Science.gov

Sample records for adjuvant monophosphoryl lipid

  1. Safety evaluation of monophosphoryl lipid A (MPL): an immunostimulatory adjuvant.

    PubMed

    Baldrick, Paul; Richardson, Derek; Elliott, Gary; Wheeler, Alan W

    2002-06-01

    Animal models have shown the potential use of monophosphoryl lipid A (MPL), a detoxified bacterial lipopolysaccharide, as a vaccine adjuvant. Immunostimulatory activity with diverse effects on the cellular elements of the immune system has been demonstrated and a range of vaccines incorporating MPL, including allergy vaccines, are currently under clinical evaluation. A series of preclinical safety investigations was performed to support clinical use of MPL as used in allergy vaccines and comprised cardiovascular/respiratory assessment in dog (up to 100 microg/kg/day); repeat-dose toxicity in rat, rabbit, and dog (up to 2500 and 1200 microg/kg/day in the rat and dog, respectively); reproduction toxicity in rat and rabbit (up to 100 microg/kg/day); and genotoxicity studies. Overall, repeat-dose toxicity studies in the rat and dog showed expected immunostimulatory effects and/or signs of toxicity associated with overstimulation of the immune system (notably increased spleen weight and white blood cell values). Studies in the rabbit with weekly doses of MPL produced no effects. MPL was shown to have no adverse effects on cardiovascular/respiratory function, reproduction, and genotoxicity.

  2. Putting endotoxin to work for us: monophosphoryl lipid A as a safe and effective vaccine adjuvant.

    PubMed

    Casella, C R; Mitchell, T C

    2008-10-01

    The development of non-infectious subunit vaccines greatly increases the safety of prophylactic immunization, but also reinforces the need for a new generation of immunostimulatory adjuvants. Because adverse effects are a paramount concern in prophylactic immunization, few new adjuvants have received approval for use anywhere in the developed world. The vaccine adjuvant monophosphoryl lipid A is a detoxified form of the endotoxin lipopolysaccharide, and is among the first of a new generation of Toll-like receptor agonists likely to be used as vaccine adjuvants on a mass scale in human populations. Much remains to be learned about this compound's mechanism of action, but recent developments have made clear that it is unlikely to be simply a weak version of lipopolysaccharide. Instead, monophosphoryl lipid A's structure seems to have fortuitously retained several functions needed for stimulation of adaptive immune responses, while shedding those associated with pro-inflammatory side effects.

  3. Synthesis and evaluation of monophosphoryl lipid A derivatives as fully synthetic self-adjuvanting glycoconjugate cancer vaccine carriers.

    PubMed

    Zhou, Zhifang; Mondal, Mohabul; Liao, Guochao; Guo, Zhongwu

    2014-05-28

    A fully synthetic carbohydrate-based cancer vaccine is an attractive concept, but an important topic in the area is to develop proper vaccine carriers that can improve the immunogenicity and other immunological properties of tumor-associated carbohydrate antigens (TACAs). In this context, four monophosphoryl derivatives of Neisseria meningitidis lipid A were synthesized via a highly convergent and effective strategy and evaluated as vaccine carriers and adjuvants. The conjugates of these monophosphoryl lipid A (MPLA) derivatives with a modified form of the sTn antigen were found to elicit high titers of antigen-specific IgG antibodies, indicating a T cell-dependent immune response, in the absence of an external adjuvant. It was concluded that MPLAs could be utilized as potent vaccine carriers and built-in adjuvants to create fully synthetic self-adjuvanting carbohydrate-based cancer vaccines. The lipid composition and structure of MPLA were shown to have a significant influence on its immunological activity, and among the MPLAs examined, natural N. meningitidis MPLA exhibited the most promising properties. Moreover, Titermax Gold, a conventional vaccine adjuvant, was shown to inhibit, rather than promote, the immunological activity of MPLA conjugates, maybe via interacting with MPLA.

  4. Use of adjuvant containing mycobacterial cell-wall skeleton, monophosphoryl lipid A, and squalane in malaria circumsporozoite protein vaccine.

    PubMed

    Rickman, L S; Gordon, D M; Wistar, R; Krzych, U; Gross, M; Hollingdale, M R; Egan, J E; Chulay, J D; Hoffman, S L

    1991-04-27

    Human immune responses to modern synthetic and recombinant peptide vaccines administered with the standard adjuvant, aluminum hydroxide, tend to be poor, hence the search for better adjuvants. Antibody responses to a Plasmodium falciparum circumsporozoite (CS) protein vaccine, R32NS1(81), administered with an adjuvant containing cell-wall skeleton of mycobacteria and monophosphoryl lipid A in squalane (MPL/CWS) have been compared to responses to the same immunogen administered with aluminum hydroxide. 2 weeks after the third dose the following indices were greater in the 5 patients who received MPL/CWS than in controls (p less than 0.05): the geometric mean concentration (2.0 vs 25.4 microgram/ml) and avidity index of antibodies to the P falciparum CS protein by ELISA, the geometric mean titre to P falciparum sporozoites by IFAT (1/115 vs 1/1600), and the geometric mean inhibition of sporozoite invasion of hepatoma cells in vitro (37.6 vs 90.3%). For R32NS1(81) MPL/CWS is superior to aluminum hydroxide as an adjuvant, and the data support the evaluation of this complex as an adjuvant for other vaccines.

  5. Evaluation of monophosphoryl lipid A as an immune adjuvant for photodynamic therapy in a rat sarcoma model: preliminary results

    NASA Astrophysics Data System (ADS)

    Lucroy, Michael D.; Edwards, Benjamin F.; Griffey, Stephen M.; Madewell, Bruce R.

    1999-06-01

    Photodynamic therapy (PDT) is a treatment option for several forms of human cancer, and like traditional chemotherapy and ionizing radiation therapy, PDT alone is not curative for some cases. Recent efforts have aimed at developing strategies for adjuvant therapy for PDT. Given the nature of PDT-mediated cell damage, immunotherapy is a promising adjuvant for long-term control of solid tumors. A candidate immune stimulant for use with PDT is monophosphoryl lipid A (MLA), a non-toxic fraction of the endotoxin molecule. The hypothesis is that adjuvant MLA immunotherapy with PDT will improve local tumor control and prevent growth of subsequently implanted tumor cells when compared to PDT alone. To date, no significant differences in circulating leukocyte populations or tumor infiltrating lymphocyte populations have been identified in 9L tumor-bearing F344 rats after systemic administrations of MLA. Likewise, no significant difference has been identified in local tumor control following PDT of 9L tumors with or without adjuvant MLA. Further results are pending.

  6. Evaluation of hyaluronic acid-based combination adjuvant containing monophosphoryl lipid A and aluminum salt for hepatitis B vaccine.

    PubMed

    Moon, Se-hee; Shin, Eui-Cheol; Noh, Young-Woock; Lim, Yong Taik

    2015-09-11

    Here, monophosphoryl lipid A (MPLA) and aluminum salt (Alum) were introduced into a hyaluronic acid (HA)-based combination vaccine adjuvant for hepatitis B vaccine (HBV). Although Alum is a well-known hepatitis B vaccine adjuvant that induces an enhanced humoral immune response, it cannot induce the cellular immune responses. On the other hand, MPLA has been generally reported to promote IFN-γ production via antigen-specific CD4(+) T cells, but it is not water soluble as a result of its long hydrophobic alkyl chains. To this end, water insoluble MPLA could be solubilized in an aqueous solution with the help of HA, which contains many carboxyl and hydroxyl groups that can be used to attach to the hydroxyl head groups of MPLA via hydrogen bonds. Three groups of mice were treated with either hepatitis B surface antigen (HBsAg) alone, HBsAg_Alum complex, or HBsAg_Alum_MPLA/HA complex. The group immunized with the HBsAg_Alum_MPLA/HA complex exhibited a high increase in cellular immune response as well as in humoral immune response relative to the other two groups. The antibody, cytokine and T cell levels were most elevated in the group of mice immunized with HBsAg_Alum_MPLA/HA complex, even at a 1μg/mice dose, and the magnitude was still maintained even after 8 weeks. Specifically, the antibody value was 120 times larger in mice vaccinated with HBsAg_Alum_MPLA/HA complex than in mice vaccinated with HBsAg_Alum complex designed similar to commercially available hepatitis B vaccine, Engerix B. The cytokine and T cell proliferation levels were 2 times and 6 times larger in mice adjuvanted with HBsAg_Alum_MPLA/HA complex than in those vaccinated with HBsAg_Alum. The results therefore indicate that incorporating MPLA and Alum with HA can be a potent strategy to increase both the magnitude and the persistence of HBsAg-specific immune responses to protect hosts against hepatitis B virus infection. PMID:26271830

  7. Evaluation of hyaluronic acid-based combination adjuvant containing monophosphoryl lipid A and aluminum salt for hepatitis B vaccine.

    PubMed

    Moon, Se-hee; Shin, Eui-Cheol; Noh, Young-Woock; Lim, Yong Taik

    2015-09-11

    Here, monophosphoryl lipid A (MPLA) and aluminum salt (Alum) were introduced into a hyaluronic acid (HA)-based combination vaccine adjuvant for hepatitis B vaccine (HBV). Although Alum is a well-known hepatitis B vaccine adjuvant that induces an enhanced humoral immune response, it cannot induce the cellular immune responses. On the other hand, MPLA has been generally reported to promote IFN-γ production via antigen-specific CD4(+) T cells, but it is not water soluble as a result of its long hydrophobic alkyl chains. To this end, water insoluble MPLA could be solubilized in an aqueous solution with the help of HA, which contains many carboxyl and hydroxyl groups that can be used to attach to the hydroxyl head groups of MPLA via hydrogen bonds. Three groups of mice were treated with either hepatitis B surface antigen (HBsAg) alone, HBsAg_Alum complex, or HBsAg_Alum_MPLA/HA complex. The group immunized with the HBsAg_Alum_MPLA/HA complex exhibited a high increase in cellular immune response as well as in humoral immune response relative to the other two groups. The antibody, cytokine and T cell levels were most elevated in the group of mice immunized with HBsAg_Alum_MPLA/HA complex, even at a 1μg/mice dose, and the magnitude was still maintained even after 8 weeks. Specifically, the antibody value was 120 times larger in mice vaccinated with HBsAg_Alum_MPLA/HA complex than in mice vaccinated with HBsAg_Alum complex designed similar to commercially available hepatitis B vaccine, Engerix B. The cytokine and T cell proliferation levels were 2 times and 6 times larger in mice adjuvanted with HBsAg_Alum_MPLA/HA complex than in those vaccinated with HBsAg_Alum. The results therefore indicate that incorporating MPLA and Alum with HA can be a potent strategy to increase both the magnitude and the persistence of HBsAg-specific immune responses to protect hosts against hepatitis B virus infection.

  8. Vaccine adjuvant systems containing monophosphoryl lipid A and QS21 induce strong and persistent humoral and T cell responses against hepatitis B surface antigen in healthy adult volunteers.

    PubMed

    Vandepapelière, Pierre; Horsmans, Yves; Moris, Philippe; Van Mechelen, Marcelle; Janssens, Michel; Koutsoukos, Marguerite; Van Belle, Pascale; Clement, Frédéric; Hanon, Emmanuel; Wettendorff, Martine; Garçon, Nathalie; Leroux-Roels, Geert

    2008-03-01

    A randomised, double-blind study assessing the potential of four adjuvants in combination with recombinant hepatitis B surface antigen has been conducted to evaluate humoral and cell-mediated immune responses in healthy adults after three vaccine doses at months 0, 1 and 10. Three Adjuvant Systems (AS) contained 3-O-desacyl-4'-monophosphoryl lipid A (MPL) and QS21, formulated either with an oil-in-water emulsion (AS02B and AS02V) or with liposomes (AS01B). The fourth adjuvant was CpG oligonucleotide. High levels of antibodies were induced by all adjuvants, whereas cell-mediated immune responses, including cytolytic T cells and strong and persistent CD4(+) T cell response were mainly observed with the three MPL/QS21-containing Adjuvant Systems. The CD4(+) T cell response was characterised in vitro by vigorous lymphoproliferation, high IFN-gamma and moderate IL-5 production. Antigen-specific T cell immune response was further confirmed ex vivo by detection of IL-2- and IFN-gamma-producing CD4(+) T cells, and in vivo by measuring increased levels of IFN-gamma in the serum and delayed-type hypersensitivity (DTH) responses. The CpG adjuvanted vaccine induced consistently lower immune responses for all parameters. All vaccine adjuvants were shown to be safe with acceptable reactogenicity profiles. The majority of subjects reported local reactions at the injection site after vaccination while general reactions were recorded less frequently. No vaccine-related serious adverse event was reported. Importantly, no increase in markers of auto-immunity and allergy was detected over the whole study course. In conclusion, the Adjuvant Systems containing MPL/QS21, in combination with hepatitis B surface antigen, induced very strong humoral and cellular immune responses in healthy adults. The AS01B-adjuvanted vaccine induced the strongest and most durable specific cellular immune responses after two doses. These Adjuvant Systems, when added to recombinant protein antigens, can be

  9. Vaccination with liposomal leishmanial antigens adjuvanted with monophosphoryl lipid-trehalose dicorynomycolate (MPL-TDM) confers long-term protection against visceral leishmaniasis through a human administrable route.

    PubMed

    Ravindran, Rajesh; Maji, Mithun; Ali, Nahid

    2012-01-01

    The development of a long-term protective subunit vaccine against visceral leishmaniasis depends on antigens and adjuvants that can induce an appropriate immune response. The immunization of leishmanial antigens alone shows limited efficacy in the absence of an appropriate adjuvant. Earlier we demonstrated sustained protection against Leishmania donovani with leishmanial antigens entrapped in cationic liposomes through an intraperitoneal route. However, this route is not applicable for human administration. Herein, we therefore evaluated the immune response and protection induced by liposomal soluble leishmanial antigen (SLA) formulated with monophosphoryl lipid-trehalose dicorynomycolate (MPL-TDM) through a subcutaneous route. Subcutaneous immunization of BALB/c mice with SLA entrapped in liposomes or with MPL-TDM elicited partial protection against experimental visceral leishmaniasis. In contrast, liposomal SLA adjuvanted with MPL-TDM induced significantly higher levels of protection in liver and spleen in BALB/c mice challenged 10 days post-vaccination. Protection conferred by this formulation was sustained up to 12 weeks of immunization, and infection was controlled for at least 4 months of the challenge, similar to liposomal SLA immunization administered intraperitoneally. An analysis of cellular immune responses of liposomal SLA + MPL-TDM immunized mice demonstrated the induction of IFN-γ and IgG2a antibody production not only 10 days or 12 weeks post-vaccination but also 4 months after the challenge infection and a down regulation of IL-4 production after infection. Moreover, long-term immunity elicited by this formulation was associated with IFN-γ production also by CD8⁺ T cells. Taken together, our results suggest that liposomal SLA + MPL-TDM represent a good vaccine formulation for the induction of durable protection against L. donovani through a human administrable route.

  10. Differential immune responses to HIV-1 envelope protein induced by liposomal adjuvant formulations containing monophosphoryl lipid A with or without QS21.

    PubMed

    Beck, Zoltan; Matyas, Gary R; Jalah, Rashmi; Rao, Mangala; Polonis, Victoria R; Alving, Carl R

    2015-10-13

    Liposomes have shown promise as constituents of adjuvant formulations in vaccines to parasitic and viral diseases. A particular type of liposomal construct, referred to as Army Liposome Formulation (ALF), containing neutral and anionic saturated phospholipids, cholesterol, and monophosphoryl lipid A (MPLA), has been used as an adjuvant for many years. Here we investigated the effects of physical and chemical changes of ALF liposomes on adjuvanted immune responses to CN54 gp140, a recombinant HIV-1 envelope protein. While holding the total amounts of liposomal MPLA and the gp140 antigen constant, different liposome sizes and liposomal MPLA:phospholipid molar ratios, and the effect of adding QS21 to the liposomes were compared for inducing immune responses to the gp140. For liposomes lacking QS21, higher titers of IgG binding antibodies to gp140 were induced by small unilamellar vesicle (SUV) rather than by large multilamellar vesicle (MLV) liposomes, and the highest titers were obtained with SUV having the MPLA:phospholipid ratio of 1:5.6. ALF plus QS21 (ALFQ) liposomes induced the same maximal binding antibody titers regardless of the MPLA:phospholipid ratio. ALF MLV liposomes induced mainly IgG1 and very low IgG2a antibodies, while ALF SUV liposomes induced IgG1≥IgG2a>IgG2b antibodies. Liposomes containing QS21 induced IgG1>IgG2a>IgG2b>IgG3 antibodies. ELISPOT analysis of splenocytes from immunized mice revealed that ALF liposomes induced low levels of IFN-γ, but ALFQ induced high levels. ALF and ALFQ liposomes each induced approximately equivalent high levels of IL-4. Based on antibody subtypes and cytokine secretion, we conclude that ALF liposomes predominantly stimulate Th2, while ALFQ strongly induces both Th1 and Th2 immunity. When CN54 gp140 was adjuvanted with either ALF or ALFQ liposomes, antibodies were induced that neutralized two HIV-1 tier 1 clade C strain pseudoviruses.

  11. Adjuvant Activity of Naturally Occurring Monophosphoryl Lipopolysaccharide Preparations from Mucosa-Associated Bacteria

    PubMed Central

    Chilton, Paula M.; Hadel, Diana M.; To, Thao T.

    2013-01-01

    Natural heterogeneity in the structure of the lipid A portion of lipopolysaccharide (LPS) produces differential effects on the innate immune response. Gram-negative bacterial species produce LPS structures that differ from the classic endotoxic LPS structures. These differences include hypoacylation and hypophosphorylation of the diglucosamine backbone, both differences known to decrease LPS toxicity. The effect of decreased toxicity on the adjuvant properties of many of these LPS structures has not been fully explored. Here we demonstrate that two naturally produced forms of monophosphorylated LPS, from the mucosa-associated bacteria Bacteroides thetaiotaomicron and Prevotella intermedia, function as immunological adjuvants for antigen-specific immune responses. Each form of mucosal LPS increased vaccination-initiated antigen-specific antibody titers in both quantity and quality when given simultaneously with vaccine antigen preparations. Interestingly, adjuvant effects on initial T cell clonal expansion were selective for CD4 T cells. No significant increase in CD8 T cell expansion was detected. MyD88/Toll-like receptor 4 (TLR4) and TRIF/TLR4 signaling pathways showed equally decreased signaling with the LPS forms studied here as with endotoxic LPS or detoxified monophosphorylated lipid A (MPLA). Natural monophosphorylated LPS from mucosa-associated bacteria functions as a weak but effective adjuvant for specific immune responses, with preferential effects on antibody and CD4 T cell responses over CD8 T cell responses. PMID:23798540

  12. Safety, immunogenicity, and efficacy of a malaria sporozoite vaccine administered with monophosphoryl lipid A, cell wall skeleton of mycobacteria, and squalane as adjuvant.

    PubMed

    Hoffman, S L; Edelman, R; Bryan, J P; Schneider, I; Davis, J; Sedegah, M; Gordon, D; Church, P; Gross, M; Silverman, C

    1994-11-01

    A Plasmodium falciparum circumsporozoite protein (PfCSP) recombinant fusion protein, R32NS1(81), formulated with monophosphoryl lipid A, cell wall skeleton of mycobacteria, and squalane (Detox) was administered to 12 volunteers. One volunteer had malaise and self-limited painful induration at the injection site after the second dose and declined further immunization. The other 11 volunteers tolerated the three doses of 1,230 micrograms of vaccine, but most complained of sore arms; in five cases the pain or malaise was severe enough to interfere with work or sleep. Two weeks after the third dose of vaccine, four of the 11 immunized volunteers had > or = 14 micrograms/ml of antibodies to the repeat region of the PfCSP in their serum. Two of these four volunteers did not develop P. falciparum parasitemia when challenged by the bite of five mosquitoes carrying P. falciparum sporozoites. The seven volunteers with lower levels of antibodies and 11 of 11 controls developed parasitemia. These data are consistent with other studies, and indicate that vaccine-induced antibodies against the repeat region of PfCSP can prevent effective sporozoite infection of hepatocytes in humans. The challenge is to improve the immunogenicity of PfCSP-based vaccines, and to develop methods for including PfCSP peptides as components of multitarget malaria vaccines.

  13. Comparative analysis of Bacillus subtilis spores and monophosphoryl lipid A as adjuvants of protein-based mycobacterium tuberculosis-based vaccines: partial requirement for interleukin-17a for induction of protective immunity.

    PubMed

    Esparza-Gonzalez, Sandra C; Troy, Amber R; Izzo, Angelo A

    2014-04-01

    The development of adjuvants for vaccines has become an important area of research as the number of protein-based vaccines against infectious pathogens increases. Currently, there are a number of adjuvant-based Mycobacterium tuberculosis vaccines in clinical trials that have shown efficacy in animal models. Despite these novel adjuvants, there is still a need to design new and more versatile adjuvants that have minimal adverse side effects but produce robust long-lasting adaptive immune responses. To this end, we hypothesized that Bacillus subtilis spores may provide the appropriate innate signals that are required to generate such vaccine-mediated responses, which would be sufficient to reduce the mycobacterial burden after infection with M. tuberculosis. In addition, we compared the response generated by B. subtilis spores to that generated by monophosphoryl lipid A (MPL), which has been used extensively to test tuberculosis vaccines. The well-characterized, 6-kDa early secretory antigenic target of M. tuberculosis (ESAT-6; Rv3875) was used as a test antigen to determine the T cell activation potential of each adjuvant. Inoculated into mice, B. subtilis spores induced a strong proinflammatory response and Th1 immunity, similar to MPL; however, unlike MPL formulated with dimethyldioctadecylammonium (DDA) bromide, it failed to induce significant levels of interleukin-17A (IL-17A) and was unable to significantly reduce the mycobacterial burden after pulmonary infection with M. tuberculosis. Further analysis of the activity of MPL-DDA suggested that IL-17A was required for protective immunity. Taken together, the data emphasize the requirement for a network of cytokines that are essential for protective immunity.

  14. Comparative Analysis of Bacillus subtilis Spores and Monophosphoryl Lipid A as Adjuvants of Protein-Based Mycobacterium tuberculosis-Based Vaccines: Partial Requirement for Interleukin-17A for Induction of Protective Immunity

    PubMed Central

    Esparza-Gonzalez, Sandra C.; Troy, Amber R.

    2014-01-01

    The development of adjuvants for vaccines has become an important area of research as the number of protein-based vaccines against infectious pathogens increases. Currently, there are a number of adjuvant-based Mycobacterium tuberculosis vaccines in clinical trials that have shown efficacy in animal models. Despite these novel adjuvants, there is still a need to design new and more versatile adjuvants that have minimal adverse side effects but produce robust long-lasting adaptive immune responses. To this end, we hypothesized that Bacillus subtilis spores may provide the appropriate innate signals that are required to generate such vaccine-mediated responses, which would be sufficient to reduce the mycobacterial burden after infection with M. tuberculosis. In addition, we compared the response generated by B. subtilis spores to that generated by monophosphoryl lipid A (MPL), which has been used extensively to test tuberculosis vaccines. The well-characterized, 6-kDa early secretory antigenic target of M. tuberculosis (ESAT-6; Rv3875) was used as a test antigen to determine the T cell activation potential of each adjuvant. Inoculated into mice, B. subtilis spores induced a strong proinflammatory response and Th1 immunity, similar to MPL; however, unlike MPL formulated with dimethyldioctadecylammonium (DDA) bromide, it failed to induce significant levels of interleukin-17A (IL-17A) and was unable to significantly reduce the mycobacterial burden after pulmonary infection with M. tuberculosis. Further analysis of the activity of MPL-DDA suggested that IL-17A was required for protective immunity. Taken together, the data emphasize the requirement for a network of cytokines that are essential for protective immunity. PMID:24477855

  15. Single and combination herpes simplex virus type 2 glycoprotein vaccines adjuvanted with CpG oligodeoxynucleotides or monophosphoryl lipid A exhibit differential immunity that is not correlated to protection in animal models.

    PubMed

    Khodai, Tansi; Chappell, Debbie; Christy, Clare; Cockle, Paul; Eyles, Jim; Hammond, Daisy; Gore, Katrina; McCluskie, Michael J; Evans, Dana M; Lang, Susanne; Loudon, Peter T; Townend, Tim; Wright, Paul; West, Kate; Bright, Helen

    2011-10-01

    Despite several attempts to develop an effective prophylactic vaccine for HSV-2, all have failed to show efficacy in the clinic. The most recent of these failures was the GlaxoSmithKline (GSK) subunit vaccine based on the glycoprotein gD with the adjuvant monophosphoryl lipid A (MPL). In a phase 3 clinical trial, this vaccine failed to protect from HSV-2 disease, even though good neutralizing antibody responses were elicited. We aimed to develop a superior, novel HSV-2 vaccine containing either gD or gB alone or in combination, together with the potent adjuvant CpG oligodeoxynucleotides (CPG). The immunogenic properties of these vaccines were compared in mice. We show that gB/CPG/alum elicited a neutralizing antibody response similar to that elicited by gD/CPG/alum vaccine but a significantly greater gamma interferon (IFN-γ) T cell response. Furthermore, the combined gB-gD/CPG/alum vaccine elicited significantly greater neutralizing antibody and T cell responses than gD/MPL/alum. The efficacies of these candidate vaccines were compared in the mouse and guinea pig disease models, including a novel male guinea pig genital disease model. These studies demonstrated that increased immune response did not correlate to improved protection. First, despite a lower IFN-γ T cell response, the gD/CPG/alum vaccine was more effective than gB/CPG/alum in mice. Furthermore, the gB-gD/CPG/alum vaccine was no more effective than gD/MPL/alum in mice or male guinea pigs. We conclude that difficulties in correlating immune responses to efficacy in animal models will act as a deterrent to researchers attempting to develop effective HSV vaccines. PMID:21852545

  16. Immuno-Stimulatory Activity of Escherichia coli Mutants Producing Kdo2-Monophosphoryl-Lipid A or Kdo2-Pentaacyl-Monophosphoryl-Lipid A

    PubMed Central

    Wang, Biwen; Han, Yaning; Li, Ye; Li, Yanyan; Wang, Xiaoyuan

    2015-01-01

    Lipid A is the active center of lipopolysaccharide which also known as endotoxin. Monophosphoryl-lipid A (MPLA) has less toxicity but retains potent immunoadjuvant activity; therefore, it can be developed as adjuvant for improving the strength and duration of the immune response to antigens. However, MPLA cannot be chemically synthesized and can only be obtained by hydrolyzing lipopolysaccharide (LPS) purified from Gram-negative bacteria. Purifying LPS is difficult and time-consuming and can damage the structure of MPLA. In this study, Escherichia coli mutant strains HWB01 and HWB02 were constructed by deleting several genes and integrating Francisella novicida gene lpxE into the chromosome of E. coli wild type strain W3110. Compared with W3110, HWB01 and HWB02 synthesized very short LPS, Kdo2-monophosphoryl-lipid A (Kdo2-MPLA) and Kdo2-pentaacyl-monophosphoryl-lipid A (Kdo2-pentaacyl-MPLA), respectively. Structural changes of LPS in the outer membranes of HWB01 and HWB02 increased their membrane permeability, surface hydrophobicity, auto-aggregation ability and sensitivity to some antibiotics, but the abilities of these strains to activate the TLR4/MD-2 receptor of HKE-Blue hTLR4 cells were deceased. Importantly, purified Kdo2-MPLA and Kdo2-pentaacyl-MPLA differed from wild type LPS in their ability to stimulate the mammalian cell lines THP-1 and RAW264.7. The purification of Kdo2-MPLA and Kdo2-pentaacyl-MPLA from HWB01 and HWB02, respectively, is much easier than the purification of LPS from W3110, and these lipid A derivatives could be important tools for developing future vaccine adjuvants. PMID:26710252

  17. A Fusion Protein Consisting of the Vaccine Adjuvant Monophosphoryl Lipid A and the Allergen Ovalbumin Boosts Allergen-Specific Th1, Th2, and Th17 Responses In Vitro

    PubMed Central

    Vogel, Lothar; Hanschmann, Kay-Martin; Vieths, Stefan

    2016-01-01

    Background. The detoxified TLR4-ligand Monophosphoryl Lipid A (MPLA) is the first approved TLR-agonist used as adjuvant in licensed vaccines but has not yet been explored as part of conjugated vaccines. Objective. To investigate the immune-modulating properties of a fusion protein consisting of MPLA and Ovalbumin (MPLA : Ova). Results. MPLA and Ova were chemically coupled by stable carbamate linkage. MPLA : Ova was highly pure without detectable product-related impurities by either noncoupled MPLA or Ova. Light scattering analysis revealed MPLA : Ova to be aggregated. Stimulation of mDC and mDC : DO11.10 CD4+ TC cocultures showed a stronger activation of both mDC and Ova-specific DO11.10 CD4+ TC by MPLA : Ova compared to the mixture of both components. MPLA : Ova induced both strong proinflammatory (IL-1β, IL-6, and TNF-α) and anti-inflammatory (IL-10) cytokine responses from mDCs while also boosting allergen-specific Th1, Th2, and Th17 cytokine secretion. Conclusion. Conjugation of MPLA and antigen enhanced the immune response compared to the mixture of both components. Due to the nonbiased boost of Ova-specific Th2 and Th17 responses while also inducing Th1 responses, this fusion protein may not be a suitable vaccine candidate for allergy treatment but may hold potential for the treatment of other diseases that require a strong stimulation of the host's immune system (e.g., cancer). PMID:27340679

  18. The potential of adjuvants to improve immune responses against TdaP vaccines: A preclinical evaluation of MF59 and monophosphoryl lipid A.

    PubMed

    Agnolon, Valentina; Bruno, Cristina; Leuzzi, Rosanna; Galletti, Bruno; D'Oro, Ugo; Pizza, Mariagrazia; Seubert, Anja; O'Hagan, Derek T; Baudner, Barbara C

    2015-08-15

    The successful approach of combining diphtheria, tetanus and pertussis antigens into a single vaccine has become a cornerstone of immunization programs. Yet, even if vaccination coverage is high, a resurgence of pertussis has been reported in many countries suggesting current vaccines may not provide adequate protection. To induce better tailored and more durable immune responses against pertussis vaccines different approaches have been proposed, including the use of novel adjuvants. Licensed aP vaccines contain aluminum salts, which mainly stimulate humoral immune responses and might not be ideal for protecting against Bordetella pertussis infection. Adjuvants inducing more balanced T-helper profiles or even Th1-prone responses might be more adequate. In this study, two adjuvants already approved for human use have been tested: MF59 emulsion and the combination of aluminum hydroxide with the Toll-Like Receptor 4 agonist MPLA. Adjuvanticity was evaluated in a mouse model using a TdaP vaccine containing three B. pertussis antigens: genetically detoxified pertussis toxin (PT-9K/129G), filamentous hemagglutinin (FHA) and pertactin (PRN) The physico-chemical compatibility of TdaP antigens with the proposed adjuvants, together with a quicker onset and changed quality of the antibody responses, fully supports the replacement of aluminum salts with a new adjuvant to enhance aP vaccines immunogenicity. PMID:26149936

  19. The potential of adjuvants to improve immune responses against TdaP vaccines: A preclinical evaluation of MF59 and monophosphoryl lipid A.

    PubMed

    Agnolon, Valentina; Bruno, Cristina; Leuzzi, Rosanna; Galletti, Bruno; D'Oro, Ugo; Pizza, Mariagrazia; Seubert, Anja; O'Hagan, Derek T; Baudner, Barbara C

    2015-08-15

    The successful approach of combining diphtheria, tetanus and pertussis antigens into a single vaccine has become a cornerstone of immunization programs. Yet, even if vaccination coverage is high, a resurgence of pertussis has been reported in many countries suggesting current vaccines may not provide adequate protection. To induce better tailored and more durable immune responses against pertussis vaccines different approaches have been proposed, including the use of novel adjuvants. Licensed aP vaccines contain aluminum salts, which mainly stimulate humoral immune responses and might not be ideal for protecting against Bordetella pertussis infection. Adjuvants inducing more balanced T-helper profiles or even Th1-prone responses might be more adequate. In this study, two adjuvants already approved for human use have been tested: MF59 emulsion and the combination of aluminum hydroxide with the Toll-Like Receptor 4 agonist MPLA. Adjuvanticity was evaluated in a mouse model using a TdaP vaccine containing three B. pertussis antigens: genetically detoxified pertussis toxin (PT-9K/129G), filamentous hemagglutinin (FHA) and pertactin (PRN) The physico-chemical compatibility of TdaP antigens with the proposed adjuvants, together with a quicker onset and changed quality of the antibody responses, fully supports the replacement of aluminum salts with a new adjuvant to enhance aP vaccines immunogenicity.

  20. Monophosphoryl Lipid-A: A Promising Tool for Alzheimer's Disease Toll.

    PubMed

    Rego, Ângela; Viana, Sofia D; Ribeiro, Carlos A Fontes; Rodrigues-Santos, Paulo; Pereira, Frederico C

    2016-04-12

    Neuroinflammation is a two-edged sword in Alzheimer's disease (AD). A certain degree of neuroinflammation is instrumental in the clearance of amyloid-β (Aβ) peptides by activated microglia, although a sustained neuroinflammation might accelerate Aβ deposition, thus fostering the neurodegenerative process and functional decline in AD. There is an increasing body of evidence suggesting that the innate immune system via Toll-like receptor 4 (TLR4) finely orchestrates the highly regulated inflammatory cascade that takes place in AD pathology. Herein we critically review pre-clinical (in vitro and in vivo approaches) and clinical studies showing that monophosphoryl lipid A (MPL), a partial TLR4 agonist, may have beneficial effect on AD physiopathology. The in vivo data elegantly showed that MPL enhanced Aβ plaque phagocytosis thus decreasing the number and the size of Aβ deposits and soluble Aβ in brain from APPswe/PS1 mice. Furthermore, MPL also improved their cognition. The mechanism underlying this MPL effect was proposed to be microglial activation by recruiting TLR4. Additionally, it was demonstrated that MPL increased the Aβ antibody titer and showed a safe profile in mice and primates, when used as a vaccine adjuvant. Clinical studies using MPL as an adjuvant in Aβ immunotherapy are currently ongoing. Overall, we argue that the TLR4 partial agonist MPL is a potentially safe and effective new pharmacological tool in AD.

  1. ENDOTHELIAL CELL TOLERANCE TO LIPOPOLYSACCHARIDE CHALLENGE IS INDUCED BY MONOPHOSPHORYL LIPID A

    PubMed Central

    Stark, Ryan J.; Choi, Hyehun; Koch, Stephen R.; Fensterheim, Benjamin A.; Lamb, Fred S.; Sherwood, Edward R.

    2015-01-01

    Prior exposure to lipopolysaccharide (LPS) produces a reduced or “tolerant” inflammatory response to subsequent challenges with LPS, however the potent pro-inflammatory effects of LPS limit its clinical benefit. The adjuvant Monophosphoryl lipid A (MPLA) is a weak toll-like receptor 4 (TLR4) agonist that induces negligible inflammation but retains potent immunomodulatory properties. We postulated that pre-treatment with MPLA would inhibit the inflammatory response of endothelial cells to secondary LPS challenge. Human umbilical vein endothelial cells (HUVECs), were exposed to MPLA (10 µg/ml), LPS (100 ng/ml) or vehicle control. HUVECs were then washed and maintained in culture for 24 hours before being challenged with LPS (100 ng/ml). Supernatants were collected and examined for cytokine production in the presence or absence of siRNA inhibitors of critical TLR4 signaling proteins. Pretreatment with MPLA attenuated IL-6 production to secondary LPS challenge to a similar degree as LPS. The application of MyD88 siRNA dramatically reduced MPLA-induced tolerance while TRIF siRNA had no effect. The tolerant phenotype in endothelial cells was associated with reduced IKK, p38 and JNK phosphorylation and enhanced IRAK-M expression for LPS primed HUVECs, but less so in MPLA primed cells. Instead, MPLA-primed HUVECs demonstrated enhanced ERK phosphorylation. In contrast to leukocytes in which tolerance is largely TRIF-dependent, MyD88 signaling mediated endotoxin tolerance in endothelial cells. Most importantly, MPLA, a vaccine adjuvant with a wide therapeutic window, induced tolerance to LPS in endothelial cells. PMID:26669797

  2. TLR4 ligands lipopolysaccharide and monophosphoryl lipid a differentially regulate effector and memory CD8+ T Cell differentiation.

    PubMed

    Cui, Weiguo; Joshi, Nikhil S; Liu, Ying; Meng, Hailong; Kleinstein, Steven H; Kaech, Susan M

    2014-05-01

    Vaccines formulated with nonreplicating pathogens require adjuvants to help bolster immunogenicity. The role of adjuvants in Ab production has been well studied, but how they influence memory CD8(+) T cell differentiation remains poorly defined. In this study we implemented dendritic cell-mediated immunization to study the effects of commonly used adjuvants, TLR ligands, on effector and memory CD8(+) T cell differentiation in mice. Intriguingly, we found that the TLR4 ligand LPS was far more superior to other TLR ligands in generating memory CD8(+) T cells upon immunization. LPS boosted clonal expansion similar to the other adjuvants, but fewer of the activated CD8(+) T cells died during contraction, generating a larger pool of memory cells. Surprisingly, monophosphoryl lipid A (MPLA), another TLR4 ligand, enhanced clonal expansion of effector CD8(+) T cells, but it also promoted their terminal differentiation and contraction; thus, fewer memory CD8(+) T cells formed, and MPLA-primed animals were less protected against secondary infection compared with those primed with LPS. Furthermore, gene expression profiling revealed that LPS-primed effector cells displayed a stronger pro-memory gene expression signature, whereas the gene expression profile of MPLA-primed effector cells aligned closer with terminal effector CD8(+) T cells. Lastly, we demonstrated that the LPS-TLR4-derived "pro-memory" signals were MyD88, but not Toll/IL-1R domain-containing adapter inducing IFN-β, dependent. This study reveals the influential power of adjuvants on the quantity and quality of CD8(+) T cell memory, and that attention to adjuvant selection is crucial because boosting effector cell expansion may not always equate with more memory T cells or greater protection.

  3. A preventive immunization approach against insect bite hypersensitivity: Intralymphatic injection with recombinant allergens in Alum or Alum and monophosphoryl lipid A.

    PubMed

    Jonsdottir, Sigridur; Svansson, Vilhjalmur; Stefansdottir, Sara Bjork; Schüpbach, Gertraud; Rhyner, Claudio; Marti, Eliane; Torsteinsdottir, Sigurbjorg

    2016-04-01

    Insect bite hypersensitivity (IBH) is an IgE-mediated dermatitis of horses caused by bites of Culicoides insects, not indigenous to Iceland. Horses born in Iceland and exported to Culicoides-rich areas are frequently affected with IBH. The aims of the study were to compare immunization with recombinant allergens using the adjuvant aluminum hydroxide (Alum) alone or combined with monophosphoryl lipid A (MPLA) for development of a preventive immunization against IBH. Twelve healthy Icelandic horses were vaccinated intralymphatically three times with 10 μg each of four recombinant Culicoides nubeculosus allergens in Alum or in Alum/MPLA. Injection with allergens in both Alum and Alum/MPLA resulted in significant increase in specific IgG subclasses and IgA against all r-allergens with no significant differences between the adjuvant groups. The induced antibodies from both groups could block binding of allergen specific IgE from IBH affected horses to a similar extent. No IgE-mediated reactions were induced. Allergen-stimulated PBMC from Alum/MPLA horses but not from Alum only horses produced significantly more IFNγ and IL-10 than PBMC from non-vaccinated control horses. In conclusion, intralymphatic administration of small amounts of pure allergens in Alum/MPLA induces high IgG antibody levels and Th1/Treg immune response and is a promising approach for immunoprophylaxis and immunotherapy against IBH. PMID:27032498

  4. A preventive immunization approach against insect bite hypersensitivity: Intralymphatic injection with recombinant allergens in Alum or Alum and monophosphoryl lipid A.

    PubMed

    Jonsdottir, Sigridur; Svansson, Vilhjalmur; Stefansdottir, Sara Bjork; Schüpbach, Gertraud; Rhyner, Claudio; Marti, Eliane; Torsteinsdottir, Sigurbjorg

    2016-04-01

    Insect bite hypersensitivity (IBH) is an IgE-mediated dermatitis of horses caused by bites of Culicoides insects, not indigenous to Iceland. Horses born in Iceland and exported to Culicoides-rich areas are frequently affected with IBH. The aims of the study were to compare immunization with recombinant allergens using the adjuvant aluminum hydroxide (Alum) alone or combined with monophosphoryl lipid A (MPLA) for development of a preventive immunization against IBH. Twelve healthy Icelandic horses were vaccinated intralymphatically three times with 10 μg each of four recombinant Culicoides nubeculosus allergens in Alum or in Alum/MPLA. Injection with allergens in both Alum and Alum/MPLA resulted in significant increase in specific IgG subclasses and IgA against all r-allergens with no significant differences between the adjuvant groups. The induced antibodies from both groups could block binding of allergen specific IgE from IBH affected horses to a similar extent. No IgE-mediated reactions were induced. Allergen-stimulated PBMC from Alum/MPLA horses but not from Alum only horses produced significantly more IFNγ and IL-10 than PBMC from non-vaccinated control horses. In conclusion, intralymphatic administration of small amounts of pure allergens in Alum/MPLA induces high IgG antibody levels and Th1/Treg immune response and is a promising approach for immunoprophylaxis and immunotherapy against IBH.

  5. Enhancing actions of peptides derived from the γ-chain of fetal human hemoglobin on the immunostimulant activities of monophosphoryl lipid A.

    PubMed

    Ulmer, Artur J; Kaconis, Yani; Heinbockel, Lena; Correa, Wilmar; Alexander, Christian; Rietschel, Ernst Th; Mach, Jean-Pierre; Gorczynski, Reginald M; Heini, Adrian; Rössle, Manfred; Richter, Walter; Gutsmann, Thomas; Brandenburg, Klaus

    2016-04-01

    Hemoglobin and its structures have been described since the 1990s to enhance a variety of biological activities of endotoxins (LPS) in a dose-dependent manner. To investigate the interaction processes in more detail, the system was extended by studying the interactions of newly designed peptides from the γ-chain of human hemoglobin with the adjuvant monophosphoryl lipid A (MPLA), a partial structure of lipid A lacking its 1-phosphate. It was found that some selected Hbg peptides, in particular two synthetic substructures designated Hbg32 and Hbg35, considerably increased the bioactivity of MPLA, which alone was only a weak activator of immune cells. These findings hold true for human mononuclar cells, monocytes and T lymphocytes. To understand the mechanisms of action in more detail, biophysical techniques were applied. These showed a peptide-induced change of the MPLA aggregate structure from multilamellar into a non-lamellar, probably inverted, cubic structure. Concomitantly, the peptides incorporated into the tightly packed MPLA aggregates into smaller units down to monomers. The fragmentation of the aggregates was an endothermic process, differing from a complex formation but rather typical for a catalytic reaction. PMID:26921253

  6. A combined fermentative-chemical approach for the scalable production of pure E. coli monophosphoryl lipid A.

    PubMed

    Pieretti, Giuseppina; Cipolletti, Manuela; D'Alonzo, Daniele; Alfano, Alberto; Cimini, Donatella; Cammarota, Marcella; Palumbo, Giovanni; Giuliano, Mariateresa; De Rosa, Mario; Schiraldi, Chiara; Parrilli, Michelangelo; Bedini, Emiliano; Corsaro, Maria Michela

    2014-09-01

    Lipid A is the lipophilic region of lipopolysaccharides and lipooligosaccharides, the major components of the outer leaflet of most part of Gram-negative bacteria. Some lipid As are very promising immunoadjuvants. They are obtained by extraction from bacterial cells or through total chemical synthesis. A novel, semisynthetic approach to lipid As is ongoing in our laboratories, relying upon the chemical modification of a natural lipid A scaffold for the fast obtainment of several other lipid As and derivatives thereof. The first requisite for this strategy is to have this scaffold available in large quantities through a scalable process. Here, we present an optimized fed-batch fermentation procedure for the gram-scale production of lipid A from Escherichia coli K4 and a suitable phenol-free protocol for its purification. A study for regioselective de-O-phosphorylation reaction was then performed to afford pure monophosphoryl lipid A with an attenuated endotoxic activity, as evaluated by cytokine production in human monocytic cell line THP-1 in vitro. The reported method for the large-scale obtainment of monophoshoryl lipid A from the fed-batch fermentation broth of a recombinant strain of E. coli may permit the access to novel semisynthetic lipid A immunoadjuvant candidates.

  7. Detection of liposomal cholesterol and monophosphoryl lipid A by QS-21 saponin and Limulus polyphemus amebocyte lysate.

    PubMed

    Beck, Zoltan; Matyas, Gary R; Alving, Carl R

    2015-03-01

    Liposomes containing cholesterol (Chol) have long been used as an important membrane system for modeling the complex interactions of Chol with adjacent phospholipids or other lipids in a membrane environment. In this study we utilize a probe composed of QS-21, a saponin molecule that recognizes liposomal Chol and causes hemolysis of erythrocytes. The interaction of QS-21 with liposomal Chol results in a stable formulation which, after injection into the tissues of an animal, lacks toxic effects of QS-21 on neighboring cells that contain Chol, such as erythrocytes. Here we have used liposomes containing different saturated phospholipid fatty acyl groups and Chol, with or without monophosphoryl lipid A (MPLA), as model membranes. QS-21 is then employed as a probe to study the interactions of liposomal lipids on the visibility of membrane Chol. We demonstrate that changes either in the mole fraction of Chol in liposomes, or with different chain lengths of phospholipid fatty acyl groups, can have a substantial impact on the detection of Chol by the QS-21. We further show that liposomal MPLA can partially inhibit detection of the liposomal Chol by QS-21. The Limulus amebocyte lysate assay is used for binding to and detection of MPLA. Previous work has demonstrated that sequestration of MPLA into the liposomal lipid bilayer can block detection by the Limulus assay, but the binding site on the MPLA to which the Limulus protein binds is unknown. Changes in liposomal Chol concentration and phospholipid fatty acyl chain length influenced the detection of the liposome-embedded MPLA. PMID:25511587

  8. Detection of liposomal cholesterol and monophosphoryl lipid A by QS-21 saponin and Limulus polyphemus amebocyte lysate.

    PubMed

    Beck, Zoltan; Matyas, Gary R; Alving, Carl R

    2015-03-01

    Liposomes containing cholesterol (Chol) have long been used as an important membrane system for modeling the complex interactions of Chol with adjacent phospholipids or other lipids in a membrane environment. In this study we utilize a probe composed of QS-21, a saponin molecule that recognizes liposomal Chol and causes hemolysis of erythrocytes. The interaction of QS-21 with liposomal Chol results in a stable formulation which, after injection into the tissues of an animal, lacks toxic effects of QS-21 on neighboring cells that contain Chol, such as erythrocytes. Here we have used liposomes containing different saturated phospholipid fatty acyl groups and Chol, with or without monophosphoryl lipid A (MPLA), as model membranes. QS-21 is then employed as a probe to study the interactions of liposomal lipids on the visibility of membrane Chol. We demonstrate that changes either in the mole fraction of Chol in liposomes, or with different chain lengths of phospholipid fatty acyl groups, can have a substantial impact on the detection of Chol by the QS-21. We further show that liposomal MPLA can partially inhibit detection of the liposomal Chol by QS-21. The Limulus amebocyte lysate assay is used for binding to and detection of MPLA. Previous work has demonstrated that sequestration of MPLA into the liposomal lipid bilayer can block detection by the Limulus assay, but the binding site on the MPLA to which the Limulus protein binds is unknown. Changes in liposomal Chol concentration and phospholipid fatty acyl chain length influenced the detection of the liposome-embedded MPLA.

  9. Triggering role of nitric oxide in the delayed protective effect of monophosphoryl lipid A in rat heart

    PubMed Central

    György, Katalin; Muller, Bernard; Végh, Agnes; Kleschyov, Andrei L; Stoclet, Jean-Claud

    1999-01-01

    The main objective of the present study was to further evaluate the role of nitric oxide (NO) in delayed cardiac protection against ischaemia-reperfusion injury induced by monophosphoryl lipid A (MLA).For this purpose, rats were administered with either 0.5 or 2.5 mg kg−1 MLA (i.p.). Eight or 24 h later, in vivo NO production in the heart was analysed by electron paramagnetic resonance (EPR) spin trapping technique. In parallel experiments, hearts were removed and perfused according to Langendorff. Functional ventricular parameters and incidence of ventricular fibrillation (VF) were determined after 30 min global ischaemic insult (37°C) followed by 30 min reperfusion. Vascular reactivity of aortic rings was also assessed.Hearts from rats pretreated with 2.5 mg kg−1 MLA for 24 h (but not those from rats treated with 0.5 mg kg−1 MLA for 8 and 24 h, or with 2.5 mg kg−1 MLA for 8 h) exhibited preservation of ventricular function (LVDP, ±dP/dtmax) and a reduced incidence of VF (25% vs 87.5% in vehicle control) during reperfusion. At the cardioprotective dose of 2.5 mg kg−1 (for 8 or 24 h), MLA did not produce alterations of the contractile response of aortic rings to noradrenaline.An increased formation of NO was detected in hearts removed from rats pretreated with 2.5 mg kg−1 MLA for 8 h, but not in those from rats treated for 24 h (or with 0.5 mg kg−1 MLA).Pretreatment of the animals with the inhibitors of inducible NO-synthase, aminoguanidine (2×300 mg kg−1) or L-N6-(1-Iminoethyl)-lysine (L-NIL, 10 mg kg−1) abolished both MLA (2.5 mg kg−1)-induced rise of NO production (observed 8 h after MLA) and cardioprotection (observed 24 h after MLA). However MLA-induced cardioprotection was not attenuated when the hearts were perfused with aminoguanidine (150 μM) for 30 min before the ischaemic insult.Altogether, the present data suggest that NO acts as a trigger rather then a direct

  10. Toll-like receptor 4 stimulation with the detoxified ligand monophosphoryl lipid A improves Alzheimer’s disease-related pathology

    PubMed Central

    Michaud, Jean-Philippe; Hallé, Maxime; Lampron, Antoine; Thériault, Peter; Préfontaine, Paul; Filali, Mohammed; Tribout-Jover, Pascale; Lanteigne, Anne-Marie; Jodoin, Rachel; Cluff, Christopher; Brichard, Vincent; Palmantier, Rémi; Pilorget, Anthony; Larocque, Daniel; Rivest, Serge

    2013-01-01

    Alzheimer’s disease (AD) is the most common cause of dementia worldwide. The pathogenesis of this neurodegenerative disease, currently without curative treatment, is associated with the accumulation of amyloid β (Aβ) in brain parenchyma and cerebral vasculature. AD patients are unable to clear this toxic peptide, leading to Aβ accumulation in their brains and, presumably, the pathology associated with this devastating disease. Compounds that stimulate the immune system to clear Aβ may therefore have great therapeutic potential in AD patients. Monophosphoryl lipid A (MPL) is an LPS-derived Toll-like receptor 4 agonist that exhibits unique immunomodulatory properties at doses that are nonpyrogenic. We show here that repeated systemic injections of MPL, but not LPS, significantly improved AD-related pathology in APPswe/PS1 mice. MPL treatment led to a significant reduction in Aβ load in the brain of these mice, as well as enhanced cognitive function. MPL induced a potent phagocytic response by microglia while triggering a moderate inflammatory reaction. Our data suggest that the Toll-like receptor 4 agonist MPL may be a treatment for AD. PMID:23322736

  11. Dexamethasone and Monophosphoryl Lipid A-Modulated Dendritic Cells Promote Antigen-Specific Tolerogenic Properties on Naive and Memory CD4+ T Cells

    PubMed Central

    Maggi, Jaxaira; Schinnerling, Katina; Pesce, Bárbara; Hilkens, Catharien M.; Catalán, Diego; Aguillón, Juan C.

    2016-01-01

    Tolerogenic dendritic cells (DCs) are a promising tool to control T cell-mediated autoimmunity. Here, we evaluate the ability of dexamethasone-modulated and monophosphoryl lipid A (MPLA)-activated DCs [MPLA-tolerogenic DCs (tDCs)] to exert immunomodulatory effects on naive and memory CD4+ T cells in an antigen-specific manner. For this purpose, MPLA-tDCs were loaded with purified protein derivative (PPD) as antigen and co-cultured with autologous naive or memory CD4+ T cells. Lymphocytes were re-challenged with autologous PPD-pulsed mature DCs (mDCs), evaluating proliferation and cytokine production by flow cytometry. On primed-naive CD4+ T cells, the expression of regulatory T cell markers was evaluated and their suppressive ability was assessed in autologous co-cultures with CD4+ effector T cells and PPD-pulsed mDCs. We detected that memory CD4+ T cells primed by MPLA-tDCs presented reduced proliferation and proinflammatory cytokine expression in response to PPD and were refractory to subsequent stimulation. Naive CD4+ T cells were instructed by MPLA-tDCs to be hyporesponsive to antigen-specific restimulation and to suppress the induction of T helper cell type 1 and 17 responses. In conclusion, MPLA-tDCs are able to modulate antigen-specific responses of both naive and memory CD4+ T cells and might be a promising strategy to “turn off” self-reactive CD4+ effector T cells in autoimmunity.

  12. Dexamethasone and Monophosphoryl Lipid A-Modulated Dendritic Cells Promote Antigen-Specific Tolerogenic Properties on Naive and Memory CD4+ T Cells

    PubMed Central

    Maggi, Jaxaira; Schinnerling, Katina; Pesce, Bárbara; Hilkens, Catharien M.; Catalán, Diego; Aguillón, Juan C.

    2016-01-01

    Tolerogenic dendritic cells (DCs) are a promising tool to control T cell-mediated autoimmunity. Here, we evaluate the ability of dexamethasone-modulated and monophosphoryl lipid A (MPLA)-activated DCs [MPLA-tolerogenic DCs (tDCs)] to exert immunomodulatory effects on naive and memory CD4+ T cells in an antigen-specific manner. For this purpose, MPLA-tDCs were loaded with purified protein derivative (PPD) as antigen and co-cultured with autologous naive or memory CD4+ T cells. Lymphocytes were re-challenged with autologous PPD-pulsed mature DCs (mDCs), evaluating proliferation and cytokine production by flow cytometry. On primed-naive CD4+ T cells, the expression of regulatory T cell markers was evaluated and their suppressive ability was assessed in autologous co-cultures with CD4+ effector T cells and PPD-pulsed mDCs. We detected that memory CD4+ T cells primed by MPLA-tDCs presented reduced proliferation and proinflammatory cytokine expression in response to PPD and were refractory to subsequent stimulation. Naive CD4+ T cells were instructed by MPLA-tDCs to be hyporesponsive to antigen-specific restimulation and to suppress the induction of T helper cell type 1 and 17 responses. In conclusion, MPLA-tDCs are able to modulate antigen-specific responses of both naive and memory CD4+ T cells and might be a promising strategy to “turn off” self-reactive CD4+ effector T cells in autoimmunity. PMID:27698654

  13. A short protocol using dexamethasone and monophosphoryl lipid A generates tolerogenic dendritic cells that display a potent migratory capacity to lymphoid chemokines

    PubMed Central

    2013-01-01

    Background Generation of tolerogenic dendritic cells (TolDCs) for therapy is challenging due to its implications for the design of protocols suitable for clinical applications, which means not only using safe products, but also working at defining specific biomarkers for TolDCs identification, developing shorter DCs differentiation methods and obtaining TolDCs with a stable phenotype. We describe here, a short-term protocol for TolDCs generation, which are characterized in terms of phenotypic markers, cytokines secretion profile, CD4+ T cell-stimulatory ability and migratory capacity. Methods TolDCs from healthy donors were generated by modulation with dexamethasone plus monophosphoryl lipid A (MPLA-tDCs). We performed an analysis of MPLA-tDCs in terms of yield, viability, morphology, phenotypic markers, cytokines secretion profile, stability, allogeneic and antigen-specific CD4+ T-cell stimulatory ability and migration capacity. Results After a 5-day culture, MPLA-tDCs displayed reduced expression of costimulatory and maturation molecules together to an anti-inflammatory cytokines secretion profile, being able to maintain these tolerogenic features even after the engagement of CD40 by its cognate ligand. In addition, MPLA-tDCs exhibited reduced capabilities to stimulate allogeneic and antigen-specific CD4+ T cell proliferation, and induced an anti-inflammatory cytokine secretion pattern. Among potential tolerogenic markers studied, only TLR-2 was highly expressed in MPLA-tDCs when compared to mature and immature DCs. Remarkable, like mature DCs, MPLA-tDCs displayed a high CCR7 and CXCR4 expression, both chemokine receptors involved in migration to secondary lymphoid organs, and even more, in an in vitro assay they exhibited a high migration response towards CCL19 and CXCL12. Conclusion We describe a short-term protocol for TolDC generation, which confers them a stable phenotype and migratory capacity to lymphoid chemokines, essential features for TolDCs to be used

  14. [Adjuvants--essential components of new generation vaccines].

    PubMed

    Dzierzbicka, Krystyna; Kołodziejczyk, Aleksander M

    2006-01-01

    Adjuvants are essential components of vaccines that augment an immunological reaction of organism. New vaccines based on recombinant proteins and DNA, are more save than traditional vaccines but they are less immunogenic. Therefore, there is an urgent need for the development of new, improved vaccine adjuvants. There are two classes of adjuvants: vaccine delivery systems (e.g. emulsions, microparticles, immune-stimulating complexes ISCOMs, liposomes) and immunostimulatory adjuvants (e.g. lipopolysaccharide, monophosphoryl lipid A, CpG DNA, or muramylpeptides). The discovery of more potent and safer adjuvants may allow to development better prophylactic and therapeutic vaccines against chronic infectious (e.g., HSV, HIV, HCV, HBV, HPV, or Helicobacter pylori) and noninfectious diseases as multiple sclerosis, insulin-dependent diabetes, rheumatoid arthritis, allergy and tumors (e.g., melanoma, breast, or colon cancer). PMID:17078510

  15. Comparative Safety of Vaccine Adjuvants: A Summary of Current Evidence and Future Needs.

    PubMed

    Petrovsky, Nikolai

    2015-11-01

    Use of highly pure antigens to improve vaccine safety has led to reduced vaccine immunogenicity and efficacy. This has led to the need to use adjuvants to improve vaccine immunogenicity. The ideal adjuvant should maximize vaccine immunogenicity without compromising tolerability or safety. Unfortunately, adjuvant research has lagged behind other vaccine areas such as antigen discovery, with the consequence that only a very limited number of adjuvants based on aluminium salts, monophosphoryl lipid A and oil emulsions are currently approved for human use. Recent strategic initiatives to support adjuvant development by the National Institutes of Health should translate into greater adjuvant choices in the future. Mechanistic studies have been valuable for better understanding of adjuvant action, but mechanisms of adjuvant toxicity are less well understood. The inflammatory or danger-signal model of adjuvant action implies that increased vaccine reactogenicity is the inevitable price for improved immunogenicity. Hence, adjuvant reactogenicity may be avoidable only if it is possible to separate inflammation from adjuvant action. The biggest remaining challenge in the adjuvant field is to decipher the potential relationship between adjuvants and rare vaccine adverse reactions, such as narcolepsy, macrophagic myofasciitis or Alzheimer's disease. While existing adjuvants based on aluminium salts have a strong safety record, there are ongoing needs for new adjuvants and more intensive research into adjuvants and their effects. PMID:26446142

  16. Comparative safety of vaccine adjuvants: a summary of current evidence and future needs

    PubMed Central

    Petrovsky, Nikolai

    2015-01-01

    Improved use of highly pure antigens to improve vaccine safety has led to reduced vaccine immunogenicity and efficacy. This has led to the need to use adjuvants to improve vaccine immunogenicity. The ideal adjuvant should maximize vaccine immunogenicity without compromising tolerability or safety or posing undue risk. Unfortunately, adjuvant research has lagged behind other vaccine areas such as antigen discovery, with the consequence that only a very limited number of adjuvants based on aluminum salts, monophosphoryl lipid A and oil emulsions are currently approved for human use. Recent strategic initiatives to support adjuvant development by the National Institutes of Health should translate into greater adjuvant choices in the future. Mechanistic studies have been valuable in better understanding adjuvant action but mechanisms of adjuvant toxicity are less well understood. The inflammatory or danger-signal model of adjuvant action implies that increased vaccine reactogenicity is the inevitable price for improved immunogenicity. Hence, adjuvant reactogenicity may be avoidable only if it is possible to separate inflammation from adjuvant action. The biggest remaining challenge in the adjuvant field is to decipher the potential relationship between adjuvants and rare vaccine adverse reactions such as narcolepsy, macrophagic myofasciitis or Alzheimer’s disease. While existing adjuvants based on aluminum salts have a strong safety record, there is an ongoing need for new adjuvants and for more intensive research into adjuvants and their effects. PMID:26446142

  17. Adjuvants for allergy vaccines.

    PubMed

    Moingeon, Philippe

    2012-10-01

    Allergen-specific immunotherapy is currently performed via either the subcutaneous or sublingual routes as a treatment for type I (IgE dependent) allergies. Aluminum hydroxide or calcium phosphate are broadly used as adjuvants for subcutaneous allergy vaccines, whereas commercial sublingual vaccines rely upon high doses of aqueous allergen extracts in the absence of any immunopotentiator. Adjuvants to be included in the future in products for allergen specific immunotherapy should ideally enhance Th1 and CD4+ regulatory T cell responses. Imunomodulators impacting dendritic or T cell functions to induce IL10, IL12 and IFNγ production are being investigated in preclinical allergy models. Such candidate adjuvants encompass synthetic or biological immunopotentiators such as glucocorticoids, 1,25-dihydroxy vitamin D3, selected probiotic strains (e.g., Lactobacillus and Bifidobacterium species) as well as TLR2 (Pam3CSK4), TLR4 (monophosphoryl lipid A, synthetic lipid A analogs) or TLR9 (CpGs) ligands. Furthermore, the use of vector systems such as mucoadhesive particules, virus-like particles or liposomes are being considered to enhance allergen uptake by tolerogenic antigen presenting cells present in mucosal tissues.

  18. The adsorption of allergoids and 3-O-desacyl-4'-monophosphoryl lipid A (MPL®) to microcrystalline tyrosine (MCT) in formulations for use in allergy immunotherapy.

    PubMed

    Bell, A J; Heath, M D; Hewings, S J; Skinner, M A

    2015-11-01

    Infectious disease vaccine potency is affected by antigen adjuvant adsorption. WHO and EMA guidelines recommend limits and experimental monitoring of adsorption in vaccines and allergy immunotherapies. Adsorbed allergoids and MPL® in MATA-MPL allergy immunotherapy formulations effectively treat IgE mitigated allergy. Understanding vaccine antigen adjuvant adsorption allows optimisation of potency and should be seen as good practice; however current understanding is seldom applied to allergy immunotherapies. The allergoid and MPL® adsorption to MCT in MATA-MPL allergy immunotherapy formulations was experimental determination using specific allergen IgE allerginicity and MPL® content methods. Binding forces between MPL® and MCT were investigated by competition binding experiments. MATA-MPL samples with different allergoids gave results within 100-104% of the theoretical 50μg/mL MPL® content. Unmodified drug substance samples showed significant desirable IgE antigenicity, 1040-170 QAU/mL. MATA-MPL supernatant samples with different allergoids gave results of ≤2 μg/mL MPL® and ≤0.1-1.4 QAU/mL IgE antigenicity, demonstrating approximately ≥96 & 99% adsorption respectively. Allergoid and MPL® adsorption in different MATA-MPL allergy immunotherapy formulations is consistent and meets guideline recommendations. MCT formulations treated to disrupt electrostatic, hydrophobic and ligand exchange interactions, gave an MPL® content of ≤2 μg/mL in supernatant samples. MCT formulations treated to disrupt aromatic interactions, gave an MPL® content of 73-92 μg/mL in supernatant samples. MPL® adsorption to l-tyrosine in MCT formulations is based on interactions between the 2-deoxy-2-aminoglucose backbone on MPL® and aromatic ring of l-tyrosine in MCT, such as C-H⋯π interaction. MCT could be an alternative adjuvant depot for some infectious disease antigens.

  19. Adjuvant-induced Human Monocyte Secretome Profiles Reveal Adjuvant- and Age-specific Protein Signatures.

    PubMed

    Oh, Djin-Ye; Dowling, David J; Ahmed, Saima; Choi, Hyungwon; Brightman, Spencer; Bergelson, Ilana; Berger, Sebastian T; Sauld, John F; Pettengill, Matthew; Kho, Alvin T; Pollack, Henry J; Steen, Hanno; Levy, Ofer

    2016-06-01

    Adjuvants boost vaccine responses, enhancing protective immunity against infections that are most common among the very young. Many adjuvants activate innate immunity, some via Toll-Like Receptors (TLRs), whose activities varies with age. Accordingly, characterization of age-specific adjuvant-induced immune responses may inform rational adjuvant design targeting vulnerable populations. In this study, we employed proteomics to characterize the adjuvant-induced changes of secretomes from human newborn and adult monocytes in response to Alum, the most commonly used adjuvant in licensed vaccines; Monophosphoryl Lipid A (MPLA), a TLR4-activating adjuvant component of a licensed Human Papilloma Virus vaccine; and R848 an imidazoquinoline TLR7/8 agonist that is a candidate adjuvant for early life vaccines. Monocytes were incubated in vitro for 24 h with vehicle, Alum, MPLA, or R848 and supernatants collected for proteomic analysis employing liquid chromatography-mass spectrometry (LC-MS) (data available via ProteomeXchange, ID PXD003534). 1894 non-redundant proteins were identified, of which ∼30 - 40% were common to all treatment conditions and ∼5% were treatment-specific. Adjuvant-stimulated secretome profiles, as identified by cluster analyses of over-represented proteins, varied with age and adjuvant type. Adjuvants, especially Alum, activated multiple innate immune pathways as assessed by functional enrichment analyses. Release of lactoferrin, pentraxin 3, and matrix metalloproteinase-9 was confirmed in newborn and adult whole blood and blood monocytes stimulated with adjuvants alone or adjuvanted licensed vaccines with distinct clinical reactogenicity profiles. MPLA-induced adult monocyte secretome profiles correlated in silico with transcriptome profiles induced in adults immunized with the MPLA-adjuvanted RTS,S malaria vaccine (Mosquirix™). Overall, adjuvants such as Alum, MPLA and R848 give rise to distinct and age-specific monocyte secretome profiles

  20. Adjuvant-induced Human Monocyte Secretome Profiles Reveal Adjuvant- and Age-specific Protein Signatures*

    PubMed Central

    Oh, Djin-Ye; Dowling, David J.; Ahmed, Saima; Choi, Hyungwon; Brightman, Spencer; Bergelson, Ilana; Berger, Sebastian T.; Sauld, John F.; Pettengill, Matthew; Kho, Alvin T.; Pollack, Henry J.; Steen, Hanno; Levy, Ofer

    2016-01-01

    Adjuvants boost vaccine responses, enhancing protective immunity against infections that are most common among the very young. Many adjuvants activate innate immunity, some via Toll-Like Receptors (TLRs), whose activities varies with age. Accordingly, characterization of age-specific adjuvant-induced immune responses may inform rational adjuvant design targeting vulnerable populations. In this study, we employed proteomics to characterize the adjuvant-induced changes of secretomes from human newborn and adult monocytes in response to Alum, the most commonly used adjuvant in licensed vaccines; Monophosphoryl Lipid A (MPLA), a TLR4-activating adjuvant component of a licensed Human Papilloma Virus vaccine; and R848 an imidazoquinoline TLR7/8 agonist that is a candidate adjuvant for early life vaccines. Monocytes were incubated in vitro for 24 h with vehicle, Alum, MPLA, or R848 and supernatants collected for proteomic analysis employing liquid chromatography-mass spectrometry (LC-MS) (data available via ProteomeXchange, ID PXD003534). 1894 non-redundant proteins were identified, of which ∼30 - 40% were common to all treatment conditions and ∼5% were treatment-specific. Adjuvant-stimulated secretome profiles, as identified by cluster analyses of over-represented proteins, varied with age and adjuvant type. Adjuvants, especially Alum, activated multiple innate immune pathways as assessed by functional enrichment analyses. Release of lactoferrin, pentraxin 3, and matrix metalloproteinase-9 was confirmed in newborn and adult whole blood and blood monocytes stimulated with adjuvants alone or adjuvanted licensed vaccines with distinct clinical reactogenicity profiles. MPLA-induced adult monocyte secretome profiles correlated in silico with transcriptome profiles induced in adults immunized with the MPLA-adjuvanted RTS,S malaria vaccine (Mosquirix™). Overall, adjuvants such as Alum, MPLA and R848 give rise to distinct and age-specific monocyte secretome profiles

  1. Preparation of Multifunctional Liposomes as a Stable Vaccine Delivery-Adjuvant System by Procedure of Emulsification-Lyophilization.

    PubMed

    Wang, Ning; Wang, Ting

    2016-01-01

    Liposomes have been proven to be useful carriers for vaccine antigens and can be modified as a versatile vaccine adjuvant-delivery system (VADS). To fulfill efficiently both functions of adjuvant and delivery, the liposomes are often modified with different functional molecules, such as lipoidal immunopotentiators, APC (antigen-presenting cell) targeting ligands, steric stabilization polymers, and charged lipids. Also, to overcome the weakness of instability, vaccines are often lyophilized as a dry product. In this chapter the procedure of emulsification-lyophilization (PEL) is introduced as an efficient method for preparing a stable anhydrous precursor to the multifunctional liposomes which bear dual modifications with APC targeting molecule of the mannosylated cholesterol and the adjuvant material of monophosphoryl lipid A. The techniques and procedures for synthesis of APC targeting molecule, i.e., the mannosylated cholesterol, and for characterization of the multifunctional liposomes are also described. PMID:27076327

  2. RNA is an Adjuvanticity Mediator for the Lipid-Based Mucosal Adjuvant, Endocine.

    PubMed

    Hayashi, Masayuki; Aoshi, Taiki; Ozasa, Koji; Kusakabe, Takato; Momota, Masatoshi; Haseda, Yasunari; Kobari, Shingo; Kuroda, Etsushi; Kobiyama, Kouji; Coban, Cevayir; Ishii, Ken J

    2016-01-01

    Nasal vaccination has the potential to elicit systemic and mucosal immunity against pathogens. However, split and subunit vaccines lack potency at stimulating mucosal immunity, and an adjuvant is indispensable for eliciting potent mucosal immune response to nasal vaccines. Endocine, a lipid-based mucosal adjuvant, potentiates both systemic and mucosal immune responses. Although Endocine has shown efficacy and tolerability in animal and clinical studies, its mechanism of action remains unknown. It has been reported recently that endogenous danger signals are essential for the effects of some adjuvants such as alum or MF59. However, the contribution of danger signals to the adjuvanticity of Endocine has not been explored. Here, we show that RNA is likely to be an important mediator for the adjuvanticity of Endocine. Administration of Endocine generated nucleic acids release, and activated dendritic cells (DCs) in draining lymph nodes in vivo. These results suggest the possibility that Endocine indirectly activates DCs via damage-associated molecular patterns. Moreover, the adjuvanticity of Endocine disappeared in mice lacking TANK-binding kinase 1 (Tbk1), which is a downstream molecule of nucleic acid sensing signal pathway. Furthermore, co-administration of RNase A reduced the adjuvanticity of Endocine. These data suggest that RNA is important for the adjuvanticity of Endocine. PMID:27374884

  3. RNA is an Adjuvanticity Mediator for the Lipid-Based Mucosal Adjuvant, Endocine

    PubMed Central

    Hayashi, Masayuki; Aoshi, Taiki; Ozasa, Koji; Kusakabe, Takato; Momota, Masatoshi; Haseda, Yasunari; Kobari, Shingo; Kuroda, Etsushi; Kobiyama, Kouji; Coban, Cevayir; Ishii, Ken J.

    2016-01-01

    Nasal vaccination has the potential to elicit systemic and mucosal immunity against pathogens. However, split and subunit vaccines lack potency at stimulating mucosal immunity, and an adjuvant is indispensable for eliciting potent mucosal immune response to nasal vaccines. Endocine, a lipid-based mucosal adjuvant, potentiates both systemic and mucosal immune responses. Although Endocine has shown efficacy and tolerability in animal and clinical studies, its mechanism of action remains unknown. It has been reported recently that endogenous danger signals are essential for the effects of some adjuvants such as alum or MF59. However, the contribution of danger signals to the adjuvanticity of Endocine has not been explored. Here, we show that RNA is likely to be an important mediator for the adjuvanticity of Endocine. Administration of Endocine generated nucleic acids release, and activated dendritic cells (DCs) in draining lymph nodes in vivo. These results suggest the possibility that Endocine indirectly activates DCs via damage-associated molecular patterns. Moreover, the adjuvanticity of Endocine disappeared in mice lacking TANK-binding kinase 1 (Tbk1), which is a downstream molecule of nucleic acid sensing signal pathway. Furthermore, co-administration of RNase A reduced the adjuvanticity of Endocine. These data suggest that RNA is important for the adjuvanticity of Endocine. PMID:27374884

  4. Adjuvants for Vaccines to Drugs of Abuse and Addiction

    PubMed Central

    Alving, Carl R.; Matyas, Gary R.; Torres, Oscar; Jalah, Rashmi; Beck, Zoltan

    2015-01-01

    Immunotherapeutic vaccines to drugs of abuse, including nicotine, cocaine, heroin, oxycodone, methamphetamine, and others are being developed. The theoretical basis of such vaccines is to induce antibodies that sequester the drug in the blood in the form of antibody-bound drug that cannot cross the blood brain barrier, thereby preventing psychoactive effects. Because the drugs are haptens a successful vaccine relies on development of appropriate hapten-protein carrier conjugates. However, because induction of high and prolonged levels of antibodies is required for an effective vaccine, and because injection of T-independent haptenic drugs of abuse does not induce memory recall responses, the role of adjuvants during immunization plays a critical role. As reviewed herein, preclinical studies often use strong adjuvants such as complete and incomplete Freund's adjuvant and others that cannot be, or in the case of many newer adjuvants, have never been, employed in humans. Balanced against this, the only adjuvant that has been included in candidate vaccines in human clinical trials to nicotine and cocaine has been aluminum hydroxide gel. While aluminum salts have been widely utilized worldwide in numerous licensed vaccines, the experience with human responses to aluminum salt-adjuvanted vaccines to haptenic drugs of abuse has suggested that the immune responses are too weak to allow development of a successful vaccine. What is needed is an adjuvant or combination of adjuvants that are safe, potent, widely available, easily manufactured, and cost-effective. Based on our review of the field we recommend the following adjuvant combinations either for research or for product development for human use: aluminum salt with adsorbed monophosphoryl lipid A (MPLA); liposomes containing MPLA [L(MPLA)]; L(MPLA) adsorbed to aluminum salt; oil-in-water emulsion; or oil-in-water emulsion containing MPLA. PMID:25111169

  5. Adjuvants for vaccines to drugs of abuse and addiction.

    PubMed

    Alving, Carl R; Matyas, Gary R; Torres, Oscar; Jalah, Rashmi; Beck, Zoltan

    2014-09-22

    Immunotherapeutic vaccines to drugs of abuse, including nicotine, cocaine, heroin, oxycodone, methamphetamine, and others are being developed. The theoretical basis of such vaccines is to induce antibodies that sequester the drug in the blood in the form of antibody-bound drug that cannot cross the blood brain barrier, thereby preventing psychoactive effects. Because the drugs are haptens a successful vaccine relies on development of appropriate hapten-protein carrier conjugates. However, because induction of high and prolonged levels of antibodies is required for an effective vaccine, and because injection of T-independent haptenic drugs of abuse does not induce memory recall responses, the role of adjuvants during immunization plays a critical role. As reviewed herein, preclinical studies often use strong adjuvants such as complete and incomplete Freund's adjuvant and others that cannot be, or in the case of many newer adjuvants, have never been, employed in humans. Balanced against this, the only adjuvant that has been included in candidate vaccines in human clinical trials to nicotine and cocaine has been aluminum hydroxide gel. While aluminum salts have been widely utilized worldwide in numerous licensed vaccines, the experience with human responses to aluminum salt-adjuvanted vaccines to haptenic drugs of abuse has suggested that the immune responses are too weak to allow development of a successful vaccine. What is needed is an adjuvant or combination of adjuvants that are safe, potent, widely available, easily manufactured, and cost-effective. Based on our review of the field we recommend the following adjuvant combinations either for research or for product development for human use: aluminum salt with adsorbed monophosphoryl lipid A (MPLA); liposomes containing MPLA [L(MPLA)]; L(MPLA) adsorbed to aluminum salt; oil-in-water emulsion; or oil-in-water emulsion containing MPLA.

  6. Combination of immune stimulating adjuvants with poly(lactide-co-glycolide) microspheres enhances the immune response of vaccines.

    PubMed

    Salvador, Aiala; Igartua, Manoli; Hernández, Rosa M; Pedraz, José Luis

    2012-01-11

    The development of vaccines that generate mixed humoral and cellular immune responses is a challenge in vaccinology. Poly(lactide-co-glycolide) microspheres are vaccine adjuvants which possess the advantage of allowing the coencapsulation of other adjuvants in addition to the antigen. Thus, we can stimulate the immune system from different ways and resemble the effects of a natural infection. In this study, we have coencapsulated BSA with monophosphoryl lipid A, polyinosinic-polycytidylic acid, α-galactosylceramide and alginate into PLGA microspheres. All the microspheres have developed a higher humoral immune response, in terms of release of total IgG, in comparison to the administration of soluble antigen. In addition, they triggered a more balanced IgG1/IgG2a response. The combination of MPLA and α-galactosylceramide within the microspheres developed the higher cellular response, confirming that combination of adjuvants with different action mechanisms is a good strategy to increase vaccines' immunogenicity.

