Sample records for adjuvant temozolomide tmz

  1. A Case of Therapy-Related Acute Myeloid Leukemia Associated with Adjuvant Temozolomide Chemotherapy for Anaplastic Astrocytoma.

    PubMed

    Kosugi, Kenzo; Saito, Katsuya; Takahashi, Wataru; Tokuda, Yukina; Tomita, Hideyuki

    2017-05-01

    Temozolomide (TMZ) is now standard adjuvant therapy in combination with radiotherapy for patients with newly diagnosed malignant glioma. Treatment-related myelodysplastic syndrome and acute treatment-related leukemia (t-AML) associated with TMZ chemotherapy for patients with glioma is quite a rare complication. A 43-year-old man with an anaplastic astrocytoma received radiation therapy synchronized with ranimustine and adjuvant TMZ chemotherapy for 15 cycles. Close follow-up magnetic resonance imaging of the head during TMZ chemotherapy showed no evidence of tumor progression. One year after the completion of TMZ chemotherapy, a bone-marrow aspiration was performed because the patient's white blood cell count decreased. He was diagnosed with t-AML based on the bone marrow examination, and then he was referred to the cancer center for the treatment of t-AML. In this case study, we continued adjuvant TMZ therapy beyond the recommended 6 cycles. Currently, there is no consensus as to how long the adjuvant TMZ therapy should be continued for the treatment of residual tumor showing no apparent interval change. A new decision-making tool to assess the clinical benefits against the side effects for long-term adjuvant TMZ therapy is needed. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Concurrent Chemoradiotherapy with Temozolomide Followed by Adjuvant Temozolomide for Newly Diagnosed Glioblastoma Patients: A Retrospective Multicenter Observation Study in Korea.

    PubMed

    Kim, Byung Sup; Seol, Ho Jun; Nam, Do-Hyun; Park, Chul-Kee; Kim, Il Han; Kim, Tae Min; Kim, Jeong Hoon; Cho, Young Hyun; Yoon, Sang Min; Chang, Jong Hee; Kang, Seok-Gu; Kim, Eui Hyun; Suh, Chang-Ok; Jung, Tae-Young; Lee, Kyung-Hwa; Kim, Chae-Yong; Kim, In Ah; Hong, Chang-Ki; Yoo, Heon; Kim, Jin Hee; Kang, Shin-Hyuk; Kang, Min Kyu; Kim, Eun-Young; Kim, Sun-Hwan; Chung, Dong-Sup; Hwang, Sun-Chul; Song, Joon-Ho; Cho, Sung Jin; Lee, Sun-Il; Lee, Youn-Soo; Ahn, Kook-Jin; Kim, Se Hoon; Lim, Do Hun; Gwak, Ho-Shin; Lee, Se-Hoon; Hong, Yong-Kil

    2017-01-01

    The purpose of this study was to investigate the feasibility and survival benefits of combined treatment with radiotherapy and adjuvant temozolomide (TMZ) in a Korean sample. A total of 750 Korean patients with histologically confirmed glioblastoma multiforme, who received concurrent chemoradiotherapy with TMZ (CCRT) and adjuvant TMZ from January 2006 until June 2011, were analyzed retrospectively. After the first operation, a gross total resection (GTR), subtotal resection (STR), partial resection (PR), biopsy alone were achieved in 388 (51.7%), 159 (21.2%), 96 (12.8%), and 107 (14.3%) patients, respectively. The methylation status of O 6 -methylguanine-DNA methyltransferase (MGMT) was reviewed retrospectively in 217 patients. The median follow-up period was 16.3 months and the median overall survival (OS) was 17.5 months. The actuarial survival rates at the 1-, 3-, and 5-year OS were 72.1%, 21.0%, and 9.0%, respectively. The median progression-free survival (PFS) was 10.1 months, and the actuarial PFS at 1-, 3-, and 5-year PFS were 42.2%, 13.0%, and 7.8%, respectively. The patients who received GTR showed a significantly longer OS and PFS than those who received STR, PR, or biopsy alone, regardless of the methylation status of the MGMT promoter. Patients with a methylated MGMT promoter also showed a significantly longer OS and PFS than those with an unmethylated MGMT promoter. Patients who received more than six cycles of adjuvant TMZ had a longer OS and PFS than those who received six or fewer cycles. Hematologic toxicity of grade 3 or 4 was observed in 8.4% of patients during the CCRT period and in 10.2% during the adjuvant TMZ period. Patients treated with CCRT followed by adjuvant TMZ had more favorable survival rates and tolerable toxicity than those who did not undergo this treatment.

  3. Survival gain in glioblastoma patients treated with dendritic cell immunotherapy is associated with increased NK but not CD8+ T cell activation in the presence of adjuvant temozolomide

    PubMed Central

    Pellegatta, Serena; Eoli, Marica; Anghileri, Elena; Pollo, Bianca; Pessina, Sara; Frigerio, Simona; Servida, Maura; Cuppini, Lucia; Antozzi, Carlo; Cuzzubbo, Stefania; Corbetta, Cristina; Paterra, Rosina; Acerbi, Francesco; Ferroli, Paolo; DiMeco, Francesco; Fariselli, Laura; Parati, Eugenio A.; Bruzzone, Maria Grazia

    2018-01-01

    ABSTRACT In a two-stage phase II study, 24 patients with first diagnosis of glioblastoma (GBM) were treated with dendritic cell (DC) immunotherapy associated to standard radiochemotherapy with temozolomide (TMZ) followed by adjuvant TMZ. Three intradermal injections of mature DC loaded with autologous GBM lysate were administered before adjuvant TMZ, while 4 injections were performed during adjuvant TMZ. According to a two-stage Simon design, to proceed to the second stage progression-free survival (PFS) 12 months after surgery was expected in at least 8 cases enrolled in the first stage. Evidence of immune response and interaction with chemotherapy were investigated. After a median follow up of 17.4 months, 9 patients reached PFS12. In these patients (responders, 37.5%), DC vaccination induced a significant, persistent activation of NK cells, whose increased response was significantly associated with prolonged survival. CD8+ T cells underwent rapid expansion and priming but, after the first administration of adjuvant TMZ, failed to generate a memory status. Resistance to TMZ was associated with robust expression of the multidrug resistance protein ABCC3 in NK but not CD8+ T cells. The negative effect of TMZ on the formation of T cell-associated antitumor memory deserves consideration in future clinical trials including immunotherapy. PMID:29632727

  4. Evaluation of Concurrent Radiation, Temozolomide and ABT-888 Treatment Followed by Maintenance Therapy with Temozolomide and ABT-888 in a Genetically Engineered Glioblastoma Mouse Model.

    PubMed

    Lemasson, Benjamin; Wang, Hanxiao; Galbán, Stefanie; Li, Yinghua; Zhu, Yuan; Heist, Kevin A; Tsein, Christina; Chenevert, Thomas L; Rehemtulla, Alnawaz; Galbán, Craig J; Holland, Eric C; Ross, Brian D

    2016-02-01

    Despite the use of ionizing radiation (IR) and temozolomide (TMZ), outcome for glioblastoma (GBM) patients remains dismal. Poly (ADP-ribose) polymerase (PARP) is important in repair pathways for IR-induced DNA damage and TMZ-induced alkylation at N7-methylguanine and N3-methyldenine. However, optimized protocols for administration of PARP inhibitors have not been delineated. In this study, the PARP inhibitor ABT-888 was evaluated in combination with and compared to current standard-of-care in a genetically engineered mouse GBM model. Results demonstrated that concomitant TMZ/IR/ABT-888 with adjuvant TMZ/ABT-888 was more effective in inducing apoptosis and reducing proliferation with significant tumor growth delay and improved overall survival over concomitant TMZ/IR with adjuvant TMZ. Diffusion-weighted MRI, an early translatable response biomarker detected changes in tumors reflecting response at 1 day post TMZ/IR/ABT-888 treatment. This study provides strong scientific rationale for the development of an optimized dosing regimen for a PARP inhibitor with TMZ/IR for upfront treatment of GBM. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  5. Phase II Study of Short-Course Radiotherapy Plus Concomitant and Adjuvant Temozolomide in Elderly Patients With Glioblastoma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Minniti, Giuseppe, E-mail: Giuseppe.Minniti@ospedalesantandrea.it; Department of Neurological Sciences, Neuromed Institute, Pozzilli; Lanzetta, Gaetano

    Purpose: Radiotherapy (RT) and chemotherapy may prolong survival in older patients (age {>=}70 years) with glioblastoma multiforme (GBM), although the survival benefits remain poor. This Phase II multicenter study was designed to evaluate the efficacy and safety of an abbreviated course of RT plus concomitant and adjuvant temozolomide (TMZ) in older patients with GBM. Patients and Methods: Seventy-one eligible patients 70 years of age or older with newly diagnosed GBM and a Karnofsky performance status {>=}60 were treated with a short course of RT (40 Gy in 15 fractions over 3 weeks) plus TMZ at the dosage of 75 mg/m{supmore » 2} per day followed by 12 cycles of adjuvant TMZ (150-200 mg/m{sup 2} for 5 days during each 28-day cycle). The primary endpoint was overall survival (OS). Secondary endpoints included progression-free survival and toxicity. Results: The Median OS was 12.4 months, and the 1-year and 2-year OS rates were 58% and 20%, respectively. The median and 1-year rates of progression-free survival were 6 months and 20%, respectively. All patients completed the planned programme of RT. Grade 3 or 4 adverse events occurred in 16 patients (22%). Grade 3 and 4 neutropenia and/or thrombocytopenia occurred in 10 patients (15%), leading to the interruption of treatment in 6 patients (8%). Nonhematologic Grade 3 toxicity was rare, and included fatigue in 4 patients and cognitive disability in 1 patient. Conclusions: A combination of an abbreviated course of RT plus concomitant and adjuvant TMZ is well tolerated and may prolong survival in elderly patients with GBM. Future randomized studies need to evaluate the efficacy and toxicity of different schedules of RT in association with chemotherapy.« less

  6. Downregulation of HIF-1a sensitizes U251 glioma cells to the temozolomide (TMZ) treatment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tang, Jun-Hai; Ma, Zhi-Xiong; Huang, Guo-Hao

    Purpose: The aim of this study was to investigate the effect of downregulation of HIF-1α gene on human U251 glioma cells and examine the consequent changes of TMZ induced effects and explore the molecular mechanisms. Methods: U251 cell line stably expressing HIF-1α shRNA was acquired via lentiviral vector transfection. The mRNA and protein expression alterations of genes involved in our study were determined respectively by qRT-PCR and Western blot. Cell proliferation was measured by MTT assay and colony formation assay, cell invasion/migration capacity was determined by transwell invasion assay/wound healing assay, and cell apoptosis was detected by flow cytometry. Results:more » We successfully established a U251 cell line with highly efficient HIF-1α knockdown. HIF-1a downregulation sensitized U251 cells to TMZ treatment and enhanced the proliferation-inhibiting, invasion/migration-suppressing, apoptosis-inducing and differentiation-promoting effects exerted by TMZ. The related molecular mechanisms demonstrated that expression of O{sup 6}-methylguanine DNA methyltransferase gene (MGMT) and genes of Notch1 pathway were significantly upregulated by TMZ treatment. However, this upregulation was abrogated by HIF-1α knockdown. We further confirmed important regulatory roles of HIF-1α in the expression of MGMT and activation of Notch1 pathways. Conclusion: HIF-1α downregulation sensitizes U251 glioma cells to the temozolomide treatment via inhibiting MGMT expression and Notch1 pathway activation. - Highlights: • TMZ caused more significant proliferation inhibition and apoptosis in U251 cells after downregulating HIF-1α. • Under TMZ treatment, HIF-1 downregulated U251 cells exhibited weaker mobility and more differentiated state. • TMZ caused MGMT over-expression and Notch1 pathway activation, which could be abrogated by HIF-1α downregulation.« less

  7. Phase I Trial of Aflibercept (VEGF Trap) with Radiation Therapy and Concomitant and Adjuvant Temozolomide in Patients with High-Grade Gliomas

    PubMed Central

    Nayak, Lakshmi; de Groot, John; Wefel, Jeffrey S; Cloughesy, Timothy F; Lieberman, Frank; Chang, Susan M; Omuro, Antonio; Drappatz, Jan; Batchelor, Tracy T; DeAngelis, Lisa M; Gilbert, Mark R; Aldape, Kenneth D; Yung, Alfred WK; Fisher, Joy; Ye, Xiaobu; Chen, Alice; Grossman, Stuart; Prados, Michael; Wen, Patrick Y

    2017-01-01

    Background Anti-vascular endothelial growth factor (VEGF) therapy has shown promise in the treatment of high-grade gliomas (HGG). Aflibercept is a recombinant human fusion protein that acts as a soluble decoy receptor for VEGF-A, VEGF-B and placental growth factor (PlGF), depleting circulating levels of these growth factors. Methods The Adult Brain Tumor Consortium (ABTC) conducted a phase I trial of aflibercept and temozolomide (TMZ) in patients with newly diagnosed high-grade gliomas (HGG) with 2 dose levels and a 3+3 design. Three arms using aflibercept were examined; with radiation and concomitant temozolomide; with adjuvant temozolomide using the 5/28 regimen; and with adjuvant temozolomide using the 21/28 day regimen. Results Fifty-nine patients were enrolled, 21 in arm 1, 20 in arm 2 and 18 in arm 3. Median age was 56 years (24-69); median KPS 90 (60-100). The maximum tolerated dose (MTD) of aflibercept for all 3 arms was 4mg/kg every 2 weeks. Dose limiting toxicities (DLTs) at the MTD were: Arm 1: 0/21 patients; Arm 2: 2/20 patients (G3 deep vein thrombosis, G4 neutropenia; Arm 3: 3/18 patients (G4 biopsy-confirmed thrombotic microangiopathy, G3 rash, G4 thrombocytopenia). The median number of cycles of aflibercept was 5 (range, 1-16). All patients stopped treatment; 28 (47%) for disease progression, 21 (36%) for toxicities, 8 (14%) for other reasons, and 2 (3%) patients completed the full treatment course. Conclusions This study met its primary endpoint and the MTD of aflibercept with radiation and concomitant and adjuvant temozolomide is 4mg/kg every 2 weeks. PMID:28116649

  8. Phase I trial of aflibercept (VEGF trap) with radiation therapy and concomitant and adjuvant temozolomide in patients with high-grade gliomas.

    PubMed

    Nayak, Lakshmi; de Groot, John; Wefel, Jeffrey S; Cloughesy, Timothy F; Lieberman, Frank; Chang, Susan M; Omuro, Antonio; Drappatz, Jan; Batchelor, Tracy T; DeAngelis, Lisa M; Gilbert, Mark R; Aldape, Kenneth D; Yung, Alfred W K; Fisher, Joy; Ye, Xiaobu; Chen, Alice; Grossman, Stuart; Prados, Michael; Wen, Patrick Y

    2017-03-01

    Anti-vascular endothelial growth factor (VEGF) therapy has shown promise in the treatment of high-grade gliomas (HGG). Aflibercept is a recombinant human fusion protein that acts as a soluble decoy receptor for VEGF-A, VEGF-B and placental growth factor, depleting circulating levels of these growth factors. The Adult Brain Tumor Consortium conducted a phase I trial of aflibercept and temozolomide (TMZ) in patients with newly diagnosed HGG with 2 dose levels and a 3+3 design. Three arms using aflibercept were examined; with radiation and concomitant temozolomide; with adjuvant temozolomide using the 5/28 regimen; and with adjuvant temozolomide using the 21/28 day regimen. Fifty-nine patients were enrolled, 21 in arm 1, 20 in arm 2 and 18 in arm 3. Median age was 56 years (24-69); median KPS 90 (60-100). The maximum tolerated dose (MTD) of aflibercept for all 3 arms was 4 mg/kg every 2 weeks. Dose limiting toxicities at the MTD were: Arm 1: 0/21 patients; Arm 2: 2/20 patients (G3 deep vein thrombosis, G4 neutropenia; Arm 3: 3/18 patients) (G4 biopsy-confirmed thrombotic microangiopathy, G3 rash, G4 thrombocytopenia). The median number of cycles of aflibercept was 5 (range, 1-16). All patients stopped treatment; 28 (47%) for disease progression, 21 (36%) for toxicities, 8 (14%) for other reasons, and 2 (3%) patients completed the full treatment course. This study met its primary endpoint and the MTD of aflibercept with radiation and concomitant and adjuvant temozolomide is 4 mg/kg every 2 weeks.

  9. Survival benefit of glioblastoma patients after FDA approval of temozolomide concomitant with radiation and bevacizumab: A population-based study.

    PubMed

    Zhu, Ping; Du, Xianglin L; Lu, Guangrong; Zhu, Jay-Jiguang

    2017-07-04

    Few population-based analyses have investigated survival change in glioblastoma multiforme (GBM) patients treated with concomitant radiotherapy-temozolomide (RT-TMZ) and adjuvant temozolomide (TMZ) and then bevacizumab (BEV) after Food and Drug Administration (FDA) approval, respectively. We aimed to explore the effects on survival with RT-TMZ, adjuvant TMZ and BEV in general GBM population based on the Surveillance, Epidemiology, and End Results (SEER) and Texas Cancer Registry (TCR) databases. A total of 28933 GBM patients from SEER (N = 24578) and TCR (N = 4355) between January 2000 and December 2013 were included. Patients were grouped into three calendar periods based on date of diagnosis: pre-RT-TMZ and pre-BEV (1/2000-2/2005, P1), post-RT-TMZ and pre-BEV (3/2005-4/2009, P2), and post-RT-TMZ and post-BEV (5/2009-12/2013, P3). The association between calendar period of diagnosis and survival was analyzed in SEER and TCR, separately, by the Kaplan-Meier method and Cox proportional hazards model. We found a significant increase in median overall survival (OS) across the three periods in both populations. In multivariate models, the risk of death was significantly reduced during P2 and further decreased in P3, which remained unchanged after stratification. Comparison and validation analysis were performed in the combined dataset, and consistent results were observed. We conclude that the OS of GBM patients in a "real-world" setting has been steadily improved from January 2000 to December 2013, which likely resulted from the administrations of TMZ concomitant with RT and adjuvant TMZ for newly diagnosed GBM and then BEV for recurrent GBM after respective FDA approval.

  10. Efficacy of temozolomide as adjuvant chemotherapy after postsurgical radiotherapy alone for glioblastomas.

    PubMed

    Rhee, Deok-Joo; Kong, Doo-Sik; Kim, Won Seog; Park, Kwon-Byong; Lee, Jung-Il; Suh, Yeon-Lim; Song, Sang Young; Kim, Sung Tae; Lim, Do-Hoon; Park, Kwan; Kim, Jong Hyun; Nam, Do-Hyun

    2009-11-01

    The aim of this study was to assess the efficacy of adjuvant TMZ chemotherapy for newly diagnosed GBM patients who were treated with surgery followed by radiotherapy alone. Between January 2003 and April 2005, 59 consecutive GBM patients underwent radiation therapy after surgical resection and subsequently received TMZ chemotherapy. For the comparative analysis, we selected 60 clinically matched GBM patients who underwent radiotherapy followed by nitrosourea-based chemotherapy (NUBC), at the same institution between June 1995 and April 2005. The study cohort was divided into two groups, those with adjuvant TMZ treatment and with NUBC. 59 patients with adjuvant TMZ treatment were assigned to the treatment group and 60 patients with NUBC to the control group. The median overall survival for the treatment group was 18.2 months (95% CI, 11.7-24.7 months), compared with the survival of 14.5 months (95% CI, 11.2-17.7 months) for the control group (p=0.019). The progression-free survival for the treatment group was 5.6 months (95% CI, 4.4-6.7 months), while the control group showed progression-free survival of 3.3 months (95% CT, 3.2-6.0 months) (p=0.030). Uni- and multivariate analysis revealed that extent of surgical resection, age > or =55 years and postoperative KPS were significantly associated with survival. Adjuvant TMZ chemotherapy provided a clinically relevant benefit of survival, as compared with NUBC. Thus, we suggest that adjuvant TMZ chemotherapy may be effective even for patients who did not receive concomitant chemoradiotherapy for GBM.

  11. Crystal engineering of stable temozolomide cocrystals.

    PubMed

    Babu, N Jagadeesh; Sanphui, Palash; Nangia, Ashwini

    2012-10-01

    The antitumor prodrug temozolomide (TMZ) decomposes in aqueous medium of pH≥7 but is relatively stable under acidic conditions. Pure TMZ is obtained as a white powder but turns pink and then brown, which is indicative of chemical degradation. Pharmaceutical cocrystals of TMZ were engineered with safe coformers such as oxalic acid, succinic acid, salicylic acid, d,l-malic acid, and d,l-tartaric acid, to stabilize the drug as a cocrystal. All cocrystals were characterized by powder X-ray diffraction (PXRD), single crystal X-ray diffraction, and FT-IR as well as FT-Raman spectroscopy. Temozolomide cocrystals with organic acids (pK(a) 2-6) were found to be more stable than the reference drug under physiological conditions. The half-life (T(1/2)) of TMZ-oxalic and TMZ-salicylic acid measured by UV/Vis spectroscopy in pH 7 buffer is two times longer than that of TMZ (3.5 h and 3.6 h vs. 1.7 h); TMZ-succinic acid, TMZ-tartaric acid, and TMZ-malic acid also exhibited a longer half-life (2.3, 2.5, and 2.8 h, respectively). Stability studies at 40 °C and 75 % relative humidity (ICH conditions) showed that hydrolytic degradation of temozolomide in the solid state started after one week, as determined by PXRD, whereas its cocrystals with succinic acid and oxalic acid were intact at 28 weeks, thus confirming the greater stability of cocrystals compared to the reference drug. The intrinsic dissolution rate (IDR) profile of TMZ-oxalic acid and TMZ-succinic acid cocrystals in buffer of pH 7 is comparable to that of temozolomide. Among the temozolomide cocrystals examined, those with succinic acid and oxalic acid exhibited both an improved stability and a comparable dissolution rate to the reference drug. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Antitumor activity of intratracheal inhalation of temozolomide (TMZ) loaded into gold nanoparticles and/or liposomes against urethane-induced lung cancer in BALB/c mice.

    PubMed

    Hamzawy, Mohamed A; Abo-Youssef, Amira M; Salem, Heba F; Mohammed, Sameh A

    2017-11-01

    The current study aimed to develop gold nanoparticles (GNPs) and liposome-embedded gold nanoparticles (LGNPs) as drug carriers for temozolomide (TMZ) and investigate the possible therapeutic effects of intratracheal inhalation of nanoformulation of TMZ-loaded gold nanoparticles (TGNPs) and liposome-embedded TGNPs (LTGNPs) against urethane-induced lung cancer in BALB/c mice. Physicochemical characters and zeta potential studies for gold nanoparticles (GNPs) and liposome-embedded gold nanoparticles (LGNPs) were performed. The current study was conducted by inducing lung cancer chemically via repeated exposure to urethane in BALB/C mice. GNPs and LGNPs were exhibited in uniform spherical shape with adequate dispersion stability. GNPs and LGNPs showed no significant changes in comparison to control group with high safety profile, while TGNPs and LTGNPs succeed to improve all biochemical data and histological patterns. GNPs and LGNPs are promising drug carriers and succeeded in the delivery of small and efficient dose of temozolomide in treatment lung cancer. Antitumor activity was pronounced in animal-treated LTGNPs, these effects may be due to synergistic effects resulted from combination of temozolomide and gold nanoparticles and liposomes that may improve the drug distribution and penetration.

  13. Phase 2 Trial of Hypofractionated High-Dose Intensity Modulated Radiation Therapy With Concurrent and Adjuvant Temozolomide for Newly Diagnosed Glioblastoma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Iuchi, Toshihiko, E-mail: tiuchi@chiba-c.jp; Hatano, Kazuo; Kodama, Takashi

    Purpose/Objectives: To assess the effect and toxicity of hypofractionated high-dose intensity modulated radiation therapy (IMRT) with concurrent and adjuvant temozolomide (TMZ) in 46 patients with newly diagnosed glioblastoma multiforme (GBM). Methods and Materials: All patients underwent postsurgical hypofractionated high-dose IMRT. Three layered planning target volumes (PTVs) were contoured. PTV1 was the surgical cavity and residual tumor on T1-weighted magnetic resonance images with 5-mm margins, PTV2 was the area with 15-mm margins surrounding the PTV1, and PTV3 was the high-intensity area on fluid-attenuated inversion recovery images. Irradiation was performed in 8 fractions at total doses of 68, 40, and 32 Gy formore » PTV1, PTV2, and PTV3, respectively. Concurrent TMZ was given at 75 mg/m{sup 2}/day for 42 consecutive days. Adjuvant TMZ was given at 150 to 200 mg/m{sup 2}/day for 5 days every 28 days. Overall and progression-free survivals were evaluated. Results: No acute IMRT-related toxicity was observed. The dominant posttreatment failure pattern was dissemination. During a median follow-up time of 16.3 months (range, 4.3-80.8 months) for all patients and 23.7 months (range, 12.4-80.8 months) for living patients, the median overall survival was 20.0 months after treatment. Radiation necrosis was diagnosed in 20 patients and was observed not only in the high-dose field but also in the subventricular zone (SVZ). Necrosis in the SVZ was significantly correlated with prolonged survival (hazard ratio, 4.08; P=.007) but caused deterioration in the performance status of long-term survivors. Conclusions: Hypofractionated high-dose IMRT with concurrent and adjuvant TMZ altered the dominant failure pattern from localized to disseminated and prolonged the survival of patients with GBM. Necrosis in the SVZ was associated with better patient survival, but the benefit of radiation to this area remains controversial.« less

  14. Standard (60 Gy) or Short-Course (40 Gy) Irradiation Plus Concomitant and Adjuvant Temozolomide for Elderly Patients With Glioblastoma: A Propensity-Matched Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Minniti, Giuseppe, E-mail: gminniti@ospedalesantandrea.it; Scientific Institute for Research, Hospitalization and Health Care; Scaringi, Claudia

    Purpose: To evaluate 2 specific radiation schedules, each combined with temozolomide (TMZ), assessing their efficacy and safety in patients aged ≥65 years with newly diagnosed glioblastoma (GBM). Methods and Materials: Patients aged ≥65 years with Karnofsky performance status (KPS) ≥60 who received either standard (60 Gy) or short-course (40 Gy) radiation therapy (RT) with concomitant and adjuvant TMZ between June 2004 and October 2013 were retrospectively analyzed. A propensity score analysis was executed for a balanced comparison of treatment outcomes. Results: A total of 127 patients received standard RT-TMZ, whereas 116 patients underwent short-course RT-TMZ. Median overall survival and progression-free survival times were similar: 12 monthsmore » and 5.6 months for the standard RT-TMZ group and 12.5 months and 6.7 months for the short-course RT-TMZ group, respectively. Radiation schedule was associated with similar survival outcomes in either unadjusted or adjusted analysis. O{sup 6}-methylguanine-DNA methyltransferase promoter methylation was the most favorable prognostic factor (P=.0001). Standard RT-TMZ therapy was associated with a significant rise in grade 2 and 3 neurologic toxicity (P=.01), lowering of KPS scores during the study (P=.01), and higher posttreatment dosing of corticosteroid (P=.02). Conclusions: In older adults with GBM, survival outcomes of standard and short-course RT-TMZ were similar. An abbreviated course of RT plus TMZ may represent a reasonable therapeutic approach for these patients, without loss of survival benefit and acceptable toxicity.« less

  15. BMI-1 Promotes Self-Renewal of Radio- and Temozolomide (TMZ)-Resistant Breast Cancer Cells.

    PubMed

    Yan, Yanfang; Wang, Ying; Zhao, Pengxin; Ma, Weiyuan; Hu, Zhigang; Zhang, Kaili

    2017-12-01

    Breast cancer is a hormone-dependent malignancy and is the most prevalent cause of cancer-related mortality among females. Radiation therapy and chemotherapy are common treatments of breast cancer. However, tumor relapse and metastasis following therapy are major clinical challenges. The importance of B-lymphoma Moloney murine leukemia virus insertion region-1 (BMI-1) was implicated in cell proliferation, stem cell maintenance, and tumor initiation. We established radio- and temozolomide (TMZ)-resistant (IRC-R) MCF-7 and MDA-MB-231 cell lines to investigate the mechanism involved in therapeutic resistance. Cell proliferation and sphere number were dramatically elevated, and BMI-1 was remarkably upregulated, in IRC-R cells compared to parental cells. Silencing BMI-1 by RNA interference only affected the cell proliferation of IRC-R but not parental cells, suggesting the critical role of BMI-1 in radio- and TMZ resistance. We used a xenograft mice model to elucidate that BMI-1 was necessary in tumor development by assessing tumor volume and Ki67 expression. We found that Hedgehog (Hhg) signaling exerted synergized functions together with BMI-1, implicating the importance of BMI-1 in Hhg signaling. Downregulation of BMI-1 could be an effective strategy to suppress tumor growth, which supports the potential clinical use of targeting BMI-1 in breast cancer treatment.

  16. BCNU wafer placement with temozolomide (TMZ) in the immediate postoperative period after tumor resection followed by radiation therapy with TMZ in patients with newly diagnosed high grade glioma: final results of a prospective, multi-institutional, phase II trial.

    PubMed

    Burri, Stuart H; Prabhu, Roshan S; Sumrall, Ashley L; Brick, Wendy; Blaker, Brian D; Heideman, Brent E; Boltes, Peggy; Kelly, Renee; Symanowski, James T; Wiggins, Walter F; Ashby, Lynn; Norton, H James; Judy, Kevin; Asher, Anthony L

    2015-06-01

    Temozolomide (TMZ) and BCNU have demonstrated anti-glioma synergism in preclinical models. We report final data from a prospective, multi-institutional study of BCNU wafers and early TMZ followed by radiation therapy with TMZ in patients with newly diagnosed malignant glioma. 65 patients were consented in 4 institutions, and 46 patients (43 GBM, 3 AA) were eligible for analysis. After resection and BCNU wafer placement, TMZ began on day four postoperatively. Radiation and TMZ (RT/TMZ) were then administered, followed by monthly TMZ at 200 mg/m2 for the first 26 patients, which was reduced to 150 mg/m2 for the remaining 20 patients. Non-hematologic toxicities were minimal. Nine of 27 patients (33 %) who received 200 mg/m2 TMZ, but only 1 of 20 (5 %) who received 150 mg/m2, experienced grade 3/4 thrombocytopenia. Median progression free survival (PFS) and overall survival (OS) period was 8.5 and 18 months, respectively. The 1-year OS rate was 76 %, which is a significant improvement compared with the historical control 1-year OS rate of 59 % (p = 0.023). However, there was no difference in 1-year OS compared with standard RT/TMZ (p = 0.12) or BCNU wafer followed by RT/TMZ (p = 0.87) in post hoc analyses. Early post-operative TMZ can be safely administered with BCNU wafers following resection of malignant glioma at the 150 mg/m2 dose level. Although there was an OS benefit compared to historical control, there was no indication of benefit for BCNU wafers and early TMZ in addition to standard RT/TMZ or early TMZ in addition to regimens of BCNU wafers followed by RT/TMZ.

  17. Feasibility and safety of extended adjuvant temozolomide beyond six cycles for patients with glioblastoma.

    PubMed

    Hsieh, S Yp; Chan, D Tm; Kam, M Km; Loong, H Hf; Tsang, W K; Poon, D Mc; Ng, S Cp; Poon, W S

    2017-12-01

    Temozolomide is the first chemotherapeutic agent proven effective for patients with newly diagnosed glioblastoma. The drug is well tolerated for its low toxicity. The current standard practice is concomitant chemoradiotherapy for 6 weeks followed by 6 cycles of adjuvant temozolomide. Some Caucasian studies have suggested that patients might benefit from extended adjuvant cycles of temozolomide (>6 cycles) to lengthen both progression-free survival and overall survival. In the present study, we compared differences in survival and toxicity profile between patients who received conventional 6-cycle temozolomide and those who received more than 6 cycles of temozolomide. Patients with newly diagnosed glioblastoma without progressive disease and completed concomitant chemoradiotherapy during a 4-year period were studied. Progression-free survival was compared using Kaplan-Meier survival curves. t Test, U test, and correlation were chosen accordingly to examine the impact of age, extent of resection, MGMT promoter methylation status and adjuvant cycles on progression-free survival. For factors with a P value of <0.05 in univariate analyses, Cox regression hazard model was adopted to determine the strongest factors related to progression-free survival. The median progression-free survival was 17.0 months for patients who received 6 cycles of temozolomide (n=7) and 43.4 months for those who received more than 6 cycles (n=7) [P=0.007, log-rank test]. Two patients in the former group and one in the latter group encountered grade 1 toxicity and recovered following dose adjustment. Cycles of adjuvant temozolomide were correlated with progression-free survival (P=0.016, hazard ratio=0.68). Extended cycles of temozolomide are safe and feasible for Chinese patients with disease responsive to temozolomide.

  18. ATM inhibitor KU-55933 increases the TMZ responsiveness of only inherently TMZ sensitive GBM cells.

    PubMed

    Nadkarni, Aditi; Shrivastav, Meena; Mladek, Ann C; Schwingler, Paul M; Grogan, Patrick T; Chen, Junjie; Sarkaria, Jann N

    2012-12-01

    Ataxia telangiectasia mutated (ATM) kinase is critical in sensing and repairing DNA double-stranded breaks (DSBs) such as those induced by temozolomide (TMZ). ATM deficiency increases TMZ sensitivity, which suggests that ATM inhibitors may be effective TMZ sensitizing agents. In this study, the TMZ sensitizing effects of 2 ATM specific inhibitors were studied in established and xenograft-derived glioblastoma (GBM) lines that are inherently sensitive to TMZ and derivative TMZ-resistant lines. In parental U251 and U87 glioma lines, the addition of KU-55933 to TMZ significantly increased cell killing compared to TMZ alone [U251 survival: 0.004 ± 0.0015 vs. 0.08 ± 0.01 (p < 0.001), respectively, and U87 survival: 0.02 ± 0.005 vs. 0.04 ± 0.002 (p < 0.001), respectively] and also elevated the fraction of cells arrested in G2/M [U251 G2/M fraction: 61.8 ± 1.1 % vs. 35 ± 0.8 % (p < 0.001), respectively, and U87 G2/M fraction 25 ± 0.2 % vs.18.6 ± 0.4 % (p < 0.001), respectively]. In contrast, KU-55933 did not sensitize the resistant lines to TMZ, and neither TMZ alone or combined with KU-55933 induced a G2/M arrest. While KU-55933 did not enhance TMZ induced Chk1/Chk2 activation, it increased TMZ-induced residual γ-H2AX foci in the parental cells but not in the TMZ resistant cells. Similar sensitization was observed with either KU-55933 or CP-466722 combined with TMZ in GBM12 xenograft line but not in GBM12TMZ, which is resistant to TMZ due to MGMT overexpression. These findings are consistent with a model where ATM inhibition suppresses the repair of TMZ-induced DSBs in inherently TMZ-sensitive tumor lines, which suggests an ATM inhibitor potentially could be deployed with an improvement in the therapeutic window when combined with TMZ.

  19. Guanosine promotes cytotoxicity via adenosine receptors and induces apoptosis in temozolomide-treated A172 glioma cells.

    PubMed

    Oliveira, Karen A; Dal-Cim, Tharine A; Lopes, Flávia G; Nedel, Cláudia B; Tasca, Carla Inês

    2017-09-01

    Gliomas are a malignant tumor group whose patients have survival rates around 12 months. Among the treatments are the alkylating agents as temozolomide (TMZ), although gliomas have shown multiple resistance mechanisms for chemotherapy. Guanosine (GUO) is an endogenous nucleoside involved in extracellular signaling that presents neuroprotective effects and also shows the effect of inducing differentiation in cancer cells. The chemotherapy allied to adjuvant drugs are being suggested as a novel approach in gliomas treatment. In this way, this study evaluated whether GUO presented cytotoxic effects on human glioma cells as well as GUO effects in association with a classical chemotherapeutic compound, TMZ. Classical parameters of tumor aggressiveness, as alterations on cell viability, type of cell death, migration, and parameters of glutamatergic transmission, were evaluated. GUO (500 and 1000 μM) decreases the A172 glioma cell viability after 24, 48, or 72 h of treatment. TMZ alone or GUO plus TMZ also reduced glioma cell viability similarly. GUO combined with TMZ showed a potentiation effect of increasing apoptosis in A172 glioma cells, and a similar pattern was observed in reducing mitochondrial membrane potential. GUO per se did not elevate the acidic vesicular organelles occurrence, but TMZ or GUO plus TMZ increased this autophagy hallmark. GUO did not alter glutamate transport per se, but it prevented TMZ-induced glutamate release. GUO or TMZ did not alter glutamine synthetase activity. Pharmacological blockade of glutamate receptors did not change GUO effect on glioma viability. GUO cytotoxicity was partially prevented by adenosine receptor (A 1 R and A 2A R) ligands. These results point to a cytotoxic effect of GUO on A172 glioma cells and suggest an anticancer effect of GUO as a putative adjuvant treatment, whose mechanism needs to be unraveled.

  20. Enhanced Anti-Tumor Effect of Zoledronic Acid Combined with Temozolomide against Human Malignant Glioma Cell Expressing O6-Methylguanine DNA Methyltransferase

    PubMed Central

    Fukai, Junya; Koizumi, Fumiaki; Nakao, Naoyuki

    2014-01-01

    Temozolomide (TMZ), a DNA methylating agent, is widely used in the adjuvant treatment of malignant gliomas. O6-methylguanine-DNA methyltranferase (MGMT), a DNA repair enzyme, is frequently discussed as the main factor that limits the efficacy of TMZ. Zoledronic acid (ZOL), which is clinically applied to treat cancer-induced bone diseases, appears to possess direct anti-tumor activity through apoptosis induction by inhibiting mevalonate pathway and prenylation of intracellular small G proteins. In this study, we evaluated whether ZOL can be effectively used as an adjuvant to TMZ in human malignant glioma cells that express MGMT. Malignant glioma cell lines, in which the expression of MGMT was detected, did not exhibit growth inhibition by TMZ even at a longer exposure. However, combination experiment of TMZ plus ZOL revealed that a supra-additive effect resulted in a significant decrease in cell growth. In combined TMZ/ZOL treatment, an increased apoptotic rate was apparent and significant activation of caspase-3 and cleavage of poly-(ADP-ribose) polymerase were observed compared with each single drug exposure. There were decreased amounts of Ras-GTP, MAPK and Akt phosphorylation and MGMT expression in the ZOL-treated cells. Subcutanous xenograft models showed significant decrease of tumor growth with combined TMZ/ZOL treatment. These results suggest that ZOL efficaciously inhibits activity of Ras in malignant glioma cells and potentiates TMZ-mediated cytotoxicity, inducing growth inhibition and apoptosis of malignant glioma cells that express MGMT and resistant to TMZ. Based on this work, combination of TMZ with ZOL might be a potential therapy in malignant gliomas that receive less therapeutic effects of TMZ due to cell resistance. PMID:25111384

  1. The histone demethylase KDM5A is a key factor for the resistance to temozolomide in glioblastoma

    PubMed Central

    Banelli, Barbara; Carra, Elisa; Barbieri, Federica; Würth, Roberto; Parodi, Federica; Pattarozzi, Alessandra; Carosio, Roberta; Forlani, Alessandra; Allemanni, Giorgio; Marubbi, Daniela; Florio, Tullio; Daga, Antonio; Romani, Massimo

    2015-01-01

    Notwithstanding current multimodal treatment, including surgery, radiotherapy and chemotherapy with temozolomide (TMZ), median survival of glioblastoma (GBM) patients is about 14 months, due to the rapid emergence of cell clones resistant to treatment. Therefore, understanding the mechanisms underlying chemoresistance is mandatory to improve treatments' outcome. We generated TMZ resistant cells (TMZ-R) from a GBM cell line and from cancer stem cell-enriched cultures isolated from human GBMs. We demonstrated that TMZ resistance is partially reverted by “drug wash-out” suggesting the contribution of epigenetic mechanisms in drug resistance and supporting the possibility of TMZ rechallenge in GBM patients after prior drug exposure. The expression of histone lysine demethylase genes (KDMs) was increased in TMZ-R cells compared to parental cells, and TMZ resistance or restored sensitivity was mimicked by over-expressing or inactivating KDM5A. Methylation and expression of O6-methylguanine-DNA methyltransferase (MGMT) and drug efflux mechanisms were not altered in TMZ-R cells compared to parental TMZ sensitive cells. TMZ-R cells transiently acquired morphologic and molecular characteristics of differentiated tumor cells, features that were lost after drug wash-out. In conclusion, we demonstrated that treatment-induced TMZ resistance in GBM involves epigenetic mechanisms in a subset of slow-cycling and transiently partially differentiated cells that escape drug cytotoxicity, overcome G2 checkpoint and sustain clonal growth. We found that TMZ-R cells are sensitive to histone deacethylase inhibitors (HDACi) that synergize with TMZ. This strong synergism could be exploited to develop novel combined adjuvant therapies for this rapidly progressing and invariably lethal cancer. PMID:26566863

  2. The histone demethylase KDM5A is a key factor for the resistance to temozolomide in glioblastoma.

    PubMed

    Banelli, Barbara; Carra, Elisa; Barbieri, Federica; Würth, Roberto; Parodi, Federica; Pattarozzi, Alessandra; Carosio, Roberta; Forlani, Alessandra; Allemanni, Giorgio; Marubbi, Daniela; Florio, Tullio; Daga, Antonio; Romani, Massimo

    2015-01-01

    Notwithstanding current multimodal treatment, including surgery, radiotherapy and chemotherapy with temozolomide (TMZ), median survival of glioblastoma (GBM) patients is about 14 months, due to the rapid emergence of cell clones resistant to treatment. Therefore, understanding the mechanisms underlying chemoresistance is mandatory to improve treatments' outcome. We generated TMZ resistant cells (TMZ-R) from a GBM cell line and from cancer stem cell-enriched cultures isolated from human GBMs. We demonstrated that TMZ resistance is partially reverted by "drug wash-out" suggesting the contribution of epigenetic mechanisms in drug resistance and supporting the possibility of TMZ rechallenge in GBM patients after prior drug exposure. The expression of histone lysine demethylase genes (KDMs) was increased in TMZ-R cells compared to parental cells, and TMZ resistance or restored sensitivity was mimicked by over-expressing or inactivating KDM5A. Methylation and expression of O6-methylguanine-DNA methyltransferase (MGMT) and drug efflux mechanisms were not altered in TMZ-R cells compared to parental TMZ sensitive cells. TMZ-R cells transiently acquired morphologic and molecular characteristics of differentiated tumor cells, features that were lost after drug wash-out. In conclusion, we demonstrated that treatment-induced TMZ resistance in GBM involves epigenetic mechanisms in a subset of slow-cycling and transiently partially differentiated cells that escape drug cytotoxicity, overcome G2 checkpoint and sustain clonal growth. We found that TMZ-R cells are sensitive to histone deacethylase inhibitors (HDACi) that synergize with TMZ. This strong synergism could be exploited to develop novel combined adjuvant therapies for this rapidly progressing and invariably lethal cancer.

  3. P17.11COMBINED RADIOTHERAPY(RT) AND CHEMOTHERAPY(CT) WITH TEMOZOLOMIDE(TMZ) CONCOMITANT(CC) AND ADJUVANT(ADJ) IN GLIOBLASTOMA IN TUNISIA(TN): RETROSPECTIVE STUDY ABOUT 37 CASES

    PubMed Central

    Boussen, H.; Hamba, S. Bach; Benna, F.; Labidi, S.; Afrit, M.; Haddaoui, A.; Jemel, H.; Kchir, N.

    2014-01-01

    OBJECTIVE: To report the epidemiological and clinical characteristics of a TN serie of GBM treated recently by CC RT-CT then adjuvant with TMZ, according to Stupp protocol(NEJM 2005;352:987-996). PATIENTS AND METHODS: Our retrospective bicentric study included 37 cases of histologically confirmed GBM treated between 2006 and 2012 in Abderrahmen Mami hospital (medical oncology ward) and Taoufik Clinic of Tunis. We collected the following data: age, sex, symptoms, histology, investigations, treatment and evolution. RESULTS: We treated 25 males and 12 females (sex-ratio = 2.08) with a median age of 54 years (13-72). GBM was revealed mainly by deficit symptoms (41%). Surgery consisted in a wide resection in 89% of cases, reported as macroscopically complete in 78% of cases. All our patients received a CC CT-RT and 51% Adj TMZ, 22% receiving the 6 planned cycles. With a median follow-up of 12 months, medican survival was 12 months, 4 remained alive with evolutive disease. 1 and 2 year-actuarial survival were respectively of 77.6% and 38.4%. CONCLUSION: GBM patients in Tunisia have lioblastoma is a rare neoplasm with poor prognosis. Their lower median and overall survivals could be explained by the predominance of high risk cases according to neurofunctional VI-VI RPA classification.

  4. Permeability Surface Area Product Using Perfusion Computed Tomography Is a Valuable Prognostic Factor in Glioblastomas Treated with Radiotherapy Plus Concomitant and Adjuvant Temozolomide.

    PubMed

    Saito, Taiichi; Sugiyama, Kazuhiko; Ikawa, Fusao; Yamasaki, Fumiyuki; Ishifuro, Minoru; Takayasu, Takeshi; Nosaka, Ryo; Nishibuchi, Ikuno; Muragaki, Yoshihiro; Kawamata, Takakazu; Kurisu, Kaoru

    2017-01-01

    The current standard treatment protocol for patients with newly diagnosed glioblastoma (GBM) includes surgery, radiotherapy, and concomitant and adjuvant temozolomide (TMZ). We hypothesized that the permeability surface area product (PS) from a perfusion computed tomography (PCT) study is associated with sensitivity to TMZ. The aim of this study was to determine whether PS values were correlated with prognosis of GBM patients who received the standard treatment protocol. This study included 36 patients with GBM that were newly diagnosed between October 2005 and September 2014 and who underwent preoperative PCT study and the standard treatment protocol. We measured the maximum value of relative cerebral blood volume (rCBVmax) and the maximum PS value (PSmax). We statistically examined the relationship between PSmax and prognosis using survival analysis, including other clinicopathologic factors (age, Karnofsky performance status [KPS], extent of resection, O6-methylguanine-DNA methyltransferase [MGMT] status, second-line use of bevacizumab, and rCBVmax). Log-rank tests revealed that age, KPS, MGMT status, and PSmax were significantly correlated with overall survival. Multivariate analysis using the Cox regression model showed that PSmax was the most significant prognostic factor. Receiver operating characteristic curve analysis showed that PSmax had the highest accuracy in differentiating longtime survivors (LTSs) (surviving more than 2 years) from non-LTSs. At a cutoff point of 8.26 mL/100 g/min, sensitivity and specificity were 90% and 70%, respectively. PSmax from PCT study can help predict survival time in patients with GBM receiving the standard treatment protocol. Survival may be related to sensitivity to TMZ. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Concomitant treatment of brain metastasis with whole brain radiotherapy [WBRT] and temozolomide [TMZ] is active and improves quality of life.

    PubMed

    Addeo, Raffaele; Caraglia, Michele; Faiola, Vincenzo; Capasso, Elena; Vincenzi, Bruno; Montella, Liliana; Guarrasi, Rosario; Caserta, Luigi; Del Prete, Salvatore

    2007-01-25

    Brain metastases (BM) represent one of the most frequent complications related to cancer, and their treatment continues to evolve. We have evaluated the activity, toxicity and the impact on Quality of Life (QoL) of a concomitant treatment with whole brain radiotherapy (WBRT) and Temozolomide (TMZ) in patients with brain metastases from solid tumors in a prospective Simon two stage study. Fifty-nine patients were enrolled and received 30 Gy WBRT with concomitant TMZ (75 mg/m2/day) for ten days, and subsequently TMZ (150 mg/m2/day) for up to six cycles. The primary end points were clinical symptoms and radiologic response. Five patients had a complete response, 21 patients had a partial response, while 18 patients had stable disease. The overall response rate (45%) exceeded the target activity per study design. The median time to progression was 9 months. Median overall survival was 13 months. The most frequent toxicities included grade 3 neutropenia (15%) and anemia (13%), and only one patient developed a grade 4 thrombocytopenia. Age, Karnofsky performance status, presence of extracranial metastases and the recursive partitioning analysis (RPA) were found to be predictive factors for response in patients. Overall survival (OS) and progression-free survival (PFS) were dependent on age and on the RPA class. We conclude that this treatment is well tolerated, with an encouraging objective response rate, and a significant improvement in quality of life (p < 0.0001) demonstrated by FACT-G analysis. All patients answered the questionnaires and described themselves as 'independent' and able to act on their own initiatives. Our study found a high level of satisfaction for QoL, this provides useful information to share with patients in discussions regarding chemotherapy treatment of these lesions.

  6. Persistent bone marrow depression following short-term treatment with temozolomide

    PubMed Central

    Vandraas, Kathrine; Tjønnfjord, Geir Erland; Johannesen, Tom Børge; Brandal, Petter

    2016-01-01

    Temozolomide (TMZ) is, in combination with radiotherapy (RT), the treatment of choice for glioblastoma multiforme. Although generally well tolerated, haematological side effects are observed in approximately 1–10% of patients receiving TMZ. We report a case of a patient who developed severe bone marrow failure (BMF) after only 3 weeks of concomitant TMZ. The BMF was grave with no signs of improvement for 12 months, resulting in more than 100 transfusions of blood cells. PMID:27130558

  7. Combination of photodynamic therapy and temozolomide on glioma in a rat C6 glioma model.

    PubMed

    Zhang, Xiaoming; Guo, Mian; Shen, Lei; Hu, Shaoshan

    2014-12-01

    For glioma, temozolomide (TMZ) is a commonly used chemotherapy drug and photodynamic therapy (PDT) is an important adjuvant therapy. The aim of this study was to evaluate the effect of their combination for the treatment of glioma. A rat C6 glioma model using male Wistar rats (n=180) weighing 280-300 g was established. Glioma-bearing rats (n=100) were treated with mock, hematoporphyrin monomethyl ether (HMME), laser or PDT. The expression of P-glycoprotein (P-gp) in endothelial cells of the blood-tumor-barrier and in glioma tissues was detected using immunohistochemistry and western blot, respectively. Glioma-bearing rats (n=40) were treated with normal saline, TMZ (60 mg/m(2) for five consecutive days), PDT (630 nm for 10 min) or a combination of TMZ and PDT. TMZ concentration in glioma tissues was detected using liquid chromatography/mass spectrometry/mass spectrometry (LC/MS/MS) and cell death was observed using transmission microscopy. Concurrently, another batch of 40 glioma-bearing rats was subjected to the same treatment, and the survival of these rats was estimated using Kaplan-Meier analysis. PDT significantly decreased the expression of P-gp in endothelial cells comprising the blood-tumor-barrier and in glioma tissues. The combination of TMZ with PDT significantly increased TMZ concentration in glioma tissues, enhanced glioma cell apoptosis and prolonged the median survival of glioma-bearing rats. The combination of PDT with TMZ shows synergistic effect in rat C6 glioma model, indicating its potential clinical use in glioma treatment. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Temozolomide nanoparticles for targeted glioblastoma therapy.

    PubMed

    Fang, Chen; Wang, Kui; Stephen, Zachary R; Mu, Qingxin; Kievit, Forrest M; Chiu, Daniel T; Press, Oliver W; Zhang, Miqin

    2015-04-01

    Glioblastoma (GBM) is a deadly and debilitating brain tumor with an abysmal prognosis. The standard therapy for GBM is surgery followed by radiation and chemotherapy with Temozolomide (TMZ). Treatment of GBMs remains a challenge, largely because of the fast degradation of TMZ, the inability to deliver an effective dose of TMZ to tumors, and a lack of target specificity that may cause systemic toxicity. Here, we present a simple method for synthesizing a nanoparticle-based carrier that can protect TMZ from rapid degradation in physiological solutions and can specifically deliver them to GBM cells through the mediation of a tumor-targeting peptide chlorotoxin (CTX). Our nanoparticle, namely NP-TMZ-CTX, had a hydrodynamic size of <100 nm, exhibited sustained stability in cell culture media for up to 2 weeks, and could accommodate stable drug loading. TMZ bound to nanoparticles showed a much higher stability at physiological pH, with a half-life 7-fold greater than that of free TMZ. NP-TMZ-CTX was able to target GBM cells and achieved 2-6-fold higher uptake and a 50-90% reduction of IC50 72 h post-treatment as compared to nontargeted NP-TMZ. NP-TMZ-CTX showed great promise in its ability to deliver a large therapeutic dose of TMZ to GBM cells and could serve as a template for targeted delivery of other therapeutics.

  9. A phase I/II trial of hydroxychloroquine in conjunction with radiation therapy and concurrent and adjuvant temozolomide in patients with newly diagnosed glioblastoma multiforme

    PubMed Central

    Rosenfeld, Myrna R; Ye, Xiaobu; Supko, Jeffrey G; Desideri, Serena; Grossman, Stuart A; Brem, Steven; Mikkelson, Tom; Wang, Daniel; Chang, Yunyoung C; Hu, Janice; McAfee, Quentin; Fisher, Joy; Troxel, Andrea B; Piao, Shengfu; Heitjan, Daniel F; Tan, Kay-See; Pontiggia, Laura; O’Dwyer, Peter J; Davis, Lisa E; Amaravadi, Ravi K

    2014-01-01

    Preclinical studies indicate autophagy inhibition with hydroxychloroquine (HCQ) can augment the efficacy of DNA-damaging therapy. The primary objective of this trial was to determine the maximum tolerated dose (MTD) and efficacy of HCQ in combination with radiation therapy (RT) and temozolomide (TMZ) for newly diagnosed glioblastoma (GB). A 3 + 3 phase I trial design followed by a noncomparative phase II study was conducted in GB patients after initial resection. Patients received HCQ (200 to 800 mg oral daily) with RT and concurrent and adjuvant TMZ. Quantitative electron microscopy and immunoblotting were used to assess changes in autophagic vacuoles (AVs) in peripheral blood mononuclear cells (PBMC). Population pharmacokinetic (PK) modeling enabled PK-pharmacodynamic correlations. Sixteen phase I subjects were evaluable for dose-limiting toxicities. At 800 mg HCQ/d, 3/3 subjects experienced Grade 3 and 4 neutropenia and thrombocytopenia, 1 with sepsis. HCQ 600 mg/d was found to be the MTD in this combination. The phase II cohort (n = 76) had a median survival of 15.6 mos with survival rates at 12, 18, and 24 mo of 70%, 36%, and 25%. PK analysis indicated dose-proportional exposure for HCQ. Significant therapy-associated increases in AV and LC3-II were observed in PBMC and correlated with higher HCQ exposure. These data establish that autophagy inhibition is achievable with HCQ, but dose-limiting toxicity prevented escalation to higher doses of HCQ. At HCQ 600 mg/d, autophagy inhibition was not consistently achieved in patients treated with this regimen, and no significant improvement in overall survival was observed. Therefore, a definitive test of the role of autophagy inhibition in the adjuvant setting for glioma patients awaits the development of lower-toxicity compounds that can achieve more consistent inhibition of autophagy than HCQ. PMID:24991840

  10. A phase I/II trial of hydroxychloroquine in conjunction with radiation therapy and concurrent and adjuvant temozolomide in patients with newly diagnosed glioblastoma multiforme.

    PubMed

    Rosenfeld, Myrna R; Ye, Xiaobu; Supko, Jeffrey G; Desideri, Serena; Grossman, Stuart A; Brem, Steven; Mikkelson, Tom; Wang, Daniel; Chang, Yunyoung C; Hu, Janice; McAfee, Quentin; Fisher, Joy; Troxel, Andrea B; Piao, Shengfu; Heitjan, Daniel F; Tan, Kay-See; Pontiggia, Laura; O'Dwyer, Peter J; Davis, Lisa E; Amaravadi, Ravi K

    2014-08-01

    Preclinical studies indicate autophagy inhibition with hydroxychloroquine (HCQ) can augment the efficacy of DNA-damaging therapy. The primary objective of this trial was to determine the maximum tolerated dose (MTD) and efficacy of HCQ in combination with radiation therapy (RT) and temozolomide (TMZ) for newly diagnosed glioblastoma (GB). A 3 + 3 phase I trial design followed by a noncomparative phase II study was conducted in GB patients after initial resection. Patients received HCQ (200 to 800 mg oral daily) with RT and concurrent and adjuvant TMZ. Quantitative electron microscopy and immunoblotting were used to assess changes in autophagic vacuoles (AVs) in peripheral blood mononuclear cells (PBMC). Population pharmacokinetic (PK) modeling enabled PK-pharmacodynamic correlations. Sixteen phase I subjects were evaluable for dose-limiting toxicities. At 800 mg HCQ/d, 3/3 subjects experienced Grade 3 and 4 neutropenia and thrombocytopenia, 1 with sepsis. HCQ 600 mg/d was found to be the MTD in this combination. The phase II cohort (n = 76) had a median survival of 15.6 mos with survival rates at 12, 18, and 24 mo of 70%, 36%, and 25%. PK analysis indicated dose-proportional exposure for HCQ. Significant therapy-associated increases in AV and LC3-II were observed in PBMC and correlated with higher HCQ exposure. These data establish that autophagy inhibition is achievable with HCQ, but dose-limiting toxicity prevented escalation to higher doses of HCQ. At HCQ 600 mg/d, autophagy inhibition was not consistently achieved in patients treated with this regimen, and no significant improvement in overall survival was observed. Therefore, a definitive test of the role of autophagy inhibition in the adjuvant setting for glioma patients awaits the development of lower-toxicity compounds that can achieve more consistent inhibition of autophagy than HCQ.

  11. Concomitant treatment with pertussis toxin plus temozolomide increases the survival of rats bearing intracerebral RG2 glioma.

    PubMed

    Magaña-Maldonado, Roxana; Manoutcharian, Karen; Hernández-Pedro, Norma Y; Rangel-López, Edgar; Pérez-De la Cruz, Verónica; Rodríguez-Balderas, César; Sotelo, Julio; Pineda, Benjamín

    2014-02-01

    Glioblastoma multiforme is the most frequent primary brain tumor, it has poor prognosis, and it remains refractory to current treatment. The success of temozolomide (TMZ) appears to be limited by the occurrence of chemoresistance. Recently, we report the use of pertussis toxin as adjuvant immunotherapy in a C6 glioma model; showing a decrease in tumoral size, it induced selective cell death in Treg cells, and it elicited less infiltration of tumoral macrophages. Here, we evaluated the cytotoxic effect of pertussis toxin in combination with TMZ for glioma treatment, both in vitro and in vivo RG2 glioma model. We determined cell viability, cell cycle, apoptosis, and autophagy on treated RG2 cells through flow cytometry, immunofluorescence, and Western blot assays. Twenty-eight rats were divided in four groups (n = 7) for each treatment. After intracranial implantation of RG2 cells, animals were treated with TMZ (10 mg/Kg/200 μl of apple juice), PTx (2 μg/200 μl of saline solution), and TMZ + PTx. Animals without treatment were considered as control. We found an induction of apoptosis in around 20 % of RG2 cells, in both single treatments and in their combination. Also, we determined the presence of autophagy vesicles, without any modifications in the cell cycle in the TMZ - PTx-treated groups. The survival analyses showed an increase due to individual treatments; while in the group treated with the combination TMZ - PTx, this effect was enhanced. We show that the concomitant use of pertussis toxin plus TMZ could represent an advantage to improve the glioma treatment.

  12. Connexin 43 inhibition sensitizes chemoresistant glioblastoma cells to temozolomide

    PubMed Central

    Murphy, Susan F; Varghese, Robin T; Lamouille, Samy; Guo, Sujuan; Pridham, Kevin J; Kanabur, Pratik; Osimani, Alyssa M; Sharma, Shaan; Jourdan, Jane; Rodgers, Cara M; Simonds, Gary R; Gourdie, Robert G; Sheng, Zhi

    2015-01-01

    Resistance of glioblastoma (GBM) to the front-line chemotherapeutic agent temozolomide (TMZ) continues to challenge GBM treatment efforts. The repair of TMZ-induced DNA damage by O-6-methylguanine-DNA methyltransferase (MGMT) confers one mechanism of TMZ resistance. Paradoxically, MGMT-deficient GBM patients survive longer despite still developing resistance to TMZ. Recent studies indicate that the gap junction protein connexin 43 (Cx43) renders GBM cells resistant to TMZ through its carboxyl terminus (CT). In this study, we report insights into how Cx43 promotes TMZ resistance. Cx43 levels were inversely correlated with TMZ sensitivity of GBM cells, including GBM stem cells. Moreover, Cx43 levels inversely correlated with patient survival, including as observed in MGMT-deficient GBM patients. Addition of the C-terminal peptide mimetic αCT1, a selective inhibitor of Cx43 channels, sensitized human MGMT-deficient and TMZ-resistant GBM cells to TMZ treatment. Moreover, combining αCT1 with TMZ blocked AKT/mTOR signaling, induced autophagy and apoptosis in TMZ-resistant GBM cells. Our findings suggest that Cx43 may offer a biomarker to predict the survival of patients with MGMT-independent TMZ resistance, and that combining a Cx43 inhibitor with TMZ could enhance therapeutic responses in GBM and perhaps other TMZ-resistant cancers. PMID:26542214

  13. Antitumor effect of fibrin glue containing temozolomide against malignant glioma

    PubMed Central

    Anai, Shigeo; Hide, Takuichiro; Takezaki, Tatsuya; Kuroda, Jun-ichiro; Shinojima, Naoki; Makino, Keishi; Nakamura, Hideo; Yano, Shigetoshi; Kuratsu, Jun-ichi

    2014-01-01

    Temozolomide (TMZ), used to treat glioblastoma and malignant glioma, induces autophagy, apoptosis and senescence in cancer cells. We investigated fibrin glue (FG) as a drug delivery system for the local administration of high-concentration TMZ aimed at preventing glioma recurrence. Our high-power liquid chromatography studies indicated that FG containing TMZ (TMZ-FG) manifested a sustained drug release potential. We prepared a subcutaneous tumor model by injecting groups of mice with three malignant glioma cell lines and examined the antitumor effect of TMZ-FG. We estimated the tumor volume and performed immunostaining and immunoblotting using antibodies to Ki-67, cleaved caspase 3, LC3 and p16. When FG sheets containing TMZ (TMZ-FGS) were inserted beneath the tumors, their growth was significantly suppressed. In mice treated with peroral TMZ plus TMZ-FGS the tumors tended to be smaller than in mice whose tumors were treated with TMZ-FGS or peroral TMZ alone. The TMZ-FGS induced autophagy, apoptosis and senescence in subcutaneous glioma tumor cells. To assess the safety of TMZ-FG for normal brain, we placed it directly on the brain of living mice and stained tissue sections obtained in the acute and chronic phase immunohistochemically. In both phases, TMZ-FG failed to severely damage normal brain tissue. TMZ-FG may represent a safe new drug delivery system with sustained drug release potential to treat malignant glioma. PMID:24673719

  14. Zinc enhances temozolomide cytotoxicity in glioblastoma multiforme model systems

    PubMed Central

    Toren, Amos; Pismenyuk, Tatyana; Yalon, Michal; Freedman, Shani; Simon, Amos J.; Fisher, Tamar; Moshe, Itai; Reichardt, Juergen K.V.; Constantini, Shlomi; Mardor, Yael; Last, David; Guez, David; Daniels, Dianne; Assoulin, Moria; Mehrian-Shai, Ruty

    2016-01-01

    Temozolomide (TMZ) is an alkylating agent that has become the mainstay treatment of the most malignant brain cancer, glioblastoma multiforme (GBM). Unfortunately only a limited number of patients positively respond to it. It has been shown that zinc metal reestablishes chemosensitivity but this effect has not been tested with TMZ. Using both in vitro and in vivo experimental approaches, we investigated whether addition of zinc to TMZ enhances its cytotoxicity against GBM. In vitro cell viability analysis showed that the cytotoxic activity of TMZ was substantially increased with addition of zinc and this response was accompanied by an elevation of p21, PUMA, BAX and Caspase-3 expression and a decrease in growth fraction as manifested by low ki67 and lower colony formation. Analysis of GBM as intracranial xenografts in athymic mice and administration of concurrent TMZ and zinc yielded results consistent with those of the in vitro analyses. The co-treatment resulted in significant reduction in tumor volume in TMZ/zinc treated mice relative to treatment with TMZ alone. Our results suggest that zinc may serve as a potentiator of TMZ therapy in GBM patients. PMID:27556862

  15. Zinc enhances temozolomide cytotoxicity in glioblastoma multiforme model systems.

    PubMed

    Toren, Amos; Pismenyuk, Tatyana; Yalon, Michal; Freedman, Shani; Simon, Amos J; Fisher, Tamar; Moshe, Itai; Reichardt, Juergen K V; Constantini, Shlomi; Mardor, Yael; Last, David; Guez, David; Daniels, Dianne; Assoulin, Moria; Mehrian-Shai, Ruty

    2016-11-15

    Temozolomide (TMZ) is an alkylating agent that has become the mainstay treatment of the most malignant brain cancer, glioblastoma multiforme (GBM). Unfortunately only a limited number of patients positively respond to it. It has been shown that zinc metal reestablishes chemosensitivity but this effect has not been tested with TMZ. Using both in vitro and in vivo experimental approaches, we investigated whether addition of zinc to TMZ enhances its cytotoxicity against GBM. In vitro cell viability analysis showed that the cytotoxic activity of TMZ was substantially increased with addition of zinc and this response was accompanied by an elevation of p21, PUMA, BAX and Caspase-3 expression and a decrease in growth fraction as manifested by low ki67 and lower colony formation. Analysis of GBM as intracranial xenografts in athymic mice and administration of concurrent TMZ and zinc yielded results consistent with those of the in vitro analyses. The co-treatment resulted in significant reduction in tumor volume in TMZ/zinc treated mice relative to treatment with TMZ alone. Our results suggest that zinc may serve as a potentiator of TMZ therapy in GBM patients.

  16. [MACF1 knockdown in glioblastoma multiforme cells increases temozolomide-induced cytotoxicity].

    PubMed

    Xie, Si-di; Chen, Zi-Yang; Wang, Hai; He, Min-Yi; Lu, Yun-Tao; Lei, Bing-Xi; Li, He-Zhen; Liu, Ya-Wei; Qi, Song-Tao

    2017-09-20

    To investigate the role of microtubule-actin crosslinking factor 1 (MACF1) in the response of glioma cells to temozolomide (TMZ). TMZ was applied to a human gliomablastoma cell line (U87) and changes in the protein expression and cellular localization were determined with Western blot, RT-PCR, and immunofluorescence. The responses of the cells with MACF1 expression knockdown by RNA interference to TMZ were assessed. TMZ-induced effects on MACF1 expression were also assessed by immunohistochemistry in a nude mouse model bearing human glioblastoma xenografts. TMZ resulted in significantly increased MACF1 expression (by about 2 folds) and changes in its localization in the gliomablastoma cells both in vitro and in vivo (P<0.01). Knockdown of MACF1 reduced the proliferation (by 45%) of human glioma cell lines treated with TMZ (P<0.01). TMZ-induced changes in MACF1 expression was accompanied by cytoskeletal rearrangement. MACF1 may be a potential therapeutic target for glioblastoma.

  17. A tumor-targeting p53 nanodelivery system limits chemoresistance to temozolomide prolonging survival in a mouse model of glioblastoma multiforme.

    PubMed

    Kim, Sang-Soo; Rait, Antonina; Kim, Eric; Pirollo, Kathleen F; Chang, Esther H

    2015-02-01

    Development of temozolomide (TMZ) resistance contributes to the poor prognosis for glioblastoma multiforme (GBM) patients. It was previously demonstrated that delivery of exogenous wild-type tumor suppressor gene p53 via a tumor-targeted nanocomplex (SGT-53) which crosses the blood-brain barrier could sensitize highly TMZ-resistant GBM tumors to TMZ. Here we assessed whether SGT-53 could inhibit development of TMZ resistance. SGT-53 significantly chemosensitized TMZ-sensitive human GBM cell lines (U87 and U251), in vitro and in vivo. Furthermore, in an intracranial GBM tumor model, two cycles of concurrent treatment with systemically administered SGT-53 and TMZ inhibited tumor growth, increased apoptosis and most importantly, significantly prolonged median survival. In contrast TMZ alone had no significant effect on median survival compared to a single cycle of TMZ. These results suggest that combining SGT-53 with TMZ appears to limit development of TMZ resistance, prolonging its anti-tumor effect and could be a more effective therapy for GBM. Using human glioblastoma multiforma cell lines, this research team demonstrated that the delivery of exogenous wild-type tumor suppressor gene p53 via a tumor-targeted nanocomplex limited the development of temozolomide resistance and prolonged its anti-tumor effect, which may enable future human application of this or similar techniques. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. miR-204 reverses temozolomide resistance and inhibits cancer initiating cells phenotypes by degrading FAP-α in glioblastoma.

    PubMed

    Yang, Yun-Na; Zhang, Xiang-Hua; Wang, Yan-Ming; Zhang, Xi; Gu, Zheng

    2018-05-01

    Malignant gliomas are treated with temozolomide (TMZ) at present, but often exhibit resistance to this agent. Cancer-initiating cells (CICs) have been suggested to lead to TMZ resistance. The mechanisms underlying CICs-based TMZ resistance are not fully understood. MicroRNAs (miRNAs) have been demonstrated to serve important roles in tumorigenesis and TMZ resistance. In the present study, a sphere forming assay and western blot analysis were performed to detect the formation of CICs and fibroblast activation protein α (FAP-α) protein expression. It was revealed that TMZ resistance promoted the formation of CICs and upregulated FAP-α expression in glioblastoma cells. Over-expressing FAP-α was also demonstrated to promote TMZ resistance and induce the formation of CICs in U251MG cells. In addition, using a reverse transcription-quantitative polymerase chain reaction, it was observed that miR-204 was downregulated in U251MG-resistant (-R) cells. miR-204 expression negatively correlated with the FAP-α levels in human glioblastoma tissues, and it may inhibit the formation of CICs and reverse TMZ resistance in U251MG-R cells. Therefore, it was concluded that miR-204 reversed temozolomide resistance and inhibited CICs phenotypes by degrading FAP-α in glioblastoma.

  19. miR-204 reverses temozolomide resistance and inhibits cancer initiating cells phenotypes by degrading FAP-α in glioblastoma

    PubMed Central

    Yang, Yun-Na; Zhang, Xiang-Hua; Wang, Yan-Ming; Zhang, Xi; Gu, Zheng

    2018-01-01

    Malignant gliomas are treated with temozolomide (TMZ) at present, but often exhibit resistance to this agent. Cancer-initiating cells (CICs) have been suggested to lead to TMZ resistance. The mechanisms underlying CICs-based TMZ resistance are not fully understood. MicroRNAs (miRNAs) have been demonstrated to serve important roles in tumorigenesis and TMZ resistance. In the present study, a sphere forming assay and western blot analysis were performed to detect the formation of CICs and fibroblast activation protein α (FAP-α) protein expression. It was revealed that TMZ resistance promoted the formation of CICs and upregulated FAP-α expression in glioblastoma cells. Over-expressing FAP-α was also demonstrated to promote TMZ resistance and induce the formation of CICs in U251MG cells. In addition, using a reverse transcription-quantitative polymerase chain reaction, it was observed that miR-204 was downregulated in U251MG-resistant (-R) cells. miR-204 expression negatively correlated with the FAP-α levels in human glioblastoma tissues, and it may inhibit the formation of CICs and reverse TMZ resistance in U251MG-R cells. Therefore, it was concluded that miR-204 reversed temozolomide resistance and inhibited CICs phenotypes by degrading FAP-α in glioblastoma. PMID:29725461

  20. Overcoming Temozolomide Resistance in Glioblastoma Multiforme with MGMT-Targeting Spherical Nucleic Acids

    NASA Astrophysics Data System (ADS)

    Sita, Timothy L.

    Glioblastoma multiforme (GBM) is the most prevalent primary central nervous system malignancy. Due to the aggressive nature of these tumors and our inability to adequately treat them, only 3-5% of patients survive longer than 3 years post-diagnosis. The standard of care for newly diagnosed GBM is surgical resection followed by concomitant and adjuvant radiotherapy and temozolomide (TMZ) chemotherapy. TMZ cytotoxicity is mediated primarily through methylation of the O 6 -position of guanine. In the majority of patients, this methyl group is rapidly removed by the enzyme O6 -methylguanine-DNA methyltransferase (MGMT), conferring resistance to the chemotherapy. However, in a small subset of GBM patients, the promoter region for MGMT is methylated over the course of tumor development. This epigenetic silencing of MGMT activity allows TMZ to induce apoptosis in glioblastoma cells and drastically increases survival in GBM patients. The following work seeks to recapitulate this improved survival phenotype by combining TMZ with a novel nanoconstruct capable of silencing MGMT expression. The nanoconstruct consists of gold nanoparticles densely conjugated with either an MGMT-targeting ribozyme (ribozyme-Spherical Nucleic Acids (SNAs)), or small interfering RNA (siRNA) duplexes designed against MGMT (siMGMT-SNAs), and has been found to have unique characteristics, including (1) the rapid internalization by all glioma cell types studied including glioma initiating cells (GICs), (2) the capacity to potently silence MGMT expression, (3) increased apoptotic response in GBM cells, (4) the ability to cross the blood-brain barrier (BBB), blood-tumor barrier (BTB), and accumulate in GBM xenografts, and (5) no observable acute toxicity at high doses in animal models. In summary, preliminary data suggest ribozyme-SNA and siMGMT-SNAs sensitize GBM cells in vitro and in vivo, enhancing the therapeutic response to TMZ.

  1. Temozolomide combined with PD-1 Antibody therapy for mouse orthotopic glioma model.

    PubMed

    Dai, Bailing; Qi, Na; Li, Junchao; Zhang, Guilong

    2018-07-02

    Temozolomide (TMZ) is the most frequent adjuvant chemotherapy drug in gliomas. PDL1 expresses on various tumors, including gliomas, and anti-PD-1 antibodies have been approved for treating some tumors by FDA. This study was to evaluate the therapeutical potential of combined TMZ with anti-PD-1 antibody therapy for mouse orthotopic glioma model. We performed C57BL/6 mouse orthotopic glioma model by stereotactic intracranial implantation of glioma cell line GL261, mice were randomly divided into four groups: (1) control group; (2) TMZ group; (3) anti-PD-1 antibody group; (4) TMZ combined with anti-PD-1 antibody group. Then the volume or size of tumor was assessed by 7.0 T MRI and immunohistochemistry, and the number of CD4 and CD8 infiltrating cells in brain tumor and spleen was evaluated by immunohistochemistry. Western blot was used to evaluate the expression of PDL1. Furthermore, Overall survival of each group mice was also evaluated. Overall survival was significantly improved in combined group compared to other groups (χ2 = 32.043, p < 0.01). The volume or size of tumor was significantly decreased in combined group compared with other groups (F = 42.771, P < 0.01). And the number of CD4 and CD8 infiltrating cells in brain tumor was also obviously increased in combined group (CD4 F = 45.67, P < 0.01; CD8 F = 53.75, P < 0.01). Anti-PD1 antibody combined with TMZ therapy for orthotopic mouse glioma model could significantly improve the survival time of tumor-bear mice. Thus, this study provides the effective preclinical evidence for support clinical chemotherapy combined with immunotherapy for glioma patients. Copyright © 2018 Elsevier Inc. All rights reserved.

  2. Postoperative Treatment of Primary Glioblastoma Multiforme With Radiation and Concomitant Temozolomide in Elderly Patients

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Combs, Stephanie E.; Wagner, Johanna; Bischof, Marc

    2008-03-15

    Purpose: To evaluate efficacy and toxicity in elderly patients with glioblastoma multiforme (GBM) treated with postoperative radiochemotherapy with temozolomide (TMZ). Patients and Methods: Forty-three patients aged 65 years or older were treated with postoperative with radiochemotherapy using TMZ for primary GBM. Median age at primary diagnosis was 67 years; 14 patients were female, 29 were male. A complete surgical resection was performed in 12 patients, subtotal resection in 17 patients, and biopsy only in 14 patients. Radiotherapy was applied with a median dose of 60 Gy, in a median fractionation of 5 x 2 Gy/wk. Thirty-five patients received concomitant TMZmore » at 50 mg/m{sup 2}, and in 8 patients 75 mg/m{sup 2} of TMZ was applied. Adjuvant cycles of TMZ were prescribed in 5 patients only. Results: Median overall survival was 11 months in all patients; the actuarial overall survival rate was 48% at 1 year and 8% at 2 years. Median overall survival was 18 months after complete resection, 16 months after subtotal resection, and 6 months after biopsy only. Median progression-free survival was 4 months; the actuarial progression-free survival rate was 41% at 6 months and 18% at 12 months. Radiochemotherapy was well tolerated in most patients and could be completed without interruption in 38 of 43 patients. Four patients developed hematologic side effects greater than Common Terminology Criteria Grade 2, which led to early discontinuation of TMZ in 1 patient. Conclusions: Radiochemotherapy is safe and effective in a subgroup of elderly patients with GBM and should be considered in patients without major comorbidities.« less

  3. The use of TMZ embedded hydrogels for the treatment of orthotopic human glioma xenografts.

    PubMed

    Adhikari, Bandita; Li, Jie; Brandel, Michael G; Futalan, Diahnn; Akers, Johnny; Deming, Timothy; Chen, Clark C; Carter, Bob S

    2017-11-01

    The current treatment of glioblastoma multiforme (GBM) is limited by the restricted arsenal of agents which effectively cross the blood brain barrier (BBB). For example, only a fraction of temozolomide (TMZ) administered systemically is available for therapeutic effect because of the BBB and the instability of TMZ under physiologic conditions. A novel approach to overcome this obstacle is to bypass the BBB and locally deliver chemotherapeutic agents directly to the tumor mass. We have explored the loading of TMZ into a novel hydrogel matrix, which can be delivered in liquid form and then solidifies in situ and releases chemotherapy as the matrix dissolves. Here, we tested the effect of amphiphilic diblock copolypeptide hydrogels (DCHs) of 180-poly-lysine and 20-poly-leucine (K 180 L 20 ) on TMZ using Glioblastoma models. In both the in vitro model, which involved treatment of a human glioblastoma GSC line suspended as neurospheres, and in vivo using an orthotopic glioma xenograft mouse model, we found that K 180 L 20 could safely enhance the efficacy of TMZ. This technique may offer the opportunity to 'coat' the inner lining of the cavity following glioma resection with a slow-release TMZ and potentially decrease recurrence. Future studies in larger animals are needed to delineate this effect. Copyright © 2017. Published by Elsevier Ltd.

  4. Solid Lipid Nanoparticles Carrying Temozolomide for Melanoma Treatment. Preliminary In Vitro and In Vivo Studies

    PubMed Central

    Ferrara, Benedetta; Biasibetti, Elena; Schiffer, Davide; Mellai, Marta; Annovazzi, Laura; Cangemi, Luigi; Muntoni, Elisabetta; Dianzani, Umberto

    2018-01-01

    Aim: To develop an innovative delivery system for temozolomide (TMZ) in solid lipid nanoparticles (SLN), which has been preliminarily investigated for the treatment of melanoma. Materials and Methods: SLN-TMZ was obtained through fatty acid coacervation. Its pharmacological effects were assessed and compared with free TMZ in in vitro and in vivo models of melanoma and glioblastoma. Results: Compared to the standard free TMZ, SLN-TMZ exerted larger effects, when cell proliferation of melanoma cells, and neoangiogeneis were evaluated. SLN-TMZ also inhibited growth and vascularization of B16-F10 melanoma in C57/BL6 mice, without apparent toxic effects. Conclusion: SLN could be a promising strategy for the delivery of TMZ, allowing an increased stability of the drug and thereby its employment in the treatment of aggressive malignacies. PMID:29364157

  5. Analyzing temozolomide medication errors: potentially fatal.

    PubMed

    Letarte, Nathalie; Gabay, Michael P; Bressler, Linda R; Long, Katie E; Stachnik, Joan M; Villano, J Lee

    2014-10-01

    The EORTC-NCIC regimen for glioblastoma requires different dosing of temozolomide (TMZ) during radiation and maintenance therapy. This complexity is exacerbated by the availability of multiple TMZ capsule strengths. TMZ is an alkylating agent and the major toxicity of this class is dose-related myelosuppression. Inadvertent overdose can be fatal. The websites of the Institute for Safe Medication Practices (ISMP), and the Food and Drug Administration (FDA) MedWatch database were reviewed. We searched the MedWatch database for adverse events associated with TMZ and obtained all reports including hematologic toxicity submitted from 1st November 1997 to 30th May 2012. The ISMP describes errors with TMZ resulting from the positioning of information on the label of the commercial product. The strength and quantity of capsules on the label were in close proximity to each other, and this has been changed by the manufacturer. MedWatch identified 45 medication errors. Patient errors were the most common, accounting for 21 or 47% of errors, followed by dispensing errors, which accounted for 13 or 29%. Seven reports or 16% were errors in the prescribing of TMZ. Reported outcomes ranged from reversible hematological adverse events (13%), to hospitalization for other adverse events (13%) or death (18%). Four error reports lacked detail and could not be categorized. Although the FDA issued a warning in 2003 regarding fatal medication errors and the product label warns of overdosing, errors in TMZ dosing occur for various reasons and involve both healthcare professionals and patients. Overdosing errors can be fatal.

  6. Central diabetes insipidus: a previously unreported side effect of temozolomide.

    PubMed

    Faje, Alexander T; Nachtigall, Lisa; Wexler, Deborah; Miller, Karen K; Klibanski, Anne; Makimura, Hideo

    2013-10-01

    Temozolomide (TMZ) is an alkylating agent primarily used to treat tumors of the central nervous system. We describe 2 patients with apparent TMZ-induced central diabetes insipidus. Using our institution's Research Patient Database Registry, we identified 3 additional potential cases of TMZ-induced diabetes insipidus among a group of 1545 patients treated with TMZ. A 53-year-old male with an oligoastrocytoma and a 38-year-old male with an oligodendroglioma each developed symptoms of polydipsia and polyuria approximately 2 months after the initiation of TMZ. Laboratory analyses demonstrated hypernatremia and urinary concentrating defects, consistent with the presence of diabetes insipidus, and the patients were successfully treated with desmopressin acetate. Desmopressin acetate was withdrawn after the discontinuation of TMZ, and diabetes insipidus did not recur. Magnetic resonance imaging of the pituitary and hypothalamus was unremarkable apart from the absence of a posterior pituitary bright spot in both of the cases. Anterior pituitary function tests were normal in both cases. Using the Research Patient Database Registry database, we identified the 2 index cases and 3 additional potential cases of diabetes insipidus for an estimated prevalence of 0.3% (5 cases of diabetes insipidus per 1545 patients prescribed TMZ). Central diabetes insipidus is a rare but reversible side effect of treatment with TMZ.

  7. Phase II randomized trial comparing high-dose IFN-α2b with temozolomide plus cisplatin as systemic adjuvant therapy for resected mucosal melanoma.

    PubMed

    Lian, Bin; Si, Lu; Cui, Chuanliang; Chi, Zhihong; Sheng, Xinan; Mao, Lili; Li, Siming; Kong, Yan; Tang, Bixia; Guo, Jun

    2013-08-15

    Mucosal melanoma is rare and associated with extremely poor prognosis. However, standard adjuvant therapy for mucosal melanoma has not been established. We conducted a randomized phase II clinical trial in patients with resected mucosal melanoma to compare the efficacy and safety of high-dose IFN-α2b (HDI) and temozolomide-based chemotherapy as adjuvant therapy. Patients with mucosal melanoma in stage II/III after surgery were randomized into three groups: observation group (group A, surgery alone), HDI group (group B, treated with 15 × 10(6) U/m(2)/d IFN-α2b, followed by 9 × 10(6) U IFN-α2b), and temozolomide (200 mg/m(2)/d) plus cisplatin (75 mg/m(2)) group (group C). The endpoints were relapse-free survival (RFS), overall survival (OS), and toxicities. One hundred and eighty-nine patients were enrolled and finally analyzed. With a median follow-up of 26.8 months, the median RFS was 5.4, 9.4, and 20.8 months for group A, B, and C, respectively. Estimated median OS for group A, B, and C was 21.2, 40.4, and 48.7 months, respectively. Patients treated with temozolomide plus cisplatin showed significant improvements in RFS (P < 0.001) and OS (P < 0.01) than those treated with either HDI or surgery alone. Toxicities were generally mild to moderate. Both temozolomide-based chemotherapy and HDI are effective and safe as adjuvant therapies for resected mucosal melanoma as compared with observation alone. However, HDI tends to be less effective than temozolomide-based chemotherapy for patients with resected mucosal melanoma in respect to RFS. The temozolomide plus cisplatin regimen might be a better choice for patients with resected mucosal melanoma. ©2013 AACR.

  8. Up-regulation of MSH6 is associated with temozolomide resistance in human glioblastoma.

    PubMed

    Sun, Quanye; Pei, Chunying; Li, Qiuyuan; Dong, Tianxiu; Dong, Yucui; Xing, Wenjing; Zhou, Peng; Gong, Yujiao; Zhen, Ziqi; Gao, Yifan; Xiao, Yun; Su, Jun; Ren, Huan

    2018-02-19

    The impact of DNA mismatch repair (MMR) on resistance to temozolomide (TMZ) therapy in patients with glioblastoma (GBM) is recently reported but the mechanisms are not understood. We aim to analyze the correlation between MMR function and the acquired TMZ resistance in GBM using both relevant clinical samples and TMZ resistant cells. First we found increased expression of MSH6, one of key components of MMR, in recurrent GBM patients' samples who underwent TMZ chemotherapy, comparing with those matched samples collected at the time of diagnosis. Using the cellular models of acquired resistance to TMZ, we further confirmed the up-regulation of MSH6 in TMZ resistant cells. Moreover, a TCGA dataset contains a large cohort of GBM clinical samples with or without TMZ treatment reinforced the increased expression of MSH6 and other MMR genes after long-term TMZ chemotherapy, which may resulted in MMR dysfunction and acquired TMZ resistance. Our results suggest that increased expression of MSH6, or other MMR, may be a new mechanism contributing to the acquired resistance during TMZ therapy; and may serve as an indicator to the resistance in GBM. Copyright © 2018 Elsevier Inc. All rights reserved.

  9. Health-Related Quality of Life in Elderly Patients With Newly Diagnosed Glioblastoma Treated With Short-Course Radiation Therapy Plus Concomitant and Adjuvant Temozolomide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Minniti, Giuseppe, E-mail: gminniti@ospedalesantandrea.it; Department of Neurological Sciences, Neuromed Institute, Pozzilli; Scaringi, Claudia

    2013-06-01

    Purpose: To describe the quality of life (QOL) in elderly patients with glioblastoma (GBM) treated with an abbreviated course of radiation therapy (RT; 40 Gy in 15 fractions) plus concomitant and adjuvant temozolomide (TMZ). Methods and Materials: Health-related QOL (HRQOL) was assessed by European Organisation for Research and Treatment of Cancer (EORTC) Quality of Life Questionnaire Core-30 (QLQ-C30, version 3) and EORTC Quality of Life Questionnaire Brain Cancer Module (QLQ-BN20). Changes from baseline in the score of 9 preselected domains (global QLQ, social functioning, cognitive functioning, emotional functioning, physical functioning, motor dysfunction, communication deficit, fatigue, insomnia) were determined 4 weeksmore » after RT and thereafter every 8 weeks during the treatment until disease progression. The proportion of patients with improved HRQOL scores, defined as a change of 10 points or more, and duration of changes were recorded. Results: Sixty-five patients completed the questionnaires at baseline. The treatment was consistently associated with improvement or stability in most of the preselected HRQOL domains. Global health improved over time; mean score differed by 9.6 points between baseline and 6-month follow-up (P=.03). For social functioning and cognitive functioning, mean scores improved over time, with a maximum difference of 10.4 points and 9.5 points between baseline and 6-month follow-up (P=.01 and P=.02), respectively. By contrast, fatigue worsened over time, with a difference in mean score of 5.6 points between baseline and 4-month follow-up (P=.02). Conclusions: A short course of RT in combination with TMZ in elderly patients with GBM was associated with survival benefit without a negative effect on HRQOL until the time of disease progression.« less

  10. Central Diabetes Insipidus: A Previously Unreported Side Effect of Temozolomide

    PubMed Central

    Nachtigall, Lisa; Wexler, Deborah; Miller, Karen K.; Klibanski, Anne; Makimura, Hideo

    2013-01-01

    Context: Temozolomide (TMZ) is an alkylating agent primarily used to treat tumors of the central nervous system. We describe 2 patients with apparent TMZ-induced central diabetes insipidus. Using our institution's Research Patient Database Registry, we identified 3 additional potential cases of TMZ-induced diabetes insipidus among a group of 1545 patients treated with TMZ. Case Presentations: A 53-year-old male with an oligoastrocytoma and a 38-year-old male with an oligodendroglioma each developed symptoms of polydipsia and polyuria approximately 2 months after the initiation of TMZ. Laboratory analyses demonstrated hypernatremia and urinary concentrating defects, consistent with the presence of diabetes insipidus, and the patients were successfully treated with desmopressin acetate. Desmopressin acetate was withdrawn after the discontinuation of TMZ, and diabetes insipidus did not recur. Magnetic resonance imaging of the pituitary and hypothalamus was unremarkable apart from the absence of a posterior pituitary bright spot in both of the cases. Anterior pituitary function tests were normal in both cases. Using the Research Patient Database Registry database, we identified the 2 index cases and 3 additional potential cases of diabetes insipidus for an estimated prevalence of 0.3% (5 cases of diabetes insipidus per 1545 patients prescribed TMZ). Conclusions: Central diabetes insipidus is a rare but reversible side effect of treatment with TMZ. PMID:23928668

  11. Liposomal temozolomide drug delivery using convection enhanced delivery.

    PubMed

    Nordling-David, Mirjam M; Yaffe, Roni; Guez, David; Meirow, Hadar; Last, David; Grad, Etty; Salomon, Sharona; Sharabi, Shirley; Levi-Kalisman, Yael; Golomb, Gershon; Mardor, Yael

    2017-09-10

    Even though some progress in diagnosis and treatment has been made over the years, there is still no definitive treatment available for Glioblastoma multiforme (GBM). Convection-enhanced delivery (CED), a continuous infusion-mediated pressure gradient via intracranial catheters, studied in clinical trials, enables in situ drug concentrations several orders of magnitude greater than those achieved by systemic administration. We hypothesized that the currently limited efficacy of CED could be enhanced by a liposomal formulation, thus achieving enhanced drug localization to the tumor site with minimal toxicity. We hereby describe a novel approach for treating GBM by CED of liposomes containing the known chemotherapeutic agent, temozolomide (TMZ). A new technique for encapsulating TMZ in hydrophilic (PEGylated) liposomes, characterized by nano-size (121nm), low polydispersity index (<0.13) and with near-neutral charge (-ʒ,0.2mV), has been developed. Co-infusion of PEGylated Gd-DTPA liposomes and TMZ-liposomes by CED in GBM bearing rats, resulted in enhanced tumor detection with longer residence time than free Gd-DTPA. Treatment of GBM-bearing rats with either TMZ solution or TMZ-liposomes resulted in greater tumor inhibition and significantly higher survival. However, the longer survival and smaller tumor volumes exhibited by TMZ liposomal treatment in comparison to TMZ in solution were insignificant (p<0.053); and only significantly lower edema volumes were observed. Thus, there are no clear-cut advantages to use a liposomal delivery system of TMZ via CED over a drug solution. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Triacetin-based acetate supplementation as a chemotherapeutic adjuvant therapy in glioma.

    PubMed

    Tsen, Andrew R; Long, Patrick M; Driscoll, Heather E; Davies, Matthew T; Teasdale, Benjamin A; Penar, Paul L; Pendlebury, William W; Spees, Jeffrey L; Lawler, Sean E; Viapiano, Mariano S; Jaworski, Diane M

    2014-03-15

    Cancer is associated with epigenetic (i.e., histone hypoacetylation) and metabolic (i.e., aerobic glycolysis) alterations. Levels of N-acetyl-L-aspartate (NAA), the primary storage form of acetate in the brain, and aspartoacylase (ASPA), the enzyme responsible for NAA catalysis to generate acetate, are reduced in glioma; yet, few studies have investigated acetate as a potential therapeutic agent. This preclinical study sought to test the efficacy of the food additive Triacetin (glyceryl triacetate, GTA) as a novel therapy to increase acetate bioavailability in glioma cells. The growth-inhibitory effects of GTA, compared to the histone deacetylase inhibitor Vorinostat (SAHA), were assessed in established human glioma cell lines (HOG and Hs683 oligodendroglioma, U87 and U251 glioblastoma) and primary tumor-derived glioma stem-like cells (GSCs), relative to an oligodendrocyte progenitor line (Oli-Neu), normal astrocytes, and neural stem cells (NSCs) in vitro. GTA was also tested as a chemotherapeutic adjuvant with temozolomide (TMZ) in orthotopically grafted GSCs. GTA-induced cytostatic growth arrest in vitro comparable to Vorinostat, but, unlike Vorinostat, GTA did not alter astrocyte growth and promoted NSC expansion. GTA alone increased survival of mice engrafted with glioblastoma GSCs and potentiated TMZ to extend survival longer than TMZ alone. GTA was most effective on GSCs with a mesenchymal cell phenotype. Given that GTA has been chronically administered safely to infants with Canavan disease, a leukodystrophy due to ASPA mutation, GTA-mediated acetate supplementation may provide a novel, safe chemotherapeutic adjuvant to reduce the growth of glioma tumors, most notably the more rapidly proliferating, glycolytic and hypoacetylated mesenchymal glioma tumors. © 2013 UICC.

  13. Triacetin-based acetate supplementation as a chemotherapeutic adjuvant therapy in glioma

    PubMed Central

    Tsen, Andrew R.; Long, Patrick M.; Driscoll, Heather E.; Davies, Matthew T.; Teasdale, Benjamin A.; Penar, Paul L.; Pendlebury, William W.; Spees, Jeffrey L.; Lawler, Sean E.; Viapiano, Mariano S.; Jaworski, Diane M.

    2013-01-01

    Cancer is associated with epigenetic (i.e., histone hypoacetylation) and metabolic (i.e., aerobic glycolysis) alterations. Levels of N-acetyl-L-aspartate (NAA), the primary storage form of acetate in the brain, and aspartoacylase (ASPA), the enzyme responsible for NAA catalysis to generate acetate, are reduced in glioma; yet, few studies have investigated acetate as a potential therapeutic agent. This preclinical study sought to test the efficacy of the food additive Triacetin (glyceryl triacetate, GTA) as a novel therapy to increase acetate bioavailability in glioma cells. The growth-inhibitory effects of GTA, compared to the histone deacetylase inhibitor Vorinostat (SAHA), were assessed in established human glioma cell lines (HOG and Hs683 oligodendroglioma, U87 and U251 glioblastoma) and primary tumor-derived glioma stem-like cells (GSCs), relative to an oligodendrocyte progenitor line (Oli-Neu), normal astrocytes, and neural stem cells (NSCs) in vitro. GTA was also tested as a chemotherapeutic adjuvant with temozolomide (TMZ) in orthotopically grafted GSCs. GTA induced cytostatic growth arrest in vitro comparable to Vorinostat, but, unlike Vorinostat, GTA did not alter astrocyte growth and promoted NSC expansion. GTA alone increased survival of mice engrafted with glioblastoma GSCs and potentiated TMZ to extend survival longer than TMZ alone. GTA was most effective on GSCs with a mesenchymal cell phenotype. Given that GTA has been chronically administered safely to infants with Canavan disease, a leukodystrophy due to ASPA mutation, GTA-mediated acetate supplementation may provide a novel, safe chemotherapeutic adjuvant to reduce the growth of glioma tumors, most notably the more rapidly proliferating, glycolytic, and hypoacetylated mesenchymal glioma tumors. PMID:23996800

  14. Reduction of MLH1 and PMS2 confers temozolomide resistance and is associated with recurrence of glioblastoma.

    PubMed

    Shinsato, Yoshinari; Furukawa, Tatsuhiko; Yunoue, Shunji; Yonezawa, Hajime; Minami, Kentarou; Nishizawa, Yukihiko; Ikeda, Ryuji; Kawahara, Kohichi; Yamamoto, Masatatsu; Hirano, Hirofumi; Tokimura, Hiroshi; Arita, Kazunori

    2013-12-01

    Although there is a relationship between DNA repair deficiency and temozolomide (TMZ) resistance in glioblastoma (GBM), it remains unclear which molecule is associated with GBM recurrence. We isolated three TMZ-resistant human GBM cell lines and examined the expression of O6-methylguanine-DNA methyltransferase (MGMT) and mismatch repair (MMR) components. We used immunohistochemical analysis to compare MutL homolog 1 (MLH1), postmeiotic segregation increased 2 (PMS2) and MGMT expression in primary and recurrent GBM specimens obtained from GBM patients during TMZ treatment. We found a reduction in MLH1 expression and a subsequent reduction in PMS2 protein levels in TMZ-resistant cells. Furthermore, MLH1 or PMS2 knockdown confered TMZ resistance. In recurrent GBM tumours, the expression of MLH1 and PMS2 was reduced when compared to primary tumours.

  15. Clinical and Genetic Factors Associated With Severe Hematological Toxicity in Glioblastoma Patients During Radiation Plus Temozolomide Treatment: A Prospective Study.

    PubMed

    Lombardi, Giuseppe; Rumiato, Enrica; Bertorelle, Roberta; Saggioro, Daniela; Farina, Patrizia; Della Puppa, Alessandro; Zustovich, Fable; Berti, Franco; Sacchetto, Valeria; Marcato, Raffaella; Amadori, Alberto; Zagonel, Vittorina

    2015-10-01

    Temozolomide (TMZ) administered daily with radiation therapy (RT) for 6 weeks, followed by adjuvant TMZ for 6 cycles, is the standard therapy for newly diagnosed glioblastoma (GBM) patients. Although TMZ is considered to be a safe drug, it has been demonstrated to cause severe myelotoxicity; in particular, some case reports and small series studies have reported severe myelotoxicity developing during TMZ and concomitant RT. We performed a prospective study to analyze the incidence of early severe myelotoxicity and its possible clinical and genetic factors. From November 2010 to July 2012, newly diagnosed GBM patients were enrolled. They were eligible for the study if they met the following criteria: pathologically proven GBM, age 18 years and older, an Eastern Cooperative Oncology Group performance status of 0 to 2, adequate renal and hepatic function, and adequate blood cell counts before starting TMZ plus RT. Grading of hematologic toxicity developing during radiation and TMZ was based on the National Cancer Institute Common Terminology Criteria for Adverse Events version 4.0. Clinical factors from all patients were recorded. The methylation status and polymorphic variants of O-methylguanine-DNAmethyl-transferase gene in peripheral blood mononuclear cells, and polymorphic genetic variants of genes involved in the pharmacokinetics and pharmacodynamics of TMZ, were analyzed. For genetic analyses, patients with toxicity were matched (1:2) for age, performance status, anticonvulsants, and proton pump inhibitors with patients without myelotoxicity. We enrolled 87 consecutive GBM patients: 32 women and 55 men; the average age was 60 years. During TMZ and RT, 4 patients (5%) showed grade 3-4 myelotoxicity, and its median duration was 255 days. Predictor factors of severe myelotoxicity were female sex, pretreatment platelet count of ≤3,00,000/mm, methylated O-methylguanine-DNA methyltransferase promoter in the hematopoietic cell system, and specific polymorphic

  16. Hypofractionated Versus Standard Radiation Therapy With or Without Temozolomide for Older Glioblastoma Patients

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arvold, Nils D.; Tanguturi, Shyam K.; Aizer, Ayal A.

    Purpose: Older patients with newly diagnosed glioblastoma have poor outcomes, and optimal treatment is controversial. Hypofractionated radiation therapy (HRT) is frequently used but has not been compared to patients receiving standard fractionated radiation therapy (SRT) and temozolomide (TMZ). Methods and Materials: We conducted a retrospective analysis of patients ≥65 years of age who received radiation for the treatment of newly diagnosed glioblastoma from 1994 to 2013. The distribution of clinical covariates across various radiation regimens was analyzed for possible selection bias. Survival was calculated using the Kaplan-Meier method. Comparison of hypofractionated radiation (typically, 40 Gy/15 fractions) versus standard fractionation (typically, 60 Gy/30 fractions)more » in the setting of temozolomide was conducted using Cox regression and propensity score analysis. Results: Patients received SRT + TMZ (n=57), SRT (n=35), HRT + TMZ (n=34), or HRT (n=9). Patients receiving HRT were significantly older (median: 79 vs 69 years of age; P<.001) and had worse baseline performance status (P<.001) than those receiving SRT. On multivariate analysis, older age (adjusted hazard ratio [AHR]: 1.06; 95% confidence interval [CI]: 1.01-1.10, P=.01), lower Karnofsky performance status (AHR: 1.02; 95% CI: 1.01-1.03; P=.01), multifocal disease (AHR: 2.11; 95% CI: 1.23-3.61, P=.007), and radiation alone (vs SRT + TMZ; SRT: AHR: 1.72; 95% CI: 1.06-2.79; P=.03; HRT: AHR: 3.92; 95% CI: 1.44-10.60, P=.007) were associated with decreased overall survival. After propensity score adjustment, patients receiving HRT with TMZ had similar overall survival compared with those receiving SRT with TMZ (AHR: 1.10, 95% CI: 0.50-2.4, P=.82). Conclusions: With no randomized data demonstrating equivalence between HRT and SRT in the setting of TMZ for glioblastoma, significant selection bias exists in the implementation of HRT. Controlling for this bias, we observed similar

  17. Connective tissue growth factor promotes temozolomide resistance in glioblastoma through TGF-β1-dependent activation of Smad/ERK signaling.

    PubMed

    Zeng, Huijun; Yang, Zhao; Xu, Ningbo; Liu, Boyang; Fu, Zhao; Lian, Changlin; Guo, Hongbo

    2017-06-15

    Limited benefits and clinical utility of temozolomide (TMZ) for glioblastoma (GB) are frequently compromised by the development of acquired drug resistance. Overcoming TMZ resistance and uncovering the underlying mechanisms are challenges faced during GB chemotherapy. In this study, we reported that connective tissue growth factor (CTGF) was associated with GB chemoresistance and significantly upregulated in TMZ-treated GB cells. CTGF knockdown promoted TMZ-induced cell apoptosis and enhanced chemosensitivity, whereas its overexpression markedly conferred TMZ resistance in vitro and in vivo. Moreover, CTGF promoted TMZ resistance through stem-like properties acquisition and CD44 interference reversed the CTGF-induced TMZ resistance. Mechanistically, further investigation revealed that the TMZ-induced CTGF upregulation was tissue growth factor (TGF-β) dependent, and regulated by TGF-β1 activation through Smad and ERK1/2 signaling. Together, our results suggest a pivotal role of CTGF-mediated TMZ resistance through TGF-β1-dependent activation of Smad/ERK signaling pathways. These data provide us insights for identifying potential targets that are beneficial for overcoming TMZ resistance in GB.

