trial is by including a predictive covariate in the model. In this article, the effects of various covariate adjustment strategies on increasing the power is studied for discrete-time…

  15. A matter of timing: developmental theories of romantic involvement and psychosocial adjustment.

    PubMed

    Furman, Wyndol; Collibee, Charlene

    2014-11-01

    The present study compared two theories of the association between romantic involvement and adjustment: a social timetable theory and a developmental task theory. We examined seven waves of longitudinal data on a community based sample of 200 participants (Wave 1 mean age = 15 years, 10 months). In each wave, multiple measures of substance use, externalizing symptoms, and internalizing symptoms were gathered, typically from multiple reporters. Multilevel modeling revealed that greater levels of romantic involvement in adolescence were associated with higher levels of substance use and externalizing symptoms but became associated with lower levels in adulthood. Having a romantic partner was associated with greater levels of substance use, externalizing symptoms, and internalizing symptoms in adolescence but was associated with lower levels in young adulthood. The findings were not consistent with a social timetable theory, which predicts that nonnormative involvement is associated with poor adjustment. Instead, the findings are consistent with a developmental task theory, which predicts that precocious romantic involvement undermines development and adaptation, but when romantic involvement becomes a salient developmental task in adulthood, it is associated with positive adjustment. Discussion focuses on the processes that may underlie the changing nature of the association between romantic involvement and adjustment.

  16. Diffusion Time-Scale of Porous Pressure-Sensitive Paint

    NASA Technical Reports Server (NTRS)

    Liu, Tianshu; Teduka, Norikazu; Kameda, Masaharu; Asai, Keisuke

    2001-01-01

    Pressure-sensitive paint (PSP) is an optical pressure sensor that utilizes the oxygen quenching of luminescence. PSP measurements in unsteady aerodynamic flows require fast time response of the paint. There are two characteristic time-scales that are related to the time response of PSP. One is the luminescent lifetime representing an intrinsic physical limit for the achievable temporal resolution of PSP. Another is the time-scale of oxygen diffusion across the PSP layer. When the time-scale of oxygen diffusion is much larger than the luminescent lifetime, the time response of PSP is controlled by oxygen diffusion. In a thin homogenous polymer layer where diffusion is Fickian, the oxygen concentration 1021 can be described by the diffusion equation in one-dimension.

  17. Characteristic Time Scales of Characteristic Magmatic Processes and Systems

    NASA Astrophysics Data System (ADS)

    Marsh, B. D.

    2004-05-01

    Every specific magmatic process, regardless of spatial scale, has an associated characteristic time scale. Time scales associated with crystals alone are rates of growth, dissolution, settling, aggregation, annealing, and nucleation, among others. At the other extreme are the time scales associated with the dynamics of the entire magmatic system. These can be separated into two groups: those associated with system genetics (e.g., the production and transport of magma, establishment of the magmatic system) and those due to physical characteristics of the established system (e.g., wall rock failure, solidification front propagation and instability, porous flow). The detailed geometry of a specific magmatic system is particularly important to appreciate; although generic systems are useful, care must be taken to make model systems as absolutely realistic as possible. Fuzzy models produce fuzzy science. Knowledge of specific time scales is not necessarily useful or meaningful unless the hierarchical context of the time scales for a realistic magmatic system is appreciated. The age of a specific phenocryst or ensemble of phenocrysts, as determined from isotopic or CSD studies, is not meaningful unless something can be ascertained of the provenance of the crystals. For example, crystal size multiplied by growth rate gives a meaningful crystal age only if it is from a part of the system that has experienced semi-monotonic cooling prior to chilling; crystals entrained from a long-standing cumulate bed that were mechanically sorted in ascending magma may not reveal this history. Ragged old crystals rolling about in the system for untold numbers of flushing times record specious process times, telling more about the noise in the system than the life of typical, first generation crystallization processes. The most helpful process-related time scales are those that are known well and that bound or define the temporal style of the system. Perhaps the most valuable of these

  18. Galaxy merger time-scales in the Illustris Simulation

    NASA Astrophysics Data System (ADS)

    Rojas, Areli; Rodriguez-Gomez, Vicente; Hernquist, Lars E.; Wellons, Sarah; Moreno, Jorge

    2017-01-01

    In this project we are investigate merger time-scales, define as the time delays from dark matter halo viral crossing to galaxy-galaxy coalescence. Our project uses merger history trees drawn from the Illustris Simulation, a cosmological hydrodynamic run that follows the formation and evolution of galaxies across cosmic time. Preliminary results indicate that merger time-scales are not sensitive to stellar mass or mass ratio, in stark contrast to what has been found earlier with cosmological dark-matter-only simulations. Work towards understanding the source of this disagreement is currently in progress.

  19. Vorticity statistics and the time scales of turbulent strain.

    PubMed

    Moriconi, L; Pereira, R M

    2013-07-01

    Time scales of turbulent strain activity, denoted as the strain persistence times of first and second order, are obtained from time-dependent expectation values and correlation functions of Lagrangian rate-of-strain eigenvalues taken in particularly defined statistical ensembles. Taking into account direct numerical simulation data, our approach relies on heuristic closure hypotheses which allow us to establish a connection between the statistics of vorticity and strain. It turns out that softly divergent prefactors correct the usual "1/s" strain time-scale estimate of standard turbulence phenomenology, in a way which is consistent with the phenomenon of vorticity intermittency.

  20. Russian national time scale long-term stability

    NASA Technical Reports Server (NTRS)

    Alshina, A. P.; Gaigerov, B. A.; Koshelyaevsky, N. B.; Pushkin, S. B.

    1994-01-01

    The Institute of Metrology for Time and Space NPO 'VNIIFTRI' generates the National Time Scale (NTS) of Russia -- one of the most stable time scales in the world. Its striking feature is that it is based on a free ensemble of H-masers only. During last two years the estimations of NTS longterm stability based only on H-maser intercomparison data gives a flicker floor of about (2 to 3) x 10(exp -15) for averaging times from 1 day to 1 month. Perhaps the most significant feature for a time laboratory is an extremely low possible frequency drift -- it is too difficult to estimate it reliably. The other estimations, free from possible inside the ensemble correlation phenomena, are available based on the time comparison of NTS relative to the stable enough time scale of outer laboratories. The data on NTS comparison relative to the time scale of secondary time and frequency standards at Golitzino and Irkutsk in Russia and relative to NIST, PTB and USNO using GLONASS and GPS time transfer links gives stability estimations which are close to that based on H-maser intercomparisons.

  1. Nonparametric randomization-based covariate adjustment for stratified analysis of time-to-event or dichotomous outcomes.

    PubMed

    Hussey, Michael A; Koch, Gary G; Preisser, John S; Saville, Benjamin R

    2016-01-01

    Time-to-event or dichotomous outcomes in randomized clinical trials often have analyses using the Cox proportional hazards model or conditional logistic regression, respectively, to obtain covariate-adjusted log hazard (or odds) ratios. Nonparametric Randomization-Based Analysis of Covariance (NPANCOVA) can be applied to unadjusted log hazard (or odds) ratios estimated from a model containing treatment as the only explanatory variable. These adjusted estimates are stratified population-averaged treatment effects and only require a valid randomization to the two treatment groups and avoid key modeling assumptions (e.g., proportional hazards in the case of a Cox model) for the adjustment variables. The methodology has application in the regulatory environment where such assumptions cannot be verified a priori. Application of the methodology is illustrated through three examples on real data from two randomized trials.

  2. Statistical analysis of error rate of large-scale single flux quantum logic circuit by considering fluctuation of timing parameters

    NASA Astrophysics Data System (ADS)

    Yamanashi, Yuki; Masubuchi, Kota; Yoshikawa, Nobuyuki

    2016-11-01

    The relationship between the timing margin and the error rate of the large-scale single flux quantum logic circuits is quantitatively investigated to establish a timing design guideline. We observed that the fluctuation in the set-up/hold time of single flux quantum logic gates caused by thermal noises is the most probable origin of the logical error of the large-scale single flux quantum circuit. The appropriate timing margin for stable operation of the large-scale logic circuit is discussed by taking the fluctuation of setup/hold time and the timing jitter in the single flux quantum circuits. As a case study, the dependence of the error rate of the 1-million-bit single flux quantum shift register on the timing margin is statistically analyzed. The result indicates that adjustment of timing margin and the bias voltage is important for stable operation of a large-scale SFQ logic circuit.

  3. Exponentials and Laplace transforms on nonuniform time scales

    NASA Astrophysics Data System (ADS)

    Ortigueira, Manuel D.; Torres, Delfim F. M.; Trujillo, Juan J.

    2016-10-01

    We formulate a coherent approach to signals and systems theory on time scales. The two derivatives from the time-scale calculus are used, i.e., nabla (forward) and delta (backward), and the corresponding eigenfunctions, the so-called nabla and delta exponentials, computed. With these exponentials, two generalised discrete-time Laplace transforms are deduced and their properties studied. These transforms are compatible with the standard Laplace and Z transforms. They are used to study discrete-time linear systems defined by difference equations. These equations mimic the usual continuous-time equations that are uniformly approximated when the sampling interval becomes small. Impulse response and transfer function notions are introduced. This implies a unified mathematical framework that allows us to approximate the classic continuous-time case when the sampling rate is high or to obtain the standard discrete-time case, based on difference equations, when the time grid becomes uniform.

  4. The scaling of time series size towards detrended fluctuation analysis

    NASA Astrophysics Data System (ADS)

    Gao, Xiaolei; Ren, Liwei; Shang, Pengjian; Feng, Guochen

    2016-06-01

    In this paper, we introduce a modification of detrended fluctuation analysis (DFA), called multivariate DFA (MNDFA) method, based on the scaling of time series size N. In traditional DFA method, we obtained the influence of the sequence segmentation interval s, and it inspires us to propose a new model MNDFA to discuss the scaling of time series size towards DFA. The effectiveness of the procedure is verified by numerical experiments with both artificial and stock returns series. Results show that the proposed MNDFA method contains more significant information of series compared to traditional DFA method. The scaling of time series size has an influence on the auto-correlation (AC) in time series. For certain series, we obtain an exponential relationship, and also calculate the slope through the fitting function. Our analysis and finite-size effect test demonstrate that an appropriate choice of the time series size can avoid unnecessary influences, and also make the testing results more accurate.

  5. Resistivity scaling and electron relaxation times in metallic nanowires

    SciTech Connect

    Moors, Kristof; Sorée, Bart; Magnus, Wim; Tőkei, Zsolt

    2014-08-14

    We study the resistivity scaling in nanometer-sized metallic wires due to surface roughness and grain-boundaries, currently the main cause of electron scattering in nanoscaled interconnects. The resistivity has been obtained with the Boltzmann transport equation, adopting the relaxation time approximation of the distribution function and the effective mass approximation for the conducting electrons. The relaxation times are calculated exactly, using Fermi's golden rule, resulting in a correct relaxation time for every sub-band state contributing to the transport. In general, the relaxation time strongly depends on the sub-band state, something that remained unclear with the methods of previous work. The resistivity scaling is obtained for different roughness and grain-boundary properties, showing large differences in scaling behavior and relaxation times. Our model clearly indicates that the resistivity is dominated by grain-boundary scattering, easily surpassing the surface roughness contribution by a factor of 10.

  6. Antecedents of maternal parenting stress: the role of attachment style, prenatal attachment, and dyadic adjustment in first-time mothers

    PubMed Central

    Mazzeschi, Claudia; Pazzagli, Chiara; Radi, Giulia; Raspa, Veronica; Buratta, Livia

    2015-01-01

    The transition to parenthood is widely considered a period of increased vulnerability often accompanied by stress. Abidin conceived parenting stress as referring to specific difficulties in adjusting to the parenting role. Most studies of psychological distress arising from the demands of parenting have investigated the impact of stress on the development of dysfunctional parent–child relationships and on adult and child psychopathology. Studies have largely focused on mothers’ postnatal experience; less attention has been devoted to maternal prenatal characteristics associated with subsequent parental stress and studies of maternal prenatal predictors are few. Furthermore, no studies have examined that association exclusively with samples of first-time mothers. With an observational prospective study design with two time periods, the aim of this study was to investigate the role of mothers’ attachment style, maternal prenatal attachment to the fetus and dyadic adjustment during pregnancy (7th months of gestation) and their potential unique contribution to parenting stress 3 months after childbirth in a sample of nulliparous women. Results showed significant correlations between antenatal measures. Maternal attachment style (especially relationship anxiety) was negatively correlated with prenatal attachment and with dyadic adjustment; positive correlations resulted between prenatal attachment and dyadic adjustment. Each of the investigated variables was also good predictor of parenting stress 3 months after childbirth. Findings suggested how these dimensions could be considered as risk factors in the transition to motherhood and in the very beginning of the emergence of the caregiving system, especially with first-time mothers. PMID:26441808

  7. Universal scaling function in discrete time asymmetric exclusion processes

    NASA Astrophysics Data System (ADS)

    Chia, Nicholas; Bundschuh, Ralf

    2005-03-01

    In the universality class of the one dimensional Kardar-Parisi-Zhang surface growth, Derrida and Lebowitz conjectured the universality of not only the scaling exponents, but of an entire scaling function. Since Derrida and Lebowitz' original publication this universality has been verified for a variety of continuous time systems in the KPZ universality class. We study the Derrida-Lebowitz scaling function for multi-particle versions of the discrete time Asymmetric Exclusion Process. We find that in this discrete time system the Derrida-Lebowitz scaling function not only properly characterizes the large system size limit, but even accurately describes surprisingly small systems. These results have immediate applications in searching biological sequence databases.

  8. Trends in Surface Radiation Budgets at Climatic Time Scales

    NASA Astrophysics Data System (ADS)

    Pinker, R. T.; Zhang, B.; Ma, Y.

    2015-12-01

    For assessment of variability and trends in the Earth Radiation Balance, information is needed at climatic time scales. Satellite observations have been instrumental for advancing the understanding of radiative balance at global scale, however, the length of available satellite records is limited due to the frequent changes in the observing systems. In this paper we report on an effort to synthesize satellite observations from independent sources to estimates shortwave and longwave surface radiative fluxes at climatic time scales and use them to learn about their variability and trends at global scale with a focus on the tropics. An attempt will be made to learn from the comparison about possible causes of observed trends. The radiative fluxes were derived in the framework of the MEaSURES and NEWS programs; they are evaluated against ground observations and compared to independent satellite and model estimates. Attention is given to updated knowledge on radiative balance as compared to what is known from shorter time records.

  9. Controllability of multiplex, multi-time-scale networks

    NASA Astrophysics Data System (ADS)

    Pósfai, Márton; Gao, Jianxi; Cornelius, Sean P.; Barabási, Albert-László; D'Souza, Raissa M.

    2016-09-01

    The paradigm of layered networks is used to describe many real-world systems, from biological networks to social organizations and transportation systems. While recently there has been much progress in understanding the general properties of multilayer networks, our understanding of how to control such systems remains limited. One fundamental aspect that makes this endeavor challenging is that each layer can operate at a different time scale; thus, we cannot directly apply standard ideas from structural control theory of individual networks. Here we address the problem of controlling multilayer and multi-time-scale networks focusing on two-layer multiplex networks with one-to-one interlayer coupling. We investigate the practically relevant case when the control signal is applied to the nodes of one layer. We develop a theory based on disjoint path covers to determine the minimum number of inputs (Ni) necessary for full control. We show that if both layers operate on the same time scale, then the network structure of both layers equally affect controllability. In the presence of time-scale separation, controllability is enhanced if the controller interacts with the faster layer: Ni decreases as the time-scale difference increases up to a critical time-scale difference, above which Ni remains constant and is completely determined by the faster layer. We show that the critical time-scale difference is large if layer I is easy and layer II is hard to control in isolation. In contrast, control becomes increasingly difficult if the controller interacts with the layer operating on the slower time scale and increasing time-scale separation leads to increased Ni, again up to a critical value, above which Ni still depends on the structure of both layers. This critical value is largely determined by the longest path in the faster layer that does not involve cycles. By identifying the underlying mechanisms that connect time-scale difference and controllability for a simplified

  10. Inferring Patterns in Network Traffic: Time Scales and Variations

    DTIC Science & Technology

    2014-10-21

    2014 Carnegie Mellon University Inferring Patterns in Network Traffic : Time Scales and Variation Soumyo Moitra smoitra@sei.cmu.edu...number. 1. REPORT DATE 21 OCT 2014 2. REPORT TYPE N/A 3. DATES COVERED 4. TITLE AND SUBTITLE Inferring Patterns in Network Traffic : Time...method and metrics for Situational Awareness • SA  Monitoring trends and changes in traffic • Analysis over timeTime series data analysis • Metrics

  11. Adolescents’ relationship with God and internalizing adjustment over time: The moderating role of maternal religious coping

    PubMed Central

    Goeke-Morey, Marcie C.; Taylor, Laura K.; Merrilees, Christine E.; Shirlow, Peter; Cummings, E. Mark

    2015-01-01

    A growing literature supports the importance of understanding the link between religiosity and youths’ adjustment and development, but in the absence of rigorous, longitudinal designs, questions remain about the direction of effect and the role of family factors. This paper investigates the bi-directional association between adolescents’ relationship with God and their internalizing adjustment. Results from two-wave, SEM cross-lag analyses of data from 667 mother/adolescent dyads in Belfast, Northern Ireland (50% male, M age = 15.75 years old) supports a risk model suggesting that greater internalizing problems predicts a weaker relationship with God one year later. Significant moderation analyses suggest that a stronger relationship with God predicted fewer depression and anxiety symptoms for youth whose mothers used more religious coping. PMID:24955590

  12. Adolescents' relationship with God and internalizing adjustment over time: the moderating role of maternal religious coping.

    PubMed

    Goeke-Morey, Marcie C; Taylor, Laura K; Merrilees, Christine E; Shirlow, Peter; Cummings, E Mark

    2014-12-01

    A growing literature supports the importance of understanding the link between religiosity and youths' adjustment and development, but in the absence of rigorous, longitudinal designs, questions remain about the direction of effect and the role of family factors. This paper investigates the bidirectional association between adolescents' relationship with God and their internalizing adjustment. Results from 2-wave, SEM cross-lag analyses of data from 667 mother/adolescent dyads in Belfast, Northern Ireland (50% male, M age = 15.75 years old) supports a risk model suggesting that greater internalizing problems predict a weaker relationship with God 1 year later. Significant moderation analyses suggest that a stronger relationship with God predicted fewer depression and anxiety symptoms for youth whose mothers used more religious coping.

  13. Increasing temperature forcing reduces the Greenland Ice Sheet's response time scale

    NASA Astrophysics Data System (ADS)

    Applegate, Patrick J.; Parizek, Byron R.; Nicholas, Robert E.; Alley, Richard B.; Keller, Klaus

    2015-10-01

    Damages from sea level rise, as well as strategies to manage the associated risk, hinge critically on the time scale and eventual magnitude of sea level rise. Satellite observations and paleo-data suggest that the Greenland Ice Sheet (GIS) loses mass in response to increased temperatures, and may thus contribute substantially to sea level rise as anthropogenic climate change progresses. The time scale of GIS mass loss and sea level rise are deeply uncertain, and are often assumed to be constant. However, previous ice sheet modeling studies have shown that the time scale of GIS response likely decreases strongly with increasing temperature anomaly. Here, we map the relationship between temperature anomaly and the time scale of GIS response, by perturbing a calibrated, three-dimensional model of GIS behavior. Additional simulations with a profile, higher-order, ice sheet model yield time scales that are broadly consistent with those obtained using the three-dimensional model, and shed light on the feedbacks in the ice sheet system that cause the time scale shortening. Semi-empirical modeling studies that assume a constant time scale of sea level adjustment, and are calibrated to small preanthropogenic temperature and sea level changes, may underestimate future sea level rise. Our analysis suggests that the benefits of reducing greenhouse gas emissions, in terms of avoided sea level rise from the GIS, may be greatest if emissions reductions begin before large temperature increases have been realized. Reducing anthropogenic climate change may also allow more time for design and deployment of risk management strategies by slowing sea level contributions from the GIS.

  14. Parenting and Family Adjustment Scales (PAFAS): validation of a brief parent-report measure for use in assessment of parenting skills and family relationships.

    PubMed

    Sanders, Matthew R; Morawska, Alina; Haslam, Divna M; Filus, Ania; Fletcher, Renee

    2014-06-01

    This study examined the psychometric characteristics of the Parent and Family Adjustment Scales (PAFAS). The PAFAS was designed as a brief outcome measure for assessing changes in parenting practices and parental adjustment in the evaluation of both public health and individual or group parenting interventions. The inventory consists of the Parenting scale measuring parenting practices and quality of parent-child relationship and of the Family Adjustment scale measuring parental emotional adjustment and partner and family support in parenting. Two studies were conducted to validate the inventory. A sample of 370 parents participated in Study 1 and a sample of 771 parents participated in Study 2. Children's ages ranged from 2 to 12 years old. In Study 1 confirmatory factor analysis supported an 18-item, four factor model of PAFAS Parenting, and a 12-item, three factor model of PAFAS Family Adjustment. Psychometric evaluation of the PAFAS revealed that the scales had good internal consistency, as well as satisfactory construct and predictive validity. In Study 2 confirmatory factor analysis supported stability of the factor structures of PAFAS Parenting and PAFAS Family Adjustment revealed in Study 1. Potential uses of the measure and implications for future validation studies are discussed.

  15. Multiple-time scales analysis of physiological time series under neural control.

    PubMed

    Peng, C K; Hausdorff, J M; Havlin, S; Mietus, J E; Stanley, H E; Goldberger, A L

    1998-01-01

    We discuss multiple-time scale properties of neurophysiological control mechanisms, using heart rate and gait regulation as model systems. We find that scaling exponents can be used as prognostic indicators. Furthermore, detection of more subtle degradation of scaling properties may provide a novel early warning system in subjects with a variety of pathologies including those at high risk of sudden death.

  16. Multiple-time scales analysis of physiological time series under neural control

    NASA Technical Reports Server (NTRS)

    Peng, C. K.; Hausdorff, J. M.; Havlin, S.; Mietus, J. E.; Stanley, H. E.; Goldberger, A. L.

    1998-01-01

    We discuss multiple-time scale properties of neurophysiological control mechanisms, using heart rate and gait regulation as model systems. We find that scaling exponents can be used as prognostic indicators. Furthermore, detection of more subtle degradation of scaling properties may provide a novel early warning system in subjects with a variety of pathologies including those at high risk of sudden death.

  17. Broken scale invariance in time-dependent trapping potentials

    NASA Astrophysics Data System (ADS)

    Gharashi, Seyed Ebrahim; Blume, D.

    2016-12-01

    The response of a cold atom gas with contact interactions to a smoothly varying external harmonic confinement in the nonadiabatic regime is studied. The time variation of the angular frequency is varied such that the system is, for vanishing or infinitely strong contact interactions, scale invariant. The time evolution of the system with broken scale invariance (i.e., the time evolution of the system with finite interaction strength) is contrasted with that for a scale invariant system, which exhibits Efimovian-like expansion dynamics that is characterized by log-periodic oscillations with unique period and amplitude. It is found that the breaking of the scale invariance by the finiteness of the interactions leads to a time dependence of the oscillation period and amplitude. It is argued, based on analytical considerations for atomic gases of arbitrary size and numerical results for two one-dimensional particles, that the oscillation period approaches that of the scale-invariant system at large times. The role of the time-dependent contact in the expansion dynamics is analyzed.

  18. Time scale bias in erosion rates of glaciated landscapes.

    PubMed

    Ganti, Vamsi; von Hagke, Christoph; Scherler, Dirk; Lamb, Michael P; Fischer, Woodward W; Avouac, Jean-Philippe

    2016-10-01

    Deciphering erosion rates over geologic time is fundamental for understanding the interplay between climate, tectonic, and erosional processes. Existing techniques integrate erosion over different time scales, and direct comparison of such rates is routinely done in earth science. On the basis of a global compilation, we show that erosion rate estimates in glaciated landscapes may be affected by a systematic averaging bias that produces higher estimated erosion rates toward the present, which do not reflect straightforward changes in erosion rates through time. This trend can result from a heavy-tailed distribution of erosional hiatuses (that is, time periods where no or relatively slow erosion occurs). We argue that such a distribution can result from the intermittency of erosional processes in glaciated landscapes that are tightly coupled to climate variability from decadal to millennial time scales. In contrast, we find no evidence for a time scale bias in spatially averaged erosion rates of landscapes dominated by river incision. We discuss the implications of our findings in the context of the proposed coupling between climate and tectonics, and interpreting erosion rate estimates with different averaging time scales through geologic time.

  19. Time scale bias in erosion rates of glaciated landscapes

    PubMed Central

    Ganti, Vamsi; von Hagke, Christoph; Scherler, Dirk; Lamb, Michael P.; Fischer, Woodward W.; Avouac, Jean-Philippe

    2016-01-01

    Deciphering erosion rates over geologic time is fundamental for understanding the interplay between climate, tectonic, and erosional processes. Existing techniques integrate erosion over different time scales, and direct comparison of such rates is routinely done in earth science. On the basis of a global compilation, we show that erosion rate estimates in glaciated landscapes may be affected by a systematic averaging bias that produces higher estimated erosion rates toward the present, which do not reflect straightforward changes in erosion rates through time. This trend can result from a heavy-tailed distribution of erosional hiatuses (that is, time periods where no or relatively slow erosion occurs). We argue that such a distribution can result from the intermittency of erosional processes in glaciated landscapes that are tightly coupled to climate variability from decadal to millennial time scales. In contrast, we find no evidence for a time scale bias in spatially averaged erosion rates of landscapes dominated by river incision. We discuss the implications of our findings in the context of the proposed coupling between climate and tectonics, and interpreting erosion rate estimates with different averaging time scales through geologic time. PMID:27713925

  20. Auroral Substorm Time Scales: Seasonal and IMF Variations

    NASA Technical Reports Server (NTRS)

    Chua, D.; Parks, G. K.; Brittnacher, M.; Germany, G. A.; Spann, J. F.; Six, N. Frank (Technical Monitor)

    2002-01-01

    The time scales and phases of auroral substorm, activity are quantied in this study using the hemispheric power computed from Polar Ultraviolet Imager (UVI) images. We have applied this technique to several hundred substorm events and we are able to quantify how the characterist act, of substorms vary with season and IMF Bz orientation. We show that substorm time scales vary more strongly with season than with IMF Bz orientation. The recovery time for substorm. activity is well ordered by whether or not the nightside oral zone is sunlit. The recovery time scales for substorms occurring in the winter and equinox periods are similar and are both roughly a factor of two longer than in summer when the auroral oval is sunlit. Our results support the hypothesis that the ionosphere plays an active role in governing the dynamics of the aurora.

  1. Deviations from uniform power law scaling in nonstationary time series

    NASA Technical Reports Server (NTRS)

    Viswanathan, G. M.; Peng, C. K.; Stanley, H. E.; Goldberger, A. L.

    1997-01-01

    A classic problem in physics is the analysis of highly nonstationary time series that typically exhibit long-range correlations. Here we test the hypothesis that the scaling properties of the dynamics of healthy physiological systems are more stable than those of pathological systems by studying beat-to-beat fluctuations in the human heart rate. We develop techniques based on the Fano factor and Allan factor functions, as well as on detrended fluctuation analysis, for quantifying deviations from uniform power-law scaling in nonstationary time series. By analyzing extremely long data sets of up to N = 10(5) beats for 11 healthy subjects, we find that the fluctuations in the heart rate scale approximately uniformly over several temporal orders of magnitude. By contrast, we find that in data sets of comparable length for 14 subjects with heart disease, the fluctuations grow erratically, indicating a loss of scaling stability.

  2. Thermodynamics constrains allometric scaling of optimal development time in insects.

    PubMed

    Dillon, Michael E; Frazier, Melanie R

    2013-01-01

    Development time is a critical life-history trait that has profound effects on organism fitness and on population growth rates. For ectotherms, development time is strongly influenced by temperature and is predicted to scale with body mass to the quarter power based on 1) the ontogenetic growth model of the metabolic theory of ecology which describes a bioenergetic balance between tissue maintenance and growth given the scaling relationship between metabolism and body size, and 2) numerous studies, primarily of vertebrate endotherms, that largely support this prediction. However, few studies have investigated the allometry of development time among invertebrates, including insects. Abundant data on development of diverse insects provides an ideal opportunity to better understand the scaling of development time in this ecologically and economically important group. Insects develop more quickly at warmer temperatures until reaching a minimum development time at some optimal temperature, after which development slows. We evaluated the allometry of insect development time by compiling estimates of minimum development time and optimal developmental temperature for 361 insect species from 16 orders with body mass varying over nearly 6 orders of magnitude. Allometric scaling exponents varied with the statistical approach: standardized major axis regression supported the predicted quarter-power scaling relationship, but ordinary and phylogenetic generalized least squares did not. Regardless of the statistical approach, body size alone explained less than 28% of the variation in development time. Models that also included optimal temperature explained over 50% of the variation in development time. Warm-adapted insects developed more quickly, regardless of body size, supporting the "hotter is better" hypothesis that posits that ectotherms have a limited ability to evolutionarily compensate for the depressing effects of low temperatures on rates of biological processes. The

  3. Thermodynamics Constrains Allometric Scaling of Optimal Development Time in Insects

    PubMed Central

    Dillon, Michael E.; Frazier, Melanie R.

    2013-01-01

    Development time is a critical life-history trait that has profound effects on organism fitness and on population growth rates. For ectotherms, development time is strongly influenced by temperature and is predicted to scale with body mass to the quarter power based on 1) the ontogenetic growth model of the metabolic theory of ecology which describes a bioenergetic balance between tissue maintenance and growth given the scaling relationship between metabolism and body size, and 2) numerous studies, primarily of vertebrate endotherms, that largely support this prediction. However, few studies have investigated the allometry of development time among invertebrates, including insects. Abundant data on development of diverse insects provides an ideal opportunity to better understand the scaling of development time in this ecologically and economically important group. Insects develop more quickly at warmer temperatures until reaching a minimum development time at some optimal temperature, after which development slows. We evaluated the allometry of insect development time by compiling estimates of minimum development time and optimal developmental temperature for 361 insect species from 16 orders with body mass varying over nearly 6 orders of magnitude. Allometric scaling exponents varied with the statistical approach: standardized major axis regression supported the predicted quarter-power scaling relationship, but ordinary and phylogenetic generalized least squares did not. Regardless of the statistical approach, body size alone explained less than 28% of the variation in development time. Models that also included optimal temperature explained over 50% of the variation in development time. Warm-adapted insects developed more quickly, regardless of body size, supporting the “hotter is better” hypothesis that posits that ectotherms have a limited ability to evolutionarily compensate for the depressing effects of low temperatures on rates of biological processes

  4. The representation of a synoptic-scale weather system in a thermodynamically adjusted version of the ECHAM4 general circulation model

    NASA Astrophysics Data System (ADS)

    Bauer, H.-S.; Wulfmeyer, V.; Bengtsson, L.

    2008-04-01

    In this work, a strong cyclone event is simulated by the general circulation model (GCM) ECHAM4 for studying the representation of weather systems in a climate model. The system developed along the East Coast of the U.S.A. between the 12th and 14th of March 1993. The GCM simulation was started from climatological conditions and was continuously forced to the analyzed state by a thermodynamical adjustment based on the Newtonian relaxation technique (nudging). Relaxation terms for vorticity, divergence, temperature, and the logarithm of surface pressure were added at each model level and time step. The necessary forcing files were calculated from the ECMWF re-analysis (ERA15). No nudging terms were added for the components of the water cycle. Using this forcing, the model was able to reproduce the synoptic-scale features and its temporal development realistically after a spin-up period. This is true even for quantities that are not adjusted to the analysis (e.g., humidity). Detailed comparisons of the model simulations with available observations and the forcing ERA15 were performed for the cyclone case. Systematic errors were detected in the simulation of the thermodynamic state of the atmosphere, which can be traced back to deficiencies in model parametrizations. Differences in the representation of the surface fluxes lead to systematic deviations in near-surface temperature and wind fields. The general situation is very similar in both model representations. Errors were detected in the simulation of the convective boundary layer behind the cold front. The observed strong convective activity is missed both by the adjusted ECHAM4 simulation and ERA15. This is most likely caused by weaknesses in the cloud and convection schemes or by a too strong downdraft compensating the frontal lifting and suppressing the vertical transport of moisture from the boundary layer to higher levels. This work demonstrates for the investigated case the value of simulating single weather

  5. A methane-based time scale for Vostok ice

    NASA Astrophysics Data System (ADS)

    Ruddiman, William F.; Raymo, Maureen E.

    2003-02-01

    Tuning the Vostok methane signal to mid-July 30°N insolation yields a new ice-core gas time scale. This exercise has two rationales: (1) evidence supporting Kutzbach's theory that low-latitude summer insolation in the northern hemisphere controls the strength of tropical monsoons, and (2) interhemispheric CH 4 gradients showing that the main control of orbital-scale CH 4 variations is tropical (monsoonal) sources. The immediate basis for tuning CH 4 to mid-July insolation is the coincident timing of the most recent (pre-anthropogenic) CH 4 maximum at 11,000-10,500 calendar years ago and the most recent July 30°N insolation maximum (all ages in this paper are in calendar years unless specified as 14C years). The resulting CH 4 gas time scale diverges by as much as 15,000 years from the GT4 gas time scale (Petit et al., Nature 399 (1999) 429) prior to 250,000 years ago, but it matches fairly closely a time scale derived by tuning ice-core δ18O atm to a lagged insolation signal (Shackleton, Science 289 (2000) 1897). Most offsets between the CH 4 and δ18O atm time scales can be explained by assuming that tropical monsoons and ice sheets alternate in controlling the phase of the δ18O atm signal. The CH 4 time scale provides an estimate of the timing of the Vostok CO 2 signal against SPECMAP marine δ18O, often used as an index of global ice volume. On the CH 4 time scale, all CO 2 responses are highly coherent with SPECMAP δ18O at the orbital periods. CO 2 leads δ18O by 5000 years at 100,000 years (eccentricity), but the two signals are nearly in-phase at 41,000 years (obliquity) and 23,000 years (precession). The actual phasing between CO 2 and ice volume is difficult to infer because of likely SST overprints on the SPECMAP δ18O signal. CO 2 could lead, or be in phase with, ice volume, but is unlikely to lag behind the ice response.

  6. Segregation time-scales in model granular flows

    NASA Astrophysics Data System (ADS)

    Staron, Lydie; Phillips, Jeremy C.

    2016-04-01

    Segregation patterns in natural granular systems offer a singular picture of the systems evolution. In many cases, understanding segregation dynamics may help understanding the system's history as well as its future evolution. Among the key questions, one concerns the typical time-scales at which segregation occurs. In this contribution, we present model granular flows simulated by means of the discrete Contact Dynamics method. The granular flows are bi-disperse, namely exhibiting two grain sizes. The flow composition and its dynamics are systematically varied, and the segregation dynamics carefully analyzed. We propose a physical model for the segregation that gives account of the observed dependence of segregation time scales on composition and dynamics. References L. Staron and J. C. Phillips, Stress partition and micro-structure in size-segregating granular flows, Phys. Rev. E 92 022210 (2015) L. Staron and J. C. Phillips, Segregation time-scales in bi-disperse granular flows, Phys. Fluids 26 (3), 033302 (2014)

  7. Time Scales for Energy Release in Hall Magnetic Reconnection

    NASA Astrophysics Data System (ADS)

    Huba, J. D.; Rudakov, L. I.

    2004-05-01

    We present a study of the time scales for energy release in 2D Hall magnetic reconnection. We use the NRL Hall MHD code VooDoo for this study. We consider a 2D reversed field current layer with a magnetic perturbation that initiates the reconnection process. We use boundary conditions that allow inflow and outflow (i.e., not periodic) and let the system reach a steady state. We find that the system goes through three stages: a relatively long current layer thinning process, a fast reconnection phase, and a final steady state phase. We define the time scale for energy release as the fast reconnection period: from onset to steady state. Preliminary results indicate that the time for energy release scales as the initial thickness of the current layer. We apply these results to the magnetotail and magnetopause. Research supported by NASA and ONR.

  8. Association Between Sitting Time and Cardiometabolic Risk Factors After Adjustment for Cardiorespiratory Fitness, Cooper Center Longitudinal Study, 2010–2013

    PubMed Central

    Shuval, Kerem; Balasubramanian, Bijal A.; Kendzor, Darla E.; Radford, Nina B.; DeFina, Laura F.; Gabriel, Kelley Pettee

    2016-01-01

    Introduction Objective estimates, based on waist-worn accelerometers, indicate that adults spend over half their day (55%) in sedentary behaviors. Our study examined the association between sitting time and cardiometabolic risk factors after adjustment for cardiorespiratory fitness (CRF). Methods A cross-sectional analysis was conducted with 4,486 men and 1,845 women who reported daily estimated sitting time, had measures for adiposity, blood lipids, glucose, and blood pressure, and underwent maximal stress testing. We used a modeling strategy using logistic regression analysis to assess CRF as a potential effect modifier and to control for potential confounding effects of CRF. Results Men who sat almost all of the time (about 100%) were more likely to be obese whether defined by waist girth (OR, 2.61; 95% CI, 1.25–5.47) or percentage of body fat (OR, 3.33; 95% CI, 1.35–8.20) than were men who sat almost none of the time (about 0%). Sitting time was not significantly associated with other cardiometabolic risk factors after adjustment for CRF level. For women, no significant associations between sitting time and cardiometabolic risk factors were observed after adjustment for CRF and other covariates. Conclusion As health professionals struggle to find ways to combat obesity and its health effects, reducing sitting time can be an initial step in a total physical activity plan that includes strategies to reduce sedentary time through increases in physical activity among men. In addition, further research is needed to elucidate the relationships between sitting time and CRF for women as well as the underlying mechanisms involved in these relationships. PMID:28033088

  9. Time-dependent scaling patterns in high frequency financial data

    NASA Astrophysics Data System (ADS)

    Nava, Noemi; Di Matteo, Tiziana; Aste, Tomaso

    2016-10-01

    We measure the influence of different time-scales on the intraday dynamics of financial markets. This is obtained by decomposing financial time series into simple oscillations associated with distinct time-scales. We propose two new time-varying measures of complexity: 1) an amplitude scaling exponent and 2) an entropy-like measure. We apply these measures to intraday, 30-second sampled prices of various stock market indices. Our results reveal intraday trends where different time-horizons contribute with variable relative amplitudes over the course of the trading day. Our findings indicate that the time series we analysed have a non-stationary multifractal nature with predominantly persistent behaviour at the middle of the trading session and anti-persistent behaviour at the opening and at the closing of the session. We demonstrate that these patterns are statistically significant, robust, reproducible and characteristic of each stock market. We argue that any modelling, analytics or trading strategy must take into account these non-stationary intraday scaling patterns.

  10. Improving the Geologic Time Scale (Jean Baptiste Lamarck Medal Lecture)

    NASA Astrophysics Data System (ADS)

    Gradstein, Felix M.

    2010-05-01

    The Geologic Time Scale (GTS) provides the framework for the physical, chemical and biological processes on Earth. The time scale is the tool "par excellence" of the geological trade, and insight in its construction, strength, and limitations enhances its function and its utility. Earth scientists should understand how time scales are constructed and its myriad of physical and abstract data are calibrated, rather than merely using ages plucked from a convenient chart or card. Calibration to linear time of the succession of events recorded in the rocks on Earth has three components: (1) the standard stratigraphic divisions and their correlation in the global rock record, (2) the means of measuring linear time or elapsed durations from the rock record, and (3) the methods of effectively joining the two scales, the stratigraphic one and the linear one. Under the auspices of the International Commission on Stratigraphy (ICS), the international stratigraphic divisions and their correlative events are now largely standardized, especially using the GSSP (Global Stratigraphic Section and Point) concept. The means of measuring linear time or elapsed durations from the rock record are objectives in the EARTH TIME and GTS NEXT projects, that also are educating a new generation of GTS dedicated scientists. The U/Pb, Ar/Ar and orbital tuning methods are intercalibrated, and external error analysis improved. Existing Ar/Ar ages become almost 0.5% older, and U/Pb ages stratigraphically more realistic. The new Os/Re method has potential for directly dating more GSSP's and its correlative events. Such may reduce scaling uncertainty between the sedimentary levels of an age date and that of a stage boundary. Since 1981, six successive Phanerozoic GTS have been published, each new one achieving higher resolution and more users. The next GTS is scheduled for 2011/2012, with over 50 specialists taking part. New chapters include an expanded planetary time scale, sequence stratigraphy

  11. Evaluation of Scaling Invariance Embedded in Short Time Series

    PubMed Central

    Pan, Xue; Hou, Lei; Stephen, Mutua; Yang, Huijie; Zhu, Chenping

    2014-01-01

    Scaling invariance of time series has been making great contributions in diverse research fields. But how to evaluate scaling exponent from a real-world series is still an open problem. Finite length of time series may induce unacceptable fluctuation and bias to statistical quantities and consequent invalidation of currently used standard methods. In this paper a new concept called correlation-dependent balanced estimation of diffusion entropy is developed to evaluate scale-invariance in very short time series with length . Calculations with specified Hurst exponent values of show that by using the standard central moving average de-trending procedure this method can evaluate the scaling exponents for short time series with ignorable bias () and sharp confidential interval (standard deviation ). Considering the stride series from ten volunteers along an approximate oval path of a specified length, we observe that though the averages and deviations of scaling exponents are close, their evolutionary behaviors display rich patterns. It has potential use in analyzing physiological signals, detecting early warning signals, and so on. As an emphasis, the our core contribution is that by means of the proposed method one can estimate precisely shannon entropy from limited records. PMID:25549356

  12. Evaluation of scaling invariance embedded in short time series.

    PubMed

    Pan, Xue; Hou, Lei; Stephen, Mutua; Yang, Huijie; Zhu, Chenping

    2014-01-01

    Scaling invariance of time series has been making great contributions in diverse research fields. But how to evaluate scaling exponent from a real-world series is still an open problem. Finite length of time series may induce unacceptable fluctuation and bias to statistical quantities and consequent invalidation of currently used standard methods. In this paper a new concept called correlation-dependent balanced estimation of diffusion entropy is developed to evaluate scale-invariance in very short time series with length ~10(2). Calculations with specified Hurst exponent values of 0.2,0.3,...,0.9 show that by using the standard central moving average de-trending procedure this method can evaluate the scaling exponents for short time series with ignorable bias (≤0.03) and sharp confidential interval (standard deviation ≤0.05). Considering the stride series from ten volunteers along an approximate oval path of a specified length, we observe that though the averages and deviations of scaling exponents are close, their evolutionary behaviors display rich patterns. It has potential use in analyzing physiological signals, detecting early warning signals, and so on. As an emphasis, the our core contribution is that by means of the proposed method one can estimate precisely shannon entropy from limited records.

  13. Going up in time and length scales in modeling polymers

    NASA Astrophysics Data System (ADS)

    Grest, Gary S.

    Polymer properties depend on a wide range of coupled length and time scales, with unique macroscopic viscoelastic behavior stemming from interactions at the atomistic level. The need to probe polymers across time and length scales and particularly computational modeling is inherently challenging. Here new paths to probing long time and length scales including introducing interactions into traditional bead-spring models and coarse graining of atomistic simulations will be compared and discussed. Using linear polyethylene as a model system, the degree of coarse graining with two to six methylene groups per coarse-grained bead derived from a fully atomistic melt simulation were probed. We show that the degree of coarse graining affects the measured dynamic. Using these models we were successful in probing highly entangled melts and were able reach the long-time diffusive regime which is computationally inaccessible using atomistic simulations. We simulated the relaxation modulus and shear viscosity of well-entangled polyethylene melts for scaled times of 500 µs. Results for plateau modulus are in good agreement with experiment. The long time and length scale is coupled to the macroscopic viscoelasticity where the degree of coarse graining sets the minimum length scale instrumental in defining polymer properties and dynamics. Results will be compared to those obtained from simple bead-spring models to demonstrate the additional insight that can be gained from atomistically inspired coarse grained models. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  14. The British Sign Language versions of the Patient Health Questionnaire, the Generalized Anxiety Disorder 7-item Scale, and the Work and Social Adjustment Scale.

    PubMed

    Rogers, Katherine D; Young, Alys; Lovell, Karina; Campbell, Malcolm; Scott, Paul R; Kendal, Sarah

    2013-01-01

    The present study is aimed to translate 3 widely used clinical assessment measures into British Sign Language (BSL), to pilot the BSL versions, and to establish their validity and reliability. These were the Patient Health Questionnaire (PHQ-9), the Generalized Anxiety Disorder 7-item (GAD-7) scale, and the Work and Social Adjustment Scale (WSAS). The 3 assessment measures were translated into BSL and piloted with the Deaf signing population in the United Kingdom (n = 113). Participants completed the PHQ-9, GAD-7, WSAS, and Clinical Outcomes in Routine Evaluation-Outcome Measure (CORE-OM) online. The reliability and validity of the BSL versions of PHQ-9, GAD-7, and WSAS have been examined and were found to be good. The construct validity for the PHQ-9 BSL version did not find the single-factor solution as found in the hearing population. The BSL versions of PHQ-9, GAD-7, and WSAS have been produced in BSL and can be used with the signing Deaf population in the United Kingdom. This means that now there are accessible mental health assessments available for Deaf people who are BSL users, which could assist in the early identification of mental health difficulties.

  15. Time scales of crystal mixing in magma mushes

    NASA Astrophysics Data System (ADS)

    Schleicher, Jillian M.; Bergantz, George W.; Breidenthal, Robert E.; Burgisser, Alain

    2016-02-01

    Magma mixing is widely recognized as a means of producing compositional diversity and preconditioning magmas for eruption. However, the processes and associated time scales that produce the commonly observed expressions of magma mixing are poorly understood, especially under crystal-rich conditions. Here we introduce and exemplify a parameterized method to predict the characteristic mixing time of crystals in a crystal-rich magma mush that is subject to open-system reintrusion events. Our approach includes novel numerical simulations that resolve multiphase particle-fluid interactions. It also quantifies the crystal mixing by calculating both the local and system-wide progressive loss of the spatial correlation of individual crystals throughout the mixing region. Both inertial and viscous time scales for bulk mixing are introduced. Estimated mixing times are compared to natural examples and the time for basaltic mush systems to become well mixed can be on the order of 10 days.

  16. Time scales for molecule formation by ion-molecule reactions

    NASA Technical Reports Server (NTRS)

    Langer, W. D.; Glassgold, A. E.

    1976-01-01

    Analytical solutions are obtained for nonlinear differential equations governing the time-dependence of molecular abundances in interstellar clouds. Three gas-phase reaction schemes are considered separately for the regions where each dominates. The particular case of CO, and closely related members of the Oh and CH families of molecules, is studied for given values of temperature, density, and the radiation field. Nonlinear effects and couplings with particular ions are found to be important. The time scales for CO formation range from 100,000 to a few million years, depending on the chemistry and regime. The time required for essentially complete conversion of C(+) to CO in the region where the H3(+) chemistry dominates is several million years. Because this time is longer than or comparable to dynamical time scales for dense interstellar clouds, steady-state abundances may not be observed in such clouds.

  17. Dynamics symmetries of Hamiltonian system on time scales

    SciTech Connect

    Peng, Keke Luo, Yiping

    2014-04-15

    In this paper, the dynamics symmetries of Hamiltonian system on time scales are studied. We study the symmetries and quantities based on the calculation of variation and Lie transformation group. Particular focus lies in: the Noether symmetry leads to the Noether conserved quantity and the Lie symmetry leads to the Noether conserved quantity if the infinitesimal transformations satisfy the structure equation. As the new application of result, at end of the article, we give a simple example of Noether symmetry and Lie symmetry on time scales.

  18. Dynamics symmetries of Hamiltonian system on time scales

    NASA Astrophysics Data System (ADS)

    Peng, Keke; Luo, Yiping

    2014-04-01

    In this paper, the dynamics symmetries of Hamiltonian system on time scales are studied. We study the symmetries and quantities based on the calculation of variation and Lie transformation group. Particular focus lies in: the Noether symmetry leads to the Noether conserved quantity and the Lie symmetry leads to the Noether conserved quantity if the infinitesimal transformations satisfy the structure equation. As the new application of result, at end of the article, we give a simple example of Noether symmetry and Lie symmetry on time scales.