  7. Archaeosomes made of Halorubrum tebenquichense total polar lipids: a new source of adjuvancy

    PubMed Central

    Gonzalez, Raul O; Higa, Leticia H; Cutrullis, Romina A; Bilen, Marcos; Morelli, Irma; Roncaglia, Diana I; Corral, Ricardo S; Morilla, Maria Jose; Petray, Patricia B; Romero, Eder L

    2009-01-01

    Background Archaeosomes (ARC), vesicles prepared from total polar lipids (TPL) extracted from selected genera and species from the Archaea domain, elicit both antibody and cell-mediated immunity to the entrapped antigen, as well as efficient cross priming of exogenous antigens, evoking a profound memory response. Screening for unexplored Archaea genus as new sources of adjuvancy, here we report the presence of two new Halorubrum tebenquichense strains isolated from grey crystals (GC) and black mood (BM) strata from a littoral Argentinean Patagonia salt flat. Cytotoxicity, intracellular transit and immune response induced by two subcutaneous (sc) administrations (days 0 and 21) with BSA entrapped in ARC made of TPL either form BM (ARC-BM) and from GC (ARC-GC) at 2% w/w (BSA/lipids), to C3H/HeN mice (25 μg BSA, 1.3 mg of archaeal lipids per mouse) and boosted on day 180 with 25 μg of bare BSA, were determined. Results DNA G+C content (59.5 and 61.7% mol BM and GC, respectively), 16S rDNA sequentiation, DNA-DNA hybridization, arbitrarily primed fingerprint assay and biochemical data confirmed that BM and GC isolates were two non-previously described strains of H. tebenquichense. Both multilamellar ARC mean size were 564 ± 22 nm, with -50 mV zeta-potential, and were not cytotoxic on Vero cells up to 1 mg/ml and up to 0.1 mg/ml of lipids on J-774 macrophages (XTT method). ARC inner aqueous content remained inside the phago-lysosomal system of J-774 cells beyond the first incubation hour at 37°C, as revealed by pyranine loaded in ARC. Upon subcutaneous immunization of C3H/HeN mice, BSA entrapped in ARC-BM or ARC-GC elicited a strong and sustained primary antibody response, as well as improved specific humoral immunity after boosting with the bare antigen. Both IgG1 and IgG2a enhanced antibody titers could be demonstrated in long-term (200 days) recall suggesting induction of a mixed Th1/Th2 response. Conclusion We herein report the finding of new H. tebenquichense

  8. Lipid-Core Nanocapsules Improved Antiedematogenic Activity of Tacrolimus in Adjuvant-Induced Arthritis Model.

    PubMed

    Friedrich, Rossana B; Coradini, Karine; Fonseca, Francisco N; Guterres, Silvia S; Beck, Ruy C R; Pohlmann, Adriana R

    2016-02-01

    Despite significant technological advances, rheumatoid arthritis remains an incurable disease with great impact on the life quality of patients. We studied the encapsulation of tacrolimus in lipidcore nanocapsules (TAC-LNC) as a strategy to enhance its systemic anti-arthritic properties. TAC-LNC presented unimodal distribution of particles with z-average diameter of 212 +/- 11, drug content close to the theoretical value (0.80 mg mL(-1)), and 99.43% of encapsulation efficiency. An in vitro sustained release was determined for TAC-LNC with anomalous transport mechanism (n = 0.61). In vivo studies using an arthritis model induced by Complete Freund's Adjuvant demonstrated that the animals treated with TAC-LNC presented a significantly greater inhibition of paw oedema after intraperitoneal administration. Furthermore, the encapsulation of TAC in lipid-core nanocapsules was potentially able to prevent hyperglycemia in the animals. In conclusion, TAC-LNC was prepared with 100% yield of nanoscopic particles having satisfactory characteristics for systemic use. This formulation represents a promising strategy to the treatment of rheumatoid arthritis in the near future. PMID:27433576

  9. Modification of Lipid A Biosynthesis in Neisseria meningitidis lpxL Mutants: Influence on Lipopolysaccharide Structure, Toxicity, and Adjuvant Activity

    PubMed Central

    van der Ley, Peter; Steeghs, Liana; Hamstra, Hendrik Jan; ten Hove, Jan; Zomer, Bert; van Alphen, Loek

    2001-01-01

    Two genes homologous to lpxL and lpxM from Escherichia coli and other gram-negative bacteria, which are involved in lipid A acyloxyacylation, were identified in Neisseria meningitidis strain H44/76 and insertionally inactivated. Analysis by tandem mass spectrometry showed that one of the resulting mutants, termed lpxL1, makes lipopolysaccharide (LPS) with penta- instead of hexa-acylated lipid A, in which the secondary lauroyl chain is specifically missing from the nonreducing end of the GlcN disaccharide. Insertional inactivation of the other (lpxL2) gene was not possible in wild-type strain H44/76 expressing full-length immunotype L3 lipopolysaccharide (LPS) but could be readily achieved in a galE mutant expressing a truncated oligosaccharide chain. Structural analysis of lpxL2 mutant lipid A showed a major tetra-acylated species lacking both secondary lauroyl chains and a minor penta-acylated species. The lpxL1 mutant LPS has retained adjuvant activity similar to wild-type meningococcal LPS when used for immunization of mice in combination with LPS-deficient outer membrane complexes from N. meningitidis but has reduced toxicity as measured in a tumor necrosis factor alpha induction assay with whole bacteria. In contrast, both adjuvant activity and toxicity of the lpxL2 mutant LPS are strongly reduced. As the combination of reduced toxicity and retained adjuvant activity has not been reported before for either lpxL or lpxM mutants from other bacterial species, our results demonstrate that modification of meningococcal lipid A biosynthesis can lead to novel LPS species more suitable for inclusion in human vaccines. PMID:11553534

  10. Engineering of a novel adjuvant based on lipid-polymer hybrid nanoparticles: A quality-by-design approach.

    PubMed

    Rose, Fabrice; Wern, Jeanette Erbo; Ingvarsson, Pall Thor; van de Weert, Marco; Andersen, Peter; Follmann, Frank; Foged, Camilla

    2015-07-28

    The purpose of this study was to design a novel and versatile adjuvant intended for mucosal vaccination based on biodegradable poly(DL-lactic-co-glycolic acid) (PLGA) nanoparticles (NPs) modified with the cationic surfactant dimethyldioctadecylammonium (DDA) bromide and the immunopotentiator trehalose-6,6'-dibehenate (TDB) (CAF01) to tailor humoral and cellular immunity characterized by antibodies and Th1/Th17 responses. Such responses are important for the protection against diseases caused by intracellular bacteria such as Chlamydia trachomatis and Mycobacterium tuberculosis. The hybrid NPs were engineered using an oil-in-water single emulsion method and a quality-by-design approach was adopted to define the optimal operating space (OOS). Four critical process parameters (CPPs) were identified, including the acetone concentration in the water phase, the stabilizer [polyvinylalcohol (PVA)] concentration, the lipid-to-total solid ratio, and the total concentration. The CPPs were linked to critical quality attributes consisting of the particle size, polydispersity index (PDI), zeta-potential, thermotropic phase behavior, yield and stability. A central composite face-centered design was performed followed by multiple linear regression analysis. The size, PDI, enthalpy of the phase transition and yield were successfully modeled, whereas the models for the zeta-potential and the stability were poor. Cryo-transmission electron microscopy revealed that the main structural effect on the nanoparticle architecture is caused by the use of PVA, and two different morphologies were identified: i) A PLGA core coated with one or several concentric lipid bilayers, and ii) a PLGA nanoshell encapsulating lipid membrane structures. The optimal formulation, identified from the OOS, was evaluated in vivo. The hybrid NPs induced antibody and Th1/Th17 immune responses that were similar in quality and magnitude to the response induced by DDA/TDB liposomes, showing that the adjuvant

  11. Immunogenicity and protective efficacy of DMT liposome-adjuvanted tuberculosis subunit CTT3H vaccine.

    PubMed

    Teng, Xindong; Tian, Maopeng; Li, Jianrong; Tan, Songwei; Yuan, Xuefeng; Yu, Qi; Jing, Yukai; Zhang, Zhiping; Yue, Tingting; Zhou, Lei; Fan, Xionglin

    2015-01-01

    Different strategies have been proposed for the development of protein subunit vaccine candidates for tuberculosis (TB), which shows better safety than other types of candidates and the currently used Bacillus Calmette-Guérin (BCG) vaccine. In order to develop more effective protein subunits depending on the mechanism of cell-mediated immunity against TB, a polyprotein CTT3H, based on 5 immunodominant antigens (CFP10, TB10.4, TB8.4, Rv3615c, and HBHA) with CD8(+) epitopes of Mycobacterium tuberculosis, was constructed in this study. We vaccinated C57BL/6 mice with a TB subunit CTT3H protein in an adjuvant of dimethyldioctadecylammonium/monophosphoryl lipid A/trehalose 6,6'-dibehenate (DDA/MPL/TDB, DMT) liposome to investigate the immunogenicity and protective efficacy of this novel vaccine. Our results demonstrated that DMT liposome-adjuvanted CTT3H vaccine not only induced an antigen-specific CD4(+) Th1 response, but also raised the number of PPD- and CTT3H-specific IFN-γ(+) CD8(+) T cells and elicited strong CTL responses against TB10.4, which provided more effective protection against a 60 CFU M. tuberculosis aerosol challenge than PBS control and DMT adjuvant alone. Our findings indicate that DMT-liposome is an effective adjuvant to stimulate CD8(+) T cell responses and the DMT-adjuvanted subunit CTT3H vaccine is a promising candidate for the next generation of TB vaccine.

  12. Recent clinical experience with vaccines using MPL- and QS-21-containing adjuvant systems.

    PubMed

    Garçon, Nathalie; Van Mechelen, Marcelle

    2011-04-01

    The immunostimulants 3-O-desacyl-4'-monophosphoryl lipid A (MPL) and the saponin QS-21 are part of licensed or candidate vaccines. MPL and QS-21 directly affect the innate immune response to orchestrate the quality and intensity of the adaptive immune response to the vaccine antigens. The combination of immunostimulants in different adjuvant formulations forms the basis of Adjuvant Systems (AS) as a way to promote appropriate protective immune responses following vaccination. MPL and aluminum salts are present in AS04, and both MPL and QS-21 are present in AS01 and AS02, which are liposome- and emulsion-based formulations, respectively. The recent clinical performance of AS01-, AS02- and AS04-adjuvanted vaccines will be discussed in the context of the diseases being targeted. The licensing of two AS04-adjuvanted vaccines and the initiation of Phase III trials with an AS01-adjuvanted vaccine demonstrate the potential to develop new or improved human vaccines that contain MPL or MPL and QS-21.

  13. Adjuvants for Leishmania vaccines: from models to clinical application

    PubMed Central

    Raman, Vanitha S.; Duthie, Malcolm S.; Fox, Christopher B.; Matlashewski, Greg; Reed, Steven G.

    2012-01-01

    Two million new cases of leishmaniasis occur every year, with the cutaneous leishmaniasis (CL) presentation accounting for approximately two-thirds of all cases. Despite the high incidence rates and geographic expansion of the disease, CL remains a neglected tropical disease without effective intervention strategies. Efforts to address this deficit have given rise to the experimental murine model of CL. By virtue of its simplicity and pliability, the CL model has been used to provide substantial information regarding cellular immunity, as well as in the discovery and evaluation of various vaccine adjuvants. The CL model has facilitated in vivo studies of the mechanism of action of many adjuvants, including the TLR4 agonist monophosphoryl lipid A, the TLR7/8 agonist imiquimod, the TLR9 agonist CpG, adenoviral vectors, and the immunostimulatory complexes. Together, these studies have helped to unveil the requirement for certain types of immune responses at specific stages of CL disease and provide a basis to aid the design of effective second-generation vaccines for human CL. This review focuses on adjuvants that have been tested in experimental CL, outlining how they have helped advance our understanding of the disease and ultimately, how they have performed when applied within clinical trials against human CL. PMID:22701453

  14. Silica nanoparticles as the adjuvant for the immunisation of mice using hepatitis B core virus-like particles.

    PubMed

    Skrastina, Dace; Petrovskis, Ivars; Lieknina, Ilva; Bogans, Janis; Renhofa, Regina; Ose, Velta; Dishlers, Andris; Dekhtyar, Yuri; Pumpens, Paul

    2014-01-01

    Advances in nanotechnology and nanomaterials have facilitated the development of silicon dioxide, or Silica, particles as a promising immunological adjuvant for the generation of novel prophylactic and therapeutic vaccines. In the present study, we have compared the adjuvanting potential of commercially available Silica nanoparticles (initial particles size of 10-20 nm) with that of aluminium hydroxide, or Alum, as well as that of complete and incomplete Freund's adjuvants for the immunisation of BALB/c mice with virus-like particles (VLPs) formed by recombinant full-length Hepatitis B virus core (HBc) protein. The induction of B-cell and T-cell responses was studied after immunisation. Silica nanoparticles were able to adsorb maximally 40% of the added HBc, whereas the adsorption capacity of Alum exceeded 90% at the same VLPs/adjuvant ratio. Both Silica and Alum formed large complexes with HBc VLPs that sedimented rapidly after formulation, as detected by dynamic light scattering, spectrophotometry, and electron microscopy. Both Silica and Alum augmented the humoral response against HBc VLPs to the high anti-HBc level in the case of intraperitoneal immunisation, whereas in subcutaneous immunisation, the Silica-adjuvanted anti-HBc level even exceeded the level adjuvanted by Alum. The adjuvanting of HBc VLPs by Silica resulted in the same typical IgG2a/IgG1 ratios as in the case of the adjuvanting by Alum. The combination of Silica with monophosphoryl lipid A (MPL) led to the same enhancement of the HBc-specific T-cell induction as in the case of the Alum and MPL combination. These findings demonstrate that Silica is not a weaker putative adjuvant than Alum for induction of B-cell and T-cell responses against recombinant HBc VLPs. This finding may have an essential impact on the development of the set of Silica-adjuvanted vaccines based on a long list of HBc-derived virus-like particles as the biological component.

  15. Glassy-state stabilization of a dominant negative inhibitor anthrax vaccine containing aluminum hydroxide and glycopyranoside lipid A adjuvants.

    PubMed

    Hassett, Kimberly J; Vance, David J; Jain, Nishant K; Sahni, Neha; Rabia, Lilia A; Cousins, Megan C; Joshi, Sangeeta; Volkin, David B; Middaugh, C Russell; Mantis, Nicholas J; Carpenter, John F; Randolph, Theodore W

    2015-02-01

    During transport and storage, vaccines may be exposed to temperatures outside of the range recommended for storage, potentially causing efficacy losses. To better understand and prevent such losses, dominant negative inhibitor (DNI), a recombinant protein antigen for a candidate vaccine against anthrax, was formulated as a liquid and as a glassy lyophilized powder with the adjuvants aluminum hydroxide and glycopyranoside lipid A (GLA). Freeze-thawing of the liquid vaccine caused the adjuvants to aggregate and decreased its immunogenicity in mice. Immunogenicity of liquid vaccines also decreased when stored at 40°C for 8 weeks, as measured by decreases in neutralizing antibody titers in vaccinated mice. Concomitant with efficacy losses at elevated temperatures, changes in DNI structure were detected by fluorescence spectroscopy and increased deamidation was observed by capillary isoelectric focusing (cIEF) after only 1 week of storage of the liquid formulation at 40°C. In contrast, upon lyophilization, no additional deamidation after 4 weeks at 40°C and no detectable changes in DNI structure or reduction in immunogenicity after 16 weeks at 40°C were observed. Vaccines containing aluminum hydroxide and GLA elicited higher immune responses than vaccines adjuvanted with only aluminum hydroxide, with more mice responding to a single dose. PMID:25581103

  16. In vitro cytokine induction by TLR-activating vaccine adjuvants in human blood varies by age and adjuvant.

    PubMed

    van Haren, Simon D; Ganapathi, Lakshmi; Bergelson, Ilana; Dowling, David J; Banks, Michaela; Samuels, Ronald C; Reed, Steven G; Marshall, Jason D; Levy, Ofer

    2016-07-01

    Most infections occur in early life, prompting development of novel adjuvanted vaccines to protect newborns and infants. Several Toll-like receptor (TLR) agonists (TLRAs) are components of licensed vaccine formulations or are in development as candidate adjuvants. However, the type and magnitude of immune responses to TLRAs may vary with the TLR activated as well as age and geographic location. Most notably, in newborns, as compared to adults, the immune response to TLRAs is polarized with lower Th1 cytokine production and robust Th2 and anti-inflammatory cytokine production. The ontogeny of TLR-mediated cytokine responses in international cohorts has been reported, but no study has compared cytokine responses to TLRAs between U.S. neonates and infants at the age of 6months. Both are critical age groups for the currently pediatric vaccine schedule. In this study, we report quantitative differences in the production of a panel of 14 cytokines and chemokines after in vitro stimulation of newborn cord blood and infant and adult peripheral blood with agonists of TLR4, including monophosphoryl lipid A (MPLA) and glucopyranosyl lipid Adjuvant aqueous formulation (GLA-AF), as well as agonists of TLR7/8 (R848) and TLR9 (CpG). Both TLR4 agonists, MPLA and GLA-AF, induced greater concentrations of Th1 cytokines CXCL10, TNF and Interleukin (IL)-12p70 in infant and adult blood compared to newborn blood. All the tested TLRAs induced greater infant IFN-α2 production compared to newborn and adult blood. In contrast, CpG induced greater IFN-γ, IL-1β, IL-4, IL-12p40, IL-10 and CXCL8 in newborn than in infant and adult blood. Overall, to the extent that these in vitro studies mirror responses in vivo, our study demonstrates distinct age-specific effects of TLRAs that may inform their development as candidate adjuvants for early life vaccines. PMID:27081760

  17. Chitosan: a promising safe and immune-enhancing adjuvant for intranasal vaccines.

    PubMed

    Smith, Alan; Perelman, Michael; Hinchcliffe, Michael

    2014-01-01

    The nasal route is attractive for the delivery of vaccines in that it not only offers an easy to use, non-invasive, needle-free alternative to more conventional parenteral injection, but it also creates an opportunity to elicit both systemic and (crucially) mucosal immune responses which may increase the capability of controlling pathogens at the site of entry. Immune responses to "naked" antigens are often modest and it is widely accepted that incorporation of an adjuvant is a prerequisite for the achievement of clinically effective nasal vaccines. Many existing adjuvants are sub-optimal or unsuitable because of local toxicity or poor enhancement of immunogenicity. Chitosan, particularly chitosan salts, have now been used in several preclinical and clinical studies with good tolerability, excellent immune stimulation and positive clinical results across a number of infections. Particularly significant evidence supporting chitosan as an adjuvant for nasal vaccination comes from clinical investigations on a norovirus vaccine; this demonstrated the ability of chitosan (ChiSys®), when combined with monophosphoryl lipid, to evoke robust immunological responses and confer protective immunity following (enteral) norovirus challenge. This article summarizes the totality of the meaningful information (including key unpublished data) supporting the development of chitosan-adjuvanted vaccines. PMID:24346613

  18. Signal inhibition by a dynamically regulated pool of monophosphorylated MAPK

    PubMed Central

    Nagiec, Michal J.; McCarter, Patrick C.; Kelley, Joshua B.; Dixit, Gauri; Elston, Timothy C.; Dohlman, Henrik G.

    2015-01-01

    Protein kinases regulate a broad array of cellular processes and do so through the phosphorylation of one or more sites within a given substrate. Many protein kinases are themselves regulated through multisite phosphorylation, and the addition or removal of phosphates can occur in a sequential (processive) or a stepwise (distributive) manner. Here we measured the relative abundance of the monophosphorylated and dual-phosphorylated forms of Fus3, a member of the mitogen-activated protein kinase (MAPK) family in yeast. We found that upon activation with pheromone, a substantial proportion of Fus3 accumulates in the monophosphorylated state. Introduction of an additional copy of Fus3 lacking either phosphorylation site leads to dampened signaling. Conversely, cells lacking the dual-specificity phosphatase (msg5Δ) or that are deficient in docking to the MAPK-scaffold (Ste5ND) accumulate a greater proportion of dual-phosphorylated Fus3. The double mutant exhibits a synergistic, or “synthetic,” supersensitivity to pheromone. Finally, we present a predictive computational model that combines MAPK scaffold and phosphatase activities and is sufficient to account for the observed MAPK profiles. These results indicate that the monophosphorylated and dual-phosphorylated forms of the MAPK act in opposition to one another. Moreover, they reveal a new mechanism by which the MAPK scaffold acts dynamically to regulate signaling. PMID:26179917

  19. The Carbomer-Lecithin Adjuvant Adjuplex Has Potent Immunoactivating Properties and Elicits Protective Adaptive Immunity against Influenza Virus Challenge in Mice.

    PubMed

    Wegmann, Frank; Moghaddam, Amin E; Schiffner, Torben; Gartlan, Kate H; Powell, Timothy J; Russell, Rebecca A; Baart, Matthijs; Carrow, Emily W; Sattentau, Quentin J

    2015-09-01

    The continued discovery and development of adjuvants for vaccine formulation are important to safely increase potency and/or reduce the antigen doses of existing vaccines and tailor the adaptive immune response to newly developed vaccines. Adjuplex is a novel adjuvant platform based on a purified lecithin and carbomer homopolymer. Here, we analyzed the adjuvant activity of Adjuplex in mice for the soluble hemagglutinin (HA) glycoprotein of influenza A virus. The titration of Adjuplex revealed an optimal dose of 1% for immunogenicity, eliciting high titers of HA-specific IgG but inducing no significant weight loss. At this dose, Adjuplex completely protected mice from an otherwise lethal influenza virus challenge and was at least as effective as the adjuvants monophosphoryl lipid A (MPL) and alum in preventing disease. Adjuplex elicited balanced Th1-/Th2-type immune responses with accompanying cytokines and triggered antigen-specific CD8(+) T-cell proliferation. The use of the peritoneal inflammation model revealed that Adjuplex recruited dendritic cells (DCs), monocytes, and neutrophils in the context of innate cytokine and chemokine secretion. Adjuplex neither triggered classical maturation of DCs nor activated a pathogen recognition receptor (PRR)-expressing NF-κB reporter cell line, suggesting a mechanism of action different from that reported for classical pathogen-associated molecular pattern (PAMP)-activated innate immunity. Taken together, these data reveal Adjuplex to be a potent and well-tolerated adjuvant with application for subunit vaccines.

  20. The Carbomer-Lecithin Adjuvant Adjuplex Has Potent Immunoactivating Properties and Elicits Protective Adaptive Immunity against Influenza Virus Challenge in Mice.

    PubMed

    Wegmann, Frank; Moghaddam, Amin E; Schiffner, Torben; Gartlan, Kate H; Powell, Timothy J; Russell, Rebecca A; Baart, Matthijs; Carrow, Emily W; Sattentau, Quentin J

    2015-09-01

    The continued discovery and development of adjuvants for vaccine formulation are important to safely increase potency and/or reduce the antigen doses of existing vaccines and tailor the adaptive immune response to newly developed vaccines. Adjuplex is a novel adjuvant platform based on a purified lecithin and carbomer homopolymer. Here, we analyzed the adjuvant activity of Adjuplex in mice for the soluble hemagglutinin (HA) glycoprotein of influenza A virus. The titration of Adjuplex revealed an optimal dose of 1% for immunogenicity, eliciting high titers of HA-specific IgG but inducing no significant weight loss. At this dose, Adjuplex completely protected mice from an otherwise lethal influenza virus challenge and was at least as effective as the adjuvants monophosphoryl lipid A (MPL) and alum in preventing disease. Adjuplex elicited balanced Th1-/Th2-type immune responses with accompanying cytokines and triggered antigen-specific CD8(+) T-cell proliferation. The use of the peritoneal inflammation model revealed that Adjuplex recruited dendritic cells (DCs), monocytes, and neutrophils in the context of innate cytokine and chemokine secretion. Adjuplex neither triggered classical maturation of DCs nor activated a pathogen recognition receptor (PRR)-expressing NF-κB reporter cell line, suggesting a mechanism of action different from that reported for classical pathogen-associated molecular pattern (PAMP)-activated innate immunity. Taken together, these data reveal Adjuplex to be a potent and well-tolerated adjuvant with application for subunit vaccines. PMID:26135973

  1. The Carbomer-Lecithin Adjuvant Adjuplex Has Potent Immunoactivating Properties and Elicits Protective Adaptive Immunity against Influenza Virus Challenge in Mice

    PubMed Central

    Wegmann, Frank; Moghaddam, Amin E.; Schiffner, Torben; Gartlan, Kate H.; Powell, Timothy J.; Russell, Rebecca A.; Baart, Matthijs; Carrow, Emily W.

    2015-01-01

    The continued discovery and development of adjuvants for vaccine formulation are important to safely increase potency and/or reduce the antigen doses of existing vaccines and tailor the adaptive immune response to newly developed vaccines. Adjuplex is a novel adjuvant platform based on a purified lecithin and carbomer homopolymer. Here, we analyzed the adjuvant activity of Adjuplex in mice for the soluble hemagglutinin (HA) glycoprotein of influenza A virus. The titration of Adjuplex revealed an optimal dose of 1% for immunogenicity, eliciting high titers of HA-specific IgG but inducing no significant weight loss. At this dose, Adjuplex completely protected mice from an otherwise lethal influenza virus challenge and was at least as effective as the adjuvants monophosphoryl lipid A (MPL) and alum in preventing disease. Adjuplex elicited balanced Th1-/Th2-type immune responses with accompanying cytokines and triggered antigen-specific CD8+ T-cell proliferation. The use of the peritoneal inflammation model revealed that Adjuplex recruited dendritic cells (DCs), monocytes, and neutrophils in the context of innate cytokine and chemokine secretion. Adjuplex neither triggered classical maturation of DCs nor activated a pathogen recognition receptor (PRR)-expressing NF-κB reporter cell line, suggesting a mechanism of action different from that reported for classical pathogen-associated molecular pattern (PAMP)-activated innate immunity. Taken together, these data reveal Adjuplex to be a potent and well-tolerated adjuvant with application for subunit vaccines. PMID:26135973

  2. Immunogenicity and protective efficacy of DMT liposome-adjuvanted tuberculosis subunit CTT3H vaccine

    PubMed Central

    Teng, Xindong; Tian, Maopeng; Li, Jianrong; Tan, Songwei; Yuan, Xuefeng; Yu, Qi; Jing, Yukai; Zhang, Zhiping; Yue, Tingting; Zhou, Lei; Fan, Xionglin

    2015-01-01

    Different strategies have been proposed for the development of protein subunit vaccine candidates for tuberculosis (TB), which shows better safety than other types of candidates and the currently used Bacillus Calmette-Guérin (BCG) vaccine. In order to develop more effective protein subunits depending on the mechanism of cell-mediated immunity against TB, a polyprotein CTT3H, based on 5 immunodominant antigens (CFP10, TB10.4, TB8.4, Rv3615c, and HBHA) with CD8+ epitopes of Mycobacterium tuberculosis, was constructed in this study. We vaccinated C57BL/6 mice with a TB subunit CTT3H protein in an adjuvant of dimethyldioctadecylammonium/monophosphoryl lipid A/trehalose 6,6′-dibehenate (DDA/MPL/TDB, DMT) liposome to investigate the immunogenicity and protective efficacy of this novel vaccine. Our results demonstrated that DMT liposome-adjuvanted CTT3H vaccine not only induced an antigen-specific CD4+ Th1 response, but also raised the number of PPD- and CTT3H-specific IFN-γ+ CD8+ T cells and elicited strong CTL responses against TB10.4, which provided more effective protection against a 60 CFU M. tuberculosis aerosol challenge than PBS control and DMT adjuvant alone. Our findings indicate that DMT-liposome is an effective adjuvant to stimulate CD8+ T cell responses and the DMT-adjuvanted subunit CTT3H vaccine is a promising candidate for the next generation of TB vaccine. PMID:25905680

  3. Effect of conjugation methodology, carrier protein, and adjuvants on the immune response to Staphylococcus aureus capsular polysaccharides.

    PubMed

    Fattom, A; Li, X; Cho, Y H; Burns, A; Hawwari, A; Shepherd, S E; Coughlin, R; Winston, S; Naso, R

    1995-10-01

    Conjugate vaccines were prepared with S. aureus type 8 capsular polysaccharide (CP) using three carrier proteins: Pseudomonas aeruginosa exotoxin A (ETA), a non-toxic recombinant ETA (rEPA), and diphtheria toxoid (DTd). Adipic acid dihydrazide (ADH) or N-succinimidyl 3-(2-pyridyldithio) propionate (SPDP) was used as a spacer to link the CP to carrier protein. All conjugates gave a high immune response with a boost after the second immunization. Conjugates prepared with ADH gave higher antibody titers than conjugates prepared with SPDP. IgG1 was the primary subclass elicited by all conjugates regardless of the carrier protein or the conjugation method used to prepare the vaccines. The non-immunogenic CP and the conjugates were formulated with either monophosphoryl lipid A (MPL), QS21, or in Novasomes and evaluated in mice. While the adjuvants failed to improve the immunogenicity of the nonconjugated CP, a more than fivefold increase in the antibody levels was observed when these adjuvants were used with the conjugates. Significant rises in IgG2b and IgG3 were observed with all formulations. The enhancement of the immunogenicity and the IgG subclass shift, as seen with some adjuvants, may prove to be important in immunocompromised patients. PMID:8585282

  4. Glucopyranosyl Lipid Adjuvant (GLA), a Synthetic TLR4 Agonist, Promotes Potent Systemic and Mucosal Responses to Intranasal Immunization with HIVgp140

    PubMed Central

    Arias, Mauricio A.; Van Roey, Griet A.; Tregoning, John S.; Moutaftsi, Magdalini; Coler, Rhea N.; Windish, Hillarie P.; Reed, Steven G.; Carter, Darrick; Shattock, Robin J.

    2012-01-01

    Successful vaccine development against HIV will likely require the induction of strong, long-lasting humoral and cellular immune responses in both the systemic and mucosal compartments. Based on the known immunological linkage between the upper-respiratory and urogenital tracts, we explored the potential of nasal adjuvants to boost immunization for the induction of vaginal and systemic immune responses to gp140. Mice were immunized intranasally with HIV gp140 together with micellar and emulsion formulations of a synthetic TLR4 agonist, Glucopyranosyl Lipid Adjuvant (GLA) and responses were compared to R848, a TLR7/8 agonist, or chitosan, a non TLR adjuvant. GLA and chitosan but not R848 greatly enhanced serum immunoglobulin levels when compared to antigen alone. Both GLA and chitosan induced high IgG and IgA titers in nasal and vaginal lavage and feces. The high IgA and IgG titers in vaginal lavage were associated with high numbers of gp140-specific antibody secreting cells in the genital tract. Whilst both GLA and chitosan induced T cell responses to immunization, GLA induced a stronger Th17 response and chitosan induced a more Th2 skewed response. Our results show that GLA is a highly potent intranasal adjuvant greatly enhancing humoral and cellular immune responses, both systemically and mucosally. PMID:22829921

  5. Subunit vaccination of mice against new world cutaneous leishmaniasis: comparison of three proteins expressed in amastigotes and six adjuvants.

    PubMed

    Aebischer, T; Wolfram, M; Patzer, S I; Ilg, T; Wiese, M; Overath, P

    2000-03-01

    A mixture of well-defined recombinant antigens together with an adjuvant that preferentially stimulates specific gamma interferon (IFN-gamma)-secreting helper type 1 CD4(+) T cells (Th1 cells) presents a rational option for a vaccine against leishmaniasis. The potential of this approach was investigated in murine infections with Leishmania mexicana, which are characterized by the absence of a parasite-specific Th1 response and uncontrolled parasite proliferation. A mixture of three antigens (glycoprotein 63, cysteine proteinases, and a membrane-bound acid phosphatase), which are all expressed in amastigotes, the mammalian stage of the parasite, were used for the immunization of C57BL/6 mice in combination with six adjuvants (interleukin 12 [IL-12], Detox, 4'-monophosphoryl lipid A, QS-21, Mycobacterium bovis BCG, and Corynebacterium parvum). All six vaccine formulations containing the mixture of recombinant antigens were protective against challenge infections with promastigotes, the insect stage of the parasite, in that mice controlled and healed infections but developed transient and, in certain cases, accentuated disease. The most effective adjuvants were IL-12 followed by Detox. Further studies using these two adjuvants showed that a similar protective effect was observed with a mixture of the corresponding native proteins, and mice which had controlled the infection showed a preponderance of IFN-gamma-secreting CD4(+) T cells in the lymph nodes draining the lesion. Using the recombinant proteins individually, it is shown that the relatively abundant cysteine proteinases and glycoprotein 63, but not the acid phosphatase, are able to elicit a protective response. The results are discussed in comparison to previous studies with subunit vaccines and with respect to cell biological aspects of antigen presentation in Leishmania-infected macrophages. PMID:10678945

  6. Evaluation of the immunoprophylactic potential of a killed vaccine candidate in combination with different adjuvants against murine visceral leishmaniasis.

    PubMed

    Thakur, Ankita; Kaur, Harpreet; Kaur, Sukhbir

    2015-02-01

    Despite a large number of field trials, till date no prophylactic antileishmanial vaccine exists for human use. Killed antigen formulations offer the advantage of being safe but they have limited immunogenicity. Recent research has documented that efforts to develop effective Leishmania vaccine have been limited due to the lack of an appropriate adjuvant. Addition of adjuvants to vaccines boosts and directs the immunogenicity of antigens. So, the present study was done to evaluate the effectiveness of four adjuvants i.e. alum, saponin, cationic liposomes and monophosphoryl lipid-A in combination with Autoclaved Leishmania donovani (ALD) antigen against murine visceral leishmaniasis (VL). BALB/c mice were immunized thrice with respective vaccine formulation. Two weeks after last booster, challenge infection was given. Mice were sacrificed 15 days after last immunization and on 30, 60 and 90 post infection/challenge days. A considerable protective efficacy was shown by all vaccine formulations. It was evident from significant reduction in parasite load, profound delayed type hypersensitivity responses (DTH), increased IgG2a titres and high levels of Th1 cytokines (IFN-γ, IL-12) as compared to the infected controls. However, level of protection varied with the type of adjuvant used. Maximum protection was achieved with the use of liposome encapsulated ALD antigen and it was closely followed by group immunized with ALD+MPL-A. Significant results were also obtained with ALD+saponin, ALD+alum and ALD antigen (alone) but the protective efficacy was reduced as compared to other immunized groups. The present study reveals greater efficacy of two vaccine formulations i.e. ALD+liposome and ALD+MPL-A against murine VL.

  7. Boosting with Subtype C CN54rgp140 Protein Adjuvanted with Glucopyranosyl Lipid Adjuvant after Priming with HIV-DNA and HIV-MVA Is Safe and Enhances Immune Responses: A Phase I Trial

    PubMed Central

    Joseph, Sarah; Geldmacher, Christof; Munseri, Patricia J.; Aboud, Said; Missanga, Marco; Mann, Philipp; Wahren, Britta; Ferrari, Guido; Polonis, Victoria R.; Robb, Merlin L.; Weber, Jonathan; Tatoud, Roger; Maboko, Leonard; Hoelscher, Michael; Lyamuya, Eligius F.; Biberfeld, Gunnel; Sandström, Eric; Kroidl, Arne; Bakari, Muhammad; Nilsson, Charlotta; McCormack, Sheena

    2016-01-01

    Background A vaccine against HIV is widely considered the most effective and sustainable way of reducing new infections. We evaluated the safety and impact of boosting with subtype C CN54rgp140 envelope protein adjuvanted in glucopyranosyl lipid adjuvant (GLA-AF) in Tanzanian volunteers previously given three immunizations with HIV-DNA followed by two immunizations with recombinant modified vaccinia virus Ankara (HIV-MVA). Methods Forty volunteers (35 vaccinees and five placebo recipients) were given two CN54rgp140/GLA-AF immunizations 30–71 weeks after the last HIV-MVA vaccination. These immunizations were delivered intramuscularly four weeks apart. Results The vaccine was safe and well tolerated except for one episode of asymptomatic hypoglycaemia that was classified as severe adverse event. Two weeks after the second HIV-MVA vaccination 34 (97%) of the 35 previously vaccinated developed Env-specific binding antibodies, and 79% and 84% displayed IFN-γ ELISpot responses to Gag and Env, respectively. Binding antibodies to subtype C Env (included in HIV-DNA and protein boost), subtype B Env (included only in HIV-DNA) and CRF01_AE Env (included only in HIV-MVA) were significantly boosted by the CN54rgp140/GLA-AF immunizations. Functional antibodies detected using an infectious molecular clone virus/peripheral blood mononuclear cell neutralization assay, a pseudovirus/TZM-bl neutralization assay or by assays for antibody-dependent cellular cytotoxicity (ADCC) were not significantly boosted. In contrast, T-cell proliferative responses to subtype B MN antigen and IFN-γ ELISpot responses to Env peptides were significantly enhanced. Four volunteers not primed with HIV-DNA and HIV-MVA before the CN54rgp140/GLA-AF immunizations mounted an antibody response, while cell-mediated responses were rare. After the two Env subtype C protein immunizations, a trend towards higher median subtype C Env binding antibody titers was found in vaccinees who had received HIV-DNA and HIV

  8. Effect of Currently Approved Carriers and Adjuvants on the Pre-Clinical Efficacy of a Conjugate Vaccine against Oxycodone in Mice and Rats

    PubMed Central

    Pravetoni, Marco; Vervacke, Jeffrey S.; Distefano, Mark D.; Tucker, Ashli M.; Laudenbach, Megan; Pentel, Paul R.

    2014-01-01

    Vaccination against the highly abused prescription opioid oxycodone has shown pre-clinical efficacy for blocking oxycodone effects. The current study further evaluated a candidate vaccine composed of oxycodone derivatized at the C6 position (6OXY) conjugated to the native keyhole limpet hemocyanin (nKLH) carrier protein. To provide an oxycodone vaccine formulation suitable for human studies, we studied the effect of alternative carriers and adjuvants on the generation of oxycodone-specific serum antibody and B cell responses, and the effect of immunization on oxycodone distribution and oxycodone-induced antinociception in mice and rats. 6OXY conjugated to tetanus toxoid (TT) or a GMP grade KLH dimer (dKLH) was as effective as 6OXY conjugated to the nKLH decamer in mice and rats, while the 6OXY hapten conjugated to a TT-derived peptide was not effective in preventing oxycodone-induced antinociception in mice. Immunization with 6OXY-TT s.c. absorbed on alum adjuvant provided similar protection to 6OXY-TT administered i.p. with Freund’s adjuvant in rats. The toll-like receptor 4 (TLR4) agonist monophosphoryl lipid A (MPLA) adjuvant, alone or in combination with alum, offered no advantage over alum alone for generating oxycodone-specific serum antibodies or 6OXY-specific antibody secreting B cells in mice vaccinated with 6OXY-nKLH or 6OXY-TT. The immunogenicity of oxycodone vaccines may be modulated by TLR4 signaling since responses to 6OXY-nKLH in alum were decreased in TLR4-deficient mice. These data suggest that TT, nKLH and dKLH carriers provide consistent 6OXY conjugate vaccine immunogenicity across species, strains and via different routes of administration, while adjuvant formulations may need to be tailored to individual immunogens or patient populations. PMID:24797666

  9. Archaeosomes varying in lipid composition differ in receptor-mediated endocytosis and differentially adjuvant immune responses to entrapped antigen

    PubMed Central

    Sprott, G. Dennis; Sad, Subash; Fleming, L. Perry; DiCaire, Chantal J.; Patel, Girishchandra B.; Krishnan, Lakshmi

    2003-01-01

    Archaeosomes prepared from total polar lipids extracted from six archaeal species with divergent lipid compositions had the capacity to deliver antigen for presentation via both MHC class I and class II pathways. Lipid extracts from Halobacterium halobium and from Halococcus morrhuae strains 14039 and 16008 contained archaetidylglycerol methylphosphate and sulfated glycolipids rich in mannose residues, and lacked archaetidylserine, whereas the opposite was found in Methanobrevibacter smithii, Methanosarcina mazei and Methanococcus jannaschii. Annexin V labeling revealed a surface orientation of phosphoserine head groups in M. smithii, M. mazei and M. jannaschii archaeosomes. Uptake of rhodamine-labeled M. smithii or M. jannaschii archaeosomes by murine peritoneal macrophages was inhibited by unlabeled liposomes containing phosphatidylserine, by the sulfhydryl inhibitor N-ethylmaleimide, and by ATP depletion using azide plus fluoride, but not by H. halobium archaeosomes. In contrast, N-ethylmaleimide failed to inhibit uptake of the four other rhodamine-labeled archaeosome types, and azide plus fluoride did not inhibit uptake of H. halobium or H. morrhuae archaeosomes. These results suggest endocytosis ofarchaeosomes rich in surface-exposed phosphoserine head groups via a phosphatidylserine receptor, and energy-independent surface adsorption of certain other archaeosome composition classes. Lipid composition affected not only the endocytic mechanism, but also served to differentially modulate the activation of dendritic cells. The induction of IL-12 secretion from dendritic cells exposed to H. morrhuae 14039 archaeosomes was striking compared with cells exposed to archaeosomes from 16008. Thus, archaeosome types uniquely modulate antigen delivery and dendritic cell activation. PMID:15803661

  10. Cyclin D activates the Rb tumor suppressor by mono-phosphorylation

    PubMed Central

    Narasimha, Anil M; Kaulich, Manuel; Shapiro, Gary S; Choi, Yoon J; Sicinski, Piotr; Dowdy, Steven F

    2014-01-01

    The widely accepted model of G1 cell cycle progression proposes that cyclin D:Cdk4/6 inactivates the Rb tumor suppressor during early G1 phase by progressive multi-phosphorylation, termed hypo-phosphorylation, to release E2F transcription factors. However, this model remains unproven biochemically and the biologically active form(s) of Rb remains unknown. In this study, we find that Rb is exclusively mono-phosphorylated in early G1 phase by cyclin D:Cdk4/6. Mono-phosphorylated Rb is composed of 14 independent isoforms that are all targeted by the E1a oncoprotein, but show preferential E2F binding patterns. At the late G1 Restriction Point, cyclin E:Cdk2 inactivates Rb by quantum hyper-phosphorylation. Cells undergoing a DNA damage response activate cyclin D:Cdk4/6 to generate mono-phosphorylated Rb that regulates global transcription, whereas cells undergoing differentiation utilize un-phosphorylated Rb. These observations fundamentally change our understanding of G1 cell cycle progression and show that mono-phosphorylated Rb, generated by cyclin D:Cdk4/6, is the only Rb isoform in early G1 phase. DOI: http://dx.doi.org/10.7554/eLife.02872.001 PMID:24876129

  11. Novel 6xHis tagged foot-and-mouth disease virus vaccine bound to nanolipoprotein adjuvant via metal ions provides antigenic distinction and effective protective immunity.

    PubMed

    Rai, Devendra K; Segundo, Fayna Diaz-San; Schafer, Elizabeth; Burrage, Thomas G; Rodriguez, Luis L; de Los Santos, Teresa; Hoeprich, Paul D; Rieder, Elizabeth

    2016-08-01

    Here, we engineered two FMD viruses with histidine residues inserted into or fused to the FMDV capsid. Both 6xHis viruses exhibited growth kinetics, plaque morphologies and antigenic characteristics similar to wild-type virus. The 6xHis tag allowed one-step purification of the mutant virions by Co(2+) affinity columns. Electron microscopy and biochemical assays showed that the 6xHis FMDVs readily assembled into antigen: adjuvant complexes in solution, by conjugating with Ni(2+)-chelated nanolipoprotein and monophosphoryl lipid A adjuvant (MPLA:NiNLP). Animals Immunized with the inactivated 6xHis-FMDV:MPLA:NiNLP vaccine acquired enhanced protective immunity against FMDV challenge compared to virions alone. Induction of anti-6xHis and anti-FMDV neutralizing antibodies in the immunized animals could be exploited in the differentiation of vaccinated from infected animals needed for the improvement of FMD control measures. The novel marker vaccine/nanolipid technology described here has broad applications for the development of distinctive and effective immune responses to other pathogens of importance. PMID:27209448

  12. Trypanosoma cruzi adjuvants potentiate T cell-mediated immunity induced by a NY-ESO-1 based antitumor vaccine.

    PubMed

    Junqueira, Caroline; Guerrero, Ana Tereza; Galvão-Filho, Bruno; Andrade, Warrison A; Salgado, Ana Paula C; Cunha, Thiago M; Ropert, Catherine; Campos, Marco Antônio; Penido, Marcus L O; Mendonça-Previato, Lúcia; Previato, José Oswaldo; Ritter, Gerd; Cunha, Fernando Q; Gazzinelli, Ricardo T

    2012-01-01

    Immunological adjuvants that induce T cell-mediate immunity (TCMI) with the least side effects are needed for the development of human vaccines. Glycoinositolphospholipids (GIPL) and CpGs oligodeoxynucleotides (CpG ODNs) derived from the protozoa parasite Trypanosoma cruzi induce potent pro-inflammatory reaction through activation of Toll-Like Receptor (TLR)4 and TLR9, respectively. Here, using mouse models, we tested the T. cruzi derived TLR agonists as immunological adjuvants in an antitumor vaccine. For comparison, we used well-established TLR agonists, such as the bacterial derived monophosphoryl lipid A (MPL), lipopeptide (Pam3Cys), and CpG ODN. All tested TLR agonists were comparable to induce antibody responses, whereas significant differences were noticed in their ability to elicit CD4(+) T and CD8(+) T cell responses. In particular, both GIPLs (GTH, and GY) and CpG ODNs (B344, B297 and B128) derived from T. cruzi elicited interferon-gamma (IFN-γ) production by CD4(+) T cells. On the other hand, the parasite derived CpG ODNs, but not GIPLs, elicited a potent IFN-γ response by CD8(+) T lymphocytes. The side effects were also evaluated by local pain (hypernociception). The intensity of hypernociception induced by vaccination was alleviated by administration of an analgesic drug without affecting protective immunity. Finally, the level of protective immunity against the NY-ESO-1 expressing melanoma was associated with the magnitude of both CD4(+) T and CD8(+) T cell responses elicited by a specific immunological adjuvant.

  13. Identification of GLA/SE as an effective adjuvant for the induction of robust humoral and cell-mediated immune responses to EBV-gp350 in mice and rabbits.

    PubMed

    Heeke, Darren S; Lin, Rui; Rao, Eileen; Woo, Jennifer C; McCarthy, Michael P; Marshall, Jason D

    2016-05-17

    Childhood infection with Epstein-Barr virus (EBV) is often asymptomatic and may result in mild flu-like symptoms, but exposure during adolescence and young adulthood can lead to acute infectious mononucleosis (AIM) with a pathology characterized by swollen lymph nodes, sore throat, and severe fatigue lasting weeks or months. A vaccine targeting the envelope glycoprotein gp350 adjuvanted with aluminum hydroxide complexed with the TLR4 agonist monophosphoryl lipid A (MPLA) achieved a 78% reduction in AIM incidence in a small phase II trial of college-age individuals, but development of this vaccine was halted by the manufacturer. Here, we report the evaluation in mice and rabbits of an EBV-gp350 vaccine combined with an adjuvant composed of the synthetic TLR4 agonist glucopyranosyl lipid A (GLA) integrated into stable emulsion (SE). In mice, GLA/SE-adjuvanted gp350 generated high IgG titers (both IgG1 and IgG2a/c subtypes), elevated EBV-neutralizing antibody titers, and robust poly-functional anti-gp350 CD4(+) T cell responses. In addition, GLA/SE routinely demonstrated superior performance over aluminum hydroxide in all immunological readouts, including induction of durable neutralizing antibody titers out to at least 1 year post-vaccination. Both components of the GLA/SE adjuvant were found to be required to get optimal responses in both arms of the immune response: specifically, SE for neutralizing antibodies and GLA for induction of T cell responses. Furthermore, this vaccine also elicited high neutralizing antibody titers in a second species, rabbit. These promising results suggest that clinical development of a vaccine comprised of EBV-gp350 plus GLA/SE has the potential to prevent AIM in post-adolescents. PMID:27085175

  14. A Novel Prime and Boost Regimen of HIV Virus-Like Particles with TLR4 Adjuvant MPLA Induces Th1 Oriented Immune Responses against HIV.

    PubMed

    Poteet, Ethan; Lewis, Phoebe; Li, Feng; Zhang, Sheng; Gu, Jianhua; Chen, Changyi; Ho, Sam On; Do, Thai; Chiang, SuMing; Fujii, Gary; Yao, Qizhi

    2015-01-01

    HIV virus-like particles (VLPs) present the HIV envelope protein in its native conformation, providing an ideal vaccine antigen. To enhance the immunogenicity of the VLP vaccine, we sought to improve upon two components; the route of administration and the additional adjuvant. Using HIV VLPs, we evaluated sub-cheek as a novel route of vaccine administration when combined with other conventional routes of immunization. Of five combinations of distinct prime and boost sequences, which included sub-cheek, intranasal, and intradermal routes of administration, intranasal prime and sub-cheek boost (IN+SC) resulted in the highest HIV-specific IgG titers among the groups tested. Using the IN+SC regimen we tested the adjuvant VesiVax Conjugatable Adjuvant Lipid Vesicles (CALV) + monophosphoryl lipid A (MPLA) at MPLA concentrations of 0, 7.5, 12.5, and 25 μg/dose in combination with our VLPs. Mice that received 12.5 or 25 μg/dose MPLA had the highest concentrations of Env-specific IgG2c (20.7 and 18.4 μg/ml respectively), which represents a Th1 type of immune response in C57BL/6 mice. This was in sharp contrast to mice which received 0 or 7.5 μg MPLA adjuvant (6.05 and 5.68 μg/ml of IgG2c respectively). In contrast to IgG2c, MPLA had minor effects on Env-specific IgG1; therefore, 12.5 and 25 μg/dose of MPLA induced the optimal IgG1/IgG2c ratio of 1.3. Additionally, the percentage of germinal center B cells increased significantly from 15.4% in the control group to 31.9% in the CALV + 25 μg MPLA group. These mice also had significantly more IL-2 and less IL-4 Env-specific CD8+ T cells than controls, correlating with an increased percentage of Env-specific central memory CD4+ and CD8+ T cells. Our study shows the strong potential of IN+SC as an efficacious route of administration and the effectiveness of VLPs combined with MPLA adjuvant to induce Env specific Th1-oriented HIV-specific immune responses. PMID:26312747

  15. Liposomal vaccines incorporating molecular adjuvants and intrastructural T-cell help promote the immunogenicity of HIV membrane-proximal external region peptides

    PubMed Central

    Hanson, Melissa C.; Abraham, Wuhbet; Crespo, Monica P.; Chen, Stephanie H.; Liu, Haipeng; Szeto, Greg Lee; Kim, Mikyung; Reinherz, Ellis L.; Irvine, Darrell J.

    2015-01-01

    An HIV vaccine capable of inducing high and durable levels of broadly neutralizing antibodies has thus far proven elusive. A promising antigen is the membrane-proximal external region (MPER) from gp41, a segment of the viral envelope recognized by a number of broadly neutralizing antibodies. Though an attractive vaccine target due to the linear nature of the epitope and its highly conserved sequence, MPER peptides are poorly immunogenic and may require display on membranes to achieve a physiological conformation matching the native virus. Here we systematically explored how the structure and composition of liposomes displaying MPER peptides impacts the strength and durability of humoral responses to this antigen as well as helper T-cell responses in mice. Administration of MPER peptides anchored to the surface of liposomes induced MPER-specific antibodies whereas MPER administered in oil-based emulsion adjuvants or alum did not, even when combined with Toll like receptor agonists. High-titer IgG responses to liposomal MPER required the inclusion of molecular adjuvants such as monophosphoryl lipid A. Anti-MPER humoral responses were further enhanced by incorporating high-Tm lipids in the vesicle bilayer and optimizing the MPER density to a mean distance of ~10–15 nm between peptides on the liposomes' surfaces. Encapsulation of helper epitopes within the vesicles allowed efficient “intrastructural” T-cell help, which promoted IgG responses to MPER while minimizing competing B-cell responses against the helper sequence. These results define several key properties of liposome formulations that promote durable, high-titer antibody responses against MPER peptides, which will be a prerequisite for a successful MPER-targeting vaccine. PMID:25559188

  16. Analysis of adverse events of potential autoimmune aetiology in a large integrated safety database of AS04 adjuvanted vaccines.

    PubMed

    Verstraeten, Thomas; Descamps, Dominique; David, Marie-Pierre; Zahaf, Toufik; Hardt, Karin; Izurieta, Patricia; Dubin, Gary; Breuer, Thomas

    2008-12-01

    Newly licensed vaccines against human papillomavirus (HPV) and hepatitis B (HBV), and several vaccines in development, including a vaccine against genital herpes simplex virus (HSV), contain a novel Adjuvant System, AS04, composed of 3-O-desacyl-4' monophosphoryl lipid A and aluminium salts. Given the background incidence of autoimmune disorders in some of the groups targeted for immunisation with these vaccines, it is likely that autoimmune events will be reported in temporal association with vaccination, even in the absence of a causal relationship. The objective of this integrated analysis was to assess safety of AS04 adjuvanted vaccines with regard to adverse events (AEs) of potential autoimmune aetiology, particularly in adolescents and young adults. All randomised, controlled trials of HPV-16/18, HSV and HBV vaccines were analysed in an integrated analysis of individual data (N = 68,512). A separate analysis of the HPV-16/18 vaccine trials alone was also undertaken (N = 39,160). All data were collected prospectively during the vaccine development programmes (mean follow-up of 21.4 months), and included in the analysis up to a pre-defined data lock point. Reporting rates of overall autoimmune events were around 0.5% and did not differ between the AS04 and control groups. The relative risk (AS04/control) of experiencing any autoimmune event was 0.98 (95% confidence intervals 0.80, 1.21) in the integrated analysis and 0.92 (0.70, 1.22) in the HPV-16/18 vaccine analysis. Relative risks calculated overall, for disease category or for individual events were close to 1, and all confidence intervals around the relative risk included 1, indicating no statistically significant difference in event rates between the AS04 and control groups. This integrated analysis of over 68,000 participants who received AS04 adjuvanted vaccines or controls demonstrated a low rate of autoimmune disorders, without evidence of an increase in relative risk associated with AS04 adjuvanted

  17. Glucopyranosyl lipid A adjuvant significantly enhances HIV specific T and B cell responses elicited by a DNA-MVA-protein vaccine regimen.

    PubMed

    McKay, Paul F; Cope, Alethea V; Mann, Jamie F S; Joseph, Sarah; Esteban, Mariano; Tatoud, Roger; Carter, Darrick; Reed, Steven G; Weber, Jonathan; Shattock, Robin J

    2014-01-01

    Using a unique vaccine antigen matched and single HIV Clade C approach we have assessed the immunogenicity of a DNA-poxvirus-protein strategy in mice and rabbits, administering MVA and protein immunizations either sequentially or simultaneously and in the presence of a novel TLR4 adjuvant, GLA-AF. Mice were vaccinated with combinations of HIV env/gag-pol-nef plasmid DNA followed by MVA-C (HIV env/gag-pol-nef) with HIV CN54gp140 protein (+/-GLA-AF adjuvant) and either co-administered in different muscles of the same animal with MVA-C or given sequentially at 3-week intervals. The DNA prime established a population of B cells that were able to mount a statistically significant anamnestic response to the boost vaccines. The greatest antigen-specific antibody response was observed in animals that received all vaccine components. Moreover, a high proportion of the total mucosal IgG (20 - 50%) present in the vaginal vault of these vaccinated animals was vaccine antigen-specific. The potent elicitation of antigen-specific immune responses to this vaccine modality was also confirmed in rabbits. Importantly, co-administration of MVA-C with the GLA-AF adjuvanted HIV CN54gp140 protein significantly augmented the antigen-specific T cell responses to the Gag antigen, a transgene product expressed by the MVA-C vector in a separate quadriceps muscle. We have demonstrated that co-administration of MVA and GLA-AF adjuvanted HIV CN54gp140 protein was equally effective in the generation of humoral responses as a sequential vaccination modality thus shortening and simplifying the immunization schedule. In addition, a significant further benefit of the condensed vaccination regime was that T cell responses to proteins expressed by the MVA-C were potently enhanced, an effect that was likely due to enhanced immunostimulation in the presence of systemic GLA-AF.

  18. Breaking B and T cell tolerance using cationic lipid--DNA complexes (CLDC) as a vaccine adjuvant with hepatitis B virus (HBV) surface antigen in transgenic mice expressing HBV.

    PubMed

    Morrey, John D; Motter, Neil E; Chang, Stella; Fairman, Jeffery

    2011-06-01

    Cationic lipid DNA complexes (CLDC), referred to here as JVRS-100, were evaluated as an adjuvant for hepatitis B surface antigen (HBsAg) for eliciting B and T cell responses in transgenic mice expressing hepatitis B virus (HBV). To confirm the immunogenicity of HBsAg+JVRS-1000, a study was conducted in C57BL/6 mice, the genetic background of the HBV transgenic mice used in the study. HBsAg+JVRS-100 elicited a T cell response and B cell response as evidenced by interferon-gamma (IFN-γ) secretion by re-stimulated splenocytes and anti-HBsAg IgG induction, respectively, whereas, HBsAg only elicited a B cell response. In HBV transgenic mice, HBsAg did not elicit either T or B cell responses, unlike the HBsAg+JVRS-100 that elicited both. Energix-B vaccine did perform better than the HBsAg by eliciting a B cell response in the transgenic mice, but it did not perform as HBsAg+JVRS-100 since it did not elicit a T cell response. The response by HBsAg+JVRS-100 was not sufficient to cause destruction of infected liver cells, but it did suppress HBV DNA non-cytolytically. From these results, JVRS-100 might be considered for further development as an adjuvant for HBV therapeutic vaccines. PMID:21545812

  19. Enhanced efficacy and immunogenicity of 78kDa antigen formulated in various adjuvants against murine visceral leishmaniasis.

    PubMed

    Nagill, Rajeev; Kaur, Sukhbir

    2010-05-21

    Leishmania infection causes localized cutaneous to severe visceral disease in humans and animals. Current control measures, based on antimonial compounds, are not effective because of resistance in Leishmania. Vaccination would be a feasible alternative, but as yet no vaccine to protect humans against infection has been commercialized. Parasite antigens that preferentially stimulate the induction of significant protection through Th1 response presents a rational approach for a vaccine against leishmaniasis. With this view in mind, we investigated the potential of 78kDa antigen of Leishmania donovani alone and along with different adjuvants against murine visceral leishmaniasis. Various adjuvants used along with 78kDa antigen include monophosphoryl lipid A (MPL-A), liposomal encapsulation, recombinant IL-12, autoclaved Leishmania antigen (ALD) and Freund's adjuvant (FCA). BALB/c mice were immunized subcutaneously thrice with respective vaccine formulation. Challenge infection was given intracardially after 2 weeks of second booster. A significant decrease in parasite burden was seen in vaccinees over the infected controls on all post challenge days and was found that maximum protection was provided by 78kDa+rIL-12 vaccine and it was highly immunogenic as depicted by the reduction in parasite load (71-94.8%), reduction in infection rate of peritoneal macrophages (92.9-98%), enhanced DTH response (6.5-10.5 fold), increase in IgG2a anti-leishmanial antibody production (3-3.7 fold) and up-regulation of IFN-gamma (3.7-6.5 fold) and IL-2 levels (7.7-12.3 fold), which demonstrate the generation of protective Th1 type of immune response. Comparable results were also observed in 78kDa+MPL-A and liposome-encapsulated 78kDa vaccines with 56.5-92% and 62.9-93.4% reduction in parasite load respectively. Significant results have also been obtained with 78kDa antigen+ALD, 78kDa antigen+FCA and 78kDa antigen alone group but the protective efficacy was reduced as compared to the

  20. The Lymphatic Immune Response Induced by the Adjuvant AS01: A Comparison of Intramuscular and Subcutaneous Immunization Routes.

    PubMed

    Neeland, Melanie R; Shi, Wei; Collignon, Catherine; Taubenheim, Nadine; Meeusen, Els N T; Didierlaurent, Arnaud M; de Veer, Michael J

    2016-10-01

    The liposome-based adjuvant AS01 incorporates two immune stimulants, 3-O-desacyl-4'-monophosphoryl lipid A and the saponin QS-21. AS01 is under investigation for use in several vaccines in clinical development. i.m. injection of AS01 enhances immune cell activation and dendritic cell (DC) Ag presentation in the local muscle-draining lymph node. However, cellular and Ag trafficking in the lymphatic vessels that connect an i.m. injection site with the local lymph node has not been investigated. The objectives of this study were: 1) to quantify the in vivo cellular immune response induced by AS01 in an outbred ovine model, 2) to develop a lymphatic cannulation model that directly collects lymphatic fluid draining the muscle, and 3) to investigate the function of immune cells entering and exiting the lymphatic compartments after s.c. or i.m. vaccination with AS01 administered with hepatitis B surface Ag (HBsAg). We show that HBsAg-AS01 induces a distinct immunogenic cellular signature within the blood and draining lymphatics following both immunization routes. We reveal that MHCII(high) migratory DCs, neutrophils, and monocytes can acquire Ag within muscle and s.c. afferent lymph, and that HBsAg-AS01 uniquely induces the selective migration of Ag-positive neutrophils, monocytes, and an MHCII(high) DC-like cell type out of the lymph node via the efferent lymphatics that may enhance Ag-specific immunity. We report the characterization of the immune response in the lymphatic network after i.m. and s.c. injection of a clinically relevant vaccine, all in real time using a dose and volume comparable with that administered in humans. PMID:27549170

  1. A KALA-modified lipid nanoparticle containing CpG-free plasmid DNA as a potential DNA vaccine carrier for antigen presentation and as an immune-stimulative adjuvant

    PubMed Central

    Miura, Naoya; Shaheen, Sharif M.; Akita, Hidetaka; Nakamura, Takashi; Harashima, Hideyoshi

    2015-01-01

    Technologies that delivery antigen-encoded plasmid DNA (pDNA) to antigen presenting cell and their immune-activation are required for the success of DNA vaccines. Here we report on an artificial nanoparticle that can achieve these; a multifunctional envelope-type nanodevice modified with KALA, a peptide that forms α-helical structure at physiological pH (KALA-MEND). KALA modification and the removal of the CpG-motifs from the pDNA synergistically boosted transfection efficacy. In parallel, transfection with the KALA-MEND enhances the production of multiple cytokines and chemokines and co-stimulatory molecules via the Toll-like receptor 9-independent manner. Endosome-fusogenic lipid envelops and a long length of pDNA are essential for this immune stimulation. Furthermore, cytoplasmic dsDNA sensors that are related to the STING/TBK1 pathway and inflammasome are involved in IFN-β and IL-1β production, respectively. Consequently, the robust induction of antigen-specific cytotoxic T-lymphoma activity and the resulting prophylactic and therapeutic anti-tumor effect was observed in mice that had been immunized with bone marrow-derived dendritic cells ex vivo transfected with antigen-encoding pDNA. Collectively, the KALA-MEND possesses dual functions; gene transfection system and immune-stimulative adjuvant, those are both necessary for the successful DNA vaccine. PMID:25605799

  2. [Influenza vaccine and adjuvant].

    PubMed

    Nakayama, Tetsuo

    2011-01-01

    Adjuvant is originated from the Latin word "adjuvare" which means "help" in English to enhance the immunological responses when given together with antigens. The beginning of adjuvant was mineral oil which enhanced the immune response when it was given with inactivated Salmonella typhimurium. Aluminium salt was used to precipitate diphtheria toxoid and increased level of antibody response was demonstrated when administered with alum-precipitated antigens. Since 1930, aluminium salt has been used as DTaP (diphtheria-tetanus-acellular pertussis vaccine) adjuvant. Many candidates were tested for adjuvant activity but only aluminum salt is allowed to use for human vaccines. New adjuvant MF59, oil-in-water emulsion type, was developed for influenza vaccine for elderly (Fluad) and series of AS adjuvant are used for hepatitis B, pandemic flue, and human papiloma virus vaccines. Oil-adjuvanted influenza pandemic vaccines induced higher antibody response than alum-adjuvanted vaccine with higher incidence of adverse events, especially for local reactions. Alum-adjuvanted whole virion inactivated H5N1 vaccine was developed in Japan, and it induced relatively well immune responses in adults. When it applied for children, febrile reaction was noted in approximately 60% of the subjects, with higher antibodies. Recent investigation on innate immunity demonstrates that adjuvant activity is initiated from the stimulation on innate immunity and/or inflammasome, resulting in cytokine induction and antigen uptake by monocytes and macrophages. The probable reason for high incidence of febrile reaction should be investigated to develop a safe and effective influenza vaccine.

  3. The effects of lipid A on gamma-irradiated human peripheral blood lymphocytes in vitro

    NASA Astrophysics Data System (ADS)

    Dubničková, M.; Kuzmina, E. A.; Chausov, V. N.; Ravnachka, I.; Boreyko, A. V.; Krasavin, E. A.

    2016-03-01

    The modulatory effects of lipid A (diphosphoryl lipid A (DLA) and monophosphoryl lipid A (MLA)) on apoptosis induction and DNA structure damage (single and double-strand breaks (SSBs and DSBs, respectively)) in peripheral human blood lymphocytes are studied for 60Co gamma-irradiation. It is shown that in the presence of these agents the amount of apoptotic cells increases compared with the irradiated control samples. The effect is most strongly pronounced for DLA. In its presence, a significant increase is observed in the number of radiation-induced DNA SSBs and DSBs. Possible mechanisms are discussed of the modifying influence of the used agents on radiation-induced cell reactions

  4. Mechanisms of Action of Adjuvants

    PubMed Central

    Awate, Sunita; Babiuk, Lorne A.; Mutwiri, George

    2013-01-01

    Adjuvants are used in many vaccines, but their mechanisms of action are not fully understood. Studies from the past decade on adjuvant mechanisms are slowly revealing the secrets of adjuvant activity. In this review, we have summarized the recent progress in our understanding of the mechanisms of action of adjuvants. Adjuvants may act by a combination of various mechanisms including formation of depot, induction of cytokines and chemokines, recruitment of immune cells, enhancement of antigen uptake and presentation, and promoting antigen transport to draining lymph nodes. It appears that adjuvants activate innate immune responses to create a local immuno-competent environment at the injection site. Depending on the type of innate responses activated, adjuvants can alter the quality and quantity of adaptive immune responses. Understanding the mechanisms of action of adjuvants will provide critical information on how innate immunity influences the development of adaptive immunity, help in rational design of vaccines against various diseases, and can inform on adjuvant safety. PMID:23720661

  5. Mechanism of Immunopotentiation and Safety of Aluminum Adjuvants

    PubMed Central

    HogenEsch, Harm

    2013-01-01

    Aluminum-containing adjuvants are widely used in preventive vaccines against infectious diseases and in preparations for allergy immunotherapy. The mechanism by which they enhance the immune response remains poorly understood. Aluminum adjuvants selectively stimulate a Th2 immune response upon injection of mice and a mixed response in human beings. They support activation of CD8 T cells, but these cells do not undergo terminal differentiation to cytotoxic T cells. Adsorption of antigens to aluminum adjuvants enhances the immune response by facilitating phagocytosis and slowing the diffusion of antigens from the injection site which allows time for inflammatory cells to accumulate. The adsorptive strength is important as high affinity interactions interfere with the immune response. Adsorption can also affect the physical and chemical stability of antigens. Aluminum adjuvants activate dendritic cells via direct and indirect mechanisms. Phagocytosis of aluminum adjuvants followed by disruption of the phagolysosome activates NLRP3-inflammasomes resulting in the release of active IL-1β and IL-18. Aluminum adjuvants also activate dendritic cells by binding to membrane lipid rafts. Injection of aluminum-adjuvanted vaccines causes the release of uric acid, DNA, and ATP from damaged cells which in turn activate dendritic cells. The use of aluminum adjuvant is limited by weak stimulation of cell-mediated immunity. This can be enhanced by addition of other immunomodulatory molecules. Adsorption of these molecules is determined by the same mechanisms that control adsorption of antigens and can affect the efficacy of such combination adjuvants. The widespread use of aluminum adjuvants can be attributed in part to the excellent safety record based on a 70-year history of use. They cause local inflammation at the injection site, but also reduce the severity of systemic and local reactions by binding biologically active molecules in vaccines. PMID:23335921

  6. Diphosphorylated but not monophosphorylated myosin II regulatory light chain localizes to the midzone without its heavy chain during cytokinesis.

    PubMed

    Kondo, Tomo; Isoda, Rieko; Uchimura, Takashi; Sugiyama, Mutsumi; Hamao, Kozue; Hosoya, Hiroshi

    2012-01-13

    Myosin II is activated by the monophosphorylation of its regulatory light chain (MRLC) at Ser19 (1P-MRLC). Its ATPase activity is further enhanced by MRLC diphosphorylation at Thr18/Ser19 (2P-MRLC). As these phosphorylated MRLCs are colocalized with their heavy chains at the contractile ring in dividing cells, we believe that the phosphorylated MRLC acts as a subunit of the activated myosin II during cytokinesis. However, the distinct role(s) of 1P- and 2P-MRLC during cytokinesis has not been elucidated. In this study, a monoclonal antibody (4F12) specific for 2P-MRLC was raised and used to examine the roles of 2P-MRLC in cultured mammalian cells. Our confocal microscopic observations using 4F12 revealed that 2P-MRLC localized to the contractile ring, and, unexpectedly, to the midzone also. Interestingly, 2P-MRLC did not colocalize with 1P-MRLC, myosin II heavy chain, and F-actin at the midzone. These results suggest that 2P-MRLC has a role different from that of 1P-MRLC at the midzone, and is not a subunit of myosin II. PMID:22166199

  7. Modern Vaccine Adjuvant/Formulation—Session 9: Adjuvants

    PubMed Central

    Dalençon, François

    2013-01-01

    The Session 9 of the Modern Vaccine Adjuvant/Formulation meeting pointed out the permanent need for vaccine improvement and for adjuvant development. Indeed, the increasing use of recombinant subunit vaccines for both parenteral and mucosal vaccination necessitates the development of improved adjuvants. This session dealt with strategies for the development of new vaccine adjuvants with respect to the availability of new molecules targeting specifically the receptors of the systemic or mucosal immune system. PMID:23938771

  8. Vaccines, adjuvants and autoimmunity.

    PubMed

    Guimarães, Luísa Eça; Baker, Britain; Perricone, Carlo; Shoenfeld, Yehuda

    2015-10-01

    Vaccines and autoimmunity are linked fields. Vaccine efficacy is based on whether host immune response against an antigen can elicit a memory T-cell response over time. Although the described side effects thus far have been mostly transient and acute, vaccines are able to elicit the immune system towards an autoimmune reaction. The diagnosis of a definite autoimmune disease and the occurrence of fatal outcome post-vaccination have been less frequently reported. Since vaccines are given to previously healthy hosts, who may have never developed the disease had they not been immunized, adverse events should be carefully accessed and evaluated even if they represent a limited number of occurrences. In this review of the literature, there is evidence of vaccine-induced autoimmunity and adjuvant-induced autoimmunity in both experimental models as well as human patients. Adjuvants and infectious agents may exert their immune-enhancing effects through various functional activities, encompassed by the adjuvant effect. These mechanisms are shared by different conditions triggered by adjuvants leading to the autoimmune/inflammatory syndrome induced by adjuvants (ASIA syndrome). In conclusion, there are several case reports of autoimmune diseases following vaccines, however, due to the limited number of cases, the different classifications of symptoms and the long latency period of the diseases, every attempt for an epidemiological study has so far failed to deliver a connection. Despite this, efforts to unveil the connection between the triggering of the immune system by adjuvants and the development of autoimmune conditions should be undertaken. Vaccinomics is a field that may bring to light novel customized, personalized treatment approaches in the future.

  9. Laser vaccine adjuvants

    PubMed Central

    Kashiwagi, Satoshi; Brauns, Timothy; Gelfand, Jeffrey; Poznansky, Mark C

    2014-01-01

    Immunologic adjuvants are essential for current vaccines to maximize their efficacy. Unfortunately, few have been found to be sufficiently effective and safe for regulatory authorities to permit their use in vaccines for humans and none have been approved for use with intradermal vaccines. The development of new adjuvants with the potential to be both efficacious and safe constitutes a significant need in modern vaccine practice. The use of non-damaging laser light represents a markedly different approach to enhancing immune responses to a vaccine antigen, particularly with intradermal vaccination. This approach, which was initially explored in Russia and further developed in the US, appears to significantly improve responses to both prophylactic and therapeutic vaccines administered to the laser-exposed tissue, particularly the skin. Although different types of lasers have been used for this purpose and the precise molecular mechanism(s) of action remain unknown, several approaches appear to modulate dendritic cell trafficking and/or activation at the irradiation site via the release of specific signaling molecules from epithelial cells. The most recent study, performed by the authors of this review, utilized a continuous wave near-infrared laser that may open the path for the development of a safe, effective, low-cost, simple-to-use laser vaccine adjuvant that could be used in lieu of conventional adjuvants, particularly with intradermal vaccines. In this review, we summarize the initial Russian studies that have given rise to this approach and comment upon recent advances in the use of non-tissue damaging lasers as novel physical adjuvants for vaccines. PMID:25424797

  10. Full-Length Plasmodium falciparum Circumsporozoite Protein Administered with Long-Chain Poly(I·C) or the Toll-Like Receptor 4 Agonist Glucopyranosyl Lipid Adjuvant-Stable Emulsion Elicits Potent Antibody and CD4+ T Cell Immunity and Protection in Mice

    PubMed Central

    Kastenmüller, Kathrin; Espinosa, Diego A.; Trager, Lauren; Stoyanov, Cristina; Salazar, Andres M.; Pokalwar, Santosh; Singh, Sanjay; Dutta, Sheetij; Ockenhouse, Christian F.; Zavala, Fidel

    2013-01-01

    The Plasmodium falciparum circumsporozoite (CS) protein (CSP) is a major vaccine target for preventing malaria infection. Thus, developing strong and durable antibody and T cell responses against CSP with novel immunogens and potent adjuvants may improve upon the success of current approaches. Here, we compare four distinct full-length P. falciparum CS proteins expressed in Escherichia coli or Pichia pastoris for their ability to induce immunity and protection in mice when administered with long-chain poly(I·C) [poly(I·C)LC] as an adjuvant. CS proteins expressed in E. coli induced high-titer antibody responses against the NANP repeat region and potent CSP-specific CD4+ T cell responses. Moreover, E. coli-derived CS proteins in combination with poly(I·C)LC induced potent multifunctional (interleukin 2-positive [IL-2+], tumor necrosis factor alpha-positive [TNF-α+], gamma interferon-positive [IFN-γ+]) CD4+ effector T cell responses in blood, in spleen, and particularly in liver. Using transgenic Plasmodium berghei expressing the repeat region of P. falciparum CSP [Pb-CS(Pf)], we showed that there was a 1- to 4-log decrease in malaria rRNA in the liver following a high-dose challenge and ∼50% sterilizing protection with a low-dose challenge compared to control levels. Protection was directly correlated with high-level antibody titers but not CD4+ T cell responses. Finally, protective immunity was also induced using the Toll-like receptor 4 agonist glucopyranosyl lipid adjuvant-stable emulsion (GLA-SE) as the adjuvant, which also correlated with high antibody titers yet CD4+ T cell immunity that was significantly less potent than that with poly(I·C)LC. Overall, these data suggest that full-length CS proteins and poly(I·C)LC or GLA-SE offer a simple vaccine formulation to be used alone or in combination with other vaccines for preventing malaria infection. PMID:23275094

  11. Lipid nanoparticles for parenteral delivery of actives.

    PubMed

    Joshi, Medha D; Müller, Rainer H

    2009-02-01

    The present review compiles the applications of lipid nanoparticles mainly solid lipid nanoparticles (SLN), nanostructured lipid carriers (NLC) and lipid drug conjugates (LDC) in parenteral delivery of pharmaceutical actives. The attempts to incorporate anticancer agents, imaging agents, antiparasitics, antiarthritics, genes for transfection, agents for liver, cardiovascular and central nervous system targeting have been summarized. The utility of lipid nanoparticles as adjuvant has been discussed separately. A special focus of this review is on toxicity caused by these kinds of lipid nanoparticles with a glance on the fate of lipid nanoparticles after their parenteral delivery in vivo viz the protein adsorption patterns. PMID:18824097

  12. Vaccine Potentiation by Combination Adjuvants

    PubMed Central

    Levast, Benoît; Awate, Sunita; Babiuk, Lorne; Mutwiri, George; Gerdts, Volker; van Drunen Littel-van den Hurk, Sylvia

    2014-01-01

    Adjuvants are crucial components of vaccines. They significantly improve vaccine efficacy by modulating, enhancing, or extending the immune response and at the same time reducing the amount of antigen needed. In contrast to previously licensed adjuvants, current successful adjuvant formulations often consist of several molecules, that when combined, act synergistically by activating a variety of immune mechanisms. These “combination adjuvants” are already registered with several vaccines, both in humans and animals, and novel combination adjuvants are in the pipeline. With improved knowledge of the type of immune responses needed to successfully induce disease protection by vaccination, combination adjuvants are particularly suited to not only enhance, but also direct the immune responses desired to be either Th1-, Th2- or Th17-biased. Indeed, in view of the variety of disease and population targets for vaccine development, a panel of adjuvants will be needed to address different disease targets and populations. Here, we will review well-known and new combination adjuvants already licensed or currently in development—including ISCOMs, liposomes, Adjuvant Systems Montanides, and triple adjuvant combinations—and summarize their performance in preclinical and clinical trials. Several of these combination adjuvants are promising having promoted improved and balanced immune responses. PMID:26344621

  13. Radioprotective properties of detoxified lipid A from Salmonella minnesota R595

    SciTech Connect

    Snyder, S.L.; Walden, T.L.; Patchen, M.L.; MacVittie, T.J.; Fuchs, P.

    1986-07-01

    In the past, the toxicity of bacterial lipopolysaccharide (LPS) or its principal bioactive component, lipid A, has detracted from their potential use as radioprotectants. Recently, a relatively nontoxic monophosphoryl Lipid A (LAM) that retains many of the immunobiologic properties of LPS has been isolated from a polysaccharide deficient Re mutant strain of Salmonella minnesota (R595). The ability of the native endotoxic glycolipid (GL) from S. minnesota (R595) as well as diphosphoryl lipid A (LAD) and nontoxic monophosphoryl lipid A (LAM) derived from GL to protect LPS responsive (CD2F1 or C3H/HeN) and nonresponsive (C3H/HeJ) mice from 60Co gamma irradiation has been studied. Administration of GL, LAD, or LAM to CD2F1 or C3H/HeN mice (400 micrograms/kg) 24 h prior to exposure provided significant radioprotection. No protection was afforded to C3H/HeJ mice. Experiments were also conducted to determine the relative abilities of GL, LAD, and LAM to stimulate hematopoiesis as reflected by the endogenous spleen colony (E-CFU) assay. Protection was not correlated with the ability of these substances to increase E-CFUs or to induce colony-stimulating activity (CSA).

  14. Tuberculosis-like lesions arising from the use of Freund's complete adjuvant in an owl monkey (Aotus sp)

    SciTech Connect

    Malaga, Carlos A.; Weller, Richard E.; Broderson, J R.; Gozalo, Alfonso S.

    2004-04-01

    An apparently normal, non-tuberculin-reacting, splenectomized owl monkey presented tuberculosis-like lesions of the lung at necropsy. Histological and bacteriological examination failed to demonstrate the presence of acid-fast organisms. Retrospective inquiry showed the animal had been inoculated using complete Freund's Adjuvant during a malaria vaccine trial. Lesions observed were compatible with lipid embolism of the adjuvant in the lungs.

  15. Carbohydrate-based immune adjuvants

    PubMed Central

    Petrovsky, Nikolai; Cooper, Peter D

    2011-01-01

    The role for adjuvants in human vaccines has been a matter of vigorous scientific debate, with the field hindered by the fact that for over 80 years, aluminum salts were the only adjuvants approved for human use. To this day, alum-based adjuvants, alone or combined with additional immune activators, remain the only adjuvants approved for use in the USA. This situation has not been helped by the fact that the mechanism of action of most adjuvants has been poorly understood. A relative lack of resources and funding for adjuvant development has only helped to maintain alum’s relative monopoly. To seriously challenge alum’s supremacy a new adjuvant has many major hurdles to overcome, not least being alum’s simplicity, tolerability, safety record and minimal cost. Carbohydrate structures play critical roles in immune system function and carbohydrates also have the virtue of a strong safety and tolerability record. A number of carbohydrate compounds from plant, bacterial, yeast and synthetic sources have emerged as promising vaccine adjuvant candidates. Carbohydrates are readily biodegradable and therefore unlikely to cause problems of long-term tissue deposits seen with alum adjuvants. Above all, the Holy Grail of human adjuvant development is to identify a compound that combines potent vaccine enhancement with maximum tolerability and safety. This has proved to be a tough challenge for many adjuvant contenders. Nevertheless, carbohydrate-based compounds have many favorable properties that could place them in a unique position to challenge alum’s monopoly over human vaccine usage. PMID:21506649

  16. Adjuvant therapy of melanoma.

    PubMed

    Agarwala, S S; Kirkwood, J M

    1998-06-01

    Patients with AJCC Stage IIB and III melanoma have a poor 5-year survival rate which has been the driving force behind attempts to find an effective adjuvant therapy for this stage of disease that would effectively reduce relapse and improve survival. Immunotherapy with bacillus Calmette-Guerin (BCG), Corynebacterium parvum, and levamisole have not been successful in achieving this goal, nor have trials with chemotherapy in the adjuvant setting, including high-dose chemotherapy with autologous bone marrow transplantation. The recent Eastern Cooperative Oncology Group (ECOG) 1684 study showed significant improvement in relapse-free and overall survival with high doses of alpha interferon (IFNalpha) given for 1 year. Lower dosages of IFNalpha have to date been unsuccessful in impacting upon long-term survival. Recent data with vaccines have been encouraging, and the GM2-KLH vaccine is the focus of ongoing intergroup study comparing this treatment with IFNalpha in resected Stage IIB and III melanoma. The various regimens are reviewed in this article. PMID:9588723

  17. Molecular signatures of vaccine adjuvants.

    PubMed

    Olafsdottir, Thorunn; Lindqvist, Madelene; Harandi, Ali M

    2015-09-29

    Mass vaccination has saved millions of human lives and improved the quality of life in both developing and developed countries. The emergence of new pathogens and inadequate protection conferred by some of the existing vaccines such as vaccines for tuberculosis, influenza and pertussis especially in certain age groups have resulted in a move from empirically developed vaccines toward more pathogen tailored and rationally engineered vaccines. A deeper understanding of the interaction of innate and adaptive immunity at molecular level enables the development of vaccines that selectively target certain type of immune responses without excessive reactogenicity. Adjuvants constitute an imperative element of modern vaccines. Although a variety of candidate adjuvants have been evaluated in the past few decades, only a limited number of vaccine adjuvants are currently available for human use. A better understanding of the mode of action of adjuvants is pivotal to harness the potential of existing and new adjuvants in shaping a desired immune response. Recent advancement in systems biology powered by the emerging cutting edge omics technology has led to the identification of molecular signatures rapidly induced after vaccination in the blood that correlate and predict a later protective immune response or vaccine safety. This can pave ways to prospectively determine the potency and safety of vaccines and adjuvants. This review is intended to highlight the importance of big data analysis in advancing our understanding of the mechanisms of actions of adjuvants to inform rational development of future human vaccines. PMID:25989447

  18. Innate immunity and adjuvants

    PubMed Central

    Akira, Shizuo

    2011-01-01

    Innate immunity was for a long time considered to be non-specific because the major function of this system is to digest pathogens and present antigens to the cells involved in acquired immunity. However, recent studies have shown that innate immunity is not non-specific, but is instead sufficiently specific to discriminate self from pathogens through evolutionarily conserved receptors, designated Toll-like receptors (TLRs). Indeed, innate immunity has a crucial role in early host defence against invading pathogens. Furthermore, TLRs were found to act as adjuvant receptors that create a bridge between innate and adaptive immunity, and to have important roles in the induction of adaptive immunity. This paradigm shift is now changing our thinking on the pathogenesis and treatment of infectious, immune and allergic diseases, as well as cancers. Besides TLRs, recent findings have revealed the presence of a cytosolic detector system for invading pathogens. I will review the mechanisms of pathogen recognition by TLRs and cytoplasmic receptors, and then discuss the roles of these receptors in the development of adaptive immunity in response to viral infection. PMID:21893536

  19. Biosynthesis of pentosyl lipids by pea membranes.

    PubMed Central

    Hayashi, T; Maclachlan, G

    1984-01-01

    Pea membranes were incubated with UDP-[14C]xylose or UDP-[14C]arabinose and sequentially extracted with chloroform/methanol/water (10:10:3, by vol.) and sodium dodecyl sulphate (2%, w/v). An active epimerase in the membranes rapidly interconverted the two pentosyl nucleotides. Chromatographic analysis of the lipid extract revealed that both substrates gave rise to xylose- and arabinose-containing neutral lipids, xylolipid with properties similar to a polyisoprenol monophosphoryl derivative, and highly charged lipid-linked arabinosyl oligosaccharide. When UDP-[14C]pentose or the extracted lipid-linked [14C]arabinosyl oligosaccharide were used as substrates, their 14C was also incorporating into sodium dodecyl sulphate-soluble and -insoluble fractions as major end products. Polyacrylamide-gel electrophoresis of sodium dodecyl sulphate-soluble products indicated the formation of mobile components with Mr values between 40 000 and 200 000 (Sepharose CL-6B). The lipid-linked [14C]arabinosyl oligosaccharide possessed properties comparable with those of unsaturated polyisoprenyl pyrophosphoryl derivatives. It was hydrolysed by dilute acid to a charged product (apparent Mr 2300) that could be fractionated in alkali. It was degraded to shorter labelled oligosaccharides by slightly more concentrated acid and eventually to [14C]arabinose as the only labelled component. Susceptibility to acid hydrolysis, and methylation analysis, indicated that the oligosaccharide contained approximately seven sequential alpha-1,5-linked arabinofuranosyl units at the non-reducing end. Several acidic residues appear to be interposed between the terminal arabinosyl units and the charged lipid. Images Fig. 3. Fig. 8. PMID:6712596

  20. Convergent synthetic methodology for the construction of self-adjuvanting lipopeptide vaccines using a novel carbohydrate scaffold

    PubMed Central

    Fagan, Vincent; Toth, Istvan

    2014-01-01

    Summary A novel convergent synthetic strategy for the construction of multicomponent self-adjuvanting lipopeptide vaccines was developed. A tetraalkyne-functionalized glucose derivative and lipidated Fmoc-lysine were prepared by novel efficient and convenient syntheses. The carbohydrate building block was coupled to the self-adjuvanting lipidic moiety (three lipidated Fmoc-lysines) on solid support. Four copies of a group A streptococcal B cell epitope (J8) were then conjugated to the glyco-lipopeptide using a copper-catalyzed cycloaddition reaction. The approach was elaborated by the preparation of a second vaccine candidate which incorporated an additional promiscuous T-helper epitope. PMID:25161732

  1. Oily adjuvants and autoimmunity: now time for reconsideration?

    PubMed

    Whitehouse, M

    2012-02-01

    Immunologists have relied heavily on oil-based adjuvants to generate antibodies or induce auto-allergic responses in experimental animals. These are rarely used today for human vaccination because of their persistent irritancies and propensity to cause ulcers at sites of injection. However oily materials with adjuvant properties abound in our modern environment, both personal and extraneous. Their inadvertent impact as cryptotoxins may contribute to the rising incidence of auto-allergic diseases in recent times. Experimentally, the potential adjuvanticity of various oils, fats and other lipids can be evaluated by their ability (or otherwise) to induce auto-allergic disease(s) in rats and mice with, or even without, the addition of a mycobacterial immunostimulant. Genetic factors have been recognized that determine an animal's susceptibility or resistance to these oil-induced immunopathies. So it may be profitable to further characterize these factors, first in animals and then perhaps in human populations, to help find ways to enhance natural resistance to those adjuvant-active oils that may be widely distributed in the personal environment, notably mineral oil(s). (The six tables in this article summarize some relevant facts and a few conjectures.) A caveat: This review is restricted to the adjuvant properties of some oils in the personal environment. It does not cover the mechanisms of adjuvanticity.