  18. The cost-effectiveness of temozolomide in the adjuvant treatment of newly diagnosed glioblastoma in the United States

    PubMed Central

    Messali, Andrew; Hay, Joel W.; Villacorta, Reginald

    2013-01-01

    Background The objective of this work was to determine the cost-effectiveness of temozolomide compared with that of radiotherapy alone in the adjuvant treatment of newly diagnosed glioblastoma. Temozolomide is the only chemotherapeutic agent to have demonstrated a significant survival benefit in a randomized clinical trial. Our analysis builds on earlier work by incorporating caregiver time costs and generic temozolomide availability. It is also the first analysis applicable to the US context. Methods A systematic literature review was conducted to collect relevant data. Transition probabilities were calculated from randomized controlled trial data comparing temozolomide plus radiotherapy with radiotherapy alone. Direct costs were calculated from charges reported by the Mayo Clinic. Utilities were obtained from a previous cost-utility analysis. Using these data, a Markov model with a 1-month cycle length and 5-year time horizon was constructed. Results The addition of brand Temodar and generic temozolomide to the standard radiotherapy regimen was associated with base-case incremental cost-effectiveness ratios of $102 364 and $8875, respectively, per quality-adjusted life-year. The model was most sensitive to the progression-free survival associated with the use of only radiotherapy. Conclusions Both the brand and generic base-case estimates are cost-effective under a willingness-to-pay threshold of $150 000 per quality-adjusted life-year. All 1-way sensitivity analyses produced incremental cost-effectiveness ratios below this threshold. We conclude that both the brand Temodar and generic temozolomide are cost-effective treatments for newly diagnosed glioblastoma within the US context. However, assuming that the generic product produces equivalent quality of life and survival benefits, it would be significantly more cost-effective than the brand option. PMID:23935155

  19. Reduction of MLH1 and PMS2 confers temozolomide resistance and is associated with recurrence of glioblastoma

    PubMed Central

    Shinsato, Yoshinari; Furukawa, Tatsuhiko; Yunoue, Shunji; Yonezawa, Hajime; Minami, Kentarou; Nishizawa, Yukihiko; Ikeda, Ryuji; Kawahara, Kohichi; Yamamoto, Masatatsu; Hirano, Hirofumi; Tokimura, Hiroshi; Arita, Kazunori

    2013-01-01

    Although there is a relationship between DNA repair deficiency and temozolomide (TMZ) resistance in glioblastoma (GBM), it remains unclear which molecule is associated with GBM recurrence. We isolated three TMZ-resistant human GBM cell lines and examined the expression of O6-methylguanine-DNA methyltransferase (MGMT) and mismatch repair (MMR) components. We used immunohistochemical analysis to compare MutL homolog 1 (MLH1), postmeiotic segregation increased 2 (PMS2) and MGMT expression in primary and recurrent GBM specimens obtained from GBM patients during TMZ treatment. We found a reduction in MLH1 expression and a subsequent reduction in PMS2 protein levels in TMZ-resistant cells. Furthermore, MLH1 or PMS2 knockdown confered TMZ resistance. In recurrent GBM tumours, the expression of MLH1 and PMS2 was reduced when compared to primary tumours. PMID:24259277

  20. Temozolomide-modulated glioma proteome: role of interleukin-1 receptor-associated kinase-4 (IRAK4) in chemosensitivity.

    PubMed

    Kumar, Durairaj M; Patil, Vikas; Ramachandran, Bini; Nila, Murugesan V; Dharmalingam, Kuppamuthu; Somasundaram, Kumaravel

    2013-07-01

    The current treatment for glioblastoma includes temozolomide (TMZ) chemotherapy, yet the mechanism of action of TMZ is not thoroughly understood. Here, we investigated the TMZ-induced changes in the proteome of the glioma-derived cell line (U251) by 2D DIGE. We found 95 protein spots to be significantly altered in their expression after TMZ treatment. MS identified four upregulated spots: aspartyl tRNA synthetase glutathione synthetase, interleukin-1 receptor-associated kinase-4 (IRAK4), and breast carcinoma amplified sequence-1 and one downregulated spot: optineurin. TMZ-induced regulation of these five genes was validated by RT-qPCR and Western blot analysis. RNAi-mediated knockdown of IRAK4, an important mediator of Toll-like receptors signaling and chemoresistance, rendered the glioma cells resistant to TMZ. High levels of IRAK4 induced upon TMZ treatment resulted in IRAK1 downregulation and inhibition of NFkB pathway. Endogenous IRAK4 protein, but not transcript levels in glioma cell lines, correlated with TMZ sensitivity. Thus, we have identified several TMZ-modulated proteins and discovered an important novel role for IRAK4 in determining TMZ sensitivity of glioma cells through its ability to inhibit Toll-like receptor signaling and NFkB pathway. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Quercetin sensitizes human glioblastoma cells to temozolomide in vitro via inhibition of Hsp27.

    PubMed

    Sang, Dong-Ping; Li, Ru-Jun; Lan, Qing

    2014-06-01

    Quercetin is an effective Hsp27 inhibitor and has been reported to facilitate tumor cell apoptosis. The aim of this study was to investigate whether quercetin could sensitize human glioblastoma cells to temozolomide (TMZ) in vitro. Both U251 and U87 human glioblastoma cells were treated with quercetin and/or TMZ for 48 h. Cell viability was detected using the MTT assay. Cell apoptosis was analyzed with caspase-3 activity kits and flow cytometry. Hsp27 expression and phosphorylation were examined using Western blot analysis. RNA interference using Hsp27 siRNA oligos was performed to knock down the gene expression of Hsp27. TMZ (200 or 400 μmol/L) alone effectively inhibited the viability of U251 and U87 cells. When combined with quercetin (30 μmol/L), TMZ (100 μmol/L) significantly inhibited the cell viability, and the inhibition of TMZ (200 and 400 μmol/L) was enhanced. TMZ or quercetin anole did not affect caspase-3 activity and cell apoptosis, while TMZ combined with quercetin significantly increased caspase-3 activity and induced cell apoptosis. TMZ anole significantly increased Hsp27 phosphorylation in U251 and U87 cells, while quercetin or Hsp27 siRNA oligos combined with TMZ attenuated TMZ-induced Hsp27 phosphorylation and significantly inhibited Hsp27 expression. Combined treatment with TMZ and quercetin efficiently suppressed human glioblastoma cell survival in vitro.

  2. Cytotoxic Effects of Temozolomide and Radiation are Additive- and Schedule-Dependent

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chalmers, Anthony J., E-mail: a.j.chalmers@sussex.ac.u; Genome Damage and Stability Centre, University of Sussex, Falmer; Ruff, Elliot M.

    2009-12-01

    Purpose: Despite aggressive therapy comprising radical radiation and temozolomide (TMZ) chemotherapy, the prognosis for patients with glioblastoma multiforme (GBM) remains poor, particularly if tumors express O{sup 6}-methylguanine-DNA-methyltransferase (MGMT). The interactions between radiation and TMZ remain unclear and have important implications for scheduling and for developing strategies to improve outcomes. Methods and Materials: Factors determining the effects of combination therapy on clonogenic survival, cell-cycle checkpoint signaling and DNA repair were investigated in four human glioma cell lines (T98G, U373-MG, UVW, U87-MG). Results: Combining TMZ and radiation yielded additive cytotoxicity, but only when TMZ was delivered 72 h before radiation. Radiosensitization wasmore » not observed. TMZ induced G2/M cell-cycle arrest at 48-72 h, coincident with phosphorylation of Chk1 and Chk2. Additive G2/M arrest and Chk1/Chk2 phosphorylation was only observed when TMZ preceded radiation by 72 h. The ataxia-telangiectasia mutated (ATM) inhibitor KU-55933 increased radiation sensitivity and delayed repair of radiation-induced DNA breaks, but did not influence TMZ effects. The multiple kinase inhibitor caffeine enhanced the cytotoxicity of chemoradiation and exacerbated DNA damage. Conclusions: TMZ is not a radiosensitizing agent but yields additive cytotoxicity in combination with radiation. Our data indicate that TMZ treatment should commence at least 3 days before radiation to achieve maximum benefit. Activation of G2/M checkpoint signaling by TMZ and radiation has a cytoprotective effect that can be overcome by dual inhibition of ATM and ATR. More specific inhibition of checkpoint signaling will be required to increase treatment efficacy without exacerbating toxicity.« less

  3. Impact of 1p/19q Codeletion and Histology on Outcomes of Anaplastic Gliomas Treated With Radiation Therapy and Temozolomide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Speirs, Christina K.; Simpson, Joseph R.; Robinson, Clifford G.

    Purpose: Anaplastic gliomas represent a heterogeneous group of primary high-grade brain tumors, and the optimal postoperative treatment remains controversial. In this report, we present our institutional data on the clinical outcomes of radiation therapy (RT) plus temozolomide (RT + TMZ) for anaplastic gliomas, stratified by histology and 1p/19q codeletion. Methods and Materials: A single-institution retrospective review was conducted of patients with supratentorial anaplastic oligodendroglioma (AO), mixed anaplastic oligoastrocytoma (AOA), and anaplastic astrocytoma (AA). After surgery, RT was delivered at a median total dose of 60 Gy (range, 31.6-63 Gy) in daily fractions. All patients received standard concurrent TMZ, with or without adjuvant TMZ. Histological/molecular subtypesmore » were defined as codeleted AO/AOA, non-codeleted AO/AOA, and AA. Results: From 2000 to 2012, 111 cases met study criteria and were evaluable. Codeleted AO/AOA had superior overall survival (OS) to non-codeleted AO/AOA (91% vs 68% at 5 years, respectively, P=.02), whereas progression-free survival (PFS) was not significantly different (70% vs 46% at 5 years, respectively, P=.10). AA had inferior OS to non-codeleted AO/AOA (37% vs 68% at 5 years, respectively, P=.007) and inferior PFS (27% vs 46%, respectively, P=.03). On multivariate analysis, age, performance status, and histological or molecular subtype were independent predictors for both PFS and OS. Compared to historical controls, RT + TMZ provided comparable OS to RT with procarbazine, lomustine, and vincristine (RT + PCV) for codeleted AO/AOA, superior OS to RT alone for non-codeleted AO/AOA, and similar OS to RT alone for AA. Conclusions: RT + TMZ may be a promising treatment for both codeleted and non-codeleted AO/AOA, but its role for AA remains unclear.« less

  4. Temozolomide-loaded PLGA nanoparticles to treat glioblastoma cells: a biophysical and cell culture evaluation.

    PubMed

    Ananta, Jeyarama S; Paulmurugan, Ramasamy; Massoud, Tarik F

    2016-01-01

    Current chemotherapies for brain glioblastoma do not achieve sufficient drug concentrations within tumors. Polymeric nanoparticles have useful physicochemical properties that make them promising as nanoparticle platforms for glioblastoma drug delivery. Poly[lactic-co-glycolic acid] (PLGA) nanoparticles encapsulating temozolomide (TMZ) could improve localized delivery and sustained drug release to glioblastomas. We investigated three different procedures to encapsulate TMZ within PLGA nanoparticles. We studied the biophysical features of optimized nanocarriers, including their size, shape, surface properties, and release characteristics of TMZ. We evaluated the antiproliferative and cytotoxic effects of TMZ-loaded PLGA nanoparticles on U87 MG glioblastoma cells. A single emulsion technique using a TMZ saturated aqueous phase produced nanoparticles ≤200 nm in size allowing a maximal drug loading of 4.4% w/w of polymer. There was a bi-phasic drug release pattern, with 80% of TMZ released within the first 6 h. Nanoparticles accumulated in the cytoplasm after effective endocytosis. There was no significant difference in cytotoxic effect of TMZ encapsulated within PLGA nanoparticles and free TMZ. PLGA nanoparticles are not suitable as carriers of TMZ for glioblastoma drug delivery on account of the overall high IC50 values of glioblastoma cells to TMZ and poor loading and encapsulation efficiencies. Further biotechnological developments aimed at improving the loading of TMZ in PLGA nanoparticles or co-delivery of small molecule sensitizers to improve the response of human glioblastoma cells to TMZ are required for this approach to be considered and optimized for future clinical translation.

  5. Limited role for extended maintenance temozolomide for newly diagnosed glioblastoma.

    PubMed

    Gramatzki, Dorothee; Kickingereder, Philipp; Hentschel, Bettina; Felsberg, Jörg; Herrlinger, Ulrich; Schackert, Gabriele; Tonn, Jörg-Christian; Westphal, Manfred; Sabel, Michael; Schlegel, Uwe; Wick, Wolfgang; Pietsch, Torsten; Reifenberger, Guido; Loeffler, Markus; Bendszus, Martin; Weller, Michael

    2017-04-11

    To explore an association with survival of modifying the current standard of care for patients with newly diagnosed glioblastoma of surgery followed by radiotherapy plus concurrent and 6 cycles of maintenance temozolomide chemotherapy (TMZ/RT → TMZ) by extending TMZ beyond 6 cycles. The German Glioma Network cohort was screened for patients with newly diagnosed glioblastoma who received TMZ/RT → TMZ and completed ≥6 cycles of maintenance chemotherapy without progression. Associations of clinical patient characteristics, molecular markers, and residual tumor determined by magnetic resonance imaging after 6 cycles of TMZ with progression-free survival (PFS) and overall survival (OS) were analyzed with the log-rank test. Multivariate analyses using the Cox proportional hazards model were performed to assess associations of prolonged TMZ use with outcome. Sixty-one of 142 identified patients received at least 7 maintenance TMZ cycles (median 11, range 7-20). Patients with extended maintenance TMZ treatment had better PFS (20.5 months, 95% confidence interval [CI] 17.7-23.3, vs 17.2 months, 95% CI 10.2-24.2, p = 0.035) but not OS (32.6 months, 95% CI 28.9-36.4, vs 33.2 months, 95% CI 25.3-41.0, p = 0.126). However, there was no significant association of prolonged TMZ chemotherapy with PFS (hazard ratio [HR] = 0.8, 95% CI 0.4-1.6, p = 0.559) or OS (HR = 1.6, 95% CI 0.8-3.3, p = 0.218) adjusted for age, extent of resection, Karnofsky performance score, presence of residual tumor, O 6 -methylguanine DNA methyltransferase (MGMT) promoter methylation status, or isocitrate dehydrogenase ( IDH ) mutation status. These data may not support the practice of prolonging maintenance TMZ chemotherapy beyond 6 cycles. This study provides Class III evidence that in patients with newly diagnosed glioblastoma, prolonged TMZ chemotherapy does not significantly increase PFS or OS. © 2017 American Academy of Neurology.

  6. Polymorphs and polymorphic cocrystals of temozolomide.

    PubMed

    Babu, N Jagadeesh; Reddy, L Sreenivas; Aitipamula, Srinivasulu; Nangia, Ashwini

    2008-07-07

    Crystal polymorphism in the antitumor drug temozolomide (TMZ), cocrystals of TMZ with 4,4'-bipyridine-N,N'-dioxide (BPNO), and solid-state stability were studied. Apart from a known X-ray crystal structure of TMZ (form 1), two new crystalline modifications, forms 2 and 3, were obtained during attempted cocrystallization with carbamazepine and 3-hydroxypyridine-N-oxide. Conformers A and B of the drug molecule are stabilized by intramolecular amide N--HN(imidazole) and N--HN(tetrazine) interactions. The stable conformer A is present in forms 1 and 2, whereas both conformers crystallized in form 3. Preparation of polymorphic cocrystals I and II (TMZBPNO 1:0.5 and 2:1) were optimized by using solution crystallization and grinding methods. The metastable nature of polymorph 2 and cocrystal II is ascribed to unused hydrogen-bond donors/acceptors in the crystal structure. The intramolecularly bonded amide N-H donor in the less stable structure makes additional intermolecular bonds with the tetrazine C==O group and the imidazole N atom in stable polymorph 1 and cocrystal I, respectively. All available hydrogen-bond donors and acceptors are used to make intermolecular hydrogen bonds in the stable crystalline form. Synthon polymorphism and crystal stability are discussed in terms of hydrogen-bond reorganization.

  7. Variant allele frequency enrichment analysis in vitro reveals sonic hedgehog pathway to impede sustained temozolomide response in GBM.

    PubMed

    Biswas, Nidhan K; Chandra, Vikas; Sarkar-Roy, Neeta; Das, Tapojyoti; Bhattacharya, Rabindra N; Tripathy, Laxmi N; Basu, Sunandan K; Kumar, Shantanu; Das, Subrata; Chatterjee, Ankita; Mukherjee, Ankur; Basu, Pryiadarshi; Maitra, Arindam; Chattopadhyay, Ansuman; Basu, Analabha; Dhara, Surajit

    2015-01-21

    Neoplastic cells of Glioblastoma multiforme (GBM) may or may not show sustained response to temozolomide (TMZ) chemotherapy. We hypothesize that TMZ chemotherapy response in GBM is predetermined in its neoplastic clones via a specific set of mutations that alter relevant pathways. We describe exome-wide enrichment of variant allele frequencies (VAFs) in neurospheres displaying contrasting phenotypes of sustained versus reversible TMZ-responses in vitro. Enrichment of VAFs was found on genes ST5, RP6KA1 and PRKDC in cells showing sustained TMZ-effect whereas on genes FREM2, AASDH and STK36, in cells showing reversible TMZ-effect. Ingenuity pathway analysis (IPA) revealed that these genes alter cell-cycle, G2/M-checkpoint-regulation and NHEJ pathways in sustained TMZ-effect cells whereas the lysine-II&V/phenylalanine degradation and sonic hedgehog (Hh) pathways in reversible TMZ-effect cells. Next, we validated the likely involvement of the Hh-pathway in TMZ-response on additional GBM neurospheres as well as on GBM patients, by extracting RNA-sequencing-based gene expression data from the TCGA-GBM database. Finally, we demonstrated TMZ-sensitization of a TMZ non-responder neurosphere in vitro by treating them with the FDA-approved pharmacological Hh-pathway inhibitor vismodegib. Altogether, our results indicate that the Hh-pathway impedes sustained TMZ-response in GBM and could be a potential therapeutic target to enhance TMZ-response in this malignancy.

  8. The CHAC1-inhibited Notch3 pathway is involved in temozolomide-induced glioma cytotoxicity.

    PubMed

    Chen, Peng-Hsu; Shen, Wan-Lin; Shih, Chwen-Ming; Ho, Kuo-Hao; Cheng, Chia-Hsiung; Lin, Cheng-Wei; Lee, Chin-Cheng; Liu, Ann-Jeng; Chen, Ku-Chung

    2017-04-01

    Glioblastoma multiforme (GBM) is the high-grade primary glioma in adults. Temozolomide (TMZ), an alkylating agent of the imidazotetrazine series, is a first-line chemotherapeutic drug for clinical therapy. However, the expense of TMZ therapy and increasing drug resistance to TMZ decreases its therapeutic effects. Therefore, our aim was to investigate the detailed molecular mechanisms of TMZ-mediated cytotoxicity to enhance the efficacy of TMZ in clinical GBM therapy. First, TMZ-mediated gene expression profiles and networks in U87-MG cells were identified by transcriptome microarray and bioinformatic analyses. Cation transport regulator-like protein 1 (CHAC1) was the most highly TMZ-upregulated gene. Overexpression and knockdown of CHAC1 expression significantly influenced TMZ-mediated cell viability, apoptosis, caspase-3 activation, and poly(ADP ribose) polymerase (PARP) degradation. The c-Jun N-terminal kinase (JNK)1/c-JUN pathway was identified to participate in TMZ-upregulated CHAC1 expression via transcriptional control. Furthermore, CHAC1 levels were significantly decreased in GBM cell lines, TCGA array data, and tumor tissues. Overexpression of CHAC1 enhanced glioma apoptotic death via caspase-3/9 activation, PARP degradation, autophagy formation, reactive oxygen species generation, increased intracellular calcium, and loss of the mitochondria membrane potential. Finally, we also identified that TMZ significantly reduced Notch3 levels, which are upregulated in gliomas. TMZ also induced CHAC1 to bind to the Notch3 protein and inhibit Notch3 activation, resulting in attenuation of Notch3-mediated downstream signaling pathways. These results emphasize that CHAC1-inhibited Notch3 signaling can influence TMZ-mediated cytotoxicity. Our findings may provide novel therapeutic strategies for future glioblastoma therapy. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Efficacy of protracted temozolomide dosing is limited in MGMT unmethylated GBM xenograft models.

    PubMed

    Cen, Ling; Carlson, Brett L; Pokorny, Jenny L; Mladek, Ann C; Grogan, Patrick T; Schroeder, Mark A; Decker, Paul A; Anderson, S Keith; Giannini, Caterina; Wu, Wenting; Ballman, Karla V; Kitange, Gaspar J; Sarkaria, Jann N

    2013-06-01

    Temozolomide (TMZ) is important chemotherapy for glioblastoma multiforme (GBM), but the optimal dosing schedule is unclear. The efficacies of different clinically relevant dosing regimens were compared in a panel of 7 primary GBM xenografts in an intracranial therapy evaluation model. Protracted TMZ therapy (TMZ daily M-F, 3 wk every 4) provided superior survival to a placebo-treated group in 1 of 4 O(6)-DNA methylguanine-methyltransferase (MGMT) promoter hypermethylated lines (GBM12) and none of the 3 MGMT unmethylated lines, while standard therapy (TMZ daily M-F, 1 wk every 4) provided superior survival to the placebo-treated group in 2 of 3 MGMT unmethylated lines (GBM14 and GBM43) and none of the methylated lines. In comparing GBM12, GBM14, and GBM43 intracranial specimens, both GBM14 and GBM43 mice treated with protracted TMZ had a significant elevation in MGMT levels compared with placebo. Similarly, high MGMT was found in a second model of acquired TMZ resistance in GBM14 flank xenografts, and resistance was reversed in vitro by treatment with the MGMT inhibitor O(6)-benzylguanine, demonstrating a mechanistic link between MGMT overexpression and TMZ resistance in this line. Additionally, in an analysis of gene expression data, comparison of parental and TMZ-resistant GBM14 demonstrated enrichment of functional ontologies for cell cycle control within the S, G2, and M phases of the cell cycle and DNA damage checkpoints. Across the 7 tumor models studied, there was no consistent difference between protracted and standard TMZ regimens. The efficacy of protracted TMZ regimens may be limited in a subset of MGMT unmethylated tumors by induction of MGMT expression.

  10. LncRNA CASC2 Interacts With miR-181a to Modulate Glioma Growth and Resistance to TMZ Through PTEN Pathway.

    PubMed

    Liao, Yiwei; Shen, Liangfang; Zhao, Haiting; Liu, Qing; Fu, Jun; Guo, Yong; Peng, Renjun; Cheng, Lei

    2017-07-01

    Temozolomide (TMZ)-based chemotherapy is a standard strategy for glioma, while chemoresistance remains a major therapeutic challenge. Recent evidence highlights the crucial regulatory roles of long non-coding RNAs (lncRNA) in tumor biology. However, the roles and regulatory mechanisms of lncRNA cancer susceptibility candidate 2 (CASC2), in glioma tumorigenesis and chemoresistance are poorly understood. In this study, CASC2 expression was down-regulated in glioma tissues and cell lines, and was related to a clinicopathologic features and shorter survival time. Exogenous CACS2 alone was sufficient to inhibit glioma cells' proliferation and amplified TMZ-induced repression of cell proliferation, while CACS2 knockdown could reverse this process. CACS2 overexpression could sensitize TMZ-resistant glioma cells to TMZ, while CACS2 knockdown exerted the opposite function. Moreover, CASC2 could inhibit the miR-181a expression by direct targeting in TMZ-resistant glioma cells. CASC2 up-regulated PTEN protein and down-regulated p-AKT protein through regulating miR-181a, and the effect of CASC2 on PTEN and p-AKT could be partially restored by miR-181a. With TMZ-resistant glioma tissues, miR-181a was up-regulated while PTEN was down-regulated. Taken together, these observations suggest CASC2 up-regulates PTEN through direct inhibiting miR-181a and plays an important role in glioma sensitivity to TMZ and may serve as a potential target for cancer diagnosis and treatment. J. Cell. Biochem. 118: 1889-1899, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  11. GANT61, a GLI inhibitor, sensitizes glioma cells to the temozolomide treatment.

    PubMed

    Li, Jianlong; Cai, Jinquan; Zhao, Shihong; Yao, Kun; Sun, Ying; Li, Yongli; Chen, Lingchao; Li, Ruiyan; Zhai, Xiuwei; Zhang, Junhe; Jiang, Chuanlu

    2016-11-28

    The aim of this study was to investigate the effect of downregulating Hedgehog pathway by GANT61 on human glioma cells, examine the consequent changes of temozolomide (TMZ)-induced effects and explore the molecular mechanisms. The cytotoxicity of a Gli1/2 inhibitor, GANT61 was examined both alone and in combination with TMZ in human glioma cell lines. The mRNA and protein expression alterations were determined by quantitative real-time polymerase chain reaction (qRT-PCR) and Western blot, respectively. CCK-8 assay detected the cell proliferative capability. Apoptotic cell number was measured by flow cytometry. The transwell assay was used to test the cell invasive capability. DNA damage effect was identified by COMET assay and γH2AX expression. Proliferation of tumor cells treated with GANT61 in combination with TMZ was significantly suppressed compared with those treated with either drug used alone. The combination treatment induced a higher rate of apoptosis, DNA damage and reduced the invasive capability of glioma cells. DNA damage repair enzyme MGMT and the Notch1 pathway increased in the cells treated by TMZ treatment. However, GANT61 could abrogated the protein increasing. GANT61 sensitizes glioma cells to TMZ treatment by enhancing DNA damage effect, decreasing MGMT expression and the Notch1 pathway.

  12. Prolonged survival with valproic acid use in the EORTC/NCIC temozolomide trial for glioblastoma

    PubMed Central

    Gorlia, T.; Cairncross, J.G.; van den Bent, M.J.; Mason, W.; Belanger, K.; Brandes, A.A.; Bogdahn, U.; Macdonald, D.R.; Forsyth, P.; Rossetti, A.O.; Lacombe, D.; Mirimanoff, R.-O.; Vecht, C.J.; Stupp, R.

    2011-01-01

    Objective: This analysis was performed to assess whether antiepileptic drugs (AEDs) modulate the effectiveness of temozolomide radiochemotherapy in patients with newly diagnosed glioblastoma. Methods: The European Organization for Research and Treatment of Cancer (EORTC) 26981–22981/National Cancer Institute of Canada (NCIC) CE.3 clinical trial database of radiotherapy (RT) with or without temozolomide (TMZ) for newly diagnosed glioblastoma was examined to assess the impact of the interaction between AED use and chemoradiotherapy on survival. Data were adjusted for known prognostic factors. Results: When treatment began, 175 patients (30.5%) were AED-free, 277 (48.3%) were taking any enzyme-inducing AED (EIAED) and 135 (23.4%) were taking any non-EIAED. Patients receiving valproic acid (VPA) only had more grade 3/4 thrombopenia and leukopenia than patients without an AED or patients taking an EIAED only. The overall survival (OS) of patients who were receiving an AED at baseline vs not receiving any AED was similar. Patients receiving VPA alone (97 [16.9%]) appeared to derive more survival benefit from TMZ/RT (hazard ratio [HR] 0.39, 95% confidence interval [CI] 0.24–0.63) than patients receiving an EIAED only (252 [44%]) (HR 0.69, 95% CI 0.53–0.90) or patients not receiving any AED (HR 0.67, 95% CI 0.49–0.93). Conclusions: VPA may be preferred over an EIAED in patients with glioblastoma who require an AED during TMZ-based chemoradiotherapy. Future studies are needed to determine whether VPA increases TMZ bioavailability or acts as an inhibitor of histone deacetylases and thereby sensitizes for radiochemotherapy in vivo. PMID:21880994

  13. Pharmacokinetics of temozolomide given three times a day in pediatric and adult patients.

    PubMed

    Riccardi, Anna; Mazzarella, Giorgio; Cefalo, Graziella; Garrè, Maria Luisa; Massimino, Maura; Barone, Carlo; Sandri, Alessandro; Ridola, Vita; Ruggiero, Antonio; Mastrangelo, Stefano; Lazzareschi, Ilaria; Caldarelli, Massimo; Maira, Giulio; Madon, Enrico; Riccardi, Riccardo

    2003-12-01

    To characterize and compare pharmacokinetic parameters in children and adults treated with temozolomide (TMZ) administered for 5 days in three doses daily, and to evaluate the possible relationship between AUC values and hematologic toxicity. TMZ pharmacokinetic parameters were characterized in pediatric and adult patients with primary central nervous system tumors treated with doses ranging from 120 to 200 mg/m2 per day, divided into three doses daily for 5 days. Plasma levels were measured over 8 h following oral administration in a fasting state. A total of 40 courses were studied in 22 children (mean age 10 years, range 3-16 years) and in 8 adults (mean age 30 years, range 19-54 years). In all patients, a linear relationship was found between systemic exposure (AUC) and increasing doses of TMZ. Time to peak concentration, elimination half-life, apparent clearance and volume of distribution were not related to TMZ dose. No differences were seen among TMZ C(max), t(1/2), V(d) or CL/F in children compared with adults. Intra- and interpatient variability of systemic exposure were limited in both children and adults. No statistically significant differences were found between the AUCs of children who experienced grade 4 hematologic toxicity and children who did not. No difference appears to exist between pharmacokinetic parameters in adults and children when TMZ is administered in three doses daily. Hematologic toxicity was not related to TMZ AUC. AUC measurement does not appear to be of any use in optimizing TMZ treatment.

  14. Suppression of the Eag1 potassium channel sensitizes glioblastoma cells to injury caused by temozolomide.

    PubMed

    Sales, Thais Torquato; Resende, Fernando Francisco Borges; Chaves, Natália Lemos; Titze-De-Almeida, Simoneide Souza; Báo, Sônia Nair; Brettas, Marcella Lemos; Titze-De-Almeida, Ricardo

    2016-10-01

    Glioblastoma multiforme (GBM) is the most aggressive type of human primary brain tumor. The standard treatment protocol includes radiotherapy in combination with temozolomide (TMZ). Despite advances in GBM treatment, the survival time of patients diagnosed with glioma is 14.5 months. Regarding tumor biology, various types of cancer cell overexpress the ether à go-go 1 (Eag1) potassium channel. Therefore, the present study examined the role of Eag1 in the cell damage caused by TMZ on the U87MG glioblastoma cell line. Eag1 was inhibited using a channel blocker (astemizole) or silenced by a short-hairpin RNA expression vector (pKv10.1-3). pKv10.1-3 (0.2 µg) improved the Eag1 silencing caused by 250 µM TMZ, as determined by reverse transcription-quantitative polymerase chain reaction and immunocytochemistry. Additionally, inhibiting Eag1 with the vector or astemizole (5 µM) reduced glioblastoma cell viability and sensitized cells to TMZ. Cell viability decreased by 63% for pKv10.1-3 + TMZ compared with 34% for TMZ alone, and by 77% for astemizole + TMZ compared with 46% for TMZ alone, as determined by MTT assay. In addition, both the vector and astemizole increased the apoptosis rate of glioblastoma cells triggered by TMZ, as determined by an Annexin V apoptosis assay. Collectively, the current data reveal that Eag1 has a role in the damage caused to glioblastoma by TMZ. Furthermore, suppression of this channel can improve the action of TMZ on U87MG glioblastoma cells. Thus, silencing Eag1 is a promising strategy to improve GBM treatment and merits additional studies in animal models of glioma.

  15. Low Dose of Doxorubicin Potentiates the Effect of Temozolomide in Glioblastoma Cells.

    PubMed

    Villodre, Emilly Schlee; Kipper, Franciele Cristina; Silva, Andrew Oliveira; Lenz, Guido; Lopez, Patrícia Luciana da Costa

    2018-05-01

    Glioblastoma (GBM) is an aggressive brain tumor with temozolomide (TMZ)-based chemotherapy as the main therapeutic strategy. Doxorubicin (DOX) is not used in gliomas due to its low bioavailability in the brain; however, new delivery strategies and low doses may be effective in the long term, especially as part of a drug cocktail. Our aim was to evaluate the chronic effects of low doses of DOX and TMZ in GBM. Human U87-ATCC cells and a primary GBM culture were chronically treated with TMZ (5 μM) and DOX (1 and 10 nM) alone or combined. DOX resulted in a reduction in the number of cells over a period of 35 days and delayed the cell regrowth. In addition, DOX induced cell senescence and reduced tumor sphere formation and the proportion of NANOG- and OCT4-positive cells after 7 days. Low doses of TMZ potentiated the effects of DOX on senescence and sphere formation. This combined response using low doses of DOX may pave the way for its use in glioma therapy, with new technologies to overcome its low blood-brain barrier permeability.

  16. Inhibitor of Nicotinamide Phosphoribosyltransferase Sensitizes Glioblastoma Cells to Temozolomide via Activating ROS/JNK Signaling Pathway.

    PubMed

    Feng, Jun; Yan, Peng-Fei; Zhao, Hong-Yang; Zhang, Fang-Cheng; Zhao, Wo-Hua; Feng, Min

    2016-01-01

    Overcoming temozolomide (TMZ) resistance is a great challenge in glioblastoma (GBM) treatment. Nicotinamide phosphoribosyltransferase (NAMPT) is a rate-limiting enzyme in the biosynthesis of nicotinamide adenine dinucleotide and has a crucial role in cancer cell metabolism. In this study, we investigated whether FK866 and CHS828, two specific NAMPT inhibitors, could sensitize GBM cells to TMZ. Low doses of FK866 and CHS828 (5 nM and 10 nM, resp.) alone did not significantly decrease cell viability in U251-MG and T98 GBM cells. However, they significantly increased the antitumor action of TMZ in these cells. In U251-MG cells, administration of NAMPT inhibitors increased the TMZ (100  μ M)-induced apoptosis and LDH release from GBM cells. NAMPT inhibitors remarkably enhanced the activities of caspase-1, caspase-3, and caspase-9. Moreover, NAMPT inhibitors increased reactive oxygen species (ROS) production and superoxide anion level but reduced the SOD activity and total antioxidative capacity in GBM cells. Treatment of NAMPT inhibitors increased phosphorylation of c-Jun and JNK. Administration of JNK inhibitor SP600125 or ROS scavenger tocopherol with TMZ and NAMPT inhibitors substantially attenuated the sensitization of NAMPT inhibitor on TMZ antitumor action. Our data indicate a potential value of NAMPT inhibitors in combined use with TMZ for GBM treatment.

  17. Health-related quality of life, cognitive screening, and functional status in a randomized phase III trial (EF-14) of tumor treating fields with temozolomide compared to temozolomide alone in newly diagnosed glioblastoma.

    PubMed

    Zhu, Jay-Jiguang; Demireva, Petya; Kanner, Andrew A; Pannullo, Susan; Mehdorn, Maximilian; Avgeropoulos, Nicholas; Salmaggi, Andrea; Silvani, Antonio; Goldlust, Samuel; David, Carlos; Benouaich-Amiel, Alexandra

    2017-12-01

    We characterized health-related quality of life (HRQoL), cognitive, and functional status in newly diagnosed glioblastoma (GBM) patients receiving Tumor treating fields (TTFields) with temozolomide (TMZ) versus TMZ alone in a planned interim analysis of a randomized phase III trial [NCT00916409], which showed significant improvement in progression-free and overall survival with TTFields/TMZ. After radiotherapy with concomitant TMZ, newly diagnosed GBM patients were randomized (2:1) to TTFields/TMZ (n = 210) or TMZ (n = 105). Interim analysis was performed in 315 patients with ≥18 months of follow-up. HRQoL, a secondary endpoint, was evaluated in per-protocol patient population and expressed as change from baseline (CFB) at 3, 6, and 9 months for each subscale in the EORTC QLQ-C30/BN20. Karnofsky performance scores (KPS) and Mini-Mental State Examination scores (MMSE) were assessed. CFB in HRQoL was balanced in treatment groups at the 12-month time point. Initially, HRQoL improved in patients treated with TTFields/TMZ (CFB3: 24% and CFB6: 13%) versus TMZ (CFB3: -7% and CFB6: -17%), though this difference was no longer evident at the 9-month point. General scales, including physical and social functioning, showed no difference at 9 and 12 months. TTFields/TMZ group reported higher concerns of "itchy skin". KPS over 12 months was just below 90 in both groups. Cognitive status (MMSE) was stable over time. HRQoL, KPS, and MMSE were balanced in both groups over time. There was no preliminary evidence that HRQoL, cognitive, and functional status is adversely affected by the continuous use of TTFields.

  18. IGF-1R inhibition induces schedule-dependent sensitization of human melanoma to temozolomide

    PubMed Central

    Ramcharan, Roger; Aleksic, Tamara; Kamdoum, Wilfride Petnga; Gao, Shan; Pfister, Sophia X.; Tanner, Jordan; Bridges, Esther; Asher, Ruth; Watson, Amanda J.; Margison, Geoffrey P.; Woodcock, Mick; Repapi, Emmanouela; Li, Ji-Liang; Middleton, Mark R.; Macaulay, Valentine M.

    2015-01-01

    Prior studies implicate type 1 IGF receptor (IGF-1R) in mediating chemo-resistance. Here, we investigated whether IGF-1R influences response to temozolomide (TMZ), which generates DNA adducts that are removed by O6-methylguanine-DNA methyltransferase (MGMT), or persist causing replication-associated double-strand breaks (DSBs). Initial assessment in 10 melanoma cell lines revealed that TMZ resistance correlated with MGMT expression (r = 0.79, p = 0.009), and in MGMT-proficient cell lines, with phospho-IGF-1R (r = 0.81, p = 0.038), suggesting that TMZ resistance associates with IGF-1R activation. Next, effects of IGF-1R inhibitors (IGF-1Ri) AZ3801 and linsitinib (OSI-906) were tested on TMZ-sensitivity, cell cycle progression and DSB induction. IGF-1Ri sensitized BRAF wild-type and mutant melanoma cells to TMZ in vitro, an effect that was independent of MGMT. Cells harboring wild-type p53 were more sensitive to IGF-1Ri, and showed schedule-dependent chemo-sensitization that was most effective when IGF-1Ri followed TMZ. This sequence sensitized to clinically-achievable TMZ concentrations and enhanced TMZ-induced apoptosis. Simultaneous or prior IGF-1Ri caused less effective chemo-sensitization, associated with increased G1 population and reduced accumulation of TMZ-induced DSBs. Clinically relevant sequential (TMZ → IGF-1Ri) treatment was tested in mice bearing A375M (V600E BRAF, wild-type p53) melanoma xenografts, achieving peak plasma/tumor IGF-1Ri levels comparable to clinical Cmax, and inducing extensive intratumoral apoptosis. TMZ or IGF-1Ri caused minor inhibition of tumor growth (gradient reduction 13%, 25% respectively), while combination treatment caused supra-additive growth delay (72%) that was significantly different from control (p < 0.01), TMZ (p < 0.01) and IGF-1Ri (p < 0.05) groups. These data highlight the importance of scheduling when combining IGF-1Ri and other targeted agents with drugs that induce replication-associated DNA damage. PMID

  19. Pulsed Versus Conventional Radiation Therapy in Combination With Temozolomide in a Murine Orthotopic Model of Glioblastoma Multiforme

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, David Y.; Chunta, John L.; Park, Sean S.

    Purpose: To evaluate the efficacy of pulsed low-dose radiation therapy (PLRT) combined with temozolomide (TMZ) as a novel treatment approach for radioresistant glioblastoma multiforme (GBM) in a murine model. Methods and Materials: Orthotopic U87MG hGBM tumors were established in Nu-Foxn1{sup nu} mice and imaged weekly using a small-animal micropositron emission tomography (PET)/computed tomography (CT) system. Tumor volume was determined from contrast-enhanced microCT images and tumor metabolic activity (SUVmax) from the F18-FDG microPET scan. Tumors were irradiated 7 to 10 days after implantation with a total dose of 14 Gy in 7 consecutive days. The daily treatment was given as amore » single continuous 2-Gy dose (RT) or 10 pulses of 0.2 Gy using an interpulse interval of 3 minutes (PLRT). TMZ (10 mg/kg) was given daily by oral gavage 1 hour before RT. Tumor vascularity and normal brain damage were assessed by immunohistochemistry. Results: Radiation therapy with TMZ resulted in a significant 3- to 4-week tumor growth delay compared with controls, with PLRT+TMZ the most effective. PLRT+TMZ resulted in a larger decline in SUVmax than RT+TMZ. Significant differences in survival were evident. Treatment after PLRT+TMZ was associated with increased vascularization compared with RT+TMZ. Significantly fewer degenerating neurons were seen in normal brain after PLRT+TMZ compared with RT+TMZ. Conclusions: PLRT+TMZ produced superior tumor growth delay and less normal brain damage when compared with RT+TMZ. The differential effect of PLRT on vascularization may confirm new treatment avenues for GBM.« less

  20. Encapsulation of temozolomide in a tumor-targeting nanocomplex enhances anti-cancer efficacy and reduces toxicity in a mouse model of glioblastoma.

    PubMed

    Kim, Sang-Soo; Rait, Antonina; Kim, Eric; DeMarco, James; Pirollo, Kathleen F; Chang, Esther H

    2015-12-01

    Although temozolomide (TMZ) is the current first-line chemotherapy for glioblastoma multiforme (GBM), most patients either do not respond or ultimately fail TMZ treatment. Both intrinsic tumor resistance and limited access of TMZ to brain tumors as a result of the blood-brain barrier (BBB) contribute to poor response and ultimately to poor prognosis for GBM patients. We have developed a "dual-targeting" nanomedicine that both actively crosses the BBB and actively targets cancer cells once in the brain parenchyma. This nanomedicine (termed scL-TMZ) is sized ~40 nm and comprised of a cationic liposome (DOTAP:DOPE) encapsulating TMZ. The surface of liposome is decorated with anti-transferrin receptor single-chain antibody fragments to facilitate the crossing of the BBB by the scL-TMZ in addition to targeting GBM in the brain. This novel formulation was found to be markedly more effective than standard TMZ in both TMZ-resistant and TMZ-sensitive GBM. Encapsulation of TMZ also markedly enhanced its efficacy in killing a variety of non-GBM tumor cells. The scL-TMZ nanocomplex was shown to target cancer stem cells, which have been linked to both drug resistance and recurrence in GBM. Most significantly, systemically administered scL-TMZ significantly prolonged survival in mice bearing intracranial GBM tumors. The improved efficacy of scL-TMZ compared to standard TMZ was accompanied by reduced toxicity, so we conclude that the scL-TMZ nanomedicine holds great promise as a more effective therapy for GBM and other tumor types. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  1. Overcoming temozolomide resistance in glioblastoma via dual inhibition of NAD+ biosynthesis and base excision repair

    PubMed Central

    Goellner, Eva M.; Grimme, Bradford; Brown, Ashley R.; Lin, Ying-Chih; Wang, Xiao-Hong; Sugrue, Kelsey F.; Mitchell, Leah; Trivedi, Ram N.; Tang, Jiang-bo; Sobol, Robert W.

    2011-01-01

    Glioblastoma multiforme (GBM) is a devastating brain tumor with poor prognosis and low median survival time. Standard treatment includes radiation and chemotherapy with the DNA alkylating agent temozolomide (TMZ). However, a large percentage of tumors are resistant to the cytotoxic effects of the TMZ-induced DNA lesion O6-methylguanine (O6-MeG) due to elevated expression of the repair protein O6-methylguanine-DNA methyltransferase (MGMT) or a defect in the mismatch repair (MMR) pathway. Although a majority of the TMZ induced lesions (N7-methylguanine and N3-methyladenine) are base excision repair (BER) substrates, these DNA lesions are also readily repaired. However, blocking BER can enhance response to TMZ and therefore the BER pathway has emerged as an attractive target for reversing TMZ resistance. Our lab has recently reported that inhibition of BER leads to the accumulation of repair intermediates that induce energy depletion-mediated cell death via hyperactivation of poly(ADP-ribose) polymerase. Based on our observation that TMZ-induced cell death via BER inhibition is dependent on the availability of NAD+, we have hypothesized that combined BER and NAD+ biosynthesis inhibition will increase TMZ efficacy in glioblastoma cell lines greater than BER inhibition alone. Importantly, we find that the combination of BER and NAD+ biosynthesis inhibition significantly sensitizes glioma cells with elevated expression of MGMT and those deficient in MMR, two genotypes normally associated with TMZ resistance. Dual targeting of these two interacting pathways (DNA repair and NAD+ biosynthesis) may prove to be an effective treatment combination for patients with resistant and recurrent GBM. PMID:21406402

  2. A cyclic-RGD-BioShuttle functionalized with TMZ by DARinv “Click Chemistry” targeted to αvβ3 integrin for therapy

    PubMed Central

    Braun, Klaus; Wiessler, Manfred; Pipkorn, Rüdiger; Ehemann, Volker; Bäuerle, Tobias; Fleischhacker, Heinz; Müller, Gabriele; Lorenz, Peter; Waldeck, Waldemar

    2010-01-01

    Clinical experiences often document, that a successful tumor control requires high doses of drug applications. It is widely believed that unavoidable adverse reactions could be minimized by using gene-therapeutic strategies protecting the tumor-surrounding healthy tissue as well as the bone-marrow. One new approach in this direction is the use of “Targeted Therapies” realizing a selective drug targeting to gain effectual amounts at the target site, even with drastically reduced application doses. MCF-7 breast cancer cells expressing the αvβ3 [alpha(v)beta(3)] integrin receptor are considered as appropriate candidates for such a targeted therapy. The modularly composed BioShuttle carrier consisting of different units designed to facilitate the passage across the cell membranes and for subcellular addressing of diagnostic and/or therapeutic molecules could be considered as an eligible delivery platform. Here we used the cyclic RGD-BioShuttle as a carrier for temozolomide (TMZ) at the αvβ3 integrin receptor realizing local TMZ concentrations sufficient for cell killing. The IC50 values are 12 µMol/L in the case of cRGD-BioShuttle-TMZ and 100 µMol/L for underivatized TMZ, which confirms the advantage of TMZ reformulation to realize local concentrations sufficient for cell killing. Our paper focuses on the design, synthesis and application of the cRGD-BioShuttle conjugate composed of the cyclic RGD, a αvβ3 integrin-ligand, ligated to the cytotoxic drug TMZ. The ligation was carried out by the Diels Alder Reaction with inverse electron demand (DARinv). PMID:20922134

  3. Evaluation of Novel Imidazotetrazine Analogues Designed to Overcome Temozolomide Resistance and Glioblastoma Regrowth

    PubMed Central

    Ramirez, Yulian P.; Mladek, Ann C.; Phillips, Roger M.; Gynther, Mikko; Rautio, Jarkko; Ross, Alonzo H.; Wheelhouse, Richard T.; Sakaria, Jann N.

    2014-01-01

    The cellular responses to two new temozolomide (TMZ) analogues, DP68 and DP86, acting against glioblastoma multiforme (GBM) cell lines and primary culture models are reported. Dose-response analysis of cultured GBM cells revealed that DP68 is more potent than DP86 and TMZ and that DP68 was effective even in cell lines resistant to TMZ. Based on a serial neurosphere assay, DP68 inhibits repopulation of these cultures at low concentrations. The efficacy of these compounds was independent of MGMT and MMR functions. DP68-induced interstrand DNA crosslinks were demonstrated with H2O2-treated cells. Furthermore, DP68 induced a distinct cell cycle arrest with accumulation of cells in S phase that is not observed for TMZ. Consistent with this biological response, DP68 induces a strong DNA damage response, including phosphorylation of ATM, Chk1 and Chk2 kinases, KAP1, and histone variant H2AX. Suppression of FANCD2 expression or ATR expression/kinase activity enhanced anti-glioblastoma effects of DP68. Initial pharmacokinetic analysis revealed rapid elimination of these drugs from serum. Collectively, these data demonstrate that DP68 is a novel and potent anti-glioblastoma compound that circumvents TMZ resistance, likely as a result of its independence from MGMT and mismatch repair and its capacity to crosslink strands of DNA. PMID:25351918

  4. Protein alterations associated with temozolomide resistance in subclones of human glioblastoma cell lines.

    PubMed

    Sun, Stella; Wong, T S; Zhang, X Q; Pu, Jenny K S; Lee, Nikki P; Day, Philip J R; Ng, Gloria K B; Lui, W M; Leung, Gilberto K K

    2012-03-01

    Temozolomide (TMZ) is the standard chemotherapeutic agent for human malignant glioma, but intrinsic or acquired chemoresistance represents a major obstacle to successful treatment of this highly lethal group of tumours. Obtaining better understanding of the molecular mechanisms underlying TMZ resistance in malignant glioma is important for the development of better treatment strategies. We have successfully established a passage control line (D54-C10) and resistant variants (D54-P5 and D54-P10) from the parental TMZ-sensitive malignant glioma cell line D54-C0. The resistant sub-cell lines showed alterations in cell morphology, enhanced cell adhesion, increased migration capacities, and cell cycle arrests. Proteomic analysis identified a set of proteins that showed gradual changes in expression according to their 50% inhibitory concentration (IC(50)). Successful validation was provided by transcript profiling in another malignant glioma cell line U87-MG and its resistant counterparts. Moreover, three of the identified proteins (vimentin, cathepsin D and prolyl 4-hydroxylase, beta polypeptide) were confirmed to be upregulated in high-grade glioma. Our data suggest that acquired TMZ resistance in human malignant glioma is associated with promotion of malignant phenotypes, and our reported molecular candidates may serve not only as markers of chemoresistance but also as potential therapeutic targets in the treatment of TMZ-resistant human malignant glioma, providing a platform for future investigations.

  5. The regrowth kinetic of the surviving population is independent of acute and chronic responses to temozolomide in glioblastoma cell lines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Silva, Andrew Oliveira, E-mail: andrewbiomed@gmail.com; Dalsin, Eloisa, E-mail: dalsineloisa@gmail.com; Onzi, Giovana Ravizzoni, E-mail: gioonzi@gmail.com

    Chemotherapy acts on cancer cells by producing multiple effects on a cell population including cell cycle arrest, necrosis, apoptosis and senescence. However, often a subpopulation of cells survives and the behavior of this subpopulation, which is responsible for cancer recurrence, remains obscure. Here we investigated the in vitro short- and long-term responses of six glioblastoma cell lines to clinically relevant doses of temozolomide for 5 days followed by 23 days of recovery, mimicking the standard schedule used in glioblastoma patient for this drug. These cells presented different profiles of sensitivity to temozolomide with varying levels of cell cycle arrest, autophagymore » and senescence, followed by a regrowth of the surviving cells. The initial reduction in cell number and the subsequent regrowth was analyzed with four new parameters applied to Cumulative Population Doubling (CPD) curves that describe the overall sensitivity of the population and the characteristic of the regrowth: the relative end point CPD (RendCPD); the relative Area Under Curve (rAUC); the Relative Time to Cross a Threshold (RTCT); and the Relative Proliferation Rate (RPR). Surprisingly, the kinetics of regrowth were not predicted by the mechanisms activated after treatment nor by the acute or overall sensitivity. With this study we added new parameters that describe key responses of glioblastoma cell populations to temozolomide treatment. These parameters can also be applied to other cell types and treatments and will help to understand the behavior of the surviving cancer cells after treatment and shed light on studies of cancer resistance and recurrence. - Highlights: • Little is known about the behavior of the glioma cells surviving to TMZ. • The short- and long-term response of six glioma cells lines to TMZ varies considerably. • These glioma cells lines recovered proliferation after therapeutic levels of TMZ. • The growth velocity of the surviving cells was different

  6. [RITA combined with temozolomide inhibits the proliferation of human glioblastoma U87 cells].

    PubMed

    He, Xiao-Yan; Feng, Xiao-Li; Song, Xin-Pei; Zeng, Huan-Chao; Cao, Zhong-Xu; Xiao, Wei-Wei; Zhang, Bao; Wu, Qing-Hua

    2016-10-20

    To observe the effect of RITA, a small molecule that targets p53, combined with temozolomide (TMZ) on proliferation, colony formation and apoptosis of human glioblastoma U87 cells and explore the underlying mechanism. Cultured U87 cells were treated with RITA (1, 5, 10, 20 µmol/L), TMZ, or RITA+TMZ (half dose) for 24, 48 or 72 h. MTS assay were used to detect the cell proliferation, and the cell proliferation rate and inhibitory rate were calculated. The effect of combined treatments was evaluated by the q value. The expressions of p53, p21 and other apoptosis-associated genes were detected by qRT-PCR and Western blotting; cell apoptosis was assayed using flow cytometry with Annexin V/PI double staining; colony formation of the cells was detected with crystal violet staining. MTS assay showed that RITA at the 4 doses more potently inhibited U87 cell viability than TMZ at 72 h (P=0.000) with inhibitory rates of 25.94%-41.38% and 3.84%-8.20%, respectively. RITA combined with TMZ caused a more significant inhibition of U87 cells (29.21%-52.11%) than RITA (P<0.01) and TMZ (P=0.000) alone. At the doses above 5 µmol/L, the combined treatments with RITA+TMZ for 48 h resulted in q values exceeding 1.2 and showed an obvious synergistic effect of the drugs. Both RITA and TMZ, especially the latter, significantly increased the expressions of p53, p21, puma, and other apoptosis-associated genes to accelerate apoptosis and inhibit the growth and colony formation of U87 cells, and the effect was more obvious with a combined treatment. RITA inhibits the growth of human glioblastoma cells and enhance their sensitivity to TMZ by up-regulating p53 expression, and when combined, RITA and TMZ show a synergistic effect to cause a stronger cell inhibition.

  7. Aspirin inhibits the SHH/GLI1 signaling pathway and sensitizes malignant glioma cells to temozolomide therapy

    PubMed Central

    Li, Ziwei; Lin, Lin; Meng, Xiangqi; Han, Bo; Wang, Ruijia; Wu, Pengfei; Li, Jianlong; Cai, Jinquan; Jiang, Chuanlu

    2017-01-01

    Aberrant activation of sonic hedgehog (SHH)/glioma-associated oncogene homolog 1 (GLI1) pathway plays an important role in the tumorigenicity of malignant glioma cells and resistance to temozolomide (TMZ). Here we investigated the aspirin's antineoplastic molecular route by targeting SHH/GLI1 pathway and examined the feasibility of aspirin combined with TMZ therapy. Western blot and quantitative real-time polymerase chain reaction (qRT-PCR) revealed that the activity of the SHH/GLI1 pathway was strongly inhibited by aspirin. Aspirin acted as the glioma growth-inhibitory and pro-apoptosis roles by inhibiting the SHH/GLI1 pathway and reprogramming the epithelial to mesenchymal transition (EMT). The immunofluorescence assay showed aspirin could prevent the nuclear translocation of GLI1 to inhibit its transcriptional regulation. The stable lentiviral overexpression of GLI1 reversed the DNA double strand breaks (DSBs) caused by the GANT61 and TMZ. Furthermore, aspirin combined with TMZ enhanced chemosensitivity and GLI1-induced chemoprotection was partly blocked by aspirin in vitro and in vivo. Collectively, aspirin has a therapeutic potential for SHH/GLI1 targeted therapy against glioma cells. Acquired activation of GLI1 protects glioma cells against TMZ therapy. Impairment of DNA DSBs repair activity might be involved in the route of aspirin-induced chemosensitivity. Combined aspirin with TMZ may be a promising strategy against malignant glioma. PMID:28446712

  8. Aspirin inhibits the SHH/GLI1 signaling pathway and sensitizes malignant glioma cells to temozolomide therapy.

    PubMed

    Ming, Jianguang; Sun, Bo; Li, Ziwei; Lin, Lin; Meng, Xiangqi; Han, Bo; Wang, Ruijia; Wu, Pengfei; Li, Jianlong; Cai, Jinquan; Jiang, Chuanlu

    2017-04-01

    Aberrant activation of sonic hedgehog (SHH)/glioma-associated oncogene homolog 1 (GLI1) pathway plays an important role in the tumorigenicity of malignant glioma cells and resistance to temozolomide (TMZ). Here we investigated the aspirin's antineoplastic molecular route by targeting SHH/GLI1 pathway and examined the feasibility of aspirin combined with TMZ therapy. Western blot and quantitative real-time polymerase chain reaction (qRT-PCR) revealed that the activity of the SHH/GLI1 pathway was strongly inhibited by aspirin. Aspirin acted as the glioma growth-inhibitory and pro-apoptosis roles by inhibiting the SHH/GLI1 pathway and reprogramming the epithelial to mesenchymal transition (EMT). The immunofluorescence assay showed aspirin could prevent the nuclear translocation of GLI1 to inhibit its transcriptional regulation. The stable lentiviral overexpression of GLI1 reversed the DNA double strand breaks (DSBs) caused by the GANT61 and TMZ. Furthermore, aspirin combined with TMZ enhanced chemosensitivity and GLI1-induced chemoprotection was partly blocked by aspirin in vitro and in vivo . Collectively, aspirin has a therapeutic potential for SHH/GLI1 targeted therapy against glioma cells. Acquired activation of GLI1 protects glioma cells against TMZ therapy. Impairment of DNA DSBs repair activity might be involved in the route of aspirin-induced chemosensitivity. Combined aspirin with TMZ may be a promising strategy against malignant glioma.

  9. PARP Inhibitors Sensitize Ewing Sarcoma Cells to Temozolomide-Induced Apoptosis via the Mitochondrial Pathway.

    PubMed

    Engert, Florian; Schneider, Cornelius; Weiβ, Lilly Magdalena; Probst, Marie; Fulda, Simone

    2015-12-01

    Ewing sarcoma has recently been reported to be sensitive to poly(ADP)-ribose polymerase (PARP) inhibitors. Searching for synergistic drug combinations, we tested several PARP inhibitors (talazoparib, niraparib, olaparib, veliparib) together with chemotherapeutics. Here, we report that PARP inhibitors synergize with temozolomide (TMZ) or SN-38 to induce apoptosis and also somewhat enhance the cytotoxicity of doxorubicin, etoposide, or ifosfamide, whereas actinomycin D and vincristine show little synergism. Furthermore, triple therapy of olaparib, TMZ, and SN-38 is significantly more effective compared with double or monotherapy. Mechanistic studies revealed that the mitochondrial pathway of apoptosis plays a critical role in mediating the synergy of PARP inhibition and TMZ. We show that subsequent to DNA damage-imposed checkpoint activation and G2 cell-cycle arrest, olaparib/TMZ cotreatment causes downregulation of the antiapoptotic protein MCL-1, followed by activation of the proapoptotic proteins BAX and BAK, mitochondrial outer membrane permeabilization (MOMP), activation of caspases, and caspase-dependent cell death. Overexpression of a nondegradable MCL-1 mutant or BCL-2, knockdown of NOXA or BAX and BAK, or the caspase inhibitor N-benzyloxycarbonyl-Val-Ala-Asp-fluoromethylketone (zVAD.fmk) all significantly reduce olaparib/TMZ-mediated apoptosis. These findings emphasize the role of PARP inhibitors for chemosensitization of Ewing sarcoma with important implications for further (pre)clinical studies. ©2015 American Association for Cancer Research.

  10. Management of elderly patients with glioblastoma-multiforme-a systematic review.

    PubMed

    Almadani, Asmaa; Sanjay, Dixit; Chris, Rowland-Hill; Shailendra, Achawal; Chitoor, Rajaraman; Gerry, O'Reilly; Robin, Highley; Masood, Hussain; Louise, Baker; Lynne, Gill; Holly, Morris; Mohan, Hingorani

    2018-03-09

    The management of elderly patients with glioblastoma-multiforme (GBM) remains poorly defined with many experts in the past advocating best supportive care, in view of limited evidence on efficacy of more aggressive treatment protocols. There is randomised evidence (NORDIC and NA-O8 studies) to support the use of surgery followed by adjuvant monotherapy with either radiotherapy (RT) using hypofractionated regimes (e.g. 36 Gy in 6 fractions OR 40 Gy in 15 fractions) or chemotherapy with temozolomide (TMZ) in patients expressing methylation of promoter for O 6 -methylguanine-DNA methyltransferase enzyme. However, the role of combined-modality therapy involving the use of combined RT and TMZ protocols has remained controversial with data from the EORTC (European Organisation for Research and Treatment of Cancer)-NCIC (National Cancer Institute of Canada) studies indicating that patients more than 65 years of age may not benefit significantly from combining standard RT fractionation using 60 Gy in 30 fractions with concurrent and adjuvant TMZ. More recently, randomised data has emerged on combining hypofractionated RT with concurrent and adjuvant TMZ. We provide a comprehensive review of literature with the aim of defining an evidence-based algorithm for management of elderly glioblastoma-multiforme population.

  11. Propolis changes the anticancer activity of temozolomide in U87MG human glioblastoma cell line.

    PubMed

    Markiewicz-Żukowska, Renata; Borawska, Maria H; Fiedorowicz, Anna; Naliwajko, Sylwia K; Sawicka, Diana; Car, Halina

    2013-02-27

    Propolis is a honey bee product which contains many active compounds, such as CAPE or chrysin, and has many beneficial activities. Recently, its anti-tumor properties have been discussed. We have tested whether the ethanolic extract of propolis (EEP) interferes with temozolomide (TMZ) to inhibit U87MG cell line growth. The U87MG glioblastoma cell line was exposed to TMZ (10-100 μM), EEP (10-100 μg/ml) or a mixture of TMZ and EEP during 24, 48 or 72 hours. The cell division was examined by the H3-thymidine incorporation, while the western blot method was used for detection of p65 subunit of NF-κB and ELISA test to measure the concentration of its p50 subunit in the nucleus. We have found that both, TMZ and EEP administrated alone, had a dose- and time-dependent inhibitory effect on the U87MG cell line growth, which was manifested by gradual reduction of cell viability and alterations in proliferation rate. The anti-tumor effect of TMZ (20 μM) was enhanced by EEP, which was especially well observed after a short time of exposition, where simultaneous usage of TMZ and EEP resulted in a higher degree of growth inhibition than each biological factor used separately. In addition, cells treated with TMZ presented no changes in NF-κB activity in prolonged time of treatment and EEP only slightly reduced the nuclear translocation of this transcription factor. In turn, the combined incubation with TMZ and EEP led to an approximately double reduction of NF-κB nuclear localization. We conclude that EEP presents cytotoxic properties and may cooperate with TMZ synergistically enhancing its growth inhibiting activity against glioblastoma U87MG cell line. This phenomenon may be at least partially mediated by a reduced activity of NF-κB.

  12. The interaction of bee products with temozolomide in human diffuse astrocytoma, glioblastoma multiforme and astroglia cell lines.

    PubMed

    Borawska, Maria H; Markiewicz-Żukowska, Renata; Naliwajko, Sylwia K; Moskwa, Justyna; Bartosiuk, Emilia; Socha, Katarzyna; Surażyński, Arkadiusz; Kochanowicz, Jan; Mariak, Zenon

    2014-01-01

    In the present study, we investigated the influence of extracts from Salix spp. honey (ESH), beebread (EBB), and royal jelly (ERJ) with and without temozolomide (TMZ) on cell lines derived from a patient with diffuse astrocytoma (DASC), human glioblastoma multiforme (U87MG), and normal human astroglia (SVGp12). DASC was identified by immunocytochemistry. TMZ (20 μM) in combination with ESH (30 μg/mL), EBB (50 μg/mL), and ERJ (30 μg/mL) has stronger cytotoxic activity on U87MG cells after 72 h (20.0, 26.5, and 29.3% of control, respectively) than TMZ alone (about 6% of control). An increase of the cytotoxic effect and inhibition of DNA synthesis in SVGp12 were detected after administering TMZ with the studied extracts. NF-κB p50 subunit was reduced in U87MG cells after treatment with ESH (70.9%) and ESH + TMZ (74.7%). A significant decline of MMP-9 and MMP-2 secretion in cultured U87MG was detected after incubation with EBB (42.9% and 73.0%, respectively) and EBB + TMZ (38.4% and 68.5%, respectively). In conclusion, the use of bee products may increase the cytotoxic effect of TMZ in U87MG but also in SVGp12 cell line. It is important to note that the U87MG cells were sensitive to natural bee products, although there was no influence of natural bee products on the DASC cells.

  13. N-methylpurine DNA glycosylase and DNA polymerase β modulate BER inhibitor potentiation of glioma cells to temozolomide

    PubMed Central

    Tang, Jiang-bo; Svilar, David; Trivedi, Ram N.; Wang, Xiao-hong; Goellner, Eva M.; Moore, Briana; Hamilton, Ronald L.; Banze, Lauren A.; Brown, Ashley R.; Sobol, Robert W.

    2011-01-01

    Temozolomide (TMZ) is the preferred chemotherapeutic agent in the treatment of glioma following surgical resection and/or radiation. Resistance to TMZ is attributed to efficient repair and/or tolerance of TMZ-induced DNA lesions. The majority of the TMZ-induced DNA base adducts are repaired by the base excision repair (BER) pathway and therefore modulation of this pathway can enhance drug sensitivity. N-methylpurine DNA glycosylase (MPG) initiates BER by removing TMZ-induced N3-methyladenine and N7-methylguanine base lesions, leaving abasic sites (AP sites) in DNA for further processing by BER. Using the human glioma cell lines LN428 and T98G, we report here that potentiation of TMZ via BER inhibition [methoxyamine (MX), the PARP inhibitors PJ34 and ABT-888 or depletion (knockdown) of PARG] is greatly enhanced by over-expression of the BER initiating enzyme MPG. We also show that methoxyamine-induced potentiation of TMZ in MPG expressing glioma cells is abrogated by elevated-expression of the rate-limiting BER enzyme DNA polymerase β (Polβ), suggesting that cells proficient for BER readily repair AP sites in the presence of MX. Further, depletion of Polβ increases PARP inhibitor-induced potentiation in the MPG over-expressing glioma cells, suggesting that expression of Polβ modulates the cytotoxic effect of combining increased repair initiation and BER inhibition. This study demonstrates that MPG overexpression, together with inhibition of BER, sensitizes glioma cells to the alkylating agent TMZ in a Polβ-dependent manner, suggesting that the expression level of both MPG and Polβ might be used to predict the effectiveness of MX and PARP-mediated potentiation of TMZ in cancer treatment. PMID:21377995

  14. Synthesis of TiO 2 nanostructured reservoir with temozolomide: Structural evolution of the occluded drug

    NASA Astrophysics Data System (ADS)

    López, T.; Sotelo, J.; Navarrete, J.; Ascencio, J. A.

    2006-10-01

    Sol-gel synthesized nanostructured TiO 2 matrix were produced with different channel sizes, where drug are immersed, producing a reservoir with Temozolomide (TMZ). This drug is particularly important for the treatment of cancer tumors, which are fundamentally a consequence of the uncontrolled reproduction of human cell. In this way the chemotherapy plays an important role in the treatment of both recurrent and newly diagnosed patients. In the handling of brain tumors TMZ has been discovered as a recent and efficient second generation drug employed in the control of advanced brain gliomas, and it is a welcome addition. Its active component binds to the cancerous DNA cells, thus preventing their disordered growth, destroying them. In this work, we report the synthesis of TiO 2 nanostructured reservoir with TMZ, focusing the effort to the understanding of structural effects on the TMZ configuration by using nuclear magnetic resonance, Raman and IR spectroscopy methods. Our results establish that TMZ molecules are quite sensible to chemical processes and it produces the activation of the molecule, which is followed and understood with help of quantum molecular simulation methods. The study of the molecules allows determining the conditions that produce the activation and chemical selectivity of the molecules, which determines the conditions of synthesis. This information gives parameters for the reservoir structural and chemical optimization.

  15. Focused Ultrasound-Induced Blood–Brain Barrier Opening to Enhance Temozolomide Delivery for Glioblastoma Treatment: A Preclinical Study

    PubMed Central

    Wei, Kuo-Chen; Chu, Po-Chun; Wang, Hay-Yan Jack; Huang, Chiung-Yin; Chen, Pin-Yuan; Tsai, Hong-Chieh; Lu, Yu-Jen; Lee, Pei-Yun; Tseng, I-Chou; Feng, Li-Ying; Hsu, Peng-Wei; Yen, Tzu-Chen; Liu, Hao-Li

    2013-01-01

    The purpose of this study is to assess the preclinical therapeutic efficacy of magnetic resonance imaging (MRI)-monitored focused ultrasound (FUS)-induced blood-brain barrier (BBB) disruption to enhance Temozolomide (TMZ) delivery for improving Glioblastoma Multiforme (GBM) treatment. MRI-monitored FUS with microbubbles was used to transcranially disrupt the BBB in brains of Fisher rats implanted with 9L glioma cells. FUS-BBB opening was spectrophotometrically determined by leakage of dyes into the brain, and TMZ was quantitated in cerebrospinal fluid (CSF) and plasma by LC-MS\\MS. The effects of treatment on tumor progression (by MRI), animal survival and brain tissue histology were investigated. Results demonstrated that FUS-BBB opening increased the local accumulation of dyes in brain parenchyma by 3.8-/2.1-fold in normal/tumor tissues. Compared to TMZ alone, combined FUS treatment increased the TMZ CSF/plasma ratio from 22.7% to 38.6%, reduced the 7-day tumor progression ratio from 24.03 to 5.06, and extended the median survival from 20 to 23 days. In conclusion, this study provided preclinical evidence that FUS BBB-opening increased the local concentration of TMZ to improve the control of tumor progression and animal survival, suggesting its clinical potential for improving current brain tumor treatment. PMID:23527068

  16. Temozolomide alone or in combination with doxorubicin as a rescue agent in 37 cases of canine multicentric lymphoma.

    PubMed

    Treggiari, E; Elliott, J W; Baines, S J; Blackwood, L

    2018-06-01

    Temozolomide (TMZ) is an alkylating agent previously used in conjunction with doxorubicin (DOX) to treat dogs with relapsed lymphoma. However, there are very limited data for this drug when used as single agent. The aim of this retrospective study was to evaluate the efficacy and toxicity of TMZ in dogs with relapsed multicentric lymphoma that failed multi-agent chemotherapy protocols, and compare the outcome to a group of dogs receiving the same drug in combination with DOX. Twenty-six patients were included in the TMZ group and 11 in the TMZ/DOX group. Responses were evaluated via retrospective review of the medical records. The overall median survival time (MST) for both groups was 40 days (range 1-527 days). For the TMZ group, median time to progression (TTP) was 15 days (range 1-202 days) and MST 40 days (range 1-527 days), with an overall response rate (ORR) of 32% and 46% recorded toxicities. For the TMZ/DOX group, median TTP was 19 days (range 2-87 days) and MST 24 days (range 3-91 days), with an ORR of 60% and 63% recorded toxicities. However, a proportion of haematological toxicoses may have gone undetected due to the absence of associated clinical signs. The difference in MST and TTP between the 2 groups was not statistically significant. Similarly, no negative prognostic factors were identified. Although responses were generally short lived, this study suggests that TMZ may achieve similar efficacy to TMZ/DOX whilst being associated with a lower frequency of recorded toxicities. © 2017 John Wiley & Sons Ltd.

  17. Phase I Study of Vandetanib With Radiotherapy and Temozolomide for Newly Diagnosed Glioblastoma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Drappatz, Jan; Norden, Andrew D.; Division of Cancer Neurology, Department of Neurology, Brigham and Women's Hospital, Boston, MA

    Purpose: Increasing evidence has suggested that angiogenesis inhibition might potentiate the effects of radiotherapy and chemotherapy in patients with glioblastoma (GBM). In addition, epidermal growth factor receptor inhibition might be of therapeutic benefit, because the epidermal growth factor receptor is upregulated in GBM and contributes to radiation resistance. We conducted a Phase I study of vandetanib, an inhibitor of vascular endothelial growth factor receptor 2 and epidermal growth factor receptor, in patients with newly diagnosed GBM combined with RT and temozolomide (TMZ). Methods and Materials: A total of 13 GBM patients were treated with vandetanib, radiotherapy, and concurrent and adjuvantmore » TMZ, using a standard '3 + 3' dose escalation. The maximal tolerated dose was defined as the dose with <1 of 6 dose-limiting toxicities during the first 12 weeks of therapy. The eligible patients were adults with newly diagnosed GBM, Karnofsky performance status of {>=}60, normal organ function, who were not taking enzyme-inducing antiepileptic drugs. Results: Of the 13 patients, 6 were treated with vandetanib at a dose of 200mg daily. Of the 6 patients, 3 developed dose-limiting toxicities within the first 12 weeks, including gastrointestinal hemorrhage and thrombocytopenia in 1 patient, neutropenia in 1 patient, and diverticulitis with gastrointestinal perforation in 1 patient. The other 7 patients were treated with 100 mg daily, with no dose-limiting toxicities observed, establishing this dose as the maximal tolerated dose combined with TMZ and RT. Conclusion: Vandetanib can be safely combined with RT and TMZ in GBM patients. A Phase II study in which patients are randomized to vandetanib 100 mg daily with RT and TMZ or RT and TMZ alone is underway.« less

  18. Temozolomide does not influence the transcription or activity of matrix metalloproteinases 9 and 2 in glioma cell lines.

    PubMed

    Suzuki, Yuta; Fujioka, Kouki; Ikeda, Keiichi; Murayama, Yuichi; Manome, Yoshinobu

    2017-07-01

    Glioblastoma multiforme (GBM) is a treatment-resistant malignancy with poor prognosis. Temozolomide (TMZ) is widely used as a first-line drug for GBM. Although this improves patient prognosis, it does not completely eradicate the tumour. Even after total surgical resection, GBM can exhibit uncontrollable invasiveness at the tumour margins owing to activation of matrix metalloproteinases (MMPs) such as MMP-2 and -9; these degrade collagen IV in the basement membrane, which normally prevents cancer invasion. TMZ induces DNA damage and activates transcription factors including c-jun, c-fos, nuclear factor-κβ, and early growth response protein-1, which have putative binding sites on the MMP-9 promoter. TMZ may therefore enhance tumour invasion by stimulating MMP-9 transcription and enzymatic activity. To test this hypothesis, we investigated MMP-2 and -9 mRNA transcription and activity in GBM cell lines treated with TMZ. Human A172 GBM cells were exposed to TMZ (25% and 50% inhibitory concentrations) for 24 or 48h; cell cycle distribution and mRNA levels of MMP-2 and -9 were evaluated using flow cytometry and semi-quantitative reverse transcription PCR, respectively. MMP-2 and -9 enzymatic activities were assessed using gelatin zymography in human A172 and U373 MG GBM cells exposed to TMZ under the same conditions. TMZ altered A172 cell cycle distribution, but not MMP-2 or -9 mRNA levels. TMZ did not affect MMP-2 or -9 enzymatic activities in A172 or U373 MG cells. These findings indicated that TMZ is therefore unlikely to promote GBM invasiveness. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Dihydroartemisinin increases temozolomide efficacy in glioma cells by inducing autophagy

    PubMed Central

    ZHANG, ZE-SHUN; WANG, JING; SHEN, YOU-BI; GUO, CHENG-CHENG; SAI, KE; CHEN, FU-RONG; MEI, XIN; HAN, FU; CHEN, ZHONG-PING

    2015-01-01

    Artemisinin, a powerful antimalarial medicine, is extracted from the Chinese herb, Artemisia annua L., and has the ability to inhibit the proliferation of cancer cells. Dihydroartemisinin (DHA), the major active metabolite of artemisinin, is able to inhibit the growth of a variety of types of human cancer. However, the effect of DHA on human glioma cells remains unclear. The aim of the present study was to investigate the effect of DHA on the proliferation of glioma cells, and whether DHA was able to enhance temozolomide (TMZ) sensitivity in vitro and in vivo. In total, 10 human glioma cell lines were used to analyze the growth inhibition ability of DHA by MTT assay. The typical autophagic vacuoles were monitored by the application of the autofluorescent agent, monodansylcadaverine. Western blotting was used to detect markers of apoptosis and autophagy, namely Caspase-3, Beclin-1 and LC3-B. The combination efficiency of DHA and TMZ was assessed in vitro and in vivo. The half maximal inhibitory concentration (IC50) of DHA differed among the ten human glioma cell lines. The number of autophagic vacuoles was higher in DHA-treated SKMG-4 cells; this was highest of all cell lines analyzed. The expression of autophagy molecular markers, Beclin-1 and LC3-B, was increased following DHA treatment, while no significant alteration was detected in the expression of apoptotic marker Caspase-3. When combined with DHA, the IC50 of TMZ decreased significantly in the four glioma cell lines analyzed. Furthermore, DHA enhanced the tumor inhibition ability of TMZ in tumor-burdened mice. The results of the present study demonstrated that DHA inhibited the proliferation of glioma cells and enhanced the tumor inhibition efficacy of TMZ in vitro and in vivo through the induction of autophagy. PMID:26171034

  20. Propolis changes the anticancer activity of temozolomide in U87MG human glioblastoma cell line

    PubMed Central

    2013-01-01

    Background Propolis is a honey bee product which contains many active compounds, such as CAPE or chrysin, and has many beneficial activities. Recently, its anti-tumor properties have been discussed. We have tested whether the ethanolic extract of propolis (EEP) interferes with temozolomide (TMZ) to inhibit U87MG cell line growth. Methods The U87MG glioblastoma cell line was exposed to TMZ (10-100 μM), EEP (10-100 μg/ml) or a mixture of TMZ and EEP during 24, 48 or 72 hours. The cell division was examined by the H3-thymidine incorporation, while the western blot method was used for detection of p65 subunit of NF-κB and ELISA test to measure the concentration of its p50 subunit in the nucleus. Results We have found that both, TMZ and EEP administrated alone, had a dose- and time-dependent inhibitory effect on the U87MG cell line growth, which was manifested by gradual reduction of cell viability and alterations in proliferation rate. The anti-tumor effect of TMZ (20 μM) was enhanced by EEP, which was especially well observed after a short time of exposition, where simultaneous usage of TMZ and EEP resulted in a higher degree of growth inhibition than each biological factor used separately. In addition, cells treated with TMZ presented no changes in NF-κB activity in prolonged time of treatment and EEP only slightly reduced the nuclear translocation of this transcription factor. In turn, the combined incubation with TMZ and EEP led to an approximately double reduction of NF-κB nuclear localization. Conclusions We conclude that EEP presents cytotoxic properties and may cooperate with TMZ synergistically enhancing its growth inhibiting activity against glioblastoma U87MG cell line. This phenomenon may be at least partially mediated by a reduced activity of NF-κB. PMID:23445763

  1. THE NEUROPHARMACOKINETICS OF TEMOZOLOMIDE IN PATIENTS WITH RESECTABLE BRAIN TUMORS: POTENTIAL IMPLICATIONS FOR THE CURRENT APPROACH TO CHEMORADIATION

    PubMed Central

    Portnow, Jana; Badie, Behnam; Chen, Mike; Liu, An; Blanchard, Suzette; Synold, Timothy W.

    2010-01-01

    Purpose Intracerebral microdialysis (ICMD) is an accepted methodology for monitoring changes in neurochemistry from acute brain injury. The goal of this pilot study was to determine the feasibility of using ICMD to examine the neuropharmacokinetics (nPK) of temozolomide (TMZ) in brain interstitium (BI) following oral administration. Experimental Design Patients with primary or metastatic brain tumors had a microdialysis catheter placed in peritumoral brain tissue at the time of surgical debulking. CT scan confirmed the catheter location. Patients received a single oral dose of TMZ (150 mg/m2) on the first post-operative day, serial plasma and ICMD samples were collected over 24 hrs, and TMZ concentrations were determined by tandem mass spectrometry. Results Nine patients were enrolled. Dialysate and plasma samples were successfully collected from 7 of the 9 patients. The mean TMZ area-under-the-concentration-time-curve (AUC) in plasma and BI were 17.1 and 2.7 μg/ml × hr, with an average BI/plasma AUC ratio of 17.8%. The mean peak TMZ concentration in brain was 0.6 ± 0.3 μg/ml, and the mean time to reach peak level in brain was 2.0 ± 0.8 hrs. Conclusions The use of ICMD to measure the nPK of systemically administered chemotherapy is safe and feasible. Concentrations of TMZ in BI obtained by ICMD are consistent with published data obtained in a pre-clinical ICMD model, as well as from clinical studies of cerebrospinal fluid. However, the delayed time required to achieve maximum TMZ concentrations in brain suggests that current chemoradiation regimens may be improved by administering TMZ 2-3 hours before radiation. PMID:19861433

  2. Prognostic significance of O6-methylguanine-DNA methyltransferase protein expression in patients with recurrent glioblastoma treated with temozolomide.

    PubMed

    Nagane, Motoo; Kobayashi, Keiichi; Ohnishi, Akiko; Shimizu, Saki; Shiokawa, Yoshiaki

    2007-12-01

    Temozolomide (TMZ) is active against newly diagnosed glioblastoma (GBM), and O(6)-methylguanine-DNA methyltransferase (MGMT) is implicated in resistance to TMZ and nitrosoureas. We evaluated the efficacy and safety of the standard 5-day TMZ regimen in patients with recurrent GBM after initial therapy including nitrosourea-based chemotherapy, in conjunction with an analysis of the prognostic value of MGMT protein expression regarding response to TMZ and survival. From September 2003 to January 2007, 30 patients having recurrent GBM received 150-200 mg/m(2)/day of TMZ for five consecutive days every 28 days. Tumor tissue from 19 patients was analysed for MGMT protein expression using western blotting, and 17 of them were assessable for a response. The overall response rate was 23.5% (one complete response and three partial responses). Six patients had stable disease (35.3%). Median progression-free survival (PFS) time was 2.2 months, and median overall survival (OS) time was 9.9 months from the initiation of TMZ therapy. Patients with low MGMT protein expression had a significantly improved PFS (P = 0.016) and OS (P = 0.019) compared to those with high expression. Both low MGMT expression (P = 0.040) and re-resection at relapse (P = 0.014) persisted as significant independent favorable prognostic factors for OS. The most common grade 3 and 4 hematological toxicity was lymphopenia (22.2%). The standard 5-day TMZ regimen resulted in moderate antitumor activity with an acceptable safety profile in patients with nitrosourea-pretreated recurrent GBM, and protein expression of MGMT is an important prognostic factor for patients treated with TMZ even after recurrence.

  3. Tamoxifen in combination with temozolomide induce a synergistic inhibition of PKC-pan in GBM cell lines.

    PubMed

    Balça-Silva, Joana; Matias, Diana; do Carmo, Anália; Girão, Henrique; Moura-Neto, Vivaldo; Sarmento-Ribeiro, Ana Bela; Lopes, Maria Celeste

    2015-04-01

    Glioblastoma (GBM) is a highly proliferative, angiogenic grade IV astrocytoma that develops resistance to the alkylating agents used in chemotherapy, such as temozolomide (TMZ), which is considered the gold standard. The mean survival time for GBM patients is approximately 12 months, increasing to 14.6 months after TMZ treatment. The resistance of GBM to chemotherapy seems to be associated to genetic alterations and to the constitutive activation of several signaling pathways. Therefore, the combination of different drugs with different mechanisms of action may contribute to circumvent the chemoresistance of glioma cells. Here we describe the potential synergistic behavior of the therapeutic combination of tamoxifen (TMX), a known inhibitor of PKC, and TMZ in GBM. We used two GBM cell lines incubated in absence and presence of TMX and/or TMZ and measured cell viability, proliferation, apoptosis, cell cycle, migration ability, cytoskeletal organization and the phosphorylated amount of the p-PKC-pan. The combination of low doses of TMX with increasing doses of TMZ shows an increased antiproliferative and apoptotic effect compared to the effect with TMX alone. The combination of TMX and TMZ seems to potentiate the effect of each other. These alterations seem to be associated to a decrease in the phosphorylation status of PKC. We emphasize that TMX is an inhibitor of the p-PKC-pan and that these combination is more effective in the reduction of proliferation and in the increase of apoptosis than each drug alone, which presents a new therapeutic strategy in GBM treatment. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Twice-daily dosing of temozolomide in combination with fotemustine for the treatment of patients with refractory glioblastoma.

    PubMed

    Santoni, M; Paccapelo, A; Burattini, L; Onofri, A; Cascinu, S

    2012-03-01

    Alkylating agents, such as temozolomide (TMZ) and fotemustine (FTM) are widely used in recurrent glioblastoma (GBM) regimes. Several strategies have been proposed to prevent resistance to these agents, by combining or sequencing them. We report the results of a pilot study of patients with refractory GBM receiving a regime of twice-daily dosing of temozolomide administered on day 1, (with an initial oral dose of 200 mg/m(2) and a second oral dose of 75 mg/m(2) 12 h later), followed by fotemustine in a single i.v. infusion at 75 mg/m(2) on day 2, repeated every four weeks. Enrolment was stopped at 15 patients due to lack of effectiveness of this schedule for patients with GBM. Toxicity was mild, with no grade 4 side effects reported. Results indicate that our temozolomide -FTM combined schedule is not effective, although well tolerated, in non responsive patients with GBM. Further strategies are required to improve the outcome of these patients.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sarkaria, Jann N., E-mail: sarkaria.jann@mayo.edu; Galanis, Evanthia; Wu Wenting

    Background: The mammalian target of rapamycin (mTOR) functions within the PI3K/Akt signaling pathway as a critical modulator of cell survival. On the basis of promising preclinical data, the safety and tolerability of therapy with the mTOR inhibitor RAD001 in combination with radiation (RT) and temozolomide (TMZ) was evaluated in this Phase I study. Methods and Materials: All patients received weekly oral RAD001 in combination with standard chemoradiotherapy, followed by RAD001 in combination with standard adjuvant temozolomide. RAD001 was dose escalated in cohorts of 6 patients. Dose-limiting toxicities were defined during RAD001 combination therapy with TMZ/RT. Results: Eighteen patients were enrolled,more » with a median follow-up of 8.4 months. Combined therapy was well tolerated at all dose levels, with 1 patient on each dose level experiencing a dose-limiting toxicity: Grade 3 fatigue, Grade 4 hematologic toxicity, and Grade 4 liver dysfunction. Throughout therapy, there were no Grade 5 events, 3 patients experienced Grade 4 toxicities, and 6 patients had Grade 3 toxicities attributable to treatment. On the basis of these results, the recommended Phase II dosage currently being tested is RAD001 70 mg/week in combination with standard chemoradiotherapy. Fluorodeoxyglucose (FDG) positron emission tomography scans also were obtained at baseline and after the second RAD001 dose before the initiation of TMZ/RT; the change in FDG uptake between scans was calculated for each patient. Fourteen patients had stable metabolic disease, and 4 patients had a partial metabolic response. Conclusions: RAD001 in combination with RT/TMZ and adjuvant TMZ was reasonably well tolerated. Changes in tumor metabolism can be detected by FDG positron emission tomography in a subset of patients within days of initiating RAD001 therapy.« less

  6. Pharmacodynamic and Therapeutic Investigation of Focused Ultrasound-Induced Blood-Brain Barrier Opening for Enhanced Temozolomide Delivery in Glioma Treatment

    PubMed Central

    Liu, Hao-Li; Huang, Chiung-Yin; Chen, Ju-Yu; Wang, Hay-Yan Jack; Chen, Pin-Yuan; Wei, Kuo-Chen

    2014-01-01

    Focused ultrasound (FUS) exposure with the presence of microbubbles has been shown to transiently open the blood-brain barrier (BBB), and thus has potential to enhance the delivery of various kinds of therapeutic agents into brain tumors. The purpose of this study was to assess the preclinical therapeutic efficacy of FUS-BBB opening for enhanced temozolomide (TMZ) delivery in glioma treatment. FUS exposure with microbubbles was delivered to open the BBB of nude mice that were either normal or implanted with U87 human glioma cells. Different TMZ dose regimens were tested, ranging from 2.5 to 25 mg/kg. Plasma and brain samples were obtained at different time-points ranging from 0.5 to 4 hours, and the TMZ concentration within samples was quantitated via a developed LC-MS/MS procedure. Tumor progression was followed with T2-MRI, and animal survival and brain tissue histology were conducted. Results demonstrated that FUS-BBB opening caused the local TMZ accumulation in the brain to increase from 6.98 to 19 ng/mg. TMZ degradation time in the tumor core was found to increase from 1.02 to 1.56 hours. Improved tumor progression and animal survival were found at different TMZ doses (up to 15% and 30%, respectively). In conclusion, this study provides preclinical evidence that FUS-BBB opening increases the local concentration of TMZ to improve the control of tumor progression and animal survival, suggesting the potential for clinical application to improve current brain tumor treatment. PMID:25490097

  7. Changes in pyruvate metabolism detected by magnetic resonance imaging are linked to DNA damage and serve as a sensor of temozolomide response in glioblastoma cells

    PubMed Central

    Park, Ilwoo; Mukherjee, Joydeep; Ito, Motokazu; Chaumeil, Myriam M.; Jalbert, Llewellyn E.; Gaensler, Karin; Ronen, Sabrina M.; Nelson, Sarah J.; Pieper, Russell O.

    2014-01-01

    Recent findings show that exposure to temozolomide (TMZ), a DNA damaging drug used to treat glioblastoma, can suppress the conversion of pyruvate to lactate. To understand the mechanistic basis for this effect and its potential utility as a TMZ response biomarker, we compared the response of isogenic glioblastoma cell populations differing only in expression of the DNA repair protein MGMT, a TMZ-sensitivity determinant, after exposure to TMZ in vitro and in vivo. Hyperpolarized [1-(13)C]-pyruvate-based magnetic resonance imaging was used to monitor temporal effects on pyruvate metabolism in parallel with DNA damage responses and tumor cell growth. TMZ exposure decreased conversion of pyruvate to lactate only in MGMT-deficient cells. This effect coincided temporally with TMZ-induced increases in levels of the DNA damage response protein pChk1. Changes in pyruvate to lactate conversion triggered by TMZ preceded tumor growth suppression and were not associated with changes in levels of NADH or lactate dehydrogenase activity in tumors. Instead, they were associated with a TMZ-induced decrease in the expression and activity of pyruvate kinase PKM2, a glycolytic enzyme that indirectly controls pyruvate metabolism. PKM2 silencing decreased pyruvate kinase activity, intracellular lactate levels, and conversion of pyruvate to lactate in the same manner as TMZ, and Chk1 silencing blocked the TMZ-induced decrease in PKM2 expression. Overall, our findings showed how TMZ-induced DNA damage is linked through PKM2 to changes in pyruvate metabolism, and how these changes can be exploited by magnetic resonance imaging methods as an early sensor of TMZ therapeutic response. PMID:25320009

  8. Early change in glucose metabolic rate measured using FDG-PET in patients with high-grade glioma predicts response to temozolomide but not temozolomide plus radiotherapy.

    PubMed

    Charnley, Natalie; West, Catharine M; Barnett, Carolyn M; Brock, Catherine; Bydder, Graeme M; Glaser, Mark; Newlands, Ed S; Swindell, Ric; Matthews, Julian; Price, Pat

    2006-10-01

    To compare the ability of positron emission tomography (PET) to predict response to temozolomide vs. temozolomide plus radiotherapy. Nineteen patients with high-grade glioma (HGG) were studied. Patients with recurrent glioma received temozolomide 75 mg/m2 daily for 7 weeks (n=8). Newly diagnosed patients received temozolomide 75 mg/m2 daily plus radiotherapy 60 Gy/30 fractions over 6 weeks, followed by six cycles of adjuvant temozolomide 200 mg/m2/day (Days 1-5 q28) starting 1 month after radiotherapy (n=11). [18F]Fluorodeoxyglucose ([18F]FDG) PET scan and magnetic resonance imaging (MRI) were performed at baseline, and 7 and 19 weeks after initiation of temozolomide administration. Changes in glucose metabolic rate (MRGlu) and MRI response were correlated with patient survival. In the temozolomide-alone group, patients who survived>26 vs. or=25%, survived longer than nonresponders with mean survival times of 75 weeks (95% CI, 34-115 vs. 20 weeks (95% CI, 14-26) (p=0.0067). In the small group of patients studied, there was no relationship between MRI response and survival (p=0.52). For patients receiving temozolomide plus radiotherapy, there was no difference in survival between PET responders and nonresponders (p=0.32). Early changes in MRGlu predict response to temozolomide, but not temozolomide plus radiotherapy.

  9. In vivo Selection of Autologous MGMT Gene-Modified Cells Following Reduced Intensity Conditioning with BCNU and Temozolomide in the Dog Model

    PubMed Central

    Gori, Jennifer L.; Beard, Brian C.; Ironside, Christina; Karponi, Garyfalia; Kiem, Hans-Peter

    2012-01-01

    Chemotherapy with BCNU and temozolomide (TMZ) is commonly used for the treatment of glioblastoma multiforme (GBM) and other cancers. In preparation for a clinical gene therapy study in patients with glioblastoma, we wished to study whether these reagents could be used as a reduced-intensity conditioning regimen for autologous transplantation of gene-modified cells. We used an MGMT(P140K)-expressing lentivirus vector to modify dog CD34+ cells and tested in 4 dogs whether these autologous cells engraft and provide chemoprotection after transplantation. Treatment with O6-benzylguanine (O6BG)/TMZ after transplantation resulted in gene marking levels up to 75%, without significant hematopoietic cytopenia, which is consistent with hematopoietic chemoprotection. Retrovirus integration analysis showed that multiple clones contribute to hematopoiesis. These studies demonstrate the ability to achieve stable engraftment of MGMT(P140K)-modified autologous HSCs after a novel reduced-intensity conditioning protocol using a combination of BCNU and TMZ. Furthermore, we show that MGMT(P140K)-HSC engraftment provides chemoprotection during TMZ dose escalation. Clinically, chemoconditioning with BCNU and TMZ should facilitate engraftment of MGMT(P140K)-modified cells while providing anti-tumor activity for patients with poor prognosis glioblastoma or alkylating agent sensitive tumors, thereby supporting dose-intensified chemotherapy regimens. PMID:22627392

  10. Temozolomide chemotherapy versus radiotherapy in high-risk low-grade glioma

    PubMed Central

    Baumert, Brigitta G.; Hegi, Monika E.; van den Bent, Martin J.; von Deimling, Andreas; Gorlia, Thierry; Hoang-Xuan, Khê; Brandes, Alba A.; Kantor, Guy; Taphoorn, Martin J.B.; Hassel, Mohamed Ben; Hartmann, Christian; Ryan, Gail; Capper, David; Kros, Johan M.; Kurscheid, Sebastian; Wick, Wolfgang; Enting, Roelien; Reni, Michele; Thiessen, Brian; Dhermain, Frederic; Bromberg, Jacoline E.; Feuvret, Loic; Reijneveld, Jaap C.; Chinot, Olivier; Gijtenbeek, Johanna M. M.; Rossiter, John P.; Dif, Nicolas; Balana, Carmen; Bravo-Marques, Jose; Clement, Paul M.; Marosi, Christine; Tzuk-Shina, Tzahala; Nordal, Robert A.; Rees, Jeremy; Lacombe, Denis; Mason, Warren P.; Stupp, Roger

    2016-01-01

    Background Outcome of low-grade glioma (LGG, WHO grade II) is highly variable reflecting molecular heterogeneity of the disease. We compared two different single modality treatment strategies: standard radiotherapy (RT) versus primary temozolomide (TMZ) chemotherapy with the aim of tailoring treatment and identifying predictive molecular factors. Methods 477 patients (2005 – 2012, median FU 48 months) with a low-grade glioma (astrocytoma, oligoastrocytoma, oligodendroglioma, WHO grade II) with at least one high-risk feature (age > 40 years, progressive disease, tumor > 5 cm or crossing the midline, neurological symptoms (e.g. focal or mental deficits, increased intracranial pressure or intractable seizures)) were, after stratification by chromosome 1p-status, randomized to either conformal RT (50.4 Gy/28 fractions) or dose-dense TMZ (75 mg/m2 daily × 21 days, q28 days, max. 12 cycles). Random treatment allocation was performed online using a minimization technique. A planned analysis was performed after 246 progression events. All analyses are intent to treat. Primary clinical endpoint was progression-free survival (PFS), correlative analyses included molecular markers (1p/19q co-deletion, MGMT methylation status, IDH1+2 mutations). The trial has been registered at the European Trials Registry (EudraCT 2004-002714-11) and at ClinicalTrials.gov (NCT00182819). Findings Four hundred seventy-seven patients were randomized. Severe hematological toxicity occurred in 14% of TMZ-treated patients, infections in 3% of TMZ-treated patients, and 1% of RT-treated patients. Moderate to severe fatigue was recorded in 3% of patients in the RT group and 7% in the TMZ group. At a median follow-up of 48 months (IQR:31–56), median PFS was 39 months (IQR:16–46) in the TMZ arm and 46 months (IQR:19–48) in the RT group (hazard ratio 1.16, 95% CI, 0.9–1.5; p=0.22). Median OS has not been reached. Exploratory analyses identified treatment-dependent variation in outcome of

  11. Nitrosourea-based chemotherapy for low grade gliomas failing initial treatment with temozolomide.

    PubMed

    Kaloshi, Gentian; Sierra del Rio, Monica; Ducray, François; Psimaras, Dimitri; Idbaih, Ahmed; Laigle-Donadey, Florence; Taillibert, Sophie; Houillier, Caroline; Dehais, Caroline; Omuro, Antonio; Sanson, Marc; Delattre, Jean-Yves; Hoang-Xuan, Khe

    2010-12-01

    There is a growing evidence of using Temozolomide as upfront therapy for progressive low grade gliomas. No data exist on the efficacy of nitrosoureas as an alternative to radiotherapy in those patients who progress after Temozolomide. We retrospectively reviewed 30 patients with median age of 46 years. Twenty-one patients had pure oligodendrogliomas. Thirteen patients had a non-enhancing tumor at progression after Temozolomide. The chromosomes 1p/19q were co-deleted in 5 cases and retained in 10 cases. Response rate was 10% (3 minor responses achieved in non-enhancing tumors). Tolerance was acceptable (17% grade III and IV myelosupression). Median PFS was 6.5 months. Median OS from start of salvage treatment was 23.4 months. Tumors without contrast enhancement demonstrated a better prognosis than those with contrast enhancement both in term of PFS (P = 0.0003) and OS (P = 0.0006). Chromosomes 1p/19q codeletion was not predictive for objective response to salvage treatment but correlated with a better PFS (P = 0.02). In conclusion, salvage NU chemotherapy provide disappointing results in TMZ-pretreated low grade gliomas (LGG), which should be treated in priority by conventional radiotherapy especially in LGG that display contrast enhancement at progression.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jalali, Rakesh, E-mail: rjalali@tmc.gov.i; Raut, Nirmal; Arora, Brijesh

    Purpose: To present outcome data in a prospective study of radiotherapy (RT) with concurrent and adjuvant temozolomide (TMZ) in children with diffuse intrinsic pontine gliomas (DIPGs). Methods and Materials: Pediatric patients with newly diagnosed DIPGs were prospectively treated with focal RT to a dose of 54 Gy in 30 fractions along with concurrent daily TMZ (75 mg/m{sup 2}, Days 1-42). Four weeks after completing the initial RT-TMZ schedule, adjuvant TMZ (200 mg/m{sup 2}, Days 1-5) was given every 28 days to a maximum of 12 cycles. Response was evaluated clinically and radiologically with magnetic resonance imaging and positron emission tomographymore » scans. Results: Between March 2005 and November 2006, 20 children (mean age, 8.3 years) were accrued. Eighteen patients have died from disease progression, one patient is alive with progressive disease, and one patient is alive with stable disease. Median overall survival and progression-free survival were 9.15 months and 6.9 months, respectively. Grade III/IV toxicity during the concurrent RT-TMZ phase included thrombocytopenia in 3 patients, leucopenia in 2, and vomiting in 7. Transient Grade II skin toxicity developed in the irradiated fields in 18 patients. During the adjuvant TMZ phase, Grade III/IV leucopenia developed in 2 patients and Grade IV thrombocytopenia in 1 patient. Patients with magnetic resonance imaging diagnosis of a high-grade tumor had worse survival than those with a low-grade tumor (p = 0.001). Patients with neurologic improvement after RT-TMZ had significantly better survival than those who did not (p = 0.048). Conclusions: TMZ with RT has not yielded any improvement in the outcome of DIPG compared with RT alone. Further clinical trials should explore novel treatment modalities.« less

  13. Radiochemotherapy in Patients With Primary Glioblastoma Comparing Two Temozolomide Dose Regimens

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Combs, Stephanie E.; Wagner, Johanna; Bischof, Marc

    2008-07-15

    Purpose: To evaluate toxicity and outcomes in patients with primary glioblastoma (GB) treated with postoperative radiochemotherapy (RCHT) with temozolomide (TMZ) comparing two dose regimens. Methods and Materials: A total of 160 patients with histologically confirmed GB were treated with postoperative RCHT with TMZ. Of the patients, 66 were female and 94 were male, with a median age of 60 years. After the primary diagnosis, a biopsy had been performed in 42 patients; a subtotal and total resection was conducted in 66 and 52 patients. Postoperative radiotherapy was applied with a median dose of 60 Gy with a median fractionation ofmore » 5 x 2Gy/week. Concomitant TMZ was prescribed at 50 mg/m{sup 2} in 123 patients (Group A) and at 75 mg/m{sup 2} in 37 patients (Group B). Patients were followed in 3-months intervals, with a median follow-up of 13 months. Results: Overall survival (OS) rates in Group A vs. Group B were 67% and 79% at 1 year and 43% vs. 49% at 2 years, respectively (p = 0.69). Progression-free survival was 49% vs. 54% at 1 year and 22% vs. 29% at 2 years (p = 0.31). Hematologic toxicity was not statistically significant over the 6-week RCHT period except for a significant decrease in platelets during Week 6 (p = 0.01) in Group B. Conclusions: Overall survival seems to be comparable in both groups, although longer follow-up and a larger group of patients are needed to corroborate these results. Lower dosing of TMZ also is associated with a more beneficial toxicity profile.« less

  14. Temozolomide in patients with glioblastoma at second relapse after first line nitrosourea-procarbazine failure: a phase II study.