  19. Introducing conjoint analysis method into delayed lotteries studies: its validity and time stability are higher than in adjusting

    PubMed Central

    Białek, Michał; Markiewicz, Łukasz; Sawicki, Przemysław

    2015-01-01

    The delayed lotteries are much more common in everyday life than are pure lotteries. Usually, we need to wait to find out the outcome of the risky decision (e.g., investing in a stock market, engaging in a relationship). However, most research has studied the time discounting and probability discounting in isolation using the methodologies designed specifically to track changes in one parameter. Most commonly used method is adjusting, but its reported validity and time stability in research on discounting are suboptimal. The goal of this study was to introduce the novel method for analyzing delayed lotteries—conjoint analysis—which hypothetically is more suitable for analyzing individual preferences in this area. A set of two studies compared the conjoint analysis with adjusting. The results suggest that individual parameters of discounting strength estimated with conjoint have higher predictive value (Study 1 and 2), and they are more stable over time (Study 2) compared to adjusting. We discuss these findings, despite the exploratory character of reported studies, by suggesting that future research on delayed lotteries should be cross-validated using both methods. PMID:25674069

  20. Improved jet noise modeling using a new time-scale.

    PubMed

    Azarpeyvand, M; Self, R H

    2009-09-01

    To calculate the noise emanating from a turbulent flow using an acoustic analogy knowledge concerning the unsteady characteristics of the turbulence is required. Specifically, the form of the turbulent correlation tensor together with various time and length-scales are needed. However, if a Reynolds Averaged Navier-Stores calculation is used as the starting point then one can only obtain steady characteristics of the flow and it is necessary to model the unsteady behavior in some way. While there has been considerable attention given to the correct way to model the form of the correlation tensor less attention has been given to the underlying physics that dictate the proper choice of time-scale. In this paper the authors recognize that there are several time dependent processes occurring within a turbulent flow and propose a new way of obtaining the time-scale. Isothermal single-stream flow jets with Mach numbers 0.75 and 0.90 have been chosen for the present study. The Mani-Gliebe-Balsa-Khavaran method has been used for prediction of noise at different angles, and there is good agreement between the noise predictions and observations. Furthermore, the new time-scale has an inherent frequency dependency that arises naturally from the underlying physics, thus avoiding supplementary mathematical enhancements needed in previous modeling.

  1. Children's sleep and adjustment over time: the role of socioeconomic context.

    PubMed

    El-Sheikh, Mona; Kelly, Ryan J; Buckhalt, Joseph A; Benjamin Hinnant, J

    2010-01-01

    Relations were examined between children's sleep and their externalizing and internalizing symptoms. Longitudinal relations were examined when children were in 3rd (T1) and 5th (T2) grades, and cross-sectional relations were assessed at T2. Participants included 176 children at T1 (M = 8.68 years) and 141 children at T2 (M = 10.70 years). Sleep was examined via subjective reports and actigraphy. Children reported on anxiety, self-esteem, and depression symptoms, and parents reported on children's externalizing and internalizing symptoms. Cross-sectionally and longitudinally, sleep problems were associated with worse adjustment outcomes; African American children or those from lower socioeconomic status homes were at particular risk. Findings highlight the importance of adequate sleep for children's optimal development, especially in the context of ecological risk.

  2. How Elephant Seals (Mirounga leonina) Adjust Their Fine Scale Horizontal Movement and Diving Behaviour in Relation to Prey Encounter Rate

    PubMed Central

    Jouma’a, Joffrey; Picard, Baptiste; Guinet, Christophe

    2016-01-01

    Understanding the diving behaviour of diving predators in relation to concomitant prey distribution could have major practical applications in conservation biology by allowing the assessment of how changes in fine scale prey distribution impact foraging efficiency and ultimately population dynamics. The southern elephant seal (Mirounga leonina, hereafter SES), the largest phocid, is a major predator of the southern ocean feeding on myctophids and cephalopods. Because of its large size it can carry bio-loggers with minimal disturbance. Moreover, it has great diving abilities and a wide foraging habitat. Thus, the SES is a well suited model species to study predator diving behaviour and the distribution of ecologically important prey species in the Southern Ocean. In this study, we examined how SESs adjust their diving behaviour and horizontal movements in response to fine scale prey encounter densities using high resolution accelerometers, magnetometers, pressure sensors and GPS loggers. When high prey encounter rates were encountered, animals responded by (1) diving and returning to the surface with steeper angles, reducing the duration of transit dive phases (thus improving dive efficiency), and (2) exhibiting more horizontally and vertically sinuous bottom phases. In these cases, the distance travelled horizontally at the surface was reduced. This behaviour is likely to counteract horizontal displacement from water currents, as they try to remain within favourable prey patches. The prey encounter rate at the bottom of dives decreased with increasing diving depth, suggesting a combined effect of decreased accessibility and prey density with increasing depth. Prey encounter rate also decreased when the bottom phases of dives were spread across larger vertical extents of the water column. This result suggests that the vertical aggregation of prey can regulate prey density, and as a consequence impact the foraging success of SESs. To our knowledge, this is one of

  3. Separation of Time Scales in a Quantum Newton's Cradle.

    PubMed

    van den Berg, R; Wouters, B; Eliëns, S; De Nardis, J; Konik, R M; Caux, J-S

    2016-06-03

    We provide detailed modeling of the Bragg pulse used in quantum Newton's-cradle-like settings or in Bragg spectroscopy experiments for strongly repulsive bosons in one dimension. We reconstruct the postpulse time evolution and study the time-dependent local density profile and momentum distribution by a combination of exact techniques. We further provide a variety of results for finite interaction strengths using a time-dependent Hartree-Fock analysis and bosonization-refermionization techniques. Our results display a clear separation of time scales between rapid and trap-insensitive relaxation immediately after the pulse, followed by slow in-trap periodic behavior.

  4. Satellite attitude prediction by multiple time scales method

    NASA Technical Reports Server (NTRS)

    Tao, Y. C.; Ramnath, R.

    1975-01-01

    An investigation is made of the problem of predicting the attitude of satellites under the influence of external disturbing torques. The attitude dynamics are first expressed in a perturbation formulation which is then solved by the multiple scales approach. The independent variable, time, is extended into new scales, fast, slow, etc., and the integration is carried out separately in the new variables. The theory is applied to two different satellite configurations, rigid body and dual spin, each of which may have an asymmetric mass distribution. The disturbing torques considered are gravity gradient and geomagnetic. Finally, as multiple time scales approach separates slow and fast behaviors of satellite attitude motion, this property is used for the design of an attitude control device. A nutation damping control loop, using the geomagnetic torque for an earth pointing dual spin satellite, is designed in terms of the slow equation.

  5. The Brief Self-Control Scale Predicts Jail Inmates’ Recidivism, Substance Dependence, and Post-Release Adjustment

    PubMed Central

    2015-01-01

    Previous research finds that self-control is positively associated with adaptive and negatively associated with maladaptive behavior. However, most previous studies employ cross-sectional designs, low-risk samples, and limited assessments of self-control. This study of 553 jail inmates examined the relationship of a valid measure of self-control (Brief Self-Control Scale; BSCS) completed upon incarceration with behavior before, during, and one year after incarceration. After controlling for positive impression management (PIM), self-control was negatively related to substance misuse, suicidality, risky sex, and criminal history prior to incarceration and post-release illegal substance misuse, recidivism, and positive adjustment. Lower self-control predicted increases in substance dependence at post-release compared to pre-incarceration. Self-control was not related to misbehavior during incarceration, nor alcohol use or HIV-risk behavior one year post-release. Results were consistent as a function of age, race, and gender. This study supports self-control as an important risk and protective factor in a sample of criminal offenders. PMID:24345712

  6. Speech Compensation for Time-Scale-Modified Auditory Feedback

    ERIC Educational Resources Information Center

    Ogane, Rintaro; Honda, Masaaki

    2014-01-01

    Purpose: The purpose of this study was to examine speech compensation in response to time-scale-modified auditory feedback during the transition of the semivowel for a target utterance of /ija/. Method: Each utterance session consisted of 10 control trials in the normal feedback condition followed by 20 perturbed trials in the modified auditory…

  7. Gott time machines, BTZ black hole formation, and choptuik scaling

    PubMed

    Birmingham; Sen

    2000-02-07

    We study the formation of Banados-Teitelboim-Zanelli black holes by the collision of point particles. It is shown that the Gott time machine, originally constructed for the case of vanishing cosmological constant, provides a precise mechanism for black hole formation. As a result, one obtains an exact analytic understanding of the Choptuik scaling.

  8. Stellar differential rotation and coronal time-scales

    NASA Astrophysics Data System (ADS)

    Gibb, G. P. S.; Jardine, M. M.; Mackay, D. H.

    2014-10-01

    We investigate the time-scales of evolution of stellar coronae in response to surface differential rotation and diffusion. To quantify this, we study both the formation time and lifetime of a magnetic flux rope in a decaying bipolar active region. We apply a magnetic flux transport model to prescribe the evolution of the stellar photospheric field, and use this to drive the evolution of the coronal magnetic field via a magnetofrictional technique. Increasing the differential rotation (i.e. decreasing the equator-pole lap time) decreases the flux rope formation time. We find that the formation time is dependent upon the lap time and the surface diffusion time-scale through the relation τ_Form ∝ √{τ_Lapτ_Diff}. In contrast, the lifetimes of flux ropes are proportional to the lap time (τLife∝τLap). With this, flux ropes on stars with a differential rotation of more than eight times the solar value have a lifetime of less than 2 d. As a consequence, we propose that features such as solar-like quiescent prominences may not be easily observable on such stars, as the lifetimes of the flux ropes which host the cool plasma are very short. We conclude that such high differential rotation stars may have very dynamical coronae.

  9. Characterizing Complex Time Series from the Scaling of Prediction Error.

    NASA Astrophysics Data System (ADS)

    Hinrichs, Brant Eric

    This thesis concerns characterizing complex time series from the scaling of prediction error. We use the global modeling technique of radial basis function approximation to build models from a state-space reconstruction of a time series that otherwise appears complicated or random (i.e. aperiodic, irregular). Prediction error as a function of prediction horizon is obtained from the model using the direct method. The relationship between the underlying dynamics of the time series and the logarithmic scaling of prediction error as a function of prediction horizon is investigated. We use this relationship to characterize the dynamics of both a model chaotic system and physical data from the optic tectum of an attentive pigeon exhibiting the important phenomena of nonstationary neuronal oscillations in response to visual stimuli.

  10. Energy and time determine scaling in biological and computer designs.

    PubMed

    Moses, Melanie; Bezerra, George; Edwards, Benjamin; Brown, James; Forrest, Stephanie

    2016-08-19

    Metabolic rate in animals and power consumption in computers are analogous quantities that scale similarly with size. We analyse vascular systems of mammals and on-chip networks of microprocessors, where natural selection and human engineering, respectively, have produced systems that minimize both energy dissipation and delivery times. Using a simple network model that simultaneously minimizes energy and time, our analysis explains empirically observed trends in the scaling of metabolic rate in mammals and power consumption and performance in microprocessors across several orders of magnitude in size. Just as the evolutionary transitions from unicellular to multicellular animals in biology are associated with shifts in metabolic scaling, our model suggests that the scaling of power and performance will change as computer designs transition to decentralized multi-core and distributed cyber-physical systems. More generally, a single energy-time minimization principle may govern the design of many complex systems that process energy, materials and information.This article is part of the themed issue 'The major synthetic evolutionary transitions'.

  11. Wavelet analysis and scaling properties of time series

    NASA Astrophysics Data System (ADS)

    Manimaran, P.; Panigrahi, Prasanta K.; Parikh, Jitendra C.

    2005-10-01

    We propose a wavelet based method for the characterization of the scaling behavior of nonstationary time series. It makes use of the built-in ability of the wavelets for capturing the trends in a data set, in variable window sizes. Discrete wavelets from the Daubechies family are used to illustrate the efficacy of this procedure. After studying binomial multifractal time series with the present and earlier approaches of detrending for comparison, we analyze the time series of averaged spin density in the 2D Ising model at the critical temperature, along with several experimental data sets possessing multifractal behavior.

  12. Anomalous multiphoton photoelectric effect in ultrashort time scales.

    PubMed

    Kupersztych, J; Raynaud, M

    2005-09-30

    In a multiphoton photoelectric process, an electron needs to absorb a given number of photons to escape the surface of a metal. It is shown for the first time that this number is not a constant depending only on the characteristics of the metal and light, but varies with the interaction duration in ultrashort time scales. The phenomenon occurs when electromagnetic energy is transferred, via ultrafast excitation of electron collective modes, to conduction electrons in a duration less than the electron energy damping time. It manifests itself through a dramatic increase of electron production.

  13. Using a detailed uncertainty analysis to adjust mapped rates of forest disturbance derived from Landsat time series data (Invited)

    NASA Astrophysics Data System (ADS)

    Cohen, W. B.; Yang, Z.; Stehman, S.; Huang, C.; Healey, S. P.

    2013-12-01

    Forest ecosystem process models require spatially and temporally detailed disturbance data to accurately predict fluxes of carbon or changes in biodiversity over time. A variety of new mapping algorithms using dense Landsat time series show great promise for providing disturbance characterizations at an annual time step. These algorithms provide unprecedented detail with respect to timing, magnitude, and duration of individual disturbance events, and causal agent. But all maps have error and disturbance maps in particular can have significant omission error because many disturbances are relatively subtle. Because disturbance, although ubiquitous, can be a relatively rare event spatially in any given year, omission errors can have a great impact on mapped rates. Using a high quality reference disturbance dataset, it is possible to not only characterize map errors but also to adjust mapped disturbance rates to provide unbiased rate estimates with confidence intervals. We present results from a national-level disturbance mapping project (the North American Forest Dynamics project) based on the Vegetation Change Tracker (VCT) with annual Landsat time series and uncertainty analyses that consist of three basic components: response design, statistical design, and analyses. The response design describes the reference data collection, in terms of the tool used (TimeSync), a formal description of interpretations, and the approach for data collection. The statistical design defines the selection of plot samples to be interpreted, whether stratification is used, and the sample size. Analyses involve derivation of standard agreement matrices between the map and the reference data, and use of inclusion probabilities and post-stratification to adjust mapped disturbance rates. Because for NAFD we use annual time series, both mapped and adjusted rates are provided at an annual time step from ~1985-present. Preliminary evaluations indicate that VCT captures most of the higher

  14. 31 CFR 501.737 - Adjustments of time, postponements and adjournments.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... time, postponements and adjournments. (a) Availability. Except as otherwise provided by law, the Administrative Law Judge or the Secretary's designee, as appropriate, at any time prior to the filing of his or... place ordered, provided that, within the limits provided, the Administrative Law Judge or the...

  15. Active open boundary forcing using dual relaxation time-scales in downscaled ocean models

    NASA Astrophysics Data System (ADS)

    Herzfeld, M.; Gillibrand, P. A.

    2015-05-01

    Regional models actively forced with data from larger scale models at their open boundaries often contain motion at different time-scales (e.g. tidal and low frequency). These motions are not always individually well specified in the forcing data, and one may require a more active boundary forcing while the other exert less influence on the model interior. If a single relaxation time-scale is used to relax toward these data in the boundary equation, then this may be difficult. The method of fractional steps is used to introduce dual relaxation time-scales in an open boundary local flux adjustment scheme. This allows tidal and low frequency oscillations to be relaxed independently, resulting in a better overall solution than if a single relaxation parameter is optimized for tidal (short relaxation) or low frequency (long relaxation) boundary forcing. The dual method is compared to the single relaxation method for an idealized test case where a tidal signal is superimposed on a steady state low frequency solution, and a real application where the low frequency boundary forcing component is derived from a global circulation model for a region extending over the whole Great Barrier Reef, and a tidal signal subsequently superimposed.

  16. The Importance of Rotational Time-scales in Accretion Variability

    NASA Astrophysics Data System (ADS)

    Costigan, Gráinne; Vink, Joirck; Scholz, Aleks; Testi, Leonardo; Ray, Tom

    2013-07-01

    For the first few million years, one of the dominant sources of emission from a low mass young stellar object is from accretion. This process regulates the flow of material and angular moments from the surroundings to the central object, and is thought to play an important role in the definition of the long term stellar properties. Variability is a well documented attribute of accretion, and has been observed on time-scales of from days to years. However, where these variations come from is not clear. Th current model for accretion is magnetospheric accretion, where the stellar magnetic field truncates the disc, allowing the matter to flow from the disc onto the surface of the star. This model allows for variations in the accretion rate to come from many different sources, such as the magnetic field, the circumstellar disc and the interaction of the different parts of the system. We have been studying unbiased samples of accretors in order to identify the dominant time-scales and typical magnitudes of variations. In this way different sources of variations can be excluded and any missing physics in these systems identified. Through our previous work with the Long-term Accretion Monitoring Program (LAMP), we found 10 accretors in the ChaI region, whose variability is dominated by short term variations of 2 weeks. This was the shortest time period between spectroscopic observations which spanned 15 months, and rules out large scale processes in the disk as origins of this variability. On the basis of this study we have gone further to study the accretion signature H-alpha, over the time-scales of minutes and days in a set of Herbig Ae and T Tauri stars. Using the same methods as we used in LAMP we found the dominant time-scales of variations to be days. These samples both point towards rotation period of these objects as being an important time-scale for accretion variations. This allows us to indicate which are the most likely sources of these variations.

  17. Time scale of diffusion in molecular and cellular biology

    NASA Astrophysics Data System (ADS)

    Holcman, D.; Schuss, Z.

    2014-05-01

    Diffusion is the driver of critical biological processes in cellular and molecular biology. The diverse temporal scales of cellular function are determined by vastly diverse spatial scales in most biophysical processes. The latter are due, among others, to small binding sites inside or on the cell membrane or to narrow passages between large cellular compartments. The great disparity in scales is at the root of the difficulty in quantifying cell function from molecular dynamics and from simulations. The coarse-grained time scale of cellular function is determined from molecular diffusion by the mean first passage time of molecular Brownian motion to a small targets or through narrow passages. The narrow escape theory (NET) concerns this issue. The NET is ubiquitous in molecular and cellular biology and is manifested, among others, in chemical reactions, in the calculation of the effective diffusion coefficient of receptors diffusing on a neuronal cell membrane strewn with obstacles, in the quantification of the early steps of viral trafficking, in the regulation of diffusion between the mother and daughter cells during cell division, and many other cases. Brownian trajectories can represent the motion of a molecule, a protein, an ion in solution, a receptor in a cell or on its membrane, and many other biochemical processes. The small target can represent a binding site or an ionic channel, a hidden active site embedded in a complex protein structure, a receptor for a neurotransmitter on the membrane of a neuron, and so on. The mean time to attach to a receptor or activator determines diffusion fluxes that are key regulators of cell function. This review describes physical models of various subcellular microdomains, in which the NET coarse-grains the molecular scale to a higher cellular-level, thus clarifying the role of cell geometry in determining subcellular function.

  18. Tailored real-time scaling of heteronuclear couplings.

    PubMed

    Schilling, Franz; Glaser, Steffen J

    2012-10-01

    Heteronuclear couplings are a valuable source of molecular information, which is measured from the multiplet splittings of an NMR spectrum. Radiofrequency irradiation on one coupled nuclear spin allows to modify the effective coupling constant, scaling down the multiplet splittings in the spectrum observed at the resonance frequency of the other nuclear spin. Such decoupling sequences are often used to collapse a multiplet into a singlet and can therefore simplify NMR spectra significantly. Continuous-wave (cw) decoupling has an intrinsic non-linear offset dependence of the scaling of the effective J-coupling constant. Using optimal control pulse optimization, we show that virtually arbitrary off-resonance scaling of the J-coupling constant can be achieved. The new class of tailored decoupling pulses is named SHOT (Scaling of Heteronuclear couplings by Optimal Tracking). Complementing cw irradiation, SHOT pulses offer an alternative approach of encoding chemical shift information indirectly through off-resonance decoupling, which however makes it possible for the first time to achieve linear J scaling as a function of offset frequency. For a simple mixture of eight aromatic compounds, it is demonstrated experimentally that a 1D-SHOT {(1)H}-(13)C experiment yields comparable information to a 2D-HSQC and can give full assignment of all coupled spins.

  19. Space and time scales in human-landscape systems.

    PubMed

    Kondolf, G Mathias; Podolak, Kristen

    2014-01-01

    Exploring spatial and temporal scales provides a way to understand human alteration of landscape processes and human responses to these processes. We address three topics relevant to human-landscape systems: (1) scales of human impacts on geomorphic processes, (2) spatial and temporal scales in river restoration, and (3) time scales of natural disasters and behavioral and institutional responses. Studies showing dramatic recent change in sediment yields from uplands to the ocean via rivers illustrate the increasingly vast spatial extent and quick rate of human landscape change in the last two millennia, but especially in the second half of the twentieth century. Recent river restoration efforts are typically small in spatial and temporal scale compared to the historical human changes to ecosystem processes, but the cumulative effectiveness of multiple small restoration projects in achieving large ecosystem goals has yet to be demonstrated. The mismatch between infrequent natural disasters and individual risk perception, media coverage, and institutional response to natural disasters results in un-preparedness and unsustainable land use and building practices.

  20. Time-average based on scaling law in anomalous diffusions

    NASA Astrophysics Data System (ADS)

    Kim, Hyun-Joo

    2015-05-01

    To solve the obscureness in measurement brought about from the weak ergodicity breaking appeared in anomalous diffusions, we have suggested the time-averaged mean squared displacement (MSD) /line{δ 2 (τ )}τ with an integral interval depending linearly on the lag time τ. For the continuous time random walk describing a subdiffusive behavior, we have found that /line{δ 2 (τ )}τ ˜ τ γ like that of the ensemble-averaged MSD, which makes it be possible to measure the proper exponent values through time-average in experiments like a single molecule tracking. Also, we have found that it has originated from the scaling nature of the MSD at an aging time in anomalous diffusion and confirmed them through numerical results of the other microscopic non-Markovian model showing subdiffusions and superdiffusions with the origin of memory enhancement.

  1. Sublinear scaling for time-dependent stochastic density functional theory

    SciTech Connect

    Gao, Yi; Neuhauser, Daniel; Baer, Roi; Rabani, Eran

    2015-01-21

    A stochastic approach to time-dependent density functional theory is developed for computing the absorption cross section and the random phase approximation (RPA) correlation energy. The core idea of the approach involves time-propagation of a small set of stochastic orbitals which are first projected on the occupied space and then propagated in time according to the time-dependent Kohn-Sham equations. The evolving electron density is exactly represented when the number of random orbitals is infinite, but even a small number (≈16) of such orbitals is enough to obtain meaningful results for absorption spectrum and the RPA correlation energy per electron. We implement the approach for silicon nanocrystals using real-space grids and find that the overall scaling of the algorithm is sublinear with computational time and memory.

  2. Snoddy (1926) revisited: time scales of motor learning.

    PubMed

    Stratton, Shannon M; Liu, Yeou-Teh; Hong, Siang Lee; Mayer-Kress, Gottfried; Newell, Karl M

    2007-11-01

    The authors investigated the time scales of the learning of a mirror-tracing task to reexamine G. S. Snoddy's (1926) original claim and the received theoretical view (A. Newell & P. S. Rosenbloom, 1981) that motor learning follows a power law. Adult participants (N = 16) learned the tracing task in either a normal or a reversed visual-image condition over 5 consecutive days of practice and then performed 1 day of practice 1 week later and again 1 month later. The reversed-image group's performance was poorer than that of the normal-image group throughout the practice. An exponential was the best fitting function on individual data, but the power-law function was the best fit on the group-averaged data. The findings provided preliminary evidence that 2 characteristic time scales, (a) fast, dominated by warm-up, and (b) slow, dominated by persistent change, capture individuals' performance in the learning of the mirror-tracing task.

  3. A study of Venus rotation at short time scale

    NASA Astrophysics Data System (ADS)

    Cottereau, L.; Souchay, J.

    2009-12-01

    Venus which can be considered as the twin sister of the Earth in view of its global characteristics (size, density) has been the subject of many investigations to understand its slow retrograde rotation (243d) and its rather small obliquity (2°.63). Many of these studies concern the evolution of Venus rotation at very long time scales. Here we present a complete model of Venus precession and nutation based on Hamiltonian formalism for short times scales. We apply a theoretical framework already used by Kinoshita (1977) for the rigid Earth. After calculating the effects due to the gravitational tide exerted by the Sun, we also evaluate the indirect planetary effects due to the perturbation of the planets. We compare our results with those obtained by Souchay et al. (1999) on the Earth. At last we present the prospect for future studies among which are the polhody, the effects of the atmosphere and of the core-mantle interaction.

  4. HMC algorithm with multiple time scale integration and mass preconditioning

    NASA Astrophysics Data System (ADS)

    Urbach, C.; Jansen, K.; Shindler, A.; Wenger, U.

    2006-01-01

    We present a variant of the HMC algorithm with mass preconditioning (Hasenbusch acceleration) and multiple time scale integration. We have tested this variant for standard Wilson fermions at β=5.6 and at pion masses ranging from 380 to 680 MeV. We show that in this situation its performance is comparable to the recently proposed HMC variant with domain decomposition as preconditioner. We give an update of the "Berlin Wall" figure, comparing the performance of our variant of the HMC algorithm to other published performance data. Advantages of the HMC algorithm with mass preconditioning and multiple time scale integration are that it is straightforward to implement and can be used in combination with a wide variety of lattice Dirac operators.

  5. Assestment of correlations and crossover scale in electroseismic time series

    NASA Astrophysics Data System (ADS)

    Guzman-Vargas, L.; Ramírez-Rojas, A.; Angulo-Brown, F.

    2009-04-01

    Evaluating complex fluctuations in electroseismic time series is an important task not only for earthquake prediction but also for understanding complex processes related to earthquake preparation. Previous studies have reported alterations, as the emergence of correlated dynamics in geoelectric potentials prior to an important earthquake (EQ). In this work, we apply the detrended fluctuation analysis and introduce a statistical procedure to characterize the presence of crossovers in scaling exponents, to analyze the fluctuations of geoelectric time series monitored in two sites located in Mexico. We find a complex behavior characterized by the presence of a crossover in the correlation exponents in the vicinity of a M=7.4 EQ occurred on Sept. 14, 1995. Finally, we apply the t-student test to evaluate the level of significance between short and large scaling exponents.

  6. Statistical Analysis of Sensor Network Time Series at Multiple Time Scales

    NASA Astrophysics Data System (ADS)

    Granat, R. A.; Donnellan, A.

    2013-12-01

    Modern sensor networks often collect data at multiple time scales in order to observe physical phenomena that occur at different scales. Whether collected by heterogeneous or homogenous sensor networks, measurements at different time scales are usually subject to different dynamics, noise characteristics, and error sources. We explore the impact of these effects on the results of statistical time series analysis methods applied to multi-scale time series data. As a case study, we analyze results from GPS time series position data collected in Japan and the Western United States, which produce raw observations at 1Hz and orbit corrected observations at time resolutions of 5 minutes, 30 minutes, and 24 hours. We utilize the GPS analysis package (GAP) software to perform three types of statistical analysis on these observations: hidden Markov modeling, probabilistic principle components analysis, and covariance distance analysis. We compare the results of these methods at the different time scales and discuss the impact on science understanding of earthquake fault systems generally and recent large seismic events specifically, including the Tohoku-Oki earthquake in Japan and El Mayor-Cucupah earthquake in Mexico.

  7. Adaptive Haar transforms with arbitrary time and scale splitting

    NASA Astrophysics Data System (ADS)

    Egiazarian, Karen O.; Astola, Jaakko T.

    2001-05-01

    The Haar transform is generalized to the case of an arbitrary time and scale splitting. To any binary tree we associate an orthogonal system of Haar-type functions - tree-structured Haar (TSH) functions. Unified fast algorithm for computation of the introduced tree-structured Haar transforms is presented. It requires 2(N - 1) additions and 3N - 2 multiplications, where N is transform order or, equivalently, the number of leaves of the binary tree.

  8. Solar Irradiance Variations on Active Region Time Scales

    NASA Technical Reports Server (NTRS)

    Labonte, B. J. (Editor); Chapman, G. A. (Editor); Hudson, H. S. (Editor); Willson, R. C. (Editor)

    1984-01-01

    The variations of the total solar irradiance is an important tool for studying the Sun, thanks to the development of very precise sensors such as the ACRIM instrument on board the Solar Maximum Mission. The largest variations of the total irradiance occur on time scales of a few days are caused by solar active regions, especially sunspots. Efforts were made to describe the active region effects on total and spectral irradiance.

  9. Time-scale and branching ratios in sequential multifragmentation

    SciTech Connect

    Moretto, L.G.; Phair, L.; Tso, K.; Jing, K.; Wozniak, G.J.

    1994-04-01

    Experimental intermediate-mass-fragment multiplicity distributions are shown to be binomial at all excitation energies. From these distributions a single binary event probability can be extracted that has the thermal dependence p= exp[{minus}B/T]. Thus, it is inferred that multi fragmentation is a sequence of thermal binary events. The increase of p with excitation energy implies a corresponding contraction of the time-scale and explains recently observed fragment-fragment and fragment-spectator Coulomb correlations.

  10. Evolution of equilibrium Pickering emulsions--a matter of time scales.

    PubMed

    Kraft, Daniela J; Luigjes, Bob; de Folter, Julius W J; Philipse, Albert P; Kegel, Willem K

    2010-09-30

    A new class of equilibrium solid-stabilized oil-in-water emulsions harbors a competition of two processes on disparate time scales that affect the equilibrium droplet size in opposing ways. The aim of this work is to elucidate the molecular origins of these two time scales and demonstrate their effects on the evolution of the emulsion droplet size. First, spontaneous emulsification into particle-covered droplets occurs through in situ generation of surface-active molecules by hydrolysis of molecules of the oil phase. We show that surface tensions of the oil-water interfaces in the absence of stabilizing colloidal particles are connected to the concentration of these surface-active molecules, and hence also to the equilibrium droplet size in the presence of colloids. As a consequence, the hydrolysis process sets the time scale of formation of these solid-stabilized emulsions. A second time scale is governing the ultimate fate of the solid-stabilized equilibrium emulsions: by condensation of the in situ generated amphiphilic molecules onto the colloidal particles, their wetting properties change, leading to a gradual transfer from the aqueous to the oil phase via growth of the emulsion droplets. This migration is observed macroscopically by a color change of the water and oil phases, as well as by electron microscopy after polymerization of the oil phase in a phase separated sample. Surprisingly, the relative oil volume sets the time scale of particle transfer. Phase separation into an aqueous phase and an oil phase containing colloidal particles is influenced by sedimentation of the emulsion droplets. The two processes of formation of surface-active molecules through hydrolysis and condensation thereof on the colloidal surface have an opposite influence on the droplet size. By their interplay, a dynamic equilibrium is created where the droplet size always adjusts to the thermodynamically stable state.

  11. TASEP on a Ring in Sub-relaxation Time Scale

    NASA Astrophysics Data System (ADS)

    Baik, Jinho; Liu, Zhipeng

    2016-12-01

    Interacting particle systems in the KPZ universality class on a ring of size L with O( L) number of particles are expected to change from KPZ dynamics to equilibrium dynamics at the so-called relaxation time scale t=O(L^{3/2}). In particular the system size is expected to have little effect to the particle fluctuations in the sub-relaxation time scale 1≪ t≪ L^{3/2}. We prove that this is indeed the case for the totally asymmetric simple exclusion process (TASEP) with two types of initial conditions. For flat initial condition, we show that the particle fluctuations are given by the Airy_1 process as in the infinite TASEP with flat initial condition. On the other hand, the TASEP on a ring with step initial condition is equivalent to the periodic TASEP with a certain shock initial condition. We compute the fluctuations explicitly both away from and near the shocks for the infinite TASEP with same initial condition, and then show that the periodic TASEP has same fluctuations in the sub-relaxation time scale.

  12. Time scale interactions and the coevolution of humans and water

    NASA Astrophysics Data System (ADS)

    Sivapalan, Murugesu; Blöschl, Günter

    2015-09-01

    We present a coevolutionary view of hydrologic systems, revolving around feedbacks between environmental and social processes operating across different time scales. This brings to the fore an emphasis on emergent phenomena in changing water systems, such as the levee effect, adaptation to change, system lock-in, and system collapse due to resource depletion. Changing human values play a key role in the emergence of these phenomena and should therefore be considered as internal to the system. Guidance is provided for the framing and modeling of these phenomena to test alternative hypotheses about how they arose. A plurality of coevolutionary models, from stylized to comprehensive system-of-system models, may assist strategic water management for long time scales through facilitating stakeholder participation, exploring the possibility space of alternative futures, and helping to synthesize the observed dynamics in a wide range of case studies. Future research opportunities lie in exploring emergent phenomena arising from time scale interactions through historical, comparative, and process studies of human-water feedbacks.

  13. Scaling brain size, keeping timing: evolutionary preservation of brain rhythms.

    PubMed

    Buzsáki, György; Logothetis, Nikos; Singer, Wolf

    2013-10-30

    Despite the several-thousand-fold increase of brain volume during the course of mammalian evolution, the hierarchy of brain oscillations remains remarkably preserved, allowing for multiple-time-scale communication within and across neuronal networks at approximately the same speed, irrespective of brain size. Deployment of large-diameter axons of long-range neurons could be a key factor in the preserved time management in growing brains. We discuss the consequences of such preserved network constellation in mental disease, drug discovery, and interventional therapies.

  14. Scaling Brain Size, Keeping Timing: Evolutionary Preservation of Brain Rhythms

    PubMed Central

    Buzsáki, György; Logothetis, Nikos; Singer, Wolf

    2014-01-01

    Despite the several-thousand-fold increase of brain volume during the course of mammalian evolution, the hierarchy of brain oscillations remains remarkably preserved, allowing for multiple-time-scale communication within and across neuronal networks at approximately the same speed, irrespective of brain size. Deployment of large-diameter axons of long-range neurons could be a key factor in the preserved time management in growing brains. We discuss the consequences of such preserved network constellation in mental disease, drug discovery, and interventional therapies. PMID:24183025

  15. Parent adjustment over time in gay, lesbian, and heterosexual parent families adopting from foster care.

    PubMed

    Lavner, Justin A; Waterman, Jill; Peplau, Letitia Anne

    2014-01-01

    Although increasing numbers of gay and lesbian individuals and couples are adopting children, gay men and lesbian women continue to face increased scrutiny and legal obstacles from the child welfare system. To date, little research has compared the experiences of gay or lesbian and heterosexual adoptive parents over time, limiting conceptual understandings of the similarities they share and the unique challenges that gay and lesbian adoptive parents may face. This study compared the adoption satisfaction, depressive symptoms, parenting stress, and social support at 2, 12, and 24 months postplacement of 82 parents (60 heterosexual, 15 gay, 7 lesbian) adopting children from foster care in Los Angeles County. Few differences were found between heterosexual and gay or lesbian parents at any of the assessments or in their patterns of change over time. On average, parents in both household types reported significant increases in adoption satisfaction and maintained low, nonclinical levels of depressive symptoms and parenting stress over time. Across all family types, greater parenting stress was associated with more depressive symptoms and lower adoption satisfaction. Results indicated many similarities between gay or lesbian and heterosexual adoptive parents, and highlight a need for services to support adoptive parents throughout the transition to parenthood to promote their well-being. (PsycINFO Database Record (c) 2014 APA, all rights reserved).

  16. Challenges of Integrated Modeling Across Space and Time Scales

    NASA Astrophysics Data System (ADS)

    Jagers, B.; Donchyts, G.; Baart, F.; Schellekens, J.; Winsemius, H.

    2015-12-01

    New data collection methods combined with rapid advances in processing technologies enabled by increases in data processing and storage capabilities are causing an significant shift in our modeling capabilities. Freely available global data sets allow us to build more quickly models for bigger areas. By linking the right data, models, and tools we gain significant insight at scales that hadn't considered possible a few decades ago. However, by increasing the spatial extent of our models, we risk missing regionally important critical elements by limitations of model resolution, processes selected, or blind spots in our big data world. At the same time we are pushing the time scales of our models from events and seasonal scale out to decades, centuries, or millennia to simulate the dynamics of the earth surface under varying external conditions. Also here we simplify and ignore to gain performance to resolve bigger time and space domains; are we including all the relevant elements in our models? These elements are often easy to spot from the right perspective. However, what is that perspective when you try to comprehend the results of baffling integrated global models and the amount of data is overwhelming? At the same time we want to know results with an ever increasing accuracy and detail: Will my house flood? Can we reduce flood risk, increase shipping capacity here, and at the same time reduce the maintenance costs by optimizing our dredging strategy? Can we build a number of interoperable cyberinfrastructures that when combined address all these questions? This presentation gives an overview of our work in this field at Deltares, and the main challenges that we foresee.

  17. Multiple time scale behaviors and network dynamics in liquid methanol.

    PubMed

    Sharma, Ruchi; Chakravarty, Charusita; Milotti, Edoardo

    2008-07-31

    Canonical ensemble molecular dynamics simulations of liquid methanol, modeled using a rigid-body, pair-additive potential, are used to compute static distributions and temporal correlations of tagged molecule potential energies as a means of characterizing the liquid state dynamics. The static distribution of tagged molecule potential energies shows a clear multimodal structure with three distinct peaks, similar to those observed previously in water and liquid silica. The multimodality is shown to originate from electrostatic effects, but not from local, hydrogen bond interactions. An interesting outcome of this study is the remarkable similarity in the tagged potential energy power spectra of methanol, water, and silica, despite the differences in the underlying interactions and the dimensionality of the network. All three liquids show a distinct multiple time scale (MTS) regime with a 1/ f (alpha) dependence with a clear positive correlation between the scaling exponent alpha and the diffusivity. The low-frequency limit of the MTS regime is determined by the frequency of crossover to white noise behavior which occurs at approximately 0.1 cm (-1) in the case of methanol under standard temperature and pressure conditions. The power spectral regime above 200 cm (-1) in all three systems is dominated by resonances due to localized vibrations, such as librations. The correlation between alpha and the diffusivity in all three liquids appears to be related to the strength of the coupling between the localized motions and the larger length/time scale network reorganizations. Thus, the time scales associated with network reorganization dynamics appear to be qualitatively similar in these systems, despite the fact that water and silica both display diffusional anomalies but methanol does not.

  18. Time scaling of tree rings cell production in Siberia

    NASA Astrophysics Data System (ADS)

    Popkova, Margarita; Babushkina, Elena; Tychkov, Ivan; Shishov, Vladimir; Vaganov, Eugene

    2016-04-01

    It is assumed that an annual tree-ring growth is adequately determined by a linear function of local or regional precipitation and temperature with a set of coefficients that are temporally invariant. But often that relations are non-linear. The process-based tree-ring VS-model can be used to resolve the critical processes linking climate variables to tree-ring formation. This work describes a new block of VS-model which allows to estimate a cell production in tree rings and transfer it into time scale based on the simulated integral growth rates of the model. In the algorithm of time identification for cell production we used a integral growth rates simulated by the VS-model for each growing season. The obtained detailed approach with a calculation of the time of each cell formation improves significantly the date accuracy of new cell formation in growing season. As a result for each cell in the tree-ring we estimate the temporal moment of the cell production corresponded to the seasonal growth rate in the same time scale. The approach was applied and tested for the cell measurements obtained for Scots pine (Pinus sylvestris) for the period 1964-2013 in Malaya Minusa river (Khakassia, South Siberia). The work was supported by the Russian Science Foundation (RSF # 14-14-00219)

  19. Flow excursion time scales in the advanced neutron source reactor

    SciTech Connect

    Sulfredge, C.D.

    1995-04-01

    Flow excursion transients give rise to a key thermal limit for the proposed Advanced Neutron Source (ANS) reactor because its core involves many parallel flow channels with a common pressure drop. Since one can envision certain accident scenarios in which the thermal limits set by flow excursion correlations might be exceeded for brief intervals, a key objective is to determine how long a flow excursion would take to bring about a system failure that could lead to fuel damage. The anticipated time scale for flow excursions has been examined by subdividing the process into its component phenomena: bubble nucleation and growth, deceleration of the resulting two-phase flow, and finally overcoming thermal inertia to heat up the reactor fuel plates. Models were developed to estimate the time required for each individual stage. Accident scenarios involving sudden reduction in core flow or core exit pressure have been examined, and the models compared with RELAP5 output for the ANS geometry. For a high-performance reactor like the ANS, flow excursion time scales were predicted to be in the millisecond range, so that even very brief transients might lead to fuel damage. These results should prove useful whenever one must determine the time involved in any portion of a flow excursion transient.

  20. The Role of Time-Scales in Socio-hydrology

    NASA Astrophysics Data System (ADS)

    Blöschl, Günter; Sivapalan, Murugesu

    2016-04-01

    Much of the interest in hydrological modeling in the past decades revolved around resolving spatial variability. With the rapid changes brought about by human impacts on the hydrologic cycle, there is now an increasing need to refocus on time dependency. We present a co-evolutionary view of hydrologic systems, in which every part of the system including human systems, co-evolve, albeit at different rates. The resulting coupled human-nature system is framed as a dynamical system, characterized by interactions of fast and slow time scales and feedbacks between environmental and social processes. This gives rise to emergent phenomena such as the levee effect, adaptation to change and system collapse due to resource depletion. Changing human values play a key role in the emergence of these phenomena and should therefore be considered as internal to the system in a dynamic way. The co-evolutionary approach differs from the traditional view of water resource systems analysis as it allows for path dependence, multiple equilibria, lock-in situations and emergent phenomena. The approach may assist strategic water management for long time scales through facilitating stakeholder participation, exploring the possibility space of alternative futures, and helping to synthesise the observed dynamics of different case studies. Future research opportunities include the study of how changes in human values are connected to human-water interactions, historical analyses of trajectories of system co-evolution in individual places and comparative analyses of contrasting human-water systems in different climate and socio-economic settings. Reference Sivapalan, M. and G. Blöschl (2015) Time scale interactions and the coevolution of humans and water. Water Resour. Res., 51, 6988-7022, doi:10.1002/2015WR017896.

  1. Terrestrial Waters and Sea Level Variations on Interannual Time Scale

    NASA Technical Reports Server (NTRS)

    Llovel, W.; Becker, M.; Cazenave, A.; Jevrejeva, S.; Alkama, R.; Decharme, B.; Douville, H.; Ablain, M.; Beckley, B.

    2011-01-01

    On decadal to multi-decadal time scales, thermal expansion of sea waters and land ice loss are the main contributors to sea level variations. However, modification of the terrestrial water cycle due to climate variability and direct anthropogenic forcing may also affect sea level. For the past decades, variations in land water storage and corresponding effects on sea level cannot be directly estimated from observations because these are almost non-existent at global continental scale. However, global hydrological models developed for atmospheric and climatic studies can be used for estimating total water storage. For the recent years (since mid-2002), terrestrial water storage change can be directly estimated from observations of the GRACE space gravimetry mission. In this study, we analyse the interannual variability of total land water storage, and investigate its contribution to mean sea level variability at interannual time scale. We consider three different periods that, each, depend on data availability: (1) GRACE era (2003-2009), (2) 1993-2003 and (3) 1955-1995. For the GRACE era (period 1), change in land water storage is estimated using different GRACE products over the 33 largest river basins worldwide. For periods 2 and 3, we use outputs from the ISBA-TRIP (Interactions between Soil, Biosphere, and Atmosphere-Total Runoff Integrating Pathways) global hydrological model. For each time span, we compare change in land water storage (expressed in sea level equivalent) to observed mean sea level, either from satellite altimetry (periods 1 and 2) or tide gauge records (period 3). For each data set and each time span, a trend has been removed as we focus on the interannual variability. We show that whatever the period considered, interannual variability of the mean sea level is essentially explained by interannual fluctuations in land water storage, with the largest contributions arising from tropical river basins.

  2. Decay of surface nanostructures via long-time-scale dynamics

    SciTech Connect

    Voter, A.F.; Stanciu, N.

    1998-11-01

    This is the final report of a three-year, Laboratory Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). The authors have developed a new approach for extending the time scale of molecular dynamics simulations. For infrequent-event systems, the category that includes most diffusive events in the solid phase, this hyperdynamics method can extend the simulation time by a few orders of magnitude compared to direct molecular dynamics. The trajectory is run on a potential surface that has been biased to raise the energy in the potential basins without affecting the transition state region. The method is described and applied to surface and bulk diffusion processes, achieving microsecond and millisecond simulation times. The authors have also developed a new parallel computing method that is efficient for small system sizes. The combination of the hyperdynamics with this parallel replica dynamics looks promising as a general materials simulation tool.

  3. Optimal Control Modification for Time-Scale Separated Systems

    NASA Technical Reports Server (NTRS)

    Nguyen, Nhan T.

    2012-01-01

    Recently a new optimal control modification has been introduced that can achieve robust adaptation with a large adaptive gain without incurring high-frequency oscillations as with the standard model-reference adaptive control. This modification is based on an optimal control formulation to minimize the L2 norm of the tracking error. The optimal control modification adaptive law results in a stable adaptation in the presence of a large adaptive gain. This study examines the optimal control modification adaptive law in the context of a system with a time scale separation resulting from a fast plant with a slow actuator. A singular perturbation analysis is performed to derive a modification to the adaptive law by transforming the original system into a reduced-order system in slow time. A model matching conditions in the transformed time coordinate results in an increase in the actuator command that effectively compensate for the slow actuator dynamics. Simulations demonstrate effectiveness of the method.

  4. Absolute calibration of the Greenland time scale: implications for Antarctic time scales and for Δ 14C

    NASA Astrophysics Data System (ADS)

    Shackleton, N. J.; Fairbanks, R. G.; Chiu, Tzu-chien; Parrenin, F.

    2004-07-01

    We propose a new age scale for the two ice cores (GRIP and GISP2) that were drilled at Greenland summit, based on accelerator mass spectrometry 14C dating of foraminifera in core MD95-2042 (Paleoceanography 15 (2000) 565), calibrated by means of recently obtained paired 14C and 230Th measurements on pristine corals (Marine radiocarbon calibration curve spanning 10,500 to 50,000 years BP (thousand years before present) Based on paired 230Th/ 234U/ 238U and 14C dates on Pristine Corals Geological Society of America Bulletin, 2003, submitted for publication). The record of core MD95-2042 can be correlated very precisely to the Greenland ice cores. Between 30 and 40 ka BP our scale is 1.4 ka older than the GRIP SS09sea time scale (Journal of Quaternary Science 16 (2001) 299). At the older end of Marine Isotope Stage 3 we use published 230Th dates from speleothems to calibrate the record. Using this scale we show a Δ 14C record that is broadly consistent with the modelled record (Earth Planet. Sci. Lett. 200 (2002) 177) and with the data of Hughen et al. (Science 303 (2004) 202), but not consistent with the high values obtained by Beck et al. (Science 292 (2001) 2453) or by Voelker et al. (Radiocarbon 40 (1998) 517). We show how a set of age scales for the Antarctic ice cores can be derived that are both fully consistent with the Greenland scale, and glaciologically reasonable.

  5. Adjustment to Subtle Time Constraints and Power Law Learning in Rapid Serial Visual Presentation.

    PubMed

    Shin, Jacqueline C; Chang, Seah; Cho, Yang Seok

    2015-01-01

    We investigated whether attention could be modulated through the implicit learning of temporal information in a rapid serial visual presentation (RSVP) task. Participants identified two target letters among numeral distractors. The stimulus-onset asynchrony immediately following the first target (SOA1) varied at three levels (70, 98, and 126 ms) randomly between trials or fixed within blocks of trials. Practice over 3 consecutive days resulted in a continuous improvement in the identification rate for both targets and attenuation of the attentional blink (AB), a decrement in target (T2) identification when presented 200-400 ms after another target (T1). Blocked SOA1s led to a faster rate of improvement in RSVP performance and more target order reversals relative to random SOA1s, suggesting that the implicit learning of SOA1 positively affected performance. The results also reveal "power law" learning curves for individual target identification as well as the reduction in the AB decrement. These learning curves reflect the spontaneous emergence of skill through subtle attentional modulations rather than general attentional distribution. Together, the results indicate that implicit temporal learning could improve high level and rapid cognitive processing and highlights the sensitivity and adaptability of the attentional system to subtle constraints in stimulus timing.

  6. Multiple-time scaling and universal behavior of the earthquake interevent time distribution.

    PubMed

    Bottiglieri, M; de Arcangelis, L; Godano, C; Lippiello, E

    2010-04-16

    The interevent time distribution characterizes the temporal occurrence in seismic catalogs. Universal scaling properties of this distribution have been evidenced for entire catalogs and seismic sequences. Recently, these universal features have been questioned and some criticisms have been raised. We investigate the existence of universal scaling properties by analyzing a Californian catalog and by means of numerical simulations of an epidemic-type model. We show that the interevent time distribution exhibits a universal behavior over the entire temporal range if four characteristic times are taken into account. The above analysis allows us to identify the scaling form leading to universal behavior and explains the observed deviations. Furthermore, it provides a tool to identify the dependence on the mainshock magnitude of the c parameter that fixes the onset of the power law decay in the Omori law.

  7. Multiple-Time Scaling and Universal Behavior of the Earthquake Interevent Time Distribution

    SciTech Connect

    Bottiglieri, M.; Godano, C.; Lippiello, E.; Arcangelis, L. de

    2010-04-16

    The interevent time distribution characterizes the temporal occurrence in seismic catalogs. Universal scaling properties of this distribution have been evidenced for entire catalogs and seismic sequences. Recently, these universal features have been questioned and some criticisms have been raised. We investigate the existence of universal scaling properties by analyzing a Californian catalog and by means of numerical simulations of an epidemic-type model. We show that the interevent time distribution exhibits a universal behavior over the entire temporal range if four characteristic times are taken into account. The above analysis allows us to identify the scaling form leading to universal behavior and explains the observed deviations. Furthermore, it provides a tool to identify the dependence on the mainshock magnitude of the c parameter that fixes the onset of the power law decay in the Omori law.