  2. Immunopharmacology of lipid A mimetics.

    PubMed

    Bowen, William S; Gandhapudi, Siva K; Kolb, Joseph P; Mitchell, Thomas C

    2013-01-01

    The structural core of bacterial lipopolysaccharide, lipid A, has played a role in medicine since the 1890s when William Coley sought to harness its immunostimulatory properties in the form of a crude bacterial extract. Recent decades have brought remarkable clarity to the structure of lipid A and the multicomponent endotoxin receptor system that evolved to detect it. A range of therapeutically useful versions of lipid A now exists, including preparations of detoxified lipid A, synthetic copies of naturally occurring biological intermediates such as lipid IVa, and synthetic mimetics. These agents are finding use as vaccine adjuvants, antagonists and immunostimulants whose structural features have been refined to potentiate efficacy while decreasing the risk of inflammatory side effects.

  3. Mucosal adjuvants: Opportunities and challenges.

    PubMed

    Zeng, Lingbin

    2016-09-01

    Most pathogens access the body via mucosal surfaces. Mucosal vaccination is a highly effective and recommended method to prevent mucosally transmitted infections. Compared with immunization via intramuscular injection, mucosal immunization offers remarkable advantages, including non-invasiveness, low costs and reduced risk of transmission of blood-borne diseases, which make it more acceptable to human beings, especially to young children. However, only few mucosal vaccines are licensed for human, which is mainly due to the deficiency of safe and effective mucosal adjuvants. Adjuvants, as important components of most vaccines, are essential to enhance immunity and induce immune memory. The development of mucosal adjuvants, unfortunately, has been severely hampered by research strategies based on empiric trials and non-comprehensive methods for safety evaluation. Therefore, changing the research and development strategies of mucosal adjuvant field from empiricism based discovery to rational design based invention is highly demanded. The change of strategies mainly depends upon clarification of mechanism of mucosal adjuvant activity though a combination of life science, information science and materials science. PMID:27159278

  4. GLA-AF, an emulsion-free vaccine adjuvant for pandemic influenza.

    PubMed

    Clegg, Christopher H; Roque, Richard; Perrone, Lucy A; Rininger, Joseph A; Bowen, Richard; Reed, Steven G

    2014-01-01

    The ongoing threat from Influenza necessitates the development of new vaccine and adjuvant technologies that can maximize vaccine immunogenicity, shorten production cycles, and increase global vaccine supply. Currently, the most successful adjuvants for Influenza vaccines are squalene-based oil-in-water emulsions. These adjuvants enhance seroprotective antibody titers to homologous and heterologous strains of virus, and augment a significant dose sparing activity that could improve vaccine manufacturing capacity. As an alternative to an emulsion, we tested a simple lipid-based aqueous formulation containing a synthetic TLR4 ligand (GLA-AF) for its ability to enhance protection against H5N1 infection. GLA-AF was very effective in adjuvanting recombinant H5 hemagglutinin antigen (rH5) in mice and was as potent as the stable emulsion, SE. Both adjuvants induced similar antibody titers using a sub-microgram dose of rH5, and both conferred complete protection against a highly pathogenic H5N1 challenge. However, GLA-AF was the superior adjuvant in ferrets. GLA-AF stimulated a broader antibody response than SE after both the prime and boost immunization with rH5, and ferrets were better protected against homologous and heterologous strains of H5N1 virus. Thus, GLA-AF is a potent emulsion-free adjuvant that warrants consideration for pandemic influenza vaccine development. PMID:24551202

  5. The ultrastructure of tomatine adjuvant.

    PubMed

    Yang, Ya-Wun; Sheikh, Nadeem A; Morrow, W J W

    2002-12-01

    The tomatine adjuvant, consisting of tomatine, n-octyl-beta-D-glucopyranoside, phosphatidylethanolamine, cholesterol, and ovalbumin, has recently been shown to potentiate the immunogenicity of protein antigen and elicit cytotoxic T-lymphocyte responses in immunized animals. The physicochemical properties of tomatine adjuvant have not been characterized. The aim of this study was to examine the microstructure of this complex formulation, as directly related to its physicochemical properties. To elucidate the micromorphology of this system, the tomatine adjuvant was separated by isopycnic ultracentrifugation, followed by freeze fracturing and examination by transmission and scanning electron microscopy. The adjuvant mixture was shown to be composed of several micro- and nano-structures. The major fraction obtained from isopycnic separation was shown to consist of flaky needle-like microcrystals, approximately 80-160 nm in width and 2-4 microm in length. The tomatine crystals alone in 0.9% NaCl, on the other hand, were shown to be elongated hollow tubular crystals of hundreds of nanometers up to a few microns in length, along which n-octyl-beta-glucopyranoside was speculated to serve as a seeding microtemplate for gel crystallization of protein complexes. Indented marks within the gel phase were observed in the freeze fractured replicas of the adjuvant, suggesting that protein complexes may have been crystallized or precipitated within the gels. Several other forms of micro- and nano-structures were also observed, showing multiple-dispersion features with gel characteristics. The presence of gel crystalline and multiple-dispersed phases is postulated to contribute to the sustained immunopotentiation effect of tomatine adjuvant.

  6. QS-21: a potent vaccine adjuvant

    Technology Transfer Automated Retrieval System (TEKTRAN)

    QS-21 is an potent adjuvant derived from the bark of a Chilean tree, Quillaja saponaria. One of the advantages of this adjuvant is that it promotes a balanced humoral and cell-mediaed immune response and can be widely applicable to a variety of vaccines. This adjuvant has used for some veterinary va...

  7. Adjuvant therapy of malignant melanoma.

    PubMed

    Molife, R; Hancock, B W

    2002-10-01

    High risk surgically resected melanoma is associated with a less than 50% 5-year survival. Adjuvant therapy is an appropriate treatment modality in this setting, and is more likely to be effective as the tumour burden here is small. Clinical observations of spontaneous tumour regressions and a highly variable rate of disease progression suggest a role of the immune system in the natural history of melanoma. Biological agents have therefore been the subjects of numerous adjuvant studies. Early, randomised controlled trials (RCTs) of Bacillus Calmette-Guerin (BCG), levamisole, Corynebacterium parvum, chemotherapy, isolated limb perfusion (ILP), radiotherapy, transfer factor (TF), megestrol acetate and vitamin A yielded largely negative results. Current trials focus on vaccines and the interferons. To date the latter is the only therapy to have shown a significant benefit in the prospective randomised controlled phase III setting. This report represents a systematic review of studies in adjuvant therapy in melanoma. Data from ongoing studies is awaited before a role for adjuvant agents in high risk melanoma is confirmed. PMID:12399001

  8. [Adjuvants in modern medicine and veterinary].

    PubMed

    Kozlov, V G; Ozherelkov, S V; Sanin, A V; Kozhevnikova, T N

    2014-01-01

    The review is dedicated to immunologic adjuvants--various natural and synthetics substances that are added to vaccines for stimulation of specific immune response, but they do not induce specific response themselves. Critically important is the selection of the correct adjuvants, for which mechanisms of effect on immune system are studied the most. The majority of these mechanisms as well as physical-chemical and biological features of modern adjuvants are analyzed in the review. The problem of safety of adjuvants, types of immune response induced by adjuvants of various nature, excipients that are being verified or already in use in modern medicine and veterinary are also examined.

  9. A Semisynthetic Approach to New Immunoadjuvant Candidates: Site-Selective Chemical Manipulation of Escherichia coli Monophosphoryl Lipid A.

    PubMed

    D'Alonzo, Daniele; Cipolletti, Manuela; Tarantino, Giulia; Ziaco, Marcello; Pieretti, Giuseppina; Iadonisi, Alfonso; Palumbo, Giovanni; Alfano, Alberto; Giuliano, Mariateresa; De Rosa, Mario; Schiraldi, Chiara; Cammarota, Marcella; Parrilli, Michelangelo; Bedini, Emiliano; Corsaro, Maria M

    2016-07-25

    A semisynthetic approach to novel lipid A derivatives from Escherichia coli (E. coli) lipid A is reported. This methodology stands as an alternative to common approaches based exclusively on either total synthesis or extraction from bacterial sources. It relies upon the purification of the lipid A fraction from fed-batch fermentation of E. coli, followed by its structural modification through tailored, site-selective chemical reactions. In particular, modification of the lipid pattern and functionalization of the phosphate group as well as of the sole primary hydroxyl group were accomplished, highlighting the unusual reactivity of the molecule. Preliminary investigations of the immunostimulating activity of the new semisynthetic lipid A derivatives show that some of them stand out as promising, new immunoadjuvant candidates.

  10. Vaccine adjuvants as potential cancer immunotherapeutics.

    PubMed

    Temizoz, Burcu; Kuroda, Etsushi; Ishii, Ken J

    2016-07-01

    Accumulated evidence obtained from various clinical trials and animal studies suggested that cancer vaccines need better adjuvants than those that are currently licensed, which include the most commonly used alum and incomplete Freund's adjuvant, because of either a lack of potent anti-tumor immunity or the induction of undesired immunity. Several clinical trials using immunostimulatory adjuvants, particularly agonistic as well as non-agonistic ligands for TLRs, C-type lectin receptors, retinoic acid-inducible gene I-like receptors and stimulator of interferon genes, have revealed their therapeutic potential not only as vaccine adjuvants but also as anti-tumor agents. Recently, combinations of such immunostimulatory or immunomodulatory adjuvants have shown superior efficacy over their singular use, suggesting that seeking optimal combinations of the currently available or well-characterized adjuvants may provide a better chance for the development of novel adjuvants for cancer immunotherapy. PMID:27006304

  11. Vaccine adjuvants as potential cancer immunotherapeutics

    PubMed Central

    Temizoz, Burcu; Kuroda, Etsushi

    2016-01-01

    Accumulated evidence obtained from various clinical trials and animal studies suggested that cancer vaccines need better adjuvants than those that are currently licensed, which include the most commonly used alum and incomplete Freund’s adjuvant, because of either a lack of potent anti-tumor immunity or the induction of undesired immunity. Several clinical trials using immunostimulatory adjuvants, particularly agonistic as well as non-agonistic ligands for TLRs, C-type lectin receptors, retinoic acid-inducible gene I-like receptors and stimulator of interferon genes, have revealed their therapeutic potential not only as vaccine adjuvants but also as anti-tumor agents. Recently, combinations of such immunostimulatory or immunomodulatory adjuvants have shown superior efficacy over their singular use, suggesting that seeking optimal combinations of the currently available or well-characterized adjuvants may provide a better chance for the development of novel adjuvants for cancer immunotherapy. PMID:27006304

  12. Advances and challenges in mucosal adjuvant technology.

    PubMed

    Newsted, Daniel; Fallahi, Firouzeh; Golshani, Ashkan; Azizi, Ali

    2015-05-15

    Adjuvants play attractive roles in enhancement of immune response during vaccination; however, due to several challenges, only a limited number of adjuvants are licensed by health authorities. The lack of an effective mucosal adjuvant is even more significant as none of the licensed adjuvants revealed a strong enhancement in immune system after mucosal administration. Over the past two decades, several mucosal adjuvants have been developed to deliver antigens to the target cells in the mucosal immune system and increase specific immune responses. However, the safety and efficacy of these adjuvants for testing in human trials is still an important issue, requiring further study. In this article, we briefly review the challenges associated with most common mucosal adjuvants and discuss potential strategies for targeting the mucosal immune system.

  13. Improving vaccine delivery using novel adjuvant systems.

    PubMed

    Pichichero, Michael E

    2008-01-01

    Adjuvants have been common additions to vaccines to help facilitate vaccine delivery. With advancements in vaccine technology, several adjuvants which activate immune specific responses have emerged. Available data show these adjuvants elicit important immune responses in both healthy and immunocompromised populations, as well as the elderly. Guidelines for the use and licensure of vaccine adjuvants remain under discussion. However, there is a greater understanding of the innate and adaptive immune response, and the realization of the need for immune specific adjuvants appears to be growing. This is a focused review of four adjuvants currently in clinical trial development: ASO4, ASO2A, CPG 7907, and GM-CSF. The vaccines including these adjuvants are highly relevant today, and are expected to reduce the disease burden of cervical cancer, hepatitis B and malaria. PMID:18398303

  14. Freund's adjuvants: relationship of arthritogenicity and adjuvanticity in rats to vehicle composition

    PubMed Central

    Whitehouse, M. W.; Orr, K. J.; Beck, Frances W. J.; Pearson, C. M.

    1974-01-01

    Over a hundred compounds and natural materials were examined for their ability to induce arthritis in rats when mixed with heat-killed delipidated Mycobacteria tuberculosis. Many of these materials were also assessed for (CMI) adjuvant activity by their ability to induce allergic encephalomyelitis (EAE) in rats when mixed with guinea-pig spinal cord, both with and without added M. tuberculosis. Cyclization and/or the presence of oxygen atoms, or double bonds reduced (or abolished) the arthritogenic potential and adjuvanticity of alkanes>C10. Esters/triglycerides of fatty acids >C12, retinol acetate (not palmitate) and vitamins E and K showed co-arthritogenic and adjuvant activity. Other active lipids included squalene and cholesterol oleate, which are both present in human sebum. Sebaceous lipids may therefore perhaps function as natural adjuvants if resorbed during abrasion and infection. Squalane (perhydrosqualene), pristane and hexadecane were excellent substitutes for mineral oil in preparing arthritogenic adjuvants from various mycobacteria, C. rubrum and N. asteroides. These oily compounds were also very effective adjuvants per se, in the absence of bacterial material or emulsifier, for inducing EAE in Lewis rats. PMID:4214125

  15. Adjuvant formulation structure and composition are critical for the development of an effective vaccine against tuberculosis

    PubMed Central

    Orr, Mark T.; Fox, Christopher B.; Baldwin, Susan L.; Sivananthan, Sandra J.; Lucas, Elyse; Lin, Susan; Phan, Tony; Moon, James J.; Vedvick, Thomas S.; Reed, Steven G.; Coler, Rhea N.

    2013-01-01

    One third of the world is infected with Mycobacterium tuberculosis (Mtb) with eight million new cases of active tuberculosis (TB) each year. Development of a new vaccine to augment or replace the only approved TB vaccine, BCG, is needed to control this disease. Mtb infection is primarily controlled by TH1 cells through the production of IFN-γ and TNF which activate infected macrophages to kill the bacterium. Here we examine an array of adjuvant formulations containing the TLR4 agonist GLA to identify candidate adjuvants to pair with ID93, a lead TB vaccine antigen, to elicit protective TH1 responses. We evaluate a variety of adjuvant formulations including alum, liposomes, and oil-in-water emulsions to determine how changes in formulation composition alter adjuvant activity. We find that alum and an aqueous nanosuspension of GLA synergize to enhance generation of ID93-specific TH1 responses, whereas neither on their own are effective adjuvants for generation of ID93-specific TH1 responses. For GLA containing oil-in-water emulsions, the selection of the oil component is critical for adjuvant activity, whereas a variety of lipid components may be used in liposomal formulations of GLA. The composition of the liposome formulation of ID93/GLA does alter the magnitude of the TH1 response. These results demonstrate that there are multiple solutions for an effective formulation of a novel TB vaccine candidate that enhances both TH1 generation and protective efficacy. PMID:23933525

  16. Adjuvant therapy for endometrial cancer

    PubMed Central

    DeLeon, Maria C.; Ammakkanavar, Natraj R.

    2014-01-01

    Endometrial cancer is a common gynecologic malignancy typically diagnosed at early stage and cured with surgery alone. Adjuvant therapy is tailored according to the risk of recurrence, estimated based on the International Federation of Gynecology and Obstetrics (FIGO) stage and other histological factors. The objective of this manuscript is to review the evidence guiding adjuvant therapy for early stage and locally advanced uterine cancer. For patients with early stage disease, minimizing toxicity, while preserving outstanding cure rates remains the major goal. For patients with locally advanced endometrial cancer optimal combined regimens are being defined. Risk stratification based on molecular traits is under development and may aid refine the current risk prediction model and permit personalized approaches for women with endometrial cancer. PMID:24761218

  17. Biosafe Nanoscale Pharmaceutical Adjuvant Materials

    PubMed Central

    Jin, Shubin; Li, Shengliang; Wang, Chongxi; Liu, Juan; Yang, Xiaolong; Wang, Paul C.; Zhang, Xin; Liang, Xing-Jie

    2014-01-01

    Thanks to developments in the field of nanotechnology over the past decades, more and more biosafe nanoscale materials have become available for use as pharmaceutical adjuvants in medical research. Nanomaterials possess unique properties which could be employed to develop drug carriers with longer circulation time, higher loading capacity, better stability in physiological conditions, controlled drug release, and targeted drug delivery. In this review article, we will review recent progress in the application of representative organic, inorganic and hybrid biosafe nanoscale materials in pharmaceutical research, especially focusing on nanomaterial-based novel drug delivery systems. In addition, we briefly discuss the advantages and notable functions that make these nanomaterials suitable for the design of new medicines; the biosafety of each material discussed in this article is also highlighted to provide a comprehensive understanding of their adjuvant attributes. PMID:25429253

  18. Adjuvant progestagens for endometrial cancer

    PubMed Central

    Martin-Hirsch, Pierre PL; Bryant, Andrew; Keep, Sarah L; Kitchener, Henry C; Lilford, Richard

    2014-01-01

    Background Endometrial cancer is the most common genital tract carcinoma among women in developed countries, with most women presenting with stage 1 disease. Adjuvant progestagen therapy has been advocated following primary surgery to reduce the risk of recurrence of disease. Objectives To evaluate the effectiveness and safety of adjuvant progestagen therapy for the treatment of endometrial cancer. Search methods We searched the Cochrane Gynaecological Cancer Group Trials Specilaised Register, Cochrane Central Register of Controlled Trials (CENTRAL) Issue 2, 2009. MEDLINE and EMBASE up to April 2009. Selection criteria Randomised controlled trials (RCTs) of progestagen therapy in women who have had surgery for endometrial cancer. Data collection and analysis Two review authors independently abstracted data and assessed risk of bias. Risk ratios (RRs) comparing survival in women who did and did not receive progestagen were pooled in random effects meta-analyses.. Main results Seven trials assessing 4556 women were identified. Three trials included women with stage one disease only, whereas four included women with more advanced disease. Meta-analysis of four trials showed that there was no significant difference in the risk of death at five years between adjuvant progestagen therapy and no further treatment (RR = 1.00, 95% CI 0.85 to 1.18). This conclusion is also robust to single trial analyses at 4 and 7 years and in one trial across all points in time using a hazard ratio (HR). There was also no significant difference between progestagen therapy and control in terms of the risk of death from endometrial cancer, cardiovascular disease and intercurrent disease. Relapse of disease appeared to be reduced by progestagen therapy in one trial (HR = 0.71, 95% CI 0.52 to 0.97 and 5 year RR = 0.74, 95% CI 0.58 to 0.96), but there was no evidence of a difference in disease recurrence in another trial at 7 years (RR = 1.34, 95% CI 0.79 to 2.27). Authors’ conclusions There

  19. Lipid IVa incompletely activates MyD88-independent Toll-like receptor 4 signaling in mouse macrophage cell lines.

    PubMed

    Ogura, Norihiko; Muroi, Masashi; Sugiura, Yuka; Tanamoto, Ken-ichi

    2013-04-01

    We investigated the difference in the effect of synthetic lipid A compounds on MyD88-dependent and -independent Toll-like receptor 4 (TLR4) signaling in mouse macrophage cells. At higher concentrations, Escherichia coli-type hexa-acylated lipid A 506, Salmonella-type hepta-acylated lipid A 516, the lipid A precursor lipid IVa and monophosphoryl lipid A induced similar levels of production of the MyD88-dependent cytokine IL-1β although their potencies varied, whereas the maximum production of the MyD88-independent cytokine RANTES induced by lipid IVa was less than 50% that of other lipid A compounds. A maximum level of NF-κB activation, which is involved in IL-1β gene transcription, was also induced to a similar level by these four lipid A compounds, while the maximum level of IFN-β promoter activity induced during MyD88-independent signaling was also less than 50% for lipid IVa stimulation compared with other lipid A compounds. Early IκBα phosphorylation activated by MyD88-dependent signaling was similarly induced by 506 and lipid IVa, whereas lipid IVa barely stimulated the phosphorylation of IRF3, a MyD88-independent transcription factor, although efficient phosphorylation was observed with 506 stimulation. These results indicate that lipid IVa has limited activity toward MyD88-independent signaling of TLR4, in macrophage cell lines, despite having efficient activity in the MyD88-dependent pathway.

  20. Micro/nanoparticle adjuvants for antileishmanial vaccines: present and future trends.

    PubMed

    Badiee, Ali; Heravi Shargh, Vahid; Khamesipour, Ali; Jaafari, Mahmoud Reza

    2013-01-21

    Leishmania infection continues to have a major impact on public health inducing significant morbidity and mortality mostly in the poorest populations. Drug resistance, toxicity and side effects associated with expensive chemotherapeutic treatments and difficult reservoir control emphasize the need for a safe and effective vaccine which is not available yet. Although, Leishmanization (LZ) was shown to be effective against cutaneous leishmaniasis, standardization and safety are the main problems of LZ. First generation killed parasites demonstrated limited efficacy in phase 3 trials and moreover well defined molecules have not reached to phase 3 yet. Limited efficacy in vaccines against leishmaniasis is partly due to lack of an appropriate adjuvant. Hence, the use of particulate delivery systems as carriers for antigen and/or immunostimulatory adjuvants for effective delivery to the antigen-presenting cells (APCs) is a valuable strategy to enhance vaccine efficacies. Particle-based delivery systems such as emulsions, liposomes, virosomes, and polymeric microspheres have the potential for successfully delivering antigens, which can then be further improved via incorporation of additional antigenic or immustimulatory adjuvant components in or onto the particle carrier system. In this review, we have attempted to provide a list of particulate vaccine delivery systems involved in the production of candidate leishmaniasis vaccines and introduced some potentially useful vaccine delivery systems for leishmaniasis in future experiments. In conclusion, combination vaccines (adjuvant systems) composed of candidate antigens and more importantly well-developed particulate delivery systems, such as lipid-based particles containing immunostimulatory adjuvants, have a chance to succeed as antileishmanial vaccines.

  1. Adjuvants: Classification, Modus Operandi, and Licensing

    PubMed Central

    Apostólico, Juliana de Souza

    2016-01-01

    Vaccination is one of the most efficient strategies for the prevention of infectious diseases. Although safer, subunit vaccines are poorly immunogenic and for this reason the use of adjuvants is strongly recommended. Since their discovery in the beginning of the 20th century, adjuvants have been used to improve immune responses that ultimately lead to protection against disease. The choice of the adjuvant is of utmost importance as it can stimulate protective immunity. Their mechanisms of action have now been revealed. Our increasing understanding of the immune system, and of correlates of protection, is helping in the development of new vaccine formulations for global infections. Nevertheless, few adjuvants are licensed for human vaccines and several formulations are now being evaluated in clinical trials. In this review, we briefly describe the most well known adjuvants used in experimental and clinical settings based on their main mechanisms of action and also highlight the requirements for licensing new vaccine formulations. PMID:27274998

  2. Vaccine adjuvants: putting innate immunity to work.

    PubMed

    Coffman, Robert L; Sher, Alan; Seder, Robert A

    2010-10-29

    Adjuvants enhance immunity to vaccines and experimental antigens by a variety of mechanisms. In the past decade, many receptors and signaling pathways in the innate immune system have been defined and these innate responses strongly influence the adaptive immune response. The focus of this review is to delineate the innate mechanisms by which adjuvants mediate their effects. We highlight how adjuvants can be used to influence the magnitude and alter the quality of the adaptive response in order to provide maximum protection against specific pathogens. Despite the impressive success of currently approved adjuvants for generating immunity to viral and bacterial infections, there remains a need for improved adjuvants that enhance protective antibody responses, especially in populations that respond poorly to current vaccines. However, the larger challenge is to develop vaccines that generate strong T cell immunity with purified or recombinant vaccine antigens.

  3. Adjuvants are Key Factors for the Development of Future Vaccines: Lessons from the Finlay Adjuvant Platform

    PubMed Central

    Pérez, Oliver; Romeu, Belkis; Cabrera, Osmir; González, Elizabeth; Batista-Duharte, Alexander; Labrada, Alexis; Pérez, Rocmira; Reyes, Laura M.; Ramírez, Wendy; Sifontes, Sergio; Fernández, Nelson; Lastre, Miriam

    2013-01-01

    The development of effective vaccines against neglected diseases, especially those associated with poverty and social deprivation, is urgently needed. Modern vaccine technologies and a better understanding of the immune response have provided scientists with the tools for rational and safer design of subunit vaccines. Often, however, subunit vaccines do not elicit strong immune responses, highlighting the need to incorporate better adjuvants; this step therefore becomes a key factor for vaccine development. In this review we outline some key features of modern vaccinology that are linked with the development of better adjuvants. In line with the increased desire to obtain novel adjuvants for future vaccines, the Finlay Adjuvant Platform offers a novel approach for the development of new and effective adjuvants. The Finlay Adjuvants (AFs), AFPL (proteoliposome), and AFCo (cochleate), were initially designed for parenteral and mucosal applications, and constitute potent adjuvants for the induction of Th1 responses against several antigens. This review summarizes the status of the Finlay technology in producing promising adjuvants for unsolved-vaccine diseases including mucosal approaches and therapeutic vaccines. Ideas related to adjuvant classification, adjuvant selection, and their possible influence on innate recognition via multiple toll-like receptors are also discussed. PMID:24348475

  4. Immunological adjuvants: a role for liposomes.

    PubMed

    Gregoriadis, G

    1990-03-01

    Recent technological advances have resulted in the production of safe subunit and synthetic small peptide vaccines. These vaccines are weakly or non-immunogenic and cannot, therefore, be used effectively in the absence of immunological adjuvants (agents that can induce strong immunity to antigens). Owing to the toxicity of adjuvants, only one (aluminium salts) has hitherto been licensed for use in humans, and it is far from ideal. In this article, Gregory Gregoriadis discusses the use of liposomes as an alternative safe, versatile, universal adjuvant that can induce humoral- and cell-mediated immunity to antigens when administered parenterally or enterally. PMID:2186746

  5. Development of a highly thermostable, adjuvanted human papillomavirus vaccine.

    PubMed

    Hassett, Kimberly J; Meinerz, Natalie M; Semmelmann, Florian; Cousins, Megan C; Garcea, Robert L; Randolph, Theodore W

    2015-08-01

    A major impediment to economical, worldwide vaccine distribution is the requirement for a "cold chain" to preserve antigenicity. We addressed this problem using a model human papillomavirus (HPV) vaccine stabilized by immobilizing HPV16 L1 capsomeres, i.e., pentameric subunits of the virus capsid, within organic glasses formed by lyophilization. Lyophilized glass and liquid vaccine formulations were incubated at 50°C for 12weeks, and then analyzed for retention of capsomere conformational integrity and the ability to elicit neutralizing antibody responses after immunization of BALB/c mice. Capsomeres in glassy-state vaccines retained tertiary and quaternary structure, and critical conformational epitopes. Moreover, glassy formulations adjuvanted with aluminum hydroxide or aluminum hydroxide and glycopyranoside lipid A were not only as immunogenic as the commercially available HPV vaccine Cervarix®, but also retained complete neutralizing immunogenicity after high-temperature storage. The thermal stability of such adjuvanted vaccine powder preparations may thus eliminate the need for the cold chain. PMID:25998700

  6. Novel Adjuvants and Immunomodulators for Veterinary Vaccines.

    PubMed

    Heegaard, Peter M H; Fang, Yongxiang; Jungersen, Gregers

    2016-01-01

    Adjuvants are crucial for efficacy of vaccines, especially subunit and recombinant vaccines. Rational vaccine design, including knowledge-based and molecularly defined adjuvants tailored for directing and potentiating specific types of host immune responses towards the antigens included in the vaccine is becoming a reality with our increased understanding of innate and adaptive immune activation. This will allow future vaccines to induce immune reactivity having adequate specificity as well as protective and recallable immune effector mechanisms in appropriate body compartments, including mucosal surfaces. Here we describe these new developments and, when possible, relate new immunological knowledge to the many years of experience with traditional, empirical adjuvants. Finally, some protocols are given for production of emulsion (oil-based) and liposome-based adjuvant/antigen formulations.

  7. Extended Adjuvant Therapy for Breast Cancer

    Cancer.gov

    An NCI Cancer Currents blog on findings from a recent clinical trial which showed that extending adjuvant therapy with an aromatase inhibitor can have important benefits for some women with early-stage cancer.

  8. Adjuvant Bisphosphonates for Postmenopausal Breast Cancer

    Cancer.gov

    A summary of a meta-analysis of randomized trials of bisphosphonates as adjuvant therapy for women with early-stage breast cancer that shows the drugs can reduce the rate of disease recurrence in bone.

  9. Applications of nanomaterials as vaccine adjuvants

    PubMed Central

    Zhu, Motao; Wang, Rongfu; Nie, Guangjun

    2014-01-01

    Vaccine adjuvants are applied to amplify the recipient's specific immune responses against pathogen infection or malignancy. A new generation of adjuvants is being developed to meet the demands for more potent antigen-specific responses, specific types of immune responses, and a high margin of safety. Nanotechnology provides a multifunctional stage for the integration of desired adjuvant activities performed by the building blocks of tailor-designed nanoparticles. Using nanomaterials for antigen delivery can provide high bioavailability, sustained and controlled release profiles, and targeting and imaging properties resulting from manipulation of the nanomaterials’ physicochemical properties. Moreover, the inherent immune-regulating activity of particular nanomaterials can further promote and shape the cellular and humoral immune responses toward desired types. The combination of both the delivery function and immunomodulatory effect of nanomaterials as adjuvants is thought to largely benefit the immune outcomes of vaccination. In this review, we will address the current achievements of nanotechnology in the development of novel adjuvants. The potential mechanisms by which nanomaterials impact the immune responses to a vaccine and how physicochemical properties, including size, surface charge and surface modification, impact their resulting immunological outcomes will be discussed. This review aims to provide concentrated information to promote new insights for the development of novel vaccine adjuvants. PMID:25483497

  10. Adjuvant therapy after surgical stone management.

    PubMed

    Ferrandino, Michael N; Monga, Manoj; Preminger, Glenn M

    2009-01-01

    The aim of this article was to review the most widely researched adjuvant medical therapies for the surgical management of urolithiasis. Articles were identified and reviewed from PubMed and Medline databases with MeSH headings focusing on the various surgical treatments of urolithiasis and adjuvant therapy. Additional articles were retrieved from references and conference proceedings. Surgical treatments reviewed included shockwave lithotripsy, ureteroscopy, and percutaneous nephrolithotomy. Adjuvant therapy was considered medical or complementary therapy as an adjunct to these surgical interventions. Adjuvant therapy for the surgical management of urolithiasis has been documented to increase stone-free rates, reduce stone remission rates, prevent renal damage, and decrease postoperative morbidity. A variety of agents have been studied, ranging from antioxidants to alpha-blockers and to alkalinizing agents. Additionally, there is increasing interest in complementary adjuvant therapy (ie, acupuncture). Adjuvant therapy is a fertile area for research in the surgical management of urolithiasis. The optimal agents have yet to be determined and therefore further investigation is warranted and necessary.

  11. Do lipids influence the allergic sensitization process?

    PubMed Central

    Bublin, Merima; Eiwegger, Thomas; Breiteneder, Heimo

    2014-01-01

    Allergic sensitization is a multifactorial process that is not only influenced by the allergen and its biological function per se but also by other small molecular compounds, such as lipids, that are directly bound as ligands by the allergen or are present in the allergen source. Several members of major allergen families bind lipid ligands through hydrophobic cavities or electrostatic or hydrophobic interactions. These allergens include certain seed storage proteins, Bet v 1–like and nonspecific lipid transfer proteins from pollens and fruits, certain inhalant allergens from house dust mites and cockroaches, and lipocalins. Lipids from the pollen coat and furry animals and the so-called pollen-associated lipid mediators are codelivered with the allergens and can modulate the immune responses of predisposed subjects by interacting with the innate immune system and invariant natural killer T cells. In addition, lipids originating from bacterial members of the pollen microbiome contribute to the outcome of the sensitization process. Dietary lipids act as adjuvants and might skew the immune response toward a TH2-dominated phenotype. In addition, the association with lipids protects food allergens from gastrointestinal degradation and facilitates their uptake by intestinal cells. These findings will have a major influence on how allergic sensitization will be viewed and studied in the future. PMID:24880633

  12. Adjuvant effects of saponins on animal immune responses*

    PubMed Central

    Rajput, Zahid Iqbal; Hu, Song-hua; Xiao, Chen-wen; Arijo, Abdullah G.

    2007-01-01

    Vaccines require optimal adjuvants including immunopotentiator and delivery systems to offer long term protection from infectious diseases in animals and man. Initially it was believed that adjuvants are responsible for promoting strong and sustainable antibody responses. Now it has been shown that adjuvants influence the isotype and avidity of antibody and also affect the properties of cell-mediated immunity. Mostly oil emulsions, lipopolysaccharides, polymers, saponins, liposomes, cytokines, ISCOMs (immunostimulating complexes), Freund’s complete adjuvant, Freund’s incomplete adjuvant, alums, bacterial toxins etc., are common adjuvants under investigation. Saponin based adjuvants have the ability to stimulate the cell mediated immune system as well as to enhance antibody production and have the advantage that only a low dose is needed for adjuvant activity. In the present study the importance of adjuvants, their role and the effect of saponin in immune system is reviewed. PMID:17323426

  13. Adjuvant Cationic Liposomes Presenting MPL and IL-12 Induce Cell Death, Suppress Tumor Growth, and Alter the Cellular Phenotype of Tumors in a Murine Model of Breast Cancer

    PubMed Central

    2015-01-01

    Dendritic cells (DC) process and present antigens to T lymphocytes, inducing potent immune responses when encountered in association with activating signals, such as pathogen-associated molecular patterns. Using the 4T1 murine model of breast cancer, cationic liposomes containing monophosphoryl lipid A (MPL) and interleukin (IL)-12 were administered by intratumoral injection. Combination multivalent presentation of the Toll-like receptor-4 ligand MPL and cytotoxic 1,2-dioleoyl-3-trmethylammonium-propane lipids induced cell death, decreased cellular proliferation, and increased serum levels of IL-1β and tumor necrosis factor (TNF)-α. The addition of recombinant IL-12 further suppressed tumor growth and increased expression of IL-1β, TNF-α, and interferon-γ. IL-12 also increased the percentage of cytolytic T cells, DC, and F4/80+ macrophages in the tumor. While single agent therapy elevated levels of nitric oxide synthase 3-fold above basal levels in the tumor, combination therapy with MPL cationic liposomes and IL-12 stimulated a 7-fold increase, supporting the observed cell cycle arrest (loss of Ki-67 expression) and apoptosis (TUNEL positive). In mice bearing dual tumors, the growth of distal, untreated tumors mirrored that of liposome-treated tumors, supporting the presence of a systemic immune response. PMID:25179345

  14. Beyond antigens and adjuvants: formulating future vaccines.

    PubMed

    Moyer, Tyson J; Zmolek, Andrew C; Irvine, Darrell J

    2016-03-01

    The need to optimize vaccine potency while minimizing toxicity in healthy recipients has motivated studies of the formulation of vaccines to control how, when, and where antigens and adjuvants encounter immune cells and other cells/tissues following administration. An effective subunit vaccine must traffic to lymph nodes (LNs), activate both the innate and adaptive arms of the immune system, and persist for a sufficient time to promote a mature immune response. Here, we review approaches to tailor these three aspects of vaccine function through optimized formulations. Traditional vaccine adjuvants activate innate immune cells, promote cell-mediated transport of antigen to lymphoid tissues, and promote antigen retention in LNs. Recent studies using nanoparticles and other lymphatic-targeting strategies suggest that direct targeting of antigens and adjuvant compounds to LNs can also enhance vaccine potency without sacrificing safety. The use of formulations to regulate biodistribution and promote antigen and inflammatory cue co-uptake in immune cells may be important for next-generation molecular adjuvants. Finally, strategies to program vaccine kinetics through novel formulation and delivery strategies provide another means to enhance immune responses independent of the choice of adjuvant. These technologies offer the prospect of enhanced efficacy while maintaining high safety profiles necessary for successful vaccines.

  15. Synthetic Self-Adjuvanting Glycopeptide Cancer Vaccines

    NASA Astrophysics Data System (ADS)

    Payne, Richard; McDonald, David; Byrne, Scott

    2015-10-01

    Due to changes in glycosyltransferase expression during tumorigenesis, the glycoproteins of cancer cells often carry highly truncated carbohydrate chains compared to those on healthy cells. These glycans are known as tumor-associated carbohydrate antigens, and are prime targets for use in vaccines for the prevention and treatment of cancer. Herein, we review the state-of-the-art in targeting the immune system towards tumor-associated glycopeptide antigens via synthetic self adjuvanting vaccines, in which the antigenic and adjuvanting moieties of the vaccines are present in the same molecule. The majority of the self-adjuvanting glycopeptide cancer vaccines reported to date employ antigens from mucin 1, a protein which is highly over-expressed and aberrantly glycosylated in many forms of cancer. The adjuvants used in these vaccines predominantly include lipopeptide- or lipoamino acid-based TLR2 agonists, although studies investigating stimulation of TLR9 and TLR4 are also discussed. Most of these adjuvants are highly lipophilic, and, upon conjugation to antigenic peptides, provide amphiphilic vaccine molecules. The amphiphilic nature of these vaccine constructs can lead to the formation of higher-order structures by vaccines in solution, which are likely to be important for their efficacy in vivo.

  16. Oil-based emulsion vaccine adjuvants.

    PubMed

    Schijns, Virgil E J C; Strioga, Marius; Ascarateil, Stephane

    2014-01-01

    Vaccine adjuvants are critical components in experimental and licensed vaccines used in human and veterinary medicine. When aiming to evoke an immune response to a purified antigen, the administration of antigen alone is often insufficient, unless the antigen contains microbial structures or has a natural particulate structure. In most cases, the rationale to use an adjuvant is obvious to the experimental immunologist or the professional vaccinologist, who is familiar with the nature of the antigen, and the aim of the vaccine to elicit a specific antibody response and/or a specific type of T cell response. In this unit, we describe protocols to formulate antigens with oil-based emulsions. Such emulsions represent a major prototype adjuvant category that is frequently used in experimental preclinical vaccines, as well as veterinary and human vaccines.

  17. Adjuvants and vector systems for allergy vaccines.

    PubMed

    Moingeon, Philippe; Lombardi, Vincent; Saint-Lu, Nathalie; Tourdot, Sophie; Bodo, Véronique; Mascarell, Laurent

    2011-05-01

    Allergen-specific immunotherapy represents a curative treatment of type I allergies. Subcutaneous immunotherapy is conducted with allergens adsorbed on aluminum hydroxide or calcium phosphate particles, whereas sublingual immunotherapy relies on high doses of soluble allergen without any immunopotentiator. There is a potential benefit of adjuvants enhancing regulatory and Th1 CD4+T cell responses during specific immunotherapy. Molecules affecting dendritic cells favor the induction of T regulatory cell and Th1 responses and represent valid candidate adjuvants for allergy vaccines. Furthermore, the interest in viruslike particles and mucoadhesive particulate vector systems, which may better address the allergen(s) to tolerogenic antigen-presenting cells, is documented.

  18. [ADJUVANTED INFLUENZA VACCINES: DATA FROM DIRECT COMPARATIVE STUDIES].

    PubMed

    Chernikova, M I; Vasiliev, Yu M

    2015-01-01

    Vaccines are the cornerstone of influenza control, however available vaccines are subject to certain limitations. Adjuvanted vaccines are a promising approach, however available adjuvants have a suboptimal effectiveness and safety profile. Data from direct comparative trials are necessary for selection of optimal adjuvants among currently available and search for novel safe and effective adjuvants for next generation influenza vaccines. Data from published direct comparative studies of adjuvants for influenza vaccines are summarized, a lack of such studies is noted, especially those using adequate methods and designs and comparing adjuvants of major groups (nature/source and mechanism of action). Several promising approaches of adjuvant research and development could be identified: chitosan-based adjuvants, oil-in-water emulsions and multi-component formulations (depot + immune modulating components).

  19. Outlining novel cellular adjuvant products for therapeutic vaccines against cancer.

    PubMed

    Tefit, Josianne Nitcheu; Serra, Vincent

    2011-08-01

    Despite the library of new adjuvants available for use in vaccines, we remain, at present, almost reliant on aluminum-based compounds for clinical use. The increasing use of recombinant subunit vaccines, however, makes the need for improved adjuvant of particular interest. Adjuvants are crucial components of all cancer vaccines whether they are composed of whole cells, proteins or peptides. For the purposes of this article, cellular adjuvant products are defined as adjuvants associated with cellular or T-cell immunity. Several pharmaceutical companies are developing new adjuvants or immune enhancers for the treatment of cancers such as melanoma and non-small-cell lung carcinoma. Several products are being developed and have entered clinical trials either alone or in combination. In this article, we discuss recent adjuvant development and novel cellular adjuvant products for therapeutic cancer vaccines.

  20. Liposome-Based Adjuvants for Subunit Vaccines: Formulation Strategies for Subunit Antigens and Immunostimulators

    PubMed Central

    Tandrup Schmidt, Signe; Foged, Camilla; Smith Korsholm, Karen; Rades, Thomas; Christensen, Dennis

    2016-01-01

    The development of subunit vaccines has become very attractive in recent years due to their superior safety profiles as compared to traditional vaccines based on live attenuated or whole inactivated pathogens, and there is an unmet medical need for improved vaccines and vaccines against pathogens for which no effective vaccines exist. The subunit vaccine technology exploits pathogen subunits as antigens, e.g., recombinant proteins or synthetic peptides, allowing for highly specific immune responses against the pathogens. However, such antigens are usually not sufficiently immunogenic to induce protective immunity, and they are often combined with adjuvants to ensure robust immune responses. Adjuvants are capable of enhancing and/or modulating immune responses by exposing antigens to antigen-presenting cells (APCs) concomitantly with conferring immune activation signals. Few adjuvant systems have been licensed for use in human vaccines, and they mainly stimulate humoral immunity. Thus, there is an unmet demand for the development of safe and efficient adjuvant systems that can also stimulate cell-mediated immunity (CMI). Adjuvants constitute a heterogeneous group of compounds, which can broadly be classified into delivery systems or immunostimulators. Liposomes are versatile delivery systems for antigens, and they can carefully be customized towards desired immune profiles by combining them with immunostimulators and optimizing their composition, physicochemical properties and antigen-loading mode. Immunostimulators represent highly diverse classes of molecules, e.g., lipids, nucleic acids, proteins and peptides, and they are ligands for pattern-recognition receptors (PRRs), which are differentially expressed on APC subsets. Different formulation strategies might thus be required for incorporation of immunostimulators and antigens, respectively, into liposomes, and the choice of immunostimulator should ideally be based on knowledge regarding the specific PRR

  1. The TLR4 Agonist Vaccine Adjuvant, GLA-SE, Requires Canonical and Atypical Mechanisms of Action for TH1 Induction

    PubMed Central

    Cauwelaert, Natasha Dubois; Desbien, Anthony L.; Hudson, Thomas E.; Pine, Samuel O.; Reed, Steven G.; Coler, Rhea N.; Orr, Mark T.

    2016-01-01

    The Toll-like receptor 4 agonist glucopyranosyl lipid adjuvant formulated in a stable emulsion (GLA-SE) promotes strong TH1 and balanced IgG1/IgG2 responses to protein vaccine antigens. This enhanced immunity is sufficient to provide protection against many diseases including tuberculosis and leishmaniasis. To better characterize the adjuvant action it is important to understand how the different cytokines and transcription factors contribute to the initiation of immunity. In the present study using T-bet-/- and IL-12-/- mice and a blocking anti-IFNαR1 monoclonal antibody, we define mechanisms of adjuvant activity of GLA-SE. In accordance with previous studies of TLR4 agonist based adjuvants, we found that TH1 induction via GLA-SE was completely dependent upon T-bet, a key transcription factor for IFNγ production and TH1 differentiation. Consistent with this, deficiency of IL-12, a cytokine canonical to TH1 induction, ablated TH1 induction via GLA-SE. Finally we demonstrate that the innate immune response to GLA-SE, including rapid IFNγ production by memory CD8+ T cells and NK cells, was contingent on type I interferon, a cytokine group whose association with TH1 induction is contextual, and that they contributed to the adjuvant activity of GLA-SE. PMID:26731269

  2. 21 CFR 172.710 - Adjuvants for pesticide use dilutions.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Adjuvants for pesticide use dilutions. 172.710... HUMAN CONSUMPTION Other Specific Usage Additives § 172.710 Adjuvants for pesticide use dilutions. The following surfactants and related adjuvants may be safely added to pesticide use dilutions by a grower...

  3. 21 CFR 582.99 - Adjuvants for pesticide chemicals.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... § 582.99 Adjuvants for pesticide chemicals. Adjuvants, identified and used in accordance with 40 CFR 180.1001(c) and (d), which are added to pesticide use dilutions by a grower or applicator prior to... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Adjuvants for pesticide chemicals. 582.99...

  4. 21 CFR 182.99 - Adjuvants for pesticide chemicals.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ....99 Adjuvants for pesticide chemicals. Adjuvants, identified and used in accordance with 40 CFR 180.1001 (c) and (d), which are added to pesticide use dilutions by a grower or applicator prior to... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Adjuvants for pesticide chemicals. 182.99...

  5. 21 CFR 172.710 - Adjuvants for pesticide use dilutions.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Adjuvants for pesticide use dilutions. 172.710... HUMAN CONSUMPTION Other Specific Usage Additives § 172.710 Adjuvants for pesticide use dilutions. The following surfactants and related adjuvants may be safely added to pesticide use dilutions by a grower...

  6. 21 CFR 182.99 - Adjuvants for pesticide chemicals.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ....99 Adjuvants for pesticide chemicals. Adjuvants, identified and used in accordance with 40 CFR 180.1001 (c) and (d), which are added to pesticide use dilutions by a grower or applicator prior to... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Adjuvants for pesticide chemicals. 182.99...

  7. 21 CFR 582.99 - Adjuvants for pesticide chemicals.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... § 582.99 Adjuvants for pesticide chemicals. Adjuvants, identified and used in accordance with 40 CFR 180.1001(c) and (d), which are added to pesticide use dilutions by a grower or applicator prior to... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Adjuvants for pesticide chemicals. 582.99...

  8. Gaps in knowledge and prospects for research of adjuvanted vaccines.

    PubMed

    Seder, Robert; Reed, Steven G; O'Hagan, Derek; Malyala, Padma; D'Oro, Ugo; Laera, Donatello; Abrignani, Sergio; Cerundolo, Vincenzo; Steinman, Lawrence; Bertholet, Sylvie

    2015-06-01

    A panel of researchers working in different areas of adjuvanted vaccines deliberated over the topic, "Gaps in knowledge and prospects for research of adjuvanted vaccines" at, "Enhancing Vaccine Immunity and Value" conference held in July 2014. Several vaccine challenges and applications for new adjuvant technologies were discussed.

  9. 21 CFR 582.99 - Adjuvants for pesticide chemicals.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... § 582.99 Adjuvants for pesticide chemicals. Adjuvants, identified and used in accordance with 40 CFR 180.1001(c) and (d), which are added to pesticide use dilutions by a grower or applicator prior to... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Adjuvants for pesticide chemicals. 582.99...

  10. 21 CFR 182.99 - Adjuvants for pesticide chemicals.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ....99 Adjuvants for pesticide chemicals. Adjuvants, identified and used in accordance with 40 CFR 180.910 and 40 CFR 180.920, which are added to pesticide use dilutions by a grower or applicator prior to... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Adjuvants for pesticide chemicals. 182.99...

  11. 21 CFR 582.99 - Adjuvants for pesticide chemicals.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... § 582.99 Adjuvants for pesticide chemicals. Adjuvants, identified and used in accordance with 40 CFR 180.1001(c) and (d), which are added to pesticide use dilutions by a grower or applicator prior to... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Adjuvants for pesticide chemicals. 582.99...

  12. 21 CFR 582.99 - Adjuvants for pesticide chemicals.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... § 582.99 Adjuvants for pesticide chemicals. Adjuvants, identified and used in accordance with 40 CFR 180.1001(c) and (d), which are added to pesticide use dilutions by a grower or applicator prior to... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Adjuvants for pesticide chemicals. 582.99...

  13. 21 CFR 182.99 - Adjuvants for pesticide chemicals.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ...) SUBSTANCES GENERALLY RECOGNIZED AS SAFE General Provisions § 182.99 Adjuvants for pesticide chemicals. Adjuvants, identified and used in accordance with 40 CFR 180.910 and 40 CFR 180.920, which are added to... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Adjuvants for pesticide chemicals. 182.99...

  14. 21 CFR 182.99 - Adjuvants for pesticide chemicals.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ....99 Adjuvants for pesticide chemicals. Adjuvants, identified and used in accordance with 40 CFR 180.910 and 40 CFR 180.920, which are added to pesticide use dilutions by a grower or applicator prior to... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Adjuvants for pesticide chemicals. 182.99...

  15. Lipid nanotechnology.

    PubMed

    Mashaghi, Samaneh; Jadidi, Tayebeh; Koenderink, Gijsje; Mashaghi, Alireza

    2013-01-01

    Nanotechnology is a multidisciplinary field that covers a vast and diverse array of devices and machines derived from engineering, physics, materials science, chemistry and biology. These devices have found applications in biomedical sciences, such as targeted drug delivery, bio-imaging, sensing and diagnosis of pathologies at early stages. In these applications, nano-devices typically interface with the plasma membrane of cells. On the other hand, naturally occurring nanostructures in biology have been a source of inspiration for new nanotechnological designs and hybrid nanostructures made of biological and non-biological, organic and inorganic building blocks. Lipids, with their amphiphilicity, diversity of head and tail chemistry, and antifouling properties that block nonspecific binding to lipid-coated surfaces, provide a powerful toolbox for nanotechnology. This review discusses the progress in the emerging field of lipid nanotechnology. PMID:23429269

  16. Lipid Nanotechnology

    PubMed Central

    Mashaghi, Samaneh; Jadidi, Tayebeh; Koenderink, Gijsje; Mashaghi, Alireza

    2013-01-01

    Nanotechnology is a multidisciplinary field that covers a vast and diverse array of devices and machines derived from engineering, physics, materials science, chemistry and biology. These devices have found applications in biomedical sciences, such as targeted drug delivery, bio-imaging, sensing and diagnosis of pathologies at early stages. In these applications, nano-devices typically interface with the plasma membrane of cells. On the other hand, naturally occurring nanostructures in biology have been a source of inspiration for new nanotechnological designs and hybrid nanostructures made of biological and non-biological, organic and inorganic building blocks. Lipids, with their amphiphilicity, diversity of head and tail chemistry, and antifouling properties that block nonspecific binding to lipid-coated surfaces, provide a powerful toolbox for nanotechnology. This review discusses the progress in the emerging field of lipid nanotechnology. PMID:23429269

  17. Adjuvant Chemotherapy in Rectal Cancer after Chemoradiotherapy.

    PubMed

    Boustani, J; Caubet, M; Bosset, J-F

    2016-02-01

    The aim of this overview was to investigate whether adjuvant chemotherapy has a favourable effect on the outcome of patients with rectal cancer who had preoperative (chemo)radiotherapy. A review of randomised clinical trials that allocated patients between fluorouracil-based and observation or between fluorouracil-based and oxaliplatin-based adjuvant chemotherapy after preoperative (chemo)radiotherapy was carried out, including their corresponding meta-analyses. None of the five randomised trials has shown a significant benefit of fluorouracil-based adjuvant chemotherapy for overall survival or disease-free survival. Also, the three corresponding meta-analyses failed to show a benefit of adjuvant treatment. Of three randomised trials - two phase III and one phase II with a 3-year disease-free survival end point - two showed a small benefit of adding oxaliplatin to fluorouracil, one failed. The corresponding meta-analyses showed that the pooled difference was not significant. In conclusion, the use of postoperative 5-fluorouracil-based chemotherapy with or without oxaliplatin in patients with rectal cancer after preoperative (chemo)radiotherapy is not scientifically proven.

  18. Adjuvants for peptide-based cancer vaccines.

    PubMed

    Khong, Hiep; Overwijk, Willem W

    2016-01-01

    Cancer therapies based on T cells have shown impressive clinical benefit. In particular, immune checkpoint blockade therapies with anti-CTLA-4 and anti-PD-1/PD-L1 are causing dramatic tumor shrinkage and prolonged patient survival in a variety of cancers. However, many patients do not benefit, possibly due to insufficient spontaneous T cell reactivity against their tumors and/or lacking immune cell infiltration to tumor site. Such tumor-specific T cell responses could be induced through anti-cancer vaccination; but despite great success in animal models, only a few of many cancer vaccine trials have demonstrated robust clinical benefit. One reason for this difference may be the use of potent, effective vaccine adjuvants in animal models, vs. the use of safe, but very weak, vaccine adjuvants in clinical trials. As vaccine adjuvants dictate the type and magnitude of the T cell response after vaccination, it is critical to understand how they work to design safe, but also effective, cancer vaccines for clinical use. Here we discuss current insights into the mechanism of action and practical application of vaccine adjuvants, with a focus on peptide-based cancer vaccines. PMID:27660710

  19. Adjuvant and Definitive Radiotherapy for Adrenocortical Carcinoma

    SciTech Connect

    Sabolch, Aaron; Feng, Mary; Griffith, Kent; Hammer, Gary; Doherty, Gerard; Ben-Josef, Edgar

    2011-08-01

    Purpose: To evaluate the impact of both adjuvant and definitive radiotherapy on local control of adrenocortical carcinoma. Methods and Materials: Outcomes were analyzed from 58 patients with 64 instances of treatment for adrenocortical carcinoma at the University of Michigan's Multidisciplinary Adrenal Cancer Clinic. Thirty-seven of these instances were for primary disease, whereas the remaining 27 were for recurrent disease. Thirty-eight of the treatment regimens involved surgery alone, 10 surgery plus adjuvant radiotherapy, and 16 definitive radiotherapy for unresectable disease. The effects of patient, tumor, and treatment factors were modeled simultaneously using multiple variable Cox proportional hazards regression for associations with local recurrence, distant recurrence, and overall survival. Results: Local failure occurred in 16 of the 38 instances that involved surgery alone, in 2 of the 10 that consisted of surgery plus adjuvant radiotherapy, and in 1 instance of definitive radiotherapy. Lack of radiotherapy use was associated with 4.7 times the risk of local failure compared with treatment regimens that involved radiotherapy (95% confidence interval, 1.2-19.0; p = 0.030). Conclusions: Radiotherapy seems to significantly lower the risk of local recurrence/progression in patients with adrenocortical carcinoma. Adjuvant radiotherapy should be strongly considered after surgical resection.

  20. Induction of lupus autoantibodies by adjuvants

    USGS Publications Warehouse

    Satoh, M.; Kuroda, Y.; Yoshida, H.; Behney, K.M.; Mizutani, A.; Akaogi, J.; Nacionales, D.C.; Lorenson, T.D.; Rosenbauer, R.J.; Reeves, W.H.

    2003-01-01

    Exposure to the hydrocarbon oil pristane induces lupus specific autoantibodies in non-autoimmune mice. We investigated whether the capacity to induce lupus-like autoimmunity is a unique property of pristane or is shared by other adjuvant oils. Seven groups of 3-month-old female BALB/cJ mice received a single intraperitoneal injection of pristane, squalene (used in the adjuvant MF59), incomplete Freund's adjuvant (IFA), three different medicinal mineral oils, or saline, respectively. Serum autoantibodies and peritoneal cytokine production were measured. In addition to pristane, the mineral oil Bayol F (IFA) and the endogenous hydrocarbon squalene both induced anti-nRNP/Sm and -Su autoantibodies (20% and 25% of mice, respectively). All of these hydrocarbons had prolonged effects on cytokine production by peritoneal APCs. However, high levels of IL-6, IL-12, and TNF?? production 2-3 months after intraperitoneal injection appeared to be associated with the ability to induce lupus autoantibodies. The ability to induce lupus autoantibodies is shared by several hydrocarbons and is not unique to pristane. It correlates with stimulation of the production of IL-12 and other cytokines, suggesting a relationship with a hydrocarbon's adjuvanticity. The potential to induce autoimmunity may complicate the use of oil adjuvants in human and veterinary vaccines. ?? 2003 Elsevier Ltd. All rights reserved.

  1. Antigen-displaying lipid-enveloped PLGA nanoparticles as delivery agents for a Plasmodium vivax malaria vaccine.

    PubMed

    Moon, James J; Suh, Heikyung; Polhemus, Mark E; Ockenhouse, Christian F; Yadava, Anjali; Irvine, Darrell J

    2012-01-01

    The parasite Plasmodium vivax is the most frequent cause of malaria outside of sub-Saharan Africa, but efforts to develop viable vaccines against P. vivax so far have been inadequate. We recently developed pathogen-mimicking polymeric vaccine nanoparticles composed of the FDA-approved biodegradable polymer poly(lactide-co-glycolide) acid (PLGA) "enveloped" by a lipid membrane. In this study, we sought to determine whether this vaccine delivery platform could be applied to enhance the immune response against P. vivax sporozoites. A candidate malaria antigen, VMP001, was conjugated to the lipid membrane of the particles, and an immunostimulatory molecule, monophosphoryl lipid A (MPLA), was incorporated into the lipid membranes, creating pathogen-mimicking nanoparticle vaccines (VMP001-NPs). Vaccination with VMP001-NPs promoted germinal center formation and elicited durable antigen-specific antibodies with significantly higher titers and more balanced Th1/Th2 responses in vivo, compared with vaccines composed of soluble protein mixed with MPLA. Antibodies raised by NP vaccinations also exhibited enhanced avidity and affinity toward the domains within the circumsporozoite protein implicated in protection and were able to agglutinate live P. vivax sporozoites. These results demonstrate that these VMP001-NPs are promising vaccines candidates that may elicit protective immunity against P. vivax sporozoites.

  2. Vitamins as influenza vaccine adjuvant components.

    PubMed

    Quintilio, Wagner; de Freitas, Fábio Alessandro; Rodriguez, Dunia; Kubrusly, Flavia Saldanha; Yourtov, Dimitri; Miyaki, Cosue; de Cerqueira Leite, Luciana Cezar; Raw, Isaias

    2016-10-01

    A number of adjuvant formulations were assayed in mice immunized with 3.75 µg of A/California/7/2009 (H1N1) pdm09 influenza vaccine with vitamins A, D and/or E in emulsions or B2 and/or B9 combined with Bordetella pertussis MPLA and/or alum as adjuvants. Squalene was used as positive control, as well as MPLA with alum. The immune response was evaluated by a panel of tests, including a hemagglutination inhibition (HAI) test, ELISA for IgG, IgG1, and IgG2a and IFN-γ, IL-2, IL-6 and IL-10 quantification in splenocyte culture supernatant after stimulus with influenza antigen. Immunological memory was evaluated using a 1/10 dose booster 60 days after the first immunization followed by assessment of the response by HAI, IgG ELISA, and determination of the antibody affinity index. The highest increases in HAI, IgG1 and IgG2a titers were obtained with the adjuvant combinations containing vitamin E, or the hydrophilic combinations containing MPLA and alum or B2 and alum. The IgG1/IgG2a ratio indicates that the response to the combination of B2 with alum would have more Th2 character than the combination of MPLA with alum. In an assay to investigate the memory response, a significant increase in HAI titer was observed with a booster vaccine dose at 60 days after immunization with vaccines containing MPLA with alum or B2 with alum. Overall, of the 27 adjuvant combinations, MPLA with alum and B2 with alum were the most promising adjuvants to be evaluated in humans. PMID:27449155

  3. Vitamins as influenza vaccine adjuvant components.

    PubMed

    Quintilio, Wagner; de Freitas, Fábio Alessandro; Rodriguez, Dunia; Kubrusly, Flavia Saldanha; Yourtov, Dimitri; Miyaki, Cosue; de Cerqueira Leite, Luciana Cezar; Raw, Isaias

    2016-10-01

    A number of adjuvant formulations were assayed in mice immunized with 3.75 µg of A/California/7/2009 (H1N1) pdm09 influenza vaccine with vitamins A, D and/or E in emulsions or B2 and/or B9 combined with Bordetella pertussis MPLA and/or alum as adjuvants. Squalene was used as positive control, as well as MPLA with alum. The immune response was evaluated by a panel of tests, including a hemagglutination inhibition (HAI) test, ELISA for IgG, IgG1, and IgG2a and IFN-γ, IL-2, IL-6 and IL-10 quantification in splenocyte culture supernatant after stimulus with influenza antigen. Immunological memory was evaluated using a 1/10 dose booster 60 days after the first immunization followed by assessment of the response by HAI, IgG ELISA, and determination of the antibody affinity index. The highest increases in HAI, IgG1 and IgG2a titers were obtained with the adjuvant combinations containing vitamin E, or the hydrophilic combinations containing MPLA and alum or B2 and alum. The IgG1/IgG2a ratio indicates that the response to the combination of B2 with alum would have more Th2 character than the combination of MPLA with alum. In an assay to investigate the memory response, a significant increase in HAI titer was observed with a booster vaccine dose at 60 days after immunization with vaccines containing MPLA with alum or B2 with alum. Overall, of the 27 adjuvant combinations, MPLA with alum and B2 with alum were the most promising adjuvants to be evaluated in humans.

  4. New generation adjuvants--from empiricism to rational design.

    PubMed

    O'Hagan, Derek T; Fox, Christopher B

    2015-06-01

    Adjuvants are an essential component of modern vaccine development. Despite many decades of development, only a few types of adjuvants are currently included in vaccines approved for human use. In order to better understand the reasons that development of some adjuvants succeeded while many others failed, we discuss some of the common attributes of successful first generation adjuvants. Next, we evaluate current trends in the development of second generation adjuvants, including the potential advantages of rationally designed synthetic immune potentiators appropriately formulated. Finally, we discuss desirable attributes of next generation adjuvants. Throughout, we emphasize that the importance of formulation and analytical characterization in all aspects of vaccine adjuvant development is often underappreciated. We highlight the formulation factors that must be evaluated in order to optimize interactions between vaccine antigens, immune potentiators, and particulate formulations, and the resulting effects on safety, biological activity, manufacturability, and stability.

  5. New generation adjuvants--from empiricism to rational design.

    PubMed

    O'Hagan, Derek T; Fox, Christopher B

    2015-06-01

    Adjuvants are an essential component of modern vaccine development. Despite many decades of development, only a few types of adjuvants are currently included in vaccines approved for human use. In order to better understand the reasons that development of some adjuvants succeeded while many others failed, we discuss some of the common attributes of successful first generation adjuvants. Next, we evaluate current trends in the development of second generation adjuvants, including the potential advantages of rationally designed synthetic immune potentiators appropriately formulated. Finally, we discuss desirable attributes of next generation adjuvants. Throughout, we emphasize that the importance of formulation and analytical characterization in all aspects of vaccine adjuvant development is often underappreciated. We highlight the formulation factors that must be evaluated in order to optimize interactions between vaccine antigens, immune potentiators, and particulate formulations, and the resulting effects on safety, biological activity, manufacturability, and stability. PMID:26022561

  6. Lipid Storage Diseases

    MedlinePlus

    ... Awards Enhancing Diversity Find People About NINDS NINDS Lipid Storage Diseases Information Page Condensed from Lipid Storage ... en Español Additional resources from MedlinePlus What are Lipid Storage Diseases? Lipid storage diseases are a group ...

  7. Immunopotentiating reconstituted influenza virosomes (IRIVs) and other adjuvants for improved presentation of small antigens.

    PubMed

    Glück, R

    1992-01-01

    Synthetic peptides, purified subunits or inactivated small virus particles require immunopotentiation if they are to be effective vaccines. A large range of procedures to enhance immunogenicity has evolved over the last decades: aluminium salts, proteosomes, immunostimulating complexes (ISCOMs), liposomes, conjugation with bacterial products or derivatives, combination with surface-active agents or application of cytokines have been the most described classes of adjuvants. We describe here the design of an inactivated hepatitis A vaccine adjuvanted with immunopotentiating reconstituted influenza virosomes (IRIVs). The formalin-inactivated hepatitis A particles are attached to reconstituted protein-lipid complexes consisting of a mixture of phospholipids and influenza virus glycoproteins. With this new vaccine design we combined different immunostimulating effects: immunopotentiation by phospholipid vesicles, recognition of the haemagglutinin (HA) epitopes by the immune system, binding capacity of HA to sialic acid-containing receptors of macrophages and immunocompetent cells and mediation of entry into the cytoplasm of macrophages by a membrane-fusion event triggered by HA. Hepatitis A seronegative human volunteers received one intramuscular injection with this new vaccine. There were only few mild local reactions and 14 days after vaccination 100% of the subjects were seropositive. Among the individuals (control group) who received an alum-adsorbed vaccine, 88% developed local reactions. The seroconversion rate was 44%. We conclude from these results that the IRIVs provide a new approach to the future design of adjuvanted vaccines. PMID:1471412

  8. Optimizing manufacturing and composition of a TLR4 nanosuspension: physicochemical stability and vaccine adjuvant activity

    PubMed Central

    2013-01-01

    Background Nanosuspensions are an important class of delivery system for vaccine adjuvants and drugs. Previously, we developed a nanosuspension consisting of the synthetic TLR4 ligand glucopyranosyl lipid adjuvant (GLA) and dipalmitoyl phosphatidylcholine (DPPC). This nanosuspension is a clinical vaccine adjuvant known as GLA-AF. We examined the effects of DPPC supplier, buffer composition, and manufacturing process on GLA-AF physicochemical and biological activity characteristics. Results DPPC from different suppliers had minimal influence on physicochemical and biological effects. In general, buffered compositions resulted in less particle size stability compared to unbuffered GLA-AF. Microfluidization resulted in rapid particle size reduction after only a few passes, and 20,000 or 30,000 psi processing pressures were more effective at reducing particle size and recovering the active component than 10,000 psi. Sonicated and microfluidized batches maintained good particle size and chemical stability over 6 months, without significantly altering in vitro or in vivo bioactivity of GLA-AF when combined with a recombinant malaria vaccine antigen. Conclusions Microfluidization, compared to water bath sonication, may be an effective manufacturing process to improve the scalability and reproducibility of GLA-AF as it advances further in the clinical development pathway. Various sources of DPPC are suitable to manufacture GLA-AF, but buffered compositions of GLA-AF do not appear to offer stability advantages over the unbuffered composition. PMID:24359024

  9. Psychosocial and Physical Effects of Adjuvant Chemotherapy

    PubMed Central

    Hislop, Thomas Gregory; Elwood, J. Mark; Waxler-Morrison, Nancy; Ragaz, Joseph; Skippen, Diane Hazel; Turner, I.D.

    1991-01-01

    Breast cancer patients younger than 55 completed a questionnaire on psychosocial factors and physical side effects shortly after diagnosis and 9 to 15 months after diagnosis. Those who had used adjuvant chemotherapy were more likely than those who had not to report physical side effects; there was little difference in psychosocial factors. Recent users were more likely than ex-users to report physical side effects, difficulties with domestic chores, and improvement in psychosocial factors. PMID:21229020

  10. Inflammatory responses following intramuscular and subcutaneous immunization with aluminum-adjuvanted or non-adjuvanted vaccines.

    PubMed

    Kashiwagi, Yasuyo; Maeda, Mika; Kawashima, Hisashi; Nakayama, Tetsuo

    2014-06-01

    Aluminum-adjuvanted vaccines are administered through an intramuscular injection (IM) in the US and EU, however, a subcutaneous injection (SC) has been recommended in Japan because of serious muscle contracture previously reported following multiple IMs of antibiotics. Newly introduced adjuvanted vaccines, such as the human papillomavirus (HPV) vaccines, have been recommended through IM. In the present study, currently available vaccines were evaluated through IM in mice. Aluminum-adjuvanted vaccines induced inflammatory nodules at the injection site, which expanded into the intra-muscular space without any muscle degeneration or necrosis, whereas non-adjuvanted vaccines did not. These nodules consisted of polymorph nuclear neutrophils with some eosinophils within the initial 48h, then monocytes/macrophages 1 month later. Inflammatory nodules were observed 6 months after IM, had decreased in size, and were absorbed 12 months after IM, which was earlier than that after SC. Cytokine production was examined in the injected muscular tissues and AS04 adjuvanted HPV induced higher IL-1β, IL-6, KC, MIP-1, and G-CSF levels in muscle tissues than any other vaccine, but similar serum cytokine profiles were observed to those induced by the other vaccines. Currently available vaccines did not induce muscular degeneration or fibrotic scar as observed with muscle contracture caused by multiple IMs of antibiotics in the past.

  11. Utility of adjuvant systemic therapy in melanoma

    PubMed Central

    Eggermont, A. M. M.; Testori, A.; Marsden, J.; Hersey, P.; Quirt, I.; Petrella, T.; Gogas, H.; MacKie, R. M.; Hauschild, A.

    2009-01-01

    The lack of effective drugs in stage IV melanoma has impacted the effectiveness of adjuvant therapies in stage II/III disease. To date, chemotherapy, immunostimulants and vaccines have been used with minimal success. Interferon (IFN) has shown an effect on relapse-free survival (RFS) in several clinical trials; however, without a clinically significant effect on overall survival (OS). A recently conducted meta-analysis demonstrated prolongation of disease-free survival (DFS) in 7% and OS benefit in 3% of IFN-treated patients when compared with observation-only patients. There were no clear differences for the dose and duration of treatment observed. Observation is still an appropriate control arm in adjuvant clinical trials. Regional differences exist in Europe in the adjuvant use of IFN. In Northwest Europe, IFN is infrequently prescribed. In Central and Mediterranean Europe, dermatologists commonly prescribe low-dose IFN therapy for AJCC stage II and III disease. High-dose IFN regimens are not commonly used. The population of patients that may benefit from IFN needs to be further characterised, potentially by finding biomarkers that can predict response. Such studies are ongoing. PMID:19617295

  12. Adjuvant and neoadjuvant treatment in pancreatic cancer

    PubMed Central

    Herreros-Villanueva, Marta; Hijona, Elizabeth; Cosme, Angel; Bujanda, Luis

    2012-01-01

    Pancreatic adenocarcinoma is one of the most aggressive human malignancies, ranking 4th among causes for cancer-related death in the Western world including the United States. Surgical resection offers the only chance of cure, but only 15 to 20 percent of cases are potentially resectable at presentation. Different studies demonstrate and confirm that advanced pancreatic cancer is among the most complex cancers to treat and that these tumors are relatively resistant to chemotherapy and radiotherapy. Currently there is no consensus around the world on what constitutes “standard” adjuvant therapy for pancreatic cancer. This controversy derives from several studies, each fraught with its own limitations. Standards of care also vary somewhat with regard to geography and economy, for instance chemo-radiotherapy followed by chemotherapy or vice versa is considered the optimal therapy in North America while chemotherapy alone is the current standard in Europe. Regardless of the efforts in adjuvant and neoadjuvant improved therapy, the major goal to combat pancreatic cancer is to find diagnostic markers, identifying the disease in a pre-metastatic stage and making a curative treatment accessible to more patients. In this review, authors examined the different therapy options for advanced pancreatic patients in recent years and the future directions in adjuvant and neoadjuvant treatments for these patients. PMID:22529684

  13. Recent Advances of Vaccine Adjuvants for Infectious Diseases

    PubMed Central

    Nguyen, Minh Trang

    2015-01-01

    Vaccines are the most effective and cost-efficient method for preventing diseases caused by infectious pathogens. Despite the great success of vaccines, development of safe and strong vaccines is still required for emerging new pathogens, re-emerging old pathogens, and in order to improve the inadequate protection conferred by existing vaccines. One of the most important strategies for the development of effective new vaccines is the selection and usage of a suitable adjuvant. Immunologic adjuvants are essential for enhancing vaccine potency by improvement of the humoral and/or cell-mediated immune response to vaccine antigens. Thus, formulation of vaccines with appropriate adjuvants is an attractive approach towards eliciting protective and long-lasting immunity in humans. However, only a limited number of adjuvants is licensed for human vaccines due to concerns about safety and toxicity. We summarize current knowledge about the potential benefits of adjuvants, the characteristics of adjuvants and the mechanisms of adjuvants in human vaccines. Adjuvants have diverse modes of action and should be selected for use on the basis of the type of immune response that is desired for a particular vaccine. Better understanding of current adjuvants will help exploring new adjuvant formulations and facilitate rational design of vaccines against infectious diseases. PMID:25922593

  14. Lipid14: The Amber Lipid Force Field.

    PubMed

    Dickson, Callum J; Madej, Benjamin D; Skjevik, Age A; Betz, Robin M; Teigen, Knut; Gould, Ian R; Walker, Ross C

    2014-02-11

    The AMBER lipid force field has been updated to create Lipid14, allowing tensionless simulation of a number of lipid types with the AMBER MD package. The modular nature of this force field allows numerous combinations of head and tail groups to create different lipid types, enabling the easy insertion of new lipid species. The Lennard-Jones and torsion parameters of both the head and tail groups have been revised and updated partial charges calculated. The force field has been validated by simulating bilayers of six different lipid types for a total of 0.5 μs each without applying a surface tension; with favorable comparison to experiment for properties such as area per lipid, volume per lipid, bilayer thickness, NMR order parameters, scattering data, and lipid lateral diffusion. As the derivation of this force field is consistent with the AMBER development philosophy, Lipid14 is compatible with the AMBER protein, nucleic acid, carbohydrate, and small molecule force fields.

  15. Kdo2-lipid A: structural diversity and impact on immunopharmacology

    PubMed Central

    Wang, Xiaoyuan; Quinn, Peter J; Yan, Aixin

    2015-01-01

    3-deoxy-d-manno-octulosonic acid-lipid A (Kdo2-lipid A) is the essential component of lipopolysaccharide in most Gram-negative bacteria and the minimal structural component to sustain bacterial viability. It serves as the active component of lipopolysaccharide to stimulate potent host immune responses through the complex of Toll-like-receptor 4 (TLR4) and myeloid differentiation protein 2. The entire biosynthetic pathway of Escherichia coli Kdo2-lipid A has been elucidated and the nine enzymes of the pathway are shared by most Gram-negative bacteria, indicating conserved Kdo2-lipid A structure across different species. Yet many bacteria can modify the structure of their Kdo2-lipid A which serves as a strategy to modulate bacterial virulence and adapt to different growth environments as well as to avoid recognition by the mammalian innate immune systems. Key enzymes and receptors involved in Kdo2-lipid A biosynthesis, structural modification and its interaction with the TLR4 pathway represent a clear opportunity for immunopharmacological exploitation. These include the development of novel antibiotics targeting key biosynthetic enzymes and utilization of structurally modified Kdo2-lipid A or correspondingly engineered live bacteria as vaccines and adjuvants. Kdo2-lipid A/TLR4 antagonists can also be applied in anti-inflammatory interventions. This review summarizes recent knowledge on both the fundamental processes of Kdo2-lipid A biosynthesis, structural modification and immune stimulation, and applied research on pharmacological exploitations of these processes for therapeutic development. PMID:24838025

  16. Adjuvant chemotherapy for rectal cancer: Is it needed?

    PubMed Central

    Milinis, Kristijonas; Thornton, Michael; Montazeri, Amir; Rooney, Paul S

    2015-01-01

    Adjuvant chemotherapy has become a standard treatment of advanced rectal cancer in the West. The benefits of adjuvant chemotherapy after surgery alone have been well established. However, controversy surrounds the use adjuvant chemotherapy in patients who received preoperative chemoradiotherapy, despite it being recommended by a number of international guidelines. Results of recent multicentre randomised control trials showed no benefit of adjuvant chemotherapy in terms of survival and rates of distant metastases. However, concerns exist regarding the quality of the studies including inadequate staging modalities, out-dated chemotherapeutic regimens and surgical approaches and small sample sizes. It has become evident that not all the patients respond to adjuvant chemotherapy and more personalised approach should be employed when considering the benefits of adjuvant chemotherapy. The present review discusses the strengths and weaknesses of the current evidence-base and suggests improvements for future studies. PMID:26677436

  17. Identification of key residues in the A-Raf kinase important for phosphoinositide lipid binding specificity.

    PubMed

    Johnson, Lindsey M; James, Kristy M; Chamberlain, M Dean; Anderson, Deborah H

    2005-03-01

    Raf kinases are involved in regulating cellular signal transduction pathways in response to a wide variety of external stimuli. Upstream signals generate activated Ras-GTP, important for the relocalization of Raf kinases to the membrane. Upon full activation, Raf kinases phosphorylate and activate downstream kinase in the mitogen-activated protein kinase (MAPK) signaling pathway. The Raf family of kinases has three members, Raf-1, B-Raf, and A-Raf. The ability of Raf-1 and B-Raf to bind phosphatidylserine (PS) and phosphatidic acid (PA) has been show to facilitate Raf membrane associations and regulate Raf kinase activity. We have characterized the lipid binding properties of A-Raf, as well as further characterized those of Raf-1. Both A-Raf and Raf-1 were found to bind to 3-, 4-, and 5-monophosphorylated phosphoinositides [PI(3)P, PI(4)P, and PI(5)P] as well as phosphatidylinositol 3,5-bisphosphate [PI(3,5)P(2)]. In addition, A-Raf also bound specifically to phosphatidylinositol 4,5- and 3,4-bisphosphates [PI(4,5)P(2) and PI(3,4)P(2)] and to PA. A mutational analysis of A-Raf localized the PI(4,5)P(2) binding site to two basic residues (K50 and R52) within the Ras binding domain. Additionally, an A-Raf mutant lacking the first 199 residues [i.e., the entire conserved region 1 (CR1) domain] bound the same phospholipids as full-length Raf-1. This suggests that a second region of A-Raf between amino acids 200 and 606 was responsible for interactions with the monophosphorylated PIs and PI(3,5)P(2). These results raise the possibility that Raf-1 and A-Raf bind to specific phosphoinositides as a mechanism to localize them to particular membrane microdomains rich in these phospholipids. Moreover, the differences in their lipid binding profiles could contribute to their proposed isoform-specific Raf functions.