    PubMed

    Brandes, Alba A; Ermani, Mario; Basso, Umberto; Paris, Myriam K; Lumachi, Franco; Berti, Franco; Amistà, Pietro; Gardiman, Marina; Iuzzolino, Paolo; Turazzi, Sergio; Monfardini, Silvio

    2002-01-01

    To investigate the efficacy of temozolomide (TMZ) in relationship to progression free survival at 6 months (PFS-6), median time to progression (TTP), response rate and toxicity, a phase II study was conducted in patients with recurrent glioblastoma multiforme (GBM) following surgery plus radiotherapy and a first-line regimen based on nitrosourea, procarbazine and vincristine. Forty-two patients with GBM were administered TMZ at the dose of 150 mg/m(2)/daily for 5 days every 4 weeks. The PFS-6 and at 12 months (PFS-12) was 24% (95% Confidence Interval [CI] = 14-42%) and 8% (CI = 2-27%), respectively, with a median TTP of 11.7 weeks (CI = 9-22 weeks). The response was assessed in all 42 patients; we observed 2 complete responses (CR) (4.7%), 6 partial responses (PR) (14.3%), and 9 stable disease (SD) (21.4%), with CR+PR = 19% (CI = 7-31%). TMZ as a second line regimen is a valid option in patients with heavily pretreated GBM. Copyright 2002 S. Karger AG, Basel

  15. FBW7 is associated with prognosis, inhibits malignancies and enhances temozolomide sensitivity in glioblastoma cells.

    PubMed

    Lin, Jing; Ji, Aihui; Qiu, Guanzhong; Feng, Huaizhi; Li, Jian; Li, Shuo; Zou, Yongxiang; Cui, Yong; Song, Chaoli; He, Hua; Lu, Yicheng

    2018-04-01

    F-box and WD repeat domain-containing 7 (FBW7) is a SCF-type E3 ubiquitin ligase targeting a multitude of oncoproteins for degradation. Acting as one of the most important tumor suppressors, it is frequently inactivated in various tumors. In this study we aimed to evaluate the relationship of FBW7 with glioma pathology and prognosis, and examine its effect in glioma malignancies and temozolomide (TMZ)-based therapy. Clinical tissues and TCGA database analysis revealed that FBW7 expression was correlated inversely with glioma histology and positively with patient survival time. Lentivirus transfection-induced FBW7 overexpression significantly suppressed proliferation, invasion and migration of U251 and U373 cells, whereas knockdown of FBW7 by targeted shRNA promoted proliferation, invasion and migration of glioma cells. Most importantly, the expression level of FBW7 was found to affect the 50% inhibitory concentration (IC50) of U251 and the TMZ-resistant variant. Combining TMZ with FBW7 overexpression notably increased the cytotoxicity compared to TMZ treatment alone, which was conversely attenuated by FBW7 knockdown. Moreover, flow cytometry (FC) analysis showed overexpression of FBW7, TMZ or the combination-increased proportion of G2/M arrest and the apoptotic rate, whereas FBW7 inhibition reduced G2/M arrest and apoptosis in U251 cells. Finally, mechanistic study found that FBW7 overexpression downregulated Aurora B, Mcl1 and Notch1 levels in a time-dependent pattern and this expressional suppression was independent of TMZ. These findings collectively demonstrate the critical role of FBW7 as a prognostic factor and a potential target to overcome chemoresistance of glioblastoma. © 2018 The Authors. Cancer Science published by John Wiley & Sons Australia, Ltd on behalf of Japanese Cancer Association.

  16. The effects of tumor treating fields and temozolomide in MGMT expressing and non-expressing patient-derived glioblastoma cells.

    PubMed

    Clark, Paul A; Gaal, Jordan T; Strebe, Joslyn K; Pasch, Cheri A; Deming, Dustin A; Kuo, John S; Robins, H Ian

    2017-02-01

    A recent Phase 3 study of newly diagnosed glioblastoma (GBM) demonstrated the addition of tumor treating fields (TTFields) to temozolomide (TMZ) after combined radiation/TMZ significantly increased survival and progression free survival. Preliminary data suggested benefit with both methylated and unmethylated O-6-methylguanine-DNA methyl-transferase (MGMT) promoter status. To date, however, there have been no studies to address the potential interactions of TTFields and TMZ. Thus, the effects of TTFields and TMZ were studied in vitro using patient-derived GBM stem-like cells (GSCs) including MGMT expressing (TMZ resistant: 12.1 and 22GSC) and non-MGMT expressing (TMZ sensitive: 33 and 114GSC) lines. Dose-response curves were constructed using cell proliferation and sphere-forming assays. Results demonstrated a ⩾10-fold increase in TMZ resistance of MGMT-expressing (12.1GSCs: IC 50 =160μM; 22GSCs: IC 50 =44μM) compared to MGMT non-expressing (33GSCs: IC 50 =1.5μM; 114GSCs: IC 50 =5.2μM) lines. TTFields inhibited 12.1 GSC proliferation at all tested doses (50-500kHz) with an optimal frequency of 200kHz. At 200kHz, TTFields inhibited proliferation and tumor sphere formation of both MGMT GSC subtypes at comparable levels (12.1GSC: 74±2.9% and 38±3.2%, respectively; 22GSC: 61±11% and 38±2.6%, respectively; 33GSC: 56±9.5% and 60±7.1%, respectively; 114 GSC: 79±3.5% and 41±4.3%, respectively). In combination, TTFields (200kHz) and TMZ showed an additive anti-neoplastic effect with equal efficacy for TTFields in both cell types (i.e., ± MGMT expression) with no effect on TMZ resistance. This is the first demonstration of the effects of TTFields on cancer stem cells. The expansion of such studies may have clinical implications. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. The Effects of Tumor Treating Fields and Temozolomide in MGMT Expressing and Non-Expressing Patient-Derived Glioblastoma Cells

    PubMed Central

    Clark, Paul A.; Gaal, Jordan T; Strebe, Joslyn K.; Pasch, Cheri A; Deming, Dustin A; Kuo, John S.; Robins, H. Ian

    2016-01-01

    A recent Phase 3 study of newly diagnosed glioblastoma (GBM) demonstrated the addition of Tumor Treating Fields (TTFields) to temozolomide (TMZ) after combined radiation/TMZ significantly increased survival and progression free survival. Preliminary data suggested benefit with both methylated and unmethylated O-6-methylguanine-DNA methyl-transferase (MGMT) promoter status. To date, however, there have been no studies to address the potential interactions of TTFields and TMZ. Thus, the effects of TTFields and TMZ were studied in vitro using patient-derived GBM stem-like cells (GSCs) including MGMT expressing (TMZ resistant:12.1 and 22 GSC) and non-MGMT expressing (TMZ sensitive:33 and 114 GSC) lines. Dose-response curves were constructed using cell proliferation and sphere-forming assays. Results demonstrated a ≥10-fold increase in TMZ resistance of MGMT-expressing (12.1 GSCs: IC50=160 μM; 22 GSCs: IC50=44 μM) compared to MGMT non-expressing (33 GSCs: IC50=1.5 μM; 114 GSCs: IC50=5.2 μM) lines. TTFields inhibited 12.1 GSC proliferation at all tested doses (50-500 kHz) with an optimal frequency of 200 kHz. At 200 kHz, TTFields inhibited proliferation and tumor sphere formation of both MGMT GSC subtypes at comparable levels (12.1 GSC: 74±2.9% and 38±3.2%, respectively; 22 GSC: 61±11% and 38±2.6%, respectively; 33 GSC: 56±9.5% and 60±7.1%, respectively; 114 GSC: 79± 3.5% and 41±4.3%, respectively). In combination, TTFields (200 kHz) and TMZ showed an additive anti-neoplastic effect with equal efficacy for TTFields in both cell types (i.e., +/- MGMT expression) with no effect on TMZ resistance. This is the first demonstration of the effects of TTFields on cancer stem cells. The expansion of such studies may have clinical implications. PMID:27865821

  18. Pharmacological inhibition of poly(ADP-ribose) polymerase-1 modulates resistance of human glioblastoma stem cells to temozolomide

    PubMed Central

    2014-01-01

    Background Chemoresistance of glioblastoma multiforme (GBM) has been attributed to the presence within the tumor of cancer stem cells (GSCs). The standard therapy for GBM consists of surgery followed by radiotherapy and the chemotherapeutic agent temozolomide (TMZ). However, TMZ efficacy is limited by O6-methylguanine-DNA-methyltransferase (MGMT) and Mismatch Repair (MMR) functions. Strategies to counteract TMZ resistance include its combination with poly(ADP-ribose) polymerase inhibitors (PARPi), which hamper the repair of N-methylpurines. PARPi are also investigated as monotherapy for tumors with deficiency of homologous recombination (HR). We have investigated whether PARPi may restore GSC sensitivity to TMZ or may be effective as monotherapy. Methods Ten human GSC lines were assayed for MMR proteins, MGMT and PARP-1 expression/activity, MGMT promoter methylation and sensitivity to TMZ or PARPi, alone and in combination. Since PTEN defects are frequently detected in GBM and may cause HR dysfunction, PTEN expression was also analyzed. The statistical analysis of the differences in drug sensitivity among the cell lines was performed using the ANOVA and Bonferroni’s post-test or the non-parametric Kruskal-Wallis analysis and Dunn’s post-test for multiple comparisons. Synergism between TMZ and PARPi was analyzed by the median-effect method of Chou and Talalay. Correlation analyses were done using the Spearman’s rank test. Results All GSCs were MMR-proficient and resistance to TMZ was mainly associated with high MGMT activity or low proliferation rate. MGMT promoter hypermethylation of GSCs correlated both with low MGMT activity/expression (Spearman’s test, P = 0.004 and P = 0.01) and with longer overall survival of GBM patients (P = 0.02). Sensitivity of each GSC line to PARPi as single agent did not correlate with PARP-1 or PTEN expression. Notably, PARPi and TMZ combination exerted synergistic antitumor effects in eight out of ten GSC lines and

  19. Fotemustine as second-line treatment for recurrent or progressive glioblastoma after concomitant and/or adjuvant temozolomide: a phase II trial of Gruppo Italiano Cooperativo di Neuro-Oncologia (GICNO).

    PubMed

    Brandes, Alba A; Tosoni, A; Franceschi, E; Blatt, V; Santoro, A; Faedi, M; Amistà, P; Gardiman, M; Labianca, R; Bianchini, C; Ermani, M; Reni, M

    2009-09-01

    Standardized salvage treatment has not yet proved effective in glioblastoma multiforme (GBM) patients who receive prior standard radiotherapy plus concomitant and adjuvant temozolomide. Patients with progressive GBM after radiotherapy plus concomitant and/or adjuvant temozolomide received three-weekly doses (100-75 mg m(2)) of fotemustine followed, after a 5-week rest, by fotemustine (100 mg m(2)) every 3 weeks for < or =1 year. Forty-three patients (29 M, 14 F; median age 51 years, range 34-68; median KPS 90) were enrolled. Progression-free survival at 6 months (PFS-6) was 20.9% (95% CI: 9-33%); three patients (7.1%) had partial response (PR); 15 (34.9%), disease stabilization (SD). The median survival was 6 months (95% CI: 5-7). MGMT promoter status was methylated in 8 (18.6%) and unmethylated in 26 (60.5%) and not assessable in 9 (20.9%) patients, respectively. Disease control was 75% versus 34.6% in methylated and unmethylated MGMT patients (P = 0.044); no significant difference was found between groups for PFS-6 and survival. Grade 3 and 4 thrombocytopenia and neutropenia were observed in 20.9 and 16.3% of patients, during the induction phase, and in 0 and 9.5% patients during the maintenance phase, respectively. The findings of the present trial, that evaluate fotemustine in a homogeneous population, may represent a new benchmark for nitrosourea activity. Moreover, this is the first study to evaluate correlation between MGMT promoter status and outcome of fotemustine for relapsing GBM previously treated with radiotherapy and temozolomide.

  20. Combination therapy in a xenograft model of glioblastoma: enhancement of the antitumor activity of temozolomide by an MDM2 antagonist.

    PubMed

    Wang, Haiyan; Cai, Shanbao; Bailey, Barbara J; Reza Saadatzadeh, M; Ding, Jixin; Tonsing-Carter, Eva; Georgiadis, Taxiarchis M; Zachary Gunter, T; Long, Eric C; Minto, Robert E; Gordon, Kevin R; Sen, Stephanie E; Cai, Wenjing; Eitel, Jacob A; Waning, David L; Bringman, Lauren R; Wells, Clark D; Murray, Mary E; Sarkaria, Jann N; Gelbert, Lawrence M; Jones, David R; Cohen-Gadol, Aaron A; Mayo, Lindsey D; Shannon, Harlan E; Pollok, Karen E

    2017-02-01

    OBJECTIVE Improvement in treatment outcome for patients with glioblastoma multiforme (GBM) requires a multifaceted approach due to dysregulation of numerous signaling pathways. The murine double minute 2 (MDM2) protein may fulfill this requirement because it is involved in the regulation of growth, survival, and invasion. The objective of this study was to investigate the impact of modulating MDM2 function in combination with front-line temozolomide (TMZ) therapy in GBM. METHODS The combination of TMZ with the MDM2 protein-protein interaction inhibitor nutlin3a was evaluated for effects on cell growth, p53 pathway activation, expression of DNA repair proteins, and invasive properties. In vivo efficacy was assessed in xenograft models of human GBM. RESULTS In combination, TMZ/nutlin3a was additive to synergistic in decreasing growth of wild-type p53 GBM cells. Pharmacodynamic studies demonstrated that inhibition of cell growth following exposure to TMZ/nutlin3a correlated with: 1) activation of the p53 pathway, 2) downregulation of DNA repair proteins, 3) persistence of DNA damage, and 4) decreased invasion. Pharmacokinetic studies indicated that nutlin3a was detected in human intracranial tumor xenografts. To assess therapeutic potential, efficacy studies were conducted in a xenograft model of intracranial GBM by using GBM cells derived from a recurrent wild-type p53 GBM that is highly TMZ resistant (GBM10). Three 5-day cycles of TMZ/nutlin3a resulted in a significant increase in the survival of mice with GBM10 intracranial tumors compared with single-agent therapy. CONCLUSIONS Modulation of MDM2/p53-associated signaling pathways is a novel approach for decreasing TMZ resistance in GBM. To the authors' knowledge, this is the first study in a humanized intracranial patient-derived xenograft model to demonstrate the efficacy of combining front-line TMZ therapy and an inhibitor of MDM2 protein-protein interactions.

  1. Treatment-related toxicities in tumor-bearing cats treated with temozolomide alone or in combination with doxorubicin: a pilot assessment.

    PubMed

    Gagnon, Jerome; Dervisis, Nikolaos G; Kitchell, Barbara E

    2012-08-01

    A retrospective study assessing treatment-related toxicities in tumor-bearing cats treated with temozolomide (TMZ) alone or in combination with doxorubicin was conducted. TMZ was administered orally once a day for 5 days every 3 weeks at a dose of 20 mg/cat. Tumor response was evaluated with standard World Health Organization criteria and toxicity was monitored using veterinary co-operative oncology group-common terminology criteria for adverse events (VCOG--CTCAE) criteria. Ten tumor-bearing cats with various types of malignancies were treated with TMZ-based chemotherapy. Eight cats were evaluable for response. Two cats achieved a complete response, one achieved stable disease and five achieved a partial response. Four grade III and one grade IV hematological toxicities, and one grade IV gastrointestinal toxicity were observed. Four cats were euthanased as a result of apparent toxicity. One cat was euthanased as a result of severe and prolonged myelosuppression with fever. Three were euthanased for grade III pleural and pericardial effusions. Effusion was seen in cats treated with higher cumulative dose of TMZ (P = 0.0046). Planned additional case accrual was discontinued because of unacceptable levels of toxicity despite evidence of efficacy in some of the cats. Additional investigation is needed to elucidate this unexpected apparent cumulative toxicity.

  2. Oxidative cytotoxic agent withaferin A resensitizes temozolomide-resistant glioblastomas via MGMT depletion and induces apoptosis through Akt/mTOR pathway inhibitory modulation

    PubMed Central

    Grogan, Patrick T.; Sarkaria, Jann N.; Timmermann, Barbara N.; Cohen, Mark S.

    2014-01-01

    Temozolomide (TMZ) has remained the chemotherapy of choice in patients with glioblastoma multiforme (GBM) primarily due to the lack of more effective drugs. Tumors, however, quickly develop resistance to this line of treatment creating a critical need for alternative approaches and strategies to resensitize the cells. Withaferin A (WA), a steroidal lactone derived from several genera of the Solanaceae plant family has previously demonstrated potent anti-cancer activity in multiple tumor models. Here, we examine the effects of WA against TMZ-resistant GBM cells as a monotherapy and in combination with TMZ. WA prevented GBM cell proliferation by dose-dependent G2/M cell cycle arrest and cell death through both intrinsic and extrinsic apoptotic pathways. This effect correlated with depletion of principle proteins of the Akt/mTOR and MAPK survival and proliferation pathways with diminished phosphorylation of Akt, mTOR, and p70 S6K but compensatory activation of ERK1/2. Depletion of tyrosine kinase cell surface receptors c-Met, EGFR, and Her2 was also observed. WA demonstrated induction of N-acetyl-L-cysteine-repressible oxidative stress as measured directly and through a subsequent heat shock response with HSP32 and HSP70 upregulation and decreased HSF1. Finally, pretreatment of TMZ-resistant GBM cells with WA was associated with O6-methylguanine-DNA methyltransferase (MGMT) depletion which potentiated TMZ-mediated MGMT degradation. Combination treatment with both WA and TMZ resulted in resensitization of MGMT-mediated TMZ-resistance but not resistance through mismatch repair mutations. These studies suggest great clinical potential for the utilization of WA in TMZ-resistant GBM as both a monotherapy and a resensitizer in combination with the standard chemotherapeutic agent TMZ. PMID:24718901

  3. Targeting miR-381-NEFL axis sensitizes glioblastoma cells to temozolomide by regulating stemness factors and multidrug resistance factors.

    PubMed

    Wang, Zeyou; Yang, Jing; Xu, Gang; Wang, Wei; Liu, Changhong; Yang, Honghui; Yu, Zhibin; Lei, Qianqian; Xiao, Lan; Xiong, Jing; Zeng, Liang; Xiang, Juanjuan; Ma, Jian; Li, Guiyuan; Wu, Minghua

    2015-02-20

    MicroRNA-381 (miR-381) is a highly expressed onco-miRNA that is involved in malignant progression and has been suggested to be a good target for glioblastoma multiforme (GBM) therapy. In this study, we employed two-dimensional fluorescence differential gel electrophoresis (2-D DIGE) and MALDI-TOF/TOF-MS/MS to identify 27 differentially expressed proteins, including the significantly upregulated neurofilament light polypeptide (NEFL), in glioblastoma cells in which miR-381 expression was inhibited. We identified NEFL as a novel target molecule of miR-381 and a tumor suppressor gene. In human astrocytoma clinical specimens, NEFL was downregulated with increased levels of miR-381 expression. Either suppressing miR-381 or enforcing NEFL expression dramatically sensitized glioblastoma cells to temozolomide (TMZ), a promising chemotherapeutic agent for treating GBMs. The mechanism by which these cells were sensitized to TMZ was investigated by inhibiting various multidrug resistance factors (ABCG2, ABCC3, and ABCC5) and stemness factors (ALDH1, CD44, CKIT, KLF4, Nanog, Nestin, and SOX2). Our results further demonstrated that miR-381 overexpression reversed the viability of U251 cells exhibiting NEFL-mediated TMZ sensitivity. In addition, NEFL-siRNA also reversed the proliferation rate of U251 cells exhibiting locked nucleic acid (LNA)-anti-miR-381-mediated TMZ sensitivity. Overall, the miR-381-NEFL axis is important for TMZ resistance in GBM and may potentially serve as a novel therapeutic target for glioma.

  4. Risk of severe acute liver injury among patients with brain cancer treated with temozolomide: a nested case-control study using the healthcore integrated research database.

    PubMed

    Desai, Vibha C A; Quinlan, Scott C; Deitz, Anne C; He, Jinghua; Holick, Crystal N; Lanes, Stephan

    2017-08-01

    Temozolomide (TMZ) is used to treat adult patients with glioblastoma multiforme (GBM). Cases of hepatotoxicity have been reported among patients using TMZ. The objective of the study was to assess the relation, if any, between exposure to TMZ and serious acute liver injury (SALI). We used the HealthCore Integrated Research Database to perform a case-control study nested within a retrospective cohort of adult patients aged 18-100 years with at least two diagnoses of brain cancer anytime between 2006 and 2014. Patients without continuous eligibility or with a SALI diagnosis within 6 months prior to the date of incident brain cancer diagnosis were excluded. Medical records were sought for potential SALI cases and reviewed by two hepatologists. Five controls were selected for each case using incidence density sampling, matched on age and calendar year of index date. The analysis included 61 confirmed SALI cases and 305 selected controls. Exposure to TMZ was classified according to dispensing date and days supply of medication dispensed. We estimated odds ratios using conditional logistic regression models. The odds ratio for any exposure to TMZ was 0.91 (95% CI 0.44-1.91), for recent exposure to TMZ was 0.62 (95% CI 0.21-1.85). There was no increased risk of SALI with increasing duration of exposure to TMZ. When patients with unconfirmed SALI were included in the analysis, results were similar (OR 1.04; 95% CI 0.70-1.54). In conclusion, this study did not find an association between TMZ and SALI risk among patients with brain cancer.

  5. Pharmacokinetics and antitumor efficacy of DSPE-PEG2000 polymeric liposomes loaded with quercetin and temozolomide: Analysis of their effectiveness in enhancing the chemosensitization of drug-resistant glioma cells

    PubMed Central

    HU, JUN; WANG, JUNJIE; WANG, GANG; YAO, ZHONGJUN; DANG, XIAOQIAN

    2016-01-01

    In the present study, a new type of DSPE-PEG2000 polymeric liposome for the brain-targeted delivery of poorly water-soluble anticancer drugs was successfully prepared and characterized. The nanoparticles were formed by the self-assembly of an amphiphilic polymer consisting of hydrophilic 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[methoxy(polyethylene glycol)-2000] (DSPE-PEG2000). These nanoliposomes served as a safe delivery platform for the simultaneous delivery of quercetin (QUE) and temozolomide (TMZ) to rat brains. The 2-in-1 PEG2000-DSPE nanoliposomes containing QUE and TMZ (QUE/TMZ-NLs) were rapidly taken up by the U87 glioma cells in vitro, whereas at the same concentrations, the amounts of the free drugs taken up were minimal. The QUE/TMZ-NLs showed an enhanced potency in the U87 cells and the TMZ-resistant U87 cells (U87/TR cells), possibly due to the high intracellular drug concentration and the subsequent drug release. In vivo biodistribution experiments revealed a significant accumulation of QUE/TMZ-NLs in the brain, with significantly increased plasma concentrations of QUE and TMZ, as well as delayed clearance in our rat model of glioma. The results were not so significant for the QUE-loaded nanoliposomes (QUE-NLs) and free TMZ. The findings of our study establish the DSPE-PEG2000 polymeric liposome as a novel and effective nanocarrier for enhancing drug delivery to brain tumors. PMID:26782731

  6. miR-125b controls apoptosis and temozolomide resistance by targeting TNFAIP3 and NKIRAS2 in glioblastomas

    PubMed Central

    Haemmig, S; Baumgartner, U; Glück, A; Zbinden, S; Tschan, M P; Kappeler, A; Mariani, L; Vajtai, I; Vassella, E

    2014-01-01

    Diffusely infiltrating gliomas are among the most prognostically discouraging neoplasia in human. Temozolomide (TMZ) in combination with radiotherapy is currently used for the treatment of glioblastoma (GBM) patients, but less than half of the patients respond to therapy and chemoresistance develops rapidly. Epigenetic silencing of the O6-methylguanine-DNA methyltransferase (MGMT) has been associated with longer survival in GBM patients treated with TMZ, but nuclear factor κB (NF-κB)-mediated survival signaling and TP53 mutations contribute significantly to TMZ resistance. Enhanced NF-κB is in part owing to downregulation of negative regulators of NF-κB activity, including Tumor necrosis factor alpha-induced protein 3 (TNFAIP3) and NF-κB inhibitor interacting RAS-like 2 (NKIRAS2). Here we provide a novel mechanism independent of TP53 and MGMT by which oncogenic miR-125b confers TMZ resistance by targeting TNFAIP3 and NKIRAS2. GBM cells overexpressing miR-125b showed increased NF-κB activity and upregulation of anti-apoptotic and cell cycle genes. This was significantly associated with resistance of GBM cells to TNFα- and TNF-related inducing ligand-induced apoptosis as well as resistance to TMZ. Conversely, overexpression of anti-miR-125b resulted in cell cycle arrest, increased apoptosis and increased sensitivity to TMZ, indicating that endogenous miR-125b is sufficient to control these processes. GBM cells overexpressing TNFAIP3 and NKIRAS2 were refractory to miR-125b-induced apoptosis resistance as well as TMZ resistance, indicating that both genes are relevant targets of miR-125b. In GBM tissues, high miR-125b expression was significantly correlated with nuclear NF-κB confirming that miR-125b is implicated in NF-κB signaling. Most remarkably, miR-125b overexpression was clearly associated with shorter overall survival of patients treated with TMZ, suggesting that this microRNA is an important predictor of response to therapy. PMID:24901050

  7. SGEF is Regulated via TWEAK/Fn14/NF-κB Signaling and Promotes Survival by Modulation of the DNA Repair Response to Temozolomide

    PubMed Central

    Fortin Ensign, Shannon P.; Roos, Alison; Mathews, Ian T.; Dhruv, Harshil D.; Tuncali, Serdar; Sarkaria, Jann N.; Symons, Marc H.; Loftus, Joseph C.; Berens, Michael E.; Tran, Nhan L.

    2015-01-01

    Glioblastoma (GB) is the highest grade and most common form of primary adult brain tumors. Despite surgical removal followed by concomitant radiation and chemotherapy with the alkylating agent temozolomide (TMZ), GB tumors develop treatment resistance and ultimately recur. Impaired response to treatment occurs rapidly, conferring a median survival of just fifteen months. Thus, it is necessary to identify the genetic and signaling mechanisms that promote tumor resistance in order to develop targeted therapies to combat this refractory disease. Previous observations indicated that SGEF (ARHGEF26), a RhoG specific guanine nucleotide exchange factor (GEF), is overexpressed in GB tumors and plays a role in promoting TWEAK-Fn14 mediated glioma invasion. Here, further investigation revealed an important role for SGEF in glioma cell survival. SGEF expression is up-regulated by TWEAK-Fn14 signaling via NF-κB activity while shRNA-mediated reduction of SGEF expression sensitizes glioma cells to TMZ-induced apoptosis and suppresses colony formation following TMZ treatment. Nuclear SGEF is activated following TMZ exposure and complexes with the DNA damage repair (DDR) protein BRCA1. Moreover, BRCA1 phosphorylation in response to TMZ treatment is hindered by SGEF knockdown. The role of SGEF in promoting chemotherapeutic resistance highlights a heretofore unappreciated driver, and suggests its candidacy for development of novel targeted therapeutics for TMZ refractory, invasive GB cells. Implication SGEF, as a dual process modulator of cell survival and invasion, represents a novel target for treatment refractory glioblastoma. PMID:26764186

  8. Disulfiram, a drug widely used to control alcoholism, suppresses self-renewal of glioblastoma and overrides resistance to temozolomide

    PubMed Central

    Triscott, Joanna; Lee, Cathy; Hu, Kaiji; Fotovati, Abbas; Berns, Rachel; Pambid, Mary; Luk, Margaret; Kast, Richard E.; Kong, Esther; Toyota, Eric; Yip, Stephen; Toyota, Brian; Dunn, Sandra E.

    2012-01-01

    Glioblastomas (GBM) are associated with high rates of relapse. These brain tumors are often resistant to chemotherapies like temozolomide (TMZ) and there are very few treatment options available to patients. We recently reported that polo-like kinase-1 (PLK1) is associated with the proliferative subtype of GBM; which has the worst prognosis. In this study, we addressed the potential of repurposing disulfiram (DSF), a drug widely used to control alcoholism for the past six decades. DSF has good safety profiles and penetrates the blood-brain barrier. Here we report that DSF inhibited the growth of TMZ resistant GBM cells, (IC90=100 nM), but did not affect normal human astrocytes. At similar DSF concentrations, self-renewal was blocked by ~100% using neurosphere growth assays. Likewise the drug completely inhibited the self-renewal of the BT74 and GBM4 primary cell lines. Additionally, DSF suppressed growth and self-renewal of primary cells from two GBM tumors. These cells were resistant to TMZ, had unmethylated MGMT, and expressed high levels of PLK1. Consistent with its role in suppressing GBM growth, DSF inhibited the expression of PLK1 in GBM cells. Likewise, PLK1 inhibition with siRNA, or small molecules (BI-2536 or BI-6727) blocked growth of TMZ resistant cells. Our studies suggest that DSF has the potential to be repurposed for treatment of refractory GBM. PMID:23047041

  9. Temozolomide is an active agent in children with recurrent medulloblastoma/primitive neuroectodermal tumor: an Italian multi-institutional phase II trial.

    PubMed

    Cefalo, Graziella; Massimino, Maura; Ruggiero, Antonio; Barone, Giuseppe; Ridola, Vita; Spreafico, Filippo; Potepan, Paolo; Abate, Massimo E; Mascarin, Maurizio; Garrè, Maria Luisa; Perilongo, Giorgio; Madon, Enrico; Colosimo, Cesare; Riccardi, Riccardo

    2014-05-01

    The aim of this study was to assess the objective response rate (ORR) of children and young adults with recurrent medulloblastoma/primitive neuroectodermal tumor (MB/PNET) treated with temozolomide (TMZ). The secondary purpose was to analyze the toxicity profile of TMZ when administered orally for 5 days in 3 divided daily doses every 28 days. Forty-two patients with recurrent MB/PNET, aged 21 years and younger, were recruited. Patients were treated with oral TMZ. Starting doses ranged from 120 to 200 mg/m(2)/day based on previous treatments. A craniospinal MRI was performed prior to the first cycle of TMZ and following every 2 cycles of treatment. Median age was 10 years (range, 2-21 years). Forty of 42 patients were assessed for response and toxicity. The objective response rate was 42.5%: 6 patients achieved a complete response, 11 had a partial response, and 10 had stable disease. Progression-free survival rates for all patients at 6 and 12 months were 30% and 7.5%, respectively. Their median overall survival rates at 6 and 12 months were 42.5% and 17.5%, respectively. No major extrahematological effects or life-threatening events were reported. The most common grade 3/4 toxicity included thrombocytopenia (17.5%), neutropenia (7.5%), and anemia (2.5%). TMZ proved to be an effective agent in children and young adults with MB/PNET, heavily pre-treated, with a tolerable toxicity profile.

  10. Temozolomide is an active agent in children with recurrent medulloblastoma/primitive neuroectodermal tumor: an Italian multi-institutional phase II trial

    PubMed Central

    Cefalo, Graziella; Massimino, Maura; Ruggiero, Antonio; Barone, Giuseppe; Ridola, Vita; Spreafico, Filippo; Potepan, Paolo; Abate, Massimo E.; Mascarin, Maurizio; Garrè, Maria Luisa; Perilongo, Giorgio; Madon, Enrico; Colosimo, Cesare; Riccardi, Riccardo

    2014-01-01

    Background The aim of this study was to assess the objective response rate (ORR) of children and young adults with recurrent medulloblastoma/primitive neuroectodermal tumor (MB/PNET) treated with temozolomide (TMZ). The secondary purpose was to analyze the toxicity profile of TMZ when administered orally for 5 days in 3 divided daily doses every 28 days. Methods Forty-two patients with recurrent MB/PNET, aged 21 years and younger, were recruited. Patients were treated with oral TMZ. Starting doses ranged from 120 to 200 mg/m2/day based on previous treatments. A craniospinal MRI was performed prior to the first cycle of TMZ and following every 2 cycles of treatment. Results Median age was 10 years (range, 2–21 years). Forty of 42 patients were assessed for response and toxicity. The objective response rate was 42.5%: 6 patients achieved a complete response, 11 had a partial response, and 10 had stable disease. Progression-free survival rates for all patients at 6 and 12 months were 30% and 7.5%, respectively. Their median overall survival rates at 6 and 12 months were 42.5% and 17.5%, respectively. No major extrahematological effects or life-threatening events were reported. The most common grade 3/4 toxicity included thrombocytopenia (17.5%), neutropenia (7.5%), and anemia (2.5%). Conclusions TMZ proved to be an effective agent in children and young adults with MB/PNET, heavily pre-treated, with a tolerable toxicity profile. PMID:24482446

  11. Case report of a KIT-mutated melanoma patient with an excellent response to apatinib and temozolomide combination therapy.

    PubMed

    Luo, Cong; Shen, Jiayu; Ying, Jieer; Fang, Xianhua; Wang, Xiaohong; Fu, Zhixuan; Liu, Peng

    2017-01-01

    Malignant melanoma is one kind of malignant disease which has high rates of mortality, metastasis, and poor prognosis. The therapeutic landscape is rapidly changing with the development of novel agents in recent decades, such as anti-PD-1 agents, anti-CTLA-4 agents, and BRAF inhibitors. However, since most of these novel agents are very expensive, not all patients can afford them. Apatinib is a novel oral small-molecule tyrosine kinase inhibitor targeting the intracellular domain of vascular endothelial growth factor receptor 2 (VEGFR-2) and may also be effective on Ret, c-KIT, and c-src. Temozolomide (TMZ) is a second-generation alkylating agent and a cytotoxic drug for melanoma treatment. In this work, we reported a case of metastatic melanoma with an excellent response to apatinib/TMZ combination therapy with progression-free survival for more than one year. This patient showed high expression of CD117, VEGFR-3, and KIT mutation in exon 11, suggesting that apatinib may induce clinical response via inhibiting VEGFR and c-KIT. Apatinib/TMZ combination therapy could be a new option for the treatment of advanced melanoma with KIT mutation.

  12. Targeted nanoparticle delivery of therapeutic antisense microRNAs presensitizes glioblastoma cells to lower effective doses of temozolomide in vitro and in a mouse model.

    PubMed

    Malhotra, Meenakshi; Sekar, Thillai Veerapazham; Ananta, Jeyarama S; Devulapally, Rammohan; Afjei, Rayhaneh; Babikir, Husam A; Paulmurugan, Ramasamy; Massoud, Tarik F

    2018-04-20

    Temozolomide (TMZ) chemotherapy for glioblastoma (GBM) is generally well tolerated at standard doses but it can cause side effects. GBMs overexpress microRNA-21 and microRNA-10b, two known oncomiRs that promote cancer development, progression and resistance to drug treatment. We hypothesized that systemic injection of antisense microRNAs (antagomiR-21 and antagomiR-10b) encapsulated in cRGD-tagged PEG-PLGA nanoparticles would result in high cellular delivery of intact functional antagomiRs, with consequent efficient therapeutic response and increased sensitivity of GBM cells to lower doses of TMZ. We synthesized both targeted and non-targeted nanoparticles, and characterized them for size, surface charge and encapsulation efficiency of antagomiRs. When using targeted nanoparticles in U87MG and Ln229 GBM cells, we showed higher uptake-associated improvement in sensitivity of these cells to lower concentrations of TMZ in medium. Co-inhibition of microRNA-21 and microRNA-10b reduced the number of viable cells and increased cell cycle arrest at G2/M phase upon TMZ treatment. We found a significant increase in expression of key target genes for microRNA-21 and microRNA-10b upon using targeted versus non-targeted nanoparticles. There was also significant reduction in tumor volume when using TMZ after pre-treatment with loaded nanoparticles in human GBM cell xenografts in mice. In vivo targeted nanoparticles plus different doses of TMZ showed a significant therapeutic response even at the lowest dose of TMZ, indicating that preloading cells with antagomiR-21 and antagomiR-10b increases cellular chemosensitivity towards lower TMZ doses. Future clinical applications of this combination therapy may result in improved GBM response by using lower doses of TMZ and reducing nonspecific treatment side effects.

  13. Predicting the outcome of grade II glioma treated with temozolomide using proton magnetic resonance spectroscopy.

    PubMed

    Guillevin, R; Menuel, C; Taillibert, S; Capelle, L; Costalat, R; Abud, L; Habas, C; De Marco, G; Hoang-Xuan, K; Chiras, J; Vallée, J-N

    2011-06-07

    This study was designed to evaluate proton magnetic resonance spectroscopy ((1)H-MRS) for monitoring the WHO grade II glioma (low-grade glioma (LGG)) treated with temozolomide (TMZ). This prospective study included adult patients with progressive LGG that was confirmed by magnetic resonance imaging (MRI). Temozolomide was administered at every 28 days. Response to TMZ was evaluated by monthly MRI examinations that included MRI with volumetric calculations and (1)H-MRS for assessing Cho/Cr and Cho/NAA ratios. Univariate, multivariate and receiver-operating characteristic statistical analyses were performed on the results. A total of 21 LGGs from 31 patients were included in the study, and followed for at least n=14 months during treatment. A total of 18 (86%) patients experienced a decrease in tumour volume with a greater decrease of metabolic ratios. Subsequently, five (28%) of these tumours resumed growth despite the continuation of TMZ administration with an earlier increase of metabolic ratios of 2 months. Three (14%) patients did not show any volume or metabolic change. The evolutions of the metabolic ratios, mean(Cho/Cr)(n) and mean(Cho/NAA)(n), were significantly correlated over time (Spearman ρ=+0.95) and followed a logarithmic regression (P>0.001). The evolutions over time of metabolic ratios, mean(Cho/Cr)(n) and mean(Cho/NAA)(n), were significantly correlated with the evolution of the mean relative decrease of tumour volume, mean(ΔV(n)/V(o)), according to a linear regression (P<0.001) in the 'response/no relapse' patient group, and with the evolution of the mean tumour volume (meanV(n)), according to an exponential regression (P<0.001) in the 'response/relapse' patient group. The mean relative decrease of metabolic ratio, mean(Δ(Cho/Cr)(n)/(Cho/Cr)(o)), at n=3 months was predictive of tumour response over the 14 months of follow-up. The mean relative change between metabolic ratios, mean((Cho/NAA)(n)-(Cho/Cr)(n))/(Cho/NAA)(n), at n=4 months was

  14. Intracellular cholesterol level regulates sensitivity of glioblastoma cells against temozolomide-induced cell death by modulation of caspase-8 activation via death receptor 5-accumulation and activation in the plasma membrane lipid raft.

    PubMed

    Yamamoto, Yutaro; Tomiyama, Arata; Sasaki, Nobuyoshi; Yamaguchi, Hideki; Shirakihara, Takuya; Nakashima, Katsuhiko; Kumagai, Kosuke; Takeuchi, Satoru; Toyooka, Terushige; Otani, Naoki; Wada, Kojiro; Narita, Yoshitaka; Ichimura, Koichi; Sakai, Ryuichi; Namba, Hiroki; Mori, Kentaro

    2018-01-01

    Development of resistance against temozolomide (TMZ) in glioblastoma (GBM) after continuous treatment with TMZ is one of the critical problems in clinical GBM therapy. Intracellular cholesterol regulates cancer cell biology, but whether intracellular cholesterol is involved in TMZ resistance of GBM cells remains unclear. The involvement of intracellular cholesterol in acquired resistance against TMZ in GBM cells was investigated. Intracellular cholesterol levels were measured in human U251 MG cells with acquired TMZ resistance (U251-R cells) and TMZ-sensitive control U251 MG cells (U251-Con cells), and found that the intracellular cholesterol level was significantly lower in U251-R cells than in U251-Con cells. In addition, treatment by intracellular cholesterol remover, methyl-beta cyclodextrin (MβCD), or intracellular cholesterol inducer, soluble cholesterol (Chol), regulated TMZ-induced U251-Con cell death in line with changes in intracellular cholesterol level. Involvement of death receptor 5 (DR5), a death receptor localized in the plasma membrane, was evaluated. TMZ without or with MβCD and/or Chol caused accumulation of DR5 into the plasma membrane lipid raft and formed a complex with caspase-8, an extrinsic caspase cascade inducer, reflected in the induction of cell death. In addition, treatment with caspase-8 inhibitor or knockdown of DR5 dramatically suppressed U251-Con cell death induced by combination treatment with TMZ, MβCD, and Chol. Combined treatment of Chol with TMZ reversed the TMZ resistance of U251-R cells and another GBM cell model with acquired TMZ resistance, whereas clinical antihypercholesterolemia agents at physiological concentrations suppressed TMZ-induced cell death of U251-Con cells. These findings suggest that intracellular cholesterol level affects TMZ treatment of GBM mediated via a DR5-caspase-8 mechanism. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. The PI3K inhibitor GDC-0941 enhances radiosensitization and reduces chemoresistance to temozolomide in GBM cell lines.

    PubMed

    Shi, Fei; Guo, Hongchuan; Zhang, Rong; Liu, Hongyu; Wu, Liangliang; Wu, Qiyan; Liu, Jialin; Liu, Tianyi; Zhang, Qiuhang

    2017-03-27

    Glioblastoma multiforme (GBM) is among the most lethal of all human tumors. It is the most frequently occurring malignant primary brain tumor in adults. The current standard of care (SOC) for GBM is initial surgical resection followed by treatment with a combination of temozolomide (TMZ) and ionizing radiation (IR). However, GBM has a dismal prognosis, and survivors have compromised quality of life owing to the adverse effects of radiation. GBM is characterized by overt activity of the phosphoinositide 3-kinase (PI3K) signaling pathway. GDC-0941 is a highly specific PI3K inhibitor with promising anti-tumor activity in human solid tumors. It is being evaluated in Phase II clinical trials for the treatment of breast and non-squamous cell lung cancer. We hypothesized that GDC-0941 may act as an antitumor agent and potentiate the effects of TMZ and IR. In this study, GDC-0941 alone induced cytotoxicity and pro-apoptotic effects. Moreover, combined with the standard GBM therapy (TMZ and IR), it suppressed cell viability, showed enhanced pro-apoptotic effects, augmented autophagy response, and attenuated migratory/invasive capacity in three glioma cell lines. Protein microarray analyses showed that treatment with TMZ+GDC-0941+IR induced higher levels of p53 and glycogen synthase kinase 3-beta (GSK3-β) expression in SHG44GBM cells than those induced by other treatments. This was verified in all cell lines by western blot analysis. Furthermore, the combination of TMZ and GDC-0941 with or without IR reduced the levels of p-AKT and O 6 -methylguanine DNA methyltransferase (MGMT) in T98G cells. The results of this study suggest that the combination of TMZ, IR, and GDC-0941 is a promising choice for future treatments of GBM. Copyright © 2017 IBRO. Published by Elsevier Ltd. All rights reserved.

  16. Divergent evolution of temozolomide resistance in glioblastoma stem cells is reflected in extracellular vesicles and coupled with radiosensitization.

    PubMed

    Garnier, Delphine; Meehan, Brian; Kislinger, Thomas; Daniel, Paul; Sinha, Ankit; Abdulkarim, Bassam; Nakano, Ichiro; Rak, Janusz

    2018-01-22

    Glioblastoma (GBM) is almost invariably fatal due to failure of standard therapy. The relapse of GBM following surgery, radiation, and systemic temozolomide (TMZ) is attributed to the ability of glioma stem cells (GSCs) to survive, evolve, and repopulate the tumor mass, events on which therapy exerts a poorly understood influence. Here we explore the molecular and cellular evolution of TMZ resistance as it emerges in vivo (xenograft models) in a series of human GSCs with either proneural (PN) or mesenchymal (MES) molecular characteristics. We observed that the initial response of GSC-initiated intracranial xenografts to TMZ is eventually replaced by refractory growth pattern. Individual tumors derived from the same isogenic GSC line expressed divergent and complex profiles of TMZ resistance markers, with a minor representation of O6-methylguanine DNA methyltransferase (MGMT) upregulation. In several independent TMZ-resistant tumors originating from MES GSCs we observed a consistent diminution of mesenchymal features, which persisted in cell culture and correlated with increased expression of Nestin, decline in transglutaminase 2 and sensitivity to radiation. The corresponding mRNA expression profiles reflective of TMZ resistance and stem cell phenotype were recapitulated in the transcriptome of exosome-like extracellular vesicles (EVs) released by GSCs into the culture medium. Intrinsic changes in the tumor-initiating cell compartment may include loss of subtype characteristics and reciprocal alterations in sensitivity to chemo- and radiation therapy. These observations suggest that exploiting therapy-induced changes in the GSC phenotype and alternating cycles of therapy may be explored to improve GBM outcomes. © The Author(s) 2017. Published by Oxford University Press on behalf of the Society for Neuro-Oncology. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com

  17. JCOG0911 INTEGRA study: a randomized screening phase II trial of interferonβ plus temozolomide in comparison with temozolomide alone for newly diagnosed glioblastoma.

    PubMed

    Wakabayashi, Toshihiko; Natsume, Atsushi; Mizusawa, Junki; Katayama, Hiroshi; Fukuda, Haruhiko; Sumi, Minako; Nishikawa, Ryo; Narita, Yoshitaka; Muragaki, Yoshihiro; Maruyama, Takashi; Ito, Tamio; Beppu, Takaaki; Nakamura, Hideo; Kayama, Takamasa; Sato, Shinya; Nagane, Motoo; Mishima, Kazuhiko; Nakasu, Yoko; Kurisu, Kaoru; Yamasaki, Fumiyuki; Sugiyama, Kazuhiko; Onishi, Takanori; Iwadate, Yasuo; Terasaki, Mizuhiko; Kobayashi, Hiroyuki; Matsumura, Akira; Ishikawa, Eiichi; Sasaki, Hikaru; Mukasa, Akitake; Matsuo, Takayuki; Hirano, Hirofumi; Kumabe, Toshihiro; Shinoura, Nobusada; Hashimoto, Naoya; Aoki, Tomokazu; Asai, Akio; Abe, Tatsuya; Yoshino, Atsuo; Arakawa, Yoshiki; Asano, Kenichiro; Yoshimoto, Koji; Shibui, Soichiro

    2018-07-01

    This study explored the superiority of temozolomide (TMZ) + interferonβ (IFNβ) to standard TMZ as treatment for newly diagnosed glioblastoma (GBM) via randomized phase II screening design. Eligibility criteria included histologically proven GBM, with 50% of the tumor located in supratentorial areas, without involvement of the optic, olfactory nerves, and pituitary gland and without multiple lesions and dissemination. Patients in the TMZ + radiotherapy (RT) arm received RT (2.0 Gy/fr/day, 30 fr) with TMZ (75 mg/m 2 , daily) followed by TMZ maintenance (100-200 mg/m 2 /day, days 1-5, every 4 weeks) for 2 years. Patients in the TMZ + IFNβ + RT arm intravenously received IFNβ (3 MU/body, alternative days during RT and day 1, every 4 weeks during maintenance period) and TMZ + RT. The primary endpoint was overall survival (OS). The planned sample size was 120 (one-sided alpha 0.2; power 0.8). Between Apr 2010 and Jan 2012, 122 patients were randomized. The median OS with TMZ + RT and TMZ + IFNβ + RT was 20.3 and 24.0 months (HR 1.00, 95% CI 0.65-1.55; one-sided log rank P = 0.51). The median progression-free survival times were 10.1 and 8.5 months (HR 1.25, 95% CI 0.85-1.84). The incidence of neutropenia with the TMZ + RT and the TMZ + IFNβ + RT (grade 3-4, CTCAE version 3.0) was 12.7 versus 20.7% during concomitant period and was 3.6 versus 9.3% during maintenance period. The incidence of lymphopenia was 54.0 versus 63.8% and 34.5 versus 41.9%. TMZ + IFNβ + RT is not considered as a candidate for the following phase III trial, and TMZ + RT remained to be a most promising treatment. This trial was registered with the UMIN Clinical Trials Registry: UMIN000003466.

  18. β-Asarone promotes Temozolomide's entry into glioma cells and decreases the expression of P-glycoprotein and MDR1.

    PubMed

    Wang, Nanbu; Zhang, Qinxin; Ning, Baile; Luo, Laiyu; Fang, Yongqi

    2017-06-01

    Glioma is the most common primary brain tumor and has an undesirable prognosis due to the blood-brain barrier (BBB) and drug resistance. A thorough investigation of the changes in intracellular drug concentrations is important to observe therapeutic effects and cell resistance. P-glycoprotein (P-gp) is an essential protein of Multi-drug resistance 1 (MDR1). The over-expression of P-gp and MDR1 is associated with poor prognosis and drug-resistance in glioma. However, β-asarone can pass through the BBB easily and increase the drug concentration in the rat brain. Our aim is to study the effect of β-asarone on promoting the entry of temozolomide (TMZ) into human glioma U251 cells. The cells were divided into three groups: model group, TMZ group (300μM) and co-administration group (360μM β-asarone; 300μM TMZ). We further detected P-gp and MDR1 expression in U251 and rat glioma C6 cells in four groups: model group (U251/C6), TMZ group (U251 300μM, C6 420μM), β-asarone group (U251 360μM, C6 450μM) and co-administration group (β-asarone 360μM, TMZ 300μM for U251; β-asarone 450μM, TMZ 420μM for C6). Then, high performance liquid chromatography was used to determine the intracellular and extracellular levels of TMZ. Morphological changes in both cells were observed by the microscope. The Counting Kit-8 assay was used to measure the cell proliferation and toxicity. Cell immunohistochemistry/immunofluorescence, flowcytometry and western blot were synchronously used to examine the expression of P-gp. We also determined the levels of MDR1 mRNA by RT-PCR. The results showed that β-asarone could promote the entry of TMZ into U251 cells through the membrane. The co-administration of β-asarone and TMZ also decreased cell proliferation and the expression of P-gp and MDR1 better than single medication in U251 and C6 cells. All of the data suggest that β-asarone might contribute to treatment by promoting TMZ's entry into glioma cells, thereby contributing to anti

  19. Benefits of adjuvant chemotherapy in high-grade gliomas.

    PubMed

    DeAngelis, Lisa M

    2003-12-01

    The current standard of care for patients with high-grade glioma is resection followed by radiotherapy. Adjuvant chemotherapy is not widely accepted because of the low sensitivity of gliomas to traditional antineoplastic agents, the poor penetration of most drugs across the blood-brain barrier, and the significant systemic toxicity associated with current agents. However, nitrosoureas and, subsequently, temozolomide (Temodar [US], Temodal [international]; Schering-Plough Corporation, Kenilworth, NJ), a novel alkylating agent, cross the blood-brain barrier and have activity against gliomas. Nitrosoureas have been studied in phase III trials in the adjuvant setting. In individual trials, chemotherapy did not increase median survival but did increase the proportion of patients surviving >/=18 months by 15%. Only with large meta-analyses did the addition of chemotherapy achieve a statistically significant improvement in median survival. Currently there is no means of identifying which patients will benefit from adjuvant chemotherapy, but nitrosoureas and temozolomide are well tolerated in most patients, justifying the administration of adjuvant chemotherapy to all newly diagnosed patients with malignant glioma.

  20. Temozolomide Plus Bevacizumab in Elderly Patients with Newly Diagnosed Glioblastoma and Poor Performance Status: An ANOCEF Phase II Trial (ATAG).

    PubMed

    Reyes-Botero, Germán; Cartalat-Carel, Stéphanie; Chinot, Olivier L; Barrie, Maryline; Taillandier, Luc; Beauchesne, Patrick; Catry-Thomas, Isabelle; Barrière, Jérôme; Guillamo, Jean-Sebastien; Fabbro, Michel; Frappaz, Didier; Benouaich-Amiel, Alexandra; Le Rhun, Emilie; Campello, Chantal; Tennevet, Isabelle; Ghiringhelli, François; Tanguy, Marie-Laure; Mokhtari, Karima; Honnorat, Jérôme; Delattre, Jean-Yves

    2018-05-01

    Results suggest that the combination of bevacizumab plus temozolomide is active in terms of response rate, survival, performance, quality of life, and cognition in elderly patients with glioblastoma multiforme with poor performance status.Whether this combination is superior to temozolomide alone remains to be demonstrated by a randomized study. The optimal treatment of glioblastoma multiforme (GBM) in patients aged ≥70 years with a Karnofsky performance status (KPS) <70 is not established. This clinical trial evaluated the efficacy and safety of upfront temozolomide (TMZ) and bevacizumab (Bev) in patients aged ≥70 years and a KPS <70. Patients aged ≥70 years with a KPS <70 and biopsy-proven GBM were eligible for this multicenter, prospective, nonrandomized, phase II trial of older patients with impaired performance status. Treatment consisted of TMZ administered at 130-150 mg/m 2 per day for 5 days every 4 weeks plus Bev administered at 10 mg/kg every 2 weeks. The trial included 66 patients (median age of 76 years; median KPS of 60). The median overall survival (OS) was 23.9 weeks (95% confidence interval [CI], 19-27.6), and the median progression-free survival (PFS) was 15.3 weeks (95% CI, 12.9-19.3). Twenty-two (33%) patients became transiently capable of self-care (i.e., KPS >70). Cognition and quality of life significantly improved over time during treatment. Grade ≥3 hematological adverse events occurred in 13 (20%) patients, high blood pressure in 16 (24%), venous thromboembolism in 3 (4.5%), cerebral hemorrhage in 2 (3%), and intestinal perforation in 2 (3%). This study suggests that TMZ + Bev treatment is active in elderly patients with GBM with low KPS and has an acceptable tolerance level. ©AlphaMed Press; the data published online to support this summary is the property of the authors.

  1. Down-Regulation of AQP4 Expression via p38 MAPK Signaling in Temozolomide-Induced Glioma Cells Growth Inhibition and Invasion Impairment.

    PubMed

    Chen, Yuqin; Gao, Fei; Jiang, Rong; Liu, Hui; Hou, Jiaojiao; Yi, Yaoxing; Kang, Lili; Liu, Xueyuan; Li, Yuan; Yang, Mei

    2017-12-01

    Glioma is the most common and lethal central nervous system tumors. Temozolomide (TMZ) is an effective drug for malignant glioma, however, the intracellular and molecular mechanisms behind this anti-cancer effect have yet to be fully understood. The aim of the present study was to determine whether TMZ inhibits proliferation, invasion of glioma cells in vitro and whether these effects can be mediated through modulation of aquaporin 4 (AQP4) and phosphorylation of the MAPK pathway. The viability of U87 and U251 human glioma cells was evaluated using MTT assay. The cell cycle distribution was detected with flow cytometry. Migration ability and invasion ability were tested by scratch assays and transwell assays, respectively. The levels of AQP4 and MAPK were measured using immunoblot analyses. Our results showed that TMZ inhibited proliferation, migration and invasion, and induced G2/M arrest in U87 and U251 glioma cell lines. These changes were associated with a decrease in the levels of AQP4 expression as well as activation phosphorylated level of p38. Treatment with a p38 chemical activator (anisomycin) resulted in similar effects as TMZ treatment on glioma cells. And p38 chemical inhibitor (SB203580) could block these effects in glioma treated with TMZ, suggesting a direct up-regulation of the p38 signaling pathway. Therefore, we identified that TMZ might have therapeutic potential for controlling proliferation, invasion of malignant glioma by inhibiting AQP4 expression through activation of p38 signal transduction pathway. J. Cell. Biochem. 118: 4905-4913, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  2. Phase 1/2 Trials of Temozolomide, Motexafin Gadolinium, and 60-Gy Fractionated Radiation for Newly Diagnosed Supratentorial Glioblastoma Multiforme: Final Results of RTOG 0513

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brachman, David G., E-mail: david.brachman@dignityhealth.org; Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, Arizona; Pugh, Stephanie L.

    Purpose: The purpose of phase 1 was to determine the maximum tolerated dose (MTD) of motexafin gadolinium (MGd) given concurrently with temozolomide (TMZ) and radiation therapy (RT) in patients with newly diagnosed supratentorial glioblastoma multiforme (GBM). Phase 2 determined whether this combination improved overall survival (OS) and progression-free survival (PFS) in GBM recursive partitioning analysis class III to V patients compared to therapies for recently published historical controls. Methods and Materials: Dose escalation in phase 1 progressed through 3 cohorts until 2 of 6 patients experienced dose-limiting toxicity or a dose of 5 mg/kg was reached. Once MTD was established, amore » 1-sided 1-sample log-rank test at significance level of .1 had 85% power to detect a median survival difference (13.69 vs 18.48 months) with 60 deaths over a 12-month accrual period and an additional 18 months of follow-up. OS and PFS were estimated using the Kaplan-Meier method. Results: In phase 1, 24 patients were enrolled. The MTD established was 5 mg/kg, given intravenously 5 days a week for the first 10 RT fractions, then 3 times a week for the duration of RT. The 7 patients enrolled in the third dose level and the 94 enrolled in phase 2 received this dose. Of these 101 patients, 87 were eligible and evaluable. Median survival time was 15.6 months (95% confidence interval [CI]: 12.9-17.6 months), not significantly different from that of the historical control (P=.36). Median PFS was 7.6 months (95% CI: 5.7-9.6 months). One patient (1%) experienced a grade 5 adverse event possibly related to therapy during the concurrent phase, and none experience toxicity during adjuvant TMZ therapy. Conclusions: Treatment was well tolerated, but median OS did not reach improvement specified by protocol compared to historical control, indicating that the combination of standard RT with TMZ and MGd did not achieve a significant survival advantage.« less

  3. Phase II randomized study of whole-brain radiation therapy with or without concurrent temozolomide for brain metastases from breast cancer.

    PubMed

    Cao, K I; Lebas, N; Gerber, S; Levy, C; Le Scodan, R; Bourgier, C; Pierga, J-Y; Gobillion, A; Savignoni, A; Kirova, Y M

    2015-01-01

    To improve the therapeutic index of whole-brain radiation therapy (WBRT) in the treatment of brain metastases (BM) from breast cancer, we investigated the efficacy and safety of WBRT combined with temozolomide (TMZ) in this population. This phase II multicenter prospective randomized study included patients with newly diagnosed intraparenchymal BMs from breast cancer, unsuitable for surgery or radiosurgery. All patients received conformal WBRT (3 Gy × 10-30 Gy), with or without concomitant TMZ administered at a dosage of 75 mg/m(2)/day during the irradiation period. The primary end point was objective response rate (ORR) 6 weeks after the end of treatment, defined as a partial or complete response on systematic brain MRI (modified WHO criteria). Secondary end points were progression-free survival (PFS) and overall survival (OS), neurologic symptoms, and tolerability. Between February 2008 and November 2010, 100 patients were enrolled in the study (50 in the WBRT + TMZ arm, 50 in the WBRT arm). Median age was 55 years (29-79). Median follow-up was 9.4 months [1.0-68.1]. ORRs at 6 weeks were 36% in the WBRT arm and 30% in the WBRT + TMZ arm (NS). In the WBRT arm, median PFS was 7.4 months and median OS was 11.1 months. In the WBRT + TMZ arm, median PFS was 6.9 months and median OS was 9.4 months. Treatment was well tolerated in this arm: the most common ≥grade 2 acute toxicity was reversible lymphopenia. WBRT combined with TMZ did not significantly improve local control and survival in patients with BMs from breast cancer. CLINICALTRIALS.GOV: NCT00875355. © The Author 2014. Published by Oxford University Press on behalf of the European Society for Medical Oncology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  4. Formation of DNA adducts and induction of lacI mutations in Big Blue Rat-2 cells treated with temozolomide: implications for the treatment of low-grade adult and pediatric brain tumors.

    PubMed

    Bodell, William J; Gaikwad, Nilesh W; Miller, Douglas; Berger, Mitchel S

    2003-06-01

    Temozolomide (TMZ) is a chemotherapeutic agent used in the treatment of high-grade brain tumors. Treatment of patients with alkylating chemotherapeutic agents has been established to increase their risk for acute myelogenous leukemia. The formation of DNA adducts and induction of mutations are likely to play a role in the etiology of therapy-related acute myeloid leukemia. To evaluate this issue for TMZ, we have measured the formation of DNA adducts and induction of lacI mutations in Big Blue Rat-2 cells treated with TMZ. Treatment of Big Blue Rat-2 cells with either 0, 0.5, or 1 mM TMZ resulted in lacI mutant frequencies of 9.1 +/- 2.9 x 10(-5), 48.9 +/- 12 x 10(-5), and 89.7 +/- 40.3 x 10(-5), respectively. Comparison of the mutant frequencies demonstrated that 0.5 and 1 mM TMZ treatments increased the mutant frequencies by 5.3- and 9.8-fold and that this increase was significant (P < 0.001). Sequence analysis of the lacI mutants from the TMZ treatment group demonstrated that they were GC-->AT transitions at non-CpG sites, which is significantly different from the mutation spectrum observed in the control treatment group. Treatment of Big Blue Rat-2 cells with various concentrations of TMZ produced a linear increase in the levels of N7-methylguanine and O(6)-methylguanine. The lacI mutation spectrum induced by TMZ treatment is consistent with these mutations being produced by O(6)-MeG. This study establishes TMZ has significant mutagenic potential and suggests that careful consideration in the use of TMZ for the treatment of low-grade adult and pediatric brain tumors should be given.

  5. Predicting the outcome of grade II glioma treated with temozolomide using proton magnetic resonance spectroscopy

    PubMed Central

    Guillevin, R; Menuel, C; Taillibert, S; Capelle, L; Costalat, R; Abud, L; Habas, C; De Marco, G; Hoang-Xuan, K; Chiras, J; Vallée, J-N

    2011-01-01

    Background: This study was designed to evaluate proton magnetic resonance spectroscopy (1H-MRS) for monitoring the WHO grade II glioma (low-grade glioma (LGG)) treated with temozolomide (TMZ). Methods: This prospective study included adult patients with progressive LGG that was confirmed by magnetic resonance imaging (MRI). Temozolomide was administered at every 28 days. Response to TMZ was evaluated by monthly MRI examinations that included MRI with volumetric calculations and 1H-MRS for assessing Cho/Cr and Cho/NAA ratios. Univariate, multivariate and receiver-operating characteristic statistical analyses were performed on the results. Results: A total of 21 LGGs from 31 patients were included in the study, and followed for at least n=14 months during treatment. A total of 18 (86%) patients experienced a decrease in tumour volume with a greater decrease of metabolic ratios. Subsequently, five (28%) of these tumours resumed growth despite the continuation of TMZ administration with an earlier increase of metabolic ratios of 2 months. Three (14%) patients did not show any volume or metabolic change. The evolutions of the metabolic ratios, mean(Cho/Cr)n and mean(Cho/NAA)n, were significantly correlated over time (Spearman ρ=+0.95) and followed a logarithmic regression (P>0.001). The evolutions over time of metabolic ratios, mean(Cho/Cr)n and mean(Cho/NAA)n, were significantly correlated with the evolution of the mean relative decrease of tumour volume, mean(ΔVn/Vo), according to a linear regression (P<0.001) in the ‘response/no relapse' patient group, and with the evolution of the mean tumour volume (meanVn), according to an exponential regression (P<0.001) in the ‘response/relapse' patient group. The mean relative decrease of metabolic ratio, mean(Δ(Cho/Cr)n/(Cho/Cr)o), at n=3 months was predictive of tumour response over the 14 months of follow-up. The mean relative change between metabolic ratios, mean((Cho/NAA)n−(Cho/Cr)n)/(Cho/NAA)n, at n=4 months was

  6. Safety and pharmacokinetics of dose-intensive imatinib mesylate plus temozolomide: Phase 1 trial in adults with malignant glioma

    PubMed Central

    Reardon, David A.; Desjardins, Annick; Vredenburgh, James J.; Sathornsumetee, Sith; Rich, Jeremy N.; Quinn, Jennifer A.; Lagattuta, Theodore F.; Egorin, Merrill J.; Gururangan, Sridharan; McLendon, Roger; Herndon, James E.; Friedman, Allan H.; Salvado, August J.; Friedman, Henry S.

    2008-01-01

    We determined the maximum tolerated dose (MTD) and dose-limiting toxicity (DLT) of imatinib mesylate, an inhibitor of the receptor tyrosine kinases platelet-derived growth factor receptor (PDGFR), the proto-oncogene product c-kit, and the fusion protein Bcr-Abl, when administered for 8 days in combination with temozolomide (TMZ) to malignant glioma (MG) patients. MG patients who had not failed prior TMZ were eligible to receive TMZ at a dose of 150–200 mg/m2 per day on days 4–8 plus imatinib mesylate administered orally on days 1–8 of each 4-week cycle. Patients were stratified based on concurrent administration of CYP3A4-inducing antiepileptic drugs (EIAEDs). The imatinib dose was escalated in successive cohorts of patients independently for each stratum. Imatinib, at doses ranging from 400 mg to 1,200 mg, was administered with TMZ to 65 patients: 52 (80%) with glioblastoma multiforme (GBM) and 13 (20%) with grade III MG. At enrollment, 34 patients (52%) had stable disease, and 33 (48%) had progressive disease; 30 patients (46%) were on EIAEDs. The MTD of imatinib for patients concurrently receiving or not receiving EIAEDs was 1,000 mg. DLTs were hematologic, gastrointestinal, renal, and hepatic. Pharmacokinetic analyses revealed lowered exposures and enhanced clearance among patients on EIAEDs. Among GBM patients with stable disease at enrollment (n = 28), the median progression-free and overall survival times were 41.7 and 56.1 weeks, respectively. Imatinib doses up to 1,000 mg/day for 8 consecutive days are well tolerated when combined with standard TMZ dosing for MG patients. A subsequent phase 2 study is required to further evaluate the efficacy of this regimen for this patient population. PMID:18359865

  7. Additional increased effects of mannitol-temozolomide combined treatment on blood-brain barrier permeability.

    PubMed

    Choi, Chunggab; Kim, Hye Min; Shon, Jeeheun; Park, Jiae; Kim, Hyeong-Taek; Oh, Seung-Hun; Kim, Nam Keun; Kim, Ok Joon

    2018-03-04

    The blood-brain barrier (BBB) is major obstacle in drug or stem cell treatment in chronic stroke. We hypothesized that adding mannitol to temozolomide (TMZ) is a practically applicable method for resolving the low efficacy of intravenous mannitol therapy. In this study, we investigated whether BBB permeability could be increased by this combined treatment. First, we established a chronic ischemic stroke rat model and examined changes in leakage of Evans blue dye within a lesion site, and in expression of tight junction proteins (TJPs), by this combined treatment. Additionally, in an in vitro BBB model using trans-wells, we analyzed changes in diffusion of a fluorescent tracer and in expression of TJPs. Mannitol-TMZ combined treatment not only increased the amount of Evans blue dye within the stroke lesion site, but also reduced occludin expression in rat brain microvessels. The in vitro study also showed that combined treatment increased the permeability for two different-sized fluorescent tracers, especially large size, and decreased expression of TJPs, such as occludin and ZO-1. Increased BBB permeability effects were more prominent with combined than with single treatments. Mannitol-TMZ combined treatment induced a decrease of TJPs with a consequent increase in BBB permeability. This combined treatment is clinically useful and might provide new therapeutic options by enabling efficient intracerebral delivery of various drugs that could not otherwise be used to treat many CNS diseases due to their inability to penetrate the BBB. Copyright © 2018 Elsevier Inc. All rights reserved.

  8. Phase 2 trial of temozolomide using protracted low-dose and whole-brain radiotherapy for nonsmall cell lung cancer and breast cancer patients with brain metastases.

    PubMed

    Addeo, Raffaele; De Rosa, Carmine; Faiola, Vincenzo; Leo, Luigi; Cennamo, Gregorio; Montella, Liliana; Guarrasi, Rosario; Vincenzi, Bruno; Caraglia, Michele; Del Prete, Salvatore

    2008-11-01

    Temozolomide (TMZ), an oral methylating imidazotetrazinone, has antitumor activity against gliomas, malignant melanomas, and brain metastasis and is presently administered as a 5-day oral schedule every 4 weeks. A single-institution phase 2 clinical trial was conducted to determine the efficacy and the safety profile of a new regimen based on a dose-intensified, protracted course of TMZ after whole-brain radiotherapy (WBRT). Patients were eligible if they had at least 1 bidimensionally measurable brain metastasis from breast cancer and nonsmall cell lung cancer (NSCLC). Twenty-seven patients were treated with 30 grays (Gy) of WBRT with concomitant TMZ (75 mg/m(2)/day) for 10 days, and subsequent TMZ at a dose of 75 mg/m(2) per day for 21 days every 4 weeks, for up to 12 cycles. Two complete responses (7.4%) and 11 partial responses (40.7%) were achieved. The schedule appeared to be well tolerated, with grade 3 toxicity (graded according to National Cancer Institute Common Toxicity Criteria) observed in only 2 patients. The overall median survival was 8.8 months and the median progression-free survival was 6 months. The concomitant use of WBRT and protracted low-dose TMZ appears to be an active, well-tolerated regimen. The observed antitumor activity suggests the need for further investigation of this schedule in combination with other anticancer agents for the concomitant treatment of brain metastases and primary cancers.

  9. Comparison of the effectiveness of whole-brain radiotherapy plus temozolomide versus whole-brain radiotherapy in treating brain metastases based on a systematic review of randomized controlled trials.

    PubMed

    Bai, Gui-Rong; An, Jin-Bing; Chu, Yang; Wang, Xiang-Yang; Li, Shu-Ming; Yan, Kai-Jing; Lü, Fu-Rong; Gu, Ning; Griffin, Amanda N; Sun, Bin-Yuan; Li, Wei; Wang, Guo-Cheng; Zhou, Shui-Ping; Sun, He; Liu, Chang-Xiao

    2016-01-01

    Temozolomide (TMZ) combination with whole-brain radiotherapy (WBRT) has been tested by many randomized controlled trials in the treatment of brain metastases (BMs) in China and other countries. We performed an up-to-date meta-analysis to determine (i) the log odds ratios (LORs) of objective response (ORR) and adverse effects (AEs) for all-grade, and (ii) the T value of mean overall survival in patients with BMs treated with WBRT combined with TMZ versus WBRT alone. PubMed, Chinese National Knowledge Infrastructure, and WanFang Data were searched for articles published up to 28 January 2015. Eligible studies were selected according to the PRISMA statement. ORR, AEs, and 95% confidence intervals were calculated using random-effects models. Eighteen studies were included in our analysis. A total of 1028 participants were enrolled. Summary LORs of ORR were 1.0239 (P<0.0001) on comparing WBRT plus TMZ with WBRT ORR (n=17). The overall mean difference of mean overall survival (n=17) between TMZ plus WBRT and WBRT was 2.2505 weeks (P=0.02185). There was a significant difference between WBRT plus TMZ and WBRT alone with a LOR of AEs for all-grade of (i) 0.923 for gastrointestinal toxicity and (ii) 0.7978 for myelosuppression. Sensitivity analysis and subgroup analysis were also performed. The 18 eligible randomized controlled trials demonstrated that the combination of WBRT and TMZ significantly improves the ORR and is statistically insignificant in prolonging the survival of patients with BMs. In addition, an increase in the incidence of gastrointestinal toxicity and myelosuppression was significant for all-grade.

  10. Phase 2 Study of Temozolomide-Based Chemoradiation Therapy for High-Risk Low-Grade Gliomas: Preliminary Results of Radiation Therapy Oncology Group 0424

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fisher, Barbara J., E-mail: barbara.fisher@lhsc.on.ca; Hu, Chen; Macdonald, David R.

    2015-03-01

    Purpose: Radiation Therapy Oncology Group (RTOG) 0424 was a phase 2 study of a high-risk low-grade glioma (LGG) population who were treated with temozolomide (TMZ) and radiation therapy (RT), and outcomes were compared to those of historical controls. This study was designed to detect a 43% increase in median survival time (MST) from 40.5 to 57.9 months and a 20% improvement in 3-year overall survival (OS) rate from 54% to 65% at a 10% significance level (1-sided) and 96% power. Methods and Materials: Patients with LGGs with 3 or more risk factors for recurrence (age ≥40 years, astrocytoma histology, bihemispherical tumor, preoperativemore » tumor diameter of ≥6 cm, or a preoperative neurological function status of >1) were treated with RT (54 Gy in 30 fractions) and concurrent and adjuvant TMZ. Results: From 2005 to 2009, 129 evaluable patients (75 males and 54 females) were accrued. Median age was 49 years; 91% had a Zubrod score of 0 or 1; and 69%, 25%, and 6% of patients had 3, 4, and 5 risk factors, respectively. Patients had median and minimum follow-up examinations of 4.1 years and 3 years, respectively. The 3-year OS rate was 73.1% (95% confidence interval: 65.3%-80.8%), which was significantly improved compared to that of prespecified historical control values (P<.001). Median survival time has not yet been reached. Three-year progression-free survival was 59.2%. Grades 3 and 4 adverse events occurred in 43% and 10% of patients, respectively. One patient died of herpes encephalitis. Conclusions: The 3-year OS rate of 73.1% for RTOG 0424 high-risk LGG patients is higher than that reported for historical controls (P<.001) and the study-hypothesized rate of 65%.« less

  11. Radiation Therapy Dose Escalation for Glioblastoma Multiforme in the Era of Temozolomide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Badiyan, Shahed N.; Markovina, Stephanie; Simpson, Joseph R.

    Purpose: To review clinical outcomes of moderate dose escalation using high-dose radiation therapy (HDRT) in the setting of concurrent temozolomide (TMZ) in patients with newly diagnosed glioblastoma multiforme (GBM), compared with standard-dose radiation therapy (SDRT). Methods and Materials: Adult patients aged <70 years with biopsy-proven GBM were treated with SDRT (60 Gy at 2 Gy per fraction) or with HDRT (>60 Gy) and TMZ from 2000 to 2012. Biological equivalent dose at 2-Gy fractions was calculated for the HDRT assuming an α/β ratio of 5.6 for GBM. Results: Eighty-one patients received SDRT, and 128 patients received HDRT with a median (range) biological equivalent dosemore » at 2-Gy fractions of 64 Gy (61-76 Gy). Overall median follow-up time was 1.10 years, and for living patients it was 2.97 years. Actuarial 5-year overall survival (OS) and progression-free survival (PFS) rates for patients that received HDRT versus SDRT were 12.4% versus 13.2% (P=.71), and 5.6% versus 4.1% (P=.54), respectively. Age (P=.001) and gross total/near-total resection (GTR/NTR) (P=.001) were significantly associated with PFS on multivariate analysis. Younger age (P<.0001), GTR/NTR (P<.0001), and Karnofsky performance status ≥80 (P=.001) were associated with improved OS. On subset analyses, HDRT failed to improve PFS or OS for those aged <50 years or those who had GTR/NTR. Conclusion: Moderate radiation therapy dose escalation above 60 Gy with concurrent TMZ does not seem to improve clinical outcomes for patients with GBM.« less

  12. Phase I trial of hydroxychloroquine with dose-intense temozolomide in patients with advanced solid tumors and melanoma.

    PubMed

    Rangwala, Reshma; Leone, Robert; Chang, Yunyoung C; Fecher, Leslie A; Schuchter, Lynn M; Kramer, Amy; Tan, Kay-See; Heitjan, Daniel F; Rodgers, Glenda; Gallagher, Maryann; Piao, Shengfu; Troxel, Andrea B; Evans, Tracey L; DeMichele, Angela M; Nathanson, Katherine L; O'Dwyer, Peter J; Kaiser, Jonathon; Pontiggia, Laura; Davis, Lisa E; Amaravadi, Ravi K

    2014-08-01

    Blocking autophagy with hydroxychloroquine (HCQ) augments cell death associated with alkylating chemotherapy in preclinical models. This phase I study evaluated the maximum tolerated dose (MTD), safety, preliminary activity, pharmacokinetics, and pharmacodynamics of HCQ in combination with dose-intense temozolomide (TMZ) in patients with advanced solid malignancies. Forty patients (73% metastatic melanoma) were treated with oral HCQ 200 to 1200 mg daily with dose-intense oral TMZ 150 mg/m (2) daily for 7/14 d. This combination was well tolerated with no recurrent dose-limiting toxicities observed. An MTD was not reached for HCQ and the recommended phase II dose was HCQ 600 mg twice daily combined with dose-intense TMZ. Common toxicities included grade 2 fatigue (55%), anorexia (28%), nausea (48%), constipation (20%), and diarrhea (20%). Partial responses and stable disease were observed in 3/22 (14%) and 6/22 (27%) patients with metastatic melanoma. In the final dose cohort 2/6 patients with refractory BRAF wild-type melanoma had a near complete response, and prolonged stable disease, respectively. A significant accumulation in autophagic vacuoles (AV) in peripheral blood mononuclear cells was observed in response to combined therapy. Population pharmacokinetics (PK) modeling, individual PK simulations, and PK-pharmacodynamics (PD) analysis identified a threshold HCQ peak concentration that predicts therapy-associated AV accumulation. This study indicates that the combination of high-dose HCQ and dose-intense TMZ is safe and tolerable, and is associated with autophagy modulation in patients. Prolonged stable disease and responses suggest antitumor activity in melanoma patients, warranting further studies of this combination, or combinations of more potent autophagy inhibitors and chemotherapy in melanoma.

  13. Inhibition of Wnt/beta-catenin signaling downregulates expression of aldehyde dehydrogenase isoform 3A1 (ALDH3A1) to reduce resistance against temozolomide in glioblastoma in vitro.

    PubMed

    Suwala, Abigail Kora; Koch, Katharina; Rios, Dayana Herrera; Aretz, Philippe; Uhlmann, Constanze; Ogorek, Isabella; Felsberg, Jörg; Reifenberger, Guido; Köhrer, Karl; Deenen, René; Steiger, Hans-Jakob; Kahlert, Ulf D; Maciaczyk, Jaroslaw

    2018-04-27

    Glioblastoma is the most aggressive type of glioma. The Wingless (Wnt) signaling pathway has been shown to promote stem cell properties and resistance to radio- and chemotherapy in glioblastoma. Here, we demonstrate that pharmacological Wnt pathway inhibition using the porcupine inhibitor LGK974 acts synergistically with temozolomide (TMZ), the chemotherapeutic drug currently used as standard treatment for glioblastoma, to suppress in vitro growth of glioma cells. Synergistic growth inhibition was independent of the O 6 -alkylguanine DNA alkyltransferase ( MGMT ) promoter methylation status. Transcriptomic analysis revealed that expression of aldehyde dehydrogenase 3A1 ( ALDH3A1 ) was significantly down-regulated when cells were treated with LGK974 and TMZ. Suppressing ALDH3A1 expression increased the efficacy of TMZ and reduced clonogenic potential accompanied by decreased expression of stem cell markers CD133, Nestin and Sox2. Taken together, our study suggests that previous observations concerning Wnt signaling blockade to reduce chemoresistance in glioblastoma is at least in part mediated by inhibition of ALDH3A1.

  14. Oncolytic Adenovirus With Temozolomide Induces Autophagy and Antitumor Immune Responses in Cancer Patients

    PubMed Central

    Liikanen, Ilkka; Ahtiainen, Laura; Hirvinen, Mari LM; Bramante, Simona; Cerullo, Vincenzo; Nokisalmi, Petri; Hemminki, Otto; Diaconu, Iulia; Pesonen, Sari; Koski, Anniina; Kangasniemi, Lotta; Pesonen, Saila K; Oksanen, Minna; Laasonen, Leena; Partanen, Kaarina; Joensuu, Timo; Zhao, Fang; Kanerva, Anna; Hemminki, Akseli

    2013-01-01

    Oncolytic adenoviruses and certain chemotherapeutics can induce autophagy and immunogenic cancer cell death. We hypothesized that the combination of oncolytic adenovirus with low-dose temozolomide (TMZ) is safe, effective, and capable of inducing antitumor immune responses. Metronomic low-dose cyclophosphamide (CP) was added to selectively reduce regulatory T-cells. Preclinically, combination therapy inhibited tumor growth, increased autophagy, and triggered immunogenic cell death as indicated by elevated calreticulin, adenosine triphosphate (ATP) release, and nuclear protein high-mobility group box-1 (HMGB1) secretion. A total of 41 combination treatments given to 17 chemotherapy-refractory cancer patients were well tolerated. We observed anti- and proinflammatory cytokine release, evidence of virus replication, and induction of neutralizing antibodies. Tumor cells showed increased autophagy post-treatment. Release of HMGB1 into serum—a possible indicator of immune response—increased in 60% of treatments, and seemed to correlate with tumor-specific T-cell responses, observed in 10/15 cases overall (P = 0.0833). Evidence of antitumor efficacy was seen in 67% of evaluable treatments with a trend for increased survival over matched controls treated with virus only. In summary, the combination of oncolytic adenovirus with low-dose TMZ and metronomic CP increased tumor cell autophagy, elicited antitumor immune responses, and showed promising safety and efficacy. PMID:23546299

  15. Meta-analysis of whole-brain radiotherapy plus temozolomide compared with whole-brain radiotherapy for the treatment of brain metastases from non-small-cell lung cancer.

    PubMed

    Xin, Yong; Guo, WenWen; Yang, Chun Sheng; Huang, Qian; Zhang, Pei; Zhang, Long Zhen; Jiang, Guan

    2018-04-01

    The aim of this meta-analysis was to compare the efficiency of whole-brain radiotherapy (WBRT) plus temozolomide (TMZ) with WBRT for the treatment of brain metastases from non-small-cell lung cancer (NSCLC). For dichotomous variables, outcomes were reported as relative risk ratio (RR) and 95% confidence interval (CI) was used to investigate the following outcome measures: overall response rate, headache, gastrointestinal adverse reactions, and hematological adverse reactions. Twelve randomized controlled trials involving 925 participants (480 received WBRT plus TMZ; 445 received WBRT) were included in the meta-analysis. There was a significant difference between the overall response rate (RR = 1.40, 95% CI 1.24-1.57; Z = 5.51; P < 0.00001), gastrointestinal adverse reactions (RR = 1.46, 95% CI 1.05-2.04; Z = 2.27; P = 0.02), and hematological adverse reactions (RR = 1.45, 95% CI 1.04-2.02; Z = 2.21; P = 0.03) of patients treated with WBRT plus TMZ compared with patients treated with WBRT alone. There was no significant difference between headaches (RR = 1.11, 95% CI 0.93-1.02; Z = 1.13; P = 0.26) in patients treated with WBRT plus TMZ compared with patients treated with WBRT alone. In conclusion, the currently available evidence shows that WBRT plus TMZ increases the overall response rate in patients with brain metastases of NSCLC compared with WBRT alone. © 2018 The Authors. Cancer Medicine published by John Wiley & Sons Ltd.

  16. Survival and Death Strategies in Glioma Cells: Autophagy, Senescence and Apoptosis Triggered by a Single Type of Temozolomide-Induced DNA Damage

    PubMed Central

    Knizhnik, Anna V.; Roos, Wynand P.; Nikolova, Teodora; Quiros, Steve; Tomaszowski, Karl-Heinz; Christmann, Markus; Kaina, Bernd

    2013-01-01

    Apoptosis, autophagy, necrosis and cellular senescence are key responses of cells that were exposed to genotoxicants. The types of DNA damage triggering these responses and their interrelationship are largely unknown. Here we studied these responses in glioma cells treated with the methylating agent temozolomide (TMZ), which is a first-line chemotherapeutic for this malignancy. We show that upon TMZ treatment cells undergo autophagy, senescence and apoptosis in a specific time-dependent manner. Necrosis was only marginally induced. All these effects were completely abrogated in isogenic glioma cells expressing O6-methylguanine-DNA methyltransferase (MGMT), indicating that a single type of DNA lesion, O6-methylguanine (O6MeG), is able to trigger all these responses. Studies with mismatch repair mutants and MSH6, Rad51 and ATM knockdowns revealed that autophagy induced by O6MeG requires mismatch repair and ATM, and is counteracted by homologous recombination. We further show that autophagy, which precedes apoptosis, is a survival mechanism as its inhibition greatly ameliorated the level of apoptosis following TMZ at therapeutically relevant doses (<100 µM). Cellular senescence increases with post-exposure time and, similar to autophagy, precedes apoptosis. If autophagy was abrogated, TMZ-induced senescence was reduced. Therefore, we propose that autophagy triggered by O6MeG adducts is a survival mechanism that stimulates cells to undergo senescence rather than apoptosis. Overall, the data revealed that a specific DNA adduct, O6MeG, has the capability of triggering autophagy, senescence and apoptosis and that the decision between survival and death is determined by the balance of players involved. The data also suggests that inhibition of autophagy may ameliorate the therapeutic outcome of TMZ-based cancer therapy. PMID:23383259

  17. The efficacy of the Wee1 inhibitor MK-1775 combined with temozolomide is limited by heterogeneous distribution across the blood-brain barrier in glioblastoma

    PubMed Central

    Pokorny, Jenny L.; Calligaris, David; Gupta, Shiv K.; Iyekegbe, Dennis O.; Mueller, Dustin; Bakken, Katrina K.; Carlson, Brett L.; Schroeder, Mark A.; Evans, Debra L.; Lou, Zhenkun; Decker, Paul A.; Eckel-Passow, Jeanette E.; Pucci, Vincenzo; Ma, Bennett; Shumway, Stuart D.; Elmquist, William; Agar, Nathalie Y.; Sarkaria, Jann N.

    2015-01-01

    Purpose Wee1 regulates key DNA damage checkpoints, and in this study, the efficacy of the Wee1 inhibitor MK-1775 was evaluated in GBM xenograft models alone and in combination with radiation and/or temozolomide (TMZ). Experimental design In vitro MK-1775 efficacy alone and in combination with TMZ, and the impact on DNA damage was analyzed by western blotting and γH2AX foci formation. In vivo efficacy was evaluated in orthotopic and heterotopic xenografts. Drug distribution was assessed by conventional mass spectrometry (MS) and matrix-assisted laser desorption/ionization (MALDI) -MS imaging. Results GBM22 (IC50 = 68 nM) was significantly more sensitive to MK-1775 compared to 5 other GBM xenograft lines including GBM6 (IC50 >300 nM), and this was associated with a significant difference in pan-nuclear γH2AX staining between treated GBM22 (81% cells positive) and GBM6 (20% cells positive) cells. However, there was no sensitizing effect of MK-1775 when combined with TMZ in vitro. In an orthotopic GBM22 model, MK-1775 was ineffective when combined with TMZ, while in a flank model of GBM22, MK-1775 exhibited both single agent and combinatorial activity with TMZ. Consistent with limited drug delivery into orthotopic tumors, the normal brain to whole blood ratio following a single MK-1775 dose was 5%, and MALDI-MS imaging demonstrated heterogeneous and markedly lower MK-1775 distribution in orthotopic as compared to heterotopic GBM22 tumors. Conclusions Limited distribution to brain tumors may limit the efficacy of MK-1775 in GBM. PMID:25609063

  18. Phase III randomized study of radiation and temozolomide versus radiation and nitrosourea therapy for anaplastic astrocytoma: results of NRG Oncology RTOG 9813.

    PubMed

    Chang, Susan; Zhang, Peixin; Cairncross, J Gregory; Gilbert, Mark R; Bahary, Jean-Paul; Dolinskas, Carol A; Chakravarti, Arnab; Aldape, Kenneth D; Bell, Erica H; Schiff, David; Jaeckle, Kurt; Brown, Paul D; Barger, Geoffrey R; Werner-Wasik, Maria; Shih, Helen; Brachman, David; Penas-Prado, Marta; Robins, H Ian; Belanger, Karl; Schultz, Christopher; Hunter, Grant; Mehta, Minesh

    2017-02-01

    The primary objective of this study was to compare the overall survival (OS) of patients with anaplastic astrocytoma (AA) treated with radiotherapy (RT) and either temozolomide (TMZ) or a nitrosourea (NU). Secondary endpoints were time to tumor progression (TTP), toxicity, and the effect of IDH1 mutation status on clinical outcome. Eligible patients with centrally reviewed, histologically confirmed, newly diagnosed AA were randomized to receive either RT+TMZ (n = 97) or RT+NU (n = 99). The study closed early because the target accrual rate was not met. Median follow-up time for patients still alive was 10.1 years (1.9-12.6 y); 66% of the patients died. Median survival time was 3.9 years in the RT/TMZ arm (95% CI, 3.0-7.0) and 3.8 years in the RT/NU arm (95% CI, 2.2-7.0), corresponding to a hazard ratio (HR) of 0.94 (P = .36; 95% CI, 0.67-1.32). The differences in progression-free survival (PFS) and TTP between the 2 arms were not statistically significant. Patients in the RT+NU arm experienced more grade ≥3 toxicity (75.8% vs 47.9%, P < .001), mainly related to myelosuppression. Of the 196 patients, 111 were tested for IDH1-R132H status (60 RT+TMZ and 51 RT+NU). Fifty-four patients were IDH negative and 49 were IDH positive with a better OS in IDH-positive patients (median survival time 7.9 vs 2.8 y; P = .004, HR = 0.50; 95% CI, 0.31-0.81). RT+TMZ did not appear to significantly improve OS or TTP for AA compared with RT+ NU. RT+TMZ was better tolerated. IDH1-R132H mutation was associated with longer survival. © The Author(s) 2016. Published by Oxford University Press on behalf of the Society for Neuro-Oncology. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com

  19. Sustained CD4+ T cell-driven lymphopenia without a compensatory IL-7/IL-15 response among high-grade glioma patients treated with radiation and temozolomide

    PubMed Central

    Ellsworth, Susannah; Balmanoukian, Ani; Kos, Ferdynand; Nirschl, Christopher J; Nirschl, Thomas R; Grossman, Stuart A; Luznik, Leo; Drake, Charles G

    2014-01-01

    Prolonged lymphopenia correlating with decreased survival commonly occurs among glioma patients undergoing radiation therapy (RT) and temozolomide (TMZ) treatment. To better understand the pathophysiology of this phenomenon, we prospectively monitored serum cytokine levels and lymphocyte subsets in 15 high-grade glioma patients undergoing combined radiation and TMZ (referred to as RT/TMZ) treatment. Sufficient data for analysis were acquired from 11 of the patients initially enrolled. Lymphocyte phenotyping data were obtained using cytofluorometric analysis and serum cytokine levels were measured using the a multiplex bead-based assays. Total lymphocyte counts (TLCs) were > 1000 cells per μL peripheral blood in 10/11 patients at baseline, but dropped significantly after treatment. Specifically, after RT/TMZ therapy, the TLCs were found to be < 500 cells/μL in 2/11 patients, 500–1000 cells/μL in 7/11 patients, and > 1000 cells/μL in the remaining 2 patients. Among residual mononuclear blood cells, we observed a proportional drop in B and CD4+ T cells but not in CD8+ T lymphocytes. Natural killer cells remained to near-to-baseline levels and there was a transient and slight (insignificant) increase in regulatory T cells (Tregs). The circulating levels of IL-7 and IL-15 remained low despite marked drops in both the total and CD4+ T lymphocyte counts. Thus, patients with malignant glioma undergoing RT/TMZ treatment exhibit a marked decline in TLCs, affecting both CD4+ T cells and B lymphocytes, in the absence of a compensatory increase in interleukin-7 levels. The failure to mount an appropriate homeostatic cytokine response may be responsible for the prolonged lymphopenia frequently observed in these patients. PMID:24790790

  20. Transferrin-tailored solid lipid nanoparticles as vectors for site-specific delivery of temozolomide to brain

    NASA Astrophysics Data System (ADS)

    Jain, Aviral; Singhai, Priyanka; Gurnany, Ekta; Updhayay, Satish; Mody, Nishi

    2013-03-01

    Blood-brain barrier restricts the uptake of many important hydrophilic drugs and limits their efficacy in the treatment of brain diseases because of the presence of tight junctions, high metabolic capacity, low pinocytic vesicular traffic, and efficient efflux mechanisms. In the present project, transferrin (Tf)-conjugated solid lipid nanoparticles (Tf-SLNs) were investigated for their ability to deliver temozolomide (TMZ) to the brain. SLNs were prepared by an ethanol injection method using hydrogenated soya phosphatidylcholine, triolein, cholesterol and distearoylphosphatidylethanolamine. Conjugation of SLNs with Tf was achieved by incubation of Tf with TMZ-loaded SLNs in the presence of 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide hydrochloride in phosphate buffered saline (pH 7.4) as a cross linker. SLNs preparation were characterized for particle size, polydispersity index, zeta potential, surface morphology, percent drug entrapment efficiency, in vitro drug release, and hemolytic toxicity studies. In vitro cytotoxicity studies were performed on human cancer cell lines. The average size was found to be 221 ± 3.22 nm with entrapment efficiency of 69.83 ± 2.52 and 249 ± 2.61 nm with entrapment efficiency decreased to 64.21 ± 2.27 % for unconjugated SLNs and Tf-SLNs, respectively. Fluorescence studies revealed the enhanced uptake of Tf-SLNs in brain tissue compared with unconjugated SLNs.

  1. Long-term survival in patients with metastatic melanoma treated with DTIC or temozolomide.

    PubMed

    Kim, Christina; Lee, Christopher W; Kovacic, Laurel; Shah, Amil; Klasa, Richard; Savage, Kerry J

    2010-01-01

    Patients with metastatic melanoma typically have a poor outcome; however, a small proportion of patients achieve long-term survival (LTS). It is unclear how often LTS is related to sensitivity to chemotherapy. All patients with metastatic melanoma treated with either dacarbazine (DTIC) or temozolomide (TMZ) at the British Columbia Cancer Agency (BCCA) from January 1, 1988 to February 1, 2006 were identified through the BCCA pharmacy electronic database, which was then linked to the surveillance and outcomes unit to identify patients with LTS, defined as survival > or =18 months following chemotherapy. In total, 397 patients were treated with either DTIC (n = 349) or TMZ (n = 48) and 43 patients (10.8%) were identified with LTS. Two additional patients with LTS were added prior to 1988 for a total of 45 patients. The 5-year overall and progression-free survival rates for patients with LTS were 33% and 16%, respectively. In total, 16% had a complete response (CR) to chemotherapy, which was the only factor identified that correlated with survival in the multivariate analysis. However, most patients with LTS had an incomplete response to chemotherapy. LTS occurs in select patients who achieve a CR to chemotherapy. However, this occurs in only a minority of patients and, in most cases, the longer survival is likely the result of indolent disease biology or host factors.

  2. Long-Term Survival in Patients with Metastatic Melanoma Treated with DTIC or Temozolomide

    PubMed Central

    Kim, Christina; Lee, Christopher W.; Kovacic, Laurel; Shah, Amil; Klasa, Richard

    2010-01-01

    Background. Patients with metastatic melanoma typically have a poor outcome; however, a small proportion of patients achieve long-term survival (LTS). It is unclear how often LTS is related to sensitivity to chemotherapy. Methods. All patients with metastatic melanoma treated with either dacarbazine (DTIC) or temozolomide (TMZ) at the British Columbia Cancer Agency (BCCA) from January 1, 1988 to February 1, 2006 were identified through the BCCA pharmacy electronic database, which was then linked to the surveillance and outcomes unit to identify patients with LTS, defined as survival ≥18 months following chemotherapy. Results. In total, 397 patients were treated with either DTIC (n = 349) or TMZ (n = 48) and 43 patients (10.8%) were identified with LTS. Two additional patients with LTS were added prior to 1988 for a total of 45 patients. The 5-year overall and progression-free survival rates for patients with LTS were 33% and 16%, respectively. In total, 16% had a complete response (CR) to chemotherapy, which was the only factor identified that correlated with survival in the multivariate analysis. However, most patients with LTS had an incomplete response to chemotherapy. Conclusions. LTS occurs in select patients who achieve a CR to chemotherapy. However, this occurs in only a minority of patients and, in most cases, the longer survival is likely the result of indolent disease biology or host factors. PMID:20538743

  3. The simulation of UV spectroscopy and electronic analysis of temozolomide and dacarbazine chemical decomposition to their metabolites.

    PubMed

    Khalilian, M Hossein; Mirzaei, Saber; Taherpour, Avat Arman

    2016-11-01

    The electronic features of anti-tumor agent, temozolomide, and its degradation products (MTIC and metabolite AIC) have been traced by means of UV absorption spectroscopy in vacuo and aqueous media. For comparison, electronic spectra of related structures and drugs (e.g., dacarbazine) were also investigated. These investigations were carried out using time-dependent density functional theory (TD-DFT) method while the conductor like screening model (COSMO) were applied for the inclusion of solvent effects in electronic spectra. From functional benchmarking, two methods; B3LYP and O3LYP were selected among several other methods with 6-311+G(2d,p) basis set aiming to get the best results in accord with the experimental values. An assessment of the obtained spectra has shown that O3LYP functional gives a mean absolute error (MAE) from experimental absorption peaks of 4.3 nm compared to the 7.2 nm MAE value at B3LYP level in aqueous media. Furthermore, since the structural and tautomeric conformers affect the electronic spectra, conformational preferences have been analyzed in temozolomide, dacarbazine, and their related structures. Temozolomide structure possesses two rotamers that differ in the orientation of carboxamide moiety with a small energy difference (energy difference of 1.39 kcal mol -1 in vacuo and 0.35 kcal mol -1 in aqueous media at B3LYP/6-311++G(2df,3pd). The more stable and meta-stable TMZ rotamer have shown their absorption maxima at 329-334 nm, respectively, at O3LYP level in aqueous media. Applying statistical calculation according to Boltzmann population formula at 25 °C and computed weighed mean estimates the λ max of temozolomide at 331 nm, which is in notable agreement with the experimental value (330 nm). Moreover, molecular orbital composition analysis has been conducted in order to interpret these findings. Graphical Abstract Temozolomide and dacarbazine.

  4. A Phase 2 Study of Concurrent Radiation Therapy, Temozolomide, and the Histone Deacetylase Inhibitor Valproic Acid for Patients With Glioblastoma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krauze, Andra V.; Myrehaug, Sten D.; Chang, Michael G.

    Purpose: Valproic acid (VPA) is an antiepileptic agent with histone deacetylase inhibitor (HDACi) activity shown to sensitize glioblastoma (GBM) cells to radiation in preclinical models. We evaluated the addition of VPA to standard radiation therapy (RT) plus temozolomide (TMZ) in patients with newly diagnosed GBM. Methods and Materials: Thirty-seven patients with newly diagnosed GBM were enrolled between July 2006 and April 2013. Patients received VPA, 25 mg/kg orally, divided into 2 daily doses concurrent with RT and TMZ. The first dose of VPA was given 1 week before the first day of RT at 10 to 15 mg/kg/day and subsequently increased up to 25 mg/kg/daymore » over the week prior to radiation. VPA- and TMZ-related acute toxicities were evaluated using Common Toxicity Criteria version 3.0 (National Cancer Institute Cancer Therapy Evaluation Program) and Cancer Radiation Morbidity Scoring Scheme for toxicity and adverse event reporting (Radiation Therapy Oncology Group/European Organization for Research and Treatment). Results: A total of 81% of patients took VPA according to protocol. Median overall survival (OS) was 29.6 months (range: 21-63.8 months), and median progression-free survival (PFS) was 10.5 months (range: 6.8-51.2 months). OS at 6, 12, and 24 months was 97%, 86%, and 56%, respectively. PFS at 6, 12, and 24 months was 70%, 43%, and 38% respectively. The most common grade 3/4 toxicities of VPA in conjunction with RT/TMZ therapy were blood and bone marrow toxicity (32%), neurological toxicity (11%), and metabolic and laboratory toxicity (8%). Younger age and class V recursive partitioning analysis (RPA) results were significant for both OS and PFS. VPA levels were not correlated with grade 3 or 4 toxicity levels. Conclusions: Addition of VPA to concurrent RT/TMZ in patients with newly diagnosed GBM was well tolerated. Additionally, VPA may result in improved outcomes compared to historical data and merits further study.« less

  5. Prognostic value of the Glasgow Prognostic Score for glioblastoma multiforme patients treated with radiotherapy and temozolomide.

    PubMed

    Topkan, Erkan; Selek, Ugur; Ozdemir, Yurday; Yildirim, Berna A; Guler, Ozan C; Ciner, Fuat; Mertsoylu, Huseyin; Tufan, Kadir

    2018-04-25

    To evaluate the prognostic value of the Glasgow Prognostic Score (GPS), the combination of C-reactive protein (CRP) and albumin, in glioblastoma multiforme (GBM) patients treated with radiotherapy (RT) and concurrent plus adjuvant temozolomide (GPS). Data of newly diagnosed GBM patients treated with partial brain RT and concurrent and adjuvant TMZ were retrospectively analyzed. The patients were grouped into three according to the GPS criteria: GPS-0: CRP < 10 mg/L and albumin > 35 g/L; GPS-1: CRP < 10 mg/L and albumin < 35 g/L or CRP > 10 mg/L and albumin > 35 g/L; and GPS-2: CRP > 10 mg/L and albumin < 35 g/L. Primary end-point was the association between the GPS groups and the overall survival (OS) outcomes. A total of 142 patients were analyzed (median age: 58 years, 66.2% male). There were 64 (45.1%), 40 (28.2%), and 38 (26.7%) patients in GPS-0, GPS-1, and GPS-2 groups, respectively. At median 15.7 months follow-up, the respective median and 5-year OS rates for the whole cohort were 16.2 months (95% CI 12.7-19.7) and 9.5%. In multivariate analyses GPS grouping emerged independently associated with the median OS (P < 0.001) in addition to the extent of surgery (P = 0.032), Karnofsky performance status (P = 0.009), and the Radiation Therapy Oncology Group recursive partitioning analysis (RTOG RPA) classification (P < 0.001). The GPS grouping and the RTOG RPA classification were found to be strongly correlated in prognostic stratification of GBM patients (correlation coefficient: 0.42; P < 0.001). The GPS appeared to be useful in prognostic stratification of GBM patients into three groups with significantly different survival durations resembling the RTOG RPA classification.

  6. Dose-dense temozolomide for newly diagnosed glioblastoma: a randomized phase III clinical trial.

    PubMed

    Gilbert, Mark R; Wang, Meihua; Aldape, Kenneth D; Stupp, Roger; Hegi, Monika E; Jaeckle, Kurt A; Armstrong, Terri S; Wefel, Jeffrey S; Won, Minhee; Blumenthal, Deborah T; Mahajan, Anita; Schultz, Christopher J; Erridge, Sara; Baumert, Brigitta; Hopkins, Kristen I; Tzuk-Shina, Tzahala; Brown, Paul D; Chakravarti, Arnab; Curran, Walter J; Mehta, Minesh P

    2013-11-10

    Radiotherapy with concomitant and adjuvant temozolomide is the standard of care for newly diagnosed glioblastoma (GBM). O(6)-methylguanine-DNA methyltransferase (MGMT) methylation status may be an important determinant of treatment response. Dose-dense (DD) temozolomide results in prolonged depletion of MGMT in blood mononuclear cells and possibly in tumor. This trial tested whether DD temozolomide improves overall survival (OS) or progression-free survival (PFS) in patients with newly diagnosed GBM. This phase III trial enrolled patients older than age 18 years with a Karnofsky performance score of ≥ 60 with adequate tissue. Stratification included clinical factors and tumor MGMT methylation status. Patients were randomly assigned to standard temozolomide (arm 1) or DD temozolomide (arm 2) for 6 to 12 cycles. The primary end point was OS. Secondary analyses evaluated the impact of MGMT status. A total of 833 patients were randomly assigned to either arm 1 or arm 2 (1,173 registered). No statistically significant difference was observed between arms for median OS (16.6 v 14.9 months, respectively; hazard ratio [HR], 1.03; P = .63) or median PFS (5.5 v 6.7 months; HR, 0.87; P = .06). Efficacy did not differ by methylation status. MGMT methylation was associated with improved OS (21.2 v 14 months; HR, 1.74; P < .001), PFS (8.7 v 5.7 months; HR, 1.63; P < .001), and response (P = .012). There was increased grade ≥ 3 toxicity in arm 2 (34% v 53%; P < .001), mostly lymphopenia and fatigue. This study did not demonstrate improved efficacy for DD temozolomide for newly diagnosed GBM, regardless of methylation status. However, it did confirm the prognostic significance of MGMT methylation. Feasibility of large-scale accrual, prospective tumor collection, and molecular stratification was demonstrated.