  8. Throughput increase by adjustment of the BARC drying time with coat track process

    NASA Astrophysics Data System (ADS)

    Brakensiek, Nickolas L.; Long, Ryan

    2005-05-01

    Throughput of a coater module within the coater track is related to the solvent evaporation rate from the material that is being coated. Evaporation rate is controlled by the spin dynamics of the wafer and airflow dynamics over the wafer. Balancing these effects is the key to achieving very uniform coatings across a flat unpatterned wafer. As today"s coat tracks are being pushed to higher throughputs to match the scanner, the coat module throughput must be increased as well. For chemical manufacturers the evaporation rate of the material depends on the solvent used. One measure of relative evaporation rates is to compare flash points of a solvent. The lower the flash point, the quicker the solvent will evaporate. It is possible to formulate products with these volatile solvents although at a price. Shipping and manufacturing a more flammable product increase chances of fire, thereby increasing insurance premiums. Also, the end user of these chemicals will have to take extra precautions in the fab and in storage of these more flammable chemicals. An alternative coat process is possible which would allow higher throughput in a distinct coat module without sacrificing safety. A tradeoff is required for this process, that being a more complicated coat process and a higher viscosity chemical. The coat process uses the fact that evaporation rate depends on the spin dynamics of the wafer by utilizing a series of spin speeds that first would set the thickness of the material followed by a high spin speed to remove the residual solvent. This new process can yield a throughput of over 150 wafers per hour (wph) given two coat modules. The thickness uniformity of less than 2 nm (3 sigma) is still excellent, while drying times are shorter than 10 seconds to achieve the 150 wph throughput targets.

  9. Defining a trend for time series using the intrinsic time-scale decomposition

    NASA Astrophysics Data System (ADS)

    Restrepo, Juan M.; Venkataramani, Shankar; Comeau, Darin; Flaschka, Hermann

    2014-08-01

    We propose criteria that define a trend for time series with inherent multi-scale features. We call this trend the tendency of a time series. The tendency is defined empirically by a set of criteria and captures the large-scale temporal variability of the original signal as well as the most frequent events in its histogram. Among other properties, the tendency has a variance no larger than that of the original signal; the histogram of the difference between the original signal and the tendency is as symmetric as possible; and with reduced complexity, the tendency captures essential features of the signal. To find the tendency we first use the intrinsic time-scale decomposition (ITD) of the signal, introduced in 2007 by Frei and Osorio, to produce a set of candidate tendencies. We then apply the criteria to each of the candidates to single out the one that best agrees with them. While the criteria for the tendency are independent of the signal decomposition scheme, it is found that the ITD is a simple and stable methodology, well suited for multi-scale signals. The ITD is a relatively new decomposition and little is known about its outcomes. In this study we take the first steps towards a probabilistic model of the ITD analysis of random time series. This analysis yields details concerning the universality and scaling properties of the components of the decomposition.

  10. Time scale algorithms for an inhomogeneous group of atomic clocks

    NASA Technical Reports Server (NTRS)

    Jacques, C.; Boulanger, J.-S.; Douglas, R. J.; Morris, D.; Cundy, S.; Lam, H. F.

    1993-01-01

    Through the past 17 years, the time scale requirements at the National Research Council (NRC) have been met by the unsteered output of its primary laboratory cesium clocks, supplemented by hydrogen masers when short-term stability better than 2 x 10(exp -12)tau(sup -1/2) has been required. NRC now operates three primary laboratory cesium clocks, three hydrogen masers, and two commercial cesium clocks. NRC has been using ensemble averages for internal purposes for the past several years, and has a realtime algorithm operating on the outputs of its high-resolution (2 x 10(exp -13) s at 1 s) phase comparators. The slow frequency drift of the hydrogen masers has presented difficulties in incorporating their short-term stability into the ensemble average, while retaining the long-term stability of the laboratory cesium frequency standards. We report on this work on algorithms for an inhomogeneous ensemble of atomic clocks, and on our initial work on time scale algorithms that could incorporate frequency calibrations at NRC from the next generation of Zacharias fountain cesium frequency standards having frequency accuracies that might surpass 10(exp -15), or from single-trapped-ion frequency standards (Ba+, Sr+,...) with even higher potential accuracies. The requirements for redundancy in all the elements (including the algorithms) of an inhomogeneous ensemble that would give a robust real-time output of the algorithms are presented and discussed.

  11. The role of time scales in extrinsic noise propagation

    NASA Astrophysics Data System (ADS)

    Iyer-Biswas, Srividya; Pedraza, Juan Manuel; Jayaprakash, C.

    2009-03-01

    Cell-to cell variability in the number of proteins has been studied extensively experimentally. There are many sources of this stochastic variability or noise that can be classified as intrinsic, due to the stochasticity of chemical reactions and extrinsic, due to environmental differences. The different stages in the production of proteins in response to a stimulus, the signaling cascade before transcription, transcription, and translation are characterized by different time scales. We analyze how these time scales determine the effect of the reactions at each stage on different sources of noise. For example, even if intrinsic noise dominates the fluctuations in mRNA number, for typical degradation rates, extrinsic noise can dominate corresponding protein number fluctuations. Such results are important in determining the importance of intrinsic noise at earlier stages of a genetic network on the products of subsequent stages. We examine cases in which the dynamics of the extrinsic noise can lead to differences from cases in which extrinsic noise arises from static (in time) cell-to-cell variations. We will interpret the experiments of Pedraza et al*. in the light of these results. *J. M. Pedraza et al, Science 25 March 2005:Vol. 307. no. 5717, pp. 1965 - 1969.

  12. Time Scale Optimization and the Hunt for Astronomical Cycles in Deep Time Strata

    NASA Astrophysics Data System (ADS)

    Meyers, Stephen R.

    2016-04-01

    A valuable attribute of astrochronology is the direct link between chronometer and climate change, providing a remarkable opportunity to constrain the evolution of the surficial Earth System. Consequently, the hunt for astronomical cycles in strata has spurred the development of a rich conceptual framework for climatic/oceanographic change, and has allowed exploration of the geologic record with unprecedented temporal resolution. Accompanying these successes, however, has been a persistent skepticism about appropriate astrochronologic testing and circular reasoning: how does one reliably test for astronomical cycles in stratigraphic data, especially when time is poorly constrained? From this perspective, it would seem that the merits and promise of astrochronology (e.g., a geologic time scale measured in ≤400 kyr increments) also serves as its Achilles heel, if the confirmation of such short rhythms defies rigorous statistical testing. To address these statistical challenges in astrochronologic testing, a new approach has been developed that (1) explicitly evaluates time scale uncertainty, (2) is resilient to common problems associated with spectrum confidence level assessment and 'multiple testing', and (3) achieves high statistical power under a wide range of conditions (it can identify astronomical cycles when present in data). Designated TimeOpt (for "time scale optimization"; Meyers 2015), the method employs a probabilistic linear regression model framework to investigate amplitude modulation and frequency ratios (bundling) in stratigraphic data, while simultaneously determining the optimal time scale. This presentation will review the TimeOpt method, and demonstrate how the flexible statistical framework can be further extended to evaluate (and optimize upon) complex sedimentation rate models, enhancing the statistical power of the approach, and addressing the challenge of unsteady sedimentation. Meyers, S. R. (2015), The evaluation of eccentricity

  13. Time scales in the context of general relativity.

    PubMed

    Guinot, Bernard

    2011-10-28

    Towards 1967, the accuracy of caesium frequency standards reached such a level that the relativistic effect could not be ignored anymore. Corrections began to be applied for the gravitational frequency shift and for distant time comparisons. However, these corrections were not applied to an explicit theoretical framework. Only in 1991 did the International Astronomical Union provide metrics (then improved in 2000) for a definition of space-time coordinates in reference systems centred at the barycentre of the Solar System and at the centre of mass of the Earth. In these systems, the temporal coordinates (coordinate times) can be realized on the basis of one of them, the International Atomic Time (TAI), which is itself a realized time scale. The definition and the role of TAI in this context will be recalled. There remain controversies regarding the name to be given to the unit of coordinate times and to other quantities appearing in the theory. However, the idea that astrometry and celestial mechanics should adopt the usual metrological rules is progressing, together with the use of the International System of Units, among astronomers.

  14. Scaling in a Continuous Time Model for Biological Aging

    NASA Astrophysics Data System (ADS)

    de Almeida, R. M. C.; Thomas, G. L.

    In this paper, we consider a generalization to the asexual version of Penna model for biological aging, where we take a continuous time limit. The genotype associated to each individual is an interval of real numbers over which Dirac δ-functions are defined, representing genetically programmed diseases to be switched on at defined ages of the individual life. We discuss two different continuous limits for the evolution equation and two different mutation protocols, to be implemented during reproduction. Exact stationary solutions are obtained and scaling properties are discussed.

  15. Plant succession as an integrator of contrasting ecological time scales.

    PubMed

    Walker, Lawrence R; Wardle, David A

    2014-09-01

    Ecologists have studied plant succession for over a hundred years, yet our understanding of the nature of this process is incomplete, particularly in relation to its response to new human perturbations and the need to manipulate it during ecological restoration. We demonstrate how plant succession can be understood better when it is placed in the broadest possible temporal context. We further show how plant succession can be central to the development of a framework that integrates a spectrum of ecological processes, which occur over time scales ranging from seconds to millions of years. This novel framework helps us understand the impacts of human perturbations on successional trajectories, ecosystem recovery, and global environmental change.

  16. Time scales and relaxation dynamics in quantum-dot lasers

    SciTech Connect

    Erneux, Thomas; Viktorov, Evgeny A.; Mandel, Paul

    2007-08-15

    We analyze a three-variable rate equation model that takes into account carrier capture and Pauli blocking in quantum dot semiconductor lasers. The exponential decay of the relaxation oscillations is analyzed from the linearized equations in terms of three key parameters that control the time scales of the laser. Depending on their relative values, we determine two distinct two-variable reductions of the rate equations in the limit of large capture rates. The first case leads to the rate equations for quantum well lasers, exhibiting relaxation oscillations dynamics. The second case corresponds to dots nearly saturated by the carriers and is characterized by the absence of relaxation oscillations.

  17. Formation processes and time scales for meteorite parent bodies

    NASA Technical Reports Server (NTRS)

    Weidenschilling, S. J.

    1988-01-01

    The transition from small particles suspended in the solar nebula to the planetesimals (asteroids) that became the parent bodies of meteorites is examined. Planetesimals probably grew by coagulation of grain aggregates that collided due to different rates of settling and drag-induced orbital decay. Their growth was accompanied by radial transport of solids, possibly sufficient to deplete the primordial mass in the asteroid zone, but with relatively little mixing. The formation of asteroid-sized planetesimals was probably rapid, on a time scale less than 1 Myr.

  18. Earth History databases and visualization - the TimeScale Creator system

    NASA Astrophysics Data System (ADS)

    Ogg, James; Lugowski, Adam; Gradstein, Felix

    2010-05-01

    The "TimeScale Creator" team (www.tscreator.org) and the Subcommission on Stratigraphic Information (stratigraphy.science.purdue.edu) of the International Commission on Stratigraphy (www.stratigraphy.org) has worked with numerous geoscientists and geological surveys to prepare reference datasets for global and regional stratigraphy. All events are currently calibrated to Geologic Time Scale 2004 (Gradstein et al., 2004, Cambridge Univ. Press) and Concise Geologic Time Scale (Ogg et al., 2008, Cambridge Univ. Press); but the array of intercalibrations enable dynamic adjustment to future numerical age scales and interpolation methods. The main "global" database contains over 25,000 events/zones from paleontology, geomagnetics, sea-level and sequence stratigraphy, igneous provinces, bolide impacts, plus several stable isotope curves and image sets. Several regional datasets are provided in conjunction with geological surveys, with numerical ages interpolated using a similar flexible inter-calibration procedure. For example, a joint program with Geoscience Australia has compiled an extensive Australian regional biostratigraphy and a full array of basin lithologic columns with each formation linked to public lexicons of all Proterozoic through Phanerozoic basins - nearly 500 columns of over 9,000 data lines plus hot-curser links to oil-gas reference wells. Other datapacks include New Zealand biostratigraphy and basin transects (ca. 200 columns), Russian biostratigraphy, British Isles regional stratigraphy, Gulf of Mexico biostratigraphy and lithostratigraphy, high-resolution Neogene stable isotope curves and ice-core data, human cultural episodes, and Circum-Arctic stratigraphy sets. The growing library of datasets is designed for viewing and chart-making in the free "TimeScale Creator" JAVA package. This visualization system produces a screen display of the user-selected time-span and the selected columns of geologic time scale information. The user can change the

  19. Time-Dependent Earthquake Forecasts on a Global Scale

    NASA Astrophysics Data System (ADS)

    Rundle, J. B.; Holliday, J. R.; Turcotte, D. L.; Graves, W. R.

    2014-12-01

    We develop and implement a new type of global earthquake forecast. Our forecast is a perturbation on a smoothed seismicity (Relative Intensity) spatial forecast combined with a temporal time-averaged ("Poisson") forecast. A variety of statistical and fault-system models have been discussed for use in computing forecast probabilities. An example is the Working Group on California Earthquake Probabilities, which has been using fault-based models to compute conditional probabilities in California since 1988. An example of a forecast is the Epidemic-Type Aftershock Sequence (ETAS), which is based on the Gutenberg-Richter (GR) magnitude-frequency law, the Omori aftershock law, and Poisson statistics. The method discussed in this talk is based on the observation that GR statistics characterize seismicity for all space and time. Small magnitude event counts (quake counts) are used as "markers" for the approach of large events. More specifically, if the GR b-value = 1, then for every 1000 M>3 earthquakes, one expects 1 M>6 earthquake. So if ~1000 M>3 events have occurred in a spatial region since the last M>6 earthquake, another M>6 earthquake should be expected soon. In physics, event count models have been called natural time models, since counts of small events represent a physical or natural time scale characterizing the system dynamics. In a previous research, we used conditional Weibull statistics to convert event counts into a temporal probability for a given fixed region. In the present paper, we move belyond a fixed region, and develop a method to compute these Natural Time Weibull (NTW) forecasts on a global scale, using an internally consistent method, in regions of arbitrary shape and size. We develop and implement these methods on a modern web-service computing platform, which can be found at www.openhazards.com and www.quakesim.org. We also discuss constraints on the User Interface (UI) that follow from practical considerations of site usability.

  20. Wildfire Disturbance and Sediment Transfers over Millennial Time Scales: A Numerical Modelling Study

    NASA Astrophysics Data System (ADS)

    Martin, Y.

    2003-12-01

    Wildfire may lead to accelerated soil erosion, debris flow and shallow landsliding activity in the years following disturbance. This study focuses on coastal drainage basins in British Columbia over millennial time scales, for which accelerated rates of shallow landsliding following wildfire may be of particular significance. An algorithm for wildfire occurrence, based on lake and sediment charcoal studies undertaken in coastal British Columbia and western Washington over millennial time scales (for example, Gavin et al., 2003), is incorporated into a numerical model of sediment routing over these same time scales. A stochastic rule set for wildfire frequency, based on a Weibull distribution of fire return intervals, assigns years of fire occurrence in the model. In terms of location, south-facing aspects are assigned a 25 times greater susceptibility to wildfire than north-facing aspects. As a first-order approximation, it is supposed that loss of tree root strength resulting from stand-replacing wildfires is comparable in its effects to clearcut logging. Therefore, documentation of increased shallow landslide activity associated with logging is used to adjust landsliding transport equations for the years following wildfire disturbance. Thereafter, landsliding rates are returned to pre-disturbance values. Fire return intervals, particularly those on north-facing aspects, can be relatively long in coastal British Columbia when compared to return intervals typically found in drier mountain ranges. This study investigates the degree to which wildfire disturbance affects sediment routing and delivery to channels over millennial time scales in coastal British Columbia. Sensitivity to model parameters is evaluated. Further investigations of wildfire effects on geomorphic process operation will lead to improved understanding of natural disturbance regimes to which ecosystems adjust over both the short and long term. Such information can be used to evaluate possible

  1. Generalized dynamic scaling for quantum critical relaxation in imaginary time.

    PubMed

    Zhang, Shuyi; Yin, Shuai; Zhong, Fan

    2014-10-01

    We study the imaginary-time relaxation critical dynamics of a quantum system with a vanishing initial correlation length and an arbitrary initial order parameter M0. We find that in quantum critical dynamics, the behavior of M0 under scale transformations deviates from a simple power law, which was proposed for very small M0 previously. A universal characteristic function is then suggested to describe the rescaled initial magnetization, similar to classical critical dynamics. This characteristic function is shown to be able to describe the quantum critical dynamics in both short- and long-time stages of the evolution. The one-dimensional transverse-field Ising model is employed to numerically determine the specific form of the characteristic function. We demonstrate that it is applicable as long as the system is in the vicinity of the quantum critical point. The universality of the characteristic function is confirmed by numerical simulations of models belonging to the same universality class.

  2. Nonlinear Dynamics of Extended Hydrologic Systems over long time scales

    NASA Astrophysics Data System (ADS)

    Lall, Upmanu

    2014-05-01

    We often view our knowledge of hydrology and hence of nature as intransient, at least over the time scales over which we study processes we wish to predict and understand. Over the last few decades, this assumption has come under question, largely because of the vocal expression of a changing climate, but also the recurrent demonstration of significant land use change, both of which significantly affect the boundary conditions for terrestrial hydrology that is our forte. Most recently, the concepts of hydromorphology and social hydrology have entered the discussion, and the notion that climate and hydrology influence human action, which in turn shapes hydrology, is being recognized. Finally, as a field, we seem to be coming to the conclusion that the hydrologic system is an open system, whose boundaries evolve in time, and that the hydrologic system, at many scales, has a profound effect on the systems that drive it -- whether they be the ecological and climatic systems, or the social system. What a mess! Complexity! Unpredictability! At a certain level of abstraction, one can consider the evolution of these coupled systems with nonlinear feedbacks and ask what types of questions are relevant in terms of such a coupled evolution? What are their implications at the planetary scale? What are their implications for a subsistence farmer in an arid landscape who may under external influence achieve a new transient hydro-ecological equilibrium? What are the implications for the economy and power of nations? In this talk, I will try to raise some of these questions and also provide some examples with very simple dynamical systems that suggest ways of thinking about some practical issues of feedback across climate, hydrology and human behavior.

  3. Complex Processes from Dynamical Architectures with Time-Scale Hierarchy

    PubMed Central

    Perdikis, Dionysios; Huys, Raoul; Jirsa, Viktor

    2011-01-01

    The idea that complex motor, perceptual, and cognitive behaviors are composed of smaller units, which are somehow brought into a meaningful relation, permeates the biological and life sciences. However, no principled framework defining the constituent elementary processes has been developed to this date. Consequently, functional configurations (or architectures) relating elementary processes and external influences are mostly piecemeal formulations suitable to particular instances only. Here, we develop a general dynamical framework for distinct functional architectures characterized by the time-scale separation of their constituents and evaluate their efficiency. Thereto, we build on the (phase) flow of a system, which prescribes the temporal evolution of its state variables. The phase flow topology allows for the unambiguous classification of qualitatively distinct processes, which we consider to represent the functional units or modes within the dynamical architecture. Using the example of a composite movement we illustrate how different architectures can be characterized by their degree of time scale separation between the internal elements of the architecture (i.e. the functional modes) and external interventions. We reveal a tradeoff of the interactions between internal and external influences, which offers a theoretical justification for the efficient composition of complex processes out of non-trivial elementary processes or functional modes. PMID:21347363

  4. Surface Radiation Budget Variability at Climatic Time Scales

    NASA Astrophysics Data System (ADS)

    Pinker, R. T.; Ma, Y.; Nussbaumer, E.

    2014-12-01

    Information on Earth Radiation Balance is needed at climatic time scales for enabling assessment of variability and trends in the forcing functions of the climate system. Satellite observations have been instrumental for advancing the understanding of such balance at global scale; yet, the length of available records does not meet climatic needs. Major issues hindering such efforts are related to the frequent changes in satellite observing systems, including the specification of the satellite instruments, and changes in the quality of atmospheric inputs that drive the inference schemes. In this paper we report on an effort to synthesize estimates of shortwave, longwave and spectral surface radiative fluxes by fusing observations from numerous satellite platforms that include MODIS observations. This information was obtained in the framework of the MEaSURES and NEWS programs; it will be evaluated against ground observations and compared to independent satellite and model estimates. Attention will be given to updates on our knowledge on the radiative balance as compared to what is known from shorter time records.

  5. Multiple-time-scale motion in molecularly linked nanoparticle arrays.

    PubMed

    George, Christopher; Szleifer, Igal; Ratner, Mark

    2013-01-22

    We explore the transport of electrons between electrodes that encase a two-dimensional array of metallic quantum dots linked by molecular bridges (such as α,ω alkaline dithiols). Because the molecules can move at finite temperatures, the entire transport structure comprising the quantum dots and the molecules is in dynamical motion while the charge is being transported. There are then several physical processes (physical excursions of molecules and quantum dots, electronic migration, ordinary vibrations), all of which influence electronic transport. Each can occur on a different time scale. It is therefore not appropriate to use standard approaches to this sort of electron transfer problem. Instead, we present a treatment in which three different theoretical approaches-kinetic Monte Carlo, classical molecular dynamics, and quantum transport-are all employed. In certain limits, some of the dynamical effects are unimportant. But in general, the transport seems to follow a sort of dynamic bond percolation picture, an approach originally introduced as formal models and later applied to polymer electrolytes. Different rate-determining steps occur in different limits. This approach offers a powerful scheme for dealing with multiple time scale transport problems, as will exist in many situations with several pathways through molecular arrays or even individual molecules that are dynamically disordered.

  6. Complex processes from dynamical architectures with time-scale hierarchy.

    PubMed

    Perdikis, Dionysios; Huys, Raoul; Jirsa, Viktor

    2011-02-10

    The idea that complex motor, perceptual, and cognitive behaviors are composed of smaller units, which are somehow brought into a meaningful relation, permeates the biological and life sciences. However, no principled framework defining the constituent elementary processes has been developed to this date. Consequently, functional configurations (or architectures) relating elementary processes and external influences are mostly piecemeal formulations suitable to particular instances only. Here, we develop a general dynamical framework for distinct functional architectures characterized by the time-scale separation of their constituents and evaluate their efficiency. Thereto, we build on the (phase) flow of a system, which prescribes the temporal evolution of its state variables. The phase flow topology allows for the unambiguous classification of qualitatively distinct processes, which we consider to represent the functional units or modes within the dynamical architecture. Using the example of a composite movement we illustrate how different architectures can be characterized by their degree of time scale separation between the internal elements of the architecture (i.e. the functional modes) and external interventions. We reveal a tradeoff of the interactions between internal and external influences, which offers a theoretical justification for the efficient composition of complex processes out of non-trivial elementary processes or functional modes.

  7. Reusable Launch Vehicle Control In Multiple Time Scale Sliding Modes

    NASA Technical Reports Server (NTRS)

    Shtessel, Yuri; Hall, Charles; Jackson, Mark

    2000-01-01

    A reusable launch vehicle control problem during ascent is addressed via multiple-time scaled continuous sliding mode control. The proposed sliding mode controller utilizes a two-loop structure and provides robust, de-coupled tracking of both orientation angle command profiles and angular rate command profiles in the presence of bounded external disturbances and plant uncertainties. Sliding mode control causes the angular rate and orientation angle tracking error dynamics to be constrained to linear, de-coupled, homogeneous, and vector valued differential equations with desired eigenvalues placement. Overall stability of a two-loop control system is addressed. An optimal control allocation algorithm is designed that allocates torque commands into end-effector deflection commands, which are executed by the actuators. The dual-time scale sliding mode controller was designed for the X-33 technology demonstration sub-orbital launch vehicle in the launch mode. Simulation results show that the designed controller provides robust, accurate, de-coupled tracking of the orientation angle command profiles in presence of external disturbances and vehicle inertia uncertainties. This is a significant advancement in performance over that achieved with linear, gain scheduled control systems currently being used for launch vehicles.

  8. Cell assemblies at multiple time scales with arbitrary lag constellations

    PubMed Central

    Russo, Eleonora; Durstewitz, Daniel

    2017-01-01

    Hebb's idea of a cell assembly as the fundamental unit of neural information processing has dominated neuroscience like no other theoretical concept within the past 60 years. A range of different physiological phenomena, from precisely synchronized spiking to broadly simultaneous rate increases, has been subsumed under this term. Yet progress in this area is hampered by the lack of statistical tools that would enable to extract assemblies with arbitrary constellations of time lags, and at multiple temporal scales, partly due to the severe computational burden. Here we present such a unifying methodological and conceptual framework which detects assembly structure at many different time scales, levels of precision, and with arbitrary internal organization. Applying this methodology to multiple single unit recordings from various cortical areas, we find that there is no universal cortical coding scheme, but that assembly structure and precision significantly depends on the brain area recorded and ongoing task demands. DOI: http://dx.doi.org/10.7554/eLife.19428.001 PMID:28074777

  9. Designing for development: Across the scales of time.

    PubMed

    Cole, Michael

    2016-11-01

    This essay traces the history of an activity designed to promote the intellectual and social development of elementary-age schoolchildren during the afterschool hours. Following in the footsteps of Urie Bronfenbrenner, I highlight his argument that just as all human development occurs in contexts of varying levels of inclusiveness and mutual interchange, human development occurs at intersecting scales of time that themselves vary in character and duration. The task of exploring Bronfenbrenner's idea confronts scholars interested in person-context coconstitutive processes with a difficult methodological requirement; they must study simultaneously the history of persons (at the microgenetic and ontogenetic time scales) as well the history of "the contexts of development" in which the persons participate. A project implementing such a study focused on the life course of the system of activity is described, followed by a discussion of the lessons to be learned from a temporally extensive study of persons developing in contexts that are themselves changing. (PsycINFO Database Record

  10. Vigilance and Activity Time-Budget Adjustments of Wintering Hooded Cranes, Grus monacha, in Human-Dominated Foraging Habitats

    PubMed Central

    Li, Chunlin; Zhou, Lizhi; Xu, Li; Zhao, Niannian; Beauchamp, Guy

    2015-01-01

    Due to loss and degradation of natural wetlands, waterbirds increasingly rely on surrounding human-dominated habitats to obtain food. Quantifying vigilance patterns, investigating the trade-off among various activities, and examining the underlying mechanisms will help us understand how waterbirds adapt to human-caused disturbances. During two successive winters (November-February of 2012–13 and 2013–14), we studied the hooded crane, Grus monacha, in the Shengjin Lake National Nature Reserve (NNR), China, to investigate how the species responds to human disturbances through vigilance and activity time-budget adjustments. Our results showed striking differences in the behavior of the cranes when foraging in the highly disturbed rice paddy fields found in the buffer zone compared with the degraded natural wetlands in the core area of the NNR. Time spent vigilant decreased with flock size and cranes spent more time vigilant in the human-dominated buffer zone. In the rice paddy fields, the birds were more vigilant but also fed more at the expense of locomotion and maintenance activities. Adult cranes spent more time vigilant and foraged less than juveniles. We recommend habitat recovery in natural wetlands and community co-management in the surrounding human-dominated landscape for conservation of the hooded crane and, generally, for the vast numbers of migratory waterbirds wintering in the middle and lower reaches of the Yangtze River floodplain. PMID:25768111

  11. Simulations of Decadal-scale Climate Change Impacts on Agriculture: Attributing Trends in Regional Corn Yields to Physiological Effects Versus Adjusted Farm Management

    NASA Astrophysics Data System (ADS)

    Kucharik, C.

    2003-12-01

    A recent study published in Science in early 2003 [by David Lobell and Gregory Asner, Dept. of Global Ecology, Carnegie Inst. of Washington] highlighted that little effort has been put forth to understand the impacts of previous decadal-scale climate changes on row-crop agriculture. The major obstacle to overcome in quantifying crop response to climate changes over large regions is deciphering between changes attributed to climate change versus technology, land-management and other factors. While the Lobell and Asner study concluded that regional temperature trends potentially contributed to corn and soybean yield trends from 1982-1998, a partitioning of the observed increases between direct physiological effects versus farmer management adjustment to climate was not a goal of their study. As part of this study, an agricultural version of the Integrated BIosphere Simulator (Agro-IBIS), was used to investigate how decadal-scale climate changes may have contributed to corn yield trends across the Mississippi Basin from 1948-2001. The primary objective was to investigate the relative contributions of physiological effects and farmer adjustments in planting date and hybrid choice to long-term corn yield trends. The impacts of advancing technology on agriculture were removed from model simulations so that the impact of weather and farm management decisions (e.g., planting date and hybrid choice) could be separated from observed long-term trends in the USDA crop yield record. Scenarios were used that accounted for smart-farmers, where management adjustments (planting date and/or hybrid) were made in response to climate changes, and for business-as-usual-farmers who continued to plant the same hybrids on the same date during the study period. When average, optimum corn planting dates from the 1950s were compared with the 1990s, significant springtime warming in regions of the northern fringes of the cornbelt (e.g., North Dakota, Minnesota) over the past 40 years have

  12. NOVEL THYROIDECTOMY DIFFICULTY SCALE CORRELATES WITH OPERATIVE TIMES

    PubMed Central

    Schneider, David F.; Mazeh, Haggi; Oltmann, Sarah C.; Chen, Herbert; Sippel, Rebecca S.

    2014-01-01

    Introduction The aim of this study was to evaluate a new thyroidectomy difficulty scale (TDS) for its inter-rater agreement, correspondence with operative times, and correlation with complications. Methods We developed a four item, 20-point TDS. Following cases where two board-certified surgeons participated, each surgeon completed a TDS, blinded to the other’s responses. Paired sets of TDS scores were compared. The relationship between operative time and TDS scores was analyzed with linear regression. Multiple regression evaluated the association of TDS scores and other clinical data with operative times. Results A total of 119 patients were scored using TDS. In this cohort, 22.7% suffered from hyperthyroidism, 37.8% experienced compressive symptoms, and 58.8% had cancer. The median total TDS score was 8, and both surgeons’ total scores exhibited a high degree of correlation. 87.4% of both raters’ total scores were within one point of each other. Patients with hyperthyroidism received higher median scores compared to euthyroid patients (10 vs. 8, p<0.01). Similarly, patients who suffered a complication had higher scores compared to those patients without complications (10 vs. 8, p= 0.04). TDS scores demonstrated a linear relationship with operative times (R2 = 0.36, p<0.01, Figure 1). Cases with a score of 14 or greater took 41.0% longer compared to cases with scores of five or less (p<0.01). In multiple regression analysis, TDS scores independently predicted operative time (p<0.01). Conclusion The TDS is an accurate tool, and scores correlate with more difficult thyroidectomies as measured by complications and operative times. PMID:24615607

  13. Critical time scales for advection-diffusion-reaction processes

    NASA Astrophysics Data System (ADS)

    Ellery, Adam J.; Simpson, Matthew J.; McCue, Scott W.; Baker, Ruth E.

    2012-04-01

    The concept of local accumulation time (LAT) was introduced by Berezhkovskii and co-workers to give a finite measure of the time required for the transient solution of a reaction-diffusion equation to approach the steady-state solution [A. M. Berezhkovskii, C. Sample, and S. Y. Shvartsman, Biophys. J.BIOJAU0006-349510.1016/j.bpj.2010.07.045 99, L59 (2010); A. M. Berezhkovskii, C. Sample, and S. Y. Shvartsman, Phys. Rev. EPLEEE81539-375510.1103/PhysRevE.83.051906 83, 051906 (2011)]. Such a measure is referred to as a critical time. Here, we show that LAT is, in fact, identical to the concept of mean action time (MAT) that was first introduced by McNabb [A. McNabb and G. C. Wake, IMA J. Appl. Math.IJAMDM0272-496010.1093/imamat/47.2.193 47, 193 (1991)]. Although McNabb's initial argument was motivated by considering the mean particle lifetime (MPLT) for a linear death process, he applied the ideas to study diffusion. We extend the work of these authors by deriving expressions for the MAT for a general one-dimensional linear advection-diffusion-reaction problem. Using a combination of continuum and discrete approaches, we show that MAT and MPLT are equivalent for certain uniform-to-uniform transitions; these results provide a practical interpretation for MAT by directly linking the stochastic microscopic processes to a meaningful macroscopic time scale. We find that for more general transitions, the equivalence between MAT and MPLT does not hold. Unlike other critical time definitions, we show that it is possible to evaluate the MAT without solving the underlying partial differential equation (pde). This makes MAT a simple and attractive quantity for practical situations. Finally, our work explores the accuracy of certain approximations derived using MAT, showing that useful approximations for nonlinear kinetic processes can be obtained, again without treating the governing pde directly.

  14. Continent-scale global change attribution in European birds - combining annual and decadal time scales.

    PubMed

    Jørgensen, Peter Søgaard; Böhning-Gaese, Katrin; Thorup, Kasper; Tøttrup, Anders P; Chylarecki, Przemysław; Jiguet, Frédéric; Lehikoinen, Aleksi; Noble, David G; Reif, Jiri; Schmid, Hans; van Turnhout, Chris; Burfield, Ian J; Foppen, Ruud; Voříšek, Petr; van Strien, Arco; Gregory, Richard D; Rahbek, Carsten

    2016-02-01

    Species attributes are commonly used to infer impacts of environmental change on multiyear species trends, e.g. decadal changes in population size. However, by themselves attributes are of limited value in global change attribution since they do not measure the changing environment. A broader foundation for attributing species responses to global change may be achieved by complementing an attributes-based approach by one estimating the relationship between repeated measures of organismal and environmental changes over short time scales. To assess the benefit of this multiscale perspective, we investigate the recent impact of multiple environmental changes on European farmland birds, here focusing on climate change and land use change. We analyze more than 800 time series from 18 countries spanning the past two decades. Analysis of long-term population growth rates documents simultaneous responses that can be attributed to both climate change and land-use change, including long-term increases in populations of hot-dwelling species and declines in long-distance migrants and farmland specialists. In contrast, analysis of annual growth rates yield novel insights into the potential mechanisms driving long-term climate induced change. In particular, we find that birds are affected by winter, spring, and summer conditions depending on the distinct breeding phenology that corresponds to their migratory strategy. Birds in general benefit from higher temperatures or higher primary productivity early on or in the peak of the breeding season with the largest effect sizes observed in cooler parts of species' climatic ranges. Our results document the potential of combining time scales and integrating both species attributes and environmental variables for global change attribution. We suggest such an approach will be of general use when high-resolution time series are available in large-scale biodiversity surveys.

  15. The Time Scale of Recombination Rate Evolution in Great Apes.

    PubMed

    Stevison, Laurie S; Woerner, August E; Kidd, Jeffrey M; Kelley, Joanna L; Veeramah, Krishna R; McManus, Kimberly F; Bustamante, Carlos D; Hammer, Michael F; Wall, Jeffrey D

    2016-04-01

    We present three linkage-disequilibrium (LD)-based recombination maps generated using whole-genome sequence data from 10 Nigerian chimpanzees, 13 bonobos, and 15 western gorillas, collected as part of the Great Ape Genome Project (Prado-Martinez J, et al. 2013. Great ape genetic diversity and population history. Nature 499:471-475). We also identified species-specific recombination hotspots in each group using a modified LDhot framework, which greatly improves statistical power to detect hotspots at varying strengths. We show that fewer hotspots are shared among chimpanzee subspecies than within human populations, further narrowing the time scale of complete hotspot turnover. Further, using species-specific PRDM9 sequences to predict potential binding sites (PBS), we show higher predicted PRDM9 binding in recombination hotspots as compared to matched cold spot regions in multiple great ape species, including at least one chimpanzee subspecies. We found that correlations between broad-scale recombination rates decline more rapidly than nucleotide divergence between species. We also compared the skew of recombination rates at centromeres and telomeres between species and show a skew from chromosome means extending as far as 10-15 Mb from chromosome ends. Further, we examined broad-scale recombination rate changes near a translocation in gorillas and found minimal differences as compared to other great ape species perhaps because the coordinates relative to the chromosome ends were unaffected. Finally, on the basis of multiple linear regression analysis, we found that various correlates of recombination rate persist throughout the African great apes including repeats, diversity, and divergence. Our study is the first to analyze within- and between-species genome-wide recombination rate variation in several close relatives.

  16. Integrating Rapid Diagnostics and Antimicrobial Stewardship in Two Community Hospitals Improved Process Measures and Antibiotic Adjustment Time.

    PubMed

    Lockwood, Ashley M; Perez, Katherine K; Musick, William L; Ikwuagwu, Judy O; Attia, Engie; Fasoranti, Oyejoke O; Cernoch, Patricia L; Olsen, Randall J; Musser, James M

    2016-04-01

    OBJECTIVE To assess the impact of Matrix-Assisted Laser Desorption/Ionization Time-of-Flight (MALDI-TOF) mass spectrometry for rapid pathogen identification directly from early-positive blood cultures coupled with an antimicrobial stewardship program (ASP) in two community hospitals. Process measures and outcomes prior and after implementation of MALDI-TOF/ASP were evaluated. DESIGN Multicenter retrospective study. SETTING Two community hospitals in a system setting, Houston Methodist (HM) Sugar Land Hospital (235 beds) or HM Willowbrook Hospital (241 beds). PATIENTS Patients ≥ 18 years of age with culture-proven Gram-negative bacteremia. INTERVENTION Blood cultures from both hospitals were sent to and processed at our central microbiology laboratory. Clinical pharmacists at respective hospitals were notified of pathogen ID and susceptibility results. RESULTS We evaluated 572 patients for possible inclusion. After pre-defined exclusion criteria, 151 patients were included in the pre-intervention group and 242 were included in the intervention group. After MALDI-TOF/ASP implementation, the mean identification time after culture positivity was significantly reduced from 32 hours (±16 hours) to 6.5 hours (±5.4 hours) (P<.001); mean time to susceptibility results was significantly reduced from 48 (±22) hours to 23 (±14) hours (P<.001); and time to therapy adjustment was significantly reduced from 75 (±59) hours to 30 (±30) hours (P<.001). Mean hospital costs per patient were $3,411 less in the intervention group compared with the pre-intervention group ($18,645 vs $15,234; P=.04). CONCLUSION This study is the first to analyze the impact of MALDI-TOF coupled with an ASP in a community hospital setting. Time to results significantly differed with the use of MALDI-TOF, and time to appropriate therapy was significantly improved with the addition of ASP.

  17. Oceanic time variability near a large scale topographic circulation

    NASA Astrophysics Data System (ADS)

    Bigorre, Sebastien; Dewar, William K.

    The oceanic circulation around a large scale topographic anomaly is studied using a numerical quasigeostrophic (QG) model. This simulation bears important similarities to a real ocean case, the Zapiola Anticyclone (ZA). The simple physics of the model allow the identification of two controlling parameters of the topographic circulation: bottom friction and eddy diffusivity. The role of these parameters was predicted in the theory proposed by Dewar [Dewar, W.K., 1998. Topography and barotropic transport control by bottom friction. J. Mar. Res. 56, 295-328] for the mean flow. This paper focuses on the time variability of the simulated circulation. The topography energizes the low frequency band, due to variations of the topographic circulation and its collapses. A local mode varies the amplitude of the topographic circulation and is related to the eddy field activity. The model shows that the trapped circulation can be shed away from the topography due to an increased sensitivity to the background flow perturbations. In the mesoscale band, a mode one anticyclonic wave also appears. We compare these features with similar observations in the Zapiola region. The location and strength of the ZA raise the question of its role in the mean regional oceanic circulation. This work suggests that its variability on a variety of temporal scales may also be of importance.

  18. Variations in solar Lyman alpha irradiance on short time scales

    NASA Technical Reports Server (NTRS)

    Pap, J. M.

    1992-01-01

    Variations in solar UV irradiance at Lyman alpha are studied on short time scales (from days to months) after removing the long-term changes over the solar cycle. The SME/Lyman alpha irradiance is estimated from various solar indices using linear regression analysis. In order to study the nonlinear effects, Lyman alpha irradiance is modeled with a 5th-degree polynomial as well. It is shown that the full-disk equivalent width of the He line at 1083 nm, which is used as a proxy for the plages and active network, can best reproduce the changes observed in Lyman alpha. Approximately 72 percent of the solar-activity-related changes in Lyman alpha irradiance arise from plages and the network. The network contribution is estimated by the correlation analysis to be about 19 percent. It is shown that significant variability remains in Lyman alpha irradiance, with periods around 300, 27, and 13.5d, which is not explained by the solar activity indices. It is shown that the nonlinear effects cannot account for a significant part of the unexplained variation in Lyman alpha irradiance. Therefore, additional events (e.g., large-scale motions and/or a systematic difference in the area and intensity of the plages and network observed in the lines of Ca-K, He 1083, and Lyman alpha) may explain the discrepancies found between the observed and estimated irradiance values.

  19. Neural Computations in a Dynamical System with Multiple Time Scales

    PubMed Central

    Mi, Yuanyuan; Lin, Xiaohan; Wu, Si

    2016-01-01

    Neural systems display rich short-term dynamics at various levels, e.g., spike-frequency adaptation (SFA) at the single-neuron level, and short-term facilitation (STF) and depression (STD) at the synapse level. These dynamical features typically cover a broad range of time scales and exhibit large diversity in different brain regions. It remains unclear what is the computational benefit for the brain to have such variability in short-term dynamics. In this study, we propose that the brain can exploit such dynamical features to implement multiple seemingly contradictory computations in a single neural circuit. To demonstrate this idea, we use continuous attractor neural network (CANN) as a working model and include STF, SFA and STD with increasing time constants in its dynamics. Three computational tasks are considered, which are persistent activity, adaptation, and anticipative tracking. These tasks require conflicting neural mechanisms, and hence cannot be implemented by a single dynamical feature or any combination with similar time constants. However, with properly coordinated STF, SFA and STD, we show that the network is able to implement the three computational tasks concurrently. We hope this study will shed light on the understanding of how the brain orchestrates its rich dynamics at various levels to realize diverse cognitive functions. PMID:27679569

  20. Multi-scale gravity field modeling in space and time

    NASA Astrophysics Data System (ADS)

    Wang, Shuo; Panet, Isabelle; Ramillien, Guillaume; Guilloux, Frédéric

    2016-04-01

    The Earth constantly deforms as it undergoes dynamic phenomena, such as earthquakes, post-glacial rebound and water displacement in its fluid envelopes. These processes have different spatial and temporal scales and are accompanied by mass displacements, which create temporal variations of the gravity field. Since 2002, the GRACE satellite missions provide an unprecedented view of the gravity field spatial and temporal variations. Gravity models built from these satellite data are essential to study the Earth's dynamic processes (Tapley et al., 2004). Up to present, time variations of the gravity field are often modelled using spatial spherical harmonics functions averaged over a fixed period, as 10 days or 1 month. This approach is well suited for modeling global phenomena. To better estimate gravity related to local and/or transient processes, such as earthquakes or floods, and adapt the temporal resolution of the model to its spatial resolution, we propose to model the gravity field using localized functions in space and time. For that, we build a model of the gravity field in space and time with a four-dimensional wavelet basis, well localized in space and time. First we design the 4D basis, then, we study the inverse problem to model the gravity field from the potential differences between the twin GRACE satellites, and its regularization using prior knowledge on the water cycle. Our demonstration of surface water mass signals decomposition in time and space is based on the use of synthetic along-track gravitational potential data. We test the developed approach on one year of 4D gravity modeling and compare the reconstructed water heights to those of the input hydrological model. Perspectives of this work is to apply the approach on real GRACE data, addressing the challenge of a realistic noise, to better describe and understand physical processus with high temporal resolution/low spatial resolution or the contrary.

  1. X-ray signatures: New time scales and spectral features

    NASA Technical Reports Server (NTRS)

    Boldt, E. A.

    1977-01-01

    The millisecond bursts from Cyg X-1 are investigated and the overall chaotic variability for the bulk of the Cyg X-1 emission is compared to that of Sco X-1, showing that the essential character is remarkably similar (i.e. shot noise) although the fundamental time scales involved differ widely, from a fraction of a second (for Cyg X-1) to a fraction of a day (for Sco X-1). Recent OSO-8 observations of spectra features attributable to iron are reviewed. In particular, line emission is discussed within the context of a model for thermal radiation by a hot evolved gas in systems as different as supernova remnants and clusters of galaxies. Newly observed spectral structure in the emission from the X-ray pulsar Her X-1 is reported.

  2. Many roads to synchrony: Natural time scales and their algorithms

    NASA Astrophysics Data System (ADS)

    James, Ryan G.; Mahoney, John R.; Ellison, Christopher J.; Crutchfield, James P.

    2014-04-01

    We consider two important time scales—the Markov and cryptic orders—that monitor how an observer synchronizes to a finitary stochastic process. We show how to compute these orders exactly and that they are most efficiently calculated from the ɛ-machine, a process's minimal unifilar model. Surprisingly, though the Markov order is a basic concept from stochastic process theory, it is not a probabilistic property of a process. Rather, it is a topological property and, moreover, it is not computable from any finite-state model other than the ɛ-machine. Via an exhaustive survey, we close by demonstrating that infinite Markov and infinite cryptic orders are a dominant feature in the space of finite-memory processes. We draw out the roles played in statistical mechanical spin systems by these two complementary length scales.

  3. Control of Systems With Slow Actuators Using Time Scale Separation

    NASA Technical Reports Server (NTRS)

    Stepanyan, Vehram; Nguyen, Nhan

    2009-01-01

    This paper addresses the problem of controlling a nonlinear plant with a slow actuator using singular perturbation method. For the known plant-actuator cascaded system the proposed scheme achieves tracking of a given reference model with considerably less control demand than would otherwise result when using conventional design techniques. This is the consequence of excluding the small parameter from the actuator dynamics via time scale separation. The resulting tracking error is within the order of this small parameter. For the unknown system the adaptive counterpart is developed based on the prediction model, which is driven towards the reference model by the control design. It is proven that the prediction model tracks the reference model with an error proportional to the small parameter, while the prediction error converges to zero. The resulting closed-loop system with all prediction models and adaptive laws remains stable. The benefits of the approach are demonstrated in simulation studies and compared to conventional control approaches.

  4. Timing matters: tuning the mechanics of a muscle-tendon unit by adjusting stimulation phase during cyclic contractions.

    PubMed

    Sawicki, Gregory S; Robertson, Benjamin D; Azizi, Emanuel; Roberts, Thomas J

    2015-10-01

    A growing body of research on the mechanics and energetics of terrestrial locomotion has demonstrated that elastic elements acting in series with contracting muscle are critical components of sustained, stable and efficient gait. Far fewer studies have examined how the nervous system modulates muscle-tendon interaction dynamics to optimize 'tuning' or meet varying locomotor demands. To explore the fundamental neuromechanical rules that govern the interactions between series elastic elements (SEEs) and contractile elements (CEs) within a compliant muscle-tendon unit (MTU), we used a novel work loop approach that included implanted sonomicrometry crystals along muscle fascicles. This enabled us to decouple CE and SEE length trajectories when cyclic strain patterns were applied to an isolated plantaris MTU from the bullfrog (Lithobates catesbeianus). Using this approach, we demonstrate that the onset timing of muscle stimulation (i.e. stimulation phase) that involves a symmetrical MTU stretch-shorten cycle during active force production results in net zero mechanical power output, and maximal decoupling of CE and MTU length trajectories. We found it difficult to 'tune' the muscle-tendon system for strut-like isometric force production by adjusting stimulation phase only, as the zero power output condition involved significant positive and negative mechanical work by the CE. A simple neural mechanism - adjusting muscle stimulation phase - could shift an MTU from performing net zero to net positive (energy producing) or net negative (energy absorbing) mechanical work under conditions of changing locomotor demand. Finally, we show that modifications to the classical work loop paradigm better represent in vivo muscle-tendon function during locomotion.

  5. Timing matters: tuning the mechanics of a muscle–tendon unit by adjusting stimulation phase during cyclic contractions

    PubMed Central

    Sawicki, Gregory S.; Robertson, Benjamin D.; Azizi, Emanuel; Roberts, Thomas J.