  18. Polyphenolics isolated from virgin coconut oil inhibits adjuvant induced arthritis in rats through antioxidant and anti-inflammatory action.

    PubMed

    Vysakh, A; Ratheesh, M; Rajmohanan, T P; Pramod, C; Premlal, S; Girish kumar, B; Sibi, P I

    2014-05-01

    We evaluated the protective efficacy of the polyphenolic fraction from virgin coconut oil (PV) against adjuvant induced arthritic rats. Arthritis was induced by intradermal injection of complete Freund's adjuvant. The activities of inflammatory, antioxidant enzymes and lipid peroxidation were estimated. PV showed high percentage of edema inhibition at a dose of 80mg/kg on 21st day of adjuvant arthritis and is non toxic. The expression of inflammatory genes such as COX-2, iNOS, TNF-α and IL-6 and the concentration of thiobarbituric acid reactive substance were decreased by treatment with PV. Antioxidant enzymes were increased and on treatment with PV. The increased level of total WBC count and C-reactive protein in the arthritic animals was reduced in PV treated rats. Synovial cytology showed that inflammatory cells and reactive mesothelial cells were suppressed by PV. Histopathology of paw tissue showed less edema formation and cellular infiltration on supplementation with PV. Thus the results demonstrated the potential beneficiary effect of PV on adjuvant induced arthritis in rats and the mechanism behind this action is due to its antioxidant and anti-inflammatory effects.

  19. Adjuvanted multi-epitope vaccines protect HLA-A*11:01 transgenic mice against Toxoplasma gondii

    PubMed Central

    El Bissati, Kamal; Chentoufi, Aziz A.; Krishack, Paulette A.; Zhou, Ying; Woods, Stuart; Dubey, Jitender P.; Vang, Lo; Lykins, Joseph; Broderick, Kate E.; Mui, Ernest; Suzuki, Yasuhiro; Sa, Qila; Bi, Stephanie; Cardona, Nestor; Verma, Shiv K.; Frazeck, Laura; Reardon, Catherine A.; Sidney, John; Alexander, Jeff; Sette, Alessandro; Vedvick, Tom; Fox, Chris; Guderian, Jeffrey A.; Reed, Steven; Roberts, Craig W.

    2016-01-01

    We created and tested multi-epitope DNA or protein vaccines with TLR4 ligand emulsion adjuvant (gluco glucopyranosyl lipid adjuvant in a stable emulsion [GLA-SE]) for their ability to protect against Toxoplasma gondii in HLA transgenic mice. Our constructs each included 5 of our best down-selected CD8+ T cell–eliciting epitopes, a universal CD4+ helper T lymphocyte epitope (PADRE), and a secretory signal, all arranged for optimal MHC-I presentation. Their capacity to elicit immune and protective responses was studied using immunization of HLA-A*11:01 transgenic mice. These multi-epitope vaccines increased memory CD8+ T cells that produced IFN-γ and protected mice against parasite burden when challenged with T. gondii. Endocytosis of emulsion-trapped protein and cross presentation of the antigens must account for the immunogenicity of our adjuvanted protein. Thus, our work creates an adjuvanted platform assembly of peptides resulting in cross presentation of CD8+ T cell–eliciting epitopes in a vaccine that prevents toxoplasmosis.

  20. Translating innate response into long-lasting antibody response by the intrinsic antigen-adjuvant properties of papaya mosaic virus

    PubMed Central

    Acosta-Ramírez, Elizabeth; Pérez-Flores, Rebeca; Majeau, Nathalie; Pastelin-Palacios, Rodolfo; Gil-Cruz, Cristina; Ramírez-Saldaña, Maricela; Manjarrez-Orduño, Nataly; Cervantes-Barragán, Luisa; Santos-Argumedo, Leopoldo; Flores-Romo, Leopoldo; Becker, Ingeborg; Isibasi, Armando; Leclerc, Denis; López-Macías, Constantino

    2008-01-01

    Identifying the properties of a molecule involved in the efficient activation of the innate and adaptive immune responses that lead to long-lasting immunity is crucial for vaccine and adjuvant development. Here we show that the papaya mosaic virus (PapMV) is recognized by the immune system as a pathogen-associated molecular pattern (PAMP) and as an antigen in mice (Pamptigen). A single immunization of PapMV without added adjuvant efficiently induced both cellular and specific long-lasting antibody responses. PapMV also efficiently activated innate immune responses, as shown by the induction of lipid raft aggregation, secretion of pro-inflammatory cytokines, up-regulation of co-stimulatory molecules on dendritic cells and macrophages, and long-lasting adjuvant effects upon the specific antibody responses to model antigens. PapMV mixed with Salmonella enterica serovar Typhi (S. typhi) outer membrane protein C increased its protective capacity against challenge with S. typhi, revealing the intrinsic adjuvant properties of PapMV in the induction of immunity. Antigen-presenting cells loaded with PapMV efficiently induced antibody responses in vivo, which may link the innate and adaptive responses observed. PapMV recognition as a Pamptigen might be translated into long-lasting antibody responses and protection observed. These properties could be used in the development of new vaccine platforms. PMID:18070030

  1. Adjuvanted multi-epitope vaccines protect HLA-A*11:01 transgenic mice against Toxoplasma gondii

    PubMed Central

    El Bissati, Kamal; Chentoufi, Aziz A.; Krishack, Paulette A.; Zhou, Ying; Woods, Stuart; Dubey, Jitender P.; Vang, Lo; Lykins, Joseph; Broderick, Kate E.; Mui, Ernest; Suzuki, Yasuhiro; Sa, Qila; Bi, Stephanie; Cardona, Nestor; Verma, Shiv K.; Frazeck, Laura; Reardon, Catherine A.; Sidney, John; Alexander, Jeff; Sette, Alessandro; Vedvick, Tom; Fox, Chris; Guderian, Jeffrey A.; Reed, Steven; Roberts, Craig W.

    2016-01-01

    We created and tested multi-epitope DNA or protein vaccines with TLR4 ligand emulsion adjuvant (gluco glucopyranosyl lipid adjuvant in a stable emulsion [GLA-SE]) for their ability to protect against Toxoplasma gondii in HLA transgenic mice. Our constructs each included 5 of our best down-selected CD8+ T cell–eliciting epitopes, a universal CD4+ helper T lymphocyte epitope (PADRE), and a secretory signal, all arranged for optimal MHC-I presentation. Their capacity to elicit immune and protective responses was studied using immunization of HLA-A*11:01 transgenic mice. These multi-epitope vaccines increased memory CD8+ T cells that produced IFN-γ and protected mice against parasite burden when challenged with T. gondii. Endocytosis of emulsion-trapped protein and cross presentation of the antigens must account for the immunogenicity of our adjuvanted protein. Thus, our work creates an adjuvanted platform assembly of peptides resulting in cross presentation of CD8+ T cell–eliciting epitopes in a vaccine that prevents toxoplasmosis. PMID:27699241

  2. On vaccine's adjuvants and autoimmunity: Current evidence and future perspectives.

    PubMed

    Pellegrino, Paolo; Clementi, Emilio; Radice, Sonia

    2015-10-01

    Adjuvants are compounds incorporated into vaccines to enhance immunogenicity and the development of these molecules has become an expanding field of research in the last decades. Adding an adjuvant to a vaccine antigen leads to several advantages, including dose sparing and the induction of a more rapid, broader and strong immune response. Several of these molecules have been approved, including aluminium salts, oil-in-water emulsions (MF59, AS03 and AF03), virosomes and AS04. Adjuvants have recently been implicated in the new syndrome named "ASIA-Autoimmune/inflammatory Syndrome Induced by Adjuvants", which describes an umbrella of clinical conditions including post-vaccination adverse reactions. Recent studies implicate a web of mechanisms in the development of vaccine adjuvant-induced autoimmune diseases, in particular, in those associated with aluminium-based compounds. Fewer and unsystematised data are instead available about other adjuvants, despite recent evidence indicating that vaccines with different adjuvants may also cause specific autoimmune adverse reactions possible towards different pathogenic mechanisms. This topic is of importance as the specific mechanism of action of each single adjuvant may have different effects on the course of different diseases. Herein, we review the current evidence about the mechanism of action of currently employed adjuvants and discuss the mechanisms by which such components may trigger autoimmunity. PMID:26031899

  3. Rational design of small molecules as vaccine adjuvants.

    PubMed

    Wu, Tom Y-H; Singh, Manmohan; Miller, Andrew T; De Gregorio, Ennio; Doro, Francesco; D'Oro, Ugo; Skibinski, David A G; Mbow, M Lamine; Bufali, Simone; Herman, Ann E; Cortez, Alex; Li, Yongkai; Nayak, Bishnu P; Tritto, Elaine; Filippi, Christophe M; Otten, Gillis R; Brito, Luis A; Monaci, Elisabetta; Li, Chun; Aprea, Susanna; Valentini, Sara; Calabrό, Samuele; Laera, Donatello; Brunelli, Brunella; Caproni, Elena; Malyala, Padma; Panchal, Rekha G; Warren, Travis K; Bavari, Sina; O'Hagan, Derek T; Cooke, Michael P; Valiante, Nicholas M

    2014-11-19

    Adjuvants increase vaccine potency largely by activating innate immunity and promoting inflammation. Limiting the side effects of this inflammation is a major hurdle for adjuvant use in vaccines for humans. It has been difficult to improve on adjuvant safety because of a poor understanding of adjuvant mechanism and the empirical nature of adjuvant discovery and development historically. We describe new principles for the rational optimization of small-molecule immune potentiators (SMIPs) targeting Toll-like receptor 7 as adjuvants with a predicted increase in their therapeutic indices. Unlike traditional drugs, SMIP-based adjuvants need to have limited bioavailability and remain localized for optimal efficacy. These features also lead to temporally and spatially restricted inflammation that should decrease side effects. Through medicinal and formulation chemistry and extensive immunopharmacology, we show that in vivo potency can be increased with little to no systemic exposure, localized innate immune activation and short in vivo residence times of SMIP-based adjuvants. This work provides a systematic and generalizable approach to engineering small molecules for use as vaccine adjuvants.

  4. [Adjuvant drug therapies for breast cancer].

    PubMed

    Huovinen, Riikka; Auvinen, Päivi; Mattson, Johanna; Joensuu, Heikki

    2015-01-01

    Most breast cancers are hormone receptor positive and exhibit a slow growth pattern. Based on biological properties, breast cancers are divided into four different biological subtypes. Furthermore, these subtypes are indicative of the risk of recurrence, which is also influenced by the size of the tumor and extension to lymph nodes. Postoperative adjuvant drug therapy is chosen on the basis of the biological type. Chemotherapy can be used in all subtypes. Hormonal therapies are used exclusively for the treatment of hormone receptor positive breast cancer. Trastuzumab antibody belongs to the treatment of the HER2 positive subtype. PMID:26245052

  5. A multi-criteria decision making approach to identify a vaccine formulation.

    PubMed

    Dewé, Walthère; Durand, Christelle; Marion, Sandie; Oostvogels, Lidia; Devaster, Jeanne-Marie; Fourneau, Marc

    2016-01-01

    This article illustrates the use of a multi-criteria decision making approach, based on desirability functions, to identify an appropriate adjuvant composition for an influenza vaccine to be used in elderly. The proposed adjuvant system contained two main elements: monophosphoryl lipid and α-tocopherol with squalene in an oil/water emulsion. The objective was to elicit a stronger immune response while maintaining an acceptable reactogenicity and safety profile. The study design, the statistical models, the choice of the desirability functions, the computation of the overall desirability index, and the assessment of the robustness of the ranking are all detailed in this manuscript.

  6. Polyionic vaccine adjuvants: another look at aluminum salts and polyelectrolytes

    PubMed Central

    2015-01-01

    Adjuvants improve the adaptive immune response to a vaccine antigen by modulating innate immunity or facilitating transport and presentation. The selection of an appropriate adjuvant has become vital as new vaccines trend toward narrower composition, expanded application, and improved safety. Functionally, adjuvants act directly or indirectly on antigen presenting cells (APCs) including dendritic cells (DCs) and are perceived as having molecular patterns associated either with pathogen invasion or endogenous cell damage (known as pathogen associated molecular patterns [PAMPs] and damage associated molecular patterns [DAMPs]), thereby initiating sensing and response pathways. PAMP-type adjuvants are ligands for toll-like receptors (TLRs) and can directly affect DCs to alter the strength, potency, speed, duration, bias, breadth, and scope of adaptive immunity. DAMP-type adjuvants signal via proinflammatory pathways and promote immune cell infiltration, antigen presentation, and effector cell maturation. This class of adjuvants includes mineral salts, oil emulsions, nanoparticles, and polyelectrolytes and comprises colloids and molecular assemblies exhibiting complex, heterogeneous structures. Today innovation in adjuvant technology is driven by rapidly expanding knowledge in immunology, cross-fertilization from other areas including systems biology and materials sciences, and regulatory requirements for quality, safety, efficacy and understanding as part of the vaccine product. Standardizations will aid efforts to better define and compare the structure, function and safety of adjuvants. This article briefly surveys the genesis of adjuvant technology and then re-examines polyionic macromolecules and polyelectrolyte materials, adjuvants currently not known to employ TLR. Specific updates are provided for aluminum-based formulations and polyelectrolytes as examples of improvements to the oldest and emerging classes of vaccine adjuvants in use. PMID:25648619

  7. Escherichia coli Mutants that Synthesize Dephosphorylated Lipid A Molecules

    PubMed Central

    Ingram, Brian O.; Masoudi, Ali; Raetz, Christian R. H.

    2010-01-01

    The lipid A moiety of Escherichia coli lipopolysaccharide is a hexa-acylated disaccharide of glucosamine that is phosphorylated at the 1 and 4′ positions. Expression of the Francisella novicida lipid A 1-phosphatase FnLpxE in E. coli results in dephosphorylation of the lipid A proximal unit. Co-expression of FnLpxE and the Rhizobium leguminosarum lipid A oxidase RlLpxQ in E. coli converts much of the proximal glucosamine to 2-amino-2-deoxy-gluconate. Expression of the F. novicida lipid A 4′-phosphatase FnLpxF in wild-type E. coli has no effect because FnLpxF cannot dephosphorylate hexa-acylated lipid A. However, expression of FnLpxF in E. coli lpxM mutants, which synthesize penta-acylated lipid A lacking the secondary 3′-myristate chain, causes extensive 4′-dephosphorylation. Co-expression of FnLpxE and FnLpxF in lpxM mutants results in massive accumulation of lipid A species lacking both phosphate groups, and introduction of RlLpxQ generates phosphate-free lipid A variants containing 2-amino-2-deoxy-gluconate. The proposed lipid A structures were confirmed by electrospray ionization mass spectrometry. Strains with 4′-dephosphorylated lipid A display increased polymyxin resistance. Heptose-deficient mutants of E. coli lacking both the 1- and 4′-phosphate moieties are viable on plates but sensitive to CaCl2. Our methods for re-engineering lipid A structure may be useful for generating novel vaccines and adjuvants. PMID:20795687

  8. The mode of action of immunological adjuvants.

    PubMed

    Allison, A C

    1998-01-01

    Adjuvants augment immune responses to antigens and influence the balance between cell-mediated and humoral responses, as well as the isotypes of antibodies formed. New adjuvant formulations include antigen-carrying vehicles and small molecules with immunomodulating activity. Widely used two-phase vehicles comprise liposomes and microfluidized squalene or squalane emulsions. These are believed to target antigens to antigen-presenting cells, including dendritic cells (DC), follicular dendritic cells (FDC) and B-lymphocytes. Activation of complement generates C3d, which binds CR2 (CD21) on FDC and B-lymphocytes, thereby stimulating the proliferation of the latter and the generation of B-memory. Targeting of antigens to DC may favour cell-mediated immunity. Immunomodulating agents induce the production of cytokine cascades. In a primary cascade at injection sites TNF-alpha, GM-CSF and IL-1 are produced. TNF-alpha promotes migration of DC to lymphoid tissues, while GM-CSF and IL-1 accelerate the maturation of DC into efficient antigen-presenting cells for T-lymphocytes. In a secondary cytokine cascade in draining lymph nodes, DC produce IL-12, which induces Th1 responses with the production of IFN-gamma. The cytokines elicit cell-mediated immune responses and the formation of antibodies of protective isotypes, such as IgG2a in the mouse and IgG1 in humans. Antibodies of these isotypes activate complement and collaborate with antibody-dependent effector cells in protective immune responses.

  9. Assessing the safety of adjuvanted vaccines.

    PubMed

    Ahmed, S Sohail; Plotkin, Stanley A; Black, Steven; Coffman, Robert L

    2011-07-27

    Despite the very low risk-to-benefit ratio of vaccines, fear of negative side effects has discouraged many people from getting vaccinated, resulting in reemergence of previously controlled diseases such as measles, pertussis, and diphtheria. Part of this fear stems from the lack of public awareness of the many preclinical and clinical safety evaluations that vaccines must undergo before they are available to the general public, as well as from misperceptions of what adjuvants are or why they are used in vaccines. The resultant "black box" leads to a preoccupation with rare side effects (such as autoimmune diseases) that are speculated, but not proven, to be linked to some vaccinations. The focus of this review article is to open this black box and provide a conceptual framework for how vaccine safety is traditionally assessed. We discuss the strengths and shortcomings of tools that can be and are used preclinically (in animal studies), translationally (in biomarker studies with human sera or cells), statistically (for disease epidemiology), and clinically (in the design of human trials) to help ascertain the risk of the infrequent and delayed adverse events that arise in relation to adjuvanted vaccine administration.

  10. Neoadjuvant and Adjuvant Chemotherapy of Cervical Cancer.

    PubMed

    Mallmann, Peter; Mallmann, Christoph

    2016-01-01

    Neoadjuvant chemotherapy is indicated in patients who can tolerate the side effects of a chemotherapy and with preoperative presentation of one of the following clinical risk situations: bulky disease with a maximal tumor diameter of > 4 cm, suspicious lymph nodes in magnetic resonance imaging (MRI), computed tomography (CT) scan or endosonography, histopathologically confirmed lymph node metastasis, or histopathologically documented risk factors such as G3 and L1V1. A neoadjuvant chemotherapy followed by surgery should be performed with cisplatin at a dosage of > 25 mg/m2 per week and an application interval of < 14 days. The previously published data suggests an improved rate of complete resection and reduced incidences of positive lymph nodes and parametric infiltration. Accordingly, the percentage of patients in need for adjuvant radiochemotherapy after operation can be significantly reduced. Some studies demonstrated a prolongation of progression-free and overall survival. Following the previously published studies, adjuvant chemotherapy after operation or after radiochemotherapy has no significant effect on the overall survival and, following the current guidelines, should be avoided. PMID:27614740

  11. Safety assessment of adjuvanted vaccines: Methodological considerations.

    PubMed

    Tavares Da Silva, Fernanda; Di Pasquale, Alberta; Yarzabal, Juan P; Garçon, Nathalie

    2015-01-01

    Adjuvants mainly interact with the innate immune response and are used to enhance the quantity and quality of the downstream adaptive immune response to vaccine antigens. Establishing the safety of a new adjuvant-antigen combination is achieved through rigorous evaluation that begins in the laboratory, and that continues throughout the vaccine life-cycle. The strategy for the evaluation of safety pre-licensure is guided by the disease profile, vaccine indication, and target population, and it is also influenced by available regulatory guidelines. In order to allow meaningful interpretation of clinical data, clinical program methodology should be optimized and standardized, making best use of all available data sources. Post-licensure safety activities are directed by field experience accumulated pre- and post-licensure clinical trial data and spontaneous adverse event reports. Continued evolution of safety evaluation processes that keep pace with advances in vaccine technology and updated communication of the benefit-risk profile is necessary to maintain public confidence in vaccines.

  12. The mode of action of immunological adjuvants.

    PubMed

    Allison, A C

    1998-01-01

    Adjuvants augment immune responses to antigens and influence the balance between cell-mediated and humoral responses, as well as the isotypes of antibodies formed. New adjuvant formulations include antigen-carrying vehicles and small molecules with immunomodulating activity. Widely used two-phase vehicles comprise liposomes and microfluidized squalene or squalane emulsions. These are believed to target antigens to antigen-presenting cells, including dendritic cells (DC), follicular dendritic cells (FDC) and B-lymphocytes. Activation of complement generates C3d, which binds CR2 (CD21) on FDC and B-lymphocytes, thereby stimulating the proliferation of the latter and the generation of B-memory. Targeting of antigens to DC may favour cell-mediated immunity. Immunomodulating agents induce the production of cytokine cascades. In a primary cascade at injection sites TNF-alpha, GM-CSF and IL-1 are produced. TNF-alpha promotes migration of DC to lymphoid tissues, while GM-CSF and IL-1 accelerate the maturation of DC into efficient antigen-presenting cells for T-lymphocytes. In a secondary cytokine cascade in draining lymph nodes, DC produce IL-12, which induces Th1 responses with the production of IFN-gamma. The cytokines elicit cell-mediated immune responses and the formation of antibodies of protective isotypes, such as IgG2a in the mouse and IgG1 in humans. Antibodies of these isotypes activate complement and collaborate with antibody-dependent effector cells in protective immune responses. PMID:9554254

  13. Safety assessment of adjuvanted vaccines: Methodological considerations

    PubMed Central

    Da Silva, Fernanda Tavares; Di Pasquale, Alberta; Yarzabal, Juan P; Garçon, Nathalie

    2015-01-01

    Adjuvants mainly interact with the innate immune response and are used to enhance the quantity and quality of the downstream adaptive immune response to vaccine antigens. Establishing the safety of a new adjuvant-antigen combination is achieved through rigorous evaluation that begins in the laboratory, and that continues throughout the vaccine life-cycle. The strategy for the evaluation of safety pre-licensure is guided by the disease profile, vaccine indication, and target population, and it is also influenced by available regulatory guidelines. In order to allow meaningful interpretation of clinical data, clinical program methodology should be optimized and standardized, making best use of all available data sources. Post-licensure safety activities are directed by field experience accumulated pre- and post-licensure clinical trial data and spontaneous adverse event reports. Continued evolution of safety evaluation processes that keep pace with advances in vaccine technology and updated communication of the benefit-risk profile is necessary to maintain public confidence in vaccines. PMID:26029975

  14. Adjuvant chemotherapy for soft tissue sarcoma.

    PubMed

    Casali, Paolo G

    2015-01-01

    Adjuvant chemotherapy is not standard treatment in soft tissue sarcoma (STS). However, when the risk of relapse is high, it is an option for shared decision making with the patient in conditions of uncertainty. This is because available evidence is conflicting, even if several randomized clinical trials have been performed for 4 decades and also have been pooled into meta-analyses. Indeed, available meta-analyses point to a benefit in the 5% to 10% range in terms of survival and distant relapse rate. Some local benefit also was suggested by some trials. Placing chemotherapy in the preoperative setting may help gain a local advantage in terms of the quality of surgical margins or decreased sequelae. This may be done within a personalized approach according to the clinical presentation. Attempts to personalize treatment on the basis of the variegated pathology and molecular biology of STS subgroups are ongoing as well, according to what is done in the medical treatment of advanced STS. Thus, decision making for adjuvant and neoadjuvant indications deserves personalization in clinical research and in clinical practice, taking profit from all multidisciplinary clinical skills available at a sarcoma reference center, though with a degree of subjectivity because of the limitations of available evidence. PMID:25993233

  15. CpG oligodeoxynucleotides as mucosal adjuvants

    PubMed Central

    Iho, Sumiko; Maeyama, Jun-ichi; Suzuki, Fumiko

    2015-01-01

    Bacterial DNA comprising palindromic sequences and containing unmethylated CpG is recognized by toll-like receptor 9 of plasmacytoid dendritic cells (pDCs) and induces the production of interferon-α and chemokines, leading to the activation of a Th1 immune response. Therefore, synthetic equivalents of bacterial DNA (CpG oligodeoxynucleotides) have been developed for clinical applications. They are usually phosphorothioated for in vivo use; this approach also leads to adverse effects as reported in mouse models.Mucosal vaccines that induce both mucosal and systemic immunity received substantial attention in recent years. For their development, phosphodiester-linked oligodeoxynucleotides, including the sequence of a palindromic CpG DNA may be advantageous as adjuvants because their target pDCs are present right there, in the mucosa of the vaccination site. In addition, the probability of adverse effects is believed to be low. Here, we review the discovery of such CpG oligodeoxynucleotides and their possible use as mucosal adjuvants. PMID:25751765

  16. Evaluating spray adjuvants to extend residual activity of microbiol pesticides`

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Based on requests to improve the residual efficacy of baculovirus applications, a commercial adjuvant (Nu-Film 17(R) and an experimental lignin adjuvant were evaluated for resistance to environmental degradation. Nu-Film is a commercial product derived from pine resin; and lignin is a by-product of...

  17. Vaccine Adjuvants: from 1920 to 2015 and Beyond

    PubMed Central

    Di Pasquale, Alberta; Preiss, Scott; Tavares Da Silva, Fernanda; Garçon, Nathalie

    2015-01-01

    The concept of stimulating the body’s immune response is the basis underlying vaccination. Vaccines act by initiating the innate immune response and activating antigen presenting cells (APCs), thereby inducing a protective adaptive immune response to a pathogen antigen. Adjuvants are substances added to vaccines to enhance the immunogenicity of highly purified antigens that have insufficient immunostimulatory capabilities, and have been used in human vaccines for more than 90 years. While early adjuvants (aluminum, oil-in-water emulsions) were used empirically, rapidly increasing knowledge on how the immune system interacts with pathogens means that there is increased understanding of the role of adjuvants and how the formulation of modern vaccines can be better tailored towards the desired clinical benefit. Continuing safety evaluation of licensed vaccines containing adjuvants/adjuvant systems suggests that their individual benefit-risk profile remains favorable. Adjuvants contribute to the initiation of the innate immune response induced by antigens; exemplified by inflammatory responses at the injection site, with mostly localized and short-lived effects. Activated effectors (such as APCs) then move to draining lymph nodes where they direct the type, magnitude and quality of the adaptive immune response. Thus, the right match of antigens and adjuvants can potentiate downstream adaptive immune responses, enabling the development of new efficacious vaccines. Many infectious diseases of worldwide significance are not currently preventable by vaccination. Adjuvants are the most advanced new technology in the search for new vaccines against challenging pathogens and for vulnerable populations that respond poorly to traditional vaccines. PMID:26343190

  18. Update on Adjuvant Chemotherapy for Early Breast Cancer

    PubMed Central

    Rampurwala, Murtuza M; Rocque, Gabrielle B; Burkard, Mark E

    2014-01-01

    Breast cancer is the second most common cancer in women worldwide. Although most women are diagnosed with early breast cancer, a substantial number recur due to persistent micro-metastatic disease. Systemic adjuvant chemotherapy improves outcomes and has advanced from first-generation regimens to modern dose-dense combinations. Although chemotherapy is the cornerstone of adjuvant therapy, new biomarkers are identifying patients who can forego such treatment. Neo-adjuvant therapy is a promising platform for drug development, but investigators should recognize the limitations of surrogate endpoints and clinical trials. Previous decades have focused on discovering, developing, and intensifying adjuvant chemotherapy. Future efforts should focus on customizing therapy and reducing chemotherapy for patients unlikely to benefit. In some cases, it may be possible to replace chemotherapy with treatments directed at specific genetic or molecular breast cancer subtypes. Yet, we anticipate that chemotherapy will remain a critical component of adjuvant therapy for years to come. PMID:25336961

  19. Adjuvants in micro- to nanoscale: current state and future direction.

    PubMed

    Gupta, Ankur; Das, Soumen; Schanen, Brian; Seal, Sudipta

    2016-01-01

    Adjuvants have been used in vaccines for over 70 years to promote long-lived and sterilizing immunity. Since then, various adjuvant systems were developed by combining nanotechnology with natural and/or synthetic immunomodulatory molecules. These systems are biocompatible, immunogenic, and possess higher antigen carrying capacity. This article showcases advancements made in the adjuvant systems formulations, their synthesis routes, and the improvement of these adjuvants have brought in response to combat against ongoing global health threats such as malaria, hepatitis C, universal influenza, and human immunodeficiency virus. This review also highlights the interaction of adjuvants with the delivery of antigens to cells and unfolds mechanism of actions. In addition, this review discusses the physicochemical factors responsible for the efficient interaction of nanoadjuvants with antigen receptors to develop more effective, less reactogenic, and multifunctional systems for the next generation vaccines.

  20. Development and Evaluation of Biodegradable Particles Coloaded With Antigen and the Toll-Like Receptor Agonist, Pentaerythritol Lipid A, as a Cancer Vaccine.

    PubMed

    Ahmed, Kawther K; Geary, Sean M; Salem, Aliasger K

    2016-03-01

    Immune adjuvants are important components of current and prospective cancer vaccines. In this study, we aimed at evaluating the use of a synthetic lipid A derivative, pentaerythritol lipid A (PET lipid A), loaded into poly(lactic-co-glycolic acid) particles, as a potential cancer vaccine adjuvant. Poly(lactic-co-glycolic acid) particles (size range: 250-600 nm) were successfully formulated to include PET lipid A and/or the model tumor antigen, chicken ovalbumin (OVA). It was shown that particulated PET lipid A had a distinct advantage at promoting secretion of the immune potentiating cytokine, IL-12p70, and upregulating key costimulatory surface proteins, CD86 and CD40, in murine dendritic cells in vitro. In a murine tumor model, involving prophylactic vaccination with various permutations of soluble versus particulated formulations of OVA with or without PET lipid A, modest benefit was observed in terms of OVA-specific cell-mediated immune responses when PET lipid A was delivered in particles. These findings translated into a corresponding trend toward increased survival of mice challenged with OVA-expressing tumor cells (E.G7). In terms of translation of safe adjuvants into the clinic, these results promote the concept of delivering toll-like receptor-4 agonists in particles because doing so improves their adjuvant properties, while decreasing the chances of adverse effects due to off-target uptake by nonphagocytic cells. PMID:26886334

  1. Vaxjo: A Web-Based Vaccine Adjuvant Database and Its Application for Analysis of Vaccine Adjuvants and Their Uses in Vaccine Development

    PubMed Central

    Sayers, Samantha; Ulysse, Guerlain; Xiang, Zuoshuang; He, Yongqun

    2012-01-01

    Vaccine adjuvants are compounds that enhance host immune responses to co-administered antigens in vaccines. Vaxjo is a web-based central database and analysis system that curates, stores, and analyzes vaccine adjuvants and their usages in vaccine development. Basic information of a vaccine adjuvant stored in Vaxjo includes adjuvant name, components, structure, appearance, storage, preparation, function, safety, and vaccines that use this adjuvant. Reliable references are curated and cited. Bioinformatics scripts are developed and used to link vaccine adjuvants to different adjuvanted vaccines stored in the general VIOLIN vaccine database. Presently, 103 vaccine adjuvants have been curated in Vaxjo. Among these adjuvants, 98 have been used in 384 vaccines stored in VIOLIN against over 81 pathogens, cancers, or allergies. All these vaccine adjuvants are categorized and analyzed based on adjuvant types, pathogens used, and vaccine types. As a use case study of vaccine adjuvants in infectious disease vaccines, the adjuvants used in Brucella vaccines are specifically analyzed. A user-friendly web query and visualization interface is developed for interactive vaccine adjuvant search. To support data exchange, the information of vaccine adjuvants is stored in the Vaccine Ontology (VO) in the Web Ontology Language (OWL) format. PMID:22505817

  2. Advax-adjuvanted recombinant protective antigen provides protection against inhalational anthrax that is further enhanced by addition of murabutide adjuvant.

    PubMed

    Feinen, Brandon; Petrovsky, Nikolai; Verma, Anita; Merkel, Tod J

    2014-04-01

    Subunit vaccines against anthrax based on recombinant protective antigen (PA) potentially offer more consistent and less reactogenic anthrax vaccines but require adjuvants to achieve optimal immunogenicity. This study sought to determine in a murine model of pulmonary anthrax infection whether the polysaccharide adjuvant Advax or the innate immune adjuvant murabutide alone or together could enhance PA immunogenicity by comparison to an alum adjuvant. A single immunization with PA plus Advax adjuvant afforded significantly greater protection against aerosolized Bacillus anthracis Sterne strain 7702 than three immunizations with PA alone. Murabutide had a weaker adjuvant effect than Advax when used alone, but when murabutide was formulated together with Advax, an additive effect on immunogenicity and protection was observed, with complete protection after just two doses. The combined adjuvant formulation stimulated a robust, long-lasting B-cell memory response that protected mice against an aerosol challenge 18 months postimmunization with acceleration of the kinetics of the anamnestic IgG response to B. anthracis as reflected by ∼4-fold-higher anti-PA IgG titers by day 2 postchallenge versus mice that received PA with Alhydrogel. In addition, the combination of Advax plus murabutide induced approximately 3-fold-less inflammation than Alhydrogel as measured by in vivo imaging of cathepsin cleavage resulting from injection of ProSense 750. Thus, the combination of Advax and murabutide provided enhanced protection against inhalational anthrax with reduced localized inflammation, making this a promising next-generation anthrax vaccine adjuvanting strategy.

  3. Modern Vaccines/Adjuvants Formulation Session 6: Vaccine &Adjuvant Formulation & Production 15-17 May 2013, Lausanne, Switzerland.

    PubMed

    Fox, Christopher B

    2013-09-01

    The Modern Vaccines/Adjuvants Formulation meeting aims to fill a critical gap in current vaccine development efforts by bringing together formulation scientists and immunologists to emphasize the importance of rational formulation design in order to optimize vaccine and adjuvant bioactivity, safety, and manufacturability. Session 6 on Vaccine and Adjuvant Formulation and Production provided three examples of this theme, with speakers emphasizing the need for extensive physicochemical characterization of adjuvant-antigen interactions, the rational formulation design of a CD8+ T cell-inducing adjuvant based on immunological principles, and the development and production of a rabies vaccine by a developing country manufacturer. Throughout the session, the practical importance of sound formulation and manufacturing design accompanied by analytical characterization was highlighted.

  4. Herbal Medicines as Adjuvants for Cancer Therapeutics

    PubMed Central

    Wang, Chong-Zhi; Calway, Tyler; Yuan, Chun-Su

    2012-01-01

    In the United States, many patients, including cancer patients, concurrently take prescription drugs and herbal supplements. Co-administration of prescription medicines and herbal supplements may have negative outcomes via pharmacodynamic and pharmacokinetic herb-drug interactions. However, multiple constituents in botanicals may also yield beneficial pharmacological activities. Botanicals could possess effective anticancer compounds that may be used as adjuvants to existing chemotherapy to improve efficacy and/or reduce drug-induced toxicity. Herbal medicines, such as ginseng, potentiated the effects of chemotherapeutic agents via synergistic activities, supported by cell cycle evaluations, apoptotic observations, and computer-based docking analysis. Since botanicals are nearly always administrated orally, the role of intestinal microbiota in metabolizing ginseng constituents is presented. Controlled clinical studies are warranted to verify the clinical utility of the botanicals in cancer chemoprevention. PMID:22809022

  5. Rapid Quantification and Validation of Lipid Concentrations within Liposomes.

    PubMed

    Roces, Carla B; Kastner, Elisabeth; Stone, Peter; Lowry, Deborah; Perrie, Yvonne

    2016-01-01

    Quantification of the lipid content in liposomal adjuvants for subunit vaccine formulation is of extreme importance, since this concentration impacts both efficacy and stability. In this paper, we outline a high performance liquid chromatography-evaporative light scattering detector (HPLC-ELSD) method that allows for the rapid and simultaneous quantification of lipid concentrations within liposomal systems prepared by three liposomal manufacturing techniques (lipid film hydration, high shear mixing, and microfluidics). The ELSD system was used to quantify four lipids: 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC), cholesterol, dimethyldioctadecylammonium (DDA) bromide, and ᴅ-(+)-trehalose 6,6'-dibehenate (TDB). The developed method offers rapidity, high sensitivity, direct linearity, and a good consistency on the responses (R² > 0.993 for the four lipids tested). The corresponding limit of detection (LOD) and limit of quantification (LOQ) were 0.11 and 0.36 mg/mL (DMPC), 0.02 and 0.80 mg/mL (cholesterol), 0.06 and 0.20 mg/mL (DDA), and 0.05 and 0.16 mg/mL (TDB), respectively. HPLC-ELSD was shown to be a rapid and effective method for the quantification of lipids within liposome formulations without the need for lipid extraction processes. PMID:27649231

  6. Rapid Quantification and Validation of Lipid Concentrations within Liposomes

    PubMed Central

    Roces, Carla B.; Kastner, Elisabeth; Stone, Peter; Lowry, Deborah; Perrie, Yvonne

    2016-01-01

    Quantification of the lipid content in liposomal adjuvants for subunit vaccine formulation is of extreme importance, since this concentration impacts both efficacy and stability. In this paper, we outline a high performance liquid chromatography-evaporative light scattering detector (HPLC-ELSD) method that allows for the rapid and simultaneous quantification of lipid concentrations within liposomal systems prepared by three liposomal manufacturing techniques (lipid film hydration, high shear mixing, and microfluidics). The ELSD system was used to quantify four lipids: 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC), cholesterol, dimethyldioctadecylammonium (DDA) bromide, and d-(+)-trehalose 6,6′-dibehenate (TDB). The developed method offers rapidity, high sensitivity, direct linearity, and a good consistency on the responses (R2 > 0.993 for the four lipids tested). The corresponding limit of detection (LOD) and limit of quantification (LOQ) were 0.11 and 0.36 mg/mL (DMPC), 0.02 and 0.80 mg/mL (cholesterol), 0.06 and 0.20 mg/mL (DDA), and 0.05 and 0.16 mg/mL (TDB), respectively. HPLC-ELSD was shown to be a rapid and effective method for the quantification of lipids within liposome formulations without the need for lipid extraction processes. PMID:27649231

  7. The role of adjuvant in mediating antigen structure and stability.

    PubMed

    Braun, Latoya Jones; Eldridge, Aimee M; Cummiskey, Jessica; Arthur, Kelly K; Wuttke, Deborah S

    2012-04-01

    The purpose of this study was to probe the fate of a model antigen, a cysteine-free mutant of bacteriophage T4 lysozyme, to the level of fine structural detail, as a consequence of its interaction with an aluminum (Al)-containing adjuvant. Fluorescence spectroscopy and differential scanning calorimetry were used to compare the thermal stability of the protein in solution versus adsorbed onto an Al-containing adjuvant. Differences in accessible hydrophobic surface areas were investigated using an extrinsic fluorescence probe, 8-Anilino-1-naphthalenesulfonic acid (ANS). As has been observed with other model antigens, the apparent thermal stability of the protein decreased following adsorption onto the adjuvant. ANS spectra suggested that adsorption onto the adjuvant caused an increase in exposure of hydrophobic regions of the protein. Electrostatic interactions drove the adsorption, and disruption of these interactions with high ionic strength buffers facilitated the collection of two-dimensional (15) N heteronuclear single quantum coherence nuclear magnetic resonance data of protein released from the adjuvant. Although the altered stability of the adsorbed protein suggested changes to the protein's structure, the fine structure of the desorbed protein was nearly identical to the protein's structure in the adjuvant-free formulation. Thus, the adjuvant-induced changes to the protein that were responsible for the reduced thermal stability were not observed upon desorption.

  8. Glutamine synthetase predicts adjuvant TACE response in hepatocellular carcinoma

    PubMed Central

    Zhang, Bo; Liu, Kai; Zhang, Jian; Dong, Liwei; Jin, Zhichao; Zhang, Xinji; Xue, Feng; He, Jia

    2015-01-01

    Background: Adjuvant transcatheter arterial chemoembolization (TACE) is associated with better outcome and reduced tumor recurrence in hepatocellular carcinoma (HCC) patients. This study aimed to investigate the relationship between glutamine synthetase (GS) expression and survival of HCC patients after postoperative adjuvant TACE. Methods: We retrospectively analyzed 554 HCC patients in two independent cohorts who underwent curative resection. Immunohistochemistry assay was used to investigate the expression of GS protein and evaluate the association with survival and the response to adjuvant TACE. Results: In training cohort, patients with low GS expression who received postoperative adjuvant TACE showed a better overall survival (OS) (P<0.001) and less early phase recurrence (P=0.016). Adjuvant TACE was an independent prognostic factor for 5-year OS (HR=0.408, 95% CI 0.261-0.639, P<0.001) and early phase recurrence (HR=0.592, 95% CI 0.376-0.931, P=0.023). The same result was confirmed in validation cohort. Patients with high GS expression in both cohorts did not have a significant response to adjuvant TACE in OS and early phase recurrence. Conclusions: GS status in tumor might be a useful tool in the selection of HCC patients who would be likely to benefit from postoperative adjuvant TACE. PMID:26884995

  9. Adjuvants for veterinary vaccines--types and modes of action.

    PubMed

    Gerdts, Volker

    2015-01-01

    Adjuvants are used to improve the immune response to vaccines. Formulation with adjuvants can result in an earlier onset of immunity, an overall stronger immune response, a specific type of immunity, or a longer duration of immunity to the vaccine. Adjuvants were discovered empirically, and for decades, have been used in both humans and animals without understanding the mechanisms of action. With an improved understanding of the immune system, and in particular the interplay between innate and adaptive immunity, we are now getting better insight into the function of adjuvants. As a result, new adjuvants are being developed that are safe and highly effective for common use in humans and animals, as well as for use in high risk populations such as immunocompromised animals, neonates or very old animals. Furthermore, adjuvants can help to reduce the amount of antigen needed in the vaccine, increase the stability of the vaccine and enable alternatiye administration routes such as needle-free delivery of the vaccine. Here, I will provide an over view of the existing adjuvant technologies for veterinary vaccines and provide an outlook into some of the new technologies in preclinical and clinical development.

  10. Progress in adjuvant chemotherapy for breast cancer: an overview.

    PubMed

    Anampa, Jesus; Makower, Della; Sparano, Joseph A

    2015-01-01

    Breast cancer is the most common cause of cancer and cancer death worldwide. Although most patients present with localized breast cancer and may be rendered disease-free with local therapy, distant recurrence is common and is the primary cause of death from the disease. Adjuvant systemic therapies are effective in reducing the risk of distant and local recurrence, including endocrine therapy, anti-HER2 therapy, and chemotherapy, even in patients at low risk of recurrence. The widespread use of adjuvant systemic therapy has contributed to reduced breast cancer mortality rates. Adjuvant cytotoxic chemotherapy regimens have evolved from single alkylating agents to polychemotherapy regimens incorporating anthracyclines and/or taxanes. This review summarizes key milestones in the evolution of adjuvant systemic therapy in general, and adjuvant chemotherapy in particular. Although adjuvant treatments are routinely guided by predictive factors for endocrine therapy (hormone receptor expression) and anti-HER2 therapy (HER2 overexpression), predicting benefit from chemotherapy has been more challenging. Randomized studies are now in progress utilizing multiparameter gene expression assays that may more accurately select patients most likely to benefit from adjuvant chemotherapy.

  11. Oxidative state and oxidative metabolism of the heart from rats with adjuvant-induced arthritis.

    PubMed

    Schubert, Amanda Caroline; Wendt, Mariana Marques Nogueira; de Sá-Nakanishi, Anacharis Babeto; Amado, Ciomar Aparecida Bersani; Peralta, Rosane Marina; Comar, Jurandir Fernando; Bracht, Adelar

    2016-06-01

    The aim of the present work was to investigate, in a more extensive way, the oxidative state and parameters related to energy metabolism of the heart tissue of rats using the model of adjuvant-induced arthritis. The latter is a model for the human arthritic disease. Measurements were done in the total tissue homogenate, isolated mitochondria and cytosolic fraction. The adjuvant-induced arthritis caused several modifications in the oxidative state of the heart which, in general, indicate an increased oxidative stress (+80% reactive oxygen species), protein damage (+53% protein carbonyls) and lipid damage (+63% peroxidation) in the whole tissue. The distribution of these changes over the various cell compartments was frequently unequal. For example, protein carbonyls were increased in the whole tissue and in the cytosol, but not in the mitochondria. No changes in GSH content of the whole tissue were found, but it was increased in the mitochondria (+33%) and decreased in the cytosol (-19%). The activity of succinate dehydrogenase was 77% stimulated by arthritis; the activities of glutamate dehydrogenase, isocitrate dehydrogenase and cytochrome c oxidase were diminished by 31, 25 and 35.3%, respectively. In spite of these alterations, no changes in the mitochondrial respiratory activity and in the efficiency of energy transduction were found. It can be concluded that the adjuvant-induced arthritis in rats causes oxidative damage to the heart with an unequal intracellular distribution. Compared to the liver and brain the modifications caused by arthritis in the heart are less pronounced on variables such as GSH levels and protein integrity. Possibly this occurs because the antioxidant system of the heart is less impaired by arthritis than that reported for the former tissues. Even so, the modifications caused by arthritis represent an imbalanced situation that probably contributes to the cardiac symptoms of the arthritis disease. PMID:27032477

  12. Lipid14: The Amber Lipid Force Field.

    PubMed

    Dickson, Callum J; Madej, Benjamin D; Skjevik, Age A; Betz, Robin M; Teigen, Knut; Gould, Ian R; Walker, Ross C

    2014-02-11

    The AMBER lipid force field has been updated to create Lipid14, allowing tensionless simulation of a number of lipid types with the AMBER MD package. The modular nature of this force field allows numerous combinations of head and tail groups to create different lipid types, enabling the easy insertion of new lipid species. The Lennard-Jones and torsion parameters of both the head and tail groups have been revised and updated partial charges calculated. The force field has been validated by simulating bilayers of six different lipid types for a total of 0.5 μs each without applying a surface tension; with favorable comparison to experiment for properties such as area per lipid, volume per lipid, bilayer thickness, NMR order parameters, scattering data, and lipid lateral diffusion. As the derivation of this force field is consistent with the AMBER development philosophy, Lipid14 is compatible with the AMBER protein, nucleic acid, carbohydrate, and small molecule force fields. PMID:24803855

  13. Self-adjuvanting lipoimmunogens for therapeutic HPV vaccine development: potential clinical impact.

    PubMed

    Shen, Kuan-Yin; Chang, Li-Sheng; Leng, Chih-Hsiang; Liu, Shih-Jen

    2015-03-01

    The goal of therapeutic HPV vaccines is the induction of cytotoxic T lymphocyte immunity against HPV-associated cancers. Recombinant proteins and synthetic peptides have high safety profiles but low immunogenicity, which limits their efficacy when used in a vaccine. Self-adjuvanting lipid moieties have been conjugated to synthetic peptides or expressed as lipoproteins to enhance the immunogenicity of vaccine candidates. Mono-, di- and tri-palmitoylated peptides have been demonstrated to activate dendritic cells and induce robust cellular immunity against infectious diseases and cancer. Recently, a platform technology using the high-yield production of recombinant lipoproteins with Toll-like receptor 2 agonist activity was established for the development of novel subunit vaccines. This technology represents a novel strategy for the development of therapeutic HPV vaccines. In this review, we describe recent progress in the design of therapeutic HPV vaccines using lipoimmunogens.

  14. Free radical scavenging activity of Cleome gynandra L. leaves on adjuvant induced arthritis in rats.

    PubMed

    Narendhirakannan, R T; Subramanian, S; Kandaswamy, M

    2005-08-01

    The generation of free radicals has been implicated in the causation of several diseases of known and unknown etiologies such as, rheumatoid arthritis, diabetes, cancer, etc., and compounds that can scavenge free radicals have great potential in ameliorating these disease processes. The present study was aimed to investigate the possible anti-oxidant potential of Cleome gynandra leaf extract at a dose of 150 mg/kg body weight for 30 days on adjuvant induced arthritis in experimental rats. Oral administration of C. gynandra leaf extract significantly increased the levels of lipid peroxides and activities of catalase, glutathione peroxidase and decreased the levels of reduced glutathione and superoxide dismutase activity in arthritis induced rats. The free radical scavenging activity of the plant was further evidenced by histological observations made on the limb tissue. The presence of biologically active ingredients and vital trace elements in the leaves readily account for free radical scavenging property of C. gynandra. PMID:16132687

  15. Sex hormone adjuvant therapy in rheumatoid arthritis.

    PubMed

    Cutolo, M

    2000-11-01

    RA is an autoimmune rheumatic disorder resulting from the combination of several predisposing factors, including the relation between epitopes of possible triggering agents and histocompatibility epitopes, the status of the stress response system, and the sex hormone status. Estrogens are implicated as enhancers of humoral immunity, and androgens and progesterone are natural immune suppressors. Sex hormone concentrations have been evaluated in RA patients before glucocorticoid therapy and have frequently been found to be altered, especially in premenopausal women and male patients. In particular, low levels of gonadal and adrenal androgens (testosterone and DHT, DHEA and DHEAS) and a reduced androgen:estrogen ratio have been detected in body fluids (i.e., blood, synovial fluid, smears, saliva) of male and female RA patients. These observations support a possible pathogenic role for the decreased levels of the immune-suppressive androgens. Exposure to environmental estrogens (estrogenic xenobiotics), genetic polymorphisms of genes coding for hormone metabolic enzymes or receptors, and gonadal disturbances related to stress system activation (hypothalamic-pituitary-adrenocortical axis) and physiologic hormonal perturbations such as during aging, the menstrual cycle, pregnancy, the postpartum period, and menopause may interfere with the androgen:estrogen ratio. Sex hormones might exert their immune-modulating effects, at least in RA synovitis, because synovial macrophages, monocytes, and lymphocytes possess functional androgen and estrogen receptors and may metabolize gonadal hormones. The molecular basis for sex hormone adjuvant therapy in RA is thus experimentally substantiated. By considering the well-demonstrated immune-suppressive activities exerted by androgens, male hormones and their derivatives seem to be the most promising therapeutic approach. Recent studies have shown positive effects of androgen replacement therapy at least in male RA patients

  16. 'ASIA' - autoimmune/inflammatory syndrome induced by adjuvants.

    PubMed

    Shoenfeld, Yehuda; Agmon-Levin, Nancy

    2011-02-01

    The role of various environmental factors in the pathogenesis of immune mediated diseases is well established. Of which, factors entailing an immune adjuvant activity such as infectious agents, silicone, aluminium salts and others were associated with defined and non-defined immune mediated diseases both in animal models and in humans. In recent years, four conditions: siliconosis, the Gulf war syndrome (GWS), the macrophagic myofasciitis syndrome (MMF) and post-vaccination phenomena were linked with previous exposure to an adjuvant. Furthermore, these four diseases share a similar complex of signs and symptoms which further support a common denominator.Thus, we review herein the current data regarding the role of adjuvants in the pathogenesis of immune mediated diseases as well as the amassed data regarding each of these four conditions. Relating to the current knowledge we would like to suggest to include these comparable conditions under a common syndrome entitled ASIA, "Autoimmune (Auto-inflammatory) Syndrome Induced by Adjuvants". PMID:20708902

  17. The perfect mix: recent progress in adjuvant research.

    PubMed

    Guy, Bruno

    2007-07-01

    Developing efficient and safe adjuvants for use in human vaccines remains both a challenge and a necessity. Past approaches have been largely empirical and generally used a single type of adjuvant, such as aluminium salts or emulsions. However, new vaccine targets often require the induction of well-defined cell-mediated responses in addition to antibodies, and thus new immunostimulants are required. Recent advances in basic immunology have elucidated how early innate immune signals can shape subsequent adaptive responses and this, coupled with improvements in biochemical techniques, has led to the design and development of more specific and focused adjuvants. In this Review, I discuss the research that has made it possible for vaccinologists to now be able to choose between a large panel of adjuvants, which potentially can act synergistically, and combine them in formulations that are specifically adapted to each target and to the relevant correlate(s) of protection. PMID:17558426

  18. Adjuvants and inactivated polio vaccine: a systematic review.

    PubMed

    Hawken, Jennifer; Troy, Stephanie B

    2012-11-19

    Poliomyelitis is nearing universal eradication; in 2011, there were 650 cases reported globally. When wild polio is eradicated, global oral polio vaccine (OPV) cessation followed by use of universal inactivated polio vaccine (IPV) is believed to be the safest vaccination strategy as IPV does not mutate or run the risk of vaccine derived outbreaks that OPV does. However, IPV is significantly more expensive than OPV. One strategy to make IPV more affordable is to reduce the dose by adding adjuvants, compounds that augment the immune response to the vaccine. No adjuvants are currently utilized in stand-alone IPV; however, several have been explored over the past six decades. From aluminum, used in many licensed vaccines, to newer and more experimental adjuvants such as synthetic DNA, a diverse group of compounds has been assessed with varying strengths and weaknesses. This review summarizes the studies to date evaluating the efficacy and safety of adjuvants used with IPV.

  19. The Vaccine Formulation Laboratory: a platform for access to adjuvants.

    PubMed

    Collin, Nicolas; Dubois, Patrice M

    2011-07-01

    Adjuvants are increasingly used by the vaccine research and development community, particularly for their ability to enhance immune responses and for their dose-sparing properties. However, they are not readily available to the majority of public sector vaccine research groups, and even those with access to suitable adjuvants may still fail in the development of their vaccines because of lack of knowledge on how to correctly formulate the adjuvants. This shortcoming led the World Health Organization to advocate for the establishment of the Vaccine Formulation Laboratory at the University of Lausanne, Switzerland. The primary mission of the laboratory is to transfer adjuvants and formulation technology free of intellectual property rights to academic institutions, small biotechnology companies and developing countries vaccine manufacturers. In this context, the transfer of an oil-in-water emulsion to Bio Farma, an Indonesian vaccine manufacturer, was initiated to increase domestic pandemic influenza vaccine production capacity as part of the national pandemic influenza preparedness plan.

  20. Postoperative adjuvant radiotherapy for patients with gastric adenocarcinoma.

    PubMed

    Lim, Do Hoon

    2012-12-01

    In gastric adenocarcinoma, high rates of loco-regional recurrences have been reported even after complete resection, and various studies have been tried to find the role of postoperative adjuvant therapy. Among them, Intergroup 0116 trial was a landmark trial, and demonstrated the definite survival benefit in adjuvant chemoradiotherapy, compared with surgery alone. However, the INT 0116 trial had major limitation for global acceptance of the INT 0116 regimen as an adjuvant treatment modality because of the limited lymph node dissection. Lately, several randomized studies that were performed to patients with D2-dissected gastric cancer were published. This review summarizes the data about patterns of failure after surgical resection and the earlier prospective studies, including INT 0116 study. Author will introduce the latest studies, including ARTIST trial and discuss whether external beam radiotherapy should be applied to patients receiving extended lymph node dissection and adjuvant chemotherapy. PMID:23346491

  1. Endometrial adenocarcinoma, adjuvant radiotherapy tailored to prognostic factors.

    PubMed

    Meerwaldt, J H; Hoekstra, C J; van Putten, W L; Tjokrowardojo, A J; Koper, P C

    1990-02-01

    The optimal adjuvant radiotherapy for surgically treated endometrial cancer has not yet been defined. We report on 389 patients treated between 1970 and 1985 with adjuvant radiotherapy. The treatment was tailored to the known prognostic factors: myometrial invasion and grade of differentiation of the tumor. Ten-year overall survival was 67%, 10-year relapse-free survival 77%; 23% relapse, of which 21% distant and 6% locoregional relapse. In a multivariate analysis, stage (pT), grade, and myometrial invasion were prognostic factors. The number of locoregional failures was very small (n = 23). This small number, the fact that radiation treatment was tailored to prognostic factors, and the absence of a nontreated control group precluded an analysis of the effect of the adjuvant irradiation. Large randomized studies with a control (no treatment) arm should be performed to determine the value of adjuvant radiotherapy. PMID:2303362

  2. Activity of glycated chitosan and other adjuvants to PDT vaccines

    NASA Astrophysics Data System (ADS)

    Korbelik, Mladen; Banáth, Judit; Čiplys, Evaldas; Szulc, Zdzislaw; Bielawska, Alicja; Chen, Wei R.

    2015-03-01

    Glycated chitosan (GC), a water soluble galactose-conjugated natural polysaccharide, has proven to be an effective immunoadjuvant for treatment of tumors based on laser thermal therapy. It was also shown to act as adjuvant for tumor therapy with high-intensity ultrasound and in situ photodynamic therapy (PDT). In the present study, GC was examined as potential adjuvant to PDT-generated cancer vaccine. Two other agents, pure calreticulin protein and acid ceramidase inhibitor LCL521, were also tested as prospective adjuvants for use in conjunction with PDT vaccines. Single treatment with GC, included with PDT vaccine cells suspension, improved the therapeutic efficacy when compared to vaccine alone. This attractive prospect of GC application remains to be carefully optimized and mechanistically elucidated. Both calreticulin and LCL521 proved also effective adjuvants when combined with PDT vaccine tumor treatment.

  3. Interferon-gamma as an adjuvant in immunocompromised mice.

    PubMed Central

    Heath, A W; Devey, M E; Brown, I N; Richards, C E; Playfair, J H

    1989-01-01

    We have compared interferon-gamma (IFN-gamma) with saponin and interleukin-1 (IL-1) as adjuvants for a blood-stage malaria vaccine in mice with various immunological abnormalities. IFN-gamma was particularly effective in Biozzi low antibody responder mice, mice selectively bred to produce antibody of low affinity, and mice depleted of CD4+ T cells. IFN-gamma and other cytokines may be safe adjuvants for use in human immunodeficiency states. PMID:2504662

  4. Effect of Freund's adjuvant on standard dark and pastel mink.

    PubMed

    Tabel, H; Ingram, D G

    1971-04-01

    Following a long series of injections of homologous immunoglobulin in complete and incomplete Freund's adjuvant into mink, a moderate elevation in the level of gammaglobulin in the serum was observed in a few animals. Relatively mild pathological changes also were seen in liver, spleen, lymph nodes, lungs and kidney. It is concluded that the injection of Freund's adjuvant, under the experimental conditions described, produced lesions which were readily distinguishable from the lesions characteristic of aleutian disease of mink.

  5. Learning Impairment in Honey Bees Caused by Agricultural Spray Adjuvants

    PubMed Central

    Ciarlo, Timothy J.; Mullin, Christopher A.; Frazier, James L.; Schmehl, Daniel R.

    2012-01-01

    Background Spray adjuvants are often applied to crops in conjunction with agricultural pesticides in order to boost the efficacy of the active ingredient(s). The adjuvants themselves are largely assumed to be biologically inert and are therefore subject to minimal scrutiny and toxicological testing by regulatory agencies. Honey bees are exposed to a wide array of pesticides as they conduct normal foraging operations, meaning that they are likely exposed to spray adjuvants as well. It was previously unknown whether these agrochemicals have any deleterious effects on honey bee behavior. Methodology/Principal Findings An improved, automated version of the proboscis extension reflex (PER) assay with a high degree of trial-to-trial reproducibility was used to measure the olfactory learning ability of honey bees treated orally with sublethal doses of the most widely used spray adjuvants on almonds in the Central Valley of California. Three different adjuvant classes (nonionic surfactants, crop oil concentrates, and organosilicone surfactants) were investigated in this study. Learning was impaired after ingestion of 20 µg organosilicone surfactant, indicating harmful effects on honey bees caused by agrochemicals previously believed to be innocuous. Organosilicones were more active than the nonionic adjuvants, while the crop oil concentrates were inactive. Ingestion was required for the tested adjuvant to have an effect on learning, as exposure via antennal contact only induced no level of impairment. Conclusions/Significance A decrease in percent conditioned response after ingestion of organosilicone surfactants has been demonstrated here for the first time. Olfactory learning is important for foraging honey bees because it allows them to exploit the most productive floral resources in an area at any given time. Impairment of this learning ability may have serious implications for foraging efficiency at the colony level, as well as potentially many social interactions

  6. Adjuvant Therapy for Gallbladder Carcinoma: The Mayo Clinic Experience

    SciTech Connect

    Gold, Douglas G.; Miller, Robert C. Haddock, Michael G.; Gunderson, Leonard L.; Quevedo, Fernando; Donohue, John H.; Bhatia, Sumita; Nagorney, David M.

    2009-09-01

    Purpose: To analyze the effect of adjuvant chemoradiotherapy on gallbladder carcinoma. Methods and Materials: We retrospectively reviewed the records from consecutive patients who underwent R0 resection of gallbladder carcinoma between January 1, 1985, and December 31, 2004. Patients had either Stage I (T1-T2N0M0) or Stage II (T3N0M0 or T1-T3N1M0) disease. Patients undergoing adjuvant therapy received 5-fluorouracil chemotherapy concurrently with radiotherapy (median dosage, 50.4 Gy in 28 fractions). Adverse prognostic factors and the effect of adjuvant treatment on overall survival (OS) were evaluated. Results: A total of 73 patients were included in the analysis; of these, 25 received adjuvant chemoradiotherapy. On univariate analysis, no adverse prognostic factors for OS reached statistical significance, but trends were noted for Stage N1 vs. N0 (p = .06), Nx vs. N0 (p = .09), Stage T3 vs. T1-T2 (p = .06), and histologic findings other than adenocarcinoma (p = .13). The median OS for patients receiving adjuvant chemoradiotherapy vs. surgery alone was 4.8 years and 4.2 years, respectively (log-rank test, p = .56). However, a significantly greater percentage of patients receiving adjuvant chemoradiotherapy had Stage II disease (p <.001). In the multivariate Cox model, increasing T and N category and histologic findings other than adenocarcinoma were significant predictors of decreased OS. Additionally, adjuvant chemoradiotherapy was a significant predictor of improved OS after adjusting for these prognostic factors (hazard ratio for death, 0.3; 95% confidence interval, 0.13-0.69; p = .004). Conclusion: After adjusting for the stage parameters and histologic findings, our data suggest that adjuvant chemoradiotherapy might improve OS for patients with gallbladder cancer.

  7. TLR4 and TLR7/8 Adjuvant Combinations Generate Different Vaccine Antigen-Specific Immune Outcomes in Minipigs when Administered via the ID or IN Routes.

    PubMed

    McKay, Paul F; King, Deborah F L; Mann, Jamie F S; Barinaga, Guillermo; Carter, Darrick; Shattock, Robin J

    2016-01-01

    The induction of high levels of systemic and mucosal humoral immunity is a key goal for many prophylactic vaccines. However, adjuvant strategies developed in mice have often performed poorly in the clinic. Due to their closer similarity to humans, minipigs may provide a more accurate picture of adjuvant performance. Based on their complementary signalling pathways, we assessed humoral immune responses to model antigens after co-administration with the toll-like receptor 4 (TLR4) stimulator glucopyranosyl lipid adjuvant (GLA-AF) or the TLR7/8 agonist resiquimod (R848) (alone and in combination) via the intradermal (ID), intranasal (IN) or combined routes in the Gottingen minipig animal model. Surprisingly, we discovered that while GLA-AF additively enhanced the adjuvant effect of R848 when injected ID, it abrogated the adjuvant activity of R848 after IN inoculation. We then performed a route comparison study using a CN54 gp140 HIV Envelope model antigen adjuvanted with R848 + GLA-AF (ID) or R848 alone (IN). Animals receiving priming inoculations via one route were then boosted by the alternate route. Although differences were observed in the priming phase (IN or ID), responses converged upon boosting by the alternative route with no observable impact resultant from the order of administration (ID/IN vs IN/ID). Specific IgG responses were measured at a distal mucosal site (vaginal), although there was no evidence of mucosal linkage as these closely reflected serum antibody levels. These data indicate that the complex in vivo cross-talk between innate pathways are likely tissue specific and cannot be predicted by simple in vitro models. PMID:26862758

  8. Enhanced immunogenicity of a respiratory syncytial virus (RSV) F subunit vaccine formulated with the adjuvant GLA-SE in cynomolgus macaques.

    PubMed

    Patton, Kathryn; Aslam, Shahin; Shambaugh, Cindy; Lin, Rui; Heeke, Darren; Frantz, Chris; Zuo, Fengrong; Esser, Mark T; Paliard, Xavier; Lambert, Stacie L

    2015-08-26

    Respiratory syncytial virus (RSV) causes significant disease in elderly adults, but an effective vaccine is not yet available. We have previously reported that vaccines consisting of engineered respiratory syncytial virus soluble fusion protein (RSV sF) adjuvanted with glucopyranosyl lipid A (GLA) in an oil-in-water emulsion (stable emulsion [SE]) induce RSV F-specific T and B cell responses in mice and rats that protect from viral challenge. Here, we evaluated the immunogenicity of GLA-SE adjuvanted RSV sF vs unadjuvanted RSV sF vaccines in cynomolgus macaques (Macaca fascicularis). RSV F-specific IgG, RSV neutralizing antibodies, and RSV F-specific T cell IFNγ ELISPOT responses induced by GLA-SE adjuvanted RSV sF peaked at week 6 at significantly higher levels than achieved by unadjuvanted RSV sF and remained detectable through week 24, demonstrating response longevity. Two weeks after a week 24 booster immunization, humoral and cellular responses reached levels similar to those seen at the earlier peak response. Importantly, the GLA-SE adjuvanted RSV sF vaccine induced cross-neutralizing antibodies to other RSV A and B strains as well as F-specific IgA and IgG memory B cells. GLA-SE adjuvanted RSV sF was also demonstrated to drive a Th1-biased response characterized by more IFNγ than IL-4. This study indicates that a GLA-SE adjuvanted RSV sF vaccine induces robust humoral and Th1-biased cellular immunity in non-human primates and may benefit human populations at risk for RSV disease.

  9. TLR4 and TLR7/8 Adjuvant Combinations Generate Different Vaccine Antigen-Specific Immune Outcomes in Minipigs when Administered via the ID or IN Routes

    PubMed Central

    McKay, Paul F.; King, Deborah F. L.; Mann, Jamie F. S.; Barinaga, Guillermo; Carter, Darrick; Shattock, Robin J.

    2016-01-01

    The induction of high levels of systemic and mucosal humoral immunity is a key goal for many prophylactic vaccines. However, adjuvant strategies developed in mice have often performed poorly in the clinic. Due to their closer similarity to humans, minipigs may provide a more accurate picture of adjuvant performance. Based on their complementary signalling pathways, we assessed humoral immune responses to model antigens after co-administration with the toll-like receptor 4 (TLR4) stimulator glucopyranosyl lipid adjuvant (GLA-AF) or the TLR7/8 agonist resiquimod (R848) (alone and in combination) via the intradermal (ID), intranasal (IN) or combined routes in the Gottingen minipig animal model. Surprisingly, we discovered that while GLA-AF additively enhanced the adjuvant effect of R848 when injected ID, it abrogated the adjuvant activity of R848 after IN inoculation. We then performed a route comparison study using a CN54 gp140 HIV Envelope model antigen adjuvanted with R848 + GLA-AF (ID) or R848 alone (IN). Animals receiving priming inoculations via one route were then boosted by the alternate route. Although differences were observed in the priming phase (IN or ID), responses converged upon boosting by the alternative route with no observable impact resultant from the order of administration (ID/IN vs IN/ID). Specific IgG responses were measured at a distal mucosal site (vaginal), although there was no evidence of mucosal linkage as these closely reflected serum antibody levels. These data indicate that the complex in vivo cross-talk between innate pathways are likely tissue specific and cannot be predicted by simple in vitro models. PMID:26862758

  10. TLR4 and TLR7/8 Adjuvant Combinations Generate Different Vaccine Antigen-Specific Immune Outcomes in Minipigs when Administered via the ID or IN Routes.

    PubMed

    McKay, Paul F; King, Deborah F L; Mann, Jamie F S; Barinaga, Guillermo; Carter, Darrick; Shattock, Robin J

    2016-01-01

    The induction of high levels of systemic and mucosal humoral immunity is a key goal for many prophylactic vaccines. However, adjuvant strategies developed in mice have often performed poorly in the clinic. Due to their closer similarity to humans, minipigs may provide a more accurate picture of adjuvant performance. Based on their complementary signalling pathways, we assessed humoral immune responses to model antigens after co-administration with the toll-like receptor 4 (TLR4) stimulator glucopyranosyl lipid adjuvant (GLA-AF) or the TLR7/8 agonist resiquimod (R848) (alone and in combination) via the intradermal (ID), intranasal (IN) or combined routes in the Gottingen minipig animal model. Surprisingly, we discovered that while GLA-AF additively enhanced the adjuvant effect of R848 when injected ID, it abrogated the adjuvant activity of R848 after IN inoculation. We then performed a route comparison study using a CN54 gp140 HIV Envelope model antigen adjuvanted with R848 + GLA-AF (ID) or R848 alone (IN). Animals receiving priming inoculations via one route were then boosted by the alternate route. Although differences were observed in the priming phase (IN or ID), responses converged upon boosting by the alternative route with no observable impact resultant from the order of administration (ID/IN vs IN/ID). Specific IgG responses were measured at a distal mucosal site (vaginal), although there was no evidence of mucosal linkage as these closely reflected serum antibody levels. These data indicate that the complex in vivo cross-talk between innate pathways are likely tissue specific and cannot be predicted by simple in vitro models.

  11. Chitosan-based mucosal adjuvants: Sunrise on the ocean.

    PubMed

    Xia, Yufei; Fan, Qingze; Hao, Dongxia; Wu, Jie; Ma, Guanghui; Su, Zhiguo

    2015-11-01

    Mucosal vaccination, which is shown to elicit systemic and mucosal immune responses, serves as a non-invasive and convenient alternative to parenteral administration, with stronger capability in combatting diseases at the site of entry. The exploration of potent mucosal adjuvants is emerging as a significant area, based on the continued necessity to amplify the immune responses to a wide array of antigens that are poorly immunogenic at the mucosal sites. As one of the inspirations from the ocean, chitosan-based mucosal adjuvants have been developed with unique advantages, such as, ability of mucosal adhesion, distinct trait of opening the junctions to allow the paracellular transport of antigen, good tolerability and biocompatibility, which guaranteed the great potential in capitalizing on their application in human clinical trials. In this review, the state of art of chitosan and its derivatives as mucosal adjuvants, including thermo-sensitive chitosan system as mucosal adjuvant that were newly developed by author's group, was described, as well as the clinical application perspective. After a brief introduction of mucosal adjuvants, chitosan and its derivatives as robust immune potentiator were discussed in detail and depth, in regard to the metabolism, safety profile, mode of actions and preclinical and clinical applications, which may shed light on the massive clinical application of chitosan as mucosal adjuvant.

  12. Natural products and the search for novel vaccine adjuvants.

    PubMed

    Rey-Ladino, Jose; Ross, Allen G; Cripps, Allan W; McManus, Donald P; Quinn, Ronald

    2011-09-01

    Vaccines that protect against intracellular infections such as malaria, Leishmania and Chlamydia require strong cellular responses based on CD4(+) T cells and CD8(+) T cells in addition to antibodies. Such cell-mediated responses can be potentiated with adjuvants. However, very few adjuvants have been licensed for use in humans; thus there is an urgent need for the discovery of new non-toxic adjuvants in order to produce more efficacious vaccines. Until recently, the mechanisms of how adjuvants worked remained largely unknown, but, it is becoming clearer that many function via host germline-encoded pattern recognition receptors (PRRs) expressed by most immune and non-immune cells. Most PRRs sense infection and transmit a series of signals that ultimately lead to the development of immunity. PRR mediated signalling can be harnessed to search for new vaccine adjuvants. Dendritic cells (DCs) express many PRRs and are remarkably effective at directing T cell immunity. Natural products (NPs) have been the basis of many drugs and are a rich source of immune activators and/or regulators of the immune response. Here we review PRRs in the context of NPs and propose the use of DCs as biological probes to help identify novel immune type molecules and adjuvants within collections of NPs.

  13. Squalene and squalane emulsions as adjuvants.

    PubMed

    Allison, A C

    1999-09-01

    Microfluidized squalene or squalane emulsions are efficient adjuvants, eliciting both humoral and cellular immune responses. Microfluidization stabilizes the emulsions and allows sterilization by terminal filtration. The emulsions are stable for years at ambient temperature and can be frozen. Antigens are added after emulsification so that conformational epitopes are not lost by denaturation and to facilitate manufacture. A Pluronic block copolymer can be added to the squalane or squalene emulsion. Soluble antigens administered in such emulsions generate cytotoxic T lymphocytes able to lyse target cells expressing the antigen in a genetically restricted fashion. Optionally a relatively nontoxic analog of muramyl dipeptide (MDP) or another immunomodulator can be added; however, the dose of MDP must be restricted to avoid systemic side effects in humans. Squalene or squalane emulsions without copolymers or MDP have very little toxicity and elicit potent antibody responses to several antigens in nonhuman primates. They could be used to improve a wide range of vaccines. Squalene or squalane emulsions have been administered in human cancer vaccines, with mild side effects and evidence of efficacy, in terms of both immune responses and antitumor activity.

  14. Adjuvant chemotherapy in head and neck cancer.

    PubMed Central

    Stell, P. M.; Rawson, N. S.

    1990-01-01

    An overview is presented of 23 trials of adjuvant chemotherapy in squamous cell carcinoma of the head and neck. These were reviewed from the point of view of design of the trial, analysis of survival, response rates, meta-analysis, site of failure, toxicity and cost. The minimal increase in survival that could be detected ranged from 11 to 51%, with a median of 25%. No trial was big enough to detect the likely increase of survival, which is 5%. Many trials excluded some eligible patients before randomisation, the proportion being 21% in those series with details. A further 9% of treated patients were excluded from analysis. A response rate in four induction studies of 47% equated with a 6% increase in cancer mortality. Meta-analysis showed an insignificant overall improvement in cancer mortality of 0.5%. Induction chemotherapy, synchronous chemotherapy and induction/maintenance chemotherapy did not affect cancer mortality whereas synchronous/maintenance therapy did. Cisplatinum, methotrexate, bleomycin, 5-FU and a variety of other regimens did not affect the death rate from cancer, but the combination of VBM significantly increased it. Neither single agent nor combination chemotherapy produced a significant reduction of cancer deaths. The rate of locoregional failure was significantly lower in the treated arms, whereas the metastatic rate was similar in both arms. Only three papers gave full details of toxicity with grading: these showed a high toxicity rate. The mortality rate from chemotherapy in nine series averaged 6.5%. PMID:2140045

  15. Disorders of Lipid Metabolism

    MedlinePlus

    ... Metabolic Disorders Disorders of Carbohydrate Metabolism Disorders of Amino Acid Metabolism Disorders of Lipid Metabolism Fats (lipids) are ... carbohydrates and low in fats. Supplements of the amino acid carnitine may be helpful. The long-term outcome ...

  16. Irinotecan Lipid Complex Injection

    MedlinePlus

    Irinotecan lipid complex is used in combination with other medications to treat pancreatic cancer that has spread to other parts of ... after treatment with other chemotherapy medications. Irinotecan lipid complex is in a class of antineoplastic medications called ...

  17. Vincristine Lipid Complex Injection

    MedlinePlus

    Vincristine lipid complex is used to treat a certain type of acute lymphoblastic leukemia (ALL; a type of cancer of the ... two different treatments with other medications. Vincristine lipid complex is in a class of medications called vinca ...

  18. Daunorubicin Lipid Complex Injection

    MedlinePlus

    Daunorubicin lipid complex is used to treat advanced Kaposi's sarcoma (a type of cancer that causes abnormal tissue to grow on ... related to acquired immunodeficiency syndrome (AIDS). Daunorubicin lipid complex is in a class of medications called anthracyclines. ...

  19. Cytarabine Lipid Complex Injection

    MedlinePlus

    Cytarabine lipid complex is used to treat lymphomatous meningitis (a type of cancer in the covering of the spinal cord and brain). Cytarabine lipid complex is in a class of medications called antimetabolites. ...

  20. Doxorubicin Lipid Complex Injection

    MedlinePlus

    Doxorubicin lipid complex is used to treat ovarian cancer that has not improved or that has worsened after treatment with other medications. Doxorubicin lipid complex is also used to treat Kaposi's sarcoma (a ...

  1. Choice and Design of Adjuvants for Parenteral and Mucosal Vaccines.

    PubMed

    Savelkoul, Huub F J; Ferro, Valerie A; Strioga, Marius M; Schijns, Virgil E J C

    2015-03-05

    The existence of pathogens that escape recognition by specific vaccines, the need to improve existing vaccines and the increased availability of therapeutic (non-infectious disease) vaccines necessitate the rational development of novel vaccine concepts based on the induction of protective cell-mediated immune responses. For naive T-cell activation, several signals resulting from innate and adaptive interactions need to be integrated, and adjuvants may interfere with some or all of these signals. Adjuvants, for example, are used to promote the immunogenicity of antigens in vaccines, by inducing a pro-inflammatory environment that enables the recruitment and promotion of the infiltration of phagocytic cells, particularly antigen-presenting cells (APC), to the injection site. Adjuvants can enhance antigen presentation, induce cytokine expression, activate APC and modulate more downstream adaptive immune reactions (vaccine delivery systems, facilitating immune Signal 1). In addition, adjuvants can act as immunopotentiators (facilitating Signals 2 and 3) exhibiting immune stimulatory effects during antigen presentation by inducing the expression of co-stimulatory molecules on APC. Together, these signals determine the strength of activation of specific T-cells, thereby also influencing the quality of the downstream T helper cytokine profiles and the differentiation of antigen-specific T helper populations (Signal 3). New adjuvants should also target specific (innate) immune cells in order to facilitate proper activation of downstream adaptive immune responses and homing (Signal 4). It is desirable that these adjuvants should be able to exert such responses in the context of mucosal administered vaccines. This review focuses on the understanding of the potential working mechanisms of the most well-known classes of adjuvants to be used effectively in vaccines.

  2. Regulation of cytokine gene expression by adjuvants in vivo.

    PubMed

    Victoratos, P; Yiangou, M; Avramidis, N; Hadjipetrou, L

    1997-09-01

    Antibody isotype affects biological activity of the antibodies and therefore should be considered in prevention of disease by vaccination. In previous reports, we demonstrated that adjuvants affect the antibody isotype switching process and favour the production of certain isotypes. The present study extends these findings and shows fundamental differences in the cytokine induction pattern according to the adjuvant used. Cytokine mRNA levels were determined by in situ RNA-RNA hybridization performed on splenocytes isolated from mice injected with different adjuvants. The results revealed that Freund's complete adjuvant (FCA), Freund's incomplete adjuvant (FIA), Al(OH)3 and QuilA administration results in a type-2 (humoral) response, increasing IL-4, IL-5 and IL-13 gene expression, while poly I:C exhibits a type-1 (cell-mediated) response, increasing the production of interferon-gamma (IFN-gamma), IL-2 and IL-6 mRNA. Finally, BeSO4 and poly A:U augment IL-5 and IL-6 mRNA production, while lipopolysaccharide (LPS) and LiCl augment IL-6 and tumour necrosis factor-alpha (TNF-alpha) mRNA production. Also, the adjuvants appear capable of overcoming the inherent IL-2/IFN-gamma and IL-4 dichotomy of C57B1/6 and BALB/c mice, respectively, in response to cellular antigens such as Leishmania and herpes simplex virus (HSV). The overall data suggest that adjuvants direct the isotype switching process via induction of certain cytokines, a finding that can be useful in selection of the most efficient isotype of protective antibodies for disease prevention by vaccination.

  3. DNA minigene vaccination for adjuvant neuroblastoma therapy.

    PubMed

    Lode, Holger N; Huebener, Nicole; Zeng, Yan; Fest, Stefan; Weixler, S; Gaedicke, Gerhard

    2004-12-01

    The disruption of self-tolerance against neuroblastoma is the ultimate goal of an effective DNA-vaccine. We demonstrate the induction of protective immunity against syngeneic murine NXS2 neuroblastoma in A/J mice following vaccination with tyrosine hydroxylase (TH)-derived antigens. Oral gene delivery was accomplished using an attenuated strain of Salmonella typhimurium as a carrier harboring vectors encoding for mouse tyrosine hydroxylase (mTH) antigens. Vaccination was effective in protecting animals from a lethal challenge with wild-type NXS2 tumor cells. These findings were extended by comparing efficacy of mTH minigene vaccines with a minigene vaccine comprising three novel epitopes isolated fom NXS2 neuroblastoma cells. For this purpose, MHC class I was immunoprecipitated from NXS2 cell lysates, and peptides were eluted and examined in tandem-mass spectrometry analysis. This led to the identification of three novel natural MHC class I peptide ligands: TEALPVKLI, from ribonucleotide reductase M2; NEYIMSLI, from Ser/Thr protein phosphatase 2A; and FEMVSTLI, of unknown origin. Two minigenes were constructed, one encoding for the three novel epitopes and the second for three known mTH-derived epitopes with high predicted binding affinity to MHC class I, by cloning them into the mammalian expression vector pCMV-3FUB. Immunized mice showed a reduction in primary tumor growth and the absence of spontaneous liver metastasis in the majority of animals. Importantly, there was no significant difference between the two minigenes, suggesting that, compared with tumor peptide isolation, mTH epitope prediction is similarly effective for designing efficient DNA-minigene vaccines. In summary, these findings establish proof of the concept that disruption of self-tolerance against neuroblastoma-associated epitopes may be an effective adjuvant therapeutic strategy.