  7. Dose-Dense Temozolomide for Newly Diagnosed Glioblastoma: A Randomized Phase III Clinical Trial

    PubMed Central

    Gilbert, Mark R.; Wang, Meihua; Aldape, Kenneth D.; Stupp, Roger; Hegi, Monika E.; Jaeckle, Kurt A.; Armstrong, Terri S.; Wefel, Jeffrey S.; Won, Minhee; Blumenthal, Deborah T.; Mahajan, Anita; Schultz, Christopher J.; Erridge, Sara; Baumert, Brigitta; Hopkins, Kristen I.; Tzuk-Shina, Tzahala; Brown, Paul D.; Chakravarti, Arnab; Curran, Walter J.; Mehta, Minesh P.

    2013-01-01

    Purpose Radiotherapy with concomitant and adjuvant temozolomide is the standard of care for newly diagnosed glioblastoma (GBM). O6-methylguanine-DNA methyltransferase (MGMT) methylation status may be an important determinant of treatment response. Dose-dense (DD) temozolomide results in prolonged depletion of MGMT in blood mononuclear cells and possibly in tumor. This trial tested whether DD temozolomide improves overall survival (OS) or progression-free survival (PFS) in patients with newly diagnosed GBM. Patients and Methods This phase III trial enrolled patients older than age 18 years with a Karnofsky performance score of ≥ 60 with adequate tissue. Stratification included clinical factors and tumor MGMT methylation status. Patients were randomly assigned to standard temozolomide (arm 1) or DD temozolomide (arm 2) for 6 to 12 cycles. The primary end point was OS. Secondary analyses evaluated the impact of MGMT status. Results A total of 833 patients were randomly assigned to either arm 1 or arm 2 (1,173 registered). No statistically significant difference was observed between arms for median OS (16.6 v 14.9 months, respectively; hazard ratio [HR], 1.03; P = .63) or median PFS (5.5 v 6.7 months; HR, 0.87; P = .06). Efficacy did not differ by methylation status. MGMT methylation was associated with improved OS (21.2 v 14 months; HR, 1.74; P < .001), PFS (8.7 v 5.7 months; HR, 1.63; P < .001), and response (P = .012). There was increased grade ≥ 3 toxicity in arm 2 (34% v 53%; P < .001), mostly lymphopenia and fatigue. Conclusion This study did not demonstrate improved efficacy for DD temozolomide for newly diagnosed GBM, regardless of methylation status. However, it did confirm the prognostic significance of MGMT methylation. Feasibility of large-scale accrual, prospective tumor collection, and molecular stratification was demonstrated. PMID:24101040

  8. Health-Related Quality of Life in a Randomized Phase III Study of Bevacizumab, Temozolomide, and Radiotherapy in Newly Diagnosed Glioblastoma.

    PubMed

    Taphoorn, Martin J B; Henriksson, Roger; Bottomley, Andrew; Cloughesy, Timothy; Wick, Wolfgang; Mason, Warren P; Saran, Frank; Nishikawa, Ryo; Hilton, Magalie; Theodore-Oklota, Christina; Ravelo, Arliene; Chinot, Olivier L

    2015-07-01

    As glioblastoma progresses, patients experience a decline in health-related quality of life (HRQoL). Delaying this decline is an important treatment goal. In newly diagnosed glioblastoma, progression-free survival was prolonged when bevacizumab was added to radiotherapy plus temozolomide (RT/TMZ) versus placebo plus RT/TMZ (phase III AVAglio study; hazard ratio, 0.64; 95% CI, 0.55 to 0.74; P < .001). To ensure that addition of bevacizumab to standard-of-care therapy was not associated with HRQoL detriment, HRQoL assessment was a secondary objective. Patients completed European Organisation for Research and Treatment of Cancer Quality of Life Questionnaires C30 and BN20 at each tumor assessment (Appendix Table A1, online only). Raw scores were converted to a 100-point scale and mean changes from baseline scores were evaluated (stable: < 10-point change; clinically relevant deterioration/improvement: ≥ 10-point change). Deterioration-free survival was the time to deterioration/progression/death; time to deterioration was the time to deterioration/death. Most evaluable patients who had not progressed (> 74%) completed all HRQoL assessments for at least 1 year of treatment, and almost all completed at least one HRQoL assessment at baseline (98.3% and 97.6%, bevacizumab and placebo arms, respectively). Mean changes from baseline did not reach a clinically relevant difference between arms for most items. HRQoL declined at progression in both arms. The addition of bevacizumab to RT/TMZ resulted in statistically longer (P < .001) deterioration-free survival across all items. Time to deterioration was not statistically longer in the placebo plus RT/TMZ arm (v bevacizumab) for any HRQoL item. The addition of bevacizumab to standard-of-care treatment for newly diagnosed glioblastoma had no impact on HRQoL during the progression-free period. © 2015 by American Society of Clinical Oncology.

  9. The effectiveness and cost-effectiveness of carmustine implants and temozolomide for the treatment of newly diagnosed high-grade glioma: a systematic review and economic evaluation.

    PubMed

    Garside, R; Pitt, M; Anderson, R; Rogers, G; Dyer, M; Mealing, S; Somerville, M; Price, A; Stein, K

    2007-11-01

    To assess the clinical and cost-effectiveness of adjuvant carmustine wafers (BCNU-W) and also of adjuvant and concomitant temozolomide (TMZ), compared with surgery with radiotherapy. Electronic databases were searched up to August 2005. Included trials were critically appraised for key elements of internal and external validity. Relevant data were extracted and a narrative synthesis of the evidence produced. Where possible, data on absolute survival at a fixed time point were meta-analysed using a random effects model. A Markov (state transition) model was developed to assess the cost-utility of the two interventions. The model compared BCNU-W or TMZ separately with current standard treatment with surgery and radiotherapy. The simulated cohort had a mean age of 55 years and was modelled over 5 years. Two randomised controlled trials (RCTs) (n = 32, n = 240) and two observational studies of BCNU-W compared with placebo wafers as adjuvant therapy to surgery and radiotherapy for newly diagnosed high-grade glioma were identified. All the studies were in adults and provided data on 193 patients who had received BCNU-W. The RCT findings excluded under 65-year-olds and those with a Karnofsky Performance Status of less than 60. The largest multi-centre RCT suggested a possible survival advantage with BCNU-W among a cohort of patients with grade III and IV tumours, adding a median of 2.3 months [95% confidence interval (CI) -0.5 to 5.1]. However, analysis using per-protocol, unstratified methods shows this difference to be not statistically significant (HR 0.77, 95% CI 0.57 to 1.03, p = 0.08). Long-term follow-up suggests a significant survival advantage using unstratified analysis. No difference in progression-free survival (PFS) was demonstrated. Subgroup analysis of those with grade IV tumours also showed no significant survival advantage with BCNU-W [hazard ratio (HR) 0.82, 95% CI 0.55 to 1.11, p = 0.20, unstratified analysis]. It is estimated that the cost of surgery

  10. Treatment of Pituitary Carcinomas and Atypical Pituitary Adenomas: A Review

    PubMed Central

    HIROHATA, Toshio; ISHII, Yudo; MATSUNO, Akira

    2014-01-01

    Atypical pituitary adenomas (APAs) are aggressive tumors, harboring a Ki-67 (MIB-1) staining index of 3% or more, and positive immunohistochemical staining for p53 protein, according to the World Health Organization (WHO) classification in 2004. Pituitary carcinomas (PC) usually develop from progressive APAs and predominantly consist of hormone-generating tumors, defined by the presence of disseminations in the cerebrospinal system or systemic metastases. Most of the cases with these malignant pituitary adenomas underwent surgeries, irradiations and adjuvant medical treatments, nevertheless, the therapies are mainly palliative. Recently, the efficacy of temozolomide (TMZ), an orally administered alkylating agent, has been reported as an alternative medical treatment. However, some recent studies have demonstrated a significant recurrence rate after effective response to TMZ. Further clinical and pathological researches of malignant pituitary adenomas will be required to improve the outcome of patients with these tumors. PMID:25446382

  11. Dual mTORC1/2 blockade inhibits glioblastoma brain tumor initiating cells in vitro and in vivo and synergizes with temozolomide to increase orthotopic xenograft survival.

    PubMed

    Luchman, H Artee; Stechishin, Owen D M; Nguyen, Stephanie A; Lun, Xueqing Q; Cairncross, J Gregory; Weiss, Samuel

    2014-11-15

    The EGFR and PI3K/mTORC1/2 pathways are frequently altered in glioblastoma (GBM), but pharmacologic targeting of EGFR and PI3K signaling has failed to demonstrate efficacy in clinical trials. Lack of relevant models has rendered it difficult to assess whether targeting these pathways might be effective in molecularly defined subgroups of GBMs. Here, human brain tumor-initiating cell (BTIC) lines with different combinations of endogenous EGFR wild-type, EGFRvIII, and PTEN mutations were used to investigate response to the EGFR inhibitor gefitinib, mTORC1 inhibitor rapamycin, and dual mTORC1/2 inhibitor AZD8055 alone and in combination with temozolomide (TMZ) EXPERIMENTAL DESIGN: In vitro growth inhibition and cell death induced by gefitinib, rapamycin, AZD8055, and TMZ or combinations in human BTICs were assessed by alamarBlue, neurosphere, and Western blotting assays. The in vivo efficacy of AZD8055 was assessed in subcutaneous and intracranial BTIC xenografts. Kaplan-Meier survival studies were performed with AZD8055 and in combination with TMZ. We confirm that gefitinib and rapamycin have modest effects in most BTIC lines, but AZD8055 was highly effective at inhibiting Akt/mTORC2 activity and dramatically reduced the viability of BTICs regardless of their EGFR and PTEN mutational status. Systemic administration of AZD8055 effectively inhibited tumor growth in subcutaneous BTIC xenografts and mTORC1/2 signaling in orthotopic BTIC xenografts. AZD8055 was synergistic with the alkylating agent TMZ and significantly prolonged animal survival. These data suggest that dual inhibition of mTORC1/2 may be of benefit in GBM, including the subset of TMZ-resistant GBMs. ©2014 American Association for Cancer Research.

  12. Downregulation of ROCK2 through nanocomplex sensitizes the cytotoxic effect of temozolomide in U251 glioma cells.

    PubMed

    Wen, Xiaojun; Huang, Amin; Liu, Zhonglin; Liu, Yunyun; Hu, Jingyang; Liu, Jun; Shuai, Xintao

    2014-01-01

    Rho-associated coiled-coil kinase 2 (ROCK2) is an attractive therapeutic target because it is overexpressed in many malignancies, including glioma. Therefore, we designed the current study to determine whether the downregulation of ROCK2 would sensitize the cytotoxic effect of temozolomide (TMZ) in U251 cells. Glycol-polyethyleneimine (PEG-PEI) was used to deliver siROCK2 to U251 cells, and the physical characteristics of the PEG-PEI/siROCK2 complex (referred to as the siROCK2 complex) were investigated. The transfection efficiency and cell uptake were determined by flow cytometry (FCM) and confocal laser microscopy (CLSM), respectively. U251 cells were then treated with 100 μM TMZ, siROCK2 complexes or their combination. The apoptosis rate and cell migration were measured by FCM and wound-healing assay, respectively. The levels of Bax, Bcl-2, cleaved caspase-3, MMP-2, and MMP-9 were detected to analyze the degrees of apoptosis and migration. Our results revealed that the characteristics of the siROCK2 complexes depended closely on the N/P ratios. PEG-PEI served as a good vector for siROCK2 and exhibited low cytotoxicity toward U251 cells. The CLSM assay showed that the siROCK2 complexes were successfully uptaken and that both the protein and mRNA levels of ROCK2 were significantly suppressed. Furthermore, the combination treatment induced a higher apoptosis rate and markedly increased the gap distance of U251 cells in the wound-healing assay. Levels of the proapoptotic proteins Bax and cleaved caspase-3 were significantly increased, whereas levels of the antiapoptotic protein Bcl-2 and the migration-related proteins MMP-2 and MMP-9 were significantly reduced by the combination treatment compared with either treatment alone. In conclusion, our results demonstrate that the combination of TMZ and siROCK2 effectively induces apoptosis and inhibits the migration of U251 cells. Therefore, the combination of TMZ and siROCK2 complex is a potential therapeutic approach

  13. Downregulation of ROCK2 through Nanocomplex Sensitizes the Cytotoxic Effect of Temozolomide in U251 Glioma Cells

    PubMed Central

    Liu, Yunyun; Hu, Jingyang; Liu, Jun; Shuai, Xintao

    2014-01-01

    Objective Rho-associated coiled-coil kinase 2 (ROCK2) is an attractive therapeutic target because it is overexpressed in many malignancies, including glioma. Therefore, we designed the current study to determine whether the downregulation of ROCK2 would sensitize the cytotoxic effect of temozolomide (TMZ) in U251 cells. Methods Glycol-polyethyleneimine (PEG-PEI) was used to deliver siROCK2 to U251 cells, and the physical characteristics of the PEG-PEI/siROCK2 complex (referred to as the siROCK2 complex) were investigated. The transfection efficiency and cell uptake were determined by flow cytometry (FCM) and confocal laser microscopy (CLSM), respectively. U251 cells were then treated with 100 μM TMZ, siROCK2 complexes or their combination. The apoptosis rate and cell migration were measured by FCM and wound-healing assay, respectively. The levels of Bax, Bcl-2, cleaved caspase-3, MMP-2, and MMP-9 were detected to analyze the degrees of apoptosis and migration. Results Our results revealed that the characteristics of the siROCK2 complexes depended closely on the N/P ratios. PEG-PEI served as a good vector for siROCK2 and exhibited low cytotoxicity toward U251 cells. The CLSM assay showed that the siROCK2 complexes were successfully uptaken and that both the protein and mRNA levels of ROCK2 were significantly suppressed. Furthermore, the combination treatment induced a higher apoptosis rate and markedly increased the gap distance of U251 cells in the wound-healing assay. Levels of the proapoptotic proteins Bax and cleaved caspase-3 were significantly increased, whereas levels of the antiapoptotic protein Bcl-2 and the migration-related proteins MMP-2 and MMP-9 were significantly reduced by the combination treatment compared with either treatment alone. Conclusions In conclusion, our results demonstrate that the combination of TMZ and siROCK2 effectively induces apoptosis and inhibits the migration of U251 cells. Therefore, the combination of TMZ and siROCK2 complex

  14. Down-regulation of MDR1 by Ad-DKK3 via Akt/NFκB pathways augments the anti-tumor effect of temozolomide in glioblastoma cells and a murine xenograft model.

    PubMed

    Fujihara, Toshitaka; Mizobuchi, Yoshifumi; Nakajima, Kohei; Kageji, Teruyoshi; Matsuzaki, Kazuhito; Kitazato, Keiko T; Otsuka, Ryotaro; Hara, Keijiro; Mure, Hideo; Okazaki, Toshiyuki; Kuwayama, Kazuyuki; Nagahiro, Shinji; Takagi, Yasushi

    2018-05-19

    Glioblastoma multiforme (GBM) is the most malignant of brain tumors. Acquired drug resistance is a major obstacle for successful treatment. Earlier studies reported that expression of the multiple drug resistance gene (MDR1) is regulated by YB-1 or NFκB via the JNK/c-Jun or Akt pathway. Over-expression of the Dickkopf (DKK) family member DKK3 by an adenovirus vector carrying DKK3 (Ad-DKK3) exerted anti-tumor effects and led to the activation of the JNK/c-Jun pathway. We investigated whether Ad-DKK3 augments the anti-tumor effect of temozolomide (TMZ) via the regulation of MDR1. GBM cells (U87MG and U251MG), primary TGB105 cells, and mice xenografted with U87MG cells were treated with Ad-DKK3 or TMZ alone or in combination. Ad-DKK3 augmentation of the anti-tumor effects of TMZ was associated with reduced MDR1 expression in both in vivo and in vitro studies. The survival of Ad-DKK3-treated U87MG cells was inhibited and the expression of MDR1 was reduced. This was associated with the inhibition of Akt/NFκB but not of YB-1 via the JNK/c-Jun- or Akt pathway. Our results suggest that Ad-DKK3 regulates the expression of MDR1 via Akt/NFκB pathways and that it augments the anti-tumor effects of TMZ in GBM cells.

  15. Elimination of Cancer Stem-Like Cells and Potentiation of Temozolomide Sensitivity by Honokiol in Glioblastoma Multiforme Cells

    PubMed Central

    Lai, I-Chun; Shih, Ping-Hsiao; Yao, Chih-Jung; Yeh, Chi-Tai; Wang-Peng, Jacqueline; Lui, Tai-Ngar; Chuang, Suang-En; Hu, Tsai-Shu; Lai, Tung-Yuan; Lai, Gi-Ming

    2015-01-01

    Glioblastoma multiforme (GBM) is the most common adult malignant glioma with poor prognosis due to the resistance to radiotherapy and chemotherapy, which might be critically involved in the repopulation of cancer stem cells (CSCs) after treatment. We had investigated the characteristics of cancer stem-like side population (SP) cells sorted from GBM cells, and studied the effect of Honokiol targeting on CSCs. GBM8401 SP cells possessed the stem cell markers, such as nestin, CD133 and Oct4, and the expressions of self-renewal related stemness genes, such as SMO, Notch3 and IHH (Indian Hedgehog). Honokiol inhibited the proliferation of both GBM8401 parental cells and SP cells in a dose-dependent manner, the IC50 were 5.3±0.72 and 11±1.1 μM, respectively. The proportions of SP in GBM8401 cells were diminished by Honokiol from 1.5±0.22% down to 0.3±0.02% and 0.2±0.01% at doses of 2.5 μM and 5 μM, respectively. The SP cells appeared to have higher expression of O 6-methylguanine-DNA methyltransferase (MGMT) and be more resistant to Temozolomide (TMZ). The resistance to TMZ could be only slightly reversed by MGMT inhibitor O 6-benzylguanine (O 6-BG), but markedly further enhanced by Honokiol addition. Such significant enhancement was accompanied with the higher induction of apoptosis, greater down-regulation of Notch3 as well as its downstream Hes1 expressions in SP cells. Our data indicate that Honokiol might have clinical benefits for the GBM patients who are refractory to TMZ treatment. PMID:25763821

  16. Natural products: a hope for glioblastoma patients.

    PubMed

    Vengoji, Raghupathy; Macha, Muzafar A; Batra, Surinder K; Shonka, Nicole A

    2018-04-24

    Glioblastoma (GBM) is one of the most aggressive malignant tumors with an overall dismal survival averaging one year despite multimodality therapeutic interventions including surgery, radiotherapy and concomitant and adjuvant chemotherapy. Few drugs are FDA approved for GBM, and the addition of temozolomide (TMZ) to standard therapy increases the median survival by only 2.5 months. Targeted therapy appeared promising in in vitro monolayer cultures, but disappointed in preclinical and clinical trials, partly due to the poor penetration of drugs through the blood brain barrier (BBB). Cancer stem cells (CSCs) have intrinsic resistance to initial chemoradiation therapy (CRT) and acquire further resistance via deregulation of many signaling pathways. Due to the failure of classical chemotherapies and targeted drugs, research efforts focusing on the use of less toxic agents have increased. Interestingly, multiple natural compounds have shown antitumor and apoptotic effects in TMZ resistant and p53 mutant GBM cell lines and also displayed synergistic effects with TMZ. In this review, we have summarized the current literature on natural products or product analogs used to modulate the BBB permeability, induce cell death, eradicate CSCs and sensitize GBM to CRT.

  17. Natural products: a hope for glioblastoma patients

    PubMed Central

    Vengoji, Raghupathy; Macha, Muzafar A.; Batra, Surinder K.; Shonka, Nicole A.

    2018-01-01

    Glioblastoma (GBM) is one of the most aggressive malignant tumors with an overall dismal survival averaging one year despite multimodality therapeutic interventions including surgery, radiotherapy and concomitant and adjuvant chemotherapy. Few drugs are FDA approved for GBM, and the addition of temozolomide (TMZ) to standard therapy increases the median survival by only 2.5 months. Targeted therapy appeared promising in in vitro monolayer cultures, but disappointed in preclinical and clinical trials, partly due to the poor penetration of drugs through the blood brain barrier (BBB). Cancer stem cells (CSCs) have intrinsic resistance to initial chemoradiation therapy (CRT) and acquire further resistance via deregulation of many signaling pathways. Due to the failure of classical chemotherapies and targeted drugs, research efforts focusing on the use of less toxic agents have increased. Interestingly, multiple natural compounds have shown antitumor and apoptotic effects in TMZ resistant and p53 mutant GBM cell lines and also displayed synergistic effects with TMZ. In this review, we have summarized the current literature on natural products or product analogs used to modulate the BBB permeability, induce cell death, eradicate CSCs and sensitize GBM to CRT. PMID:29774132

  18. The JAK2/STAT3 inhibitor pacritinib effectively inhibits patient-derived GBM brain tumor initiating cells in vitro and when used in combination with temozolomide increases survival in an orthotopic xenograft model.

    PubMed

    Jensen, Katharine Victoria; Cseh, Orsolya; Aman, Ahmed; Weiss, Samuel; Luchman, Hema Artee

    2017-01-01

    The prognosis for patients diagnosed with glioblastoma multiforme (GBM) remains dismal, with current treatment prolonging survival only modestly. As such, there remains a strong need for novel therapeutic strategies. The janus kinase (JAK)2/signal transducer and activator of transcription (STAT)3 pathway regulates many cellular processes in GBM, including survival, proliferation, invasion, anti-apoptosis, and immune evasion. Here, we evaluated the preclinical efficacy of pacritinib, a novel compound targeting JAK2, using a collection of diverse patient-derived brain tumor initiating cells (BTICs). The effects of pacritinib on BTIC viability and sphere forming capacity were evaluated in vitro using the alamarBlue and neurosphere assays, respectively. On-target inhibition of JAK2/STAT3 signaling was investigated using western blotting. The efficacy of pacritinib was tested in vivo in pharmacokinetic analyses, liver microsome analyses, and Kaplan-Meier survival studies. In vitro, pacritinib decreased BTIC viability and sphere forming potential at low micromolar doses and demonstrated on-target inhibition of STAT3 signaling. Additionally, pacritinib was found to improve the response to temozolomide (TMZ) in TMZ-resistant BTICs. In vivo, systemic treatment with pacritinib demonstrated blood-brain barrier penetration and led to improved overall median survival in combination with TMZ, in mice orthotopically xenografted with an aggressive recurrent GBM BTIC culture. This preclinical study demonstrates the efficacy of pacritinib and supports the feasibility of testing pacritinib for the treatment of GBM, in combination with the standard of care TMZ.

  19. Erythropoietin Augments Survival of Glioma Cells After Radiation and Temozolomide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hassouna, Imam; Sperling, Swetlana; Kim, Ella

    2008-11-01

    Purpose: Despite beneficial effects of irradiation/chemotherapy on survival of glioblastoma (GBM) patients, collateral damage to intact neural tissue leads to 'radiochemobrain' and reduced quality of life in survivors. For prophylactic neuroprotection, erythropoietin (EPO) is a promising candidate, provided that concerns regarding potential tumor promoting effects are alleviated. Methods and Materials: Human GBM-derived cell lines U87, G44, G112, and the gliosarcoma-derived line G28 were treated with EPO, with and without combinations of irradiation or temozolomide (TMZ). Responsiveness of glioma cells to EPO was measured by cell migration from spheroids, cell proliferation, and clonogenic survival. Implantation of U87 cells into brains ofmore » nude mice, followed 5 days later by EPO treatment (5,000 U/kg intraperitoneal every other day for 2 weeks) should reveal effects of EPO on tumor growth in vivo. Reverse transcriptase-polymerase chain reaction was performed for EPOR, HIF-1{alpha}, and epidermal growth factor receptor (EGFR)vIII in cell lines and 22 human GBM specimens. Results: EPO did not modulate basal glioma cell migration and stimulated proliferation in only one of four cell lines. Importantly, EPO did not enhance tumor growth in mouse brains. Preincubation of glioma cells with EPO for 3 h, followed by irradiation and TMZ for another 24 h, resulted in protection against chemoradiation-induced cytotoxicity in three cell lines. Conversely, EPO induced a dose-dependent decrease in survival of G28 gliosarcoma cells. In GBM specimens, expression of HIF-1{alpha} correlated positively with expression of EPOR and EGFRvIII. EPOR and EGFRvIII expression did not correlate. Conclusions: EPO is unlikely to appreciably influence basal glioma growth. However, concomitant use of EPO with irradiation/chemotherapy in GBM patients is not advisable.« less

  20. In vivo selection of hematopoietic progenitor cells and temozolomide dose intensification in rhesus macaques through lentiviral transduction with a drug resistance gene

    PubMed Central

    Larochelle, Andre; Choi, Uimook; Shou, Yan; Naumann, Nora; Loktionova, Natalia A.; Clevenger, Joshua R.; Krouse, Allen; Metzger, Mark; Donahue, Robert E.; Kang, Elizabeth; Stewart, Clinton; Persons, Derek; Malech, Harry L.; Dunbar, Cynthia E.; Sorrentino, Brian P.

    2009-01-01

    Major limitations to gene therapy using HSCs are low gene transfer efficiency and the inability of most therapeutic genes to confer a selective advantage on the gene-corrected cells. One approach to enrich for gene-modified cells in vivo is to include in the retroviral vector a drug resistance gene, such as the P140K mutant of the DNA repair enzyme O6-methylguanine-DNA methyltransferase (MGMT*). We transplanted 5 rhesus macaques with CD34+ cells transduced with lentiviral vectors encoding MGMT* and a fluorescent marker, with or without homeobox B4 (HOXB4), a potent stem cell self-renewal gene. Transgene expression and common integration sites in lymphoid and myeloid lineages several months after transplantation confirmed transduction of long-term repopulating HSCs. However, all animals showed only a transient increase in gene-marked lymphoid and myeloid cells after O6-benzylguanine (BG) and temozolomide (TMZ) administration. In 1 animal, cells transduced with MGMT* lentiviral vectors were protected and expanded after multiple courses of BG/TMZ, providing a substantial increase in the maximum tolerated dose of TMZ. Additional cycles of chemotherapy using 1,3-bis-(2-chloroethyl)-1-nitrosourea (BCNU) resulted in similar increases in gene marking levels, but caused high levels of nonhematopoietic toxicity. Inclusion of HOXB4 in the MGMT* vectors resulted in no substantial increase in gene marking or HSC amplification after chemotherapy treatment. Our data therefore suggest that lentivirally mediated gene transfer in transplanted HSCs can provide in vivo chemoprotection of progenitor cells, although selection of long-term repopulating HSCs was not seen. PMID:19509470

  1. RTOG 0913: A Phase 1 Study of Daily Everolimus (RAD001) in Combination With Radiation Therapy and Temozolomide in Patients With Newly Diagnosed Glioblastoma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chinnaiyan, Prakash, E-mail: prakash.chinnaiyan@moffitt.org; Won, Minhee; Wen, Patrick Y.

    Purpose: To determine the safety of the mammalian target of rapamycin inhibitor everolimus (RAD001) administered daily with concurrent radiation and temozolomide in newly diagnosed glioblastoma patients. Methods and Materials: Everolimus was administered daily with concurrent radiation (60 Gy in 30 fractions) and temozolomide (75 mg/m{sup 2} per day). Everolimus was escalated from 2.5 mg/d (dose level 1) to 5 mg/d (dose level 2) to 10 mg/d (dose level 3). Adjuvant temozolomide was delivered at 150 to 200 mg/m{sup 2} on days 1 to 5, every 28 days, for up to 12 cycles, with concurrent everolimus at the previously established dailymore » dose of 10 mg/d. Dose escalation continued if a dose level produced dose-limiting toxicities (DLTs) in fewer than 3 of the first 6 evaluable patients. Results: Between October 28, 2010, and July 2, 2012, the Radiation Therapy Oncology Group 0913 protocol initially registered a total of 35 patients, with 25 patients successfully meeting enrollment criteria receiving the drug and evaluable for toxicity. Everolimus was successfully escalated to the predetermined maximum tolerated dose of 10 mg/d. Two of the first 6 eligible patients had a DLT at each dose level. DLTs included gait disturbance, febrile neutropenia, rash, fatigue, thrombocytopenia, hypoxia, ear pain, headache, and mucositis. Other common toxicities were grade 1 or 2 hypercholesterolemia and hypertriglyceridemia. At the time of analysis, there was 1 death reported, which was attributed to tumor progression. Conclusions: Daily oral everolimus (10 mg) combined with both concurrent radiation and temozolomide followed by adjuvant temozolomide is well tolerated, with an acceptable toxicity profile. A randomized phase 2 clinical trial with mandatory correlative biomarker analysis is currently under way, designed to both determine the efficacy of this regimen and identify molecular determinants of response.« less

  2. Clinical and Dosimetric Predictors of Acute Severe Lymphopenia During Radiation Therapy and Concurrent Temozolomide for High-Grade Glioma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Jiayi, E-mail: jhuang@radonc.wustl.edu; DeWees, Todd A.; Badiyan, Shahed N.

    Purpose: Acute severe lymphopenia (ASL) frequently develops during radiation therapy (RT) and concurrent temozolomide (TMZ) for high-grade glioma (HGG) and is associated with decreased survival. The current study was designed to identify potential predictors of ASL, with a focus on actionable RT-specific dosimetric parameters. Methods and Materials: From January 2007 to December 2012, 183 patients with HGG were treated with RT+TMZ and had available data including total lymphocyte count (TLC) and radiation dose-volume histogram parameters. ASL was defined as TLC of <500/μL within the first 3 months from the start of RT. Stepwise logistic regression analysis was used to determine themore » most important predictors of ASL. Results: Fifty-three patients (29%) developed ASL. Patients with ASL had significantly worse overall survival than those without (median: 12.5 vs 20.2 months, respectively, P<.001). Stepwise logistic regression analysis identified female sex (odds ratio [OR]: 5.30; 95% confidence interval [CI]: 2.46-11.41), older age (OR: 1.05; 95% CI: 1.02-1.09), lower baseline TLC (OR: 0.92; 95% CI: 0.87-0.98), and higher brain volume receiving 25 Gy (V{sub 25Gy}) (OR: 1.03; 95% CI: 1.003-1.05) as the most significant predictors for ASL. Brain V{sub 25Gy} <56% appeared to be the optimal threshold (OR: 2.36; 95% CI: 1.11-5.01), with an ASL rate of 38% versus 20% above and below this threshold, respectively (P=.006). Conclusions: Female sex, older age, lower baseline TLC, and higher brain V{sub 25Gy} are significant predictors of ASL during RT+TMZ therapy for HGG. Maintaining the V{sub 25Gy} of brain below 56% may reduce the risk of ASL.« less

  3. Clinical and economic evaluation of modulated electrohyperthermia concurrent to dose-dense temozolomide 21/28 days regimen in the treatment of recurrent glioblastoma: a retrospective analysis of a two-centre German cohort trial with systematic comparison and effect-to-treatment analysis

    PubMed Central

    2017-01-01

    Objective To assess the efficacy and cost-effectiveness of modulated electrohyperthermia (mEHT) concurrent to dose-dense temozolomide (ddTMZ) 21/28 days regimen versus ddTMZ 21/28 days alone in patients with recurrent glioblastoma (GBM). Design A cohort of 54 patients with recurrent GBM treated with ddTMZ+mEHT in 2000–2005 was systematically retrospectively compared with five pooled ddTMZ 21/28 days cohorts (114 patients) enrolled in 2008–2013. Results The ddTMZ+mEHT cohort had a not significantly improved mean survival time (mST) versus the comparator (p=0.531) after a significantly less mean number of cycles (1.56 vs 3.98, p<0.001). Effect-to-treatment analysis (ETA) suggests that mEHT significantly enhances the efficacy of the ddTMZ 21/28 days regimen (p=0.011), with significantly less toxicity (no grade III–IV toxicity vs 45%–92%, p<0.0001). An estimated maximal attainable median survival time is 10.10 months (9.10–11.10). Cost-effectiveness analysis suggests that, unlike ddTMZ 21/28 days alone, ddTMZ+mEHT is cost-effective versus the applicable cost-effectiveness thresholds €US$25 000–50 000/quality-adjusted life year (QALY). Budget impact analysis suggests a significant saving of €8 577 947/$11 201 761 with 29.1–38.5 QALY gained per 1000 patients per year. Cost-benefit analysis suggests that mEHT is profitable and will generate revenues between €3 124 574 and $6 458 400, with a total economic effect (saving+revenues) of €5 700 034 to $8 237 432 per mEHT device over an 8-year period. Conclusions Our ETA suggests that mEHT significantly improves survival of patients receiving the ddTMZ 21/28 days regimen. Economic evaluation suggests that ddTMZ+mEHT is cost-effective, budget-saving and profitable. After confirmation of the results, mEHT could be recommended for the treatment of recurrent GBM as a cost-effective enhancer of ddTMZ regimens, and, probably, of the regular 5/28 days regimen. mEHT is applicable also

  4. Concordant association validates MGMT methylation and protein expression as favorable prognostic factors in glioma patients on alkylating chemotherapy (Temozolomide).

    PubMed

    Pandith, Arshad A; Qasim, Iqbal; Zahoor, Wani; Shah, Parveen; Bhat, Abdul R; Sanadhya, Dheera; Shah, Zafar A; Naikoo, Niyaz A

    2018-04-30

    O 6 -methylguanine-DNA methyltransferase (MGMT) promoter methylation and its subsequent loss of protein expression has been identified to have a variable impact on clinical outcome of glioma patients indicated for chemotherapy with alkylating agents (Temozolomide). This study investigated methylation status of MGMT gene along with in situ protein expression in malignant glioma patients of different histological types to evaluate the associated clinical outcome vis-a-vis use of alkylating drugs and radiotherapy. Sixty three cases of glioma were evaluated for MGMT promoter methylation by methylation-specific PCR (MS-PCR) and protein expression by immunostaining (IHC). Methylation status of MGMT and loss of protein expression showed a very high concordant association with better survival and progression free survival (PFS) (p < 0.0001). Multivariate Cox regression analysis showed both MGMT methylation and loss of protein as significant independent prognostic factors in glioma patients with respect to lower Hazard Ratio (HR) for better OS and PFS) [p < 0.05]. Interestingly concordant MGMT methylation and lack of protein showed better response in TMZ therapy treated patient subgroups with HR of 2.02 and 0.76 (p < 0.05). We found the merits of prognostication of MGMT parameters, methylation as well as loss of its protein as predictive factors for favorable outcome in terms of better survival for TMZ therapy.

  5. Prognostic Factors in Glioblastoma: Is There a Role for Epilepsy?

    PubMed Central

    DOBRAN, Mauro; NASI, Davide; CHIRIATTI, Stefano; GLADI, Maurizio; di SOMMA, Lucia; IACOANGELI, Maurizio; SCERRATI, Massimo

    2018-01-01

    The prognostic relevance of epilepsy at glioblastoma (GBMs) onset is still under debate. In this study, we analyzed the value of epilepsy and other prognostic factors on GBMs survival. We retrospectively analyzed the clinical, radiological, surgical and histological data in 139 GBMs. Seizures were the presenting symptoms in 50 patients out of 139 (35.9%). 123 patients (88%) were treated with craniotomy and tumor resection while 16 (12%) with biopsy. The median overall survival was 9.9 months from surgery. At univariable Cox regression, the factors that significantly improved survival were age less than 65 years (P = 0.0015), focal without impairment of consciousness seizures at presentation (P = 0.043), complete surgical resection (P < 0.001), pre-operative Karnofsky performance status (KPS) > 70 (P = 0.015), frontal location (P < 0.001), radiotherapy (XRT) plus concomitant and adjuvant TMZ (P < 0.001). A multivariable Cox regression showed that the complete surgical resection (P < 0.0001), age less than 65 years (P = 0.008), frontal location (P = 0.0001) and XRT adjuvant temozolomide (TMZ) (P < 0.0001) were independent factors on longer survival. In our series epilepsy at presentation is not an independent prognostic factor for longer survival in GBM patients. Only in the subgroup of patients with focal seizures without impairment of consciousness, epilepsy was associated with an increased significant overall survival at univariate analysis (P = 0.043). Main independent factors for relatively favorable GBMs outcome are complete tumor resection plus combined XRT-TMZ, frontal location and patient age below 65 years old. PMID:29343677

  6. Effect of Tumor-Treating Fields Plus Maintenance Temozolomide vs Maintenance Temozolomide Alone on Survival in Patients With Glioblastoma

    PubMed Central

    Taillibert, Sophie; Kanner, Andrew; Read, William; Steinberg, David M.; Lhermitte, Benoit; Toms, Steven; Idbaih, Ahmed; Ahluwalia, Manmeet S.; Fink, Karen; Di Meco, Francesco; Lieberman, Frank; Zhu, Jay-Jiguang; Stragliotto, Giuseppe; Tran, David D.; Brem, Steven; Hottinger, Andreas F.; Kirson, Eilon D.; Lavy-Shahaf, Gitit; Weinberg, Uri; Kim, Chae-Yong; Paek, Sun-Ha; Nicholas, Garth; Burna, Jordi; Hirte, Hal; Weller, Michael; Palti, Yoram; Hegi, Monika E.; Ram, Zvi

    2017-01-01

    Importance Tumor-treating fields (TTFields) is an antimitotic treatment modality that interferes with glioblastoma cell division and organelle assembly by delivering low-intensity alternating electric fields to the tumor. Objective To investigate whether TTFields improves progression-free and overall survival of patients with glioblastoma, a fatal disease that commonly recurs at the initial tumor site or in the central nervous system. Design, Setting, and Participants In this randomized, open-label trial, 695 patients with glioblastoma whose tumor was resected or biopsied and had completed concomitant radiochemotherapy (median time from diagnosis to randomization, 3.8 months) were enrolled at 83 centers (July 2009-2014) and followed up through December 2016. A preliminary report from this trial was published in 2015; this report describes the final analysis. Interventions Patients were randomized 2:1 to TTFields plus maintenance temozolomide chemotherapy (n = 466) or temozolomide alone (n = 229). The TTFields, consisting of low-intensity, 200 kHz frequency, alternating electric fields, was delivered (≥ 18 hours/d) via 4 transducer arrays on the shaved scalp and connected to a portable device. Temozolomide was administered to both groups (150-200 mg/m2) for 5 days per 28-day cycle (6-12 cycles). Main Outcomes and Measures Progression-free survival (tested at α = .046). The secondary end point was overall survival (tested hierarchically at α = .048). Analyses were performed for the intent-to-treat population. Adverse events were compared by group. Results Of the 695 randomized patients (median age, 56 years; IQR, 48-63; 473 men [68%]), 637 (92%) completed the trial. Median progression-free survival from randomization was 6.7 months in the TTFields-temozolomide group and 4.0 months in the temozolomide-alone group (HR, 0.63; 95% CI, 0.52-0.76; P < .001). Median overall survival was 20.9 months in the TTFields-temozolomide group vs 16.0 months in

  7. Benefit and outcome of using temozolomide-based chemoradiotherapy followed by temozolomide alone for glioblastoma in clinical practice.

    PubMed

    Salma, Svetlana; Djan, Igor; Bjelan, Mladen; Vulekovic, Petar; Novakovic, Mico; Vidovic, Vladimir; Lucic, Milos

    2017-01-01

    Temozolomide (TEM), an oral alkylating agent, has shown promising activity in the last 10 years in the treatment of glioblastoma multiforme (GBM). Our goal was to show the benefit of concomitant therapy involving 3D conformal radiotherapy and temozolomide in clinical practice. This was a retrospective/prospective study and included a total of 113 patients with GBM diagnosis. Forty- seven patients received postoperative radiotherapy and 66 received concomitant temozolomide plus 3D conformal radiotherapy. The mean overall survival of patients who received postoperative radiotherapy alone was 9.93±6.475 months, compared to statistically longer overall survival in the group of patients who received radiotherapy plus temozolomide (13.89±8.049 months) (p=0.006). The latter group was divided into two subgroups, one consisting of patients who received 6 complete cycles of temozolomide, and a second with patients who received incomplete treatment. Statistically significant longer overall survival was registered in the first subgroup compared to the second (p=0.006). The concomitant usage of temozolomide and radiotherapy was beneficial, and statistically significant difference among groups and subgroups was observed regarding overall survival.

  8. PAM-OBG: A monoamine oxidase B specific prodrug that inhibits MGMT and generates DNA interstrand crosslinks, potentiating temozolomide and chemoradiation therapy in intracranial glioblastoma

    PubMed Central

    Sharpe, Martyn A.; Raghavan, Sudhir; Baskin, David S.

    2018-01-01

    Via extensive analyses of genetic databases, we have characterized the DNA-repair capacity of glioblastoma with respect to patient survival. In addition to elevation of O6-methylguanine DNA methyltransferase (MGMT), down-regulation of three DNA repair pathways; canonical mismatch repair (MMR), Non-Homologous End-Joining (NHEJ), and Homologous Recombination (HR) are correlated with poor patient outcome. We have designed and tested both in vitro and in vivo, a monoamine oxidase B (MAOB) specific prodrug, PAM-OBG, that is converted by glioma MAOB into the MGMT inhibitor O6-benzylguanine (O6BG) and the DNA crosslinking agent acrolein. In cultured glioma cells, we show that PAM-OBG is converted to O6BG, inhibiting MGMT and sensitizing cells to DNA alkylating agents such as BCNU, CCNU, and Temozolomide (TMZ). In addition, we demonstrate that the acrolein generated is highly toxic in glioma treated with an inhibitor of Nucleotide Excision Repair (NER). In mouse intracranial models of primary human glioma, we show that PAM-OBG increases survival of mice treated with either BCNU or CCNU by a factor of six and that in a chemoradiation model utilizing six rounds of TMZ/2Gy radiation, pre-treatment with PAM-OBG more than doubled survival time. PMID:29844863

  9. PAM-OBG: A monoamine oxidase B specific prodrug that inhibits MGMT and generates DNA interstrand crosslinks, potentiating temozolomide and chemoradiation therapy in intracranial glioblastoma.

    PubMed

    Sharpe, Martyn A; Raghavan, Sudhir; Baskin, David S

    2018-05-08

    Via extensive analyses of genetic databases, we have characterized the DNA-repair capacity of glioblastoma with respect to patient survival. In addition to elevation of O 6 -methylguanine DNA methyltransferase (MGMT), down-regulation of three DNA repair pathways; canonical mismatch repair (MMR), Non-Homologous End-Joining (NHEJ), and Homologous Recombination (HR) are correlated with poor patient outcome. We have designed and tested both in vitro and in vivo , a monoamine oxidase B (MAOB) specific prodrug, PAM-OBG, that is converted by glioma MAOB into the MGMT inhibitor O 6 -benzylguanine (O 6 BG) and the DNA crosslinking agent acrolein. In cultured glioma cells, we show that PAM-OBG is converted to O 6 BG, inhibiting MGMT and sensitizing cells to DNA alkylating agents such as BCNU, CCNU, and Temozolomide (TMZ). In addition, we demonstrate that the acrolein generated is highly toxic in glioma treated with an inhibitor of Nucleotide Excision Repair (NER). In mouse intracranial models of primary human glioma, we show that PAM-OBG increases survival of mice treated with either BCNU or CCNU by a factor of six and that in a chemoradiation model utilizing six rounds of TMZ/2Gy radiation, pre-treatment with PAM-OBG more than doubled survival time.

  10. A Phase 3 Trial of Whole Brain Radiation Therapy and Stereotactic Radiosurgery Alone Versus WBRT and SRS With Temozolomide or Erlotinib for Non-Small Cell Lung Cancer and 1 to 3 Brain Metastases: Radiation Therapy Oncology Group 0320

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sperduto, Paul W., E-mail: psperduto@mropa.com; Wang, Meihua; Robins, H. Ian

    2013-04-01

    Background: A phase 3 Radiation Therapy Oncology Group (RTOG) study subset analysis demonstrated improved overall survival (OS) with the addition of stereotactic radiosurgery (SRS) to whole brain radiation therapy (WBRT) in non-small cell lung cancer (NSCLC) patients with 1 to 3 brain metastases. Because temozolomide (TMZ) and erlotinib (ETN) cross the blood-brain barrier and have documented activity in NSCLC, a phase 3 study was designed to test whether these drugs would improve the OS associated with WBRT + SRS. Methods and Materials: NSCLC patients with 1 to 3 brain metastases were randomized to receive WBRT (2.5 Gy × 15 tomore » 37.5 Gy) and SRS alone, versus WBRT + SRS + TMZ (75 mg/m{sup 2}/day × 21 days) or ETN (150 mg/day). ETN (150 mg/day) or TMZ (150-200 mg/m{sup 2}/day × 5 days/month) could be continued for as long as 6 months after WBRT + SRS. The primary endpoint was OS. Results: After 126 patients were enrolled, the study closed because of accrual limitations. The median survival times (MST) for WBRT + SRS, WBRT + SRS + TMZ, and WBRT + SRS + ETN were qualitatively different (13.4, 6.3, and 6.1 months, respectively), although the differences were not statistically significant. Time to central nervous system progression and performance status at 6 months were better in the WBRT + SRS arm. Grade 3 to 5 toxicity was 11%, 41%, and 49% in arms 1, 2, and 3, respectively (P<.001). Conclusion: The addition of TMZ or ETN to WBRT + SRS in NSCLC patients with 1 to 3 brain metastases did not improve survival and possibly had a deleterious effect. Because the analysis is underpowered, these data suggest but do not prove that increased toxicity was the cause of inferior survival in the drug arms.« less

  11. A Phase 3 Trial of Whole Brain Radiation Therapy and Stereotactic Radiosurgery Alone Versus WBRT and SRS With Temozolomide or Erlotinib for Non-Small Cell Lung Cancer and 1 to 3 Brain Metastases: Radiation Therapy Oncology Group 0320.

    PubMed Central

    Sperduto, Paul W.; Wang, Meihua; Robins, H. Ian; Schell, Michael C.; Werner-Wasik, Maria; Komaki, Ritsuko; Souhami, Luis; Buyyounouski, Mark K.; Khuntia, Deepak; Demas, William; Shah, Sunjay A.; Nedzi, Lucien A.; Perry, Gad; Suh, John H.; Mehta, Minesh P.

    2013-01-01

    Background A phase 3 Radiation Therapy Oncology Group (RTOG) study subset analysis demonstrated improved overall survival (OS) with the addition of stereotactic radiosurgery (SRS) to whole brain radiation therapy (WBRT) in non-small cell lung cancer (NSCLC) patients with 1 to 3 brain metastases. Because temozolomide (TMZ) and erlotinib (ETN) cross the bloodbrain barrier and have documented activity in NSCLC, a phase 3 study was designed to test whether these drugs would improve the OS associated with WBRT + SRS. Methods and Materials NSCLC patients with 1 to 3 brain metastases were randomized to receive WBRT (2.5 Gy×15 to 37.5 Gy) and SRS alone, versus WBRT + SRS + TMZ (75 mg/m2/day× 21 days) or ETN (150 mg/day). ETN (150 mg/day) or TMZ (150–200 mg/m2/day ×5 days/month) could be continued for as long as 6 months after WBRT þ SRS. The primary endpoint was OS. Results After 126 patients were enrolled, the study closed because of accrual limitations. The median survival times (MST) for WBRT + SRS, WBRT + SRS + TMZ, and WBRT + SRS + ETN were qualitatively different (13.4, 6.3, and 6.1 months, respectively), although the differences were not statistically significant. Time to central nervous system progression and performance status at 6 months were better in the WBRT þ SRS arm. Grade 3 to 5 toxicity was 11%, 41%, and 49% in arms 1, 2, and 3, respectively (P<.001). Conclusion The addition of TMZ or ETN to WBRT + SRS in NSCLC patients with 1 to 3 brain metastases did not improve survival and possibly had a deleterious effect. Because the analysis is underpowered, these data suggest but do not prove that increased toxicity was the cause of inferior survival in the drug arms. PMID:23391814

  12. A phase 3 trial of whole brain radiation therapy and stereotactic radiosurgery alone versus WBRT and SRS with temozolomide or erlotinib for non-small cell lung cancer and 1 to 3 brain metastases: Radiation Therapy Oncology Group 0320.

    PubMed

    Sperduto, Paul W; Wang, Meihua; Robins, H Ian; Schell, Michael C; Werner-Wasik, Maria; Komaki, Ritsuko; Souhami, Luis; Buyyounouski, Mark K; Khuntia, Deepak; Demas, William; Shah, Sunjay A; Nedzi, Lucien A; Perry, Gad; Suh, John H; Mehta, Minesh P

    2013-04-01

    A phase 3 Radiation Therapy Oncology Group (RTOG) study subset analysis demonstrated improved overall survival (OS) with the addition of stereotactic radiosurgery (SRS) to whole brain radiation therapy (WBRT) in non-small cell lung cancer (NSCLC) patients with 1 to 3 brain metastases. Because temozolomide (TMZ) and erlotinib (ETN) cross the blood-brain barrier and have documented activity in NSCLC, a phase 3 study was designed to test whether these drugs would improve the OS associated with WBRT + SRS. NSCLC patients with 1 to 3 brain metastases were randomized to receive WBRT (2.5 Gy × 15 to 37.5 Gy) and SRS alone, versus WBRT + SRS + TMZ (75 mg/m(2)/day × 21 days) or ETN (150 mg/day). ETN (150 mg/day) or TMZ (150-200 mg/m(2)/day × 5 days/month) could be continued for as long as 6 months after WBRT + SRS. The primary endpoint was OS. After 126 patients were enrolled, the study closed because of accrual limitations. The median survival times (MST) for WBRT + SRS, WBRT + SRS + TMZ, and WBRT + SRS + ETN were qualitatively different (13.4, 6.3, and 6.1 months, respectively), although the differences were not statistically significant. Time to central nervous system progression and performance status at 6 months were better in the WBRT + SRS arm. Grade 3 to 5 toxicity was 11%, 41%, and 49% in arms 1, 2, and 3, respectively (P<.001). The addition of TMZ or ETN to WBRT + SRS in NSCLC patients with 1 to 3 brain metastases did not improve survival and possibly had a deleterious effect. Because the analysis is underpowered, these data suggest but do not prove that increased toxicity was the cause of inferior survival in the drug arms. Copyright © 2013 Elsevier Inc. All rights reserved.

  13. Temozolomide stability in extemporaneously compounded oral suspensions.

    PubMed

    Trissel, Lawrence A; Zhang, Yanping; Koontz, Susannah E

    2006-01-01

    Temozolomide, commercially available in capsules, is an oral alkylating agent used to treat brain tumors. The purpose of this study was to determine the pharmaceutical acceptability and chemical stability of temozolomide in two extemporaneously compounded suspension formulations prepared from the capsules. The temozolomide oral suspensions were prepared from 100-mg commercial capsules yielding a nominal temozolomide concentration of 10 mg/mL. The suspension vehicles selected for testing were an equal parts mixture of Ora-Plus and Ora-Sweet and an equal parts mixture of Ora-Plus and Ora-Sweet SF. The suspensions were packaged in amber plastic screw-cap prescription bottles, which were stored at 23 deg C for 21 days or 4 deg C for 60 days. Stability-indicating high-performance liquid chromatographic analysis revealed that the temozolomide concentration in both suspension vehicle combinations exhibited little or no loss for 60 days at 4 deg C. At 23 deg C, temozolomide losses were somewhat greater. In the Ora-Sweet formulation, the loss was 6% at 7 days; in the Ora-Sweet SF formulation, losses were about 8% at 14 days and 10% to 11% at 21 days. Temozolomide extemporaneously prepared as oral suspensions from capsules in equal parts mixtures of Ora-Plus suspension vehicle with Ora-Sweet and with ora-Sweet SF syrups with added povidine k-30 and acidified with citric acid were pharmaceutically acceptable and chemically stable for at least 60 days at 4 deg C. Refrigerated storage is recommended. The suspensions should not be stored at room temperature longer than 1 week if Ora-Sweet is used or longer than 2 weeks if Ora-Sweet SF is used.

  14. Combined radiotherapy and chemotherapy for high-grade brain tumours

    NASA Astrophysics Data System (ADS)

    Barazzuol, Lara

    Glioblastoma (GBM) is the most common primary brain tumour in adults and among the most aggressive of all tumours. For several decades, the standard care of GBM was surgical resection followed by radiotherapy alone. In 2005, a landmark phase III clinical trial coordinated by the European Organization for Research and Treatment of Cancer (EORTC) and the National Cancer Institute of Canada (NCIC) demonstrated the benefit of radiotherapy with concomitant and adjuvant temozolomide (TMZ) chemotherapy. With TMZ, the median life expectancy in optimally managed patients is still only 12-14 months, with only 25% surviving 24 months. There is an urgent need for new therapies in particular in those patients whose tumour has an unmethylated methylguanine methyltransferase gene (MGMT) promoter, which is a predictive factor of benefit from TMZ. In this dissertation, the nature of the interaction between TMZ and radiation is investigated using both a mathematical model, based on in vivo population statistics of survival, and in vitro experimentation on a panel of human GBM cell lines. The results show that TMZ has an additive effect in vitro and that the population-based model may be insufficient in predicting TMZ response. The combination of TMZ with particle therapy is also investigated. Very little preclinical data exists on the effects of charged particles on GBM cell lines as well as on the concomitant application of chemotherapy. In this study, human GBM cells are exposed to 3 MeV protons and 6 MeV alpha particles in concomitance with TMZ. The results suggest that the radiation quality does not affect the nature of the interaction between TMZ and radiation, showing reproducible additive cytotoxicity. Since TMZ and radiation cause DNA damage in cancer cells, there has been increased attention to the use of poly(ADP-ribose) polymerase (PARP) inhibitors. PARP is a family of enzymes that play a key role in the repair of DNA breaks. In this study, a novel PARP inhibitor, ABT-888

  15. Downregulation of hPMC2 imparts chemotherapeutic sensitivity to alkylating agents in breast cancer cells.

    PubMed

    Krishnamurthy, Nirmala; Liu, Lili; Xiong, Xiahui; Zhang, Junran; Montano, Monica M

    2015-01-01

    Triple negative breast cancer cell lines have been reported to be resistant to the cyotoxic effects of temozolomide (TMZ). We have shown previously that a novel protein, human homolog of Xenopus gene which Prevents Mitotic Catastrophe (hPMC2) has a role in the repair of estrogen-induced abasic sites. Our present study provides evidence that downregulation of hPMC2 in MDA-MB-231 and MDA-MB-468 breast cancer cells treated with temozolomide (TMZ) decreases cell survival. This increased sensitivity to TMZ is associated with an increase in number of apurinic/apyrimidinic (AP) sites in the DNA. We also show that treatment with another alkylating agent, BCNU, results in an increase in AP sites and decrease in cell survival. Quantification of western blot analyses and immunofluorescence experiments reveal that treatment of hPMC2 downregulated cells with TMZ results in an increase in γ-H2AX levels, suggesting an increase in double strand DNA breaks. The enhancement of DNA double strand breaks in TMZ treated cells upon downregulation of hPCM2 is also revealed by the comet assay. Overall, we provide evidence that downregulation of hPMC2 in breast cancer cells increases cytotoxicity of alkylating agents, representing a novel mechanism of treatment for breast cancer. Our data thus has important clinical implications in the management of breast cancer and brings forth potentially new therapeutic strategies.

  16. Glioblastoma and chemoresistance to alkylating agents: Involvement of apoptosis, autophagy, and unfolded protein response.

    PubMed

    Hombach-Klonisch, Sabine; Mehrpour, Maryam; Shojaei, Shahla; Harlos, Craig; Pitz, Marshall; Hamai, Ahmed; Siemianowicz, Krzysztof; Likus, Wirginia; Wiechec, Emilia; Toyota, Brian D; Hoshyar, Reyhane; Seyfoori, Amir; Sepehri, Zahra; Ande, Sudharsana R; Khadem, Forough; Akbari, Mohsen; Gorman, Adrienne M; Samali, Afshin; Klonisch, Thomas; Ghavami, Saeid

    2018-04-01

    Despite advances in neurosurgical techniques and radio-/chemotherapy, the treatment of brain tumors remains a challenge. This is particularly true for the most frequent and fatal adult brain tumor, glioblastoma (GB). Upon diagnosis, the average survival time of GB patients remains only approximately 15months. The alkylating drug temozolomide (TMZ) is routinely used in brain tumor patients and induces apoptosis, autophagy and unfolded protein response (UPR). Here, we review these cellular mechanisms and their contributions to TMZ chemoresistance in brain tumors, with a particular emphasis on TMZ chemoresistance in glioma stem cells and GB. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Boron neutron capture therapy for newly diagnosed glioblastoma multiforme: an assessment of clinical potential

    PubMed Central

    Sköld, K; Gorlia, T; Pellettieri, L; Giusti, V; H-Stenstam, B; Hopewell, J W

    2010-01-01

    The purpose of this study was to assess the potential of boron neutron capture therapy (BNCT), with a 6-h infusion of the boron carrier l-boronophenylalanine as a fructose preparation (BPA-f), as first-line radiotherapy for newly diagnosed glioblastoma multiforme (GBM). Patient survival data from a Phase II study using BNCT were compared with retrospective data from the two arms of a Phase III study using conventional radiotherapy (RT) in the reference arm and using RT plus concomitant and adjuvant medication with temozolomide (TMZ) in the experimental arm, and were also compared with small subgroups of these patients for whom the methylation status of the MGMT (O6-methylguanine–DNA methyltransferase) DNA repair gene was known. Differences in the baseline characteristics, salvage therapy after recurrence and levels of severe adverse events were also considered. The results indicate that BNCT offers a treatment that is at least as effective as conventional RT alone. For patients with an unmethylated MGMT DNA repair gene, a possible clinical advantage of BNCT over RT/TMZ was suggested. BNCT is a single-day treatment, which is of convenience to patients, with mild side effects, which would offer an initial 6 weeks of good-quality life during the time when patients would otherwise be undergoing daily treatments with RT and TMZ. It is suggested that the use of BNCT with a 6-h infusion of BPA-f should be explored in a stratified randomised Phase II trial in which patients with the unmethylated MGMT DNA repair gene are offered BNCT in the experimental arm and RT plus TMZ in the reference arm. PMID:20603410

  18. Evaluation of the mutagenicity of alkylating agents, methylnitrosourea and temozolomide, using the rat Pig-a assay with total red blood cells or reticulocytes.

    PubMed

    Muto, Shigeharu; Yamada, Katsuya; Kato, Tatsuya; Ando, Masamitsu; Inoue, Yoshimi; Iwase, Yumiko; Uno, Yoshifumi

    2016-11-15

    A collaborative study of the endogenous phosphatidylinositol glycan class A (Pig-a) gene mutation assay was conducted by the Japanese Environmental Mutagen Society/Mammalian Mutagenicity Study Group with a single-dosing regimen of test chemicals administered to male rats. As a part of the study, two DNA alkylating agents, methylnitrosourea (MNU) and temozolomide (TMZ), were dosed by single oral gavage at 25, 50, and 100mg/kg body weight. Pig-a mutant analysis of total red blood cells (RBCs; RBC Pig-a assay) and reticulocytes (RETs; PIGRET assay) was performed on Days 8, 15 and 29 after the administration. Both chemicals increased Pig-a mutants among RBCs and RETs with dose dependency on all days examined. The mutant frequencies were higher among RETs compared with RBCs, indicating that the PIGRET assay could detect mutagenicity more sensitively than the RBC Pig-a assay after a single dose of test chemicals. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Investigating a signature of temozolomide resistance in GBM cell lines using metabolomics.

    PubMed

    St-Coeur, Patrick-Denis; Poitras, Julie J; Cuperlovic-Culf, Miroslava; Touaibia, Mohamed; Morin, Pier

    2015-10-01

    Glioblastoma multiforme (GBM) is the most common form of malignant glioma. Current therapeutic approach to treat this malignancy involves a combination of surgery, radiotherapy and chemotherapy with temozolomide. Numerous mechanisms contributing to inherent and acquired resistance to this chemotherapeutic agent have been identified and can lead to treatment failure. This study undertook a metabolomics-based approach to characterize the metabolic profiles observed in temozolomide-sensitive and temozolomide-resistant GBM cell lines as well as in a small sub-set of primary GBM tumors. This approach was also utilized to explore the metabolic changes modulated upon cell treatment with temozolomide and lomeguatrib, an MGMT inhibitor with temozolomide-sensitizing potential. Metabolites previously explored for their potential role in chemoresistance including glucose, citrate and isocitrate demonstrated elevated levels in temozolomide-resistant GBM cells. In addition, a signature of metabolites comprising alanine, choline, creatine and phosphorylcholine was identified as up-regulated in sensitive GBM cell line across different treatments. These results present the metabolic profiles associated with temozolomide response in selected GBM models and propose interesting leads that could be leveraged for the development of therapeutic or diagnostic tools to impact temozolomide response in GBMs.

  20. Antitumor action of temozolomide, ritonavir and aprepitant against human glioma cells.

    PubMed

    Kast, Richard E; Ramiro, Susana; Lladó, Sandra; Toro, Salvador; Coveñas, Rafael; Muñoz, Miguel

    2016-02-01

    In the effort to find better treatments for glioblastoma we tested several currently marketed non-chemotherapy drugs for their ability to enhance the standard cytotoxic drug currently used to treat glioblastoma- temozolomide. We tested four antiviral drugs- acyclovir, cidofovir, maraviroc, ritonavir, and an anti-emetic, aprepitant. We found no cytotoxicity of cidofovir and discussed possible reasons for discrepancy from previous findings of others. We also found no cytotoxicity from acyclovir or maraviroc also in contradistinction to predictions. Cytotoxicity to glioma cell line GAMG for temozolomide alone was 14%, aprepitant alone 7%, ritonavir alone 14%, while temozolomide + aprepitant was 19%, temozolomide + ritonavir 34%, ritonavir + aprepitant 64 %, and all three, temozolomide + ritonavir + aprepitant 78%. We conclude that a remarkable synergy exists between aprepitant and ritonavir. Given the long clinical experience with these two well-tolerated drugs in treating non-cancer conditions, and the current median survival of glioblastoma of 2 years, a trial is warranted of adding these two simple drugs to current standard treatment with temozolomide.

  1. Prospective of curcumin, a pleiotropic signalling molecule from Curcuma longa in the treatment of Glioblastoma.

    PubMed

    Luthra, Pratibha Mehta; Lal, Neetika

    2016-02-15

    GBM (Glioblastoma) is the most malignant human brain tumor with median survival of one year. The treatment involves surgery, radiotherapy and adjuvant chemotherapy mostly with the alkylation agents such as temozolomide (TMZ). Dietary polyphenol curcumin, isolated from the rhizome of the Curcuma longa (turmeric), has emerged as remarkable anti-cancer agent in the treatment of various peripheral cancers such as blood, lymphomas, multiple myeloma, melanoma as well as skin, lung, prostate, breast, ovarian, bladder, liver, gastrointestinal tract, pancreatic and colorectal epithelial cancers with a pleiotropic mode of action and also showed promise in alleviation of GBM. In this review, the mechanism of anticancer effect of curcumin in GBM has been discussed extensively. The clinical safety and pharmacokinetics of curcumin has been scrutinized to combat the challenges for the treatment of GBM. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  2. Disulfiram when Combined with Copper Enhances the Therapeutic Effects of Temozolomide for the Treatment of Glioblastoma.

    PubMed

    Lun, Xueqing; Wells, J Connor; Grinshtein, Natalie; King, Jennifer C; Hao, Xiaoguang; Dang, Ngoc-Ha; Wang, Xiuling; Aman, Ahmed; Uehling, David; Datti, Alessandro; Wrana, Jeffrey L; Easaw, Jacob C; Luchman, Artee; Weiss, Samuel; Cairncross, J Gregory; Kaplan, David R; Robbins, Stephen M; Senger, Donna L

    2016-08-01

    Glioblastoma is one of the most lethal cancers in humans, and with existing therapy, survival remains at 14.6 months. Current barriers to successful treatment include their infiltrative behavior, extensive tumor heterogeneity, and the presence of a stem-like population of cells, termed brain tumor-initiating cells (BTIC) that confer resistance to conventional therapies. To develop therapeutic strategies that target BTICs, we focused on a repurposing approach that explored already-marketed (clinically approved) drugs for therapeutic potential against patient-derived BTICs that encompass the genetic and phenotypic heterogeneity of glioblastoma observed clinically. Using a high-throughput in vitro drug screen, we found that montelukast, clioquinol, and disulfiram (DSF) were cytotoxic against a large panel of patient-derived BTICs. Of these compounds, disulfiram, an off-patent drug previously used to treat alcoholism, in the presence of a copper supplement, showed low nanomolar efficacy in BTICs including those resistant to temozolomide and the highly infiltrative quiescent stem-like population. Low dose DSF-Cu significantly augmented temozolomide activity in vitro, and importantly, prolonged in vivo survival in patient-derived BTIC models established from both newly diagnosed and recurrent tumors. Moreover, we found that in addition to acting as a potent proteasome inhibitor, DSF-Cu functionally impairs DNA repair pathways and enhances the effects of DNA alkylating agents and radiation. These observations suggest that DSF-Cu inhibits proteasome activity and augments the therapeutic effects of DNA-damaging agents (temozolomide and radiation). DSF-Cu should be considered as an adjuvant therapy for the treatment of patients with glioblastoma in both newly diagnosed and recurrent settings. Clin Cancer Res; 22(15); 3860-75. ©2016 AACR. ©2016 American Association for Cancer Research.

  3. Standard dose and dose-escalated radiation therapy are associated with favorable survival in select elderly patients with newly diagnosed glioblastoma.

    PubMed

    Jackson, William C; Tsien, Christina I; Junck, Larry; Leung, Denise; Hervey-Jumper, Shawn; Orringer, Daniel; Heth, Jason; Wahl, Daniel R; Spratt, Daniel E; Cao, Yue; Lawrence, Theodore S; Kim, Michelle M

    2018-05-01

    We hypothesized elderly patients with good Karnofsky Performance Status (KPS) treated with standard dose or dose-escalated radiation therapy (SDRT/DERT) and concurrent temozolomide (TMZ) would have favorable overall survival (OS) compared to historical elderly patients treated with hypofractionated RT (HFRT). From 2004 to 2015, 66 patients age ≥ 60 with newly diagnosed, pathologically proven glioblastoma were treated with SDRT/DERT over 30 fractions with concurrent/adjuvant TMZ at a single institution. Kaplan-Meier methods and the log-rank test were used to assess OS and progression-free survival (PFS). Multivariate analysis (MVA) was performed using Cox Proportional-Hazards. Median follow-up was 12.6 months. Doses ranged from 60 to 81 Gy (median 66). Median KPS was 90 (range 60-100) and median age was 67 years (range 60-81), with 29 patients ≥ 70 years old. 32% underwent gross total resection (GTR). MGMT status was known in 28%, 42% of whom were methylated. Median PFS was 8.3 months (95% CI 6.9-11.0) and OS was 12.7 months (95% CI 9.7-14.1). Patients age ≥ 70 with KPS ≥ 90 had a median OS of 12.4 months. Median OS was 27.1 months for MGMT methylated patients. On MVA controlling for age, dose, KPS, MGMT, GTR, and adjuvant TMZ, younger age (HR 0.9, 95% CI 0.8-0.9, p < 0.01), MGMT methylation (HR:0.2, 95% CI 0.1-0.7, p = 0.01), and GTR (HR:0.5, 95% CI 0.3-0.9, p = 0.01) were associated with improved OS. Our findings do not support routine use of a standard 6-week course of radiation therapy in elderly patients with glioblastoma. However, a select group of elderly patients with excellent performance status and MGMT methylation or GTR may experience favorable survival with a standard 6-week course of treatment.

  4. Antidepressant drugs can modify cytotoxic action of temozolomide.

    PubMed

    Bielecka, A M; Obuchowicz, E

    2017-09-01

    Cancer patients often require antidepressant treatment due to comorbid depressive disorder. However, recent studies have demonstrated that antidepressant drugs affect the efficacy of chemotherapy and promote progression of cancer. Apart from the main mood-improving effect, antidepressant drugs also produce analgesic, anxiolytic, hypnotic and pro-cognitive actions. Patients suffering from brain cancer constitute the greatest percentage of depressive cancer patients. However, vital safety and efficacy issues related to combined therapy with temozolomide, the first-line cytostatic in patients diagnosed with glioblastoma multiforme, and antidepressant drugs have yet to be addressed. The aim of the present studies was to evaluate the effect of three antidepressant drugs (imipramine, fluoxetine and tranylcypromine) on the cytotoxic efficacy of temozolomide on T98G cells, a human glioblastoma cell line. In our experiments, we used a complex experimental in vitro system to mimic the instability of a tumour's oxygen supply, thereby reproducing conditions that occur inside the tumour. The effect of the interaction between temozolomide and antidepressant drugs on viability, apoptosis and intensity of divisions of glioblastoma cells was evaluated under different oxygen conditions. The results of our studies demonstrated that imipramine and tranylcypromine reduced the cytotoxic efficacy of temozolomide under some oxygen conditions while fluoxetine did not demonstrate such effects. © 2016 John Wiley & Sons Ltd.

  5. Discovery of potent and selective cytotoxic activity of new quinazoline-ureas against TMZ-resistant glioblastoma multiforme (GBM).

    PubMed

    Elkamhawy, Ahmed; Viswanath, Ambily Nath Indu; Pae, Ae Nim; Kim, Hyeon Young; Heo, Jin-Chul; Park, Woo-Kyu; Lee, Chong-Ock; Yang, Heekyoung; Kim, Kang Ho; Nam, Do-Hyun; Seol, Ho Jun; Cho, Heeyeong; Roh, Eun Joo

    2015-10-20

    Herein, we report new quinazoline-urea based compounds with potent cytotoxic activities against TMZ-resistant glioblastoma multiforme (GBM) cells. Low micromolar IC₅₀ values were exhibited over a panel of three primary GBM patient-derived cell cultures belonging to proneural (GBM-1), mesenchymal (GBM-2), and classical (GBM-3) subtypes. Eight compounds showed excellent selectivity indices for GBM cells comparing to a normal astrocyte cell line. In JC-1 assay, analogues 11, 12, 20, 22, and 24 exerted promising rates of mPTP opening induction towards proneural GBM subtype. Compounds 11, 20, and 24 bound to the translocator protein 18 kDa (TSPO) in submicromolar range using [(3)H] PK-11195 binding affinity assay. A homology model was built and docked models of 11, 12, 20, 22 and 24 were generated for describing their plausible binding modes in TSPO. In 3D clonogenic assay, compound 20 manifested potent tumoricidal effects on TMZ-resistant GBM cells even at submicromolar concentrations. In addition, CYP450 and hERG assays presented a safe toxicity profile of 20. Taken as a whole, this report presents compound 20 as a potent, selective and safe GBM cytotoxic agent which constitutes a promising direction against TMZ-resistant GBM. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  6. Temozolomide-based dry powder formulations for lung tumor-related inhalation treatment.

    PubMed

    Wauthoz, Nathalie; Deleuze, Philippe; Saumet, Amandine; Duret, Christophe; Kiss, Robert; Amighi, Karim

    2011-04-01

    Temozolomide dry powder formulations for inhalation, performed with no excipient or with a lipid or lactose coating, have been evaluated. The particle size of raw temozolomide in suspension was reduced by a high-pressure homogenizing technique, and the solvent was evaporated by spray-drying to obtain a dry powder. The physicochemical properties of this powder were evaluated and included its crystalline state, thermal properties, morphology, particle size and moisture and drug content, and these properties were determined by X-ray powder diffraction, differential scanning calorimetry, scanning electron microscopy, laser light scattering, thermogravimetric analysis and high-performance liquid chromatography, respectively. The aerodynamic properties and release profiles were also evaluated using a multistage liquid impinger and a modified USP type 2 dissolution apparatus adapted for inhaler products, respectively. The dry powder inhalation formulations had a high temozolomide content that ranged from 70% to 100% in the crystalline state and low moisture content. Aerodynamic evaluations showed high fine-particle fractions of up to 51% related to the metered dose. The dissolution profile revealed a similarly fast temozolomide release from the formulations. Dry temozolomide powder formulations, based on the use of acceptable excipients for inhalation and showing good dispersion properties, represent an attractive alternative for use in local lung cancer therapy.

  7. Monoamine oxidase A (MAO A) inhibitors decrease glioma progression.

    PubMed

    Kushal, Swati; Wang, Weijun; Vaikari, Vijaya Pooja; Kota, Rajesh; Chen, Kevin; Yeh, Tzu-Shao; Jhaveri, Niyati; Groshen, Susan L; Olenyuk, Bogdan Z; Chen, Thomas C; Hofman, Florence M; Shih, Jean C

    2016-03-22

    Glioblastoma (GBM) is an aggressive brain tumor which is currently treated with temozolomide (TMZ). Tumors usually become resistant to TMZ and recur; no effective therapy is then available. Monoamine Oxidase A (MAO A) oxidizes monoamine neurotransmitters resulting in reactive oxygen species which cause cancer. This study shows that MAO A expression is increased in human glioma tissues and cell lines. MAO A inhibitors, clorgyline or the near-infrared-dye MHI-148 conjugated to clorgyline (NMI), were cytotoxic for glioma and decreased invasion in vitro. Using the intracranial TMZ-resistant glioma model, clorgyline or NMI alone or in combination with low-dose TMZ reduced tumor growth and increased animal survival. NMI was localized specifically to the tumor. Immunocytochemistry studies showed that the MAO A inhibitor reduced proliferation, microvessel density and invasion, and increased macrophage infiltration. In conclusion, we have identified MAO A inhibitors as potential novel stand-alone drugs or as combination therapy with low dose TMZ for drug-resistant gliomas. NMI can also be used as a non-invasive imaging tool. Thus has a dual function for both therapy and diagnosis.

  8. Brain Metastases From Melanoma

    PubMed Central

    Schild, Steven E.; Behl, Deepti; Markovic, Svetomir N.; Brown, Paul D.; Sande, Jonathan R.; Deming, Richard L.; Rowland, Kendrith M.; Bearden, James D.

    2017-01-01

    Objectives This study was performed to evaluate the addition of temozolomide (TMZ) to whole brain radiotherapy (WBRT) for brain metastases from melanoma. Methods Seven patients with brain metastases from melanoma were treated on a North Central Cancer Treatment Group (NCCTG) trial (N0274) of TMZ plus WBRT. TMZ was given orally in doses of 200 mg/m2 for 5 days every 4 weeks for up to 8 cycles. WBRT was started on the first day of TMZ and included the delivery of 3750 cGy in 15 fractions. In addition, separately analyzed was a cohort of 53 patients treated at the Mayo Clinic who received WBRT alone (39 patients) or WBRT plus TMZ (14 patients). Results The median survival of the 7 patients treated on N0274 was 3.6 months with 2 of 7 (29%) failing in brain and 5 of 7 (71%) failing elsewhere. For the other cohort of 53 patients, the median survival was 3.8 months with WBRT alone compared 4.3 months for WBRT plus TMZ (P = 0.5). Conclusions Patients did not appear to benefit from the addition of TMZ to WBRT for the treatment of their brain metastases. Further improvements in outcome will require research to discover more effective systemic therapy and RT techniques. PMID:20042969

  9. Microenvironmental Modulation of Decorin and Lumican in Temozolomide-Resistant Glioblastoma and Neuroblastoma Cancer Stem-Like Cells.

    PubMed

    Farace, Cristiano; Oliver, Jaime Antonio; Melguizo, Consolacion; Alvarez, Pablo; Bandiera, Pasquale; Rama, Ana Rosa; Malaguarnera, Giulia; Ortiz, Raul; Madeddu, Roberto; Prados, Jose

    2015-01-01

    The presence of cancer stem cells (CSCs) or tumor-initiating cells can lead to cancer recurrence in a permissive cell-microenvironment interplay, promoting invasion in glioblastoma (GBM) and neuroblastoma (NB). Extracellular matrix (ECM) small leucine-rich proteoglycans (SLRPs) play multiple roles in tissue homeostasis by remodeling the extracellular matrix (ECM) components and modulating intracellular signaling pathways. Due to their pan-inhibitory properties against receptor tyrosine kinases (RTKs), SLRPs are reported to exert anticancer effects in vitro and in vivo. However, their roles seem to be tissue-specific and they are also involved in cancer cell migration and drug resistance, paving the way to complex different scenarios. The aim of this study was to determine whether the SLRPs decorin (DCN) and lumican (LUM) are recruited in cell plasticity and microenvironmental adaptation of differentiated cancer cells induced towards stem-like phenotype. Floating neurospheres were generated by applying CSC enrichment medium (neural stem cell serum-free medium, NSC SFM) to the established SF-268 and SK-N-SH cancer cell lines, cellular models of GBM and NB, respectively. In both models, the time-dependent synergistic activation of DCN and LUM was observed. The highest DCN and LUM mRNA/protein expression was detected after cell exposure to NSC SFM for 8/12 days, considering these cells as SLRP-expressing (SLRP+) CSC-like. Ultrastructural imaging showed the cellular heterogeneity of both the GBM and NB neurospheres and identified the inner living cells. Parental cell lines of both GBM and NB grew only in soft agar + NSC SFM, whereas the secondary neurospheres (originated from SLRP+ t8 CSC-like) showed lower proliferation rates than primary neurospheres. Interestingly, the SLRP+ CSC-like from the GBM and NB neurospheres were resistant to temozolomide (TMZ) at concentrations >750 μM. Our results suggest that GBM and NB CSC-like promote the activation of huge quantities

  10. Microenvironmental Modulation of Decorin and Lumican in Temozolomide-Resistant Glioblastoma and Neuroblastoma Cancer Stem-Like Cells

    PubMed Central

    Melguizo, Consolacion; Alvarez, Pablo; Bandiera, Pasquale; Rama, Ana Rosa; Malaguarnera, Giulia; Ortiz, Raul; Madeddu, Roberto; Prados, Jose

    2015-01-01

    The presence of cancer stem cells (CSCs) or tumor-initiating cells can lead to cancer recurrence in a permissive cell–microenvironment interplay, promoting invasion in glioblastoma (GBM) and neuroblastoma (NB). Extracellular matrix (ECM) small leucine-rich proteoglycans (SLRPs) play multiple roles in tissue homeostasis by remodeling the extracellular matrix (ECM) components and modulating intracellular signaling pathways. Due to their pan-inhibitory properties against receptor tyrosine kinases (RTKs), SLRPs are reported to exert anticancer effects in vitro and in vivo. However, their roles seem to be tissue-specific and they are also involved in cancer cell migration and drug resistance, paving the way to complex different scenarios. The aim of this study was to determine whether the SLRPs decorin (DCN) and lumican (LUM) are recruited in cell plasticity and microenvironmental adaptation of differentiated cancer cells induced towards stem-like phenotype. Floating neurospheres were generated by applying CSC enrichment medium (neural stem cell serum-free medium, NSC SFM) to the established SF-268 and SK-N-SH cancer cell lines, cellular models of GBM and NB, respectively. In both models, the time-dependent synergistic activation of DCN and LUM was observed. The highest DCN and LUM mRNA/protein expression was detected after cell exposure to NSC SFM for 8/12 days, considering these cells as SLRP-expressing (SLRP+) CSC-like. Ultrastructural imaging showed the cellular heterogeneity of both the GBM and NB neurospheres and identified the inner living cells. Parental cell lines of both GBM and NB grew only in soft agar + NSC SFM, whereas the secondary neurospheres (originated from SLRP+ t8 CSC-like) showed lower proliferation rates than primary neurospheres. Interestingly, the SLRP+ CSC-like from the GBM and NB neurospheres were resistant to temozolomide (TMZ) at concentrations >750 μM. Our results suggest that GBM and NB CSC-like promote the activation of huge quantities

  11. MGMT Gene Promoter Methylation as a Potent Prognostic Factor in Glioblastoma Treated With Temozolomide-Based Chemoradiotherapy: A Single-Institution Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Young Suk; Kim, Se Hoon; Cho, Jaeho

    2012-11-01

    Purpose: Recently, cells deficient in O{sup 6}-methylguanine-DNA methyltransferase (MGMT) were found to show increased sensitivity to temozolomide (TMZ). We evaluated whether hypermethylation of MGMT was associated with survival in patients with glioblastoma multiforme (GBM). Methods and Materials: We retrospectively analyzed 93 patients with histologically confirmed GBM who received involved-field radiotherapy with TMZ from 2001 to 2008. The median age was 58 years (range, 24-78 years). Surgical resection was total in 39 patients (42%), subtotal in 30 patients (32%), and partial in 17 patients (18%); only a biopsy was performed in 7 patients (8%). Postoperative radiotherapy began within 3 weeks ofmore » surgery in 87% of the patients. Radiotherapy doses ranged from 50 to 74 Gy (median, 70 Gy). MGMT gene methylation was determined in 78 patients; MGMT was unmethylated in 43 patients (55%) and methylated in 35 patients (45%). The median follow-up period was 22 months (range, 3-88 months) for all patients. Results: The median overall survival (OS) was 22 months, and progression-free survival (PFS) was 11 months. MGMT gene methylation was an independently significant prognostic factor for both OS (p = 0.002) and PFS (p = 0.008) in multivariate analysis. The median OS was 29 months for the methylated group and 20 months for the unmethylated group. In 35 patients with methylated MGMT genes, the 2-year and 5-year OS rates were 54% and 31%, respectively. Six patients with combined prognostic factors of methylated MGMT genes, age {<=}50 years, and total/subtotal resections are all alive 38 to 77 months after operation, whereas the median OS in 8 patients with unmethylated MGMT genes, age >50 years, and less than subtotal resection was 13.2 months. Conclusion: We confirmed that MGMT gene methylation is a potent prognostic factor in patients with GBM. Our results suggest that early postoperative radiotherapy and a high total/subtotal resection rate might further improve

  12. Addition of carbonic anhydrase 9 inhibitor SLC-0111 to temozolomide treatment delays glioblastoma growth in vivo

    PubMed Central

    Boyd, Nathaniel H.; Walker, Kiera; Fried, Joshua; Hackney, James R.; McDonald, Paul C.; Benavides, Gloria A.; Spina, Raffaella; Audia, Alessandra; Scott, Sarah E.; Libby, Catherine J.; Tran, Anh Nhat; Bevensee, Mark O.; Griguer, Corinne; Nozell, Susan; Gillespie, G. Yancey; Nabors, Burt; Bhat, Krishna P.; Bar, Eli E.; Darley-Usmar, Victor; Xu, Bo; Gordon, Emily; Dedhar, Shoukat; Hjelmeland, Anita B.

    2017-01-01

    Tumor microenvironments can promote stem cell maintenance, tumor growth, and therapeutic resistance, findings linked by the tumor-initiating cell hypothesis. Standard of care for glioblastoma (GBM) includes temozolomide chemotherapy, which is not curative, due, in part, to residual therapy-resistant brain tumor-initiating cells (BTICs). Temozolomide efficacy may be increased by targeting carbonic anhydrase 9 (CA9), a hypoxia-responsive gene important for maintaining the altered pH gradient of tumor cells. Using patient-derived GBM xenograft cells, we explored whether CA9 and CA12 inhibitor SLC-0111 could decrease GBM growth in combination with temozolomide or influence percentages of BTICs after chemotherapy. In multiple GBMs, SLC-0111 used concurrently with temozolomide reduced cell growth and induced cell cycle arrest via DNA damage in vitro. In addition, this treatment shifted tumor metabolism to a suppressed bioenergetic state in vivo. SLC-0111 also inhibited the enrichment of BTICs after temozolomide treatment determined via CD133 expression and neurosphere formation capacity. GBM xenografts treated with SLC-0111 in combination with temozolomide regressed significantly, and this effect was greater than that of temozolomide or SLC-0111 alone. We determined that SLC-0111 improves the efficacy of temozolomide to extend survival of GBM-bearing mice and should be explored as a treatment strategy in combination with current standard of care. PMID:29263302

  13. Genetic markers predictive of chemosensitivity and outcome in gliomatosis cerebri.

    PubMed

    Kaloshi, G; Everhard, S; Laigle-Donadey, F; Marie, Y; Navarro, S; Mokhtari, K; Idbaih, A; Ducray, F; Thillet, J; Hoang-Xuan, K; Delattre, J-Y; Sanson, M

    2008-02-19

    Up-front temozolomide (TMZ) has been recently proposed as a treatment for gliomatosis cerebri (GC), but no predictive or prognostic markers have been identified so far. Because 1p19q codeletion and methylguanine methyl transferase promoter (MGMTP) methylation have been correlated with chemosensitivity of gliomas, their value was investigated in a cohort of patients with GC treated with TMZ. A cohort of 25 GC patients who were treated with TMZ was investigated for 1p19q codeletion and O6-methylguanine DNA. Patients with a 1p/19q codeletion had a higher response rate (88% [8/9] vs 25% [4/16], p = 0.002), higher progression-free survival (24.5 vs 13.7 months, p = 0.017), and higher overall survival (66.8 vs 15.2 months, p = 0.011) than patients without 1p/19q codeletion. Fourteen of 19 evaluable tumors for MGMTP status were methylated. MGMTP methylation was associated with 1p/19q codeletion (p = 0.045). Patients with unmethylated MGMTP tended to have a shorter progression-free survival and a higher rate of progressive disease. Response rate to temozolomide and prognosis seem tightly correlated to 1p19q loss. The impact of methylguanine methyl transferase promoter methylation status on gliomatosis cerebri is still unsettled in this population.

  14. Tonsillary carcinoma after temozolomide treatment for glioblastoma multiforme: treatment-related or dual-pathology?

    PubMed

    Binello, E; Germano, I M

    2009-08-01

    Glioblastoma multiforme is a primary malignant brain tumor with a prognosis of typically less than 2 years. Standard treatment paradigms include surgery, radiation therapy and temozolomide. Little data exists for temozolomide recommendations after the first 6 months. We present a case of a patient with glioblastoma multiforme treated with surgery, radiation and chronic temozolomide for 6 years. He continues to survive glioblastoma-recurrence-free, but developed tonsillary carcinoma. This case raises the question of whether this secondary solid-organ malignancy is treatment-related or dual pathology.

  15. Reversing glioma malignancy: a new look at the role of antidepressant drugs as adjuvant therapy for glioblastoma multiforme.

    PubMed

    Bielecka-Wajdman, Anna M; Lesiak, Marta; Ludyga, Tomasz; Sieroń, Aleksander; Obuchowicz, Ewa

    2017-06-01

    The role of glioma stem cells (GSCs) in cancer progression is currently debated; however, it is hypothesised that this subpopulation is partially responsible for therapeutic resistance observed in glioblastoma multiforme (GBM). Recent studies have shown that the current treatments not only fail to eliminate the GSC population but even promote GSCs through reprogramming of glioma non-stem cells to stem cells. Since the standard GBM treatment often requires supplementation with adjuvant drugs such as antidepressants, their role in the regulation of the heterogeneous nature of GSCs needs evaluation. We examined the effects of imipramine, amitriptyline, fluoxetine, mirtazapine, agomelatine, escitalopram, and temozolomide on the phenotypic signature (CD44, Ki67, Nestin, Sox1, and Sox2 expression) of GSCs isolated from a human T98G cell line. These drugs were examined in several models of hypoxia (1% oxygen, 2.5% oxygen, and a hypoxia-reoxygenation model) as compared to the standard laboratory conditions (20% oxygen). We report that antidepressant drugs, particularly imipramine and amitriptyline, modulate plasticity, silence the GSC profile, and partially reverse the malignant phenotype of GBM. Moreover, we observed that, in contrast to temozolomide, these tricyclic antidepressants stimulated viability and mitochondrial activity in normal human astrocytes. The ability of phenotype switching from GSC to non-GSC as stimulated by antidepressants (primarily imipramine and amitriptyline) sheds new light on the heterogeneous nature of GSC, as well as the role of antidepressants in adjuvant GBM therapy.

  16. Phase II trial of temozolomide and sorafenib in advanced melanoma patients with or without brain metastases

    PubMed Central

    Amaravadi, Ravi K.; Schuchter, Lynn M.; McDermott, David F.; Kramer, Amy; Giles, Lydia; Gramlich, Kristi; Carberry, Mary; Troxel, Andrea B.; Letrero, Richard; Nathanson, Katherine L.; Atkins, Michael B.; O’Dwyer, Peter J.; Flaherty, Keith T.

    2009-01-01

    Purpose The combination of the oral alkylating agent temozolomide and the oral multi-kinase inhibitor sorafenib was evaluated in advanced melanoma patients. Patients and Methods Patients with metastatic melanoma (N=167) were treated on four arms. All patients received sorafenib at 400 mg orally twice daily without interruption. Patients without brain metastases or prior temozolomide were randomized between Arm A: extended dosing of temozolomide (EDT; 75 mg/m2 temozolomide daily for 6/8 weeks) and Arm B: standard dosing (SDT; 150 mg/m2 temozolomide daily for 5/28 days). Patients previously treated with temozolomide were enrolled on Arm C: EDT. Patients with brain metastases and no prior temozolomide were assigned to Arm D: SDT. The primary endpoint was 6-month progression-free survival (PFS) rate. Secondary endpoints included response rate, toxicity rates, and the rates of BRAF or NRAS mutations. Results The 6-month PFS rate for arms A, B, C, and D were 50%, 40%, 11%, and 23%. The median PFS for patients on arm A, B, C, and D was 5.9, 4.2, 2.2, and 3.5 months, respectively. No significant differences were observed between Arms A and B in 6-month PFS rate, median PFS, or response rates. Treatment was well tolerated in all arms. No significant differences in toxicity were observed between arms A and B except for more grade 3–4 lymphopenia in arm A. Conclusion Temozolomide plus sorafenib was well tolerated and demonstrated activity in melanoma patients without prior history of temozolomide. The activity of this combination regimen warrants further investigation. PMID:19996224

  17. Temozolomide treatment of pituitary carcinomas and atypical adenomas: systematic review of case reports

    PubMed Central

    Ji, Yan; Vogel, Rachel Isaksson; Lou, Emil

    2016-01-01

    Background Pituitary carcinomas (PC) and atypical pituitary adenomas (APA) are rare variants of pituitary tumors for which no evidence-based treatment currently exists. We sought to determine whether temozolomide represents an effective chemotherapeutic option for patients with PC and APA. Methods A systematic review was performed using all published cases of PC and APA treated with temozolomide, and for which information on treatment regimen, clinical response, and survival could be identified. The primary goal of this analysis was to describe overall survival and progression-free survival among PC and APA patients after temozolomide treatment. Secondary goals included assessment of response rate and biomarkers of response. Results We identified 57 cases and obtained follow-up data on 54 patients (31 APA and 23 PC) for analysis. Estimates of 5-year progression-free survival and overall survival were 21.9% and 57.4% for patients with APA and 36.1% and 56.2% for patients with PC. Among those who responded to temozolomide, overall survival was marginally statistically significantly greater for patients on long-term temozolomide therapy compared with those who were not (5-year overall survival 91.7% vs 54.1%, P = .08); Progression-free survival results were similar but not statistically significant. The objective response rate was 48.4% for patients with APA and 65.2% for patients with PC. Stable disease occurred in 29% of APA and 17.4% of PC patients. Neither histology nor expression of Ki-67 correlated with response; however, negative O6-methylguanine-DNA methyltransferase staining was strongly related to response to temozolomide in patients with APA (P < .001). Conclusions Temozolomide is an effective treatment of both PC and APA, and long-term treatment can be considered for particularly aggressive cases. PMID:27551432

  18. Clinical outcome of an alternative fotemustine schedule in elderly patients with recurrent glioblastoma: a mono-institutional retrospective study.

    PubMed

    Lombardi, Giuseppe; Bellu, Luisa; Pambuku, Ardi; Della Puppa, Alessandro; Fiduccia, Pasquale; Farina, Miriam; D'Avella, Domenico; Zagonel, Vittorina

    2016-07-01

    The optimal treatment of recurrent glioblastoma (GBM) in elderly patients is unclear. Fotemustine (FTM) is a third-generation nitrosourea showing efficacy in gliomas and it has been used with different schedules in adult patients. We performed, for the first time anywhere, a mono-institutional retrospective study to analyze the clinical outcome of an alternative fotemustine schedule in elderly patients with recurrent GBM. Retrospectively, we analyzed all GBM patients 65 years or older previously treated with the combination of radiation therapy and temozolomide (TMZ), receiving an alternative FTM schedule as second-line treatment at our Oncological Center from October 2011 to October 2014 with an ECOG PS ≤ 2. FTM was administrated at 80 mg/m(2) every 2 weeks for five consecutive administrations (induction phase), and then every 4 weeks at 80 mg/m(2) as maintenance. We enrolled 44 patients, 33 males and 11 females; average age was 70 years. ECOG PS was 0-1 in 80 % of the patients. 38 patients relapsed during temozolomide (TMZ) therapy. MGMT methylation status was analyzed in 34 patients and MGMT was methylated in 53 % of the patients. The median progression free survival (PFS) and overall survival (OS) from FTM treatment was 4.1 months (95 % CI 3.1-5.2) and 7 months (95 % CI 5.2-8.4), respectively. Patients with MGMT methylated status and patients who relapsed after completing TMZ therapy had a longer PFS and OS from the beginning of FTM. Thrombocytopenia was the most frequent grade 3-4 haematological toxicity (9 %). The alternative schedule of FTM may be an active and safe treatment for elderly patients with recurrent glioblastoma, especially patients with methylated MGMT and who relapsed after completing temozolomide therapy.

  19. Long-term analysis of the NOA-04 randomized phase III trial of sequential radiochemotherapy of anaplastic glioma with PCV or temozolomide

    PubMed Central

    Wick, Wolfgang; Roth, Patrick; Hartmann, Christian; Hau, Peter; Nakamura, Makoto; Stockhammer, Florian; Sabel, Michael C.; Wick, Antje; Koeppen, Susanne; Ketter, Ralf; Vajkoczy, Peter; Eyupoglu, Ilker; Kalff, Rolf; Pietsch, Torsten; Happold, Caroline; Galldiks, Norbert; Schmidt-Graf, Friederike; Bamberg, Michael; Reifenberger, Guido; Platten, Michael; von Deimling, Andreas; Meisner, Christoph; Wiestler, Benedikt; Weller, Michael

    2016-01-01

    Background Optimal treatment and precise classification for anaplastic glioma are needed. Methods The objective for long-term follow-up of NOA-04 is to optimize the treatment sequence for patients with anaplastic gliomas. Patients were randomized 2:1:1 to receive the standard radiotherapy (RT) (arm A), procarbazine, lomustine and vincristine (PCV) (arm B1), or temozolomide (TMZ) (arm B2). Results Primary endpoint was time-to-treatment-failure (TTF), defined as progression after 2 lines of therapy or any time before if no further therapy was administered. Exploratory analyses examined associations of molecular marker status with TTF, progression-free survival (PFS), and overall survival (OS). At 9.5 (95% CI: 8.6–10.2) years, no difference between arms (A vs B1/B2) was observed: median TTF (4.6 [3.4–5.1] y vs 4.4 [3.3–5.3) y), PFS (2.5 [1.3–3.5] y vs 2.7 [1.9–3.2] y), and OS (8 [5.5–10.3] y vs 6.5 [5.4–8.3] y). Oligodendroglial versus astrocytic histology—but more so the subgroups according to CpG island methylator phenotype (CIMP) and 1p/19q co-deletion status—revealed a strong prognostic value of CIMPpos with (CIMPcodel) versus without 1p/19 co-deletion (CIMPnon-codel) versus CIMPneg. but no differential efficacy of RT versus chemotherapy for any of the endpoints. PFS was better for PCV- than for TMZ-treated patients with CIMPcodel tumors (HR B1 vs B2 0.39 [0.17–0.92], P = .031). In CIMPneg. tumors, hypermethylation of the O6-methyl-guanyl-DNA methyltransferase promoter (MGMT) provided a risk reduction for PFS with chemotherapy. Conclusions There is no differential activity of primary chemotherapy versus RT in any subgroup of anaplastic glioma. Molecular diagnosis is superior to histology. Trial Registration: clinicaltrials.gov Identifier: NCT00717210. PMID:27370396

  20. A Nanoparticle Carrying the p53 Gene Targets Tumors Including Cancer Stem Cells, Sensitizes Glioblastoma to Chemotherapy and Improves Survival

    PubMed Central

    2015-01-01

    Temozolomide (TMZ)-resistance in glioblastoma multiforme (GBM) has been linked to upregulation of O6-methylguanine-DNA methyltransferase (MGMT). Wild-type (wt) p53 was previously shown to down-modulate MGMT. However, p53 therapy for GBM is limited by lack of efficient delivery across the blood brain barrier (BBB). We have developed a systemic nanodelivery platform (scL) for tumor-specific targeting (primary and metastatic), which is currently in multiple clinical trials. This self-assembling nanocomplex is formed by simple mixing of the components in a defined order and a specific ratio. Here, we demonstrate that scL crosses the BBB and efficiently targets GBM, as well as cancer stem cells (CSCs), which have been implicated in recurrence and treatment resistance in many human cancers. Moreover, systemic delivery of scL-p53 down-modulates MGMT and induces apoptosis in intracranial GBM xenografts. The combination of scL-p53 and TMZ increased the antitumor efficacy of TMZ with enhanced survival benefit in a mouse model of highly TMZ-resistant GBM. scL-p53 also sensitized both CSCs and bulk tumor cells to TMZ, increasing apoptosis. These results suggest that combining scL-p53 with standard TMZ treatment could be a more effective therapy for GBM. PMID:24811110

  1. Efficacy of Asparaginase Erwinia chrysanthemi With and Without Temozolomide Against Glioma Cells and Intracranial Mouse Medulloblastoma.

    PubMed

    Sanghez, Valentina; Chen, Mengqing; Li, Shan; Chou, Tsui-Fen; Iacovino, Michelina; Lin, Henry J; Lasky, Joseph L; Panosyan, Eduard H

    2018-05-01

    Anti-metabolites are less-myelosuppressive than DNA-damaging anticancer drugs and may be useful against brain tumors. We evaluated the asparagine/glutamine-deaminating agent Erwinaze with/without temozolomide against brain tumor cells and mouse medulloblastomas. Erwinaze treatment of cell lines and neurospheres led to dose-dependent reductions of cells (reversible by L-glutamine), with half maximal inhibitory concentrations (IC 50 s) of 0.12->10 IU/ml. Erwinaze at <1 IU/ml reduced temozolomide IC 50 s by 3.6- to 13-fold (300-1,200 μM to 40-330 μM). Seven-week-old SMO/SMO mice treated with Erwinaze (regardless of temozolomide treatment) had better survival 11 weeks post-therapy, compared to those not treated with Erwinaze (81.25% vs. 46.15, p=0.08). Temozolomide-treated mice developed 10% weight loss, impairing survival. All 16 mice treated with temozolomide (regardless of Erwinaze treatment) succumbed by 40-weeks of age, whereas 5/8 animals treated with Erwinaze alone and 2/6 controls survived (p=0.035). Erwinaze enhances cytotoxicity of temozolomide in vitro, and improves survival in SMO/SMO mice, likely by reducing cerebrospinal fluid glutamine. Temozolomide-associated toxicity prevented demonstration of any potential combinatorial advantage with Erwinaze in vivo. Copyright© 2018, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  2. Oncological patterns of care and outcome for 952 patients with newly diagnosed glioblastoma in 2004.

    PubMed

    Bauchet, Luc; Mathieu-Daudé, Hélène; Fabbro-Peray, Pascale; Rigau, Valérie; Fabbro, Michel; Chinot, Olivier; Pallusseau, Loreleï; Carnin, Charlotte; Lainé, Karl; Schlama, Aline; Thiebaut, Agnes; Patru, Maria Cristina; Bauchet, Fabienne; Lionnet, Martine; Wager, Michel; Faillot, Thierry; Taillandier, Luc; Figarella-Branger, Dominique; Capelle, Laurent; Loiseau, Hugues; Frappaz, Didier; Campello, Chantal; Kerr, Christine; Duffau, Hugues; Reme-Saumon, Monique; Trétarre, Brigitte; Daures, Jean-Pierre; Henin, Dominique; Labrousse, François; Menei, Philippe; Honnorat, Jérome

    2010-07-01

    This report, an audit requested by the French government, describes oncological patterns of care, prognostic factors, and survival for patients with newly diagnosed and histologically confirmed glioblastoma multiforme (GBM) in France. The French Brain Tumor DataBase, which is a national multidisciplinary (neurosurgeons, neuropathologists, radiotherapists, neurooncologists, epidemiologists, and biostatisticians) network, prospectively collected initial data for the cases of GBM in 2004, and a specific data card was used to retrospectively collect data on the management and follow-up care of these patients between January 1, 2004, and December 1, 2006. We recorded 952 cases of GBM (male/female ratio 1.6, median age 63.9 years, mean preoperative Karnofsky performance status [KPS] 79). Surgery consisted of resection (RS; n = 541) and biopsy (n = 411); 180 patients did not have subsequent oncological treatment. After surgery, first-line treatment (n = 772) consisted of radiotherapy (RT) and temozolomide (TMZ) concomitant +/- adjuvant in 314 patients, RT alone in 236 patients, chemotherapy (CT) alone in 157 patients, and other treatment modalities in 65 patients. Median overall survival was 286 days (95% CI, 266-314) and was significantly affected by age, KPS, and tumor location. Median survival (days, 95% CI) associated with these main strategies, when analyzed by a surgical group, were as follows: RS + RT-TMZ((n=224)): 476 (441-506), biopsy + RT-TMZ((n=90)): 329 (301-413), RS + RT((n=147)): 363 (331-431), biopsy + RT((n=89)): 178 (153-237), RS + CT((n=61)): 245 (190-361), biopsy + CT((n=96)): 244 (198-280), and biopsy only((n=118)): 55 (46-71). This study illustrates the usefulness of a national brain tumor database. To our knowledge, this work is the largest report of recent GBM management in Europe.