    2015-01-01

    ABSTRACT A growing body of research on the mechanics and energetics of terrestrial locomotion has demonstrated that elastic elements acting in series with contracting muscle are critical components of sustained, stable and efficient gait. Far fewer studies have examined how the nervous system modulates muscle–tendon interaction dynamics to optimize ‘tuning’ or meet varying locomotor demands. To explore the fundamental neuromechanical rules that govern the interactions between series elastic elements (SEEs) and contractile elements (CEs) within a compliant muscle–tendon unit (MTU), we used a novel work loop approach that included implanted sonomicrometry crystals along muscle fascicles. This enabled us to decouple CE and SEE length trajectories when cyclic strain patterns were applied to an isolated plantaris MTU from the bullfrog (Lithobates catesbeianus). Using this approach, we demonstrate that the onset timing of muscle stimulation (i.e. stimulation phase) that involves a symmetrical MTU stretch–shorten cycle during active force production results in net zero mechanical power output, and maximal decoupling of CE and MTU length trajectories. We found it difficult to ‘tune’ the muscle–tendon system for strut-like isometric force production by adjusting stimulation phase only, as the zero power output condition involved significant positive and negative mechanical work by the CE. A simple neural mechanism – adjusting muscle stimulation phase – could shift an MTU from performing net zero to net positive (energy producing) or net negative (energy absorbing) mechanical work under conditions of changing locomotor demand. Finally, we show that modifications to the classical work loop paradigm better represent in vivo muscle–tendon function during locomotion. PMID:26232413

  6. Towards a stable numerical time scale for the early Paleogene

    NASA Astrophysics Data System (ADS)

    Hilgen, Frederik; Kuiper, Klaudia; Sierro, Francisco J.; Wotzlaw, Jorn; Schaltegger, Urs; Sahy, Diana; Condon, Daniel

    2014-05-01

    The construction of an astronomical time scale for the early Paleogene is hampered by ambiguities in the number, correlation and tuning of 405-kyr eccentricity related cycles in deep marine records from ODP cores and land-based sections. The two most competing age models result in astronomical ages for the K/Pg boundary that differ by ~750 kyr (~66.0 Ma of Vandenberghe et al. (2012) versus 65.25 Ma of Westerhold et al. (2012); these ages in turn are consistent with proposed ages for the Fish Canyon sanidine (FCs) that differ by ~300 kyr (28.201 Ma of Kuiper et al. (2008) versus 27.89 Ma of Westerhold et al. (2012)); an even older age of 28.294 Ma is proposed based on a statistical optimization model (Renne et al., 2011). The astronomically calibrated FCs age of 28.201 ± 0.046 Ma of Kuiper et al. (2008), which is consistent with the astronomical age of ~66.0 Ma for the K/Pg boundary, is currently adopted in the standard geological time scale (GTS2012). Here we combine new and published data in an attempt to solve the controversy and arrive at a stable nuemrical time scale for the early Paleogene. Supporting their younger age model, Westerhold et al. (2012) argue that the tuning of Miocene sections in the Mediterranean, which underlie the older FCs age of Kuiper et al. (2008) and, hence, the coupled older early Paleogene age model of Vandenberghe et al. (2012), might be too old by three precession cycles. We thoroughly rechecked this tuning; distinctive cycle patterns related to eccentricity and precession-obliquity interference make a younger tuning that would be consistent with the younger astronomical age of 27.89 Ma for the FCs of Westerhold et al. (2012) challenging. Next we compared youngest U/Pb zircon and astronomical ages for a number of ash beds in the tuned Miocene section of Monte dei Corvi. These ages are indistinguishable, indicating that the two independent dating methods yield the same age when the same event is dated. This is consistent with results

  7. Homogenization of historical time series on a subdaily scale

    NASA Astrophysics Data System (ADS)

    Kocen, Renate; Brönnimann, Stefan; Breda, Leila; Spadin, Reto; Begert, Michael; Füllemann, Christine

    2010-05-01

    Homogeneous long-term climatological time series provide useful information on climate back to the preindustrial era. High temporal resolution of climate data is desirable to address trends and variability in the mean climate and in climatic extremes. For Switzerland, three long (~250 yrs) historical time series (Basel, Geneva, Gr. St. Bernhard) that were hitherto available in the form of monthly means only have recently been digitized (in cooperation with MeteoSwiss) on a subdaily scale. The digitized time series contain subdaily data (varies from 2-5 daily measurements) on temperature, precipitation/snow height, pressure and humidity, as subdaily descriptions on wind direction, wind speeds and cloud cover. Long-term climatological records often contain inhomogeneities due to non climatic changes such as station relocations, changes in instrumentation and instrument exposure, changes in observing schedules/practices and environmental changes in the proximity of the observation site. Those disturbances can distort or hide the true climatic signal and could seriously affect the correct assessment and analysis of climate trends, variability and climatic extremes. It is therefore crucial to detect and eliminate artificial shifts and trends, to the extent possible, in the climate data prior to its application. Detailed information of the station history and instruments (metadata) can be of fundamental importance in the process of homogenization in order to support the determination of the exact time of inhomogeneities and the interpretation of statistical test results. While similar methods can be used for the detection of inhomogeneities in subdaily or monthly mean data, quite different correction methods can be chosen. The wealth of information in a high temporal resolution allows more physics-based correction methods. For instance, a detected radiation error in temperature can be corrected with an error model that incorporates radiation and ventilation terms using

  8. The supplementary motor area contributes to the timing of the anticipatory postural adjustment during step initiation in participants with and without Parkinson’s disease

    PubMed Central

    Jacobs, Jesse V.; Lou, Jau-Shin; Kraakevik, Jeff A.; Horak, Fay B.

    2009-01-01

    The supplementary motor area is thought to contribute to the generation of anticipatory postural adjustments (which act to stabilize supporting body segments prior to movement), but its precise role remains unclear. In addition, participants with Parkinson’s disease (PD) exhibit impaired function of the supplementary motor area as well as decreased amplitudes and altered timing of the anticipatory postural adjustment during step initiation, but the contribution of the supplementary motor area to these impairments also remains unclear. To determine how the supplementary motor area contributes to generating the anticipatory postural adjustment and to the impaired anticipatory postural adjustments of participants with PD, we examined the voluntary steps of 8 participants with PD and 8 participants without PD, before and after disrupting the supplementary motor area and dorsolateral premotor cortex, in separate sessions, with 1-Hz repetitive transcranial magnetic stimulation. Both groups exhibited decreased durations of their anticipatory postural adjustments after repetitive transcranial magnetic stimulation over the supplementary motor area but not over the dorsolateral premotor cortex. Peak amplitudes of the anticipatory postural adjustments were unaffected by repetitive transcranial magnetic stimulation to either site. The symptom severity of the participants with PD positively correlated with the extent that repetitive transcranial magnetic stimulation over the supplementary motor area affected the durations of their anticipatory postural adjustments. The results suggest that the supplementary motor area contributes to the timing of the anticipatory postural adjustment and that participants with PD exhibit impaired timing of their anticipatory postural adjustments, in part, due to progressive dysfunction of circuits associated with the supplementary motor area. PMID:19665521

  9. Forecasting decadal and shorter time-scale solar cycle features

    NASA Astrophysics Data System (ADS)

    Dikpati, Mausumi

    2016-07-01

    Solar energetic particles and magnetic fields reach the Earth through the interplanetary medium and affect it in various ways, producing beautiful aurorae, but also electrical blackouts and damage to our technology-dependent economy. The root of energetic solar outputs is the solar activity cycle, which is most likely caused by dynamo processes inside the Sun. It is a formidable task to accurately predict the amplitude, onset and peak timings of a solar cycle. After reviewing all solar cycle prediction methods, including empirical as well as physical model-based schemes, I will describe what we have learned from both validation and nonvalidation of cycle 24 forecasts, and how to refine the model-based schemes for upcoming cycle 25 forecasts. Recent observations indicate that within a solar cycle there are shorter time-scale 'space weather' features, such as bursts of various forms of activity with approximately one year periodicity. I will demonstrate how global tachocline dynamics could play a crucial role in producing such space weather. The National Center for Atmospheric Research is sponsored by the National Science Foundation.

  10. Selective attention to temporal features on nested time scales.

    PubMed

    Henry, Molly J; Herrmann, Björn; Obleser, Jonas

    2015-02-01

    Meaningful auditory stimuli such as speech and music often vary simultaneously along multiple time scales. Thus, listeners must selectively attend to, and selectively ignore, separate but intertwined temporal features. The current study aimed to identify and characterize the neural network specifically involved in this feature-selective attention to time. We used a novel paradigm where listeners judged either the duration or modulation rate of auditory stimuli, and in which the stimulation, working memory demands, response requirements, and task difficulty were held constant. A first analysis identified all brain regions where individual brain activation patterns were correlated with individual behavioral performance patterns, which thus supported temporal judgments generically. A second analysis then isolated those brain regions that specifically regulated selective attention to temporal features: Neural responses in a bilateral fronto-parietal network including insular cortex and basal ganglia decreased with degree of change of the attended temporal feature. Critically, response patterns in these regions were inverted when the task required selectively ignoring this feature. The results demonstrate how the neural analysis of complex acoustic stimuli with multiple temporal features depends on a fronto-parietal network that simultaneously regulates the selective gain for attended and ignored temporal features.

  11. Halogens: From Annual To a Millennial Time Scale

    NASA Astrophysics Data System (ADS)

    Barbante, C.; Spolaor, A.; Vallelonga, P. T.; Schoenhardt, A.; Gabrieli, J.; Plane, J. M. C.; Curran, M. A.; Bjorkman, M. P.

    2014-12-01

    The role of sea ice in the Earth climate system is poorly defined, although its influence albedo, ocean circulation and atmosphere-ocean heat and gas exchange, in particular there is lack of information about its behaviour in the past. Different approaches have been proposed and used for the past reconstruction of sea ice. Attention has been given to sediment core in which measurement of diatomean assemblage has been discovered to respond to sea ice fluctuations. Recently a class of compounds, the highly branched isoprenoids (in particular the IP25) have been proposed as possible tracers for past sea ice extension. Other strategies have been used to evaluate the sea ice changes, for example multy-proxy approach (Kinnard et al. 2011) but for ice cores the question is still open. Sodium (Na) and Methanesulphonic acid (MSA) are now suggested as possible proxy. Sodium reflects glacial-interglacial sea ice variability but on shorter timescales is strongly influenced by meteorology (Levine et al. 2014). Methanesulphonic Acid, correlates with satellite observations of sea ice extent off the East Antarctic coast, but is reactive and remobilized in ice cores over centennial time scales (Curran, et al. 2003; Rothlisberger et al. 2010). In parallel we propose iodine and bromine, as a possible tracers for past sea ice changes. Bromine is actively involved in destruction chemistry of polar ozone via auto-catalyzed reactions called "Bromine explosions", which occur above seasonal sea ice and causing an excess of bromine in the snow deposition compared to the sea water ratio. Iodine is emitted from algal communities growing under sea ice and then, percolating up to the sea ice surface, it is emitted into the polar atmosphere. We investigate the halogens signal in different sites and with different time coverage; measurements have been carried out in Greenland, Svalbard and Antarctica. We first investigate the conservation of the climate signal in the recent depositions (~3 years

  12. Pseudo-real-time low-pass filter in ECG, self-adjustable to the frequency spectra of the waves.

    PubMed

    Christov, Ivaylo; Neycheva, Tatyana; Schmid, Ramun; Stoyanov, Todor; Abächerli, Roger

    2017-02-04

    The electrocardiogram (ECG) acquisition is often accompanied by high-frequency electromyographic (EMG) noise. The noise is difficult to be filtered, due to considerable overlapping of its frequency spectrum to the frequency spectrum of the ECG. Today, filters must conform to the new guidelines (2007) for low-pass filtering in ECG with cutoffs of 150 Hz for adolescents and adults, and to 250 Hz for children. We are suggesting a pseudo-real-time low-pass filter, self-adjustable to the frequency spectra of the ECG waves. The filter is based on the approximation procedure of Savitzky-Golay with dynamic change in the cutoff frequency. The filter is implemented pseudo-real-time (real-time with a certain delay). An additional option is the automatic on/off triggering, depending on the presence/absence of EMG noise. The analysis of the proposed filter shows that the low-frequency components of the ECG (low-power P- and T-waves, PQ-, ST- and TP-segments) are filtered with a cutoff of 14 Hz, the high-power P- and T-waves are filtered with a cutoff frequency in the range of 20-30 Hz, and the high-frequency QRS complexes are filtered with cutoff frequency of higher than 100 Hz. The suggested dynamic filter satisfies the conflicting requirements for a strong suppression of EMG noise and at the same time a maximal preservation of the ECG high-frequency components.

  13. Geometric integrators for multiple time-scale simulation

    NASA Astrophysics Data System (ADS)

    Jia, Zhidong; Leimkuhler, Ben

    2006-05-01

    In this paper, we review and extend recent research on averaging integrators for multiple time-scale simulation such as are needed for physical N-body problems including molecular dynamics, materials modelling and celestial mechanics. A number of methods have been proposed for direct numerical integration of multiscale problems with special structure, such as the mollified impulse method (Garcia-Archilla, Sanz-Serna and Skeel 1999 SIAM J. Sci. Comput. 20 930-63) and the reversible averaging method (Leimkuhler and Reich 2001 J. Comput. Phys. 171 95-114). Features of problems of interest, such as thermostatted coarse-grained molecular dynamics, require extension of the standard framework. At the same time, in some applications the computation of averages plays a crucial role, but the available methods have deficiencies in this regard. We demonstrate that a new approach based on the introduction of shadow variables, which mirror physical variables, has promised for broadening the usefulness of multiscale methods and enhancing accuracy of or simplifying computation of averages. The shadow variables must be computed from an auxiliary equation. While a geometric integrator in the extended space is possible, in practice we observe enhanced long-term energy behaviour only through use of a variant of the method which controls drift of the shadow variables using dissipation and sacrifices the formal geometric properties such as time-reversibility and volume preservation in the enlarged phase space, stabilizing the corresponding properties in the physical variables. The method is applied to a gravitational three-body problem as well as a partially thermostatted model problem for a dilute gas of diatomic molecules.

  14. Adjustment of interaural time difference in head related transfer functions based on listeners' anthropometry and its effect on sound localization

    NASA Astrophysics Data System (ADS)

    Suzuki, Yôiti; Watanabe, Kanji; Iwaya, Yukio; Gyoba, Jiro; Takane, Shouichi

    2005-04-01

    Because the transfer functions governing subjective sound localization (HRTFs) show strong individuality, sound localization systems based on synthesis of HRTFs require suitable HRTFs for individual listeners. However, it is impractical to obtain HRTFs for all listeners based on measurements. Improving sound localization by adjusting non-individualized HRTFs to a specific listener based on that listener's anthropometry might be a practical method. This study first developed a new method to estimate interaural time differences (ITDs) using HRTFs. Then correlations between ITDs and anthropometric parameters were analyzed using the canonical correlation method. Results indicated that parameters relating to head size, and shoulder and ear positions are significant. Consequently, it was attempted to express ITDs based on listener's anthropometric data. In this process, the change of ITDs as a function of azimuth angle was parameterized as a sum of sine functions. Then the parameters were analyzed using multiple regression analysis, in which the anthropometric parameters were used as explanatory variables. The predicted or individualized ITDs were installed in the nonindividualized HRTFs to evaluate sound localization performance. Results showed that individualization of ITDs improved horizontal sound localization.

  15. A universal time scale for vortex formation in nature

    NASA Astrophysics Data System (ADS)

    Gharib, Morteza; Rambod, Edmond; Shariff, Karim

    1997-11-01

    The formation of vortex rings generated through impulsively started jets is studied through using a piston/cylinder arrangement. For a wide range of piston stroke to diameter ratios (L/D), the DPIV results indicate that the flow field generated by large L/D consists of a leading vortex ring followed by a trailing jet. The vorticity field of the formed leading vortex ring is disconnected from that of the trailing jet. On the other hand, flow fields generated by small stroke ratios show only a single vortex ring. The transition between these two distinct states is observed to occur at a stroke ratio of approximately 4, which, in this paper, is referred to as the "formation number". This number indicates the maximum circulation attainable by a vortex ring. The universality of this number was tested by generating vortex rings with different jet exit boundaries, as well as with various non- impulsive piston velocities. The mere existence of the "formation number" is intriguing since it hints at the possibility that nature uses this time scale for some evolutionary incentives such as optimum ejection of blood from the left atrium to the heart's left ventricle or locomotion process where ejection of vortices might have been utilized for the purposes of propulsion.

  16. Detonation initiation on the microsecond time scale: DDTs

    SciTech Connect

    Kuehn, Jeffery A; Kassoy, Dr. David R; Nabity, Mr. Matthew W.; Clarke, Dr. John F.

    2006-01-01

    Spatially resolved, thermal power deposition of limited duration into a finite volume of reactive gas is the initiator for a deflagration-to-detonation transition (DDT) on the microsecond time scale. The reactive Euler equations with one-step Arrhenius kinetics are used to derive novel formulas for velocity and temperature variation that describe the physical phenomena characteristic of DDTs. A nonlinear transformation of the variables is shown to yield a canonical equation system, independent of the activation energy. Numerical solutions of the reactive Euler equations are used to describe the detailed sequence of reactive gas dynamic processes leading to an overdriven planar detonation far from the power deposition location. Results are presented for deposition into a region isolated from the planar boundary of the reactive gas as well as for that adjacent to the boundary. The role of compressions and shocks reflected from the boundary into the partially reacted hot gas is described. The quantitative dependences of DDT evolution on the magnitude of thermal power deposition and activation energy are identified.

  17. Detonation initiation on the microsecond time scale: DDTs

    SciTech Connect

    Kassoy, Dr. David R; Kuehn, Jeffery A; Nabity, Mr. Matthew W.; Clarke, Dr. John F.

    2008-01-01

    Spatially resolved, thermal power deposition of limited duration into a finite volume of reactive gas is the initiator for a deflagration-to-detonation transition (DDT) on the microsecond time scale. The reactive Euler equations with one-step Arrhenius kinetics are used to derive novel formulas for velocity and temperature variation that describe the physical phenomena characteristic of DDTs. A transformation of the variables is shown to yield a canonical equation system, independent of the activation energy. Numerical solutions of the reactive Euler equations are used to describe the detailed sequence of reactive gasdynamic processes leading to an overdriven planar detonation far from the power deposition location. Results are presented for deposition into a region isolated from the planar boundary of the reactive gas as well as for that adjacent to the boundary. The role of compressions and shocks reflected from the boundary into the partially reacted hot gas is described. The quantitative dependences of DDT evolution on the magnitude of thermal power deposition and activation energy are identified.

  18. Super ENSO and global climate oscillations at millennial time scales.

    PubMed

    Stott, Lowell; Poulsen, Christopher; Lund, Steve; Thunell, Robert

    2002-07-12

    The late Pleistocene history of seawater temperature and salinity variability in the western tropical Pacific warm pool is reconstructed from oxygen isotope (delta18O) and magnesium/calcium composition of planktonic foraminifera. Differentiating the calcite delta18O record into components of temperature and local water delta18O reveals a dominant salinity signal that varied in accord with Dansgaard/Oeschger cycles over Greenland. Salinities were higher at times of high-latitude cooling and were lower during interstadials. The pattern and magnitude of the salinity variations imply shifts in the tropical Pacific ocean/atmosphere system analogous to modern El Niño-Southern Oscillation (ENSO). El Niño conditions correlate with stadials at high latitudes, whereas La Niña conditions correlate with interstadials. Millennial-scale shifts in atmospheric convection away from the western tropical Pacific may explain many paleo-observations, including lower atmospheric CO2, N2O, and CH4 during stadials and patterns of extratropical ocean variability that have tropical source functions that are negatively correlated with El Niño.

  19. In vivo Protein Dynamics on the Nanometer Length Scale and Nanosecond Time Scale.

    PubMed

    Anunciado, Divina B; Nguyen, Vyncent P; Hurst, Gregory Blake; Doktycz, Mitchel J; Urban, Volker S; Langan, Paul; Mamontov, Eugene; O'Neill, Hugh M

    2017-04-07

    Selectively-labeled GroEL protein was produced in living deuterated bacterial cells to enhance its neutron scattering signal above that of the intra-cellular milieu. Quasi-elastic neutron scattering shows that the in-cell diffusion coefficient of GroEL was (0.047 ± 0.003)10-10 m2/s, a factor of 4 slower than its diffusion coefficient in buffer solution. Internal protein dynamics showed a relaxation time of (65 ± 6) ps, a factor of 2 slower compared to the protein in solution. Comparison to literature suggests that the effective diffusivity of proteins depends on the length scale being probed. Retardation of in-cell diffusion compared to the buffer becomes more significant with the increasing probe length scale suggesting that intra-cellular diffusion of biomolecules is non-uniform over the cellular volume. The approach outlined here enables investigation of protein dynamics within living cells to open up new lines of research using "in-cell neutron scattering" to study the dynamics of complex biomolecular systems.

  20. The forward and adjoint sensitivity methods of glacial isostatic adjustment: Existence, uniqueness and time-differencing scheme

    NASA Astrophysics Data System (ADS)

    Martinec, Zdenek; Sasgen, Ingo; Velimsky, Jakub

    2014-05-01

    In this study, two new methods for computing the sensitivity of the glacial isostatic adjustment (GIA) forward solution with respect to the Earth's mantle viscosity are presented: the forward sensitivity method (FSM) and the adjoint sensitivity method (ASM). These advanced formal methods are based on the time-domain,spectral-finite element method for modelling the GIA response of laterally heterogeneous earth models developed by Martinec (2000). There are many similarities between the forward method and the FSM and ASM for a general physical system. However, in the case of GIA, there are also important differences between the forward and sensitivity methods. The analysis carried out in this study results in the following findings. First, the forward method of GIA is unconditionally solvable, regardless of whether or not a combined ice and ocean-water load contains the first-degree spherical harmonics. This is also the case for the FSM, however, the ASM must in addition be supplemented by nine conditions on the misfit between the given GIA-related data and the forward model predictions to guarantee the existence of a solution. This constrains the definition of data least-squares misfit. Second, the forward method of GIA implements an ocean load as a free boundary-value function over an ocean area with a free geometry. That is, an ocean load and the shape of ocean, the so-called ocean function, are being sought, in addition to deformation and gravity-increment fields, by solving the forward method. The FSM and ASM also apply the adjoint ocean load as a free boundary-value function, but instead over an ocean area with the fixed geometry given by the ocean function determined by the forward method. In other words, a boundary-value problem for the forward method of GIA is free with respect to determining (i) the boundary-value data over an ocean area and (ii) the ocean function itself, while the boundary-value problems for the FSM and ASM are free only with respect to

  1. Confronting remote sensing product with ground base measurements across time and scale

    NASA Astrophysics Data System (ADS)

    Pourmokhtarian, A.; Dietze, M.

    2015-12-01

    Ecosystem models are essential tools in forecasting ecosystem responses to global climate change. One of the most challenging issues in ecosystem modeling is scaling while preserving landscape characteristics and minimizing loss of information, when moving from point observation to regional scale. There is a keen interest in providing accurate inputs for ecosystem models which represent ecosystem initial state conditions. Remote sensing land cover products, such as Landsat NLCD and MODIS MCD12Q1, provide extensive spatio-temporal coverage but do not capture forest composition and structure. Lidar and hyperspectral have the potential to meet this need but lack sufficient spatial and historical coverage. Forest inventory measurements provide detailed information on the landscape but in a very small footprint. Combining inventory and land cover could improve estimates of ecosystem state and characteristic across time and space. This study focuses on the challenges associated with fusing and scaling the US Forest Service FIA database and NLCD across regional scales to quantify ecosystem characteristics and reduce associated uncertainties. Across Southeast of U.S. 400 stratified random samples of 10x10 km2 landscapes were selected. Data on plant density, species, age, and DBH of trees in FIA plots within each site were extracted. Using allometry equations, the canopy cover of different plant functional types (PFTs) was estimated using a PPA-style canopy model and used to assign each inventory plot to a land cover class. Inventory and land cover were fused in a Bayesian model that adjusts the fractional coverage of inventory plots while accounting for multiple sources of uncertainty. Results were compared to estimates derived from inventory alone, land cover alone, and model spin-up alone. Our findings create a framework of data assimilation to better interpret remote sensing data using ground-based measurements.

  2. Fetal development assessed by heart rate patterns--time scales of complex autonomic control.

    PubMed

    Hoyer, Dirk; Nowack, Samuel; Bauer, Stephan; Tetschke, Florian; Ludwig, Stefan; Moraru, Liviu; Rudoph, Anja; Wallwitz, Ulrike; Jaenicke, Franziska; Haueisen, Jens; Schleussner, Ekkehard; Schneider, Uwe

    2012-03-01

    The increasing functional integrity of the organism during fetal maturation is connected with increasing complex internal coordination. We hypothesize that time scales of complexity and dynamics of heart rate patterns reflect the increasing inter-dependencies within the fetal organism during its prenatal development. We investigated multi-scale complexity, time irreversibility and fractal scaling from 73 fetal magnetocardiographic 30min recordings over the third trimester. We found different scale dependent complexity changes, increasing medium scale time irreversibility, and increasing long scale fractal correlations (all changes p<0.05). The results confirm the importance of time scales to be considered in fetal heart rate based developmental indices.

  3. Uncertainty of pulsar time scale due to the gravitational time delay of intervening stars and MACHOs

    NASA Astrophysics Data System (ADS)

    Hosokawa, M.; Ohnishi, K.; Fukushima, T.

    1999-11-01

    As a cause of possible uncertainty of the pulsar time scale, we investigated the gravitational time delay due to the motion of the intervening stars and MACHOs. We calculated the amplitudes of cubic, quartic and quintic trends in the residual of the times of arrival (TOA) of the pulse from pulsar due to gravitational time delay. It is shown that the cubic trend becomes dominant when the timing measurement accuracy is relatively high, say higher than 10 micro second at the case of the intervening star's mass is 1 M_sun. The optical depth of three trends are shown as a function of TOA residual. The optical depth for detecting the cubic trend is approximately proportional to the 2/3 th power of the mass over the timing measurement accuracy, and to the square of the observational period. Typical order of this optical depth is 0.1 for a pulsar of a few kpc distance and observed over 10 years with the timing measurement accuracy of 10 ns.

  4. Probing Time-Dependent Molecular Dipoles on the Attosecond Time Scale

    NASA Astrophysics Data System (ADS)

    Neidel, Ch.; Klei, J.; Yang, C.-H.; Rouzée, A.; Vrakking, M. J. J.; Klünder, K.; Miranda, M.; Arnold, C. L.; Fordell, T.; L'Huillier, A.; Gisselbrecht, M.; Johnsson, P.; Dinh, M. P.; Suraud, E.; Reinhard, P.-G.; Despré, V.; Marques, M. A. L.; Lépine, F.

    2013-07-01

    Photoinduced molecular processes start with the interaction of the instantaneous electric field of the incident light with the electronic degrees of freedom. This early attosecond electronic motion impacts the fate of the photoinduced reactions. We report the first observation of attosecond time scale electron dynamics in a series of small- and medium-sized neutral molecules (N2, CO2, and C2H4), monitoring time-dependent variations of the parent molecular ion yield in the ionization by an attosecond pulse, and thereby probing the time-dependent dipole induced by a moderately strong near-infrared laser field. This approach can be generalized to other molecular species and may be regarded as a first example of molecular attosecond Stark spectroscopy.

  5. Longitudinal associations between personality profile stability and adjustment in college students: distinguishing among overall stability, distinctive stability, and within-time normativeness.

    PubMed

    Klimstra, Theo A; Luyckx, Koen; Hale, William W; Goossens, Luc; Meeus, Wim H J

    2010-08-01

    In the present study, longitudinal associations of 3 aspects of personality profile stability (i.e., overall stability, distinctive stability, and within-time normativeness) with 3 adjustment measures (i.e., depressive symptoms, self-esteem, and delinquency) were examined, using 4 waves of longitudinal data on a Belgian college sample (N=565). Longitudinal path models revealed strong longitudinal associations between adjustment and overall stability. Subsequent analyses showed that it is not the degree to which one's personality profile consistently diverges from the average personality profile within a population (i.e., distinctive stability) that is related to adjustment but the degree to which a personality profile of an individual matches the average personality profile within the sample at a certain point in time (i.e., within-time normativeness). The current study thereby underscores the importance of distinguishing normativeness and distinctiveness when examining personality profile stability.

  6. EON: software for long time simulations of atomic scale systems

    NASA Astrophysics Data System (ADS)

    Chill, Samuel T.; Welborn, Matthew; Terrell, Rye; Zhang, Liang; Berthet, Jean-Claude; Pedersen, Andreas; Jónsson, Hannes; Henkelman, Graeme

    2014-07-01

    The EON software is designed for simulations of the state-to-state evolution of atomic scale systems over timescales greatly exceeding that of direct classical dynamics. States are defined as collections of atomic configurations from which a minimization of the potential energy gives the same inherent structure. The time evolution is assumed to be governed by rare events, where transitions between states are uncorrelated and infrequent compared with the timescale of atomic vibrations. Several methods for calculating the state-to-state evolution have been implemented in EON, including parallel replica dynamics, hyperdynamics and adaptive kinetic Monte Carlo. Global optimization methods, including simulated annealing, basin hopping and minima hopping are also implemented. The software has a client/server architecture where the computationally intensive evaluations of the interatomic interactions are calculated on the client-side and the state-to-state evolution is managed by the server. The client supports optimization for different computer architectures to maximize computational efficiency. The server is written in Python so that developers have access to the high-level functionality without delving into the computationally intensive components. Communication between the server and clients is abstracted so that calculations can be deployed on a single machine, clusters using a queuing system, large parallel computers using a message passing interface, or within a distributed computing environment. A generic interface to the evaluation of the interatomic interactions is defined so that empirical potentials, such as in LAMMPS, and density functional theory as implemented in VASP and GPAW can be used interchangeably. Examples are given to demonstrate the range of systems that can be modeled, including surface diffusion and island ripening of adsorbed atoms on metal surfaces, molecular diffusion on the surface of ice and global structural optimization of nanoparticles.

  7. A Group Simulation of the Development of the Geologic Time Scale.

    ERIC Educational Resources Information Center

    Bennington, J. Bret

    2000-01-01

    Explains how to demonstrate to students that the relative dating of rock layers is redundant. Uses two column diagrams to simulate stratigraphic sequences from two different geological time scales and asks students to complete the time scale. (YDS)

  8. Advances in the Geomagnetic Polarity Time Scale--Developments and Integration with the Geologic Time Scale and Future Directions (Invited)

    NASA Astrophysics Data System (ADS)

    Geissman, J. W.

    2013-12-01

    We celebrate the 50th anniversary of the publication of the Vine-Matthews/Morley-Larochelle hypothesis (Vine and Matthews, Nature, 1963, v. 199, #4897, p. 947-949), which integrated marine magnetic anomaly data with a rapidly evolving terrestrial-based geomagnetic polarity time scale (GPTS). The five decades of research since 1963 have witnessed the expansion and refinement of the GPTS, to the point where ages of magnetochron boundaries, in particular in the Cenozoic, can be estimated with uncertainties better than 0.1%. This has come about by integrating high precision geochronology, cyclostratigraphy at different time scales, and magnetic polarity data of increased quality, allowing extension of the GPTS back into the Paleozoic. The definition of a high resolution GPTS across time intervals of major events in Earth history has been of particular interest, as a specific magnetochron boundary correlated across several localities represents a singular global datum. A prime example is the end Permian, when some 80 percent of genus-level extinctions and a range of 75 to 96 percent species- level extinctions took place in the marine environment, depending upon clade. Much our understanding of the Permian-Triassic boundary (PTB) is based on relatively slowly deposited marine sequences in Europe and Asia, yet a growing body of observations from continental sequences demonstrates a similar extinction event and new polarity data from some of these sequences are critical to refining the GPTS across the PTB and testing synchronicity of marine and terrestrial events. The data show that the end-Permian ecological crisis and the conodont calibrated biostratigraphic PTB both followed a key polarity reversal between a short interval (subchron) of reverse polarity to a considerably longer (chron) of normal polarity. Central European Basin strata (continental Permian and epicontinental Triassic) yield high-quality magnetic polarity stratigraphic records (Szurlies et al., 2003

  9. Noether theorem for nonholonomic nonconservative mechanical systems in phase space on time scales

    NASA Astrophysics Data System (ADS)

    Zu, Qi-hang; Zhu, Jian-qing

    2016-08-01

    The paper focuses on studying the Noether theorem for nonholonomic nonconservative mechanical systems in phase space on time scales. First, the Hamilton equations of nonholonomic nonconservative systems on time scales are established, which is based on the Lagrange equations for nonholonomic systems on time scales. Then, based upon the quasi-invariance of Hamilton action of systems under the infinitesimal transformations with respect to the time and generalized coordinate on time scale, the Noether identity and the conserved quantity of nonholonomic nonconservative systems on time scales are obtained. Finally, an example is presented to illustrate the application of the results.

  10. Large variations in diurnal and seasonal patterns of sap flux among Aleppo pine trees in semi-arid forest reflect tree-scale hydraulic adjustments

    NASA Astrophysics Data System (ADS)

    Preisler, Yakir; Tatarinov, Fyodor; Rohatyn, Shani; Rotenberg, Eyal; Grünzweig, José M.; Klein, Tamir; Yakir, Dan

    2015-04-01

    Adjustments and adaptations of trees to drought vary across different biomes, species and habitats, with important implications for tree mortality and forest dieback associated with global climate change. The aim of this study was to investigate possible links between the patterns of variations in water flux dynamics and drought resistance in Aleppo pine (Pinus halepensis) trees in a semi-arid stand (Yatir forest, Israel). We measured sap flow (SF) and variations in stem diameter, complemented with short-term campaigns of leaf-scale measurements of water vapour and CO2 gas exchange, branch water potential and hydraulic conductivity, as well as eddy flux measurements of evapotranspiration (ET) from a permanent flux tower at the site. SF rates were well synchronized with ET, reaching maximum rates during midday in all trees during the rainy season (Dec-Apr). However, during the dry season (May-Nov), the daily trend in the rates of SF greatly varied among trees, allowing classification into three tree classes: 1) trees with SF maximum rate constantly occurring in mid-day (12:00-13:00); 2)trees showing a shift to an early morning SF peak (04:00-06:00); and 3) trees shifting their daily SF peak to the evening (16:00-18:00). This classification did not change during the four years study period, between 2010 and 2014. Checking for correlation of tree parameters as DBH, tree height, crown size, and competition indices with rates of SF, indicated that timing of maximum SF in summer was mainly related to tree size (DBH), when large trees tended to have a later SF maximum. Dendrometer measurements indicated that large trees (high DBH) had maximum daily diameter in the morning during summer and winter, while small trees typically had maximum daily diameter during midday and afternoon in winter and summer, respectively. Leaf-scale transpiration (T) measurements showed typical morning peak in all trees, and another peak in the afternoon in large trees only. Different diurnal

  11. Interaction between Purkinje Cells and Inhibitory Interneurons May Create Adjustable Output Waveforms to Generate Timed Cerebellar Output

    PubMed Central

    Hong, Simon; Optican, Lance M.

    2008-01-01

    We develop a new model that explains how the cerebellum may generate the timing in classical delay eyeblink conditioning. Recent studies show that both Purkinje cells (PCs) and inhibitory interneurons (INs) have parallel signal processing streams with two time scales: an AMPA receptor-mediated fast process and a metabotropic glutamate receptor (mGluR)-mediated slow process. Moreover, one consistent finding is an increased excitability of PC dendrites (in Larsell's lobule HVI) in animals when they acquire the classical delay eyeblink conditioning naturally, in contrast to in vitro studies, where learning involves long-term depression (LTD). Our model proposes that the delayed response comes from the slow dynamics of mGluR-mediated IP3 activation, and the ensuing calcium concentration change, and not from LTP/LTD. The conditioned stimulus (tone), arriving on the parallel fibers, triggers this slow activation in INs and PC spines. These excitatory (from PC spines) and inhibitory (from INs) signals then interact at the PC dendrites to generate variable waveforms of PC activation. When the unconditioned stimulus (puff), arriving on the climbing fibers, is coupled frequently with this slow activation the waveform is amplified (due to an increased excitability) and leads to a timed pause in the PC population. The disinhibition of deep cerebellar nuclei by this timed pause causes the delayed conditioned response. This suggested PC-IN interaction emphasizes a richer role of the INs in learning and also conforms to the recent evidence that mGluR in the cerebellar cortex may participate in slow motor execution. We show that the suggested mechanism can endow the cerebellar cortex with the versatility to learn almost any temporal pattern, in addition to those that arise in classical conditioning. PMID:18648667

  12. Beyond Desktop Management: Scaling Task Management in Space and Time

    DTIC Science & Technology

    2004-08-01

    infrastructure scales well with the number of task definitions, and with the number of services in the environment. References 1 Abowd, G., Mynatt , E.: Charting...Intel Research Report IRP-TR-02-01, Jun. 1, 2002. 15 MacIntyre, B., Mynatt , E., Voida, S., Hansen, K., Tullio, J., Corso, G.: Support For Multitasking

  13. Global terrestrial biogeochemistry: Perturbations, interactions, and time scales

    SciTech Connect

    Braswell, B.H. Jr.

    1996-12-01

    Global biogeochemical processes are being perturbed by human activity, principally that which is associated with industrial activity and expansion of urban and agricultural complexes. Perturbations have manifested themselves at least since the beginning of the 19th Century, and include emissions of CO{sub 2} and other pollutants from fossil fuel combustion, agricultural emissions of reactive nitrogen, and direct disruption of ecosystem function through land conversion. These perturbations yield local impacts, but there are also global consequences that are the sum of local-scale influences. Several approaches to understanding the global-scale implications of chemical perturbations to the Earth system are discussed. The lifetime of anthropogenic CO{sub 2} in the atmosphere is an important concept for understanding the current and future commitment to an altered atmospheric heat budget. The importance of the terrestrial biogeochemistry relative to the lifetime of excess CO{sub 2} is demonstrated using dynamic, aggregated models of the global carbon cycle.

  14. Identification of candidate network hubs involved in metabolic adjustments of rice under drought stress by integrating transcriptome data and genome-scale metabolic network.

    PubMed

    Mohanty, Bijayalaxmi; Kitazumi, Ai; Cheung, C Y Maurice; Lakshmanan, Meiyappan; de los Reyes, Benildo G; Jang, In-Cheol; Lee, Dong-Yup

    2016-01-01

    In this study, we have integrated a rice genome-scale metabolic network and the transcriptome of a drought-tolerant rice line, DK151, to identify the major transcriptional regulators involved in metabolic adjustments necessary for adaptation to drought. This was achieved by examining the differential expressions of transcription factors and metabolic genes in leaf, root and young panicle of rice plants subjected to drought stress during tillering, booting and panicle elongation stages. Critical transcription factors such as AP2/ERF, bZIP, MYB and NAC that control the important nodes in the gene regulatory pathway were identified through correlative analysis of the patterns of spatio-temporal expression and cis-element enrichment. We showed that many of the candidate transcription factors involved in metabolic adjustments were previously linked to phenotypic variation for drought tolerance. This approach represents the first attempt to integrate models of transcriptional regulation and metabolic pathways for the identification of candidate regulatory genes for targeted selection in rice breeding.

  15. Exploring large scale time-series data using nested timelines

    NASA Astrophysics Data System (ADS)

    Xie, Zaixian; Ward, Matthew O.; Rundensteiner, Elke A.

    2013-01-01

    When data analysts study time-series data, an important task is to discover how data patterns change over time. If the dataset is very large, this task becomes challenging. Researchers have developed many visualization techniques to help address this problem. However, little work has been done regarding the changes of multivariate patterns, such as linear trends and clusters, on time-series data. In this paper, we describe a set of history views to fill this gap. This technique works under two modes: merge and non-merge. For the merge mode, merge algorithms were applied to selected time windows to generate a change-based hierarchy. Contiguous time windows having similar patterns are merged first. Users can choose different levels of merging with the tradeoff between more details in the data and less visual clutter in the visualizations. In the non-merge mode, the framework can use natural hierarchical time units or one defined by domain experts to represent timelines. This can help users navigate across long time periods. Gridbased views were designed to provide a compact overview for the history data. In addition, MDS pattern starfields and distance maps were developed to enable users to quickly investigate the degree of pattern similarity among different time periods. The usability evaluation demonstrated that most participants could understand the concepts of the history views correctly and finished assigned tasks with a high accuracy and relatively fast response time.

  16. Chip Scale Ultra-Stable Clocks: Miniaturized Phonon Trap Timing Units for PNT of CubeSats

    NASA Technical Reports Server (NTRS)

    Rais-Zadeh, Mina; Altunc, Serhat; Hunter, Roger C.; Petro, Andrew

    2016-01-01

    The Chip Scale Ultra-Stable Clocks (CSUSC) project aims to provide a superior alternative to current solutions for low size, weight, and power timing devices. Currently available quartz-based clocks have problems adjusting to the high temperature and extreme acceleration found in space applications, especially when scaled down to match small spacecraft size, weight, and power requirements. The CSUSC project aims to utilize dual-mode resonators on an ovenized platform to achieve the exceptional temperature stability required for these systems. The dual-mode architecture utilizes a temperature sensitive and temperature stable mode simultaneously driven on the same device volume to eliminate ovenization error while maintaining extremely high performance. Using this technology it is possible to achieve parts-per-billion (ppb) levels of temperature stability with multiple orders of magnitude smaller size, weight, and power.

  17. Time evolution of galaxy scaling relations in cosmological simulations

    NASA Astrophysics Data System (ADS)

    Taylor, Philip; Kobayashi, Chiaki

    2016-12-01

    We predict the evolution of galaxy scaling relationships from cosmological, hydrodynamical simulations, that reproduce the scaling relations of present-day galaxies. Although we do not assume co-evolution between galaxies and black holes a priori, we are able to reproduce the black hole mass-velocity dispersion relation. This relation does not evolve, and black holes actually grow along the relation from significantly less massive seeds than have previously been used. AGN feedback does not very much affect the chemical evolution of our galaxies. In our predictions, the stellar mass-metallicity relation does not change its shape, but the metallicity significantly increases from z ˜ 2 to z ˜ 1, while the gas-phase mass-metallicity relation does change shape, having a steeper slope at higher redshifts (z ≲ 3). Furthermore, AGN feedback is required to reproduce observations of the most massive galaxies at z ≲ 1, specifically their positions on the star formation main sequence and galaxy mass-size relation.

  18. Long time scaling behaviour for diffusion with resetting and memory

    NASA Astrophysics Data System (ADS)

    Boyer, Denis; Evans, Martin R.; Majumdar, Satya N.

    2017-02-01

    We consider a continuous-space and continuous-time diffusion process under resetting with memory. A particle resets to a position chosen from its trajectory in the past according to a memory kernel. Depending on the form of the memory kernel, we show analytically how different asymptotic behaviours of the variance of the particle position emerge at long times. These range from standard diffusive ({σ2}∼ t ) all the way to anomalous ultraslow growth {σ2}∼ \\ln \\ln t .

  19. Time scales of variability associated with Nordeste precipitation

    SciTech Connect

    Sperber, K.R. ); Hameed, S. . Inst. for Terrestrial and Planetary Atmospheres)

    1991-06-01

    The Northeast section of Brazil, called the Nordeste, experiences flood and drought regimes as the norm rather than the exception. This region receives its principal dose of precipitation during March--April, subsequent to regions to the west and north due to its proximity to the southern Atlantic subtropical high. A weakening of this anticyclone and strengthening of its counterpart in the northern Atlantic during this season results in the farthest southward penetration of the ITCZ and the Nordeste rainy season. Fluctuations in the large-scale circulation of the atmosphere, such as ENSO, modulate the track of the ITCZ causing the interannual drought or flood conditions that plague this region. Empirical studies have shown that Nordeste rainfall is related to the sea-surface temperature (SST) in the tropical Atlantic Ocean. 16 refs., 4 figs.

  20. Structure and dating errors in the geologic time scale and periodicity in mass extinctions

    NASA Technical Reports Server (NTRS)

    Stothers, Richard B.

    1989-01-01

    Structure in the geologic time scale reflects a partly paleontological origin. As a result, ages of Cenozoic and Mesozoic stage boundaries exhibit a weak 28-Myr periodicity that is similar to the strong 26-Myr periodicity detected in mass extinctions of marine life by Raup and Sepkoski. Radiometric dating errors in the geologic time scale, to which the mass extinctions are stratigraphically tied, do not necessarily lessen the likelihood of a significant periodicity in mass extinctions, but do spread the acceptable values of the period over the range 25-27 Myr for the Harland et al. time scale or 25-30 Myr for the DNAG time scale. If the Odin time scale is adopted, acceptable periods fall between 24 and 33 Myr, but are not robust against dating errors. Some indirect evidence from independently-dated flood-basalt volcanic horizons tends to favor the Odin time scale.

  1. Modelling financial markets with agents competing on different time scales and with different amount of information

    NASA Astrophysics Data System (ADS)

    Wohlmuth, Johannes; Andersen, Jørgen Vitting

    2006-05-01

    We use agent-based models to study the competition among investors who use trading strategies with different amount of information and with different time scales. We find that mixing agents that trade on the same time scale but with different amount of information has a stabilizing impact on the large and extreme fluctuations of the market. Traders with the most information are found to be more likely to arbitrage traders who use less information in the decision making. On the other hand, introducing investors who act on two different time scales has a destabilizing effect on the large and extreme price movements, increasing the volatility of the market. Closeness in time scale used in the decision making is found to facilitate the creation of local trends. The larger the overlap in commonly shared information the more the traders in a mixed system with different time scales are found to profit from the presence of traders acting at another time scale than themselves.

  2. Probing Single-Photon Ionization on the Attosecond Time Scale

    SciTech Connect

    Kluender, K.; Dahlstroem, J. M.; Gisselbrecht, M.; Fordell, T.; Swoboda, M.; Guenot, D.; Johnsson, P.; Mauritsson, J.; L'Huillier, A.; Caillat, J.; Maquet, A.; Taieeb, R.

    2011-04-08

    We study photoionization of argon atoms excited by attosecond pulses using an interferometric measurement technique. We measure the difference in time delays between electrons emitted from the 3s{sup 2} and from the 3p{sup 6} shell, at different excitation energies ranging from 32 to 42 eV. The determination of photoemission time delays requires taking into account the measurement process, involving the interaction with a probing infrared field. This contribution can be estimated using a universal formula and is found to account for a substantial fraction of the measured delay.

  3. Space Charge Models for Particle Tracking on Long Time Scales

    SciTech Connect

    Holmes, Jeffrey A; Cousineau, Sarah M; Shishlo, Andrei P; Potts III, Robert E

    2013-01-01

    In order to efficiently track charged particles over long times, most tracking codes use either analytic charge distributions or particle-in-cell (PIC) methods based on fast Fourier transforms (FFTs). While useful for theoretical studies, analytic distribution models do not allow accurate simulation of real machines. PIC calculations can utilize realistic space charge distributions, but these methods suffer from the presence of discretization errors. We examine the situation for particle tracking with space charge over long times, and consider possible ideas to improve the accuracy of such calculations.

  4. Singular perturbations and time scales (SPaTS) in discrete control systems-An overview

    NASA Technical Reports Server (NTRS)

    Naidu, D. S.; Hibey, J. L.; Price, D. B.

    1987-01-01

    Recent developments in the theory of singular perturbations and time scales (SPaTS) in discrete control systems are reviewed. Sources of discrete models and the effect of the discretizing interval on the model are examined. The analysis of two-time scale systems is presented to bring out typical characteristic features of SPaTS. In the control of the two-time scale systems, the important issue of multirate sampling is addressed.

  5. Computer Response Time Measurements of Mood, Fatigue and Symptom Scale Items: Implications for Scale Response Time Uses.

    ERIC Educational Resources Information Center

    Ryman, David H.; And Others

    1988-01-01

    Describes study conducted with U.S. Marine Corps enlisted personnel to measure response time to computer-administered questionnaire items, and to evaluate how measurement of response time might be useful in various research areas. Topics addressed include mood states; the occurrence of straight lining; and experimental effects of sleep loss and…

  6. Time Scales in the JPL and CfA Ephemerides

    NASA Technical Reports Server (NTRS)

    Standish, E. M.

    1998-01-01

    Over the past decades, the IAU has repeatedly attempted to correct its definition of the basic fundamental argument used in the emphemerides. Finally, they have defined a time system which is physically possible, according to the accepted standard theory of gravitation.

  7. Brain connectivity at different time-scales measured with EEG

    PubMed Central

    Koenig, T; Studer, D; Hubl, D; Melie, L; Strik, W.K

    2005-01-01

    We present an overview of different methods for decomposing a multichannel spontaneous electroencephalogram (EEG) into sets of temporal patterns and topographic distributions. All of the methods presented here consider the scalp electric field as the basic analysis entity in space. In time, the resolution of the methods is between milliseconds (time-domain analysis), subseconds (time- and frequency-domain analysis) and seconds (frequency-domain analysis). For any of these methods, we show that large parts of the data can be explained by a small number of topographic distributions. Physically, this implies that the brain regions that generated one of those topographies must have been active with a common phase. If several brain regions are producing EEG signals at the same time and frequency, they have a strong tendency to do this in a synchronized mode. This view is illustrated by several examples (including combined EEG and functional magnetic resonance imaging (fMRI)) and a selective review of the literature. The findings are discussed in terms of short-lasting binding between different brain regions through synchronized oscillations, which could constitute a mechanism to form transient, functional neurocognitive networks. PMID:16087445

  8. Scaling properties of induction times in heterogeneous nucleation

    NASA Technical Reports Server (NTRS)

    Shneidman, Vitaly A.; Weinberg, Michael C.

    1991-01-01

    The heterogeneous-to-homogeneous induction time ratio is obtained as a function of the contact angle in the asymptotic limit of a high nucleation barrier. Model-dependent corrections to t(ind) are investigated, particularly in cases of the Turnbull-Fisher model used in numerical simulations by Greer et al. (1990).

  9. Hamilton-Jacobi-Bellman equations and approximate dynamic programming on time scales.

    PubMed

    Seiffertt, John; Sanyal, Suman; Wunsch, Donald C

    2008-08-01

    The time scales calculus is a key emerging area of mathematics due to its potential use in a wide variety of multidisciplinary applications. We extend this calculus to approximate dynamic programming (ADP). The core backward induction algorithm of dynamic programming is extended from its traditional discrete case to all isolated time scales. Hamilton-Jacobi-Bellman equations, the solution of which is the fundamental problem in the field of dynamic programming, are motivated and proven on time scales. By drawing together the calculus of time scales and the applied area of stochastic control via ADP, we have connected two major fields of research.