  4. Nutrients and neurodevelopment: lipids.

    PubMed

    González, Horacio F; Visentin, Silvana

    2016-10-01

    Nutrients, lipids in particular, make up the central nervous system structure and play major functional roles: they stimulate development, migration, and nerve cell differentiation. They are part of gray matter, white matter, nerve nuclei, and synaptogenesis. Breast milk contains lipids which are crucial for infant brain development. The lipid profile of breast milk was used as a guideline for the development of breast milk substitutes. However, to date, no substitute has matched it. Complementary feeding should include docosahexaenoic acid, arachidonic acid, other polyunsaturated fatty acids, saturated fatty acids, and complex lipids found in milk fat. The lipid composition of breast milk depends on maternal intake and nutritional status during pregnancy and breast-feeding. It has a great impact on development. Our goal is to review scientific literature regarding the role of lipids on infant brain development and the importance of breast milk lipid composition, maternal diet, and complementary feeding. PMID:27606648

  5. Nutrients and neurodevelopment: lipids.

    PubMed

    González, Horacio F; Visentin, Silvana

    2016-10-01

    Nutrients, lipids in particular, make up the central nervous system structure and play major functional roles: they stimulate development, migration, and nerve cell differentiation. They are part of gray matter, white matter, nerve nuclei, and synaptogenesis. Breast milk contains lipids which are crucial for infant brain development. The lipid profile of breast milk was used as a guideline for the development of breast milk substitutes. However, to date, no substitute has matched it. Complementary feeding should include docosahexaenoic acid, arachidonic acid, other polyunsaturated fatty acids, saturated fatty acids, and complex lipids found in milk fat. The lipid composition of breast milk depends on maternal intake and nutritional status during pregnancy and breast-feeding. It has a great impact on development. Our goal is to review scientific literature regarding the role of lipids on infant brain development and the importance of breast milk lipid composition, maternal diet, and complementary feeding.

  6. Novel adjuvants & delivery vehicles for vaccines development: a road ahead.

    PubMed

    Mohan, Teena; Verma, Priyanka; Rao, D Nageswara

    2013-11-01

    The pure recombinant and synthetic antigens used in modern day vaccines are generally less immunogenic than older style live/attenuated and killed whole organism vaccines. One can improve the quality of vaccine production by incorporating immunomodulators or adjuvants with modified delivery vehicles viz. liposomes, immune stimulating complexes (ISCOMs), micro/nanospheres apart from alum, being used as gold standard. Adjuvants are used to augment the effect of a vaccine by stimulating the immune system to respond to the vaccine, more vigorously, and thus providing increased immunity to a particular disease. Adjuvants accomplish this task by mimicking specific sets of evolutionary conserved molecules which include lipopolysaccharides (LPS), components of bacterial cell wall, endocytosed nucleic acids such as dsRNA, ssDNA and unmethylated CpG dinucleotide containing DNA. This review provides information on various vaccine adjuvants and delivery vehicles being developed to date. From literature, it seems that the humoral immune responses have been observed for most adjuvants and delivery platforms while viral-vector, ISCOMs and Montanides have shown cytotoxic T-cell response in the clinical trials. MF59 and MPL® have elicited Th1 responses, and virus-like particles (VLPs), non-degradable nanoparticle and liposomes have also generated cellular immunity. Such vaccine components have also been evaluated for alternative routes of administration with clinical success reported for intranasal delivery of viral-vectors and proteosomes and oral delivery of VLP vaccines.

  7. Nanoparticulate Adjuvants and Delivery Systems for Allergen Immunotherapy

    PubMed Central

    De Souza Rebouças, Juliana; Esparza, Irene; Ferrer, Marta; Sanz, María Luisa; Irache, Juan Manuel; Gamazo, Carlos

    2012-01-01

    In the last decades, significant progress in research and clinics has been made to offer possible innovative therapeutics for the management of allergic diseases. However, current allergen immunotherapy shows limitations concerning the long-term efficacy and safety due to local side effects and risk of anaphylaxis. Thus, effective and safe vaccines with reduced dose of allergen have been developed using adjuvants. Nevertheless, the use of adjuvants still has several disadvantages, which limits its use in human vaccines. In this context, several novel adjuvants for allergen immunotherapy are currently being investigated and developed. Currently, nanoparticles-based allergen-delivery systems have received much interest as potential adjuvants for allergen immunotherapy. It has been demonstrated that the incorporation of allergens into a delivery system plays an important role in the efficacy of allergy vaccines. Several nanoparticles-based delivery systems have been described, including biodegradable and nondegradable polymeric carriers. Therefore, this paper provides an overview of the current adjuvants used for allergen immunotherapy. Furthermore, nanoparticles-based allergen-delivery systems are focused as a novel and promising strategy for allergy vaccines. PMID:22496608

  8. Nanoparticulate adjuvants and delivery systems for allergen immunotherapy.

    PubMed

    De Souza Rebouças, Juliana; Esparza, Irene; Ferrer, Marta; Sanz, María Luisa; Irache, Juan Manuel; Gamazo, Carlos

    2012-01-01

    In the last decades, significant progress in research and clinics has been made to offer possible innovative therapeutics for the management of allergic diseases. However, current allergen immunotherapy shows limitations concerning the long-term efficacy and safety due to local side effects and risk of anaphylaxis. Thus, effective and safe vaccines with reduced dose of allergen have been developed using adjuvants. Nevertheless, the use of adjuvants still has several disadvantages, which limits its use in human vaccines. In this context, several novel adjuvants for allergen immunotherapy are currently being investigated and developed. Currently, nanoparticles-based allergen-delivery systems have received much interest as potential adjuvants for allergen immunotherapy. It has been demonstrated that the incorporation of allergens into a delivery system plays an important role in the efficacy of allergy vaccines. Several nanoparticles-based delivery systems have been described, including biodegradable and nondegradable polymeric carriers. Therefore, this paper provides an overview of the current adjuvants used for allergen immunotherapy. Furthermore, nanoparticles-based allergen-delivery systems are focused as a novel and promising strategy for allergy vaccines.

  9. Regulatory considerations on new adjuvants and delivery systems.

    PubMed

    Sesardic, D

    2006-04-12

    New and improved vaccines and delivery systems are increasingly being developed for prevention, treatment and diagnosis of human diseases. Prior to their use in humans, all new biological products must undergo pre-clinical evaluation. These pre-clinical studies are important not only to establish the biological properties of the material and to evaluate its possible risk to the public, but also to plan protocols for subsequent clinical trials from which safety and efficacy can be evaluated. For vaccines, evaluation in pre-clinical studies is particularly important as information gained may also contribute to identifying the optimum composition and formulation process and provide an opportunity to develop suitable indicator tests for quality control. Data from pre-clinical and laboratory evaluation studies, which continue during clinical studies, is used to support an application for marketing authorisation. Addition of a new adjuvant and exploration of new delivery systems for vaccines presents challenges to both manufacturers and regulatory authorities. Because no adjuvant is licensed as a medicinal product in its own right, but only as a component of a particular vaccine, pre-clinical and appropriate toxicology studies need to be designed on a case-by-case basis to evaluate the safety profile of the adjuvant and adjuvant/vaccine combination. Current regulatory requirements for the pharmaceutical and pre-clinical safety assessment of vaccines are insufficient and initiatives are in place to develop more specific guidelines for evaluation of adjuvants in vaccines.

  10. Environmental adjuvants, apoptosis and the censorship over autoimmunity.

    PubMed

    Rovere-Querini, Patrizia; Manfredi, Angelo A; Sabbadini, Maria Grazia

    2005-11-01

    Alterations during apoptosis lead to the activation of autoreactive T cells and the production of autoantibodies. This article discusses the pathogenic potential of cells dying in vivo, dissecting the role of signals that favor immune responses (adjuvants) and the influence of genetic backgrounds. Diverse factors determine whether apoptosis leads or not to a self-sustaining, clinically apparent autoimmune disease. The in vivo accumulation of uncleared dying cells per se is not sufficient to cause disease. However, dying cells are antigenic and their complementation with immune adjuvants causes lethal diseases in predisposed lupus-prone animals. At least some adjuvant signals directly target the function and the activation state of antigen presenting cells. Several laboratories are aggressively pursuing the molecular identification of endogenous adjuvants. Sodium monourate and the high mobility group B1 protein (HMGB1) are, among those identified so far, well known to rheumatologists. However, even the complementation of apoptotic cells with potent adjuvant signals fail to cause clinical autoimmunity in most strains: autoantibodies generated are transient, do not undergo to epitope/spreading and do not cause disease. Novel tools for drug development will derive from the molecular identification of the constraints that prevent autoimmunity in normal subjects. PMID:16214095

  11. Novel adjuvants & delivery vehicles for vaccines development: a road ahead.

    PubMed

    Mohan, Teena; Verma, Priyanka; Rao, D Nageswara

    2013-11-01

    The pure recombinant and synthetic antigens used in modern day vaccines are generally less immunogenic than older style live/attenuated and killed whole organism vaccines. One can improve the quality of vaccine production by incorporating immunomodulators or adjuvants with modified delivery vehicles viz. liposomes, immune stimulating complexes (ISCOMs), micro/nanospheres apart from alum, being used as gold standard. Adjuvants are used to augment the effect of a vaccine by stimulating the immune system to respond to the vaccine, more vigorously, and thus providing increased immunity to a particular disease. Adjuvants accomplish this task by mimicking specific sets of evolutionary conserved molecules which include lipopolysaccharides (LPS), components of bacterial cell wall, endocytosed nucleic acids such as dsRNA, ssDNA and unmethylated CpG dinucleotide containing DNA. This review provides information on various vaccine adjuvants and delivery vehicles being developed to date. From literature, it seems that the humoral immune responses have been observed for most adjuvants and delivery platforms while viral-vector, ISCOMs and Montanides have shown cytotoxic T-cell response in the clinical trials. MF59 and MPL® have elicited Th1 responses, and virus-like particles (VLPs), non-degradable nanoparticle and liposomes have also generated cellular immunity. Such vaccine components have also been evaluated for alternative routes of administration with clinical success reported for intranasal delivery of viral-vectors and proteosomes and oral delivery of VLP vaccines. PMID:24434331

  12. Role of Adjuvant Chemoradiotherapy for Resected Extrahepatic Biliary Tract Cancer

    SciTech Connect

    Kim, Tae Hyun; Han, Sung-Sik; Park, Sang-Jae Lee, Woo Jin; Woo, Sang Myung; Moon, Sung Ho; Yoo, Tae; Kim, Sang Soo; Kim, Seong Hoon; Hong, Eun Kyung; Kim, Dae Yong; Park, Joong-Won

    2011-12-01

    Purpose: To evaluate the effect of adjuvant chemoradiotherapy (CRT) on locoregional control (LRC), disease-free survival (DFS), and overall survival (OS) for patients with extrahepatic biliary tract cancer treated with curative resection. Methods and Materials: The study involved 168 patients with extrahepatic biliary tract cancer undergoing curative resection between August 2001 and April 2009. Of the 168 patients, 115 received adjuvant CRT (CRT group) and 53 did not (no-CRT group). Gender, age, tumor size, histologic differentiation, pre- and postoperative carbohydrate antigen 19-9 level, resection margin, vascular invasion, perineural invasion, T stage, N stage, overall stage, and the use of adjuvant CRT were analyzed to identify the prognostic factors associated with LRC, DFS, and OS. Results: For all patients, the 5-year LRC, DFS, and OS rate was 54.8%, 30.6%, and 33.9%, respectively. On univariate analysis, the 5-year LRC, DFS, and OS rates in the CRT group were significantly better than those in the no-CRT group (58.5% vs. 44.4%, p = .007; 32.1% vs. 26.1%, p = .041; 36.5% vs. 28.2%, p = .049, respectively). Multivariate analysis revealed that adjuvant CRT was a significant independent prognostic factor for LRC, DFS, and OS (p < .05). Conclusion: Our results have suggested that adjuvant CRT helps achieve LRC and, consequently, improves DFS and OS in patients with extrahepatic biliary tract cancer.

  13. Novel adjuvants & delivery vehicles for vaccines development: A road ahead

    PubMed Central

    Mohan, Teena; Verma, Priyanka; Rao, D. Nageswara

    2013-01-01

    The pure recombinant and synthetic antigens used in modern day vaccines are generally less immunogenic than older style live/attenuated and killed whole organism vaccines. One can improve the quality of vaccine production by incorporating immunomodulators or adjuvants with modified delivery vehicles viz. liposomes, immune stimulating complexes (ISCOMs), micro/nanospheres apart from alum, being used as gold standard. Adjuvants are used to augment the effect of a vaccine by stimulating the immune system to respond to the vaccine, more vigorously, and thus providing increased immunity to a particular disease. Adjuvants accomplish this task by mimicking specific sets of evolutionary conserved molecules which include lipopolysaccharides (LPS), components of bacterial cell wall, endocytosed nucleic acids such as dsRNA, ssDNA and unmethylated CpG dinucleotide containing DNA. This review provides information on various vaccine adjuvants and delivery vehicles being developed to date. From literature, it seems that the humoral immune responses have been observed for most adjuvants and delivery platforms while viral-vector, ISCOMs and Montanides have shown cytotoxic T-cell response in the clinical trials. MF59 and MPL® have elicited Th1 responses, and virus-like particles (VLPs), non-degradable nanoparticle and liposomes have also generated cellular immunity. Such vaccine components have also been evaluated for alternative routes of administration with clinical success reported for intranasal delivery of viral-vectors and proteosomes and oral delivery of VLP vaccines. PMID:24434331

  14. Immunogenicity of a novel tetravalent vaccine formulation with four recombinant lipidated dengue envelope protein domain IIIs in mice

    PubMed Central

    Chiang, Chen-Yi; Pan, Chien-Hsiung; Chen, Mei-Yu; Hsieh, Chun-Hsiang; Tsai, Jy-Ping; Liu, Hsueh-Hung; Liu, Shih-Jen; Chong, Pele; Leng, Chih-Hsiang; Chen, Hsin-Wei

    2016-01-01

    We developed a novel platform to express high levels of recombinant lipoproteins with intrinsic adjuvant properties. Based on this technology, our group developed recombinant lipidated dengue envelope protein domain IIIs as vaccine candidates against dengue virus. This work aims to evaluate the immune responses in mice to the tetravalent formulation. We demonstrate that 4 serotypes of recombinant lipidated dengue envelope protein domain III induced both humoral and cellular immunity against all 4 serotypes of dengue virus on the mixture that formed the tetravalent formulation. Importantly, the immune responses induced by the tetravalent formulation in the absence of the exogenous adjuvant were functional in clearing the 4 serotypes of dengue virus in vivo. We affirm that the tetravalent formulation of recombinant lipidated dengue envelope protein domain III is a potential vaccine candidate against dengue virus and suggest further detailed studies of this formulation in nonhuman primates. PMID:27470096

  15. Immunogenicity of a novel tetravalent vaccine formulation with four recombinant lipidated dengue envelope protein domain IIIs in mice.

    PubMed

    Chiang, Chen-Yi; Pan, Chien-Hsiung; Chen, Mei-Yu; Hsieh, Chun-Hsiang; Tsai, Jy-Ping; Liu, Hsueh-Hung; Liu, Shih-Jen; Chong, Pele; Leng, Chih-Hsiang; Chen, Hsin-Wei

    2016-01-01

    We developed a novel platform to express high levels of recombinant lipoproteins with intrinsic adjuvant properties. Based on this technology, our group developed recombinant lipidated dengue envelope protein domain IIIs as vaccine candidates against dengue virus. This work aims to evaluate the immune responses in mice to the tetravalent formulation. We demonstrate that 4 serotypes of recombinant lipidated dengue envelope protein domain III induced both humoral and cellular immunity against all 4 serotypes of dengue virus on the mixture that formed the tetravalent formulation. Importantly, the immune responses induced by the tetravalent formulation in the absence of the exogenous adjuvant were functional in clearing the 4 serotypes of dengue virus in vivo. We affirm that the tetravalent formulation of recombinant lipidated dengue envelope protein domain III is a potential vaccine candidate against dengue virus and suggest further detailed studies of this formulation in nonhuman primates. PMID:27470096

  16. Epidermal surface lipids

    PubMed Central

    2009-01-01

    A layer of lipids, which are of both sebaceous and keratinocyte origin, covers the surface of the skin. The apparent composition of surface lipids varies depending on the selected method of sampling. Lipids produced by the epidermal cells are an insignificant fraction of the total extractable surface lipid on areas rich in sebaceous glands. Due to the holocrine activity of the sebaceous gland, its product of secretion (sebum) is eventually released to the surface of the skin and coats the fur as well. Lipids of epidermal origin fill the spaces between the cells, like mortar or cement. The sebaceous lipids are primarily non polar lipids as triglycerides, wax esters and squalene, while epidermal lipids are a mixture of ceramides, free fatty acids and cholesterol. The composition of the sebaceous lipids is unique and intriguing and elevated sebum excretion is a major factor involved in the pathophysiology of acne. Recent studies have elucidated the roles that epidermal surface lipids have on normal skin functions and acne. PMID:20224687

  17. Use of adjuvants in the treatment of Acinetobacter baumannii.

    PubMed

    Pachón-Ibáñez, María Eugenia; Smani, Younes; Pachón, Jerónimo

    2016-01-01

    The current antibiotic crisis to treat infections by Acinetobacter baumannii is linked with the increase of antimicrobial resistance and the lack of development of new antimicrobial drugs. For this reason, new alternatives for the treatment and control of infections by A. baumannii are necessary. Several studies have reported the effect of adjuvants to restore the efficacy of existing antimicrobial agents. Herein, we analyzed the main results on the development of adjuvant drugs, as monotherapy or in combination therapy with existing antimicrobial agents, which have shown promising results in vitro and in vivo. However, caution is needed and further extensive in vivo studies have to be performed to confirm the potential use of these adjuvants as true therapeutic alternatives. PMID:26620637

  18. Development of CpG ODN Based Vaccine Adjuvant Formulations.

    PubMed

    Gursel, Mayda; Gursel, Ihsan

    2016-01-01

    Development of effective vaccine mediated immune responses relies on the use of vaccine adjuvants capable of enhancing and directing the adaptive immune response to the antigen. When used as vaccine adjuvants, type I interferon inducing agents can elicit potent effector/memory T cell responses and humoral immunity. Distinct sequences of single stranded synthetic oligodeoxynucleotides containing unmethylated cytosine-phosphate-guanine oligodeoxynucleotide motifs (CpG ODN) can generate type I interferon production via a TLR9-MyD88-IRF7-mediated signaling pathway. Here, we describe two different methods of preparing CpG ODN-based vaccine adjuvant formulations that can induce a robust IFNα response from human peripheral blood mononuclear cells. PMID:27076306

  19. Adjuvant Endocrine Therapy in Premenopausal Women with Breast Cancer

    PubMed Central

    Kadakia, Kunal C.; Henry, N. Lynn

    2016-01-01

    Breast cancer remains the leading cause of cancer related mortality in premenopausal women. Multiple advances in local and systemic therapies have dramatically improved outcomes in women with HR+ early stage breast cancer. Despite these advances, early and late relapses occur. Therefore multiple adjuvant endocrine therapy trials have been conducted with the goal of decreasing breast cancer recurrence and mortality. Recently, large international trials evaluating extended endocrine therapy as well as ovarian suppression with and without tamoxifen or exemestane have been reported. These studies add to the large body of existing data related to adjuvant endocrine therapy in premenopausal women with breast cancer and provide additional therapeutic options in those at high risk of disease recurrence. This review will synthesize the most recent data and provide an evidenced based approach, highlighting quality-of-life concerns, when considering adjuvant endocrine therapies in premenopausal women. PMID:27058571

  20. The Safety of Adjuvanted Vaccines Revisited: Vaccine-Induced Narcolepsy.

    PubMed

    Ahmed, S Sohail; Montomoli, Emanuele; Pasini, Franco Laghi; Steinman, Lawrence

    2016-01-01

    Despite the very high benefit-to-risk ratio of vaccines, the fear of negative side effects has discouraged many people from getting vaccinated, resulting in the reemergence of previously controlled diseases such as measles, pertussis and diphtheria. This fear has been amplified more recently by multiple epidemiologic studies that confirmed the link of an AS03-adjuvanted pandemic influenza vaccine (Pandemrix, GlaxoSmithKline Biologicals, Germany) used in Europe during the 2009 H1N1 influenza pandemic [A(H1N1) pdm09] with the development of narcolepsy, a chronic sleep disorder, in children and adolescents. However, public misperceptions of what adjuvants are and why they are used in vaccines has created in some individuals a closed "black box" attitude towards all vaccines. The focus of this review article is to revisit this "black box" using the example of narcolepsy associated with the European AS03-adjuvanted pandemic influenza vaccine. PMID:27228647

  1. The Safety of Adjuvanted Vaccines Revisited: Vaccine-Induced Narcolepsy.

    PubMed

    Ahmed, S Sohail; Montomoli, Emanuele; Pasini, Franco Laghi; Steinman, Lawrence

    2016-01-01

    Despite the very high benefit-to-risk ratio of vaccines, the fear of negative side effects has discouraged many people from getting vaccinated, resulting in the reemergence of previously controlled diseases such as measles, pertussis and diphtheria. This fear has been amplified more recently by multiple epidemiologic studies that confirmed the link of an AS03-adjuvanted pandemic influenza vaccine (Pandemrix, GlaxoSmithKline Biologicals, Germany) used in Europe during the 2009 H1N1 influenza pandemic [A(H1N1) pdm09] with the development of narcolepsy, a chronic sleep disorder, in children and adolescents. However, public misperceptions of what adjuvants are and why they are used in vaccines has created in some individuals a closed "black box" attitude towards all vaccines. The focus of this review article is to revisit this "black box" using the example of narcolepsy associated with the European AS03-adjuvanted pandemic influenza vaccine.

  2. A highlight on lipid based nanocarriers for transcutaneous immunization.

    PubMed

    Nasr, Maha; Abdel-Hamid, Sameh; Alyoussef, Abdullah A

    2015-01-01

    Transcutaneous vaccination has become a widely used technique for providing immunity against several types of pathogens, taking advantage of the immune components found in the skin. The success in the field of vaccination has not only relied on the type of antigen and adjuvant delivered, but also on how they are delivered. In this regard, particulate carriers, especially nanoparticles have evoked considerable interest, owing to the desirable properties that they impart to the substance being delivered. The presentation of antigens by the nanoparticles mimics the presentation of the immunogen by the pathogen; hence, it creates a similar immune response. Furthermore, nanoparticles protect the antigen from degradation and allow its prolonged release, which maximizes its exposure to the immune cells. The most commonly used materials for the formulation of nanoparticles are either polymer-based or lipid based. This review will focus on the lipid based nanocarriers, either vesicular such as liposomes, transfersomes, and ethosomes, or non-vesicular such as cubosomes, solid lipid nanoparticles, nano-structured lipid carriers, solid in oil nanodispersions, lipoplexes, and hybrid polymeric-lipidic systems. The applications of these carriers in the field of transcutaneous immunization will be discussed in this review as well. PMID:25658381

  3. Management of Pediatric Myxopapillary Ependymoma: The Role of Adjuvant Radiation

    SciTech Connect

    Agbahiwe, Harold C.; Wharam, Moody; Batra, Sachin; Cohen, Kenneth; Terezakis, Stephanie A.

    2013-02-01

    Introduction: Myxopapillary ependymoma (MPE) is a rare tumor in children. The primary treatment is gross total resection (GTR), with no clearly defined role for adjuvant radiation therapy (RT). Published reports, however, suggest that children with MPE present with a more aggressive disease course. The goal of this study was to assess the role of adjuvant RT in pediatric patients with MPE. Methods: Sixteen patients with MPE seen at Johns Hopkins Hospital (JHH) between November 1984 and December 2010 were retrospectively reviewed. Fifteen of the patients were evaluable with a mean age of 16.8 years (range, 12-21 years). Kaplan-Meier curves and descriptive statistics were used for analysis. Results: All patients received surgery as the initial treatment modality. Surgery consisted of either a GTR or a subtotal resection (STR). The median dose of adjuvant RT was 50.4 Gy (range, 45-54 Gy). All patients receiving RT were treated at the involved site. After a median follow-up of 7.2 years (range, 0.75-26.4 years), all patients were alive with stable disease. Local control at 5 and 10 years was 62.5% and 30%, respectively, for surgery alone versus 100% at both time points for surgery and adjuvant RT. Fifty percent of the patients receiving surgery alone had local failure. All patients receiving STR alone had local failure compared to 33% of patients receiving GTR alone. One patient in the surgery and adjuvant RT group developed a distant site of recurrence 1 year from diagnosis. No late toxicity was reported at last follow-up, and neurologic symptoms either improved or remained stable following surgery with or without RT. Conclusions: Adjuvant RT improved local control compared to surgery alone and should be considered after surgical resection in pediatric patients with MPE.

  4. Induction of Dendritic Cell Maturation and Activation by a Potential Adjuvant, 2-Hydroxypropyl-β-Cyclodextrin

    PubMed Central

    Kim, Sun Kyung; Yun, Cheol-Heui; Han, Seung Hyun

    2016-01-01

    2-Hydroxypropyl-β-cyclodextrin (HP-β-CD) is a chemically modified cyclic oligosaccharide produced from starch that is commonly used as an excipient. Although HP-β-CD has been suggested as a potential adjuvant for vaccines, its immunological properties and mechanism of action have yet to be characterized. In the present study, we investigated the maturation and activation of human dendritic cells (DCs) treated with HP-β-CD. We found that DCs stimulated with HP-β-CD exhibited a remarkable upregulation of costimulatory molecules, MHC proteins, and PD-L1/L2. In addition, the production of cytokines, such as TNF-α, IL-6, and IL-10, was modestly increased in DCs when treated with HP-β-CD. Furthermore, HP-β-CD-sensitized DCs markedly induced the proliferation and activation of autologous T lymphocytes. HP-β-CD also induced a lipid raft formation in DCs. In contrast, filipin, a lipid raft inhibitor, attenuated HP-β-CD-induced DC maturation, the cytokine expression, and the T lymphocyte-stimulating activities. To determine the in vivo relevance of the results, we investigated the adjuvanticity of HP-β-CD and the modulation of DCs in a mouse footpad immunization model. When mice were immunized with ovalbumin in the presence of HP-β-CD through a hind footpad, serum ovalbumin-specific antibodies were markedly elevated. Concomitantly, DC populations expressing CD11c and MHC class II were increased in the draining lymph nodes, and the expression of costimulatory molecules was upregulated. Collectively, our data suggest that HP-β-CD induces phenotypic and functional maturation of DCs mainly mediated through lipid raft formation, which might mediate the adjuvanticity of HP-β-CD. PMID:27812358

  5. Ginseng and aluminium hydroxide act synergistically as vaccine adjuvants.

    PubMed

    Rivera, E; Hu, S; Concha, C

    2003-03-01

    The dry extract prepared from the Panax ginseng C.A. Meyer-root (total ginseng (T-ginseng)) contain ginsenosides (G-des) which were shown to have adjuvant properties as demonstrated by: (a) injecting guinea pigs with a mixture of T-ginseng and inactivated porcine parvovirus (PPV) as a conventional vaccine; (b)injecting PPV-antigen and T-ginseng simultaneously but separately at different sites on the animal and (c)injecting only the T-ginseng 1 or 2 weeks prior to immunisation with the PPV-antigen. Using a haemagglutination inhibition (HI) test in the antibody titration, it was found that the mean HI-titre for the animals injected with PPV-antigen only was 320 +/- 0. By comparison, the mean titre value was 2026 +/- 1206 for the sera from the animals injected with the same vaccine but adjuvanted with 4 mg of T-ginseng, while the antibody titre induced by a vaccine containing Al(OH)(3)-gel was 2986 +/- 1596. Interestingly, the T-ginseng and Al(OH)(3) acted synergistically and further improved the antibody response to the PPV-antigen to 6826 +/- 2413, i.e. more than 20 times the HI titre of the non-adjuvanted PPV-vaccine. Immunisations using PPV-vaccines adjuvanted with single purified G-des demonstrated that the ginseng fractions Rb1 and Rg1 are potent adjuvants inducing higher or similar antibody titres than the vaccine adjuvanted with Al(OH)(3), e.g. Rb1 tested at a concentration of 830 microg per dose induced a significantly (P = 0.009) higher antibody titre than the one adjuvanted with Al(OH)(3). Nevertheless, different than the mixture Al(OH)(3)-T-ginseng; Rb1 and Rg1 act antagonistically and partially inhibit each other. The G-des adjuvanted vaccines induced significantly (P = 0.0011) higher titres of IgG2 antibodies compared with IgG1.

  6. [Human adjuvant disease which developed after silicone augumentation mammoplasty].

    PubMed

    Muramatsu, Yoko; Sugino, Keishi; Kikuchi, Naoshi; Sano, Go; Isobe, Kazutoshi; Takai, Yujiro; Takagi, Keigo; Shibuya, Kazutoshi; Homma, Sakae

    2009-03-01

    A 73-year-old woman was admitted to our hospital to evaluate mediastinal lymphadenopathy found on a chest CT scan. She had undergone mammoplasty with silicone augmentation 50 years previously and had the implants removed 5 years previously. Biopsied specimens of a mediastinal lymph node under video-assisted thoracic surgery (VATS) revealed multiple hyalinized non-caseating epithelioid cell granulomas and multinucleated giant cells and foamy macrophages containing some vacuoles. According to these clinicopathological findings, we diagnosed human adjuvant disease which developed after mammoplasty with silicone augmentation. In cases of mammoplasty, we should pay attention to the complication of chronic thoracic disorder as a human adjuvant disease.

  7. Knowns and Known Unknowns of Gastrointestinal Stromal Tumor Adjuvant Therapy.

    PubMed

    Martínez-Marín, Virginia; Maki, Robert G

    2016-09-01

    The first 15 years of management of gastrointestinal stromal tumor (GIST) have led to 3 lines of therapy for metastatic disease: imatinib, sunitinib, and regorafenib. In the adjuvant setting, imatinib is usually given for 3 years postoperatively to patients with higher-risk primary tumors that are completely resected. In this review, issues regarding GIST adjuvant therapy are discussed. It is hoped this review will help the reader understand the present standard of care to improve upon it in years to come. PMID:27546844

  8. Chemotherapy: Does Neoadjuvant or Adjuvant Therapy Improve Outcomes?

    PubMed

    Canter, Robert J

    2016-10-01

    Since preoperative chemotherapy has been clearly shown to improve outcomes for patients with Ewing sarcoma, rhabdomyosarcoma, and osteosarcoma, practitioners have attempted to extend the use of adjuvant/neoadjuvant chemotherapy to other types of adult soft tissue sarcoma. Given the high risk of distant recurrence and disease-specific death for patients with soft tissue sarcoma tumors larger than 10 cm, these patients should be considered candidates for neoadjuvant chemotherapy as well as investigational therapies. Yet, potential toxicity from cytotoxic chemotherapy is substantial, and there remains little consensus and wide variation regarding the indications for use of chemotherapy in the adjuvant/neoadjuvant setting. PMID:27591503

  9. Lipids of mitochondria.

    PubMed

    Horvath, Susanne E; Daum, Günther

    2013-10-01

    A unique organelle for studying membrane biochemistry is the mitochondrion whose functionality depends on a coordinated supply of proteins and lipids. Mitochondria are capable of synthesizing several lipids autonomously such as phosphatidylglycerol, cardiolipin and in part phosphatidylethanolamine, phosphatidic acid and CDP-diacylglycerol. Other mitochondrial membrane lipids such as phosphatidylcholine, phosphatidylserine, phosphatidylinositol, sterols and sphingolipids have to be imported. The mitochondrial lipid composition, the biosynthesis and the import of mitochondrial lipids as well as the regulation of these processes will be main issues of this review article. Furthermore, interactions of lipids and mitochondrial proteins which are highly important for various mitochondrial processes will be discussed. Malfunction or loss of enzymes involved in mitochondrial phospholipid biosynthesis lead to dysfunction of cell respiration, affect the assembly and stability of the mitochondrial protein import machinery and cause abnormal mitochondrial morphology or even lethality. Molecular aspects of these processes as well as diseases related to defects in the formation of mitochondrial membranes will be described.

  10. Oxidative state and oxidative metabolism in the brain of rats with adjuvant-induced arthritis.

    PubMed

    Wendt, Mariana Marques Nogueira; de Sá-Nakanishi, Anacharis Babeto; de Castro Ghizoni, Cristiane Vizioli; Bersani Amado, Ciomar Aparecida; Peralta, Rosane Marina; Bracht, Adelar; Comar, Jurandir Fernando

    2015-06-01

    The purpose of the present study was to evaluate the oxidative status of the brain of arthritic rats, based mainly on the observation that arthritis induces a pronounced oxidative stress in the liver of arthritis rats and that morphological alterations have been reported to occur in patients with rheumatoid arthritis. Rats with adjuvant-induced arthritis were used. These animals presented higher levels of reactive oxygen species (ROS) in the total brain homogenate (25% higher) and in the mitochondria (+55%) when compared to healthy rats. The nitrite plus nitrate contents, nitric oxide (NO) markers, were also increased in both mitochondria (+27%) and cytosol (+14%). Arthritic rats also presented higher levels of protein carbonyl groups in the total homogenate (+43%), mitochondria (+69%) and cytosol (+145%). Arthritis caused a diminution of oxygen consumption in isolated brain mitochondria only when ascorbate was the electron donor. The disease diminished the mitochondrial cytochrome c oxidase activity by 55%, but increased the transmembrane potential by 16%. The pro-oxidant enzyme xanthine oxidase was 150%, 110% and 283% higher, respectively, in the brain homogenate, mitochondria and cytosol of arthritic animals. The same occurred with the calcium-independent NO-synthase activity that was higher in the brain homogenate (90%) and cytosol (122%) of arthritic rats. The catalase activity, on the other hand, was diminished by arthritis in all cellular fractions (between 30 and 40%). It is apparent that the brain of rats with adjuvant-induced arthritis presents a pronounced oxidative stress and a significant injury to lipids and proteins, a situation that possibly contributes to the brain symptoms of the arthritis disease.

  11. Microalgae lipid characterization.

    PubMed

    Yao, Linxing; Gerde, Jose A; Lee, Show-Ling; Wang, Tong; Harrata, Kamel A

    2015-02-18

    To meet the growing interest of utilizing microalgae biomass in the production of biofuels and nutraceutical and pharmaceutical lipids, we need suitable analytical methods and a comprehensive database for their lipid components. The objective of the present work was to demonstrate methodology and provide data on fatty acid composition, lipid class content and composition, characteristics of the unsaponifiables, and type of chlorophylls of five microalgae. Microalgae lipids were fractionated into TAG, FFA, and polar lipids using TLC, and the composition of fatty acids in total lipids and in each lipid class, hydrocarbons, and sterols were determined by GC-MS. Glyco- and phospholipids were profiled by LC/ESI-MS. Chlorophylls and their related metabolites were qualified by LC/APCI-MS. The melting and crystallization profiles of microalgae total lipids and their esters were analyzed by DSC to evaluate their potential biofuel applications. Significant differences and complexities of lipid composition among the algae tested were observed. The compositional information is valuable for strain selection, downstream biomass fractionation, and utilization.

  12. Multifunctional lipid multilayer stamping.

    PubMed

    Nafday, Omkar A; Lowry, Troy W; Lenhert, Steven

    2012-04-10

    Nanostructured lipid multilayers on surfaces are a promising biofunctional nanomaterial. For example, surface-supported lipid multilayer diffraction gratings with optical properties that depend on the microscale spacing of the grating lines and the nanometer thickness of the lipid multilayers have been fabricated previously by dip-pen nanolithography (DPN), with immediate applications as label-free biosensors. The innate biocompatibility of such gratings makes them promising as biological sensor elements, model cellular systems, and construction materials for nanotechnology. Here a method is described that combines the lateral patterning capabilities and scalability of microcontact printing with the topographical control of nanoimprint lithography and the multimaterial integration aspects of dip-pen nanolithography in order to create nanostructured lipid multilayer arrays. This approach is denoted multilayer stamping. The distinguishing characteristic of this method is that it allows control of the lipid multilayer thickness, which is a crucial nanoscale dimension that determines the optical properties of lipid multilayer nanostructures. The ability to integrate multiple lipid materials on the same surface is also demonstrated by multi-ink spotting onto a polydimethoxysilane stamp, as well as higher-throughput patterning (on the order of 2 cm(2) s(-1) for grating fabrication) and the ability to pattern lipid materials that could not previously be patterned with high resolution by lipid DPN, for example, the gel-phase phospholipid 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) or the steroid cholesterol. PMID:22307810

  13. Time Relationships Between Injection of Antigen and Adjuvant III. Adjuvancy of Bordetella pertussis Given at Various Times After the Primary Antigenic Stimulus

    PubMed Central

    Finger, H.; Emmerling, P.; Plager, L.

    1972-01-01

    The adjuvant activity of Bordetella pertussis was investigated, both at the cellular and humoral levels, when the bacterial adjuvant was given at various times after the primary antigenic stimulus of both 2 × 107 (suboptimal dose) and 4 × 108 (optimal dose) of sheep erythrocytes. In all experiments, both adjuvant and sheep erythrocytes were administered by the intraperitoneal route. Adjuvant activity was measured on the basis of the early and late phases of the primary response and on the degree of priming for the secondary immune reaction. A maximal adjuvant activity was found in mice which had received B. pertussis vaccine simultaneously with the antigen. Adjuvant effectiveness became less as the time interval between the injection of antigen and adjuvant increased. Adjuvancy also depended on the amount of antigen used as the primary antigenic stimulus. With 4 × 108 sheep erythrocytes, significantly increased priming for the secondary response was produced only when B. pertussis cells were administered within a period of 24 hr. When the bacterial adjuvant was administered either 48 or 72 hr after the primary antigenic stimulus, adjuvancy was found to be limited to the late phase of the primary response and to the prolonged development of antibody-forming cells during the secondary immune reaction. In contrast, significantly enhanced priming for the secondary response was detectable when the adjuvant was administered as late as 48 hr after primary immunization with 2 × 107 sheep erythrocytes. When the bacterial adjuvant was administered either 6, 24, 48, or 72 hr after the primary immunization with 2 × 107 sheep erythrocytes, the early phase of the primary 19S and 7S hemolysin response was found to be suppressed, and adjuvancy became detectable only thereafter. PMID:4344394

  14. Sulfolipo-cyclodextrin in squalane-in-water as a novel and safe vaccine adjuvant.

    PubMed

    Hilgers, L A; Lejeune, G; Nicolas, I; Fochesato, M; Boon, B

    1999-01-21

    Previously, we described synergistic adjuvanticity of combinations of synthetic sulfolipo(SL)-derivatives of polysaccharide (SL-polysaccharides) and squalane-in-water emulsions (squalane/W). In this paper, effects of type of polysaccharide and nature of oil on adjuvanticity, reactogenicity and stability are described. SL-derivatives of the following polysaccharides were synthesised: synthetic polysucroses with weight-average molecular weight (MW) of 400,000 (Ficoll400), 70,000 (Ficoll70) and 39,000 Da (Ficoll39), polyfructose of 5,000 Da (inulin), linear polyglucose of 1,200 Da (maltodextrin) and cyclic polyglucose of 1,135 Da (beta-cyclodextrin). The number of sulphate groups per monosaccharide of the different SL-polysaccharides varied between 0.15 and 0.23 and the number of lipid groups per monosaccharide between 1.15 and 1.29. Adjuvant formulations were prepared by incorporating these SL-polysaccharides into oil-in-water emulsions of either squalane, hexadecane, soya oil or mineral oil. Adjuvanticity of the formulations obtained for humoral responses to inactivated pseudorabies virus (PRV) and inactivated influenza virus strains A/Swine (A/Swine) and MRC-11 (MRC-11) in pigs and MRC-11 and ovalbumin (OVA) in mice depended on the type of oil (squalane = mineral oil > hexadecane = soya oil) but not on the type of polysaccharide backbone of the SL-derivative. Reactogenicity assessed by local swelling in mice decreased with decreasing MW (SL-Ficoll400 = Ficoll70 = Ficoll39 > SL-inulin = SL-maltodextrin > SL-cyclodextrin) when combined with squalane and decreased with the type of oil in the following order: squalane > mineral oil > hexadecane > soya oil when combined with SL-Ficoll400. Stability of the SL-polysaccharide/squalane/W emulsions at elevated temperature increased with decreasing MW of the SL-polysaccharide (SL-Ficoll400 < SL-Ficoll70 = SL-Ficoll39 < SL-inulin = SL-maltodextrin = SL-cyclodextrin). SL-cyclodextrin/squalane/W remained stable for > 2.5 years

  15. 21 CFR 178.3010 - Adjuvant substances used in the manufacture of foamed plastics.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... foamed plastics. 178.3010 Section 178.3010 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) INDIRECT FOOD ADDITIVES: ADJUVANTS, PRODUCTION AIDS, AND SANITIZERS Certain Adjuvants and Production Aids § 178.3010 Adjuvant substances used in the manufacture of...

  16. Lipid Droplets And Cellular Lipid Metabolism

    PubMed Central

    Walther, Tobias C.; Farese, Robert V.

    2013-01-01

    Among organelles, lipid droplets (LDs) uniquely constitute a hydrophobic phase in the aqueous environment of the cytosol. Their hydrophobic core of neutral lipids stores metabolic energy and membrane components, making LDs hubs for lipid metabolism. In addition, LDs are implicated in a number of other cellular functions, ranging from protein storage and degradation to viral replication. These processes are functionally linked to many physiological and pathological conditions, including obesity and related metabolic diseases. Despite their important functions and nearly ubiquitous presence in cells, many aspects of LD biology are unknown. In the past few years, the pace of LD investigation has increased, providing new insights. Here, we review the current knowledge of LD cell biology and its translation to physiology. PMID:22524315

  17. A novel liposome adjuvant DPC mediates Mycobacterium tuberculosis subunit vaccine well to induce cell-mediated immunity and high protective efficacy in mice.

    PubMed

    Liu, Xun; Da, Zejiao; Wang, Yue; Niu, Hongxia; Li, Ruiying; Yu, Hongjuan; He, Shanshan; Guo, Ming; Wang, Yong; Luo, Yanping; Ma, Xingming; Zhu, Bingdong

    2016-03-01

    Tuberculosis (TB) is a serious disease around the world, and protein based subunit vaccine is supposed to be a kind of promising novel vaccine against it. However, there is no effective adjuvant available in clinic to activate cell-mediated immune responses which is required for TB subunit vaccine. Therefore, it is imperative to develop new adjuvant. Here we reported an adjuvant composed of dimethyl dioctadecylammonium (DDA), Poly I:C and cholesterol (DPC for short). DDA can form a kind of cationic liposome with the ability to deliver and present antigen and can induce Th1 type cell-mediated immune response. Poly I:C, a ligand of TLR3 receptor, could attenuate the pathologic reaction induced by following Mycobacterium tuberculosis challenge. Cholesterol, which could enhance rigidity of lipid bilayer, is added to DDA and Poly I:C to improve the stability of the adjuvant. The particle size and Zeta-potential of DPC were analyzed in vitro. Furthermore, DPC was mixed with a TB fusion protein ESAT6-Ag85B-MPT64(190-198)-Mtb8.4-Rv2626c (LT70) to construct a subunit vaccine. The subunit vaccine-induced immune responses and protective efficacy against M. tuberculosis H37Rv infection in C57BL/6 mice were investigated. The results showed that the DPC adjuvant with particle size of 400 nm and zeta potential of 40 mV was in good stability. LT70 in the adjuvant of DPC generated strong antigen-specific humoral and cell-mediated immunity, and induced long-term higher protective efficacy against M. tuberculosis infection (5.41 ± 0.38log10CFU) than traditional vaccine Bacillus Calmette-Guerin (BCG) (6.01 ± 0.33log10CFU) and PBS control (6.53 ± 0.26log10CFU) at 30 weeks post-vaccination. In conclusion, DPC would be a promising vaccine adjuvant with the ability to stimulate Th1 type cell-mediated immunity, and could be used in TB subunit vaccine.

  18. Prospects for the development of new vaccine adjuvants.

    PubMed

    Cox, J; Coulter, A

    1999-12-01

    This review focuses on the impact of various new adjuvant formulations on the efficacy of existing and new human vaccines. Despite major advances in our understanding of immunology and vaccine adjuvants, existing and even new prophylactic vaccines seem likely to maintain their dependence upon aluminium salts for the foreseeable future. Additional immunomodulators may be included in these formulations to improve efficacy. A number of immunotherapeutic cancer vaccines appear likely to be registered soon and these will be dependent for efficacy upon new adjuvant formulations. The most useful to date have been the saponins e.g. QS-21, detox-B and Mycobacterial cells (either live as BCG, or killed). Vaccines to treat chronic infections will doubtless benefit from these developments. Adjuvant formulations and technologies exist to permit development of mucosal delivery, needle-free parenteral delivery and single dose vaccines. However, each of these will require intensive development, which will doubtless arrive when demanded by a specific application. Possibilities exist to improve responses in the elderly and to overcome the inhibitory effects of maternal antibodies in neonates. However, considerable work is required to establish the practicality and general utility of new approaches. PMID:18031193

  19. [Expression and adjuvant effects of the fusion peptide TBP5].

    PubMed

    Wang, Chen; Guo, Xiangling; Li, Xiaokang; Wu, Tingcai; Li, Deyuan; Chen, Puyan

    2015-05-01

    Thymopentin (TP5) and bursopentin (BP5) are both immunopotentiators. To explore whether the TP5-BP5 fusion peptide (TBP5) has adjuvant activity or not, we cloned the TBP5 gene and confirmed that the TBP5 gene in a recombinant prokaryotic expression plasmid was successfully expressed in Escherichia coli BL21. TBP5 significantly promoted the proliferation of thymic and splenic lymphocytes of mice. The potential adjuvant activity of the TBP5 was examined in mice by coinjecting TBP5 and H9N2 avian influenza virus (AIV) inactivated vaccine. HI antibody titers, HA antibodies and cytokines levels (IL-4 and IFN-γ) were determined. We found that TBP5 markedly elevated serum HI titers and HA antibody levels, induced the secretion of both IL-4 and IFN-γ cytokines. Furthermore, virus challenge experiments confirmed that TBP5 contributed to inhibition replication of the virus [H9N2 AIV (A/chicken/Jiangsu/NJ07/05)] from mouse lungs. Altogether, these findings suggest that TBP5 may be an effective adjuvant for avian vaccine and that this study provides a reference for further research on new vaccine adjuvants. PMID:26571686

  20. Adjuvant disease induced by mycobacteria, determinants of arthritogenicity.

    PubMed

    Audibert, F; Chedid, L

    1976-02-01

    Genetic, endocrine and immunological factors are probably involved in adjuvant polyarthritis. The nature of the vehicle and of the mycobacterial components administered also has a major influence. It was originally assumed that arthritogenicity and adjuvanticity of mycobacterial fractions such as wax D were intimately related. Our previous findings showed that the water soluble adjuvant (WSA) of M.smegmatis which could substitute for mycobacterial cells in Freund's complete adjuvant and induce delayed hypersensitivity was not arthritogenic in the Wistar rat. We have since observed that auto-immune diseases could be elicited by WSA. Therefore experiments were repeated using the very susceptible Lewis strain. The activity of cord factor and of various mycobacterial preparations suspended in mineral or in peanut oil was also evaluated in mice and in normal or hypophysectomized rats. Our present findings confirm the absence of arthritogenicity of WSA in the Lewis strain. They also indicate that cord factor with WSA does not suffice to induce a generalized adjuvant disease, but that a mycobacterial component which could be susceptible to lysozyme treatment is required also. However, the local inflammation of the injected limb was produced by a preparation of cord factor administered in mineral or even in peanut oil. This was observed in normal or hypophysectomized rats and in Swiss mice which were not susceptible to the generalized disease.

  1. Ready-to-use colloidal adjuvant systems for intranasal immunization.

    PubMed

    Lee, Jeong-Jun; Shim, Aeri; Lee, Song Yi; Kwon, Bo-Eun; Kim, Seong Ryeol; Ko, Hyun-Jeong; Cho, Hyun-Jong

    2016-04-01

    Adjuvant systems based on oil-in-water (o/w) microemulsions (MEs) for vaccination via intranasal administration were prepared and evaluated. A ready-to-use blank ME system composed of mineral oil (oil), Labrasol (surfactant), Tween 80 (cosurfactant), and water was prepared and blended with antigen (Ag) solution prior to use. The o/w ME system developed exhibited nano-size droplets within the tested range of Ag concentrations and dilution factors. The maintenance of primary, secondary, and tertiary structural stability of ovalbumin (OVA) in ME, compared with OVA in solution, was demonstrated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), circular dichroism (CD), and fluorescence intensity measurements, respectively. The uptake efficiency in RAW 264.7 cells, evaluated by flow cytometry, of OVA in the ME group was significantly higher than that of the OVA solution group (p<0.05). In an intranasal immunization study with OVA ME in mice, elevated adjuvant effects in terms of mucosal immunization and Th1-dominant cell-mediated immune responses were identified. Given the convenience of use (simply mixing with Ag solution prior to use) and the adjuvant effects after intranasal immunization, the new o/w ME may be a practical and efficient adjuvant system for intranasal vaccination. PMID:26775242

  2. Evaluation of adjuvant effects of fucoidan for improving vaccine efficacy.

    PubMed

    Kim, Su-Yeon; Joo, Hong-Gu

    2015-01-01

    Fucoidan is a sulfated polysaccharide derived from brown seaweed, including Fucus vesiculosus. This compound is known to have immunostimulatory effects on various types of immune cells including macrophages and dendritic cells. A recent study described the application of fucoidan as a vaccine adjuvant. Vaccination is regarded as the most efficient prophylactic method for preventing harmful or epidemic diseases. To increase vaccine efficacy, effective adjuvants are needed. In the present study, we determined whether fucoidan can function as an adjuvant using vaccine antigens. Flow cytometric analysis revealed that fucoidan increases the expression of the activation markers major histocompatibility complex class II, cluster of differentiation (CD)25, and CD69 in spleen cells. In combination with Bordetella bronchiseptica antigen, fucoidan increased the viability and tumor necrosis factor-α production of spleen cells. Furthermore, fucoidan increased the in vivo production of antigen-specific antibodies in mice inoculated with Mycoplasma hyopneumoniae antigen. Overall, this study has provided valuable information about the use of fucoidan as a vaccine adjuvant. PMID:25549218

  3. Evaluation of adjuvant effects of fucoidan for improving vaccine efficacy.

    PubMed

    Kim, Su-Yeon; Joo, Hong-Gu

    2015-01-01

    Fucoidan is a sulfated polysaccharide derived from brown seaweed, including Fucus vesiculosus. This compound is known to have immunostimulatory effects on various types of immune cells including macrophages and dendritic cells. A recent study described the application of fucoidan as a vaccine adjuvant. Vaccination is regarded as the most efficient prophylactic method for preventing harmful or epidemic diseases. To increase vaccine efficacy, effective adjuvants are needed. In the present study, we determined whether fucoidan can function as an adjuvant using vaccine antigens. Flow cytometric analysis revealed that fucoidan increases the expression of the activation markers major histocompatibility complex class II, cluster of differentiation (CD)25, and CD69 in spleen cells. In combination with Bordetella bronchiseptica antigen, fucoidan increased the viability and tumor necrosis factor-α production of spleen cells. Furthermore, fucoidan increased the in vivo production of antigen-specific antibodies in mice inoculated with Mycoplasma hyopneumoniae antigen. Overall, this study has provided valuable information about the use of fucoidan as a vaccine adjuvant.

  4. Have adjuvant tyrosine kinase inhibitors lost their shine?

    PubMed

    Sabari, Joshua K; Chaft, Jamie E

    2016-08-01

    Despite broad advances in molecularly targeted therapies, lung cancer remains the leading cause of cancer related mortality in the United States. Epidermal growth factor receptor (EGFR) mutations occur in approximately 17% of advanced non-small cell lung cancer (NSCLC) in the US population. The remarkable efficacy of small-molecule EGFR tyrosine kinase inhibitors (TKIs) in this unique subset of patients has revolutionized the therapeutic approach to lung cancer. The success of these agents in the metastatic setting leads to the logical question of what role these drugs may have in the adjuvant setting for patients with earlier stage disease. RADIANT, an international randomized, double-blind, placebo controlled phase III study in patients with completely resected stage IB to IIIA NSLC whose tumors expressed EGFR by IHC and EGFR amplification by FISH, attempted to answer the question of whether erlotinib would improve disease free survival and overall survival in the adjuvant setting. While RADIANT does not conclude for or against adjuvant use of EGFR-TKIs, all data points towards benefit in a selected population. As clinicians, we must continue to enroll to potentially practice changing therapeutic neoadjuvant and adjuvant chemotherapy studies internationally. PMID:27568486

  5. Have adjuvant tyrosine kinase inhibitors lost their shine?

    PubMed Central

    Sabari, Joshua K.

    2016-01-01

    Despite broad advances in molecularly targeted therapies, lung cancer remains the leading cause of cancer related mortality in the United States. Epidermal growth factor receptor (EGFR) mutations occur in approximately 17% of advanced non-small cell lung cancer (NSCLC) in the US population. The remarkable efficacy of small-molecule EGFR tyrosine kinase inhibitors (TKIs) in this unique subset of patients has revolutionized the therapeutic approach to lung cancer. The success of these agents in the metastatic setting leads to the logical question of what role these drugs may have in the adjuvant setting for patients with earlier stage disease. RADIANT, an international randomized, double-blind, placebo controlled phase III study in patients with completely resected stage IB to IIIA NSLC whose tumors expressed EGFR by IHC and EGFR amplification by FISH, attempted to answer the question of whether erlotinib would improve disease free survival and overall survival in the adjuvant setting. While RADIANT does not conclude for or against adjuvant use of EGFR-TKIs, all data points towards benefit in a selected population. As clinicians, we must continue to enroll to potentially practice changing therapeutic neoadjuvant and adjuvant chemotherapy studies internationally. PMID:27568486

  6. Effect of adjuvant physical properties on spray characteristics

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The effects of adjuvant physical properties on spray characteristics were studied. Dynamic surface tension was measured with a Sensa Dyne surface tensiometer 6000 using the maximum bubble pressure method. Viscosity was measured with a Brookfield synchro-lectric viscometer model LVT using a UL adap...

  7. Bacillus subtilis spores as adjuvants for DNA vaccines.

    PubMed

    Aps, Luana R M M; Diniz, Mariana O; Porchia, Bruna F M M; Sales, Natiely S; Moreno, Ana Carolina R; Ferreira, Luís C S

    2015-05-11

    Recently, Bacillus subtilis spores were shown to be endowed with strong adjuvant capacity when co-administered with purified antigenic proteins. In the present study we assessed whether spores possess adjuvant properties when combined with DNA vaccines. We showed that B. subtilis spores promoted the activation of dendritic cells in vitro and induced migration of pro-inflammatory cells after parenteral administration to mice. Likewise, co-administration of spores with a DNA vaccine encoding the human papillomavirus type 16 (HPV-16) E7 protein enhanced the activation of antigen-specific CD8(+) T cell responses in vivo. Mice immunized with the DNA vaccine admixed with spores presented a protective immunity increase to previously implanted tumor cells, capable of expressing HPV-16 oncoproteins. Finally, we observed that the adjuvant effect can vary accordingly to the number of co-administered spores which may be ascribed with the ability to induce. Collectively, the present results demonstrate for the first time that B. subtilis spores can also confer adjuvant effects to DNA vaccines.

  8. Polyethyleneimine is a potent mucosal adjuvant for viral glycoprotein antigens.

    PubMed

    Wegmann, Frank; Gartlan, Kate H; Harandi, Ali M; Brinckmann, Sarah A; Coccia, Margherita; Hillson, William R; Kok, Wai Ling; Cole, Suzanne; Ho, Ling-Pei; Lambe, Teresa; Puthia, Manoj; Svanborg, Catharina; Scherer, Erin M; Krashias, George; Williams, Adam; Blattman, Joseph N; Greenberg, Philip D; Flavell, Richard A; Moghaddam, Amin E; Sheppard, Neil C; Sattentau, Quentin J

    2012-09-01

    Protection against mucosally transmitted infections probably requires immunity at the site of pathogen entry, yet there are no mucosal adjuvant formulations licensed for human use. Polyethyleneimine (PEI) represents a family of organic polycations used as nucleic acid transfection reagents in vitro and DNA vaccine delivery vehicles in vivo. Here we show that diverse PEI forms have potent mucosal adjuvant activity for viral subunit glycoprotein antigens. A single intranasal administration of influenza hemagglutinin or herpes simplex virus type-2 (HSV-2) glycoprotein D with PEI elicited robust antibody-mediated protection from an otherwise lethal infection, and was superior to existing experimental mucosal adjuvants. PEI formed nanoscale complexes with antigen, which were taken up by antigen-presenting cells in vitro and in vivo, promoted dendritic cell trafficking to draining lymph nodes and induced non-proinflammatory cytokine responses. PEI adjuvanticity required release of host double-stranded DNA that triggered Irf3-dependent signaling. PEI therefore merits further investigation as a mucosal adjuvant for human use. PMID:22922673

  9. Schistosome Vaccine Adjuvants in Preclinical and Clinical Research

    PubMed Central

    Stephenson, Rachel; You, Hong; McManus, Donald; Toth, Istvan

    2014-01-01

    There is currently no vaccine available for human use for any parasitic infections, including the helminth disease, schistosomiasis. Despite many researchers working towards this goal, one of the focuses has been on identifying new antigenic targets. The bar to achieve protective efficacy in humans was set at a consistent induction of 40% protection or better by the World Health Organisation (WHO), and although this is a modest goal, it is yet to be reached with the six most promising schistosomiasis vaccine candidates (Sm28GST, IrV5, Sm14, paramyosin, TPI, and Sm23). Adjuvant selection has a large impact on the effectiveness of the vaccine, and the use of adjuvants to aid in the stimulation of the immune system is a critical step and a major variable affecting vaccine development. In addition to a comprehensive understanding of the immune system, level of protection and the desired immune response required, there is also a need for a standardised and effective adjuvant formulation. This review summarises the status of adjuvants that have been or are being employed in schistosomiasis vaccine development focusing on immunisation outcomes at preclinical and clinical stages. PMID:26344751

  10. Modulation of Primary Immune Response by Different Vaccine Adjuvants

    PubMed Central

    Ciabattini, Annalisa; Pettini, Elena; Fiorino, Fabio; Pastore, Gabiria; Andersen, Peter; Pozzi, Gianni; Medaglini, Donata

    2016-01-01

    Adjuvants contribute to enhancing and shaping the vaccine immune response through different modes of action. Here early biomarkers of adjuvanticity after primary immunization were investigated using four different adjuvants combined with the chimeric tuberculosis vaccine antigen H56. C57BL/6 mice were immunized by the subcutaneous route with different vaccine formulations, and the modulation of primary CD4+ T cell and B cell responses was assessed within draining lymph nodes, blood, and spleen, 7 and 12 days after priming. Vaccine formulations containing the liposome system CAF01 or a squalene-based oil-in-water emulsion (o/w squalene), but not aluminum hydroxide (alum) or CpG ODN 1826, elicited a significant primary antigen-specific CD4+ T cell response compared to antigen alone, 7 days after immunization. The effector function of activated CD4+ T cells was skewed toward a Th1/Th17 response by CAF01, while a Th1/Th2 response was elicited by o/w squalene. Differentiation of B cells in short-lived plasma cells, and subsequent early H56-specific IgG secretion, was observed in mice immunized with o/w squalene or CpG adjuvants. Tested adjuvants promoted the germinal center reaction with different magnitude. These results show that the immunological activity of different adjuvants can be characterized by profiling early immunization biomarkers after primary immunization. These data and this approach could give an important contribution to the rational development of heterologous prime–boost vaccine immunization protocols. PMID:27781036

  11. Adverse events following immunization with vaccines containing adjuvants.

    PubMed

    Cerpa-Cruz, S; Paredes-Casillas, P; Landeros Navarro, E; Bernard-Medina, A G; Martínez-Bonilla, G; Gutiérrez-Ureña, S

    2013-07-01

    A traditional infectious disease vaccine is a preparation of live attenuated, inactivated or killed pathogen that stimulates immunity. Vaccine immunologic adjuvants are compounds incorporated into vaccines to enhance immunogenicity. Adjuvants have recently been implicated in the new syndrome named ASIA autoimmune/inflammatory syndrome induced by adjuvants. The objective describes the frequencies of post-vaccination clinical syndrome induced by adjuvants. We performed a cross-sectional study; adverse event following immunization was defined as any untoward medical occurrence that follows immunization 54 days prior to the event. Data on vaccinations and other risk factors were obtained from daily epidemiologic surveillance. Descriptive statistics were done using means and standard deviation, and odds ratio adjusted for potential confounding variables was calculated with SPSS 17 software. Forty-three out of 120 patients with moderate or severe manifestations following immunization were hospitalized from 2008 to 2011. All patients fulfilled at least 2 major and 1 minor criteria suggested by Shoenfeld and Agmon-Levin for ASIA diagnosis. The most frequent clinical findings were pyrexia 68%, arthralgias 47%, cutaneous disorders 33%, muscle weakness 16% and myalgias 14%. Three patients had diagnosis of Guillain-Barre syndrome, one patient had Adult-Still's disease 3 days after vaccination. A total of 76% of the events occurred in the first 3 days post-vaccination. Two patients with previous autoimmune disease showed severe adverse reactions with the reactivation of their illness. Minor local reactions were present in 49% of patients. Vaccines containing adjuvants may be associated with an increased risk of autoimmune/inflammatory adverse events following immunization.

  12. Role of Adjuvant Chemoradiotherapy for Ampulla of Vater Cancer

    SciTech Connect

    Kim, Kyubo; Chie, Eui Kyu Jang, Jin-Young; Kim, Sun Whe; Oh, Do-Youn; Im, Seock-Ah; Kim, Tae-You; Bang, Yung-Jue; Ha, Sung W.

    2009-10-01

    Purpose: To evaluate the role of adjuvant chemoradiotherapy for ampulla of Vater cancer. Methods and Materials: Between January 1991 and December 2002, 118 patients with ampulla of Vater cancer underwent en bloc resection. Forty-one patients received adjuvant chemoradiotherapy [RT(+) group], and 77 did not [RT(-) group]. Postoperative radiotherapy was delivered to the tumor bed and regional lymph nodes, for a total dose of up to 40 Gy delivered in 2-Gy fractions, with a planned 2-week rest period halfway through the treatment period. Intravenous 5-fluorouracil (500 mg/m{sup 2}/day) was given on Days 1 to 3 of each split course. The median follow-up was 65 months. Results: The 5-year overall survival rate in the RT(-) and RT(+) groups was 66.9% and 52.8%, respectively (p = 0.2225). The 5-year locoregional relapse-free survival rate in the RT(-) and RT(+) groups was 79.9% and 80.2%, respectively (p = 0.9582). When age, type of operation, T stage, N stage, histologic differentiation, and the use of adjuvant chemoradiotherapy were incorporated into the Cox proportional hazard model, there was an improvement in the locoregional relapse-free survival rate (p = 0.0050) and a trend toward a longer overall survival (p = 0.0762) associated with the use of adjuvant chemoradiotherapy. Improved overall survival (p = 0.0235) and locoregional relapse-free survival (p = 0.0095) were also evident in patients with nodal metastasis. In contrast, enhanced locoregional control (p = 0.0319) did not result in longer survival in patients with locally advanced disease (p = 0.4544). Conclusions: Adjuvant chemoradiotherapy may enhance locoregional control and overall survival in patients with ampulla of Vater cancer after curative resection, especially in those with nodal involvement.

  13. Antigen sparing with adjuvanted inactivated polio vaccine based on Sabin strains

    PubMed Central

    Westdijk, Janny; Koedam, Patrick; Barro, Mario; Steil, Benjamin P.; Collin, Nicolas; Vedvick, Thomas S.; Bakker, Wilfried A.M.; van der Ley, Peter; Kersten, Gideon

    2013-01-01

    Six different adjuvants, each in combination with inactivated polio vaccine (IPV) produced with attenuated Sabin strains (sIPV), were evaluated for their ability to enhance virus neutralizing antibody titers (VNTs) in the rat potency model. The increase of VNTs was on average 3-, 15-, 24-fold with adjuvants after one immunization (serotype 1, 2, and 3, respectively). Also after a boost immunization the VNTs of adjuvanted sIPV were on average another 7- 20- 27 times higher than after two inoculations of sIPV without adjuvant. The results indicate that it is feasible to increase the potency of inactivated polio vaccines by using adjuvants. PMID:23313617

  14. Recent progress in adjuvant discovery for peptide-based subunit vaccines

    PubMed Central

    Azmi, Fazren; Ahmad Fuaad, Abdullah Al Hadi; Skwarczynski, Mariusz; Toth, Istvan

    2014-01-01

    Peptide-based subunit vaccines are of great interest in modern immunotherapy as they are safe, easy to produce and well defined. However, peptide antigens produce a relatively weak immune response, and thus require the use of immunostimulants (adjuvants) for optimal efficacy. Developing a safe and effective adjuvant remains a challenge for peptide-based vaccine design. Recent advances in immunology have allowed researchers to have a better understanding of the immunological implication of related diseases, which facilitates more rational design of adjuvant systems. Understanding the molecular structure of the adjuvants allows the establishment of their structure-activity relationships which is useful for the development of next-generation adjuvants. This review summarizes the current state of adjuvants development in the field of synthetic peptide-based vaccines. The structural, chemical and biological properties of adjuvants associated with their immunomodulatory effects are discussed. PMID:24300669

  15. Trp2 peptide vaccine adjuvanted with (R)-DOTAP inhibits tumor growth in an advanced melanoma model

    PubMed Central

    Vasievich, Elizabeth A.; Ramishetti, Srinivas; Zhang, Yuan; Huang, Leaf

    2012-01-01

    Previously we have shown cationic lipid (R)-DOTAP as the immunologically active enantiomer of the DOTAP racemic mixture, initiating complete tumor regression in an exogenous antigen model (murine cervical cancer model). Here, we investigate the use of (R)-DOTAP as an efficacious adjuvant delivering an endogenous antigen in an aggressive murine solid tumor melanoma model. (R)-DOTAP/Trp2 peptide complexes showed decreasing size and charge with increasing peptide concentration, taking a rod-shape at highest concentrations. The particles were stable for at 2 weeks at 4°C. A dose of 75nmol Trp2 (formulated in (R)-DOTAP) was able to show statistically significant tumor growth delay compared to lower doses of 5 and 25nmol which were no different than untreated tumors. (R)-DOTAP/Trp2 (75nmol) treated mice also showed increased T cell IFN-γ secretion after restimulation with Trp2, as well as CTL activity in vivo. This vaccination group also showed the highest population of functionally active tumor-infiltrating lymphocytes, indicated by IFN-γ secretion after restimulation with Trp2. Thus, (R)-DOTAP has shown the ability to break tolerance as an adjuvant. Its activity to enhance immunogenicity of other tumor associated antigens should be studied further. PMID:22142394

  16. DODAB:monoolein liposomes containing Candida albicans cell wall surface proteins: a novel adjuvant and delivery system.

    PubMed

    Carneiro, Catarina; Correia, Alexandra; Collins, Tony; Vilanova, Manuel; Pais, Célia; Gomes, Andreia C; Real Oliveira, M Elisabete C D; Sampaio, Paula

    2015-01-01

    We describe the preparation and characterization of DODAB:MO-based liposomes and demonstrate their adjuvant potential and use in antigen delivery. Liposomes loaded with Candida albicans proteins assembled as stable negatively charged spherical nanoparticles with a mean size of 280 nm. High adsorption efficiency (91.0 ± 9.0%) is attained with high lipid concentrations. The nanoparticles were non-toxic, avidly taken up by macrophage cells and accumulated in membrane rich regions with an internalization time of 20 min. Immunized mice displayed strong humoral and cell-mediated immune responses, producing antibodies (IgGs) against specific cell wall proteins, Cht3p and Xog1p. DODAB:MO-based liposomes loaded with C. albicans proteins have an excellent immunogenic potential and can be explored for the development of an immunoprotective strategy against Candida infections. PMID:25499956

  17. Advances in aluminum hydroxide-based adjuvant research and its mechanism.

    PubMed

    He, Peng; Zou, Yening; Hu, Zhongyu

    2015-01-01

    In the past few decades, hundreds of materials have been tried as adjuvant; however, only aluminum-based adjuvants continue to be used widely in the world. Aluminum hydroxide, aluminum phosphate and alum constitute the main forms of aluminum used as adjuvants. Among these, aluminum hydroxide is the most commonly used chemical as adjuvant. In spite of its wide spread use, surprisingly, the mechanism of how aluminum hydroxide-based adjuvants exert their beneficial effects is still not fully understood. Current explanations for the mode of action of aluminum hydroxide-based adjuvants include, among others, the repository effect, pro-phagocytic effect, and activation of the pro-inflammatory NLRP3 pathway. These collectively galvanize innate as well as acquired immune responses and activate the complement system. Factors that have a profound influence on responses evoked by aluminum hydroxide-based adjuvant applications include adsorption rate, strength of the adsorption, size and uniformity of aluminum hydroxide particles, dosage of adjuvant, and the nature of antigens. Although vaccines containing aluminum hydroxide-based adjuvants are beneficial, sometimes they cause adverse reactions. Further, these vaccines cannot be stored frozen. Until recently, aluminum hydroxide-based adjuvants were known to preferentially prime Th2-type immune responses. However, results of more recent studies show that depending on the vaccination route, aluminum hydroxide-based adjuvants can enhance both Th1 as well as Th2 cellular responses. Advances in systems biology have opened up new avenues for studying mechanisms of aluminum hydroxide-based adjuvants. These will assist in scaling new frontiers in aluminum hydroxide-based adjuvant research that include improvement of formulations, use of nanoparticles of aluminum hydroxide and development of composite adjuvants. PMID:25692535

  18. Advances in aluminum hydroxide-based adjuvant research and its mechanism

    PubMed Central

    He, Peng; Zou, Yening; Hu, Zhongyu

    2015-01-01

    In the past few decades, hundreds of materials have been tried as adjuvant; however, only aluminum-based adjuvants continue to be used widely in the world. Aluminum hydroxide, aluminum phosphate and alum constitute the main forms of aluminum used as adjuvants. Among these, aluminum hydroxide is the most commonly used chemical as adjuvant. In spite of its wide spread use, surprisingly, the mechanism of how aluminum hydroxide-based adjuvants exert their beneficial effects is still not fully understood. Current explanations for the mode of action of aluminum hydroxide-based adjuvants include, among others, the repository effect, pro-phagocytic effect, and activation of the pro-inflammatory NLRP3 pathway. These collectively galvanize innate as well as acquired immune responses and activate the complement system. Factors that have a profound influence on responses evoked by aluminum hydroxide-based adjuvant applications include adsorption rate, strength of the adsorption, size and uniformity of aluminum hydroxide particles, dosage of adjuvant, and the nature of antigens. Although vaccines containing aluminum hydroxide-based adjuvants are beneficial, sometimes they cause adverse reactions. Further, these vaccines cannot be stored frozen. Until recently, aluminum hydroxide-based adjuvants were known to preferentially prime Th2-type immune responses. However, results of more recent studies show that depending on the vaccination route, aluminum hydroxide-based adjuvants can enhance both Th1 as well as Th2 cellular responses. Advances in systems biology have opened up new avenues for studying mechanisms of aluminum hydroxide-based adjuvants. These will assist in scaling new frontiers in aluminum hydroxide-based adjuvant research that include improvement of formulations, use of nanoparticles of aluminum hydroxide and development of composite adjuvants. PMID:25692535

  19. Lipid-absorbing Polymers

    NASA Technical Reports Server (NTRS)

    Marsh, H. E., Jr.; Wallace, C. J.

    1973-01-01

    The removal of bile acids and cholesterol by polymeric absorption is discussed in terms of micelle-polymer interaction. The results obtained with a polymer composed of 75 parts PEO and 25 parts PB plus curing ingredients show an absorption of 305 to 309%, based on original polymer weight. Particle size effects on absorption rate are analyzed. It is concluded that crosslinked polyethylene oxide polymers will absorb water, crosslinked polybutadiene polymers will absorb lipids; neither polymer will absorb appreciable amounts of lipids from micellar solutions of lipids in water.

  20. Construction and Characterization of an Escherichia coli Mutant Producing Kdo2-Lipid A

    PubMed Central

    Wang, Jianli; Ma, Wenjian; Wang, Zhou; Li, Ye; Wang, Xiaoyuan

    2014-01-01

    3-deoxy-d-manno-oct-2-ulosonic acid (Kdo)2-lipid A is the conserved structure domain of lipopolysaccharide found in most Gram-negative bacteria, and it is believed to stimulate the innate immune system through the TLR4/MD2 complex. Therefore, Kdo2-lipid A is an important stimulator for studying the mechanism of the innate immune system and for developing bacterial vaccine adjuvants. Kdo2-lipid A has not been chemically synthesized to date and could only be isolated from an Escherichia coli mutant strain, WBB06. WBB06 cells grow slowly and have to grow in the presence of tetracycline. In this study, a novel E. coli mutant strain, WJW00, that could synthesize Kdo2-lipid A was constructed by deleting the rfaD gene from the genome of E. coli W3110. The rfaD gene encodes ADP-l-glycero-d-manno-heptose-6-epimerase RfaD. Based on the analysis by SDS-PAGE, thin layer chromatography (TLC) and electrospray ionization mass spectrometry (ESI/MS), WJW00 could produce similar levels of Kdo2-lipid A to WBB06. WJW00 cells grow much better than WBB06 cells and do not need to add any antibiotics during growth. Compared with the wild-type strain, W3110, WJW00 showed increased hydrophobicity, higher cell permeability, greater autoaggregation and decreased biofilm-forming ability. Therefore, WJW00 could be a more suitable strain than WBB06 for producing Kdo2-lipid A and a good base strain for developing lipid A adjuvants. PMID:24633251

  1. Subcutaneous injection of interleukin 12 induces systemic inflammatory responses in humans: implications for the use of IL-12 as vaccine adjuvant.

    PubMed

    Portielje, Johanna E A; Kruit, Wim H J; Eerenberg, Anke J M; Schuler, Martin; Sparreboom, Alex; Lamers, Cor H J; Gratama, Jan-Willem; Stoter, Gerrit; Huber, Christoph; Hack, C Erik

    2005-01-01

    Interleukin 12 (IL-12) is a cytokine with important regulatory functions bridging innate and adaptive immunity. It has been proposed as an immune adjuvant for vaccination therapy of infectious diseases and malignancies. The inflammatory properties of IL-12 play an important role in the adjuvant effect. We studied the effect of s.c. injections of recombinant human IL-12 (rHuIL-12) in 26 patients with renal cell cancer and demonstrated dose-dependent systemic activation of multiple inflammatory mediator systems in humans. rHuIL-12 at a dose of 0.5 microg/kg induced degranulation of neutrophils with a significant increase in the plasma levels of elastase (p < 0.05) and lactoferrin (p = 0.01) at 24 h. Additionally, rHuIL-12 injection mediated the release of lipid mediators, as demonstrated by a sharp increase in the plasma secretory phospholipase A2 (sPLA2) level (p = 0.003). rHuIL-12, when administered at a dose of 0.1 microg/kg, showed minimal systemic effects. In conclusion, when IL-12 is used as an adjuvant, doses should not exceed 0.1 microg/kg, in order to avoid severe systemic inflammatory responses.

  2. Metabolism. Part III: Lipids.

    ERIC Educational Resources Information Center

    Bodner, George M.

    1986-01-01

    Describes the metabolic processes of complex lipids, including saponification, activation and transport, and the beta-oxidation spiral. Discusses fatty acid degradation in regard to biochemical energy and ketone bodies. (TW)

  3. An overview of adjuvant formulations and delivery systems.

    PubMed

    García, Alexis; De Sanctis, Juan B

    2014-04-01

    Adjuvants may promote immune responses: by recruiting professional antigen-presenting cells (APCs) to the vaccination site, increasing the delivery of antigens to APCs, or by activating APCs to produce cytokines and by triggering T cell responses. Aluminium salts have been effective at promoting protective humoral immunity; however, they are not effective in generating cell-mediated immunity. A number of different approaches have been developed to potentiate immune response and they have been partially successful. Research has been conducted into vaccine delivery systems (VDS); enhancing cross-presentation by targeting antigens to (APCs). Antigen discovery has increased over the past decade, and consequently, it has accelerated vaccine development demanding a new generation of VDS that combines different types of adjuvants into specific formulations with greater activity. The new approaches offer a wide spectrum of opportunities in vaccine research with direct applications in the near future. PMID:23919674

  4. Compliance to adjuvant therapy in breast cancer patients.

    PubMed

    Dittmer, C; Roeder, K; Hoellen, F; Salehin, D; Thill, M; Fischer, D

    2011-01-01

    During recent years a continuous reduction of mortality from breast cancer has taken place in the Western countries. We wanted to verify whether the actual therapy for our own cases deviates from our recommendations, although the surgeon, radiotherapist and gynaecological oncologist are on the same premises. We sent out questionnaires to all newly diagnosed breast cancer patients in the last seven years regarding their adjuvant therapy. Comparing these answers to our own recommendation showed a very good compliance regarding chemotherapy and radiation therapy. Adjuvant endocrine therapy showed a very poor compliance with an adherence of 77%. Overall we can conclude that endocrine therapy causes many side-effects that seem to burden the patients. In combination with the duration of the therapy this causes a severe reduction in compliance and length of the therapy.

  5. Buprenorphine--the unique opioid adjuvant in regional anesthesia.

    PubMed

    Kosel, Juliusz; Bobik, Piotr; Tomczyk, Michał

    2016-01-01

    Regional anesthesia techniques are commonly used for many surgical procedures alone or as an addition to general anesthesia, because they offer many advantages over general anesthesia. Unfortunately these techniques are partially limited by the time of action of local anesthetics. One of the methods of overcoming this limitation is adding to the local anesthetic solution additional drug--so called adjuvant. Among many adjuvants to local anesthetic drugs tested so far one seems to be particularly interesting--buprenorphine. The aim of this paper is to present pharmacological background for using buprenorphine for regional anesthesia and to review clinical trials of using buprenorphine for all regional anesthesia techniques: spinal and epidural anesthesia, peripheral nerves blocks, local anesthesia and intravenous regional anesthesia.

  6. Treatment of early uterine sarcomas: disentangling adjuvant modalities.

    PubMed

    Zagouri, Flora; Dimopoulos, Athanasios-Meletios; Fotiou, Stelios; Kouloulias, Vassilios; Papadimitriou, Christos A

    2009-01-01

    Uterine sarcomas are a rare group of neoplasms with aggressive clinical course and poor prognosis. They are classified into four main histological subtypes in order of decreasing incidence: carcinosarcomas, leiomyosarcomas, endometrial stromal sarcomas and "other" sarcomas. The pathological subtype demands a tailored approach. Surgical resection is regarded as the mainstay of treatment. Total abdominal hysterectomy and bilateral salpingo-oophorectomy represents the standard treatment of uterine sarcomas. Pelvic and para-aortic lymph node dissection in carcinosarcomas is recommended, given their high incidence of lymph node metastases, and may have a role in endometrial stromal sarcomas. Adjuvant radiation therapy has historically been of little survival value, but it appears to improve local control and may delay recurrence. Regarding adjuvant chemotherapy, there is little evidence in the literature supporting its use except for carcinosarcomas. However, more trials are needed to address these issues, especially, their sequential application. Patients with uterine sarcomas should be referred to large academic centers for participation in clinical trials.

  7. Adjuvant therapy in breast cancer and venous thromboembolism.

    PubMed

    Mandalà, Mario; Tondini, Carlo

    2012-10-01

    Breast cancer patients are considered to be at relatively low risk of developing a TEE. The highest incidence of VTE events occurs in metastatic breast cancer patients likely due to extension of disease, immobility for pathologic bone fractures, cancer cachexia and venous compression by the tumour mass. Although thrombosis is less common in patients with early stage cancer compared to those with more advanced disease, it does occur and is clinically challenging. The adjuvant setting is of particular interest in order to assess the specific thrombogenic potential of systemic chemotherapy, because of the low tumor burden with only microscopic tumor foci at the time of treatment administration. This review summarizes risk factors, incidence and strategies to avoid VTE in breast cancer patients receiving adjuvant therapy.