  3. Presentation, management, and outcome of newly diagnosed glioblastoma in elderly patients.

    PubMed

    Tanaka, Shota; Meyer, Fredric B; Buckner, Jan C; Uhm, Joon H; Yan, Elizabeth S; Parney, Ian F

    2013-04-01

    Optimum management for elderly patients with newly diagnosed glioblastoma (GBM) in the temozolomide (TMZ) era is not well defined. The object of this study was to clarify outcomes in this population. The authors retrospectively reviewed 105 consecutive cases involving elderly patients (age ≥ 65 years) with newly diagnosed GBM who were treated at the Mayo Clinic between 2003 and 2008. The patients' median age was 74 years (range 66-87 years), and the median Karnofsky Performance Status (KPS) score was 80 (range 40-90). Half of the patients underwent biopsy and half underwent resection. Patients with deep-seated lesions (19 patients [18%]) or multifocal lesions (34 patients [32%]) were more likely to have biopsy than resection (p = 0.0001 and 0.0009, respectively). New persistent neurological deficits developed in 7 patients (6.7%). Postoperative hemorrhage occurred in 6 patients (5.7%), all of whom underwent biopsy. Complete follow-up data regarding adjuvant treatment was available in 84 patients. Forty-one (49%) were treated with chemotherapy (mostly TMZ) and radiation therapy (RT), and 23 (27%) with RT alone. Nineteen (23%) received only palliative care after surgery (more common with biopsy, p = 0.03). Chemotherapy complications occurred in 28.6% (Grade 3 or 4 hematological complications in 11.9%). The median values for progression-free survival (PFS) and overall survival (OS) were 3.5 and 5.5 months. In a multivariate analysis, younger age (p = 0.03, risk ratio [RR] 0.34, 95% CI 0.13-0.89), single lesion (p = 0.02, RR 0.51, 95% CI 0.30-0.89), resection (p = 0.04, RR 0.54, 95% CI 0.31-0.94), and adjuvant treatment (p = 0.0001, RR 0.24, 95% CI 0.11-0.49) were associated with better OS. Only adjuvant treatment was significantly associated with prolonged PFS (p = 0.0007, RR 0.27, 95% CI 0.13-0.57). With combined therapy with resection, RT, and chemotherapy, the median PFS and OS were 8 and 12.5 months, respectively. The prognosis for GBM worsens with increasing

  4. Patient-derived glioblastoma cells show significant heterogeneity in treatment responses to the inhibitor-of-apoptosis-protein antagonist birinapant

    PubMed Central

    Zakaria, Z; Tivnan, A; Flanagan, L; Murray, D W; Salvucci, M; Stringer, B W; Day, B W; Boyd, A W; Kögel, D; Rehm, M; O'Brien, D F; Byrne, A T; Prehn, J H M

    2016-01-01

    Background: Resistance to temozolomide (TMZ) greatly limits chemotherapeutic effectiveness in glioblastoma (GBM). Here we analysed the ability of the Inhibitor-of-apoptosis-protein (IAP) antagonist birinapant to enhance treatment responses to TMZ in both commercially available and patient-derived GBM cells. Methods: Responses to TMZ and birinapant were analysed in a panel of commercial and patient-derived GBM cell lines using colorimetric viability assays, flow cytometry, morphological analysis and protein expression profiling of pro- and antiapoptotic proteins. Responses in vivo were analysed in an orthotopic xenograft GBM model. Results: Single-agent treatment experiments categorised GBM cells into TMZ-sensitive cells, birinapant-sensitive cells, and cells that were insensitive to either treatment. Combination treatment allowed sensitisation to therapy in only a subset of resistant GBM cells. Cell death analysis identified three principal response patterns: Type A cells that readily activated caspase-8 and cell death in response to TMZ while addition of birinapant further sensitised the cells to TMZ-induced cell death; Type B cells that readily activated caspase-8 and cell death in response to birinapant but did not show further sensitisation with TMZ; and Type C cells that showed no significant cell death or moderately enhanced cell death in the combined treatment paradigm. Furthermore, in vivo, a Type C patient-derived cell line that was TMZ-insensitive in vitro and showed a strong sensitivity to TMZ and TMZ plus birinapant treatments. Conclusions: Our results demonstrate remarkable differences in responses of patient-derived GBM cells to birinapant single and combination treatments, and suggest that therapeutic responses in vivo may be greatly affected by the tumour microenvironment. PMID:26657652

  5. Brain Exposure of Two Selective Dual CDK4 and CDK6 Inhibitors and the Antitumor Activity of CDK4 and CDK6 Inhibition in Combination with Temozolomide in an Intracranial Glioblastoma Xenograft.

    PubMed

    Raub, Thomas J; Wishart, Graham N; Kulanthaivel, Palaniappan; Staton, Brian A; Ajamie, Rose T; Sawada, Geri A; Gelbert, Lawrence M; Shannon, Harlan E; Sanchez-Martinez, Concepcion; De Dios, Alfonso

    2015-09-01

    Effective treatments for primary brain tumors and brain metastases represent a major unmet medical need. Targeting the CDK4/CDK6-cyclin D1-Rb-p16/ink4a pathway using a potent CDK4 and CDK6 kinase inhibitor has potential for treating primary central nervous system tumors such as glioblastoma and some peripheral tumors with high incidence of brain metastases. We compared central nervous system exposures of two orally bioavailable CDK4 and CDK6 inhibitors: abemaciclib, which is currently in advanced clinical development, and palbociclib (IBRANCE; Pfizer), which was recently approved by the U.S. Food and Drug Administration. Abemaciclib antitumor activity was assessed in subcutaneous and orthotopic glioma models alone and in combination with standard of care temozolomide (TMZ). Both inhibitors were substrates for xenobiotic efflux transporters P-glycoprotein and breast cancer resistant protein expressed at the blood-brain barrier. Brain Kp,uu values were less than 0.2 after an equimolar intravenous dose indicative of active efflux but were approximately 10-fold greater for abemaciclib than palbociclib. Kp,uu increased 2.8- and 21-fold, respectively, when similarly dosed in P-gp-deficient mice. Abemaciclib had brain area under the curve (0-24 hours) Kp,uu values of 0.03 in mice and 0.11 in rats after a 30 mg/kg p.o. dose. Orally dosed abemaciclib significantly increased survival in a rat orthotopic U87MG xenograft model compared with vehicle-treated animals, and efficacy coincided with a dose-dependent increase in unbound plasma and brain exposures in excess of the CDK4 and CDK6 Ki values. Abemaciclib increased survival time of intracranial U87MG tumor-bearing rats similar to TMZ, and the combination of abemaciclib and TMZ was additive or greater than additive. These data show that abemaciclib crosses the blood-brain barrier and confirm that both CDK4 and CDK6 inhibitors reach unbound brain levels in rodents that are expected to produce enzyme inhibition; however

  6. Profound prevention of experimental brain metastases of breast cancer by temozolomide in an MGMT-dependent manner

    PubMed Central

    Palmieri, Diane; Duchnowska, Renata; Woditschka, Stephan; Hua, Emily; Qian, Yongzhen; Biernat, Wojciech; Sosińska-Mielcarek, Katarzyna; Gril, Brunilde; Stark, Andreas; Hewitt, Stephen; Liewehr, David J; Steinberg, Seth M; Jassem, Jacek; Steeg, Patricia S

    2014-01-01

    Purpose Brain metastases of breast cancer cause neurocognitive damage and are incurable. We evaluated a role for temozolomide in the prevention of brain metastases of breast cancer in experimental brain metastasis models. Experimental Design Temozolomide was administered in mice following earlier injection of brain-tropic human epidermal growth factor receptor 2 (HER2)-positive Jimt1-BR3 and triple negative 231-BR-EGFP sublines, the latter with and without expression of 06-methylguanine-DNA methyltransferase (MGMT). Additionally, the percentage of MGMT-positive tumor cells in 62 patient-matched sets of breast cancer primary tumors and resected brain metastases was determined immunohistochemically. Results Temozolomide, when dosed at 50, 25, 10 or 5 mg/kg, 5 days/week, beginning 3 days after inoculation, completely prevented the formation of experimental brain metastases from MGMT-negative 231-BR-EGFP cells. At a 1 mg/kg dose, temozolomide prevented 68% of large brain metastases, and was ineffective at a dose of 0.5 mg/kg. When the 50 mg/kg dose was administered beginning on days 18 or 24, temozolomide efficacy was reduced or absent. Temozolomide was ineffective at preventing brain metastases in MGMT-transduced 231-BR-EGFP and MGMT-expressing Jimt-1-BR3 sublines. In 62 patient-matched sets of primary breast tumors and resected brain metastases, 43.5% of the specimens had concordant low MGMT expression, while in another 14.5% of sets high MGMT staining in the primary tumor corresponded with low staining in the brain metastasis. Conclusions Temozolomide profoundly prevented the outgrowth of experimental brain metastases of breast cancer in an MGMT-dependent manner. These data provide compelling rationale for investigating the preventive efficacy of temozolomide in a clinical setting. PMID:24634373

  7. Profound prevention of experimental brain metastases of breast cancer by temozolomide in an MGMT-dependent manner.

    PubMed

    Palmieri, Diane; Duchnowska, Renata; Woditschka, Stephan; Hua, Emily; Qian, Yongzhen; Biernat, Wojciech; Sosińska-Mielcarek, Katarzyna; Gril, Brunilde; Stark, Andreas M; Hewitt, Stephen M; Liewehr, David J; Steinberg, Seth M; Jassem, Jacek; Steeg, Patricia S

    2014-05-15

    Brain metastases of breast cancer cause neurocognitive damage and are incurable. We evaluated a role for temozolomide in the prevention of brain metastases of breast cancer in experimental brain metastasis models. Temozolomide was administered in mice following earlier injection of brain-tropic HER2-positive JIMT-1-BR3 and triple-negative 231-BR-EGFP sublines, the latter with and without expression of O(6)-methylguanine-DNA methyltransferase (MGMT). In addition, the percentage of MGMT-positive tumor cells in 62 patient-matched sets of breast cancer primary tumors and resected brain metastases was determined immunohistochemically. Temozolomide, when dosed at 50, 25, 10, or 5 mg/kg, 5 days per week, beginning 3 days after inoculation, completely prevented the formation of experimental brain metastases from MGMT-negative 231-BR-EGFP cells. At a 1 mg/kg dose, temozolomide prevented 68% of large brain metastases, and was ineffective at a dose of 0.5 mg/kg. When the 50 mg/kg dose was administered beginning on days 18 or 24, temozolomide efficacy was reduced or absent. Temozolomide was ineffective at preventing brain metastases in MGMT-transduced 231-BR-EGFP and MGMT-expressing JIMT-1-BR3 sublines. In 62 patient-matched sets of primary breast tumors and resected brain metastases, 43.5% of the specimens had concordant low MGMT expression, whereas in another 14.5% of sets high MGMT staining in the primary tumor corresponded with low staining in the brain metastasis. Temozolomide profoundly prevented the outgrowth of experimental brain metastases of breast cancer in an MGMT-dependent manner. These data provide compelling rationale for investigating the preventive efficacy of temozolomide in a clinical setting. ©2014 American Association for Cancer Research.

  8. The Error-Prone DNA Polymerase κ Promotes Temozolomide Resistance in Glioblastoma through Rad17-Dependent Activation of ATR-Chk1 Signaling.

    PubMed

    Peng, Chenghao; Chen, Zhengxin; Wang, Shuai; Wang, Hong-Wei; Qiu, Wenjin; Zhao, Lin; Xu, Ran; Luo, Hui; Chen, Yuanyuan; Chen, Dan; You, Yongping; Liu, Ning; Wang, Huibo

    2016-04-15

    The acquisition of drug resistance is a persistent clinical problem limiting the successful treatment of human cancers, including glioblastoma (GBM). However, the molecular mechanisms by which initially chemoresponsive tumors develop therapeutic resistance remain poorly understood. In this study, we report that Pol κ, an error-prone polymerase that participates in translesion DNA synthesis, was significantly upregulated in GBM cell lines and tumor tissues following temozolomide treatment. Overexpression of Pol κ in temozolomide-sensitive GBM cells conferred resistance to temozolomide, whereas its inhibition markedly sensitized resistant cells to temozolomide in vitro and in orthotopic xenograft mouse models. Mechanistically, depletion of Pol κ disrupted homologous recombination (HR)-mediated repair and restart of stalled replication forks, impaired the activation of ATR-Chk1 signaling, and delayed cell-cycle re-entry and progression. Further investigation of the relationship between Pol κ and temozolomide revealed that Pol κ inactivation facilitated temozolomide-induced Rad17 ubiquitination and proteasomal degradation, subsequently silencing ATR-Chk1 signaling and leading to defective HR repair and the reversal of temozolomide resistance. Moreover, overexpression of Rad17 in Pol κ-depleted GBM cells restored HR efficiency, promoted the clearance of temozolomide-induced DNA breaks, and desensitized cells to the cytotoxic effects of temozolomide observed in the absence of Pol κ. Finally, we found that Pol κ overexpression correlated with poor prognosis in GBM patients undergoing temozolomide therapy. Collectively, our findings identify a potential mechanism by which GBM cells develop resistance to temozolomide and suggest that targeting the DNA damage tolerance pathway may be beneficial for overcoming resistance. Cancer Res; 76(8); 2340-53. ©2016 AACR. ©2016 American Association for Cancer Research.

  9. Cost-effectiveness of the long-term use of temozolomide for treating newly diagnosed glioblastoma in Germany.

    PubMed

    Waschke, Albrecht; Arefian, Habibollah; Walter, Jan; Hartmann, Michael; Maschmann, Jens; Kalff, Rolf

    2018-06-01

    Concomitant radiochemotherapy followed by six cycles of temozolomide (= short term) is considered as standard therapy for adults with newly diagnosed glioblastoma. In contrast, open-end administration of temozolomide until progression (= long-term) is proposed by some authors as a viable alternative. We aimed to determine the cost-effectiveness of long-term temozolomide therapy for patients newly diagnosed with glioblastoma compared to standard therapy. A Markov model was constructed to compare medical costs and clinical outcomes for both therapy types over a time horizon of 60 months. Transition probabilities for standard therapy were calculated from randomized controlled trial data by Stupp et al. The data for long-term temozolomide therapy was collected by matching a cohort treated in the Department of Neurosurgery at Jena University Hospital. Health utilities were obtained from a previous cost utility study. The cost perspective was based on health insurance. The base case analysis showed a median overall survival of 17.1 months and a median progression-free survival of 7.4 months for patients in the long-term temozolomide therapy arm. The cost-effectiveness analysis using all base case parameters in a time-dependent Markov model resulted in an incremental effectiveness of 0.022 quality-adjusted life-years (QALYs). The incremental cost-effectiveness ratio (ICER) was €351,909/QALY. Sensitivity analyses showed that parameters with the most influence on ICER were the health state utility of progression in both therapy arms. Although open-ended temozolomide therapy is very expensive, the ICER of this therapy is comparable to that of the standard temozolomide therapy for patients newly diagnosed with glioblastoma.

  10. The search for a melanoma-tailored chemotherapy in the new era of personalized therapy: a phase II study of chemo-modulating temozolomide followed by fotemustine and a cooperative study of GOIM (Gruppo Oncologico Italia Meridionale).

    PubMed

    Guida, Michele; Tommasi, Stefania; Strippoli, Sabino; Natalicchio, Maria Iole; De Summa, Simona; Pinto, Rosamaria; Cramarossa, Antonio; Albano, Anna; Pisconti, Salvatore; Aieta, Michele; Ridolfi, Ruggiero; Azzariti, Amalia; Guida, Gabriella; Lorusso, Vito; Colucci, Giusepe

    2018-05-10

    It is frequently asked whether chemotherapy can still play a role in metastatic melanoma considering the effectiveness of the available drugs today, including antiCTLA4/antiPD1 immunotherapy and antiBRAF/antiMEK inhibitors. However, only approximately half of patients respond to these drugs, and the majority progress after 6-11 months. Therefore, a need for other therapeutic options is still very much apparent. We report the first large trial of a sequential full dose of fotemustine (FM) preceded by a low dose of temozolomide (TMZ) as a chemo-modulator in order to inactivate the DNA repair action of O(6)-methylguanine DNA-methyltransferase (MGMT). Primary endpoints were overall response and safety. We also evaluated specific biological parameters aiming to tailor these chemotherapies to selected patients. A total of 69 consecutive patients were enrolled. The main features included a median age of 60 years (21-81) and M1c stage, observed in 74% of the patients, with brain metastases in 15% and high LDH levels in 42% of the patients. The following schedule was used: oral TMZ 100 mg/m 2 on days 1 and 2 and FM iv 100 mg/m 2 on day 2, 4 h after TMZ; A translational study aiming to analyse MGMT methylation status and base-excision repair (BER) gene expression was performed in a subset of 14 patients. We reported an overall response rate of 30.3% with 3 complete responses and a disease control rate of 50.5%. The related toxicity rate was low and mainly of haematological types. Although our population had a very poor prognosis, we observed a PFS of 6 months and an OS of 10 months. A non-significant correlation with response was found with the mean expression level of the three genes involved in the BER pathway (APE1, XRCC1 and PARP1), whereas no association was found with MGMT methylation status. This schedule could represent a good alternative for patients who are not eligible for immune or targeted therapy or whose previous therapies have failed. EUDRACT 2009

  11. The neuropharmacokinetics of temozolomide in patients with resectable brain tumors: potential implications for the current approach to chemoradiation.

    PubMed

    Portnow, Jana; Badie, Behnam; Chen, Mike; Liu, An; Blanchard, Suzette; Synold, Timothy W

    2009-11-15

    Intracerebral microdialysis (ICMD) is an accepted method for monitoring changes in neurochemistry from acute brain injury. The goal of this pilot study was to determine the feasibility of using ICMD to examine the neuropharmacokinetics of temozolomide in brain interstitium following oral administration. Patients with primary or metastatic brain tumors had a microdialysis catheter placed in peritumoral brain tissue at the time of surgical debulking. Computerized tomography scan confirmed the catheter location. Patients received a single oral dose of temozolomide (150 mg/m2) on the first postoperative day, serial plasma and ICMD samples were collected over 24 hours, and temozolomide concentrations were determined by tandem mass spectrometry. Nine patients were enrolled. Dialysate and plasma samples were successfully collected from seven of the nine patients. The mean temozolomide areas under the concentration-time curve (AUC) in plasma and brain interstitium were 17.1 and 2.7 microg/mL x hour, with an average brain interstitium/plasma AUC ratio of 17.8%. The mean peak temozolomide concentration in the brain was 0.6 +/- 0.3 microg/mL, and the mean time to reach peak level in brain was 2.0 +/- 0.8 hours. The use of ICMD to measure the neuropharmacokinetics of systemically administered chemotherapy is safe and feasible. Concentrations of temozolomide in brain interstitium obtained by ICMD are consistent with published data obtained in a preclinical ICMD model, as well as from clinical studies of cerebrospinal fluid. However, the delayed time required to achieve maximum temozolomide concentrations in brain suggests that current chemoradiation regimens may be improved by administering temozolomide 2 to 3 hours before radiation.

  12. Long-term analysis of the NOA-04 randomized phase III trial of sequential radiochemotherapy of anaplastic glioma with PCV or temozolomide.

    PubMed

    Wick, Wolfgang; Roth, Patrick; Hartmann, Christian; Hau, Peter; Nakamura, Makoto; Stockhammer, Florian; Sabel, Michael C; Wick, Antje; Koeppen, Susanne; Ketter, Ralf; Vajkoczy, Peter; Eyupoglu, Ilker; Kalff, Rolf; Pietsch, Torsten; Happold, Caroline; Galldiks, Norbert; Schmidt-Graf, Friederike; Bamberg, Michael; Reifenberger, Guido; Platten, Michael; von Deimling, Andreas; Meisner, Christoph; Wiestler, Benedikt; Weller, Michael

    2016-11-01

    Optimal treatment and precise classification for anaplastic glioma are needed. The objective for long-term follow-up of NOA-04 is to optimize the treatment sequence for patients with anaplastic gliomas. Patients were randomized 2:1:1 to receive the standard radiotherapy (RT) (arm A), procarbazine, lomustine and vincristine (PCV) (arm B1), or temozolomide (TMZ) (arm B2). Primary endpoint was time-to-treatment-failure (TTF), defined as progression after 2 lines of therapy or any time before if no further therapy was administered. Exploratory analyses examined associations of molecular marker status with TTF, progression-free survival (PFS), and overall survival (OS). At 9.5 (95% CI: 8.6-10.2) years, no difference between arms (A vs B1/B2) was observed: median TTF (4.6 [3.4-5.1] y vs 4.4 [3.3-5.3) y), PFS (2.5 [1.3-3.5] y vs 2.7 [1.9-3.2] y), and OS (8 [5.5-10.3] y vs 6.5 [5.4-8.3] y). Oligodendroglial versus astrocytic histology-but more so the subgroups according to CpG island methylator phenotype (CIMP) and 1p/19q co-deletion status-revealed a strong prognostic value of CIMP pos with (CIMP codel ) versus without 1p/19 co-deletion (CIMP non-codel ) versus CIMP neg . but no differential efficacy of RT versus chemotherapy for any of the endpoints. PFS was better for PCV- than for TMZ-treated patients with CIMP codel tumors (HR B1 vs B2 0.39 [0.17-0.92], P = .031). In CIMP neg . tumors, hypermethylation of the O6-methyl-guanyl-DNA methyltransferase promoter (MGMT) provided a risk reduction for PFS with chemotherapy. There is no differential activity of primary chemotherapy versus RT in any subgroup of anaplastic glioma. Molecular diagnosis is superior to histology. clinicaltrials.gov Identifier: NCT00717210. © The Author(s) 2016. Published by Oxford University Press on behalf of the Society for Neuro-Oncology. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  13. Decoy Receptor DcR1 Is Induced in a p50/Bcl3-Dependent Manner and Attenuates the Efficacy of Temozolomide.

    PubMed

    Mansour, Nassir M; Bernal, Giovanna M; Wu, Longtao; Crawley, Clayton D; Cahill, Kirk E; Voce, David J; Balyasnikova, Irina V; Zhang, Wei; Spretz, Ruben; Nunez, Luis; Larsen, Gustavo F; Weichselbaum, Ralph R; Yamini, Bakhtiar

    2015-05-15

    Temozolomide is used widely to treat malignant glioma, but the overall response to this agent is generally poor. Resistance to DNA-damaging drugs such as temozolomide has been related to the induction of antiapoptotic proteins. Specifically, the transcription factor NF-κB has been suggested to participate in promoting the survival of cells exposed to chemotherapy. To identify factors that modulate cytotoxicity in the setting of DNA damage, we used an unbiased strategy to examine the NF-κB-dependent expression profile induced by temozolomide. By this route, we defined the decoy receptor DcR1 as a temozolomide response gene induced by a mechanism relying upon p50/NF-κB1. A conserved NF-κB-binding sequence (κB-site) was identified in the proximal promoter and was demonstrated to be required for DcR1 induction by temozolomide. Loss-of-function and gain-of-function studies reveal that the atypical IκB protein, Bcl3, is also required for induction of DcR1 by temozolomide. Mechanistically, DcR1 attenuates temozolomide efficacy by blunting activation of the Fas receptor pathway in p53(+/+) glioma cells. Intracranial xenograft studies show that DcR1 depletion in glioma cells enhances the efficacy of temozolomide. Taken together, our results show how DcR1 upregulation mediates temozolomide resistance and provide a rationale for DcR1 targeting as a strategy to sensitize gliomas to this widely used chemotherapy. ©2015 American Association for Cancer Research.

  14. Induction of brain tumor stem cell apoptosis by FTY720: a potential therapeutic agent for glioblastoma.

    PubMed

    Estrada-Bernal, Adriana; Palanichamy, Kamalakannan; Ray Chaudhury, Abhik; Van Brocklyn, James R

    2012-04-01

    FTY720 is a sphingosine analogue that down regulates expression of sphingosine-1-phosphate receptors and causes apoptosis of multiple tumor cell types, including glioma cells. This study examined the effect of FTY720 on brain tumor stem cells (BTSCs) derived from human glioblastoma (GBM) tissue. FTY720 treatment of BTSCs led to rapid inactivation of ERK MAP kinase, leading to upregulation of the BH3-only protein Bim and apoptosis. In combination with temozolomide (TMZ), the current standard chemotherapeutic agent for GBM, FTY720 synergistically induced BTSC apoptosis. FTY720 also slowed growth of intracranial xenograft tumors in nude mice and augmented the therapeutic effect of TMZ, leading to enhanced survival. Furthermore, the combination of FTY720 and TMZ decreased the invasiveness of BTSCs in mouse brains. FTY720 is known to cross the blood-brain barrier and recently received Food and Drug Administration approval for treatment of relapsing multiple sclerosis. Thus, FTY720 is an excellent potential therapeutic agent for treatment of GBM.

  15. Inhibition of HSP27 alone or in combination with pAKT inhibition as therapeutic approaches to target SPARC-induced glioma cell survival

    PubMed Central

    2012-01-01

    Background The current treatment regimen for glioma patients is surgery, followed by radiation therapy plus temozolomide (TMZ), followed by 6 months of adjuvant TMZ. Despite this aggressive treatment regimen, the overall survival of all surgically treated GBM patients remains dismal, and additional or different therapies are required. Depending on the cancer type, SPARC has been proposed both as a therapeutic target and as a therapeutic agent. In glioma, SPARC promotes invasion via upregulation of the p38 MAPK/MAPKAPK2/HSP27 signaling pathway, and promotes tumor cell survival by upregulating pAKT. As HSP27 and AKT interact to regulate the activity of each other, we determined whether inhibition of HSP27 was better than targeting SPARC as a therapeutic approach to inhibit both SPARC-induced glioma cell invasion and survival. Results Our studies found the following. 1) SPARC increases the expression of tumor cell pro-survival and pro-death protein signaling in balance, and, as a net result, tumor cell survival remains unchanged. 2) Suppressing SPARC increases tumor cell survival, indicating it is not a good therapeutic target. 3) Suppressing HSP27 decreases tumor cell survival in all gliomas, but is more effective in SPARC-expressing tumor cells due to the removal of HSP27 inhibition of SPARC-induced pro-apoptotic signaling. 4) Suppressing total AKT1/2 paradoxically enhanced tumor cell survival, indicating that AKT1 or 2 are poor therapeutic targets. 5) However, inhibiting pAKT suppresses tumor cell survival. 6) Inhibiting both HSP27 and pAKT synergistically decreases tumor cell survival. 7) There appears to be a complex feedback system between SPARC, HSP27, and AKT. 8) This interaction is likely influenced by PTEN status. With respect to chemosensitization, we found the following. 1) SPARC enhances pro-apoptotic signaling in cells exposed to TMZ. 2) Despite this enhanced signaling, SPARC protects cells against TMZ. 3) This protection can be reduced by inhibiting p

  16. Human methyl purine DNA glycosylase and DNA polymerase ß expression collectively predict sensitivity to temozolomide

    PubMed Central

    Trivedi, Ram N.; Wang, Xiao-hong; Jelezcova, Elena; Goellner, Eva M.; Tang, Jiangbo; Sobol, Robert W.

    2014-01-01

    Over-expression of N-methylpurine DNA glycosylase (MPG) has been suggested as a possible gene therapy approach to sensitize tumor cells to the cell killing effects of temozolomide, an imidazotetrazine-class chemotherapeutic alkylating agent. In the present study, we show that both elevated MPG expression and shRNA-mediated loss of Pol ß expression in human breast cancer cells increases cellular sensitivity to temozolomide. Resistance to temozolomide is restored by complementation of either wild-type human Pol ß or human Pol ß with an inactivating mutation specific to the polymerase active site yet functional for 5′dRP lyase activity. These genetic and cellular studies uniquely demonstrate that over-expression of MPG causes an imbalance in BER leading to an accumulation of cytotoxic 5′dRP lesions and that the 5′dRP lyase activity of Pol ß is required to restore resistance to temozolomide. These results imply that Pol ß dependent 5′dRP lyase activity is the rate-limiting step in BER in these cells and suggests that BER is a tightly balanced pathway for the repair of alkylated bases such as N7-MeG and N3-MeA. Further, we find that 5′dRP-mediated cell death is independent of caspase-3 activation and does not induce the formation of autophagosomes, as measured by GFP-LC3 localization. The experiments presented herein suggest that it will be important to investigate whether an active BER pathway could be partially responsible for the temozolomide-mediated resistance seen in some tumors and that balanced BER protein expression and overall BER capacity may help predict sensitivity to temozolomide. PMID:18477668

  17. Enhancement of Glioma Radiotherapy and Chemotherapy Response With Targeted Antibody Therapy Against Death Receptor 5

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fiveash, John B.; Gillespie, G. Yancey; Oliver, Patsy G.

    2008-06-01

    Purpose: TRA-8 is an agonistic mouse monoclonal antibody that binds to tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) death receptor 5, which induces apoptosis in cancer cells through a caspase-8-dependent mechanism. We investigated the ability of TRA-8 to augment the radiotherapy (RT) and chemotherapy response of human glioma cells in vitro and in vivo. Methods and Materials: The in vitro cytotoxicity of TRA-8 and temozolomide (Tmz) or RT was examined using adenosine triphosphate-dependent viability and clonogenic survival assays with five glioma cell lines. Death receptor 5 expression was determined by flow cytometry. In vivo studies included subcutaneous and intracranial xenograft modelsmore » testing various combination treatments, including RT, Tmz, and TRA-8. Results: TRA-8, combined with Tmz or RT, produced enhanced cytotoxicity against five glioma cell lines compared with the use of the individual agents alone. Death receptor 5 upregulation occurred in response to RT. Complete tumor regression in the subcutaneous experiments was the most common in animals that received combination therapy with TRA-8/Tmz/RT. TRA-8 enhanced tumor growth delay in combination with RT or Tmz. TRA-8 alone had limited activity against intracranial tumors. In contrast, the median survival of mice treated with TRA-8/Tmz/RT was significantly greater than the control or TRA-8-alone-treated mice. The median survival of the mice treated with TRA-8/Tmz/RT or chemoradiotherapy only was significantly greater than the control or TRA-8-treated mice. A trend toward improved survival was observed between TRA-8/Tmz/RT-treated and Tmz/RT-treated mice. Conclusions: These preliminary findings support the hypothesis that TRA-8 will augment the RT and chemotherapy response in gliomas. A humanized version of TRA-8 is being evaluated in a Phase II clinical trial.« less

  18. Decitabine Nano-conjugate Sensitizing Human Glioblastoma Cells to Temozolomide

    PubMed Central

    Cui, Yi; Naz, Asia; Thompson, David H.; Irudayaraj, Joseph

    2015-01-01

    In this study we developed and characterized a delivery system for the epigenetic demethylating drug, decitabine, to sensitize temozolomide-resistant human glioblastoma multiforme (GBM) cells to alkylating chemotherapy. A poly(lactic-co-glycolic acid) (PLGA) and polyethylene glycol (PEG) based nano-conjugate was fabricated to encapsulate decitabine and achieved a better therapeutic response in GBM cells. After synthesis, the highly efficient uptake process and intracellular dynamics of this nano-conjugate was monitored by single-molecule fluorescence tools. Our experiments demonstrated that, under an acidic pH due to active glycolysis in cancer cells, the PLGA-PEG nano-vector could release the conjugated decitabine at a faster rate, after which the hydrolyzed lactic acid and glycolic acid would further acidify the intracellular microenvironment, thus providing a “positive feedback” to increase the effective drug concentration and realize growth inhibition. In temozolomide-resistant GBM cells, decitabine can potentiate the cytotoxic DNA alkylation by counteracting cytosine methylation and reactivating tumor suppressor genes, such as p53 and p21. Owing to excellent internalization and endo-lysosomal escape enabled by the PLGA-PEG backbone, the encapsulated decitabine exhibited a better anti-GBM potential than free drug molecules. Hence, the synthesized nano-conjugate and temozolomide could act in synergy to deliver a more potent and long-term anti-proliferation effect against malignant GBM cells. PMID:25751281

  19. Temozolomide and other potential agents for the treatment of glioblastoma multiforme.

    PubMed

    Nagasawa, Daniel T; Chow, Frances; Yew, Andrew; Kim, Won; Cremer, Nicole; Yang, Isaac

    2012-04-01

    This article provides historical and recent perspectives related to the use of temozolomide for the treatment of glioblastoma multiforme. Temozolomide has quickly become part of the standard of care for the modern treatment of stage IV glioblastoma multiforme since its approval in 2005. Yet despite its improvements from previous therapies, median survival remains approximately 15 months, with a 2-year survival rate of 8% to 26%. The mechanism of action of this chemotherapeutic agent, conferred advantages and limitations, treatment resistance and rescue, and potential targets of future research are discussed. Copyright © 2012 Elsevier Inc. All rights reserved.

  20. Procarbazine and CCNU Chemotherapy for Recurrent Glioblastoma with MGMT Promoter Methylation.

    PubMed

    Kim, Se-Hyuk; Yoo, Heon; Chang, Jong Hee; Kim, Chae-Yong; Chung, Dong Sup; Kim, Se Hoon; Park, Sung-Hae; Lee, Youn Soo; Yang, Seung Ho

    2018-06-11

    While procarbazine, CCNU (lomustine), and vincristine (PCV) has been an alternative chemotherapy option for malignant gliomas, it is worth investigating whether the combination of only procarbazine and CCNU is comparable because vincristine adds toxicity with uncertain benefit. The purpose of this study was to evaluate the feasibility of procarbazine and CCNU chemotherapy for recurrent glioblastoma multiforme (GBM) with O 6 -methylguanine-DNA-methyltransferase (MGMT) promoter methylation. Eight patients with recurrent GBM following concurrent chemoradiotherapy and temozolomide (TMZ) adjuvant therapy were enrolled in this trial; they received no other chemotherapeutic agents or target therapy. They received CCNU (75 mg/m 2 ) on day 1 and procarbazine (60 mg/m 2 ) through days 11 and 24 every 4 weeks. The median cycle of CCNU and procarbazine was 3.5 (range: 2-6). One patient achieved stable disease. The median progression-free survival (PFS) with procarbazine and CCNU chemotherapy was eight weeks (range: 5-73), and the PFS rates were 25% and 12.5% at 16 and 30 weeks, respectively. The median overall survival (OS) from the initial diagnosis to death was 40 months, and the median OS from the administration of procarbazine and CCNU chemotherapy to death was 9.7 months (95% confidence interval: 6.7-12.7). Serious adverse events were found at six visits, and two cases were considered to be grade 3 toxicities. The efficacy of procarbazine and CCNU chemotherapy is not satisfactory. This study suggests the need to develop other treatment strategies for recurrent and TMZ-refractory GBM. Trial registry at ClinicalTrials.gov, NCT017337346.

  1. Haematological toxicity of Valproic acid compared to Levetiracetam in patients with glioblastoma multiforme undergoing concomitant radio-chemotherapy: a retrospective cohort study.

    PubMed

    Tinchon, Alexander; Oberndorfer, Stefan; Marosi, Christine; Gleiss, Andreas; Geroldinger, Angelika; Sax, Cornelia; Sherif, Camillo; Moser, Walter; Grisold, Wolfgang

    2015-01-01

    Patients with glioblastoma multiforme (GBM) and symptomatic seizures are in need of a sufficient antiepileptic treatment. Haematological toxicity is a limiting side effect of both, first line radio-chemotherapy with temozolomide (TMZ) and co-medication with antiepileptic drugs. Valproic acid (VPA) and levetiracetam (LEV) are considered favourable agents in brain tumor patients with seizures, but are commonly reported to induce haematological side effects on their own. We hypothesized, that antiepileptic treatment with these agents has no increased impact on haematological side effects during radio-chemotherapy in the first line setting. We included 104 patients from two neuro-oncologic centres with GBM and standard radio-chemotherapy in a retrospective cohort study. Patients were divided according to their antiepileptic treatment with either VPA, LEV or without antiepileptic drug therapy (control group). Declines in haemoglobin levels and absolute blood cell counts for neutrophil granulocytes, lymphocytes and thrombocytes were analyzed twice during concomitant and once during adjuvant phase. A comparison between the examined groups was performed, using a linear mixed model. Neutrophil granulocytes, lymphocytes and thrombocytes significantly decreased over time in all three groups (all p < 0.012), but there was no significant difference between the compared groups. A significant decline in haemoglobin was observed in the LEV treated group (p = 0.044), but did not differ between the compared groups. As a novel finding, this study demonstrates that co-medication either with VPA or LEV in GBM patients undergoing first line radio-chemotherapy with TMZ has no additional impact on medium-term haematological toxicity.

  2. An Update on the Role of Immunotherapy and Vaccine Strategies for Primary Brain Tumors.

    PubMed

    Neagu, Martha R; Reardon, David A

    2015-11-01

    Existing therapies for glioblastoma (GBM), the most common malignant primary brain tumor in adults, have fallen short of improving the dismal patient outcomes, with an average 14-16-month median overall survival. The biological complexity and adaptability of GBM, redundancy of dysregulated signaling pathways, and poor penetration of therapies through the blood-brain barrier contribute to poor therapeutic progress. The current standard of care for newly diagnosed GBM consists of maximal safe resection, followed by fractionated radiotherapy combined with concurrent temozolomide (TMZ) and 6-12 cycles of adjuvant TMZ. At progression, bevacizumab with or without additional chemotherapy is an option for salvage therapy. The recent FDA approval of sipuleucel-T for prostate cancer and ipilumimab, nivolumab, and pembrolizumab for select solid tumors and the ongoing trials showing clinical efficacy and response durability herald a new era of cancer treatment with the potential to change standard-of-care treatment across multiple cancers. The evaluation of various immunotherapeutics is advancing for GBM, putting into question the dogma of the CNS as an immuno-privileged site. While the field is yet young, both active immunotherapy involving vaccine strategies and cellular therapy as well as reversal of GBM-induced global immune-suppression through immune checkpoint blockade are showing promising results and revealing essential immunological insights regarding kinetics of the immune response, immune evasion, and correlative biomarkers. The future holds exciting promise in establishing new treatment options for GBM that harness the patients' own immune system by activating it with immune checkpoint inhibitors, providing specificity using vaccine therapy, and allowing for modulation and enhancement by combinatorial approaches.

  3. A phase I study of LY317615 (enzastaurin) and temozolomide in patients with gliomas (EORTC trial 26054)

    PubMed Central

    Rampling, Roy; Sanson, Marc; Gorlia, Thiery; Lacombe, Denis; Lai, Christina; Gharib, Myriam; Taal, Walter; Stoffregen, Clemens; Decker, Rodney; van den Bent, Martin J.

    2012-01-01

    We report a phase 1 study to examine the safety and recommended dose of the oral protein kinase C-beta inhibitor (anti-angiogenic) enzastaurin in combination with single-agent temozolomide. The study was conducted in patients with recurrent glioblastoma or newly diagnosed disease that was not treatable with standard (chemo)radiotherapy. Patients were treated with standard dose temozolomide (200 mg/m2 for 5 days every 4 weeks) together with daily oral enzastaurin. Three dose levels of enzastaurin were investigated: 250 mg daily (OD), 500 mg OD, and 250 mg twice daily (BID). Dose-limiting toxicity was determined in the first 2 cycles, but treatment continued until limiting toxicity or disease progression was identified. Twenty-eight patients were enrolled. No dose-limiting toxicity was noted at 250 mg OD or 500 mg OD. However, at 250 mg BID, 2 dose-limiting episodes of thrombocytopenia were noted. The recommended dose for enzastaurin in combination with standard 4-weekly temozolomide is therefore 500 mg OD. The pharmacokinetics of enzastaurin in combination with temozolomide was evaluated. Temozolomide did not appear to effect enzastaurin exposures at the 250 mg or 500 mg OD dose levels. PMID:22291006

  4. Combined activity of temozolomide and the mTOR inhibitor temsirolimus in metastatic melanoma involves DKK1.

    PubMed

    Niessner, Heike; Kosnopfel, Corinna; Sinnberg, Tobias; Beck, Daniela; Krieg, Kathrin; Wanke, Ines; Lasithiotakis, Konstantinos; Bonin, Michael; Garbe, Claus; Meier, Friedegund

    2017-07-01

    The BRAFV600E inhibitor vemurafenib achieves remarkable clinical responses in patients with BRAF-mutant melanoma, but its effects are limited by the onset of drug resistance. In the case of resistance, chemotherapy can still be applied as second line therapy. However, it yields low response rates and strategies are urgently needed to potentiate its effects. In a previous study, we showed that the inhibition of the PI3K-AKT-mTOR pathway significantly increases sensitivity of melanoma cells to chemotherapeutic drugs (J. Invest. Dermatol. 2009, 129, 1500). In this study, the combination of the mTOR inhibitor temsirolimus with the chemotherapeutic agent temozolomide significantly increases growth inhibition and apoptosis in melanoma cells compared to temsirolimus or temozolomide alone. The combination of temozolomide with temsirolimus is not only effective in established but also in newly isolated and vemurafenib-resistant metastatic melanoma cell lines. These effects are associated with the downregulation of the anti-apoptotic protein Mcl-1 and the upregulation of the Wnt antagonist Dickkopf homologue 1 (DKK1). Knock-down of DKK1 suppresses apoptosis induction by the combination of temsirolimus and temozolomide. These data suggest that the inhibition of the mTOR pathway increases sensitivity of melanoma cells towards temozolomide. Chemosensitisation is associated with enhanced expression of the Wnt antagonist DKK1. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  5. Temozolomide, sirolimus and chloroquine is a new therapeutic combination that synergizes to disrupt lysosomal function and cholesterol homeostasis in GBM cells.

    PubMed

    Hsu, Sanford P C; Kuo, John S; Chiang, Hsin-Chien; Wang, Hsin-Ell; Wang, Yu-Shan; Huang, Cheng-Chung; Huang, Yi-Chun; Chi, Mau-Shin; Mehta, Minesh P; Chi, Kwan-Hwa

    2018-01-23

    Glioblastoma (GBM) cells are characterized by high phagocytosis, lipogenesis, exocytosis activities, low autophagy capacity and high lysosomal demand are necessary for survival and invasion. The lysosome stands at the cross roads of lipid biosynthesis, transporting, sorting between exogenous and endogenous cholesterol. We hypothesized that three already approved drugs, the autophagy inducer, sirolimus (rapamycin, Rapa), the autophagy inhibitor, chloroquine (CQ), and DNA alkylating chemotherapy, temozolomide (TMZ) could synergize against GBM. This repurposed triple therapy combination induced GBM apoptosis in vitro and inhibited GBM xenograft growth in vivo . Cytotoxicity is caused by induction of lysosomal membrane permeabilization and release of hydrolases, and may be rescued by cholesterol supplementation. Triple treatment inhibits lysosomal function, prevents cholesterol extraction from low density lipoprotein (LDL), and causes clumping of lysosome associated membrane protein-1 (LAMP-1) and lipid droplets (LD) accumulation. Co-treatment of the cell lines with inhibitor of caspases and cathepsin B only partially reverse of cytotoxicities, while N-acetyl cysteine (NAC) can be more effective. A combination of reactive oxygen species (ROS) generation from cholesterol depletion are the early event of underling mechanism. Cholesterol repletion abolished the ROS production and reversed the cytotoxicity from QRT treatment. The shortage of free cholesterol destabilizes lysosomal membranes converting aborted autophagy to apoptosis through either direct mitochondria damage or cathepsin B release. This promising anti-GBM triple therapy combination severely decreases mitochondrial function, induces lysosome-dependent apoptotic cell death, and is now poised for further clinical testing and validation.

  6. Temozolomide, sirolimus and chloroquine is a new therapeutic combination that synergizes to disrupt lysosomal function and cholesterol homeostasis in GBM cells

    PubMed Central

    Chiang, Hsin-Chien; Wang, Hsin-Ell; Wang, Yu-Shan; Huang, Cheng-Chung; Huang, Yi-Chun; Chi, Mau-Shin; Mehta, Minesh P.; Chi, Kwan-Hwa

    2018-01-01

    Glioblastoma (GBM) cells are characterized by high phagocytosis, lipogenesis, exocytosis activities, low autophagy capacity and high lysosomal demand are necessary for survival and invasion. The lysosome stands at the cross roads of lipid biosynthesis, transporting, sorting between exogenous and endogenous cholesterol. We hypothesized that three already approved drugs, the autophagy inducer, sirolimus (rapamycin, Rapa), the autophagy inhibitor, chloroquine (CQ), and DNA alkylating chemotherapy, temozolomide (TMZ) could synergize against GBM. This repurposed triple therapy combination induced GBM apoptosis in vitro and inhibited GBM xenograft growth in vivo. Cytotoxicity is caused by induction of lysosomal membrane permeabilization and release of hydrolases, and may be rescued by cholesterol supplementation. Triple treatment inhibits lysosomal function, prevents cholesterol extraction from low density lipoprotein (LDL), and causes clumping of lysosome associated membrane protein-1 (LAMP-1) and lipid droplets (LD) accumulation. Co-treatment of the cell lines with inhibitor of caspases and cathepsin B only partially reverse of cytotoxicities, while N-acetyl cysteine (NAC) can be more effective. A combination of reactive oxygen species (ROS) generation from cholesterol depletion are the early event of underling mechanism. Cholesterol repletion abolished the ROS production and reversed the cytotoxicity from QRT treatment. The shortage of free cholesterol destabilizes lysosomal membranes converting aborted autophagy to apoptosis through either direct mitochondria damage or cathepsin B release. This promising anti-GBM triple therapy combination severely decreases mitochondrial function, induces lysosome-dependent apoptotic cell death, and is now poised for further clinical testing and validation. PMID:29467937

  7. A Chimeric Antibody against ACKR3/CXCR7 in Combination with TMZ Activates Immune Responses and Extends Survival in Mouse GBM Models.

    PubMed

    Salazar, Nicole; Carlson, Jeffrey C; Huang, Kexin; Zheng, Yayue; Oderup, Cecilia; Gross, Julia; Jang, Andrew D; Burke, Thomas M; Lewén, Susanna; Scholz, Alexander; Huang, Serina; Nease, Leona; Kosek, Jon; Mittelbronn, Michel; Butcher, Eugene C; Tu, Hua; Zabel, Brian A

    2018-05-02

    Glioblastoma (GBM) is the least treatable type of brain tumor, afflicting over 15,000 people per year in the United States. Patients have a median survival of 16 months, and over 95% die within 5 years. The chemokine receptor ACKR3 is selectively expressed on both GBM cells and tumor-associated blood vessels. High tumor expression of ACKR3 correlates with poor prognosis and potential treatment resistance, making it an attractive therapeutic target. We engineered a single chain FV-human FC-immunoglobulin G1 (IgG 1 ) antibody, X7Ab, to target ACKR3 in human and mouse GBM cells. We used hydrodynamic gene transfer to overexpress the antibody, with efficacy in vivo. X7Ab kills GBM tumor cells and ACKR3-expressing vascular endothelial cells by engaging the cytotoxic activity of natural killer (NK) cells and complement and the phagocytic activity of macrophages. Combining X7Ab with TMZ allows the TMZ dosage to be lowered, without compromising therapeutic efficacy. Mice treated with X7Ab and in combination with TMZ showed significant tumor reduction by MRI and longer survival overall. Brain-tumor-infiltrating leukocyte analysis revealed that X7Ab enhances the activation of M1 macrophages to support anti-tumor immune response in vivo. Targeting ACKR3 with immunotherapeutic monoclonal antibodies (mAbs) in combination with standard of care therapies may prove effective in treating GBM. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  8. Convection-enhanced delivery and in vivo imaging of polymeric nanoparticles for the treatment of malignant glioma.

    PubMed

    Bernal, Giovanna M; LaRiviere, Michael J; Mansour, Nassir; Pytel, Peter; Cahill, Kirk E; Voce, David J; Kang, Shijun; Spretz, Ruben; Welp, Ulrich; Noriega, Sandra E; Nunez, Luis; Larsen, Gustavo F; Weichselbaum, Ralph R; Yamini, Bakhtiar

    2014-01-01

    A major obstacle to the management of malignant glioma is the inability to effectively deliver therapeutic agent to the tumor. In this study, we describe a polymeric nanoparticle vector that not only delivers viable therapeutic, but can also be tracked in vivo using MRI. Nanoparticles, produced by a non-emulsion technique, were fabricated to carry iron oxide within the shell and the chemotherapeutic agent, temozolomide (TMZ), as the payload. Nanoparticle properties were characterized and subsequently their endocytosis-mediated uptake by glioma cells was demonstrated. Convection-enhanced delivery (CED) can disperse nanoparticles through the rodent brain and their distribution is accurately visualized by MRI. Infusion of nanoparticles does not result in observable animal toxicity relative to control. CED of TMZ-bearing nanoparticles prolongs the survival of animals with intracranial xenografts compared to control. In conclusion, the described nanoparticle vector represents a unique multifunctional platform that can be used for image-guided treatment of malignant glioma. GBM remains one of the most notoriously treatment-unresponsive cancer types. In this study, a multifunctional nanoparticle-based temozolomide delivery system was demonstrated to possess enhanced treatment efficacy in a rodent xenograft GBM model, with the added benefit of MRI-based tracking via the incorporation of iron oxide as a T2* contrast material in the nanoparticles. © 2014.

  9. Targeting Protein Kinase CK2: Evaluating CX-4945 Potential for GL261 Glioblastoma Therapy in Immunocompetent Mice

    PubMed Central

    Ferrer-Font, Laura; Villamañan, Lucia; Arias-Ramos, Nuria; Vilardell, Jordi; Plana, Maria; Ruzzene, Maria; Pinna, Lorenzo A.; Itarte, Emilio; Arús, Carles; Candiota, Ana Paula

    2017-01-01

    Glioblastoma (GBM) causes poor survival in patients even with aggressive treatment. Temozolomide (TMZ) is the standard chemotherapeutic choice for GBM treatment but resistance always ensues. Protein kinase CK2 (CK2) contributes to tumour development and proliferation in cancer, and it is overexpressed in human GBM. Accordingly, targeting CK2 in GBM may benefit patients. Our goal has been to evaluate whether CK2 inhibitors (iCK2s) could increase survival in an immunocompetent preclinical GBM model. Cultured GL261 cells were treated with different iCK2s including CX-4945, and target effects evaluated in vitro. CX-4945 was found to decrease CK2 activity and Akt(S129) phosphorylation in GL261 cells. Longitudinal in vivo studies with CX-4945 alone or in combination with TMZ were performed in tumour-bearing mice. Increase in survival (p < 0.05) was found with combined CX-4945 and TMZ metronomic treatment (54.7 ± 11.9 days, n = 6) when compared to individual metronomic treatments (CX-4945: 24.5 ± 2.0 and TMZ: 38.7 ± 2.7, n = 6) and controls (22.5 ± 1.2, n = 6). Despite this, CX-4945 did not improve mice outcome when administered on every/alternate days, either alone or in combination with 3-cycle TMZ. The highest survival rate was obtained with the metronomic combined TMZ+CX-4945 every 6 days, pointing to the participation of the immune system or other ancillary mechanism in therapy response. PMID:28208677

  10. Intracranial microcapsule chemotherapy delivery for the localized treatment of rodent metastatic breast adenocarcinoma in the brain.

    PubMed

    Upadhyay, Urvashi M; Tyler, Betty; Patta, Yoda; Wicks, Robert; Spencer, Kevin; Scott, Alexander; Masi, Byron; Hwang, Lee; Grossman, Rachel; Cima, Michael; Brem, Henry; Langer, Robert

    2014-11-11

    Metastases represent the most common brain tumors in adults. Surgical resection alone results in 45% recurrence and is usually accompanied by radiation and chemotherapy. Adequate chemotherapy delivery to the CNS is hindered by the blood-brain barrier. Efforts at delivering chemotherapy locally to gliomas have shown modest increases in survival, likely limited by the infiltrative nature of the tumor. Temozolomide (TMZ) is first-line treatment for gliomas and recurrent brain metastases. Doxorubicin (DOX) is used in treating many types of breast cancer, although its use is limited by severe cardiac toxicity. Intracranially implanted DOX and TMZ microcapsules are compared with systemic administration of the same treatments in a rodent model of breast adenocarcinoma brain metastases. Outcomes were animal survival, quantified drug exposure, and distribution of cleaved caspase 3. Intracranial delivery of TMZ and systemic DOX administration prolong survival more than intracranial DOX or systemic TMZ. Intracranial TMZ generates the more robust induction of apoptotic pathways. We postulate that these differences may be explained by distribution profiles of each drug when administered intracranially: TMZ displays a broader distribution profile than DOX. These microcapsule devices provide a safe, reliable vehicle for intracranial chemotherapy delivery and have the capacity to be efficacious and superior to systemic delivery of chemotherapy. Future work should include strategies to improve the distribution profile. These findings also have broader implications in localized drug delivery to all tissue, because the efficacy of a drug will always be limited by its ability to diffuse into surrounding tissue past its delivery source.

  11. Atorvastatin Promotes Cytotoxicity and Reduces Migration and Proliferation of Human A172 Glioma Cells.

    PubMed

    Oliveira, Karen A; Dal-Cim, Tharine; Lopes, Flávia G; Ludka, Fabiana K; Nedel, Cláudia B; Tasca, Carla I

    2018-02-01

    Malignant gliomas have resistance mechanisms to chemotherapy that enable tumor invasiveness and aggressiveness. Alternative therapies in cancer treatment, as statins, have been suggested to decrease proliferation, inhibit cell migration, and induce cell death. The aim of this study was to evaluate the effect of atorvastatin (ATOR) on cell viability, migration, proliferation, apoptosis, and autophagy in A172 human glioma cells. Temozolomide (TMZ), a chemotherapic used to glioma treatment, was tested as a comparison to cytotoxic effects on gliomas. Cell viability was also assessed in primary culture of cortical astrocytes. ATOR treatment (0.1 to 20 μM) did not alter astrocytic viability. However, in glioma cells, ATOR showed cytotoxic effect at 10 and 20 μM concentrations. TMZ (500 μM) reduced cell viability similarly to ATOR, and drug association did not show additive effect on cell viability. ATOR, TMZ, and their association decreased cell migration. ATOR also decreased glioma cell proliferation. ATOR increased apoptosis, and TMZ association showed a potentiation effect, enhancing it. ATOR and TMZ treatment increased acidic vesicular organelle (AVO) presence in A172 cells, an indicative of autophagy. ATOR effect of reducing A172 cell viability did not alter glutamate transport and glutamine synthetase activity, but it was partially prevented through antagonism of ionotropic and metabotropic glutamate receptors. Our data shows a cytotoxic effect of ATOR on glioma cells, whereas no toxicity was observed to astrocytes. ATOR showed similar cytotoxic effect as TMZ to glioma cells, and it may be a safer drug, regarding side effect induction, than chemotherapic agents.

  12. Targeting Gliomas: Can a New Alkylating Hybrid Compound Make a Difference?

    PubMed

    Pinheiro, Rui; Braga, Cláudia; Santos, Gisela; Bronze, Maria R; Perry, Maria J; Moreira, Rui; Brites, Dora; Falcão, Ana S

    2017-01-18

    Glioblastoma (GBM) is the most common and aggressive type of brain tumor in adults. The triazene Temozolomide (TMZ), an alkylating drug, is the classical chemotherapeutic agent for gliomas, but has been disappointing against the highly invasive and resistant nature of GBM. Hybrid compounds may open new horizons within this challenge. The multicomponent therapeutic strategy here used resides on a combination of two repurposing drugs acting by different but potentially synergistic mechanisms, improved efficacy, and lower resistance effects. We synthesized a new hybrid compound (HYBCOM) by covalently binding a TMZ analogue to valproic acid, a histone deacetylase inhibitor drug that was shown to sensitize TMZ-resistant glioma cells. Advantages of this new molecule as compared to TMZ, in terms of chemotherapeutic efficacy, were investigated. Our results evidenced that HYBCOM more efficiently decreased the viability and proliferation of the GL261 glioma cells, while showing to better target the tumor cells than the functionally normal astrocytes. Increased cytotoxicity by HYBCOM may be a consequence of the improved autophagic process observed. Additionally, HYBCOM changed the morphology of GL261 cells into a nonpolar, more rounded shape, impairing cell migration ability. Most interesting, and in opposite to TMZ, cells exposed to HYBCOM did not enhance the expression of drug resistance proteins, a major issue in the treatment of GBM. Overall, our studies indicate that HYBCOM has promising chemotherapeutic benefits over the classical TMZ, and future studies should assess if the treatment translates into efficacy in glioblastoma experimental models and reveal clinical benefits in GBM patients.

  13. Paclitaxel poliglumex, temozolomide, and radiation for newly diagnosed high-grade glioma: a Brown University Oncology Group Study.

    PubMed

    Jeyapalan, Suriya; Boxerman, Jerrold; Donahue, John; Goldman, Marc; Kinsella, Timothy; Dipetrillo, Thomas; Evans, Devon; Elinzano, Heinrich; Constantinou, Maria; Stopa, Edward; Puthawala, Yakub; Cielo, Deus; Santaniello, Alyson; Oyelese, Adetokunbo; Mantripragada, Kalyan; Rosati, Kayla; Isdale, Debora; Safran, Howard

    2014-10-01

    Paclitaxel poliglumex (PPX), a drug conjugate that links paclitaxel to poly-L-glutamic acid, is a potent radiation sensitizer. Prior studies in esophageal cancer have demonstrated that PPX (50 mg/m/wk) can be administered with concurrent radiation with acceptable toxicity. The primary objective of this study was to determine the safety of the combination of PPX with temozolomide and concurrent radiation for high-grade gliomas. Eligible patients were required to have WHO grade 3 or 4 gliomas. Patients received weekly PPX (50 mg/m/wk) combined with standard daily temozolomide (75 mg/m) for 6 weeks with concomitant radiation (2.0 Gy, 5 d/wk for a total dose of 60 Gy). Twenty-five patients were enrolled, 17 with glioblastoma and 8 with grade 3 gliomas. Seven of 25 patients had grade 4 myelosuppression. Hematologic toxicity lasted up to 5 months suggesting a drug interaction between PPX and temozolomide. For patients with glioblastoma, the median progression-free survival was 11.5 months and the median overall survival was 18 months. PPX could not be safely combined with temozolomide due to grade 4 hematologic toxicity. However, the favorable progression-free and overall survival suggest that PPX may enhance radiation for glioblastoma. A randomized study of single agent PPX/radiation versus temozolomide/radiation for glioblastoma without MGMT methylation is underway.

  14. Dose finding and O6-alkylguanine-DNA alkyltransferase study of cisplatin combined with temozolomide in paediatric solid malignancies

    PubMed Central

    Geoerger, B; Vassal, G; Doz, F; O'Quigley, J; Wartelle, M; Watson, A J; Raquin, M-A; Frappaz, D; Chastagner, P; Gentet, J-C; Rubie, H; Couanet, D; Geoffray, A; Djafari, L; Margison, G P; Pein, F

    2005-01-01

    Cisplatin may have additive activity with temozolomide due to ablation of the DNA repair protein O6-alkylguanine-DNA alkyltransferase (MGMT). This phase I/II study determined recommended combination doses using the Continual Reassessment Method, toxicities and antitumour activity in paediatric patients, and evaluated MGMT in peripheral blood mononuclear cells (PBMCs) in order to correlate with haematological toxicity. In total, 39 patients with refractory or recurrent solid tumours (median age ∼13 years; 14 pretreated with high-dose chemotherapy, craniospinal irradiation, or having bone marrow involvement) were treated with cisplatin, followed the next day by oral temozolomide for 5 days every 4 weeks at dose levels 80 mg m−2/150 mg m−2 day−1, 80/200, and 100/200, respectively. A total of 38 patients receiving 113 cycles (median 2, range 1–7) were evaluable for toxicity. Dose-limiting toxicity was haematological in all but one case. Treatment-related toxicities were thrombocytopenia, neutropenia, nausea-vomiting, asthenia. Hearing loss was experienced in five patients with prior irradiation to the brain stem or posterior fossa. Partial responses were observed in two malignant glioma, one brain stem glioma, and two neuroblastoma. Median MGMT activity in PBMCs decreased after 5 days of temozolomide treatment: low MGMT activity correlated with increased severity of thrombocytopenia. Cisplatin–temozolomide combinations are well tolerated without additional toxicity to single-agent treatments; the recommended phase II dosage is 80 mg m−2 cisplatin and 150 mg m−2 × 5 temozolomide in heavily treated, and 200 mg m−2 × 5 temozolomide in less-heavily pretreated children. PMID:16136028

  15. Tautomeric transformation of temozolomide, their proton affinities and chemical reactivities: A theoretical approach.

    PubMed

    Sang-Aroon, Wichien; Ruangpornvisuti, Vithaya; Amornkitbamrung, Vittaya

    2016-05-01

    The gas-phase geometry optimizations of bare, mono- and dihydrated complexes of temozolomide isomers were carried out using density functional calculation at the M06-2X/6-31+G(d,p) level of the theory. The structures and protonation energies of protonated species of temozolomide are reported. Chemical indices of all isomers and protonated species are also reported. Energies, thermodynamic quantities, rate constants and equilibrium constants of tautomeric and rotameric transformations of all isomers I1↔TZM↔HIa↔HIb↔I2↔I3 in bare and hydrated systems were obtained. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. [Orthogonal experiments for optimizing the formulation and preparation conditions of temozolomide solid lipid nanoparticles].

    PubMed

    Dou, Mingjin; Huang, Guihua; Xi, Yanwei; Zhang, Na

    2008-10-01

    TMZ-SLN were prepared by emulsification-low temperature solidification method with stearic acid. The formulation and the preparation conditions were optimized by orthogonal experiments using entrapment efficiency as the evaluation index. The morphology was detected by transmission electron microscope. The Zeta potentials and the particle size distribution were evaluated by Laser Doppler Anemometry. The entrapment efficiencies and the drug release characteristics in vitro were assessed. The result showed that TMZ-SLN were concinnous and spherical in shape. The mean diameter (d(av) ) was 65.0 +/- 6.2 nm and the Zeta potential was -37.2 mV. The average entrapment efficiency was 58.9% +/- 1.21 %. The drug release behavior in vitro conformed to Higuchi Equation. The formation of a new material phase was testified by analysis of differential scanning calorimetry.

  17. Temozolomide-induced increase of tumorigenicity can be diminished by targeting of mitochondria in in vitro models of patient individual glioblastoma

    PubMed Central

    Walther, Madlin; Schneider, Björn; Linnebacher, Michael; Classen, Carl Friedrich

    2018-01-01

    Glioblastoma multiforme (GBM) is a highly heterogeneous and aggressive brain tumor with a dismal prognosis. Development of resistance towards cytostatic drugs like the GBM standard drug temozolomide is a severe problem in GBM treatment. One potential source of GBM relapse could be so called cancer stem like cells (CSCs). These represent an undifferentiated subpopulation of cells with high potential for tumor initiation. Furthermore, it has been shown that differentiated GBM cells can regain CSC properties when exposed to continuous temozolomide treatment in vitro. In this study, treatment of several primary GBM cell lines with clinically relevant doses of temozolomide increased their tumorigenicity as determined by colony formation assays in soft agar. Increased tumorigenicity is a known property of CSCs. Hence, therapy options that specifically target CSCs are under investigation. CSCs appear to be particularly dependent on mitochondria biogenesis which may represent a useful target for CSC elimination. Toxicity towards mitochondria is a known side effect of several antibiotics. Thus, addition of antibiotics like doxycycline may represent a useful tool to inhibit CSCs in GBM. Here, we show that combining temozolomide treatment of primary GBM cells with doxycycline could counteract the increase of tumorigenicity induced by temozolomide treatment. PMID:29352318

  18. β‐Elemene Selectively Inhibits the Proliferation of Glioma Stem‐Like Cells Through the Downregulation of Notch1

    PubMed Central

    Feng, Hai‐bin; Wang, Jing; Jiang, Hao‐ran; Mei, Xin; Zhao, Yi‐ying; Chen, Fu‐rong; Qu, Yue; Sai, Ke; Guo, Cheng‐cheng; Yang, Qun‐ying; Zhang, Zong‐ping

    2016-01-01

    Abstract Glioma is the most frequent primary central nervous system tumor. Although the current first‐line medicine, temozolomide (TMZ), promotes patient survival, drug resistance develops easily. Thus, it is important to investigate novel therapeutic reagents to solidify the treatment effect. β‐Elemene (bELE) is a compound from a Chinese herb whose anticancer effect has been shown in various types of cancer. However, its role in the inhibition of glioma stem‐like cells (GSLCs) has not yet been reported. We studied both the in vitro and the in vivo inhibitory effect of bELE and TMZ in GSLCs and parental cells and their combined effects. The molecular mechanisms were also investigated. We also optimized the delivery methods of bELE. We found that bELE selectively inhibits the proliferation and sphere formation of GSLCs, other than parental glioma cells, and TMZ exerts its effects on parental cells instead of GSLCs. The in vivo data confirmed that the combination of bELE and TMZ worked better in the xenografts of GSLCs, mimicking the situation of tumorigenesis of human cancer. Notch1 was downregulated with bELE treatment. Our data also demonstrated that the continuous administration of bELE produces an ideal effect to control tumor progression. Our findings have demonstrated, for the first time, that bELE could compensate for TMZ to kill both GSLCs and nonstem‐like cancer cells, probably improving the prognosis of glioma patients tremendously. Notch1 might be a downstream target of bELE. Therefore, our data shed light on improving the outcomes of glioma patients by combining bELE and TMZ. Stem Cells Translational Medicine 2017;6:830–839 PMID:28297578

  19. Efficacy of PARP inhibitor rucaparib in orthotopic glioblastoma xenografts is limited by ineffective drug penetration into the central nervous system

    PubMed Central

    Parrish, Karen E.; Cen, Ling; Murray, James; Calligaris, David; Kizilbash, Sani; Mittapalli, Rajendar K.; Carlson, Brett L.; Schroeder, Mark A.; Sludden, Julieann; Boddy, Alan V.; Agar, Nathalie Y.R.; Curtin, Nicola J.; Elmquist, William F.; Sarkaria, Jann N.

    2015-01-01

    Poly (ADP-ribose) polymerase (PARP) inhibition can enhance the efficacy of temozolomide (TMZ) and prolong survival in orthotopic glioblastoma (GBM) xenografts. The aim of this study was to evaluate the combination of the PARP inhibitor rucaparib with TMZ and to correlate pharmacokinetic and pharmacodynamic studies with efficacy in patient-derived GBM xenograft models. The combination of rucaparib with TMZ was highly effective in vitro in short-term explant cultures derived from GBM12, and similarly, the combination of rucaparib and TMZ (dosed for 5 days every 28 days × 3 cycles) significantly prolonged the time to tumor regrowth by 40% in heterotopic xenografts. In contrast, the addition of rucaparib had no impact on the efficacy of TMZ in GBM12 or GBM39 orthotopic models. Using Madin-Darby canine kidney (MDCK) II cells stably expressing murine BCRP1 or human MDR1, cell accumulation studies demonstrated that rucaparib is transported by both transporters. Consistent with the influence of these efflux pumps on central nervous system drug distribution, Mdr1a/b−/−Bcrp1−/− knockout mice had a significantly higher brain to plasma ratio for rucaparib (1.61 ± 0.25) than wild-type mice (0.11 ± 0.08). A pharmacokinetic and pharmacodynamic evaluation after a single dose confirmed limited accumulation of rucaparib in the brain associated with substantial residual PARP enzymatic activity. Similarly, matrix-assisted laser desorption/ionization mass spectrometric imaging demonstrated significantly enhanced accumulation of drug in flank tumor compared to normal brain or orthotopic tumors. Collectively, these results suggest that limited drug delivery into brain tumors may significantly limit the efficacy of rucaparib combined with TMZ in GBM. PMID:26438157

  20. Bevacizumab, temozolomide, and radiotherapy for newly diagnosed glioblastoma: comprehensive safety results during and after first-line therapy.

    PubMed

    Saran, Frank; Chinot, Olivier L; Henriksson, Roger; Mason, Warren; Wick, Wolfgang; Cloughesy, Timothy; Dhar, Sunita; Pozzi, Emanuela; Garcia, Josep; Nishikawa, Ryo

    2016-07-01

    The proposed use of bevacizumab with radiotherapy/temozolomide for newly diagnosed glioblastoma raised potential safety concerns. Bevacizumab has been linked with stroke, bleeding events, and wound-healing complications in other tumor types; these events are of particular concern for glioblastoma (highly vascular tumors that are usually resected). Published data on the interaction of bevacizumab with radiotherapy/temozolomide are also limited. We report safety data from a phase III randomized trial (Avastin in Glioblastoma), focusing on these considerations. Eligible patients received: radiotherapy and temozolomide plus bevacizumab/placebo, 6 cycles; a 4-week treatment break; temozolomide plus bevacizumab/placebo, 6 cycles; and bevacizumab/placebo until progression. Data on adverse events (AEs) were collected throughout. Bevacizumab-treated patients (n = 461) had a longer median safety follow-up time (12.3 vs 8.5 mo), and a higher proportion completed 6 cycles of maintenance temozolomide (64.6% vs 36.9%) versus placebo (n = 450). The incidences of relevant AEs (bevacizumab vs placebo, respectively) were: arterial thromboembolic events (5.9% vs 1.6%); cerebral hemorrhage (3.3% vs 2.0%); wound-healing complications (6.9% vs 4.7%); thrombocytopenia (34.1% vs 27.3%); radiotherapy-associated skin injury (8.2% vs 9.3%); alopecia (39.0% vs 36.0%); gastrointestinal perforation (including gastrointestinal abscesses and fistulae, 1.7% vs 0.4%); and radiotherapy-associated injury (0.4% vs 0.0%). Overall, 15.8% and 23.8% of bevacizumab- and placebo-treated patients had surgery (including biopsy) after progression. Within 30 days of postprogression surgery, AE incidence was 10.9% (bevacizumab) and 23.4% (placebo). The safety profile was consistent with that expected from radiotherapy/temozolomide plus bevacizumab. The increased AE incidence with bevacizumab did not impact patients' ability to receive standard-of-care treatment or to undergo further surgery. © The Author

  1. Efficacy and side effects of dacarbazine in comparison with temozolomide in the treatment of malignant melanoma: a meta-analysis consisting of 1314 patients.

    PubMed

    Teimouri, Fatemeh; Nikfar, Shekoufeh; Abdollahi, Mohammad

    2013-10-01

    The widespread prevalence of melanoma, one of the most malignant forms of skin cancer, is increasing rapidly. Two chemotherapeutic regimens are commonly used for the palliative treatment of malignant melanoma: intravenous administration of single-agent dacarbazine or oral administration of temozolomide. The aim of this study was to compare the effectiveness and side effects of dacarbazine with those of temozolomide through a meta-analysis. A thorough literature bibliography search was conducted up to 2012 to gather and review all randomized clinical trials comparing the use of dacarbazine with that of temozolomide in the treatment of malignant melanoma. Three head-to-head randomized clinical trials comprising 1314 patients met the criteria and were included. Comparison of temozolomide with dacarbazine yielded a nonsignificant relative risk (RR) of 0.83 [95% confidence interval (CI) = 0.26-2.64, P = 0.76] for complete response, a nonsignificant RR of 1.05 (95% CI = 0.85-1.3, P = 0.65) for stable disease, and a nonsignificant RR of 2.64 (95% CI = 0.97-1.36, P = 0.11) for disease control rate. The RR for nonhematologic side effects and hematologic side effects, such as anemia, neutropenia, and thrombocytopenia, of temozolomide compared with dacarbazine in patients with malignant melanoma was nonsignificant in all cases, but the RR for lymphopenia of temozolomide compared with dacarbazine was 3.79 (95% CI = 1.38-10.39, P = 0.01), which was significant. Although it is easier to administer oral medication, according to the results, there is no significant difference in the efficacy and side effects of these two drugs. Owing to the higher cost of treatment with temozolomide and the increased prevalence of lymphopenia on using temozolomide, use of dacarbazine as the first choice treatment for malignant melanoma is suggested.

  2. Bradykinin antagonists and thiazolidinone derivatives as new potential anti-cancer compounds.

    PubMed

    Avdieiev, Stanislav; Gera, Lajos; Havrylyuk, Dmytro; Hodges, Robert S; Lesyk, Roman; Ribrag, Vincent; Vassetzky, Yegor; Kavsan, Vadym

    2014-08-01

    Glioblastoma (GB), the most aggressive brain tumour, and mantle cell lymphoma (MCL), a rare but very aggressive type of lymphoma, are highly resistant to chemotherapy. GB and MCL chemotherapy gives very modest results, the vast majority of patients experience recurrent disease. To find out the new treatment modality for drug-resistant GB and MCL cells, combining of bradykinin (BK) antagonists with conventional temozolomide (TMZ) treatment, and screening of thiazolidinones derivatives were the main objectives of this work. As it was revealed here, BKM-570 was the lead compound among BK antagonists under investigation (IC50 was 3.3 μM) in human GB cells. It strongly suppressed extracellular signal-regulated kinases 1/2 (ERK1/2) and protein kinase B (AKT) phosphorylation. BK antagonists did not decrease the viability of MCL cells, thus showing the cell-specific mode, while thiazolidinone derivatives, a novel group of promising anti-tumour compounds inhibited proliferation of MCL cells: IC₅₀ of ID 4526 and ID 4527 compounds were 0.27 μM and 0.16 μM, correspondingly. However, single agents are often not effective in clinic due to activation of collateral pathways in tumour cells. We demonstrated a strong synergistic effect after combinatorial treatment by BKM-570 together with TMZ that drastically increased cytotoxic action of this drug in rat and human glioma cells. Small proportion of cells was still viable after such treatment that could be explained by presence of TMZ-resistant cells in the population. It is possible to expect that the combined therapy aimed simultaneously at different elements of tumourigenesis will be more effective with lower drug concentrations than the first-line drug temozolomide used alone in clinics. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Dramatic response to temozolomide, irinotecan, and bevacizumab for recurrent medulloblastoma with widespread osseous metastases.

    PubMed

    Bonney, Phillip A; Santucci, Joshua A; Maurer, Adrian J; Sughrue, Michael E; McNall-Knapp, Rene Y; Battiste, James D

    2016-04-01

    There is little evidence to guide the choice of chemotherapeutic agents for osseous metastases in medulloblastoma. Recently, triple therapy with temozolomide, irinotecan, and bevacizumab has been reported to have efficacy in recurrent medulloblastoma, and this regimen alone and in combination with other agents has been tested in several early-phase clinical trials. Here we report a 20-year-old woman with multiply-relapsed medulloblastoma with numerous osseous metastases 8 years after original diagnosis who responded dramatically to temozolomide, irinotecan, and bevacizumab therapy. This case highlights the potential for this regimen in treating osseous metastases in medulloblastoma. Copyright © 2016. Published by Elsevier Ltd.

  4. Gene therapy enhances chemotherapy tolerance and efficacy in glioblastoma patients.

    PubMed

    Adair, Jennifer E; Johnston, Sandra K; Mrugala, Maciej M; Beard, Brian C; Guyman, Laura A; Baldock, Anne L; Bridge, Carly A; Hawkins-Daarud, Andrea; Gori, Jennifer L; Born, Donald E; Gonzalez-Cuyar, Luis F; Silbergeld, Daniel L; Rockne, Russell C; Storer, Barry E; Rockhill, Jason K; Swanson, Kristin R; Kiem, Hans-Peter

    2014-09-01

    Temozolomide (TMZ) is one of the most potent chemotherapy agents for the treatment of glioblastoma. Unfortunately, almost half of glioblastoma tumors are TMZ resistant due to overexpression of methylguanine methyltransferase (MGMT(hi)). Coadministration of O6-benzylguanine (O6BG) can restore TMZ sensitivity, but causes off-target myelosuppression. Here, we conducted a prospective clinical trial to test whether gene therapy to confer O6BG resistance in hematopoietic stem cells (HSCs) improves chemotherapy tolerance and outcome. We enrolled 7 newly diagnosed glioblastoma patients with MGMT(hi) tumors. Patients received autologous gene-modified HSCs following single-agent carmustine administration. After hematopoietic recovery, patients underwent O6BG/TMZ chemotherapy in 28-day cycles. Serial blood samples and tumor images were collected throughout the study. Chemotherapy tolerance was determined by the observed myelosuppression and recovery following each cycle. Patient-specific biomathematical modeling of tumor growth was performed. Progression-free survival (PFS) and overall survival (OS) were also evaluated. Gene therapy permitted a significant increase in the mean number of tolerated O6BG/TMZ cycles (4.4 cycles per patient, P < 0.05) compared with historical controls without gene therapy (n = 7 patients, 1.7 cycles per patient). One patient tolerated an unprecedented 9 cycles and demonstrated long-term PFS without additional therapy. Overall, we observed a median PFS of 9 (range 3.5-57+) months and OS of 20 (range 13-57+) months. Furthermore, biomathematical modeling revealed markedly delayed tumor growth at lower cumulative TMZ doses in study patients compared with patients that received standard TMZ regimens without O6BG. These data support further development of chemoprotective gene therapy in combination with O6BG and TMZ for the treatment of glioblastoma and potentially other tumors with overexpression of MGMT. Clinicaltrials.gov NCT00669669. R01CA114218, R

  5. T-lymphokine-activated killer cell-originated protein kinase (TOPK) as a prognostic factor and a potential therapeutic target in glioma

    PubMed Central

    Duan, Qiuhong; Yuan, Ping; Xue, Peipei; Lu, Hui; Yan, Meng; Guo, Dongsheng; Xu, Sanpeng; Zhang, Xiaohui; Lin, Xuan; Wang, Yong; Dogan, Soner; Zhang, Jianmin; Zhu, Feng; Ke, Changshu; Liu, Lin

    2018-01-01

    TOPK is overexpressed in various types of cancer and associated with poor outcomes in different types of cancer. In this study, we first found that the expression of T-lymphokine-activated killer cell-originated protein kinase (TOPK) was significantly higher in Grade III or Grade IV than that in Grade II in glioma (P = 0.007 and P < 0.001, respectively). Expression of TOPK was positively correlated with Ki67 (P < 0.001). Knockdown of TOPK significantly inhibited cell growth, colony formation and increased sensitivities to temozolomide (TMZ) in U-87 MG or U-251 cells, while TOPK overexpression promoted cell growth and colony formation in Hs 683 or A-172 cells. Glioma patients expressing high levels of TOPK have poor survival compared with those expressing low levels of TOPK in high-grade or low-grade gliomas (hazard ratio = 0.2995; 95% CI, 0.1262 to 0.7108; P = 0.0063 and hazard ratio = 0.1509; 95% CI, 0.05928 to 0.3842; P < 0.0001, respectively). The level of TOPK was low in TMZ-sensitive patients compared with TMZ-resistant patients (P = 0.0056). In TMZ-resistant population, patients expressing high TOPK have two months’ shorter survival time than those expressing low TOPK. Our findings demonstrated that TOPK might represent as a promising prognostic and predictive factor and potential therapeutic target for glioma. PMID:29487691

  6. The Fanconi anemia (FA) pathway confers glioma resistance to DNA alkylating agents.

    PubMed

    Chen, Clark C; Taniguchi, Toshiyasu; D'Andrea, Alan

    2007-05-01

    DNA alkylating agents including temozolomide (TMZ) and 1,3-bis[2-chloroethyl]-1-nitroso-urea (BCNU) are the most common form of chemotherapy in the treatment of gliomas. Despite their frequent use, the therapeutic efficacy of these agents is limited by the development of resistance. Previous studies suggest that the mechanism of this resistance is complex and involves multiple DNA repair pathways. To better define the pathways contributing to the mechanisms underlying glioma resistance, we tested the contribution of the Fanconi anemia (FA) DNA repair pathway. TMZ and BCNU treatment of FA-proficient cell lines led to a dose- and time-dependent increase in FANCD2 mono-ubiquitination and FANCD2 nuclear foci formation, both hallmarks of FA pathway activation. The FA-deficient cells were more sensitive to TMZ/BCNU relative to their corrected, isogenic counterparts. To test whether these observations were pertinent to glioma biology, we screened a panel of glioma cell lines and identified one (HT16) that was deficient in the FA repair pathway. This cell line exhibited increased sensitivity to TMZ and BCNU relative to the FA-proficient glioma cell lines. Moreover, inhibition of FA pathway activation by a small molecule inhibitor (curcumin) or by small interference RNA suppression caused increased sensitivity to TMZ/BCNU in the U87 glioma cell line. The BCNU sensitizing effect of FA inhibition appeared additive to that of methyl-guanine methyl transferase inhibition. The results presented in this paper underscore the complexity of cellular resistance to DNA alkylating agents and implicate the FA repair pathway as a determinant of this resistance.

  7. State of the art and perspectives in the treatment of glioblastoma.

    PubMed

    Grimm, Sean A; Chamberlain, Marc C

    2012-09-01

    Glioblastoma is the most common malignant primary brain tumor. Cures are rare and median survival varies from several to 22 months. Standard treatment for good performance patients consists of maximal safe surgical resection followed by radiotherapy with concurrent temozolomide (TMZ) chemotherapy and six cycles of postradiotherapy TMZ. At recurrence, treatment options include repeat surgery (with or without Gliadel wafer placement), reirradiation or systemic therapy. Most patients with good performance status are treated with cytotoxic chemotherapy or targeted biologic therapy following or in lieu of repeat surgery. Cytotoxic chemotherapy options include nitrosoureas, rechallenge with TMZ, platins, phophoramides and topoisomerase inhibitors, although efficacy is limited. Despite the intense effort of developing biologic agents that target angiogenesis and growth and proliferative pathways, bevacizumab is the only agent that has shown efficacy in clinical trials. It was awarded accelerated approval in the USA after demonstrating an impressive radiographic response in two open-label, prospective Phase II studies. Two randomized, Phase III trials of upfront bevacizumab have completed and may demonstrate survival benefit; however, results are pending at this time. Given the limited treatment options at tumor recurrence, consideration for enrollment on a clinical trial is encouraged.

  8. β-Elemene Selectively Inhibits the Proliferation of Glioma Stem-Like Cells Through the Downregulation of Notch1.

    PubMed

    Feng, Hai-Bin; Wang, Jing; Jiang, Hao-Ran; Mei, Xin; Zhao, Yi-Ying; Chen, Fu-Rong; Qu, Yue; Sai, Ke; Guo, Cheng-Cheng; Yang, Qun-Ying; Zhang, Zong-Ping; Chen, Zhong-Ping

    2017-03-01

    Glioma is the most frequent primary central nervous system tumor. Although the current first-line medicine, temozolomide (TMZ), promotes patient survival, drug resistance develops easily. Thus, it is important to investigate novel therapeutic reagents to solidify the treatment effect. β-Elemene (bELE) is a compound from a Chinese herb whose anticancer effect has been shown in various types of cancer. However, its role in the inhibition of glioma stem-like cells (GSLCs) has not yet been reported. We studied both the in vitro and the in vivo inhibitory effect of bELE and TMZ in GSLCs and parental cells and their combined effects. The molecular mechanisms were also investigated. We also optimized the delivery methods of bELE. We found that bELE selectively inhibits the proliferation and sphere formation of GSLCs, other than parental glioma cells, and TMZ exerts its effects on parental cells instead of GSLCs. The in vivo data confirmed that the combination of bELE and TMZ worked better in the xenografts of GSLCs, mimicking the situation of tumorigenesis of human cancer. Notch1 was downregulated with bELE treatment. Our data also demonstrated that the continuous administration of bELE produces an ideal effect to control tumor progression. Our findings have demonstrated, for the first time, that bELE could compensate for TMZ to kill both GSLCs and nonstem-like cancer cells, probably improving the prognosis of glioma patients tremendously. Notch1 might be a downstream target of bELE. Therefore, our data shed light on improving the outcomes of glioma patients by combining bELE and TMZ. Stem Cells Translational Medicine 2017;6:830-839. © 2016 The Authors Stem Cells Translational Medicine published by Wiley Periodicals, Inc. on behalf of AlphaMed Press.

  9. Phase 1/2 Trial of 5-Fraction Stereotactic Radiosurgery With 5-mm Margins With Concurrent and Adjuvant Temozolomide in Newly Diagnosed Supratentorial Glioblastoma: Health-Related Quality of Life Results

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pollom, Erqi L.; Fujimoto, Dylann; Wynne, Jacob

    Purpose: We report a longitudinal assessment of health-related quality of life (HRQOL) in patients with glioblastoma (GBM) treated on a prospective dose escalation trial of 5-fraction stereotactic radiosurgery (25-40 Gy in 5 fractions) with concurrent and adjuvant temozolomide. Methods: HRQOL was assessed using the European Organization for Research and Treatment of Cancer (EORTC) quality of life questionnaire core-30 (QLQ-C30) general, the EORTC quality of life questionnaire-brain cancer specific module (QLQ-BN20), and the M.D. Anderson Symptom Inventory–Brain Tumor (MDASI-BT). Questionnaires were completed at baseline and at every follow-up visit after completion of radiosurgery. Changes from baseline for 9 predefined HRQOL measures (globalmore » quality of life, physical functioning, social functioning, emotional functioning, motor dysfunction, communication deficit, fatigue, insomnia, and future uncertainty) were calculated at every time point. Results: With a median follow-up time of 10.4 months (range, 0.4-52 months), 139 total HRQOL questionnaires were completed by the 30 patients on trial. Compliance with HRQOL assessment was 76% at 12 months. Communication deficit significantly worsened over time, with a decline of 1.7 points per month (P=.008). No significant changes over time were detected in the other 8 scales of our primary analysis, including global quality of life. Although 8 patients (27%) experienced adverse radiation effects (ARE) on this dose escalation trial, it was not associated with a statistically significant decline in any of the primary HRQOL scales. Disease progression was associated with communication deficit, with patients experiencing an average worsening of 13.9 points per month after progression compared with 0.7 points per month before progression (P=.01). Conclusion: On this 5-fraction dose escalation protocol for newly diagnosed GBM, overall HRQOL remained stable and appears similar to historical controls of 30 fractions

  10. Proteasome inhibition with bortezomib induces cell death in GBM stem-like cells and temozolomide-resistant glioma cell lines, but stimulates GBM stem-like cells' VEGF production and angiogenesis.

    PubMed

    Bota, Daniela A; Alexandru, Daniela; Keir, Stephen T; Bigner, Darell; Vredenburgh, James; Friedman, Henry S

    2013-12-01

    Recurrent malignant gliomas have inherent resistance to traditional chemotherapy. Novel therapies target specific molecular mechanisms involved in abnormal signaling and resistance to apoptosis. The proteasome is a key regulator of multiple cellular functions, and its inhibition in malignant astrocytic lines causes cell growth arrest and apoptotic cell death. The proteasome inhibitor bortezomib was reported to have very good in vitro activity against malignant glioma cell lines, with modest activity in animal models as well as in clinical trials as a single agent. In this paper, the authors describe the multiple effects of bortezomib in both in vitro and in vivo glioma models and offer a novel explanation for its seeming lack of activity. Glioma stem-like cells (GSCs) were obtained from resected glioblastomas (GBMs) at surgery and expanded in culture. Stable glioma cell lines (U21 and D54) as well as temozolomide (TMZ)-resistant glioma cells derived from U251 and D54-MG were also cultured. GSCs from 2 different tumors, as well as D54 and U251 cells, were treated with bortezomib, and the effect of the drug was measured using an XTT cell viability assay. The activity of bortezomib was then determined in D54-MG and/or U251 cells using apoptosis analysis as well as caspase-3 activity and proteasome activity measurements. Human glioma xenograft models were created in nude mice by subcutaneous injection. Bevacizumab was administered via intraperitoneal injection at a dose of 5 mg/kg daily. Bortezomib was administered by intraperitoneal injection 1 hour after bevacizumab administration in doses of at a dose of 0.35 mg/kg on days 1, 4, 8, and 11 every 21 days. Tumors were measured twice weekly. Bortezomib induced caspase-3 activation and apoptotic cell death in stable glioma cell lines and in glioma stem-like cells (GSCs) derived from malignant tumor specimens Furthermore, TMZ-resistant glioma cell lines retained susceptibility to the proteasome inhibition. The bortezomib

  11. A Phase I Study of the Combination of Sorafenib With Temozolomide and Radiation Therapy for the Treatment of Primary and Recurrent High-Grade Gliomas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Den, Robert B., E-mail: robert.den@jeffersonhospital.org; Kamrava, Mitchell; Sheng, Zhi

    2013-02-01

    Purpose: Despite recent advances in the management of high-grade and recurrent gliomas, survival remains poor. Antiangiogenic therapy has been shown to be efficacious in the treatment of high-grade gliomas both in preclinical models and in clinical trials. We sought to determine the safety and maximum tolerated dose of sorafenib when combined with both radiation and temozolomide in the primary setting or radiation alone in the recurrent setting. Methods and Materials: This was a preclinical study and an open-label phase I dose escalation trial. Multiple glioma cell lines were analyzed for viability after treatment with radiation, temozolomide, or sorafenib or combinationsmore » of them. For patients with primary disease, sorafenib was given concurrently with temozolomide (75 mg/m{sup 2}) and 60 Gy radiation, for 30 days after completion of radiation. For patients with recurrent disease, sorafenib was combined with a hypofractionated course of radiation (35 Gy in 10 fractions). Results: Cell viability was significantly reduced with the combination of radiation, temozolomide, and sorafenib or radiation and sorafenib. Eighteen patients (11 in the primary cohort, 7 in the recurrent cohort) were enrolled onto this trial approved by the institutional review board. All patients completed the planned course of radiation therapy. The most common toxicities were hematologic, fatigue, and rash. There were 18 grade 3 or higher toxicities. The median overall survival was 18 months for the entire population. Conclusions: Sorafenib can be safely combined with radiation and temozolomide in patients with high-grade glioma and with radiation alone in patients with recurrent glioma. The recommended phase II dose of sorafenib is 200 mg twice daily when combined with temozolomide and radiation and 400 mg with radiation alone. To our knowledge, this is the first publication of concurrent sorafenib with radiation monotherapy or combined with radiation and temozolomide.« less

  12. BICD1 expression, as a potential biomarker for prognosis and predicting response to therapy in patients with glioblastomas

    PubMed Central

    Huang, Shang-Pen; Chang, Yu-Chan; Low, Qie Hua; Wu, Alexander T.H.; Chen, Chi-Long; Lin, Yuan-Feng; Hsiao, Michael

    2017-01-01

    There is variation in the survival and therapeutic outcome of patients with glioblastomas (GBMs). Therapy resistance is an important challenge in the treatment of GBM patients. The aim of this study was to identify Temozolomide (TMZ) related genes and confirm their clinical relevance. The TMZ-related genes were discovered by analysis of the gene-expression profiling in our cell-based microarray. Their clinical relevance was verified by in silico meta-analysis of the Cancer Genome Atlas (TCGA) and the Chinese Glioma Genome Atlas (CGGA) datasets. Our results demonstrated that BICD1 expression could predict both prognosis and response to therapy in GBM patients. First, high BICD1 expression was correlated with poor prognosis in the TCGA GBM cohort (n=523) and in the CGGA glioma cohort (n=220). Second, high BICD1 expression predicted poor outcome in patients with TMZ treatment (n=301) and radiation therapy (n=405). Third, multivariable Cox regression analysis confirmed BICD1 expression as an independent factor affecting the prognosis and therapeutic response of TMZ and radiation in GBM patients. Additionally, age, MGMT and BICD1 expression were combinedly utilized to stratify GBM patients into more distinct risk groups, which may provide better outcome assessment. Finally, we observed a strong correlation between BICD1 expression and epithelial-mesenchymal transition (EMT) in GBMs, and proposed a possible mechanism of BICD1-associated survival or therapeutic resistance in GBMs accordingly. In conclusion, our study suggests that high BICD1 expression may result in worse prognosis and could be a predictor of poor response to TMZ and radiation therapies in GBM patients. PMID:29371945

  13. Redox-Responsive Magnetic Nanoparticle for Targeted Convection-Enhanced Delivery of O6-Benzylguanine to Brain Tumors

    PubMed Central

    2015-01-01

    Resistance to temozolomide (TMZ) based chemotherapy in glioblastoma multiforme (GBM) has been attributed to the upregulation of the DNA repair protein O6-methylguanine-DNA methyltransferase (MGMT). Inhibition of MGMT using O6-benzylguanine (BG) has shown promise in these patients, but its clinical use is hindered by poor pharmacokinetics that leads to unacceptable toxicity. To improve BG biodistribution and efficacy, we developed superparamagnetic iron oxide nanoparticles (NP) for targeted convection-enhanced delivery (CED) of BG to GBM. The nanoparticles (NPCP-BG-CTX) consist of a magnetic core coated with a redox-responsive, cross-linked, biocompatible chitosan-PEG copolymer surface coating (NPCP). NPCP was modified through covalent attachment of BG and tumor targeting peptide chlorotoxin (CTX). Controlled, localized BG release was achieved under reductive intracellular conditions and NPCP-BG-CTX demonstrated proper trafficking of BG in human GBM cells in vitro. NPCP-BG-CTX treated cells showed a significant reduction in MGMT activity and the potentiation of TMZ toxicity. In vivo, CED of NPCP-BG-CTX produced an excellent volume of distribution (Vd) within the brain of mice bearing orthotopic human primary GBM xenografts. Significantly, concurrent treatment with NPCP-BG-CTX and TMZ showed a 3-fold increase in median overall survival in comparison to NPCP-CTX/TMZ treated and untreated animals. Furthermore, NPCP-BG-CTX mitigated the myelosuppression observed with free BG in wild-type mice when administered concurrently with TMZ. The combination of favorable physicochemical properties, tumor cell specific BG delivery, controlled BG release, and improved in vivo efficacy demonstrates the great potential of these NPs as a treatment option that could lead to improved clinical outcomes. PMID:25247850

  14. Redox-responsive magnetic nanoparticle for targeted convection-enhanced delivery of O6-benzylguanine to brain tumors.

    PubMed

    Stephen, Zachary R; Kievit, Forrest M; Veiseh, Omid; Chiarelli, Peter A; Fang, Chen; Wang, Kui; Hatzinger, Shelby J; Ellenbogen, Richard G; Silber, John R; Zhang, Miqin

    2014-10-28

    Resistance to temozolomide (TMZ) based chemotherapy in glioblastoma multiforme (GBM) has been attributed to the upregulation of the DNA repair protein O(6)-methylguanine-DNA methyltransferase (MGMT). Inhibition of MGMT using O(6)-benzylguanine (BG) has shown promise in these patients, but its clinical use is hindered by poor pharmacokinetics that leads to unacceptable toxicity. To improve BG biodistribution and efficacy, we developed superparamagnetic iron oxide nanoparticles (NP) for targeted convection-enhanced delivery (CED) of BG to GBM. The nanoparticles (NPCP-BG-CTX) consist of a magnetic core coated with a redox-responsive, cross-linked, biocompatible chitosan-PEG copolymer surface coating (NPCP). NPCP was modified through covalent attachment of BG and tumor targeting peptide chlorotoxin (CTX). Controlled, localized BG release was achieved under reductive intracellular conditions and NPCP-BG-CTX demonstrated proper trafficking of BG in human GBM cells in vitro. NPCP-BG-CTX treated cells showed a significant reduction in MGMT activity and the potentiation of TMZ toxicity. In vivo, CED of NPCP-BG-CTX produced an excellent volume of distribution (Vd) within the brain of mice bearing orthotopic human primary GBM xenografts. Significantly, concurrent treatment with NPCP-BG-CTX and TMZ showed a 3-fold increase in median overall survival in comparison to NPCP-CTX/TMZ treated and untreated animals. Furthermore, NPCP-BG-CTX mitigated the myelosuppression observed with free BG in wild-type mice when administered concurrently with TMZ. The combination of favorable physicochemical properties, tumor cell specific BG delivery, controlled BG release, and improved in vivo efficacy demonstrates the great potential of these NPs as a treatment option that could lead to improved clinical outcomes.

  15. Phase I Clinical Trial Assessing Temozolomide and Tamoxifen With Concomitant Radiotherapy for Treatment of High-Grade Glioma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Patel, Shilpen, E-mail: Shilpenp@uw.edu; DiBiase, Steven; Meisenberg, Barry

    2012-02-01

    Purpose: The new standard treatment of glioblastoma multiforme is concurrent radiotherapy (RT) and temozolomide. The proliferation of high-grade gliomas might be partly dependent on protein kinase C-mediated pathways. Tamoxifen has been shown in vitro to inhibit protein kinase C through estrogen receptor-independent antineoplastic effects. This Phase I trial was designed to determine the maximal tolerated dose (MTD) of tamoxifen when given with temozolomide and concurrent RT to patients with high-grade gliomas. Methods and Materials: A total of 17 consecutive patients in four cohorts with World Health Organization Grade 3 (n = 2) and 4 (n = 15) gliomas were givenmore » tamoxifen twice daily during 6 weeks of concurrent RT and temozolomide. Eligibility included histologic diagnosis, age >18 years old, Karnofsky performance status {>=}60, and no previous brain RT or chemotherapy. The starting dose was 50 mg/m{sup 2} divided twice daily. If no dose-limiting toxicities (DLTs) occurred in 3 patients, the dose was escalated in 25-mg/m{sup 2} increments until the MTD was reached. When {>=}2 patients within a cohort experienced a DLT, the MTD had been exceeded. Temozolomide was given with RT at 75 mg/m{sup 2}. A dose of 60 Gy in 2 Gy/d fractions to a partial brain field was delivered. Results: A total of 6 patients in Cohort 4 had received tamoxifen at 125 mg/m{sup 2}. One patient was excluded, and the fourth patient developed Grade 4 thrombocytopenia (DLT). Thus, 3 more patients needed to be enrolled. A deep venous thrombosis (DLT) occurred in the sixth patient. Thus, the MTD was 100 mg/m{sup 2}. Conclusions: The MTD of tamoxifen was 100 mg/m{sup 2} when given concurrently with temozolomide 75 mg/m{sup 2} and RT. Tamoxifen might have a role in the initial treatment of high-grade gliomas and should be studied in future Phase II trials building on the newly established platform of concurrent chemoradiotherapy.« less

  16. A retrospective pooled analysis of response patterns and risk factors in recurrent malignant glioma patients receiving a nitrosourea-based chemotherapy.

    PubMed

    Paccapelo, Alessandro; Lolli, Ivan; Fabrini, Maria Grazia; Silvano, Giovanni; Detti, Beatrice; Perrone, Franco; Savio, Giuseppina; Santoni, Matteo; Bonizzoni, Erminio; Perrone, Tania; Scoccianti, Silvia

    2012-05-14

    At recurrence the use of nitrosoureas is widely-used as a therapeutic option for glioblastoma (GBM) patients. The efficacy of fotemustine (FTM) has been demonstrated in phase II clinical trials; however, these papers report a wide range of progression-free-survival (PFS-6 m) rates, ranging from 21% to 52%. We investigated whether FTM could have a different response pattern in respect to time to adjuvant temozolomide failure, or whether specific independent risk factors could be responsible for the wide range of response rates observed. Recurrent GBM patients have been treated with fotemustine 75-100 mg/sqm at day 1, 8, 15 and after 4/5 weeks of rest with 100 mg/sqm every 21 days. Patients were stratified in 4 groups according to time to temozolomide failure: before starting (B0), during the first 6 months (B1), after more than 6 months of therapy (B2), and after a treatment-free interval (B3). Primary endpoint was PFS-6 m. A multivariable analysis was performed to identify whether gender, time after radiotherapy, second surgery and number of TMZ cycles could be independent predictors of the clinical benefit to FTM treatment. 163 recurrent GBM patients were included in the analysis. PFS-6 m rates for the B0, B1, B2 and B3 groups were 25%, 28%, 31.1% and 43.8%, respectively. The probability of disease control was higher in patients with a longer time after radiotherapy (p = 0.0161) and in those who had undergone a second surgery (p = 0.0306). FTM is confirmed as a valuable therapeutic option for patients with recurrent GBM and was active in all study patient groups. Time after the completion of radiotherapy and second surgery are independent treatment-related risk factors that were predictive of clinical benefit.

  17. In vitro evaluation of combined temozolomide and radiotherapy using X  rays and high-linear energy transfer radiation for glioblastoma.

    PubMed

    Barazzuol, Lara; Jena, Raj; Burnet, Neil G; Jeynes, Jonathan C G; Merchant, Michael J; Kirkby, Karen J; Kirkby, Norman F

    2012-05-01

    High-linear energy transfer radiation offers superior biophysical properties over conventional radiotherapy and may have a great potential for treating radioresistant tumors, such as glioblastoma. However, very little pre-clinical data exists on the effects of high-LET radiation on glioblastoma cell lines and on the concomitant application of chemotherapy. This study investigates the in vitro effects of temozolomide in combination with low-energy protons and α particles. Cell survival, DNA damage and repair, and cell growth were examined in four human glioblastoma cell lines (LN18, T98G, U87 and U373) after treatment with either X rays, protons (LET 12.91 keV/μm), or α particles (LET 99.26 keV/μm) with or without concurrent temozolomide at clinically-relevant doses of 25 and 50 μM. The relative biological effectiveness at 10% survival (RBE(10)) increased as LET increased: 1.17 and 1.06 for protons, and 1.84 and 1.68 for α particles in the LN18 and U87 cell lines, respectively. Temozolomide administration increased cell killing in the O(6)-methylguanine DNA methyltransferase-methylated U87 and U373 cell lines. In contrast, temozolomide provided no therapeutic enhancement in the methylguanine DNA methyltransferase-unmethylated LN18 and T98G cell lines. In addition, the residual number of γ-H2AX foci at 24 h after treatment with radiation and concomitant temozolomide was found to be lower than or equal to that expected by DNA damage with either of the individual treatments. Kinetics of foci disappearance after X-ray and proton irradiation followed similar time courses; whereas, loss of γ-H2AX foci after α particle irradiation occurred at a slower rate than that by low-LET radiation (half-life 12.51-16.87 h). The combination of temozolomide with different radiation types causes additive rather than synergistic cytotoxicity. Nevertheless, particle therapy combined with chemotherapy may offer a promising alternative with the additional benefit of superior

  18. Improved outcomes with intensity modulated radiation therapy combined with temozolomide for newly diagnosed glioblastoma multiforme.

    PubMed

    Aherne, Noel J; Benjamin, Linus C; Horsley, Patrick J; Silva, Thomaz; Wilcox, Shea; Amalaseelan, Julan; Dwyer, Patrick; Tahir, Abdul M R; Hill, Jacques; Last, Andrew; Hansen, Carmen; McLachlan, Craig S; Lee, Yvonne L; McKay, Michael J; Shakespeare, Thomas P

    2014-01-01

    Purpose. Glioblastoma multiforme (GBM) is optimally treated by maximal debulking followed by combined chemoradiation. Intensity modulated radiation therapy (IMRT) is gaining widespread acceptance in other tumour sites, although evidence to support its use over three-dimensional conformal radiation therapy (3DCRT) in the treatment of gliomas is currently lacking. We examined the survival outcomes for patients with GBM treated with IMRT and Temozolomide. Methods and Materials. In all, 31 patients with GBM were treated with IMRT and 23 of these received chemoradiation with Temozolomide. We correlated survival outcomes with patient functional status, extent of surgery, radiation dose, and use of chemotherapy. Results. Median survival for all patients was 11.3 months, with a median survival of 7.2 months for patients receiving 40.05 Gray (Gy) and a median survival of 17.4 months for patients receiving 60 Gy. Conclusions. We report one of the few series of IMRT in patients with GBM. In our group, median survival for those receiving 60 Gy with Temozolomide compared favourably to the combined therapy arm of the largest randomised trial of chemoradiation versus radiation to date (17.4 months versus 14.6 months). We propose that IMRT should be considered as an alternative to 3DCRT for patients with GBM.