  10. Inducing and Probing Attosecond-Time-Scale Electronic Wavefunction Beating

    NASA Astrophysics Data System (ADS)

    Ott, Christian; Raith, Philipp; Pfeifer, Thomas

    2010-03-01

    Much of the current interest in the field of ultrafast science focuses on the observation of attosecond dynamics of electronic wavepackets. These experiments typically require attosecond pulses either for pumping or probing such dynamics and/or are limited to observing electronic states embedded in the ionization continuum of atoms. Here, we present numerical evidence---based on solutions of the time-dependent Schr"odinger equation for a 1-dimensional model atom---that a pump--probe scheme with two few-cycle femtosecond laser pulses provides interferometric access to sub-femtosecond electron wavepacket dynamics. Both continuum- and bound-state electronic wavepacket interference can be simultaneously observed by recording and analyzing time-delay dependent interferences in the ATI spectrum of an atom. Both dipole-allowed and forbidden electronic transition information can be extracted from the data, making this approach a versatile and comprehensive spectroscopic method for probing the bound electronic level structure of an atom.

  11. Large Scale Time Series Microscopy of Neovessel Growth During Angiogenesis

    PubMed Central

    Utzinger, Urs; Baggett, Brenda; Weiss, Jeffrey A.; Hoying, James B.; Edgar, Lowell T.

    2016-01-01

    During angiogenesis, growing neovessels must effectively navigate through the tissue space as they elongate and subsequently integrate into a microvascular network. While time series microscopy has provided insight into the cell activities within single growing neovessel sprouts, less in known concerning neovascular dynamics within a large angiogenic tissue bed. Here we developed a time lapse imaging technique that allowed visualization and quantification of sprouting neovessels as they form and grow away from adult parent microvessels in 3-dimensions over cubic millimeters of matrix volume, over the course of up to 5 days on the microscope. Using a new image acquisition procedure and novel morphometric analysis tools, we quantified the elongation dynamics of growing neovessels and found an episodic growth pattern accompanied by fluctuations in neovessel diameter. Average elongation rate was 5 microns/hour for individual vessels, but we also observed considerable dynamic variability in growth character including retraction and complete regression of entire neovessels. We observed neovessel-to-neovessel directed growth over tens to hundreds of microns preceding tip-to-tip inosculation. As we have previously described via static 3D imaging at discrete time points, we identified different collagen fibril structures associated with the growing neovessel tip and stalk, and observed the coordinated alignment of growing neovessels in a deforming matrix. Overall analysis of the entire image volumes demonstrated that although individual neovessels exhibited episodic growth and regression, there was a monotonic increase in parameters associated with the entire vascular bed such as total network length and number of branch points. This new time-lapse imaging approach corroborated morphometric changes in individual neovessels described by us and others, as well as captured dynamic neovessel behaviors unique to days-long angiogenesis within the forming neovascular network. PMID

  12. Bi-Plasma Interactions on Femtosecond Time-Scales

    SciTech Connect

    Not Available

    2011-06-22

    Ultrafast THz radiation has important applications in materials science studies, such as characterizing transport properties, studying the vibrational response of materials, and in recent years, controlling materials and elucidating their response in intense electromagnetic fields. THz fields can be generated in a lab setting using various plasma-based techniques. This study seeks to examine the interaction of two plasmas in order to better understand the fundamental physics associated with femtosecond filamentation processes and to achieve more efficient THz generation in a lab setting. The intensity of fluorescence in the region of overlap was measured as a function of polarization, power, and relative time delay of the two plasma-generating laser beams. Results of time dependent intensity studies indicate strikingly similar behaviors across polarizations and power levels; a sudden intensity spike was observed at time-zero, followed by a secondary maxima and subsequent decay to the initial plasma intensity. Dependence of the intensity on the power through either beam arm was also observed. Spectral studies of the enhanced emission were also carried out. Although this physical phenomenon is still not fully understood, future studies, including further spectral analysis of the fluorescence overlap, could yield new insight into the ultrafast processes occurring at the intersection of femtosecond filaments, and would provide a better understanding of the mechanisms for enhanced THz production.

  13. Chiropractic Adjustment

    MedlinePlus

    ... structural alignment and improve your body's physical function. Low back pain, neck pain and headache are the most common ... treated. Chiropractic adjustment can be effective in treating low back pain, although much of the research done shows only ...

  14. Adjustment disorder

    MedlinePlus

    ... from other people Skipped heartbeats and other physical complaints Trembling or twitching To have adjustment disorder, you ... ADAM Health Solutions. About MedlinePlus Site Map FAQs Customer Support Get email updates Subscribe to RSS Follow ...

  15. Simultaneous storm time equatorward and poleward large-scale TIDs on a global scale

    NASA Astrophysics Data System (ADS)

    Habarulema, John Bosco; Katamzi, Zama Thobeka; Yizengaw, Endawoke; Yamazaki, Yosuke; Seemala, Gopi

    2016-07-01

    We report on the first simultaneous observations of poleward and equatorward traveling ionospheric disturbances (TIDs) during the same geomagnetic storm period on a global scale. While poleward propagating TIDs originate from the geomagnetic equator region, equatorward propagating TIDs are launched from the auroral regions. On a global scale, we use total electron content observations from the Global Navigation Satellite Systems to show that these TIDs existed over South American, African, and Asian sectors. The American and African sectors exhibited predominantly strong poleward TIDs, while the Asian sector recorded mostly equatorward TIDs which crossed the geomagnetic equator to either hemisphere on 9 March 2012. However, both poleward and equatorward TIDs are simultaneously present in all three sectors. Using a combination of ground-based magnetometer observations and available low-latitude radar (JULIA) data, we have established and confirmed that poleward TIDs of geomagnetic equator origin are due to ionospheric electrodynamics, specifically changes in E × B vertical drift after the storm onset.

  16. The Time-Scaling Issue in the Frequency Analysis of Multidimensional Extreme Events

    NASA Astrophysics Data System (ADS)

    Gonzalez, J.; Valdes, J. B.

    2004-05-01

    Extreme events, such as droughts, appear as a period of time where water availability differ exceptionally from normal condition. Several characteristic of this departure from the normality are important in analyzing droughts recurrence frequency (e.g. magnitude, maximum intensity, duration, severity,.). In this kind of problems, the time scale applied in the analyses may become an issue when applying conventional frequency analysis approaches, generally based on the run theory. Usually few (one or two) main event-characteristics may be used, and when the time-scale changes in orders of magnitude, the derived frequency significantly changes, so poor characterization is achieved. For example, sort time-scale empathies characteristic such as intensity, but long time scale does magnitude. That variability may be overcome using a new approach, where events are threatened as in-time-multidimensional. This is studied in this work by comparing analysis applying conventional approach and the new multidimensional approach, and using from daily to decadal time scale. The improve in the performance of applying multidimensional technique, whit which frequency remains characterized even using different time-scale order of magnitude, results the main outcome of the study. The ability of implicitly incorporate all event feature in the time distribution, made possible characterize the events, independently of the time-scale, if the scale does not hide the extreme features.

  17. Quantifying the uncertainty of the annular mode time scale and the role of the stratosphere

    NASA Astrophysics Data System (ADS)

    Kim, Junsu; Reichler, Thomas

    2016-07-01

    The proper simulation of the annular mode time scale may be regarded as an important benchmark for climate models. Previous research demonstrated that this time scale is systematically overestimated by climate models. As suggested by the fluctuation-dissipation theorem, this may imply that climate models are overly sensitive to external forcings. Previous research also made it clear that calculating the AM time scale is a slowly converging process, necessitating relatively long time series and casting doubts on the usefulness of the historical reanalysis record to constrain climate models in terms of the annular mode time scale. Here, we use long control simulations with the coupled and uncoupled version of the GFDL climate model, CM2.1 and AM2.1, respectively, to study the effects of internal atmospheric variability and forcing from the lower boundary on the stability of the annular mode time scale. In particular, we ask whether a model's annular mode time scale and dynamical sensitivity can be constrained from the 50-year-long reanalysis record. We find that internal variability attaches large uncertainty to the annular mode time scale when diagnosed from decadal records. Even under the fixed forcing conditions of our long control run at least 100 years of data are required in order to keep the uncertainty in the annular mode time scale of the Northern Hemisphere to 10 %; over the Southern Hemisphere, the required length increases to 200 years. If nature's annular mode time scale over the Northern Hemisphere is similarly variable, there is no guarantee that the historical reanalysis record is a fully representative target for model evaluation. Over the Southern Hemisphere, however, the discrepancies between model and reanalysis are sufficiently large to conclude that the model is unable to reproduce the observed time scale structure correctly. The effects of ocean coupling lead to a considerable increase in time scale and uncertainty in time scale, effects which

  18. Continuous-wave laser particle conditioning: Thresholds and time scales

    NASA Astrophysics Data System (ADS)

    Brown, Andrew; Ogloza, Albert; Olson, Kyle; Talghader, Joseph

    2017-03-01

    The optical absorption of contaminants on high reflectivity mirrors was measured using photo thermal common-path interferometry before and after exposure to high power continuous-wave laser light. The contaminants were micron-sized graphite flakes on hafnia-silica distributed Bragg reflectors illuminated by a ytterbium-doped fiber laser. After one-second periods of exposure, the mirrors demonstrated reduced absorption for irradiances as low as 11 kW cm-2 and had an obvious threshold near 20 kW cm-2. Final absorption values were reduced by up to 90% of their initial value for irradiances of 92 kW cm-2. For shorter pulses at 34 kW cm-2, a minimum exposure time required to begin absorption reduction was found between 100 μs and 200 μs, with particles reaching their final minimum absorption value within 300 ms. Microscope images of the surface showed agglomerated particles fragmenting with some being removed completely, probably by evaporation for exposures between 200 μs to 10 ms. Exposures of 100 ms and longer left behind a thin semi-transparent residue, covering much of the conditioned area. An order of magnitude estimate of the time necessary to begin altering the surface contaminants (also known as "conditioning") indicates about 200 μs seconds at 34 kW cm-2, based on heating an average carbon particle to its sublimation temperature including energy loss to thermal contact and radiation. This estimation is close to the observed exposure time required to begin absorption reduction.

  19. A Cool Business: Trapping Intermediates on the submillisecond time scale

    NASA Astrophysics Data System (ADS)

    Yeh, Syun-Ru

    2004-03-01

    The freeze-quenching technique is extremely useful for trapping meta-stable intermediates populated during fast chemical or biochemical reactions. The application of this technique, however, is limited by the long mixing time of conventional solution mixers and the slow freezing time of cryogenic fluids. To overcome these problems, we have designed and tested a novel microfluidic silicon mixer equipped with a new freeze-quenching device, with which reactions can be followed down to 50 microseconds. In the microfluidic silicon mixer, seven vertical pillars with 10 micrometer diameter are arranged perpendicular to the flow direction and in a staggered fashion in the 450 picoliter mixing chamber to enhance turbulent mixing. The mixed solution jet, with a cross-section of 10 micrometer by 100 micrometer, exits from the microfluidic silicon mixer with a linear flow velocity of 20 m/sec. It instantaneously freezes on one of two rotating copper wheels maintained at 77 K and is subsequently ground into an ultra-fine powder. The ultra-fine frozen powder exhibits excellent spectral quality, high packing factor and can be readily transferred between spectroscopic observation cells. The microfluidic mixer was tested by the reaction between azide and myoglobin at pH 5.0. It was found that complete mixing was achieved within the mixing dead-time of the mixer (20 microseconds) and the first observable point for this coupled device was determined to be 50 microseconds, which is approximately two orders of magnitude faster than commercially available instruments. Several new applications of this device in ultra-fast biological reactions will be presented. Acknowledgements: This work is done in collaboration with Dr. Denis Rousseau and is supported by the NIH Grants HL65465 to S.-R.Y. and GM67814 to D.L.R.

  20. Modelling global water stress at the monthly time-scale

    NASA Astrophysics Data System (ADS)

    Wada, Y.; van Beek, L. P. H.; Weingartner, R.; Viviroli, D.; Bierkens, M. F. P.

    2009-04-01

    It is estimated that currently over one billion people have problems obtaining access to sufficient freshwater resources, while due to population growth and climate change the number of people affected by water scarcity and water stress will rise to four billion by 2050 (UNEP, 1999). To assess current water stress and it development under different socio-ecomomic and climate scenario's Global Hydrological Models (GHMs) are important tools. Until now, GHM-analyses calculating water demand and water availability have been performed on yearly totals only. However, it can be expected that availability of water is often out of phase with water demand and that actual water stress may be underestimated using yearly totals. Also, yearly budgets cannot shed light on the persistence and recurrence time of water stress. In this paper we present an analysis of global water stress based on monthly data of water availability and water demand. Here, severe water stress is defined to occur in case local water demand exceeds 40 percent of the local water availability A 40-year time series of water availibility is obtained by the GHM PCR-GLOBWB forced with CRU meteorological data downscaled to daily time steps using the ERA40 re-analysis dataset. Thus, apart from representing a within-year regime, the water availability analyses also consider between-year climate variability. Availability calculations contain both local precipitation surplus (precipitation minus evaporation), but also upstream river discharge, water in reservoirs, groundwater abstraction as well as green water (soil water used by irrigated crops). Water demand is calculated on a monthly basis for the year 2000, while these monthly values are taken constant over the years. It consists of water demand for agriculture (both rainfed as well as irrigated and lifestock), industry and domestic water use. Domestic water demand as well as the recycling fraction of industrial and domestic water demand for each country are

  1. Modelling global water stress at the monthly time-scale

    NASA Astrophysics Data System (ADS)

    Wada, Y.; van Beek, R. L.; Viviroli, D.; Weingartner, R.; Bierkens, M. F.

    2008-12-01

    It is estimated that currently over one billion people have problems obtaining access to sufficient freshwater resources, while due to population growth and climate change the number of people affected by water scarcity and water stress will rise to four billion by 2050 (UNEP, 1999). To assess current water stress and it development under different socio-ecomomic and climate scenario's Global Hydrological Models (GHMs) are important tools. Until now, GHM-analyses calculating water demand and water availability have been performed on yearly totals only. However, it can be expected that availability of water is often out of phase with water demand and that actual water stress may be underestimated using yearly totals. Also, yearly budgets cannot shed light on the persistence and recurrence time of water stress. In this paper we present an analysis of global water stress based on monthly data of water availability and water demand. Here, severe water stress is defined to occur in case local water demand exceeds 40% of the local water availability A 40-year time series of water availibility is obtained by the GHM PCR-GLOBWB forced with CRU meteorological data downscaled to daily time steps using the ERA40 re-analysis dataset. Thus, apart from representing a within-year regime, the water availability analyses also consider between-year climate variability. Availability calculations contain both local precipitation surplus (precipitation minus evaporation), but also upstream river discharge, water in reservoirs, groundwater abstraction as well as green water (soil water used by irrigated crops). Water demand is calculated on a monthly basis for the year 2000, while these monthly values are taken constant over the years. It consists of water demand for agriculture (both rainfed as well as irrigated and lifestock), industry and domestic water use. Domestic water demand as well as the recycling fraction of industrial and domestic water demand for each country are related to

  2. Temperature Responses to Spectral Solar Variability on Decadal Time Scales

    NASA Technical Reports Server (NTRS)

    Cahalan, Robert F.; Wen, Guoyong; Harder, Jerald W.; Pilewskie, Peter

    2010-01-01

    Two scenarios of spectral solar forcing, namely Spectral Irradiance Monitor (SIM)-based out-of-phase variations and conventional in-phase variations, are input to a time-dependent radiative-convective model (RCM), and to the GISS modelE. Both scenarios and models give maximum temperature responses in the upper stratosphere, decreasing to the surface. Upper stratospheric peak-to-peak responses to out-of-phase forcing are approx.0.6 K and approx.0.9 K in RCM and modelE, approx.5 times larger than responses to in-phase forcing. Stratospheric responses are in-phase with TSI and UV variations, and resemble HALOE observed 11-year temperature variations. For in-phase forcing, ocean mixed layer response lags surface air response by approx.2 years, and is approx.0.06 K compared to approx.0.14 K for atmosphere. For out-of-phase forcing, lags are similar, but surface responses are significantly smaller. For both scenarios, modelE surface responses are less than 0.1 K in the tropics, and display similar patterns over oceanic regions, but complex responses over land.

  3. Generality of Fractal 1/f Scaling in Catchment Tracer Time Series: Implications for Catchment Travel Time Distributions

    NASA Astrophysics Data System (ADS)

    Godsey, S. E.; Palucis, M. C.; Kirchner, J. W.

    2007-12-01

    The mean travel time - the time that it takes a parcel of rainwater to reach the stream - is a basic parameter used to characterize catchments. More generally, a catchment is characterized by its travel-time distribution, which is described not only by its mean but also its shape. The travel time distribution of water in a catchment is typically inferred from passive tracer time series (typically water isotopes or chloride concentrations) in rainfall and streamflow. The catchment mixes precipitation inputs (and thus passive tracers) falling at different points in time; as a result, tracer fluctuations in streamflow are usually strongly damped relative to precipitation. Mathematically, this mixing of waters of different ages is represented by the convolution of the travel time distribution and the precipitation inputs to generate the stream outputs. Previous analyses of both rainfall and streamflow tracer time series from several catchments in Wales have demonstrated that rainfall chemistry spectra resemble white noise, whereas these same catchments exhibit fractal 1/f scaling in stream tracer chemistry over three orders of magnitude. These observations imply that these catchments have an approximate power-law distribution of travel times, and thus they retain a long memory of past inputs. The observed fractal scaling places strong constraints on possible models of catchment behavior: commonly-used exponential or advection-dispersion travel time distribution models do not exhibit fractal scaling. Here we test the generality of the observed fractal scaling of streamflow chemistry, by analyzing long-term tracer time series from 17 other catchments in North America and Europe. Special care is taken to account for the effects of spectral aliasing. We demonstrate that 1/f fractal scaling of stream chemistry is a common feature of these catchments and discuss the implications of this observation to catchment-scale hydrologic modeling. We then present the best-fit travel

  4. Are introspective reaction times affected by the method of time estimation? A comparison of visual analogue scales and reproduction.

    PubMed

    Bryce, Donna; Bratzke, Daniel

    2015-04-01

    In this study, we investigated whether the method of time estimation plays a role in the apparent limits of introspection in dual-task processing. Previous studies showed that when participants reported introspective reaction times after each trial of a dual task by clicking on a visual analogue scale, they appeared to be unaware of the dual-task costs in their performance. However, visual analogue scales have seldom been used in interval estimation, and they may be inappropriate. In the present study, after each dual-task trial, participants reported their introspective reaction times either via a visual analogue scale or via the method of reproduction. The results replicated the previous findings, irrespective of method. That is, even though responses to the second task slowed down with increasing task overlap, this slowing was only very weakly reflected in the introspective reaction times. Thus, the participants' failure to report the objective dual-task costs in their reaction times is a rather robust finding that cannot be attributed to the method employed. However, introspective reaction times reported via visual analogue scales were more closely related to the objective reaction times, suggesting that visual analogue scales are preferable to reproduction. We conclude that introspective reaction times represent the same information regardless of method, but whether that information is temporal in nature is as yet unsettled.

  5. Time scales of spike-train correlation for neural oscillators with common drive.

    PubMed

    Barreiro, Andrea K; Shea-Brown, Eric; Thilo, Evan L

    2010-01-01

    We examine the effect of the phase-resetting curve on the transfer of correlated input signals into correlated output spikes in a class of neural models receiving noisy superthreshold stimulation. We use linear-response theory to approximate the spike correlation coefficient in terms of moments of the associated exit time problem and contrast the results for type I vs type II models and across the different time scales over which spike correlations can be assessed. We find that, on long time scales, type I oscillators transfer correlations much more efficiently than type II oscillators. On short time scales this trend reverses, with the relative efficiency switching at a time scale that depends on the mean and standard deviation of input currents. This switch occurs over time scales that could be exploited by downstream circuits.

  6. Functional neuroimaging of duration discrimination on two different time scales.

    PubMed

    Gutyrchik, Evgeny; Churan, Jan; Meindl, Thomas; Bokde, Arun Lawrence Warren; von Bernewitz, Henriette; Born, Christine; Reiser, Maximilian; Pöppel, Ernst; Wittmann, Marc

    2010-01-29

    Analyses of neural mechanisms of duration processing are essential for the understanding of psychological phenomena which evolve in time. Different mechanisms are presumably responsible for the processing of shorter (below 500 ms) and longer (above 500 ms) events but have not yet been a subject of an investigation with functional magnetic resonance imaging (fMRI). In the present study, we show a greater involvement of several brain regions - including right-hemispheric midline structures and left-hemispheric lateral regions - in the processing of visual stimuli of shorter as compared to longer duration. We propose a greater involvement of lower-level cognitive mechanisms in the processing of shorter events as opposed to higher-level mechanisms of cognitive control involved in longer events.

  7. Time Scales of Ion Transport in Imidazolium-based Polymers

    NASA Astrophysics Data System (ADS)

    Choi, U. Hyeok; Ye, Yuesheng; Lee, Minjae; Gibson, Harry; Elabd, Yossef; Runt, James; Colby, Ralph

    2011-03-01

    We synthesize and characterize ionic polymers with imidazolium cations covalently attached to the polymer chain and various ionic liquid counterions for ionic actuators. The imidazolium cations are attached to the polymers with flexible alkyl spacer chains and also have a variety of alkyl and alkyl ether termini. The anionic counterions are also varied; tetrafluoroborate (BF4) , hexafluorophosphate (PF6) and bis(trifluoromethanesulfonyl)imide (TFSI) were mainly used in this study. Dielectric relaxation spectroscopy (DRS) is utilized to measure the dielectric constant and conductivity, as a function of temperature. The 1953 Macdonald model is applied to estimate the number density of conducting ions and their mobility, from electrode polarization at low frequencies in DRS. The 1988 Dyre model is used to determine ion hopping times from the frequency-dependent conductivity at higher frequencies. The consequence of polymer structural variations will be elucidated for these vital characteristics.

  8. Invited review article: The statistical modeling of atomic clocks and the design of time scales.

    PubMed

    Levine, Judah; Ibarra-Manzano, O

    2012-02-01

    I will show how the statistical models that are used to describe the performance of atomic clocks are derived from their internal design. These statistical models form the basis for time scales, which are used to define international time scales such as International Atomic Time and Coordinated Universal Time. These international time scales are realized by ensembles of clocks at national laboratories such as the National Institute of Standards and Technology, and I will describe how ensembles of atomic clocks are characterized and managed.

  9. Invited Review Article: The statistical modeling of atomic clocks and the design of time scales

    SciTech Connect

    Levine, Judah

    2012-02-15

    I will show how the statistical models that are used to describe the performance of atomic clocks are derived from their internal design. These statistical models form the basis for time scales, which are used to define international time scales such as International Atomic Time and Coordinated Universal Time. These international time scales are realized by ensembles of clocks at national laboratories such as the National Institute of Standards and Technology, and I will describe how ensembles of atomic clocks are characterized and managed.

  10. Time and length scales within a fire and implications for numerical simulation

    SciTech Connect

    TIESZEN,SHELDON R.

    2000-02-02

    A partial non-dimensionalization of the Navier-Stokes equations is used to obtain order of magnitude estimates of the rate-controlling transport processes in the reacting portion of a fire plume as a function of length scale. Over continuum length scales, buoyant times scales vary as the square root of the length scale; advection time scales vary as the length scale, and diffusion time scales vary as the square of the length scale. Due to the variation with length scale, each process is dominant over a given range. The relationship of buoyancy and baroclinc vorticity generation is highlighted. For numerical simulation, first principles solution for fire problems is not possible with foreseeable computational hardware in the near future. Filtered transport equations with subgrid modeling will be required as two to three decades of length scale are captured by solution of discretized conservation equations. By whatever filtering process one employs, one must have humble expectations for the accuracy obtainable by numerical simulation for practical fire problems that contain important multi-physics/multi-length-scale coupling with up to 10 orders of magnitude in length scale.

  11. Modeling geomagnetic storms on prompt and diffusive time scales

    NASA Astrophysics Data System (ADS)

    Li, Zhao

    The discovery of the Van Allen radiation belts in the 1958 was the first major discovery of the Space Age. There are two belts of energetic particles. The inner belt is very stable, but the outer belt is extremely variable, especially during geomagnetic storms. As the energetic particles are hazardous to spacecraft, understanding the source of these particles and their dynamic behavior driven by solar activity has great practical importance. In this thesis, the effects of magnetic storms on the evolution of the electron radiation belts, in particular the outer zone, is studied using two types of numerical simulation: radial diffusion and magnetohydrodynamics (MHD) test-particle simulation. A radial diffusion code has been developed at Dartmouth, applying satellite measurements to model flux as an outer boundary condition, exploring several options for the diffusion coefficient and electron loss time. Electron phase space density is analyzed for July 2004 coronal mass ejection (CME) driven storms and March-April 2008 co-rotating interaction region (CIR) driven storms, and compared with Global Positioning System (GPS) satellite measurements within 5 degrees of the magnetic equator at L=4.16. A case study of a month-long interval in the Van Allen Probes satellite era, March 2013, confirms that electron phase space density is well described by radial diffusion for the whole month at low first invariant <400~MeV/G, but peaks in phase space density observed by the ECT instrument suite at higher first invariant are not reproduced by radial transport from a source at higher L. A 3D guiding center code with plasmasheet injection is used to simulate particle motion in time-dependent MHD fields calculated from the Lyon-Fedder-Mobarry global MHD code, as an extension of the Hudson et al. (2012) study of the Whole Heliosphere Interval of CIR-driven storms in March-April 2008. Direct comparison with measured fluxes at GOES show improved comparison with observations relative to

  12. On the time scale associated with Monte Carlo simulations

    SciTech Connect

    Bal, Kristof M. Neyts, Erik C.

    2014-11-28

    Uniform-acceptance force-bias Monte Carlo (fbMC) methods have been shown to be a powerful technique to access longer timescales in atomistic simulations allowing, for example, phase transitions and growth. Recently, a new fbMC method, the time-stamped force-bias Monte Carlo (tfMC) method, was derived with inclusion of an estimated effective timescale; this timescale, however, does not seem able to explain some of the successes the method. In this contribution, we therefore explicitly quantify the effective timescale tfMC is able to access for a variety of systems, namely a simple single-particle, one-dimensional model system, the Lennard-Jones liquid, an adatom on the Cu(100) surface, a silicon crystal with point defects and a highly defected graphene sheet, in order to gain new insights into the mechanisms by which tfMC operates. It is found that considerable boosts, up to three orders of magnitude compared to molecular dynamics, can be achieved for solid state systems by lowering of the apparent activation barrier of occurring processes, while not requiring any system-specific input or modifications of the method. We furthermore address the pitfalls of using the method as a replacement or complement of molecular dynamics simulations, its ability to explicitly describe correct dynamics and reaction mechanisms, and the association of timescales to MC simulations in general.

  13. Probabilistic eruption forecasting at short and long time scales

    NASA Astrophysics Data System (ADS)

    Marzocchi, Warner; Bebbington, Mark S.

    2012-10-01

    Any effective volcanic risk mitigation strategy requires a scientific assessment of the future evolution of a volcanic system and its eruptive behavior. Some consider the onus should be on volcanologists to provide simple but emphatic deterministic forecasts. This traditional way of thinking, however, does not deal with the implications of inherent uncertainties, both aleatoric and epistemic, that are inevitably present in observations, monitoring data, and interpretation of any natural system. In contrast to deterministic predictions, probabilistic eruption forecasting attempts to quantify these inherent uncertainties utilizing all available information to the extent that it can be relied upon and is informative. As with many other natural hazards, probabilistic eruption forecasting is becoming established as the primary scientific basis for planning rational risk mitigation actions: at short-term (hours to weeks or months), it allows decision-makers to prioritize actions in a crisis; and at long-term (years to decades), it is the basic component for land use and emergency planning. Probabilistic eruption forecasting consists of estimating the probability of an eruption event and where it sits in a complex multidimensional time-space-magnitude framework. In this review, we discuss the key developments and features of models that have been used to address the problem.

  14. On the time scale associated with Monte Carlo simulations.

    PubMed

    Bal, Kristof M; Neyts, Erik C

    2014-11-28

    Uniform-acceptance force-bias Monte Carlo (fbMC) methods have been shown to be a powerful technique to access longer timescales in atomistic simulations allowing, for example, phase transitions and growth. Recently, a new fbMC method, the time-stamped force-bias Monte Carlo (tfMC) method, was derived with inclusion of an estimated effective timescale; this timescale, however, does not seem able to explain some of the successes the method. In this contribution, we therefore explicitly quantify the effective timescale tfMC is able to access for a variety of systems, namely a simple single-particle, one-dimensional model system, the Lennard-Jones liquid, an adatom on the Cu(100) surface, a silicon crystal with point defects and a highly defected graphene sheet, in order to gain new insights into the mechanisms by which tfMC operates. It is found that considerable boosts, up to three orders of magnitude compared to molecular dynamics, can be achieved for solid state systems by lowering of the apparent activation barrier of occurring processes, while not requiring any system-specific input or modifications of the method. We furthermore address the pitfalls of using the method as a replacement or complement of molecular dynamics simulations, its ability to explicitly describe correct dynamics and reaction mechanisms, and the association of timescales to MC simulations in general.

  15. Updating the planetary time scale: focus on Mars

    USGS Publications Warehouse

    Tanaka, Kenneth L.; Quantin-Nataf, Cathy

    2013-01-01

    Formal stratigraphic systems have been developed for the surface materials of the Moon, Mars, Mercury, and the Galilean satellite Ganymede. These systems are based on geologic mapping, which establishes relative ages of surfaces delineated by superposition, morphology, impact crater densities, and other relations and features. Referent units selected from the mapping determine time-stratigraphic bases and/or representative materials characteristic of events and periods for definition of chronologic units. Absolute ages of these units in some cases can be estimated using crater size-frequency data. For the Moon, the chronologic units and cratering record are calibrated by radiometric ages measured from samples collected from the lunar surface. Model ages for other cratered planetary surfaces are constructed primarily by estimating cratering rates relative to that of the Moon. Other cratered bodies with estimated surface ages include Venus and the Galilean satellites of Jupiter. New global geologic mapping and crater dating studies of Mars are resulting in more accurate and detailed reconstructions of its geologic history.

  16. Large Scale Solar Velocities on Time Scales up to Thirty Days

    NASA Astrophysics Data System (ADS)

    Beck, John Gunther

    1997-08-01

    This work studied solar supergranulation and methods of improving solar oscillation measurements. The supergranulation size scale and lifetime were found to be independent of heliographic latitude. The observed supergranule size scales were 31.7 ± 1.6 Mm in the East-West direction and 32.0 ± 1.6 Mm in the North-South direction; the mean lifetime was 23.4 ± 1.1 hours. Persistent granules were observed with the sizes of ~60 Mm and lifetimes of up to 160 hours, these features were found to affect supergranule lifetime measurements. Improvements of solar oscillation measurements were sought through three means: active region noise modeling, simulation the GONG instrument, and merging GONG data with IRIS data. The active region noise model, MDV, was tested and found promising. A simulation revealed a transmission profile ripple in the GONG instrument which could explain the observed velocity errors. A technique for merging GONG and IRIS data was developed and tested with satisfactory results.

  17. Scale (in)variance in a unified diffusion model of decision making and timing.

    PubMed

    Simen, Patrick; Vlasov, Ksenia; Papadakis, Samantha

    2016-03-01

    Weber's law is the canonical scale-invariance law in psychology: when the intensities of 2 stimuli are scaled by any value k, the just-noticeable-difference between them also scales by k. A diffusion model that approximates a spike-counting process accounts for Weber's law (Link, 1992), but there exist surprising corollaries of this account that have not yet been described or tested. We show that (a) this spike-counting diffusion model predicts time-scale invariant decision time distributions in perceptual decision making, and time-scale invariant response time (RT) distributions in interval timing; (b) for 2-choice perceptual decisions, the model predicts equal accuracy but faster responding for stimulus pairs with equally scaled-up intensities; (c) the coefficient of variation (CV) of decision times should remain constant across average intensity scales, but should otherwise decrease as a specific function of stimulus discriminability and speed-accuracy trade-off; and (d) for timing tasks, RT CVs should be constant for all durations, and RT skewness should always equal 3 times the CV. We tested these predictions using visual, auditory and vibrotactile decision tasks and visual interval timing tasks in humans. The data conformed closely to the predictions in all modalities. These results support a unified theory of decision making and timing in terms of a common, underlying spike-counting process, compactly represented as a diffusion process.

  18. Variability Trends in QSOs Over Monthly Time Scales

    NASA Astrophysics Data System (ADS)

    Fleming, B. T.; Kennefick, J.

    2005-12-01

    Variation in quasar magnitude from night to night can reveal long term variability trends as well as have a greater chance of detecting sudden luminosity changes than a typical long-term variability survey. In this study, five quasars with a range of properties were observed approximately every other night over 40 days using the 24" NFO webscope in Silver City, NM. Three 200 second exposure images were taken in both the R and V color filters each observation. Two passbands were used so that the data could be correlated to support findings. The images were stacked and processed using IRAF and SExtractor. Differential photometry using field stars was utilized. The five quasars were selected so that as large a range of redshift and absolute magnitude observable by the NFO webscope was represented. They are: (1) MRK 0877 with z=0.1124, (2) 3C-334 a RQQ with z=0.5551, (3) HS 1603+3820 a very luminous, very distant QSO with z=2.51, and two quasars from the QUEST survey (J1507-0202 and J1507-0207) which were selected because they both showed evidence of magnitude variations during the QUEST1 survey. Two of the observed quasars showed no significant variability. 3C-334 displayed a sudden apparent magnitude jump in both passbands, with Δ mR = 0.5602 ± 0.0474, corresponding to an increase of 6.62E+11 solar luminosities on June 21st. The magnitude returned to previous levels by the next observation. QUEST 1507-0202 and MRK 0877 suggested evidence of small long term variability over the 40 day study. Future observations revealing significant changes in magnitude corresponding to these trends may lead to the conclusion that these slow long-term variations can be detected over a 40 day time period with frequent observations. Funding was provided through an Arkansas Space Center grant.

  19. Computational Modeling of Semiconductor Dynamics at Femtosecond Time Scales

    NASA Technical Reports Server (NTRS)

    Agrawal, Govind P.; Goorjian, Peter M.

    1998-01-01

    The Interchange No. NCC2-5149 deals with the emerging technology of photonic (or optoelectronic) integrated circuits (PICs or OEICs). In PICs, optical and electronic components are grown together on the same chip. To build such devices and subsystems, one needs to model the entire chip. PICs are useful for building components for integrated optical transmitters, integrated optical receivers, optical data storage systems, optical interconnects, and optical computers. For example, the current commercial rate for optical data transmission is 2.5 gigabits per second, whereas the use of shorter pulses to improve optical transmission rates would yield an increase of 400 to 1000 times. The improved optical data transmitters would be used in telecommunications networks and computer local-area networks. Also, these components can be applied to activities in space, such as satellite to satellite communications, when the data transmissions are made at optical frequencies. The research project consisted of developing accurate computer modeling of electromagnetic wave propagation in semiconductors. Such modeling is necessary for the successful development of PICs. More specifically, these computer codes would enable the modeling of such devices, including their subsystems, such as semiconductor lasers and semiconductor amplifiers in which there is femtosecond pulse propagation. Presently, there are no computer codes that could provide this modeling. Current codes do not solve the full vector, nonlinear, Maxwell's equations, which are required for these short pulses and also current codes do not solve the semiconductor Bloch equations, which are required to accurately describe the material's interaction with femtosecond pulses. The research performed under NCC2-5149 solves the combined Maxwell's and Bloch's equations.

  20. Computational Modeling of Semiconductor Dynamics at Femtosecond Time Scales

    NASA Technical Reports Server (NTRS)

    Agrawal, Govind P.; Goorjian, Peter M.

    1998-01-01

    The main objective of the Joint-Research Interchange NCC2-5149 was to develop computer codes for accurate simulation of femtosecond pulse propagation in semiconductor lasers and semiconductor amplifiers [I]. The code should take into account all relevant processes such as the interband and intraband carrier relaxation mechanisms and the many-body effects arising from the Coulomb interaction among charge carriers [2]. This objective was fully accomplished. We made use of a previously developed algorithm developed at NASA Ames [3]-[5]. The new algorithm was tested on several problems of practical importance. One such problem was related to the amplification of femtosecond optical pulses in semiconductors. These results were presented in several international conferences over a period of three years. With the help of a postdoctoral fellow, we also investigated the origin of instabilities that can lead to the formation of femtosecond pulses in different kinds of lasers. We analyzed the occurrence of absolute instabilities in lasers that contain a dispersive host material with third-order nonlinearities. Starting from the Maxwell-Bloch equations, we derived general multimode equations to distinguish between convective and absolute instabilities. We find that both self-phase modulation and intensity-dependent absorption can dramatically affect the absolute stability of such lasers. In particular, the self-pulsing threshold (the so-called second laser threshold) can occur at few times the first laser threshold even in good-cavity lasers for which no self-pulsing occurs in the absence of intensity-dependent absorption. These results were presented in an international conference and published in the form of two papers.

  1. Adjustment of Adaptive Gain with Bounded Linear Stability Analysis to Improve Time-Delay Margin for Metrics-Driven Adaptive Control

    NASA Technical Reports Server (NTRS)

    Bakhtiari-Nejad, Maryam; Nguyen, Nhan T.; Krishnakumar, Kalmanje Srinvas

    2009-01-01

    This paper presents the application of Bounded Linear Stability Analysis (BLSA) method for metrics driven adaptive control. The bounded linear stability analysis method is used for analyzing stability of adaptive control models, without linearizing the adaptive laws. Metrics-driven adaptive control introduces a notion that adaptation should be driven by some stability metrics to achieve robustness. By the application of bounded linear stability analysis method the adaptive gain is adjusted during the adaptation in order to meet certain phase margin requirements. Analysis of metrics-driven adaptive control is evaluated for a linear damaged twin-engine generic transport model of aircraft. The analysis shows that the system with the adjusted adaptive gain becomes more robust to unmodeled dynamics or time delay.

  2. Evolution in time and scales of the stability of heart interbeat rate

    NASA Astrophysics Data System (ADS)

    Hernández-Pérez, R.; Guzmán-Vargas, L.; Reyes-Ramírez, I.; Angulo-Brown, F.

    2010-12-01

    We approach heart interbeat rate by observing the evolution of its stability on scales and time, using tools for the analysis of frequency standards. In particular, we employ the dynamic Allan variance, which is used to characterize the time-varying stability of an atomic clock, to analyze heart interbeat time series for normal subjects and patients with congestive heart failure (CHF). Our stability analysis shows that healthy dynamics is characterized by at least two stability regions along different scales. In contrast, diseased patients exhibit at least three different stability regions; over short scales the fluctuations resembled white-noise behavior whereas for large scales a drift is observed. The inflection points delimiting the first two stability regions for both groups are located around the same scales. Moreover, we find that CHF patients show lower variation of the stability in time than healthy subjects.

  3. Accounting for time- and space-varying changes in the gravity field to improve the network adjustment of relative-gravity data

    NASA Astrophysics Data System (ADS)

    Kennedy, Jeffrey R.; Ferré, Ty P. A.

    2016-02-01

    The relative gravimeter is the primary terrestrial instrument for measuring spatially and temporally varying gravitational fields. The background noise of the instrument-that is, non-linear drift and random tares-typically requires some form of least-squares network adjustment to integrate data collected during a campaign that may take several days to weeks. Here, we present an approach to remove the change in the observed relative-gravity differences caused by hydrologic or other transient processes during a single campaign, so that the adjusted gravity values can be referenced to a single epoch. The conceptual approach is an example of coupled hydrogeophysical inversion, by which a hydrologic model is used to inform and constrain the geophysical forward model. The hydrologic model simulates the spatial variation of the rate of change of gravity as either a linear function of distance from an infiltration source, or using a 3-D numerical groundwater model. The linear function can be included in and solved for as part of the network adjustment. Alternatively, the groundwater model is used to predict the change of gravity at each station through time, from which the accumulated gravity change is calculated and removed from the data prior to the network adjustment. Data from a field experiment conducted at an artificial-recharge facility are used to verify our approach. Maximum gravity change due to hydrology (observed using a superconducting gravimeter) during the relative-gravity field campaigns was up to 2.6 μGal d-1, each campaign was between 4 and 6 d and one month elapsed between campaigns. The maximum absolute difference in the estimated gravity change between two campaigns, two months apart, using the standard network adjustment method and the new approach, was 5.5 μGal. The maximum gravity change between the same two campaigns was 148 μGal, and spatial variation in gravity change revealed zones of preferential infiltration and areas of relatively high

  4. Accounting for time- and space-varying changes in the gravity field to improve the network adjustment of relative-gravity data

    USGS Publications Warehouse

    Kennedy, Jeffrey R.; Ferre, Ty P.A.

    2015-01-01

    The relative gravimeter is the primary terrestrial instrument for measuring spatially and temporally varying gravitational fields. The background noise of the instrument—that is, non-linear drift and random tares—typically requires some form of least-squares network adjustment to integrate data collected during a campaign that may take several days to weeks. Here, we present an approach to remove the change in the observed relative-gravity differences caused by hydrologic or other transient processes during a single campaign, so that the adjusted gravity values can be referenced to a single epoch. The conceptual approach is an example of coupled hydrogeophysical inversion, by which a hydrologic model is used to inform and constrain the geophysical forward model. The hydrologic model simulates the spatial variation of the rate of change of gravity as either a linear function of distance from an infiltration source, or using a 3-D numerical groundwater model. The linear function can be included in and solved for as part of the network adjustment. Alternatively, the groundwater model is used to predict the change of gravity at each station through time, from which the accumulated gravity change is calculated and removed from the data prior to the network adjustment. Data from a field experiment conducted at an artificial-recharge facility are used to verify our approach. Maximum gravity change due to hydrology (observed using a superconducting gravimeter) during the relative-gravity field campaigns was up to 2.6 μGal d−1, each campaign was between 4 and 6 d and one month elapsed between campaigns. The maximum absolute difference in the estimated gravity change between two campaigns, two months apart, using the standard network adjustment method and the new approach, was 5.5 μGal. The maximum gravity change between the same two campaigns was 148 μGal, and spatial variation in gravity change revealed zones of preferential infiltration and areas of relatively

  5. Long-Term Large-Scale Bias-Adjusted Precipitation Estimates at High Spatial and Temporal Resolution Derived from the National Mosaic and Multi-Sensor QPE (NMQ/Q2) Precipitation Reanalysis over CONUS

    NASA Astrophysics Data System (ADS)

    Prat, O. P.; Nelson, B. R.; Stevens, S. E.; Seo, D. J.; Kim, B.

    2014-12-01

    The processing of radar-only precipitation via the reanalysis from the National Mosaic and Multi-Sensor Quantitative (NMQ/Q2) based on the WSR-88D Next-generation Radar (Nexrad) network over Continental United States (CONUS) is nearly completed for the period covering from 2000 to 2012. This important milestone constitutes a unique opportunity to study precipitation processes at a 1-km spatial resolution for a 5-min temporal resolution. However, in order to be suitable for hydrological, meteorological and climatological applications, the radar-only product needs to be bias-adjusted and merged with in-situ rain gauge information. Rain gauge networks such as the Hydrometeorological Automated Data System (HADS), the Automated Surface Observing Systems (ASOS), the Climate Reference Network (CRN), and the Global Historical Climatology Network - Daily (GHCN-D) are used to adjust for those biases and to merge with the radar only product to provide a multi-sensor estimate. The challenges related to incorporating non-homogeneous networks over a vast area and for a long-term record are enormous. Among the challenges we are facing are the difficulties incorporating differing resolution and quality surface measurements to adjust gridded estimates of precipitation. Another challenge is the type of adjustment technique. After assessing the bias and applying reduction or elimination techniques, we are investigating the kriging method and its variants such as simple kriging (SK), ordinary kriging (OK), and conditional bias-penalized Kriging (CBPK) among others. In addition we hope to generate estimates of uncertainty for the gridded estimate. In this work the methodology is presented as well as a comparison between the radar-only product and the final multi-sensor QPE product. The comparison is performed at various time scales from the sub-hourly, to annual. In addition, comparisons over the same period with a suite of lower resolution QPEs derived from ground based radar

  6. Remedial action and feedback processing in a time-estimation task: evidence for a role of the rostral cingulate zone in behavioral adjustments without learning.

    PubMed

    van der Veen, Frederik M; Röder, Christian H; Mies, Gabry W; van der Lugt, Aad; Smits, Marion

    2011-01-01

    The present study examined the role of the rostral cingulate zone (RCZ) in feedback processing, and especially focused on effects of modality of the feedback stimulus and remedial action. Participants performed a time-estimation task in which they had to estimate a 1-second interval. After the estimation participants received verbal (correct/false) or facial (fearful face/happy face) feedback. Percentage of positive and negative feedback was kept at 50% by dynamically adjusting the interval in which estimations were labeled correct. Contrary to predictions of the reinforcement learning theory, which predicts more RCZ activation when the outcome of behavior is worse than expected, we found that the RCZ was more active after positive feedback than after negative feedback, independent of the modality of the feedback stimulus. More in line with the suggested role of the RCZ in reinforcement learning was the finding that the RCZ was more active after negative feedback that was followed by a correct adjustment as compared to negative feedback followed by an incorrect adjustment. Both findings can be explained in terms of the RCZ being involved in facilitating remedial action as opposed to the suggested signaling function (outcome is worse than expected) proposed by the reinforcement learning theory.

  7. Reaching extended length scales and time scales in atomistic simulations via spatially parallel temperature-accelerated dynamics

    NASA Astrophysics Data System (ADS)

    Shim, Yunsic; Amar, Jacques G.; Uberuaga, B. P.; Voter, A. F.

    2007-11-01

    We present a method for performing parallel temperature-accelerated dynamics (TAD) simulations over extended length scales. In our method, a two-dimensional spatial decomposition is used along with the recently proposed semirigorous synchronous sublattice algorithm of Shim and Amar [Phys. Rev. B 71, 125432 (2005)]. The scaling behavior of the simulation time as a function of system size is studied and compared with serial TAD in simulations of the early stages of Cu/Cu(100) growth as well as for a simple case of surface relaxation. In contrast to the corresponding serial TAD simulations, for which the simulation time tser increases as a power of the system size N (tser˜Nx) with an exponent x that can be as large as three, in our parallel simulations the simulation time increases only logarithmically with system size. As a result, even for relatively small system sizes our parallel TAD simulations are significantly faster than the corresponding serial TAD simulations. The significantly improved scaling behavior of our parallel TAD simulations over the corresponding serial simulations indicates that our parallel TAD method may be useful in performing simulations over significantly larger length scales than serial TAD, while preserving all the atomistic details provided by the TAD method.

  8. Compression based entropy estimation of heart rate variability on multiple time scales.

    PubMed

    Baumert, Mathias; Voss, Andreas; Javorka, Michal

    2013-01-01

    Heart rate fluctuates beat by beat in a complex manner. The aim of this study was to develop a framework for entropy assessment of heart rate fluctuations on multiple time scales. We employed the Lempel-Ziv algorithm for lossless data compression to investigate the compressibility of RR interval time series on different time scales, using a coarse-graining procedure. We estimated the entropy of RR interval time series of 20 young and 20 old subjects and also investigated the compressibility of randomly shuffled surrogate RR time series. The original RR time series displayed significantly smaller compression entropy values than randomized RR interval data. The RR interval time series of older subjects showed significantly different entropy characteristics over multiple time scales than those of younger subjects. In conclusion, data compression may be useful approach for multiscale entropy assessment of heart rate variability.

  9. Studying the time scale dependence of environmental variables predictability using fractal analysis.

    PubMed

    Yuval; Broday, David M

    2010-06-15

    Prediction of meteorological and air quality variables motivates a lot of research in the atmospheric sciences and exposure assessment communities. An interesting related issue regards the relative predictive power that can be expected at different time scales, and whether it vanishes altogether at certain ranges. An improved understanding of our predictive powers enables better environmental management and more efficient decision making processes. Fractal analysis is commonly used to characterize the self-affinity of time series. This work introduces the Continuous Wavelet Transform (CWT) fractal analysis method as a tool for assessing environmental time series predictability. The high temporal scale resolution of the CWT enables detailed information about the Hurst parameter, a common temporal fractality measure, and thus about time scale variations in predictability. We analyzed a few years records of half-hourly air pollution and meteorological time series from which the trivial seasonal and daily cycles were removed. We encountered a general trend of decreasing Hurst values from about 1.4 (good autocorrelation and predictability), in the sub-daily time scale to 0.5 (which implies complete randomness) in the monthly to seasonal scales. The air pollutants predictability follows that of the meteorological variables in the short time scales but is better at longer scales.

  10. Super-transient scaling in time-delay autonomous Boolean network motifs

    NASA Astrophysics Data System (ADS)

    D'Huys, Otti; Lohmann, Johannes; Haynes, Nicholas D.; Gauthier, Daniel J.