  8. Resectable Cholangiocarcinoma: Reviewing the Role of Adjuvant Strategies

    PubMed Central

    Cidon, E. Una

    2016-01-01

    Cholangiocarcinoma is a very heterogeneous and rare group of neoplasms originating from the perihilar, intra-, or extrahepatic bile duct epithelium. It represents only 3% of gastrointestinal cancers, although their incidence is increasing as its mortality increases. Surgical resection is the only potentially curative option, but unfortunately the resectability rate is low. Overall, these malignancies have got a very poor prognosis with a five-year survival rate of 5–10%. Although the five-year survival rate increases to 25–30% in the cases amenable to surgery, only 10–40% of patients present with resectable disease. Therefore, it is necessary to optimize the benefit of adjuvant strategies after surgery to increase the rate of curability. This study reviewed the role of adjuvant chemotherapy in resectable bile duct cancers. PMID:27199577

  9. Adjuvant postoperative radiotherapy for gastric carcinoma with poor prognostic signs.

    PubMed

    Slot, A; Meerwaldt, J H; van Putten, W L; Treurniet-Donker, A D

    1989-12-01

    Fifty-seven patients with poor prognostic factors following resection with curative intent for gastric adenocarcinoma (T3 or T4, positive lymph nodes, positive resection line) received adjuvant radiotherapy. A dose of 30.0-50.0 Gy was given in 10-25 fractions in one course or with a split of 2 weeks after 15 fractions. This was combined with 5-fluorouracil (5-FU) (375 mg/m2) given i.v. as a bolus during the first 4 days of radiation (n = 49). The 5-year survival was 26%; this rate is higher than the figures mentioned in the literature after surgery alone. The only way to prove the role of adjuvant radiotherapy for gastric carcinoma is a prospective randomized trial. PMID:2616813

  10. Evaluation of mucoadhesive carrier adjuvant: toward an oral anthrax vaccine.

    PubMed

    Mangal, Sharad; Pawar, Dilip; Agrawal, Udita; Jain, Arvind K; Vyas, Suresh P

    2014-02-01

    The aim of present study was to evaluate the potential of mucoadhesive alginate-coated chitosan microparticles (A-CHMp) for oral vaccine against anthrax. The zeta potential of A-CHMp was -29.7 mV, and alginate coating could prevent the burst release of antigen in simulated gastric fluid. The results indicated that A-CHMp was mucoadhesive in nature and transported it to the peyer's patch upon oral delivery. The immunization studies indicated that A-CHMp resulted in the induction of potent systemic and mucosal immune responses, whereas alum-adjuvanted rPA could induce only systemic immune response. Thus, A-CHMp represents a promising acid carrier adjuvant for oral immunization against anthrax.

  11. Adjuvants for enhancing the immunogenicity of whole tumor cell vaccines.

    PubMed

    Chiang, Cheryl Lai-Lai; Kandalaft, Lana E; Coukos, George

    2011-01-01

    Whole tumor cell lysates can serve as excellent multivalent vaccines for priming tumor-specific CD8(+) and CD4(+) T cells. Whole cell vaccines can be prepared with hypochlorous acid oxidation, UVB-irradiation and repeat cycles of freeze and thaw. One major obstacle to successful immunotherapy is breaking self-tolerance to tumor antigens. Clinically approved adjuvants, including Montanide™ ISA-51 and 720, and keyhole-limpet proteins can be used to enhance tumor cell immunogenicity by stimulating both humoral and cellular anti-tumor responses. Other potential adjuvants, such as Toll-like receptor agonists (e.g., CpG, MPLA and PolyI:C), and cytokines (e.g., granulocyte-macrophage colony stimulating factor), have also been investigated. PMID:21557641

  12. CpG DNA as a vaccine adjuvant.

    PubMed

    Bode, Christian; Zhao, Gan; Steinhagen, Folkert; Kinjo, Takeshi; Klinman, Dennis M

    2011-04-01

    Synthetic oligodeoxynucleotides (ODNs) containing unmethylated CpG motifs trigger cells that express Toll-like receptor 9 (including human plasmacytoid dendritic cells and B cells) to mount an innate immune response characterized by the production of Th1 and proinflammatory cytokines. When used as vaccine adjuvants, CpG ODNs improve the function of professional antigen-presenting cells and boost the generation of humoral and cellular vaccine-specific immune responses. These effects are optimized by maintaining ODNs and vaccine in close proximity. The adjuvant properties of CpG ODNs are observed when administered either systemically or mucosally, and persist in immunocompromised hosts. Preclinical studies indicate that CpG ODNs improve the activity of vaccines targeting infectious diseases and cancer. Clinical trials demonstrate that CpG ODNs have a good safety profile and increase the immunogenicity of coadministered vaccines. PMID:21506647

  13. Adjuvant postoperative radiotherapy for gastric carcinoma with poor prognostic signs.

    PubMed

    Slot, A; Meerwaldt, J H; van Putten, W L; Treurniet-Donker, A D

    1989-12-01

    Fifty-seven patients with poor prognostic factors following resection with curative intent for gastric adenocarcinoma (T3 or T4, positive lymph nodes, positive resection line) received adjuvant radiotherapy. A dose of 30.0-50.0 Gy was given in 10-25 fractions in one course or with a split of 2 weeks after 15 fractions. This was combined with 5-fluorouracil (5-FU) (375 mg/m2) given i.v. as a bolus during the first 4 days of radiation (n = 49). The 5-year survival was 26%; this rate is higher than the figures mentioned in the literature after surgery alone. The only way to prove the role of adjuvant radiotherapy for gastric carcinoma is a prospective randomized trial.

  14. Mitomycin C as an adjuvant in resected gastric cancer.

    PubMed Central

    Alcobendas, F; Milla, A; Estape, J; Curto, J; Pera, C

    1983-01-01

    As a result of their previous experience with mitomycin C at high discontinuous doses in advanced gastric cancer, the authors studied its role as an adjuvant for locally advanced cases after surgical complete resection. Results from 70 evaluable patients are presented. Patients were allocated randomly to receive mitomycin C, 20 mg/m2 I.V. direct once every 6 weeks, four courses, or a placebo. After a follow-up period of 250 weeks, seven patients of treatment arm and 23 controls have already relapsed (p less than 0.001). Toxicity was moderate and controllable by symptomatic measures. The authors consider this investigation a positive contribution in the field of adjuvant therapy of gastric cancer. PMID:6407408

  15. Antioxidant Effect of Spirulina (Arthrospira) maxima on Chronic Inflammation Induced by Freund's Complete Adjuvant in Rats.

    PubMed

    Gutiérrez-Rebolledo, Gabriel Alfonso; Galar-Martínez, Marcela; García-Rodríguez, Rosa Virginia; Chamorro-Cevallos, Germán A; Hernández-Reyes, Ana Gabriela; Martínez-Galero, Elizdath

    2015-08-01

    One of the major mechanisms in the pathogenesis of chronic inflammation is the excessive production of reactive oxygen and reactive nitrogen species, and therefore, oxidative stress. Spirulina (Arthrospira) maxima has marked antioxidant activity in vivo and in vitro, as well as anti-inflammatory activity in certain experimental models, the latter activity being mediated probably by the antioxidant activity of this cyanobacterium. In the present study, chronic inflammation was induced through injection of Freund's complete adjuvant (CFA) in rats treated daily with Spirulina (Arthrospira) maxima for 2 weeks beginning on day 14. Joint diameter, body temperature, and motor capacity were assessed each week. On days 0 and 28, total and differential leukocyte counts and serum oxidative damage were determined, the latter by assessing lipid peroxidation and protein carbonyl content. At the end of the study, oxidative damage to joints was likewise evaluated. Results show that S. maxima favors increased mobility, as well as body temperature regulation, and a number of circulating leukocytes, lymphocytes, and monocytes in specimens with CFA-induced chronic inflammation and also protects against oxidative damage in joint tissue as well as serum. In conclusion, the protection afforded by S. maxima against development of chronic inflammation is due to its antioxidant activity. PMID:25599112

  16. Nano-Delivery Vehicles/Adjuvants for DNA Vaccination Against HIV.

    PubMed

    Dong, Yaqiong; Yang, Jun; Zhang, Jinchao; Zhang, Xin

    2016-03-01

    More than 75 million people has been infected HIV and it is responsible for nearly 36 million deaths on a global scale. As one of the deadliest infectious diseases, HIV is becoming the urgent issue of the global epidemic to tackle. In order to settle this problem from the source, some effective prevention strategies should be developed to control the pandemic of HIV. Vaccines, especially DNA vaccines, could be the optimal way to control the spread of HIV due to the unparalleled superiority that DNA vaccines could generate long-term humoral and cellular immune responses which could provide protective immunity for HIV. But the naked DNA could hardly enter into cells and is easily degraded by DNases and lysosomes, so designing effective delivery system is a promising strategy. Since delivery system could be constructed to promote efficient delivery of DNA into mammalian cells, protect them from degradation, and also could be established to be a target system to arrive at certain position of expectation. The current review discusses the potential of various nano-delivery vehicles/adjuvants such as polymer, lipid, liposome, peptide and inorganic material in improving efficiency of diverse modalities available for HIV DNA vaccines.

  17. Nano-Delivery Vehicles/Adjuvants for DNA Vaccination Against HIV.

    PubMed

    Dong, Yaqiong; Yang, Jun; Zhang, Jinchao; Zhang, Xin

    2016-03-01

    More than 75 million people has been infected HIV and it is responsible for nearly 36 million deaths on a global scale. As one of the deadliest infectious diseases, HIV is becoming the urgent issue of the global epidemic to tackle. In order to settle this problem from the source, some effective prevention strategies should be developed to control the pandemic of HIV. Vaccines, especially DNA vaccines, could be the optimal way to control the spread of HIV due to the unparalleled superiority that DNA vaccines could generate long-term humoral and cellular immune responses which could provide protective immunity for HIV. But the naked DNA could hardly enter into cells and is easily degraded by DNases and lysosomes, so designing effective delivery system is a promising strategy. Since delivery system could be constructed to promote efficient delivery of DNA into mammalian cells, protect them from degradation, and also could be established to be a target system to arrive at certain position of expectation. The current review discusses the potential of various nano-delivery vehicles/adjuvants such as polymer, lipid, liposome, peptide and inorganic material in improving efficiency of diverse modalities available for HIV DNA vaccines. PMID:27455611

  18. Antioxidant Effect of Spirulina (Arthrospira) maxima on Chronic Inflammation Induced by Freund's Complete Adjuvant in Rats

    PubMed Central

    Gutiérrez-Rebolledo, Gabriel Alfonso; Galar-Martínez, Marcela; García-Rodríguez, Rosa Virginia; Chamorro-Cevallos, Germán A.; Hernández-Reyes, Ana Gabriela

    2015-01-01

    Abstract One of the major mechanisms in the pathogenesis of chronic inflammation is the excessive production of reactive oxygen and reactive nitrogen species, and therefore, oxidative stress. Spirulina (Arthrospira) maxima has marked antioxidant activity in vivo and in vitro, as well as anti-inflammatory activity in certain experimental models, the latter activity being mediated probably by the antioxidant activity of this cyanobacterium. In the present study, chronic inflammation was induced through injection of Freund's complete adjuvant (CFA) in rats treated daily with Spirulina (Arthrospira) maxima for 2 weeks beginning on day 14. Joint diameter, body temperature, and motor capacity were assessed each week. On days 0 and 28, total and differential leukocyte counts and serum oxidative damage were determined, the latter by assessing lipid peroxidation and protein carbonyl content. At the end of the study, oxidative damage to joints was likewise evaluated. Results show that S. maxima favors increased mobility, as well as body temperature regulation, and a number of circulating leukocytes, lymphocytes, and monocytes in specimens with CFA-induced chronic inflammation and also protects against oxidative damage in joint tissue as well as serum. In conclusion, the protection afforded by S. maxima against development of chronic inflammation is due to its antioxidant activity. PMID:25599112

  19. Antioxidant Effect of Spirulina (Arthrospira) maxima on Chronic Inflammation Induced by Freund's Complete Adjuvant in Rats.

    PubMed

    Gutiérrez-Rebolledo, Gabriel Alfonso; Galar-Martínez, Marcela; García-Rodríguez, Rosa Virginia; Chamorro-Cevallos, Germán A; Hernández-Reyes, Ana Gabriela; Martínez-Galero, Elizdath

    2015-08-01

    One of the major mechanisms in the pathogenesis of chronic inflammation is the excessive production of reactive oxygen and reactive nitrogen species, and therefore, oxidative stress. Spirulina (Arthrospira) maxima has marked antioxidant activity in vivo and in vitro, as well as anti-inflammatory activity in certain experimental models, the latter activity being mediated probably by the antioxidant activity of this cyanobacterium. In the present study, chronic inflammation was induced through injection of Freund's complete adjuvant (CFA) in rats treated daily with Spirulina (Arthrospira) maxima for 2 weeks beginning on day 14. Joint diameter, body temperature, and motor capacity were assessed each week. On days 0 and 28, total and differential leukocyte counts and serum oxidative damage were determined, the latter by assessing lipid peroxidation and protein carbonyl content. At the end of the study, oxidative damage to joints was likewise evaluated. Results show that S. maxima favors increased mobility, as well as body temperature regulation, and a number of circulating leukocytes, lymphocytes, and monocytes in specimens with CFA-induced chronic inflammation and also protects against oxidative damage in joint tissue as well as serum. In conclusion, the protection afforded by S. maxima against development of chronic inflammation is due to its antioxidant activity.

  20. Acyl-Lipid Metabolism

    PubMed Central

    Li-Beisson, Yonghua; Shorrosh, Basil; Beisson, Fred; Andersson, Mats X.; Arondel, Vincent; Bates, Philip D.; Baud, Sébastien; Bird, David; DeBono, Allan; Durrett, Timothy P.; Franke, Rochus B.; Graham, Ian A.; Katayama, Kenta; Kelly, Amélie A.; Larson, Tony; Markham, Jonathan E.; Miquel, Martine; Molina, Isabel; Nishida, Ikuo; Rowland, Owen; Samuels, Lacey; Schmid, Katherine M.; Wada, Hajime; Welti, Ruth; Xu, Changcheng; Zallot, Rémi; Ohlrogge, John

    2013-01-01

    Acyl lipids in Arabidopsis and all other plants have a myriad of diverse functions. These include providing the core diffusion barrier of the membranes that separates cells and subcellular organelles. This function alone involves more than 10 membrane lipid classes, including the phospholipids, galactolipids, and sphingolipids, and within each class the variations in acyl chain composition expand the number of structures to several hundred possible molecular species. Acyl lipids in the form of triacylglycerol account for 35% of the weight of Arabidopsis seeds and represent their major form of carbon and energy storage. A layer of cutin and cuticular waxes that restricts the loss of water and provides protection from invasions by pathogens and other stresses covers the entire aerial surface of Arabidopsis. Similar functions are provided by suberin and its associated waxes that are localized in roots, seed coats, and abscission zones and are produced in response to wounding. This chapter focuses on the metabolic pathways that are associated with the biosynthesis and degradation of the acyl lipids mentioned above. These pathways, enzymes, and genes are also presented in detail in an associated website (ARALIP: http://aralip.plantbiology.msu.edu/). Protocols and methods used for analysis of Arabidopsis lipids are provided. Finally, a detailed summary of the composition of Arabidopsis lipids is provided in three figures and 15 tables. PMID:23505340

  1. Acyl-Lipid Metabolism

    PubMed Central

    Li-Beisson, Yonghua; Shorrosh, Basil; Beisson, Fred; Andersson, Mats X.; Arondel, Vincent; Bates, Philip D.; Baud, Sébastien; Bird, David; DeBono, Allan; Durrett, Timothy P.; Franke, Rochus B.; Graham, Ian A.; Katayama, Kenta; Kelly, Amélie A.; Larson, Tony; Markham, Jonathan E.; Miquel, Martine; Molina, Isabel; Nishida, Ikuo; Rowland, Owen; Samuels, Lacey; Schmid, Katherine M.; Wada, Hajime; Welti, Ruth; Xu, Changcheng; Zallot, Rémi; Ohlrogge, John

    2010-01-01

    Acyl lipids in Arabidopsis and all other plants have a myriad of diverse functions. These include providing the core diffusion barrier of the membranes that separates cells and subcellular organelles. This function alone involves more than 10 membrane lipid classes, including the phospholipids, galactolipids, and sphingolipids, and within each class the variations in acyl chain composition expand the number of structures to several hundred possible molecular species. Acyl lipids in the form of triacylglycerol account for 35% of the weight of Arabidopsis seeds and represent their major form of carbon and energy storage. A layer of cutin and cuticular waxes that restricts the loss of water and provides protection from invasions by pathogens and other stresses covers the entire aerial surface of Arabidopsis. Similar functions are provided by suberin and its associated waxes that are localized in roots, seed coats, and abscission zones and are produced in response to wounding. This chapter focuses on the metabolic pathways that are associated with the biosynthesis and degradation of the acyl lipids mentioned above. These pathways, enzymes, and genes are also presented in detail in an associated website (ARALIP: http://aralip.plantbiology.msu.edu/). Protocols and methods used for analysis of Arabidopsis lipids are provided. Finally, a detailed summary of the composition of Arabidopsis lipids is provided in three figures and 15 tables. PMID:22303259

  2. Acyl-lipid metabolism.

    PubMed

    Li-Beisson, Yonghua; Shorrosh, Basil; Beisson, Fred; Andersson, Mats X; Arondel, Vincent; Bates, Philip D; Baud, Sébastien; Bird, David; Debono, Allan; Durrett, Timothy P; Franke, Rochus B; Graham, Ian A; Katayama, Kenta; Kelly, Amélie A; Larson, Tony; Markham, Jonathan E; Miquel, Martine; Molina, Isabel; Nishida, Ikuo; Rowland, Owen; Samuels, Lacey; Schmid, Katherine M; Wada, Hajime; Welti, Ruth; Xu, Changcheng; Zallot, Rémi; Ohlrogge, John

    2013-01-01

    Acyl lipids in Arabidopsis and all other plants have a myriad of diverse functions. These include providing the core diffusion barrier of the membranes that separates cells and subcellular organelles. This function alone involves more than 10 membrane lipid classes, including the phospholipids, galactolipids, and sphingolipids, and within each class the variations in acyl chain composition expand the number of structures to several hundred possible molecular species. Acyl lipids in the form of triacylglycerol account for 35% of the weight of Arabidopsis seeds and represent their major form of carbon and energy storage. A layer of cutin and cuticular waxes that restricts the loss of water and provides protection from invasions by pathogens and other stresses covers the entire aerial surface of Arabidopsis. Similar functions are provided by suberin and its associated waxes that are localized in roots, seed coats, and abscission zones and are produced in response to wounding. This chapter focuses on the metabolic pathways that are associated with the biosynthesis and degradation of the acyl lipids mentioned above. These pathways, enzymes, and genes are also presented in detail in an associated website (ARALIP: http://aralip.plantbiology.msu.edu/). Protocols and methods used for analysis of Arabidopsis lipids are provided. Finally, a detailed summary of the composition of Arabidopsis lipids is provided in three figures and 15 tables. PMID:23505340

  3. Xylaria hypoxylon Lectin as Adjuvant Elicited Tfh Cell Responses.

    PubMed

    Kang, J; Zuo, Y; Guo, Q; Wang, H; Liu, Q; Liu, Q; Xia, G; Kang, Y

    2015-11-01

    Foot-and-mouth disease (FMD) caused by FMD virus (FMDV) is a major health and economic problem in the farming industry. Vaccination of livestock against this highly infectious viral disease is crucial, and inactivated FMD vaccine has been effective at controlling infection. However, accumulated data show that the inactivated vaccine generates weak immune responses and that the oil formulation results in undesirable side effects. Mushroom lectins have recently been shown to display adjuvant effects when incorporated into DNA vaccines. In this study, to enhance the cellular immune response of FMDV antigen (146S), C57BL/6 mice were immunized with 146S combined with Xylaria hypoxylon lectin (XHL). The oil formulation (146S/Oil) was served as control group. Strong humoral immune responses were elicited in mice immunized with 146S/XHL as shown by high 146S antigen-specific IgG levels, and also in 146S/Oil group. Interestingly, XHL in conjunction with inactivated FMD vaccine activated strong Th1 and Tc1 cell responses, especially Tfh cell responses, in immunized mice. XHL stimulated dendritic cell maturation by upregulating expression of major histocompatibility complex II (MHCII) molecules and co-stimulatory molecules CD40 and CD86 in immunized mice. No XHL-specific IgG or inflammatory factors were detected indicating the safety of XHL as an adjuvant. Taken together, these results suggest the effectiveness of XHL at inducing cellular immune responses and therefore confirm its suitability as an adjuvant for inactivated FMD vaccine.

  4. [Development of Nucleic Acid-Based Adjuvant for Cancer Immunotherapy].

    PubMed

    Kobiyama, Kouji; Ishii, Ken J

    2015-09-01

    Since the discovery of the human T cell-defined tumor antigen, the cancer immunotherapy field has rapidly progressed, with the research and development of cancer immunotherapy, including cancer vaccines, being conducted actively. However, the disadvantages of most cancer vaccines include relatively weak immunogenicity and immune escape or exhaustion. Adjuvants with innate immunostimulatory activities have been used to overcome these issues, and these agents have been shown to enhance the immunogenicity of cancer vaccines and to act as mono-therapeutic anti-tumor agents. CpG ODN, an agonist for TLR9, is one of the promising nucleic acid-based adjuvants, and it is a potent inducer of innate immune effector functions. CpG ODN suppresses tumor growth in the absence of tumor antigens and peptide administration. Therefore, CpG ODN is expected to be useful as a cancer vaccine adjuvant as well as a cancer immunotherapy agent. In this review, we discuss the potential therapeutic applications and mechanisms of CpG ODN for cancer immunotherapy.

  5. Optimization of physiological properties of hydroxyapatite as a vaccine adjuvant.

    PubMed

    Hayashi, Masayuki; Aoshi, Taiki; Kogai, Yasumichi; Nomi, Daisuke; Haseda, Yasunari; Kuroda, Etsushi; Kobiyama, Kouji; Ishii, Ken J

    2016-01-12

    Various particles such as Alum or silica are known to act as an adjuvant if co-administered with vaccine antigens. Several reports have demonstrated that the adjuvanticity is strongly affected by the physicochemical properties of particles such as the size, shape and surface charge, although the required properties and its relationship to the adjuvanticity are still controversial. Hydroxyapatite particle (HAp) composed of calcium phosphate has been shown to work as adjuvant in mice. However, the properties of HAp required for the adjuvanticity have not been fully characterized yet. In this study, we examined the role of size or shape of HAps in the antibody responses after immunization with antigen. HAps whose diameter ranging between 100 and 400 nm provided significantly higher antibody responses than smaller or larger ones. By comparison between sphere and rod shaped HAps, rod shaped HAps induced stronger inflammasome-dependent IL-1β production than the sphere shaped ones in vitro. However, sphere- and rod-shaped HAp elicited comparable antibody response in WT mice. Vice versa, Nlrp3(-/-), Asc(-/-) or Caspase1(-/-) mice provided comparable level of antibody responses to HAp adjuvanted vaccination. Collectively, our results demonstrated that the size rather than shape is a more critical property, and IL-1β production via NLRP3 inflammasome is dispensable for the adjuvanticity of HAps in mice. PMID:26667613

  6. Vaccine adjuvants--understanding molecular mechanisms to improve vaccines.

    PubMed

    Egli, Adrian; Santer, Deanna; Barakat, Khaled; Zand, Martin; Levin, Aviad; Vollmer, Madeleine; Weisser, Maja; Khanna, Nina; Kumar, Deepali; Tyrrell, Lorne; Houghton, Michael; Battegay, Manuel; O'Shea, Daire

    2014-01-01

    Infectious pathogens are responsible for high utilisation of healthcare resources globally. Attributable morbidity and mortality remains exceptionally high. Vaccines offer the potential to prime a pathogen-specific immune response and subsequently reduce disease burden. Routine vaccination has fundamentally altered the natural history of many frequently observed and serious infections. Vaccination is also recommended for persons at increased risk of severe vaccine-preventable disease. Many current nonadjuvanted vaccines are poorly effective in the elderly and immunocompromised populations, resulting in nonprotective postvaccine antibody titres, which serve as surrogate markers for protection. The vaccine-induced immune response is influenced by: (i.) vaccine factors i.e., type and composition of the antigen(s), (ii.) host factors i.e., genetic differences in immune-signalling or senescence, and (iii.) external factors such as immunosuppressive drugs or diseases. Adjuvanted vaccines offer the potential to compensate for a lack of stimulation and improve pathogen-specific protection. In this review we use influenza vaccine as a model in a discussion of the different mechanisms of action of the available adjuvants. In addition, we will appraise new approaches using "vaccine-omics" to discover novel types of adjuvants.

  7. Cyclic GMP-AMP Displays Mucosal Adjuvant Activity in Mice

    PubMed Central

    Škrnjug, Ivana

    2014-01-01

    The recently discovered mammalian enzyme cyclic GMP-AMP synthase produces cyclic GMP-AMP (cGAMP) after being activated by pathogen-derived cytosolic double stranded DNA. The product can stimulate STING-dependent interferon type I signaling. Here, we explore the efficacy of cGAMP as a mucosal adjuvant in mice. We show that cGAMP can enhance the adaptive immune response to the model antigen ovalbumin. It promotes antigen specific IgG and a balanced Th1/Th2 lymphocyte response in immunized mice. A characteristic of the cGAMP-induced immune response is the slightly reduced induction of interleukin-17 as a hallmark of Th17 activity – a distinct feature that is not observed with other cyclic di-nucleotide adjuvants. We further characterize the innate immune stimulation activity in vitro on murine bone marrow-derived dendritic cells and human dendritic cells. The observed results suggest the consideration of cGAMP as a candidate mucosal adjuvant for human vaccines. PMID:25295996

  8. Neisseria lactamica antigens complexed with a novel cationic adjuvant

    PubMed Central

    Gaspar, Emanuelle B.; Rosetti, Andreza S.; Lincopan, Nilton; De Gaspari, Elizabeth

    2013-01-01

    Colonization of the nasopharynx by non-pathogenic Neisseria species, including N. lactamica, has been suggested to lead to the acquisition of natural immunity against Neisseria meningitidis in young children. The aim of this study was to identify a model complex of antigens and adjuvant for immunological preparation against N. meningitidis B, based on cross reactivity with N. lactamica outer membrane vesicles (OMV) antigens and the (DDA-BF) adjuvant. Complexes of 25 µg of OMV in 0.1 mM of DDA-BF were colloidally stable, exhibiting a mean diameter and charge optimal for antigen presentation. Immunogenicity tests for these complexes were performed in mice. A single dose of OMV/DDA-BF was sufficient to induce a (DTH) response, while the same result was achieved only after two doses of OMV/alum. In addition, to achieve total IgG levels that are similar to a single immunization with OMV/DDA-BF, it was necessary to give the mice a second dose of OMV/alum. Moreover, the antibodies induced from a single immunization with OMV/DDA-BF had an intermediate avidity, but antibodies with a similar avidity were only induced by OMV/alum after two immunizations. The use of this novel cationic adjuvant for the first time with a N. lactamica OMV preparation revealed good potential for future vaccine design. PMID:23296384

  9. Obesity Outweighs Protection Conferred by Adjuvanted Influenza Vaccination

    PubMed Central

    Karlsson, Erik A.; Hertz, Tomer; Johnson, Cydney; Mehle, Andrew; Krammer, Florian

    2016-01-01

    ABSTRACT Obesity is a risk factor for developing severe influenza virus infection, making vaccination of utmost importance for this high-risk population. However, vaccinated obese animals and adults have decreased neutralizing antibody responses. In these studies, we tested the hypothesis that the addition of either alum or a squalene-based adjuvant (AS03) to an influenza vaccine would improve neutralizing antibody responses and protect obese mice from challenge. Our studies demonstrate that adjuvanted vaccine does increase both neutralizing and nonneutralizing antibody levels compared to vaccine alone. Although obese mice mount significantly decreased virus-specific antibody responses, both the breadth and the magnitude of the responses against hemagglutinin (HA) and neuraminidase (NA) are decreased compared to the responses in lean mice. Importantly, even with a greater than fourfold increase in neutralizing antibody levels, obese mice are not protected against influenza virus challenge and viral loads remain elevated in the respiratory tract. Increasing the antigen dose affords no added protection, and a decreasing viral dose did not fully mitigate the increased mortality seen in obese mice. Overall, these studies highlight that, while the use of an adjuvant does improve seroconversion, vaccination does not fully protect obese mice from influenza virus challenge, possibly due to the increased sensitivity of obese animals to infection. Given the continued increase in the global obesity epidemic, our findings have important implications for public health. PMID:27486196

  10. Vaccine adjuvants--understanding molecular mechanisms to improve vaccines.

    PubMed

    Egli, Adrian; Santer, Deanna; Barakat, Khaled; Zand, Martin; Levin, Aviad; Vollmer, Madeleine; Weisser, Maja; Khanna, Nina; Kumar, Deepali; Tyrrell, Lorne; Houghton, Michael; Battegay, Manuel; O'Shea, Daire

    2014-01-01

    Infectious pathogens are responsible for high utilisation of healthcare resources globally. Attributable morbidity and mortality remains exceptionally high. Vaccines offer the potential to prime a pathogen-specific immune response and subsequently reduce disease burden. Routine vaccination has fundamentally altered the natural history of many frequently observed and serious infections. Vaccination is also recommended for persons at increased risk of severe vaccine-preventable disease. Many current nonadjuvanted vaccines are poorly effective in the elderly and immunocompromised populations, resulting in nonprotective postvaccine antibody titres, which serve as surrogate markers for protection. The vaccine-induced immune response is influenced by: (i.) vaccine factors i.e., type and composition of the antigen(s), (ii.) host factors i.e., genetic differences in immune-signalling or senescence, and (iii.) external factors such as immunosuppressive drugs or diseases. Adjuvanted vaccines offer the potential to compensate for a lack of stimulation and improve pathogen-specific protection. In this review we use influenza vaccine as a model in a discussion of the different mechanisms of action of the available adjuvants. In addition, we will appraise new approaches using "vaccine-omics" to discover novel types of adjuvants. PMID:24844935

  11. Bisphosphonates in the adjuvant treatment of breast cancer.

    PubMed

    Winter, M C; Coleman, R E

    2013-02-01

    Bisphosphonates, as potent inhibitors of osteoclast-mediated bone resorption, significantly reduce the risk of skeletal complications in metastatic bone disease and also prevent cancer treatment-induced bone loss (CTIBL). However, more recently, there has been increasing data indicating that bisphosphonates exhibit anti-tumour activity, possibly via both indirect and direct effects, and can potentially modify the metastatic disease process providing more than just supportive care. The evidence from previous studies of an anti-tumour effect of bisphosphonates was inconclusive, with conflicting evidence from adjuvant oral clodronate trials. However, more recent trials using zoledronic acid have shown benefits in terms of disease-free and overall survival outcomes in certain subgroups, most evidently in older premenopausal women with hormone-sensitive disease treated with ovarian suppression, and in women in established menopause at trial entry. In the adjuvant setting, the use of bisphosphonates has also been focused on the prevention and treatment of CTIBL and recent guidelines have defined treatment strategies for CTIBL. The role of bisphosphonates in CTIBL in early breast cancer is well defined. There have been mixed results from large adjuvant metastasis-prevention studies of bisphosphonates, but there are strong signals from large subgroups analyses of randomised phase III trials suggesting significant anti-tumour beneficial effects in specific patient populations.

  12. [Development of Nucleic Acid-Based Adjuvant for Cancer Immunotherapy].

    PubMed

    Kobiyama, Kouji; Ishii, Ken J

    2015-09-01

    Since the discovery of the human T cell-defined tumor antigen, the cancer immunotherapy field has rapidly progressed, with the research and development of cancer immunotherapy, including cancer vaccines, being conducted actively. However, the disadvantages of most cancer vaccines include relatively weak immunogenicity and immune escape or exhaustion. Adjuvants with innate immunostimulatory activities have been used to overcome these issues, and these agents have been shown to enhance the immunogenicity of cancer vaccines and to act as mono-therapeutic anti-tumor agents. CpG ODN, an agonist for TLR9, is one of the promising nucleic acid-based adjuvants, and it is a potent inducer of innate immune effector functions. CpG ODN suppresses tumor growth in the absence of tumor antigens and peptide administration. Therefore, CpG ODN is expected to be useful as a cancer vaccine adjuvant as well as a cancer immunotherapy agent. In this review, we discuss the potential therapeutic applications and mechanisms of CpG ODN for cancer immunotherapy. PMID:26469159

  13. Vitamin Supplementation as an Adjuvant Treatment for Alzheimer's Disease.

    PubMed

    Bhatti, Adnan Bashir; Usman, Muhammad; Ali, Farhan; Satti, Siddique Akbar

    2016-08-01

    Alzheimer's Disease (AD) is a slowly progressing neurodegenerative disorder representing a major health concern worldwide. This disorder is characterised by progressive dementia and cognitive decline. The pathological hallmarks of AD include the presence of Aβ plaques and tau neurofibrils. Research has shown that oxidative stress represents a major risk factor associated with AD pathology. Accumulation of Aβ plaques and relative lack of antioxidant defence mechanisms, including cellular antioxidant enzymes and dietary antioxidants like vitamins, assist in the exacerbation of oxidative stress. Reactive Oxygen Species (ROS) produced as the result of oxidative stress, that increase structural and functional abnormalities in brain neurons, which then manifests as dementia and decline in cognition. Data from numerous epidemiological studies suggests that nutrition is one of the most important yet modifiable risk factors for AD. Since oxidative stress contributes a great deal in the development and progression of AD, anything that could attenuate oxidative stress would help in decreasing the prevalence and incidence of AD. There is increasing evidence that supports the use of different antioxidant as an adjuvant treatment for AD. Vitamins are one such antioxidant that can be used as an adjuvant in AD treatment. This paper will focus on the evidence, based on current literature, linking the use of vitamin supplementations as an adjuvant treatment for AD. PMID:27656493

  14. Evolution of endocrine adjuvant therapy for early breast cancer.

    PubMed

    Lønning, Per Eystein

    2010-04-01

    Endocrine treatment plays a pivotal role in the adjuvant therapy of patients harbouring oestrogen and/or progesterone receptor positive breast cancer. The objective of this paper is to critically review endocrine treatment options in early breast cancer focusing on ongoing development. Literature was collected through the ISI Web of Science and PubMed in January/February 2009 with subsequent update by December 2009, using the words breast cancer, endocrine therapy, oestrogen receptor and aromatase. Endocrine therapy improves outcome in early breast cancer. Yet several controversies remain. There has recently been a lack of general consensus regarding the limit of oestrogen receptor positivity. As for adjuvant therapy in general and use of aromatase inhibitors in particular, we need the results from ongoing studies to decide what may be the optimal duration of therapy and regimen (sequential treatment versus monotherapy; one drug compared with another). Further, there is a need to critically assess optimal use of endocrine therapy for metastatic disease among patients previously exposed to endocrine regimens in the adjuvant setting. While in general the mechanisms of resistance to endocrine therapy among ER positive tumours remains unknown, merging evidence suggest a role of different growth factor pathways, in particular HER-2 activation. Thus, particular attention is paid to the topic of HER-2 expression as a potential cause of endocrine resistance.

  15. Comparable quality attributes of hepatitis E vaccine antigen with and without adjuvant adsorption-dissolution treatment.

    PubMed

    Zhang, Yue; Li, Min; Yang, Fan; Li, Yufang; Zheng, Zizheng; Zhang, Xiao; Lin, Qingshan; Wang, Ying; Li, Shaowei; Xia, Ningshao; Zhang, Jun; Zhao, Qinjian

    2015-01-01

    Most vaccines require adjuvants for antigen stabilization and immune potentiation. Aluminum-based adjuvants are the most widely used adjuvants for human vaccines. Previous reports demonstrated the preservation of antigen conformation and other antigen characteristics after recovery from adjuvanted Hepatitis B and human papillomavirus vaccines. In this study, we used a combination of various physiochemical and immunochemical methods to analyze hepatitis E vaccine antigen quality attributes after recovery from adjuvants. All biochemical and biophysical methods showed similar characteristics of the p239 protein after recovery from adjuvanted vaccine formulation compared to the antigen in solution which never experienced adsorption/desorption process. Most importantly, we demonstrated full preservation of key antigen epitopes post-recovery from adjuvanted vaccine using a panel of murine monoclonal antibodies as exquisite probes. Antigenicity of p239 was probed with a panel of 9 mAbs using competition/blocking ELISA, surface plasmon resonance and sandwich ELISA methods. These multifaceted analyses demonstrated the preservation of antigen key epitopes and comparable protein thermal stability when adsorbed on adjuvants or of the recovered antigen post-dissolution treatment. A better understanding of the antigen conformation in adjuvanted vaccine will enhanced our knowledge of antigen-adjuvant interactions and facilitate an improved process control and development of stable vaccine formulation.

  16. Comparable quality attributes of hepatitis E vaccine antigen with and without adjuvant adsorption-dissolution treatment

    PubMed Central

    Zhang, Yue; Li, Min; Yang, Fan; Li, Yufang; Zheng, Zizheng; Zhang, Xiao; Lin, Qingshan; Wang, Ying; Li, Shaowei; Xia, Ningshao; Zhang, Jun; Zhao, Qinjian

    2015-01-01

    Most vaccines require adjuvants for antigen stabilization and immune potentiation. Aluminum-based adjuvants are the most widely used adjuvants for human vaccines. Previous reports demonstrated the preservation of antigen conformation and other antigen characteristics after recovery from adjuvanted Hepatitis B and human papillomavirus vaccines. In this study, we used a combination of various physiochemical and immunochemical methods to analyze hepatitis E vaccine antigen quality attributes after recovery from adjuvants. All biochemical and biophysical methods showed similar characteristics of the p239 protein after recovery from adjuvanted vaccine formulation compared to the antigen in solution which never experienced adsorption/desorption process. Most importantly, we demonstrated full preservation of key antigen epitopes post-recovery from adjuvanted vaccine using a panel of murine monoclonal antibodies as exquisite probes. Antigenicity of p239 was probed with a panel of 9 mAbs using competition/blocking ELISA, surface plasmon resonance and sandwich ELISA methods. These multifaceted analyses demonstrated the preservation of antigen key epitopes and comparable protein thermal stability when adsorbed on adjuvants or of the recovered antigen post-dissolution treatment. A better understanding of the antigen conformation in adjuvanted vaccine will enhanced our knowledge of antigen-adjuvant interactions and facilitate an improved process control and development of stable vaccine formulation. PMID:26018442

  17. Al adjuvants can be tracked in viable cells by lumogallion staining.

    PubMed

    Mile, Irene; Svensson, Andreas; Darabi, Anna; Mold, Matthew; Siesjö, Peter; Eriksson, Håkan

    2015-07-01

    The mechanism behind the adjuvant effect of aluminum salts is poorly understood notwithstanding that aluminum salts have been used for decades in clinical vaccines. In an aqueous environment and at a nearly neutral pH, the aluminum salts form particulate aggregates, and one plausible explanation of the lack of information regarding the mechanisms could be the absence of an efficient method of tracking phagocytosed aluminum adjuvants and thereby the intracellular location of the adjuvant. In this paper, we want to report upon the use of lumogallion staining enabling the detection of phagocytosed aluminum adjuvants inside viable cells. Including micromolar concentrations of lumogallion in the culture medium resulted in a strong fluorescence signal from cells that had phagocytosed the aluminum adjuvant. The fluorescence appeared as spots in the cytoplasm and by confocal microscopy and co-staining with probes presenting fluorescence in the far-red region of the spectrum, aluminum adjuvants could to a certain extent be identified as localized in acidic vesicles, i.e., lysosomes. Staining and detection of intracellular aluminum adjuvants was achieved not only by diffusion of lumogallion into the cytoplasm, thereby highlighting the presence of the adjuvant, but also by pre-staining the aluminum adjuvant prior to incubation with cells. Pre-staining of aluminum adjuvants resulted in bright fluorescent particulate aggregates that remained fluorescent for weeks and with only a minor reduction of fluorescence upon extensive washing or incubation with cells. Both aluminum oxyhydroxide and aluminum hydroxyphosphate, two of the most commonly used aluminum adjuvants in clinical vaccines, could be pre-stained with lumogallion and were easily tracked intracellularly after incubation with phagocytosing cells. Staining of viable cells using lumogallion will be a useful method in investigations of the mechanisms behind aluminum adjuvants' differentiation of antigen-presenting cells

  18. Gamma ray sterilization of delta inulin adjuvant particles (Advax™) makes minor, partly reversible structural changes without affecting adjuvant activity

    PubMed Central

    Cooper, P. D.; Barclay, T. G.; Ginic-Markovic, M.; Petrovsky, N.

    2014-01-01

    We earlier identified a developmental series of seven isoforms/polymorphs of microparticulate inulin by comparing non-covalent bonding strengths. Their pharmaceutical utility lies in modulation of cellular immunity, exploited as vaccine adjuvants (Advax™) especially for delta inulin (DI). As such particles cannot be sterilized by filtration we explore the effect of 60Co gamma radiation (GR) on inulin isoforms, particularly DI. Its adjuvant activity and overt physical properties were unaffected by normal GR sterilizing doses (up to 25 kGy). Heating irradiated isoform suspensions near their critical dissolution temperature revealed increased solubility deduced to reflect a single lethal event in one component of a multi-component structure. Local oxidative effects of GR on DI were not found. The observed DI loss was almost halved by re-annealing at the critical temperature: surviving inulin chains apparently reassemble into smaller amounts of the original type of structure. Colorimetric tetrazolium assay revealed increases in reducing activity after GR of raw inulin powder, which yielded DI with normal physical properties but only 25% normal recovery yet 4× normal reducing ability, implying final retention of some GR-changed inulin chains. These findings suggest minimal inulin chain cleavage and confirm that GR may be a viable strategy for terminal sterilization of microparticulate inulin adjuvants. PMID:24342245

  19. Gamma ray sterilization of delta inulin adjuvant particles (Advax™) makes minor, partly reversible structural changes without affecting adjuvant activity.

    PubMed

    Cooper, P D; Barclay, T G; Ginic-Markovic, M; Petrovsky, N

    2014-01-23

    We earlier identified a developmental series of seven isoforms/polymorphs of microparticulate inulin by comparing non-covalent bonding strengths. Their pharmaceutical utility lies in the modulation of cellular immunity, exploited as vaccine adjuvants (Advax™) especially for delta inulin (DI). As such particles cannot be sterilized by filtration we explore the effect of (60)Co gamma radiation (GR) on inulin isoforms, particularly DI. Its adjuvant activity and overt physical properties were unaffected by normal GR sterilizing doses (up to 25kGy). Heating irradiated isoform suspensions near their critical dissolution temperature revealed increased solubility deduced to reflect a single lethal event in one component of a multi-component structure. Local oxidative effects of GR on DI were not found. The observed DI loss was almost halved by re-annealing at the critical temperature: surviving inulin chains apparently reassemble into smaller amounts of the original type of structure. Colorimetric tetrazolium assay revealed increases in reducing activity after GR of raw inulin powder, which yielded DI with normal physical properties but only 25% normal recovery yet 4× normal reducing ability, implying final retention of some GR-changed inulin chains. These findings suggest minimal inulin chain cleavage and confirm that GR may be a viable strategy for terminal sterilization of microparticulate inulin adjuvants.

  20. Development of a minimal saponin vaccine adjuvant based on QS-21.

    PubMed

    Fernández-Tejada, Alberto; Chea, Eric K; George, Constantine; Pillarsetty, NagaVaraKishore; Gardner, Jeffrey R; Livingston, Philip O; Ragupathi, Govind; Lewis, Jason S; Tan, Derek S; Gin, David Y

    2014-07-01

    Adjuvants are materials added to vaccines to enhance the immunological response to an antigen. QS-21 is a natural product adjuvant under investigation in numerous vaccine clinical trials, but its use is constrained by scarcity, toxicity, instability and an enigmatic molecular mechanism of action. Herein we describe the development of a minimal QS-21 analogue that decouples adjuvant activity from toxicity and provides a powerful platform for mechanistic investigations. We found that the entire branched trisaccharide domain of QS-21 is dispensable for adjuvant activity and that the C4-aldehyde substituent, previously proposed to bind covalently to an unknown cellular target, is also not required. Biodistribution studies revealed that active adjuvants were retained preferentially at the injection site and the nearest draining lymph nodes compared with the attenuated variants. Overall, these studies have yielded critical insights into saponin structure-function relationships, provided practical synthetic access to non-toxic adjuvants, and established a platform for detailed mechanistic studies.

  1. Adjuvants containing natural and synthetic Toll-like receptor 4 ligands.

    PubMed

    Ireton, Gregory C; Reed, Steven G

    2013-07-01

    The last decade has seen an increased focus on the development of adjuvants for vaccines, and several novel adjuvants are now in licensed products or in late-stage clinical development. These advancements have been aided by the discovery of receptors and signaling pathways of the innate immune system and an increased understanding of how these innate responses influence the adaptive immune response. Successful vaccine development relies on knowledge of which adjuvants to use and the proper formulation of adjuvants and antigens to achieve safe, stable and immunogenic vaccines. In this review, the authors focus on the current use of natural and synthetic lipopolysaccharide analogues that retain their adjuvant properties with reduced toxicity compared with the parent compound for use in emerging vaccines. The authors review how these compounds initiate signal transduction through Toll-like receptor 4, insights from structure-function studies and how formulation parameters can influence their effectiveness as vaccine adjuvants.

  2. Development of a minimal saponin vaccine adjuvant based on QS-21

    NASA Astrophysics Data System (ADS)

    Fernández-Tejada, Alberto; Chea, Eric K.; George, Constantine; Pillarsetty, Nagavarakishore; Gardner, Jeffrey R.; Livingston, Philip O.; Ragupathi, Govind; Lewis, Jason S.; Tan, Derek S.; Gin, David Y.

    2014-07-01

    Adjuvants are materials added to vaccines to enhance the immunological response to an antigen. QS-21 is a natural product adjuvant under investigation in numerous vaccine clinical trials, but its use is constrained by scarcity, toxicity, instability and an enigmatic molecular mechanism of action. Herein we describe the development of a minimal QS-21 analogue that decouples adjuvant activity from toxicity and provides a powerful platform for mechanistic investigations. We found that the entire branched trisaccharide domain of QS-21 is dispensable for adjuvant activity and that the C4-aldehyde substituent, previously proposed to bind covalently to an unknown cellular target, is also not required. Biodistribution studies revealed that active adjuvants were retained preferentially at the injection site and the nearest draining lymph nodes compared with the attenuated variants. Overall, these studies have yielded critical insights into saponin structure-function relationships, provided practical synthetic access to non-toxic adjuvants, and established a platform for detailed mechanistic studies.

  3. Development of a minimal saponin vaccine adjuvant based on QS-21

    PubMed Central

    Fernández-Tejada, Alberto; Chea, Eric K.; George, Constantine; Pillarsetty, NagaVaraKishore; Gardner, Jeffrey R.; Livingston, Philip O.; Ragupathi, Govind; Lewis, Jason S.; Tan, Derek S.; Gin, David Y.

    2014-01-01

    Adjuvants are materials added to vaccines to enhance the immunological response to an antigen. QS-21 is a natural product adjuvant under investigation in numerous vaccine clinical trials, but its use is constrained by scarcity, toxicity, instability, and an enigmatic molecular mechanism of action. Herein, we describe the development of a minimal QS-21 analogue that decouples adjuvant activity from toxicity and provides a powerful platform for mechanistic investigations. We found that the entire branched trisaccharide domain of QS-21 is dispensable for adjuvant activity and that the C4-aldehyde substituent, previously proposed to bind covalently to an unknown cellular target, is also not required. Biodistribution studies revealed that active adjuvants were retained at the injection site and nearest draining lymph nodes preferentially compared to attenuated variants. Overall, these studies have yielded critical insights into saponin structure–function relationships, provided practical synthetic access to non-toxic adjuvants, and established a platform for detailed mechanistic studies. PMID:24950335

  4. Biliary lipid secretion.

    PubMed

    Hişmioğullari, Adnan Adil; Bozdayi, A Mithat; Rahman, Khalid

    2007-06-01

    The liver has many biochemical functions, of which one of the most important is bile formation. Bile is both a secretory and an excretory fluid and two of its most important functions are the delivery to the intestinal tract of: (i) bile acids to assist in fat digestion and absorption; and (ii) liver-derived metabolites of potentially toxic materials prior to their elimination from the body in the feces. Bile contains numerous solutes, including bile acids, phospholipids and cholesterol. Biliary lipids mainly consist of cholesterol and phospholipids and their secretion into bile is affected by the secretion of bile acids. Phospholipids and cholesterol are synthesized in the hepatocytes and are thought to be transferred via vesicle- and non-vesicle-mediated mechanisms into the bile canaliculus. Hepatocytes acquire biliary lipid by three pathways, which are biosynthesis, lipoproteins and existing molecules drawn from intracellular membranes, with the newly synthesized biliary lipid accounting for less than 20% of the total lipids. The hepatic determinants of biliary cholesterol elimination are not limited to total cholesterol homeostasis, but also concern biliary disease conditions, since excess biliary cholesterol secretion is involved in cholesterol gallstone formation, as well as being a major risk factor for gallbladder cancer. The purpose of this review was to highlight some of the major mechanisms involved in biliary lipid secretion.

  5. Chitin, Chitosan, and Glycated Chitosan Regulate Immune Responses: The Novel Adjuvants for Cancer Vaccine

    PubMed Central

    Li, Xiaosong; Min, Min; Du, Nan; Gu, Ying; Hode, Tomas; Naylor, Mark; Chen, Dianjun; Nordquist, Robert E.; Chen, Wei R.

    2013-01-01

    With the development of cancer immunotherapy, cancer vaccine has become a novel modality for cancer treatment, and the important role of adjuvant has been realized recently. Chitin, chitosan, and their derivatives have shown their advantages as adjuvants for cancer vaccine. In this paper, the adjuvant properties of chitin and chitosan were discussed, and some detailed information about glycated chitosan and chitosan nanoparticles was also presented to illustrate the trend for future development. PMID:23533454

  6. Lipid Production from Nannochloropsis

    PubMed Central

    Ma, Xiao-Nian; Chen, Tian-Peng; Yang, Bo; Liu, Jin; Chen, Feng

    2016-01-01

    Microalgae are sunlight-driven green cell factories for the production of potential bioactive products and biofuels. Nannochloropsis represents a genus of marine microalgae with high photosynthetic efficiency and can convert carbon dioxide to storage lipids mainly in the form of triacylglycerols and to the ω-3 long-chain polyunsaturated fatty acid eicosapentaenoic acid (EPA). Recently, Nannochloropsis has received ever-increasing interests of both research and public communities. This review aims to provide an overview of biology and biotechnological potential of Nannochloropsis, with the emphasis on lipid production. The path forward for the further exploration of Nannochloropsis for lipid production with respect to both challenges and opportunities is also discussed. PMID:27023568

  7. Lipid Production from Nannochloropsis.

    PubMed

    Ma, Xiao-Nian; Chen, Tian-Peng; Yang, Bo; Liu, Jin; Chen, Feng

    2016-04-01

    Microalgae are sunlight-driven green cell factories for the production of potential bioactive products and biofuels. Nannochloropsis represents a genus of marine microalgae with high photosynthetic efficiency and can convert carbon dioxide to storage lipids mainly in the form of triacylglycerols and to the ω-3 long-chain polyunsaturated fatty acid eicosapentaenoic acid (EPA). Recently, Nannochloropsis has received ever-increasing interests of both research and public communities. This review aims to provide an overview of biology and biotechnological potential of Nannochloropsis, with the emphasis on lipid production. The path forward for the further exploration of Nannochloropsis for lipid production with respect to both challenges and opportunities is also discussed. PMID:27023568

  8. Crucial role for the Nalp3 inflammasome in the immunostimulatory properties of aluminium adjuvants.

    PubMed

    Eisenbarth, Stephanie C; Colegio, Oscar R; O'Connor, William; Sutterwala, Fayyaz S; Flavell, Richard A

    2008-06-19

    Aluminium adjuvants, typically referred to as 'alum', are the most commonly used adjuvants in human and animal vaccines worldwide, yet the mechanism underlying the stimulation of the immune system by alum remains unknown. Toll-like receptors are critical in sensing infections and are therefore common targets of various adjuvants used in immunological studies. Although alum is known to induce the production of proinflammatory cytokines in vitro, it has been repeatedly demonstrated that alum does not require intact Toll-like receptor signalling to activate the immune system. Here we show that aluminium adjuvants activate an intracellular innate immune response system called the Nalp3 (also known as cryopyrin, CIAS1 or NLRP3) inflammasome. Production of the pro-inflammatory cytokines interleukin-1beta and interleukin-18 by macrophages in response to alum in vitro required intact inflammasome signalling. Furthermore, in vivo, mice deficient in Nalp3, ASC (apoptosis-associated speck-like protein containing a caspase recruitment domain) or caspase-1 failed to mount a significant antibody response to an antigen administered with aluminium adjuvants, whereas the response to complete Freund's adjuvant remained intact. We identify the Nalp3 inflammasome as a crucial element in the adjuvant effect of aluminium adjuvants; in addition, we show that the innate inflammasome pathway can direct a humoral adaptive immune response. This is likely to affect how we design effective, but safe, adjuvants in the future.

  9. Human prophylactic vaccine adjuvants and their determinant role in new vaccine formulations

    PubMed Central

    Pérez, O.; Batista-Duharte, A.; González, E.; Zayas, C.; Balboa, J.; Cuello, M.; Cabrera, O.; Lastre, M.; Schijns, V.E.J.C.

    2012-01-01

    Adjuvants have been considered for a long time to be an accessory and empirical component of vaccine formulations. However, accumulating evidence of their crucial role in initiating and directing the immune response has increased our awareness of the importance of adjuvant research in the past decade. Nevertheless, the importance of adjuvants still is not fully realized by many researchers working in the vaccine field, who are involved mostly in the search for better target antigens. The choice of a proper adjuvant can be determinant for obtaining the best results for a given vaccine candidate, but it is restricted due to intellectual property and know-how issues. Consequently, in most cases the selected adjuvant continues to be the aluminum salt, which has a record of safety, but predominantly constitutes a delivery system (DS). Ideally, new strategies should combine immune potentiators (IP) and DS by mixing both compounds or by obtaining structures that contain both IP and DS. In addition, the term immune polarizer has been introduced as an essential concept in the vaccine design strategies. Here, we review the theme, with emphasis on the discussion of the few licensed new adjuvants, the need for safe mucosal adjuvants and the adjuvant/immunopotentiating activity of conjugation. A summary of toxicology and regulatory issues will also be discussed, and the Finlay Adjuvant Platform is briefly summarized. PMID:22527130

  10. Adjuvants and immunostimulants in fish vaccines: current knowledge and future perspectives.

    PubMed

    Tafalla, Carolina; Bøgwald, Jarl; Dalmo, Roy A

    2013-12-01

    Vaccination is the most adequate method to control infectious diseases that threaten the aquaculture industry worldwide. Unfortunately, vaccines are usually not able to confer protection on their own; especially those vaccines based on recombinant antigens or inactivated pathogens. Therefore, the use of adjuvants or immunostimulants is often necessary to increase the vaccine efficacy. Traditional adjuvants such as mineral oils are routinely used in different commercial bacterial vaccines available for fish; however, important side effects may occur with this type of adjuvants. A search for alternative molecules or certain combinations of them as adjuvants is desirable in order to increase animal welfare without reducing protection levels. Especially, combinations that may target specific cell responses and thus a specific pathogen, with no or minor side effects, should be explored. Despite this, the oil adjuvants currently used are quite friendlier with respect to side effects compared with the oil adjuvants previously used. The great lack of fish antiviral vaccines also evidences the importance of identifying optimal combinations of a vaccination strategy with the use of a targeting adjuvant, especially for the promising fish antiviral DNA vaccines. In this review, we summarise previous studies performed with both traditional adjuvants as well as the most promising new generation adjuvants such as ligands for Toll receptors or different cytokines, focussing mostly on their protective efficacies, and also on what is known concerning their effects on the fish immune system when delivered in vivo.

  11. Ethanol and membrane lipids.

    PubMed

    Sun, G Y; Sun, A Y

    1985-01-01

    Although ethanol is known to exert its primary mode of action on the central nervous system, the exact molecular interaction underlying the behavioral and physiological manifestations of alcohol intoxication has not been elucidated. Chronic ethanol administration results in changes in organ functions. These changes are reflective of the adaptive mechanisms in response to the acute effects of ethanol. Biophysical studies have shown that ethanol in vitro disorders the membrane and perturbs the fine structural arrangement of the membrane lipids. In the chronic state, these membranes develop resistance to the disordering effects. Tolerance development is also accompanied by biochemical changes. Although ethanol-induced changes in membrane lipids have been implicated in both biophysical and biochemical studies, measurements of membrane lipids, such as cholesterol content, fatty acid unsaturation, phospholipid distribution, and ganglioside profiles, have not produced conclusive evidence that any of these parameters are directly involved in the action of ethanol. On the other hand, there is increasing evidence indicating that although ethanol in vitro produces a membrane-fluidizing effect, the chronic response to this effect is not to change the membrane bulk lipid composition. Instead, changes in membrane lipids may pertain to small metabolically active pools located in certain subcellular fractions. Most likely, these lipids are involved in important membrane functions. For example, the increase in PS in brain plasma membranes may provide an explanation for the adaptive increase in synaptic membrane ion transport activity, especially (Na,K)-ATPase. There is also evidence that the lipid pool involved in the deacylation-reacylation mechanism (i.e., PI and PC with 20:4 groups) is altered after ethanol administration. An increase in metabolic turnover of these phospholipid pools may have important implications for the membrane functional changes. Obviously, there are other

  12. Immobilized lipid-bilayer materials

    DOEpatents

    Sasaki, Darryl Y.; Loy, Douglas A.; Yamanaka, Stacey A.

    2000-01-01

    A method for preparing encapsulated lipid-bilayer materials in a silica matrix comprising preparing a silica sol, mixing a lipid-bilayer material in the silica sol and allowing the mixture to gel to form the encapsulated lipid-bilayer material. The mild processing conditions allow quantitative entrapment of pre-formed lipid-bilayer materials without modification to the material's spectral characteristics. The method allows for the immobilization of lipid membranes to surfaces. The encapsulated lipid-bilayer materials perform as sensitive optical sensors for the detection of analytes such as heavy metal ions and can be used as drug delivery systems and as separation devices.

  13. The challenge of lipid rafts.

    PubMed

    Pike, Linda J

    2009-04-01

    The Singer-Nicholson model of membranes postulated a uniform lipid bilayer randomly studded with floating proteins. However, it became clear almost immediately that membranes were not uniform and that clusters of lipids in a more ordered state existed within the generally disorder lipid milieu of the membrane. These clusters of ordered lipids are now referred to as lipid rafts. This review summarizes current thinking on the nature of lipid rafts focusing on the role of proteomics and lipidomics in understanding the structure of these domains. It also outlines the contribution of single-molecule methods in defining the forces that drive the formation and dynamics of these membrane domains. PMID:18955730

  14. Enzymosomes with surface-exposed superoxide dismutase: in vivo behaviour and therapeutic activity in a model of adjuvant arthritis.

    PubMed

    Gaspar, Maria Manuela; Boerman, Otto C; Laverman, Peter; Corvo, Maria Luísa; Storm, Gert; Cruz, Maria Eugénia Meirinhos

    2007-02-12

    Acylated Superoxide Dismutase (Ac-SOD) enzymosomes, liposomal enzymatic systems expressing catalytic activity in the intact form, were previously characterized. The main scope of the present work was to investigate the biological behaviour of Ac-SOD inserted in the lipid bilayer of liposomes, in comparison with SOD located in the aqueous compartment of liposomes. Two types of liposomes were used: conventional liposomes presenting an unmodified external surface and long circulating liposomes coated with poly (ethylene glycol) (PEG). Liposomal formulations of Ac-SOD and SOD were prepared and labelled with indium-111 and their in vivo fate compared. Data obtained led us to the conclusion that, for liposomes coated with PEG the in vivo fate was not influenced by the insertion of Ac-SOD in the lipid bilayers. The potential therapeutic effect of Ac-SOD enzymosomes was compared with SOD liposomes in a rat model of adjuvant arthritis. A faster anti-inflammatory effect was observed for Ac-SOD enzymosomes by monitoring the volume of the inflamed paws. The present results allowed us to conclude that Ac-SOD enzymosomes are nano-carriers combining the advantages of expressing enzymatic activity in intact form and thus being able to exert therapeutic effect even before liposomes disruption, as well as acting as a sustained release of the enzyme. PMID:17169460

  15. New approach to adjuvant radiotherapy in rectal cancer

    SciTech Connect

    Mohiuddin, M.; Dobelbower, R.R.; Kramer, S.

    1980-02-01

    A sandwich technique of adjuvant radiotherapy was used to treat twenty-three patients with rectal cancer. In this technique, low dose preoperative irradiation (500 rad in one treatment) was given to all patients followed by immediate surgery (usually an A-P resection); on the basis of histopathological findings, patients with stage B/sub 2/ and C rectal cancer were selectively given 4500 rad post-operative irradiation in 5 weeks. Nine patients had early lesions (stage A and B/sub 1/) and did not receive postoperative irradiation. Thirteen patients had stage B/sub 2/ and C disease and hence received the full course of postoperative irradiation. One patient was found to have liver metastasis at the time of surgery, and hence received only palliative therapy. Follow-up of these twenty-three patients ranges from 10 months to 24 months with a median follow-up of 15 months. Treatment was well-tolerated with few side effects. Only two of the twenty-two patients who were treated for cure have failed to date. Both patients had stage C/sub 2/ disease; one patient developed an anterior abdominal wall recurrence in the surgical scar 3 months post-treatment and the second patient developed brain and bone metastases. No patients have failed in the pelvis. We feel this technique of adjuvant therapy is a logical approach to the treatment of rectal cancer and has potential for improving survival. The rationale for this approach to adjuvant radiotherapy is discussed together with implications for survival.

  16. Peptide assemblies: from cell scaffolds to immune adjuvants

    NASA Astrophysics Data System (ADS)

    Collier, Joel

    2011-03-01

    This talk will discuss two interrelated aspects of peptide self-assemblies in biological applications: their use as matrices for regenerative medicine, and their use as chemically defined adjuvants for directing immune responses against engineered antigens. In the first half of the presentation, the design of peptide self-assemblies as analogues for the extracellular matrix will be described, with a focus on self-assemblies displaying multiple different cell-binding peptides. We conducted multi-factorial investigations of peptide co-assemblies containing several different ligand-bearing peptides using statistical ``design of experiments'' (DoE). Using the DoE techniques of factorial experimentation and response surface modeling, we systematically explored how precise combinations of ligand-bearing peptides modulated endothelial cell growth, in the process finding interactions between ligands not previously appreciated. By investigating immune responses against the materials intended for tissue engineering applications, we discovered that the basic self-assembling peptides were minimally immunogenic or non-immunogenic, even when delivered in strong adjuvants. -But when they were appended to an appropriately restricted epitope peptide, these materials raised strong and persistent antibody responses. These responses were dependent on covalent conjugation between the epitope and self-assembling domains of the peptides, were mediated by T cells, and could be directed towards both peptide epitopes and conjugated protein antigens. In addition to their demonstrated utility as scaffolds for regenerative medicine, peptide self-assemblies may also be useful as chemically defined adjuvants for vaccines and immunotherapies. This work was funded by NIH/NIDCR (1 R21 DE017703-03), NIH/NIBIB (1 R01 EB009701-01), and NSF (CHE-0802286).

  17. Adjuvant immunotherapy with BCG in squamous cell bronchial carcinoma.

    PubMed Central

    Jansen, H M; The, T H; Orie, N G

    1980-01-01

    Fifty-four patients with evidence of locally advanced primary squamous cell bronchial carcinoma (SCC), and three patients with adenocarcinoma (AC) had lung resection to remove all the visible tumour. After operation an randomly chosen group of 20 SCC patients received adjuvant BCG immunostimulation by scarifications (BCG-A). An additional group of 14 SCC patients, and three AC patients received initially intrapleural BCG treatment and subsequently scarifications (BCG-B). A control group of 20 SCC patients received no adjuvant treatment. Follow-up studies were done from three to 51 months. Immune reactivity was monitored in vivo with PPD skin tests in 33 treated and in 18 untreated patients. In both the BCG-treated SCC groups recurrence rates decreased statistically significant during follow-up (BCG-A; six to 51 months, p less than 0.001; BCG: 6-9 months, p less than 0.01 and nine to 24 months, p less than 0.001). However, no difference could be demonstrated between systemic and combined systemic and intrapleural treatment. The three BCG-treated AC patients all relapsed within nine months of follow-up. A pronounced increase in skin reactivity to PPD was seen six months after surgery in the BCG-treated patients (BCG-A, p less than 0.001; BCG-B, p less than 0.01), whereas the control patients remained anergic after surgery. This improved immune reactivity went in parallel with a more favourable outcome of the individual patients (BCG-A, p less than 0.02; BCG-B, p less than 0.05). It is concluded that adjuvant BCG immunotherapy used in strongly selected patients with minimal residual squamous cell bronchial carcinoma improves the prognosis. Intrapleural treatment did not improve the prognosis further. A favourable clinical outcome was mirrored by an increase in cellular immune reactivity. PMID:7466726

  18. Melanoma Metastases to the Neck Nodes: Role of Adjuvant Irradiation

    SciTech Connect

    Strojan, Primoz; Jancar, Boris; Cemazar, Maja; Perme, Maja Pohar; Hocevar, Marko

    2010-07-15

    Purpose: To review experiences in the treatment of regionally advanced melanoma to the neck and/or parotid with emphasis on the role of adjuvant radiotherapy. Patients and Methods: Clinical and histopathologic data, treatment details, and outcomes in patients treated during the period 2000-2006 at the Institute of Oncology, Ljubljana, Slovenia, were reviewed. Results: A total of 40 patients with 42 dissections underwent surgery, and 43 patients with 45 dissections received irradiation postoperatively to a median equivalent dose (eqTD{sub 2}: 2 Gy/fraction, 1 fraction/day, 5 fractions/week) of 60 Gy (range, 47.8-78.8). Regional control 2 years after surgery was 56% (95% confidence interval [CI] 40-72%) and after postoperative radiotherapy 78% (CI 63-92%) (p = 0.015). On multivariate analysis, postoperative radiotherapy (yes vs. no: hazard ratio [HR] 6.3, CI 2.0-20.6) and sum of the risk factors present (i.e., risk factor score; HR 1.7 per score point, CI 1.2-2.6) were predictive for regional control. On logistic regression testing, the number of involved nodes was associated with the probability of distant metastases (p = 0.021). The incidence of late toxicity did not correlate with the mode of therapy, eqTD{sub 2}, or fractionation pattern. Conclusions: Adjuvant radiotherapy has the potential to compensate effectively for the negative impact of adverse histopatologic features to disease control in a dissected nodal basin. More conventionally fractionated radiotherapy regimens using fraction doses of 2-2.5 Gy, with cumulative eqTD{sub 2{>=}}60 Gy, are recommended. The number of involved lymph nodes is proposed as an additional criterion for limiting the implementation of adjuvant irradiation.

  19. Adjuvant radiotherapy for cutaneous melanoma: Comparing hypofractionation to conventional fractionation

    SciTech Connect

    Chang, Daniel T.; Amdur, Robert J.; Morris, Christopher G. M.S.; Mendenhall, William M. . E-mail: mendewil@shands.ufl.edu

    2006-11-15

    Purpose: To examine locoregional control after adjuvant radiotherapy (RT) for cutaneous melanoma and compare outcomes between conventional fractionation and hypofractionation. Methods and Materials: Between January 1980 and June 2004, 56 patients with high-risk disease were treated with adjuvant RT. Indications for RT included: recurrent disease, cervical lymph node involvement, lymph nodes >3 cm, more than three lymph nodes involved, extracapsular extension, gross residual disease, close or positive margins, or satellitosis. Hypofractionation was used in 41 patients (73%) and conventional fractionation was used in 15 patients (27%). Results: The median age was 61 years (21->90). The median follow-up among living patients was 4.4 years (range, 0.6-14.4 years). The primary site was located in the head and neck in 49 patients (87%) and below the clavicles in 7 patients (13%). There were 7 in-field locoregional failures (12%), 3 out-of-field regional failures (5%), and 24 (43%) distant failures. The 5-year in-field locoregional control (ifLRC) and freedom from distant metastases (FFDM) rates were 87% and 43%, respectively. The 5-year cause-specific (CSS) and overall survival (OS) was 57% and 46%, respectively. The only factor associated with ifLRC was satellitosis (p = 0.0002). Nodal involvement was the only factor associated with FFDM (p = 0.0007), CSS (p = 0.0065), and OS (p = 0.016). Two patients (4%) who experienced severe late complications, osteoradionecrosis of the temporal bone and radiation plexopathy, and both received hypofractionation (5%). Conclusions: Although surgery and adjuvant RT provides excellent locoregional control, distant metastases remain the major cause of mortality. Hypofractionation and conventional fractionation are equally efficacious.

  20. Characterization of TRIF Selectivity in the AGP Class of Lipid A Mimetics: Role of Secondary Lipid Chains

    PubMed Central

    Khalaf, Juhienah K.; Bowen, William S.; Bazin, Hélène G.; Ryter, Kendal T.; Livesay, Mark T.; Ward, Jon R.; Evans, Jay T.; Johnson, David A.

    2014-01-01

    TLR4 agonists that favor TRIF-dependent signaling and the induction of type 1 interferons may have potential as vaccine adjuvants with reduced toxicity. CRX-547 (4), a member of the aminoalkyl glucosaminide 4-phosphate (AGP) class of lipid A mimetics possessing three (R)-3-decanoyloxytetradecanoyl groups and D-relative configuration in the aglycon, selectively reduces MyD88-dependent signaling resulting in TRIF-selective signaling, whereas the corresponding secondary ether lipid 6a containing (R)-3-decyloxytetradecanoyl groups does not. In order to determine which secondary acyl groups are important for the reduction in MyD88-dependent signaling activity of 4, the six possible ester/ether hybrid derivatives of 4 and 6a were synthesized and evaluated for their ability to induce NF-κB in a HEK293 cell reporter assay. An (R)-3-decanoyloxytetradecanoyl group on the 3-position of the D-glucosamine unit was found to be indispensable for maintaining low NF-κB activity irrespective of the substitutions (decyl or decanoyl) on the other two secondary positions. These results suggest that the carbonyl group of the 3-secondary lipid chain may impede homodimerization and/or conformational changes in the TLR4–MD2 complex necessary for MyD88 binding and pro-inflammatory cytokine induction. PMID:25553892

  1. Expanding roles for lipid droplets

    PubMed Central

    Welte, Michael A.

    2015-01-01

    Summary Lipid droplets are the intracellular sites for neutral lipid storage. They are critical for lipid metabolism and energy homeostasis, and their dysfunction has been linked to many diseases. Accumulating evidence suggests that the roles lipid droplets play in biology are significantly broader than previously anticipated. Lipid droplets are the source of molecules important in the nucleus: they can sequester transcription factors and chromatin components and generate the lipid ligands for certain nuclear receptors. Lipid droplets have also emerged as important nodes for fatty acid trafficking, both inside the cell and between cells. In immunity, new roles for droplets, not directly linked to lipid metabolism, have been uncovered, as assembly platforms for specific viruses and as reservoirs for proteins that fight intracellular pathogens. Until recently, knowledge about droplets in the nervous system has been minimal, but now there are multiple links between lipid droplets and neurodegeneration: Many candidate genes for Hereditary Spastic Paraplegia also have central roles in lipid-droplet formation and maintenance, and mitochondrial dysfunction in neurons can lead to transient accumulating of lipid droplets in neighboring glial cells, an event that may, in turn, contribute to neuronal damage. As the cell biology and biochemistry of lipid droplets are increasingly well understood, the next few years should yield many new mechanistic insights into these novel functions of lipid droplets. PMID:26035793

  2. Adjuvant-induced antired blood cell activity in CBA mice

    PubMed Central

    McCracken, Ann; McBride, W. H.; Weir, D. M.

    1971-01-01

    Various micro-organisms are known to act as immunological adjuvants and included amongst these are Corynebacteriaceae. Numerous studies on Corynebacterium parvum have shown, in particular, its ability to cause proliferation and enhanced activity of the reticulo-endothelial system. This organism also leads in mice to anaemia and this report describes the simultaneous appearance of a red cell autoantibody in mice injected with C. parvum or another diphtheroid (SF 16) isolated from rheumatoid joint fluid. The significance of this latter observation is considered in relation to the unexplained anaemia of rheumatoid arthritis. PMID:4933319

  3. [New insights in the adjuvant treatment of gastric cancer].

    PubMed

    Jansen, E P M; Boot, H; Cats, A; van Coevorden, F; Zoetmulder, F A N; Verheij, M

    2004-12-18

    The current standard treatment of patients with gastric cancer is partial or total stomach resection and dissection of the draining lymph nodes. This approach, however, results in a rather low survival rate, partly because the diagnosis is often established in an advanced stage. Various strategies, including adjuvant radiotherapy, chemotherapy or more extensive surgical procedures, have resulted mainly in increased morbidity without improving survival. In a recent randomised trial, concurrent postoperative radiotherapy and chemotherapy prolonged survival and reduced the chance of a local recurrence at an acceptable toxicity. Although several aspects of combined radiochemotherapy require further study, this new treatment concept appears to be a promising addition to the therapeutic arsenal for gastric cancer.

  4. Physiotherapy as an adjuvant therapy for treatment of TMJ disorders.

    PubMed

    Aggarwal, Anshul; Keluskar, Vaishali

    2012-01-01

    Physiotherapy has long been used to cure joint and muscle diseases. It has also been used to treat various diseases without inflicting mental trauma or the pain of surgery. This adjunctive therapeutic modality is widely used for patients with orofacial disorders, especially in the prevention or treatment of temporomandibular joint (TMJ) disorder, hypomobility, or ankylosis. Physiotherapy has a particular importance in the treatment of TMJ disorders such as myofascial pain and internal derangement. This review article highlights the importance of physiotherapy as an emerging adjuvant therapy in the treatment of TMJ disorders.

  5. Postoperative adjuvant therapy of breast cancer. Oncology Overview

    SciTech Connect

    Not Available

    1984-12-01

    Oncology Overviews are a service of the International Cancer Research Data Bank (ICRDB) Program of the National Cancer Institute, intended to facilitate and promote the exchange of information between cancer scientists by keeping them aware of literature related to their research being published by other laboratories throughout the world. Each Oncology Overview represents a survey of the literature associated with a selected area of cancer research. It contains abstracts of articles which have been selected and organized by researchers associated with the field. Contents: Postoperative chemotherapy; Postoperative radiotherapy; Postoperative hormone therapy; Postoperative immunotherapy and chemoimmunotherapy; Postoperative multimodal therapy; Prognostic factors in postoperative adjuvant therapy.

  6. Micelle-Based Adjuvants for Subunit Vaccine Delivery

    PubMed Central

    Trimaille, Thomas; Verrier, Bernard

    2015-01-01

    In the development of subunit vaccines with purified or recombinant antigens for cancer and infectious diseases, the design of improved and safe adjuvants able to efficiently target the antigen presenting cells, such as dendritic cells, represents a crucial challenge. Nanoparticle-based antigen delivery systems have been identified as an innovative strategy to improve the efficacy of subunit vaccines. Among them, self-assembled micellar nanoparticles from amphiphilic (macro)molecules have recently emerged as promising candidates. In this short review, we report on the recent research findings highlighting the versatility and potential of such systems in vaccine delivery. PMID:26426060

  7. Adjuvant platinum-based chemotherapy for early stage cervical cancer

    PubMed Central

    Rosa, Daniela D; Medeiros, Lídia RF; Edelweiss, Maria I; Pohlmann, Paula R; Stein, Airton T

    2014-01-01

    Background This is an updated version of the original Cochrane review published in The Cochrane Library 2009, Issue 3. Most women with early cervical cancer (stages I to IIA) are cured with surgery or radiotherapy, or both. We performed this review originally because it was unclear whether cisplatin-based chemotherapy after surgery, radiotherapy or both, in women with early stage disease with risk factors for recurrence, was associated with additional survival benefits or risks. Objectives To evaluate the effectiveness and safety of platinum-based chemotherapy after radical hysterectomy, radiotherapy, or both in the treatment of early stage cervical cancer. Search methods For the original 2009 review, we searched the Cochrane Gynaecological Cancer Group Trials Register, The Cochrane Central Register of Controlled Trials (CENTRAL) in The Cochrane Library 2009, Issue 1), MEDLINE, EMBASE, LILACS, BIOLOGICAL ABSTRACTS and CancerLit, the National Research Register and Clinical Trials register, with no language restriction. We handsearched abstracts of scientific meetings and other relevant publications. We extended the database searches to November 2011 for this update. Selection criteria Randomised controlled trials (RCTs) comparing adjuvant cisplatin-based chemotherapy (after radical surgery, radiotherapy or both) with no adjuvant chemotherapy, in women with early stage cervical cancer (stage IA2-IIA) with at least one risk factor for recurrence. Data collection and analysis Two review authors extracted data independently. Meta-analysis was performed using a random-effects model, with death and disease progression as outcomes. Main results For this updated version, we identified three additional ongoing trials but no new studies for inclusion. Three trials including 368 evaluable women with early cervical cancer were included in the meta-analyses. The median follow-up period in these trials ranged from 29 to 42 months. All women had undergone surgery first. Two trials

  8. Adjuvant, neoadjuvant, and experimental regimens in overcoming pancreatic ductal adenocarcinoma

    PubMed Central

    Wysocka, Olga; Kulbacka, Julita; Saczko, Jolanta

    2016-01-01

    Pancreatic cancer is one of the most aggressive and deadly malignancies. Despite better understanding of its biology and pathogenesis, contemporary treatment regimens are still insufficient. Along with the introduction of new treatment agents and combination therapy, the response rates are increasing, but these scores do not go with overall survival, and results are frequently conflicting. Therefore, contemporary medicine faces the challenge of expanding the knowledge base and practice on all grounds – pathology, factor risk, diagnosis, and finally surgical and palliative treatment of this disease. This paper provides a review of current adjuvant and neoadjuvant regimens and the role of experimental therapies in pancreatic ductal adenocarcinoma. PMID:27713776

  9. Lipids: Absorption and transport

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Due to the hydrophobic nature of lipids, dietary fat is handled differently than protein or carbohydrate with respect with digestion and absorption. Dietary fats are broken down throughout the gastrointestinal system. A unique group of enzymes and cofactors allows this process to proceed in an eff...

  10. Lipids in cheese

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Lipids are present in cheese at levels above 20 percent and are analyzed by several techniques. Scanning electron microscopy and confocal laser scanning microscopy are used to examine the microstructure, gas chromatography is employed to look at fatty acid composition, and differential scanning cal...

  11. Lipid droplets go nuclear.

    PubMed

    Farese, Robert V; Walther, Tobias C

    2016-01-01

    Lipid droplets (LDs) are sometimes found in the nucleus of some cells. In this issue, Ohsaki et al. (2016. J. Cell Biol. http://dx.doi.org/10.1083/jcb.201507122) show that the nuclear membrane, promyelocytic leukemia bodies, and the protein PML-II play a role in nuclear LD formation, suggesting functional relationships between these structures. PMID:26728852

  12. Who Benefits From Adjuvant Radiation Therapy for Gastric Cancer? A Meta-Analysis

    SciTech Connect

    Ohri, Nitin; Garg, Madhur K.; Aparo, Santiago; Kaubisch, Andreas; Tome, Wolfgang; Kennedy, Timothy J.; Kalnicki, Shalom; Guha, Chandan

    2013-06-01

    Purpose: Large randomized trials have demonstrated significant survival benefits with the use of adjuvant chemotherapy or chemoradiation therapy for gastric cancer. The importance of adjuvant radiation therapy (RT) remains unclear. We performed an up-to-date meta-analysis of randomized trials testing the use of RT for resectable gastric cancer. Methods and Materials: We searched MEDLINE, EMBASE, and the Cochrane Central Register of Controlled Trials for randomized trials testing adjuvant (including neoadjuvant) RT for resectable gastric cancer. Hazard ratios describing the impact of adjuvant RT on overall survival (OS) and disease-free survival (DFS) were extracted directly from the original studies or calculated from survival curves. Pooled estimates were obtained using the inverse variance method. Subgroup analyses were performed to determine whether the efficacy of RT varies with chemotherapy use, RT timing, geographic region, type of nodal dissection performed, or lymph node status. Results: Thirteen studies met all inclusion criteria and were used for this analysis. Adjuvant RT was associated with a significant improvement in both OS (HR = 0.78, 95% CI: 0.70-0.86, P<.001) and DFS (HR = 0.71, 95% CI: 0.63-0.80, P<.001). In the 5 studies that tested adjuvant chemoradiation therapy against adjuvant chemotherapy, similar effects were seen for OS (HR = 0.83, 95% CI: 0.67-1.03, P=.087) and DFS (HR = 0.77, 95% CI: 0.91-0.65, P=.002). Available data did not reveal any subgroup of patients that does not benefit from adjuvant RT. Conclusion: In randomized trials for resectable gastric cancer, adjuvant RT provides an approximately 20% improvement in both DFS and OS. Available data do not reveal a subgroup of patients that does not benefit from adjuvant RT. Further study is required to optimize the implementation of adjuvant RT for gastric cancer with regard to patient selection and integration with systemic therapy.

  13. Lipid nanotube or nanowire sensor

    DOEpatents

    Noy, Aleksandr; Bakajin, Olgica; Letant, Sonia; Stadermann, Michael; Artyukhin, Alexander B.

    2009-06-09

    A sensor apparatus comprising a nanotube or nanowire, a lipid bilayer around the nanotube or nanowire, and a sensing element connected to the lipid bilayer. Also a biosensor apparatus comprising a gate electrode; a source electrode; a drain electrode; a nanotube or nanowire operatively connected to the gate electrode, the source electrode, and the drain electrode; a lipid bilayer around the nanotube or nanowire, and a sensing element connected to the lipid bilayer.

  14. Lipid nanotube or nanowire sensor

    DOEpatents

    Noy, Aleksandr; Bakajin, Olgica; Letant, Sonia; Stadermann, Michael; Artyukhin, Alexander B.