  19. Improved Outcomes with Intensity Modulated Radiation Therapy Combined with Temozolomide for Newly Diagnosed Glioblastoma Multiforme

    PubMed Central

    Aherne, Noel J.; Benjamin, Linus C.; Horsley, Patrick J.; Silva, Thomaz; Wilcox, Shea; Amalaseelan, Julan; Dwyer, Patrick; Tahir, Abdul M. R.; Hill, Jacques; Last, Andrew; Hansen, Carmen; McLachlan, Craig S.; Lee, Yvonne L.; McKay, Michael J.; Shakespeare, Thomas P.

    2014-01-01

    Purpose. Glioblastoma multiforme (GBM) is optimally treated by maximal debulking followed by combined chemoradiation. Intensity modulated radiation therapy (IMRT) is gaining widespread acceptance in other tumour sites, although evidence to support its use over three-dimensional conformal radiation therapy (3DCRT) in the treatment of gliomas is currently lacking. We examined the survival outcomes for patients with GBM treated with IMRT and Temozolomide. Methods and Materials. In all, 31 patients with GBM were treated with IMRT and 23 of these received chemoradiation with Temozolomide. We correlated survival outcomes with patient functional status, extent of surgery, radiation dose, and use of chemotherapy. Results. Median survival for all patients was 11.3 months, with a median survival of 7.2 months for patients receiving 40.05 Gray (Gy) and a median survival of 17.4 months for patients receiving 60 Gy. Conclusions. We report one of the few series of IMRT in patients with GBM. In our group, median survival for those receiving 60 Gy with Temozolomide compared favourably to the combined therapy arm of the largest randomised trial of chemoradiation versus radiation to date (17.4 months versus 14.6 months). We propose that IMRT should be considered as an alternative to 3DCRT for patients with GBM. PMID:24563782

  20. Opposite Interplay Between the Canonical WNT/β-Catenin Pathway and PPAR Gamma: A Potential Therapeutic Target in Gliomas.

    PubMed

    Vallée, Alexandre; Lecarpentier, Yves; Guillevin, Rémy; Vallée, Jean-Noël

    2018-06-01

    In gliomas, the canonical Wingless/Int (WNT)/β-catenin pathway is increased while peroxisome proliferator-activated receptor gamma (PPAR-γ) is downregulated. The two systems act in an opposite manner. This review focuses on the interplay between WNT/β-catenin signaling and PPAR-γ and their metabolic implications as potential therapeutic target in gliomas. Activation of the WNT/β-catenin pathway stimulates the transcription of genes involved in proliferation, invasion, nucleotide synthesis, tumor growth, and angiogenesis. Activation of PPAR-γ agonists inhibits various signaling pathways such as the JAK/STAT, WNT/β-catenin, and PI3K/Akt pathways, which reduces tumor growth, cell proliferation, cell invasiveness, and angiogenesis. Nonsteroidal anti-inflammatory drugs, curcumin, antipsychotic drugs, adiponectin, and sulforaphane downregulate the WNT/β-catenin pathway through the upregulation of PPAR-γ and thus appear to provide an interesting therapeutic approach for gliomas. Temozolomide (TMZ) is an antiangiogenic agent. The downstream action of this opposite interplay may explain the TMZ-resistance often reported in gliomas.

  1. Convertible MRI contrast: Sensing the delivery and release of anti-glioma nano-drugs

    NASA Astrophysics Data System (ADS)

    Zhang, Liang; Zhang, Zhongwei; Mason, Ralph P.; Sarkaria, Jann N.; Zhao, Dawen

    2015-05-01

    There is considerable interest in developing nanohybrids of imaging contrast agents and drugs for image-guided drug delivery. We have developed a strategy of utilizing manganese (Mn) to enhance the nano-encapsulation of arsenic trioxide (ATO). Formation of arsenite (As3+)-Mn precipitates in liposomes generates magnetic susceptibility effects, reflected as dark contrast on T2-weighted MRI. Intriguingly, following cell uptake, the As-Mn complex decomposes in response to low pH in endosome-lysosome releasing ionic As3+, the active form of ATO, and Mn2+, the T1 contrast agent that gives a bright signal. Glioblastoma (GBM) is well known for its high resistance to chemotherapy, e.g., temozolomide (TMZ). Building upon the previously established phosphatidylserine (PS)-targeted nanoplatform that has excellent GBM-targeting specificity, we now demonstrate the effectiveness of the targeted nanoformulated ATO for treating TMZ-resistant GBM cells and the ability of the convertible Mn contrast as a surrogate revealing the delivery and release of ATO.

  2. Effects of anticancer drugs on glia-glioma brain tumor model characterized by acoustic impedance microscopy

    NASA Astrophysics Data System (ADS)

    Soon, Thomas Tiong Kwong; Chean, Tan Wei; Yamada, Hikari; Takahashi, Kenta; Hozumi, Naohiro; Kobayashi, Kazuto; Yoshida, Sachiko

    2017-07-01

    An ultrasonic microscope is a useful tool for observing living tissue without chemical fixation or histochemical processing. Two-dimensional (2D) acoustic impedance microscopy developed in our previous study for living cell observation was employed to visualize intracellular changes. We proposed a brain tumor model by cocultivating rat glial cells and C6 gliomas to quantitatively analyze the effects of two types of anticancer drugs, cytochalasin B (CyB) and temozolomide (TMZ), when they were applied. We reported that CyB treatment (25 µg/ml, T = 90 min) significantly reduced the acoustic impedance of gliomas and has little effect on glial cells. Meanwhile, TMZ treatment (2 mg/ml, T = 90 min) impacted both cells equally, in which both cells’ acoustic impedances were decreased. As CyB targets the actin filament polymerization of the cells, we have concluded that the decrease in acoustic impedance was in fact due to actin filament depolymerization and the data can be quantitatively assessed for future studies in novel drug development.

  3. P02.03INCREASED COUNTS OF NK AND NKT CELLS ARE ASSOCIATED WITH PROLONGED SURVIVAL IN PRIMARY GLIOBLASTOMA PATIENTS TREATED WITH DENDRITIC CELL IMMUNOTHERAPY IN COMBINATION WITH RADIO- AND CHEMO-THERAPY

    PubMed Central

    Pellegatta, S.; Eoli, M.; Cantini, G.; Anghileri, E.; Antozzi, C.; Frigerio, S.; Bruzzone, M.; Pollo, B.; Parati, E.; Finocchiaro, G.

    2014-01-01

    Two clinical studies, DENDR1 and DENDR2 including, respectively, the treatment of first diagnosis and recurrent glioblastoma (GB) patients with dendritic cells (DCs) loaded with autologous tumor lysate are currently active at Istituto Neurologico Besta, Milan. Our first results obtained on a group of recurrent GB patients demonstrated that the response of NK cells correlates with significantly prolonged survival. Here we provide results of the interim analysis on 22 patients affected by primary GB. Patients with post-surgery volume ≤10 cc underwent leukapheresis before radiotherapy and chemotherapy with temozolomide (TMZ). Three intradermal injections of mature DC were done before adjuvant chemotherapy. The subsequent 4 injections were performed 17 ± 3 days after adjuvant TMZ. MRI, clinical and immunological follow-up were performed every 2 months. The median age at surgery was 54.5 years (28-69). RT-TMZ induced significant lymphopenia (<1000 lymphocytes/microl) in 17/22 patients (77.2%). Patients with >1000 lymphocytes/microl (5/22) before first vaccination had shorter PFS than others (p < 0.005). Peripheral Blood Lymphocytes (PBLs) were analyzed by flow cytometry to identify CD8+ T cells, NK and NKT cells before and after DC vaccines. The ratio of vaccination/baseline frequencies and counts (V/B ratio) of all of the immunological parameters for each patient was calculated, and the median of all of the observations used as the cut off value to separate patients. V/B ratio was correlated with the progression free survival (PFS) of each patient. Increased V/B ratio for NK cells and in particular NKT cells, but not for CD8 T lymphocytes, was significantly associated with prolonged PFS (median PFS 14 vs 8.0 mo, p = 0.01; 15.0 vs 8.0 mo, respectively). Interferon (IFN)-γ in PBLs was significantly higher in patients with PFS12 (p < 0.02), increasing immediately after the second vaccination as evaluated by real time-PCR. No changes in the expression levels of IFN

  4. Local delivery of cancer-cell glycolytic inhibitors in high-grade glioma

    PubMed Central

    Wicks, Robert T.; Azadi, Javad; Mangraviti, Antonella; Zhang, Irma; Hwang, Lee; Joshi, Avadhut; Bow, Hansen; Hutt-Cabezas, Marianne; Martin, Kristin L.; Rudek, Michelle A.; Zhao, Ming; Brem, Henry; Tyler, Betty M.

    2015-01-01

    Background 3-bromopyruvate (3-BrPA) and dichloroacetate (DCA) are inhibitors of cancer-cell specific aerobic glycolysis. Their application in glioma is limited by 3-BrPA's inability to cross the blood-brain-barrier and DCA's dose-limiting toxicity. The safety and efficacy of intracranial delivery of these compounds were assessed. Methods Cytotoxicity of 3-BrPA and DCA were analyzed in U87, 9L, and F98 glioma cell lines. 3-BrPA and DCA were incorporated into biodegradable pCPP:SA wafers, and the maximally tolerated dose was determined in F344 rats. Efficacies of the intracranial 3-BrPA wafer and DCA wafer were assessed in a rodent allograft model of high-grade glioma, both as a monotherapy and in combination with temozolomide (TMZ) and radiation therapy (XRT). Results 3-BrPA and DCA were found to have similar IC50 values across the 3 glioma cell lines. 5% 3-BrPA wafer-treated animals had significantly increased survival compared with controls (P = .0027). The median survival of rats with the 50% DCA wafer increased significantly compared with both the oral DCA group (P = .050) and the controls (P = .02). Rats implanted on day 0 with a 5% 3-BrPA wafer in combination with TMZ had significantly increased survival over either therapy alone. No statistical difference in survival was noted when the wafers were added to the combination therapy of TMZ and XRT, but the 5% 3-BrPA wafer given on day 0 in combination with TMZ and XRT resulted in long-term survivorship of 30%. Conclusion Intracranial delivery of 3-BrPA and DCA polymer was safe and significantly increased survival in an animal model of glioma, a potential novel therapeutic approach. The combination of intracranial 3-BrPA and TMZ provided a synergistic effect. PMID:25053853

  5. Intracranial AAV-IFN-β gene therapy eliminates invasive xenograft glioblastoma and improves survival in orthotopic syngeneic murine model.

    PubMed

    GuhaSarkar, Dwijit; Neiswender, James; Su, Qin; Gao, Guangping; Sena-Esteves, Miguel

    2017-02-01

    The highly invasive property of glioblastoma (GBM) cells and genetic heterogeneity are largely responsible for tumor recurrence after the current standard-of-care treatment and thus a direct cause of death. Previously, we have shown that intracranial interferon-beta (IFN-β) gene therapy by locally administered adeno-associated viral vectors (AAV) successfully treats noninvasive orthotopic glioblastoma models. Here, we extend these findings by testing this approach in invasive human GBM xenograft and syngeneic mouse models. First, we show that a single intracranial injection of AAV encoding human IFN-β eliminates invasive human GBM8 tumors and promotes long-term survival. Next, we screened five AAV-IFN-β vectors with different promoters to drive safe expression of mouse IFN-β in the brain in the context of syngeneic GL261 tumors. Two AAV-IFN-β vectors were excluded due to safety concerns, but therapeutic studies with the other three vectors showed extensive tumor cell death, activation of microglia surrounding the tumors, and a 56% increase in median survival of the animals treated with AAV/P2-Int-mIFN-β vector. We also assessed the therapeutic effect of combining AAV-IFN-β therapy with temozolomide (TMZ). As TMZ affects DNA replication, an event that is crucial for second-strand DNA synthesis of single-stranded AAV vectors before active transcription, we tested two TMZ treatment regimens. Treatment with TMZ prior to AAV-IFN-β abrogated any benefit from the latter, while the reverse order of treatment doubled the median survival compared to controls. These studies demonstrate the therapeutic potential of intracranial AAV-IFN-β therapy in a highly migratory GBM model as well as in a syngeneic mouse model and that combination with TMZ is likely to enhance its antitumor potency. © 2016 The Authors. Published by FEBS Press and John Wiley & Sons Ltd.

  6. Frequent Nek1 overexpression in human gliomas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhu, Jun; Neurosurgery Department, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai; Cai, Yu, E-mail: aihaozuqiu22@163.com

    Never in mitosis A (NIMA)-related kinase 1 (Nek1) regulates cell cycle progression to mitosis. Its expression and potential functions in human gliomas have not been studied. Here, our immunohistochemistry (IHC) assay and Western blot assay results showed that Nek1 expression was significantly upregulated in fresh and paraffin-embedded human glioma tissues. Its level in normal brain tissues was low. Nek1 overexpression in human gliomas was correlated with the proliferation marker (Ki-67), tumor grade, Karnofsky performance scale (KPS) and more importantly, patients’ poor survival. Further studies showed that Nek1 expression level was also increased in multiple human glioma cell lines (U251-MG, U87-MG,more » U118, H4 and U373). Significantly, siRNA-mediated knockdown of Nek1 inhibited glioma cell (U87-MG/U251-MG) growth. Nek1 siRNA also sensitized U87-MG/U251-MG cells to temozolomide (TMZ), causing a profound apoptosis induction and growth inhibition. The current study indicates Nek1 might be a novel and valuable oncotarget of glioma, it is important for glioma cell growth and TMZ-resistance. - Highlights: • Nek1 is upregulated in multiple human glioma tissues and cell lines. • Nek1 overexpression correlates with glioma grades and patients’ KPS score. • Nek1 overexpression correlates with patients’ poor overall survival. • siRNA knockdown of Nek1 inhibits glioma cell growth. • siRNA knockdown of Nek1 sensitizes human glioma cells to temozolomide.« less

  7. Blood glutamate scavengers prolong the survival of rats and mice with brain-implanted gliomas.

    PubMed

    Ruban, Angela; Berkutzki, Tamara; Cooper, Itzik; Mohar, Boaz; Teichberg, Vivian I

    2012-12-01

    L-Glutamate (Glu) plays a crucial role in the growth of malignant gliomas. We have established the feasibility of accelerating a naturally occurring brain to-blood Glu efflux by decreasing blood Glu levels with intravenous oxaloacetate, the respective Glu co-substrate of the blood resident enzyme humane glutamate–oxaloacetate transaminase(hGOT). We wished to demonstrate that blood Glu scavenging provides neuroprotection in the case of glioma.We now describe the neuroprotective effects of blood Glu scavenging in a fatal condition such as brain-implanted C6 glioma in rats and brain-implanted human U87 MG glioma in nude mice. Rat (C-6) or human (U87) glioma cells were grafted stereotactically in the brain of rats or mice. After development of tumors, the animals were drinking oxaloacetate with or without injections of hGOT. In addition, mice were treated with combination treatment, which included drinking oxaloacetate with intracutaneous injections of hGOT and intraperitoneal injection of Temozolomide. Animals drinking oxaloacetate with or without injections of hGOT displayed a smaller tumor volume, reduced invasiveness and prolonged survival than control animals drinking saline. These effects were significantly enhanced by Temozolomide in mice, which increased survival by 237%. This is the first demonstration of blood Glu scavenging in brain cancer, and because of its safety, is likely to be of clinical significance for the future treatment of human gliomas. As we demonstrated, the blood glutamate scavenging treatment in combination with TMZ could be a good candidate or as an alternative treatment to the patients that do not respond to TMZ.

  8. Alkylation sensitivity screens reveal a conserved cross-species functionome

    PubMed Central

    Svilar, David; Dyavaiah, Madhu; Brown, Ashley R.; Tang, Jiang-bo; Li, Jianfeng; McDonald, Peter R.; Shun, Tong Ying; Braganza, Andrea; Wang, Xiao-hong; Maniar, Salony; St Croix, Claudette M.; Lazo, John S.; Pollack, Ian F.; Begley, Thomas J.; Sobol, Robert W.

    2013-01-01

    To identify genes that contribute to chemotherapy resistance in glioblastoma, we conducted a synthetic lethal screen in a chemotherapy-resistant glioblastoma derived cell line with the clinical alkylator temozolomide (TMZ) and an siRNA library tailored towards “druggable” targets. Select DNA repair genes in the screen were validated independently, confirming the DNA glycosylases UNG and MYH as well as MPG to be involved in the response to high dose TMZ. The involvement of UNG and MYH is likely the result of a TMZ-induced burst of reactive oxygen species. We then compared the human TMZ sensitizing genes identified in our screen with those previously identified from alkylator screens conducted in E. coli and S. cerevisiae. The conserved biological processes across all three species composes an Alkylation Functionome that includes many novel proteins not previously thought to impact alkylator resistance. This high-throughput screen, validation and cross-species analysis was then followed by a mechanistic analysis of two essential nodes: base excision repair (BER) DNA glycosylases (UNG, human and mag1, S. cerevisiae) and protein modification systems, including UBE3B and ICMT in human cells or pby1, lip22, stp22 and aim22 in S. cerevisiae. The conserved processes of BER and protein modification were dual targeted and yielded additive sensitization to alkylators in S. cerevisiae. In contrast, dual targeting of BER and protein modification genes in human cells did not increase sensitivity, suggesting an epistatic relationship. Importantly, these studies provide potential new targets to overcome alkylating agent resistance. PMID:23038810

  9. The effects of the NICE Technology Appraisal 121 (gliadel and temozolomide) on survival in high-grade glioma.

    PubMed

    Barr, James Geoffrey; Grundy, Paul L

    2012-12-01

    The prognosis of high-grade glioma (HGG) is poor with a median survival of about 1 year for glioblastoma. In 2007, NICE published a technology appraisal (TA121) recommending the use of carmustine wafers (Gliadel) and systemic therapy with temozolomide for selected patients with HGG. Outcomes for HGG surgery in the United Kingdom with these combined treatments have not been published. Retrospective audit of consecutive patients in a single unit with carmustine wafer implantation. Fifty-nine patients had carmustine wafers implanted at primary surgery, between October 2005 and October 2010 at Wessex Neurological Centre, Southampton, UK. Patients were given chemotherapeutic treatments strictly according to NICE TA121. Survival was calculated using Kaplan-Meier method. Fifty-five patients had WHO grade IV tumours and four had grade III. Median age was 61 years. At follow-up, 39 patients had died. Median survival was 15.3 months. Eight patients (13.5%) experienced post-operative complications (including five infections) for which four had the carmustine wafers removed. Forty-seven (80%) patients were treated with radical radiotherapy (55-60 Gy) and six (10%) patients received palliative radiotherapy (30 Gy). Thirty-seven patients (63%) received concomitant temozolomide chemotherapy. In the subset of 37 patients receiving multimodal treatment with radical radiotherapy and concomitant temozolomide, median survival was 15.8 months compared with 7.4 months in those not receiving multimodal treatment. Carmustine wafers for primary HGG surgery in accordance with the NICE TA121 were associated with a median survival of 15.3 months; this is improved compared with previously reported randomised trials. Multimodal treatment with carmustine wafers, radical radiotherapy and concomitant temozolomide was associated with improved survival. Increased incidence of infections was observed in cases receiving carmustine wafers.

  10. Pilot study of vincristine, oral irinotecan, and temozolomide (VOIT regimen) combined with bevacizumab in pediatric patients with recurrent solid tumors or brain tumors.

    PubMed

    Wagner, Lars; Turpin, Brian; Nagarajan, Rajaram; Weiss, Brian; Cripe, Timothy; Geller, James

    2013-09-01

    The combination of vincristine, oral irinotecan, and temozolomide (VOIT regimen) has shown antitumor activity in a pediatric Phase I trial. To further potentiate synergy, we assessed the safety and feasibility of adding bevacizumab to VOIT for children and young adults with recurrent tumors. Patients received vincristine (1.5 mg/m(2) on day 1), oral irinotecan (90 mg/m(2) on days 1-5), temozolomide (100-150 mg/m(2) on days 1-5), and bevacizumab (15 mg/kg on day 1) in 3-week cycles, which were repeated for up to six cycles. Cefixime prophylaxis was used to reduce irinotecan-associated diarrhea. Thirteen patients received 36 total cycles. Six of the first 10 patients required dose reductions due to toxicity during the first cycle (n = 3) or subsequent cycles (n = 3), and these grade 3 side effects included prolonged nausea, dehydration, anorexia, neuropathy, diarrhea, and abdominal pain, as well as prolonged grade 4 neutropenia. After reducing daily temozolomide to 100 mg/m(2) , three additional patients tolerated therapy well without the need for dose reductions. Toxicities attributed to bevacizumab were limited to grade 1 epistaxis (1) and grade 2 proteinuria (1). Tumor responses were seen in both patients with Ewing sarcoma. Reducing temozolomide from 150 to 100 mg/m(2) /day improved tolerability, and treatment with this lower temozolomide dose was feasible and convenient as outpatient therapy. Although responses were seen in Ewing sarcoma, the benefit of adding bevacizumab remains unclear. Copyright © 2013 Wiley Periodicals, Inc.

  11. HMGA1 silencing reduces stemness and temozolomide resistance in glioblastoma stem cells.

    PubMed

    Colamaio, Marianna; Tosti, Nadia; Puca, Francesca; Mari, Alessia; Gattordo, Rosaria; Kuzay, Yalçın; Federico, Antonella; Pepe, Anna; Sarnataro, Daniela; Ragozzino, Elvira; Raia, Maddalena; Hirata, Hidenari; Gemei, Marica; Mimori, Koshi; Del Vecchio, Luigi; Battista, Sabrina; Fusco, Alfredo

    2016-10-01

    Glioblastoma multiforme (GBM) develops from a small subpopulation of stem-like cells, which are endowed with the ability to self-renew, proliferate and give rise to progeny of multiple neuroepithelial lineages. These cells are resistant to conventional chemo- and radiotherapy and are hence also responsible for tumor recurrence. HMGA1 overexpression has been shown to correlate with proliferation, invasion, and angiogenesis of GBMs and to affect self-renewal of cancer stem cells from colon cancer. The role of HMGA1 in GBM tumor stem cells is not completely understood. We have investigated the role of HMGA1 in brain tumor stem cell (BTSC) self-renewal, stemness and resistance to temozolomide by shRNA- mediated HMGA1 silencing. We first report that HMGA1 is overexpressed in a subset of BTSC lines from human GBMs. Then, we show that HMGA1 knockdown reduces self-renewal, sphere forming efficiency and stemness, and sensitizes BTSCs to temozolomide. Interestingly, HMGA1 silencing also leads to reduced tumor initiation ability in vivo. These results demonstrate a pivotal role of HMGA1 in cancer stem cell gliomagenesis and endorse HMGA1 as a suitable target for CSC-specific GBM therapy.

  12. Temozolomide downregulates P-glycoprotein expression in glioblastoma stem cells by interfering with the Wnt3a/glycogen synthase-3 kinase/β-catenin pathway

    PubMed Central

    Riganti, Chiara; Salaroglio, Iris Chiara; Caldera, Valentina; Campia, Ivana; Kopecka, Joanna; Mellai, Marta; Annovazzi, Laura; Bosia, Amalia; Ghigo, Dario; Schiffer, Davide

    2013-01-01

    Background Glioblastoma multiforme stem cells display a highly chemoresistant phenotype, whose molecular basis is poorly known. We aim to clarify this issue and to investigate the effects of temozolomide on chemoresistant stem cells. Methods A panel of human glioblastoma cultures, grown as stem cells (neurospheres) and adherent cells, was used. Results Neurospheres had a multidrug resistant phenotype compared with adherent cells. Such chemoresistance was overcome by apparently noncytotoxic doses of temozolomide, which chemosensitized glioblastoma cells to doxorubicin, vinblastine, and etoposide. This effect was selective for P-glycoprotein (Pgp) substrates and for stem cells, leading to an investigation of whether there was a correlation between the expression of Pgp and the activity of typical stemness pathways. We found that Wnt3a and ABCB1, which encodes for Pgp, were both highly expressed in glioblastoma stem cells and reduced by temozolomide. Temozolomide-treated cells had increased methylation of the cytosine–phosphate–guanine islands in the Wnt3a gene promoter, decreased expression of Wnt3a, disrupted glycogen synthase-3 kinase/β-catenin axis, reduced transcriptional activation of ABCB1, and a lower amount and activity of Pgp. Wnt3a overexpression was sufficient to transform adherent cells into neurospheres and to simultaneously increase proliferation and ABCB1 expression. On the contrary, glioblastoma stem cells silenced for Wnt3a lost the ability to form neurospheres and reduced at the same time the proliferation rate and ABCB1 levels. Conclusions Our work suggests that Wnt3a is an autocrine mediator of stemness, proliferation, and chemoresistance in human glioblastoma and that temozolomide may chemosensitize the stem cell population by downregulating Wnt3a signaling. PMID:23897632

  13. Glutathione reductase mediates drug resistance in glioblastoma cells by regulating redox homeostasis.

    PubMed

    Zhu, Zhongling; Du, Shuangshuang; Du, Yibo; Ren, Jing; Ying, Guoguang; Yan, Zhao

    2018-01-01

    Glutathione (GSH) and GSH-related enzymes constitute the most important defense system that protects cells from free radical, radiotherapy, and chemotherapy attacks. In this study, we aim to explore the potential role and regulatory mechanism of the GSH redox cycle in drug resistance in glioblastoma multiforme (GBM) cells. We found that temozolomide (TMZ)-resistant glioma cells displayed lower levels of endogenous reactive oxygen species and higher levels of total antioxidant capacity and GSH than sensitive cells. Moreover, the expression of glutathione reductase (GSR), the key enzyme of the GSH redox cycle, was higher in TMZ-resistant cells than in sensitive cells. Furthermore, silencing GSR in drug-resistant cells improved the sensitivity of cells to TMZ or cisplatin. Conversely, the over-expression of GSR in sensitive cells resulted in resistance to chemotherapy. In addition, the GSR enzyme partially prevented the oxidative stress caused by pro-oxidant L-buthionine -sulfoximine. The modulation of redox state by GSH or L-buthionine -sulfoximine regulated GSR-mediated drug resistance, suggesting that the action of GSR in drug resistance is associated with the modulation of redox homeostasis. Intriguingly, a trend toward shorter progress-free survival was observed among GBM patients with high GSR expression. These results indicated that GSR is involved in mediating drug resistance and is a potential target for improving GBM treatment. © 2017 International Society for Neurochemistry.

  14. Towards personalized medicine with a three-dimensional micro-scale perfusion-based two-chamber tissue model system

    PubMed Central

    Ma, Liang; Barker, Jeremy; Zhou, Changchun; Li, Wei; Zhang, Jing; Lin, Biaoyang; Foltz, Gregory; Küblbeck, Jenni; Honkakoski, Paavo

    2013-01-01

    A three-dimensional micro-scale perfusion-based two-chamber (3D-μPTC) tissue model system was developed to test the cytotoxicity of anticancer drugs in conjunction with liver metabolism. Liver cells with different cytochrome P450 (CYP) subtypes and glioblastoma multiforme (GBM) brain cancer cells were cultured in two separate chambers connected in tandem. Both chambers contained a 3D tissue engineering scaffold fabricated with biodegradable poly(lactic acid) (PLA) using a solvent-free approach. We used this model system to test the cytotoxicity of anticancer drugs, including temozolomide (TMZ) and ifosfamide (IFO). With the liver cells, TMZ showed a much lower toxicity to GBM cells under both 2D and 3D cell culture conditions. Comparing 2D, GBM cells cultured in 3D had much high viability under TMZ treatment. IFO was used to test the CYP-related metabolic effects. Cells with different expression levels of CYP3A4 differed dramatically in their ability to activate IFO, which led to strong metabolism-dependent cytotoxicity to GBM cells. These results demonstrate that our 3D-μPTC system could provide a more physiologically realistic in vitro environment than the current 2D monolayers for testing metabolism-dependent toxicity of anticancer drugs. It could therefore be used as an important platform for better prediction of drug dosing and schedule towards personalized medicine. PMID:22429982

  15. Effect of CYP3A-inducing anti-epileptics on sorafenib exposure: results of a phase II study of sorafenib plus daily temozolomide in adults with recurrent glioblastoma

    PubMed Central

    Vredenburgh, James J.; Desjardins, Annick; Peters, Katherine; Gururangan, Sridharan; Sampson, John H.; Marcello, Jennifer; Herndon, James E.; McLendon, Roger E.; Janney, Dorothea; Friedman, Allan H.; Bigner, Darell D.; Friedman, Henry S.

    2011-01-01

    Sorafenib, an oral VEGFR-2, Raf, PDGFR, c-KIT and Flt-3 inhibitor, is active against renal cell and hepatocellular carcinomas, and has recently demonstrated promising activity for lung and breast cancers. In addition, various protracted temozolomide dosing schedules have been evaluated as a strategy to further enhance its anti-tumor activity. We reasoned that sorafenib and protracted, daily temozolomide may provide complementary therapeutic benefit, and therefore performed a phase 2 trial among recurrent glioblastoma patients. Adult glioblastoma patients at any recurrence after standard temozolomide chemoradiotherapy received sorafenib (400 mg twice daily) and continuous daily temozolomide (50 mg/m2/day). Assessments were performed every eight weeks. The primary endpoint was progression-free survival at 6 months (PFS-6) and secondary end points were radiographic response, overall survival (OS), safety and sorafenib pharmacokinetics. Of 32 enrolled patients, 12 (38%) were on CYP3-A inducing anti-epileptics (EIAEDs), 17 (53%) had 2 or more prior progressions, 15 had progressed while receiving 5-day temozolomide, and 12 (38%) had failed either prior bevacizumab or VEGFR inhibitor therapy. The most common grade ≥ 3 toxicities were palmer-planter erythrodysesthesia (19%) and elevated amylase/lipase (13%). Sorafenib pharmacokinetic exposures were comparable on day 1 regardless of EIAED status, but significantly lower on day 28 for patients on EIAEDs (P = 0.0431). With a median follow-up of 93 weeks, PFS-6 was 9.4%. Only one patient (3%) achieved a partial response. In conclusion, sorafenib can be safely administered with daily temozolomide, but this regimen has limited activity for recurrent GBM. Co-administration of EIAEDs can lower sorafenib exposures in this population. PMID:20443129

  16. Repurposing drugs for glioblastoma: From bench to bedside.

    PubMed

    Basso, João; Miranda, Ana; Sousa, João; Pais, Alberto; Vitorino, Carla

    2018-08-01

    Glioblastoma multiforme is the most common, aggressive and lethal type of brain tumor. It is a stage IV cancer disease with a poor prognosis, as the current therapeutic options (surgery, radiotherapy and chemotherapy) are not able to eradicate tumor cells. The approach to treat glioblastoma has not suffered major changes over the last decade and temozolomide (TMZ) remains the mainstay for chemotherapy. However, resistance mechanisms to TMZ and other chemotherapeutic agents are becoming more frequent. The lack of effective options is a reality that may be counterbalanced by repositioning known and commonly used drugs for other diseases. This approach takes into consideration the available pharmacokinetic, pharmacodynamic, toxicity and safety data, and allows a much faster and less expensive drug and product development process. In this review, an extensive literature search is conducted aiming to list drugs with repurposing usage, based on their preferential damage in glioblastoma cells through various mechanisms. Some of these drugs have already entered clinical trials, exhibiting favorable outcomes, which sparks their potential application in glioblastoma treatment. Copyright © 2018 Elsevier B.V. All rights reserved.

  17. Chemotherapy and target therapy in the management of adult high- grade gliomas.

    PubMed

    Spinelli, Gian Paolo; Miele, Evelina; Lo Russo, Giuseppe; Miscusi, Massimo; Codacci-Pisanelli, Giovanni; Petrozza, Vincenzo; Papa, Anselmo; Frati, Luigi; Della Rocca, Carlo; Gulino, Alberto; Tomao, Silverio

    2012-10-01

    Adult high grade gliomas (HGG) are the most frequent and fatal primary central nervous system (CNS) tumors. Despite recent advances in the knowledge of the pathology and the molecular features of this neoplasm, its prognosis remains poor. In the last years temozolomide (TMZ) has dramatically changed the life expectancy of these patients: the association of this drug with radiotherapy (RT), followed by TMZ alone, is the current standard of care. However, malignant gliomas often remain resistant to chemotherapy (CHT). Therefore, preclinical and clinical research efforts have been directed on identifying and understanding the different mechanisms of chemo-resistance operating in this subset of tumors,in order to develop effective strategies to overcome resistance. Moreover, the evidence of alterations in signal transduction pathways underlying tumor progression, has increased the number of trials investigating molecular target agents, such as anti-epidermal growth factor receptor (EGFR) and anti- vascular endothelial growth factor (VEGF) signaling. The purpose of this review is to point out the current standard of treatment and to explore new available target therapies in HGG.

  18. B-Raf inhibitor vemurafenib in combination with temozolomide and fotemustine in the killing response of malignant melanoma cells.

    PubMed

    Roos, Wynand P; Quiros, Steve; Krumm, Andrea; Merz, Stephanie; Switzeny, Olivier Jérôme; Christmann, Markus; Loquai, Carmen; Kaina, Bernd

    2014-12-30

    In the treatment of metastatic melanoma, a highly therapy-refractory cancer, alkylating agents are used and, for the subgroup of BRAFV600E cancers, the B-Raf inhibitor vemurafenib. Although vemurafenib is initially beneficial, development of drug resistance occurs leading to tumor relapse, which necessitates the requirement for combined or sequential therapy with other drugs, including genotoxic alkylating agents. This leads to the question whether vemurafenib and alkylating agents act synergistically and whether chronic vemurafenib treatment alters the melanoma cell response to alkylating agents. Here we show that a) BRAFV600E melanoma cells are killed by vemurafenib, driving apoptosis, b) BRAFV600E melanoma cells are neither more resistant nor sensitive to temozolomide/fotemustine than non-mutant cells, c) combined treatment with vemurafenib plus temozolomide or fotemustine has an additive effect on cell kill, d) acquired vemurafenib resistance of BRAFV600E melanoma cells does not affect MGMT, MSH2, MSH6, PMS2 and MLH1, nor does it affect the resistance to temozolomide and fotemustine, e) metastatic melanoma biopsies obtained from patients prior to and after vemurafenib treatment did not show a change in the MGMT promoter methylation status and MGMT expression level. The data suggest that consecutive treatment with vemurafenib and alkylating drugs is a reasonable strategy for metastatic melanoma treatment.

  19. The Efficacy of the Wee1 Inhibitor MK-1775 Combined with Temozolomide Is Limited by Heterogeneous Distribution across the Blood-Brain Barrier in Glioblastoma.

    PubMed

    Pokorny, Jenny L; Calligaris, David; Gupta, Shiv K; Iyekegbe, Dennis O; Mueller, Dustin; Bakken, Katrina K; Carlson, Brett L; Schroeder, Mark A; Evans, Debra L; Lou, Zhenkun; Decker, Paul A; Eckel-Passow, Jeanette E; Pucci, Vincenzo; Ma, Bennett; Shumway, Stuart D; Elmquist, William F; Agar, Nathalie Y R; Sarkaria, Jann N

    2015-04-15

    Wee1 regulates key DNA damage checkpoints, and in this study, the efficacy of the Wee1 inhibitor MK-1775 was evaluated in glioblastoma multiforme (GBM) xenograft models alone and in combination with radiation and/or temozolomide. In vitro MK-1775 efficacy alone and in combination with temozolomide, and the impact on DNA damage, was analyzed by Western blotting and γH2AX foci formation. In vivo efficacy was evaluated in orthotopic and heterotopic xenografts. Drug distribution was assessed by conventional mass spectrometry (MS) and matrix-assisted laser desorption/ionization (MALDI)-MS imaging. GBM22 (IC50 = 68 nmol/L) was significantly more sensitive to MK-1775 compared with five other GBM xenograft lines, including GBM6 (IC50 >300 nmol/L), and this was associated with a significant difference in pan-nuclear γH2AX staining between treated GBM22 (81% cells positive) and GBM6 (20% cells positive) cells. However, there was no sensitizing effect of MK-1775 when combined with temozolomide in vitro. In an orthotopic GBM22 model, MK-1775 was ineffective when combined with temozolomide, whereas in a flank model of GBM22, MK-1775 exhibited both single-agent and combinatorial activity with temozolomide. Consistent with limited drug delivery into orthotopic tumors, the normal brain to whole blood ratio following a single MK-1775 dose was 5%, and MALDI-MS imaging demonstrated heterogeneous and markedly lower MK-1775 distribution in orthotopic as compared with heterotopic GBM22 tumors. Limited distribution to brain tumors may limit the efficacy of MK-1775 in GBM. ©2015 American Association for Cancer Research.

  20. Inhibition of Y-box binding protein-1 slows the growth of glioblastoma multiforme and sensitizes to temozolomide independent O6-methylguanine-DNA methyltransferase.

    PubMed

    Gao, Yuanyuan; Fotovati, Abbas; Lee, Cathy; Wang, Michelle; Cote, Gilbert; Guns, Emma; Toyota, Brian; Faury, Damien; Jabado, Nada; Dunn, Sandra E

    2009-12-01

    Glioblastoma multiforme (GBM) is an aggressive type of brain tumor where <3% of newly diagnosed cases in the patients will survive >5 years. In adults, GBM is the most common type of brain tumor. It is rarer in children, where it constitutes approximately 15% of all brain tumors diagnosed. These tumors are often invasive, making surgical resection difficult. Further, they can be refractory to current therapies such as temozolomide. The current dogma is that temozolomide resistance rests on the expression of O6-methylguanine-DNA methyltransferase (MGMT) because it cleaves methylated DNA adducts formed by the drug. Our laboratory recently reported that another drug resistance gene known as the Y-box binding protein-1 (YB-1) is highly expressed in primary GBM but not in normal brain tissues based on the evaluation of primary tumors. We therefore questioned whether GBM depend on YB-1 for growth and/or response to temozolomide. Herein, we report that YB-1 inhibition reduced tumor cell invasion and growth in monolayer as well as in soft agar. Moreover, blocking this protein ultimately delayed tumor onset in mice. Importantly, inhibiting YB-1 enhanced temozolomide sensitivity in a manner that was independent of MGMT in models of adult and pediatric GBM. In conclusion, inhibiting YB-1 may be a novel way to improve the treatment of GBM.

  1. Disparities in health care determine prognosis in newly diagnosed glioblastoma.

    PubMed

    Chandra, Ankush; Rick, Jonathan W; Dalle Ore, Cecilia; Lau, Darryl; Nguyen, Alan T; Carrera, Diego; Bonte, Alexander; Molinaro, Annette M; Theodosopoulos, Philip V; McDermott, Michael W; Berger, Mitchel S; Aghi, Manish K

    2018-06-01

    OBJECTIVE Glioblastoma (GBM) is an aggressive brain malignancy with a short overall patient survival, yet there remains significant heterogeneity in outcomes. Although access to health care has previously been linked to impact on prognosis in several malignancies, this question remains incompletely answered in GBM. METHODS This study was a retrospective analysis of 354 newly diagnosed patients with GBM who underwent first resection at the authors' institution (2007-2015). RESULTS Of the 354 patients (median age 61 years, and 37.6% were females), 32 (9.0%) had no insurance, whereas 322 (91.0%) had insurance, of whom 131 (40.7%) had Medicare, 45 (14%) had Medicaid, and 146 (45.3%) had private insurance. On average, insured patients survived almost 2-fold longer (p < 0.0001) than those who were uninsured, whereas differences between specific insurance types did not influence survival. The adjusted hazard ratio (HR) for death was higher in uninsured patients (HR 2.27 [95% CI 1.49-3.33], p = 0.0003). Age, mean household income, tumor size at diagnosis, and extent of resection did not differ between insured and uninsured patients, but there was a disparity in primary care physician (PCP) status-none of the uninsured patients had PCPs, whereas 72% of insured patients had PCPs. Postoperative adjuvant treatment rates with temozolomide (TMZ) and radiation therapy (XRT) were significantly less in uninsured (TMZ in 56.3%, XRT in 56.3%) than in insured (TMZ in 75.2%, XRT in 79.2%; p = 0.02 and p = 0.003) patients. Insured patients receiving both agents had better prognosis than uninsured patients receiving the same treatment (9.1 vs 16.34 months; p = 0.025), suggesting that the survival effect in insured patients could only partly be explained by higher treatment rates. Moreover, having a PCP increased survival among the insured cohort (10.7 vs 16.1 months, HR 1.65 [95% CI 1.27-2.15]; p = 0.0001), which could be explained by significant differences in tumor diameter at initial

  2. MGMT methylation: a marker of response to temozolomide in low-grade gliomas.

    PubMed

    Everhard, Sibille; Kaloshi, Gentian; Crinière, Emmanuelle; Benouaich-Amiel, Alexandra; Lejeune, Julie; Marie, Yannick; Sanson, Marc; Kujas, Michèle; Mokhtari, Karima; Hoang-Xuan, Khê; Delattre, Jean-Yves; Thillet, Joëlle

    2006-12-01

    The methylation status of the O6-methylguanine-methyltransferase promoter (MGMTP) was evaluated in 68 low-grade gliomas treated by neoadjuvant temozolomide. Methylated MGMTP was detected in 63 of 68 (92.6 %) patients and was a favorable predictor of progression-free survival as compared with unmethylated MGMTP tumors (p < 0.0001). Assessment of MGMTP status could help identifying low-grade gliomas patients more likely to respond to chemotherapy or to benefit from MGMT depletion strategies.

  3. Phase I/randomized phase II study of afatinib, an irreversible ErbB family blocker, with or without protracted temozolomide in adults with recurrent glioblastoma.

    PubMed

    Reardon, David A; Nabors, Louis B; Mason, Warren P; Perry, James R; Shapiro, William; Kavan, Petr; Mathieu, David; Phuphanich, Surasak; Cseh, Agnieszka; Fu, Yali; Cong, Julie; Wind, Sven; Eisenstat, David D

    2015-03-01

    This phase I/II trial evaluated the maximum tolerated dose (MTD) and pharmacokinetics of afatinib plus temozolomide as well as the efficacy and safety of afatinib as monotherapy (A) or with temozolomide (AT) vs temozolomide monotherapy (T) in patients with recurrent glioblastoma (GBM). Phase I followed a traditional 3 + 3 dose-escalation design to determine MTD. Treatment cohorts were: afatinib 20, 40, and 50 mg/day (plus temozolomide 75 mg/m(2)/day for 21 days per 28-day cycle). In phase II, participants were randomized (stratified by age and KPS) to receive A, T or AT; A was dosed at 40 mg/day and T at 75 mg/m(2) for 21 of 28 days. Primary endpoint was progression-free survival rate at 6 months (PFS-6). Participants were treated until intolerable adverse events (AEs) or disease progression. Recommended phase II dose was 40 mg/day (A) + T based on safety data from phase I (n = 32). Most frequent AEs in phase II (n = 119) were diarrhea (71% [A], 82% [AT]) and rash (71% [A] and 69% [AT]). Afatinib and temozolomide pharmacokinetics were unaffected by coadministration. Independently assessed PFS-6 rate was 3% (A), 10% (AT), and 23% (T). Median PFS was longer in afatinib-treated participants with epidermal growth factor receptor (EFGR) vIII-positive tumors versus EGFRvIII-negative tumors. Best overall response included partial response in 1 (A), 2 (AT), and 4 (T) participants and stable disease in 14 (A), 14 (AT), and 21 (T) participants. Afatinib has a manageable safety profile but limited single-agent activity in unselected recurrent GBM patients. © The Author(s) 2014. Published by Oxford University Press on behalf of the Society for Neuro-Oncology. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  4. B-Raf inhibitor vemurafenib in combination with temozolomide and fotemustine in the killing response of malignant melanoma cells

    PubMed Central

    Krumm, Andrea; Merz, Stephanie; Switzeny, Olivier Jérôme; Christmann, Markus; Loquai, Carmen; Kaina, Bernd

    2014-01-01

    In the treatment of metastatic melanoma, a highly therapy-refractory cancer, alkylating agents are used and, for the subgroup of BRAFV600E cancers, the B-Raf inhibitor vemurafenib. Although vemurafenib is initially beneficial, development of drug resistance occurs leading to tumor relapse, which necessitates the requirement for combined or sequential therapy with other drugs, including genotoxic alkylating agents. This leads to the question whether vemurafenib and alkylating agents act synergistically and whether chronic vemurafenib treatment alters the melanoma cell response to alkylating agents. Here we show that a) BRAFV600E melanoma cells are killed by vemurafenib, driving apoptosis, b) BRAFV600E melanoma cells are neither more resistant nor sensitive to temozolomide/fotemustine than non-mutant cells, c) combined treatment with vemurafenib plus temozolomide or fotemustine has an additive effect on cell kill, d) acquired vemurafenib resistance of BRAFV600E melanoma cells does not affect MGMT, MSH2, MSH6, PMS2 and MLH1, nor does it affect the resistance to temozolomide and fotemustine, e) metastatic melanoma biopsies obtained from patients prior to and after vemurafenib treatment did not show a change in the MGMT promoter methylation status and MGMT expression level. The data suggest that consecutive treatment with vemurafenib and alkylating drugs is a reasonable strategy for metastatic melanoma treatment. PMID:25557167

  5. Significant anti-tumor effect of bevacizumab in treatment of pineal gland glioblastoma multiforme.

    PubMed

    Mansour, Joshua; Fields, Braxton; Macomson, Samuel; Rixe, Olivier

    2014-12-01

    Glioblastoma multiforme (GBM) is the most aggressive subtype of malignant gliomas. Current standard treatment for GBM involves a combination of cytoreduction through surgical resection, followed by radiation with concomitant and adjuvant chemotherapy (temozolomide). The role of bevacizumab in the treatment of GBM continues to be a topic of ongoing research and debate. Despite aggressive treatment, these tumors remain undoubtedly fatal, especially in the elderly. Furthermore, tumors present in the pineal gland are extremely rare, accounting for only 0.1-0.4 % of all adult brain tumors, with this location adding to the complexity of treatment. We present a case of GBM, at the rare location of pineal gland, in an elderly patient who was refractory to initial standard of care treatment with radiation and concomitant and adjuvant temozolomide, but who developed a significant response to anti-angiogenic therapy using bevacizumab.

  6. A new anti-glioma therapy, AG119: pre-clinical assessment in a mouse GL261 glioma model.

    PubMed

    Towner, Rheal A; Ihnat, Michael; Saunders, Debra; Bastian, Anja; Smith, Nataliya; Pavana, Roheeth Kumar; Gangjee, Aleem

    2015-07-17

    High grade gliomas (HGGs; grades III and IV) are the most common primary brain tumors in adults, and their malignant nature ranks them fourth in incidence of cancer death. Standard treatment for glioblastomas (GBM), involving surgical resection followed by radiation and chemotherapy with temozolomide (TMZ) and the anti-angiogenic therapy bevacizumab, have not substantially improved overall survival. New therapeutic agents are desperately needed for this devastating disease. Here we study the potential therapeutic agent AG119 in a pre-clinical model for gliomas. AG119 possesses both anti-angiogenic (RTK inhibition) and antimicrotubule cytotoxic activity in a single molecule. GL261 glioma-bearing mice were either treated with AG119, anti-VEGF (vascular endothelial growth factor) antibody, anti c-Met antibody or TMZ, and compared to untreated tumor-bearing mice. Animal survival was assessed, and tumor volumes and vascular alterations were monitored with morphological magnetic resonance imaging (MRI) and perfusion-weighted imaging, respectively. Percent survival of GL261 HGG-bearing mice treated with AG119 was significantly higher (p < 0.001) compared to untreated tumors. Tumor volumes (21-31 days following intracerebral implantation of GL261 cells) were found to be significantly lower for AG119 (p < 0.001), anti-VEGF (p < 0.05) and anti-c-Met (p < 0.001) antibody treatments, and TMZ-treated (p < 0.05) mice, compared to untreated controls. Perfusion data indicated that both AG119 and TMZ were able to reduce the effect of decreasing perfusion rates significantly (p < 0.05 for both), when compared to untreated tumors. It was also found that IC50 values for AG119 were much lower than those for TMZ in T98G and U251 cells. These data support further exploration of the anticancer activity AG119 in HGG, as this compound was able to increase animal survival and decrease tumor volumes in a mouse GL261 glioma model, and that AG119 is also not subject to methyl guanine

  7. A retrospective pooled analysis of response patterns and risk factors in recurrent malignant glioma patients receiving a nitrosourea-based chemotherapy

    PubMed Central

    2012-01-01

    Background At recurrence the use of nitrosoureas is widely-used as a therapeutic option for glioblastoma (GBM) patients. The efficacy of fotemustine (FTM) has been demonstrated in phase II clinical trials; however, these papers report a wide range of progression-free-survival (PFS-6 m) rates, ranging from 21% to 52%. We investigated whether FTM could have a different response pattern in respect to time to adjuvant temozolomide failure, or whether specific independent risk factors could be responsible for the wide range of response rates observed. Methods Recurrent GBM patients have been treated with fotemustine 75-100 mg/sqm at day 1, 8, 15 and after 4/5 weeks of rest with 100 mg/sqm every 21 days. Patients were stratified in 4 groups according to time to temozolomide failure: before starting (B0), during the first 6 months (B1), after more than 6 months of therapy (B2), and after a treatment-free interval (B3). Primary endpoint was PFS-6 m. A multivariable analysis was performed to identify whether gender, time after radiotherapy, second surgery and number of TMZ cycles could be independent predictors of the clinical benefit to FTM treatment. Results 163 recurrent GBM patients were included in the analysis. PFS-6 m rates for the B0, B1, B2 and B3 groups were 25%, 28%, 31.1% and 43.8%, respectively. The probability of disease control was higher in patients with a longer time after radiotherapy (p = 0.0161) and in those who had undergone a second surgery (p = 0.0306). Conclusions FTM is confirmed as a valuable therapeutic option for patients with recurrent GBM and was active in all study patient groups. Time after the completion of radiotherapy and second surgery are independent treatment-related risk factors that were predictive of clinical benefit. PMID:22583678

  8. Changes in tumor cell heterogeneity after chemotherapy treatment in a xenograft model of glioblastoma.

    PubMed

    Welker, Alessandra M; Jaros, Brian D; An, Min; Beattie, Christine E

    2017-07-25

    Glioblastoma (GBM) is a highly aggressive brain cancer with limited treatments and poor patient survival. GBM tumors are heterogeneous containing a complex mixture of dividing cells, differentiated cells, and cancer stem cells. It is unclear, however, how these different cell populations contribute to tumor growth or whether they exhibit differential responses to chemotherapy. Here we set out to address these questions using a zebrafish xenograft transplant model (Welker et al., 2016). We found that a small population of differentiated vimentin-positive tumor cells, but a majority of Sox2-positive putative cancer stem cells, were dividing during tumor growth. We also observed co-expression of Sox2 and GFAP, another suggested marker of glioma cancer stem cells, indicating that the putative cancer stem cells in GBM9 tumors expressed both of these markers. To determine how these different tumor cell populations responded to chemotherapy, we treated animals with temozolomide (TMZ) and assessed these cell populations immediately after treatment and 5 and 10days after treatment cessation. As expected we found a significant decrease in dividing cells after treatment. We also found a significant decrease in vimentin-positive cells, but not in Sox2 or GFAP-positive cells. However, the Sox2-positive cells significantly increased 5days after TMZ treatment. These data support that putative glioma cancer stem cells are more resistant to TMZ treatment and may contribute to tumor regrowth after chemotherapy. Copyright © 2017 IBRO. Published by Elsevier Ltd. All rights reserved.

  9. Feasibility of Using Bevacizumab With Radiation Therapy and Temozolomide in Newly Diagnosed High-Grade Glioma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Narayana, Ashwatha; Golfinos, John G.; Fischer, Ingeborg

    2008-10-01

    Introduction: Bevacizumab, a monoclonal antibody against vascular endothelial growth factor (VEGF), has shown promise in the treatment of patients with recurrent high-grade glioma. The purpose of this study is to test the feasibility of using bevacizumab with chemoradiation in the primary management of high-grade glioma. Methods and Materials: Fifteen patients with high-grade glioma were treated with involved field radiation therapy to a dose of 59.4 Gy at 1.8 Gy/fraction with bevacizumab 10 mg/kg on Days 14 and 28 and temozolomide 75 mg/m{sup 2}. Subsequently, bevacizumab 10 mg/kg was continued every 2 weeks with temozolomide 150 mg/m{sup 2} for 12 months.more » Changes in relative cerebral blood volume, perfusion-permeability index, and tumor volume measurement were measured to assess the therapeutic response. Immunohistochemistry for phosphorylated VEGF receptor 2 (pVEGFR2) was performed. Results: Thirteen patients (86.6%) completed the planned bevacizumab and chemoradiation therapy. Four Grade III/IV nonhematologic toxicities were seen. Radiographic responses were noted in 13 of 14 assessable patients (92.8%). The pVEGFR2 staining was seen in 7 of 8 patients (87.5%) at the time of initial diagnosis. Six patients have experienced relapse, 3 at the primary site and 3 as diffuse disease. One patient showed loss of pVEGFR2 expression at relapse. One-year progression-free survival and overall survival rates were 59.3% and 86.7%, respectively. Conclusion: Use of antiangiogenic therapy with radiation and temozolomide in the primary management of high-grade glioma is feasible. Perfusion imaging with relative cerebral blood volume, perfusion-permeability index, and pVEGFR2 expression may be used as a potential predictor of therapeutic response. Toxicities and patterns of relapse need to be monitored closely.« less

  10. Combination therapy with thalidomide, temozolomide and tamoxifen improves quality of life in patients with malignant astrocytomas.

    PubMed

    Rabbani, Golam; Benzil, Deborah; Wallam, Mohammed N; Chen, Benjamin; Hoang, Albert; Kancherla, Ram; Ahmed, Tauseef

    2007-01-01

    Patients with malignant astrocytomas (MA) have a poor survival rate despite surgery, radiation therapy (RT), and chemotherapy (CT). Patients deteriorate rapidly with decreasing quality of life (QoL). The purpose of the current study was to determine the safety and efficacy, including QoL evaluation, of oral therapy with temozolomide, thalidomide, and tamoxifen (TTT) in patients with MA in an Institutional Review Board (IRB)-approved, prospective trial. Twenty-three patients met the eligibility requirements and were enrolled after informed consent was signed. After baseline testing, patients received temozolomide 75 mg/m2 orally (p.o.) for the first 21 days, thalidomide 100 mg p.o. daily, and tamoxifen 100 mg p.o. daily for each 28-day cycle. Treatment continued until disease progression. Primary outcome measurements were survival (Kaplan-Meier analysis), response to treatment, toxicity (National Cancer Institute's Common Toxicity Criterion) and QoL evaluation. The Kaplan-Meier analysis showed that survival time from diagnosis was 78.4+/-15 weeks with a median survival of 54.6 weeks and from date of enrollment was 46.1+/-10 weeks with median survival of 33.3 weeks. Toxicity was limited to 5 patients with deep venous thrombosis (DVT), 2 of whom had pulmonary emboli (PE). All recovered with anticoagulation therapy and none suffered long term sequelae. Several QoL measures, including the global health status scores (p=0.003), were significantly improved after 2 cycles of treatment compared to the baseline assessment. The combination of temozolomide, thalidomide and tamoxifen administered as outpatient oral therapy resulted in significantly improved QoL for patients with MA without significant toxicity.

  11. Prognostic and predictive markers in recurrent high grade glioma; results from the BR12 randomised trial.

    PubMed

    Collins, Vincent Peter; Ichimura, Koichi; Di, Ying; Pearson, Danita; Chan, Ray; Thompson, Lindsay C; Gabe, Rhian; Brada, Michael; Stenning, Sally P

    2014-06-20

    We evaluated the prognostic and predictive value of a range of molecular changes in the setting of a randomised trial comparing standard PCV (procarbazine, CCNU (1-(2-chloroethyl)-3-cyclohexyl-1-nitrosourea) and vincristine) chemotherapy with the standard temozolomide (TMZ) 5-day (200 mg/m2/day) schedule and a 21-day (100 mg/m2/day) schedule in chemo-naïve, high-grade glioma (non-oligodendroglial tumours; WHO (World Health Organisation) grades III and IV) patients at first progression following radiotherapy.354 samples (79.2%) from the first operation of the 447 randomised patients provided enough tumour DNA for some or all parts of the study. Genome-wide array comparative genomic hybridisation (aCGH), mutation analysis of IDH1/2 and TP53 and methylation analyses of the MGMT CpG-island was done.84% of grade III tumours and 17% of grade IV had IDH1 or IDH2 mutations that conferred a better prognosis in both; MGMT methylation (defined as average value across 16 CpGs ≥ 10%) occurred in 75% of tumours and was also associated with improved survival. Both were of independent prognostic value after accounting for clinical factors and tumour grade. None of the molecular changes investigated gave clear evidence of a predictive benefit of TMZ over PCV or 21-day TMZ over 5-day TMZ although power was limited and a role for MGMT methylation could not be ruled out. Loss of 1p and 19q was seen in only 4 patients although hemizygous loss of 1p36 occurred in 20%.The findings support reports that IDH1/2 mutations and MGMT methylation can be used in addition to tumour grade and clinical factors to predict survival in patients with recurrent high grade gliomas when treated with any of the therapy regimes used.

  12. Valproic Acid Use During Radiation Therapy for Glioblastoma Associated With Improved Survival

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barker, Christopher A., E-mail: barkerc@mskcc.org; Bishop, Andrew J.; Chang, Maria

    2013-07-01

    Purpose: Valproic acid (VA) is an antiepileptic drug (AED) and histone deacetylase (HDAC) inhibitor taken by patients with glioblastoma (GB) to manage seizures, and it can modulate the biologic effects of radiation therapy (RT). We investigated whether VA use during RT for GB was associated with overall survival (OS). Methods and Materials: Medical records of 544 adults with GB were retrospectively reviewed. Analyses were performed to determine the association of Radiation Therapy Oncology Group recursive partitioning analysis (RTOG RPA) class, seizure history, and concurrent temozolomide (TMZ) and AED use during RT with OS. Results: Seizures before the end of RTmore » were noted in 217 (40%) patients, and 403 (74%) were taking an AED during RT; 29 (7%) were taking VA. Median OS in patients taking VA was 16.9 months (vs 13.6 months taking another AED, P=.16). Among patients taking an AED during RT, OS was associated with VA (P=.047; hazard ratio [HR], 0.67; 95% confidence interval [CI], 0.27-1.07), and RTOG RPA class (P<.0001; HR, 1.49; 95% CI, 1.37-1.61). Of the 5 most common AEDs, only VA was associated with OS. Median OS of patients receiving VA and TMZ during RT was 23.9 months (vs 15.2 months for patients taking another AED, P=.26). When the analysis was restricted to patients who received concurrent TMZ, VA use was marginally associated with OS (P=.057; HR, 0.54; 95% CI, −0.09 to 1.17), independently of RTOG RPA class and seizure history. Conclusions: VA use during RT for GB was associated with improved OS, independently of RTOG RPA, seizure history, and concurrent TMZ use. Further studies of treatment that combines HDAC inhibitors and RT are warranted.« less

  13. DNA Polymerase β as a Novel Target for Chemotherapeutic Intervention of Colorectal Cancer

    PubMed Central

    Jaiswal, Aruna S.; Banerjee, Sanjeev; Aneja, Ritu; Sarkar, Fazlul H.; Ostrov, David A.; Narayan, Satya

    2011-01-01

    Chemoprevention presents a major strategy for the medical management of colorectal cancer. Most drugs used for colorectal cancer therapy induce DNA-alkylation damage, which is primarily repaired by the base excision repair (BER) pathway. Thus, blockade of BER pathway is an attractive option to inhibit the spread of colorectal cancer. Using an in silico approach, we performed a structure-based screen by docking small-molecules onto DNA polymerase β (Pol-β) and identified a potent anti-Pol-β compound, NSC-124854. Our goal was to examine whether NSC-124854 could enhance the therapeutic efficacy of DNA-alkylating agent, Temozolomide (TMZ), by blocking BER. First, we determined the specificity of NSC-124854 for Pol-β by examining in vitro activities of APE1, Fen1, DNA ligase I, and Pol-β-directed single nucleotide (SN)- and long-patch (LP)-BER. Second, we investigated the effect of NSC-124854 on the efficacy of TMZ to inhibit the growth of mismatch repair (MMR)-deficient and MMR-proficient colon cancer cell lines using in vitro clonogenic assays. Third, we explored the effect of NSC-124854 on TMZ-induced in vivo tumor growth inhibition of MMR-deficient and MMR-proficient colonic xenografts implanted in female homozygous SCID mice. Our data showed that NSC-124854 has high specificity to Pol-β and blocked Pol-β-directed SN- and LP-BER activities in in vitro reconstituted system. Furthermore, NSC-124854 effectively induced the sensitivity of TMZ to MMR-deficient and MMR-proficient colon cancer cells both in vitro cell culture and in vivo xenograft models. Our findings suggest a potential novel strategy for the development of highly specific structure-based inhibitor for the prevention of colonic tumor progression. PMID:21311763

  14. Carbohydrate-based vaccine adjuvants - discovery and development.

    PubMed

    Hu, Jing; Qiu, Liying; Wang, Xiaoli; Zou, Xiaopeng; Lu, Mengji; Yin, Jian

    2015-10-01

    The addition of a suitable adjuvant to a vaccine can generate significant effective adaptive immune responses. There is an urgent need for the development of novel po7tent and safe adjuvants for human vaccines. Carbohydrate molecules are promising adjuvants for human vaccines due to their high biocompatibility and good tolerability in vivo. The present review covers a few promising carbohydrate-based adjuvants, lipopolysaccharide, trehalose-6,6'-dibehenate, QS-21 and inulin as examples, which have been extensively studied in human vaccines in a number of preclinical and clinical studies. The authors discuss the current status, applications and strategies of development of each adjuvant and different adjuvant formulation systems. This information gives insight regarding the exciting prospect in the field of carbohydrate-based adjuvant research. Carbohydrate-based adjuvants are promising candidates as an alternative to the Alum salts for human vaccines development. Furthermore, combining two or more adjuvants in one formulation is one of the effective strategies in adjuvant development. However, further research efforts are needed to study and develop novel adjuvants systems, which can be more stable, potent and safe. The development of synthetic carbohydrate chemistry can improve the study of carbohydrate-based adjuvants.

  15. Promoting oligodendroglial-oriented differentiation of glioma stem cell: a repurposing of quetiapine for the treatment of malignant glioma.

    PubMed

    Wang, Yun; Huang, Nanxin; Li, Hongli; Liu, Shubao; Chen, Xianjun; Yu, Shichang; Wu, Nan; Bian, Xiu-Wu; Shen, Hai-Ying; Li, Chengren; Xiao, Lan

    2017-06-06

    As a major contributor of chemotherapy resistance and malignant recurrence, glioma stem cells (GSCs) have been proposed as a target for the treatment of gliomas. To evaluate the therapeutic potential of quetiapine (QUE), an atypical antipsychotic, for the treatment of malignant glioma, we established mouse models with GSCs-initiated orthotopic xenograft gliomas and subcutaneous xenograft tumors, using GSCs purified from glioblastoma cell line GL261. We investigated antitumor effects of QUE on xenograft gliomas and its underlying mechanisms on GSCs. Our data demonstrated that (i) QUE monotherapy can effectively suppress GSCs-initiated tumor growth; (ii) QUE has synergistic effects with temozolomide (TMZ) on glioma suppression, and importantly, QUE can effectively suppress TMZ-resistant (or -escaped) tumors generated from GSCs; (iii) mechanistically, the anti-glioma effect of QUE was due to its actions of promoting the differentiation of GSCs into oligodendrocyte (OL)-like cells and its inhibitory effect on the Wnt/β-catenin signaling pathway. Together, our findings suggest an effective approach for anti-gliomagenic treatment via targeting OL-oriented differentiation of GSCs. This also opens a door for repurposing QUE, an FDA approved drug, for the treatment of malignant glioma.

  16. Tacrine derivatives stimulate human glioma SF295 cell death and alter important proteins related to disease development: An old drug for new targets.

    PubMed

    Costa Nunes, Fernanda; Silva, Letícia Barros; Winter, Evelyn; Silva, Adny Henrique; de Melo, Leônidas João; Rode, Michele; Martins, Marcos Antônio Pinto; Zanatta, Nilo; Feitosa, Sarah Coelho; Bonacorso, Hélio Gauze; Creczynski-Pasa, Tânia Beatriz

    2018-07-01

    Glioblastoma is the most common and aggressive glioma, characterized by brain invasion capability. Being very resistant to the current therapies, since even under treatment, surgery, and chemotherapy with temozolomide (TMZ), patients achieve a median survival of one year. In the search for more effective therapies, new molecules have been designed. For nervous system cancers, molecules able to cross the blood-brain barrier are handled with priority. Accordingly, tacrine was chosen for this study and the inclusion of spiro-heterocyclic rings was done in its structure resulting in new compounds. Cytotoxic activity of tacrine derivatives was assayed using glioblastoma cell line (SF295) as well as analyzing cell death mechanism. Increased caspases activities were observed, confirming apoptosis as cell death type. Some derivatives also increased reactive oxygen species formation and decreased the mitochondrial membrane potential. Moreover, compounds acted on several glioblastoma-related proteins including p53, HLA-DR, beta-catenin, Iba-1, MAP2c, Olig-2, and IDH1. Therefore, tacrine derivatives presented promising results for the development of new glioblastoma therapy, particularly to treat those patients resistant to TMZ. Copyright © 2018 Elsevier B.V. All rights reserved.

  17. Promoting oligodendroglial-oriented differentiation of glioma stem cell: a repurposing of quetiapine for the treatment of malignant glioma

    PubMed Central

    Li, Hongli; Liu, Shubao; Chen, Xianjun; Yu, Shichang; Wu, Nan; Bian, Xiu-Wu; Li, Chengren

    2017-01-01

    As a major contributor of chemotherapy resistance and malignant recurrence, glioma stem cells (GSCs) have been proposed as a target for the treatment of gliomas. To evaluate the therapeutic potential of quetiapine (QUE), an atypical antipsychotic, for the treatment of malignant glioma, we established mouse models with GSCs-initiated orthotopic xenograft gliomas and subcutaneous xenograft tumors, using GSCs purified from glioblastoma cell line GL261. We investigated antitumor effects of QUE on xenograft gliomas and its underlying mechanisms on GSCs. Our data demonstrated that (i) QUE monotherapy can effectively suppress GSCs-initiated tumor growth; (ii) QUE has synergistic effects with temozolomide (TMZ) on glioma suppression, and importantly, QUE can effectively suppress TMZ-resistant (or -escaped) tumors generated from GSCs; (iii) mechanistically, the anti-glioma effect of QUE was due to its actions of promoting the differentiation of GSCs into oligodendrocyte (OL)-like cells and its inhibitory effect on the Wnt/β-catenin signaling pathway. Together, our findings suggest an effective approach for anti-gliomagenic treatment via targeting OL-oriented differentiation of GSCs. This also opens a door for repurposing QUE, an FDA approved drug, for the treatment of malignant glioma. PMID:28415586

  18. Phase I Trial Using Proteasome Inhibitor Bortezomib and Concurrent Temozolomide and Radiotherapy for Central Nervous System Malignancies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kubicek, Gregory J.; Werner-Wasik, Maria; Machtay, Mitchell

    Purpose: To evaluate the toxicity and response rate of bortezomib with concurrent radiotherapy and temozolomide in the treatment of patients with central nervous system malignancies. Patients and Methods: This open-label, dose-escalation, Phase I clinical study evaluated the safety of three dose levels of intravenously administered bortezomib (0.7, 1.0, and 1.3 mg/m{sup 2}/dose) on Days 1, 4, 8, and 11 of a 21-day cycle, in addition to concurrent radiotherapy and temozolomide at a daily dose of 75 mg/m{sup 2} starting on Day 1. The primary endpoint was dose-limiting toxicity, defined as any Grade 4-5 toxicity or Grade 3 toxicity directly attributablemore » to protocol treatment, requiring hospitalization and/or radiotherapy interruption. The secondary endpoints included feasibility, non-dose-limiting toxicity, and treatment response. Results: A total of 27 patients were enrolled, 23 of whom had high-grade glioma (10 recurrent and 13 newly diagnosed). No dose-limiting toxicities were noted in any dose group, including the highest (1.3 mg/m{sup 2}/dose). The most frequent toxicities were Grade 1 and 2 stomatitis, erythema, and alopecia. All 27 patients were evaluable for response. At a median follow-up of 15.0 months, 9 patients were still alive, with a median survival of 17.4 months for all patients and 15.0 months for patients with high-grade glioma. Conclusion: Bortezomib administered at its typical 'systemic' dose (1.3 mg/m{sup 2}) is well tolerated and safe combined with temozolomide and radiotherapy when used in the treatment of central nervous system malignancies. A Phase II study to characterize efficacy is warranted.« less

  19. Silencing of Hsp27 and Hsp72 in glioma cells as a tool for programmed cell death induction upon temozolomide and quercetin treatment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jakubowicz-Gil, Joanna, E-mail: jjgil@poczta.umcs.lublin.pl; Langner, Ewa; Bądziul, Dorota

    The aim of the present study was to investigate whether silencing of Hsp27 or Hsp72 expression in glioblastoma multiforme T98G and anaplastic astrocytoma MOGGCCM cells increases their sensitivity to programmed cell death induction upon temozolomide and/or quercetin treatment. Transfection with specific siRNA was performed for the Hsp gene silencing. As revealed by microscopic observation and flow cytometry, the inhibition of Hsp expression was correlated with severe apoptosis induction upon the drug treatment studied. No signs of autophagy were detected. This was correlated with a decreased mitochondrial membrane potential, increased level of cytochrome c in the cytoplasm, and activation of caspasemore » 3 and caspase 9. All these results suggest that the apoptotic signal was mediated by an internal pathway. Additionally, in a large percentage of cells treated with temozolomide, with or without quercetin, granules within the ER system were found, which was accompanied by an increased level of caspase 12 expression. This might be correlated with ER stress. Quercetin and temozolomide also changed the shape of nuclei from circular to “croissant like” in both transfected cell lines. Our results indicate that blocking of Hsp27 and Hsp72 expression makes T98G cells and MOGGCCM cells extremely vulnerable to apoptosis induction upon temozolomide and quercetin treatment and that programmed cell death is initiated by an internal signal. - Highlights: • Hsps gene silencing induced severe apoptosis upon temozolomide–quercetin treatment • Apoptosis in transfected glioma cells was initiated by internal signal • Programmed cell death was preceded by ER stress • Temozolomide–quercetin treatment changed nuclei shape in transfected glioma cells.« less

  20. Vaxjo: a web-based vaccine adjuvant database and its application for analysis of vaccine adjuvants and their uses in vaccine development.

    PubMed

    Sayers, Samantha; Ulysse, Guerlain; Xiang, Zuoshuang; He, Yongqun

    2012-01-01

    Vaccine adjuvants are compounds that enhance host immune responses to co-administered antigens in vaccines. Vaxjo is a web-based central database and analysis system that curates, stores, and analyzes vaccine adjuvants and their usages in vaccine development. Basic information of a vaccine adjuvant stored in Vaxjo includes adjuvant name, components, structure, appearance, storage, preparation, function, safety, and vaccines that use this adjuvant. Reliable references are curated and cited. Bioinformatics scripts are developed and used to link vaccine adjuvants to different adjuvanted vaccines stored in the general VIOLIN vaccine database. Presently, 103 vaccine adjuvants have been curated in Vaxjo. Among these adjuvants, 98 have been used in 384 vaccines stored in VIOLIN against over 81 pathogens, cancers, or allergies. All these vaccine adjuvants are categorized and analyzed based on adjuvant types, pathogens used, and vaccine types. As a use case study of vaccine adjuvants in infectious disease vaccines, the adjuvants used in Brucella vaccines are specifically analyzed. A user-friendly web query and visualization interface is developed for interactive vaccine adjuvant search. To support data exchange, the information of vaccine adjuvants is stored in the Vaccine Ontology (VO) in the Web Ontology Language (OWL) format.

  1. Vaxjo: A Web-Based Vaccine Adjuvant Database and Its Application for Analysis of Vaccine Adjuvants and Their Uses in Vaccine Development

    PubMed Central

    Sayers, Samantha; Ulysse, Guerlain; Xiang, Zuoshuang; He, Yongqun

    2012-01-01

    Vaccine adjuvants are compounds that enhance host immune responses to co-administered antigens in vaccines. Vaxjo is a web-based central database and analysis system that curates, stores, and analyzes vaccine adjuvants and their usages in vaccine development. Basic information of a vaccine adjuvant stored in Vaxjo includes adjuvant name, components, structure, appearance, storage, preparation, function, safety, and vaccines that use this adjuvant. Reliable references are curated and cited. Bioinformatics scripts are developed and used to link vaccine adjuvants to different adjuvanted vaccines stored in the general VIOLIN vaccine database. Presently, 103 vaccine adjuvants have been curated in Vaxjo. Among these adjuvants, 98 have been used in 384 vaccines stored in VIOLIN against over 81 pathogens, cancers, or allergies. All these vaccine adjuvants are categorized and analyzed based on adjuvant types, pathogens used, and vaccine types. As a use case study of vaccine adjuvants in infectious disease vaccines, the adjuvants used in Brucella vaccines are specifically analyzed. A user-friendly web query and visualization interface is developed for interactive vaccine adjuvant search. To support data exchange, the information of vaccine adjuvants is stored in the Vaccine Ontology (VO) in the Web Ontology Language (OWL) format. PMID:22505817

  2. Modern Vaccines/Adjuvants Formulation Session 6: Vaccine &Adjuvant Formulation & Production 15-17 May 2013, Lausanne, Switzerland.

    PubMed

    Fox, Christopher B

    2013-09-01

    The Modern Vaccines/Adjuvants Formulation meeting aims to fill a critical gap in current vaccine development efforts by bringing together formulation scientists and immunologists to emphasize the importance of rational formulation design in order to optimize vaccine and adjuvant bioactivity, safety, and manufacturability. Session 6 on Vaccine and Adjuvant Formulation and Production provided three examples of this theme, with speakers emphasizing the need for extensive physicochemical characterization of adjuvant-antigen interactions, the rational formulation design of a CD8+ T cell-inducing adjuvant based on immunological principles, and the development and production of a rabies vaccine by a developing country manufacturer. Throughout the session, the practical importance of sound formulation and manufacturing design accompanied by analytical characterization was highlighted.

  3. Biotechnology approaches to produce potent, self-adjuvanting antigen-adjuvant fusion protein subunit vaccines.

    PubMed

    Moyle, Peter Michael

    Traditional vaccination approaches (e.g. live attenuated or killed microorganisms) are among the most effective means to prevent the spread of infectious diseases. These approaches, nevertheless, have failed to yield successful vaccines against many important pathogens. To overcome this problem, methods have been developed to identify microbial components, against which protective immune responses can be elicited. Subunit antigens identified by these approaches enable the production of defined vaccines, with improved safety profiles. However, they are generally poorly immunogenic, necessitating their administration with potent immunostimulatory adjuvants. Since few safe and effective adjuvants are currently used in vaccines approved for human use, with those available displaying poor potency, or an inability to stimulate the types of immune responses required for vaccines against specific diseases (e.g. cytotoxic lymphocytes (CTLs) to treat cancers), the development of new vaccines will be aided by the availability of characterized platforms of new adjuvants, improving our capacity to rationally select adjuvants for different applications. One such approach, involves the addition of microbial components (pathogen-associated molecular patterns; PAMPs), that can stimulate strong immune responses, into subunit vaccine formulations. The conjugation of PAMPs to subunit antigens provides a means to greatly increase vaccine potency, by targeting immunostimulation and antigen to the same antigen presenting cell. Thus, methods that enable the efficient, and inexpensive production of antigen-adjuvant fusions represent an exciting mean to improve immunity towards subunit antigens. Herein we review four protein-based adjuvants (flagellin, bacterial lipoproteins, the extra domain A of fibronectin (EDA), and heat shock proteins (Hsps)), which can be genetically fused to antigens to enable recombinant production of antigen-adjuvant fusion proteins, with a focus on their

  4. [Adjuvants in modern medicine and veterinary].

    PubMed

    Kozlov, V G; Ozherelkov, S V; Sanin, A V; Kozhevnikova, T N

    2014-01-01

    The review is dedicated to immunologic adjuvants--various natural and synthetics substances that are added to vaccines for stimulation of specific immune response, but they do not induce specific response themselves. Critically important is the selection of the correct adjuvants, for which mechanisms of effect on immune system are studied the most. The majority of these mechanisms as well as physical-chemical and biological features of modern adjuvants are analyzed in the review. The problem of safety of adjuvants, types of immune response induced by adjuvants of various nature, excipients that are being verified or already in use in modern medicine and veterinary are also examined.

  5. Ficus carica latex prevents invasion through induction of let-7d expression in GBM cell lines.

    PubMed

    Tezcan, Gulcin; Tunca, Berrin; Bekar, Ahmet; Yalcin, Murat; Sahin, Saliha; Budak, Ferah; Cecener, Gulsah; Egeli, Unal; Demir, Cevdet; Guvenc, Gokcen; Yilmaz, Gozde; Erkan, Leman Gizem; Malyer, Hulusi; Taskapilioglu, Mevlut Ozgur; Evrensel, Turkkan; Bilir, Ayhan

    2015-03-01

    Glioblastoma multiforme (GBM) is one of the deadliest human malignancies. A cure for GBM remains elusive, and the overall survival time is less than 1 year. Thus, the development of more efficient therapeutic approaches for the treatment of these patients is required. Induction of tumor cell death by certain phytochemicals derived from medicinal herbs and dietary plants has become a new frontier for cancer therapy research. Although the cancer suppressive effect of Ficus carica (fig) latex (FCL) has been determined in a few cancer types, the effect of this latex on GBM tumors has not been investigated. Therefore, in the current study, the anti-proliferative activity of FCL and the effect of the FCL-temozolomide (TMZ) combination were tested in the T98G, U-138 MG, and U-87 MG GBM cell lines using the WST-1 assay. The mechanism of cell death was analyzed using Annexin-V/FITC and TUNEL assays, and the effect of FCL on invasion was tested using the chick chorioallantoic membrane assay. To determine the effect of FCL on GBM progression, the expression levels of 40 GBM associated miRNAs were analyzed in T98G cells using RT-qPCR. According to the obtained data, FCL causes cell death in GBM cells with different responses to TMZ, and this effect is synergistically increased in combination with TMZ. In addition, the current study is the first to demonstrate the effect of FCL on modulation of let-7d expression, which may be an important underlying mechanism of the anti-invasive effect of this extract.

  6. Laser vaccine adjuvants

    PubMed Central

    Kashiwagi, Satoshi; Brauns, Timothy; Gelfand, Jeffrey; Poznansky, Mark C

    2014-01-01

    Immunologic adjuvants are essential for current vaccines to maximize their efficacy. Unfortunately, few have been found to be sufficiently effective and safe for regulatory authorities to permit their use in vaccines for humans and none have been approved for use with intradermal vaccines. The development of new adjuvants with the potential to be both efficacious and safe constitutes a significant need in modern vaccine practice. The use of non-damaging laser light represents a markedly different approach to enhancing immune responses to a vaccine antigen, particularly with intradermal vaccination. This approach, which was initially explored in Russia and further developed in the US, appears to significantly improve responses to both prophylactic and therapeutic vaccines administered to the laser-exposed tissue, particularly the skin. Although different types of lasers have been used for this purpose and the precise molecular mechanism(s) of action remain unknown, several approaches appear to modulate dendritic cell trafficking and/or activation at the irradiation site via the release of specific signaling molecules from epithelial cells. The most recent study, performed by the authors of this review, utilized a continuous wave near-infrared laser that may open the path for the development of a safe, effective, low-cost, simple-to-use laser vaccine adjuvant that could be used in lieu of conventional adjuvants, particularly with intradermal vaccines. In this review, we summarize the initial Russian studies that have given rise to this approach and comment upon recent advances in the use of non-tissue damaging lasers as novel physical adjuvants for vaccines. PMID:25424797

  7. Modes of Action for Mucosal Vaccine Adjuvants.

    PubMed

    Aoshi, Taiki

    Vaccine adjuvants induce innate immune responses and the addition of adjuvants to the vaccine helps to induce protective immunity in the host. Vaccines utilizing live attenuated or killed whole pathogens usually contain endogenous adjuvants, such as bacterial cell wall products and their genomic nucleic acids, which act as pathogen-associated molecular patterns and are sufficient to induce adaptive immune responses. However, purified protein- or antigen-based vaccines, including component or recombinant vaccines, usually lose these endogenous innate immune stimulators, so the addition of an exogenous adjuvant is essential for the success of these vaccine types. Although this adjuvant requirement is mostly the same for parental and mucosal vaccines, the development of mucosal vaccine adjuvants requires the specialized consideration of adapting the adjuvants to characteristic mucosal conditions. This review provides a brief overview of mucosa-associated immune response induction processes, such as antigen uptake and dendritic cell subset-dependent antigen presentation. It also highlights several mucosal vaccine adjuvants from recent reports, particularly focusing on their modes of action.

  8. Adjuvant effects of saponins on animal immune responses*

    PubMed Central

    Rajput, Zahid Iqbal; Hu, Song-hua; Xiao, Chen-wen; Arijo, Abdullah G.

    2007-01-01

    Vaccines require optimal adjuvants including immunopotentiator and delivery systems to offer long term protection from infectious diseases in animals and man. Initially it was believed that adjuvants are responsible for promoting strong and sustainable antibody responses. Now it has been shown that adjuvants influence the isotype and avidity of antibody and also affect the properties of cell-mediated immunity. Mostly oil emulsions, lipopolysaccharides, polymers, saponins, liposomes, cytokines, ISCOMs (immunostimulating complexes), Freund’s complete adjuvant, Freund’s incomplete adjuvant, alums, bacterial toxins etc., are common adjuvants under investigation. Saponin based adjuvants have the ability to stimulate the cell mediated immune system as well as to enhance antibody production and have the advantage that only a low dose is needed for adjuvant activity. In the present study the importance of adjuvants, their role and the effect of saponin in immune system is reviewed. PMID:17323426

  9. Quantum chemical calculations and analysis of FTIR, FT-Raman and UV-Vis spectra of temozolomide molecule

    NASA Astrophysics Data System (ADS)

    Bhat, Sheeraz Ahmad; Ahmad, Shabbir

    2015-11-01

    A combined experimental and theoretical study of the structure, vibrational and electronic spectra of temozolomide molecule, which is largely used in the treatment of brain tumours, is presented. FTIR (4000-400 cm-1) and FT-Raman spectra (4000‒50 cm-1) have been recorded and analysed using anharmonic frequency calculations using VPT2, VSCF and CC-VSCF levels of theory within B3LYP/6-311++G(d,p) framework. Anharmonic methods give accurate frequencies of fundamental modes, overtones as well as Fermi resonances and account for coupling of different modes. The anharmonic frequencies calculated using VPT2 and CC-VSCF methods show better agreement with the experimental data. Harmonic frequencies including solvent effects are also computed using IEF-PCM model. The magnitudes of coupling between pair of modes have been calculated using coupling integral based on 2MR-QFF approximation. Intermolecular interactions are discussed for three possible dimers of temozolomide. UV-Vis spectrum, examined in ethanol solvent, is compared with the calculated spectrum at TD-DFT/6-311++G(d,p) level of theory. The electronic properties, such as excitation energy, frontier molecular orbital energies and the assignments of the absorption bands are also discussed.

  10. Modes of Action for Mucosal Vaccine Adjuvants

    PubMed Central

    2017-01-01

    Abstract Vaccine adjuvants induce innate immune responses and the addition of adjuvants to the vaccine helps to induce protective immunity in the host. Vaccines utilizing live attenuated or killed whole pathogens usually contain endogenous adjuvants, such as bacterial cell wall products and their genomic nucleic acids, which act as pathogen-associated molecular patterns and are sufficient to induce adaptive immune responses. However, purified protein- or antigen-based vaccines, including component or recombinant vaccines, usually lose these endogenous innate immune stimulators, so the addition of an exogenous adjuvant is essential for the success of these vaccine types. Although this adjuvant requirement is mostly the same for parental and mucosal vaccines, the development of mucosal vaccine adjuvants requires the specialized consideration of adapting the adjuvants to characteristic mucosal conditions. This review provides a brief overview of mucosa-associated immune response induction processes, such as antigen uptake and dendritic cell subset-dependent antigen presentation. It also highlights several mucosal vaccine adjuvants from recent reports, particularly focusing on their modes of action. PMID:28436755

  11. Vaccines, adjuvants and autoimmunity.

    PubMed

    Guimarães, Luísa Eça; Baker, Britain; Perricone, Carlo; Shoenfeld, Yehuda

    2015-10-01

    Vaccines and autoimmunity are linked fields. Vaccine efficacy is based on whether host immune response against an antigen can elicit a memory T-cell response over time. Although the described side effects thus far have been mostly transient and acute, vaccines are able to elicit the immune system towards an autoimmune reaction. The diagnosis of a definite autoimmune disease and the occurrence of fatal outcome post-vaccination have been less frequently reported. Since vaccines are given to previously healthy hosts, who may have never developed the disease had they not been immunized, adverse events should be carefully accessed and evaluated even if they represent a limited number of occurrences. In this review of the literature, there is evidence of vaccine-induced autoimmunity and adjuvant-induced autoimmunity in both experimental models as well as human patients. Adjuvants and infectious agents may exert their immune-enhancing effects through various functional activities, encompassed by the adjuvant effect. These mechanisms are shared by different conditions triggered by adjuvants leading to the autoimmune/inflammatory syndrome induced by adjuvants (ASIA syndrome). In conclusion, there are several case reports of autoimmune diseases following vaccines, however, due to the limited number of cases, the different classifications of symptoms and the long latency period of the diseases, every attempt for an epidemiological study has so far failed to deliver a connection. Despite this, efforts to unveil the connection between the triggering of the immune system by adjuvants and the development of autoimmune conditions should be undertaken. Vaccinomics is a field that may bring to light novel customized, personalized treatment approaches in the future. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. QS-21: a potent vaccine adjuvant

    USDA-ARS?s Scientific Manuscript database

    QS-21 is an potent adjuvant derived from the bark of a Chilean tree, Quillaja saponaria. One of the advantages of this adjuvant is that it promotes a balanced humoral and cell-mediaed immune response and can be widely applicable to a variety of vaccines. This adjuvant has used for some veterinary va...

  13. CoVaccine HT™ adjuvant is superior to Freund's adjuvants in eliciting antibodies against the endogenous alarmin HMGB1.

    PubMed

    Lakhan, Nerissa; Stevens, Natalie E; Diener, Kerrilyn R; Hayball, John D

    2016-12-01

    Adjuvants are used to enhance the immune response against specific antigens for the production of antibodies, with the choice of adjuvant most critical for poorly immunogenic and self-antigens. This study quantitatively and qualitatively evaluated CoVaccine HT™ and Freund's adjuvants for eliciting therapeutic ovine polyclonal antibodies targeting the endogenous alarmin, high mobility group box-1 (HMGB1). Sheep were immunised with HMGB1 protein in CoVaccine HT™ or Freund's adjuvants, with injection site reactions and antibody titres periodically assessed. The binding affinity of antibodies for HMGB1 and their neutralisation activity was determined in-vitro, with in vivo activity confirmed using a murine model of endotoxemia. Results indicated that CoVaccine HT™ elicited significantly higher antibody tires with stronger affinity and more functional potency than antibodies induced with Freund's adjuvants. These studies provide evidence that CoVaccine HT™ is superior to Freund's adjuvants for the production of antibodies to antigens with low immunogenicity and supports the use of this alternative adjuvant for clinical and experimental use antibodies. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Treatment of NRAS-mutated advanced or metastatic melanoma: rationale, current trials and evidence to date

    PubMed Central

    Boespflug, Amélie; Caramel, Julie; Dalle, Stephane; Thomas, Luc

    2017-01-01

    The disease course of BRAF (v-raf murine sarcoma viral oncogene homolog B1)-mutant melanoma has been drastically improved by the arrival of targeted therapies. NRAS (neuroblastoma RAS viral oncogene homolog)-mutated melanoma represents 15–25% of all metastatic melanoma patients. It currently does not have an approved targeted therapy. Metastatic patients receive immune-based therapies as first-line treatments, then cytotoxic chemotherapy like carboplatin/paclitaxel (C/P), dacarbazine (DTIC) or temozolomide (TMZ) as a second-line treatment. We will review current preclinical and clinical developments in NRAS-mutated melanoma, and analyze ongoing clinical trials that are evaluating the benefit of different targeted and immune-based therapies, either tested as single agents or in combination, in NRAS-mutant melanoma. PMID:28717400

  15. Vaccine adjuvants: Why and how.

    PubMed

    Christensen, Dennis

    2016-10-02

    Novel vaccine strategies include the so-called subunit vaccines, which encompass only the part of the pathogen to which immune recognition results in protection. The high purity of these vaccines make adverse events less likely, but it also makes the vaccines less immunogenic and therefore potentially less effective. Vaccine adjuvants that increase and modulate the immunogenicity of the vaccine are therefore added to solve this problem. Besides aluminum salts, which have been used in vaccines for 90 years, a number of novel vaccine adjuvants have been included in licensed vaccines over the last 30 years. Increasing insight into immunological mechanisms and how to manipulate them has replaced empirical with rational design of adjuvants, leading to vaccine adjuvants with increased and customized immunogenicity profiles without compromising vaccine safety.

  16. Rational design of small molecules as vaccine adjuvants.

    PubMed

    Wu, Tom Y-H; Singh, Manmohan; Miller, Andrew T; De Gregorio, Ennio; Doro, Francesco; D'Oro, Ugo; Skibinski, David A G; Mbow, M Lamine; Bufali, Simone; Herman, Ann E; Cortez, Alex; Li, Yongkai; Nayak, Bishnu P; Tritto, Elaine; Filippi, Christophe M; Otten, Gillis R; Brito, Luis A; Monaci, Elisabetta; Li, Chun; Aprea, Susanna; Valentini, Sara; Calabrό, Samuele; Laera, Donatello; Brunelli, Brunella; Caproni, Elena; Malyala, Padma; Panchal, Rekha G; Warren, Travis K; Bavari, Sina; O'Hagan, Derek T; Cooke, Michael P; Valiante, Nicholas M

    2014-11-19

    Adjuvants increase vaccine potency largely by activating innate immunity and promoting inflammation. Limiting the side effects of this inflammation is a major hurdle for adjuvant use in vaccines for humans. It has been difficult to improve on adjuvant safety because of a poor understanding of adjuvant mechanism and the empirical nature of adjuvant discovery and development historically. We describe new principles for the rational optimization of small-molecule immune potentiators (SMIPs) targeting Toll-like receptor 7 as adjuvants with a predicted increase in their therapeutic indices. Unlike traditional drugs, SMIP-based adjuvants need to have limited bioavailability and remain localized for optimal efficacy. These features also lead to temporally and spatially restricted inflammation that should decrease side effects. Through medicinal and formulation chemistry and extensive immunopharmacology, we show that in vivo potency can be increased with little to no systemic exposure, localized innate immune activation and short in vivo residence times of SMIP-based adjuvants. This work provides a systematic and generalizable approach to engineering small molecules for use as vaccine adjuvants. Copyright © 2014, American Association for the Advancement of Science.

  17. Diffuse intrinsic pontine glioma in children and adolescents: a single-center experience.

    PubMed

    Vallero, Stefano Gabriele; Bertin, Daniele; Basso, Maria Eleonora; Pittana, Laura Stefania; Mussano, Anna; Fagioli, Franca

    2014-06-01

    Patients with diffuse intrinsic pontine glioma (DIPG) have a very poor prognosis. Only radiotherapy (XRT) has proven to be effective in delaying the disease progression. Several chemotherapy schedules have been applied so far, but none demonstrated significant improvements in progression and survival. We retrospectively analyzed the clinical data of children diagnosed with DIPG at our center (Pediatric Hospital "Regina Margherita," Turin, Italy) between 1999 and 2013. Progression-free survival (PFS) and overall survival (OS) were used to describe the outcomes. Twenty-four children were included in our report. Patients diagnosed before March 2003 (n = 12) were treated with XRT and vincristine (VCR); the remaining 12 patients received XRT and temozolomide (TMZ). Progression-free survival was 18.8 % at 1 year (SE = 7.6 %), while overall survival was 44.1 % at 1 year (SE = 9.9 %). Median PFS was 8.1 months, whereas median OS was 11.2 months. No statistically significant difference in PFS or OS was evidenced between the two treatment groups. Radiotherapy followed by VCR or TMZ allows obtaining results that are in line with previous reports, with no advantages over other similar treatment schedules. DIPGs are challenging tumors with a dismal outcome. Further research and newer therapies are urgently needed in order to achieve improvements in survival.

  18. Promoter methylation and expression of MGMT and the DNA mismatch repair genes MLH1, MSH2, MSH6 and PMS2 in paired primary and recurrent glioblastomas.

    PubMed

    Felsberg, Jörg; Thon, Niklas; Eigenbrod, Sabina; Hentschel, Bettina; Sabel, Michael C; Westphal, Manfred; Schackert, Gabriele; Kreth, Friedrich Wilhelm; Pietsch, Torsten; Löffler, Markus; Weller, Michael; Reifenberger, Guido; Tonn, Jörg C

    2011-08-01

    Epigenetic silencing of the O(6) -methylguanine-DNA methyltransferase (MGMT) gene promoter is associated with prolonged survival in glioblastoma patients treated with temozolomide (TMZ). We investigated whether glioblastoma recurrence is associated with changes in the promoter methylation status and the expression of MGMT and the DNA mismatch repair (MMR) genes MLH1, MSH2, MSH6 and PMS2 in pairs of primary and recurrent glioblastomas of 80 patients, including 64 patients treated with radiotherapy and TMZ after the first operation. Among the primary tumors, the MGMT promoter was methylated in 31 patients and unmethylated in 49 patients. In 71 patients (89%), the MGMT promoter methylation status of the primary tumor was retained at recurrence. MGMT promoter methylation, but not MGMT protein expression, was associated with longer progression-free survival, overall survival and postrecurrence survival (PRS). Moreover, PRS was increased under salvage chemotherapy. Investigation of primary and recurrent glioblastomas of 43 patients did not identify promoter methylation in any of the four MMR genes. However, recurrent glioblastomas demonstrated significantly lower MSH2, MSH6 and PMS2 protein expression as detected by immunohistochemistry. In conclusion, reduced expression of MMR proteins, but not changes in MGMT promoter methylation, is characteristic of glioblastomas recurring after the current standards of care. Copyright © 2011 UICC.

  19. Liposomal adjuvants for human vaccines.

    PubMed

    Alving, Carl R; Beck, Zoltan; Matyas, Gary R; Rao, Mangala

    2016-06-01

    Liposomes are well-known as drug carriers, and are now critical components of two of six types of adjuvants present in licensed vaccines. The liposomal vaccine adjuvant field has long been dynamic and innovative, and research in this area is further examined as new commercial products appear in parallel with new vaccines. In an arena where successful products exist the potential for new types of vaccines with liposomal adjuvants, and alternative liposomal adjuvants that could emerge for new types of vaccines, are discussed. Major areas include: virosomes, constructed from phospholipids and proteins from influenza virus particles; liposomes containing natural and synthetic neutral or anionic phospholipids, cholesterol, natural or synthetic monophosphoryl lipid A, and QS21 saponin; non-phospholipid cationic liposomes; and combinations and mixtures of liposomes and immunostimulating ingredients as adjuvants for experimental vaccines. Liposomes containing monophosphoryl lipid A and QS21 have considerable momentum that will result soon in emergence of prophylactic vaccines to malaria and shingles, and possible novel cancer vaccines. The licensed virosome vaccines to influenza and hepatitis A will be replaced with virosome vaccines to other infectious diseases. Alternative liposomal formulations are likely to emerge for difficult diseases such as tuberculosis or HIV-1 infection.

  20. Methotrexate and temozolomide versus methotrexate, procarbazine, vincristine, and cytarabine for primary CNS lymphoma in an elderly population: an intergroup ANOCEF-GOELAMS randomised phase 2 trial.

    PubMed

    Omuro, Antonio; Chinot, Olivier; Taillandier, Luc; Ghesquieres, Hervé; Soussain, Carole; Delwail, Vincent; Lamy, Thierry; Gressin, Rémy; Choquet, Sylvain; Soubeyran, Pierre; Huchet, Aymeri; Benouaich-Amiel, Alexandra; Lebouvier-Sadot, Sophie; Gyan, Emmanuel; Touitou, Valérie; Barrié, Maryline; del Rio, Monica Sierra; Gonzalez-Aguilar, Alberto; Houillier, Caroline; Delgadillo, Daniel; Lacomblez, Lucette; Tanguy, Marie Laure; Hoang-Xuan, Khê

    2015-06-01

    No standard chemotherapy regimen exists for primary CNS lymphoma, reflecting an absence of randomised studies. We prospectively tested two promising methotrexate-based regimens, one more intensive and a milder regimen, for primary CNS lymphoma in the elderly population, who account for most patients. In this open-label, randomised phase 2 trial, done in 13 French institutions, we enrolled immunocompetent patients who had neuroimaging and histologically confirmed newly diagnosed primary CNS lymphoma, were aged 60 years and older, and had a Karnofsky performance scale score of 40 or more. Participants were stratified by Karnofsky performance scale score (<60 vs ≥60) and treating institution and randomly assigned (1:1) to receive methotrexate (3·5 g/m(2)) with temozolomide (150 mg/m(2)) or methotrexate (3·5 g/m(2)), procarbazine (100 mg/m(2)), vincristine (1·4 mg/m(2)), and cytarabine (3 mg/m(2)). Neither regimen included radiotherapy; both included prophylactic G-CSF and corticosteroids. The primary endpoint was 1-year progression-free survival. Analysis was intent to treat, in a non-comparative phase 2 trial design. This study is registered with ClinicalTrials.gov, number NCT00503594. Between July 16, 2007, and March 25, 2010, 98 patients were enrolled, of whom 95 were randomly assigned and analysed; 48 to methotrexate with temozolomide and 47 to methotrexate, procarbazine, vincristine, and cytarabine. 1-year progression-free survival was 36% (95% CI 22-50) in the methotrexate, procarbazine, vincristine, and cytarabine group and 36% (22-50) in the methotrexate with temozolomide group; median progression-free survival was 9·5 months (95% CI 5·3-13·8) versus 6·1 months (3·8-11·9), respectively. Objective responses were noted in 82% (95% CI 68-92) of patients in the methotrexate, procarbazine, vincristine, and cytarabine group versus 71% (55-84) of patients in the methotrexate with temozolomide group. Median overall survival was 31 months (95% CI 12·2-35·8

  1. Over-expression of tetraspanin 8 in malignant glioma regulates tumor cell progression

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pan, Si-Jian; Wu, Yue-Bing; Cai, Shang

    Tumor cell invasion and proliferation remain the overwhelming causes of death for malignant glioma patients. To establish effective therapeutic methods, new targets implied in these processes have to be identified. Tetraspanin 8 (Tspn8) forms complexes with a large variety of trans-membrane and/or cytosolic proteins to regulate several important cellular functions. In the current study, we found that Tspn8 was over-expressed in multiple clinical malignant glioma tissues, and its expression level correlated with the grade of tumors. Tspn8 expression in malignant glioma cells (U251MG and U87MG lines) is important for cell proliferation and migration. siRNA-mediated knockdown of Tspn8 markedly reduced in vitromore » proliferation and migration of U251MG and U87MG cells. Meanwhile, Tspn8 silencing also increased the sensitivity of temozolomide (TMZ), and significantly increased U251MG or U87MG cell death and apoptosis by TMZ were achieved with Tspn8 knockdown. We observed that Tspn8 formed a complex with activated focal adhesion kinase (FAK) in both human malignant glioma tissues and in above glioma cells. This complexation appeared required for FAK activation, since Tspn8 knockdown inhibited FAK activation in U251MG and U87MG cells. These results provide evidence that Tspn8 contributes to the pathogenesis of glioblastoma probably by promoting proliferation, migration and TMZ-resistance of glioma cells. Therefore, targeting Tspn8 may provide a potential therapeutic intervention for malignant glioma. - Highlights: • Tspn8 is over-expressed in multiple clinical malignant glioma tissues. • Tspn8 expression is correlated with the grade of malignant gliomas. • Tspn8 knockdown suppresses U251MG/U87MG proliferation and in vitro migration. • Tspn8 knockdown significantly increases TMZ sensitivity in U251MG/U87MG cells. • Tspn8 forms a complex with FAK, required for FAK activation.« less

  2. Osteosarcoma cells with genetic signatures of BRCAness are susceptible to the PARP inhibitor talazoparib alone or in combination with chemotherapeutics.