    2016-09-01

    Autonomous Boolean networks are commonly used to model the dynamics of gene regulatory networks and allow for the prediction of stable dynamical attractors. However, most models do not account for time delays along the network links and noise, which are crucial features of real biological systems. Concentrating on two paradigmatic motifs, the toggle switch and the repressilator, we develop an experimental testbed that explicitly includes both inter-node time delays and noise using digital logic elements on field-programmable gate arrays. We observe transients that last millions to billions of characteristic time scales and scale exponentially with the amount of time delays between nodes, a phenomenon known as super-transient scaling. We develop a hybrid model that includes time delays along network links and allows for stochastic variation in the delays. Using this model, we explain the observed super-transient scaling of both motifs and recreate the experimentally measured transient distributions.

  11. Using Focused Regression for Accurate Time-Constrained Scaling of Scientific Applications

    SciTech Connect

    Barnes, B; Garren, J; Lowenthal, D; Reeves, J; de Supinski, B; Schulz, M; Rountree, B

    2010-01-28

    Many large-scale clusters now have hundreds of thousands of processors, and processor counts will be over one million within a few years. Computational scientists must scale their applications to exploit these new clusters. Time-constrained scaling, which is often used, tries to hold total execution time constant while increasing the problem size along with the processor count. However, complex interactions between parameters, the processor count, and execution time complicate determining the input parameters that achieve this goal. In this paper we develop a novel gray-box, focused median prediction errors are less than 13%. regression-based approach that assists the computational scientist with maintaining constant run time on increasing processor counts. Combining application-level information from a small set of training runs, our approach allows prediction of the input parameters that result in similar per-processor execution time at larger scales. Our experimental validation across seven applications showed that median prediction errors are less than 13%.

  12. Scaling Behavior of the First Arrival Time of a Random-Walking Magnetic Domain

    SciTech Connect

    Im, M.-Y.; Lee, S.-H.; Kim, D.-H.; Fischer, P.; Shin, S.-C.

    2008-02-04

    We report a universal scaling behavior of the first arrival time of a traveling magnetic domain wall into a finite space-time observation window of a magneto-optical microscope enabling direct visualization of a Barkhausen avalanche in real time. The first arrival time of the traveling magnetic domain wall exhibits a nontrivial fluctuation and its statistical distribution is described by universal power-law scaling with scaling exponents of 1.34 {+-} 0.07 for CoCr and CoCrPt films, despite their quite different domain evolution patterns. Numerical simulation of the first arrival time with an assumption that the magnetic domain wall traveled as a random walker well matches our experimentally observed scaling behavior, providing an experimental support for the random-walking model of traveling magnetic domain walls.

  13. Super-transient scaling in time-delay autonomous Boolean network motifs.

    PubMed

    D'Huys, Otti; Lohmann, Johannes; Haynes, Nicholas D; Gauthier, Daniel J

    2016-09-01

    Autonomous Boolean networks are commonly used to model the dynamics of gene regulatory networks and allow for the prediction of stable dynamical attractors. However, most models do not account for time delays along the network links and noise, which are crucial features of real biological systems. Concentrating on two paradigmatic motifs, the toggle switch and the repressilator, we develop an experimental testbed that explicitly includes both inter-node time delays and noise using digital logic elements on field-programmable gate arrays. We observe transients that last millions to billions of characteristic time scales and scale exponentially with the amount of time delays between nodes, a phenomenon known as super-transient scaling. We develop a hybrid model that includes time delays along network links and allows for stochastic variation in the delays. Using this model, we explain the observed super-transient scaling of both motifs and recreate the experimentally measured transient distributions.

  14. The multiple time scales of sleep dynamics as a challenge for modelling the sleeping brain.

    PubMed

    Olbrich, Eckehard; Claussen, Jens Christian; Achermann, Peter

    2011-10-13

    A particular property of the sleeping brain is that it exhibits dynamics on very different time scales ranging from the typical sleep oscillations such as sleep spindles and slow waves that can be observed in electroencephalogram (EEG) segments of several seconds duration over the transitions between the different sleep stages on a time scale of minutes to the dynamical processes involved in sleep regulation with typical time constants in the range of hours. There is an increasing body of work on mathematical and computational models addressing these different dynamics, however, usually considering only processes on a single time scale. In this paper, we review and present a new analysis of the dynamics of human sleep EEG at the different time scales and relate the findings to recent modelling efforts pointing out both the achievements and remaining challenges.

  15. Task difficulty and the time scales of warm-up and motor learning.

    PubMed

    Joseph, Morina E; King, Adam C; Newell, Karl M

    2013-01-01

    The authors investigated the influence of task difficulty on warm-up decrement and learning across practice sessions. Three groups of participants practiced a star-tracing task over 3 consecutive days with different levels (e.g., easy, medium, hard) of task difficulty. The performance data were modeled with a 2 time scale function that represented the transient, fast time scale process of warm-up decrement superimposed with the persistent, slow time scale process of learning. Movement time decreased as a function of practice with the most difficult condition exhibiting the greatest reduction though still the longest movement time. The 2 time scale model provided a better fit to the data than an exponential or power law function and showed that the 3 difficulty conditions exhibited similar rates of change for the respective slow (i.e., learning) and fast (i.e., warm-up decrement) time scale processes that varied by an order of magnitude. Task difficulty was inversely related to the initial level of warm-up decrement but not the rate of performance recovery early in a practice session. The findings support the postulation that there is a persistent learned component to the initial conditions in subsequent practice sessions but that there is a common time scale of accommodating the transient process of warm-up decrement.

  16. Estimating the distribution of rest-frame time-scales for blazar jets: a statistical approach

    NASA Astrophysics Data System (ADS)

    Liodakis, I.; Blinov, D.; Papadakis, I.; Pavlidou, V.

    2017-03-01

    In any flux-density limited sample of blazars, the distribution of the time-scale modulation factor Δt΄/Δt, which quantifies the change in observed time-scales compared to the rest-frame ones due to redshift and relativistic compression follows an exponential distribution with a mean depending on the flux limit of the sample. In this work, we produce the mathematical formalism that allows us to use this information in order to uncover the underlining rest-frame probability density function of measurable time-scales of blazar jets. We extensively test our proposed methodology using a simulated Flat Spectrum Radio Quasar population with a 1.5 Jy flux-density limit in the simple case (where all blazars share the same intrinsic time-scale), in order to identify limits of applicability and potential biases due to observational systematics and sample selection. We find that for monitoring with time intervals between observations longer than ∼30 per cent of the intrinsic time-scale under investigation the method loses its ability to produce robust results. For time intervals of ∼3 per cent of the intrinsic time-scale, the error of the method is as low as 1 per cent in recovering the intrinsic rest-frame time-scale. We applied our method to rotations of the optical polarization angle of blazars observed by RoboPol. We found that the intrinsic time-scales of the longest duration rotation event in each blazar follows a narrow distribution, well described by a normal distribution with mean 87 d and standard deviation 5 d. We discuss possible interpretations of this result.

  17. Revisiting the Impact of Part-Time Work on Adolescent Adjustment: Distinguishing between Selection and Socialization Using Propensity Score Matching

    ERIC Educational Resources Information Center

    Monahan, Kathryn C.; Lee, Joanna M.; Steinberg, Laurence

    2011-01-01

    The impact of part-time employment on adolescent functioning remains unclear because most studies fail to adequately control for differential selection into the workplace. The present study reanalyzes data from L. Steinberg, S. Fegley, and S. M. Dornbusch (1993) using multiple imputation, which minimizes bias in effect size estimation, and 2 types…

  18. Mastering Uncertainty and Risk at Multiple Time Scales in the Future Electrical Grid

    SciTech Connect

    Chertkov, Michael; Bent, Russell W.; Backhaus, Scott N.

    2012-07-10

    Today's electrical grids enjoy a relatively clean separation of spatio-temporal scales yielding a compartmentalization of grid design, optimization, control and risk assessment allowing for the use of conventional mathematical tools within each area. In contrast, the future grid will incorporate time-intermittent renewable generation, operate via faster electrical markets, and tap the latent control capability at finer grid modeling scales; creating a fundamentally new set of couplings across spatiotemporal scales and requiring revolutionary advances in mathematics techniques to bridge these scales. One example is found in decade-scale grid expansion planning in which today's algorithms assume accurate load forecasts and well-controlled generation. Incorporating intermittent renewable generation creates fluctuating network flows at the hourly time scale, inherently linking the ability of a transmission line to deliver electrical power to hourly operational decisions. New operations-based planning algorithms are required, creating new mathematical challenges. Spatio-temporal scales are also crossed when the future grid's minute-scale fluctuations in network flows (due to intermittent generation) create a disordered state upon which second-scale transient grid dynamics propagate effectively invalidating today's on-line dynamic stability analyses. Addressing this challenge requires new on-line algorithms that use large data streams from new grid sensing technologies to physically aggregate across many spatial scales to create responsive, data-driven dynamic models. Here, we sketch the mathematical foundations of these problems and potential solutions.

  19. Shaft adjuster

    DOEpatents

    Harry, H.H.

    1988-03-11

    Abstract and method for the adjustment and alignment of shafts in high power devices. A plurality of adjacent rotatable angled cylinders are positioned between a base and the shaft to be aligned which when rotated introduce an axial offset. The apparatus is electrically conductive and constructed of a structurally rigid material. The angled cylinders allow the shaft such as the center conductor in a pulse line machine to be offset in any desired alignment position within the range of the apparatus. 3 figs.

  20. Shaft adjuster

    DOEpatents

    Harry, Herbert H.

    1989-01-01

    Apparatus and method for the adjustment and alignment of shafts in high power devices. A plurality of adjacent rotatable angled cylinders are positioned between a base and the shaft to be aligned which when rotated introduce an axial offset. The apparatus is electrically conductive and constructed of a structurally rigid material. The angled cylinders allow the shaft such as the center conductor in a pulse line machine to be offset in any desired alignment position within the range of the apparatus.

  1. Time scale defined by the fractal structure of the price fluctuations in foreign exchange markets

    NASA Astrophysics Data System (ADS)

    Kumagai, Yoshiaki

    2010-04-01

    In this contribution, a new time scale named C-fluctuation time is defined by price fluctuations observed at a given resolution. The intraday fractal structures and the relations of the three time scales: real time (physical time), tick time and C-fluctuation time, in foreign exchange markets are analyzed. The data set used is trading prices of foreign exchange rates; US dollar (USD)/Japanese yen (JPY), USD/Euro (EUR), and EUR/JPY. The accuracy of the data is one minute and data within a minute are recorded in order of transaction. The series of instantaneous velocity of C-fluctuation time flowing are exponentially distributed for small C when they are measured by real time and for tiny C when they are measured by tick time. When the market is volatile, for larger C, the series of instantaneous velocity are exponentially distributed.

  2. Factor Structure and Scale Reliabilities of the Adjective Check List Across Time

    ERIC Educational Resources Information Center

    Miller, Stephen H.; And Others

    1978-01-01

    Investigated factor structure and scale reliabilities of Gough's Adjective Check List (ACL) and their stability over time. Employees in a community mental health center completed the ACL twice, separated by a one-year interval. After each administration, separate factor analyses were computed. All scales had highly significant test-retest…

  3. Time scales of porphyry Cu deposit formation: insights from titanium diffusion in quartz

    USGS Publications Warehouse

    Mercer, Celestine N.; Reed, Mark H.; Mercer, Cameron M.

    2015-01-01

    Porphyry dikes and hydrothermal veins from the porphyry Cu-Mo deposit at Butte, Montana, contain multiple generations of quartz that are distinct in scanning electron microscope-cathodoluminescence (SEM-CL) images and in Ti concentrations. A comparison of microprobe trace element profiles and maps to SEM-CL images shows that the concentration of Ti in quartz correlates positively with CL brightness but Al, K, and Fe do not. After calibrating CL brightness in relation to Ti concentration, we use the brightness gradient between different quartz generations as a proxy for Ti gradients that we model to determine time scales of quartz formation and cooling. Model results indicate that time scales of porphyry magma residence are ~1,000s of years and time scales from porphyry quartz phenocryst rim formation to porphyry dike injection and cooling are ~10s of years. Time scales for the formation and cooling of various generations of hydrothermal vein quartz range from 10s to 10,000s of years. These time scales are considerably shorter than the ~0.6 m.y. overall time frame for each porphyry-style mineralization pulse determined from isotopic studies at Butte, Montana. Simple heat conduction models provide a temporal reference point to compare chemical diffusion time scales, and we find that they support short dike and vein formation time scales. We interpret these relatively short time scales to indicate that the Butte porphyry deposit formed by short-lived episodes of hydrofracturing, dike injection, and vein formation, each with discrete thermal pulses, which repeated over the ~3 m.y. generation of the deposit.

  4. Insights from inside the spinodal: Bridging thermalization time scales with smoothed particle hydrodynamics

    NASA Astrophysics Data System (ADS)

    Pütz, Martin; Nielaba, Peter

    2016-08-01

    We report the influence of the strength of heat bath coupling on the demixing behavior in spinodal decomposing one component liquid-vapor systems. The smoothed particle hydrodynamics (SPH) method with a van der Waals equation of state is used for the simulation. A thermostat for SPH is introduced that is based on the Berendsen thermostat. It controls the strength of heat bath coupling and allows for quenches with exponential temperature decay at a certain thermalization time scale. The present method allows us to bridge several orders of magnitude in the thermalization time scale. The early stage is highly affected by the choice of time scale. A transition from exponential growth to a 1 /2 ordinary power law scaling in the characteristic lengths is observed. At high initial temperatures the growth is logarithmic. The comparison with pure thermal simulations reveals latent heat to raise the mean system temperature. Large thermalization time scales and thermal conductivity are figured out to affect a stagnation of heating, which is explained with convective processes. Furthermore, large thermalization time scales are responsible for a stagnation of growth of domains, which is temporally embedded between early and late stage of phase separation. Therefore, it is considered as an intermediate stage. We present an aspect concerning this stage, namely that choosing larger thermalization time scales increases the duration. Moreover, it is observed that diffuse interfaces are formed during this stage, provided that the stage is apparent. We show that the differences in the evolution between pure thermal simulations and simulations with an instantaneously scaled mean temperature can be explained by the thermalization process, since a variation of the time scale allows for the bridging between these cases of limit.

  5. Sensitivity of Southern Ocean overturning to wind stress changes: Role of surface restoring time scales

    NASA Astrophysics Data System (ADS)

    Zhai, Xiaoming; Munday, David R.

    2014-12-01

    The influence of different surface restoring time scales on the response of the Southern Ocean overturning circulation to wind stress changes is investigated using an idealised channel model. Regardless of the restoring time scales chosen, the eddy-induced meridional overturning circulation (MOC) is found to compensate for changes of the direct wind-driven Eulerian-mean MOC, rendering the residual MOC less sensitive to wind stress changes. However, the extent of this compensation depends strongly on the restoring time scale: residual MOC sensitivity increases with decreasing restoring time scale. Strong surface restoring is shown to limit the ability of the eddy-induced MOC to change in response to wind stress changes and as such suppresses the eddy compensation effect. These model results are consistent with qualitative arguments derived from residual-mean theory and may have important implications for interpreting past and future observations.

  6. Combined use of meteorological drought indices at multi-time scales for improving hydrological drought detection.

    PubMed

    Zhu, Ye; Wang, Wen; Singh, Vijay P; Liu, Yi

    2016-11-15

    Prediction of hydrological drought in the absence of hydrological records is of great significance for water resources management and risk assessment. In this study, two meteorological drought indices, including standardized precipitation index (SPI) and standardized precipitation evapotranspiration index (SPEI) calculated at different time scales (1 to 12months), were analyzed for their capabilities in detecting hydrological droughts. The predictive skills of meteorological drought indices were assessed through correlation analysis, and two skill scores, i.e. probability of detection (POD) and false alarm rate (FAR). When used independently, indices of short time scales generally performed better than did those of long time scales. However, at least 31% of hydrological droughts were still missed in view of the peak POD score (0.69) of a single meteorological drought index. Considering the distinguished roles of different time scales in explaining hydrological droughts with disparate features, an optimization approach of blending SPI/SPEI at multiple time scales was proposed. To examine the robustness of the proposed method, data of 1964-1990 was used to establish the multiscalar index, then validate during 2000-2010. Results showed that POD exhibited a significant increase when more than two time scales were used, and the best performances were found when blending 8 time scales of SPI and 9 for SPEI, with the corresponding values of 0.82 and 0.85 for POD, 0.205 and 0.21 for FAR, in the calibration period, and even better performance in the validation period. These results far exceeded the performance of any single meteorological drought index. This suggests that when there is lack of streamflow measurements, blending climatic information of multiple time scales to jointly monitor hydrological droughts could be an alternative solution.

  7. A two-time-scale autopilot for high-performance aircraft

    NASA Technical Reports Server (NTRS)

    Menon, P. K. A.; Chatterji, G. B.; Cheng, V. H. L.

    1991-01-01

    A two-time-scale autopilot is proposed for the Aircraft Controls Design Challenge problem. This control law uses a nonlinear aircraft model constructed from the given vehicle simulation. The vehicle model is partitioned into slow translational dynamics and fast rotational dynamics. Feedback linearization is then employed to synthesize control laws for these two-time scales. Due to the nature of the synthesis, the control law is suitable for automatic trajectory following, and also for pilot control.

  8. A semelparous fish continues upstream migration when exposed to alarm cue, but adjusts movement speed and timing

    USGS Publications Warehouse

    Luhring, Thomas M; Meckley, Trevor D.; Johnson, Nicholas S.; Siefkes, Michael J.; Hume, John B.; Wagner, C. Michael

    2016-01-01

    Animals make trade-offs between predation risk and pursuit of opportunities such as foraging and reproduction. Trade-offs between antipredator behaviours and foraging are well suited to manipulation in laboratory and field settings and have generated a vast compendium of knowledge. However, much less is known about how animals manage trade-offs between predation risk and pursuit of reproductive opportunities in the absence of the confounding effects of foraging. In the present study, we investigated how the nonfeeding migratory life stage of sea lamprey, Petromyzon marinus, responds to odour from dead conspecifics (a cue that induces avoidance behaviours in laboratory and field studies). We released groups of PIT-tagged sea lamprey 65 m from the shore of Lake Michigan or 287 m upstream in Carp Lake River and used antennas to detect their movements in the river. As the breeding season progressed, sea lamprey initiated upstream movement earlier and were more likely to enter the river. Sea lamprey that began the night in Lake Michigan entered Carp Lake River at higher rates and accelerated upstream when exposed to high concentrations of alarm cue, consistent with animals attempting to minimize time spent in risky areas. Sea lampreys that began the night in the river delayed upstream movement when exposed to alarm cue, consistent with animals sheltering and gathering information about a source of risk. We attribute this context-specific reaction to alarm cue to differences in perceived vulnerability to predation in sheltered positions in the river versus exposed positions in the lake. Once in the river, the vast majority of sea lamprey moved upstream independent of alarm cue or Julian date. Although life-history-induced time and energy budgets place rigid constraints on the direction of migration, sea lamprey attend to predation risk by modifying movement timing and speed.

  9. The current crisis in human resources for health in Africa: the time to adjust our focus is now.

    PubMed

    Dalton, Simon C

    2014-09-01

    The challenges as we strive towards universal health coverage are many, but the need for an improved health workforce is chief among them. Unfortunately the global deficit in skilled professionals continues to increase. Nevertheless, there are potential solutions, and success stories are well documented when the approach is on system building and sustainability. As we approach 2015 and the Millennium Development Goals, we must shift our focus to a more distant time point in order to achieve the dramatic gains in global health that are possible. However, we must understand that there can be no health without a workforce.

  10. Large-scale synthesis of monodisperse SiC nanoparticles with adjustable size, stoichiometric ratio and properties by fluidized bed chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Liu, Rongzheng; Liu, Malin; Chang, Jiaxing

    2017-02-01

    A facile fluidized bed chemical vapor deposition method was proposed for the synthesis of monodisperse SiC nanoparticles by using the single precursor of hexamethyldisilane (HMDS). SiC nanoparticles with average particle size from 10 to 200 nm were obtained by controlling the temperature and the gas ratio. An experimental chemical vapor deposition phase diagram of SiC in the HMDS-Ar-H2 system was obtained and three regions of SiC-Si, SiC and SiC-C can be distinguished. The BET surface area and the photoluminescence properties of the SiC nanoparticles can be adjusted by changing the nanoparticle size. For the SiC nanospheres with free carbon, a novel hierarchical structure with 5 8 nm SiC nanoparticles embedded into the graphite matrix was obtained. The advantages of fluidized bed technology for the preparation of SiC nanoparticles were proposed based on the features of homogenous reaction zone, narrow temperature distribution, ultra-short reactant residence time and mass production.

  11. Time-frequency scale decomposition of tectonic tremor signals for space-time reconstruction of tectonic tremor sources

    NASA Astrophysics Data System (ADS)

    Poiata, N.; Satriano, C.; Vilotte, J. P.; Bernard, P.; Obara, K.

    2015-12-01

    Seismic radiation associated with transient deformations along the faults and subduction interfaces encompasses a variety of events, i.e., tectonic tremors, low-frequency earthquakes (LFE), very low-frequency earthquakes (VLFs), and slow-slip events (SSE), with a wide range of seismic moment and characteristic durations. Characterizing in space and time the complex sources of these slow earthquakes, and their relationship with background seismicity and large earthquakes generation, is of great importance for understanding the physics and mechanics of the processes of active deformations along the plate interfaces. We present here first developments towards a methodology for: (1) extracting the different frequency and scale components of observed tectonic tremor signal, using advanced time-frequency and time-scale signal representation such as Gabor transform scheme based on, e.g. Wilson bases or Modified Discrete Cosine Transform (MDCT) bases; (2) reconstructing their corresponding potential sources in space and time, using the array method of Poiata et al. (2015). The methodology is assessed using a dataset of tectonic tremor episodes from Shikoku, Japan, recorded by the Hi-net seismic network operated by NIED. We illustrate its performance and potential in providing activity maps - associated to different scale-components of tectonic tremors - that can be analyzed statistically to improve our understanding of tremor sources and scaling, as well as their relation with the background seismicity.

  12. Alongshore Shear-Dispersion of Surfzone Drifters: The Effect of a Finite Lagrangian Time-Scale

    NASA Astrophysics Data System (ADS)

    Spydell, M. S.; Feddersen, F.

    2010-12-01

    GPS-tracked surfzone drifters were used to investigate surfzone dispersion. For the 2006 Huntington Beach (HB06) data, the alongshore diffusivity is related to the magnitude of the mean alongshore current V0 [Spydell et al. JGR 2009]. In particular the asymptotic alongshore diffusivity κyy was approximately consistent with a "shear dispersion" scaling [e.g., Taylor 1953] κyy = K V02 τD, where K is a constant, and τD=Ls2/κxx is the cross-shore diffusion time for surfzone width Ls and cross-shore diffusivity κxx. However, the value of the constant K obtained from the in-situ data is more than three times that expected for the classic Taylor shear dispersion model that assumes uncorrelated Lagrangian velocities at all times. Lagrangian velocities in the surfzone are correlated and eventually become decorrelated at times longer than the Lagrangian time-scale τL. A theory for shear-dispersion that includes the effect of a finite Lagrangian time-scale is presented. The shear-enhanced alongshore diffusivity for this model has a different scaling κyy ˜ C V02(τDτL)1/2 where C is a constant given by the theory. This scaling better explains the HB06 data than the classic shear dispersion scaling. This new theory may have application in other geophysical fluid dynamics settings.

  13. Virtual Testing of Large Composite Structures: A Multiple Length/Time-Scale Framework

    NASA Astrophysics Data System (ADS)

    Gigliotti, Luigi; Pinho, Silvestre T.

    2015-12-01

    This paper illustrates a multiple length/time-scale framework for the virtual testing of large composite structures. Such framework hinges upon a Mesh Superposition Technique (MST) for the coupling between areas of the structure modelled at different length-scales and upon an efficient solid-to-shell numerical homogenization which exploits the internal symmetries of Unit Cells (UCs). Using this framework, it is possible to minimize the areas of the structure modelled at the lowest- (and computationally demanding) scales and the computational cost required to calculate the homogenised to be used in the higher-scales subdomains of multiscale FE models, as well as to simulate the mechanical response of different parts of the structure using different solvers, depending on where they are expected to provide the most computationally efficient solution. The relevance and key-aspects of the multiple length/time-scale framework are demonstrated through the analysis of a real-sized aeronautical composite component.

  14. [Stormflow hydrochemical characteristics at different time scales in a typical karst catchment of northwest Guangxi, China].

    PubMed

    Liu, Chun; Yang, Jing; Nie, Yun-peng; Chen, Hong-song; Fu, Zhi-yong

    2015-09-01

    Through in situ observation and indoor tests, the hydrochemical characteristics of a typical karst watershed at three different time scales (diurnal, single storm, and seasonal scales) from June 2013 to March 2014 were investigated, and their influencing factors were analyzed. The results showed that the diurnal variations of the hydrochemistry exhibited a regular changing pattern resulting from the shifting of the main vegetation physiological activity from photosynthesis in the day to respiration in the night. At single storm scale, however, the hydrochemical processes were mainly determined by the number of consecutive rainless days and rainfall intensity, while the diurnal scale effect was weakened. As to the seasonal scale, the overall hydrochemical processes showed quick responses to rainfall events although they responded more quickly in the rainy season than in the dry season. The temperature and the yearly rainfall distribution regime were the two main influencing factors at this scale.

  15. Revisiting the impact of part-time work on adolescent adjustment: distinguishing between selection and socialization using propensity score matching.

    PubMed

    Monahan, Kathryn C; Lee, Joanna M; Steinberg, Laurence

    2011-01-01

    The impact of part-time employment on adolescent functioning remains unclear because most studies fail to adequately control for differential selection into the workplace. The present study reanalyzes data from L. Steinberg, S. Fegley, and S. M. Dornbusch (1993) using multiple imputation, which minimizes bias in effect size estimation, and 2 types of propensity score matching, to account for selection effects. In this sample (N = 1,792; Grades 10-11, M = 16.26), youth who begin working more than 20 hr per week evince declines in school engagement and increases in substance use and delinquency compared with youth who remain unemployed. Conversely, working 20 hr or less a week has negligible effects, positive or negative, on academic, psychological, or behavioral outcomes.

  16. A hybrid procedure for MSW generation forecasting at multiple time scales in Xiamen City, China

    SciTech Connect

    Xu, Lilai; Gao, Peiqing; Cui, Shenghui; Liu, Chun

    2013-06-15

    Highlights: ► We propose a hybrid model that combines seasonal SARIMA model and grey system theory. ► The model is robust at multiple time scales with the anticipated accuracy. ► At month-scale, the SARIMA model shows good representation for monthly MSW generation. ► At medium-term time scale, grey relational analysis could yield the MSW generation. ► At long-term time scale, GM (1, 1) provides a basic scenario of MSW generation. - Abstract: Accurate forecasting of municipal solid waste (MSW) generation is crucial and fundamental for the planning, operation and optimization of any MSW management system. Comprehensive information on waste generation for month-scale, medium-term and long-term time scales is especially needed, considering the necessity of MSW management upgrade facing many developing countries. Several existing models are available but of little use in forecasting MSW generation at multiple time scales. The goal of this study is to propose a hybrid model that combines the seasonal autoregressive integrated moving average (SARIMA) model and grey system theory to forecast MSW generation at multiple time scales without needing to consider other variables such as demographics and socioeconomic factors. To demonstrate its applicability, a case study of Xiamen City, China was performed. Results show that the model is robust enough to fit and forecast seasonal and annual dynamics of MSW generation at month-scale, medium- and long-term time scales with the desired accuracy. In the month-scale, MSW generation in Xiamen City will peak at 132.2 thousand tonnes in July 2015 – 1.5 times the volume in July 2010. In the medium term, annual MSW generation will increase to 1518.1 thousand tonnes by 2015 at an average growth rate of 10%. In the long term, a large volume of MSW will be output annually and will increase to 2486.3 thousand tonnes by 2020 – 2.5 times the value for 2010. The hybrid model proposed in this paper can enable decision makers to

  17. Influence of climate variability versus change at multi-decadal time scales on hydrological extremes

    NASA Astrophysics Data System (ADS)

    Willems, Patrick

    2014-05-01

    Recent studies have shown that rainfall and hydrological extremes do not randomly occur in time, but are subject to multidecadal oscillations. In addition to these oscillations, there are temporal trends due to climate change. Design statistics, such as intensity-duration-frequency (IDF) for extreme rainfall or flow-duration-frequency (QDF) relationships, are affected by both types of temporal changes (short term and long term). This presentation discusses these changes, how they influence water engineering design and decision making, and how this influence can be assessed and taken into account in practice. The multidecadal oscillations in rainfall and hydrological extremes were studied based on a technique for the identification and analysis of changes in extreme quantiles. The statistical significance of the oscillations was evaluated by means of a non-parametric bootstrapping method. Oscillations in large scale atmospheric circulation were identified as the main drivers for the temporal oscillations in rainfall and hydrological extremes. They also explain why spatial phase shifts (e.g. north-south variations in Europe) exist between the oscillation highs and lows. Next to the multidecadal climate oscillations, several stations show trends during the most recent decades, which may be attributed to climate change as a result of anthropogenic global warming. Such attribution to anthropogenic global warming is, however, uncertain. It can be done based on simulation results with climate models, but it is shown that the climate model results are too uncertain to enable a clear attribution. Water engineering design statistics, such as extreme rainfall IDF or peak or low flow QDF statistics, obviously are influenced by these temporal variations (oscillations, trends). It is shown in the paper, based on the Brussels 10-minutes rainfall data, that rainfall design values may be about 20% biased or different when based on short rainfall series of 10 to 15 years length, and

  18. 5D Data Modelling: Full Integration of 2D/3D Space, Time and Scale Dimensions

    NASA Astrophysics Data System (ADS)

    van Oosterom, Peter; Stoter, Jantien

    This paper proposes an approach for data modelling in five dimensions. Apart from three dimensions for geometrical representation and a fourth dimension for time, we identify scale as fifth dimensional characteristic. Considering scale as an extra dimension of geographic information, fully integrated with the other dimensions, is new. Through a formal definition of geographic data in a conceptual 5D continuum, the data can be handled by one integrated approach assuring consistency across scale and time dimensions. Because the approach is new and challenging, we choose to step-wise studying several combinations of the five dimensions, ultimately resulting in the optimal 5D model. We also propose to apply mathematical theories on multidimensional modelling to well established principles of multidimensional modelling in the geo-information domain. The result is a conceptual full partition of the 3Dspace+time+scale space (i.e. no overlaps, no gaps) realised in a 5D data model implemented in a Database Management System.

  19. A multi-time scale approach to remaining useful life prediction in rolling bearing

    NASA Astrophysics Data System (ADS)

    Qian, Yuning; Yan, Ruqiang; Gao, Robert X.

    2017-01-01

    This paper presents a novel multi-time scale approach to bearing defect tracking and remaining useful life (RUL) prediction, which integrates enhanced phase space warping (PSW) with a modified Paris crack growth model. As a data-driven method, PSW describes the dynamical behavior of the bearing being tested on a fast-time scale, whereas the Paris crack growth model, as a physics-based model, characterizes the bearing's defect propagation on a slow-time scale. Theoretically, PSW constructs a tracking metric by evaluating the phase space trajectory warping of the bearing vibration data, and establishes a correlation between measurement on a fast-time scale and defect growth variables on a slow-time scale. Furthermore, PSW is enhanced by a multi-dimensional auto-regression (AR) model for improved accuracy in defect tracking. Also, the Paris crack growth model is modified by a time-piecewise algorithm for real-time RUL prediction. Case studies performed on two run-to-failure experiments indicate that the developed technique is effective in tracking the evolution of bearing defects and accurately predict the bearing RUL, thus contributing to the literature of bearing prognosis .

  20. Putting scales into evolutionary time: the divergence of major scale insect lineages (Hemiptera) predates the radiation of modern angiosperm hosts.

    PubMed

    Vea, Isabelle M; Grimaldi, David A

    2016-03-22

    The radiation of flowering plants in the mid-Cretaceous transformed landscapes and is widely believed to have fuelled the radiations of major groups of phytophagous insects. An excellent group to test this assertion is the scale insects (Coccomorpha: Hemiptera), with some 8,000 described Recent species and probably the most diverse fossil record of any phytophagous insect group preserved in amber. We used here a total-evidence approach (by tip-dating) employing 174 morphological characters of 73 Recent and 43 fossil taxa (48 families) and DNA sequences of three gene regions, to obtain divergence time estimates and compare the chronology of the most diverse lineage of scale insects, the neococcoid families, with the timing of the main angiosperm radiation. An estimated origin of the Coccomorpha occurred at the beginning of the Triassic, about 245 Ma [228-273], and of the neococcoids 60 million years later [210-165 Ma]. A total-evidence approach allows the integration of extinct scale insects into a phylogenetic framework, resulting in slightly younger median estimates than analyses using Recent taxa, calibrated with fossil ages only. From these estimates, we hypothesise that most major lineages of coccoids shifted from gymnosperms onto angiosperms when the latter became diverse and abundant in the mid- to Late Cretaceous.

  1. Putting scales into evolutionary time: the divergence of major scale insect lineages (Hemiptera) predates the radiation of modern angiosperm hosts

    PubMed Central

    Vea, Isabelle M.; Grimaldi, David A.

    2016-01-01

    The radiation of flowering plants in the mid-Cretaceous transformed landscapes and is widely believed to have fuelled the radiations of major groups of phytophagous insects. An excellent group to test this assertion is the scale insects (Coccomorpha: Hemiptera), with some 8,000 described Recent species and probably the most diverse fossil record of any phytophagous insect group preserved in amber. We used here a total-evidence approach (by tip-dating) employing 174 morphological characters of 73 Recent and 43 fossil taxa (48 families) and DNA sequences of three gene regions, to obtain divergence time estimates and compare the chronology of the most diverse lineage of scale insects, the neococcoid families, with the timing of the main angiosperm radiation. An estimated origin of the Coccomorpha occurred at the beginning of the Triassic, about 245 Ma [228–273], and of the neococcoids 60 million years later [210–165 Ma]. A total-evidence approach allows the integration of extinct scale insects into a phylogenetic framework, resulting in slightly younger median estimates than analyses using Recent taxa, calibrated with fossil ages only. From these estimates, we hypothesise that most major lineages of coccoids shifted from gymnosperms onto angiosperms when the latter became diverse and abundant in the mid- to Late Cretaceous. PMID:27000526

  2. Change ΔS of the entropy in natural time under time reversal: Complexity measures upon change of scale

    NASA Astrophysics Data System (ADS)

    Sarlis, N. V.; Christopoulos, S.-R. G.; Bemplidaki, M. M.

    2015-01-01

    The entropy S in natural time as well as the entropy in natural time under time reversal S- have already found useful applications in the physics of complex systems, e.g., in the analysis of electrocardiograms (ECGs). Here, we focus on the complexity measures Λl which result upon considering how the statistics of the time series Δ S≤ft[\\equiv S- S-\\right] changes upon varying the scale l. These scale-specific measures are ratios of the standard deviations σ(Δ S_l) and hence independent of the mean value and the standard deviation of the data. They focus on the different dynamics that appear on different scales. For this reason, they can be considered complementary to other standard measures of heart rate variability in ECG, like SDNN, as well as other complexity measures already defined in natural time. An application to the analysis of ECG —when solely using NN intervals— is presented: We show how Λl can be used to separate ECG of healthy individuals from those suffering from congestive heart failure and sudden cardiac death.

  3. Weighing Scale-Based Pulse Transit Time is a Superior Marker of Blood Pressure than Conventional Pulse Arrival Time

    NASA Astrophysics Data System (ADS)

    Martin, Stephanie L.-O.; Carek, Andrew M.; Kim, Chang-Sei; Ashouri, Hazar; Inan, Omer T.; Hahn, Jin-Oh; Mukkamala, Ramakrishna

    2016-12-01

    Pulse transit time (PTT) is being widely pursued for cuff-less blood pressure (BP) monitoring. Most efforts have employed the time delay between ECG and finger photoplethysmography (PPG) waveforms as a convenient surrogate of PTT. However, these conventional pulse arrival time (PAT) measurements include the pre-ejection period (PEP) and the time delay through small, muscular arteries and may thus be an unreliable marker of BP. We assessed a bathroom weighing scale-like system for convenient measurement of ballistocardiography and foot PPG waveforms – and thus PTT through larger, more elastic arteries – in terms of its ability to improve tracking of BP in individual subjects. We measured “scale PTT”, conventional PAT, and cuff BP in humans during interventions that increased BP but changed PEP and smooth muscle contraction differently. Scale PTT tracked the diastolic BP changes well, with correlation coefficient of ‑0.80 ± 0.02 (mean ± SE) and root-mean-squared-error of 7.6 ± 0.5 mmHg after a best-case calibration. Conventional PAT was significantly inferior in tracking these changes, with correlation coefficient of ‑0.60 ± 0.04 and root-mean-squared-error of 14.6 ± 1.5 mmHg (p < 0.05). Scale PTT also tracked the systolic BP changes better than conventional PAT but not to an acceptable level. With further development, scale PTT may permit reliable, convenient measurement of BP.

  4. Weighing Scale-Based Pulse Transit Time is a Superior Marker of Blood Pressure than Conventional Pulse Arrival Time

    PubMed Central

    Martin, Stephanie L.-O.; Carek, Andrew M.; Kim, Chang-Sei; Ashouri, Hazar; Inan, Omer T.; Hahn, Jin-Oh; Mukkamala, Ramakrishna

    2016-01-01

    Pulse transit time (PTT) is being widely pursued for cuff-less blood pressure (BP) monitoring. Most efforts have employed the time delay between ECG and finger photoplethysmography (PPG) waveforms as a convenient surrogate of PTT. However, these conventional pulse arrival time (PAT) measurements include the pre-ejection period (PEP) and the time delay through small, muscular arteries and may thus be an unreliable marker of BP. We assessed a bathroom weighing scale-like system for convenient measurement of ballistocardiography and foot PPG waveforms – and thus PTT through larger, more elastic arteries – in terms of its ability to improve tracking of BP in individual subjects. We measured “scale PTT”, conventional PAT, and cuff BP in humans during interventions that increased BP but changed PEP and smooth muscle contraction differently. Scale PTT tracked the diastolic BP changes well, with correlation coefficient of −0.80 ± 0.02 (mean ± SE) and root-mean-squared-error of 7.6 ± 0.5 mmHg after a best-case calibration. Conventional PAT was significantly inferior in tracking these changes, with correlation coefficient of −0.60 ± 0.04 and root-mean-squared-error of 14.6 ± 1.5 mmHg (p < 0.05). Scale PTT also tracked the systolic BP changes better than conventional PAT but not to an acceptable level. With further development, scale PTT may permit reliable, convenient measurement of BP. PMID:27976741

  5. Time tracking and interaction of energy-eddies at different scales

    NASA Astrophysics Data System (ADS)

    Cardesa, Jose I.; Vela-Martin, Alberto; Jimenez, Javier

    2016-11-01

    We study the energy cascade through coherent structures obtained in time-resolved simulations of incompressible, statistically steady isotropic turbulence. The structures are defined as geometrically connected regions of the flow with high kinetic energy. We compute the latter by band-pass filtering the velocity field around a scale r. We analyse the dynamics of structures extracted with different r, which are a proxy for eddies containing energy at those r. We find that the size of these "energy-eddies" scales with r, while their lifetime scales with the local eddy-turnover r 2 / 3ɛ - 1 / 3 , where ɛ is the energy dissipation averaged over all space and time. Furthermore, a statistical analysis over the lives of the eddies shows a slight predominance of the splitting over the merging process. When we isolate the eddies which do not interact with other eddies of the same scale, we observe a parent-child dependence by which, on average, structures are born at scale r during the decaying part of the life of a structure at scale r' > r . The energy-eddy at r' lives in the same region of space as that at r. Finally, we investigate how interactions between eddies at the same scale are echoed across other scales. Funded by the ERC project Coturb.

  6. Monitoring forest dynamics with multi-scale and time series imagery.

    PubMed

    Huang, Chunbo; Zhou, Zhixiang; Wang, Di; Dian, Yuanyong

    2016-05-01

    To learn the forest dynamics and evaluate the ecosystem services of forest effectively, a timely acquisition of spatial and quantitative information of forestland is very necessary. Here, a new method was proposed for mapping forest cover changes by combining multi-scale satellite remote-sensing imagery with time series data. Using time series Normalized Difference Vegetation Index products derived from the Moderate Resolution Imaging Spectroradiometer images (MODIS-NDVI) and Landsat Thematic Mapper/Enhanced Thematic Mapper Plus (TM/ETM+) images as data source, a hierarchy stepwise analysis from coarse scale to fine scale was developed for detecting the forest change area. At the coarse scale, MODIS-NDVI data with 1-km resolution were used to detect the changes in land cover types and a land cover change map was constructed using NDVI values at vegetation growing seasons. At the fine scale, based on the results at the coarse scale, Landsat TM/ETM+ data with 30-m resolution were used to precisely detect the forest change location and forest change trend by analyzing time series forest vegetation indices (IFZ). The method was tested using the data for Hubei Province, China. The MODIS-NDVI data from 2001 to 2012 were used to detect the land cover changes, and the overall accuracy was 94.02 % at the coarse scale. At the fine scale, the available TM/ETM+ images at vegetation growing seasons between 2001 and 2012 were used to locate and verify forest changes in the Three Gorges Reservoir Area, and the overall accuracy was 94.53 %. The accuracy of the two layer hierarchical monitoring results indicated that the multi-scale monitoring method is feasible and reliable.

  7. Analytical expression for gas-particle equilibration time scale and its numerical evaluation

    NASA Astrophysics Data System (ADS)

    Anttila, Tatu; Lehtinen, Kari E. J.; Dal Maso, Miikka

    2016-05-01

    We have derived a time scale τeq that describes the characteristic time for a single compound i with a saturation vapour concentration Ceff,i to reach thermodynamic equilibrium between the gas and particle phases. The equilibration process was assumed to take place via gas-phase diffusion and absorption into a liquid-like phase present in the particles. It was further shown that τeq combines two previously derived and often applied time scales τa and τs that account for the changes in the gas and particle phase concentrations of i resulting from the equilibration, respectively. The validity of τeq was tested by comparing its predictions against results from a numerical model that explicitly simulates the transfer of i between the gas and particle phases. By conducting a large number of simulations where the values of the key input parameters were varied randomly, it was found out that τeq yields highly accurate results when i is a semi-volatile compound in the sense that the ratio of total (gas and particle phases) concentration of i to the saturation vapour concentration of i, μ, is below unity. On the other hand, the comparison of analytical and numerical time scales revealed that using τa or τs alone to calculate the equilibration time scale may lead to considerable errors. It was further shown that τeq tends to overpredict the equilibration time when i behaves as a non-volatile compound in a sense that μ > 1. Despite its simplicity, the time scale derived here has useful applications. First, it can be used to assess if semi-volatile compounds reach thermodynamic equilibrium during dynamic experiments that involve changes in the compound volatility. Second, the time scale can be used in modeling of secondary organic aerosol (SOA) to check whether SOA forming compounds equilibrate over a certain time interval.

  8. Characteristic Time Scales of Transport Processes for Chemotactic Bacteria in Groundwater: Analysis of Pore-scale to Field-scale Experimental Data

    NASA Astrophysics Data System (ADS)

    Ford, R. M.

    2010-12-01

    Many processes contribute to the transport of microorganisms in groundwater environments. One process of interest is chemotaxis, whereby motile bacteria are able to detect and swim toward increasing concentrations of industrial hydrocarbons that they perceive as food sources. By enabling bacteria to migrate to the sources of pollutants that they degrade, chemotaxis has the potential to enhance bioremediation efforts, especially in less permeable zones where contamination may persist. To determine the field conditions under which chemotaxis might be exploited in a bioremediation scheme requires an understanding of the characteristic time scales in the system. We defined a dimensionless chemotaxis number that compares the time over which a bacterial population is exposed to a chemical gradient to the time required for a bacterial population to migrate a significant distance in response to a chemical gradient. The exposure time and the response time are dependent upon the experimental conditions and properties of the bacteria and chemical attractant. Experimental data was analyzed for a range of groundwater flow rates over a wide scope of experimental systems including a single-pore with NAPL source, a microfluidic channel with and without a porous matrix, a laboratory column, a bench-scale microcosm and a field-scale study. Chemical gradients were created transverse to the flow direction. Distributions of chemotactic and nonchemotactic bacteria were compared to determine the extent of migration due to chemotaxis. Under some conditions at higher flow rates, the effect of chemotaxis was diminished to the point of not being detected. The goal of the study was to determine a critical value for the dimensionless chemotaxis number (which is independent of scale) that can be used as a design criterion to ascertain a priori the conditions under which a chemotactic response will impact bacterial transport relative to other processes such as advection and dispersion.

  9. Disk File Management in a Medium-Scale Time-Sharing System.

    ERIC Educational Resources Information Center

    Fitzhugh, Robert J.; Pethia, Richard D.

    The paper descibes a compact and highly efficient disk file management system responsible for the management and allocation of space on moving head disk drives in a medium-scale time-sharing system. The disk file management system is a major component of the Experimental Time-Sharing System (ETSS) developed at the Learning Research and Development…

  10. Automatic fault diagnosis of rotating machines by time-scale manifold ridge analysis

    NASA Astrophysics Data System (ADS)

    Wang, Jun; He, Qingbo; Kong, Fanrang

    2013-10-01

    This paper explores the improved time-scale representation by considering the non-linear property for effectively identifying rotating machine faults in the time-scale domain. A new time-scale signature, called time-scale manifold (TSM), is proposed in this study through combining phase space reconstruction (PSR), continuous wavelet transform (CWT), and manifold learning. For the TSM generation, an optimal scale band is selected to eliminate the influence of unconcerned scale components, and the noise in the selected band is suppressed by manifold learning to highlight the inherent non-linear structure of faulty impacts. The TSM reserves the non-stationary information and reveals the non-linear structure of the fault pattern, with the merits of noise suppression and resolution improvement. The TSM ridge is further extracted by seeking the ridge with energy concentration lying on the TSM signature. It inherits the advantages of both the TSM and ridge analysis, and hence is beneficial to demodulation of the fault information. Through analyzing the instantaneous amplitude (IA) of the TSM ridge, in which the noise is nearly not contained, the fault characteristic frequency can be exactly identified. The whole process of the proposed fault diagnosis scheme is automatic, and its effectiveness has been verified by means of typical faulty vibration/acoustic signals from a gearbox and bearings. A reliable performance of the new method is validated in comparison with traditional enveloping methods for rotating machine fault diagnosis.

  11. Time scales of the stick–slip dynamics of the peeling of an adhesive tape

    PubMed Central

    Mishra, Nachiketa; Parida, Nigam Chandra; Raha, Soumyendu

    2015-01-01

    The stick–slip dynamics of the peeling of an adhesive tape is characterized by bifurcations that have been experimentally well studied. In this work, we investigate the time scale in which the the stick–slips happen leading to the bifurcations. This is fundamental to understanding the triboluminescence and acoustic emissions associated with the bifurcations. We establish a relationship between the time scale of the bifurcations and the inherent mathematical structure of the peeling dynamics by studying a characteristic time quantity associated with the dynamics. PMID:25663802

  12. Using an Adjusted Serfling Regression Model to Improve the Early Warning at the Arrival of Peak Timing of Influenza in Beijing

    PubMed Central

    Wang, Xiaoli; Wu, Shuangsheng; MacIntyre, C. Raina; Zhang, Hongbin; Shi, Weixian; Peng, Xiaomin; Duan, Wei; Yang, Peng; Zhang, Yi; Wang, Quanyi

    2015-01-01

    Serfling-type periodic regression models have been widely used to identify and analyse epidemic of influenza. In these approaches, the baseline is traditionally determined using cleaned historical non-epidemic data. However, we found that the previous exclusion of epidemic seasons was empirical, since year-year variations in the seasonal pattern of activity had been ignored. Therefore, excluding fixed ‘epidemic’ months did not seem reasonable. We made some adjustments in the rule of epidemic-period removal to avoid potentially subjective definition of the start and end of epidemic periods. We fitted the baseline iteratively. Firstly, we established a Serfling regression model based on the actual observations without any removals. After that, instead of manually excluding a predefined ‘epidemic’ period (the traditional method), we excluded observations which exceeded a calculated boundary. We then established Serfling regression once more using the cleaned data and excluded observations which exceeded a calculated boundary. We repeated this process until the R2 value stopped to increase. In addition, the definitions of the onset of influenza epidemic were heterogeneous, which might make it impossible to accurately evaluate the performance of alternative approaches. We then used this modified model to detect the peak timing of influenza instead of the onset of epidemic and compared this model with traditional Serfling models using observed weekly case counts of influenza-like illness (ILIs), in terms of sensitivity, specificity and lead time. A better performance was observed. In summary, we provide an adjusted Serfling model which may have improved performance over traditional models in early warning at arrival of peak timing of influenza. PMID:25756205

  13. Calibration of the geologic time scale: Cenozoic and Late Cretaceous glauconite and nonglauconite dates compared

    SciTech Connect

    Craig, L.E.; Smith, A.G. ); Armstrong, R.L. )

    1989-09-01

    Revision of the 1982 time scale of Harland et al. has led to the compilation of 377 isotopic dates for calibration of the Cenozoic to Cretaceous time interval. The results show that the ages of stage boundaries based on glauconite dates are on average about 2 m.y. younger than those based on nonglauconite dates, but for many Cenozoic and Late Cretaceous stages the differences are too small to require special consideration of glauconite dates. Future work may reveal an irreducible systematic difference between glauconite and nonglauconite time scales, but the progress made so far in recognizing those glauconites likely to yield reliable dates for the Cenozoic to Late Cretaceous interval may continue to provide useful time-scale calibration points.