    2010-06-29

    A sensor apparatus comprising a nanotube or nanowire, a lipid bilayer around the nanotube or nanowire, and a sensing element connected to the lipid bilayer. Also a biosensor apparatus comprising a gate electrode; a source electrode; a drain electrode; a nanotube or nanowire operatively connected to the gate electrode, the source electrode, and the drain electrode; a lipid bilayer around the nanotube or nanowire, and a sensing element connected to the lipid bilayer.

  15. Lipids, fatty acids, and more

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Energy is the most expensive component in livestock diets. Lipids are concentrated energy sources and are known to affect growth, feed efficiency, feed dust, and diet palatability. A large majority of research evaluating lipids in livestock has utilized lipids of high quality, dealt mainly with anim...

  16. Immunoadjuvant action of liposomes: comparison with other adjuvants.

    PubMed

    Gregoriadis, G; Panagiotidi, C

    1989-02-01

    Dehydration-rehydration vesicles (DRV liposomes) composed of equimolar phospholipid and cholesterol and containing bovine serum albumin (BSA) were used together with free BSA to immunize Balb/C mice. Primary and secondary immune responses (IgG1) to the liposomal antigen, as measured by ELISA in mouse sera, were similar for egg phosphatidylcholine (PC) and distearoyl phosphatidylcholine (DSPC) DRV, and much greater than those elicited by free BSA. The adjuvanticity of PC DRV was compared with that of aluminium salts (alum), complete Freund's adjuvant (CFA) and N-acetyl muramyl-L-threonyl-D-isoglutamine ([Thr1]MDP), the latter used as such or in a liposome form co-entrapped with the antigen. DRV (with or without co-entrapped [Thr1]MDP), and alum were equally strong in producing primary and secondary immune responses (IgG1) to BSA. Such responses were significantly higher than those achieved with CFA and [Thr1]MDP alone. The implications of these results for the potential role of liposomes as immunological adjuvants in vaccines are discussed. PMID:2714847

  17. The role of adjuvant radiation in endometrial cancer.

    PubMed

    Diavolitsis, Virginia; Boyle, John; Singh, Diljeet K; Small, William

    2009-04-15

    Endometrial cancer treatment ideally begins with a staging procedure including abdominopelvic washing, total abdominal hysterectomy, bilateral salpingo-oophorectomy, and lymph node evaluation. Recommendations for postoperative adjuvant radiotherapy are determined by recurrence risk. Patients who have undergone staging and have early stage I disease and an absence of high-risk features for recurrence generally are treated with surgery alone. Intermediate-risk patients--those with high-risk stage I disease and some stage II patients--may benefit from adjuvant radiation therapy. Several randomized trials show that radiation therapy improves locoregional control among intermediate-risk patients. The optimal type of radiation therapy, whether vaginal brachytherapy or whole-pelvic radiation therapy, remains undetermined, though treatment decision can be guided by risk factors not encompassed by the current staging system. Patients with high-risk stage II disease and stage III disease generally receive external-beam radiotherapy, often in combination with chemotherapy. Chemotherapy alone in advanced-stage patients is a consideration, given the results of the Gynecologic Oncology Group (GOG)-122 trial.

  18. Alginate Nanoparticles as a Promising Adjuvant and Vaccine Delivery System

    PubMed Central

    Sarei, F.; Dounighi, N. Mohammadpour; Zolfagharian, H.; Khaki, P.; Bidhendi, S. Moradi

    2013-01-01

    During last decades, diphtheria has remained as a serious disease that still outbreaks and can occur worldwide. Recently, new vaccine delivery systems have been developed by using the biodegradable and biocompatible polymers such as alginate. Alginate nanoparticles as a carrier with adjuvant and prolong release properties that enhance the immunogenicity of vaccines. In this study diphtheria toxoid loaded nanoparticles were prepared by ionic gelation technique and characterized with respect to size, zeta potential, morphology, encapsulation efficiency, release profile, and immunogenicity. Appropriate parameters (calcium chloride and sodium alginate concentration, homogenization rate and homogenization time) redounded to the formation of suitable nanoparticles with a mean diameter of 70±0.5 nm. The loading studies of the nanoparticles resulted in high loading capacities (>90%) and subsequent release studies showed prolong profile. The stability and antigenicity of toxoid were evaluated by sodium dodecyl sulfate polyacrylamide gel electrophoresis and ouchterlony test and proved that the encapsulation process did not affect the antigenic integrity and activity. Guinea pigs immunized with the diphtheria toxoid-loaded alginate nanoparticles showed highest humoral immune response than conventional vaccine. It is concluded that, with regard to the desirable properties of nanoparticles and high immunogenicity, alginate nanoparticles could be considered as a new promising vaccine delivery and adjuvant system. PMID:24302799

  19. Innate Immune Signaling by, and Genetic Adjuvants for DNA Vaccination.

    PubMed

    Kobiyama, Kouji; Jounai, Nao; Aoshi, Taiki; Tozuka, Miyuki; Takeshita, Fumihiko; Coban, Cevayir; Ishii, Ken J

    2013-01-01

    DNA vaccines can induce both humoral and cellular immune responses. Although some DNA vaccines are already licensed for infectious diseases in animals, they are not licensed for human use because the risk and benefit of DNA vaccines is still controversial. Indeed, in humans, the immunogenicity of DNA vaccines is lower than that of other traditional vaccines. To develop the use of DNA vaccines in the clinic, various approaches are in progress to enhance or improve the immunogenicity of DNA vaccines. Recent studies have shown that immunogenicity of DNA vaccines are regulated by innate immune responses via plasmid DNA recognition through the STING-TBK1 signaling cascade. Similarly, molecules that act as dsDNA sensors that activate innate immune responses through STING-TBK1 have been identified and used as genetic adjuvants to enhance DNA vaccine immunogenicity in mouse models. However, the mechanisms that induce innate immune responses by DNA vaccines are still unclear. In this review, we will discuss innate immune signaling upon DNA vaccination and genetic adjuvants of innate immune signaling molecules.

  20. Effect of ascorbic acid and other adjuvants on manganese absorption

    SciTech Connect

    Papaioannou, R.; Sohler, A.; Pfeiffer, C.C.

    1986-03-01

    Animal experiments have demonstrated that manganese is poorly absorbed from the gut and that it is rapidly removed from the blood by liver uptake and bilary excretion. Zinc supplements which are readily absorbed can induce a Mn deficiency so that Mn supplementation is necessary. Supplementation with a diet rich in Mn (high in legumes, nuts, whole grains, tea) failed to influence blood Mn levels. The present study is concerned with the route of Mn administration and the effect of various adjuvants on the absorption and availability of Mn. Oral and sublingual administration of 20 mgs of Mn as the chloride failed to elicit a blood level rise. A rise was noted after the intramuscular injection of 2.5 mgs Mn as Mn Cl/sub 2/. Blood Mn levels rose to a maximum in thirty minutes and were back to basal levels within three hours. Adjuvants such as arginine, lecithin, taurine, biotin, bioflavinoids, were tested with essentially negative results. Mn orotate also failed to increase absorption. Oral absorption was obtained with ascorbic acid in five female subjects when 20 mgs of Mn as the chloride was given orally with 1 gm of ascorbic acid. This effect was not observed with five male subjects. A 30-40% increase in blood Mn after 2 hours was found when Mn was administered with ascorbic acid in the female subjects.

  1. Adjuvant photodynamic therapy (PDT) of the superficial bladder cancer

    NASA Astrophysics Data System (ADS)

    Sokolov, V. V.; Russakov, I. G.; Teplov, A. A.; Filonenko, E. V.; Ul'yanov, R. V.; Bystrov, A. A.

    2005-08-01

    Superficial transitional cell carcinoma represents 50 to 80% of newly diagnosed bladder cancer in various countries. Transurethral resection of the urinary bladder is the standard procedure for biopsy and treatment superficial bladder cancer. However recurrence tumors after transurethral resection alone is high enough (50-90%). Intravesical chemotherapy for prophylaxis after complete transurethral resection is reducing recurrence rate about 1 5%. Adjuvant intravesical Bacillus of Calmette and Guerin (BCG) is reducing recurrence rate about 30%, but frequency side effects of this therapy is very high. Purpose of this study is appreciate efficacy adjuvant PDT with photosensitizer Photogeme (Russia) of superficial bladder cancer for prophylaxis after complete transurethral resection. The follow up was from 3 to 63 months (27 months, on average). Sixty-five patients (75.6%) showed no recurrence. For the follow up period, the recurrence was revealed in 21 (24.4%) patient, in two of them it was progressing (one case of invasive growth and one case of remote metastases). Four cases of recurrence were revealed 4 months after the surgery. In other cases, the recurrence was diagnosed from 9 to 18 months.

  2. A Mucosal Adjuvant for the Inactivated Poliovirus Vaccine

    PubMed Central

    Steil, Benjamin P.; Jorquera, Patricia; Westdijk, Janny; Bakker, Wilfried A.M.; Johnston, Robert E.; Barro, Mario

    2014-01-01

    The eradication of poliovirus from the majority of the world has been achieved through the use of two vaccines: the inactivated poliovirus vaccine (IPV) and the live-attenuated oral poliovirus vaccine (OPV). Both vaccines are effective at preventing paralytic poliomyelitis, however, they also have significant differences. Most importantly for this work is the risk of revertant virus from OPV, the greater cost of IPV, and the low mucosal immunity induced by IPV. We and others have previously described the use of an alphavirus-based adjuvant that can induce a mucosal immune response to a co-administered antigen even when delivered at a non-mucosal site. In this report, we describe the use of an alphavirus-based adjuvant (GVI3000) with IPV. The IPV-GVI3000 vaccine significantly increased systemic IgG, mucosal IgG and mucosal IgA antibody responses to all three poliovirus serotypes in mice even when administered intramuscularly. Furthermore, GVI3000 significantly increased the potency of IPV in rat potency tests as measured by poliovirus neutralizing antibodies in serum. Thus, an IPV-GVI3000 vaccine would reduce the dose of IPV needed and provide significantly improved mucosal immunity. This vaccine could be an effective tool to use in the poliovirus eradication campaign without risking the re-introduction of revertant poliovirus derived from OPV. PMID:24333345

  3. Mucosal and systemic adjuvant activity of alphavirus replicon particles

    NASA Astrophysics Data System (ADS)

    Thompson, Joseph M.; Whitmore, Alan C.; Konopka, Jennifer L.; Collier, Martha L.; Richmond, Erin M. B.; Davis, Nancy L.; Staats, Herman F.; Johnston, Robert E.

    2006-03-01

    Vaccination represents the most effective control measure in the fight against infectious diseases. Local mucosal immune responses are critical for protection from, and resolution of, infection by numerous mucosal pathogens. Antigen processing across mucosal surfaces is the natural route by which mucosal immunity is generated, as peripheral antigen delivery typically fails to induce mucosal immune responses. However, we demonstrate in this article that mucosal immune responses are evident at multiple mucosal surfaces after parenteral delivery of Venezuelan equine encephalitis virus replicon particles (VRP). Moreover, coinoculation of null VRP (not expressing any transgene) with inactivated influenza virions, or ovalbumin, resulted in a significant increase in antigen-specific systemic IgG and fecal IgA antibodies, compared with antigen alone. Pretreatment of VRP with UV light largely abrogated this adjuvant effect. These results demonstrate that alphavirus replicon particles possess intrinsic systemic and mucosal adjuvant activity and suggest that VRP RNA replication is the trigger for this activity. We feel that these observations and the continued experimentation they stimulate will ultimately define the specific components of an alternative pathway for the induction of mucosal immunity, and if the activity is evident in humans, will enable new possibilities for safe and inexpensive subunit and inactivated vaccines. vaccine vector | Venezuelan equine encephalitis virus | viral immunology | RNA virus

  4. Polyethyleneimine is a potent systemic adjuvant for glycoprotein antigens.

    PubMed

    Sheppard, Neil C; Brinckmann, Sarah A; Gartlan, Kate H; Puthia, Manoj; Svanborg, Catharina; Krashias, George; Eisenbarth, Stephanie C; Flavell, Richard A; Sattentau, Quentin J; Wegmann, Frank

    2014-10-01

    Polyethyleneimine (PEI) is an organic polycation used extensively as a gene and DNA vaccine delivery reagent. Although the DNA targeting activity of PEI is well documented, its immune activating activity is not. We recently reported that PEI has robust mucosal adjuvanticity when administered intranasally with glycoprotein antigens. Here, we show that PEI has strong immune activating activity after systemic delivery. PEI administered subcutaneously with viral glycoprotein (HIV-1 gp140) enhanced antigen-specific serum IgG production in the context of mixed Th1/Th2-type immunity. PEI elicited higher titers of both antigen binding and neutralizing antibodies than alum in mice and rabbits and induced an increased proportion of antibodies reactive with native antigen. In an intraperitoneal model, PEI recruited neutrophils followed by monocytes to the site of administration and enhanced antigen uptake by antigen-presenting cells. The Th bias was modulated by PEI activation of the Nlrp3 inflammasome; however its global adjuvanticity was unchanged in Nlrp3-deficient mice. When coformulated with CpG oligodeoxynucleotides, PEI adjuvant potency was synergistically increased and biased toward a Th1-type immune profile. Taken together, these data support the use of PEI as a versatile systemic adjuvant platform with particular utility for induction of secondary structure-reactive antibodies against glycoprotein antigens. PMID:24844701

  5. Protective effect of Asarum extract in rats with adjuvant arthritis

    PubMed Central

    ZHANG, WENQIANG; ZHANG, JUAN; ZHANG, MING; NIE, LIN

    2014-01-01

    The aim of the present study was to investigate the protective effect of Asarum extract on rats with adjuvant arthritis (AA) and to determine the underlying mechanism. An AA model was established by injecting Freund’s complete adjuvant into the rats. The degree of toe swelling, arthritis index, spleen index, and the expression levels of tumor necrosis factor (TNF)-α, interleukin (IL)-1β and IL-6 were measured. In addition, the underlying molecular mechanism was investigated using murine macrophage-derived RAW 264.7 cells. Asarum extract was found to significantly reduce the severity of arthritis by decreasing hind paw swelling, the arthritis index, the spleen index, and TNF-α, IL-1β and IL-6 expression levels in plasma. In vitro, Asarum extract inhibited the nuclear factor (NF)-κB and mitogen-activated protein kinase (MAPK) signaling pathways. These results indicate that Asarum extract may be a therapeutic agent for AA and may exert an anti-inflammatory effect by mediating the NF-κB and MAPK signaling pathways. PMID:25289073

  6. The Adjuvant Nutritional Intervention in Cancer (ANICA) Trial.

    PubMed

    Bjørklund, Geir

    2015-01-01

    Adjuvant Nutritional Intervention in Cancer (ANICA) was a clinical study carried out in Denmark in the 1990s with 32 typical patients with breast cancer, aged 32-81 yr and classified high risk because of tumor spread to the lymph nodes. The patients received standard therapy for their breast cancer, but got from the start additionally an adjuvant therapy in form of a cocktail consisting of vitamin C (2,850 mg/day), vitamin E (2,500 IU/day), beta-carotene (32.5 IU/day), selenium (Se; 387 micrograms/day), various other vitamins and essential trace elements, essential fatty acids (1.2 g gamma-linolenic acid/day and 3.5 g omega-3 PUFAs/day), and coenzyme Q10 (CoQ10, 90 mg/day). The protocol was later changed, with reduction of the Se intake and more coenzyme Q10 than when the study was started. The average survival of high-risk breast patients in the study was 50% after 5 yr, whereas for low-risk breast cancer patients (without metastases in the axilla when treatment was started), the average survival was 90% after ten years. The main investigator died, and the final report from the ANICA study was therefore never written. However, the published preliminary results from the trial were very promising; it seems, therefore, important to follow-up this study. PMID:26473998

  7. Adjuvant Treatment for Gastric Cancer: Chemotherapy Versus Radiation

    PubMed Central

    Ashraf, Noman; Hoffe, Sarah

    2013-01-01

    Gastric cancer is among the leading causes of cancer death worldwide. Surgery is the only curative modality, but mortality remains high because a significant number of patients have recurrence after complete surgical resection. Chemotherapy, radiation, and chemoradiotherapy have all been studied in an attempt to reduce the risk for relapse and improve survival. There is no globally accepted standard of care for resectable gastric cancer, and treatment strategies vary across the world. Postoperative chemoradiation with 5-fluorouracil/leucovorin is most commonly practiced in the United States; however, recent clinical trials from Asia have shown benefit of adjuvant chemotherapy alone and have questioned the role of radiation. In this review, we examine the current literature on adjuvant treatment of gastric cancer and discuss the roles of radiation and chemotherapy, particularly in light of these new data and their applicability to the Western population. We highlight some of the ongoing and planned clinical trials in resectable gastric cancer and identify future directions as well as areas where further research is needed. PMID:23966224

  8. The role of adjuvant radiation in endometrial cancer.

    PubMed

    Diavolitsis, Virginia; Boyle, John; Singh, Diljeet K; Small, William

    2009-04-15

    Endometrial cancer treatment ideally begins with a staging procedure including abdominopelvic washing, total abdominal hysterectomy, bilateral salpingo-oophorectomy, and lymph node evaluation. Recommendations for postoperative adjuvant radiotherapy are determined by recurrence risk. Patients who have undergone staging and have early stage I disease and an absence of high-risk features for recurrence generally are treated with surgery alone. Intermediate-risk patients--those with high-risk stage I disease and some stage II patients--may benefit from adjuvant radiation therapy. Several randomized trials show that radiation therapy improves locoregional control among intermediate-risk patients. The optimal type of radiation therapy, whether vaginal brachytherapy or whole-pelvic radiation therapy, remains undetermined, though treatment decision can be guided by risk factors not encompassed by the current staging system. Patients with high-risk stage II disease and stage III disease generally receive external-beam radiotherapy, often in combination with chemotherapy. Chemotherapy alone in advanced-stage patients is a consideration, given the results of the Gynecologic Oncology Group (GOG)-122 trial. PMID:19476264

  9. Exercise as an Adjuvant Therapy for Hematopoietic Stem Cell Mobilization

    PubMed Central

    Emmons, Russell; Niemiro, Grace M.; De Lisio, Michael

    2016-01-01

    Hematopoietic stem cell transplant (HSCT) using mobilized peripheral blood hematopoietic stem cells (HSPCs) is the only curative strategy for many patients suffering from hematological malignancies. HSPC collection protocols rely on pharmacological agents to mobilize HSPCs to peripheral blood. Limitations including variable donor responses and long dosing protocols merit further investigations into adjuvant therapies to enhance the efficiency of HSPCs collection. Exercise, a safe and feasible intervention in patients undergoing HSCT, has been previously shown to robustly stimulate HSPC mobilization from the bone marrow. Exercise-induced HSPC mobilization is transient limiting its current clinical potential. Thus, a deeper investigation of the mechanisms responsible for exercise-induced HSPC mobilization and the factors responsible for removal of HSPCs from circulation following exercise is warranted. The present review will describe current research on exercise and HSPC mobilization, outline the potential mechanisms responsible for exercise-induced HSPC mobilization, and highlight potential sites for HSPC homing following exercise. We also outline current barriers to the implementation of exercise as an adjuvant therapy for HSPC mobilization and suggest potential strategies to overcome these barriers. PMID:27123008

  10. Canadian Adjuvant Initiative Workshop, March 26–27, 2013—Ottawa, Canada

    PubMed Central

    Krishnan, Lakshmi; Twine, Susan; Gerdts, Volker; Barreto, Luis; Richards, James C

    2014-01-01

    Novel adjuvants hold the promise for developing effective modern subunit vaccines capable of appropriately modulating the immune response against challenging diseases such as those caused by chronic and/or intracellular pathogens and cancer. Over the past decade there has been intensive research into discovering new adjuvants, however, their translation into routine clinical use is lagging. To stimulate discussion and identify opportunities for networking and collaboration among various stakeholders, a Canadian Adjuvant Initiative Workshop was held in Ottawa. Sponsored by the National Research Council Canada, Canadian Institutes of Health Research and the Vaccine Industry Committee, a two day workshop was held that brought together key Canadian and international stakeholders in adjuvant research from industry, academia and government. To discover innovation gaps and unmet needs, the presentations covered a board range of topics in adjuvant development; criteria for selection of lead adjuvant candidates from an industry perspective, discovery research across Canada, bioprocessing needs and challenges, veterinary vaccines, Canadian vaccine trial capabilities, the Canadian regulatory framework and WHO formulation laboratory experience. The workshop concluded with a discussion on the opportunity to create a Canadian Adjuvant Development Network. This report details the key discussion points and steps forward identified for facilitating adjuvant development research in Canada. PMID:24192752

  11. The adjuvant MF59 induces ATP release from muscle that potentiates response to vaccination.

    PubMed

    Vono, Maria; Taccone, Marianna; Caccin, Paola; Gallotta, Marilena; Donvito, Giovanna; Falzoni, Simonetta; Palmieri, Emiliano; Pallaoro, Michele; Rappuoli, Rino; Di Virgilio, Francesco; De Gregorio, Ennio; Montecucco, Cesare; Seubert, Anja

    2013-12-24

    Vaccines are the most effective agents to control infections. In addition to the pathogen antigens, vaccines contain adjuvants that are used to enhance protective immune responses. However, the molecular mechanism of action of most adjuvants is ill-known, and a better understanding of adjuvanticity is needed to develop improved adjuvants based on molecular targets that further enhance vaccine efficacy. This is particularly important for tuberculosis, malaria, AIDS, and other diseases for which protective vaccines do not exist. Release of endogenous danger signals has been linked to adjuvanticity; however, the role of extracellular ATP during vaccination has never been explored. Here, we tested whether ATP release is involved in the immune boosting effect of four common adjuvants: aluminum hydroxide, calcium phosphate, incomplete Freund's adjuvant, and the oil-in-water emulsion MF59. We found that intramuscular injection is always associated with a weak transient release of ATP, which was greatly enhanced by the presence of MF59 but not by all other adjuvants tested. Local injection of apyrase, an ATP-hydrolyzing enzyme, inhibited cell recruitment in the muscle induced by MF59 but not by alum or incomplete Freund's adjuvant. In addition, apyrase strongly inhibited influenza-specific T-cell responses and hemagglutination inhibition titers in response to an MF59-adjuvanted trivalent influenza vaccine. These data demonstrate that a transient ATP release is required for innate and adaptive immune responses induced by MF59 and link extracellular ATP with an enhanced response to vaccination. PMID:24324152

  12. Aluminium based adjuvants and their effects on mitochondria and lysosomes of phagocytosing cells.

    PubMed

    Ohlsson, Lars; Exley, Christopher; Darabi, Anna; Sandén, Emma; Siesjö, Peter; Eriksson, Håkan

    2013-11-01

    Aluminium oxyhydroxide, Al(OH)3 is one of few compounds approved as an adjuvant in human vaccines. However, the mechanism behind its immune stimulating properties is still poorly understood. In vitro co-culture of an aluminium adjuvant and the human monocytic cell line THP-1 resulted in reduced cell proliferation. Inhibition occurred at concentrations of adjuvant several times lower than would be found at the injection site using a vaccine formulation containing an aluminium adjuvant. Based on evaluation of the mitochondrial membrane potential, THP-1 cells showed no mitochondrial rupture after co-culture with the aluminium adjuvant, instead an increase in mitochondrial activity was seen. The THP-1 cells are phagocytosing cells and after co-culture with the aluminium adjuvant the phagosomal pathway was obstructed. Primary or early phagosomes mature into phagolysosomes with an internal pH of 4.5 - 5 and carry a wide variety of hydrolysing enzymes. Co-culture with the aluminium adjuvant yielded a reduced level of acidic vesicles and cathepsin L activity, a proteolytic enzyme of the phagolysosomes, was almost completely inhibited. THP-1 cells are an appropriate in vitro model in order to investigate the mechanism behind the induction of a phagocytosing antigen presenting cell into an inflammatory cell by aluminium adjuvants. Much information will be gained by investigating the phagosomal pathway and what occurs inside the phagosomes and to elucidate the ultimate fate of phagocytosed aluminium particles.

  13. DIESEL EXHAUST PARTICLE COMPOSITION AND THE METHOD OF SONICATION INFLUENCE THE ADJUVANCY EFFECT AND TARC PRODUCTION

    EPA Science Inventory

    Numerous reports have shown diesel exhaust particles (DEP) can act as an immunological adjuvant in asthma. Recent interest has focused on thymus and activation-regulated chemokine (TARC) as an important modulator of this effect. This study evaluated the adjuvancy effects of thr...

  14. Unraveling molecular signatures of immunostimulatory adjuvants in the female genital tract through systems biology.

    PubMed

    Lindqvist, Madelene; Nookaew, Intawat; Brinkenberg, Ingrid; Samuelson, Emma; Thörn, Karolina; Nielsen, Jens; Harandi, Ali M

    2011-01-01

    Sexually transmitted infections (STIs) unequivocally represent a major public health concern in both industrialized and developing countries. Previous efforts to develop vaccines for systemic immunization against a large number of STIs in humans have been unsuccessful. There is currently a drive to develop mucosal vaccines and adjuvants for delivery through the genital tract to confer protective immunity against STIs. Identification of molecular signatures that can be used as biomarkers for adjuvant potency can inform rational development of potent mucosal adjuvants. Here, we used systems biology to study global gene expression and signature molecules and pathways in the mouse vagina after treatment with two classes of experimental adjuvants. The Toll-like receptor 9 agonist CpG ODN and the invariant natural killer T cell agonist alpha-galactosylceramide, which we previously identified as equally potent vaginal adjuvants, were selected for this study. Our integrated analysis of genome-wide transcriptome data determined which signature pathways, processes and networks are shared by or otherwise exclusive to these 2 classes of experimental vaginal adjuvants in the mouse vagina. To our knowledge, this is the first integrated genome-wide transcriptome analysis of the effects of immunomodulatory adjuvants on the female genital tract of a mammal. These results could inform rational development of effective mucosal adjuvants for vaccination against STIs.

  15. Antibody response in silver catfish (Rhamdia quelen) immunized with a model antigen associated with different adjuvants.

    PubMed

    Pavan, T R; Di Domenico, J; Kirsten, K S; Nied, C O; Frandoloso, R; Kreutz, L C

    2016-07-25

    Adjuvants are essential to boost the immune response to inoculated antigen and play a central role in vaccine development. In this study, we investigated the efficacy of several adjuvants in the production of anti-bovine serum albumin (BSA) antibodies in silver catfish. Two hundred and seventy juvenile silver catfish (60-80 g) of both sexes were intraperitoneally vaccinated with BSA (200 µg/fish) alone or mixed to the following adjuvants: Freund's complete adjuvant (FCA), Freund's incomplete adjuvant (FIA), aluminum hydroxide (AlOH), Montanide, four types of cytosine-phosphate-guanine (CpG) oligodeoxynucleotides (ODNs) and three concentrations of β-glucan, and the immune enhancing property was evaluated by measuring anti-BSA antibodies in blood samples at biweekly intervals. Our results demonstrated that CpGs ODNs and β-glucan were as effective as classical adjuvants (FCA, FIA, AlOH and Montanide) in promoting anti-BSA antibodies and that the kinetics of antibody production induced by all adjuvants used in our study had a similar trend to that observed in other fish species, with a peak at 28 days post-vaccination. These results may be useful for the selection of adjuvants for vaccine formulation intended for silver catfish and for the development of vaccine and vaccination strategies to other fish species. PMID:27464022

  16. Current adjuvant treatment modalities for gastric cancer: From history to the future

    PubMed Central

    Kilic, Leyla; Ordu, Cetin; Yildiz, Ibrahim; Sen, Fatma; Keskin, Serkan; Ciftci, Rumeysa; Pilanci, Kezban Nur

    2016-01-01

    The discrepancy between the surgical technique and the type of adjuvant chemotherapy used in clinical trials and patient outcomes in terms of overall survival rates has led to the generation of different adjuvant treatment protocols in distinct parts of the world. The adjuvant treatment recommendation is generally chemoradiotherapy in the United States, perioperative chemotherapy in the United Kingdom and parts of Europe, and chemotherapy in Asia. These options mainly rely on the United States Intergroup-0116, United Kingdom British Medical Research Council Adjuvant Gastric Infusional Chemotherapy, and the Asian Adjuvant Chemotherapy Trial of S-1 for Gastric Cancer and Capecitabine and Oxaliplatin Adjuvant Study in Stomach Cancer trials. However, the benefits were evident for only certain patients, which were not very homogeneous regarding the type of surgery, chemotherapy regimens, and stage of disease. Whether the dissimilarities in survival are attributable to surgical technique or intrinsic biological differences is a subject of debate. Regardless of the extent of surgery, multimodal therapy may offer modest survival advantage at least for diseases with lymph node involvement. Moreover, in the era of individualized treatment for most of the other cancer types, identification of special subgroups comprising those who will derive more or no benefit from adjuvant therapy merits further investigation. The aim of this review is to reveal the historical evolution and future reflections of adjuvant treatment modalities for resected gastric cancer patients. PMID:27190583

  17. Studies on respiratory immunization with tetanus toxoid: the role of adjuvants

    PubMed Central

    Bartlema, H. C.; Braunius, Rientsje; Hölscher, Lily

    1972-01-01

    Aerosol vaccination of mice with purified plain tetanus toxoid does not induce an immune response unless a suitable adjuvant is added. Aluminium phosphate is without effect by aerosol treatment. Killed cells of Klebsiella pneumoniae, although effective, are unsatisfactory owing to the long inhalation period needed. Killed Bordetella perussis cells were found to be an excellent adjuvant. A single aerosol treatment with a toxoid—B. pertussis mixture during a moderate exposure period evoked a considerable immune response. With repeated aerosol treatment of primed mice the addition of adjuvant is not required; booster treatment with plain toxoid is at least as effective. Extracts from B. pertussis cells exert as good an adjuvant effect as the whole-cell vaccine. The remaining cell-wall debris also appears to be an active adjuvant. In combination with constant doses of adjuvant (108 B. pertussis cells), the 50% protective doses (ED 50) of toxoid were determined by inhalation and by s.c. injection and were found to be 0·1875 and 0·0625 LFU respectively. This would imply that, as a result of the adjuvant action, the s.c. ED 50 is reduced by approximately a factor of 20; whereas the respiratory ED 50 is decreased by at least a factor of 100. It is suggested that the much more pronounced adjuvant activity in aerosol immunization is associated with the induction of strong cell-mediated hypersensitivity in the respiratory tract. ImagesFig. 1Fig. 2 PMID:4346009

  18. Antibody response in silver catfish (Rhamdia quelen) immunized with a model antigen associated with different adjuvants

    PubMed Central

    Pavan, T.R.; Di Domenico, J.; Kirsten, K.S.; Nied, C.O.; Frandoloso, R.; Kreutz, L.C.

    2016-01-01

    Adjuvants are essential to boost the immune response to inoculated antigen and play a central role in vaccine development. In this study, we investigated the efficacy of several adjuvants in the production of anti-bovine serum albumin (BSA) antibodies in silver catfish. Two hundred and seventy juvenile silver catfish (60–80 g) of both sexes were intraperitoneally vaccinated with BSA (200 µg/fish) alone or mixed to the following adjuvants: Freund’s complete adjuvant (FCA), Freund’s incomplete adjuvant (FIA), aluminum hydroxide (AlOH), Montanide, four types of cytosine-phosphate-guanine (CpG) oligodeoxynucleotides (ODNs) and three concentrations of β-glucan, and the immune enhancing property was evaluated by measuring anti-BSA antibodies in blood samples at biweekly intervals. Our results demonstrated that CpGs ODNs and β-glucan were as effective as classical adjuvants (FCA, FIA, AlOH and Montanide) in promoting anti-BSA antibodies and that the kinetics of antibody production induced by all adjuvants used in our study had a similar trend to that observed in other fish species, with a peak at 28 days post-vaccination. These results may be useful for the selection of adjuvants for vaccine formulation intended for silver catfish and for the development of vaccine and vaccination strategies to other fish species. PMID:27464022

  19. 75 FR 66766 - NIAID Blue Ribbon Panel Meeting on Adjuvant Discovery and Development

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-29

    ... knowledge and capabilities, and defines NIAID's goals for the continued discovery, development and... HUMAN SERVICES NIAID Blue Ribbon Panel Meeting on Adjuvant Discovery and Development Notice is hereby... discovery, development and clinical evaluation of adjuvants for use with preventive vaccines. NIAID...

  20. Different human vaccine adjuvants promote distinct antigen-independent immunological signatures tailored to different pathogens

    PubMed Central

    Knudsen, Niels Peter H.; Olsen, Anja; Buonsanti, Cecilia; Follmann, Frank; Zhang, Yuan; Coler, Rhea N.; Fox, Christopher B.; Meinke, Andreas; D´Oro, Ugo; Casini, Daniele; Bonci, Alessandra; Billeskov, Rolf; De Gregorio, Ennio; Rappuoli, Rino; Harandi, Ali M.; Andersen, Peter; Agger, Else Marie

    2016-01-01

    The majority of vaccine candidates in clinical development are highly purified proteins and peptides relying on adjuvants to enhance and/or direct immune responses. Despite the acknowledged need for novel adjuvants, there are still very few adjuvants in licensed human vaccines. A vast number of adjuvants have been tested pre-clinically using different experimental conditions, rendering it impossible to directly compare their activity. We performed a head-to-head comparison of five different adjuvants Alum, MF59®, GLA-SE, IC31® and CAF01 in mice and combined these with antigens from M. tuberculosis, influenza, and chlamydia to test immune-profiles and efficacy in infection models using standardized protocols. Regardless of antigen, each adjuvant had a unique immunological signature suggesting that the adjuvants have potential for different disease targets. Alum increased antibody titers; MF59® induced strong antibody and IL-5 responses; GLA-SE induced antibodies and Th1; CAF01 showed a mixed Th1/Th17 profile and IC31® induced strong Th1 responses. MF59® and GLA-SE were strong inducers of influenza HI titers while CAF01, GLA-SE and IC31® enhanced protection to TB and chlamydia. Importantly, this is the first extensive attempt to categorize clinical-grade adjuvants based on their immune profiles and protective efficacy to inform a rational development of next generation vaccines for human use. PMID:26791076

  1. [Adjuvant chemotherapy for resectable non-small cell lung cancer (NSCLC)].

    PubMed

    Nakajima, Eiji; Katou, H

    2008-01-01

    A randomized clinical trial of adjuvant chemotherapy has been evaluated for non-small cell lung cancer (NSCLC) patients, because the prognosis of early NSCLC does not enough after surgery (stage I: 70-80%, stage II: 50% in overall 5-years survival). Japanese guide line for lung cancer treatment (2005 edition) recommends adjuvant chemotherapy after complete resection for pathological stage IB, II and IIIA. Previous studies have suggested that uracil-tegafur has benefit for stage IB NSCLC patients, and platinum-based adjuvant chemotherapy has benefit for stage IB, II and IIIA NSCLC patients. In 2007 ASCO Annual Meeting, Harpole D talked about molecular prognostic profiles in early resected NSCLC. The goal of this study design is to validate a molecular-based tumor model that identifies those patients at low risk for cancer recurrence who will not benefit from adjuvant chemotherapy. The remaining patients will be randomly assigned to observation (the present standard of care) or adjuvant chemotherapy to determine the efficacy of adjuvant in this population. Biomarker for response of chemotherapy will be available to know who has benefit from adjuvant chemotherapy. When each patient has appropriate adjuvant chemotherapy, the prognosis is improved by that.

  2. Different human vaccine adjuvants promote distinct antigen-independent immunological signatures tailored to different pathogens.

    PubMed

    Knudsen, Niels Peter H; Olsen, Anja; Buonsanti, Cecilia; Follmann, Frank; Zhang, Yuan; Coler, Rhea N; Fox, Christopher B; Meinke, Andreas; D'Oro, Ugo; Casini, Daniele; Bonci, Alessandra; Billeskov, Rolf; De Gregorio, Ennio; Rappuoli, Rino; Harandi, Ali M; Andersen, Peter; Agger, Else Marie

    2016-01-01

    The majority of vaccine candidates in clinical development are highly purified proteins and peptides relying on adjuvants to enhance and/or direct immune responses. Despite the acknowledged need for novel adjuvants, there are still very few adjuvants in licensed human vaccines. A vast number of adjuvants have been tested pre-clinically using different experimental conditions, rendering it impossible to directly compare their activity. We performed a head-to-head comparison of five different adjuvants Alum, MF59®, GLA-SE, IC31® and CAF01 in mice and combined these with antigens from M. tuberculosis, influenza, and chlamydia to test immune-profiles and efficacy in infection models using standardized protocols. Regardless of antigen, each adjuvant had a unique immunological signature suggesting that the adjuvants have potential for different disease targets. Alum increased antibody titers; MF59® induced strong antibody and IL-5 responses; GLA-SE induced antibodies and Th1; CAF01 showed a mixed Th1/Th17 profile and IC31® induced strong Th1 responses. MF59® and GLA-SE were strong inducers of influenza HI titers while CAF01, GLA-SE and IC31® enhanced protection to TB and chlamydia. Importantly, this is the first extensive attempt to categorize clinical-grade adjuvants based on their immune profiles and protective efficacy to inform a rational development of next generation vaccines for human use. PMID:26791076

  3. Unraveling Molecular Signatures of Immunostimulatory Adjuvants in the Female Genital Tract through Systems Biology

    PubMed Central

    Brinkenberg, Ingrid; Samuelson, Emma; Thörn, Karolina; Nielsen, Jens; Harandi, Ali M.

    2011-01-01

    Sexually transmitted infections (STIs) unequivocally represent a major public health concern in both industrialized and developing countries. Previous efforts to develop vaccines for systemic immunization against a large number of STIs in humans have been unsuccessful. There is currently a drive to develop mucosal vaccines and adjuvants for delivery through the genital tract to confer protective immunity against STIs. Identification of molecular signatures that can be used as biomarkers for adjuvant potency can inform rational development of potent mucosal adjuvants. Here, we used systems biology to study global gene expression and signature molecules and pathways in the mouse vagina after treatment with two classes of experimental adjuvants. The Toll-like receptor 9 agonist CpG ODN and the invariant natural killer T cell agonist alpha-galactosylceramide, which we previously identified as equally potent vaginal adjuvants, were selected for this study. Our integrated analysis of genome-wide transcriptome data determined which signature pathways, processes and networks are shared by or otherwise exclusive to these 2 classes of experimental vaginal adjuvants in the mouse vagina. To our knowledge, this is the first integrated genome-wide transcriptome analysis of the effects of immunomodulatory adjuvants on the female genital tract of a mammal. These results could inform rational development of effective mucosal adjuvants for vaccination against STIs. PMID:21666746

  4. Unraveling molecular signatures of immunostimulatory adjuvants in the female genital tract through systems biology.

    PubMed

    Lindqvist, Madelene; Nookaew, Intawat; Brinkenberg, Ingrid; Samuelson, Emma; Thörn, Karolina; Nielsen, Jens; Harandi, Ali M

    2011-01-01

    Sexually transmitted infections (STIs) unequivocally represent a major public health concern in both industrialized and developing countries. Previous efforts to develop vaccines for systemic immunization against a large number of STIs in humans have been unsuccessful. There is currently a drive to develop mucosal vaccines and adjuvants for delivery through the genital tract to confer protective immunity against STIs. Identification of molecular signatures that can be used as biomarkers for adjuvant potency can inform rational development of potent mucosal adjuvants. Here, we used systems biology to study global gene expression and signature molecules and pathways in the mouse vagina after treatment with two classes of experimental adjuvants. The Toll-like receptor 9 agonist CpG ODN and the invariant natural killer T cell agonist alpha-galactosylceramide, which we previously identified as equally potent vaginal adjuvants, were selected for this study. Our integrated analysis of genome-wide transcriptome data determined which signature pathways, processes and networks are shared by or otherwise exclusive to these 2 classes of experimental vaginal adjuvants in the mouse vagina. To our knowledge, this is the first integrated genome-wide transcriptome analysis of the effects of immunomodulatory adjuvants on the female genital tract of a mammal. These results could inform rational development of effective mucosal adjuvants for vaccination against STIs. PMID:21666746

  5. The SwissLipids knowledgebase for lipid biology

    PubMed Central

    Liechti, Robin; Hyka-Nouspikel, Nevila; Niknejad, Anne; Gleizes, Anne; Götz, Lou; Kuznetsov, Dmitry; David, Fabrice P.A.; van der Goot, F. Gisou; Riezman, Howard; Bougueleret, Lydie; Xenarios, Ioannis; Bridge, Alan

    2015-01-01

    Motivation: Lipids are a large and diverse group of biological molecules with roles in membrane formation, energy storage and signaling. Cellular lipidomes may contain tens of thousands of structures, a staggering degree of complexity whose significance is not yet fully understood. High-throughput mass spectrometry-based platforms provide a means to study this complexity, but the interpretation of lipidomic data and its integration with prior knowledge of lipid biology suffers from a lack of appropriate tools to manage the data and extract knowledge from it. Results: To facilitate the description and exploration of lipidomic data and its integration with prior biological knowledge, we have developed a knowledge resource for lipids and their biology—SwissLipids. SwissLipids provides curated knowledge of lipid structures and metabolism which is used to generate an in silico library of feasible lipid structures. These are arranged in a hierarchical classification that links mass spectrometry analytical outputs to all possible lipid structures, metabolic reactions and enzymes. SwissLipids provides a reference namespace for lipidomic data publication, data exploration and hypothesis generation. The current version of SwissLipids includes over 244 000 known and theoretically possible lipid structures, over 800 proteins, and curated links to published knowledge from over 620 peer-reviewed publications. We are continually updating the SwissLipids hierarchy with new lipid categories and new expert curated knowledge. Availability: SwissLipids is freely available at http://www.swisslipids.org/. Contact: alan.bridge@isb-sib.ch Supplementary information: Supplementary data are available at Bioinformatics online. PMID:25943471

  6. Carvedilol alleviates adjuvant-induced arthritis and subcutaneous air pouch edema: Modulation of oxidative stress and inflammatory mediators

    SciTech Connect

    Arab, Hany H.; El-Sawalhi, Maha M.

    2013-04-15

    Rheumatoid arthritis (RA) is a systemic inflammatory disease with cardiovascular complications as the leading cause of morbidity. Carvedilol is an adrenergic antagonist which has been safely used in treatment of several cardiovascular disorders. Given that carvedilol has powerful antioxidant/anti-inflammatory properties, we aimed to investigate its protective potential against arthritis that may add further benefits for its clinical usefulness especially in RA patients with concomitant cardiovascular disorders. Two models were studied in the same rat; adjuvant arthritis and subcutaneous air pouch edema. Carvedilol (10 mg/kg/day p.o. for 21 days) effectively suppressed inflammation in both models with comparable efficacy to the standard anti-inflammatory diclofenac (5 mg/kg/day p.o.). Notably, carvedilol inhibited paw edema and abrogated the leukocyte invasion to air pouch exudates. The latter observation was confirmed by the histopathological assessment of the pouch lining that revealed mitigation of immuno-inflammatory cell influx. Carvedilol reduced/normalized oxidative stress markers (lipid peroxides, nitric oxide and protein thiols) and lowered the release of inflammatory cytokines (TNF-α and IL-6), and eicosanoids (PGE{sub 2} and LTB{sub 4}) in sera and exudates of arthritic rats. Interestingly, carvedilol, per se, didn't present any effect on assessed biochemical parameters in normal rats. Together, the current study highlights evidences for the promising anti-arthritic effects of carvedilol that could be mediated through attenuation of leukocyte migration, alleviation of oxidative stress and suppression of proinflammatory cytokines and eicosanoids. - Highlights: ► Carvedilol possesses promising anti-arthritic properties. ► It markedly suppressed inflammation in adjuvant arthritis and air pouch edema. ► It abrogated the leukocyte invasion to air pouch exudates and linings. ► It reduced/normalized oxidative stress markers in sera and exudates of

  7. Anti-arthritic activity of root bark of Oroxylum indicum (L.) vent against adjuvant-induced arthritis

    PubMed Central

    Karnati, Mamatha; Chandra, Rodda H; Veeresham, Ciddi; Kishan, Bookya

    2013-01-01

    Background: Oroxylum indicum (Bignoniaceae) also known as Sonapatha is an indigenous medicinal plant widely used in Ayurvedic medicine for over thousands of years. It is an active ingredient of well-known Ayurvedic formulations such as Chyawanprash and Dasamula. Root bark of this plant has tonic and astringent properties and it is also used in rheumatism. Objective: The present investigation was carried out to evaluate the anti-arthritic activity of different extracts of root bark of Oroxylum indicum against adjuvant - induced arthritis in rats. Materials and Methods: Male Wistar rats were used in this study. Arthritis was induced by injecting 0.1 ml Freund's complete adjuvant intra-dermally into the left hind paw of the rats. The paw volume, hematological, biochemical, radiographic and histopathological aspects were evaluated. Results: The relative percentage inhibition potential of paw volume in rats treated with various extracts of Oroxylum indicum was found to be ethyl acetate extract (67.69%) >chloroform extract (64.61%) >n-butanol extract (58.46%) respectively. The hematological parameters like RBC count, hemoglobin content showed significant increase while there was a significant decrease in total WBC count and ESR in all the groups of animals pretreated with root bark extracts. The biochemical parameters such as catalase, glutathione contents showed a significant increase while the lipid peroxide and Cathepsin-D content decreased significantly only in case of ethyl acetate pretreated rats when compared to others. Conclusion: The present study suggests that the chloroform, ethyl acetate and n-butanol extracts of root bark of Oroxylum indicum exhibit anti-arthritic activity. The order of activity of extracts was found to be ethyl acetate >chloroform >n-butanol respectively. PMID:23798888

  8. Chrysin alleviates testicular dysfunction in adjuvant arthritic rats via suppression of inflammation and apoptosis: Comparison with celecoxib

    SciTech Connect

    Darwish, Hebatallah A.; Arab, Hany H.; Abdelsalam, Rania M.

    2014-09-01

    Long standing rheumatoid arthritis (RA) is associated with testicular dysfunction and subfertility. Few studies have addressed the pathogenesis of testicular injury in RA and its modulation by effective agents. Thus, the current study aimed at evaluating the effects of two testosterone boosting agents; chrysin, a natural flavone and celecoxib, a selective COX-2 inhibitor, in testicular impairment in rats with adjuvant arthritis, an experimental model of RA. Chrysin (25 and 50 mg/kg) and celecoxib (5 mg/kg) were orally administered to Wistar rats once daily for 21 days starting 1 h before arthritis induction. Chrysin suppressed paw edema with comparable efficacy to celecoxib. More important, chrysin, dose-dependently and celecoxib attenuated the testicular injury via reversing lowered gonadosomatic index and histopathologic alterations with preservation of spermatogenesis. Both agents upregulated steroidogenic acute regulatory (StAR) mRNA expression and serum testosterone with concomitant restoration of LH and FSH. Furthermore, they suppressed inflammation via abrogation of myeloperoxidase, TNF-α and protein expression of COX-2 and iNOS besides elevation of IL-10. Alleviation of the testicular impairment was accompanied with suppression of oxidative stress via lowering testicular lipid peroxides and nitric oxide. With respect to apoptosis, both agents downregulated FasL mRNA expression and caspase-3 activity in favor of cell survival. For the first time, these findings highlight the protective effects of chrysin and celecoxib against testicular dysfunction in experimental RA which were mediated via boosting testosterone in addition to attenuation of testicular inflammation, oxidative stress and apoptosis. Generally, the 50 mg/kg dose of chrysin exerted comparable protective actions to celecoxib. - Highlights: • Chrysin and celecoxib alleviated testicular suppression in adjuvant arthritis. • They attenuated histopathological damage and preserved spermatogenesis

  9. Adjuvant whole brain radiotherapy: strong emotions decide but rational studies are needed.

    PubMed

    Brown, Paul D; Asher, Anthony L; Farace, Elana

    2008-04-01

    Brain metastases are common in cancer patients and cause considerable morbidity and mortality. For patients with limited disease and good performance status, treatment typically involves a combination of focal measures (e.g., surgical resection or radiosurgery) for the radiographically apparent disease, followed by adjuvant whole brain radiotherapy (WBRT) to treat subclinical disease. Because of concerns regarding the toxicity of WBRT, especially neurocognitive deterioration, many have advocated withholding adjuvant WBRT. Recently published studies have shed more light on the efficacy of adjuvant WBRT and the neurocognitive effects of WBRT. However, the inclusion of neurocognitive and quality-of-life data in clinical trials are still required to better define the role of adjuvant WBRT. Currently, two Phase III trials are underway, one in Europe and one in North America, that will determine the effect of adjuvant WBRT on patients' quality of life, neurocognitive function, and survival.

  10. Kinetic Resolution of the Interactions between Agrochemical Products and Adjuvant Systems upon Mixing.

    PubMed

    Webster, Graham R; Bisset, Nicole B; Cahill, David M; Jones, Peter; Killick, Andrew; Hawley, Adrian; Boyd, Ben J

    2016-08-10

    The addition of an adjuvant to a pesticide usually occurs in a mix-tank, before spray application to the crop. Their interaction is potentially crucial to overall efficacy but has received little attention from a physical-chemical perspective. Study was undertaken by laser diffraction, Raman spectroscopy, and small-angle X-ray scattering to resolve these physical processes. It was shown that migration of the pesticide into the adjuvant droplet occurred in all cases studied. The level of transfer was dependent upon adjuvant level, adjuvant solubility, and surfactant level. For suspension pesticides, dissolution of crystallites within the droplet occurred to a degree limited by solubility. The results directly demonstrate the transfer of the pesticide into the adjuvant carrier. This indicates that for emulsion-based pesticides, application to the target is likely as a homogeneously mixed droplet, whereas for suspension pesticides, solubility may limit transfer and dissolution, leading to heterogeneity in the applied particles. PMID:27460332

  11. Adjuvant Whole Brain Radiotherapy: Strong Emotions Decide But Rational Studies Are Needed

    SciTech Connect

    Brown, Paul D. Asher, Anthony L.; Farace, Elana

    2008-04-01

    Brain metastases are common in cancer patients and cause considerable morbidity and mortality. For patients with limited disease and good performance status, treatment typically involves a combination of focal measures (e.g., surgical resection or radiosurgery) for the radiographically apparent disease, followed by adjuvant whole brain radiotherapy (WBRT) to treat subclinical disease. Because of concerns regarding the toxicity of WBRT, especially neurocognitive deterioration, many have advocated withholding adjuvant WBRT. Recently published studies have shed more light on the efficacy of adjuvant WBRT and the neurocognitive effects of WBRT. However, the inclusion of neurocognitive and quality-of-life data in clinical trials are still required to better define the role of adjuvant WBRT. Currently, two Phase III trials are underway, one in Europe and one in North America, that will determine the effect of adjuvant WBRT on patients' quality of life, neurocognitive function, and survival.

  12. Tear Film Lipids

    PubMed Central

    Butovich, Igor A.

    2013-01-01

    Human meibomian gland secretions (MGS, or meibum) are formed from a complex mixture of lipids of different classes such as wax esters, cholesteryl esters, (O-acyl)-ω-hydroxy fatty acids (OAHFA) and their esters, acylglycerols, diacylated diols, free fatty acids, cholesterol, and a smaller amount of other polar and nonpolar lipids, whose chemical nature and the very presence in MGS have been a matter of intense debates. The purpose of this review is to discuss recent results that were obtained using different experimental techniques, estimate limitations of their usability, and discuss their biochemical, biophysical, and physiological implications. To create a lipid map of MGS and tears, the results obtained in the author’s laboratory were integrated with available information on chemical composition of MGS and tears. The most informative approaches that are available today to researchers, such as HPLC-MS, GC-MS, and proton NMR, are discussed in details. A map of the meibomian lipidome (as it is seen in reverse phase liquid chromatography/mass spectrometry experiments) is presented. Directions of future efforts in the area are outlined. PMID:23769846

  13. Painted supported lipid membranes

    PubMed Central

    Florin, E.-L.; Gaub, H. E.

    1993-01-01

    We report herein measurements on a novel type of supported lipid films, which we call painted supported membranes (PSM). These membranes are formed in a self-assembly process on alkylated gold films from an organic solution. The formation process was investigated with surface plasmon resonance microscopy. The optical and electrical properties of the films were determined for various types of lipids and as a function of temperature by means of cyclic voltammetry and potential relaxation after charge injection. We could show that these films exhibit an extraordinarily high specific resistivity which, depending on the lipid, may be as high as 109 ohm/cm2. We could also show that due to this low conductivity, an electrical polarization across the PSM relaxes with characteristic time constants of up to 20 min. The electrical properties together with their high mechanical stability and accessibility to surface sensitive techniques make these films well suitable model membranes for optical and electrical investigations. Examples for such applications are given in the subsequent article by Seifert et al. ImagesFIGURE 3FIGURE 4 PMID:19431873

  14. [Phosphoinositides: lipidic essential actors in the intracellular traffic].

    PubMed

    Bertazzi, Dimitri L; De Craene, Johan-Owen; Bär, Séverine; Sanjuan-Vazquez, Myriam; Raess, Matthieu A; Friant, Sylvie

    2015-01-01

    Phosphoinositides (PPIn) are lipids involved in the vesicular transport of proteins between the different intracellular compartments. They act by recruiting and/or activating effector proteins and are thus involved in crucial cellular functions including vesicle budding, fusion and dynamics of membranes and regulation of the cytoskeleton. Although they are present in low concentrations in membranes, their activity is essential for cell survival and needs to be tightly controlled. Therefore, phosphatases and kinases specific of the various cellular membranes can phosphorylate/dephosphorylate their inositol ring on the positions D3, D4 and/or D5. The differential phosphorylation determines the intracellular localisation and the activity of the PPIn. Indeed, non-phosphorylated phosphatidylinositol (PtdIns) is the basic component of the PPIn and can be found in all eukaryotic cells at the cytoplasmic face of the ER, the Golgi, mitochondria and microsomes. It can get phosphorylated on position D4 to obtain PtdIns4P, a PPIn enriched in the Golgi compartment and involved in the maintenance of this organelle as well as anterograde and retrograde transport to and from the Golgi. PtdIns phosphorylation on position D3 results in PtdIns3P that is required for endosomal transport and multivesicular body (MVB) formation and sorting. These monophosphorylated PtdIns can be further phosphorylated to produce bisphophorylated PtdIns. Thus, PtdIns(4,5)P2, mainly produced by PtdIns4P phosphorylation, is enriched in the plasma membrane and involved in the regulation of actin cytoskeleton and endocytosis. PtdIns(3,5)P2, mainly produced by PtdIns3P phosphorylation, is enriched in late endosomes, MVBs and the lysosome/vacuole and plays a role in endosome to vacuole transport. PtdIns(3,4)P2 is absent in yeast, cells and mainly produced by PtdIns4P phosphorylation in human cells; PtdIns(3,4)P2 is localised in the plasma membrane and plays an important role as a second messenger by recruiting

  15. [Phosphoinositides: lipidic essential actors in the intracellular traffic].

    PubMed

    Bertazzi, Dimitri L; De Craene, Johan-Owen; Bär, Séverine; Sanjuan-Vazquez, Myriam; Raess, Matthieu A; Friant, Sylvie

    2015-01-01

    Phosphoinositides (PPIn) are lipids involved in the vesicular transport of proteins between the different intracellular compartments. They act by recruiting and/or activating effector proteins and are thus involved in crucial cellular functions including vesicle budding, fusion and dynamics of membranes and regulation of the cytoskeleton. Although they are present in low concentrations in membranes, their activity is essential for cell survival and needs to be tightly controlled. Therefore, phosphatases and kinases specific of the various cellular membranes can phosphorylate/dephosphorylate their inositol ring on the positions D3, D4 and/or D5. The differential phosphorylation determines the intracellular localisation and the activity of the PPIn. Indeed, non-phosphorylated phosphatidylinositol (PtdIns) is the basic component of the PPIn and can be found in all eukaryotic cells at the cytoplasmic face of the ER, the Golgi, mitochondria and microsomes. It can get phosphorylated on position D4 to obtain PtdIns4P, a PPIn enriched in the Golgi compartment and involved in the maintenance of this organelle as well as anterograde and retrograde transport to and from the Golgi. PtdIns phosphorylation on position D3 results in PtdIns3P that is required for endosomal transport and multivesicular body (MVB) formation and sorting. These monophosphorylated PtdIns can be further phosphorylated to produce bisphophorylated PtdIns. Thus, PtdIns(4,5)P2, mainly produced by PtdIns4P phosphorylation, is enriched in the plasma membrane and involved in the regulation of actin cytoskeleton and endocytosis. PtdIns(3,5)P2, mainly produced by PtdIns3P phosphorylation, is enriched in late endosomes, MVBs and the lysosome/vacuole and plays a role in endosome to vacuole transport. PtdIns(3,4)P2 is absent in yeast, cells and mainly produced by PtdIns4P phosphorylation in human cells; PtdIns(3,4)P2 is localised in the plasma membrane and plays an important role as a second messenger by recruiting

  16. Treg inducing adjuvants for therapeutic vaccination against chronic inflammatory diseases.

    PubMed

    Keijzer, Chantal; van der Zee, Ruurd; van Eden, Willem; Broere, Femke

    2013-01-01

    Many existing therapies in autoimmune diseases are based on systemic suppression of inflammation and the observed side effects of these therapies illustrate the pressing need for more specific interventions. Regulatory T-cells (Treg) are pivotal controllers of (auto-aggressive) immune responses and inflammation, and decreased Treg numbers and/or functioning have been associated with autoimmune disease. Therefore, Treg became frequently studied targets for more specific immunotherapy. Especially antigen-specific targeting of Treg would enable local and tailor made interventions, while obviating the negative side effect of general immuno-suppression. Self-antigens that participate in inflammation, irrespective of the etiology of the different autoimmune diseases, are held to be candidate antigens for antigen-specific interventions. Rather than tolerance induction to disease inciting self-antigens, which are frequently unknown, general self-antigens expressed at sites of inflammation would allow targeting of disease independent, but inflammatory-site specific, regulatory mechanisms. Preferably, such self-antigens should be abundantly expressed and up-regulated at the inflammatory-site. In this perspective heat shock proteins (Hsp) have several characteristics that make them highly attractive targets for antigen-specific Treg inducing therapy. The development of an antigen-specific Treg inducing vaccine is a major novel goal in the field of immunotherapy in autoimmune diseases. However, progress is hampered not only by the lack of effective antigens, but also by the fact that other factors such as dose, route, and the presence or absence of an adjuvant, turned out to be critical unknowns, with respect to the effective induction of Treg. In addition, the use of a Treg inducing adjuvant might be required to achieve an effective regulatory response, in the case of ongoing inflammation. Future goals in clinical trials will be the optimization of natural Treg expansion (or

  17. New developments in oral vaccines and mucosal adjuvants.

    PubMed

    Subiza, Jose L; El-Qutob, David; Fernandez-Caldas, Enrique

    2015-01-01

    Mucosal immunity is the first line of defence of the organism against several pathogens and, at the same time, it is of critical importance in allergic diseases. Oral vaccines have been developed with the aim of enhancing the immune response to pathogens and for the treatment of allergic diseases. One of the major issues concerning oral vaccines is the use of oral adjuvants which could facilitate antigen presentation with the consequent induction of an effective immune response. The present review consists of an analysis, point by point, of the different patents that have been presented in the last 12 months in the different agencies: European (EP), US, and World Intellectual Property Organization (WIPO) and a general analysis of the future developments and trends in this emerging area.

  18. Adjuvant systemic therapy in older women with breast cancer.

    PubMed

    Leone, Julieta; Leone, Bernardo Amadeo; Leone, José Pablo

    2016-01-01

    Breast cancer in the elderly is an increasing clinical problem. In addition, ~60% of deaths from breast cancer occur in women aged 65 years and older. Despite this, older women with breast cancer have been underrepresented in clinical trials, and this has led to less than optimal evidence to guide their therapy. The management of elderly women with early breast cancer is a complex process that requires careful evaluation of life expectancy, comorbidities, patient values, and risks and benefits of available treatment options. This review will focus on current adjuvant systemic therapy options for older women with breast cancer, discuss the principles in the decision-making process, and define the role of endocrine therapy, chemotherapy, and targeted agents. PMID:27524919

  19. Uncaria tomentosa—Adjuvant Treatment for Breast Cancer: Clinical Trial

    PubMed Central

    Santos Araújo, Maria do Carmo; Farias, Iria Luiza; Gutierres, Jessie; Dalmora, Sergio L.; Flores, Nélia; Farias, Julia; de Cruz, Ivana; Chiesa, Juarez; Morsch, Vera Maria; Chitolina Schetinger, Maria Rosa

    2012-01-01

    Breast cancer is the most frequent neoplasm affecting women worldwide. Some of the recommended treatments involve chemotherapy whose toxic effects include leukopenia and neutropenia. This study assessed the effectiveness of Uncaria tomentosa (Ut) in reducing the adverse effects of chemotherapy through a randomized clinical trial. Patients with Invasive Ductal Carcinoma—Stage II, who underwent a treatment regimen known as FAC (Fluorouracil, Doxorubicin, Cyclophosphamide), were divided into two groups: the UtCa received chemotherapy plus 300 mg dry Ut extract per day and the Ca group that only received chemotherapy and served as the control experiment. Blood samples were collected before each one of the six chemotherapy cycles and blood counts, immunological parameters, antioxidant enzymes, and oxidative stress were analyzed. Uncaria tomentosa reduced the neutropenia caused by chemotherapy and was also able to restore cellular DNA damage. We concluded that Ut is an effective adjuvant treatment for breast cancer. PMID:22811748

  20. Uncaria tomentosa-Adjuvant Treatment for Breast Cancer: Clinical Trial.

    PubMed

    Santos Araújo, Maria do Carmo; Farias, Iria Luiza; Gutierres, Jessie; Dalmora, Sergio L; Flores, Nélia; Farias, Julia; de Cruz, Ivana; Chiesa, Juarez; Morsch, Vera Maria; Chitolina Schetinger, Maria Rosa

    2012-01-01

    Breast cancer is the most frequent neoplasm affecting women worldwide. Some of the recommended treatments involve chemotherapy whose toxic effects include leukopenia and neutropenia. This study assessed the effectiveness of Uncaria tomentosa (Ut) in reducing the adverse effects of chemotherapy through a randomized clinical trial. Patients with Invasive Ductal Carcinoma-Stage II, who underwent a treatment regimen known as FAC (Fluorouracil, Doxorubicin, Cyclophosphamide), were divided into two groups: the UtCa received chemotherapy plus 300 mg dry Ut extract per day and the Ca group that only received chemotherapy and served as the control experiment. Blood samples were collected before each one of the six chemotherapy cycles and blood counts, immunological parameters, antioxidant enzymes, and oxidative stress were analyzed. Uncaria tomentosa reduced the neutropenia caused by chemotherapy and was also able to restore cellular DNA damage. We concluded that Ut is an effective adjuvant treatment for breast cancer.

  1. Lactic acid bacteria as adjuvants for sublingual allergy vaccines.

    PubMed

    Van Overtvelt, Laurence; Moussu, Helene; Horiot, Stéphane; Samson, Sandrine; Lombardi, Vincent; Mascarell, Laurent; van de Moer, Ariane; Bourdet-Sicard, Raphaëlle; Moingeon, Philippe

    2010-04-01

    We compared immunomodulatory properties of 11 strains of lactic acid bacteria as well as their capacity to enhance sublingual immunotherapy efficacy in a murine asthma model. Two types of bacterial strains were identified, including: (i) potent inducers of IL-12p70 and IL-10 in dendritic cells, supporting IFN-gamma and IL-10 production in CD4+ T cells such as Lactobacillus helveticus; (ii) pure Th1 inducers such as L. casei. Sublingual administration in ovalbumin-sensitized mice of L. helveticus, but not L. casei, reduced airways hyperresponsiveness, bronchial inflammation and proliferation of specific T cells in cervical lymph nodes. Thus, probiotics acting as a Th1/possibly Treg, but not Th1 adjuvant, potentiate tolerance induction via the sublingual route.

  2. Induction of interleukin 1 secretion by adjuvant-active peptidoglycans.

    PubMed Central

    Vacheron, F; Guenounou, M; Nauciel, C

    1983-01-01

    The ability of differently structured, purified peptidoglycans (PG) to induce interleukin 1 (IL1) secretion was compared. PG from Bacillus megaterium and Staphylococcus aureus stimulated the production of IL1 by mouse peritoneal macrophages and human adherent mononuclear cells, whereas PG from Micrococcus lysodeikticus and Corynebacterium poinsettiae were inactive. There was a correlation between the ability of PG to induce IL1 secretion and previously demonstrated immunoenhancing activities (adjuvant effect, increase of resistance to tumor growth) of PG. PG solubilization by lysozyme decreased but did not abolish the PG effect on IL1 secretion. Active PG induced IL1 production in nude mice and in the C3H/HeJ strain (which is unresponsive to lipopolysaccharides). PMID:6605929

  3. Beyond adjuvants: immunomodulation strategies to enhance T cell immunity.

    PubMed

    Kamphorst, Alice O; Araki, Koichi; Ahmed, Rafi

    2015-06-01

    Engagement of CD8T cells is a crucial aspect of immune responses to pathogens and in tumor surveillance. Nonetheless most vaccination strategies with common adjuvants fail to elicit long-term memory CD8T cells. Increased knowledge on the cellular and molecular requirements for CD8T cell activation has unveiled new opportunities to directly modulate CD8T cells to generate optimal responses. During chronic infections and cancer, immunomodulation strategies to enhance T cell responses may be particularly necessary to overcome the immunosuppressive microenvironment. In this review we will discuss blockade of inhibitory receptors; interleukin-2 administration; regulatory T cell modulation; and targeting of mTOR, as means to enhance CD8T cell immunity.

  4. Adjuvant systemic therapy in older women with breast cancer

    PubMed Central

    Leone, Julieta; Leone, Bernardo Amadeo; Leone, José Pablo

    2016-01-01

    Breast cancer in the elderly is an increasing clinical problem. In addition, ~60% of deaths from breast cancer occur in women aged 65 years and older. Despite this, older women with breast cancer have been underrepresented in clinical trials, and this has led to less than optimal evidence to guide their therapy. The management of elderly women with early breast cancer is a complex process that requires careful evaluation of life expectancy, comorbidities, patient values, and risks and benefits of available treatment options. This review will focus on current adjuvant systemic therapy options for older women with breast cancer, discuss the principles in the decision-making process, and define the role of endocrine therapy, chemotherapy, and targeted agents. PMID:27524919

  5. The Role of Adjuvant Radiation in Uterine Sarcomas

    SciTech Connect

    Sampath, Sagus; Schultheiss, Timothy E.; Ryu, Janice K.; Wong, Jeffrey Y.C.

    2010-03-01

    Purpose: To determine clinical and pathological factors significant for overall survival (OS) and local-regional failure-free survival (LRFFS) in uterine sarcoma as they relate to adjuvant radiotherapy (AR). Methods and Materials: A retrospective analysis of 3,650 patients with uterine sarcoma was conducted using the National Oncology Database, a proprietary database of aggregated tumor registries owned by Impac Medical Systems (Sunnyvale, CA). Adjuvant radiotherapy was defined as postoperative external beam radiation to the pelvis, with or without brachytherapy. Prognostic factors were identified by multivariate analysis (MVA) using the Cox proportional hazards model. The Kaplan-Meier method was used to estimate survival, with significant differences (p < 0.05) determined using the log-rank test. Results: The median follow-up time was 59 months, with a 5-year OS of 37%. Significant prognostic factors for OS were stage, race/ethnicity, grade, age, histology, lymph node status, and surgical treatment (p < 0.01 for all factors). Use of AR was not predictive for OS. For nonmetastatic cancer patients receiving definitive surgery (n = 2,206), the 5-year LRFFS was 87%. In this group, stage, grade, histology, and AR were prognostic for LRFFS (p < 0.05), with AR associated with improved outcome compared with surgery alone (hazard ratio = 0.4, p < 0.001). Patients with carcinosarcoma, endometrial stromal sarcoma, leiomyosarcoma, poorly differentiated tumors, and negative lymph nodes had reduced local-regional failure (LRF) with AR (log-rank, p < 0.05 for all). Conclusion: In the largest retrospective analysis of uterine sarcoma published thus far, AR conferred a 53% reduction in the risk of LRF at 5 years. Use of AR may have broader indications than what are currently accepted in clinical practice.

  6. Weekly Paclitaxel in the Adjuvant Treatment of Breast Cancer

    PubMed Central

    Sparano, Joseph A.; Wang, Molin; Martino, Silvana; Jones, Vicky; Perez, Edith A.; Saphner, Tom; Wolff, Antonio C.; Sledge, George W.; Wood, William C.; Davidson, Nancy E.

    2009-01-01

    BACKGROUND We compared the efficacy of two different taxanes, docetaxel and paclitaxel, given either weekly or every 3 weeks, in the adjuvant treatment of breast cancer. METHODS We enrolled 4950 women with axillary lymph node–positive or high-risk, lymph node–negative breast cancer. After randomization, all patients first received 4 cycles of intravenous doxorubicin and cyclophosphamide at 3-week intervals and were then assigned to intravenous paclitaxel or docetaxel given at 3-week intervals for 4 cycles or at 1-week intervals for 12 cycles. The primary end point was disease-free survival. RESULTS As compared with patients receiving standard therapy (paclitaxel every 3 weeks), the hazard ratio for disease-free survival was 1.27 among those receiving weekly paclitaxel (P = 0.006), 1.23 among those receiving docetaxel every 3 weeks (P = 0.02), and 1.09 among those receiving weekly docetaxel (P = 0.29) (with a hazard ratio >1 favoring the groups receiving experimental therapy). As compared with standard therapy, weekly paclitaxel was also associated with improved survival (hazard ratio, 1.32; P = 0.01). An exploratory analysis of a subgroup of patients whose tumors expressed no human epidermal growth factor receptor type 2 protein found similar improvements in disease-free and overall survival with weekly paclitaxel treatment, regardless of hormone-receptor expression. Grade 2, 3, or 4 neuropathy was more frequent with weekly paclitaxel than with paclitaxel every 3 weeks (27% vs. 20%). CONCLUSIONS Weekly paclitaxel after standard adjuvant chemotherapy with doxorubicin and cyclophosphamide improves disease-free and overall survival in women with breast cancer. (ClinicalTrials.gov number, NCT00004125.) PMID:18420499

  7. Effects and mechanisms of Geniposide on rats with adjuvant arthritis.

    PubMed

    Dai, Miao-Miao; Wu, Hong; Li, Hui; Chen, Jian; Chen, Jin-Yun; Hu, Shun-Li; Shen, Chen

    2014-05-01

    Geniposide (GE), an iridoid glycoside compound, is the major active ingredient of Gardenia jasminoides Ellis (GJ) fruit which has anti-inflammatory and other important therapeutic activities. The aim of this study was to investigate the effects of GE on adjuvant arthritis (AA) rats and its possible mechanisms. AA was induced by injecting with Freund's complete adjuvant (FCA). Male SD rats were subjected to treatment with GE at 30, 60 and 120mg/kg from days 18 to 24 after immunization. Lymphocyte proliferation was assessed by MTT. Interleukin (IL)-6, IL-17, IL-4 and transforming growth factor-beta 1 (TGF-β1) were determined by ELISA. c-Jun N-terminal kinase (JNK) and phospho-JNK (p-JNK) were detected by Western blot. GE (60, 120mg/kg) significantly relieved the secondary hind paw swelling and arthritis index, along with decreased Th17-cells cytokines and increased Treg-cell cytokines in mesenteric lymph node lymphocytes (MLNL) and peripheral blood lymphocytes (PBL) of AA rats. In addition, GE decreased the expression of p-JNK in MLNL and PBL of AA rats. In vivo study, it was also observed that GE attenuated histopathologic changes of MLN in AA rats. Collectively, GE might exert its anti-inflammatory and immunoregulatory effects through inducing Th17 cell immune tolerance and enhancing Treg cell-mediated activities by down-regulating the expression of p-JNK. The mechanisms of GE on JNK signaling in MLNL and PBL may play critical roles in the pathogenesis of rheumatoid arthritis. PMID:24583144

  8. Effect of galantamine on adjuvant-induced arthritis in rats.

    PubMed

    Gowayed, Mennatallah A; Refaat, Rowaida; Ahmed, Walid M; El-Abhar, Hanan S

    2015-10-01

    Stimulation of the vagus nerve suppresses cytokine production and macrophage activation, via the interaction of its neurotransmitter acetylcholine (ACh) with the α7 subunit of the nicotinic acetylcholine receptor (α7nAChR), present on neurons and inflammatory cells. The present study aimed to verify the potential anti-inflammatory effect of galantamine against experimental arthritis induced in rats. Fourteen days post adjuvant injection, Sprague-Dawley rats were treated orally with three doses of galantamine (1.25, 2.5 and 5 mg/kg) or leflunomide (10 mg/kg) for 2 weeks and arthritis progression was assessed by hind paw swelling. Additionally, serum biomarkers, viz., anti-cyclic citrullinated peptide antibodies (Anti-CCP), tumor necrosis factor-α (TNF-α), interleukin-10 (IL-10) and monocyte chemoattractant protein-1 (MCP-1) were measured. Radiological examination of the hind paws was also carried out to evaluate the degree of joint damage. Adjuvant arthritis led to a significant weight loss, marked swelling of the hind paw and alteration in the serum levels of anti-CCP, TNF-α, IL-10 and MCP-1. These alterations were associated with significant radiological changes of the joints. Galantamine, in a dose-dependent manner, reduced significantly all biomarkers of inflammation, with the highest dose showing the best beneficial anti-inflammatory effect that was superior in magnitude to the reference drug leflunomide in most of the studied parameters. In conclusion, these results suggest that galantamine may represent a novel, inexpensive and effective therapeutic strategy in the treatment of rheumatoid arthritis. PMID:26189022

  9. Immune Adjuvant Effect of Molecularly-defined Toll-Like Receptor Ligands

    PubMed Central

    Toussi, Deana N.; Massari, Paola

    2014-01-01

    Vaccine efficacy is optimized by addition of immune adjuvants. However, although adjuvants have been used for over a century, to date, only few adjuvants are approved for human use, mostly aimed at improving vaccine efficacy and antigen-specific protective antibody production. The mechanism of action of immune adjuvants is diverse, depending on their chemical and molecular nature, ranging from non-specific effects (i.e., antigen depot at the immunization site) to specific activation of immune cells leading to improved host innate and adaptive responses. Although the detailed molecular mechanism of action of many adjuvants is still elusive, the discovery of Toll-like receptors (TLRs) has provided new critical information on immunostimulatory effect of numerous bacterial components that engage TLRs. These ligands have been shown to improve both the quality and the quantity of host adaptive immune responses when used in vaccine formulations targeted to infectious diseases and cancer that require both humoral and cell-mediated immunity. The potential of such TLR adjuvants in improving the design and the outcomes of several vaccines is continuously evolving, as new agonists are discovered and tested in experimental and clinical models of vaccination. In this review, a summary of the recent progress in development of TLR adjuvants is presented. PMID:26344622

  10. Generation of "virtual" control groups for single arm prostate cancer adjuvant trials.

    PubMed

    Jia, Zhenyu; Lilly, Michael B; Koziol, James A; Chen, Xin; Xia, Xiao-Qin; Wang, Yipeng; Skarecky, Douglas; Sutton, Manuel; Sawyers, Anne; Ruckle, Herbert; Carpenter, Philip M; Wang-Rodriguez, Jessica; Jiang, Jun; Deng, Mingsen; Pan, Cong; Zhu, Jian-Guo; McLaren, Christine E; Gurley, Michael J; Lee, Chung; McClelland, Michael; Ahlering, Thomas; Kattan, Michael W; Mercola, Dan

    2014-01-01

    It is difficult to construct a control group for trials of adjuvant therapy (Rx) of prostate cancer after radical prostatectomy (RP) due to ethical issues and patient acceptance. We utilized 8 curve-fitting models to estimate the time to 60%, 65%, … 95% chance of progression free survival (PFS) based on the data derived from Kattan post-RP nomogram. The 8 models were systematically applied to a training set of 153 post-RP cases without adjuvant Rx to develop 8 subsets of cases (reference case sets) whose observed PFS times were most accurately predicted by each model. To prepare a virtual control group for a single-arm adjuvant Rx trial, we first select the optimal model for the trial cases based on the minimum weighted Euclidean distance between the trial case set and the reference case set in terms of clinical features, and then compare the virtual PFS times calculated by the optimum model with the observed PFSs of the trial cases by the logrank test. The method was validated using an independent dataset of 155 post-RP patients without adjuvant Rx. We then applied the method to patients on a Phase II trial of adjuvant chemo-hormonal Rx post RP, which indicated that the adjuvant Rx is highly effective in prolonging PFS after RP in patients at high risk for prostate cancer recurrence. The method can accurately generate control groups for single-arm, post-RP adjuvant Rx trials for prostate cancer, facilitating development of new therapeutic strategies.

  11. Nano-microparticles as immune adjuvants: correlating particle sizes and the resultant immune responses

    PubMed Central

    Oyewumi, Moses O; Kumar, Amit; Cui, Zhengrong

    2010-01-01

    The development of novel immune adjuvants is emerging as a significant area of vaccine delivery based on the continued necessity to amplify immune responses to a wide array of new antigens that are poorly immunogenic. This article specifically focuses on the application of nanoparticles and microparticles as vaccine adjuvants. Many investigators are in agreement that the size of the particles is crucial to their adjuvant activities. However, reports on correlating the size of particle-based adjuvants and the resultant immune responses have been conflicting, with investigators on both sides of the fence with impressive data in support of the effectiveness of particles with small sizes (submicron) over those with larger sizes (micron) and vice versa, while other investigators reported data that showed submicron- and micron-sized particles are effective to the same degree as immune adjuvants. We have generated a list of biological, immunological and, more importantly, vaccine formulation parameters that may have contributed to the inconsistency from different studies and made recommendations on future studies attempting to correlate the size of particulate adjuvants and the immune responses induced. The information gathered could lead to strategies to optimize the performance of nano-microparticles as immune adjuvants. PMID:20822351

  12. Intranasal hydroxypropyl-β-cyclodextrin-adjuvanted influenza vaccine protects against sub-heterologous virus infection.

    PubMed

    Kusakabe, Takato; Ozasa, Koji; Kobari, Shingo; Momota, Masatoshi; Kishishita, Natsuko; Kobiyama, Kouji; Kuroda, Etsushi; Ishii, Ken J

    2016-06-01

    Intranasal vaccination with inactivated influenza viral antigens is an attractive and valid alternative to currently available influenza (flu) vaccines; many of which seem to need efficient and safe adjuvant, however. In this study, we examined whether hydroxypropyl-β-cyclodextrin (HP-β-CD), a widely used pharmaceutical excipient to improve solubility and drug delivery, can act as a mucosal adjuvant for intranasal flu vaccines. We found that intranasal immunization of mice with hemagglutinin split- as well as inactivated whole-virion influenza vaccine with HP-β-CD resulted in secretion of antigen-specific IgA and IgGs in the airway mucosa and the serum as well. As a result, both HP-β-CD adjuvanted-flu intranasal vaccine protected mice against lethal challenge with influenza virus, equivalent to those induced by experimental cholera toxin-adjuvanted ones. Of note, intranasal use of HP-β-CD as an adjuvant induced significantly lower antigen-specific IgE responses than that induced by aluminum salt adjuvant. These results suggest that HP-β-CD may be a potent mucosal adjuvant for seasonal and pandemic influenza vaccine. PMID:27160037

  13. [PROGNOSTIC SIGNIFICANCE OF ADJUVANT RADIOTHERAPY IN EARLY IB1 STAGE CERVICAL CANCER].

    PubMed

    Ismail, E; Kornovski, Y

    2015-01-01

    The cervical cancer is one of the most common malignancies. Worldwide 500,000 women a year become ill from cervical cancer. The aim of the study was to establish the role of adjuvant radiotherapy in patients with IB1 cervical cancer in terms of disease free survival. Between 2002-2012, 132 patients diagnosed as IB1 stage according to FIGO criteria were enrolled in the study. Depending on the administered therapy the patients were divided into two groups--Group 1-93 patients were treated surgically and with adjuvant radiotherapy and Group 2--39 patients were treated surgically without adjuvant radiotherapy Surgery was radical hysterectomy class III and pelvic or paraaortic lymph node dissection(in cases of bulky paraaortic nodes), and adjuvant RT-telegamma therapy(TGT) in dose 52 Gy. The frequency of recurrence in a Group I (surgery and TGT) is 9.7%. Tree and five years disease free survival (DFS) is 88%. The frequency of recurrence in a Group 2 (surgery without TGT) is 25.6%. Tree and five years DFS respectively are 70% and 65%. In an analysis of oncological results establish that adjuvant TGT after surgery significantly increases DFS. On the other hand the addition of adjuvant TGT increases the patients morbidity Therefore should determine which are the risk factors for the occurrence of relapses and select group of patients who would benefit from adjuvant TGT and the risk of complications in them would be justified.

  14. [PROGNOSTIC SIGNIFICANCE OF ADJUVANT RADIOTHERAPY IN EARLY IB1 STAGE CERVICAL CANCER].