    PubMed

    Engert, Florian; Kovac, Michal; Baumhoer, Daniel; Nathrath, Michaela; Fulda, Simone

    2017-07-25

    We recently discovered mutation signatures reminiscent of BRCA deficiency in the vast majority of a set of primary osteosarcomas (OS). In the current study, we therefore investigated the sensitivity of a panel of OS cell lines to the poly(ADP)-ribose polymerase (PARP) inhibitor talazoparib alone and in combination with several chemotherapeutic drugs (i.e. temozolomide (TMZ), SN-38, doxorubicin, cisplatin, methotrexate (MTX), etoposide/carboplatin). Here, we identified an association between homologous recombination (HR) repair deficiency and the response of OS cell lines to talazoparib. All OS cell lines with molecular features characteristic of BRCA1/2 mutant tumors (so-called "BRCAness"), such as disruptive gains in PTEN or FANCD2 and/or losses of ATM, BAP1, BARD1 or CHEK2, were susceptible to talazoparib-induced reduction of cell viability (i.e. MG63, ZK-58,, SaOS-2 and MNNG-HOS). Consistent with their high sensitivity to talazoparib, MG63 and ZK-58 cells scored positive in a DNA-based measure of genomic instability (i.e. homologous recombination deficiency (HRD)-loss of heterozygosity (LOH) score). In contrast, U2OS cells that carry a heterozygous BRCA2 mutation and therefore most likely have one intact BRCA2 allele left proved to be resistant to talazoparib. Furthermore, we identified TMZ as the most potent chemotherapeutic drug together with talazoparib to synergistically reduce cell viability, as confirmed by calculation of combination index (CI) values, and to suppress long-term clonogenic survival. Mechanistically, talazoparib and TMZ cooperated to induce apoptotic cell death, as demonstrated by activation of BAX and BAK, loss of mitochondrial membrane potential (MMP), caspase activation, DNA fragmentation and caspase-dependent cell death. Genetic silencing of BAX and BAK or pharmacological inhibition of caspases by zVAD.fmk significantly rescued OS cells from talazoparib/TMZ-induced apoptosis. These findings have important implications for the development

  3. IT-26IDENTIFICATION OF PSEUDO-PROGRESSION IN NEW DIAGNOSED GLIOBLASTOMA (GBM) IN A RANDOMIZED PHASE 2 OF ICT-107: MRI AND PATHOLOGY CORRELATION

    PubMed Central

    Phuphanich, Surasak; Yu, John; Bannykh, Serguei; Zhu, Jay-Jiguang

    2014-01-01

    BACKGROUND: Previously reports of pseudo-progression in patients with brain tumor after therapeutic vaccines in pediatric and adult glioma (Pollack, JCO online on June 2, 2014 and Okada, JCO Jan 20, 2011; 29: 330-336) demonstrated that RANO criteria for tumor progression may not be adequate for immunotherapy trials. Similar observations were also seen in other checkpoint inhibitor in melanoma and NSLSC. METHODS: We identified 2 patients, who developed tumor progression by RANO criteria, underwent surgery following enrollment in a phase 2 randomized ICT-107 (an autologous vaccine consisting of patient dendritic cells pulsed with peptides from AIM-2, TRP-2, HER2/neu, IL-13Ra2, gp100, MAGE1) after radiation and Temozolomide (TMZ). RESULTS: The first case is a 69 years old Chinese male, who underwent 1st surgery of gross total resection right occipital GBM on 10/26/2011. Subsequently he received 19 cycles of TMZ and 9 vaccines/placebo. MRI from 7/2/2013 showed enhancement surrounding surgical cavity. After 2nd surgery, pathology showed only rare residual tumor cells with macrophages and positive CD 8 cells. He continued on this vaccine program and MRI showed more progression with finger-like extension into parietal lobe 4 months later. The 3rd surgery also showed extensive reactive changes with no active tumor cells. For 2nd case, a 62 years old male, who underwent first surgery on 7/11/2011 of right temporal lobe, developed 2 areas of enhancement after 6 cycles of TMZ and 7 vaccines/placebo on 4/18/2012. With 2nd surgery, pathology showed reactive gliosis without active tumor. The subject continued in this trial. CONCLUSION: Pseudo-progression was confirmed by pathology in these 2 patients at 20 and 9 months which were delayed comparing to pseudo-progression observed in patients treated with concurrent XRT/TMZ (3-6 months). Future iRANO criteria development is essential for immunotherapy trials. Accurately identifying and managing such patients is necessary to avoid

  4. Adjuvants: Classification, Modus Operandi, and Licensing.

    PubMed

    Apostólico, Juliana de Souza; Lunardelli, Victória Alves Santos; Coirada, Fernanda Caroline; Boscardin, Silvia Beatriz; Rosa, Daniela Santoro

    2016-01-01

    Vaccination is one of the most efficient strategies for the prevention of infectious diseases. Although safer, subunit vaccines are poorly immunogenic and for this reason the use of adjuvants is strongly recommended. Since their discovery in the beginning of the 20th century, adjuvants have been used to improve immune responses that ultimately lead to protection against disease. The choice of the adjuvant is of utmost importance as it can stimulate protective immunity. Their mechanisms of action have now been revealed. Our increasing understanding of the immune system, and of correlates of protection, is helping in the development of new vaccine formulations for global infections. Nevertheless, few adjuvants are licensed for human vaccines and several formulations are now being evaluated in clinical trials. In this review, we briefly describe the most well known adjuvants used in experimental and clinical settings based on their main mechanisms of action and also highlight the requirements for licensing new vaccine formulations.

  5. Methods to Prepare Aluminum Salt-Adjuvanted Vaccines.

    PubMed

    Thakkar, Sachin G; Cui, Zhengrong

    2017-01-01

    Many human vaccines contain certain insoluble aluminum salts such as aluminum oxyhydroxide and aluminum hydroxyphosphate as vaccine adjuvants to boost the immunogenicity of the vaccines. Aluminum salts have been used as vaccine adjuvants for decades and have an established, favorable safety profile. However, preparing aluminum salts and aluminum salt-adjuvanted vaccines in a consistent manner remains challenging. This chapter discusses methods to prepare aluminum salts and aluminum salt-adjuvanted vaccines, factors to consider during preparation, and methods to characterize the vaccines after preparation.

  6. From discovery to licensure, the Adjuvant System story.

    PubMed

    Garçon, Nathalie; Di Pasquale, Alberta

    2017-01-02

    Adjuvants are substances added to vaccines to improve their immunogenicity. Used for more than 80 years, aluminum, the first adjuvant in human vaccines, proved insufficient to develop vaccines that could protect against new challenging pathogens such as HIV and malaria. New adjuvants and new combinations of adjuvants (Adjuvant Systems) have opened the door to the delivery of improved and new vaccines against re-emerging and difficult pathogens. Adjuvant Systems concept started through serendipity. The access to new developments in technology, microbiology and immunology have been instrumental for the dicephering of what they do and how they do it. This knowledge opens the door to more rational vaccine design with implications for developing new and better vaccines.

  7. BET bromodomain proteins are required for glioblastoma cell proliferation.

    PubMed

    Pastori, Chiara; Daniel, Mark; Penas, Clara; Volmar, Claude-Henry; Johnstone, Andrea L; Brothers, Shaun P; Graham, Regina M; Allen, Bryce; Sarkaria, Jann N; Komotar, Ricardo J; Wahlestedt, Claes; Ayad, Nagi G

    2014-04-01

    Epigenetic proteins have recently emerged as novel anticancer targets. Among these, bromodomain and extra terminal domain (BET) proteins recognize lysine-acetylated histones, thereby regulating gene expression. Newly described small molecules that inhibit BET proteins BRD2, BRD3, and BRD4 reduce proliferation of NUT (nuclear protein in testis)-midline carcinoma, multiple myeloma, and leukemia cells in vitro and in vivo. These findings prompted us to determine whether BET proteins may be therapeutic targets in the most common primary adult brain tumor, glioblastoma (GBM). We performed NanoString analysis of GBM tumor samples and controls to identify novel therapeutic targets. Several cell proliferation assays of GBM cell lines and stem cells were used to analyze the efficacy of the drug I-BET151 relative to temozolomide (TMZ) or cell cycle inhibitors. Lastly, we performed xenograft experiments to determine the efficacy of I-BET151 in vivo. We demonstrate that BRD2 and BRD4 RNA are significantly overexpressed in GBM, suggesting that BET protein inhibition may be an effective means of reducing GBM cell proliferation. Disruption of BRD4 expression in glioblastoma cells reduced cell cycle progression. Similarly, treatment with the BET protein inhibitor I-BET151 reduced GBM cell proliferation in vitro and in vivo. I-BET151 treatment enriched cells at the G1/S cell cycle transition. Importantly, I-BET151 is as potent at inhibiting GBM cell proliferation as TMZ, the current chemotherapy treatment administered to GBM patients. Since I-BET151 inhibits GBM cell proliferation by arresting cell cycle progression, we propose that BET protein inhibition may be a viable therapeutic option for GBM patients suffering from TMZ resistant tumors.

  8. BET bromodomain proteins are required for glioblastoma cell proliferation

    PubMed Central

    Pastori, Chiara; Daniel, Mark; Penas, Clara; Volmar, Claude-Henry; Johnstone, Andrea L; Brothers, Shaun P; Graham, Regina M; Allen, Bryce; Sarkaria, Jann N; Komotar, Ricardo J; Wahlestedt, Claes; Ayad, Nagi G

    2014-01-01

    Epigenetic proteins have recently emerged as novel anticancer targets. Among these, bromodomain and extra terminal domain (BET) proteins recognize lysine-acetylated histones, thereby regulating gene expression. Newly described small molecules that inhibit BET proteins BRD2, BRD3, and BRD4 reduce proliferation of NUT (nuclear protein in testis)-midline carcinoma, multiple myeloma, and leukemia cells in vitro and in vivo. These findings prompted us to determine whether BET proteins may be therapeutic targets in the most common primary adult brain tumor, glioblastoma (GBM). We performed NanoString analysis of GBM tumor samples and controls to identify novel therapeutic targets. Several cell proliferation assays of GBM cell lines and stem cells were used to analyze the efficacy of the drug I-BET151 relative to temozolomide (TMZ) or cell cycle inhibitors. Lastly, we performed xenograft experiments to determine the efficacy of I-BET151 in vivo. We demonstrate that BRD2 and BRD4 RNA are significantly overexpressed in GBM, suggesting that BET protein inhibition may be an effective means of reducing GBM cell proliferation. Disruption of BRD4 expression in glioblastoma cells reduced cell cycle progression. Similarly, treatment with the BET protein inhibitor I-BET151 reduced GBM cell proliferation in vitro and in vivo. I-BET151 treatment enriched cells at the G1/S cell cycle transition. Importantly, I-BET151 is as potent at inhibiting GBM cell proliferation as TMZ, the current chemotherapy treatment administered to GBM patients. Since I-BET151 inhibits GBM cell proliferation by arresting cell cycle progression, we propose that BET protein inhibition may be a viable therapeutic option for GBM patients suffering from TMZ resistant tumors. PMID:24496381

  9. Safety, pharmacokinetics, and antitumor response of depatuxizumab mafodotin as monotherapy or in combination with temozolomide in patients with glioblastoma.

    PubMed

    Gan, Hui K; Reardon, David A; Lassman, Andrew B; Merrell, Ryan; van den Bent, Martin; Butowski, Nicholas; Lwin, Zarnie; Wheeler, Helen; Fichtel, Lisa; Scott, Andrew M; Gomez, Erica J; Fischer, JuDee; Mandich, Helen; Xiong, Hao; Lee, Ho-Jin; Munasinghe, Wijith P; Roberts-Rapp, Lisa A; Ansell, Peter J; Holen, Kyle D; Kumthekar, Priya

    2018-05-18

    We recently reported an acceptable safety and pharmacokinetic profile of depatuxizumab mafodotin (depatux-m), formerly called ABT-414, plus radiation and temozolomide in newly diagnosed glioblastoma (arm A). The purpose of this study was to evaluate the safety and pharmacokinetics of depatux-m, either in combination with temozolomide in newly diagnosed or recurrent glioblastoma (arm B) or as monotherapy in recurrent glioblastoma (arm C). In this multicenter phase I dose escalation study, patients received depatux-m (0.5-1.5 mg/kg in arm B, 1.25 mg/kg in arm C) every 2 weeks by intravenous infusion. Maximum tolerated dose (MTD), recommended phase II dose (RP2D), and preliminary efficacy were also determined. Thirty-eight patients were enrolled as of March 1, 2016. The most frequent toxicities were ocular, occurring in 35/38 (92%) patients. Keratitis was the most common grade 3 adverse event observed in 6/38 (16%) patients; thrombocytopenia was the most common grade 4 event seen in 5/38 (13%) patients. The MTD was set at 1.5 mg/kg in arm B and was not reached in arm C. RP2D was declared as 1.25 mg/kg for both arms. Depatux-m demonstrated a linear pharmacokinetic profile. In recurrent glioblastoma patients, the progression-free survival (PFS) rate at 6 months was 30.8% and the median overall survival was 10.7 months. Best Response Assessment in Neuro-Oncology responses were 1 complete and 2 partial responses. Depatux-m alone or in combination with temozolomide demonstrated an acceptable safety and pharmacokinetic profile in glioblastoma. Further studies are currently under way to evaluate its efficacy in newly diagnosed (NCT02573324) and recurrent glioblastoma (NCT02343406).

  10. Applications of nanomaterials as vaccine adjuvants

    PubMed Central

    Zhu, Motao; Wang, Rongfu; Nie, Guangjun

    2014-01-01

    Vaccine adjuvants are applied to amplify the recipient's specific immune responses against pathogen infection or malignancy. A new generation of adjuvants is being developed to meet the demands for more potent antigen-specific responses, specific types of immune responses, and a high margin of safety. Nanotechnology provides a multifunctional stage for the integration of desired adjuvant activities performed by the building blocks of tailor-designed nanoparticles. Using nanomaterials for antigen delivery can provide high bioavailability, sustained and controlled release profiles, and targeting and imaging properties resulting from manipulation of the nanomaterials’ physicochemical properties. Moreover, the inherent immune-regulating activity of particular nanomaterials can further promote and shape the cellular and humoral immune responses toward desired types. The combination of both the delivery function and immunomodulatory effect of nanomaterials as adjuvants is thought to largely benefit the immune outcomes of vaccination. In this review, we will address the current achievements of nanotechnology in the development of novel adjuvants. The potential mechanisms by which nanomaterials impact the immune responses to a vaccine and how physicochemical properties, including size, surface charge and surface modification, impact their resulting immunological outcomes will be discussed. This review aims to provide concentrated information to promote new insights for the development of novel vaccine adjuvants. PMID:25483497

  11. The impact of size on particulate vaccine adjuvants.

    PubMed

    Shah, Ruchi R; O'Hagan, Derek T; Amiji, Mansoor M; Brito, Luis A

    2014-12-01

    Particulate adjuvants have been successful at inducing increased immune responses against many poorly immunogenic antigens. However, the mechanism of action of these adjuvants often remains unclear. As more potential vaccine targets are emerging, it is becoming necessary to broaden our knowledge on the factors involved in generating potent immune responses to recombinant antigens with adjuvants. While composition of adjuvants is integral in defining the overall performance of an adjuvant, some physical parameters such as particle size, surface charge and surface modification may also contribute to the potency. In this review, we will try to highlight the role of particle size in controlling the immune responses to adjuvanted vaccines, with a focus on insoluble aluminum salts, oil-in-water emulsions, polymeric particles and liposomes.

  12. Treatment of glioblastoma in elderly patients: an overview of current treatments and future perspective.

    PubMed

    Lanzetta, Gaetano; Minniti, Giuseppe

    2010-01-01

    Current treatment of glioblastoma in the elderly includes surgery, radiotherapy and chemotherapy, but the prognosis remains extremely poor, and its optimal management is still debated. Longer survival after extensive resection compared with biopsy only has been reported, although the survival advantage remains modest. Radiation in the form of standard (60 Gy in 30 fractions over 6 weeks) and abbreviated courses of radiotherapy (30-50 Gy in 6-20 fractions over 2-4 weeks) has been employed in elderly patients with glioblastoma, showing survival benefits compared with supportive care alone. Temozolomide is an alkylating agent recently employed in older patients with newly diagnosed glioblastoma. The addition of concomitant and/or adjuvant chemotherapy with temozolomide to radiotherapy, which is currently the standard treatment in adults with glioblastoma, is emerging as an effective therapeutic option for older patients with favorable prognostic factors. The potential benefits on survival, improvement in quality of life and toxicity of different schedules of radiotherapy plus temozolomide need to be addressed in future randomized studies.

  13. New generation adjuvants--from empiricism to rational design.

    PubMed

    O'Hagan, Derek T; Fox, Christopher B

    2015-06-08

    Adjuvants are an essential component of modern vaccine development. Despite many decades of development, only a few types of adjuvants are currently included in vaccines approved for human use. In order to better understand the reasons that development of some adjuvants succeeded while many others failed, we discuss some of the common attributes of successful first generation adjuvants. Next, we evaluate current trends in the development of second generation adjuvants, including the potential advantages of rationally designed synthetic immune potentiators appropriately formulated. Finally, we discuss desirable attributes of next generation adjuvants. Throughout, we emphasize that the importance of formulation and analytical characterization in all aspects of vaccine adjuvant development is often underappreciated. We highlight the formulation factors that must be evaluated in order to optimize interactions between vaccine antigens, immune potentiators, and particulate formulations, and the resulting effects on safety, biological activity, manufacturability, and stability. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Vaccine adjuvant technology: from mechanistic concepts to practical applications.

    PubMed

    Degen, Winfried G J; Jansen, Theo; Schijns, Virgil E J C

    2003-04-01

    Distinct types of immune responses are required for efficient elimination of different pathogens. Programming of the desired type of immune response by safe nonreplicating vaccines requires suitable vaccine adjuvants. Adjuvants largely determine the magnitude and quality of immune responses specific for the coadministered antigen. Unfortunately, rational vaccine design requiring a rational choice of vaccine adjuvant, is hampered by a lack of knowledge about the mechanism(s) of vaccine adjuvant activity. The current review addresses different critical immunological processes possibly explaining adjuvant functions. In addition, we discuss traditional vaccine adjuvant formulations and their possible mode of action. Finally, we reflect on the latest technologies for the identification of novel adjuvants using molecular analysis of immune activation and functional genomics.

  15. Synthesis of Lymph Node-Targeting Adjuvants.

    PubMed

    Hanson, Melissa C; Irvine, Darrell J

    2017-01-01

    Molecular adjuvants based off of pattern recognition receptor agonists are capable of potently stimulating innate immunity and inducing protective immune responses to subunit antigens. One significant disadvantage to these small molecule adjuvants is their pharmacokinetic profile of entering the blood stream rather than the lymphatics after parental injection. In order to target molecular adjuvants to lymph nodes, we have developed nanoparticle carriers whose size has been optimized to avoid the blood and efficiently drain to lymph nodes (Hanson et al. Vaccine 33:861-8,2015; Hanson et al. J Clin Invest 125:2532-2546, 2015). This chapter describes in detail the materials and procedures necessary to synthesize liposome nanoparticle carriers of either hydrophobic or hydrophilic adjuvants, including synthesis tips, alternative equipment options, and pitfalls to avoid.

  16. Treatment of resistant metastatic melanoma using sequential epigenetic therapy (decitabine and panobinostat) combined with chemotherapy (temozolomide).

    PubMed

    Xia, Chang; Leon-Ferre, Roberto; Laux, Douglas; Deutsch, Jeremy; Smith, Brian J; Frees, Melanie; Milhem, Mohammed

    2014-10-01

    To explore the safety and tolerability of combining two epigenetic drugs: decitabine (a DNA methyltransferase inhibitor) and panobinostat (a histone deacetylase inhibitor), with chemotherapy with temozolomide (an alkylating agent). The purpose of such combination is to evaluate the use of epigenetic priming to overcome resistance of melanoma to chemotherapy. A Phase I clinical trial enrolling patients aged 18 years or older, with recurrent or unresectable stage III or IV melanoma of any site. This trial was conducted with full Institutional Review Board approval and was registered with the National Institutes of Health under the clinicaltrials.gov identifier NCT00925132. Patients were treated with subcutaneous decitabine 0.1 or 0.2 mg/kg three times weekly for 2 weeks (starting on day 1), in combination with oral panobinostat 10, 20, or 30 mg every 96 h (starting on day 8), and oral temozolomide 150 mg/m(2)/day on days 9 through 13. In cycle 2, temozolomide was increased to 200 mg/m(2)/day if neutropenia or thrombocytopenia had not occurred. Each cycle lasted 6 weeks, and patients could receive up to six cycles. Patients who did not demonstrate disease progression were eligible to enter a maintenance protocol with combination of weekly panobinostat and thrice-weekly decitabine until tumor progression, unacceptable toxicity, or withdrawal of consent. Twenty patients were initially enrolled, with 17 receiving treatment. The median age was 56 years. Eleven (65%) were male, and 6 (35%) were female. Eleven (64.7%) had cutaneous melanoma, 4 (23.5%) had ocular melanoma, and 2 (11.8%) had mucosal melanoma. All patients received at least one treatment cycle and were evaluable for toxicity. Patients received a median of two 6-week treatment cycles (range 1-6). None of the patients experienced DLT. MTD was not reached. Adverse events attributed to treatment included grade 3 lymphopenia (24%), anemia (12%), neutropenia (12%), and fatigue (12%), as well as grade 2 leukopenia

  17. Advax-Adjuvanted Recombinant Protective Antigen Provides Protection against Inhalational Anthrax That Is Further Enhanced by Addition of Murabutide Adjuvant

    PubMed Central

    Feinen, Brandon; Petrovsky, Nikolai; Verma, Anita

    2014-01-01

    Subunit vaccines against anthrax based on recombinant protective antigen (PA) potentially offer more consistent and less reactogenic anthrax vaccines but require adjuvants to achieve optimal immunogenicity. This study sought to determine in a murine model of pulmonary anthrax infection whether the polysaccharide adjuvant Advax or the innate immune adjuvant murabutide alone or together could enhance PA immunogenicity by comparison to an alum adjuvant. A single immunization with PA plus Advax adjuvant afforded significantly greater protection against aerosolized Bacillus anthracis Sterne strain 7702 than three immunizations with PA alone. Murabutide had a weaker adjuvant effect than Advax when used alone, but when murabutide was formulated together with Advax, an additive effect on immunogenicity and protection was observed, with complete protection after just two doses. The combined adjuvant formulation stimulated a robust, long-lasting B-cell memory response that protected mice against an aerosol challenge 18 months postimmunization with acceleration of the kinetics of the anamnestic IgG response to B. anthracis as reflected by ∼4-fold-higher anti-PA IgG titers by day 2 postchallenge versus mice that received PA with Alhydrogel. In addition, the combination of Advax plus murabutide induced approximately 3-fold-less inflammation than Alhydrogel as measured by in vivo imaging of cathepsin cleavage resulting from injection of ProSense 750. Thus, the combination of Advax and murabutide provided enhanced protection against inhalational anthrax with reduced localized inflammation, making this a promising next-generation anthrax vaccine adjuvanting strategy. PMID:24554695

  18. Advax-adjuvanted recombinant protective antigen provides protection against inhalational anthrax that is further enhanced by addition of murabutide adjuvant.

    PubMed

    Feinen, Brandon; Petrovsky, Nikolai; Verma, Anita; Merkel, Tod J

    2014-04-01

    Subunit vaccines against anthrax based on recombinant protective antigen (PA) potentially offer more consistent and less reactogenic anthrax vaccines but require adjuvants to achieve optimal immunogenicity. This study sought to determine in a murine model of pulmonary anthrax infection whether the polysaccharide adjuvant Advax or the innate immune adjuvant murabutide alone or together could enhance PA immunogenicity by comparison to an alum adjuvant. A single immunization with PA plus Advax adjuvant afforded significantly greater protection against aerosolized Bacillus anthracis Sterne strain 7702 than three immunizations with PA alone. Murabutide had a weaker adjuvant effect than Advax when used alone, but when murabutide was formulated together with Advax, an additive effect on immunogenicity and protection was observed, with complete protection after just two doses. The combined adjuvant formulation stimulated a robust, long-lasting B-cell memory response that protected mice against an aerosol challenge 18 months postimmunization with acceleration of the kinetics of the anamnestic IgG response to B. anthracis as reflected by ∼4-fold-higher anti-PA IgG titers by day 2 postchallenge versus mice that received PA with Alhydrogel. In addition, the combination of Advax plus murabutide induced approximately 3-fold-less inflammation than Alhydrogel as measured by in vivo imaging of cathepsin cleavage resulting from injection of ProSense 750. Thus, the combination of Advax and murabutide provided enhanced protection against inhalational anthrax with reduced localized inflammation, making this a promising next-generation anthrax vaccine adjuvanting strategy.

  19. Manufacturing Methods for Liposome Adjuvants.

    PubMed

    Perrie, Yvonne; Kastner, Elisabeth; Khadke, Swapnil; Roces, Carla B; Stone, Peter

    2017-01-01

    A wide range of studies have shown that liposomes can act as suitable adjuvants for a range of vaccine antigens. Properties such as their amphiphilic character and biphasic nature allow them to incorporate antigens within the lipid bilayer, on the surface, or encapsulated within the inner core. However, appropriate methods for the manufacture of liposomes are limited and this has resulted in issues with cost, supply, and wider scale application of these systems. Within this chapter we explore manufacturing processes that can be used for the production of liposomal adjuvants, and we outline new manufacturing methods can that offer fast, scalable, and cost-effective production of liposomal adjuvants.

  20. Adjuvant chemotherapy for rectal cancer: Is it needed?

    PubMed Central

    Milinis, Kristijonas; Thornton, Michael; Montazeri, Amir; Rooney, Paul S

    2015-01-01

    Adjuvant chemotherapy has become a standard treatment of advanced rectal cancer in the West. The benefits of adjuvant chemotherapy after surgery alone have been well established. However, controversy surrounds the use adjuvant chemotherapy in patients who received preoperative chemoradiotherapy, despite it being recommended by a number of international guidelines. Results of recent multicentre randomised control trials showed no benefit of adjuvant chemotherapy in terms of survival and rates of distant metastases. However, concerns exist regarding the quality of the studies including inadequate staging modalities, out-dated chemotherapeutic regimens and surgical approaches and small sample sizes. It has become evident that not all the patients respond to adjuvant chemotherapy and more personalised approach should be employed when considering the benefits of adjuvant chemotherapy. The present review discusses the strengths and weaknesses of the current evidence-base and suggests improvements for future studies. PMID:26677436

  1. Combinations of PARP Inhibitors with Temozolomide Drive PARP1 Trapping and Apoptosis in Ewing's Sarcoma.

    PubMed

    Gill, Sonja J; Travers, Jon; Pshenichnaya, Irina; Kogera, Fiona A; Barthorpe, Syd; Mironenko, Tatiana; Richardson, Laura; Benes, Cyril H; Stratton, Michael R; McDermott, Ultan; Jackson, Stephen P; Garnett, Mathew J

    2015-01-01

    Ewing's sarcoma is a malignant pediatric bone tumor with a poor prognosis for patients with metastatic or recurrent disease. Ewing's sarcoma cells are acutely hypersensitive to poly (ADP-ribose) polymerase (PARP) inhibition and this is being evaluated in clinical trials, although the mechanism of hypersensitivity has not been directly addressed. PARP inhibitors have efficacy in tumors with BRCA1/2 mutations, which confer deficiency in DNA double-strand break (DSB) repair by homologous recombination (HR). This drives dependence on PARP1/2 due to their function in DNA single-strand break (SSB) repair. PARP inhibitors are also cytotoxic through inhibiting PARP1/2 auto-PARylation, blocking PARP1/2 release from substrate DNA. Here, we show that PARP inhibitor sensitivity in Ewing's sarcoma cells is not through an apparent defect in DNA repair by HR, but through hypersensitivity to trapped PARP1-DNA complexes. This drives accumulation of DNA damage during replication, ultimately leading to apoptosis. We also show that the activity of PARP inhibitors is potentiated by temozolomide in Ewing's sarcoma cells and is associated with enhanced trapping of PARP1-DNA complexes. Furthermore, through mining of large-scale drug sensitivity datasets, we identify a subset of glioma, neuroblastoma and melanoma cell lines as hypersensitive to the combination of temozolomide and PARP inhibition, potentially identifying new avenues for therapeutic intervention. These data provide insights into the anti-cancer activity of PARP inhibitors with implications for the design of treatment for Ewing's sarcoma patients with PARP inhibitors.

  2. Synthetic Self-Adjuvanting Glycopeptide Cancer Vaccines

    NASA Astrophysics Data System (ADS)

    Payne, Richard; McDonald, David; Byrne, Scott

    2015-10-01

    Due to changes in glycosyltransferase expression during tumorigenesis, the glycoproteins of cancer cells often carry highly truncated carbohydrate chains compared to those on healthy cells. These glycans are known as tumor-associated carbohydrate antigens, and are prime targets for use in vaccines for the prevention and treatment of cancer. Herein, we review the state-of-the-art in targeting the immune system towards tumor-associated glycopeptide antigens via synthetic self adjuvanting vaccines, in which the antigenic and adjuvanting moieties of the vaccines are present in the same molecule. The majority of the self-adjuvanting glycopeptide cancer vaccines reported to date employ antigens from mucin 1, a protein which is highly over-expressed and aberrantly glycosylated in many forms of cancer. The adjuvants used in these vaccines predominantly include lipopeptide- or lipoamino acid-based TLR2 agonists, although studies investigating stimulation of TLR9 and TLR4 are also discussed. Most of these adjuvants are highly lipophilic, and, upon conjugation to antigenic peptides, provide amphiphilic vaccine molecules. The amphiphilic nature of these vaccine constructs can lead to the formation of higher-order structures by vaccines in solution, which are likely to be important for their efficacy in vivo.

  3. Advances in aluminum hydroxide-based adjuvant research and its mechanism.

    PubMed

    He, Peng; Zou, Yening; Hu, Zhongyu

    2015-01-01

    In the past few decades, hundreds of materials have been tried as adjuvant; however, only aluminum-based adjuvants continue to be used widely in the world. Aluminum hydroxide, aluminum phosphate and alum constitute the main forms of aluminum used as adjuvants. Among these, aluminum hydroxide is the most commonly used chemical as adjuvant. In spite of its wide spread use, surprisingly, the mechanism of how aluminum hydroxide-based adjuvants exert their beneficial effects is still not fully understood. Current explanations for the mode of action of aluminum hydroxide-based adjuvants include, among others, the repository effect, pro-phagocytic effect, and activation of the pro-inflammatory NLRP3 pathway. These collectively galvanize innate as well as acquired immune responses and activate the complement system. Factors that have a profound influence on responses evoked by aluminum hydroxide-based adjuvant applications include adsorption rate, strength of the adsorption, size and uniformity of aluminum hydroxide particles, dosage of adjuvant, and the nature of antigens. Although vaccines containing aluminum hydroxide-based adjuvants are beneficial, sometimes they cause adverse reactions. Further, these vaccines cannot be stored frozen. Until recently, aluminum hydroxide-based adjuvants were known to preferentially prime Th2-type immune responses. However, results of more recent studies show that depending on the vaccination route, aluminum hydroxide-based adjuvants can enhance both Th1 as well as Th2 cellular responses. Advances in systems biology have opened up new avenues for studying mechanisms of aluminum hydroxide-based adjuvants. These will assist in scaling new frontiers in aluminum hydroxide-based adjuvant research that include improvement of formulations, use of nanoparticles of aluminum hydroxide and development of composite adjuvants.

  4. Advances in aluminum hydroxide-based adjuvant research and its mechanism

    PubMed Central

    He, Peng; Zou, Yening; Hu, Zhongyu

    2015-01-01

    In the past few decades, hundreds of materials have been tried as adjuvant; however, only aluminum-based adjuvants continue to be used widely in the world. Aluminum hydroxide, aluminum phosphate and alum constitute the main forms of aluminum used as adjuvants. Among these, aluminum hydroxide is the most commonly used chemical as adjuvant. In spite of its wide spread use, surprisingly, the mechanism of how aluminum hydroxide-based adjuvants exert their beneficial effects is still not fully understood. Current explanations for the mode of action of aluminum hydroxide-based adjuvants include, among others, the repository effect, pro-phagocytic effect, and activation of the pro-inflammatory NLRP3 pathway. These collectively galvanize innate as well as acquired immune responses and activate the complement system. Factors that have a profound influence on responses evoked by aluminum hydroxide-based adjuvant applications include adsorption rate, strength of the adsorption, size and uniformity of aluminum hydroxide particles, dosage of adjuvant, and the nature of antigens. Although vaccines containing aluminum hydroxide-based adjuvants are beneficial, sometimes they cause adverse reactions. Further, these vaccines cannot be stored frozen. Until recently, aluminum hydroxide-based adjuvants were known to preferentially prime Th2-type immune responses. However, results of more recent studies show that depending on the vaccination route, aluminum hydroxide-based adjuvants can enhance both Th1 as well as Th2 cellular responses. Advances in systems biology have opened up new avenues for studying mechanisms of aluminum hydroxide-based adjuvants. These will assist in scaling new frontiers in aluminum hydroxide-based adjuvant research that include improvement of formulations, use of nanoparticles of aluminum hydroxide and development of composite adjuvants. PMID:25692535

  5. Near-Infrared Laser Adjuvant for Influenza Vaccine

    PubMed Central

    Kashiwagi, Satoshi; Yuan, Jianping; Forbes, Benjamin; Hibert, Mathew L.; Lee, Eugene L. Q.; Whicher, Laura; Goudie, Calum; Yang, Yuan; Chen, Tao; Edelblute, Beth; Collette, Brian; Edington, Laurel; Trussler, James; Nezivar, Jean; Leblanc, Pierre; Bronson, Roderick; Tsukada, Kosuke; Suematsu, Makoto; Dover, Jeffrey; Brauns, Timothy; Gelfand, Jeffrey; Poznansky, Mark C.

    2013-01-01

    Safe and effective immunologic adjuvants are often essential for vaccines. However, the choice of adjuvant for licensed vaccines is limited, especially for those that are administered intradermally. We show that non-tissue damaging, near-infrared (NIR) laser light given in short exposures to small areas of skin, without the use of additional chemical or biological agents, significantly increases immune responses to intradermal influenza vaccination without augmenting IgE. The NIR laser-adjuvanted vaccine confers increased protection in a murine influenza lethal challenge model as compared to unadjuvanted vaccine. We show that NIR laser treatment induces the expression of specific chemokines in the skin resulting in recruitment and activation of dendritic cells and is safe to use in both mice and humans. The NIR laser adjuvant technology provides a novel, safe, low-cost, simple-to-use, potentially broadly applicable and clinically feasible approach to enhancing vaccine efficacy as an alternative to chemical and biological adjuvants. PMID:24349390

  6. Assessment of squalene adjuvanted and non-adjuvanted vaccines against pandemic H1N1 influenza in children 6 months to 17 years of age

    PubMed Central

    Vesikari, Timo; Pepin, Stéphanie; Kusters, Inca; Hoffenbach, Agnès; Denis, Martine

    2012-01-01

    Vaccines were urgently needed in 2009 against A/H1N1 pandemic influenza. Based on the H5N1 experience, it was originally thought that 2 doses of an adjuvanted vaccine were needed for adequate immunogenicity. We tested H1N1 vaccines with or without AF03, a squalene-based adjuvant, in children. Two randomized, open-label, trials were conducted. Participants 3–17 y received two injections of 3.8 µg or 7.5 µg hemagglutinin (HA) with adjuvant or 15 µg HA without adjuvant. Participants aged 6–35 mo received two injections of 1.9 µg or 3.8 µg HA with full or half dose adjuvant or 7.5 µg HA without adjuvant. All subjects 3 to 17 y reached seroprotection (hemagglutination inhibition (HI) titer ≥ 40) after the first dose of the adjuvanted vaccine, and 94% and 98% in the 3–8 and 9–17 y groups respectively with the non-adjuvanted vaccine. In children aged 6–35 mo responses were modest after one dose, but after two doses virtually all children were seroprotected regardless of HA or adjuvant dose. In this age group, antibody titers were 5 to 7 times higher after adjuvanted than non-adjuvanted vaccine. The higher responses with the adjuvanted vaccine were also reflected as better antibody persistence. There was no clustering of adverse events that would be suggestive of a safety signal. While a single injection was sufficient in subjects from 3 y, in children aged 6–35 mo two injections of this A/H1N1 pandemic influenza vaccine were required. Formulation of this vaccine with adjuvant provided a significant advantage for immunogenicity in the latter age group. PMID:22906943

  7. Impact of oligodendroglial component in glioblastoma (GBM-O): Is the outcome favourable than glioblastoma?

    PubMed

    Goda, Jayant S; Lewis, Shirley; Agarwal, Aditi; Epari, Sridhar; Churi, Shraddha; Padmavati, A; Gupta, Tejpal; Shetty, Prakash; Moiyadi, Aliasgar; Jalali, Rakesh

    2015-08-01

    Prognosis of patients with glioblastoma with oligodendroglial component (GBM-O) is not well defined. We report our experience of patients of GBM-O treated at our center. Between January 2007 and August 2013, out of 817 consecutive patients with glioblastoma (GBM), 74 patients with GBM-O were identified in our prospectively maintained database. An experienced neuropathologist revaluated the histopathology of all these 74 patients and the diagnosis of GBM-O was eventually confirmed in 57 patients. Patients were uniformly treated with maximal safe resection followed by focal radiotherapy with concurrent and adjuvant temozolamide (TMZ). At a median follow up of 16 months, median overall survival (OS) and progression free survival (PFS) of the entire cohort was 23 months and 13 months respectively. Near total excision was performed in 30/57 (52.6%). On univariate analysis, age < 50 years was a significant favourable prognostic factor for OS (p = 0.009) and PFS (p = 0.017), while patients with near total resection had a significantly better PFS (p = 0.017), patients who completed a minimum of 6 cycles of adjuvant TMZ had significantly better OS (p = 0.000) and PFS (p = 0.003). On multivariate analysis, none of the above factors were significant except for patient who had completed a minimum of 6 cycles of TMZ (OS; p = 0.000 & PFS; p = 0.015). A comparative analysis of GBM-O patients with a similarly treated cohort of 105 GBM patients during the same period revealed significantly better median OS in favour of GBM-O (p = 0.01). Our experience suggests patients with GBM-O have a more favourable clinical outcome as compared to GBM. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. 21 CFR 582.99 - Adjuvants for pesticide chemicals.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Adjuvants for pesticide chemicals. 582.99 Section 582.99 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED... § 582.99 Adjuvants for pesticide chemicals. Adjuvants, identified and used in accordance with 40 CFR 180...

  9. 21 CFR 582.99 - Adjuvants for pesticide chemicals.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Adjuvants for pesticide chemicals. 582.99 Section 582.99 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED... § 582.99 Adjuvants for pesticide chemicals. Adjuvants, identified and used in accordance with 40 CFR 180...

  10. 21 CFR 582.99 - Adjuvants for pesticide chemicals.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Adjuvants for pesticide chemicals. 582.99 Section 582.99 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED... § 582.99 Adjuvants for pesticide chemicals. Adjuvants, identified and used in accordance with 40 CFR 180...

  11. 21 CFR 582.99 - Adjuvants for pesticide chemicals.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Adjuvants for pesticide chemicals. 582.99 Section 582.99 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED... § 582.99 Adjuvants for pesticide chemicals. Adjuvants, identified and used in accordance with 40 CFR 180...

  12. 21 CFR 582.99 - Adjuvants for pesticide chemicals.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Adjuvants for pesticide chemicals. 582.99 Section 582.99 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED... § 582.99 Adjuvants for pesticide chemicals. Adjuvants, identified and used in accordance with 40 CFR 180...

  13. Novel Adjuvants and Immunomodulators for Veterinary Vaccines.

    PubMed

    Heegaard, Peter M H; Fang, Yongxiang; Jungersen, Gregers

    2016-01-01

    Adjuvants are crucial for efficacy of vaccines, especially subunit and recombinant vaccines. Rational vaccine design, including knowledge-based and molecularly defined adjuvants tailored for directing and potentiating specific types of host immune responses towards the antigens included in the vaccine is becoming a reality with our increased understanding of innate and adaptive immune activation. This will allow future vaccines to induce immune reactivity having adequate specificity as well as protective and recallable immune effector mechanisms in appropriate body compartments, including mucosal surfaces. Here we describe these new developments and, when possible, relate new immunological knowledge to the many years of experience with traditional, empirical adjuvants. Finally, some protocols are given for production of emulsion (oil-based) and liposome-based adjuvant/antigen formulations.

  14. Glioma Cell Death Induced by Irradiation or Alkylating Agent Chemotherapy Is Independent of the Intrinsic Ceramide Pathway

    PubMed Central

    Gramatzki, Dorothee; Herrmann, Caroline; Happold, Caroline; Becker, Katrin Anne; Gulbins, Erich; Weller, Michael; Tabatabai, Ghazaleh

    2013-01-01

    Background/Aims Resistance to genotoxic therapy is a characteristic feature of glioma cells. Acid sphingomyelinase (ASM) hydrolyzes sphingomyelin to ceramide and glucosylceramide synthase (GCS) catalyzes ceramide metabolism. Increased ceramide levels have been suggested to enhance chemotherapy-induced death of cancer cells. Methods Microarray and clinical data for ASM and GCS in astrocytomas WHO grade II–IV were acquired from the Rembrandt database. Moreover, the glioblastoma database of the Cancer Genome Atlas network (TCGA) was used for survival data of glioblastoma patients. For in vitro studies, increases in ceramide levels were achieved either by ASM overexpression or by the GCS inhibitor DL-threo-1-phenyl-2-palmitoylamino-3-morpholino-1-propanol (PPMP) in human glioma cell lines. Combinations of alkylating chemotherapy or irradiation and ASM overexpression, PPMP or exogenous ceramide were applied in parental cells. The anti-glioma effects were investigated by assessing proliferation, metabolic activity, viability and clonogenicity. Finally, viability and clonogenicity were assessed in temozolomide (TMZ)-resistant cells upon treatment with PPMP, exogenous ceramide, alkylating chemotherapy, irradiation or their combinations. Results Interrogations from the Rembrandt and TCGA database showed a better survival of glioblastoma patients with low expression of ASM or GCS. ASM overexpression or PPMP treatment alone led to ceramide accumulation but did not enhance the anti-glioma activity of alkylating chemotherapy or irradiation. PPMP or exogenous ceramide induced acute cytotoxicity in glioblastoma cells. Combined treatments with chemotherapy or irradiation led to additive, but not synergistic effects. Finally, no synergy was found when TMZ-resistant cells were treated with exogenous ceramide or PPMP alone or in combination with TMZ or irradiation. Conclusion Modulation of intrinsic glioma cell ceramide levels by ASM overexpression or GCS inhibition does not

  15. Microtubule actin cross-linking factor 1, a novel target in glioblastoma.

    PubMed

    Afghani, Najlaa; Mehta, Toral; Wang, Jialiang; Tang, Nan; Skalli, Omar; Quick, Quincy A

    2017-01-01

    Genetic heterogeneity is recognized as a major contributing factor of glioblastoma resistance to clinical treatment modalities and consequently low overall survival rates. This genetic diversity results in variations in protein expression, both intratumorally and between individual glioblastoma patients. In this regard, the spectraplakin protein, microtubule actin cross-linking factor 1 (MACF1), was examined in glioblastoma. An expression analysis of MACF1 in various types of brain tumor tissue revealed that MACF1 was predominately present in grade III-IV astroctyomas and grade IV glioblastoma, but not in normal brain tissue, normal human astrocytes and lower grade brain tumors. Subsequent genetic inhibition experiments showed that suppression of MACF1 selectively inhibited glioblastoma cell proliferation and migration in cell lines established from patient derived xenograft mouse models and immortalized glioblastoma cell lines that were associated with downregulation of the Wnt-signaling mediators, Axin1 and β-catenin. Additionally, concomitant MACF1 silencing with the chemotherapeutic agent temozolomide (TMZ) used for the clinical treatment of glioblastomas cooperatively reduced the proliferative capacity of glioblastoma cells. In conclusion, the present study represents the first investigation on the functional role of MACF1 in tumor cell biology, as well as demonstrates its potential as a unique biomarker that can be targeted synergistically with TMZ as part of a combinatorial therapeutic approach for the treatment of genetically multifarious glioblastomas.

  16. Proteomics analysis of melanoma metastases: association between S100A13 expression and chemotherapy resistance

    PubMed Central

    Azimi, A; Pernemalm, M; Frostvik Stolt, M; Hansson, J; Lehtiö, J; Egyházi Brage, S; Hertzman Johansson, C

    2014-01-01

    Background: Disseminated cutaneous malignant melanoma (CMM) is commonly unresponsive to standard chemotherapies, and there are as yet no predictive markers of therapy response. Methods: In the present study we collected fresh-frozen pretreatment lymph-node metastasis samples (n=14) from melanoma patients with differential response to dacarbazine (DTIC) or temozolomide (TMZ) chemotherapy, to identify proteins with an impact on treatment response. We performed quantitative protein profiling using tandem mass spectrometry and compared the proteome differences between responders (R) and non-responders (NR), matched for age, gender and histopathological type of CMM. Results: Biological pathway analyses showed several signalling pathways differing between R vs NR, including Rho signalling. Gene expression profiling data was available for a subset of the samples, and the results were compared with the proteomics data. Four proteins with differential expression between R and NR were selected for technical validation by immunoblotting (ISYNA1, F13A1, CSTB and S100A13), and CSTB and S100A13 were further validated on a larger sample set by immunohistochemistry (n=48). The calcium binding protein S100A13 was found to be significantly overexpressed in NR compared with R in all analyses performed. Conclusions: Our results suggest that S100A13 is involved in CMM resistance to DTIC/TMZ. PMID:24722184

  17. Tumour cell dormancy as a contributor to the reduced survival of GBM patients who received standard therapy.

    PubMed

    Tong, Luqing; Yi, Li; Liu, Peidong; Abeysekera, Iruni Roshanie; Hai, Long; Li, Tao; Tao, Zhennan; Ma, Haiwen; Xie, Yang; Huang, Yubao; Yu, Shengping; Li, Jiabo; Yuan, Feng; Yang, Xuejun

    2018-07-01

    Glioblastoma multiforme (GBM) is a fatal cancer with varying life expectancy, even for patients undergoing the same standard therapy. Identification of differentially expressed genes in GBM patients with different survival rates may benefit the development of effective therapeutic strategies. In the present study, key pathways and genes correlated with survival in GBM patients were screened with bioinformatic analysis. Included in the study were 136 eligible patients who had undertaken surgical resection of GBM followed by temozolomide (TMZ) chemoradiation and long-term therapy with TMZ. A total of 383 differentially expressed genes (DEGs) related to GBM survival were identified. Gene Ontology and pathway enrichment analysis as well as hub gene screening and module analysis were performed. As expected, angiogenesis and migration of GBM cells were closely correlated with a poor prognosis. Importantly, the results also indicated that cell dormancy was an essential contributor to the reduced survival of GBM patients. Given the lack of specific targeted genes and pathways known to be involved in tumour cell dormancy, we proposed enriched candidate genes related to the negative regulation of cell proliferation, signalling pathways regulating pluripotency of stem cells and neuroactive ligand-receptor interaction, and 3 hub genes (FTH1, GRM1 and DDIT3). Maintaining persistent cell dormancy or preventing tumour cells from entering dormancy during chemoradiation should be a promising therapeutic strategy.

  18. Mustard-inspired delivery shuttle for enhanced blood-brain barrier penetration and effective drug delivery in glioma therapy.

    PubMed

    Wang, Nan; Sun, Pei; Lv, Mingming; Tong, Gangsheng; Jin, Xin; Zhu, Xinyuan

    2017-05-02

    Effective penetration through the blood-brain barrier (BBB) remains a challenge for the treatment of many brain diseases. In this study, a small molecule, sinapic acid (SA), extracted from mustard, was selected as a novel bioinspired BBB-permeable ligand for efficient drug delivery in glioma treatment. SA was conjugated on the surface of zwitterionic polymer poly(2-methacryloyloxyethyl phosphorylcholine) (PMPC)-encapsulated bovine serum albumin (BSA)-based nanoparticles, yielding nBSA-SA. The PMPC shell serves as a protective layer to prolong the in vivo blood circulation time with a better chance to cross the BBB. Furthermore, temozolomide (TMZ), which can be loaded onto the nanoparticles via electrostatic interactions with acrylic acid (AA) to generate AA-nBSA-SA-TMZ, was applied as an excellent chemotherapeutic drug for glioma therapy. The obtained nanoparticles with a distinct size show great BBB permeability. Through the mechanism study, it was found that the cell internalization of the SA-conjugated nanoparticles is an energy-dependent process with only transient disruption of the BBB. The biological evaluation results unambiguously suggest that drug-loaded nanoparticles can lead to strong apoptosis on the tumor site and increase the median survival time of glioma-bearing mice. Overall, this novel BBB-permeable ligand SA paves the way for the delivery of cargo into the brain and provides a powerful nanoplatform for glioma therapy via intravenous administration.

  19. Triggering of the TRPV2 channel by cannabidiol sensitizes glioblastoma cells to cytotoxic chemotherapeutic agents.

    PubMed

    Nabissi, Massimo; Morelli, Maria Beatrice; Santoni, Matteo; Santoni, Giorgio

    2013-01-01

    The aggressive behavior of Glioblastoma multiforme (GBM) is mainly due to high invasiveness and proliferation rate as well as to high resistance to standard chemotherapy. Several chemotherapeutic agents like temozolomide (TMZ), carmustine (BCNU) or doxorubicin (DOXO) have been employed for treatment of GBM, but they display limited efficacy. Therefore, it is important to identify new treatment modalities to improve therapeutic effects and enhance GBM chemosensitivity. Recently, activation of the transient receptor potential vanilloid type 2 (TRPV2) has been found to inhibit human GBM cell proliferation and overcome BCNU resistance of GBM cells. Herein, we evaluated the involvement of cannabidiol (CBD)-induced TRPV2 activation, in the modulation of glioma cell chemosensitivity to TMZ, BCNU and DOXO. We found that CBD increases TRPV2 expression and activity. CBD by triggering TRPV2-dependent Ca(2+) influx increases drug uptake and synergizes with cytotoxic agents to induce apoptosis of glioma cells, whereas no effects were observed in normal human astrocytes. Moreover, as the pore region of transient receptor potential (TRP) channels is critical for ion channel permeation, we demonstrated that deletion of TRPV2 poredomain inhibits CBD-induced Ca(2+) influx, drug uptake and cytotoxic effects. Overall, we demonstrated that co-administration of cytotoxic agents together with the TRPV2 agonist CBD increases drug uptake and parallelly potentiates cytotoxic activity in human glioma cells.

  20. Adjuvant therapy for advanced renal cell carcinoma.

    PubMed

    Meissner, Matthew A; McCormick, Barrett Z; Karam, Jose A; Wood, Christopher G

    2018-07-01

    Locally advanced, non-metastatic renal cell carcinoma (RCC) is conventionally managed with surgery. However, patients are at a high risk of RCC recurrence and have poor survival outcomes. An effective adjuvant systemic treatment is needed to improve on these outcomes. Targeted molecular and immune-based therapies have been investigated, or are under investigation, but their role in this setting remains unclear. Areas covered: A comprehensive search of PubMed and ClinicalTrials.gov was performed for relevant literature. The following topics pertinent to adjuvant therapy in RCC were evaluated: strategies for patient selection, cytokine-based immunotherapy, vaccine therapy, VEGF and non-VEGF targeted molecular agents, and immune checkpoint inhibitors. Expert commentary: Strong evidence for the incorporation of adjuvant therapy in high-risk RCC is lacking. Multiple targeted molecular therapies have been examined with only one approved for use. Genetic and molecular-based prognostic models are needed to determine who may benefit from adjuvant therapy. Developing adjuvant therapy strategies in the future depends on the results of important ongoing trials with immunotherapy and targeted agents.

  1. Vaccine Adjuvants: from 1920 to 2015 and Beyond

    PubMed Central

    Di Pasquale, Alberta; Preiss, Scott; Tavares Da Silva, Fernanda; Garçon, Nathalie

    2015-01-01

    The concept of stimulating the body’s immune response is the basis underlying vaccination. Vaccines act by initiating the innate immune response and activating antigen presenting cells (APCs), thereby inducing a protective adaptive immune response to a pathogen antigen. Adjuvants are substances added to vaccines to enhance the immunogenicity of highly purified antigens that have insufficient immunostimulatory capabilities, and have been used in human vaccines for more than 90 years. While early adjuvants (aluminum, oil-in-water emulsions) were used empirically, rapidly increasing knowledge on how the immune system interacts with pathogens means that there is increased understanding of the role of adjuvants and how the formulation of modern vaccines can be better tailored towards the desired clinical benefit. Continuing safety evaluation of licensed vaccines containing adjuvants/adjuvant systems suggests that their individual benefit-risk profile remains favorable. Adjuvants contribute to the initiation of the innate immune response induced by antigens; exemplified by inflammatory responses at the injection site, with mostly localized and short-lived effects. Activated effectors (such as APCs) then move to draining lymph nodes where they direct the type, magnitude and quality of the adaptive immune response. Thus, the right match of antigens and adjuvants can potentiate downstream adaptive immune responses, enabling the development of new efficacious vaccines. Many infectious diseases of worldwide significance are not currently preventable by vaccination. Adjuvants are the most advanced new technology in the search for new vaccines against challenging pathogens and for vulnerable populations that respond poorly to traditional vaccines. PMID:26343190

  2. Update on adjuvant chemotherapy for early breast cancer.

    PubMed

    Rampurwala, Murtuza M; Rocque, Gabrielle B; Burkard, Mark E

    2014-01-01

    Breast cancer is the second most common cancer in women worldwide. Although most women are diagnosed with early breast cancer, a substantial number recur due to persistent micro-metastatic disease. Systemic adjuvant chemotherapy improves outcomes and has advanced from first-generation regimens to modern dose-dense combinations. Although chemotherapy is the cornerstone of adjuvant therapy, new biomarkers are identifying patients who can forego such treatment. Neo-adjuvant therapy is a promising platform for drug development, but investigators should recognize the limitations of surrogate endpoints and clinical trials. Previous decades have focused on discovering, developing, and intensifying adjuvant chemotherapy. Future efforts should focus on customizing therapy and reducing chemotherapy for patients unlikely to benefit. In some cases, it may be possible to replace chemotherapy with treatments directed at specific genetic or molecular breast cancer subtypes. Yet, we anticipate that chemotherapy will remain a critical component of adjuvant therapy for years to come.

  3. Concurrent radiotherapy with temozolomide vs. concurrent radiotherapy with a cisplatinum-based polychemotherapy regimen : Acute toxicity in pediatric high-grade glioma patients.

    PubMed

    Seidel, Clemens; von Bueren, André O; Bojko, Sabrina; Hoffmann, Marion; Pietsch, Torsten; Gielen, Gerrit H; Warmuth-Metz, Monika; Bison, Brigitte; Kortmann, Rolf-D; Kramm, Christof M

    2018-03-01

    As the efficacy of all pediatric high-grade glioma (HGG) treatments is similar and still disappointing, it is essential to also investigate the toxicity of available treatments. Prospectively recorded hematologic and nonhematologic toxicities of children treated with radiochemotherapy in the HIT GBM-C/D and HIT-HGG-2007 trials were compared. Children aged 3-18 years with histologically proven HGG (WHO grade III and IV tumors) or unequivocal radiologic diagnosis of diffuse intrinsic pontine glioma (DIPG) were included in these trials. The HIT-HGG-2007 protocol comprised concomitant radiochemotherapy with temozolomide, while cisplatinum/etoposide (PE) and PE plus ifosfamide (PEI) in combination with weekly vincristine injections were applied during radiochemotherapy in the HIT GBM-C/D protocol. Regular blood counts and information about cellular nadirs were available from 304 patients (leukocytes) and 306 patients (thrombocytes), respectively. Grade 3-4 leukopenia was much more frequent in the HIT GBM-C/D cohort (n = 88, 52%) vs. HIT-HGG-2007 (n = 13, 10%; P <0.001). Grade 3-4 thrombopenia was also more likely in the HIT GBM-C/D cohort (n = 21, 12% vs. n = 3,2%; P <0.001). Grade 3-4 leukopenia appeared more often in children aged 3-7 years (n = 38/85, 45%) than in children aged 8-12 years (n = 39/120, 33%) and 13-18 years (24/100, 24%; P =0.034). In addition, sickness was more frequent in the HIT GBM-C/D cohort (grade 1-2: 44%, grade 3-4: 6% vs. grade 1-2: 28%, grade 3-4: 1%; P <0.001). Radiochemotherapy involving cisplatinum-based polychemotherapy is more toxic than radiotherapy in combination with temozolomide. Without evidence of differences in therapeutic efficacy, the treatment with lower toxicity, i. e., radiotherapy with temozolomide should be used.

  4. The MGMT promoter SNP rs16906252 is a risk factor for MGMT methylation in glioblastoma and is predictive of response to temozolomide.

    PubMed

    Rapkins, Robert W; Wang, Fan; Nguyen, HuyTram N; Cloughesy, Timothy F; Lai, Albert; Ha, Wendy; Nowak, Anna K; Hitchins, Megan P; McDonald, Kerrie L

    2015-12-01

    Promoter methylation of O(6)-methylguanine-DNA methyltransferase (MGMT) is an important predictive biomarker in glioblastoma. The T variant of the MGMT promoter-enhancer single nucleotide polymorphism (SNP; rs16906252) has been associated with the presence of MGMT promoter methylation in other cancers. We examined the association of the T allele of rs16906252 with glioblastoma development, tumor MGMT methylation, MGMT protein expression, and survival outcomes. Two independent temozolomide-treated glioblastoma cohorts-one Australian (Australian Genomics and Clinical Outcomes of Glioma, n = 163) and the other American (University of California Los Angeles/Kaiser Permanente Los Angeles, n = 159)-were studied. Allelic bisulphite sequencing was used to determine if methylation was specific to the T allele. Additionally, we compared the incidence of the T allele between glioblastoma cases and matched controls to assess whether it was a risk factor for developing MGMT methylated glioblastoma. Carriage of the T allele of the rs16906252 SNP was associated with both MGMT methylation and low MGMT protein expression and predicted significantly longer survival in temozolomide-treated patients with both MGMT methylated and nonmethylated glioblastoma. Methylation was linked to the T allele, inferring that the T variant plays a key role in the acquisition of MGMT methylation. Carriage of the T allele was associated with a significantly elevated risk of developing glioblastoma (adjusted odds ratio, 1.96; P = .013), increasing further when glioblastoma was classified by the presence of MGMT methylation (adjusted odds ratio, 2.86; P = .001). The T allele of the rs16906252 SNP is a key determinant in the acquisition of MGMT methylation in glioblastoma. Temozolomide-treated patients with the rs16906252 T genotype have better survival, irrespective of tumor methylation status. © The Author(s) 2015. Published by Oxford University Press on behalf of the Society for Neuro-Oncology. All

  5. Adjuvants for veterinary vaccines--types and modes of action.

    PubMed

    Gerdts, Volker

    2015-01-01

    Adjuvants are used to improve the immune response to vaccines. Formulation with adjuvants can result in an earlier onset of immunity, an overall stronger immune response, a specific type of immunity, or a longer duration of immunity to the vaccine. Adjuvants were discovered empirically, and for decades, have been used in both humans and animals without understanding the mechanisms of action. With an improved understanding of the immune system, and in particular the interplay between innate and adaptive immunity, we are now getting better insight into the function of adjuvants. As a result, new adjuvants are being developed that are safe and highly effective for common use in humans and animals, as well as for use in high risk populations such as immunocompromised animals, neonates or very old animals. Furthermore, adjuvants can help to reduce the amount of antigen needed in the vaccine, increase the stability of the vaccine and enable alternatiye administration routes such as needle-free delivery of the vaccine. Here, I will provide an over view of the existing adjuvant technologies for veterinary vaccines and provide an outlook into some of the new technologies in preclinical and clinical development.

  6. An update on safety and immunogenicity of vaccines containing emulsion-based adjuvants.

    PubMed

    Fox, Christopher B; Haensler, Jean

    2013-07-01

    With the exception of alum, emulsion-based vaccine adjuvants have been administered to far more people than any other adjuvant, especially since the 2009 H1N1 influenza pandemic. The number of clinical safety and immunogenicity evaluations of vaccines containing emulsion adjuvants has correspondingly mushroomed. In this review, the authors introduce emulsion adjuvant composition and history before detailing the most recent findings from clinical and postmarketing data regarding the effects of emulsion adjuvants on vaccine immunogenicity and safety, with emphasis on the most widely distributed emulsion adjuvants, MF59® and AS03. The authors also present a summary of other emulsion adjuvants in clinical development and indicate promising avenues for future emulsion-based adjuvant development. Overall, emulsion adjuvants have demonstrated potent adjuvant activity across a number of disease indications along with acceptable safety profiles.

  7. Overview of Vaccine Adjuvants: Introduction, History, and Current Status.

    PubMed

    Shah, Ruchi R; Hassett, Kimberly J; Brito, Luis A

    2017-01-01

    Adjuvants are included in sub-unit or recombinant vaccines to enhance the potency of poorly immunogenic antigens. Adjuvant discovery is as complex as it is a multidiscplinary intersection of formulation science, immunology, toxicology, and biology. Adjuvants such as alum, which have been in use for the past 90 years, have illustrated that adjuvant research is a methodical process. As science advances, new analytical tools are developed which allows us to delve deeper into the various mechanisms that generates a potent immune response. Additionally, these new techniques help the field learn about our existing vaccines and what makes them safe, and effective, allowing us to leverage that in the next generation of vaccines. Our goal in this chapter is to define the concept, need, and mechanism of adjuvants in the vaccine field while describing its history, present use, and future prospects. More details on individual adjuvants and their formulation, development, mechanism, and use will be covered in depth in the next chapters.

  8. True progression versus pseudoprogression in the treatment of glioblastomas: a comparison study of normalized cerebral blood volume and apparent diffusion coefficient by histogram analysis.

    PubMed

    Song, Yong Sub; Choi, Seung Hong; Park, Chul-Kee; Yi, Kyung Sik; Lee, Woong Jae; Yun, Tae Jin; Kim, Tae Min; Lee, Se-Hoon; Kim, Ji-Hoon; Sohn, Chul-Ho; Park, Sung-Hye; Kim, Il Han; Jahng, Geon-Ho; Chang, Kee-Hyun

    2013-01-01

    The purpose of this study was to differentiate true progression from pseudoprogression of glioblastomas treated with concurrent chemoradiotherapy (CCRT) with temozolomide (TMZ) by using histogram analysis of apparent diffusion coefficient (ADC) and normalized cerebral blood volume (nCBV) maps. Twenty patients with histopathologically proven glioblastoma who had received CCRT with TMZ underwent perfusion-weighted imaging and diffusion-weighted imaging (b = 0, 1000 sec/mm(2)). The corresponding nCBV and ADC maps for the newly visible, entirely enhancing lesions were calculated after the completion of CCRT with TMZ. Two observers independently measured the histogram parameters of the nCBV and ADC maps. The histogram parameters between the true progression group (n = 10) and the pseudoprogression group (n = 10) were compared by use of an unpaired Student's t test and subsequent multivariable stepwise logistic regression analysis to determine the best predictors for the differential diagnosis between the two groups. Receiver operating characteristic analysis was employed to determine the best cutoff values for the histogram parameters that proved to be significant predictors for differentiating true progression from pseudoprogression. Intraclass correlation coefficient was used to determine the level of inter-observer reliability for the histogram parameters. The 5th percentile value (C5) of the cumulative ADC histograms was a significant predictor for the differential diagnosis between true progression and pseudoprogression (p = 0.044 for observer 1; p = 0.011 for observer 2). Optimal cutoff values of 892 × 10(-6) mm(2)/sec for observer 1 and 907 × 10(-6) mm(2)/sec for observer 2 could help differentiate between the two groups with a sensitivity of 90% and 80%, respectively, a specificity of 90% and 80%, respectively, and an area under the curve of 0.880 and 0.840, respectively. There was no other significant differentiating parameter on the nCBV histograms. Inter

  9. True Progression versus Pseudoprogression in the Treatment of Glioblastomas: A Comparison Study of Normalized Cerebral Blood Volume and Apparent Diffusion Coefficient by Histogram Analysis

    PubMed Central

    Song, Yong Sub; Park, Chul-Kee; Yi, Kyung Sik; Lee, Woong Jae; Yun, Tae Jin; Kim, Tae Min; Lee, Se-Hoon; Kim, Ji-Hoon; Sohn, Chul-Ho; Park, Sung-Hye; Kim, Il Han; Jahng, Geon-Ho; Chang, Kee-Hyun

    2013-01-01

    Objective The purpose of this study was to differentiate true progression from pseudoprogression of glioblastomas treated with concurrent chemoradiotherapy (CCRT) with temozolomide (TMZ) by using histogram analysis of apparent diffusion coefficient (ADC) and normalized cerebral blood volume (nCBV) maps. Materials and Methods Twenty patients with histopathologically proven glioblastoma who had received CCRT with TMZ underwent perfusion-weighted imaging and diffusion-weighted imaging (b = 0, 1000 sec/mm2). The corresponding nCBV and ADC maps for the newly visible, entirely enhancing lesions were calculated after the completion of CCRT with TMZ. Two observers independently measured the histogram parameters of the nCBV and ADC maps. The histogram parameters between the true progression group (n = 10) and the pseudoprogression group (n = 10) were compared by use of an unpaired Student's t test and subsequent multivariable stepwise logistic regression analysis to determine the best predictors for the differential diagnosis between the two groups. Receiver operating characteristic analysis was employed to determine the best cutoff values for the histogram parameters that proved to be significant predictors for differentiating true progression from pseudoprogression. Intraclass correlation coefficient was used to determine the level of inter-observer reliability for the histogram parameters. Results The 5th percentile value (C5) of the cumulative ADC histograms was a significant predictor for the differential diagnosis between true progression and pseudoprogression (p = 0.044 for observer 1; p = 0.011 for observer 2). Optimal cutoff values of 892 × 10-6 mm2/sec for observer 1 and 907 × 10-6 mm2/sec for observer 2 could help differentiate between the two groups with a sensitivity of 90% and 80%, respectively, a specificity of 90% and 80%, respectively, and an area under the curve of 0.880 and 0.840, respectively. There was no other significant differentiating parameter on

  10. Multifuntional Nanotherapeutics for the Combinatorial Drug and Gene Therapy in the Treatment of Glioblastoma Multiforme

    NASA Astrophysics Data System (ADS)

    Hourigan, Breanne

    Glioblastoma multiforme (GBM), a grade IV glioma, is the most common primary brain tumor, affecting about 3 out of 100,000 persons per year in the United States. GBM accounts for about 80% of primary malignant brain tumors, and is also the most aggressive of malignant brain tumors. With exhaustive treatment, survival only averages between 12 and 15 months, with a 2-year survival rate less than 25%. New therapeutic strategies are necessary to improve the outcomes of this disease. Chemotherapy with temozolomide (TMZ), a DNA alkylating agent, is used as a first-line of treatment for GBM. However, GBM tumors develop resistance to TMZ over time due to increased expression of O6-methylguanine-DNA methyltransferase (MGMT), a gene responsible for DNA repair. We previously developed cationic, amphiphilic copolymer poly(lactide-co-glycolide)-g-polyethylenimine (PgP) and demonstrated its utility for nucleic acid delivery. Here, we examine the ability of PgP polyplexes to overcome TMZ resistance and improve therapeutic efficacy through combination drug and gene therapy for GBM treatment. In this study, we evaluated the ability of PgP to deliver siRNA targeting to MGMT (siMGMT), a gene responsible for drug resistance in GBM. Our results demonstrated that PgP effectively forms stable complex with siRNA and protects siRNAs from heparin competition assay, serum- and ribonuclease-mediated degradation, confirming the potential of the polyplex for in vivo delivery. Results from MTT assays showed that PgP/siRNA polyplexes exhibited minimal cytotoxicity compared to untreated cells when incubated with T98G human GBM cells. We also demonstrated that PgP/siMGMT polyplexes mediate knockdown of MGMT protein as well as a significant ˜56% and ˜68% knockdown of MGMT mRNA in T98G GBM cells compared to cells treated with PgP complexed with non-targeting siRNA (siNT) at a 60:1 and 80:1 nitrogen:phosphate (N:P) ratio, respectively. Further, co-incubation of PgP/siMGMT polyplexes with TMZ

  11. Antibody-Antigen-Adjuvant Conjugates Enable Co-Delivery of Antigen and Adjuvant to Dendritic Cells in Cis but Only Have Partial Targeting Specificity

    PubMed Central

    Abuknesha, Ram; Uematsu, Satoshi; Akira, Shizuo; Nestle, Frank O.; Diebold, Sandra S.

    2012-01-01

    Antibody-antigen conjugates, which promote antigen-presentation by dendritic cells (DC) by means of targeted delivery of antigen to particular DC subsets, represent a powerful vaccination approach. To ensure immunity rather than tolerance induction the co-administration of a suitable adjuvant is paramount. However, co-administration of unlinked adjuvant cannot ensure that all cells targeted by the antibody conjugates are appropriately activated. Furthermore, antigen-presenting cells (APC) that do not present the desired antigen are equally strongly activated and could prime undesired responses against self-antigens. We, therefore, were interested in exploring targeted co-delivery of antigen and adjuvant in cis in form of antibody-antigen-adjuvant conjugates for the induction of anti-tumour immunity. In this study, we report on the assembly and characterization of conjugates consisting of DEC205-specific antibody, the model antigen ovalbumin (OVA) and CpG oligodeoxynucleotides (ODN). We show that such conjugates are more potent at inducing cytotoxic T lymphocyte (CTL) responses than control conjugates mixed with soluble CpG. However, our study also reveals that the nucleic acid moiety of such antibody-antigen-adjuvant conjugates alters their binding and uptake and allows delivery of the antigen and the adjuvant to cells partially independently of DEC205. Nevertheless, antibody-antigen-adjuvant conjugates are superior to antibody-free antigen-adjuvant conjugates in priming CTL responses and efficiently induce anti-tumour immunity in the murine B16 pseudo-metastasis model. A better understanding of the role of the antibody moiety is required to inform future conjugate vaccination strategies for efficient induction of anti-tumour responses. PMID:22808118

  12. Cell Recruitment and Cytokines in Skin Mice Sensitized with the Vaccine Adjuvants: Saponin, Incomplete Freund’s Adjuvant, and Monophosphoryl Lipid A

    PubMed Central

    Vitoriano-Souza, Juliana; Moreira, Nádia das Dores; Teixeira-Carvalho, Andréa; Carneiro, Cláudia Martins; Siqueira, Fernando Augusto Mathias; Vieira, Paula Melo de Abreu; Giunchetti, Rodolfo Cordeiro; Moura, Sandra Aparecida de Lima; Fujiwara, Ricardo Toshio; Melo, Maria Norma; Reis, Alexandre Barbosa

    2012-01-01

    Vaccine adjuvants are substances associated with antigens that are fundamental to the formation of an intense, durable, and fast immune response. In this context, the use of vaccine adjuvants to generate an effective cellular immune response is crucial for the design and development of vaccines against visceral leishmaniasis. The objective of this study was to evaluate innate inflammatory response induced by the vaccine adjuvants saponin (SAP), incomplete Freund’s adjuvant (IFA), and monophosphoryl lipid A (MPL). After a single dose of adjuvant was injected into the skin of mice, we analyzed inflammatory reaction, selective cell migration, and cytokine production at the injection site, and inflammatory cell influx in the peripheral blood. We found that all vaccine adjuvants were able to promote cell recruitment to the site without tissue damage. In addition, they induced selective migration of neutrophils, macrophages, and lymphocytes. The influx of neutrophils was notable at 12 h in all groups, but at other time points it was most evident after inoculation with SAP. With regard to cytokines, the SAP led to production of interleukin (IL)-2, IL-6, and IL-4. IFA promoted production of tumor necrosis factor (TNF)-α, interferon (IFN)-γ, IL-6, IL-17, IL-4, and IL-10. We also observed that MPL induced high production of IL-2, TNF-α, and IFN-γ, in addition to IL-6, IL-17, and IL-10. In peripheral blood, values of certain cell populations in the local response changed after stimulation. Our data demonstrate that the three vaccine adjuvants stimulate the early events of innate immune response at the injection site, suggesting their ability to increase the immunogenicity of co-administered antigens. Moreover, this work provides relevant information about elements of innate and acquired immune response induced by vaccine adjuvants administered alone. PMID:22829882

  13. Towards an understanding of the adjuvant action of aluminium

    PubMed Central

    Marrack, Philippa; McKee, Amy S.; Munks, Michael W.

    2011-01-01

    The efficacy of vaccines depends on the presence of an adjuvant in conjunction with the antigen. Of these adjuvants, the ones that contain aluminium, which were first discovered empirically in 1926, are currently the most widely used. However, a detailed understanding of their mechanism of action has only started to be revealed. In this Timeline article, we briefly describe the initial discovery of aluminium adjuvants and discuss historically important advances. We also summarize recent progress in the field and discuss their implications and the remaining questions on how these adjuvants work. PMID:19247370

  14. Phase I study of temozolomide in paediatric patients with advanced cancer. United Kingdom Children's Cancer Study Group.

    PubMed Central

    Estlin, E. J.; Lashford, L.; Ablett, S.; Price, L.; Gowing, R.; Gholkar, A.; Kohler, J.; Lewis, I. J.; Morland, B.; Pinkerton, C. R.; Stevens, M. C.; Mott, M.; Stevens, R.; Newell, D. R.; Walker, D.; Dicks-Mireaux, C.; McDowell, H.; Reidenberg, P.; Statkevich, P.; Marco, A.; Batra, V.; Dugan, M.; Pearson, A. D.

    1998-01-01

    A phase I study of temozolomide administered orally once a day, on 5 consecutive days, between 500 and 1200 mg m(-2) per 28-day cycle was performed. Children were stratified according to prior craniospinal irradiation or nitrosourea therapy. Sixteen of 20 patients who had not received prior craniospinal irradiation or nitrosourea therapy were evaluable. Myelosuppression was dose limiting, with Common Toxicity Criteria (CTC) grade 4 thrombocytopenia occurring in one of six patients receiving 1000 mg m(-2) per cycle, and two of four patients treated at 1200 mg m(-2) per cycle. Therefore, the maximum-tolerated dose (MTD) was 1000 mg m(-2) per cycle. The MTD was not defined for children with prior craniospinal irradiation because of poor recruitment. Plasma pharmacokinetic analyses showed temozolomide to be rapidly absorbed and eliminated, with linear increases in peak plasma concentrations and systemic exposure with increasing dose. Responses (CR and PR) were seen in two out of five patients with high-grade astrocytomas, and one patient had stable disease. One of ten patients with diffuse intrinsic brain stem glioma achieved a long-term partial response, and a further two patients had stable disease. Therefore, the dose recommended for phase II studies in patients who have not received prior craniospinal irradiation or nitrosoureas is 1000 mg m(-2) per cycle. Further evaluation in diffuse intrinsic brain stem gliomas and other high-grade astrocytomas is warranted. Images Figure 5 p658-b Figure 6 p659-b PMID:9744506

  15. Combinations of PARP Inhibitors with Temozolomide Drive PARP1 Trapping and Apoptosis in Ewing’s Sarcoma

    PubMed Central

    Pshenichnaya, Irina; Kogera, Fiona A.; Barthorpe, Syd; Mironenko, Tatiana; Richardson, Laura; Benes, Cyril H.; Stratton, Michael R.; McDermott, Ultan; Jackson, Stephen P.; Garnett, Mathew J.

    2015-01-01

    Ewing’s sarcoma is a malignant pediatric bone tumor with a poor prognosis for patients with metastatic or recurrent disease. Ewing’s sarcoma cells are acutely hypersensitive to poly (ADP-ribose) polymerase (PARP) inhibition and this is being evaluated in clinical trials, although the mechanism of hypersensitivity has not been directly addressed. PARP inhibitors have efficacy in tumors with BRCA1/2 mutations, which confer deficiency in DNA double-strand break (DSB) repair by homologous recombination (HR). This drives dependence on PARP1/2 due to their function in DNA single-strand break (SSB) repair. PARP inhibitors are also cytotoxic through inhibiting PARP1/2 auto-PARylation, blocking PARP1/2 release from substrate DNA. Here, we show that PARP inhibitor sensitivity in Ewing’s sarcoma cells is not through an apparent defect in DNA repair by HR, but through hypersensitivity to trapped PARP1-DNA complexes. This drives accumulation of DNA damage during replication, ultimately leading to apoptosis. We also show that the activity of PARP inhibitors is potentiated by temozolomide in Ewing’s sarcoma cells and is associated with enhanced trapping of PARP1-DNA complexes. Furthermore, through mining of large-scale drug sensitivity datasets, we identify a subset of glioma, neuroblastoma and melanoma cell lines as hypersensitive to the combination of temozolomide and PARP inhibition, potentially identifying new avenues for therapeutic intervention. These data provide insights into the anti-cancer activity of PARP inhibitors with implications for the design of treatment for Ewing’s sarcoma patients with PARP inhibitors. PMID:26505995

  16. Analysis of expression and prognostic significance of vimentin and the response to temozolomide in glioma patients.

    PubMed

    Lin, Lin; Wang, Guangzhi; Ming, Jianguang; Meng, Xiangqi; Han, Bo; Sun, Bo; Cai, Jinquan; Jiang, Chuanlu

    2016-11-01

    Gliomas are the most common primary intracranial malignant tumors in adults. Surgical resection followed by optional radiotherapy and chemotherapy is the current standard therapy for glioma patients. Vimentin, a protein of intermediate filament family, could maintain the cellular integrity and participate in several cell signal pathways to modulate the motility and invasion of cancer cells. The purpose of the present research was to identify the relationship between vimentin expression and clinical characteristics and detect the prognostic and predictive ability of vimentin in patients with glioma. To determine the expression of vimentin in glioma tissues, paraffin-embedded blocks from glioma patients by surgical resection were obtained and evaluated by immunohistochemistry. To further investigate the association of vimentin expression with survival, we employed mRNA expression of vimentin genes from the Chinese Glioma Genome Atlas (CGGA) and the GSE 16011 dataset. Kaplan-Meier analysis and Cox regression model were used to statistical analysis. We detected positive vimentin straining in 84 % of high-grade compared to 47 % in low-grade glioma patients. Additionally, vimentin mRNA expression was correlated with glioma grade in both CGGA and GSE16011 dataset. Patients with low vimentin expression have longer survival than high expression. In multivariate analysis, vimentin was an independent significant prognostic factor for high-grade glioma patients. We also identified that glioblastoma patients with low vimentin expression had a better response to temozolomide therapy. Vimentin expression has a significant association with tumor grade and overall survival of high-grade glioma patients. Low vimentin expression may benefit from temozolomide therapy.

  17. Adjuvant chemotherapy in lymph node positive bladder cancer.

    PubMed

    Gofrit, Ofer N; Stadler, Walter M; Zorn, Kevin C; Lin, Shang; Silvestre, Josephine; Shalhav, Arieh L; Zagaja, Gregory P; Steinberg, Gary D

    2009-01-01

    Lymph node-positive bladder cancer is a systemic disease in the majority of patients. Adjuvant chemotherapy given shortly after surgery, when tumor burden is low, seems reasonable, yet there is no proof that it improves survival. In this retrospective study, we compare the outcomes of patients with microscopic lymph node positive bladder cancer (pN1 or pN2) treated with radical cystectomy followed by adjuvant chemotherapy and those who declined chemotherapy. Sixty-seven patients with lymph node positive bladder cancer (26 pN1 and 41 pN2) who underwent radical cystectomy between April 1995 and April 2005 were reviewed. Combined adjuvant chemotherapy (gemcitabine and cisplatin in most patients) was given to 35 patients (52%), but declined by 32 (48%). The two groups were similar in performance status, postoperative complication rate, and N stage but deferring patients were on average 5 years older and had a more advanced T stage. Study primary endpoint was overall survival (OS). Adjuvant chemotherapy was well tolerated and 28/35 patients (80%) completed all 4 cycles. Median OS of patients given adjuvant chemotherapy was 48 months compared with 8 months for declining patients (hazard ratio 0.13, 95% CI 0.04-0.4, P < 0.0001). Multivariate age adjusted analysis showed that adjuvant chemotherapy was an independent factor affecting OS (hazard ratio 0.2, P < 0.0001). This study supports the use of adjuvant chemotherapy after radical cystectomy in patients with node positive bladder cancer. Study design and patient imbalances make it impossible to draw definitive conclusions.

  18. Diatoms and diatomaceous earth as novel poultry vaccine adjuvants.

    PubMed

    Nazmi, A; Hauck, R; Davis, A; Hildebrand, M; Corbeil, L B; Gallardo, R A

    2017-02-01

    Diatoms are single cell eukaryotic microalgae; their surface possesses a porous nanostructured silica cell wall or frustule. Diatomaceous earth (DE) or diatomite is a natural siliceous sediment of diatoms. Since silica has been proved to have adjuvant capabilities, we propose that diatoms and DE may provide an inexpensive and abundant source of adjuvant readily available to use in livestock vaccines.In a first experiment, the safety of diatoms used as an adjuvant for in-ovo vaccination was investigated. In a second experiment, we assessed the humoral immune response after one in-ovo vaccination with inactivated Newcastle Disease Virus (NDV) and DE as adjuvant followed by 2 subcutaneous boosters on d 21 and 29 of age. In both experiments, results were compared to Freund's incomplete adjuvant and aluminum hydroxide.No detrimental effects on hatchability and chick quality were detected after in-ovo inoculation of diatoms and DE in experiments 1 and 2 respectively. In experiment 2 no humoral responses were detected after the in-ovo vaccination until 29 d of age. Seven d after the second subcutaneous booster an antibody response against NDV was detected in chickens that had received vaccines adjuvanted with Freund's incomplete adjuvant, aluminum hydroxide, and DE. These responses became significantly higher 10 d after the second booster. Finally, 15 d after the second booster, the humoral responses induced by the vaccine with Freund's incomplete adjuvant were statistically higher, followed by comparable responses induced by vaccines containing DE or aluminum hydroxide that were significantly higher than DE+PBS, PBS+INDV and PBS alone. From an applied perspective, we can propose that DE can serve as a potential adjuvant for vaccines against poultry diseases. Published by Oxford University Press on behalf of Poultry Science Association 2016. This work is written by (a) US Government employee(s) and is in the public domain in the US.

  19. Adjuvants for Vaccines to Drugs of Abuse and Addiction

    PubMed Central

    Alving, Carl R.; Matyas, Gary R.; Torres, Oscar; Jalah, Rashmi; Beck, Zoltan

    2015-01-01

    Immunotherapeutic vaccines to drugs of abuse, including nicotine, cocaine, heroin, oxycodone, methamphetamine, and others are being developed. The theoretical basis of such vaccines is to induce antibodies that sequester the drug in the blood in the form of antibody-bound drug that cannot cross the blood brain barrier, thereby preventing psychoactive effects. Because the drugs are haptens a successful vaccine relies on development of appropriate hapten-protein carrier conjugates. However, because induction of high and prolonged levels of antibodies is required for an effective vaccine, and because injection of T-independent haptenic drugs of abuse does not induce memory recall responses, the role of adjuvants during immunization plays a critical role. As reviewed herein, preclinical studies often use strong adjuvants such as complete and incomplete Freund's adjuvant and others that cannot be, or in the case of many newer adjuvants, have never been, employed in humans. Balanced against this, the only adjuvant that has been included in candidate vaccines in human clinical trials to nicotine and cocaine has been aluminum hydroxide gel. While aluminum salts have been widely utilized worldwide in numerous licensed vaccines, the experience with human responses to aluminum salt-adjuvanted vaccines to haptenic drugs of abuse has suggested that the immune responses are too weak to allow development of a successful vaccine. What is needed is an adjuvant or combination of adjuvants that are safe, potent, widely available, easily manufactured, and cost-effective. Based on our review of the field we recommend the following adjuvant combinations either for research or for product development for human use: aluminum salt with adsorbed monophosphoryl lipid A (MPLA); liposomes containing MPLA [L(MPLA)]; L(MPLA) adsorbed to aluminum salt; oil-in-water emulsion; or oil-in-water emulsion containing MPLA. PMID:25111169

  20. Production, purification and immunogenicity of recombinant Ebola virus proteins - A comparison of Freund's adjuvant and adjuvant system 03.

    PubMed

    Melén, Krister; Kakkola, Laura; He, Felix; Airenne, Kari; Vapalahti, Olli; Karlberg, Helen; Mirazimi, Ali; Julkunen, Ilkka

    2017-04-01

    There is an urgent need for Ebola virus (EBOV) proteins, EBOV-specific antibodies and recombinant antigens to be used in diagnostics and as potential vaccine candidates. Our objective was to produce and purify recombinant proteins for immunological assays and for the production of polyclonal EBOV specific antibodies. In addition, a limited comparison of the adjuvant effects of Freund's complete adjuvant (FCA) and adjuvant system 03 (AS03) was carried out. Recombinant EBOV GST-VP24, -VP30, -VP35, -VP40 and -NP were produced in E. coli and purified with affinity chromatography followed by preparative gel electrophoresis. Recombinant EBOV GP-His was produced in Sf9 insect cells and purified by preparative gel electrophoresis. To compare the adjuvant effect of FCA and AS03, 12 rabbits were immunized four times with one of the six recombinant EBOV proteins using FCA or AS03. In addition, three guinea pigs were immunized with EBOV VP24 using FCA. With the exception of sera from two rabbits immunized with GST-VP24, the antisera against all other EBOV proteins showed very high and specific antibody responses after three to four immunizations. The adjuvant effect of AS03 was comparable to that of FCA. The produced antibodies recognized the corresponding EBOV proteins in wild type EBOV-infected cells. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Immunomodulators as adjuvants for vaccines and antimicrobial therapy.

    PubMed

    Nicholls, Erin F; Madera, Laurence; Hancock, Robert E W

    2010-12-01

    A highly effective strategy for combating infectious diseases is to enhance host defenses using immunomodulators, either preventatively, through vaccination, or therapeutically. The effectiveness of many vaccines currently in use is due in part to adjuvants, molecules that have little immunogenicity by themselves but which help enhance and appropriately skew the immune response to an antigen. The development of new vaccines necessitates the development of new types of adjuvants to ensure an appropriate immune response. Herein, we review commonly used vaccine adjuvants and discuss promising adjuvant candidates. We also discuss various other immunomodulators (namely cytokines, Toll-like receptor agonists, and host defense peptides) that are, or have potential to be, useful for antimicrobial therapies that exert their effects by boosting host immune responses rather than targeting pathogens directly.

  2. Tolerance of adjuvant letrozole outside of clinical trials.

    PubMed

    Fontaine, C; Meulemans, A; Huizing, M; Collen, C; Kaufman, L; De Mey, J; Bourgain, C; Verfaillie, G; Lamote, J; Sacre, R; Schallier, D; Neyns, B; Vermorken, J; De Grève, J

    2008-08-01

    Recently aromatase inhibitors have become a standard care as an adjuvant treatment for many postmenopausal patients with hormone receptor positive early breast cancer. Adjuvant letrozole was made available either immediately postoperative, after 2-3 years of tamoxifen, or as an extended treatment after 5 years of tamoxifen. Between October 2003 and October 2005, we analyzed the subjective tolerance in 185 postoperative early breast cancer patients receiving letrozole outside of a clinical trial. The most prominent toxicity was musculoskeletal pain. In addition hot flushes, increased fatigue, nausea, vomiting, anorexia, mood disturbances, vaginal dryness, hair loss and rash were also recorded. In contrast to the prospective randomized clinical trials, a high drop-out rate of 20% was documented, mainly due to aromatase inhibitor-associated arthralgia syndrome interfering significantly with the daily life of our patients. Although adjuvant aromatase inhibitors have proven to be generally superior to tamoxifen in the adjuvant setting, it is important to focus attention on the tolerance during the adjuvant therapy and to balance this against the potential benefit in individual patients. Alternative options including switching to tamoxifen remain available.

  3. Current Status of Adjuvant Therapy for Colon Cancer

    PubMed Central

    André, Thierry; Afchain, Pauline; Barrier, Alain; Blanchard, Pierre; Larsen, Annette K.; Tournigand, Christophe; Louvet, Christophe; de Gramont, Aimery

    2007-01-01

    Due to its frequency and persistently high mortality, colorectal cancer represents a major public health problem. The use of adjuvant chemotherapy has improved prognosis in stage III disease, but much work remains to be done in optimizing adjuvant treatment, including refinement of ability to predict disease course and response to chemotherapy. The FOLFOX4 regimen is now considered standard treatment for stage III disease. Combinations of irinotecan and 5-fluorouracil (5-FU) have not proven to be more effective than 5-FU/folinic acid (FA). Oral fluoropyrimidines (eg, capecitabine, UFT + FA) now offer an alternative to intravenous 5-FU. Adjuvant chemotherapy for stage II colorectal cancer is more controversial. Use of adjuvant chemotherapy does not appear to be justified in patients with no particular risk factors (T3N0 with no poor prognosis factor). In contrast, the risk:benefit ratio in patients with one or more poor prognostic factors (T4 tumor, occlusion or perforation, poorly differentiated tumor, vascular invasion, or < 10 lymph nodes examined) appears to favor adjuvant treatment with FOLFOX4. Ongoing adjuvant trials are evaluating bevacizumab and cetuximab combined with 5-FU and oxaliplatin, and are examining the utility of such potential predictive markers as tumor microsatellite instability and loss of heterozygosity. Duration of therapy and prevention of oxaliplatin neurotoxicity are other critical areas for future research. PMID:19262714

  4. Antibiotic Adjuvants: Rescuing Antibiotics from Resistance.

    PubMed

    Wright, Gerard D

    2016-11-01

    Rooted in the mechanism of action of antibiotics and subject to bacterial evolution, antibiotic resistance is difficult and perhaps impossible to overcome. Nevertheless, strategies can be used to minimize the emergence and impact of resistance. Antibiotic adjuvants offer one such approach. These are compounds that have little or no antibiotic activity themselves but act to block resistance or otherwise enhance antibiotic action. Antibiotic adjuvants are therefore delivered in combination with antibiotics and can be divided into two groups: Class I agents that act on the pathogen, and Class II agents that act on the host. Adjuvants offer a means to both suppress the emergence of resistance and rescue the activity of existing drugs, offering an orthogonal strategy complimentary to new antibiotic discovery VIDEO ABSTRACT. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Al adjuvants can be tracked in viable cells by lumogallion staining.

    PubMed

    Mile, Irene; Svensson, Andreas; Darabi, Anna; Mold, Matthew; Siesjö, Peter; Eriksson, Håkan

    2015-07-01

    The mechanism behind the adjuvant effect of aluminum salts is poorly understood notwithstanding that aluminum salts have been used for decades in clinical vaccines. In an aqueous environment and at a nearly neutral pH, the aluminum salts form particulate aggregates, and one plausible explanation of the lack of information regarding the mechanisms could be the absence of an efficient method of tracking phagocytosed aluminum adjuvants and thereby the intracellular location of the adjuvant. In this paper, we want to report upon the use of lumogallion staining enabling the detection of phagocytosed aluminum adjuvants inside viable cells. Including micromolar concentrations of lumogallion in the culture medium resulted in a strong fluorescence signal from cells that had phagocytosed the aluminum adjuvant. The fluorescence appeared as spots in the cytoplasm and by confocal microscopy and co-staining with probes presenting fluorescence in the far-red region of the spectrum, aluminum adjuvants could to a certain extent be identified as localized in acidic vesicles, i.e., lysosomes. Staining and detection of intracellular aluminum adjuvants was achieved not only by diffusion of lumogallion into the cytoplasm, thereby highlighting the presence of the adjuvant, but also by pre-staining the aluminum adjuvant prior to incubation with cells. Pre-staining of aluminum adjuvants resulted in bright fluorescent particulate aggregates that remained fluorescent for weeks and with only a minor reduction of fluorescence upon extensive washing or incubation with cells. Both aluminum oxyhydroxide and aluminum hydroxyphosphate, two of the most commonly used aluminum adjuvants in clinical vaccines, could be pre-stained with lumogallion and were easily tracked intracellularly after incubation with phagocytosing cells. Staining of viable cells using lumogallion will be a useful method in investigations of the mechanisms behind aluminum adjuvants' differentiation of antigen-presenting cells

  6. Stressed Stability Techniques for Adjuvant Formulations.

    PubMed

    Hasija, Manvi; Sheung, Anthony; Rahman, Nausheen; Ausar, Salvador F

    2017-01-01

    Stressed stability testing is crucial to the understanding of mechanisms of degradation and the effects of external stress factors on adjuvant stability. These studies vastly help the development of stability indicating tests and the selection of stabilizing conditions for long term storage. In this chapter, we provide detailed protocols for the execution of forced degradation experiments that evaluate the robustness of adjuvant formulations against thermal, mechanical, freeze-thawing, and photo stresses.

  7. Adjuvant solution for pandemic influenza vaccine production.

    PubMed

    Clegg, Christopher H; Roque, Richard; Van Hoeven, Neal; Perrone, Lucy; Baldwin, Susan L; Rininger, Joseph A; Bowen, Richard A; Reed, Steven G

    2012-10-23

    Extensive preparation is underway to mitigate the next pandemic influenza outbreak. New vaccine technologies intended to supplant egg-based production methods are being developed, with recombinant hemagglutinin (rHA) as the most advanced program for preventing seasonal and avian H5N1 Influenza. Increased efforts are being focused on adjuvants that can broaden vaccine immunogenicity against emerging viruses and maximize vaccine supply on a worldwide scale. Here, we test protection against avian flu by using H5N1-derived rHA and GLA-SE, a two-part adjuvant system containing glucopyranosyl lipid adjuvant (GLA), a formulated synthetic Toll-like receptor 4 agonist, and a stable emulsion (SE) of oil in water, which is similar to the best-in-class adjuvants being developed for pandemic flu. Notably, a single submicrogram dose of rH5 adjuvanted with GLA-SE protects mice and ferrets against a high titer challenge with H5N1 virus. GLA-SE, relative to emulsion alone, accelerated induction of the primary immune response and broadened its durability against heterosubtypic H5N1 virus challenge. Mechanistically, GLA-SE augments protection via induction of a Th1-mediated antibody response. Innate signaling pathways that amplify priming of Th1 CD4 T cells will likely improve vaccine performance against future outbreaks of lethal pandemic flu.

  8. Adjuvant mitotane treatment for adrenocortical carcinoma.

    PubMed

    Terzolo, Massimo; Angeli, Alberto; Fassnacht, Martin; Daffara, Fulvia; Tauchmanova, Libuse; Conton, Pier Antonio; Rossetto, Ruth; Buci, Lisa; Sperone, Paola; Grossrubatscher, Erika; Reimondo, Giuseppe; Bollito, Enrico; Papotti, Mauro; Saeger, Wolfgang; Hahner, Stefanie; Koschker, Ann-Cathrin; Arvat, Emanuela; Ambrosi, Bruno; Loli, Paola; Lombardi, Gaetano; Mannelli, Massimo; Bruzzi, Paolo; Mantero, Franco; Allolio, Bruno; Dogliotti, Luigi; Berruti, Alfredo

    2007-06-07

    Adrenocortical carcinoma is a rare neoplasm characterized by a high risk of recurrence after radical resection. Whether the use of mitotane is beneficial as an adjuvant treatment has been controversial. Our aim was to evaluate the efficacy of adjuvant mitotane in prolonging recurrence-free survival. We performed a retrospective analysis involving 177 patients with adrenocortical cancer who had undergone radical surgery at 8 centers in Italy and 47 centers in Germany between 1985 and 2005. Adjuvant mitotane was administered to 47 Italian patients after radical surgery (mitotane group), whereas 55 Italian patients and 75 German patients (control groups 1 and 2, respectively) did not receive adjuvant treatment after surgery. Baseline features in the mitotane group and the control group from Italy were similar; the German patients were significantly older (P=0.03) and had more stage I or II adrenocortical carcinomas (P=0.02) than did patients in the mitotane group. Recurrence-free survival was significantly prolonged in the mitotane group, as compared with the two control groups (median recurrence-free survival, 42 months, as compared with 10 months in control group 1 and 25 months in control group 2). Hazard ratios for recurrence were 2.91 (95% confidence interval [CI], 1.77 to 4.78; P<0.001) and 1.97 (95% CI, 1.21 to 3.20; P=0.005), respectively. Multivariate analysis indicated that mitotane treatment had a significant advantage for recurrence-free survival. Adverse events associated with mitotane were mainly of grade 1 or 2, but temporary dose reduction was needed in 13% of patients. Adjuvant mitotane may prolong recurrence-free survival in patients with radically resected adrenocortical carcinoma. Copyright 2007 Massachusetts Medical Society.

  9. Induction of lupus autoantibodies by adjuvants

    USGS Publications Warehouse

    Satoh, M.; Kuroda, Y.; Yoshida, H.; Behney, K.M.; Mizutani, A.; Akaogi, J.; Nacionales, D.C.; Lorenson, T.D.; Rosenbauer, R.J.; Reeves, W.H.

    2003-01-01

    Exposure to the hydrocarbon oil pristane induces lupus specific autoantibodies in non-autoimmune mice. We investigated whether the capacity to induce lupus-like autoimmunity is a unique property of pristane or is shared by other adjuvant oils. Seven groups of 3-month-old female BALB/cJ mice received a single intraperitoneal injection of pristane, squalene (used in the adjuvant MF59), incomplete Freund's adjuvant (IFA), three different medicinal mineral oils, or saline, respectively. Serum autoantibodies and peritoneal cytokine production were measured. In addition to pristane, the mineral oil Bayol F (IFA) and the endogenous hydrocarbon squalene both induced anti-nRNP/Sm and -Su autoantibodies (20% and 25% of mice, respectively). All of these hydrocarbons had prolonged effects on cytokine production by peritoneal APCs. However, high levels of IL-6, IL-12, and TNF?? production 2-3 months after intraperitoneal injection appeared to be associated with the ability to induce lupus autoantibodies. The ability to induce lupus autoantibodies is shared by several hydrocarbons and is not unique to pristane. It correlates with stimulation of the production of IL-12 and other cytokines, suggesting a relationship with a hydrocarbon's adjuvanticity. The potential to induce autoimmunity may complicate the use of oil adjuvants in human and veterinary vaccines. ?? 2003 Elsevier Ltd. All rights reserved.

  10. An overview of adjuvants utilized in prophylactic vaccine formulation as immunomodulators.

    PubMed

    Chauhan, Nidhi; Tiwari, Sukirti; Iype, Tessy; Jain, Utkarsh

    2017-05-01

    Development of efficient and cost effective vaccines have been recognized as the primary concern to improve the overall healthcare in a country. In order to achieve this goal, more improved and powerful adjuvants need to be developed. Lacking in the self-adjuvanting immuno-modulatory constituents, vaccines exhibit lower immunogenicity. Combining potent adjuvants with vaccines is the most appropriate method to enhance the efficacy of the vaccines. Hence, this review is focussed on the most potent adjuvants for the formulation of vaccines. Areas covered: This review focuses on Oil-based emulsions, Mineral compounds, Liposomes, Bacterial products, ISCOMs and most recently used nanomaterials as adjuvants for enhancing the antigenicity of vaccines. Furthermore, this review explains the immunological response elicited by various particles. Moreover, case studies are incorporated providing an in depth analyses of various adjuvant-containing vaccines which are currently used. Expert commentary: Enhanced fundamental knowledge about the adjuvants and their immuno-stimulatory capabilities and delivery mechanisms will facilitate the rational designing of prophylactic vaccines with better efficacy.

  11. Environmental adjuvants, apoptosis and the censorship over autoimmunity.

    PubMed

    Rovere-Querini, Patrizia; Manfredi, Angelo A; Sabbadini, Maria Grazia

    2005-11-01

    Alterations during apoptosis lead to the activation of autoreactive T cells and the production of autoantibodies. This article discusses the pathogenic potential of cells dying in vivo, dissecting the role of signals that favor immune responses (adjuvants) and the influence of genetic backgrounds. Diverse factors determine whether apoptosis leads or not to a self-sustaining, clinically apparent autoimmune disease. The in vivo accumulation of uncleared dying cells per se is not sufficient to cause disease. However, dying cells are antigenic and their complementation with immune adjuvants causes lethal diseases in predisposed lupus-prone animals. At least some adjuvant signals directly target the function and the activation state of antigen presenting cells. Several laboratories are aggressively pursuing the molecular identification of endogenous adjuvants. Sodium monourate and the high mobility group B1 protein (HMGB1) are, among those identified so far, well known to rheumatologists. However, even the complementation of apoptotic cells with potent adjuvant signals fail to cause clinical autoimmunity in most strains: autoantibodies generated are transient, do not undergo to epitope/spreading and do not cause disease. Novel tools for drug development will derive from the molecular identification of the constraints that prevent autoimmunity in normal subjects.

  12. Effect of adjuvant on pendimethalin and dimethenamid-P behaviour in soil.

    PubMed

    Kočárek, Martin; Kodešová, Radka; Sharipov, Umrbek; Jursík, Miroslav

    2018-04-30

    Adjuvants are used to improve pesticides' performance. It is expected that adjuvants should increase sorption and persistence, as well as decrease mobility of pesticides in soils. Impact of the "Grounded" brand adjuvant on the behaviour of two herbicides, pendimethalin and dimethenamid-P, was investigated in a Haplic Chernozem. Both herbicides were tested in a laboratory batch sorption experiment with and without adjuvant. The sorption experiment showed that adjuvant negligibly increased dimethenamid-P sorption (K F  = 2.12 and 2.15 cm 3/n  μg 1 - 1/n  g -1 ) but significantly increased pendimethalin sorption (K F  = 270.1 and 3096.4 cm 3/n  μg 1 - 1/n  g -1 ). In field conditions, both herbicides were retained mainly in the topsoil layer (0-5 cm). The pendimethalin dissipation half-lives were similar for all treatments (ranging from 43.0 to 44.6 days) and were not influenced by either irrigation (p = 0.86) or adjuvant (p = 0.9). The dimethenamid-P dissipation half-lives ranged from 8.8 days for irrigated treatment without adjuvant to 12.9 days for non-irrigated treatment with adjuvant. Dimethenamid-P dissipation half-life in treatments with adjuvant was significantly longer (p = 0.049) than was half-life in a treatment without adjuvant. Significantly longer dissipation half-life was observed also in non-irrigated treatments than in irrigated treatments (p = 0.044). Copyright © 2018 Elsevier B.V. All rights reserved.

  13. Design and Synthesis of Potent Quillaja Saponin Vaccine Adjuvants

    PubMed Central

    Adams, Michelle M.; Damani, Payal; Perl, Nicholas R.; Won, Annie; Hong, Feng

    2010-01-01

    The success of antitumor and antiviral vaccines often requires the use of an adjuvant, a substance that significantly enhances the immune response to a co-administered antigen. Only a handful of adjuvants have both sufficient potency and acceptable toxicity for clinical investigation. One promising adjuvant is QS-21, a saponin natural product that is the immunopotentiator of choice in many cancer and infectious disease vaccine clinical trials. However, the therapeutic promise of QS-21 adjuvant is curtailed by several factors, including its scarcity, difficulty in purification to homogeneity, dose-limiting toxicity, and chemical instability. Here we report the design, synthesis, and evaluation of chemically stable synthetic saponins. These novel, amide-modified, non-natural substances exhibit immunopotentiating effects in vivo that rival or exceed that of QS-21 in evaluations with the GD3-KLH melanoma conjugate vaccine. The highly convergent synthetic preparation of these novel saponins establishes new avenues for discovering improved molecular adjuvants for specifically tailored vaccine therapies. PMID:20088518

  14. Adjuvant Therapy for Gallbladder Carcinoma: The Mayo Clinic Experience

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gold, Douglas G.; Miller, Robert C.; Haddock, Michael G.