  14. Energy Landscapes Encoding Function in Enzymes Investigated Over Broad Time Scales

    NASA Astrophysics Data System (ADS)

    Callender, Robert

    2011-03-01

    The operating hypothesis of much of our current work is that atomic motion, over broad time scales (femtoseconds to milliseconds, the latter being the time scale of most enzyme catalyzed reactions), contributes to enzymic catalysis in proteins. It is clear from our work that specific types of motions are important in binding of ligands to proteins and transition state formation in enzymatic catalysis. Since new experimental and theoretical approaches are needed to understand the dynamical nature of proteins broadly and enzymatic catalysis specifically, we have employed time-resolved ``pump-probe'' spectroscopic techniques because of the sensitivity of these type of approaches to all relevant time scales. And we have also developed and applied new theoretical methods. The talk will focus on how lactate dehydrogenase brings about catalysis based on current experimental and theoretical studies. Work supported by NIH Grant P01GM068036.

  15. Time-dependent couplings and crossover length scales in nonequilibrium surface roughening

    NASA Astrophysics Data System (ADS)

    Pradas, Marc; López, Juan M.; Hernández-Machado, A.

    2007-07-01

    We show that time-dependent couplings may lead to nontrivial scaling properties of the surface fluctuations of the asymptotic regime in nonequilibrium kinetic roughening models. Three typical situations are studied. In the case of a crossover between two different rough regimes, the time-dependent coupling may result in anomalous scaling for scales above the crossover length. In a different setting, for a crossover from a rough to either a flat or damping regime, the time-dependent crossover length may conspire to produce a rough surface, although the most relevant term tends to flatten the surface. In addition, our analysis sheds light into an existing debate in the problem of spontaneous imbibition, where time-dependent couplings naturally arise in theoretical models and experiments.

  16. The role of topography on catchment-scale water residence time

    USGS Publications Warehouse

    McGuire, K.J.; McDonnell, Jeffery J.; Weiler, M.; Kendall, C.; McGlynn, B.L.; Welker, J.M.; Seibert, J.

    2005-01-01

    The age, or residence time, of water is a fundamental descriptor of catchment hydrology, revealing information about the storage, flow pathways, and source of water in a single integrated measure. While there has been tremendous recent interest in residence time estimation to characterize watersheds, there are relatively few studies that have quantified residence time at the watershed scale, and fewer still that have extended those results beyond single catchments to larger landscape scales. We examined-topographic controls on residence time for seven catchments (0.085-62.4 km2) that represent diverse geologic and geomorphic conditions in the western Cascade Mountains of Oregon. Our primary objective was to determine the dominant physical controls on catchment-scale, water residence time and specifically test the hypothesis that residence time is related to the size of the basin. Residence times were estimated by simple convolution models that described the transfer of precipitation isotopic composition to the stream network. We found that base flow mean residence times for exponential distributions ranged from 0.8 to 3.3 years. Mean residence time showed no correlation to basin area (r2 < 0.01) but instead was correlated (r2 =-0:91) to catchment terrain indices representing the flow path distance and flow path gradient to the stream network. These results illustrate that landscape organization (i.e., topography) rather than basin area controls catchment-scale transport. Results from this study may provide a framework for describing scale-invariant transport across climatic and geologic conditions, whereby the internal form and structure of the basin defines the first-order control on base flow residence time. Copyright 2005 by the American Geophysical Union.

  17. A near real time scenario at regional scale for the hydrogeological risk

    NASA Astrophysics Data System (ADS)

    Ponziani, F.; Stelluti, M.; Zauri, R.; Berni, N.; Brocca, L.; Moramarco, T.; Salciarini, D.; Tamagnini, C.

    2012-04-01

    The early warning systems dedicated to landslides and floods represent the Umbria Region Civil Protection Service new generation tools for hydraulic and hydrogeological risk reduction. Following past analyses performed by the Functional Centre (part of the civil protection service dedicated to the monitoring and the evaluation of natural hazards) on the relationship between saturated soil conditions and rainfall thresholds, we have developed an automated early warning system for the landslide risk, called LANDWARN, which generates daily and 72h forecast risk matrix with a dense mesh of 100 x 100m, throughout the region. The system is based on: (a) the 20 days -observed and 72h -predicted rainfall, provided by the local meteorological network and the Local scale Meteorological Model COSMO ME, (b) the assessment of the saturation of soils by: daily extraction of ASCAT satellite data, data from a network of 16 TDR sensors, and a water balance model (developed by the Research Institute for Geo-Hydrological Protection, CNR, Perugia, Italy) that allows for the prediction of a saturation index for each point of the analysis grid up to a window of 72 h, (c) a Web-GIS platform that combines the data grids of calculated hazard indicators with layers of landslide susceptibility and vulnerability of the territory, in order to produce dynamic risk scenarios. The system is still under development and it's implemented at different scales: the entire region, and a set of known high-risk landslides in Umbria. The system is monitored and regularly reviewed through the back analysis of landslide reports for which the activation date is available. Up to now, the development of the system involves: a) the improvement of the reliability assessment of the condition of soil saturation, a key parameter which is used to dynamically adjust the values of rainfall thresholds used for the declaration of levels of landslide hazard. For this purpose, a procedure was created for the ASCAT

  18. Space and time scales of shoreline change at Cape Cod National Seashore, MA, USA

    USGS Publications Warehouse

    Allen, J.R.; LaBash, C.L.; List, J.H.; Kraus, Nicholas C.; McDougal, William G.

    1999-01-01

    Different processes cause patterns of shoreline change which are exhibited at different magnitudes and nested into different spatial and time scale hierarchies. The 77-km outer beach at Cape Cod National Seashore offers one of the few U.S. federally owned portions of beach to study shoreline change within the full range of sediment source and sink relationships, and barely affected by human intervention. 'Mean trends' of shoreline changes are best observed at long time scales but contain much spatial variation thus many sites are not equal in response. Long-term, earlier-noted trends are confirmed but the added quantification and resolution improves greatly the understanding of appropriate spatial and time scales of those processes driving bluff retreat and barrier island changes in both north and south depocenters. Shorter timescales allow for comparison of trends and uncertainty in shoreline change at local scales but are dependent upon some measure of storm intensity and seasonal frequency. Single-event shoreline survey results for one storm at daily intervals after the erosional phase suggest a recovery time for the system of six days, identifies three sites with abnormally large change, and that responses at these sites are spatially coherent for now unknown reasons. Areas near inlets are the most variable at all time scales. Hierarchies in both process and form are suggested.

  19. Time-scales of close-in exoplanet radio emission variability

    NASA Astrophysics Data System (ADS)

    See, V.; Jardine, M.; Fares, R.; Donati, J.-F.; Moutou, C.

    2015-07-01

    We investigate the variability of exoplanetary radio emission using stellar magnetic maps and 3D field extrapolation techniques. We use a sample of hot Jupiter hosting stars, focusing on the HD 179949, HD 189733 and τ Boo systems. Our results indicate two time-scales over which radio emission variability may occur at magnetized hot Jupiters. The first is the synodic period of the star-planet system. The origin of variability on this time-scale is the relative motion between the planet and the interplanetary plasma that is corotating with the host star. The second time-scale is the length of the magnetic cycle. Variability on this time-scale is caused by evolution of the stellar field. At these systems, the magnitude of planetary radio emission is anticorrelated with the angular separation between the subplanetary point and the nearest magnetic pole. For the special case of τ Boo b, whose orbital period is tidally locked to the rotation period of its host star, variability only occurs on the time-scale of the magnetic cycle. The lack of radio variability on the synodic period at τ Boo b is not predicted by previous radio emission models, which do not account for the co-rotation of the interplanetary plasma at small distances from the star.

  20. Real-Time Three-Dimensional Cell Segmentation in Large-Scale Microscopy Data of Developing Embryos.

    PubMed

    Stegmaier, Johannes; Amat, Fernando; Lemon, William C; McDole, Katie; Wan, Yinan; Teodoro, George; Mikut, Ralf; Keller, Philipp J

    2016-01-25

    We present the Real-time Accurate Cell-shape Extractor (RACE), a high-throughput image analysis framework for automated three-dimensional cell segmentation in large-scale images. RACE is 55-330 times faster and 2-5 times more accurate than state-of-the-art methods. We demonstrate the generality of RACE by extracting cell-shape information from entire Drosophila, zebrafish, and mouse embryos imaged with confocal and light-sheet microscopes. Using RACE, we automatically reconstructed cellular-resolution tissue anisotropy maps across developing Drosophila embryos and quantified differences in cell-shape dynamics in wild-type and mutant embryos. We furthermore integrated RACE with our framework for automated cell lineaging and performed joint segmentation and cell tracking in entire Drosophila embryos. RACE processed these terabyte-sized datasets on a single computer within 1.4 days. RACE is easy to use, as it requires adjustment of only three parameters, takes full advantage of state-of-the-art multi-core processors and graphics cards, and is available as open-source software for Windows, Linux, and Mac OS.

  1. Multi-time Scale Coordination of Distributed Energy Resources in Isolated Power Systems

    SciTech Connect

    Mayhorn, Ebony; Xie, Le; Butler-Purry, Karen

    2016-03-31

    In isolated power systems, including microgrids, distributed assets, such as renewable energy resources (e.g. wind, solar) and energy storage, can be actively coordinated to reduce dependency on fossil fuel generation. The key challenge of such coordination arises from significant uncertainty and variability occurring at small time scales associated with increased penetration of renewables. Specifically, the problem is with ensuring economic and efficient utilization of DERs, while also meeting operational objectives such as adequate frequency performance. One possible solution is to reduce the time step at which tertiary controls are implemented and to ensure feedback and look-ahead capability are incorporated to handle variability and uncertainty. However, reducing the time step of tertiary controls necessitates investigating time-scale coupling with primary controls so as not to exacerbate system stability issues. In this paper, an optimal coordination (OC) strategy, which considers multiple time-scales, is proposed for isolated microgrid systems with a mix of DERs. This coordination strategy is based on an online moving horizon optimization approach. The effectiveness of the strategy was evaluated in terms of economics, technical performance, and computation time by varying key parameters that significantly impact performance. The illustrative example with realistic scenarios on a simulated isolated microgrid test system suggests that the proposed approach is generalizable towards designing multi-time scale optimal coordination strategies for isolated power systems.

  2. Space-time cascades and the scaling of ECMWF reanalyses: Fluxes and fields

    NASA Astrophysics Data System (ADS)

    Lovejoy, S.; Schertzer, D.

    2011-07-01

    We consider the space-time scaling properties of the European Centre for Medium-Range Weather Forecasts (ECMWF) interim reanalysis products for the wind (u, v, w), humidity (hs), temperature (T), and geopotentials (z) and their corresponding turbulent fluxes using the daily 700 mbar products for the year 2006. Following previous studies on T, hs, and u, we show that that the basic predictions of multiplicative cascade models are well respected over space-time scales below ˜5000 km, shorter than ˜5-10 days providing precise scale by scale determination of the reanalysis statistical properties (needed for example for stochastic parameterizations in ensemble forecasting systems). We innovate by including the meridional and vertical wind components (v, w) and geopotential (z), and by considering their horizontal anisotropies, their latitudinal variations and, perhaps most importantly, by directly analyzing the fields (not just fluxes). Whereas the fluxes have nearly isotropic exponents in space-time with little latitudinal variation (displaying only scale independent “trivial” anisotropy), the fields have significant scaling horizontal anisotropies. These complicate the interpretation of standard isotropic spectra and are likely to be artifacts. Many of the new (nonconservation) exponents (H) are nonstandard and currently have no adequate theoretical explanation although the key horizontal wind and temperature H exponents may be consequences of horizontal Kolmogorov scaling, combined with sloping isobaric surfaces. In time the scaling is broken at around 5-10 days, i.e., roughly the lifetime of planetary structures; lower frequencies are spectrally flatter: the “spectral plateau,” weather-low-frequency weather regime.

  3. Indirect-Drive Time Dependent Symmetry Diagnosis at NIF-Scale

    SciTech Connect

    Landen, O.L; Bradley, D.K.; Pollaine, S.M.; Amendt, P.A.; Glendinning, S.G.; Suter, L.J.; Turner, R.E.; Wallace, R.J.; Hammel, B.A.; Delameter, N.D.; Wallace, J.; Magelssen, G.; Gobby, P.

    1999-10-27

    The scaling to NIF of current techniques used to infer the time-dependent flux asymmetries for indirectly-driven capsules is reviewed. We calculate that the projected accuracy for detecting the lowest mode asymmetries by a variety of techniques now meet the requirements for symmetry tuning for ignition. The scaling to NIF has also motivated the implementation of new, more efficient and hence less perturbative backlighting techniques which have recently provided high quality symmetry data during validation tests at the Omega facility.

  4. Crossover from antipersistent to persistent behavior in time series possessing the generalyzed dynamic scaling law

    NASA Astrophysics Data System (ADS)

    Balankin, Alexander S.; Morales Matamoros, Oswaldo; Gálvez M., Ernesto; Pérez A., Alfonso

    2004-03-01

    The behavior of crude oil price volatility is analyzed within a conceptual framework of kinetic roughening of growing interfaces. We find that the persistent long-horizon volatilities satisfy the Family-Viscek dynamic scaling ansatz, whereas the mean-reverting in time short horizon volatilities obey the generalized scaling law with continuously varying scaling exponents. Furthermore we find that the crossover from antipersistent to persistent behavior is accompanied by a change in the type of volatility distribution. These phenomena are attributed to the complex avalanche dynamics of crude oil markets and so a similar behavior may be observed in a wide variety of physical systems governed by avalanche dynamics.

  5. Budget Report 2009: Adjustment Time

    ERIC Educational Resources Information Center

    Oder, Norman

    2009-01-01

    This article reports on a 2009 budget survey conducted by "Library Journal" in which a random sample of U.S. public libraries were surveyed via mail or fax in October 2008. Those that answered the survey projected a modest increase in budgets for 2009, just 2%, with less than a 1% increase in funds for materials, a predictable area for cuts. That…

  6. Scaling of Langevin and molecular dynamics persistence times of nonhomogeneous fluids.

    PubMed

    Olivares-Rivas, Wilmer; Colmenares, Pedro J

    2012-01-01

    The existing solution for the Langevin equation of an anisotropic fluid allowed the evaluation of the position-dependent perpendicular and parallel diffusion coefficients, using molecular dynamics data. However, the time scale of the Langevin dynamics and molecular dynamics are different and an ansatz for the persistence probability relaxation time was needed. Here we show how the solution for the average persistence probability obtained from the backward Smoluchowski-Fokker-Planck equation (SE), associated to the Langevin dynamics, scales with the corresponding molecular dynamics quantity. Our SE perpendicular persistence time is evaluated in terms of simple integrals over the equilibrium local density. When properly scaled by the perpendicular diffusion coefficient, it gives a good match with that obtained from molecular dynamics.

  7. Predicting Regional Drought on Sub-Seasonal to Decadal Time Scales

    NASA Technical Reports Server (NTRS)

    Schubert, Siegfried; Wang, Hailan; Suarez, Max; Koster, Randal

    2011-01-01

    Drought occurs on a wide range of time scales, and within a variety of different types of regional climates. It is driven foremost by an extended period of reduced precipitation, but it is the impacts on such quantities as soil moisture, streamflow and crop yields that are often most important from a users perspective. While recognizing that different users have different needs for drought information, it is nevertheless important to understand that progress in predicting drought and satisfying such user needs, largely hinges on our ability to improve predictions of precipitation. This talk reviews our current understanding of the physical mechanisms that drive precipitation variations on subseasonal to decadal time scales, and the implications for predictability and prediction skill. Examples are given highlighting the phenomena and mechanisms controlling precipitation on monthly (e.g., stationary Rossby waves, soil moisture), seasonal (ENSO) and decadal time scales (PD and AMO).

  8. Administration time estimates for Wechsler Intelligence Scale for Children-IV subtests, composites, and short forms.

    PubMed

    Ryan, Joseph J; Glass, Laura A; Brown, Cassandra N

    2007-04-01

    The administration times for Wechsler Intelligence Scale for Children-IV (WISC-IV) subtests, indexes, and the Full Scale IQ were recorded for 57 school children. Also determined were administration times for eight short forms and the General Ability Index (GAI). All eight short forms reduced testing time by >50%, but the GAI required approximately 56 minutes. The time to administer the 10 core subtests that yield the Full Scale IQ and index scores averaged 72 minutes (range = 42 to 100), but 31% of the administrations required 80 minutes or longer. These results indicate that administration times are quite variable and that D. Wechsler's (2003) guideline of 65 to 80 minutes can be misleading for certain settings and for specific examinees. The present research found administration time to be positively correlated with examinee age, grade placement, and Full Scale IQ. In addition, the extent of examiner experience is known to be positively related to administration speed. In the present research, as in many settings, the examiners were competent, but not highly experienced.

  9. A new time scale based k-epsilon model for near wall turbulence

    NASA Technical Reports Server (NTRS)

    Yang, Z.; Shih, T. H.

    1992-01-01

    A k-epsilon model is proposed for wall bonded turbulent flows. In this model, the eddy viscosity is characterized by a turbulent velocity scale and a turbulent time scale. The time scale is bounded from below by the Kolmogorov time scale. The dissipation equation is reformulated using this time scale and no singularity exists at the wall. The damping function used in the eddy viscosity is chosen to be a function of R(sub y) = (k(sup 1/2)y)/v instead of y(+). Hence, the model could be used for flows with separation. The model constants used are the same as in the high Reynolds number standard k-epsilon model. Thus, the proposed model will be also suitable for flows far from the wall. Turbulent channel flows at different Reynolds numbers and turbulent boundary layer flows with and without pressure gradient are calculated. Results show that the model predictions are in good agreement with direct numerical simulation and experimental data.

  10. The time scale of the silicate weathering negative feedback on atmospheric CO2

    NASA Astrophysics Data System (ADS)

    Colbourn, G.; Ridgwell, A.; Lenton, T. M.

    2015-05-01

    The ultimate fate of CO2 added to the ocean-atmosphere system is chemical reaction with silicate minerals and burial as marine carbonates. The time scale of this silicate weathering negative feedback on atmospheric pCO2 will determine the duration of perturbations to the carbon cycle, be they geological release events or the current anthropogenic perturbation. However, there has been little previous work on quantifying the time scale of the silicate weathering feedback, with the primary estimate of 300-400 kyr being traceable to an early box model study by Sundquist (1991). Here we employ a representation of terrestrial rock weathering in conjunction with the "GENIE" (Grid ENabled Integrated Earth system) model to elucidate the different time scales of atmospheric CO2 regulation while including the main climate feedbacks on CO2 uptake by the ocean. In this coupled model, the main dependencies of weathering—runoff, temperature, and biological productivity—were driven from an energy-moisture balance atmosphere model and parameterized plant productivity. Long-term projections (1 Myr) were conducted for idealized scenarios of 1000 and 5000 PgC fossil fuel emissions and their sensitivity to different model parameters was tested. By fitting model output to a series of exponentials we determined the e-folding time scale for atmospheric CO2 drawdown by silicate weathering to be ˜240 kyr (range 170-380 kyr), significantly less than existing quantifications. Although the time scales for reequilibration of global surface temperature and surface ocean pH are similar to that for CO2, a much greater proportion of the peak temperature anomaly persists on this longest time scale; ˜21% compared to ˜10% for CO2.

  11. Response of vegetation to drought time-scales across global land biomes.

    PubMed

    Vicente-Serrano, Sergio M; Gouveia, Célia; Camarero, Jesús Julio; Beguería, Santiago; Trigo, Ricardo; López-Moreno, Juan I; Azorín-Molina, César; Pasho, Edmond; Lorenzo-Lacruz, Jorge; Revuelto, Jesús; Morán-Tejeda, Enrique; Sanchez-Lorenzo, Arturo

    2013-01-02

    We evaluated the response of the Earth land biomes to drought by correlating a drought index with three global indicators of vegetation activity and growth: vegetation indices from satellite imagery, tree-ring growth series, and Aboveground Net Primary Production (ANPP) records. Arid and humid biomes are both affected by drought, and we suggest that the persistence of the water deficit (i.e., the drought time-scale) could be playing a key role in determining the sensitivity of land biomes to drought. We found that arid biomes respond to drought at short time-scales; that is, there is a rapid vegetation reaction as soon as water deficits below normal conditions occur. This may be due to the fact that plant species of arid regions have mechanisms allowing them to rapidly adapt to changing water availability. Humid biomes also respond to drought at short time-scales, but in this case the physiological mechanisms likely differ from those operating in arid biomes, as plants usually have a poor adaptability to water shortage. On the contrary, semiarid and subhumid biomes respond to drought at long time-scales, probably because plants are able to withstand water deficits, but they lack the rapid response of arid biomes to drought. These results are consistent among three vegetation parameters analyzed and across different land biomes, showing that the response of vegetation to drought depends on characteristic drought time-scales for each biome. Understanding the dominant time-scales at which drought most influences vegetation might help assessing the resistance and resilience of vegetation and improving our knowledge of vegetation vulnerability to climate change.

  12. Response of vegetation to drought time-scales across global land biomes

    NASA Astrophysics Data System (ADS)

    Vicente-Serrano, Sergio M.; Gouveia, Célia; Julio Camarero, Jesús; Beguería, Santiago; Trigo, Ricardo; López-Moreno, Juan I.; Azorín-Molina, César; Pasho, Edmond; Lorenzo-Lacruz, Jorge; Revuelto, Jesús; Morán-Tejeda, Enrique; Sanchez-Lorenzo, Arturo

    2013-01-01

    We evaluated the response of the Earth land biomes to drought by correlating a drought index with three global indicators of vegetation activity and growth: vegetation indices from satellite imagery, tree-ring growth series, and Aboveground Net Primary Production (ANPP) records. Arid and humid biomes are both affected by drought, and we suggest that the persistence of the water deficit (i.e., the drought time-scale) could be playing a key role in determining the sensitivity of land biomes to drought. We found that arid biomes respond to drought at short time-scales; that is, there is a rapid vegetation reaction as soon as water deficits below normal conditions occur. This may be due to the fact that plant species of arid regions have mechanisms allowing them to rapidly adapt to changing water availability. Humid biomes also respond to drought at short time-scales, but in this case the physiological mechanisms likely differ from those operating in arid biomes, as plants usually have a poor adaptability to water shortage. On the contrary, semiarid and subhumid biomes respond to drought at long time-scales, probably because plants are able to withstand water deficits, but they lack the rapid response of arid biomes to drought. These results are consistent among three vegetation parameters analyzed and across different land biomes, showing that the response of vegetation to drought depends on characteristic drought time-scales for each biome. Understanding the dominant time-scales at which drought most influences vegetation might help assessing the resistance and resilience of vegetation and improving our knowledge of vegetation vulnerability to climate change.

  13. Response of vegetation to drought time-scales across global land biomes

    PubMed Central

    Vicente-Serrano, Sergio M.; Gouveia, Célia; Camarero, Jesús Julio; Beguería, Santiago; Trigo, Ricardo; López-Moreno, Juan I.; Azorín-Molina, César; Pasho, Edmond; Lorenzo-Lacruz, Jorge; Revuelto, Jesús; Morán-Tejeda, Enrique; Sanchez-Lorenzo, Arturo

    2013-01-01

    We evaluated the response of the Earth land biomes to drought by correlating a drought index with three global indicators of vegetation activity and growth: vegetation indices from satellite imagery, tree-ring growth series, and Aboveground Net Primary Production (ANPP) records. Arid and humid biomes are both affected by drought, and we suggest that the persistence of the water deficit (i.e., the drought time-scale) could be playing a key role in determining the sensitivity of land biomes to drought. We found that arid biomes respond to drought at short time-scales; that is, there is a rapid vegetation reaction as soon as water deficits below normal conditions occur. This may be due to the fact that plant species of arid regions have mechanisms allowing them to rapidly adapt to changing water availability. Humid biomes also respond to drought at short time-scales, but in this case the physiological mechanisms likely differ from those operating in arid biomes, as plants usually have a poor adaptability to water shortage. On the contrary, semiarid and subhumid biomes respond to drought at long time-scales, probably because plants are able to withstand water deficits, but they lack the rapid response of arid biomes to drought. These results are consistent among three vegetation parameters analyzed and across different land biomes, showing that the response of vegetation to drought depends on characteristic drought time-scales for each biome. Understanding the dominant time-scales at which drought most influences vegetation might help assessing the resistance and resilience of vegetation and improving our knowledge of vegetation vulnerability to climate change. PMID:23248309

  14. Computational Fluid Dynamics Study on the Effects of RATO Timing on the Scale Model Acoustic Test

    NASA Technical Reports Server (NTRS)

    Nielsen, Tanner; Williams, B.; West, Jeff

    2015-01-01

    The Scale Model Acoustic Test (SMAT) is a 5% scale test of the Space Launch System (SLS), which is currently being designed at Marshall Space Flight Center (MSFC). The purpose of this test is to characterize and understand a variety of acoustic phenomena that occur during the early portions of lift off, one being the overpressure environment that develops shortly after booster ignition. The SLS lift off configuration consists of four RS-25 liquid thrusters on the core stage, with two solid boosters connected to each side. Past experience with scale model testing at MSFC (in ER42), has shown that there is a delay in the ignition of the Rocket Assisted Take Off (RATO) motor, which is used as the 5% scale analog of the solid boosters, after the signal to ignite is given. This delay can range from 0 to 16.5ms. While this small of a delay maybe insignificant in the case of the full scale SLS, it can significantly alter the data obtained during the SMAT due to the much smaller geometry. The speed of sound of the air and combustion gas constituents is not scaled, and therefore the SMAT pressure waves propagate at approximately the same speed as occurs during full scale. However, the SMAT geometry is much smaller allowing the pressure waves to move down the exhaust duct, through the trench, and impact the vehicle model much faster than occurs at full scale. To better understand the effect of the RATO timing simultaneity on the SMAT IOP test data, a computational fluid dynamics (CFD) analysis was performed using the Loci/CHEM CFD software program. Five different timing offsets, based on RATO ignition delay statistics, were simulated. A variety of results and comparisons will be given, assessing the overall effect of RATO timing simultaneity on the SMAT overpressure environment.

  15. Digital signal processing techniques for pitch shifting and time scaling of audio signals

    NASA Astrophysics Data System (ADS)

    Buś, Szymon; Jedrzejewski, Konrad

    2016-09-01

    In this paper, we present the techniques used for modifying the spectral content (pitch shifting) and for changing the time duration (time scaling) of an audio signal. A short introduction gives a necessary background for understanding the discussed issues and contains explanations of the terms used in the paper. In subsequent sections we present three different techniques appropriate both for pitch shifting and for time scaling. These techniques use three different time-frequency representations of a signal, namely short-time Fourier transform (STFT), continuous wavelet transform (CWT) and constant-Q transform (CQT). The results of simulation studies devoted to comparison of the properties of these methods are presented and discussed in the paper.

  16. Some new stability properties of dynamic neural networks with different time-scales.

    PubMed

    Yu, Wen; Sandoval, Alejandro Cruz

    2006-06-01

    Dynamic neural networks with different time-scales include the aspects of fast and slow phenomenons. Some applications require that the equilibrium points of these networks to be stable. The main contribution of the paper is that Lyapunov function and singularly perturbed technique are combined to access several new stable properties of different time-scales neural networks. Exponential stability and asymptotic stability are obtained by sector and bound conditions. Compared to other papers, these conditions are simpler. Numerical examples are given to demonstrate the effectiveness of the theoretical results.

  17. Characteristic time scales in the American dollar-Mexican peso exchange currency market

    NASA Astrophysics Data System (ADS)

    Alvarez-Ramirez, Jose

    2002-06-01

    Daily fluctuations of the American dollar-Mexican peso exchange currency market are studied using multifractal analysis methods. It is found evidence of multiaffinity of daily fluctuations in the sense that the qth-order (roughness) Hurst exponent Hq varies with changes in q. It is also found that there exist several characteristic time scales ranging from week to year. Accordingly, the market exhibits persistence in the sense that instabilities introduced by market events acting around the characteristic time scales (mainly, quarter and year) would propagate through the future market activity. Some implications of our results on the regulation of the dollar-mexpeso market activity are discussed.

  18. Local and Catchment-Scale Water Storage Changes in Northern Benin Deduced from Gravity Monitoring at Various Time-Scales

    NASA Astrophysics Data System (ADS)

    Hinderer, J.; Hector, B.; Séguis, L.; Descloitres, M.; Cohard, J.; Boy, J.; Calvo, M.; Rosat, S.; Riccardi, U.; Galle, S.

    2013-12-01

    Water storage changes (WSC) are investigated by the mean of gravity monitoring in Djougou, northern Benin, in the frame of the GHYRAF (Gravity and Hydrology in Africa) project. In this area, WSC are 1) part of the control system for evapotranspiration (ET) processes, a key variable of the West-African monsoon cycle and 2) the state variable for resource management, a critical issue in storage-poor hard rock basement contexts such as in northern Benin. We show the advantages of gravity monitoring for analyzing different processes in the water cycle involved at various time and space scales, using the main gravity sensors available today (FG5 absolute gravimeter, superconducting gravimeter -SG- and CG5 micro-gravimeter). The study area is also part of the long-term observing system AMMA-Catch, and thus under intense hydro-meteorological monitoring (rain, soil moisture, water table level, ET ...). Gravity-derived WSC are compared at all frequencies to hydrological data and to hydrological models calibrated on these data. Discrepancies are analyzed to discuss the pros and cons of each approach. Fast gravity changes (a few hours) are significant when rain events occur, and involve different contributions: rainfall itself, runoff, fast subsurface water redistribution, screening effect of the gravimeter building and local topography. We investigate these effects and present the statistical results of a set of rain events recorded with the SG installed in Djougou since July 2010. The intermediate time scale of gravity changes (a few days) is caused by ET and both vertical and horizontal water redistribution. The integrative nature of gravity measurements does not allow to separate these different contributions, and the screening from the shelter reduces our ability to retrieve ET values. Also, atmospheric corrections are critical at such frequencies, and deserve some specific attention. However, a quick analysis of gravity changes following rain events shows that the

  19. Time-sliced perturbation theory for large scale structure I: general formalism

    NASA Astrophysics Data System (ADS)

    Blas, Diego; Garny, Mathias; Ivanov, Mikhail M.; Sibiryakov, Sergey

    2016-07-01

    We present a new analytic approach to describe large scale structure formation in the mildly non-linear regime. The central object of the method is the time-dependent probability distribution function generating correlators of the cosmological observables at a given moment of time. Expanding the distribution function around the Gaussian weight we formulate a perturbative technique to calculate non-linear corrections to cosmological correlators, similar to the diagrammatic expansion in a three-dimensional Euclidean quantum field theory, with time playing the role of an external parameter. For the physically relevant case of cold dark matter in an Einstein-de Sitter universe, the time evolution of the distribution function can be found exactly and is encapsulated by a time-dependent coupling constant controlling the perturbative expansion. We show that all building blocks of the expansion are free from spurious infrared enhanced contributions that plague the standard cosmological perturbation theory. This paves the way towards the systematic resummation of infrared effects in large scale structure formation. We also argue that the approach proposed here provides a natural framework to account for the influence of short-scale dynamics on larger scales along the lines of effective field theory.

  20. Large-scale structure effects on the gravitational lens image positions and time delay

    NASA Technical Reports Server (NTRS)

    Seljak, Uros

    1994-01-01

    We compute the fluctuations in gravitational lens image positions and time delay caused by large-scale structure correlations. We show that these fluctuations can be expressed as a simple integral over the density power spectrum. Using the Cosmic Background Explorer (COBE) normalization we find that positions of objects at cosmological distances are expected to deviate from their true positions by few arcminutes. These deflections are not directly observable. The positions of the images relative to one another fluctuate by a few percent of the relative separation, implying that one does not expect multiple images to be produced by large-scale structure. Nevertheless, the fluctuations are larger than the observational errors on the positions and affect reconstructions of the lens potential. The time delay fluctuations have a geometrical and a gravitational contribution. Both are much larger than the expected time delay from the primary lens, but partially cancel each other. We find that large-scale structure weakly affects the time delay and time delay measurements can be used as a probe of the distance scale in the universe.

  1. Variability of Hydroclimate Extremes on Seasonal to Multidecadal Time Scales in the Western US

    NASA Astrophysics Data System (ADS)

    Bracken, C.; Rajagopalan, B.; Gangopadhyay, S.

    2013-12-01

    Understanding the variability of flood risk on seasonal to multidecadal time scales is critical for a number of activities - such as infrastructure and water resources management, flood mitigation etc. This need is underscored in the Western US with the confluence of socio-economic growth leading to large potential flood damage and water quality impacts and stressed water resources. In this study we perform a systematic analysis of precipitation and streamflow extremes and their links to large scale climate variables. We perform a joint analysis using time and spectral domain methods between seasonal maximum precipitation and large scale climate variables such as sea surface temperatures and sea level pressures. The leading modes from these analyses will identify dominant patterns of variability in space and time. We also obtain insights into the moisture source and delivery mechanisms to various parts of Western US that produce extreme flooding events. We perform similar analysis on seasonal maximum flow to identify consistent mechanism. Existing methods for estimation of risk of extremes is based on extreme value analysis (EVA) assuming stationarity. Clearly the risk of extremes varies in time and space as a function of the strength of the strength of their drivers. Nonstationary EVA methods are emerging and we will apply these to model seasonal precipitation extremes in space incorporating the physical mechanisms identified from the analysis above. This modeling approach can generate nonstationary precipitation and flood frequency estimates at seasonal to multidecadal time scales for infrastructure operations, design and maintenance decisions.

  2. Multi-scale symbolic time reverse analysis of gas-liquid two-phase flow structures

    NASA Astrophysics Data System (ADS)

    Wang, Hongmei; Zhai, Lusheng; Jin, Ningde; Wang, Youchen

    Gas-liquid two-phase flows are widely encountered in production processes of petroleum and chemical industry. Understanding the dynamic characteristics of multi-scale gas-liquid two-phase flow structures is of great significance for the optimization of production process and the measurement of flow parameters. In this paper, we propose a method of multi-scale symbolic time reverse (MSTR) analysis for gas-liquid two-phase flows. First, through extracting four time reverse asymmetry measures (TRAMs), i.e. Euclidean distance, difference entropy, percentage of constant words and percentage of reversible words, the time reverse asymmetry (TRA) behaviors of typical nonlinear systems are investigated from the perspective of multi-scale analysis, and the results show that the TRAMs are sensitive to the changing of dynamic characteristics underlying the complex nonlinear systems. Then, the MSTR analysis is used to study the conductance signals from gas-liquid two-phase flows. It is found that the multi-scale TRA analysis can effectively reveal the multi-scale structure characteristics and nonlinear evolution properties of the flow structures.

  3. Allometric scaling and prediction of concentration-time profiles of coagulation factors in humans from animals.

    PubMed

    Mahmood, Iftekhar

    2013-09-01

    Allometric scaling is a useful tool in early drug development and can be used for the prediction of human pharmacokinetic (PK) parameters from animal PK parameters. The main objective of this work was to predict concentration-time profiles of coagulation factors in humans in a multi-compartment system using animal PK parameters. The prediction of concentration-time profiles in humans in a multi-compartment system was based on the predicted values of clearance and volumes of distribution (V(c), V(ss) and V(β)) from animals. Five coagulation factors from the literature were chosen that were described by two-compartment model in both humans and animals. Clearance and volumes of distribution from animals were allometrically scaled to humans and then were used to predict concentration-time profiles in humans. The predicted concentration-time profile for a given coagulation factor was accurate for most of the time points. Percent prediction error range varied across coagulation factors. The prediction error >50% was observed either at 1 or a maximum of two time points for a given drug. The study indicated that the allometric scaling can be useful in the prediction of concentration-time profiles of coagulation factors in humans from animals and may be helpful in designing a first-in-human study.

  4. Time-variable gravity potential components for optical clock comparisons and the definition of international time scales

    NASA Astrophysics Data System (ADS)

    Voigt, C.; Denker, H.; Timmen, L.

    2016-12-01

    The latest generation of optical atomic clocks is approaching the level of one part in 1018 in terms of frequency stability and uncertainty. For clock comparisons and the definition of international time scales, a relativistic redshift effect of the clock frequencies has to be taken into account at a corresponding uncertainty level of about 0.1 m2 s-2 and 0.01 m in terms of gravity potential and height, respectively. Besides the predominant static part of the gravity potential, temporal variations must be considered in order to avoid systematic frequency shifts. Time-variable gravity potential components induced by tides and non-tidal mass redistributions are investigated with regard to the level of one part in 1018. The magnitudes and dominant time periods of the individual gravity potential contributions are investigated globally and for specific laboratory sites together with the related uncertainty estimates. The basics of the computation methods are presented along with the applied models, data sets and software. Solid Earth tides contribute by far the most dominant signal with a global maximum amplitude of 4.2 m2 s-2 for the potential and a range (maximum-to-minimum) of up to 1.3 and 10.0 m2 s-2 in terms of potential differences between specific laboratories over continental and intercontinental scales, respectively. Amplitudes of the ocean tidal loading potential can amount up to 1.25 m2 s-2, while the range of the potential between specific laboratories is 0.3 and 1.1 m2 s-2 over continental and intercontinental scales, respectively. These are the only two contributors being relevant at a 10-17 level. However, several other time-variable potential effects can particularly affect clock comparisons at the 10-18 level. Besides solid Earth pole tides, these are non-tidal mass redistributions in the atmosphere, the oceans and the continental water storage.

  5. Spatial and Temporal scales of time-averaged 700 MB height anomalies

    NASA Technical Reports Server (NTRS)

    Gutzler, D.

    1981-01-01

    The monthly and seasonal forecasting technique is based to a large extent on the extrapolation of trends in the positions of the centers of time averaged geopotential height anomalies. The complete forecasted height pattern is subsequently drawn around the forecasted anomaly centers. The efficacy of this technique was tested and time series of observed monthly mean and 5 day mean 700 mb geopotential heights were examined. Autocorrelation statistics are generated to document the tendency for persistence of anomalies. These statistics are compared to a red noise hypothesis to check for evidence of possible preferred time scales of persistence. Space-time spectral analyses at middle latitudes are checked for evidence of periodicities which could be associated with predictable month-to-month trends. A local measure of the average spatial scale of anomalies is devised for guidance in the completion of the anomaly pattern around the forecasted centers.

  6. Time-scale effects on the gain-loss asymmetry in stock indices.

    PubMed

    Sándor, Bulcsú; Simonsen, Ingve; Nagy, Bálint Zsolt; Néda, Zoltán

    2016-08-01

    The gain-loss asymmetry, observed in the inverse statistics of stock indices is present for logarithmic return levels that are over 2%, and it is the result of the non-Pearson-type autocorrelations in the index. These non-Pearson-type correlations can be viewed also as functionally dependent daily volatilities, extending for a finite time interval. A generalized time-window shuffling method is used to show the existence of such autocorrelations. Their characteristic time scale proves to be smaller (less than 25 trading days) than what was previously believed. It is also found that this characteristic time scale has decreased with the appearance of program trading in the stock market transactions. Connections with the leverage effect are also established.

  7. Linking Time and Space Scales in Distributed Hydrological Modelling - a case study for the VIC model

    NASA Astrophysics Data System (ADS)

    Melsen, Lieke; Teuling, Adriaan; Torfs, Paul; Zappa, Massimiliano; Mizukami, Naoki; Clark, Martyn; Uijlenhoet, Remko

    2015-04-01

    One of the famous paradoxes of the Greek philosopher Zeno of Elea (~450 BC) is the one with the arrow: If one shoots an arrow, and cuts its motion into such small time steps that at every step the arrow is standing still, the arrow is motionless, because a concatenation of non-moving parts does not create motion. Nowadays, this reasoning can be refuted easily, because we know that motion is a change in space over time, which thus by definition depends on both time and space. If one disregards time by cutting it into infinite small steps, motion is also excluded. This example shows that time and space are linked and therefore hard to evaluate separately. As hydrologists we want to understand and predict the motion of water, which means we have to look both in space and in time. In hydrological models we can account for space by using spatially explicit models. With increasing computational power and increased data availability from e.g. satellites, it has become easier to apply models at a higher spatial resolution. Increasing the resolution of hydrological models is also labelled as one of the 'Grand Challenges' in hydrology by Wood et al. (2011) and Bierkens et al. (2014), who call for global modelling at hyperresolution (~1 km and smaller). A literature survey on 242 peer-viewed articles in which the Variable Infiltration Capacity (VIC) model was used, showed that the spatial resolution at which the model is applied has decreased over the past 17 years: From 0.5 to 2 degrees when the model was just developed, to 1/8 and even 1/32 degree nowadays. On the other hand the literature survey showed that the time step at which the model is calibrated and/or validated remained the same over the last 17 years; mainly daily or monthly. Klemeš (1983) stresses the fact that space and time scales are connected, and therefore downscaling the spatial scale would also imply downscaling of the temporal scale. Is it worth the effort of downscaling your model from 1 degree to 1

  8. Time-scale effects on the gain-loss asymmetry in stock indices

    NASA Astrophysics Data System (ADS)

    Sándor, Bulcsú; Simonsen, Ingve; Nagy, Bálint Zsolt; Néda, Zoltán

    2016-08-01

    The gain-loss asymmetry, observed in the inverse statistics of stock indices is present for logarithmic return levels that are over 2 % , and it is the result of the non-Pearson-type autocorrelations in the index. These non-Pearson-type correlations can be viewed also as functionally dependent daily volatilities, extending for a finite time interval. A generalized time-window shuffling method is used to show the existence of such autocorrelations. Their characteristic time scale proves to be smaller (less than 25 trading days) than what was previously believed. It is also found that this characteristic time scale has decreased with the appearance of program trading in the stock market transactions. Connections with the leverage effect are also established.

  9. Simply and multiply scaled diffusion limits for continuous time random walks

    NASA Astrophysics Data System (ADS)

    Gorenflo, Rudolf; Mainardi, Francesco

    2005-01-01

    First a survey is presented on how space-time fractional diffusion processes can be obtained by well-scaled limiting from continuous time random walks under the sole assumption of asymptotic power laws (with appropriate exponents for the tail behaviour of waiting times and jumps). The spatial operator in the limiting pseudo-differential equation is the inverse of a general Riesz-Feller potential operator. The analysis is carried out via the transforms of Fourier and Laplace. Then mixtures of waiting time distributions, likewise of jump distributions, are considered, and it is shown that correct multiple scaling in the limit yields diffusion equations with distributed order fractional derivatives (fractional operators being replaced by integrals over such ones, with the order of differentiation as variable of integration). It is outlined how in this way super-fast and super-slow diffusion can be modelled.

  10. Remote joule heating assisted carrier transport in MWCNTs probed at nanosecond time scale.

    PubMed

    Mishra, Abhishek; Shrivastava, Mayank

    2016-10-19

    Quantum model of joule heating relies on electron-phonon scattering in the high field region (hot side contact), which locally increases phonon population and forms hot spots. Hot spots in the high field region are known to suffer carrier transport. In this work, for the first time we report remote joule heating of the cold side contact, i.e. zero electric field region, through multi-walled CNTs (MWCNTs), which is discovered to assist in carrier transport through the MWCNT channels. To precisely capture the dynamics of remote joule heating assisted carrier transport, MWCNTs are probed at nanosecond time scales. This leverages investigations at time scales comparable to characteristic thermal diffusion times and allows electron-phonon interactions and the nature of carrier transport to be probed under non-equilibrium conditions.

  11. Universal space-time scaling symmetry in the dynamics of bosons across a quantum phase transition

    NASA Astrophysics Data System (ADS)

    Clark, Logan W.; Feng, Lei; Chin, Cheng

    2016-11-01

    The dynamics of many-body systems spanning condensed matter, cosmology, and beyond are hypothesized to be universal when the systems cross continuous phase transitions. The universal dynamics are expected to satisfy a scaling symmetry of space and time with the crossing rate, inspired by the Kibble-Zurek mechanism. We test this symmetry based on Bose condensates in a shaken optical lattice. Shaking the lattice drives condensates across an effectively ferromagnetic quantum phase transition. After crossing the critical point, the condensates manifest delayed growth of spin fluctuations and develop antiferromagnetic spatial correlations resulting from the sub-Poisson distribution of the spacing between topological defects. The fluctuations and correlations are invariant in scaled space-time coordinates, in support of the scaling symmetry of quantum critical dynamics.

  12. Scaling relation between earthquake magnitude and the departure time from P wave similar growth

    USGS Publications Warehouse

    Noda, Shunta; Ellsworth, William L.

    2016-01-01

    We introduce a new scaling relation between earthquake magnitude (M) and a characteristic of initial P wave displacement. By examining Japanese K-NET data averaged in bins partitioned by Mw and hypocentral distance, we demonstrate that the P wave displacement briefly displays similar growth at the onset of rupture and that the departure time (Tdp), which is defined as the time of departure from similarity of the absolute displacement after applying a band-pass filter, correlates with the final M in a range of 4.5 ≤ Mw ≤ 7. The scaling relation between Mw and Tdp implies that useful information on the final M can be derived while the event is still in progress because Tdp occurs before the completion of rupture. We conclude that the scaling relation is important not only for earthquake early warning but also for the source physics of earthquakes.

  13. Universal space-time scaling symmetry in the dynamics of bosons across a quantum phase transition.

    PubMed

    Clark, Logan W; Feng, Lei; Chin, Cheng

    2016-11-04

    The dynamics of many-body systems spanning condensed matter, cosmology, and beyond are hypothesized to be universal when the systems cross continuous phase transitions. The universal dynamics are expected to satisfy a scaling symmetry of space and time with the crossing rate, inspired by the Kibble-Zurek mechanism. We test this symmetry based on Bose condensates in a shaken optical lattice. Shaking the lattice drives condensates across an effectively ferromagnetic quantum phase transition. After crossing the critical point, the condensates manifest delayed growth of spin fluctuations and develop antiferromagnetic spatial correlations resulting from the sub-Poisson distribution of the spacing between topological defects. The fluctuations and correlations are invariant in scaled space-time coordinates, in support of the scaling symmetry of quantum critical dynamics.

  14. The Space-Time Conservative Schemes for Large-Scale, Time-Accurate Flow Simulations with Tetrahedral Meshes

    NASA Technical Reports Server (NTRS)

    Venkatachari, Balaji Shankar; Streett, Craig L.; Chang, Chau-Lyan; Friedlander, David J.; Wang, Xiao-Yen; Chang, Sin-Chung

    2016-01-01

    Despite decades of development of unstructured mesh methods, high-fidelity time-accurate simulations are still predominantly carried out on structured, or unstructured hexahedral meshes by using high-order finite-difference, weighted essentially non-oscillatory (WENO), or hybrid schemes formed by their combinations. In this work, the space-time conservation element solution element (CESE) method is used to simulate several flow problems including supersonic jet/shock interaction and its impact on launch vehicle acoustics, and direct numerical simulations of turbulent flows using tetrahedral meshes. This paper provides a status report for the continuing development of the space-time conservation element solution element (CESE) numerical and software framework under the Revolutionary Computational Aerosciences (RCA) project. Solution accuracy and large-scale parallel performance of the numerical framework is assessed with the goal of providing a viable paradigm for future high-fidelity flow physics simulations.

  15. Existence and global exponential stability of periodic solutions for n-dimensional neutral dynamic equations on time scales.

    PubMed

    Li, Bing; Li, Yongkun; Zhang, Xuemei

    2016-01-01

    In this paper, by using the existence of the exponential dichotomy of linear dynamic equations on time scales and the theory of calculus on time scales, we study the existence and global exponential stability of periodic solutions for a class of n-dimensional neutral dynamic equations on time scales. We also present an example to illustrate the feasibility of our results. The results of this paper are completely new and complementary to the previously known results even in both the case of differential equations (time scale [Formula: see text]) and the case of difference equations (time scale [Formula: see text]).