    PubMed

    Ismail, E; Kornovski, Y

    2015-01-01

    The cervical cancer is one of the most common malignancies. Worldwide 500,000 women a year become ill from cervical cancer. The aim of the study was to establish the role of adjuvant radiotherapy in patients with IB1 cervical cancer in terms of disease free survival. Between 2002-2012, 132 patients diagnosed as IB1 stage according to FIGO criteria were enrolled in the study. Depending on the administered therapy the patients were divided into two groups--Group 1-93 patients were treated surgically and with adjuvant radiotherapy and Group 2--39 patients were treated surgically without adjuvant radiotherapy Surgery was radical hysterectomy class III and pelvic or paraaortic lymph node dissection(in cases of bulky paraaortic nodes), and adjuvant RT-telegamma therapy(TGT) in dose 52 Gy. The frequency of recurrence in a Group I (surgery and TGT) is 9.7%. Tree and five years disease free survival (DFS) is 88%. The frequency of recurrence in a Group 2 (surgery without TGT) is 25.6%. Tree and five years DFS respectively are 70% and 65%. In an analysis of oncological results establish that adjuvant TGT after surgery significantly increases DFS. On the other hand the addition of adjuvant TGT increases the patients morbidity Therefore should determine which are the risk factors for the occurrence of relapses and select group of patients who would benefit from adjuvant TGT and the risk of complications in them would be justified. PMID:26817258

  15. Differential Activation of Human and Mouse Toll-Like Receptor 4 by the Adjuvant Candidate LpxL1 of Neisseria meningitidis▿

    PubMed Central

    Steeghs, Liana; Keestra, A. Marijke; van Mourik, Andries; Uronen-Hansson, Heli; van der Ley, Peter; Callard, Robin; Klein, Nigel; van Putten, Jos P. M.

    2008-01-01

    Neisseria meningitidis LpxL1 lipopolysaccharide (LPS) bearing penta-acylated lipid A is considered a promising adjuvant candidate for inclusion in future N. meningitidis vaccines, as it elicits a markedly reduced endotoxic response in human macrophages relative to that in wild-type (hexa-acylated) LPS, while it is an equally effective adjuvant in mice. As dendritic cells (DC) and Toll-like receptors (TLR) are regarded as central mediators in the initiation of an immune response, here we evaluated the ability of LpxL1 LPS to mature and to activate human DC and examined its TLR4-/MD-2-activating properties. Unexpectedly, purified LpxL1 LPS displayed minimal human DC-stimulating properties compared to wild-type LPS. Although whole bacteria induced DC maturation and activation irrespective of their type of LPS, the LpxL1 mutant failed to activate the human recombinant TLR4/MD-2 complex expressed in HeLa cells. Similarly, purified LpxL1 LPS was unable to activate human TLR4/MD-2 and it even acted as an antagonist of wild-type LPS. Both wild-type and LpxL1 LPSs activated the murine TLR4/MD-2 complex, consistent with their abilities to induce maturation and activation of murine DC. Assays with cells transfected with different combinations of human and murine TLR4 and MD-2 indicated that TLR4 was a more-major determinant of the LPS response than MD-2. The species-specific activation of the TLR4/MD-2 complex by LpxL1 LPS may have an impact on the use of LpxL1 LPS as an adjuvant and the use of murine immunization models in human meningococcal vaccine development. PMID:18490457

  16. Differential activation of human and mouse Toll-like receptor 4 by the adjuvant candidate LpxL1 of Neisseria meningitidis.

    PubMed

    Steeghs, Liana; Keestra, A Marijke; van Mourik, Andries; Uronen-Hansson, Heli; van der Ley, Peter; Callard, Robin; Klein, Nigel; van Putten, Jos P M

    2008-08-01

    Neisseria meningitidis LpxL1 lipopolysaccharide (LPS) bearing penta-acylated lipid A is considered a promising adjuvant candidate for inclusion in future N. meningitidis vaccines, as it elicits a markedly reduced endotoxic response in human macrophages relative to that in wild-type (hexa-acylated) LPS, while it is an equally effective adjuvant in mice. As dendritic cells (DC) and Toll-like receptors (TLR) are regarded as central mediators in the initiation of an immune response, here we evaluated the ability of LpxL1 LPS to mature and to activate human DC and examined its TLR4-/MD-2-activating properties. Unexpectedly, purified LpxL1 LPS displayed minimal human DC-stimulating properties compared to wild-type LPS. Although whole bacteria induced DC maturation and activation irrespective of their type of LPS, the LpxL1 mutant failed to activate the human recombinant TLR4/MD-2 complex expressed in HeLa cells. Similarly, purified LpxL1 LPS was unable to activate human TLR4/MD-2 and it even acted as an antagonist of wild-type LPS. Both wild-type and LpxL1 LPSs activated the murine TLR4/MD-2 complex, consistent with their abilities to induce maturation and activation of murine DC. Assays with cells transfected with different combinations of human and murine TLR4 and MD-2 indicated that TLR4 was a more-major determinant of the LPS response than MD-2. The species-specific activation of the TLR4/MD-2 complex by LpxL1 LPS may have an impact on the use of LpxL1 LPS as an adjuvant and the use of murine immunization models in human meningococcal vaccine development. PMID:18490457

  17. Lipid nanocarriers: influence of lipids on product development and pharmacokinetics.

    PubMed

    Pathak, Kamla; Keshri, Lav; Shah, Mayank

    2011-01-01

    Lipid nanocarriers are on the forefront of the rapidly developing field of nanotechnology with several potential applications in drug delivery. Owing to their size-dependent properties, lipid nanoparticles offer the possibility for development of new therapeutics and an alternative system to other colloidal counterparts for drug administration. An important point to be considered in the selection of a lipid for the carrier system is its effect on the properties of the nanocarrier and also its intended use, as different types of lipids differ in their nature. Researchers around the globe have tapped the potential of solid lipid nanoparticles (SLNs) in developing formulation(s) that can be administered by various routes such as oral, ocular, parenteral, topical, and pulmonary. Since the start of this millennium, a new generation of lipid nanoparticles, namely nanostructured lipid carriers (NLCs), lipid drug conjugates (LDCs), and pharmacosomes, has evolved that have the potential to overcome the limitations of SLNs. The current review article presents broad considerations on the influence of various types of lipids on the diverse characteristics of nanocarriers, encompassing their physicochemical, formulation, pharmacokinetic, and cytotoxic aspects. PMID:21967401

  18. The Janus Face of Lipids in Human Breast Cancer: How Polyunsaturated Fatty Acids Affect Tumor Cell Hallmarks

    PubMed Central

    Chénais, Benoît; Blanckaert, Vincent

    2012-01-01

    For several years, lipids and especially n − 3 and n − 6 polyunsaturated fatty acids (PUFAs) receive much attention in human health. Epidemiological studies tend to correlate a PUFA-rich diet with a reduced incidence of cancer, including breast cancer. However, the molecular and cellular mechanisms supporting the effect of PUFAs in breast cancer cells remain relatively unknown. Here, we review some recent progress in understanding the impact that PUFA may have on breast cancer cell proliferation, apoptosis, migration, and invasion. While most of the results obtained with docosahexaenoic acid and/or eicosapentaenoic acid show a decrease of tumor cell proliferation and/or aggressivity, there is some evidence that other lipids, which accumulate in breast cancer tissues, such as arachidonic acid may have opposite effects. Finally, lipids and especially PUFAs appear as potential adjuvants to conventional cancer therapy. PMID:22811918

  19. Lipid classification, structures and tools☆

    PubMed Central

    Fahy, Eoin; Cotter, Dawn; Sud, Manish; Subramaniam, Shankar

    2012-01-01

    The study of lipids has developed into a research field of increasing importance as their multiple biological roles in cell biology, physiology and pathology are becoming better understood. The Lipid Metabolites and Pathways Strategy (LIPID MAPS) consortium is actively involved in an integrated approach for the detection, quantitation and pathway reconstruction of lipids and related genes and proteins at a systems-biology level. A key component of this approach is a bioinformatics infrastructure involving a clearly defined classification of lipids, a state-of-the-art database system for molecular species and experimental data and a suite of user-friendly tools to assist lipidomics researchers. Herein, we discuss a number of recent developments by the LIPID MAPS bioinformatics core in pursuit of these objectives. This article is part of a Special Issue entitled Lipodomics and Imaging Mass Spectrometry. PMID:21704189

  20. Lipid Biomembrane in Ionic Liquids

    NASA Astrophysics Data System (ADS)

    Yoo, Brian; Jing, Benxin; Shah, Jindal; Maginn, Ed; Zhu, Y. Elaine; Department of Chemical and Biomolecular Engineering Team

    2014-03-01

    Ionic liquids (ILs) have been recently explored as new ``green'' chemicals in several chemical and biomedical processes. In our pursuit of understanding their toxicities towards aquatic and terrestrial organisms, we have examined the IL interaction with lipid bilayers as model cell membranes. Experimentally by fluorescence microscopy, we have directly observed the disruption of lipid bilayer by added ILs. Depending on the concentration, alkyl chain length, and anion hydrophobicity of ILs, the interaction of ILs with lipid bilayers leads to the formation of micelles, fibrils, and multi-lamellar vesicles for IL-lipid complexes. By MD computer simulations, we have confirmed the insertion of ILs into lipid bilayers to modify the spatial organization of lipids in the membrane. The combined experimental and simulation results correlate well with the bioassay results of IL-induced suppression in bacteria growth, thereby suggesting a possible mechanism behind the IL toxicity. National Science Foundation, Center for Research Computing at Notre Dame.

  1. Lipid-transfer proteins.

    PubMed

    Ng, Tzi Bun; Cheung, Randy Chi Fai; Wong, Jack Ho; Ye, Xiujuan

    2012-01-01

    Lipid-transfer proteins (LTPs) are basic proteins found in abundance in higher plants. LTPs play lots of roles in plants such as participation in cutin formation, embryogenesis, defense reactions against phytopathogens, symbiosis, and the adaptation of plants to various environmental conditions. In addition, LTPs from field mustard and Chinese daffodil exhibit antiproliferative activity against human cancer cells. LTPs from chili pepper and coffee manifest inhibitory activity against fungi pathogenic to humans such as Candida species. The intent of this article is to review LTPs in the plant kingdom. PMID:23193591

  2. Mannosylerythritol lipids: a review.

    PubMed

    Arutchelvi, Joseph Irudayaraj; Bhaduri, Sumit; Uppara, Parasu Veera; Doble, Mukesh

    2008-12-01

    Mannosylerythritol lipids (MELs) are surface active compounds that belong to the glycolipid class of biosurfactants (BSs). MELs are produced by Pseudozyma sp. as a major component while Ustilago sp. produces them as a minor component. Although MELs have been known for over five decades, they recently regained attention due to their environmental compatibility, mild production conditions, structural diversity, self-assembling properties and versatile biochemical functions. In this review, the MEL producing microorganisms, the production conditions, their applications, their diverse structures and self-assembling properties are discussed. The biosynthetic pathways and the regulatory mechanisms involved in the production of MEL are also explained here. PMID:18716809

  3. ColoLipidGene: signature of lipid metabolism-related genes to predict prognosis in stage-II colon cancer patients

    PubMed Central

    Vargas, Teodoro; Moreno-Rubio, Juan; Herranz, Jesús; Cejas, Paloma; Molina, Susana; González-Vallinas, Margarita; Mendiola, Marta; Burgos, Emilio; Aguayo, Cristina; Custodio, Ana B.; Machado, Isidro; Ramos, David; Gironella, Meritxell; Espinosa-Salinas, Isabel; Ramos, Ricardo; Martín-Hernández, Roberto; Risueño, Alberto; De Las Rivas, Javier; Reglero, Guillermo; Yaya, Ricardo; Fernández-Martos, Carlos; Aparicio, Jorge; Maurel, Joan; Feliu, Jaime; de Molina, Ana Ramírez

    2015-01-01

    Lipid metabolism plays an essential role in carcinogenesis due to the requirements of tumoral cells to sustain increased structural, energetic and biosynthetic precursor demands for cell proliferation. We investigated the association between expression of lipid metabolism-related genes and clinical outcome in intermediate-stage colon cancer patients with the aim of identifying a metabolic profile associated with greater malignancy and increased risk of relapse. Expression profile of 70 lipid metabolism-related genes was determined in 77 patients with stage II colon cancer. Cox regression analyses using c-index methodology was applied to identify a metabolic-related signature associated to prognosis. The metabolic signature was further confirmed in two independent validation sets of 120 patients and additionally, in a group of 264 patients from a public database. The combined analysis of these 4 genes, ABCA1, ACSL1, AGPAT1 and SCD, constitutes a metabolic-signature (ColoLipidGene) able to accurately stratify stage II colon cancer patients with 5-fold higher risk of relapse with strong statistical power in the four independent groups of patients. The identification of a group of 4 genes that predict survival in intermediate-stage colon cancer patients allows delineation of a high-risk group that may benefit from adjuvant therapy, and avoids the toxic and unnecessary chemotherapy in patients classified as low-risk group. PMID:25749516

  4. Recent advances in targeting the autotaxin-lysophosphatidate-lipid phosphate phosphatase axis in vivo.

    PubMed

    Benesch, Matthew G K; Tang, Xiaoyun; Venkatraman, Ganesh; Bekele, Raie T; Brindley, David N

    2016-07-01

    Extracellular lysophosphatidate (LPA) is a potent bioactive lipid that signals through six G-protein-coupled receptors. This signaling is required for embryogenesis, tissue repair and remodeling processes. LPA is produced from circulating lysophosphatidylcholine by autotaxin (ATX), and is degraded outside cells by a family of three enzymes called the lipid phosphate phosphatases (LPPs). In many pathological conditions, particularly in cancers, LPA concentrations are increased due to high ATX expression and low LPP activity. In cancers, LPA signaling drives tumor growth, angiogenesis, metastasis, resistance to chemotherapy and decreased efficacy of radiotherapy. Hence, targeting the ATX-LPA-LPP axis is an attractive strategy for introducing novel adjuvant therapeutic options. In this review, we will summarize current progress in targeting the ATX-LPA-LPP axis with inhibitors of autotaxin activity, LPA receptor antagonists, LPA monoclonal antibodies, and increasing low LPP expression. Some of these agents are already in clinical trials and have applications beyond cancer, including chronic inflammatory diseases. PMID:27533936

  5. Recent advances in targeting the autotaxin-lysophosphatidate-lipid phosphate phosphatase axis in vivo

    PubMed Central

    Benesch, Matthew G.K.; Tang, Xiaoyun; Venkatraman, Ganesh; Bekele, Raie T.; Brindley, David N.

    2016-01-01

    Abstract Extracellular lysophosphatidate (LPA) is a potent bioactive lipid that signals through six G-protein-coupled receptors. This signaling is required for embryogenesis, tissue repair and remodeling processes. LPA is produced from circulating lysophosphatidylcholine by autotaxin (ATX), and is degraded outside cells by a family of three enzymes called the lipid phosphate phosphatases (LPPs). In many pathological conditions, particularly in cancers, LPA concentrations are increased due to high ATX expression and low LPP activity. In cancers, LPA signaling drives tumor growth, angiogenesis, metastasis, resistance to chemotherapy and decreased efficacy of radiotherapy. Hence, targeting the ATX-LPA-LPP axis is an attractive strategy for introducing novel adjuvant therapeutic options. In this review, we will summarize current progress in targeting the ATX-LPA-LPP axis with inhibitors of autotaxin activity, LPA receptor antagonists, LPA monoclonal antibodies, and increasing low LPP expression. Some of these agents are already in clinical trials and have applications beyond cancer, including chronic inflammatory diseases. PMID:27533936

  6. Immune Response to Vaccine Adjuvants during the First Year of Life

    PubMed Central

    Levy, Ofer; Goriely, Stanislas; Kollmann, Tobias R.

    2014-01-01

    Subunit vaccine formulations often include adjuvants that primarily stimulate innate immune cells. While young infants represent the major target population for vaccination, effective immunization in this age group remains a challenge. Many parameters of innate immune responses differ quantitatively and qualitatively from newborns to infants and adults, revealing a highly regulated developmental program. Herein, we discuss the potential implications of innate immune ontogeny for the activity of adjuvants contained in licensed infant vaccines, as well as future directions for rational design of adjuvanted vaccines for this age group. PMID:23085363

  7. Adjuvant-activity of `diphtheroid' organisms isolated from the joints of cases of rhemumatoid arthritis

    PubMed Central

    White, R. G.; Gordon, J.

    1970-01-01

    Two isolates of `diphtheroid' organisms from the joints of cases of rheumatoid arthritis were found to possess a surface network of filaments (125 Å wide) resembling the adjuvant-active peptidoglycolipid filaments of mycobacteria and some Nocardia spp. Tests for adjuvant activity in guinea-pigs showed that both isolates possessed the ability to induce delayed-type hypersensitivity to a simultaneously injected immunogen (ovalbumin) and to increase serum anti-ovalbumin levels (in particular γ2-immunoglobulin). The relationship of adjuvant-active bacilli to the pathogenesis of rheumatoid arthritis is discussed. ImagesFig. 2Fig. 3Fig. 1 PMID:5477931

  8. Physiological parameters of Macaca fascicularis immunized with anti-rubella vaccine with germanium-based adjuvants.

    PubMed

    Karal-Ogly, D D; Agrba, V Z; Lavrent'eva, I N; Ambrosov, I V; Matelo, S K; Chuguev, Yu P; Gvaramiya, I A; Gvozdik, T E; Mukhametzyanova, E I

    2014-05-01

    Clinical status, hematological and biochemical parameters, and allergenic activity of organogermanium compounds used as adjuvants in complex with preparation from Orlov rubella virus vaccine strain and reference commercial anti-rubella vaccine based on Wistar RA 27/3 strain were studied on Macaca fascilcularis of both genders. Physiological parameters of monkeys immunized with the Russian and foreign rubella virus vaccine strains with and without adjuvants did not differ. The adjuvants were inessential for the safety of vaccines (absence of toxicity, reactogenic activity, or allergenic activity) in preclinical studies on lower primates.

  9. ASIA or Shoenfeld's syndrome--an autoimmune syndrome induced by adjuvants.

    PubMed

    Cojocaru, M; Chicoş, B

    2013-01-01

    Recently, reports have suggested grouping different autoimmune conditions that are triggered by external stimuli as a single syndrome called autoimmune syndrome induced by adjuvants (ASIA). This syndrome is characterized by the appearance of myalgia, myositis, muscle weakness, arthralgia, arthritis, chronic fatigue, sleep disturbances, cognitive impairment and memory loss, and the possible emergence of a demyelinating autoimmune disease caused by systemic exposure after vaccines and adjuvants. As there are no markers for ASIA, the authors intend to present ASIA, or Shoenfeld's syndrome, as an autoimmune syndrome induced by adjuvants. PMID:24620624

  10. Lipids and Membrane Lateral Organization

    PubMed Central

    Sonnino, Sandro; Prinetti, Alessandro

    2010-01-01

    Shortly after the elucidation of the very basic structure and properties of cellular membranes, it became evident that cellular membranes are highly organized structures with multiple and multi-dimensional levels of order. Very early observations suggested that the lipid components of biological membranes might be active players in the creation of these levels of order. In the late 1980s, several different and diverse experimental pieces of evidence coalesced together giving rise to the lipid raft hypothesis. Lipid rafts became enormously (and, in the opinion of these authors, sometimes acritically) popular, surprisingly not just within the lipidologist community (who is supposed to be naturally sensitive to the fascination of lipid rafts). Today, a PubMed search using the key word “lipid rafts” returned a list of 3767 papers, including 690 reviews (as a term of comparison, searching over the same time span for a very hot lipid-related key word, “ceramide” returned 6187 hits with 799 reviews), and a tremendous number of different cellular functions have been described as “lipid raft-dependent.” However, a clear consensus definition of lipid raft has been proposed only in recent times, and the basic properties, the ruling forces, and even the existence of lipid rafts in living cells has been recently matter of intense debate. The scenario that is gradually emerging from the controversies elicited by the lipid raft hypothesis emphasizes multiple roles for membrane lipids in determining membrane order, that encompass their tendency to phase separation but are clearly not limited to this. In this review, we would like to re-focus the attention of the readers on the importance of lipids in organizing the fine structure of cellular membranes. PMID:21423393

  11. Potent response of QS-21 as a vaccine adjuvant in the skin when delivered with the Nanopatch, resulted in adjuvant dose sparing

    PubMed Central

    Ng, Hwee-Ing; Fernando, Germain J. P.; Depelsenaire, Alexandra C. I.; Kendall, Mark A. F.

    2016-01-01

    Adjuvants play a key role in boosting immunogenicity of vaccines, particularly for subunit protein vaccines. In this study we investigated the induction of antibody response against trivalent influenza subunit protein antigen and a saponin adjuvant, QS-21. Clinical trials of QS-21 have demonstrated the safety but, also a need of high dose for optimal immunity, which could possibly reduce patient acceptability. Here, we proposed the use of a skin delivery technology – the Nanopatch – to reduce both adjuvant and antigen dose but also retain its immune stimulating effects when compared to the conventional needle and syringe intramuscular (IM) delivery. We have demonstrated that Nanopatch delivery to skin requires only 1/100th of the IM antigen dose to induce equivalent humoral response. QS-21 enhanced humoral response in both skin and muscle route. Additionally, Nanopatch has demonstrated 30-fold adjuvant QS-21 dose sparing while retaining immune stimulating effects compared to IM. QS-21 induced localised, controlled cell death in the skin, suggesting that the danger signals released from dead cells contributed to the enhanced immunogenicity. Taken together, these findings demonstrated the suitability of reduced dose of QS-21 and the antigen using the Nanopatch to enhance humoral responses, and the potential to increase patient acceptability of QS-21 adjuvant. PMID:27404789

  12. Liposomes as vaccine delivery systems: a review of the recent advances

    PubMed Central

    2014-01-01

    Liposomes and liposome-derived nanovesicles such as archaeosomes and virosomes have become important carrier systems in vaccine development and the interest for liposome-based vaccines has markedly increased. A key advantage of liposomes, archaeosomes and virosomes in general, and liposome-based vaccine delivery systems in particular, is their versatility and plasticity. Liposome composition and preparation can be chosen to achieve desired features such as selection of lipid, charge, size, size distribution, entrapment and location of antigens or adjuvants. Depending on the chemical properties, water-soluble antigens (proteins, peptides, nucleic acids, carbohydrates, haptens) are entrapped within the aqueous inner space of liposomes, whereas lipophilic compounds (lipopeptides, antigens, adjuvants, linker molecules) are intercalated into the lipid bilayer and antigens or adjuvants can be attached to the liposome surface either by adsorption or stable chemical linking. Coformulations containing different types of antigens or adjuvants can be combined with the parameters mentioned to tailor liposomal vaccines for individual applications. Special emphasis is given in this review to cationic adjuvant liposome vaccine formulations. Examples of vaccines made with CAF01, an adjuvant composed of the synthetic immune-stimulating mycobacterial cordfactor glycolipid trehalose dibehenate as immunomodulator and the cationic membrane forming molecule dimethyl dioctadecylammonium are presented. Other vaccines such as cationic liposome–DNA complexes (CLDCs) and other adjuvants like muramyl dipeptide, monophosphoryl lipid A and listeriolysin O are mentioned as well. The field of liposomes and liposome-based vaccines is vast. Therefore, this review concentrates on recent and relevant studies emphasizing current reports dealing with the most studied antigens and adjuvants, and pertinent examples of vaccines. Studies on liposome-based veterinary vaccines and experimental therapeutic

  13. Lipid-lowering agents.

    PubMed

    Ewang-Emukowhate, Mfon; Wierzbicki, Anthony S

    2013-09-01

    The role of lipid lowering in reducing the risk of mortality and morbidity from cardiovascular disease (CVD) is well established. Treatment particularly aimed at decreasing low-density lipoprotein cholesterol (LDL-C) is effective in reducing the risk of death from coronary heart disease and stroke. Statins form the cornerstone of treatment. However, in some individuals with a high risk of CVD who are unable to achieve their target LDL-C due to either intolerance or lack of efficacy, there is the need for alternative therapies. This review provides an overview of the different classes of currently available lipid-lowering medications including statins, fibrates, bile acid sequestrants (resins), and omega-3 fatty acids. Data are presented on their indications, pharmacology, and the relevant end point clinical trial data with these drugs. It also discusses the human trial data on some novel therapeutic agents that are being developed including those for homozygous familial hypercholesterolemia--the antisense oligonucleotide mipomersen and the microsomal transfer protein inhibitor lomitapide. Data are presented on phase II and III trials on agents with potentially wider applications, cholesterol ester transfer protein inhibitors and proprotein convertase subtilisin kexin 9 inhibitors. The data on a licensed gene therapy for lipoprotein lipase deficiency are also presented. PMID:23811423

  14. Lipid-lowering agents.

    PubMed

    Ewang-Emukowhate, Mfon; Wierzbicki, Anthony S

    2013-09-01

    The role of lipid lowering in reducing the risk of mortality and morbidity from cardiovascular disease (CVD) is well established. Treatment particularly aimed at decreasing low-density lipoprotein cholesterol (LDL-C) is effective in reducing the risk of death from coronary heart disease and stroke. Statins form the cornerstone of treatment. However, in some individuals with a high risk of CVD who are unable to achieve their target LDL-C due to either intolerance or lack of efficacy, there is the need for alternative therapies. This review provides an overview of the different classes of currently available lipid-lowering medications including statins, fibrates, bile acid sequestrants (resins), and omega-3 fatty acids. Data are presented on their indications, pharmacology, and the relevant end point clinical trial data with these drugs. It also discusses the human trial data on some novel therapeutic agents that are being developed including those for homozygous familial hypercholesterolemia--the antisense oligonucleotide mipomersen and the microsomal transfer protein inhibitor lomitapide. Data are presented on phase II and III trials on agents with potentially wider applications, cholesterol ester transfer protein inhibitors and proprotein convertase subtilisin kexin 9 inhibitors. The data on a licensed gene therapy for lipoprotein lipase deficiency are also presented.

  15. Lipid mobility in supported lipid bilayers by single molecule tracking

    NASA Astrophysics Data System (ADS)

    Kohram, Maryam; Shi, Xiaojun; Smith, Adam

    2015-03-01

    Phospholipid bilayers are the main component of cell membranes and their interaction with biomolecules in their immediate environment is critical for cellular functions. These interactions include the binding of polycationic polymers to lipid bilayers which affects many cell membrane events. As an alternative method of studying live cell membranes, we assemble a supported lipid bilayer and investigate its binding with polycationic polymers in vitro by fluorescently labeling the molecules of the supported lipid bilayer and tracking their mobility. In this work, we use single molecule tracking total internal reflection fluorescence microscopy (TIRF) to study phosphatidylinositol phosphate (PIP) lipids with and without an adsorbed polycationic polymer, quaternized polyvinylpyridine (QPVP). Individual molecular trajectories are obtained from the experiment, and a Brownian diffusion model is used to determine diffusion coefficients through mean square displacements. Our results indicate a smaller diffusion coefficient for the supported lipid bilayers in the presence of QPVP in comparison to its absence, revealing that their binding causes a decrease in lateral mobility.

  16. A novel non-mineral oil-based adjuvant. I. Efficacy of a synthetic sulfolipopolysaccharide in a squalane-in-water emulsion in laboratory animals.

    PubMed

    Hilgers, L A; Platenburg, P L; Luitjens, A; Groenveld, B; Dazelle, T; Ferrari-Laloux, M; Weststrate, M W

    1994-05-01

    Sulfolipopolysaccharides (SLPs) were synthesized by reaction of the synthetic polysucrose polymer Ficoll-400 with chlorosulfonic acid and lauroyl chloride in anhydrous medium. Hydrophobic derivatives were obtained by addition of a small number of sulfate and a large number of lipid groups. Gel-permeation high-performance liquid chromatography (g.p.-h.p.l.c.) exhibited a wide range in molecular weight of both Ficoll-400 and SLP polymers. The calculated weight-average molecular weight (Mw) of Ficoll-400 and SLP using polystyrene polymers as references was 187,000 and 380,000 respectively, exhibiting a twofold increase in molecular weight upon derivatization. Adjuvanticity of hydrophobic SLPs with 0.2 sulfate and 1.5 lipid groups per sucrose monomer, a squalane-in-water emulsion (S/W), SLP incorporated into S/W (SLP/S/W), and a mineral oil-based emulsion (O/W) was investigated in combination with different antigens in mice and guinea-pigs. Antibody responses in serum against ovalbumin (OVA), dinitrophenylated bovine serum albumin (DNP-BSA), inactivated influenza virus strain MRC-11 (MRC-11), a mixture of three influenza virus strains (iFlu3) and inactivated pseudorabies virus (iPRV) were measured by either haemagglutination (HA), haemagglutination inhibition (HI) or serum neutralization (SN). Vaccines were prepared by simply mixing one volume of antigen with one volume of adjuvant solution. Antibody titres after one or two injections with these antigens were enhanced significantly by SLP/S/W, SLP, S/W and O/W and in most studies, SLP/S/W was demonstrated to be more effective than either the two constituent components or the O/W adjuvant.(ABSTRACT TRUNCATED AT 250 WORDS)

  17. Lipid core peptide targeting the cathepsin D hemoglobinase of Schistosoma mansoni as a component of a schistosomiasis vaccine

    PubMed Central

    Dougall, Annette M; Dougall, Annette M

    2014-01-01

    The self-adjuvanting lipid core peptide (LCP) system offers a safe alternative vaccine delivery strategy, eliminating the need for additional adjuvants such as CpG Alum. In this study, we adopted the LCP as a scaffold for an epitope located on the surface of the cathepsin D hemoglobinase (Sm-CatD) of the human blood fluke Schistosoma mansoni. Sm-CatD plays a pivotal role in digestion of the fluke’s bloodmeal and has been shown to be efficacious as a subunit vaccine in a murine model of human schistosomiasis. Using molecular modeling we showed that S. mansoni cathepsin D possesses a predicted surface exposed α-helix (A263K) that corresponds to an immunodominant helix and target of enzyme–neutralizing antibodies against Necator americanus APR-1 (Na-APR-1), the orthologous protease and vaccine antigen from blood-feeding hookworms. The A263K epitope was engineered as two peptide variants, one of which was flanked at both termini with a coil maintaining sequence, thereby promoting the helical characteristics of the native A263K epitope. Some of the peptides were fused to a self-adjuvanting lipid core scaffold to generate LCPs. Mice were vaccinated with unadjuvanted peptides, peptides formulated with Freund’s adjuvants, or LCPs. Antibodies generated to LCPs recognized native Sm-CatD within a soluble adult schistosome extract, and almost completely abolished its enzymatic activity in vitro. Using immunohistochemistry we showed that anti-LCP antibodies bound to the native Sm-CatD protein in the esophagus and anterior regions of the gastrodermis of adult flukes. Vaccines offer an alternative control strategy in the fight against schistosomiasis, and further development of LCPs containing multiple epitopes from this and other vaccine antigens should become a research priority. PMID:24231271

  18. Analysis of lipid profile in lipid storage myopathy.

    PubMed

    Aguennouz, M'hammed; Beccaria, Marco; Purcaro, Giorgia; Oteri, Marianna; Micalizzi, Giuseppe; Musumesci, Olimpia; Ciranni, Annmaria; Di Giorgio, Rosa Maria; Toscano, Antonio; Dugo, Paola; Mondello, Luigi

    2016-09-01

    Lipid dysmetabolism disease is a condition in which lipids are stored abnormally in organs and tissues throughout the body, causing muscle weakness (myopathy). Usually, the diagnosis of this disease and its characterization goes through dosage of Acyl CoA in plasma accompanied with evidence of droplets of intra-fibrils lipids in the patient muscle biopsy. However, to understand the pathophysiological mechanisms of lipid storage diseases, it is useful to identify the nature of lipids deposited in muscle fiber. In this work fatty acids and triglycerides profile of lipid accumulated in the muscle of people suffering from myopathies syndromes was characterized. In particular, the analyses were carried out on the muscle biopsy of people afflicted by lipid storage myopathy, such as multiple acyl-coenzyme A dehydrogenase deficiency, and neutral lipid storage disease with myopathy, and by the intramitochondrial lipid storage dysfunctions, such as deficiencies of carnitine palmitoyltransferase II enzyme. A single step extraction and derivatization procedure was applied to analyze fatty acids from muscle tissues by gas chromatography with a flame ionization detector and with an electronic impact mass spectrometer. Triglycerides, extracted by using n-hexane, were analyzed by high performance liquid chromatography coupled to mass spectrometer equipped with an atmospheric pressure chemical ionization interface. The most representative fatty acids in all samples were: C16:0 in the 13-24% range, C18:1n9 in the 20-52% range, and C18:2n6 in the 10-25% range. These fatty acids were part of the most representative triglycerides in all samples. The data obtained was statistically elaborated performing a principal component analysis. A satisfactory discrimination was obtained among the different diseases. Using component 1 vs component 3 a 43.3% of total variance was explained. Such results suggest the important role that lipid profile characterization can have in supporting a correct

  19. Adjuvants and myeloid-derived suppressor cells: enemies or allies in therapeutic cancer vaccination.

    PubMed

    Fernández, Audry; Oliver, Liliana; Alvarez, Rydell; Fernández, Luis E; Lee, Kelvin P; Mesa, Circe

    2014-01-01

    Adjuvants are a critical but largely overlooked and poorly understood component included in vaccine formulations to stimulate and modulate the desired immune responses to an antigen. However, unlike in the protective infectious disease vaccines, adjuvants for cancer vaccines also need to overcome the effect of tumor-induced suppressive immune populations circulating in tumor-bearing individuals. Myeloid-derived suppressor cells (MDSC) are considered to be one of the key immunosuppressive populations that inhibit tumor-specific T cell responses in cancer patients. This review focuses on the different signals for the activation of the immune system induced by adjuvants, and the close relationship to the mechanisms of recruitment and activation of MDSC. This work explores the possibility that a cancer vaccine adjuvant may either strengthen or weaken the effect of tumor-induced MDSC, and the crucial need to address this in present and future cancer vaccines.

  20. Adjuvants for foot-and-mouth disease virus vaccines: recent progress.

    PubMed

    Cao, Yimei

    2014-11-01

    Foot-and-mouth disease (FMD) is a highly contagious and rapidly spreading disease of cloven-hoofed animals. In most countries, animals are immunized with inactivated whole virus vaccines to control the spread of foot-and-mouth disease virus (FMDV); however, there are safety and efficacy (especially, cell-mediated immunity) concerns. Many efforts are currently devoted to the development of effective vaccines by combining the application of protective antigens together with the search for specific and targeting adjuvants that maximizes the immunogenicity with a desired immune response. In this review, we outline previous studies performed with both traditional adjuvants as well as the most promising new generation adjuvants such as ligands for Toll-like receptors (TLRs) or different cytokines, focusing mostly on their efficacy when used with FMD vaccine, and somewhat on mechanisms by which adjuvants mediate their effects.

  1. Adjuvants Based on Hybrid Antibiotics Overcome Resistance in Pseudomonas aeruginosa and Enhance Fluoroquinolone Efficacy.

    PubMed

    Gorityala, Bala Kishan; Guchhait, Goutam; Fernando, Dinesh M; Deo, Soumya; McKenna, Sean A; Zhanel, George G; Kumar, Ayush; Schweizer, Frank

    2016-01-11

    The use of adjuvants that rescue antibiotics against multidrug-resistant (MDR) pathogens is a promising combination strategy for overcoming bacterial resistance. While the combination of β-lactam antibiotics and β-lactamase inhibitors has been successful in restoring antibacterial efficacy in MDR bacteria, the use of adjuvants to restore fluoroquinolone efficacy in MDR Gram-negative pathogens has been challenging. We describe tobramycin-ciprofloxacin hybrid adjuvants that rescue the activity of fluoroquinolone antibiotics against MDR and extremely drug-resistant Pseudomonas aeruginosa isolates in vitro and enhance fluoroquinolone efficacy in vivo. Structure-activity studies reveal that the presence of both tobramycin and ciprofloxacin, which are separated by a C12 tether, is critical for the function of the adjuvant. Mechanistic studies indicate that the antibacterial modes of ciprofloxacin are retained while the role of tobramycin is limited to destabilization of the outer membrane in the hybrid.

  2. [Menstrual abnormality in patients with breast cancer receiving adjuvant endocrine-chemotherapy].

    PubMed

    Yasumura, T; Oka, T; Honjo, H; Okada, H

    1988-10-01

    Menstrual status and ovarian function were studied in 24 premenopausal breast cancer patients receiving adjuvant therapy with chemotherapy and tamoxifen or chemotherapy alone. In 13 of 24 patients (54.1%), abnormal menses, including amenorrhea in 12 cases and oligomenorrhea in 1 case, developed during adjuvant therapy. In patients with abnormal menses, serum estradiol was significantly lower, and the levels of gonadotropins were significantly higher than in patients with normal menses. Among 13 patients with abnormal menses, 4 patients treated with cyclophosphamide revealed persistent amenorrhea during the whole period with adjuvant therapy, and the levels of serum estradiol and progesterone were extremely low. Furthermore, in these patients normal menses has not recovered and the levels of serum estradiol and progesterone remained low 4 to 5 months after cessation of cyclophosphamide administration. Thus, adjuvant chemotherapy caused depression of ovarian function, and cyclophosphamide induced ovarian failure, resulting in complete amenorrhea.

  3. Elimination of the cold-chain dependence of a nanoemulsion adjuvanted vaccine against tuberculosis by lyophilization

    PubMed Central

    Orr, Mark T.; Kramer, Ryan M.; Barnes, Lucien V; Dowling, Quinton M.; Desbien, Anthony L.; Beebe, Elyse A.; Laurance, John D.; Fox, Christopher B.; Reed, Steven G.; Coler, Rhea N.; Vedvick, Thomas S.

    2014-01-01

    Next-generation rationally-designed vaccine adjuvants represent a significant breakthrough to enable development of vaccines against challenging diseases including tuberculosis, HIV, and malaria. New vaccine candidates often require maintenance of a cold-chain process to ensure long-term stability and separate vials to enable bedside mixing of antigen and adjuvant. This presents a significant financial and technological barrier to worldwide implementation of such vaccines. Herein we describe the development and characterization of a tuberculosis vaccine comprised of both antigen and adjuvant components that are stable in a single vial at sustained elevated temperatures. Further this vaccine retains the ability to elicit both antibody and TH1 responses against the vaccine antigen and protect against experimental challenge with Mycobacterium tuberculosis. These results represent a significant breakthrough in the development of vaccine candidates that can be implemented throughout the world without being hampered by the necessity of a continuous cold chain or separate adjuvant and antigen vials. PMID:24382398

  4. Polyethyleneimine is a potent mucosal adjuvant for glycoproteins with innate and adaptive immune activating properties

    PubMed Central

    Wegmann, Frank; Gartlan, Kate H; Harandi, Ali M; Brinckmann, Sarah A; Coccia, Margherita; Hillson, William R; Kok, Wai Ling; Cole, Suzanne; Ho, Ling-Pei; Lambe, Teresa; Puthia, Manoj; Svanborg, Catharina; Scherer, Erin M; Krashias, George; Williams, Adam; Blattman, Joseph N; Greenberg, Philip D; Flavell, Richard A; Moghaddam, Amin E; Sheppard, Neil C; Sattentau, Quentin J

    2012-01-01

    There are no mucosal adjuvant formulations licensed for human use, despite protection against many mucosally-transmitted infections probably requiring immunity at the site of pathogen entry1. Polyethyleneimines (PEI) are organic polycations used as nucleic acid transfection reagents in vitro, and gene and DNA vaccine delivery vehicles in vivo2, 3. Here we show that PEI has unexpected and unusually potent mucosal adjuvant activity in conjunction with viral subunit glycoprotein antigens. Single intranasal administration of influenza HA or HSV-2 gD with PEI elicited robust protection from otherwise lethal infection, and was superior to existing experimental mucosal adjuvants. PEI formed nanoscale complexes with antigen that were taken up by antigen presenting cells in vitro and in vivo, promoted DC trafficking to draining lymph nodes and induced non-proinflammatory cytokine responses. PEI adjuvanticity required release of host dsDNA that triggered Irf-3-dependent signaling. PEI therefore merits further investigation as a mucosal adjuvant for human use. PMID:22922673

  5. Adjuvant therapy use among Appalachian breast cancer survivors.

    PubMed

    Tan, Xi; Marshall, Vincent D; Anderson, Roger T; Donohoe, Joseph; Camacho, Fabian; Balkrishnan, Rajesh

    2015-07-01

    There is a paucity of literature systemically examining the effects of access to cancer care resources on adjuvant endocrine therapy (AET) use behaviors, especially in underserved regions such as the Appalachian region in the United States, where gaps in healthcare access are well documented. The objectives of this study were to explore AET adherence and persistence in Appalachia, delineate the effects of access to care cancer on adherence/persistence, and evaluate the influences of adherence and persistence on overall survival.A retrospective cohort study from 2006 to 2008 was conducted among female breast cancer survivors living in the Appalachian counties of 4 states (PA, OH, KY, and NC). We linked cancer registries to Medicare claims data and included patients with invasive, nonmetastatic, hormone-receptor-positive breast cancer who received guideline-recommended AET. Medication adherence was defined as corresponding to a Medication Possession Ratio (MPR) ≥0.8 and logistic regression was utilized to assess predictors of adherence. Medication nonpersistence was defined as the discontinuation of drugs after exceeding a 60-day medication gap, and multivariate adjusted estimates of nonpersistence were obtained using the Cox proportional hazards (PH) model.About 31% of the total 428 patients were not adherent to AET, and 30% were not persistent over an average follow-up period of 421 days. Tamoxifen, relative to aromatase inhibitors, was associated with higher odds of adherence (odds ratio = 2.82, P < 0.001) and a lower risk of nonpersistence (hazard ratio = 0.40, P < 0.001). Drug-related side effects like pain may be an important factor leading to nonadherence and early discontinuation. In addition, aromatase inhibitor (AI) adherence and persistence were significantly influenced by out-of-pocket drug costs, dual eligibility status, and coverage gaps. Nonadherence to and nonpersistence with AET were associated with higher risks of all-cause mortality.Our findings

  6. Adjuvant Trastuzumab in HER2-Positive Breast Cancer

    PubMed Central

    Slamon, Dennis; Eiermann, Wolfgang; Robert, Nicholas; Pienkowski, Tadeusz; Martin, Miguel; Press, Michael; Mackey, John; Glaspy, John; Chan, Arlene; Pawlicki, Marek; Pinter, Tamas; Valero, Vicente; Liu, Mei-Ching; Sauter, Guido; von Minckwitz, Gunter; Visco, Frances; Bee, Valerie; Buyse, Marc; Bendahmane, Belguendouz; Tabah-Fisch, Isabelle; Lindsay, Mary-Ann; Riva, Alessandro; Crown, John

    2011-01-01

    BACKGROUND Trastuzumab improves survival in the adjuvant treatment of HER-positive breast cancer, although combined therapy with anthracycline-based regimens has been associated with cardiac toxicity. We wanted to evaluate the efficacy and safety of a new nonanthracycline regimen with trastuzumab. METHODS We randomly assigned 3222 women with HER2-positive early-stage breast cancer to receive doxorubicin and cyclophosphamide followed by docetaxel every 3 weeks (AC-T), the same regimen plus 52 weeks of trastuzumab (AC-T plus trastuzumab), or docetaxel and carboplatin plus 52 weeks of trastuzumab (TCH). The primary study end point was disease-free survival. Secondary end points were overall survival and safety. RESULTS At a median follow-up of 65 months, 656 events triggered this protocol-specified analysis. The estimated disease-free survival rates at 5 years were 75% among patients receiving AC-T, 84% among those receiving AC-T plus trastuzumab, and 81% among those receiving TCH. Estimated rates of overall survival were 87%, 92%, and 91%, respectively. No significant differences in efficacy (disease-free or overall survival) were found between the two trastuzumab regimens, whereas both were superior to AC-T. The rates of congestive heart failure and cardiac dysfunction were significantly higher in the group receiving AC-T plus trastuzumab than in the TCH group (P<0.001). Eight cases of acute leukemia were reported: seven in the groups receiving the anthracycline-based regimens and one in the TCH group subsequent to receiving an anthracycline outside the study. CONCLUSIONS The addition of 1 year of adjuvant trastuzumab significantly improved disease-free and overall survival among women with HER2-positive breast cancer. The risk–benefit ratio favored the nonanthracycline TCH regimen over AC-T plus trastuzumab, given its similar efficacy, fewer acute toxic effects, and lower risks of cardiotoxicity and leukemia. (Funded by Sanofi-Aventis and Genentech; BCIRG-006

  7. Proteomic and Systems Biology Analysis of Monocytes Exposed to Securinine, a GABAA Receptor Antagonist and Immune Adjuvant

    PubMed Central

    Shipman, Matt; Lubick, Kirk; Fouchard, David; Guram, Rajani; Grieco, Paul; Jutila, Mark; Dratz, Edward A.

    2012-01-01

    Securinine, a GABAA receptor antagonist, has been reported to enhance monocyte cell killing of Coxiella burnetii without obvious adverse effects in vivo. We employed multiplex 2D gel electrophoresis using Zdyes, a new generation of covalently linked fluorescent differential protein detection dyes to analyze changes in the monocyte proteome in response to Securinine. Securinine antagonism of GABAA receptors triggers the activation of p38. We used the differential protein expression results to guide a search of the literature and network analysis software to construct a systems biology model of the effect of Securinine on monocytes. The model suggests that various metabolic modulators (fatty acid binding protein 5, inosine 5′-monophosphate dehydrogenase, and thioredoxin) are at least partially reshaping the metabolic landscape within the monocytes. The actin bundling protein L-plastin, and the Ca2+ binding protein S100A4 also appear to have important roles in the immune response stimulated by Securinine. Fatty acid binding protein 5 (FABP5) may be involved in effecting lipid raft composition, inflammation, and hormonal regulation of monocytes, and the model suggests that FABP5 may be a central regulator of metabolism in activated monocytes. The model also suggests that the heat shock proteins have a significant impact on the monocyte immune response. The model provides a framework to guide future investigations into the mechanisms of Securinine action and with elaboration may help guide development of new types of immune adjuvants. PMID:23028424

  8. Inactivation of the MAL gene in breast cancer is a common event that predicts benefit from adjuvant chemotherapy

    PubMed Central

    Horne, Hisani N.; Lee, Paula S.; Murphy, Susan K.; Alonso, Miguel A.; Olson, John A.; Marks, Jeffrey R.

    2009-01-01

    Dis-regulation of MAL (myelin and lymphocyte protein) has been implicated in several malignancies including esophageal, ovarian, and cervical cancers. The MAL protein functions in apical transport in polarized-epithelial cells, therefore its disruption may lead to loss of organized polarity characteristic of most solid malignancies. Bisulfite sequencing of the MAL promoter CpG island revealed hypermethylation in breast cancer cell lines and 69% of primary tumors analyzed compared to normal breast epithelial cells. Differential methylation between normal and cancer DNA was confined to the proximal promoter region. In a subset of breast cancer cell lines including T47D and MCF7 cells, promoter methylation correlated with transcriptional silencing that was reversible with the methylation inhibitor 5-Aza-2'-deoxycytidine. In addition, expression of MAL reduced motility and resulted in a redistribution of lipid raft components in MCF10A cells. MAL protein expression measured by immunohistochemistry revealed no significant correlation with clinico-pathologic features. However, in patients who did not receive adjuvant chemotherapy, reduced MAL expression was a significant predictive factor for disease-free survival. These data implicate MAL as a commonly altered gene in breast cancer with implications for response to chemotherapy. PMID:19208741

  9. Carvedilol alleviates adjuvant-induced arthritis and subcutaneous air pouch edema: modulation of oxidative stress and inflammatory mediators.

    PubMed

    Arab, Hany H; El-Sawalhi, Maha M

    2013-04-15

    Rheumatoid arthritis (RA) is a systemic inflammatory disease with cardiovascular complications as the leading cause of morbidity. Carvedilol is an adrenergic antagonist which has been safely used in treatment of several cardiovascular disorders. Given that carvedilol has powerful antioxidant/anti-inflammatory properties, we aimed to investigate its protective potential against arthritis that may add further benefits for its clinical usefulness especially in RA patients with concomitant cardiovascular disorders. Two models were studied in the same rat; adjuvant arthritis and subcutaneous air pouch edema. Carvedilol (10mg/kg/day p.o. for 21days) effectively suppressed inflammation in both models with comparable efficacy to the standard anti-inflammatory diclofenac (5mg/kg/day p.o.). Notably, carvedilol inhibited paw edema and abrogated the leukocyte invasion to air pouch exudates. The latter observation was confirmed by the histopathological assessment of the pouch lining that revealed mitigation of immuno-inflammatory cell influx. Carvedilol reduced/normalized oxidative stress markers (lipid peroxides, nitric oxide and protein thiols) and lowered the release of inflammatory cytokines (TNF-α & IL-6), and eicosanoids (PGE2 & LTB4) in sera and exudates of arthritic rats. Interestingly, carvedilol, per se, didn't present any effect on assessed biochemical parameters in normal rats. Together, the current study highlights evidences for the promising anti-arthritic effects of carvedilol that could be mediated through attenuation of leukocyte migration, alleviation of oxidative stress and suppression of proinflammatory cytokines and eicosanoids.

  10. Anti-VEGF therapy as adjuvant therapy: clouds on the horizon?

    PubMed

    Schneider, Bryan P; Sledge, George W

    2009-01-01

    Anti-angiogenic therapies have demonstrated their value in the setting of advanced cancer, and are being explored for use in micrometastatic disease. Recent preclinical studies suggest that adjuvant anti-vascular endothelial growth factor (VEGF) therapies may increase the risk of metastasis. How concerning are these preclinical studies, and should they affect our willingness to explore anti-VEGF therapy in the adjuvant setting?

  11. CpG-loaded multifunctional cationic nanohydrogel particles as self-adjuvanting glycopeptide antitumor vaccines.

    PubMed

    Hartmann, Sebastian; Nuhn, Lutz; Palitzsch, Björn; Glaffig, Markus; Stergiou, Natascha; Gerlitzki, Bastian; Schmitt, Edgar; Kunz, Horst; Zentel, Rudolf

    2015-03-11

    Self-adjuvanting antitumor vaccines by multifunctional cationic nanohydrogels loaded with CpG. A conjugate consisting of tumor-associated MUC1-glycopeptide B-cell epitope and tetanus toxin T-cell epitope P2 is linked to cationic nanogels. Oligonucleotide CpG complexation enhances toll-like receptor (TLR) stimulated T-cell proliferation and rapid immune activation. This co-delivery promotes induction of specific MUC1-antibodies binding to human breast tumor cells without external adjuvant.

  12. Predictors of adjuvant treatment for pancreatic adenocarcinoma at the population level

    PubMed Central

    Kagedan, D.J.; Dixon, M.E.; Raju, R.S.; Li, Q.; Elmi, M.; Shin, E.; Liu, N.; El-Sedfy, A.; Paszat, L.; Kiss, A.; Earle, C.C.; Mittmann, N.; Coburn, N.G.

    2016-01-01

    Background In the present study, we aimed to describe, at the population level, patterns of adjuvant treatment use after curative-intent resection for pancreatic adenocarcinoma (pcc) and to identify independent predictors of adjuvant treatment use. Methods In this observational cohort study, patients undergoing pcc resection in the province of Ontario (population 13 million) during 2005–2010 were identified using the provincial cancer registry and were linked to administrative databases that include all treatments received and outcomes experienced in the province. Patients were defined as having received chemotherapy (ctx), chemoradiation (crt), or observation (obs). Clinicopathologic factors associated with the use of ctx, crt, or obs were identified by chi-square test. Logistic regression analyses were used to identify independent predictors of adjuvant treatment versus obs, and ctx versus crt. Results Of the 397 patients included, 75.3% received adjuvant treatment (27.2% crt, 48.1% ctx) and 24.7% received obs. Within a single-payer health care system with universal coverage of costs for ctx and crt, substantial variation by geographic region was observed. Although the likelihood of receiving adjuvant treatment increased from 2005 to 2010 (p = 0.002), multivariate analysis revealed widespread variation between the treating hospitals (p = 0.001), and even between high-volume hepatopancreatobiliary hospitals (p = 0.0006). Younger age, positive lymph nodes, and positive surgical resection margins predicted an increased likelihood of receiving adjuvant treatment. Among patients receiving adjuvant treatment, positive margins and a low comorbidity burden were associated with crt compared with ctx. Conclusions Interinstitutional medical practice variation contributes significantly to differential patterns in the rate of adjuvant treatment for pcc. Whether such variation is warranted or unwarranted requires further investigation. PMID:27803598

  13. Toxicological Risks of Agrochemical Spray Adjuvants: Organosilicone Surfactants May Not Be Safe.

    PubMed

    Mullin, Christopher A; Fine, Julia D; Reynolds, Ryan D; Frazier, Maryann T

    2016-01-01

    Agrochemical risk assessment that takes into account only pesticide active ingredients without the spray adjuvants commonly used in their application will miss important toxicity outcomes detrimental to non-target species, including humans. Lack of disclosure of adjuvant and formulation ingredients coupled with a lack of adequate analytical methods constrains the assessment of total chemical load on beneficial organisms and the environment. Adjuvants generally enhance the pesticidal efficacy and inadvertently the non-target effects of the active ingredient. Spray adjuvants are largely assumed to be biologically inert and are not registered by the USA EPA, leaving their regulation and monitoring to individual states. Organosilicone surfactants are the most potent adjuvants and super-penetrants available to growers. Based on the data for agrochemical applications to almonds from California Department of Pesticide Regulation, there has been increasing use of adjuvants, particularly organosilicone surfactants, during bloom when two-thirds of USA honey bee colonies are present. Increased tank mixing of these with ergosterol biosynthesis inhibitors and other fungicides and with insect growth regulator insecticides may be associated with recent USA honey bee declines. This database archives every application of a spray tank adjuvant with detail that is unprecedented globally. Organosilicone surfactants are good stand alone pesticides, toxic to bees, and are also present in drug and personal care products, particularly shampoos, and thus represent an important component of the chemical landscape to which pollinators and humans are exposed. This mini review is the first to possibly link spray adjuvant use with declining health of honey bee populations. PMID:27242985

  14. Toxicological Risks of Agrochemical Spray Adjuvants: Organosilicone Surfactants May Not Be Safe

    PubMed Central

    Mullin, Christopher A.; Fine, Julia D.; Reynolds, Ryan D.; Frazier, Maryann T.

    2016-01-01

    Agrochemical risk assessment that takes into account only pesticide active ingredients without the spray adjuvants commonly used in their application will miss important toxicity outcomes detrimental to non-target species, including humans. Lack of disclosure of adjuvant and formulation ingredients coupled with a lack of adequate analytical methods constrains the assessment of total chemical load on beneficial organisms and the environment. Adjuvants generally enhance the pesticidal efficacy and inadvertently the non-target effects of the active ingredient. Spray adjuvants are largely assumed to be biologically inert and are not registered by the USA EPA, leaving their regulation and monitoring to individual states. Organosilicone surfactants are the most potent adjuvants and super-penetrants available to growers. Based on the data for agrochemical applications to almonds from California Department of Pesticide Regulation, there has been increasing use of adjuvants, particularly organosilicone surfactants, during bloom when two-thirds of USA honey bee colonies are present. Increased tank mixing of these with ergosterol biosynthesis inhibitors and other fungicides and with insect growth regulator insecticides may be associated with recent USA honey bee declines. This database archives every application of a spray tank adjuvant with detail that is unprecedented globally. Organosilicone surfactants are good stand alone pesticides, toxic to bees, and are also present in drug and personal care products, particularly shampoos, and thus represent an important component of the chemical landscape to which pollinators and humans are exposed. This mini review is the first to possibly link spray adjuvant use with declining health of honey bee populations. PMID:27242985

  15. Physician Beliefs and Practices for Adjuvant and Salvage Radiation Therapy After Prostatectomy

    SciTech Connect

    Showalter, Timothy N.; Ohri, Nitin; Teti, Kristopher G.; Foley, Kathleen A.; Keith, Scott W.; Trabulsi, Edouard J.; Lallas, Costas D.; Dicker, Adam P.; Hoffman-Censits, Jean; Pizzi, Laura T.; Gomella, Leonard G.

    2012-02-01

    Purpose: Despite results of randomized trials that support adjuvant radiation therapy (RT) after radical prostatectomy (RP) for prostate cancer with adverse pathologic features (APF), many clinicians favor selective use of salvage RT. This survey was conducted to evaluate the beliefs and practices of radiation oncologists (RO) and urologists (U) regarding RT after RP. Methods and Materials: We designed a Web-based survey of post-RP RT beliefs and policies. Survey invitations were e-mailed to a list of 926 RO and 591 U. APF were defined as extracapsular extension, seminal vesicle invasion, or positive surgical margin. Differences between U and RO in adjuvant RT recommendations were evaluated by comparative statistics. Multivariate analyses were performed to evaluate factors predictive of adjuvant RT recommendation. Results: Analyzable surveys were completed by 218 RO and 92 U (overallresponse rate, 20%). Adjuvant RT was recommended based on APF by 68% of respondents (78% RO, 44% U, p <0.001). U were less likely than RO to agree that adjuvant RT improves survival and/or biochemical control (p < 0.0001). PSA thresholds for salvage RT were higher among U than RO (p < 0.001). Predicted rates of erectile dysfunction due to RT were higher among U than RO (p <0.001). On multivariate analysis, respondent specialty was the only predictor of adjuvant RT recommendations. Conclusions: U are less likely than RO to recommend adjuvant RT. Future research efforts should focus on defining the toxicities of post-RP RT and on identifying the subgroups of patients who will benefit from adjuvant vs. selective salvage RT.

  16. Variable tilt on lipid membranes

    PubMed Central

    Rangamani, P.; Steigmann, D. J.

    2014-01-01

    A continuum theory for lipid membranes is developed that accounts for mechanical interactions between lipid tilt and membrane shape. For planar membranes, a linear version of the theory is used to predict tilt variations similar to those observed in experiments and molecular dynamics simulations. PMID:25484606

  17. Lipid mediators in life science.

    PubMed

    Murakami, Makoto

    2011-01-01

    "Lipid mediators" represent a class of bioactive lipids that are produced locally through specific biosynthetic pathways in response to extracellular stimuli. They are exported extracellularly, bind to their cognate G protein-coupled receptors (GPCRs) to transmit signals to target cells, and are then sequestered rapidly through specific enzymatic or non-enzymatic processes. Because of these properties, lipid mediators can be regarded as local hormones or autacoids. Unlike proteins, whose information can be readily obtained from the genome, we cannot directly read out the information of lipids from the genome since they are not genome-encoded. However, we can indirectly follow up the dynamics and functions of lipid mediators by manipulating the genes encoding a particular set of proteins that are essential for their biosynthesis (enzymes), transport (transporters), and signal transduction (receptors). Lipid mediators are involved in many physiological processes, and their dysregulations have been often linked to various diseases such as inflammation, infertility, atherosclerosis, ischemia, metabolic syndrome, and cancer. In this article, I will give an overview of the basic knowledge of various lipid mediators, and then provide an example of how research using mice, gene-manipulated for a lipid mediator-biosynthetic enzyme, contributes to life science and clinical applications.

  18. The Flexibility of Ectopic Lipids

    PubMed Central

    Loher, Hannah; Kreis, Roland; Boesch, Chris; Christ, Emanuel

    2016-01-01

    In addition to the subcutaneous and the visceral fat tissue, lipids can also be stored in non-adipose tissue such as in hepatocytes (intrahepatocellular lipids; IHCL), skeletal (intramyocellular lipids; IMCL) or cardiac muscle cells (intracardiomyocellular lipids; ICCL). Ectopic lipids are flexible fuel stores that can be depleted by physical exercise and repleted by diet. They are related to obesity and insulin resistance. Quantification of IMCL was initially performed invasively, using muscle biopsies with biochemical and/or histological analysis. 1H-magnetic resonance spectroscopy (1H-MRS) is now a validated method that allows for not only quantifying IMCL non-invasively and repeatedly, but also assessing IHCL and ICCL. This review summarizes the current available knowledge on the flexibility of ectopic lipids. The available evidence suggests a complex interplay between quantitative and qualitative diet, fat availability (fat mass), insulin action, and physical exercise, all important factors that influence the flexibility of ectopic lipids. Furthermore, the time frame of the intervention on these parameters (short-term vs. long-term) appears to be critical. Consequently, standardization of physical activity and diet are critical when assessing ectopic lipids in predefined clinical situations. PMID:27649157

  19. Lipids in liver transplant recipients

    PubMed Central

    Hüsing, Anna; Kabar, Iyad; Schmidt, Hartmut H

    2016-01-01

    Hyperlipidemia is very common after liver transplantation and can be observed in up to 71% of patients. The etiology of lipid disorders in these patients is multifactorial, with different lipid profiles observed depending on the immunosuppressive agents administered and the presence of additional risk factors, such as obesity, diabetes mellitus and nutrition. Due to recent improvements in survival of liver transplant recipients, the prevention of cardiovascular events has become more important, especially as approximately 64% of liver transplant recipients present with an increased risk of cardiovascular events. Management of dyslipidemia and of other modifiable cardiovascular risk factors, such as hypertension, diabetes and smoking, has therefore become essential in these patients. Treatment of hyperlipidemia after liver transplantation consists of life style modification, modifying the dose or type of immunosuppressive agents and use of lipid lowering agents. At the start of administration of lipid lowering medications, it is important to monitor drug-drug interactions, especially between lipid lowering agents and immunosuppressive drugs. Furthermore, as combinations of various lipid lowering drugs can lead to severe side effects, such as myopathies and rhabdomyolysis, these combinations should therefore be avoided. To our knowledge, there are no current guidelines targeting the management of lipid metabolism disorders in liver transplant recipients. This paper therefore recommends an approach of managing lipid abnormalities occurring after liver transplantation. PMID:27022213

  20. Amphotericin B Lipid Complex Injection

    MedlinePlus

    Amphotericin B lipid complex injection is used to treat serious, possibly life-threatening fungal infections in people who did not respond or are ... tolerate conventional amphotericin B therapy. Amphotericin B lipid complex injection is in a class of medications called ...

  1. Neuroimaging of Lipid Storage Disorders

    ERIC Educational Resources Information Center

    Rieger, Deborah; Auerbach, Sarah; Robinson, Paul; Gropman, Andrea

    2013-01-01

    Lipid storage diseases, also known as the lipidoses, are a group of inherited metabolic disorders in which there is lipid accumulation in various cell types, including the central nervous system, because of the deficiency of a variety of enzymes. Over time, excessive storage can cause permanent cellular and tissue damage. The brain is particularly…

  2. The Flexibility of Ectopic Lipids.

    PubMed

    Loher, Hannah; Kreis, Roland; Boesch, Chris; Christ, Emanuel

    2016-01-01

    In addition to the subcutaneous and the visceral fat tissue, lipids can also be stored in non-adipose tissue such as in hepatocytes (intrahepatocellular lipids; IHCL), skeletal (intramyocellular lipids; IMCL) or cardiac muscle cells (intracardiomyocellular lipids; ICCL). Ectopic lipids are flexible fuel stores that can be depleted by physical exercise and repleted by diet. They are related to obesity and insulin resistance. Quantification of IMCL was initially performed invasively, using muscle biopsies with biochemical and/or histological analysis. ¹H-magnetic resonance spectroscopy (¹H-MRS) is now a validated method that allows for not only quantifying IMCL non-invasively and repeatedly, but also assessing IHCL and ICCL. This review summarizes the current available knowledge on the flexibility of ectopic lipids. The available evidence suggests a complex interplay between quantitative and qualitative diet, fat availability (fat mass), insulin action, and physical exercise, all important factors that influence the flexibility of ectopic lipids. Furthermore, the time frame of the intervention on these parameters (short-term vs. long-term) appears to be critical. Consequently, standardization of physical activity and diet are critical when assessing ectopic lipids in predefined clinical situations. PMID:27649157

  3. Roles of Lipids in Photosynthesis.

    PubMed

    Kobayashi, Koichi; Endo, Kaichiro; Wada, Hajime

    2016-01-01

    Thylakoid membranes in cyanobacterial cells and chloroplasts of algae and higher plants are the sites of oxygenic photosynthesis. The lipid composition of the thylakoid membrane is unique and highly conserved among oxygenic photosynthetic organisms. Major lipids in thylakoid membranes are glycolipids, monogalactosyldiacylglycerol, digalactosyldiacylglycerol and sulfoquinovosyldiacylglycerol, and the phospholipid, phosphatidylglycerol. The identification of almost all genes involved in the biosynthesis of each lipid class over the past decade has allowed the generation and isolation of mutants of various photosynthetic organisms incapable of synthesizing specific lipids. Numerous studies using such mutants have revealed that these lipids play important roles not only in the formation of the lipid bilayers of thylakoid membranes but also in the folding and assembly of the protein subunits in photosynthetic complexes. In addition to the studies with the mutants, recent X-ray crystallography studies of photosynthetic complexes in thylakoid membranes have also provided critical information on the association of lipids with photosynthetic complexes and their activities. In this chapter, we summarize our current understanding about the structural and functional involvement of thylakoid lipids in oxygenic photosynthesis.

  4. Lipids in liver transplant recipients.

    PubMed

    Hüsing, Anna; Kabar, Iyad; Schmidt, Hartmut H

    2016-03-28

    Hyperlipidemia is very common after liver transplantation and can be observed in up to 71% of patients. The etiology of lipid disorders in these patients is multifactorial, with different lipid profiles observed depending on the immunosuppressive agents administered and the presence of additional risk factors, such as obesity, diabetes mellitus and nutrition. Due to recent improvements in survival of liver transplant recipients, the prevention of cardiovascular events has become more important, especially as approximately 64% of liver transplant recipients present with an increased risk of cardiovascular events. Management of dyslipidemia and of other modifiable cardiovascular risk factors, such as hypertension, diabetes and smoking, has therefore become essential in these patients. Treatment of hyperlipidemia after liver transplantation consists of life style modification, modifying the dose or type of immunosuppressive agents and use of lipid lowering agents. At the start of administration of lipid lowering medications, it is important to monitor drug-drug interactions, especially between lipid lowering agents and immunosuppressive drugs. Furthermore, as combinations of various lipid lowering drugs can lead to severe side effects, such as myopathies and rhabdomyolysis, these combinations should therefore be avoided. To our knowledge, there are no current guidelines targeting the management of lipid metabolism disorders in liver transplant recipients. This paper therefore recommends an approach of managing lipid abnormalities occurring after liver transplantation. PMID:27022213

  5. Membrane lipid alterations in hemoglobinopathies.

    PubMed

    Kuypers, Frans A

    2007-01-01

    The red blood cell (RBC) membrane is a complex mixture of lipids and proteins. Hundreds of phospholipid molecular species spontaneously arrange themselves in a lipid bilayer and move rapidly in the plane as well as across the bilayer in a dynamic but highly organized fashion. Areas enriched in certain lipids determine proper protein function. Phospholipids are asymmetrically distributed across the lipid bilayer with phosphatidylserine (PS) exclusively on the inside. Both the composition and organization of the RBC membrane is well maintained. Alterations lead to apoptosis during erythropoiesis or early demise of the cell in the circulation. The mechanisms that govern the maintenance of the lipid bilayer are only recently being unraveled at the individual protein level. Oxidized lipids are rapidly repaired using fatty acids taken up from plasma to maintain membrane integrity. Several isoforms of a RBC acyl-Coenzyme A (CoA) synthase have been reported, as well as the first member of a family of lysophospholipid acylCoA acyltransferases. Phospholipid asymmetry is maintained by the recently identified RBC amino-phospholipid translocase. These enzymes, essential in maintaining membrane lipid organization, are affected by oxidant stress or an increase in cytosolic calcium. Normal lipid composition and organization is lost in subpopulations of RBC in hemoglobinopathies such as sickle cell disease and thalassemia. Despite elaborate antioxidant systems, lipids and membrane proteins, including those that maintain lipid organization, are damaged in these cells. This in turn leads to improper repair of damaged RBC membranes and altered interactions of RBCs with other blood cells and plasma components that play a role in the pathology that defines these disorders. The altered lipid bilayer in RBCs in hemoglobinopathies leads to premature removal (anemia) and imbalance in hemostasis, and plays a role in vaso-occlusive crisis in sickle cell disease. Lipid breakdown products of PS

  6. Lipid Regulation of Sodium Channels.

    PubMed

    D'Avanzo, N

    2016-01-01

    The lipid landscapes of cellular membranes are complex and dynamic, are tissue dependent, and can change with the age and the development of a variety of diseases. Researchers are now gaining new appreciation for the regulation of ion channel proteins by the membrane lipids in which they are embedded. Thus, as membrane lipids change, for example, during the development of disease, it is likely that the ionic currents that conduct through the ion channels embedded in these membranes will also be altered. This chapter provides an overview of the complex regulation of prokaryotic and eukaryotic voltage-dependent sodium (Nav) channels by fatty acids, sterols, glycerophospholipids, sphingolipids, and cannabinoids. The impact of lipid regulation on channel gating kinetics, voltage-dependence, trafficking, toxin binding, and structure are explored for Nav channels that have been examined in heterologous expression systems, native tissue, and reconstituted into artificial membranes. Putative mechanisms for Nav regulation by lipids are also discussed. PMID:27586290

  7. Lipids changes in liver cancer*

    PubMed Central

    Jiang, Jing-ting; Xu, Ning; Zhang, Xiao-ying; Wu, Chang-ping

    2007-01-01

    Liver is one of the most important organs in energy metabolism. Most plasma apolipoproteins and endogenous lipids and lipoproteins are synthesized in the liver. It depends on the integrity of liver cellular function, which ensures homeostasis of lipid and lipoprotein metabolism. When liver cancer occurs, these processes are impaired and the plasma lipid and lipoprotein patterns may be changed. Liver cancer is the fifth common malignant tumor worldwide, and is closely related to the infections of hepatitis B virus (HBV) and hepatitis C virus (HCV). HBV and HCV infections are quite common in China and other Southeast Asian countries. In addition, liver cancer is often followed by a procession of chronic hepatitis or cirrhosis, so that hepatic function is damaged obviously on these bases, which may significantly influence lipid and lipoprotein metabolism in vivo. In this review we summarize the clinical significance of lipid and lipoprotein metabolism under liver cancer. PMID:17565510

  8. Lipid Informed Quantitation and Identification

    SciTech Connect

    Kevin Crowell, PNNL

    2014-07-21

    LIQUID (Lipid Informed Quantitation and Identification) is a software program that has been developed to enable users to conduct both informed and high-throughput global liquid chromatography-tandem mass spectrometry (LC-MS/MS)-based lipidomics analysis. This newly designed desktop application can quickly identify and quantify lipids from LC-MS/MS datasets while providing a friendly graphical user interface for users to fully explore the data. Informed data analysis simply involves the user specifying an electrospray ionization mode, lipid common name (i.e. PE(16:0/18:2)), and associated charge carrier. A stemplot of the isotopic profile and a line plot of the extracted ion chromatogram are also provided to show the MS-level evidence of the identified lipid. In addition to plots, other information such as intensity, mass measurement error, and elution time are also provided. Typically, a global analysis for 15,000 lipid targets

  9. [The importance of the second generation adjuvanted systems in "new" vaccines].

    PubMed

    Beran, Jirí

    2008-02-01

    The so called "first generation adjuvants" have been based on aluminium salts and they were added to vaccines composition to enhance immune response to vaccine antigen. Formerly produced vaccines contained inactivated or attenuated microorganisms, which were able to promote all necessary signals for high immune response. Nevertheless there was also produced immune response and also adverse events to antigens, which were not necessary for protection. Vaccinology has been further developed with possibility to produce recombinant and subunit antigens, which were needed for protection against infection. It was necessary to intensify targeted immune response against recombinant antigen, for fast and long term protection. Such need stimulated research for development of "adjuvanted systems of the second generation", which were tailored to particular antigen. Former adjuvants were based on stimulation of adaptive immunity. Contrary the first the second generation of adjuvanted systems is based on Pathogen-Associated Molecular Patterns (PAMP). By binding to Toll-like receptors (mostly TLR-4) as a part of innate immunity, they are able to influence adaptive immunity including humoral and also cellular arm of immune system. Licensed vaccines with second generation of adjuvant systems are Cervarix and Fendrix vaccines and in development are vaccines against malaria and genital herpes. Also for pre-pandemic vaccines is used new generation of adjuvanted systems. PMID:18327735

  10. Aluminium adjuvants and adverse events in sub-cutaneous allergy immunotherapy.

    PubMed

    Exley, Christopher

    2014-01-01

    Sub-cutaneous immunotherapy is an effective treatment for allergy. It works by helping to modify or re-balance an individual's immune response to allergens and its efficacy is greatly improved by the use of adjuvants, most commonly, aluminium hydroxide. Aluminium salts have been used in allergy therapy for many decades and are assumed to be safe with few established side-effects. This assumption belies their potency as adjuvants and their potential for biological reactivity both at injection sites and elsewhere in the body. There are very few data purporting to the safety of aluminium adjuvants in allergy immunotherapy and particularly so in relation to longer term health effects. There are, if only few, published reports of adverse events following allergy immunotherapy and aluminium adjuvants are the prime suspects in the majority of such incidents. Aluminium adjuvants are clearly capable of initiating unwanted side effects in recipients of immunotherapy and while there is as yet no evidence that such are commonplace it is complacent to consider aluminium salts as harmless constituents of allergy therapies. Future research should establish the safety of the use of aluminium adjuvants in sub-cutaneous allergy immunotherapy. PMID:24444186

  11. Influence of irrigation methods and an adjuvant on the persistence of carbaryl on pakchoi.

    PubMed

    Marutani, Mari; Edirveerasingam, Veronica

    2006-01-01

    Influence of irrigation methods and use of an adjuvant on the persistence of the carbaryl (1-naphthyl N-methylcarbamate) on pakchoi [Brassica rapa L. subsp. chinensis (Rupr.) Olsson] was studied using a commercial enzyme linked immunosorbent assay kit. After applying carbaryl at a.i. 10.6 g L(-1) with or without an adjuvant (Latron B-1956) to leaves, plants were provided water daily by either overhead or basal application. Pesticide residue on leaf tissues was examined immediately after pesticide application and on 2, 4, 6, and 8 d after pesticide application. Use of the adjuvant did not affect the initial deposit of the pesticide, however pesticide persistence was improved with the adjuvant regardless of irrigation. Overhead irrigation contributed to rapid loss of the pesticide by washing carbaryl from the leaf surface. The longest half-life of carbaryl (6.5 d) was detected on plants receiving basal irrigation plus the adjuvant while the shortest half-life (2 d) was observed when plants were treated with overhead irrigation and no adjuvant.

  12. Novel adjuvant Alum-TLR7 significantly potentiates immune response to glycoconjugate vaccines.

    PubMed

    Buonsanti, Cecilia; Balocchi, Cristiana; Harfouche, Carole; Corrente, Federica; Galli Stampino, Luisa; Mancini, Francesca; Tontini, Marta; Malyala, Padma; Bufali, Simone; Baudner, Barbara; De Gregorio, Ennio; Valiante, Nicholas M; O'Hagan, Derek T; Rappuoli, Rino; D'Oro, Ugo

    2016-01-01

    Although glycoconjugate vaccines are generally very efficacious, there is still a need to improve their efficacy, especially in eliciting a strong primary antibody response. We have recently described a new type of vaccine adjuvant based on a TLR7 agonist adsorbed to alum (Alum-TLR7), which is highly efficacious at enhancing immunogenicity of protein based vaccines. Since no adjuvant has been shown to potentiate the immune response to glycoconjugate vaccines in humans, we investigated if Alum-TLR7 is able to improve immunogenicity of this class of vaccines. We found that in a mouse model Alum-TLR7 greatly improved potency of a CRM197-MenC vaccine increasing anti-MenC antibody titers and serum bactericidal activity (SBA) against MenC compared to alum adjuvanted vaccine, especially with a low dose of antigen and already after a single immunization. Alum-TLR7 also drives antibody response towards Th1 isotypes. This adjuvant was also able to increase immunogenicity of all polysaccharides of a multicomponent glycoconjugate vaccine CRM197-MenACWY. Furthermore, we found that Alum-TLR7 increases anti-polysaccharide immune response even in the presence of a prior immune response against the carrier protein. Finally, we demonstrate that Alum-TLR7 adjuvant effect requires a functional TLR7. Taken together, our data support the use of Alum-TLR7 as adjuvant for glycoconjugate vaccines. PMID:27439378

  13. Insight into the cellular fate and toxicity of aluminium adjuvants used in clinically approved human vaccinations

    NASA Astrophysics Data System (ADS)

    Mold, Matthew; Shardlow, Emma; Exley, Christopher

    2016-08-01

    Aluminium adjuvants remain the most widely used and effective adjuvants in vaccination and immunotherapy. Herein, the particle size distribution (PSD) of aluminium oxyhydroxide and aluminium hydroxyphosphate adjuvants was elucidated in attempt to correlate these properties with the biological responses observed post vaccination. Heightened solubility and potentially the generation of Al3+ in the lysosomal environment were positively correlated with an increase in cell mortality in vitro, potentially generating a greater inflammatory response at the site of simulated injection. The cellular uptake of aluminium based adjuvants (ABAs) used in clinically approved vaccinations are compared to a commonly used experimental ABA, in an in vitro THP-1 cell model. Using lumogallion as a direct-fluorescent molecular probe for aluminium, complemented with transmission electron microscopy provides further insight into the morphology of internalised particulates, driven by the physicochemical variations of the ABAs investigated. We demonstrate that not all aluminium adjuvants are equal neither in terms of their physical properties nor their biological reactivity and potential toxicities both at the injection site and beyond. High loading of aluminium oxyhydroxide in the cytoplasm of THP-1 cells without immediate cytotoxicity might predispose this form of aluminium adjuvant to its subsequent transport throughout the body including access to the brain.

  14. Role of Adjuvant Radiotherapy in Granulosa Cell Tumors of the Ovary

    SciTech Connect

    Hauspy, Jan; Beiner, Mario E.; Harley, Ian; Rosen, Barry; Murphy, Joan; Chapman, William; Le, Lisa W.; Fyles, Anthony; Levin, Wilfred

    2011-03-01

    Purpose: To review the role of adjuvant radiotherapy (RT) in the outcome and recurrence patterns of granulosa cell tumors (GCTs) of the ovary. Methods and Materials: The records of all patients with GCTs referred to the Princess Margaret Hospital University Health Network between 1961 and 2006 were retrospectively reviewed. The patient, tumor, and treatment factors were assessed by univariate and multivariate analyses using disease-free survival (DFS) as the endpoint. Results: A total of 103 patients with histologically confirmed GCTs were included in the present study. The mean duration of follow-up was 100 months (range, 1-399). Of the 103 patients, 31 received adjuvant RT. A total of 39 patients developed tumor recurrence. The tumor size, incidence of intraoperative rupture, and presence of concurrent endometrial cancer were not significant risk factors for DFS. The median DFS was 251 months for patients who underwent adjuvant RT compared with 112 months for patients who did not (p = .02). On multivariate analysis, adjuvant RT remained a significant prognostic factor for DFS (p = .004). Of the 103 patients, 12 had died and 44 were lost to follow-up. Conclusion: Ovarian GCTs can be indolent, with patients achieving long-term survival. In our series, adjuvant RT resulted in a significantly longer DFS. Ideally, randomized trials with long-term follow-up are needed to define the role of adjuvant RT for ovarian GCTs.

  15. Adjuvant-enhanced CD4 T Cell Responses are Critical to Durable Vaccine Immunity.

    PubMed

    Martins, Karen A O; Cooper, Christopher L; Stronsky, Sabrina M; Norris, Sarah L W; Kwilas, Steven A; Steffens, Jesse T; Benko, Jacqueline G; van Tongeren, Sean A; Bavari, Sina

    2016-01-01

    Protein-based vaccines offer a safer alternative to live-attenuated or inactivated vaccines but have limited immunogenicity. The identification of adjuvants that augment immunogenicity, specifically in a manner that is durable and antigen-specific, is therefore critical for advanced development. In this study, we use the filovirus virus-like particle (VLP) as a model protein-based vaccine in order to evaluate the impact of four candidate vaccine adjuvants on enhancing long term protection from Ebola virus challenge. Adjuvants tested include poly-ICLC (Hiltonol), MPLA, CpG 2395, and alhydrogel. We compared and contrasted antibody responses, neutralizing antibody responses, effector T cell responses, and T follicular helper (Tfh) cell frequencies with each adjuvant's impact on durable protection. We demonstrate that in this system, the most effective adjuvant elicits a Th1-skewed antibody response and strong CD4 T cell responses, including an increase in Tfh frequency. Using immune-deficient animals and adoptive transfer of serum and cells from vaccinated animals into naïve animals, we further demonstrate that serum and CD4 T cells play a critical role in conferring protection within effective vaccination regimens. These studies inform on the requirements of long term immune protection, which can potentially be used to guide screening of clinical-grade adjuvants for vaccine clinical development. PMID:26870818

  16. Toward understanding the mechanism underlying the strong adjuvant activity of aluminum salt nanoparticles.

    PubMed

    Ruwona, Tinashe B; Xu, Haiyue; Li, Xu; Taylor, Amber N; Shi, Yan-Chun; Cui, Zhengrong

    2016-06-01

    Aluminum salts such as aluminum oxyhydroxide and aluminum hydroxyphosphate are commonly used human vaccine adjuvants. In an effort to improve the adjuvant activity of aluminum salts, we previously showed that the adjuvant activity of aluminum oxyhydroxide nanoparticles is significantly more potent than that of aluminum oxyhydroxide microparticles. Th