  16. Spatiotemporal patterns of drought at various time scales in Shandong Province of Eastern China

    NASA Astrophysics Data System (ADS)

    Zuo, Depeng; Cai, Siyang; Xu, Zongxue; Li, Fulin; Sun, Wenchao; Yang, Xiaojing; Kan, Guangyuan; Liu, Pin

    2016-10-01

    The temporal variations and spatial patterns of drought in Shandong Province of Eastern China were investigated by calculating the standardized precipitation evapotranspiration index (SPEI) at 1-, 3-, 6-, 12-, and 24-month time scales. Monthly precipitation and air temperature time series during the period 1960-2012 were collected at 23 meteorological stations uniformly distributed over the region. The non-parametric Mann-Kendall test was used to explore the temporal trends of precipitation, air temperature, and the SPEI drought index. S-mode principal component analysis (PCA) was applied to identify the spatial patterns of drought. The results showed that an insignificant decreasing trend in annual total precipitation was detected at most stations, a significant increase of annual average air temperature occurred at all the 23 stations, and a significant decreasing trend in the SPEI was mainly detected at the coastal stations for all the time scales. The frequency of occurrence of extreme and severe drought at different time scales generally increased with decades; higher frequency and larger affected area of extreme and severe droughts occurred as the time scale increased, especially for the northwest of Shandong Province and Jiaodong peninsular. The spatial pattern of drought for SPEI-1 contains three regions: eastern Jiaodong Peninsular and northwestern and southern Shandong. As the time scale increased to 3, 6, and 12 months, the order of the three regions was transformed into another as northwestern Shandong, eastern Jiaodong Peninsular, and southern Shandong. For SPEI-24, the location identified by REOF1 was slightly shifted from northwestern Shandong to western Shandong, and REOF2 and REOF3 identified another two weak patterns in the south edge and north edge of Jiaodong Peninsular, respectively. The potential causes of drought and the impact of drought on agriculture in the study area have also been discussed. The temporal variations and spatial patterns

  17. Time Scaling of the Rates of Produced Fluids in Laboratory Displacements

    SciTech Connect

    Laroche, Catherine; Chen, Min; Yortsos, Yanis C.; Kamath, Jairam

    2001-02-27

    In this report, the use of an asymptotic method, based on the time scaling of the ratio of produced fluids, to infer the relative permeability exponent of the displaced phase near its residual saturation, for immiscible displacements in laboratory cores was proposed. Sufficiently large injection rates, the existence of a power law can be detected, and its exponent inferred, by plotting in an appropriate plot the ratio of the flow rates of the two fluids at the effluent for some time after breakthrough.

  18. Sensitivity of the Breastfeeding Motivational Measurement Scale: A Known Group Analysis of First Time Mothers

    PubMed Central

    Stockdale, Janine; Sinclair, Marlene; Kernohan, George; McCrum-Gardner, Evie; Keller, John

    2013-01-01

    Breastfeeding has immense public health value for mothers, babies, and society. But there is an undesirably large gap between the number of new mothers who undertake and persist in breastfeeding compared to what would be a preferred level of accomplishment. This gap is a reflection of the many obstacles, both physical and psychological, that confront new mothers. Previous research has illuminated many of these concerns, but research on this problem is limited in part by the unavailability of a research instrument that can measure the key differences between first-time mothers and experienced mothers, with regard to the challenges they face when breastfeeding and the instructional advice they require. An instrument was designed to measure motivational complexity associated with sustained breast feeding behaviour; the Breastfeeding Motivational Measurement Scale. It contains 51 self-report items (7 point Likert scale) that cluster into four categories related to perceived value of breast-feeding, confidence to succeed, factors that influence success or failure, and strength of intentions, or goal. However, this scale has not been validated in terms of its sensitivity to profile the motivation of new mothers and experienced mothers. This issue was investigated by having 202 breastfeeding mothers (100 first time mothers) fill out the scale. The analysis reported in this paper is a three factor solution consisting of value, midwife support, and expectancies for success that explained the characteristics of first time mothers as a known group. These results support the validity of the BMM scale as a diagnostic tool for research on first time mothers who are learning to breastfeed. Further research studies are required to further test the validity of the scale in additional subgroups. PMID:24391731

  19. Beyond trial-by-trial adaptation: A quantification of the time scale of cognitive control.

    PubMed

    Aben, Bart; Verguts, Tom; Van den Bussche, Eva

    2017-03-01

    The idea that adaptation to stimulus or response conflict can operate over different time scales takes a prominent position in various theories and models of cognitive control. The mechanisms underlying temporal variations in control are nevertheless poorly understood, which is partly due to a lack of appropriate empirical measures. Inspired by reinforcement learning models, we developed a method to quantify the time scale of control behaviorally, by computing trial-by-trial effects that go beyond the preceding trial. Briefly, we extended the congruency sequence effect from 1 trial to multiple trials into the past and quantified the influence of previous trials on current-trial performance as a function of trial distance. The rate at which this influence changes across trials was taken as a measure of the time scale of control. We applied the method to a flanker task with different conflict frequencies and volatility. Results showed that the time scale of control was smaller in rare-conflict and volatile contexts, compared to frequent-conflict and neutral contexts. This is in agreement with theories differentiating transient from sustained control. The method offers new opportunities to reveal temporal differences in control modes and can easily be applied to various empirical paradigms. (PsycINFO Database Record

  20. Improving Building Performance at Urban Scale with a Framework for Real-time Data Sharing

    SciTech Connect

    Pang, Xiufeng; Hong, Tianzhen; Piette, Mary Ann

    2013-06-03

    This paper describes work in progress toward an urban-scale system aiming to reduce energy use in neighboring buildings by providing three components: a database for accessing past and present weather data from high quality weather stations; a network for communicating energy-saving strategies between building owners; and a set of modeling tools for real-time building energy simulation.

  1. How Do Young Children's Spatio-Symbolic Skills Change over Short Time scales?

    ERIC Educational Resources Information Center

    Tsubota, Yoko; Chen, Zhe

    2012-01-01

    Three experiments were designed to examine how experience affects young children's spatio-symbolic skills over short time scales. Spatio-symbolic reasoning refers to the ability to interpret and use spatial relations, such as those encountered on a map, to solve symbolic tasks. We designed three tasks in which the featural and spatial…

  2. Natural variability of atmospheric temperatures and geomagnetic intensity over a wide range of time scales

    PubMed Central

    Pelletier, Jon D.

    2002-01-01

    The majority of numerical models in climatology and geomagnetism rely on deterministic finite-difference techniques and attempt to include as many empirical constraints on the many processes and boundary conditions applicable to their very complex systems. Despite their sophistication, many of these models are unable to reproduce basic aspects of climatic or geomagnetic dynamics. We show that a simple stochastic model, which treats the flux of heat energy in the atmosphere by convective instabilities with random advection and diffusive mixing, does a remarkable job at matching the observed power spectrum of historical and proxy records for atmospheric temperatures from time scales of one day to one million years (Myr). With this approach distinct changes in the power-spectral form can be associated with characteristic time scales of ocean mixing and radiative damping. Similarly, a simple model of the diffusion of magnetic intensity in Earth's core coupled with amplification and destruction of the local intensity can reproduce the observed 1/f noise behavior of Earth's geomagnetic intensity from time scales of 1 (Myr) to 100 yr. In addition, the statistics of the fluctuations in the polarity reversal rate from time scales of 1 Myr to 100 Myr are consistent with the hypothesis that reversals are the result of variations in 1/f noise geomagnetic intensity above a certain threshold, suggesting that reversals may be associated with internal fluctuations rather than changes in mantle thermal or magnetic boundary conditions. PMID:11875208

  3. Short Time-Scale Sensory Coding in S1 during Discrimination of Whisker Vibrotactile Sequences

    PubMed Central

    Miyashita, Toshio; Lee, Daniel J.; Smith, Katherine A.; Feldman, Daniel E.

    2016-01-01

    Rodent whisker input consists of dense microvibration sequences that are often temporally integrated for perceptual discrimination. Whether primary somatosensory cortex (S1) participates in temporal integration is unknown. We trained rats to discriminate whisker impulse sequences that varied in single-impulse kinematics (5–20-ms time scale) and mean speed (150-ms time scale). Rats appeared to use the integrated feature, mean speed, to guide discrimination in this task, consistent with similar prior studies. Despite this, 52% of S1 units, including 73% of units in L4 and L2/3, encoded sequences at fast time scales (≤20 ms, mostly 5–10 ms), accurately reflecting single impulse kinematics. 17% of units, mostly in L5, showed weaker impulse responses and a slow firing rate increase during sequences. However, these units did not effectively integrate whisker impulses, but instead combined weak impulse responses with a distinct, slow signal correlated to behavioral choice. A neural decoder could identify sequences from fast unit spike trains and behavioral choice from slow units. Thus, S1 encoded fast time scale whisker input without substantial temporal integration across whisker impulses. PMID:27574970

  4. Time Scales in Turbulence and Sediment Concentration Over Mobile Sand Dunes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The relationship between turbulent fluid motions and sediment particles over mobile sand dunes may be better understood by examining the time scales over which the quantities fluctuate. In laboratory experiments performed at the USDA-ARS-National Sedimentation Laboratory, profiles of acoustic backs...

  5. Development and Preliminary Validation of the Time Management for Exercise Scale

    ERIC Educational Resources Information Center

    Hellsten, Laurie-ann M.; Rogers, W. Todd

    2009-01-01

    The purpose of this study was to collect preliminary validity evidence for a time management scale for exercise. An initial pool of 91 items was developed from existing literature. Ten exercise/health psychologists evaluated each of the items in terms of relevance and representativeness. Forty-nine items met all criteria. Exploratory factor…

  6. The Space-Time Scales of Variability in Oceanic Thermal Structure Off the Central California Coast.

    DTIC Science & Technology

    1983-12-01

    every third observation -------------------- 263 9. Partitioned variances for Granite Canyon, Pacific Grove, and the Farallons -------------- 267 10...Estimated time scales for Granite Canyon, Pacific Grove, and the Farallons --------------- 278 11. Spring transitions at Granite Canyon between March 1...205 67. Sea-surface temperatures at Granite Canyon, Pacific Grove, and the Farallons . Observations acquired with immersion thermometers (+0.2C

  7. Anti-control of chaos of single time-scale brushless DC motor.

    PubMed

    Ge, Zheng-Ming; Chang, Ching-Ming; Chen, Yen-Sheng

    2006-09-15

    Anti-control of chaos of single time-scale brushless DC motors is studied in this paper. In order to analyse a variety of periodic and chaotic phenomena, we employ several numerical techniques such as phase portraits, bifurcation diagrams and Lyapunov exponents. Anti-control of chaos can be achieved by adding an external constant term or an external periodic term.

  8. Linear regulator design for stochastic systems by a multiple time scales method

    NASA Technical Reports Server (NTRS)

    Teneketzis, D.; Sandell, N. R., Jr.

    1976-01-01

    A hierarchically-structured, suboptimal controller for a linear stochastic system composed of fast and slow subsystems is considered. The controller is optimal in the limit as the separation of time scales of the subsystems becomes infinite. The methodology is illustrated by design of a controller to suppress the phugoid and short period modes of the longitudinal dynamics of the F-8 aircraft.

  9. Two time scale output feedback regulation for ill-conditioned systems

    NASA Technical Reports Server (NTRS)

    Calise, A. J.; Moerder, D. D.

    1986-01-01

    Issues pertaining to the well-posedness of a two time scale approach to the output feedback regulator design problem are examined. An approximate quadratic performance index which reflects a two time scale decomposition of the system dynamics is developed. It is shown that, under mild assumptions, minimization of this cost leads to feedback gains providing a second-order approximation of optimal full system performance. A simplified approach to two time scale feedback design is also developed, in which gains are separately calculated to stabilize the slow and fast subsystem models. By exploiting the notion of combined control and observation spillover suppression, conditions are derived assuring that these gains will stabilize the full-order system. A sequential numerical algorithm is described which obtains output feedback gains minimizing a broad class of performance indices, including the standard LQ case. It is shown that the algorithm converges to a local minimum under nonrestrictive assumptions. This procedure is adapted to and demonstrated for the two time scale design formulations.

  10. Fixation of competing strategies when interacting agents differ in the time scale of strategy updating

    NASA Astrophysics Data System (ADS)

    Zhang, Jianlei; Weissing, Franz J.; Cao, Ming

    2016-09-01

    A commonly used assumption in evolutionary game theory is that natural selection acts on individuals in the same time scale; e.g., players use the same frequency to update their strategies. Variation in learning rates within populations suggests that evolutionary game theory may not necessarily be restricted to uniform time scales associated with the game interaction and strategy adaption evolution. In this study, we remove this restricting assumption by dividing the population into fast and slow groups according to the players' strategy updating frequencies and investigate how different strategy compositions of one group influence the evolutionary outcome of the other's fixation probabilities of strategies within its own group. Analytical analysis and numerical calculations are performed to study the evolutionary dynamics of strategies in typical classes of two-player games (prisoner's dilemma game, snowdrift game, and stag-hunt game). The introduction of the heterogeneity in strategy-update time scales leads to substantial changes in the evolution dynamics of strategies. We provide an approximation formula for the fixation probability of mutant types in finite populations and study the outcome of strategy evolution under the weak selection. We find that although heterogeneity in time scales makes the collective evolutionary dynamics more complicated, the possible long-run evolutionary outcome can be effectively predicted under technical assumptions when knowing the population composition and payoff parameters.

  11. Observations of near-inertial surface currents off Oregon: Decorrelation time and length scales

    NASA Astrophysics Data System (ADS)

    Kim, Sung Yong; Kosro, P. Michael

    2013-07-01

    High-resolution (km in space and hourly in time) surface currents observed by an array of high-frequency radars off Oregon are analyzed to quantify the decorrelation time and length scales of their near-inertial motions. The near-inertial surface currents are dominantly clockwise with amplitudes of 9-12 cm s-1. However, they appear asymmetric and elliptical as a result of counterclockwise inertial motions with magnitudes in a range of 2-5 cm s-1. The decorrelation time and length scales are computed from the decay slope of the near-inertial peak and the spatial coherence in the near-inertial frequency band, respectively. Decorrelation time scales of clockwise near-inertial motions increase from 2 days nearshore (within 30 km from the coast) to 6 days offshore, and their length scales increase from 30 to 90 km seaward possibly due to coastal inhibition. The local spatial coherence has an exponentially decaying structure for both clockwise and counterclockwise rotations, and their phases propagate northwestward (offshore) for clockwise and northeastward (onshore) for counterclockwise rotations.

  12. Natural variability of atmospheric temperatures and geomagnetic intensity over a wide range of time scales.

    PubMed

    Pelletier, Jon D

    2002-02-19

    The majority of numerical models in climatology and geomagnetism rely on deterministic finite-difference techniques and attempt to include as many empirical constraints on the many processes and boundary conditions applicable to their very complex systems. Despite their sophistication, many of these models are unable to reproduce basic aspects of climatic or geomagnetic dynamics. We show that a simple stochastic model, which treats the flux of heat energy in the atmosphere by convective instabilities with random advection and diffusive mixing, does a remarkable job at matching the observed power spectrum of historical and proxy records for atmospheric temperatures from time scales of one day to one million years (Myr). With this approach distinct changes in the power-spectral form can be associated with characteristic time scales of ocean mixing and radiative damping. Similarly, a simple model of the diffusion of magnetic intensity in Earth's core coupled with amplification and destruction of the local intensity can reproduce the observed 1/f noise behavior of Earth's geomagnetic intensity from time scales of 1 (Myr) to 100 yr. In addition, the statistics of the fluctuations in the polarity reversal rate from time scales of 1 Myr to 100 Myr are consistent with the hypothesis that reversals are the result of variations in 1/f noise geomagnetic intensity above a certain threshold, suggesting that reversals may be associated with internal fluctuations rather than changes in mantle thermal or magnetic boundary conditions.

  13. An Astronomical Polarity Time Scale For The Middle Miocene Based On Continental Sequences

    NASA Astrophysics Data System (ADS)

    Aziz, H. Abdul; Krijgsman, W.; Hilgen, F. J.; Wilson, D. S.; Langereis, C. G.; Calvo, J. P.

    High-resolution carbonate and colour reflectance records are presented for middle Miocene cyclic shallow lacustrine to distal alluvial-fan floodplain deposits of the Orera Composite Section (OCS; Calatayud basin, NE Spain). Spectral analysis re- sults and bandpass filters of the proxy records in the depth domain show a dominant peak at 1.7 m which corresponds with the average thickness of the basic (small- scale) mudstone-carbonate cycle. Other significant peaks correspond with a short intermediate-scale cycle of alternating thick-thin carbonate beds and with large-scale cycles marked by an alternation of dark intervals with poorly developed small-scale cycles and light intervals with regular and well-developed small-scale cycles. The magnetostratigraphy of the OCS provided a GPTS-based age model that was used to transform the proxy depth-records into time series. Subsequent spectral analysis results reveal periodicities of 23, 41 and 400 kyr and to a lesser extent of 100 kyr, and hence unambiguously demonstrate that the sedimentary cycles in the OCS have an astronomical origin. Following the determination of phase relations between the different scales of sedimentary and astronomical cycles, an astronomical tuning of the sedimentary cycles to the astronomical time-series of Laskar 1993 solution is pre- sented. Starting with the GPTS-based age model for the OCS, a first-order calibration was established by correlating the dark coloured intervals of the large-scale cycles to successive 400-kyr eccentricity minima. The carbonate beds of the basic small-scale cycles were subsequently tuned to minima in the precession index. The presented tun- ing provides astronomical ages for the sedimentary cycles and hence for the polarity reversals (and potential subchrons and cryptochrons) in the time interval between 12.9 and 10.6 Ma. Comparison with other time scales shows that the OCS polarity reversal ages are consistently older by 80 kyr than the ages in the GPTS of Cande

  14. Comparing Time-Dependent Geomagnetic and Atmospheric Effects on Cosmogenic Nuclide Production Rate Scaling

    NASA Astrophysics Data System (ADS)

    Lifton, N. A.

    2014-12-01

    A recently published cosmogenic nuclide production rate scaling model based on analytical fits to Monte Carlo simulations of atmospheric cosmic ray flux spectra (both of which agree well with measured spectra) (Lifton et al., 2014, Earth Planet. Sci. Lett. 386, 149-160: termed the LSD model) provides two main advantages over previous scaling models: identification and quantification of potential sources of bias in the earlier models, and the ability to generate nuclide-specific scaling factors easily for a wide range of input parameters. The new model also provides a flexible framework for exploring the implications of advances in model inputs. In this work, the scaling implications of two recent time-dependent spherical harmonic geomagnetic models spanning the Holocene will be explored. Korte and Constable (2011, Phys. Earth Planet. Int. 188, 247-259) and Korte et al. (2011, Earth Planet. Sci. Lett. 312, 497-505) recently updated earlier spherical harmonic paleomagnetic models used by Lifton et al. (2014) with paleomagnetic measurements from sediment cores in addition to archeomagnetic and volcanic data. These updated models offer improved accuracy over the previous versions, in part to due to increased temporal and spatial data coverage. With the new models as input, trajectory-traced estimates of effective vertical cutoff rigidity (RC- the standard method for ordering cosmic ray data) yield significantly different time-integrated scaling predictions when compared to the earlier models. These results will be compared to scaling predictions using another recent time-dependent spherical harmonic model of the Holocene geomagnetic field by Pavón-Carrasco et al. (2014, Earth Planet. Sci. Lett. 388, 98-109), based solely on archeomagnetic and volcanic paleomagnetic data, but extending to 14 ka. In addition, the potential effects of time-dependent atmospheric models on LSD scaling predictions will be presented. Given the typical dominance of altitudinal over

  15. Scales

    MedlinePlus

    Scales are a visible peeling or flaking of outer skin layers. These layers are called the stratum ... Scales may be caused by dry skin, certain inflammatory skin conditions, or infections. Eczema , ringworm , and psoriasis ...

  16. Timing Is Everything: A Comparative Study of the Adjustment Process of Fall and Mid-Year Community College Transfer Students at a Public Four-Year University

    ERIC Educational Resources Information Center

    Peska, Scott F.

    2009-01-01

    Many four-year institutions accept community college transfer students at mid-year (i.e., second semester) to recuperate declines in fall semester enrollments (Britt & Hirt, 1999). Students entering mid-year may face unique challenges adjusting and find that the institutional support to assist in their adjustment that is available to students…

  17. Switching to High Gear: Opportunities for Grand-scale Real-time Parallel Simulations

    SciTech Connect

    Perumalla, Kalyan S

    2009-01-01

    The recent emergence of dramatically large computational power, spanning desktops with multi-core processors and multiple graphics cards to supercomputers with 10^5 processor cores, has suddenly resulted in simulation-based solutions trailing behind in the ability to fully tap the new computational capacity. Here, we motivate the need for switching the parallel simulation research to a higher gear to exploit the new, immense levels of computational power. The potential for grand-scale real-time solutions is illustrated using preliminary results from prototypes in four example application areas: (a) state- or regional-scale vehicular mobility modeling, (b) very large-scale epidemic modeling, (c) modeling the propagation of wireless network signals in very large, cluttered terrains, and, (d) country- or world-scale social behavioral modeling. We believe the stage is perfectly poised for the parallel/distributed simulation community to envision and formulate similar grand-scale, real-time simulation-based solutions in many application areas.

  18. A real-time multi-scale 2D Gaussian filter based on FPGA

    NASA Astrophysics Data System (ADS)

    Luo, Haibo; Gai, Xingqin; Chang, Zheng; Hui, Bin

    2014-11-01

    Multi-scale 2-D Gaussian filter has been widely used in feature extraction (e.g. SIFT, edge etc.), image segmentation, image enhancement, image noise removing, multi-scale shape description etc. However, their computational complexity remains an issue for real-time image processing systems. Aimed at this problem, we propose a framework of multi-scale 2-D Gaussian filter based on FPGA in this paper. Firstly, a full-hardware architecture based on parallel pipeline was designed to achieve high throughput rate. Secondly, in order to save some multiplier, the 2-D convolution is separated into two 1-D convolutions. Thirdly, a dedicate first in first out memory named as CAFIFO (Column Addressing FIFO) was designed to avoid the error propagating induced by spark on clock. Finally, a shared memory framework was designed to reduce memory costs. As a demonstration, we realized a 3 scales 2-D Gaussian filter on a single ALTERA Cyclone III FPGA chip. Experimental results show that, the proposed framework can computing a Multi-scales 2-D Gaussian filtering within one pixel clock period, is further suitable for real-time image processing. Moreover, the main principle can be popularized to the other operators based on convolution, such as Gabor filter, Sobel operator and so on.

  19. The Chapman psychosis-proneness scales: Consistency across culture and time.

    PubMed

    Chan, Raymond C K; Shi, Hai-song; Geng, Fu-lei; Liu, Wen-hua; Yan, Chao; Wang, Yi; Gooding, Diane C

    2015-07-30

    The purpose of the present study was to examine the factor structure and the temporal stability of the Chapman psychosis-proneness scales in a representative sample of nonclinical Chinese young adults. The four psychosis-proneness scales evaluated were the Perceptual Aberration (PAS), Magical Ideation (MIS), revised Social Anhedonia (RSAS), and revised Physical Anhedonia (RPAS) scales. The sample consisted of 1724 young adults with a mean age of 18.8 years (S.D. = 0.84). The results of the confirmatory factor analyses indicated that the best fitting model was a two-factor model with positive schizotypy (PER and MIS) scales and negative schizotypy (RSAS and RPAS) scales. The data add to the growing literature indicating that the measurement of schizotypal traits is consistent across cultures. In addition, the results support the measurement invariance of the Chapman psychosis-proneness scales across time, i.e., there was ample evidence of test-retest reliability over a test interval of 6 months.

  20. Global Monitoring of Precipitation on Monthly and Shorter Time Scales Utilizing Low-Orbit and Geosynchronous Satellite Observations

    NASA Technical Reports Server (NTRS)

    Adler, Robert; Curtis, Scott; Huffman, George; Bolvin, David; Nelkin, Eric

    1999-01-01

    A satellite-based system to monitor global precipitation on monthly and shorter time scales is described. The monitoring system is based primarily on the Global Precipitation Climatology Project (GPCP) global, monthly, 2.5 degree by 2.5 degree latitude-longitude product which utilizes precipitation estimates from low-orbit microwave sensors (SSM/I) and geosynchronous IR sensors and raingauge information over land. The low-orbit microwave estimates are used to adjust or correct the geosynchronous IR estimates, thereby maximizing the utility of the more physically-based microwave estimates and the finer time sampling of the geosynchronous observations. Information from raingauges is blended into the analyses over land. This globally complete, monthly product is available from January 1986 to the present, with an extension back to January 1979 underway using non-SSM/I data. The monthly GPCP merged data product described in the previous paragraph is available a few (2-4) months after the end of the month. An analysis based solely on low-orbit microwave (SSM/1) data and the Goddard Profiling (GPROF) algorithm is used to bring the global monitoring up to real time. Anomalies from climatological means are produced from both the GPCP and GPROF fields to monitor the evolution of global precipitation, including the calculation of ENSO precipitation indices for real-time (five- day running means) climate monitoring and comparison with previous ENSO anomalies. The long-term climatology of the global precipitation field and the time and space variations thereof will be discussed, including the variations associated with the 1997- 1998 ENSO. The GPCP fields will also be compared to analyses based on the recently launched Tropical Rain Measuring Mission (TRMM). On an even shorter time scale, a new daily, 1 degree x 1 degree latitude-longitude global analysis has been developed starting in January 1997 utilizing low-orbit microwave and geosynchronous IR information using a similar

  1. Short-time change of heavy-ion microbeams with different mass to charge ratios by scaling method for the JAEA AVF cyclotron

    NASA Astrophysics Data System (ADS)

    Kurashima, Satoshi; Okumura, Susumu; Miyawaki, Nobumasa; Kashiwagi, Hirotsugu; Satoh, Takahiro; Kamiya, Tomihiro; Fukuda, Mitsuhiro; Yokota, Watalu

    2013-07-01

    The JAEA AVF cyclotron provides heavy-ion beams covering a wide range of linear-energy-transfers for microbeam formation. Two types of microbeam formation systems, one using a micro-aperture and the other focusing lenses, are installed on two vertical beam lines of the cyclotron. The average beam time for an experiment using the former system is usually less than 3 h, that is comparable to the time for cyclotron tuning. The time ratio between experiment and tuning determines the usage efficiency of the facility. In order to reduce the tuning time, a scaling method has been introduced to change the ion species with various mass to charge ratios (M/Q) in a shorter total time. The principle of the scaling method is to keep the magnetic rigidity of ion beams constant. This requirement is easily achieved by adjusting the extraction voltage of an ion source proportionally to the M/Q in the beam injection line. Although some cyclotron adjustments, other than the magnetic field strength at the extraction radius, are required, the tuning can be completed within 20 min, and no change is basically required in the beam transport line downstream of the cyclotron. Using the scaling method, 255 MeV 20Ne7+, 335 MeV 20Ne8+, and 440 MeV 40Ar13+ beams were extracted from the cyclotron in sequence after the usual tuning of a 220 MeV 12C5+. As a result, we have succeeded in changing the ion species of the heavy-ion microbeam within a total of 30 min.

  2. Synchronizaton and causality across time-scales of observed and modelled ENSO dynamics

    NASA Astrophysics Data System (ADS)

    Jajcay, Nikola; Kravtsov, Sergey; Tsonis, Anastasios A.; Paluš, Milan

    2016-04-01

    Phase-phase and phase-amplitude interactions between dynamics on different temporal scales has been observed in ENSO dynamics, captured by the NINO3.4 index, using the approach for identification of cross-scale interactions introduced recently by Paluš [1]. The most pronounced interactions across scales are phase coherence and phase-phase causality in which the annual cycle influences the dynamics on the quasibiennial scale. The phase of slower phenomena on the scale 4-6 years influences not only the combination frequencies around the period one year, but also the phase of the annual cycle and also the amplitude of the oscillations in the quasibiennial range. In order to understand these nonlinear phenomena we investigate cross-scale interactions in synthetic, modelled NINO3.4 time series. The models taken into account were a selection of 96 historic runs from CMIP5 project, and two low-dimensional models - parametric recharge oscillator (PRO) [2], which is a two-dimensional dynamical model and a data-driven model based on the idea of linear inverse models [3]. The latter is a statistical model, in our setting 25-dimensional. While the two dimensions of the PRO model are not enough to capture all the cross-scale interactions, the results from the data-driven model are more promising and they resemble the interactions found in NINO3.4 measured data set. We believe that combination of models of different complexity will help to uncover mechanisms of the cross-scale interactions which might be the key for better understanding of the irregularities in the ENSO dynamics. This study is supported by the Ministry of Education, Youth and Sports of the Czech Republic within the Program KONTAKT II, Project No. LH14001. [1] M. Palus, Phys. Rev. Let. 112 078702 (2014) [2] K. Stein et al., J. Climate, 27, 14 (2014) [3] Kondrashov et al., J. Climate, 18, 21 (2005)

  3. Multiband optical-NIR variability of blazars on diverse time-scales

    NASA Astrophysics Data System (ADS)

    Agarwal, Aditi; Gupta, Alok C.; Bachev, R.; Strigachev, A.; Semkov, E.; Wiita, Paul J.; Böttcher, M.; Boeva, S.; Gaur, H.; Gu, M. F.; Peneva, S.; Ibryamov, S.; Pandey, U. S.

    2015-08-01

    To search for optical variability on a wide range of time-scales, we have carried out photometric monitoring of two flat spectrum radio quasars, 3C 454.3 and 3C 279, plus one BL Lac, S5 0716+714, all of which have been exhibiting remarkably high activity and pronounced variability at all wavelengths. CCD magnitudes in B, V, R, and I passbands were determined for ˜7000 new optical observations from 114 nights made during 2011-2014, with an average length of ˜4 h each, at seven optical telescopes: four in Bulgaria, one in Greece, and two in India. We measured multiband optical flux and colour variations on diverse time-scales. Discrete correlation functions were computed among B, V, R, and I observations, to search for any time delays. We found weak correlations in some cases with no significant time lags. The structure function method was used to estimate any characteristic time-scales of variability. We also investigated the spectral energy distribution of the three blazars using B, V, R, I, J, and K passband data. We found that the sources almost always follow a bluer-when-brighter trend. We discuss possible physical causes of the observed spectral variability.

  4. Reproductive numbers for nonautonomous spatially distributed periodic SIS models acting on two time scales.

    PubMed

    Marvá, M; Bravo de la Parra, R; Auger, P

    2012-06-01

    In this work we deal with a general class of spatially distributed periodic SIS epidemic models with two time scales. We let susceptible and infected individuals migrate between patches with periodic time dependent migration rates. The existence of two time scales in the system allows to describe certain features of the asymptotic behavior of its solutions with the help of a less dimensional, aggregated, system. We derive global reproduction numbers governing the general spatially distributed nonautonomous system through the aggregated system. We apply this result when the mass action law and the frequency dependent transmission law are considered. Comparing these global reproductive numbers to their non spatially distributed counterparts yields the following: adequate periodic migration rates allow global persistence or eradication of epidemics where locally, in absence of migrations, the contrary is expected.

  5. Diverging Time Scale in the Dimensional Crossover for Liquids in Strong Confinement

    NASA Astrophysics Data System (ADS)

    Mandal, Suvendu; Franosch, Thomas

    2017-02-01

    We study a strongly interacting dense hard-sphere system confined between two parallel plates by event-driven molecular dynamics simulations to address the fundamental question of the nature of the 3D to 2D crossover. As the fluid becomes more and more confined the dynamics of the transverse and lateral degrees of freedom decouple, which is accompanied by a diverging time scale separating 2D from 3D behavior. Relying on the time-correlation function of the transversal kinetic energy, the scaling behavior and its density dependence is explored. Surprisingly, our simulations reveal that its time dependence becomes purely exponential such that memory effects can be ignored. We rationalize our findings quantitatively in terms of an analytic theory which becomes exact in the limit of strong confinement.

  6. Singular perturbations and time scales in the design of digital flight control systems

    NASA Technical Reports Server (NTRS)

    Naidu, Desineni S.; Price, Douglas B.

    1988-01-01

    The results are presented of application of the methodology of Singular Perturbations and Time Scales (SPATS) to the control of digital flight systems. A block diagonalization method is described to decouple a full order, two time (slow and fast) scale, discrete control system into reduced order slow and fast subsystems. Basic properties and numerical aspects of the method are discussed. A composite, closed-loop, suboptimal control system is constructed as the sum of the slow and fast optimal feedback controls. The application of this technique to an aircraft model shows close agreement between the exact solutions and the decoupled (or composite) solutions. The main advantage of the method is the considerable reduction in the overall computational requirements for the evaluation of optimal guidance and control laws. The significance of the results is that it can be used for real time, onboard simulation. A brief survey is also presented of digital flight systems.

  7. New Scalings of Energy Confinement Time of RFP Plasmas and the Extrapolation to Reactor Relevant Region

    NASA Astrophysics Data System (ADS)

    Miyamoto, Kenro

    Data bases of reversed field pinch (RFP) plasma have been gradually accumulated by recent experiments of several RFP devices. New confinement scalings τX(X=RFPs1)E=0.024Aa2IP/P1/2heat, τX(X=RFPs2)E=0.04s(IN)Aa2I1.25P/P1/2heat which are consistent to the recent data are presented, where units are in [s], [m], [MA] and [MW] respectively and s(IN) is a correction function of IN≡IP/πa2‹ne›20). From the standpoint of new scalings, dependences among parameters of possible RFP reactors are analyzed to find the conditions for RFP reactors. Hs1 Hs2 are defined by the ratios of necessary energy confinement time for RFP reactors for burning against τX(X=RFPs1) and τX(X=RFPs2) respectively. When confinement time follows τX(X=RFPs1)E scaling, confinement enhancement factor of at least Hs1=23 is necessary for RFP reactors to be realistic. When confinement time follows τX(X=RFPs2)E scaling, data points in IP-a space of RFP reactors are within the region of target.

  8. Effective pore-scale dispersion upscaling with a correlated continuous time random walk approach

    NASA Astrophysics Data System (ADS)

    Le Borgne, T.; Bolster, D.; Dentz, M.; de Anna, P.; Tartakovsky, A.

    2011-12-01

    We investigate the upscaling of dispersion from a pore-scale analysis of Lagrangian velocities. A key challenge in the upscaling procedure is to relate the temporal evolution of spreading to the pore-scale velocity field properties. We test the hypothesis that one can represent Lagrangian velocities at the pore scale as a Markov process in space. The resulting effective transport model is a continuous time random walk (CTRW) characterized by a correlated random time increment, here denoted as correlated CTRW. We consider a simplified sinusoidal wavy channel model as well as a more complex heterogeneous pore space. For both systems, the predictions of the correlated CTRW model, with parameters defined from the velocity field properties (both distribution and correlation), are found to be in good agreement with results from direct pore-scale simulations over preasymptotic and asymptotic times. In this framework, the nontrivial dependence of dispersion on the pore boundary fluctuations is shown to be related to the competition between distribution and correlation effects. In particular, explicit inclusion of spatial velocity correlation in the effective CTRW model is found to be important to represent incomplete mixing in the pore throats.

  9. Exploiting the diversity of time scales in the immune system: A B-cell antibody model

    SciTech Connect

    Segel, L.A. Los Alamos National Lab., NM ); Perelson, A.S. )

    1991-06-01

    Using the continuous shape-space formalism, the authors develop an immune system model involving both B lymphocytes and antibody molecules. The binding and cross-linking of receptors on B cells stimulates the cells to divide and, with a lag, to secrete antibody. Using the method of multiple scales, it is shown how to correctly formulate long-time-scale equations for the population dynamics of B cells, the total antibody concentration, and rate of antibody secretion. The authors model is compared with previous phenomenological formulations.

  10. Language and Adjustment Scales for the Thematic Apperception Test for Youths 12-17 Years. Vital Health and Statistics, Series 2, No. 62.

    ERIC Educational Resources Information Center

    Neman, Ronald S.; And Others

    The study represents an extension of previous research involving the development of scales for the five-card, orally administered, and tape-recorded version of the Thematic Apperception Test(TAT). Scale development is documented and national norms are presented based on a national probability sample of 1,398 youths administered the Cycle III test…

  11. Facing The Challenges Of Tracking Tropical Phenology At Several Scales In Time And Space

    NASA Astrophysics Data System (ADS)

    Silva, T. S. F.; Morellato, P.; Streher, A. S.; Alberton, B.; Almeida, J.; dos Santos, J.; Cancian, L.; Borges, B.; Mariano, G.; Camargo, M. G.; Torres, R. S.

    2015-12-01

    Detect plant responses to environmental changes across tropical systems, especially in the Southern Hemisphere, is an important question in the global agenda, since few studies have addressed trends related to global warming. Traditional on-the-ground direct, manned phenological observations preclude large areas of study, are laborious and time consuming and restricts frequency of observations to large time-intervals (usually monthly). Near-surface remote phenology using digital cameras or phenocams set up at the top of towers have reduced the temporal and labor constraints of on-the-ground human observations, and eliminates the uncertainty of cloud cover, enhancing the resolution of information at individual tree, species, and community scales. Phenocams have reduced considerably manpower, since images are taken sequentially at reduced time-scales. Furthermore, Phenocams have proven to be an important tool for monitoring several species and ecosystems, accurately accessing leaf changes daily or several times a day and the relation to climate drivers but it is still area-limited. Here we propose to apply new technologies to enhance the capabilities near-surface remote phenological observations by integrating at time and space to detect changes on vegetation phenology at various scales, from leaves to ecosystems. Our studies have been carried out in the rupestrian grassland (campos rupestres) a rare, unique Brazilian mountain ecosystem, distinguished by a highly species rich, heterogeneous herbaceous/shrub vegetation and high number of endemic species. We discuss how the combination of cutting-edge technologies collected and framed within a e-science research project has been used to increase our observational capabilities in space by integrating phenology to cutting-edge technologies of environmental and phenology monitoring systems, based on the combination of two near-surface remote phenology monitoring systems: digital and hyperspectral sensors at three scales

  12. Cross-scale interactions, legacies, and spatial connectivity: integrating time and space to predict post-disturbance response across scales

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Emergent properties and cross-scale interactions are important in driving landscape-scale dynamics during a disturbance event, such as wildfire. We used these concepts related to changing pattern-process relationships across scales to explain ecological responses following disturbance that resulted ...

  13. Stratigraphy and Characteristic Time Scales of Northern Polar and Circumpolar Deposits on Mars

    NASA Astrophysics Data System (ADS)

    Kreslavsky, M. A.; Head, J. W.

    2002-05-01

    The north polar region is dominated by the polar cap cut by troughs and Chasma Boreale, surrounded by the north polar erg and overlying the Vastitas Borealis Formation. A thin layer of mantle with characteristic "basketball" texture typical for high latitudes covers the surface of Vastitas Borealis Formation. Study of the high-resolution MGS MOC images showed that the dunes migrate over this mantle. The stratigraphic relationships of this mantle and icy deposits, as well as Chasma Boreale-related deposits are more complex. Chasma Boreale has been interpreted to be initiated as an outflow event (Fishbaugh and Head, JGR, JE001351, 2002). We estimate that the time scale of the meltwater accumulation at the base of the polar cap and the time scale of establishing the thermal equilibrium in the cap are on the order of 0.5 Myr or greater. We compare this time scale with the characteristic astronomically predicted time scales: the time scale of obliquity oscillations (0.05 Myr), the period of obliquity oscillations about 25 deg (3.5 Myr), and the time scale of chaotic obliquity variations (5 Myr). During the period 3.5 - 5 Myr ago the obliquity oscillated around 35 deg, which led to noticeably higher polar cap temperatures and a shallower depth of the melting isotherm than during the present epoch. Predictions of obliquity in the earlier epochs beyond 5 Myr are impossible. We conclude that the period of intensive reshaping of the polar cap and formation of Chasma Boreale occurred 3.5 Myr ago or earlier. During the last 3.5 Myr the cap was rather similar to present; minor erosion and deposition of the upper layers could occur, along with modest trough migration in the short epochs of the highest obliquity. The accumulation of the main mass of the finely layered deposits occurred at least 0.5 - 1 Myr (and may be much earlier) than the Chasma Boreale flood. The accumulation could occur in response to some obliquity-driven climate variation or due to some endogenic discharge

  14. Modeling the Climate Responses to Spectral Solar Variability on Decadal and Centennial Time Scales

    NASA Astrophysics Data System (ADS)

    Cahalan, Robert; Wen, Guoyong; Pilewskie, Peter; Harder, Jerald

    We apply two scenarios of external forcing, namely the SIM-based out-of-phase variations and the proxy-based in-phase variations, as input to a time-dependent radiative-convective model (RCM), and also to the GISS modelE GCM, to compute climate responses to solar variation on decadal time scale. We find that the maximum temperature response occurs in the upper stratosphere, while temperature response decreases downward to the surface for both scenarios, and both models. The upper stratospheric temperature peak-to-peak responses to out-of-phase solar forcing are 0.6 K in RCM and 0.9 K over the tropical region in GCM simulations, a factor of 5 times as large as responses to in-phase solar forcing. Stratospheric responses are in-phase with TSI (Total Solar Irradiance) variations. The modeled upper stratospheric temperature responses to the SORCE SIM observed SSI (Spectral Solar Irradiance) forcing are similar to the HALOE (Halogen Occultation Experiment) observed 11-year temperature variations. Surface responses to the two SSI scenarios are small for both RCM and GCM studies, as compared to the stratospheric responses. Though solar irradiance variations on centennial time scale are not well known, the two sce-narios of reconstructed TSI time series (i.e., the one based on 11-year cycle with background [Lean 2000] and the other one from flux transport that has much less background component [Wang, Lean, and Sheeley, 2005]) provide potential range of variations of TSI on centennial time scale. We apply phase relations among different spectral irradiance bands both from SIM observation and proxy reconstructions to the two scenarios of historical TSI to derive the as-sociated historical SSI. The historical SSI is used to drive the RCM. The updated atmosphere and ocean mixed coupled RCM including diffusion to deep-ocean will provide the first order estimate of temperature response to SSI variation on centennial time scales. We anticipate the stratosphere, troposphere, and

  15. Equilibrium distributions of simple biochemical reaction systems for time-scale separation in stochastic reaction networks

    PubMed Central

    Mélykúti, Bence; Hespanha, João P.; Khammash, Mustafa

    2014-01-01

    Many biochemical reaction networks are inherently multiscale in time and in the counts of participating molecular species. A standard technique to treat different time scales in the stochastic kinetics framework is averaging or quasi-steady-state analysis: it is assumed that the fast dynamics reaches its equilibrium (stationary) distribution on a time scale where the slowly varying molecular counts are unlikely to have changed. We derive analytic equilibrium distributions for various simple biochemical systems, such as enzymatic reactions and gene regulation models. These can be directly inserted into simulations of the slow time-scale dynamics. They also provide insight into the stimulus–response of these systems. An important model for which we derive the analytic equilibrium distribution is the binding of dimer transcription factors (TFs) that first have to form from monomers. This gene regulation mechanism is compared to the cases of the binding of simple monomer TFs to one gene or to multiple copies of a gene, and to the cases of the cooperative binding of two or multiple TFs to a gene. The results apply equally to ligands binding to enzyme molecules. PMID:24920118

  16. Dynamics in entangled polyethylene melts [Multi time scale dynamics in entangled polyethylene melts

    SciTech Connect

    Salerno, K. Michael; Agrawal, Anupriya; Peters, Brandon L.; Perahia, Dvora; Grest, Gary S.

    2016-10-10

    Polymer dynamics creates distinctive viscoelastic behavior as a result of a coupled interplay of motion at the atomic length scale and motion of the entire macromolecule. Capturing the broad time and length scales of polymeric motion however, remains a challenge. Using linear polyethylene as a model system, we probe the effects of the degree of coarse graining on polymer dynamics. Coarse-grained (CG) potentials are derived using iterative Boltzmann inversion with λ methylene groups per CG bead (denoted CGλ) with λ = 2,3,4 and 6 from a fully-atomistic polyethylene melt simulation. By rescaling time in the CG models by a factor α, the chain mobility for the atomistic and CG models match. We show that independent of the degree of coarse graining, all measured static and dynamic properties are essentially the same once the dynamic scaling factor α and a non-crossing constraint for the CG6 model are included. The speedup of the CG4 model is about 3 times that of the CG3 model and is comparable to that of the CG6 model. Furthermore, using these CG models we were able to reach times of over 500 μs, allowing us to measure a number of quantities, including the stress relaxation function, plateau modulus and shear viscosity, and compare directly to experiment.

  17. Dynamics in entangled polyethylene melts [Multi time scale dynamics in entangled polyethylene melts

    DOE PAGES

    Salerno, K. Michael; Agrawal, Anupriya; Peters, Brandon L.; ...

    2016-10-10

    Polymer dynamics creates distinctive viscoelastic behavior as a result of a coupled interplay of motion at the atomic length scale and motion of the entire macromolecule. Capturing the broad time and length scales of polymeric motion however, remains a challenge. Using linear polyethylene as a model system, we probe the effects of the degree of coarse graining on polymer dynamics. Coarse-grained (CG) potentials are derived using iterative Boltzmann inversion with λ methylene groups per CG bead (denoted CGλ) with λ = 2,3,4 and 6 from a fully-atomistic polyethylene melt simulation. By rescaling time in the CG models by a factormore » α, the chain mobility for the atomistic and CG models match. We show that independent of the degree of coarse graining, all measured static and dynamic properties are essentially the same once the dynamic scaling factor α and a non-crossing constraint for the CG6 model are included. The speedup of the CG4 model is about 3 times that of the CG3 model and is comparable to that of the CG6 model. Furthermore, using these CG models we were able to reach times of over 500 μs, allowing us to measure a number of quantities, including the stress relaxation function, plateau modulus and shear viscosity, and compare directly to experiment.« less

  18. Correcting Spatial Variance of RCM for GEO SAR Imaging Based on Time-Frequency Scaling

    PubMed Central

    Yu, Ze; Lin, Peng; Xiao, Peng; Kang, Lihong; Li, Chunsheng

    2016-01-01

    Compared with low-Earth orbit synthetic aperture radar (SAR), a geosynchronous (GEO) SAR can have a shorter revisit period and vaster coverage. However, relative motion between this SAR and targets is more complicated, which makes range cell migration (RCM) spatially variant along both range and azimuth. As a result, efficient and precise imaging becomes difficult. This paper analyzes and models spatial variance for GEO SAR in the time and frequency domains. A novel algorithm for GEO SAR imaging with a resolution of 2 m in both the ground cross-range and range directions is proposed, which is composed of five steps. The first is to eliminate linear azimuth variance through the first azimuth time scaling. The second is to achieve RCM correction and range compression. The third is to correct residual azimuth variance by the second azimuth time-frequency scaling. The fourth and final steps are to accomplish azimuth focusing and correct geometric distortion. The most important innovation of this algorithm is implementation of the time-frequency scaling to correct high-order azimuth variance. As demonstrated by simulation results, this algorithm can accomplish GEO SAR imaging with good and uniform imaging quality over the entire swath. PMID:27428974

  19. Correcting Spatial Variance of RCM for GEO SAR Imaging Based on Time-Frequency Scaling.

    PubMed

    Yu, Ze; Lin, Peng; Xiao, Peng; Kang, Lihong; Li, Chunsheng

    2016-07-14

    Compared with low-Earth orbit synthetic aperture radar (SAR), a geosynchronous (GEO) SAR can have a shorter revisit period and vaster coverage. However, relative motion between this SAR and targets is more complicated, which makes range cell migration (RCM) spatially variant along both range and azimuth. As a result, efficient and precise imaging becomes difficult. This paper analyzes and models spatial variance for GEO SAR in the time and frequency domains. A novel algorithm for GEO SAR imaging with a resolution of 2 m in both the ground cross-range and range directions is proposed, which is composed of five steps. The first is to eliminate linear azimuth variance through the first azimuth time scaling. The second is to achieve RCM correction and range compression. The third is to correct residual azimuth variance by the second azimuth time-frequency scaling. The fourth and final steps are to accomplish azimuth focusing and correct geometric distortion. The most important innovation of this algorithm is implementation of the time-frequency scaling to correct high-order azimuth variance. As demonstrated by simulation results, this algorithm can accomplish GEO SAR imaging with good and uniform imaging quality over the entire swath.

  20. Scale size and life time of energy conversion regions observed by Cluster in the plasma sheet

    NASA Astrophysics Data System (ADS)

    Hamrin, M.; Norqvist, P.; Marghitu, O.; Vaivads, A.; Klecker, B.; Kistler, L. M.; Dandouras, I.

    2009-11-01

    In this article, and in a companion paper by Hamrin et al. (2009) [Occurrence and location of concentrated load and generator regions observed by Cluster in the plasma sheet], we investigate localized energy conversion regions (ECRs) in Earth's plasma sheet. From more than 80 Cluster plasma sheet crossings (660 h data) at the altitude of about 15-20 RE in the summer and fall of 2001, we have identified 116 Concentrated Load Regions (CLRs) and 35 Concentrated Generator Regions (CGRs). By examining variations in the power density, E·J, where E is the electric field and J is the current density obtained by Cluster, we have estimated typical values of the scale size and life time of the CLRs and the CGRs. We find that a majority of the observed ECRs are rather stationary in space, but varying in time. Assuming that the ECRs are cylindrically shaped and equal in size, we conclude that the typical scale size of the ECRs is 2 RE≲ΔSECR≲5 RE. The ECRs hence occupy a significant portion of the mid altitude plasma sheet. Moreover, the CLRs appear to be somewhat larger than the CGRs. The life time of the ECRs are of the order of 1-10 min, consistent with the large scale magnetotail MHD simulations of Birn and Hesse (2005). The life time of the CGRs is somewhat shorter than for the CLRs. On time scales of 1-10 min, we believe that ECRs rise and vanish in significant regions of the plasma sheet, possibly oscillating between load and generator character. It is probable that at least some of the observed ECRs oscillate energy back and forth in the plasma sheet instead of channeling it to the ionosphere.