    2009-09-01

    Purpose: To analyze the effect of adjuvant chemoradiotherapy on gallbladder carcinoma. Methods and Materials: We retrospectively reviewed the records from consecutive patients who underwent R0 resection of gallbladder carcinoma between January 1, 1985, and December 31, 2004. Patients had either Stage I (T1-T2N0M0) or Stage II (T3N0M0 or T1-T3N1M0) disease. Patients undergoing adjuvant therapy received 5-fluorouracil chemotherapy concurrently with radiotherapy (median dosage, 50.4 Gy in 28 fractions). Adverse prognostic factors and the effect of adjuvant treatment on overall survival (OS) were evaluated. Results: A total of 73 patients were included in the analysis; of these, 25 received adjuvant chemoradiotherapy. Onmore » univariate analysis, no adverse prognostic factors for OS reached statistical significance, but trends were noted for Stage N1 vs. N0 (p = .06), Nx vs. N0 (p = .09), Stage T3 vs. T1-T2 (p = .06), and histologic findings other than adenocarcinoma (p = .13). The median OS for patients receiving adjuvant chemoradiotherapy vs. surgery alone was 4.8 years and 4.2 years, respectively (log-rank test, p = .56). However, a significantly greater percentage of patients receiving adjuvant chemoradiotherapy had Stage II disease (p <.001). In the multivariate Cox model, increasing T and N category and histologic findings other than adenocarcinoma were significant predictors of decreased OS. Additionally, adjuvant chemoradiotherapy was a significant predictor of improved OS after adjusting for these prognostic factors (hazard ratio for death, 0.3; 95% confidence interval, 0.13-0.69; p = .004). Conclusion: After adjusting for the stage parameters and histologic findings, our data suggest that adjuvant chemoradiotherapy might improve OS for patients with gallbladder cancer.« less

  15. Radiation necrosis presenting as pseudoprogression (PsP) during alectinib treatment of previously radiated brain metastases in ALK-positive NSCLC: Implications for disease assessment and management.

    PubMed

    Ou, Sai-Hong Ignatius; Klempner, Samuel J; Azada, Michele C; Rausei-Mills, Veronica; Duma, Christopher

    2015-06-01

    Radiation necrosis presenting as pseudoprogression (PsP) is relatively common after radiation and temozolomide (TMZ) treatment in glioblastoma multiforme (GBM), especially among patients with GBM that harbors intrinsic increased responsiveness to TMZ (methylated O6-methylguanine-DNA methyltransferase [MGMT] promoter). Alectinib is a second generation ALK inhibitor that has significant CNS activity against brain metastases in anaplastic lymphoma kinase (ALK)-rearranged (ALK+) non-small cell lung cancer (NSCLC) patients. We report 2 ALK+ NSCLC patients who met RECIST criteria for progressive disease by central radiologic review due to increased in size from increased contrast enhancement in previously stereotactically radiated brain metastases with ongoing extra-cranial response to alectinib. In both patients alectinib was started within 4 months of completing stereotactic radiosurgery (SRS). The enlarging lesions in both patients were resected and found to have undergone extensive necrosis with no residual tumor pathologically. PsP was incorrectly classified as progressive disease even by central independent imaging review. Treatment-related necrosis of previously SRS-treated brain metastasis during alectinib treatment can present as PsP. It may be impossible to distinguish PsP from true disease progression without a pathologic examination from resected sample. High degree of clinical suspicion, close monitoring and more sensitive imaging modalities may be needed to distinguish PsP versus progression in radiated brain lesions during alectinib treatment especially if there is no progression extra-cranially. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  16. [The Relevance of MicroRNAs in Glioblastoma Stem Cells].

    PubMed

    Kleinová, R; Slabý, O; Šána, J

    2015-01-01

    Glioblastoma multiforme is the most common intracranial malignity of astrocyte origin in adults. Despite complex therapy consisting of maximal surgical resection, adjuvant concomitant chemoradiotherapy with temozolomide followed by temozolomide in monotherapy, the median of survival ranges between 12 and 15 months from dia-gnosis. This infaust prognosis is very often caused by both impossibility of achieving of sufficient radical surgical resection and tumor resistance to adjuvant therapy, which relates to the presence of glioblastoma stem cells. Similarly to normal stem cells, glioblastoma stem cells are capable of self -renewal, differentiation, and unlimited slow proliferation. Their resistance to conventional therapy is also due to higher expressions of DNA repair enzymes, antiapoptotic factors and multidrug transporters. Therefore, targeting these unique properties could be a novel promising therapeutic approach leading to more effective therapy and better prognosis of glioblastoma multiforme patients. One of the approaches how to successfully regulate above -mentioned properties is targeted regulation of microRNAs (miRNAs). These small noncoding RNA molecules posttranscriptionally regulate expression of more than 2/ 3 of all human genes that are also involved in stem cell associated signaling pathways. Moreover, deregulated expression of some miRNAs has been observed in many cancers, including glioblastoma multiforme.

  17. Spray characteristics affected by physical properties of adjuvants

    USDA-ARS?s Scientific Manuscript database

    Four drift adjuvants, Array, In-Place, Vector and Control, were tested and physical properties and spray spectrum parameters measured. Array had the highest conductivity, indicating a good potential for the electrostatic charging, and the highest shear viscosity. All adjuvants had very similar neut...

  18. Antigen sparing with adjuvanted inactivated polio vaccine based on Sabin strains

    PubMed Central

    Westdijk, Janny; Koedam, Patrick; Barro, Mario; Steil, Benjamin P.; Collin, Nicolas; Vedvick, Thomas S.; Bakker, Wilfried A.M.; van der Ley, Peter; Kersten, Gideon

    2013-01-01

    Six different adjuvants, each in combination with inactivated polio vaccine (IPV) produced with attenuated Sabin strains (sIPV), were evaluated for their ability to enhance virus neutralizing antibody titers (VNTs) in the rat potency model. The increase of VNTs was on average 3-, 15-, 24-fold with adjuvants after one immunization (serotype 1, 2, and 3, respectively). Also after a boost immunization the VNTs of adjuvanted sIPV were on average another 7- 20- 27 times higher than after two inoculations of sIPV without adjuvant. The results indicate that it is feasible to increase the potency of inactivated polio vaccines by using adjuvants. PMID:23313617

  19. Approval summary: letrozole (Femara® tablets) for adjuvant and extended adjuvant postmenopausal breast cancer treatment: conversion of accelerated to full approval.

    PubMed

    Cohen, Martin H; Johnson, John R; Justice, Robert; Pazdur, Richard

    2011-01-01

    On April 30, 2010, the U.S. Food and Drug Administration converted letrozole (Femara®; Novartis Pharmaceuticals Corporation, East Hanover, NJ) from accelerated to full approval for adjuvant and extended adjuvant (following 5 years of tamoxifen) treatment of postmenopausal women with hormone receptor-positive early breast cancer. The initial accelerated approvals of letrozole for adjuvant and extended adjuvant treatment on December 28, 2005 and October 29, 2004, respectively, were based on an analysis of the disease-free survival (DFS) outcome of patients followed for medians of 26 months and 28 months, respectively. Both trials were double-blind, multicenter studies. Both trials were unblinded early when an interim analysis showed a favorable letrozole effect on DFS. In updated intention-to-treat analyses of both trials, the risk for a DFS event was lower with letrozole than with tamoxifen (hazard ratio [HR], 0.87; 95% confidence interval [CI], 0.77-0.99; p = .03) in the adjuvant trial and was lower than with placebo (HR, 0.89; 95% CI, 0.76-1.03; p = .12) in the extended adjuvant trial. The latter analysis ignores the interim switch of 60% of placebo-treated patients to letrozole. Bone fractures and osteoporosis were reported more frequently following treatment with letrozole whereas tamoxifen was associated with a higher risk for endometrial proliferation and endometrial cancer. Myocardial infarction was more frequently reported with letrozole than with tamoxifen, but the incidence of thromboembolic events was higher with tamoxifen than with letrozole. Lipid-lowering medications were required for 25% of patients on letrozole and 16% of patients on tamoxifen.

  20. A stapled peptide antagonist of MDM2 carried by polymeric micelles sensitizes glioblastoma to temozolomide treatment through p53 activation

    PubMed Central

    Chen, Xishan; Tai, Lingyu; Gao, Jie; Qian, Jianchang; Zhang, Mingfei; Li, Beibei; Xie, Cao; Lu, Linwei; Lu, Wuyuan; Lu, Weiyue

    2017-01-01

    Antagonizing MDM2 and MDMX to activate the tumor suppressor protein p53 is an attractive therapeutic paradigm for the treatment of glioblastoma multiforme (GBM). However, challenges remain with respect to the poor ability of p53 activators to efficiently cross the blood–brain barrier and/or blood–brain tumor barrier and to specifically target tumor cells. To circumvent these problems, we developed a cyclic RGD peptide-conjugated poly(-ethylene glycol)-co-poly(lactic acid) polymeric micelle (RGD-M) that carried a stapled peptide antagonist of both MDM2 and MDMX (sPMI). The peptide-carrying micelle RGD-M/sPMI was prepared via film-hydration method with high encapsulation efficiency and loading capacity as well as ideal size distribution. Micelle encapsulation dramatically increased the solubility of sPMI, thus alleviating its serum sequestration. In vitro studies showed that RGD-M/sPMI efficiently inhibited the proliferation of glioma cells in the presence of serum by activating the p53 signaling pathway. Further, RGD-M/sPMI exerted potent tumor growth inhibitory activity against human glioblastoma in nude mouse xenograft models. Importantly, the combination of RGD-M/sPMI and temozolomide — a standard chemotherapy drug for GBM increased antitumor efficacy against glioblastoma in experimental animals. Our results validate a combination therapy using p53 activators with temozolomide as a more effective treatment for GBM. PMID:26428461

  1. Predictive markers of safety and immunogenicity of adjuvanted vaccines.

    PubMed

    Mastelic, Beatris; Garçon, Nathalie; Del Giudice, Giuseppe; Golding, Hana; Gruber, Marion; Neels, Pieter; Fritzell, Bernard

    2013-11-01

    Vaccination represents one of the greatest public health triumphs; in part due to the effect of adjuvants that have been included in vaccine preparations to boost the immune responses through different mechanisms. Although a variety of novel adjuvants have been under development, only a limited number have been approved by regulatory authorities for human vaccines. This report reflects the conclusions of a group of scientists from academia, regulatory agencies and industry who attended a conference on the current state of the art in the adjuvant field. Held at the U.S. Pharmacopeial Convention (USP) in Rockville, Maryland, USA, from 18 to 19 April 2013 and organized by the International Association for Biologicals (IABS), the conference focused particularly on the future development of effective adjuvants and adjuvanted vaccines and on overcoming major hurdles, such as safety and immunogenicity assessment, as well as regulatory scrutiny. More information on the conference output can be found on the IABS website, http://www.iabs.org/. Copyright © 2013. Published by Elsevier Ltd.. All rights reserved.

  2. GLA-AF, an emulsion-free vaccine adjuvant for pandemic influenza.

    PubMed

    Clegg, Christopher H; Roque, Richard; Perrone, Lucy A; Rininger, Joseph A; Bowen, Richard; Reed, Steven G

    2014-01-01

    The ongoing threat from Influenza necessitates the development of new vaccine and adjuvant technologies that can maximize vaccine immunogenicity, shorten production cycles, and increase global vaccine supply. Currently, the most successful adjuvants for Influenza vaccines are squalene-based oil-in-water emulsions. These adjuvants enhance seroprotective antibody titers to homologous and heterologous strains of virus, and augment a significant dose sparing activity that could improve vaccine manufacturing capacity. As an alternative to an emulsion, we tested a simple lipid-based aqueous formulation containing a synthetic TLR4 ligand (GLA-AF) for its ability to enhance protection against H5N1 infection. GLA-AF was very effective in adjuvanting recombinant H5 hemagglutinin antigen (rH5) in mice and was as potent as the stable emulsion, SE. Both adjuvants induced similar antibody titers using a sub-microgram dose of rH5, and both conferred complete protection against a highly pathogenic H5N1 challenge. However, GLA-AF was the superior adjuvant in ferrets. GLA-AF stimulated a broader antibody response than SE after both the prime and boost immunization with rH5, and ferrets were better protected against homologous and heterologous strains of H5N1 virus. Thus, GLA-AF is a potent emulsion-free adjuvant that warrants consideration for pandemic influenza vaccine development.

  3. Adjuvants and Inactivated Polio Vaccine: A Systematic Review

    PubMed Central

    Hawken, Jennifer; Troy, Stephanie B.

    2012-01-01

    Poliomyelitis is nearing universal eradication; in 2011, there were 650 cases reported globally. When wild polio is eradicated, global oral polio vaccine (OPV) cessation followed by universal use of inactivated polio vaccine (IPV) is believed to be the safest vaccination strategy as IPV does not mutate or run the risk of vaccine derived outbreaks that OPV does. However, IPV is significantly more expensive than OPV. One strategy to make IPV more affordable is to reduce the dose by adding adjuvants, compounds that augment the immune response to the vaccine. No adjuvants are currently utilized in stand-alone IPV; however, several have been explored over the past six decades. From aluminum, used in many licensed vaccines, to newer and more experimental adjuvants such as synthetic DNA, a diverse group of compounds has been assessed with varying strengths and weaknesses. This review summarizes the studies to date evaluating the efficacy and safety of adjuvants used with IPV. PMID:23041122

  4. Adjuvants and inactivated polio vaccine: a systematic review.

    PubMed

    Hawken, Jennifer; Troy, Stephanie B

    2012-11-19

    Poliomyelitis is nearing universal eradication; in 2011, there were 650 cases reported globally. When wild polio is eradicated, global oral polio vaccine (OPV) cessation followed by use of universal inactivated polio vaccine (IPV) is believed to be the safest vaccination strategy as IPV does not mutate or run the risk of vaccine derived outbreaks that OPV does. However, IPV is significantly more expensive than OPV. One strategy to make IPV more affordable is to reduce the dose by adding adjuvants, compounds that augment the immune response to the vaccine. No adjuvants are currently utilized in stand-alone IPV; however, several have been explored over the past six decades. From aluminum, used in many licensed vaccines, to newer and more experimental adjuvants such as synthetic DNA, a diverse group of compounds has been assessed with varying strengths and weaknesses. This review summarizes the studies to date evaluating the efficacy and safety of adjuvants used with IPV. Copyright © 2012 Elsevier Ltd. All rights reserved.

  5. Adjuvant therapy for ampullary carcinomas: The Mayo Clinic experience

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bhatia, Sumita; Miller, Robert C.; Haddock, Michael G.

    2006-10-01

    Purpose: To determine the effects of adjuvant radiotherapy and chemotherapy for carcinoma of the ampulla of Vater. Methods and Materials: We retrospectively reviewed the records of 125 patients who underwent definitive surgery for carcinomas involving the ampulla of Vater between April 1977 and February 2005 and who survived more than 50 days after surgery. Twenty-nine of the patients also received adjuvant radiotherapy (median dose, 50.4 Gy in 28 fractions) with concurrent 5-fluorouracil chemotherapy. Adverse prognostic factors were investigated, and overall survival (OS) and local and distant failure were estimated. Results: Adverse prognostic factors for decreased OS by univariate analysis includedmore » lymph node (LN) involvement, locally advanced tumors (T3/T4), and poor histologic grade. By multivariate analysis, positive LN status (p = 0.02) alone was associated with decreased OS. The addition of adjuvant radiotherapy and chemotherapy improved OS for patients with positive LN (p = 0.01). Median survival for positive LN patients receiving adjuvant therapy was 3.4 years, vs. 1.6 years for those with surgery alone. Conclusions: The addition of adjuvant radiotherapy and 5-fluorouracil chemotherapy may improve OS in patients with LN involvement. The effect of adjuvant therapy on outcomes for patients with poor histologic grade or T3/T4 tumors without LN involvement could not be assessed.« less

  6. Antigen sparing with adjuvanted inactivated polio vaccine based on Sabin strains.

    PubMed

    Westdijk, Janny; Koedam, Patrick; Barro, Mario; Steil, Benjamin P; Collin, Nicolas; Vedvick, Thomas S; Bakker, Wilfried A M; van der Ley, Peter; Kersten, Gideon

    2013-02-18

    Six different adjuvants, each in combination with inactivated polio vaccine (IPV) produced with attenuated Sabin strains (sIPV), were evaluated for their ability to enhance virus neutralizing antibody titres (VNTs) in the rat potency model. The increase of VNTs was on average 3-, 15-, 24-fold with adjuvants after one immunization (serotypes 1, 2, and 3, respectively). Also after a boost immunization the VNTs of adjuvanted sIPV were on average another 7-20-27 times higher than after two inoculations of sIPV without adjuvant. The results indicate that it is feasible to increase the potency of inactivated polio vaccines by using adjuvants. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. Laser vaccine adjuvants. History, progress, and potential.

    PubMed

    Kashiwagi, Satoshi; Brauns, Timothy; Gelfand, Jeffrey; Poznansky, Mark C

    2014-01-01

    Immunologic adjuvants are essential for current vaccines to maximize their efficacy. Unfortunately, few have been found to be sufficiently effective and safe for regulatory authorities to permit their use in vaccines for humans and none have been approved for use with intradermal vaccines. The development of new adjuvants with the potential to be both efficacious and safe constitutes a significant need in modern vaccine practice. The use of non-damaging laser light represents a markedly different approach to enhancing immune responses to a vaccine antigen, particularly with intradermal vaccination. This approach, which was initially explored in Russia and further developed in the US, appears to significantly improve responses to both prophylactic and therapeutic vaccines administered to the laser-exposed tissue, particularly the skin. Although different types of lasers have been used for this purpose and the precise molecular mechanism(s) of action remain unknown, several approaches appear to modulate dendritic cell trafficking and/or activation at the irradiation site via the release of specific signaling molecules from epithelial cells. The most recent study, performed by the authors of this review, utilized a continuous wave near-infrared laser that may open the path for the development of a safe, effective, low-cost, simple-to-use laser vaccine adjuvant that could be used in lieu of conventional adjuvants, particularly with intradermal vaccines. In this review, we summarize the initial Russian studies that have given rise to this approach and comment upon recent advances in the use of non-tissue damaging lasers as novel physical adjuvants for vaccines.

  8. European union regulatory developments for new vaccine adjuvants and delivery systems.

    PubMed

    Sesardic, Dorothea; Dobbelaer, Roland

    2004-06-23

    Interest in vaccine adjuvants and new delivery systems has grown rapidly over the past few years. New vaccine candidates have emerged, which, because of their poor immunogenicity, rely on adjuvants to improve their presentation and targeting and to potentiate their protective immune response. Better understandings of the mechanisms of action, together with logistic and economical considerations have resulted in an explosion of technologies. However, there have been few new registered products for human use, and antigens incorporated into immunostimulating reconstituted influenza virosomes have only relatively recently been licensed in European Union (EU) countries. Influenza vaccine, adjuvanted with water in oil emulsion containing squalene (adjuvant MF59C1) is now also approved. Although current EU regulations focus on traditional adjuvants, notably aluminium and calcium salts, advances have been made in regulatory considerations. The European agency for the evaluation of medicinal products, through its working parties, is actively drafting guidance on requirements for the evaluation of new adjuvants in vaccines. This paper summarises the new developments in EU regulatory aspects relevant to adjuvant quality at development stages, during the manufacturing process, and at the final bulk stage of adjuvant with antigen, and also summarises regulatory expectation regarding safety at pre-clinical and clinical stages. The paper highlights the regulatory concerns and existing bottlenecks that have led to slow approval of new technologies.

  9. 21 CFR 182.99 - Adjuvants for pesticide chemicals.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Adjuvants for pesticide chemicals. 182.99 Section 182.99 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) SUBSTANCES GENERALLY RECOGNIZED AS SAFE General Provisions § 182.99 Adjuvants for pesticide chemicals...

  10. Hypothesis driven development of new adjuvants: short peptides as immunomodulators.

    PubMed

    Dong, Jessica C; Kobinger, Gary P

    2013-04-01

    To date, vaccinations have been one of the key strategies in the prevention and protection against infectious pathogens. Traditional vaccines have well-known limitations such as safety and efficacy issues, which consequently deems it inappropriate for particular populations and may not be an effective strategy against all pathogens. This evidence highlights the need to develop more efficacious vaccination regiments. Higher levels of protection can be achieved by the addition of immunostimulating adjuvants. Many adjuvants elicit strong, undefined inflammation, which produces increased immunogenicity but may also lead to undesirable effects. Hypothesis driven development of adjuvants is needed to achieve a more specific and directed immune response required for optimal and safe vaccine-induced immune protection. An example of such hypothesis driven development includes the use of short immunomodulating peptides as adjuvants. These peptides have the ability to influence the immune response and can be extrapolated for adjuvant use, but requires further investigation.

  11. An Overview of Novel Adjuvants Designed for Improving Vaccine Efficacy.

    PubMed

    Bonam, Srinivasa Reddy; Partidos, Charalambos D; Halmuthur, Sampath Kumar M; Muller, Sylviane

    2017-09-01

    Adjuvants incorporated in prophylactic and/or therapeutic vaccine formulations impact vaccine efficacy by enhancing, modulating, and/or prolonging the immune response. In addition, they reduce antigen concentration and the number of immunizations required for protective efficacy, therefore contributing to making vaccines more cost effective. Our better understanding of the molecular mechanisms of immune recognition and protection has led research efforts to develop new adjuvants that are currently at various stages of development or clinical evaluation. In this review, we focus mainly on several of these promising adjuvants, and summarize recent work conducted in various laboratories to develop novel lipid-containing adjuvants. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Development of a minimal saponin vaccine adjuvant based on QS-21

    NASA Astrophysics Data System (ADS)

    Fernández-Tejada, Alberto; Chea, Eric K.; George, Constantine; Pillarsetty, Nagavarakishore; Gardner, Jeffrey R.; Livingston, Philip O.; Ragupathi, Govind; Lewis, Jason S.; Tan, Derek S.; Gin, David Y.

    2014-07-01

    Adjuvants are materials added to vaccines to enhance the immunological response to an antigen. QS-21 is a natural product adjuvant under investigation in numerous vaccine clinical trials, but its use is constrained by scarcity, toxicity, instability and an enigmatic molecular mechanism of action. Herein we describe the development of a minimal QS-21 analogue that decouples adjuvant activity from toxicity and provides a powerful platform for mechanistic investigations. We found that the entire branched trisaccharide domain of QS-21 is dispensable for adjuvant activity and that the C4-aldehyde substituent, previously proposed to bind covalently to an unknown cellular target, is also not required. Biodistribution studies revealed that active adjuvants were retained preferentially at the injection site and the nearest draining lymph nodes compared with the attenuated variants. Overall, these studies have yielded critical insights into saponin structure-function relationships, provided practical synthetic access to non-toxic adjuvants, and established a platform for detailed mechanistic studies.

  13. Development of a minimal saponin vaccine adjuvant based on QS-21

    PubMed Central

    Fernández-Tejada, Alberto; Chea, Eric K.; George, Constantine; Pillarsetty, NagaVaraKishore; Gardner, Jeffrey R.; Livingston, Philip O.; Ragupathi, Govind; Lewis, Jason S.; Tan, Derek S.; Gin, David Y.

    2014-01-01

    Adjuvants are materials added to vaccines to enhance the immunological response to an antigen. QS-21 is a natural product adjuvant under investigation in numerous vaccine clinical trials, but its use is constrained by scarcity, toxicity, instability, and an enigmatic molecular mechanism of action. Herein, we describe the development of a minimal QS-21 analogue that decouples adjuvant activity from toxicity and provides a powerful platform for mechanistic investigations. We found that the entire branched trisaccharide domain of QS-21 is dispensable for adjuvant activity and that the C4-aldehyde substituent, previously proposed to bind covalently to an unknown cellular target, is also not required. Biodistribution studies revealed that active adjuvants were retained at the injection site and nearest draining lymph nodes preferentially compared to attenuated variants. Overall, these studies have yielded critical insights into saponin structure–function relationships, provided practical synthetic access to non-toxic adjuvants, and established a platform for detailed mechanistic studies. PMID:24950335

  14. Comparative Systems Analyses Reveal Molecular Signatures of Clinically tested Vaccine Adjuvants

    NASA Astrophysics Data System (ADS)

    Olafsdottir, Thorunn A.; Lindqvist, Madelene; Nookaew, Intawat; Andersen, Peter; Maertzdorf, Jeroen; Persson, Josefine; Christensen, Dennis; Zhang, Yuan; Anderson, Jenna; Khoomrung, Sakda; Sen, Partho; Agger, Else Marie; Coler, Rhea; Carter, Darrick; Meinke, Andreas; Rappuoli, Rino; Kaufmann, Stefan H. E.; Reed, Steven G.; Harandi, Ali M.

    2016-12-01

    A better understanding of the mechanisms of action of human adjuvants could inform a rational development of next generation vaccines for human use. Here, we exploited a genome wide transcriptomics analysis combined with a systems biology approach to determine the molecular signatures induced by four clinically tested vaccine adjuvants, namely CAF01, IC31, GLA-SE and Alum in mice. We report signature molecules, pathways, gene modules and networks, which are shared by or otherwise exclusive to these clinical-grade adjuvants in whole blood and draining lymph nodes of mice. Intriguingly, co-expression analysis revealed blood gene modules highly enriched for molecules with documented roles in T follicular helper (TFH) and germinal center (GC) responses. We could show that all adjuvants enhanced, although with different magnitude and kinetics, TFH and GC B cell responses in draining lymph nodes. These results represent, to our knowledge, the first comparative systems analysis of clinically tested vaccine adjuvants that may provide new insights into the mechanisms of action of human adjuvants.

  15. Metronomic Doses of Temozolomide Enhance the Efficacy of Carbon Nanotube CpG Immunotherapy in an Invasive Glioma Model.

    PubMed

    Ouyang, Mao; White, Ethan E; Ren, Hui; Guo, Qin; Zhang, Ian; Gao, Hang; Yanyan, Song; Chen, Xuebo; Weng, Yiming; Da Fonseca, Anna; Shah, Sunny; Manuel, Edwin R; Zhang, Leying; Vonderfecht, Steven L; Alizadeh, Darya; Berlin, Jacob M; Badie, Behnam

    2016-01-01

    Even when treated with aggressive current therapies, most patients with glioblastoma survive less than two years. Rapid tumor growth, an invasive nature, and the blood-brain barrier, which limits the penetration of large molecules into the brain, all contribute to the poor tumor response associated with conventional therapies. Immunotherapy has emerged as a therapeutic approach that may overcome these challenges. We recently reported that single-walled carbon nanotubes (SWCNTs) can be used to dramatically increase the immunotherapeutic efficacy of CpG oligonucleotides in a mouse model of glioma. Following implantation in the mouse brain, the tumor cell line used in these previous studies (GL261) tends to form a spherical tumor with limited invasion into healthy brain. In order to evaluate SWCNT/CpG therapy under more clinically-relevant conditions, here we report the treatment of a more invasive mouse glioma model (K-Luc) that better recapitulates human disease. In addition, a CpG sequence previously tested in humans was used to formulate the SWCNT/CpG which was combined with temozolomide, the standard of care chemotherapy for glioblastoma patients. We found that, following two intracranial administrations, SWCNT/CpG is well-tolerated and improves the survival of mice bearing invasive gliomas. Interestingly, the efficacy of SWCNT/CpG was enhanced when combined with temozolomide. This enhanced anti-tumor efficacy was correlated to an increase of tumor-specific cytotoxic activity in splenocytes. These results reinforce the emerging understanding that immunotherapy can be enhanced by combining it with chemotherapy and support the continued development of SWCNT/CpG.

  16. Phase 1 Study of Preoperative Chemoradiation Therapy With Temozolomide and Capecitabine in Patients With Locally Advanced Rectal Cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jeong, Jae Ho; Hong, Yong Sang; Park, Yangsoon

    Purpose: Preoperative chemoradiation therapy (CRT) with capecitabine is a standard treatment strategy in patients with locally advanced rectal cancer (LARC). Temozolomide improves the survival of patients with glioblastoma with hypermethylated O{sup 6}-methylguanine DNA methyltransferase (MGMT); MGMT hypermethylation is one of the colorectal carcinogenesis pathways. We aimed to determine the dose-limiting toxicity (DLT) and recommended dose (RD) of temolozomide in combination with capecitabine-based preoperative CRT for LARC. Methods and Materials: Radiation therapy was delivered with 45 Gy/25 daily fractions with coned-down boost of 5.4 Gy/3 fractions. Concurrent chemotherapy comprised fixed and escalated doses of capecitabine and temozolomide, respectively. The MGMT hypermethylation was evaluatedmore » in pretreatment tumor samples. This trial is registered with (ClinicalTrials.gov) with the number (NCT01781403). Results: Twenty-two patients with LARC of cT3-4N0 or cT{sub any}N1-2 were accrued. Dose level 3 was chosen as the RD because DLT was noticeably absent in 10 patients treated up to dose level 3. An additional 12 patients were recruited in this group. Grade III adverse events were noted, and pathologic complete response (pCR) was observed in 7 patients (31.8%); MGMT hypermethylation was detected in 16. The pCR rate was 37.5% and 16.7% in the hypermethylated and unmethylated MGMT groups, respectively (P=.616). Conclusions: There was a tendency toward higher pCR rates in patients with hypermethylated MGMT. Future randomized studies are therefore warranted.« less

  17. AS03- and MF59-Adjuvanted Influenza Vaccines in Children

    PubMed Central

    Wilkins, Amanda L.; Kazmin, Dmitri; Napolitani, Giorgio; Clutterbuck, Elizabeth A.; Pulendran, Bali; Siegrist, Claire-Anne; Pollard, Andrew J.

    2017-01-01

    Influenza is a major cause of respiratory disease leading to hospitalization in young children. However, seasonal trivalent influenza vaccines (TIVs) have been shown to be ineffective and poorly immunogenic in this population. The development of live-attenuated influenza vaccines and adjuvanted vaccines are important advances in the prevention of influenza in young children. The oil-in-water emulsions MF59 and adjuvant systems 03 (AS03) have been used as adjuvants in both seasonal adjuvanted trivalent influenza vaccines (ATIVs) and pandemic monovalent influenza vaccines. Compared with non-adjuvanted vaccine responses, these vaccines induce a more robust and persistent antibody response for both homologous and heterologous influenza strains in infants and young children. Evidence of a significant improvement in vaccine efficacy with these adjuvanted vaccines resulted in the use of the monovalent (A/H1N1) AS03-adjuvanted vaccine in children in the 2009 influenza pandemic and the licensure of the seasonal MF59 ATIV for children aged 6 months to 2 years in Canada. The mechanism of action of MF59 and AS03 remains unclear. Adjuvants such as MF59 induce proinflammatory cytokines and chemokines, including CXCL10, but independently of type-1 interferon. This proinflammatory response is associated with improved recruitment, activation and maturation of antigen presenting cells at the injection site. In young children MF59 ATIV produced more homogenous and robust transcriptional responses, more similar to adult-like patterns, than did TIV. Early gene signatures characteristic of the innate immune response, which correlated with antibody titers were also identified. Differences were detected when comparing child and adult responses including opposite trends in gene set enrichment at day 3 postvaccination and, unlike adult data, a lack of correlation between magnitude of plasmablast response at day 7 and antibody titers at day 28 in children. These insights show the utility

  18. AS03- and MF59-Adjuvanted Influenza Vaccines in Children.

    PubMed

    Wilkins, Amanda L; Kazmin, Dmitri; Napolitani, Giorgio; Clutterbuck, Elizabeth A; Pulendran, Bali; Siegrist, Claire-Anne; Pollard, Andrew J

    2017-01-01

    Influenza is a major cause of respiratory disease leading to hospitalization in young children. However, seasonal trivalent influenza vaccines (TIVs) have been shown to be ineffective and poorly immunogenic in this population. The development of live-attenuated influenza vaccines and adjuvanted vaccines are important advances in the prevention of influenza in young children. The oil-in-water emulsions MF59 and adjuvant systems 03 (AS03) have been used as adjuvants in both seasonal adjuvanted trivalent influenza vaccines (ATIVs) and pandemic monovalent influenza vaccines. Compared with non-adjuvanted vaccine responses, these vaccines induce a more robust and persistent antibody response for both homologous and heterologous influenza strains in infants and young children. Evidence of a significant improvement in vaccine efficacy with these adjuvanted vaccines resulted in the use of the monovalent (A/H1N1) AS03-adjuvanted vaccine in children in the 2009 influenza pandemic and the licensure of the seasonal MF59 ATIV for children aged 6 months to 2 years in Canada. The mechanism of action of MF59 and AS03 remains unclear. Adjuvants such as MF59 induce proinflammatory cytokines and chemokines, including CXCL10, but independently of type-1 interferon. This proinflammatory response is associated with improved recruitment, activation and maturation of antigen presenting cells at the injection site. In young children MF59 ATIV produced more homogenous and robust transcriptional responses, more similar to adult-like patterns, than did TIV. Early gene signatures characteristic of the innate immune response, which correlated with antibody titers were also identified. Differences were detected when comparing child and adult responses including opposite trends in gene set enrichment at day 3 postvaccination and, unlike adult data, a lack of correlation between magnitude of plasmablast response at day 7 and antibody titers at day 28 in children. These insights show the utility

  19. Correlates of adjuvanticity: A review on adjuvants in licensed vaccines.

    PubMed

    Del Giudice, Giuseppe; Rappuoli, Rino; Didierlaurent, Arnaud M

    2018-05-22

    After decades of slow progress, the last years have seen a rapid acceleration of the development of adjuvanted vaccines which have lately been approved for human use. These adjuvants consist of different components, e.g. aluminium salts, emulsions such as MF59 and AS03, Toll-like receptor (TLR) agonists (CpG ormonophosphoryl lipid A (MPL) adsorbed on aluminium salts as in AS04) or combination of immunopotentiators (QS-21 and MPL in AS01). Despite their distinctive features, most of these adjuvants share some key characteristics. For example, they induce early activation (although at different levels) of innate immunity which then translates into higher antibody and cellular responses to the vaccine antigens. In addition, most of these adjuvants (e.g. MF59, AS03, AS04) clearly induce a wider breadth of adaptive responses able to confer protection against, for example, heterovariants of the influenza viruses (MF59, AS03) or against human papillomavirus strains not contained in the vaccine (AS04). Finally, the use of some of these adjuvants has contributed to significantly enhance the immune response and the efficacy and effectiveness of vaccines in the elderly who experience a waning of the immune responsiveness to infection and vaccination, as shown for MF59- or AS03-adjuvanted influenza vaccines and AS01-adjuvanted herpes zoster vaccine. These results, together with the track record of acceptable safety profiles of the adjuvanted vaccines, pave the way for the development of novel vaccines at the extremes of age and against infections with a high toll of morbidity and mortality. Here, we review the mechanisms associated with the performance of those adjuvanted vaccines in animal models and in humans through recent advances in systems vaccinology and biomarker discovery. We also provide some perspectives on remaining knowledge gaps but also on opportunities that could accelerate the development of new vaccines. Copyright © 2018 The Authors. Published by Elsevier

  20. Approval Summary: Letrozole (Femara® Tablets) for Adjuvant and Extended Adjuvant Postmenopausal Breast Cancer Treatment: Conversion of Accelerated to Full Approval

    PubMed Central

    Johnson, John R.; Justice, Robert; Pazdur, Richard

    2011-01-01

    On April 30, 2010, the U.S. Food and Drug Administration converted letrozole (Femara®; Novartis Pharmaceuticals Corporation, East Hanover, NJ) from accelerated to full approval for adjuvant and extended adjuvant (following 5 years of tamoxifen) treatment of postmenopausal women with hormone receptor–positive early breast cancer. The initial accelerated approvals of letrozole for adjuvant and extended adjuvant treatment on December 28, 2005 and October 29, 2004, respectively, were based on an analysis of the disease-free survival (DFS) outcome of patients followed for medians of 26 months and 28 months, respectively. Both trials were double-blind, multicenter studies. Both trials were unblinded early when an interim analysis showed a favorable letrozole effect on DFS. In updated intention-to-treat analyses of both trials, the risk for a DFS event was lower with letrozole than with tamoxifen (hazard ratio [HR], 0.87; 95% confidence interval [CI], 0.77–0.99; p = .03) in the adjuvant trial and was lower than with placebo (HR, 0.89; 95% CI, 0.76–1.03; p = .12) in the extended adjuvant trial. The latter analysis ignores the interim switch of 60% of placebo-treated patients to letrozole. Bone fractures and osteoporosis were reported more frequently following treatment with letrozole whereas tamoxifen was associated with a higher risk for endometrial proliferation and endometrial cancer. Myocardial infarction was more frequently reported with letrozole than with tamoxifen, but the incidence of thromboembolic events was higher with tamoxifen than with letrozole. Lipid-lowering medications were required for 25% of patients on letrozole and 16% of patients on tamoxifen. PMID:22089970

  1. Evaluation of Widely Consumed Botanicals as Immunological Adjuvants

    PubMed Central

    Ragupathi, Govind; Hood, Chandra; Yeung, K. Simon; Vickers, Andrew; Hood, Chandra; Deng, Gary; Cheung, Nai-Kong; Vickers, Andrew; Cassileth, Barrie; Livingston, Philip

    2008-01-01

    Background Many widely used botanical medicines are claimed to be immune enhancers. Clear evidence of augmentation of immune responses in vivo is lacking in most cases. To select botanicals for further study based on immune enhancing activity, we study them here mixed with antigen and injected subcutaneously (s.c.). Globo H and GD3 are cell surface carbohydrates expressed on glycolipids or glycoproteins on the cell surface of many cancers. When conjugated to keyhole limpet hemocyanin (KLH), mixed with an immunological adjuvant and administered s.c. the magnitude of the antibody responses against globo H, GD3 and KLH depend largely on the potency of the adjuvant. We describe here the results obtained using this s.c. immunization model with 7 botanicals purported to have immune stimulant effects. Methods Groups of 5–10 mice were immunized with globo H–KLH or GD3-KLH mixed with botanical, saline or positive control immunological adjuvant, s.c. 3 times at 1 week intervals. Antibody responses were measured 1 and 2 weeks after the 3rd immunization. The following seven botanicals and fractions were tested: (1) H-48 (Honso USA Co.), (2) Coriolus vesicolor raw water extract, purified polysaccharide-K (PSK) or purified polysaccharide-peptide (PSP) (Institute of Chinese Medicine (ICM)), (3) Maitake extract (Yukiguni Maitake Co Ltd. and Tradeworks Group), (4) Echinacea lipophilic, neutral and acidic extracts (Gaia Herbs), (5) Astragalus water, 50% or 95% ethanol extracts (ICM), (6) Turmeric supercritical (SC) or hydro-ethanolic (HE) extracts (New Chapter) or 60% ethanol extract (ICM) and (7) yeast β-glucan (Biotec Pharmacon). Purified saponin extract QS-21 (Antigenics) and semi-synthetic saponin GPI-0100 (Advanced BioTherapies) were used as positive control adjuvants. Sera were analyzed by ELISA against synthetic globo H ceramide or GD3 and KLH. Results Consistent significant adjuvant activity was observed after s.c vaccination with the Coriolus extracts (especially PSK

  2. Adjuvant Chemoradiation Therapy for Pancreatic Adenocarcinoma: Who Really Benefits?

    PubMed Central

    Merchant, Nipun B; Rymer, Jennifer; Koehler, Elizabeth AS; Ayers, G Daniel; Castellanos, Jason; Kooby, David A; Weber, Sharon H; Cho, Clifford S; Schmidt, C Max; Nakeeb, Atilla; Matos, Jesus M; Scoggins, Charles R; Martin, Robert CG; Kim, Hong Jin; Ahmad, Syed A; Chu, Carrie K; McClaine, Rebecca; Bednarski, Brian K; Staley, Charles A; Sharp, Kenneth; Parikh, Alexander A

    2014-01-01

    BACKGROUND The role of adjuvant chemoradiation therapy (CRT) in pancreatic cancer remains controversial. The primary aim of this study was to determine if CRT improved survival in patients with resected pancreatic cancer in a large, multiinstitutional cohort of patients. STUDY DESIGN Patients undergoing resection for pancreatic adenocarcinoma from seven academic medical institutions were included. Exclusion criteria included patients with T4 or M1 disease, R2 resection margin, preoperative therapy, chemotherapy alone, or if adjuvant therapy status was unknown. RESULTS There were 747 patients included in the initial evaluation. Primary analysis was performed between patients that had surgery alone (n = 374) and those receiving adjuvant CRT (n = 299). Median followup time was 12.2 months and 14.5 months for survivors. Median overall survival for patients receiving adjuvant CRT was significantly longer than for those undergoing operation alone (20.0 months versus 14.5 months, p = 0.001). On subset and multivariate analysis, adjuvant CRT demonstrated a significant survival advantage only among patients who had lymph node (LN)-positive disease (hazard ratio 0.477, 95% CI 0.357 to 0.638) and not for LN-negative patients (hazard ratio 0.810, 95% CI 0.556 to 1.181). Disease-free survival in patients with LN-negative disease who received adjuvant CRT was significantly worse than in patients who had surgery alone (14.5 months versus 18.6 months, p = 0.034). CONCLUSIONS This large multiinstitutional study emphasizes the importance of analyzing subsets of patients with pancreas adenocarcinoma who have LN metastasis. Benefit of adjuvant CRT is seen only in patients with LN-positive disease, regardless of resection margin status. CRT in patients with LN-negative disease may contribute to reduced disease-free survival. PMID:19476845

  3. Dendritic cell-targeting DNA-based mucosal adjuvants for the development of mucosal vaccines

    PubMed Central

    Kataoka, Kosuke; Fujihashi, Kohtaro

    2009-01-01

    In order to establish effective mucosal immunity against various mucosal pathogens, vaccines must be delivered via the mucosal route and contain effective adjuvant(s). Since mucosal adjuvants can simply mix with the antigen, it is relatively easy to adapt them for different types of vaccine development. Even in simple admixture vaccines, the adjuvant itself must be prepared without any complications. Thus, CpG oligodeoxynucleotides or plasmids encoding certain cDNA(s) would be potent mucosal adjuvant candidates when compared with other substances that can be used as mucosal adjuvants. The strategy of a DNA-based mucosal adjuvant facilitates the targeting of mucosal dendritic cells, and thus is an effective and safe approach. It would also provide great flexibility for the development of effective vaccines for various mucosal pathogens. PMID:19722892

  4. Learning impairment in honey bees caused by agricultural spray adjuvants.

    PubMed

    Ciarlo, Timothy J; Mullin, Christopher A; Frazier, James L; Schmehl, Daniel R

    2012-01-01

    Spray adjuvants are often applied to crops in conjunction with agricultural pesticides in order to boost the efficacy of the active ingredient(s). The adjuvants themselves are largely assumed to be biologically inert and are therefore subject to minimal scrutiny and toxicological testing by regulatory agencies. Honey bees are exposed to a wide array of pesticides as they conduct normal foraging operations, meaning that they are likely exposed to spray adjuvants as well. It was previously unknown whether these agrochemicals have any deleterious effects on honey bee behavior. An improved, automated version of the proboscis extension reflex (PER) assay with a high degree of trial-to-trial reproducibility was used to measure the olfactory learning ability of honey bees treated orally with sublethal doses of the most widely used spray adjuvants on almonds in the Central Valley of California. Three different adjuvant classes (nonionic surfactants, crop oil concentrates, and organosilicone surfactants) were investigated in this study. Learning was impaired after ingestion of 20 µg organosilicone surfactant, indicating harmful effects on honey bees caused by agrochemicals previously believed to be innocuous. Organosilicones were more active than the nonionic adjuvants, while the crop oil concentrates were inactive. Ingestion was required for the tested adjuvant to have an effect on learning, as exposure via antennal contact only induced no level of impairment. A decrease in percent conditioned response after ingestion of organosilicone surfactants has been demonstrated here for the first time. Olfactory learning is important for foraging honey bees because it allows them to exploit the most productive floral resources in an area at any given time. Impairment of this learning ability may have serious implications for foraging efficiency at the colony level, as well as potentially many social interactions. Organosilicone spray adjuvants may therefore contribute to the

  5. Learning Impairment in Honey Bees Caused by Agricultural Spray Adjuvants

    PubMed Central

    Ciarlo, Timothy J.; Mullin, Christopher A.; Frazier, James L.; Schmehl, Daniel R.

    2012-01-01

    Background Spray adjuvants are often applied to crops in conjunction with agricultural pesticides in order to boost the efficacy of the active ingredient(s). The adjuvants themselves are largely assumed to be biologically inert and are therefore subject to minimal scrutiny and toxicological testing by regulatory agencies. Honey bees are exposed to a wide array of pesticides as they conduct normal foraging operations, meaning that they are likely exposed to spray adjuvants as well. It was previously unknown whether these agrochemicals have any deleterious effects on honey bee behavior. Methodology/Principal Findings An improved, automated version of the proboscis extension reflex (PER) assay with a high degree of trial-to-trial reproducibility was used to measure the olfactory learning ability of honey bees treated orally with sublethal doses of the most widely used spray adjuvants on almonds in the Central Valley of California. Three different adjuvant classes (nonionic surfactants, crop oil concentrates, and organosilicone surfactants) were investigated in this study. Learning was impaired after ingestion of 20 µg organosilicone surfactant, indicating harmful effects on honey bees caused by agrochemicals previously believed to be innocuous. Organosilicones were more active than the nonionic adjuvants, while the crop oil concentrates were inactive. Ingestion was required for the tested adjuvant to have an effect on learning, as exposure via antennal contact only induced no level of impairment. Conclusions/Significance A decrease in percent conditioned response after ingestion of organosilicone surfactants has been demonstrated here for the first time. Olfactory learning is important for foraging honey bees because it allows them to exploit the most productive floral resources in an area at any given time. Impairment of this learning ability may have serious implications for foraging efficiency at the colony level, as well as potentially many social interactions

  6. Utility of up-front transoral robotic surgery in tailoring adjuvant therapy.

    PubMed

    Gildener-Leapman, Neil; Kim, Jeehong; Abberbock, Shira; Choby, Garret W; Mandal, Rajarsi; Duvvuri, Umamaheswar; Ferris, Robert L; Kim, Seungwon

    2016-08-01

    The purpose of this study was to describe how the up-front transoral robotic surgery (TORS) approach could be used to individually tailor adjuvant therapy based on surgical pathology. Between January 2009 and December 2013, 76 patients received TORS for oropharyngeal squamous cell carcinoma (OPSCC). Clinical predictors of adjuvant therapy were analyzed and comparisons were made between recommended treatment guidelines for up-front surgery versus definitive nonsurgical approaches. Advanced N classification, human papillomavirus (HPV)-positive tumor, extracapsular spread (ECS; 26 of 76), perineural invasion (PNI; 14 of 76), and positive margins (7 of 76) were significant predictors of adjuvant chemoradiotherapy (CRT) (p < .05). Up-front TORS deintensified adjuvant therapy; 76% of stage I/II and 46% of stage III/IV patients avoided CRT. Conversely, pathologic staging resulted in 33% of patients who would have received radiotherapy (RT) alone based on clinical staging, to be intensified to receive adjuvant CRT. The TORS approach deintensifies adjuvant therapy and provides valuable pathologic information to intensify treatment in select patients. TORS may be less effective in deintensification of adjuvant therapy in patients with clinically advanced N classification disease. © 2016 Wiley Periodicals, Inc. Head Neck 38:1201-1207, 2016. © 2016 Wiley Periodicals, Inc.

  7. Increased sensitivity to radiochemotherapy in IDH1 mutant glioblastoma as demonstrated by serial quantitative MR volumetry

    PubMed Central

    Tran, Anh N.; Lai, Albert; Li, Sichen; Pope, Whitney B.; Teixeira, Stephanie; Harris, Robert J.; Woodworth, Davis C.; Nghiemphu, Phioanh L.; Cloughesy, Timothy F.; Ellingson, Benjamin M.

    2014-01-01

    Background Isocitrate dehydrogenase 1 (IDH1) mutations have been linked to favorable outcomes in patients with glioblastoma multiforme (GBM). Recent in vitro experiments suggest that IDH1 mutation sensitizes tumors to radiation damage. We hypothesized that radiographic treatment response would be significantly different between IDH1 mutant versus wild-type GBMs after radiotherapy (RT) and concurrent temozolomide (TMZ). Methods A total of 39 newly diagnosed GBM patients with known IDH1 mutational status (10 IDH1 mutants), who followed standard therapy and had regular post-contrast T1W (T1+C) and T2W/ fluid-attenuated inversion recovery (FLAIR) images in the 6-month period after starting RT, were enrolled. The volume of contrast-enhancing and FLAIR hyperintensity were calculated from each scan. Linear and polynomial regression techniques were used to estimate the rate of change and temporal patterns in tumor volumes. Results IDH1 mutant GBMs demonstrated a favorable response to RT/TMZ in the study period, as demonstrated by 10 of 10 mutants showing radiographic response (decreasing VT1+C), compared with 13 of 29 wild-types (P < .001). During the study period, VT1+C and VFLAIR changed at −3.6% per week and +0.6% per week in IDH1 mutant tumors, respectively, as compared with +0.8% per week and +5.2% per week in IDH1 wild-type tumors (P = .0076 and P = .0118, respectively). Amongst the radiographic responders, IDH1 mutant GBMs still demonstrated significant progression-free and overall survival benefit. Aggregated tumor kinetics by group showed significant lower rate in IDH1 mutant GBMs in specific periods: >105 days for VFLAIR and 95–120 and >150 days for VT1+C from starting RT/TMZ. Conclusions The current study supports the hypothesis that IDH1 mutant GBMs are more sensitive to radiochemotherapy than IDH1 wild-type GBMs. PMID:24305712

  8. Airway structural cells regulate TLR5-mediated mucosal adjuvant activity.

    PubMed

    Van Maele, L; Fougeron, D; Janot, L; Didierlaurent, A; Cayet, D; Tabareau, J; Rumbo, M; Corvo-Chamaillard, S; Boulenouar, S; Jeffs, S; Vande Walle, L; Lamkanfi, M; Lemoine, Y; Erard, F; Hot, D; Hussell, T; Ryffel, B; Benecke, A G; Sirard, J-C

    2014-05-01

    Antigen-presenting cell (APC) activation is enhanced by vaccine adjuvants. Most vaccines are based on the assumption that adjuvant activity of Toll-like receptor (TLR) agonists depends on direct, functional activation of APCs. Here, we sought to establish whether TLR stimulation in non-hematopoietic cells contributes to flagellin's mucosal adjuvant activity. Nasal administration of flagellin enhanced T-cell-mediated immunity, and systemic and secretory antibody responses to coadministered antigens in a TLR5-dependent manner. Mucosal adjuvant activity was not affected by either abrogation of TLR5 signaling in hematopoietic cells or the presence of flagellin-specific, circulating neutralizing antibodies. We found that flagellin is rapidly degraded in conducting airways, does not translocate into lung parenchyma and stimulates an early immune response, suggesting that TLR5 signaling is regionalized. The flagellin-specific early response of lung was regulated by radioresistant cells expressing TLR5 (particularly the airway epithelial cells). Flagellin stimulated the epithelial production of a small set of mediators that included the chemokine CCL20, which is known to promote APC recruitment in mucosal tissues. Our data suggest that (i) the adjuvant activity of TLR agonists in mucosal vaccination may require TLR stimulation of structural cells and (ii) harnessing the effect of adjuvants on epithelial cells can improve mucosal vaccines.

  9. Canadian Adjuvant Initiative Workshop, March 26–27, 2013—Ottawa, Canada

    PubMed Central

    Krishnan, Lakshmi; Twine, Susan; Gerdts, Volker; Barreto, Luis; Richards, James C

    2014-01-01

    Novel adjuvants hold the promise for developing effective modern subunit vaccines capable of appropriately modulating the immune response against challenging diseases such as those caused by chronic and/or intracellular pathogens and cancer. Over the past decade there has been intensive research into discovering new adjuvants, however, their translation into routine clinical use is lagging. To stimulate discussion and identify opportunities for networking and collaboration among various stakeholders, a Canadian Adjuvant Initiative Workshop was held in Ottawa. Sponsored by the National Research Council Canada, Canadian Institutes of Health Research and the Vaccine Industry Committee, a two day workshop was held that brought together key Canadian and international stakeholders in adjuvant research from industry, academia and government. To discover innovation gaps and unmet needs, the presentations covered a board range of topics in adjuvant development; criteria for selection of lead adjuvant candidates from an industry perspective, discovery research across Canada, bioprocessing needs and challenges, veterinary vaccines, Canadian vaccine trial capabilities, the Canadian regulatory framework and WHO formulation laboratory experience. The workshop concluded with a discussion on the opportunity to create a Canadian Adjuvant Development Network. This report details the key discussion points and steps forward identified for facilitating adjuvant development research in Canada. PMID:24192752

  10. Determining the activity of mucosal adjuvants.

    PubMed

    Baudner, Barbara C; Giudice, Giuseppe Del

    2010-01-01

    Mucosal vaccination offers the advantage of blocking pathogens at the portal of entry, improving patient's compliance, facilitating vaccine delivery, and decreasing the risk of unwanted spread of infectious agents via contaminated syringes.Recent advances in vaccinology have created an array of vaccine constructs that can be delivered to mucosal surfaces of the respiratory, gastrointestinal, and genitourinary tracts using intranasal, oral, and vaginal routes. Due to the different characteristics of mucosal immune response, as compared with systemic response, mucosal immunization requires particular methods of antigen presentation. Well-tolerated adjuvants that enhance the efficacy of such vaccines will play an important role in mucosal immunization. Among promising mucosal adjuvants, mutants of cholera toxin and the closely related heat-labile enterotoxin (LT) of enterotoxigenic Escherichia coli present powerful tools, augmenting the local and systemic serum antibody response to co-administered antigens.In this chapter, we describe the formulation and application of vaccines using the genetically modified LTK63 mutant as a prototype of the family of these mucosal adjuvants and the tools to determine its activity in the mouse model.

  11. [Autoimmune/infl ammatory syndrome induced by adjuvants, ASIA].

    PubMed

    Stolarczyk, Jędrzej; Kubiś, Marek; Brzosko, Marek

    There have been many cases of the appearance of autoantibodies and symptoms of disease after exposure to adjuvants, not only after breast augmentation with silicone implants, but also as a very rare vaccination side effect, such as Gulf war syndrome or macrophagic myofasciitis syndrome. Diseases whose symptoms developed after such adjuvant exposure are called autoimmune/ inlammatory syndrome induced by adjuvants (ASIA). The group of adjuvants includes not only silicone implants, silica, squalen and aluminium, but also ink components used for making tattoos. Analyzing the available reports on the inluence of adjuvants on the development of autoimmune diseases, the conclusion is that apart from long -term silicone exposure, the coexistence of other factors such as genetic or environmental is also necessary. Metaanalyses clearly do not conirm an increased risk of developing autoimmune disease after breast augmentation with silicone implants, or tattooing, but it seems that among these patients there is a group that is more predestined to develop disease symptoms. In the general population the beneits of vaccination are obvious, and the risk of severe adverse events following immunisation is incomparably lower than the risk of developing a speciic disease and its complications, also for patients with diagnosed autoimmune diseases. Because of data heterogeneity in previous studies and dificulties in diagnosing ASIA it seems necessary to conduct further analyses of adjuvants’ inluence on autoimmune disease development, and to reine ASIA diagnostic criteria, which now allow too easy a diagnosis of this syndrome.

  12. Regulatory considerations on new adjuvants and delivery systems.

    PubMed

    Sesardic, D

    2006-04-12

    New and improved vaccines and delivery systems are increasingly being developed for prevention, treatment and diagnosis of human diseases. Prior to their use in humans, all new biological products must undergo pre-clinical evaluation. These pre-clinical studies are important not only to establish the biological properties of the material and to evaluate its possible risk to the public, but also to plan protocols for subsequent clinical trials from which safety and efficacy can be evaluated. For vaccines, evaluation in pre-clinical studies is particularly important as information gained may also contribute to identifying the optimum composition and formulation process and provide an opportunity to develop suitable indicator tests for quality control. Data from pre-clinical and laboratory evaluation studies, which continue during clinical studies, is used to support an application for marketing authorisation. Addition of a new adjuvant and exploration of new delivery systems for vaccines presents challenges to both manufacturers and regulatory authorities. Because no adjuvant is licensed as a medicinal product in its own right, but only as a component of a particular vaccine, pre-clinical and appropriate toxicology studies need to be designed on a case-by-case basis to evaluate the safety profile of the adjuvant and adjuvant/vaccine combination. Current regulatory requirements for the pharmaceutical and pre-clinical safety assessment of vaccines are insufficient and initiatives are in place to develop more specific guidelines for evaluation of adjuvants in vaccines.

  13. Does adjuvant radiotherapy suppress liver regeneration after partial hepatectomy?

    PubMed

    Choi, Jin-Hwa; Kim, Kyubo; Chie, Eui Kyu; Jang, Jin-Young; Kim, Sun Whe; Oh, Do-Youn; Im, Seock-Ah; Kim, Tae-You; Bang, Yung-Jue; Ha, Sung W

    2009-05-01

    To analyze the influence of the adjuvant radiotherapy (RT) on the liver regeneration and liver function after partial hepatectomy (PH). Thirty-four patients who underwent PH for biliary tract cancer between October 2003 and July 2005 were reviewed. Hemihepatectomy was performed in 14 patients and less extensive surgery in 20. Of the patients, 19 patients had no adjuvant therapy (non-RT group) and 15 underwent adjuvant RT by a three-dimensional conformal technique (RT group). Radiation dose range was 40 to 50 Gy (median, 40 Gy). Liver volume on computed tomography and the results of liver function tests at 1, 4, 12, 24, and 52 weeks after PH were compared between the RT and non-RT groups. The preoperative characteristics were identical for both groups. During the interval between Weeks 4 and 12 when adjuvant RT was delivered in the RT group, the increase in liver volume was significantly smaller in the RT group than non-RT group (22.9 +/- 38.3cm(3) and 81.5 +/- 75.6cm(3), respectively, p = 0.007). However, the final liver volume measured at 1 year after PH did not differ between the two groups (p = 0.878). Liver function tests were comparable for both groups. The resection extent and original liver volume was independent factors for final liver volume measured at 1 year after PH. In this study, adjuvant RT delayed the liver regeneration process after PH, but the volume difference between the two study groups became nonsignificant after 1 year. Adjuvant RT had no additional adverse effect on liver function after PH.

  14. Who Benefits From Adjuvant Radiation Therapy for Gastric Cancer? A Meta-Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ohri, Nitin, E-mail: ohri.nitin@gmail.com; Garg, Madhur K.; Aparo, Santiago

    2013-06-01

    Purpose: Large randomized trials have demonstrated significant survival benefits with the use of adjuvant chemotherapy or chemoradiation therapy for gastric cancer. The importance of adjuvant radiation therapy (RT) remains unclear. We performed an up-to-date meta-analysis of randomized trials testing the use of RT for resectable gastric cancer. Methods and Materials: We searched MEDLINE, EMBASE, and the Cochrane Central Register of Controlled Trials for randomized trials testing adjuvant (including neoadjuvant) RT for resectable gastric cancer. Hazard ratios describing the impact of adjuvant RT on overall survival (OS) and disease-free survival (DFS) were extracted directly from the original studies or calculated frommore » survival curves. Pooled estimates were obtained using the inverse variance method. Subgroup analyses were performed to determine whether the efficacy of RT varies with chemotherapy use, RT timing, geographic region, type of nodal dissection performed, or lymph node status. Results: Thirteen studies met all inclusion criteria and were used for this analysis. Adjuvant RT was associated with a significant improvement in both OS (HR = 0.78, 95% CI: 0.70-0.86, P<.001) and DFS (HR = 0.71, 95% CI: 0.63-0.80, P<.001). In the 5 studies that tested adjuvant chemoradiation therapy against adjuvant chemotherapy, similar effects were seen for OS (HR = 0.83, 95% CI: 0.67-1.03, P=.087) and DFS (HR = 0.77, 95% CI: 0.91-0.65, P=.002). Available data did not reveal any subgroup of patients that does not benefit from adjuvant RT. Conclusion: In randomized trials for resectable gastric cancer, adjuvant RT provides an approximately 20% improvement in both DFS and OS. Available data do not reveal a subgroup of patients that does not benefit from adjuvant RT. Further study is required to optimize the implementation of adjuvant RT for gastric cancer with regard to patient selection and integration with systemic therapy.« less

  15. Adjuvant Treatment for Older Women with Invasive Breast Cancer

    PubMed Central

    Jolly, Trevor A; Williams, Grant R; Bushan, Sita; Pergolotti, Mackenzi; Nyrop, Kirsten A; Jones, Ellen L; Muss, Hyman B

    2016-01-01

    Older women experience a large share of breast cancer incidence and death. With the projected rise in the number of older cancer patients, adjuvant chemo-, radiation and endocrine therapy management will become a key component of breast cancer treatment in older women. Many factors influence adjuvant treatment decisions including patient preferences, life expectancy and tumor biology. Geriatric assessment predicts important outcomes, identifies key deficits, and can aid in the decision making process. This review utilizes clinical vignettes to illustrate core principles in adjuvant management of breast cancer in older women and suggests an approach incorporating life expectancy and geriatric assessment. PMID:26767315

  16. Does adjuvant therapy improve overall survival for stage IA/B pancreatic adenocarcinoma?

    PubMed

    Ostapoff, Katherine T; Gabriel, Emmanuel; Attwood, Kristopher; Kuvshinoff, Boris W; Nurkin, Steven J; Hochwald, Steven N

    2017-07-01

    Current guidelines recommend adjuvant chemotherapy for resected pancreatic adenocarcinoma (PDAC). However, no studies have addressed its survival benefit for stage I patients as they comprise <10% of PDAC. Using the NCDB 2006-2012, resected PDAC patients with stage I disease who received adjuvant therapy (chemotherapy or chemoradiation) were analyzed. Factors associated with overall survival (OS) were identified. 3909 patients with resected stage IA or IB PDAC were identified. Median OS was 60.3 months (mo) for stage IA and 36.9 mo for IB. 45.5% received adjuvant chemotherapy; 19.9% received adjuvant chemoradiation. There was OS benefit for both stage IA/IB patients with adjuvant chemotherapy (HR = 0.73 and 0.76 for IA and IB, respectively, p = 0.002 and <0.001). For patients with Stage IA disease (n = 1,477, 37.8%), age ≥70 (p < 0.001), higher grade (p < 0.001), ≤10 lymph nodes examined (p = 0.008), positive margins (p < 0.001), and receipt of adjuvant chemoradiation (p = 0.002) were associated with worse OS. For stage IB patients (n = 2,432, 62.2%), similar associations were observed with the exception of adjuvant chemoradiation whereby there was no significant association (p = 0.35). Adjuvant chemotherapy was associated with an OS benefit for patients with stage I PDAC; adjuvant chemoradiation was either of no benefit or associated with worse OS. Copyright © 2017 International Hepato-Pancreato-Biliary Association Inc. Published by Elsevier Ltd. All rights reserved.

  17. Aluminum adjuvants elicit fibrin-dependent extracellular traps in vivo

    PubMed Central

    Munks, Michael W.; McKee, Amy S.; MacLeod, Megan K.; Powell, Roger L.; Degen, Jay L.; Reisdorph, Nichole A.; Kappler, John W.

    2010-01-01

    It has been recognized for nearly 80 years that insoluble aluminum salts are good immunologic adjuvants and that they form long-lived nodules in vivo. Nodule formation has long been presumed to be central for adjuvant activity by providing an antigen depot, but the composition and function of these nodules is poorly understood. We show here that aluminum salt nodules formed within hours of injection and contained the clotting protein fibrinogen. Fibrinogen was critical for nodule formation and required processing to insoluble fibrin by thrombin. DNase treatment partially disrupted the nodules, and the nodules contained histone H3 and citrullinated H3, features consistent with extracellular traps. Although neutrophils were not essential for nodule formation, CD11b+ cells were implicated. Vaccination of fibrinogen-deficient mice resulted in normal CD4 T-cell and antibody responses and enhanced CD8 T-cell responses, indicating that nodules are not required for aluminum's adjuvant effect. Moreover, the ability of aluminum salts to retain antigen in the body, the well-known depot effect, was unaffected by the absence of nodules. We conclude that aluminum adjuvants form fibrin-dependent nodules in vivo, that these nodules have properties of extracellular traps, and the nodules are not required for aluminum salts to act as adjuvants. PMID:20876456

  18. Expression differences of programmed death ligand 1 in de-novo and recurrent glioblastoma multiforme

    PubMed Central

    Heynckes, Sabrina; Gaebelein, Annette; Haaker, Gerrit; Grauvogel, Jürgen; Franco, Pamela; Mader, Irina; Carro, Maria Stella; Prinz, Marco; Delev, Daniel; Schnell, Oliver; Heiland, Dieter Henrik

    2017-01-01

    The biology of recurrent glioblastoma multiforme (GBM) is a dynamic process influenced by selection pressure induced by different antitumoural therapies. The poor clinical outcome of tumours in the recurrent stage necessitates the development of effective therapeutic strategies. Checkpoint-inhibition (PD1/PD-L1 Inhibition) is a hallmark of immunotherapy being investigated in ongoing clinical trials. The purpose of this study was to analyse the PD-L1 expression in de-novo and recurrent glioblastoma multiforme and to explore associated genetic alterations and clinical traits. We show that PD-L1 expression was reduced in recurrent GBM in comparison to de-novo GBM. Additionally, patients who received an extended dose of temozolomide (TMZ) chemotherapy showed a significantly reduced level of PD-L1 expression in the recurrence stage compared to the corresponding de-novo tumour. Our findings may provide an explanation for potentially lower response to immunotherapy in the recurrent stage due to the reduced expression of the therapeutic target PD-L1. PMID:29088776

  19. Old and new adjuvants for hepatitis B vaccines.

    PubMed

    Leroux-Roels, Geert

    2015-02-01

    The safety and immunogenicity profiles of currently available recombinant hepatitis B vaccines are excellent. However, it remains a real challenge to induce protective immunity in the target groups that respond poorly or not at all to conventional vaccines. Ideally, a hepatitis B vaccine can be developed that conveys lifelong protection against infection rapidly after the injection of a single dose. Although this goal is far from being reached, important improvements have been made. Novel vaccine adjuvants have been developed that enhance the immunogenicity of recombinant hepatitis B vaccines while maintaining a good safety profile. The different adjuvants and adjuvant systems that are discussed herein have all been thoroughly evaluated in clinical trials and some have reached or are close to reach the market.

  20. Cationic liposomes as vaccine adjuvants.

    PubMed

    Christensen, Dennis; Korsholm, Karen S; Rosenkrands, Ida; Lindenstrøm, Thomas; Andersen, Peter; Agger, Else Marie

    2007-10-01

    Cationic liposomes are lipid-bilayer vesicles with a positive surface charge that have re-emerged as a promising new adjuvant technology. Although there is some evidence that cationic liposomes themselves can improve the immune response against coadministered vaccine antigens, their main functions are to protect the antigens from clearance in the body and deliver the antigens to professional antigen-presenting cells. In addition, cationic liposomes can be used to introduce immunomodulators to enhance and modulate the immune response in a desirable direction and, thereby, represent an efficient tool when designing tailor-made adjuvants for specific disease targets. In this article we review the recent progress on cationic liposomes as vehicles, enhancing the effect of immunomodulators and the presentation of vaccine antigens.

  1. Use of adjuvants to minimize leaching of herbicides in soil

    NASA Astrophysics Data System (ADS)

    Alva, Ashok K.; Singh, Megh

    1991-03-01

    Excessive leaching of herbicides affects their efficacy against target weeds and results in contamination of groundwater. Use of adjuvants that can weakly bind herbicides and in turn release them slowly is a valuable technique to prolong the efficacy of herbicides and to minimize their leaching into groundwater. Effects of activated charcoal, three humic substances (Enersol SP 85%, Enersol 12%, and Agroliz), or a synthetic polymer (Hydrosorb) on the leaching of bromacil, dicamba, and simazine were investigated in leaching columns using a Candler fine sand (Typic Quartzipsamment). The addition of adjuvants had no harmful effects on physical properties of the soil as evident from lack of its affects on water percolation. When no adjuvants were used, 69%, 37%, and 4% of applied dicamba, bromacil, and simazine, respectively, were leached in the first pore volume of leachate (⋍3.2 cm rainfall). With five pore volumes of leachate (⋍16 cm rainfall), bromacil and dicamba were leached completely and only 80% of simazine was leached. Using Enersol 12% adjuvant resulted in a 13%-18% reduction in leaching of dicamba and bromacil in five pore volumes of leachate. The leaching of simazine was significantly decreased when any of the five adjuvants mentioned above were used. However, the decrease in leaching was significantly greater when using Enersol SP 85% or Enersol 12% (24%-28%) than when using the other adjuvants (12%-16%).

  2. Adjuvant therapy in early-stage non-small cell lung cancer.

    PubMed

    Serke, Monika

    2010-01-01

    Evidence clearly supports adjuvant chemotherapy following resection in patients with stage II or III non-small cell lung cancer (NSCLC). Based on 3 landmark studies, adjuvant chemotherapy has become standard in completely resected NSCLC stage II and IIIA. Survival benefit from adjuvant chemotherapy is estimated to be between 3% and 15%, depending on stage. Treatment should include 4 cycles of platinum-based combination chemotherapy. There is uncertainty about chemotherapy prescription in those patients with resected stage IB NSCLC, as the risk of recurrence is lower in early NSCLC and the magnitude of benefit of adjuvant therapy is proportional to the risk of relapse according to stage. Postoperative radiotherapy (PORT) should not be used for stage I or II NSCLC, and remains controversial in resected stage IIIA (N2) disease. All positive adjuvant trials have utilized a cisplatin-based regimen, usually in combination with vinorelbine, and this should be considered the standard approach. Prognostic factors to select patients who will benefit from adjuvant therapy in general or from platinum-based chemotherapy are under discussion, but not yet established. In future we hope to optimize treatment convenience for the patients by using other combinations with the hope of better efficacy results. Work is currently under way to identify prognostic factors which in future may help to identify patients who are most likely to benefit from chemotherapy. Copyright 2010 S. Karger AG, Basel.

  3. Clinical Practice of Adjuvant Chemotherapy in Patients with Early-Stage Epithelial Ovarian Cancer.

    PubMed

    Frielink, Lindy M J; Pijlman, Brenda M; Ezendam, Nicole P M; Pijnenborg, Johanna M A

    2016-01-01

    Adjuvant platinum-based chemotherapy improves survival in women with early-stage epithelial ovarian cancer (EOC). Yet, there is a wide variety in clinical practice. All patients diagnosed with FIGO I and IIa EOC (2006-2010) in the south of the Netherlands were analyzed. The percentage of patients that received adjuvant chemotherapy was determined as well as the comprehensiveness of staging and outcome. Forty percent (54/135) of the patients with early-stage EOC received adjuvant chemotherapy. Treatment with adjuvant chemotherapy was associated with FIGO stage, clear-cell histology and nonoptimal staging. Optimal staging was achieved in 50%, and nonoptimal staging was associated with advanced age, comorbidity and treatment in a non-referral hospital. Overall, there was no difference in outcome between patients with and without adjuvant chemotherapy. Yet, in grade 3 tumors, adjuvant chemotherapy seems beneficial. Selective treatment of patients with early-stage EOC might reduce adjuvant chemotherapy without compromising outcome. © 2016 S. Karger AG, Basel.

  4. [Status and suggestions for adjuvant standard for Chinese materia medica processing in China].

    PubMed

    Yang, Chun-Yu; Cao, Hui; Wang, Xiao-Tao; Tu, Jia-Sheng; Qian, Zhong-Zhi; Yu, Zhi-Ling; Shang, Yue; Zhang, Bao-Xian

    2017-04-01

    In this paper, the status of adjuvant standard for Chinese materia medica processing in the Chinese Pharmacopoeia 2015 edition, the National Specification of Chinese Materia Medica Processing, and the 29 provincial specification of Chinese materia medica was summarized, and the the status including general requirements, specific requirements, and quality standard in the three grade official specifications was collected and analyzed according to the "medicine-adjuvant homology" and "food-adjuvant homology" features of adjuvants. This paper also introduced the research situation of adjuvant standard for Chinese materia medica processing in China; In addition, analyzed and discussed the problems existing in the standard system of adjuvant for Chinese materia medica processing, such as lack of general requirements, low level of standard, inconsistent standard references, and lack of research on the standard, and provided suggestions for the further establishment of the national standards system of adjuvant for Chinese materia medica processing. Copyright© by the Chinese Pharmaceutical Association.

  5. Choice and Design of Adjuvants for Parenteral and Mucosal Vaccines

    PubMed Central

    Savelkoul, Huub F. J.; Ferro, Valerie A.; Strioga, Marius M.; Schijns, Virgil E. J. C.

    2015-01-01

    The existence of pathogens that escape recognition by specific vaccines, the need to improve existing vaccines and the increased availability of therapeutic (non-infectious disease) vaccines necessitate the rational development of novel vaccine concepts based on the induction of protective cell-mediated immune responses. For naive T-cell activation, several signals resulting from innate and adaptive interactions need to be integrated, and adjuvants may interfere with some or all of these signals. Adjuvants, for example, are used to promote the immunogenicity of antigens in vaccines, by inducing a pro-inflammatory environment that enables the recruitment and promotion of the infiltration of phagocytic cells, particularly antigen-presenting cells (APC), to the injection site. Adjuvants can enhance antigen presentation, induce cytokine expression, activate APC and modulate more downstream adaptive immune reactions (vaccine delivery systems, facilitating immune Signal 1). In addition, adjuvants can act as immunopotentiators (facilitating Signals 2 and 3) exhibiting immune stimulatory effects during antigen presentation by inducing the expression of co-stimulatory molecules on APC. Together, these signals determine the strength of activation of specific T-cells, thereby also influencing the quality of the downstream T helper cytokine profiles and the differentiation of antigen-specific T helper populations (Signal 3). New adjuvants should also target specific (innate) immune cells in order to facilitate proper activation of downstream adaptive immune responses and homing (Signal 4). It is desirable that these adjuvants should be able to exert such responses in the context of mucosal administered vaccines. This review focuses on the understanding of the potential working mechanisms of the most well-known classes of adjuvants to be used effectively in vaccines. PMID:26344951

  6. Ignoring Adjuvant Toxicity Falsifies the Safety Profile of Commercial Pesticides

    PubMed Central

    Mesnage, Robin; Antoniou, Michael N.

    2018-01-01

    Commercial formulations of pesticides are invariably not single ingredients. Instead they are cocktails of chemicals, composed of a designated pesticidal “active principle” and “other ingredients,” with the latter collectively also known as “adjuvants.” These include surfactants, antifoaming agents, dyes, etc. Some adjuvants are added to influence the absorption and stability of the active principle and thus promote its pesticidal action. Currently, the health risk assessment of pesticides in the European Union and in the United States focuses almost exclusively on the stated active principle. Nonetheless, adjuvants can also be toxic in their own right with numerous negative health effects having been reported in humans and on the environment. Despite the known toxicity of adjuvants, they are regulated differently from active principles, with their toxic effects being generally ignored. Adjuvants are not subject to an acceptable daily intake, and they are not included in the health risk assessment of dietary exposures to pesticide residues. Here, we illustrate this gap in risk assessment by reference to glyphosate, the most used pesticide active ingredient. We also investigate the case of neonicotinoid insecticides, which are strongly suspected to be involved in bee and bumblebee colony collapse disorder. Authors of studies sometimes use the name of the active principle (for example glyphosate) when they are testing a commercial formulation containing multiple (active principle plus adjuvant) ingredients. This results in confusion in the scientific literature and within regulatory circles and leads to a misrepresentation of the safety profile of commercial pesticides. Urgent action is needed to lift the veil on the presence of adjuvants in food and human bodily fluids, as well as in the environment (such as in air, water, and soil) and to characterize their toxicological properties. This must be accompanied by regulatory precautionary measures to

  7. Mesoporous silica nanoparticles as antigen carriers and adjuvants for vaccine delivery

    NASA Astrophysics Data System (ADS)

    Mody, Karishma T.; Popat, Amirali; Mahony, Donna; Cavallaro, Antonino S.; Yu, Chengzhong; Mitter, Neena

    2013-05-01

    Vaccines have been at the forefront of improving human health for over two centuries. The challenges faced in developing effective vaccines flow from complexities associated with the immune system and requirement of an efficient and safe adjuvant to induce a strong adaptive immune response. Development of an efficient vaccine formulation requires careful selection of a potent antigen, efficient adjuvant and route of delivery. Adjuvants are immunological agents that activate the antigen presenting cells (APCs) and elicit a strong immune response. In the past decade, the use of mesoporous silica nanoparticles (MSNs) has gained significant attention as potential delivery vehicles for various biomolecules. In this review, we aim to highlight the potential of MSNs as vaccine delivery vehicles and their ability to act as adjuvants. We have provided an overview on the latest progress on synthesis, adsorption and release kinetics and biocompatibility of MSNs as next generation antigen carriers and adjuvants. A comprehensive summary on the ability of MSNs to deliver antigens and elicit both humoral and cellular immune responses is provided. Finally, we give insight on fundamental challenges and some future prospects of these nanoparticles as adjuvants.

  8. Postoperative adjuvant chemotherapy in rectal cancer operated for cure.

    PubMed

    Petersen, Sune Høirup; Harling, Henrik; Kirkeby, Lene Tschemerinsky; Wille-Jørgensen, Peer; Mocellin, Simone

    2012-03-14

    Colorectal cancer is one of the most common types of cancer in the Western world. Apart from surgery - which remains the mainstay of treatment for resectable primary tumours - postoperative (i.e., adjuvant) chemotherapy with 5-fluorouracil (5-FU) based regimens is now the standard treatment in Dukes' C (TNM stage III) colon tumours i.e. tumours with metastases in the regional lymph nodes but no distant metastases. In contrast, the evidence for recommendations of adjuvant therapy in rectal cancer is sparse. In Europe it is generally acknowledged that locally advanced rectal tumours receive preoperative (i.e., neoadjuvant) downstaging by radiotherapy (or chemoradiotion), whereas in the US postoperative chemoradiotion is considered the treatment of choice in all Dukes' C rectal cancers. Overall, no universal consensus exists on the adjuvant treatment of surgically resectable rectal carcinoma; moreover, no formal systematic review and meta-analysis has been so far performed on this subject. We undertook a systematic review of the scientific literature from 1975 until March 2011 in order to quantitatively summarize the available evidence regarding the impact of postoperative adjuvant chemotherapy on the survival of patients with surgically resectable rectal cancer. The outcomes of interest were overall survival (OS) and disease-free survival (DFS). CCCG standard search strategy in defined databases with the following supplementary search. 1. Rect* or colorect* - 2. Cancer or carcinom* or adenocarc* or neoplasm* or tumour - 3. Adjuv* - 4. Chemother* - 5. Postoper* Randomised controlled trials (RCT) comparing patients undergoing surgery for rectal cancer who received no adjuvant chemotherapy with those receiving any postoperative chemotherapy regimen. Two authors extracted data and a third author performed an independent search for verification. The main outcome measure was the hazard ratio (HR) between the risk of event between the treatment arm (adjuvant chemotherapy

  9. Analytical Characterization of an Oil-in-Water Adjuvant Emulsion.

    PubMed

    Sun, Jenny; Remmele, Richard L; Sanyal, Gautam

    2017-07-01

    Adjuvants are typically used in subunit vaccine formulations to enhance immune responses elicited by individual antigens. Physical chemical characterization of novel adjuvants is an important step in ensuring their effective use in vaccine formulations. This paper reports application of a panel of quantitative assays developed to analyze and characterize an oil-in-water adjuvant emulsion, which contains glucopyranosyl lipid A (GLA) and is a squalene-based emulsion. GLA is a fully synthetic analogue of monophosphoryl lipid A, which is a Toll-like receptor type 4 agonist and an FDA-approved adjuvant. The GLA-stable emulsion (GLA-SE) is currently being used for a respiratory syncytial virus vaccine in a phase 2 clinical trial. GLA was quantitated using reverse-phased high-performance liquid chromatography (RP-HPLC) coupled to a mass spectrometric detector, achieving higher assay sensitivity than the charged aerosol detection routinely used. Quantitation of the excipients of GLA-SE, including squalene, egg phosphatidyl choline, and Poloxamer 188, was achieved using a simple and rapid RP-HPLC method with evaporative light scattering detection, eliminating chemical derivatization typically required for these chromophore-lacking compounds. DL-α-tocopherol, the antioxidant of the GLA-SE, was quantitated using a RP-HPLC method with conventional UV detection. The experimental results compared well with values expected for these compounds based on targeted composition of the adjuvant. The assays were applied to identify degradation of individual components in a GLA-SE sample that degraded into distinct aqueous and oil phases. The methods developed and reported here are effective tools in monitoring physicochemical integrity of the adjuvant, as well as in formulation studies.

  10. Self-Adjuvanting Glycopeptide Conjugate Vaccine against Disseminated Candidiasis

    PubMed Central

    Xin, Hong; Cartmell, Jonathan; Bailey, Justin J.; Dziadek, Sebastian; Bundle, David R.; Cutler, Jim E.

    2012-01-01

    Our research on pathogenesis of disseminated candidiasis led to the discovery that antibodies specific for Candida albicans cell surface β-1, 2–mannotriose [β-(Man)3] protect mice. A 14 mer peptide Fba, which derived from the N-terminal portion of the C. albicans cytosolic/cell surface protein fructose-bisphosphate aldolase, was used as the glycan carrier and resulted in a novel synthetic glycopeptide vaccine β-(Man)3-Fba. By a dendritic cell-based immunization approach, this conjugate induced protective antibody responses against both the glycan and peptide parts of the vaccine. In this report, we modified the β-(Man)3-Fba conjugate by coupling it to tetanus toxoid (TT) in order to improve immunogenicity and allow for use of an adjuvant suitable for human use. By new immunization procedures entirely compatible with human use, the modified β-(Man)3-Fba-TT was administered either alone or as a mixture made with alum or monophosphoryl lipid A (MPL) adjuvants and given to mice by a subcutaneous (s.c.) route. Mice vaccinated with or, surprisingly, without adjuvant responded well by making robust antibody responses. The immunized groups showed a high degree of protection against a lethal challenge with C. albicans as evidenced by increased survival times and reduced kidney fungal burden as compared to control groups that received only adjuvant or DPBS buffer prior to challenge. To confirm that induced antibodies were protective, sera from mice immunized against the β-(Man)3-Fba-TT conjugate transferred protection against disseminated candidiasis to naïve mice, whereas C. albicans-absorbed immune sera did not. Similar antibody responses and protection induced by the β-(Man)3-Fba-TT vaccine was observed in inbred BALB/c and outbred Swiss Webster mice. We conclude that addition of TT to the glycopeptide conjugate results in a self-adjuvanting vaccine that promotes robust antibody responses without the need for additional adjuvant, which is novel and represents a

  11. 21 CFR 172.710 - Adjuvants for pesticide use dilutions.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Adjuvants for pesticide use dilutions. 172.710 Section 172.710 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES... HUMAN CONSUMPTION Other Specific Usage Additives § 172.710 Adjuvants for pesticide use dilutions. The...

  12. 21 CFR 172.710 - Adjuvants for pesticide use dilutions.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Adjuvants for pesticide use dilutions. 172.710 Section 172.710 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES... HUMAN CONSUMPTION Other Specific Usage Additives § 172.710 Adjuvants for pesticide use dilutions. The...

  13. Liposomal adjuvant development for leishmaniasis vaccines.

    PubMed

    Askarizadeh, Anis; Jaafari, Mahmoud Reza; Khamesipour, Ali; Badiee, Ali

    2017-08-01

    Leishmaniasis is a parasitic disease that ranges in severity from skin lesions to fatality. Since long-lasting protection is induced upon recovery from cutaneous leishmaniasis, development of an effective vaccine is promising. However, there is no vaccine for use in humans yet. It seems limited efficacy in leishmaniasis vaccines is due to lack of an appropriate adjuvant or delivery system. Hence, the use of particulate adjuvants such as liposomes for effective delivery to the antigen presenting cells (APCs) is a valuable strategy to enhance leishmaniasis vaccine efficacy. The extraordinary versatility of liposomes because of their unique amphiphilic and biphasic nature allows for using antigens or immunostimulators within the core, on the surface or within the bilayer, and modulates both the magnitude and the T-helper bias of the immune response. In this review article, we attempt to summarize the role of liposomal adjuvants in the development of Leishmania vaccines and describe the main physicochemical properties of liposomes like phospholipid composition, surface charge, and particle size during formulation design. We also suggest potentially useful formulation strategies in order for future experiments to have a chance to succeed as liposomal vaccines against leishmaniasis.

  14. Liposomal adjuvant development for leishmaniasis vaccines

    PubMed Central

    Askarizadeh, Anis; Jaafari, Mahmoud Reza; Khamesipour, Ali; Badiee, Ali

    2017-01-01

    Leishmaniasis is a parasitic disease that ranges in severity from skin lesions to fatality. Since long-lasting protection is induced upon recovery from cutaneous leishmaniasis, development of an effective vaccine is promising. However, there is no vaccine for use in humans yet. It seems limited efficacy in leishmaniasis vaccines is due to lack of an appropriate adjuvant or delivery system. Hence, the use of particulate adjuvants such as liposomes for effective delivery to the antigen presenting cells (APCs) is a valuable strategy to enhance leishmaniasis vaccine efficacy. The extraordinary versatility of liposomes because of their unique amphiphilic and biphasic nature allows for using antigens or immunostimulators within the core, on the surface or within the bilayer, and modulates both the magnitude and the T-helper bias of the immune response. In this review article, we attempt to summarize the role of liposomal adjuvants in the development of Leishmania vaccines and describe the main physicochemical properties of liposomes like phospholipid composition, surface charge, and particle size during formulation design. We also suggest potentially useful formulation strategies in order for future experiments to have a chance to succeed as liposomal vaccines against leishmaniasis. PMID:29201374

  15. Pharmacological reduction of adult hippocampal neurogenesis modifies functional brain circuits in mice exposed to a cocaine conditioned place preference paradigm.

    PubMed

    Castilla-Ortega, Estela; Blanco, Eduardo; Serrano, Antonia; Ladrón de Guevara-Miranda, David; Pedraz, María; Estivill-Torrús, Guillermo; Pavón, Francisco Javier; Rodríguez de Fonseca, Fernando; Santín, Luis J

    2016-05-01

    We investigated the role of adult hippocampal neurogenesis in cocaine-induced conditioned place preference (CPP) behaviour and the functional brain circuitry involved. Adult hippocampal neurogenesis was pharmacologically reduced with temozolomide (TMZ), and mice were tested for cocaine-induced CPP to study c-Fos expression in the hippocampus and in extrahippocampal addiction-related areas. Correlational and multivariate analysis revealed that, under normal conditions, the hippocampus showed widespread functional connectivity with other brain areas and strongly contributed to the functional brain module associated with CPP expression. However, the neurogenesis-reduced mice showed normal CPP acquisition but engaged an alternate brain circuit where the functional connectivity of the dentate gyrus was notably reduced and other areas (the medial prefrontal cortex, accumbens and paraventricular hypothalamic nucleus) were recruited instead of the hippocampus. A second experiment unveiled that mice acquiring the cocaine-induced CPP under neurogenesis-reduced conditions were delayed in extinguishing their drug-seeking behaviour. But if the inhibited neurons were generated after CPP acquisition, extinction was not affected but an enhanced long-term CPP retention was found, suggesting that some roles of the adult-born neurons may differ depending on whether they are generated before or after drug-contextual associations are established. Importantly, cocaine-induced reinstatement of CPP behaviour was increased in the TMZ mice, regardless of the time of neurogenesis inhibition. The results show that adult hippocampal neurogenesis sculpts the addiction-related functional brain circuits, and reduction of the adult-born hippocampal neurons increases cocaine seeking in the CPP model. © 2015 Society for the Study of Addiction.

  16. Economics of Malignant Gliomas: A Critical Review

    PubMed Central

    Raizer, Jeffrey J.; Fitzner, Karen A.; Jacobs, Daniel I.; Bennett, Charles L.; Liebling, Dustin B.; Luu, Thanh Ha; Trifilio, Steven M.; Grimm, Sean A.; Fisher, Matthew J.; Haleem, Meraaj S.; Ray, Paul S.; McKoy, Judith M.; DeBoer, Rebecca; Tulas, Katrina-Marie E.; Deeb, Mohammed; McKoy, June M.

    2015-01-01

    Purpose: Approximately 18,500 persons are diagnosed with malignant glioma in the United States annually. Few studies have investigated the comprehensive economic costs. We reviewed the literature to examine costs to patients with malignant glioma and their families, payers, and society. Methods: A total of 18 fully extracted studies were included. Data were collected on direct and indirect costs, and cost estimates were converted to US dollars using the conversion rate calculated from the study's publication date, and updated to 2011 values after adjustment for inflation. A standardized data abstraction form was used. Data were extracted by one reviewer and checked by another. Results: Before approval of effective chemotherapeutic agents for malignant gliomas, estimated total direct medical costs in the United States for surgery and radiation therapy per patient ranged from $50,600 to $92,700. The addition of temozolomide (TMZ) and bevacizumab to glioblastoma treatment regimens has resulted in increased overall costs for glioma care. Although health care costs are now less front-loaded, they have increased over the course of illness. Analysis using a willingness-to-pay threshold of $50,000 per quality-adjusted life-year suggests that the benefits of TMZ fall on the edge of acceptable therapies. Furthermore, indirect medical costs, such as productivity losses, are not trivial. Conclusion: With increased chemotherapy use for malignant glioma, the paradigm for treatment and associated out-of-pocket and total medical costs continue to evolve. Larger out-of-pocket costs may influence the choice of chemotherapeutic agents, the economic implications of which should be evaluated prospectively. PMID:25466707

  17. Economics of Malignant Gliomas: A Critical Review.

    PubMed

    Raizer, Jeffrey J; Fitzner, Karen A; Jacobs, Daniel I; Bennett, Charles L; Liebling, Dustin B; Luu, Thanh Ha; Trifilio, Steven M; Grimm, Sean A; Fisher, Matthew J; Haleem, Meraaj S; Ray, Paul S; McKoy, Judith M; DeBoer, Rebecca; Tulas, Katrina-Marie E; Deeb, Mohammed; McKoy, June M

    2015-01-01

    Approximately 18,500 persons are diagnosed with malignant glioma in the United States annually. Few studies have investigated the comprehensive economic costs. We reviewed the literature to examine costs to patients with malignant glioma and their families, payers, and society. A total of 18 fully extracted studies were included. Data were collected on direct and indirect costs, and cost estimates were converted to US dollars using the conversion rate calculated from the study's publication date, and updated to 2011 values after adjustment for inflation. A standardized data abstraction form was used. Data were extracted by one reviewer and checked by another. Before approval of effective chemotherapeutic agents for malignant gliomas, estimated total direct medical costs in the United States for surgery and radiation therapy per patient ranged from $50,600 to $92,700. The addition of temozolomide (TMZ) and bevacizumab to glioblastoma treatment regimens has resulted in increased overall costs for glioma care. Although health care costs are now less front-loaded, they have increased over the course of illness. Analysis using a willingness-to-pay threshold of $50,000 per quality-adjusted life-year suggests that the benefits of TMZ fall on the edge of acceptable therapies. Furthermore, indirect medical costs, such as productivity losses, are not trivial. With increased chemotherapy use for malignant glioma, the paradigm for treatment and associated out-of-pocket and total medical costs continue to evolve. Larger out-of-pocket costs may influence the choice of chemotherapeutic agents, the economic implications of which should be evaluated prospectively. Copyright © 2015 by American Society of Clinical Oncology.

  18. Glioblastoma entities express subtle differences in molecular composition and response to treatment

    PubMed Central

    Balça-Silva, Joana; Matias, Diana; Do Carmo, Anália; Dubois, Luiz Gustavo; Gonçalves, Ana Cristina; Girão, Henrique; Silva Canedo, Nathalie Henriques; Correia, Ana Helena; De Souza, Jorge Marcondes; Sarmento-Ribeiro, Ana Bela; Lopes, Maria Celeste; Moura-Neto, Vivaldo

    2017-01-01

    Glioblastoma (GBM) is a grade IV astrocytoma. GBM patients show resistance to chemotherapy such as temozolomide (TMZ), the gold standard treatment. In order to simulate the molecular mechanisms behind the different chemotherapeutic responses in GBM patients we compared the cellular heterogeneity and chemotherapeutic resistance mechanisms in different GBM cell lines. We isolated and characterized a human GBM cell line obtained from a GBM patient, named GBM11. We studied the GBM11 behaviour when treated with Tamoxifen (TMX) that, among other functions, is a protein kinase C (PKC) inhibitor, alone and in combination with TMZ in comparison with the responses of U87 and U118 human GBM cell lines. We evaluated the cell death, cell cycle arrest and cell proliferation, mainly through PKC expression, by flow cytometry and western blot analysis and, ultimately, cell migration capability and F-actin filament disorganization by fluorescence microscopy. We demonstrated that the constitutive activation of p-PKC seems to be one of the main metabolic implicated on GBM malignancy. Despite of its higher resistance, possibly due to the overexpression of P-glycoprotein and stem-like cell markers, GBM11 cells presented a subtle different chemotherapeutic response compared to U87 and U118 cells. The GBM11, U87, U118 cell lines show subtle molecular differences, which clearly indicate the characterization of GBM heterogeneity, one of the main reasons for tumor resistance. The adding of cellular heterogeneity in molecular behaviour constitutes a step closer in the understanding of resistant molecular mechanisms in GBM, and can circumvents the eventual impaired therapy. PMID:28714013

  19. Activity of glycated chitosan and other adjuvants to PDT vaccines

    NASA Astrophysics Data System (ADS)

    Korbelik, Mladen; Banáth, Judit; Čiplys, Evaldas; Szulc, Zdzislaw; Bielawska, Alicja; Chen, Wei R.

    2015-03-01

    Glycated chitosan (GC), a water soluble galactose-conjugated natural polysaccharide, has proven to be an effective immunoadjuvant for treatment of tumors based on laser thermal therapy. It was also shown to act as adjuvant for tumor therapy with high-intensity ultrasound and in situ photodynamic therapy (PDT). In the present study, GC was examined as potential adjuvant to PDT-generated cancer vaccine. Two other agents, pure calreticulin protein and acid ceramidase inhibitor LCL521, were also tested as prospective adjuvants for use in conjunction with PDT vaccines. Single treatment with GC, included with PDT vaccine cells suspension, improved the therapeutic efficacy when compared to vaccine alone. This attractive prospect of GC application remains to be carefully optimized and mechanistically elucidated. Both calreticulin and LCL521 proved also effective adjuvants when combined with PDT vaccine tumor treatment.

  20. A systematic review and meta-analysis on the safety of newly adjuvanted vaccines among children.

    PubMed

    Stassijns, Jorgen; Bollaerts, Kaatje; Baay, Marc; Verstraeten, Thomas

    2016-02-03

    New adjuvants such as the AS- or the MF59-adjuvants improve vaccine efficacy and facilitate dose-sparing. Their use in influenza and malaria vaccines has resulted in a large body of evidence on their clinical safety in children. We carried out a systematic search for safety data from published clinical trials on newly adjuvanted vaccines in children ≤10 years of age. Serious adverse events (SAEs), solicited AEs, unsolicited AEs and AEs of special interest were evaluated for four new adjuvants: the immuno-stimulants containing adjuvant systems AS01 and AS02, and the squalene containing oil-in-water emulsions AS03 and MF59. Relative risks (RR) were calculated, comparing children receiving newly adjuvanted vaccines to children receiving other vaccines with a variety of antigens, both adjuvanted and unadjuvanted. Twenty-nine trials were included in the meta-analysis, encompassing 25,056 children who received at least one dose of the newly adjuvanted vaccines. SAEs did not occur more frequently in adjuvanted groups (RR 0.85, 95%CI 0.75-0.96). Our meta-analyses showed higher reactogenicity following administration of newly adjuvanted vaccines, however, no consistent pattern of solicited AEs was observed across adjuvant systems. Pain was the most prevalent AE, but often mild and of short duration. No increased risks were found for unsolicited AEs, febrile convulsions, potential immune mediated diseases and new onset of chronic diseases. Our meta-analysis did not show any safety concerns in clinical trials of the newly adjuvanted vaccines in children ≤10 years of age. An unexplained increase of meningitis in one Phase III AS01-adjuvanted malaria trial and the link between narcolepsy and the AS03-adjuvanted pandemic vaccine illustrate that continued safety monitoring is warranted. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Efficacy and safety of immunological adjuvants. Where is the cut-off?

    PubMed

    Batista-Duharte, Alexander; Martínez, Damiana Téllez; Carlos, Iracilda Zeppone

    2018-06-09

    Research over the past several decades has provided insight into the mode of action of adjuvants. However, the main focus of attention has been the efficacy in the induction of protective immunogenicity, while less effort has been devoted to the study of toxicity mechanisms. Evidences suggest that several mechanisms that are responsible for the immunostimulating effects are, at the same time, responsible of the adverse effects. In this context, it is often very difficult to establish the boundaries between immunostimulation and immunotoxicity to reach the ideal balance of efficacy/safety. During decades, hundreds of adjuvants and adjuvant formulations have been proposed as immunostimulants for vaccines but very few have been used in human vaccines due to toxicity concerns. In this review, relevant aspects about immunotoxicology of adjuvants, based on clinical and experimental studies are discussed. Some effects are only observed under hyperstimulating regimens using non-approved adjuvants for human use, but these are nonetheless useful to understanding basic principles of adjuvant toxicity. The acute local and systemic reactions, during the first hours and those that can be observed after the third day of vaccination in the inoculation site and systemically are discussed. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  2. Toxicological Risks of Agrochemical Spray Adjuvants: Organosilicone Surfactants May Not Be Safe

    PubMed Central

    Mullin, Christopher A.; Fine, Julia D.; Reynolds, Ryan D.; Frazier, Maryann T.

    2016-01-01

    Agrochemical risk assessment that takes into account only pesticide active ingredients without the spray adjuvants commonly used in their application will miss important toxicity outcomes detrimental to non-target species, including humans. Lack of disclosure of adjuvant and formulation ingredients coupled with a lack of adequate analytical methods constrains the assessment of total chemical load on beneficial organisms and the environment. Adjuvants generally enhance the pesticidal efficacy and inadvertently the non-target effects of the active ingredient. Spray adjuvants are largely assumed to be biologically inert and are not registered by the USA EPA, leaving their regulation and monitoring to individual states. Organosilicone surfactants are the most potent adjuvants and super-penetrants available to growers. Based on the data for agrochemical applications to almonds from California Department of Pesticide Regulation, there has been increasing use of adjuvants, particularly organosilicone surfactants, during bloom when two-thirds of USA honey bee colonies are present. Increased tank mixing of these with ergosterol biosynthesis inhibitors and other fungicides and with insect growth regulator insecticides may be associated with recent USA honey bee declines. This database archives every application of a spray tank adjuvant with detail that is unprecedented globally. Organosilicone surfactants are good stand alone pesticides, toxic to bees, and are also present in drug and personal care products, particularly shampoos, and thus represent an important component of the chemical landscape to which pollinators and humans are exposed. This mini review is the first to possibly link spray adjuvant use with declining health of honey bee populations. PMID:27242985

  3. Addition of adjuvant progesterone to physical-exam-indicated cervical cerclage to prevent preterm birth.

    PubMed

    Jung, Eun Young; Oh, Kyung Joon; Hong, Joon-Seok; Han, Bo Ryoung; Joo, Jung Kyung

    2016-12-01

    The aim of this study was to assess the effect of vaginal progesterone as an adjuvant therapy to physical-exam-indicated cervical cerclage (PEICC). This retrospective cohort study included 53 consecutive singleton women who underwent PEICC because of acute cervical insufficiency at 17-24 gestational weeks. The study population was divided into two groups: the adjuvant progesterone group (n = 18) and the non-adjuvant group (n = 35). A 200-mg dose of vaginal micronized natural progesterone was administered after cerclage in the adjuvant progesterone group. Primary outcome measure was spontaneous preterm birth (SPTB) at <36 weeks. The SPTB rate at <36 weeks in the adjuvant group was significantly lower than in the non-adjuvant group (17% vs 51%, P < 0.05). Adjuvant progesterone therapy was significantly associated with a reduction in SPTB at <36 weeks (adjusted odds ratio, 0.12; 95% confidence interval, 0.02-0.69, P < 0.05) even after adjusting for known covariates, including a visible membrane size of ≥4 cm, gestational age, prior SPTB, and use of amnioreduction. The frequency of SPTB at <32 weeks, birthweight < 2500 g, and neonatal intensive care unit admission was significantly lower in the adjuvant progesterone group than in the non-adjuvant group (P < 0.05 for all). Adjuvant vaginal progesterone therapy with PEICC was associated with reductions in SPTB, low birthweight, and neonatal intensive care unit admission. © 2016 Japan Society of Obstetrics and Gynecology.

  4. Dose density in adjuvant chemotherapy for breast cancer.

    PubMed

    Citron, Marc L

    2004-01-01

    Dose-dense chemotherapy increases the dose intensity of the regimen by delivering standard-dose chemotherapy with shorter intervals between the cycles. This article discusses the rationale for dose-dense therapy and reviews the results with dose-dense adjuvant regimens in recent clinical trials in breast cancer. The papers for this review covered evidence of a dose-response relation in cancer chemotherapy; the rationale for dose-intense (and specifically dose-dense) therapy; and clinical experience with dose-dense regimens in adjuvant chemotherapy for breast cancer, with particular attention to outcomes and toxicity. Evidence supports maintaining the dose intensity of adjuvant chemotherapy within the conventional dose range. Disease-free and overall survival with combination cyclophosphamide, methotrexate, and fluorouracil are significantly improved when patients receive within 85% of the planned dose. Moderate and high dose cyclophosphamide, doxorubicin, and fluorouracil within the standard range results in greater disease-free and overall survival than the low dose regimen. The sequential addition of paclitaxel after concurrent doxorubicin and cyclophosphamide also significantly improves survival. Disease-free and overall survival with dose-dense sequential or concurrent doxorubicin, cyclophosphamide, and paclitaxel with filgrastim (rhG-CSF; NEUPOGEN) support are significantly greater than with conventional schedules (q21d). The delivered dose intensity of adjuvant chemotherapy within the standard dose range is an important predictor of the clinical outcome. Prospective trials of high-dose chemotherapy have shown no improvement over standard regimens, and toxicity was greater. Dose-dense adjuvant chemotherapy improves the clinical outcomes with doxorubicin-containing regimens. Filgrastim support enables the delivery of dose-dense chemotherapy and reduces the risk of neutropenia and its complications.

  5. Role of Adjuvant Therapy for Node-Negative Lung Cancer Invading the Chest Wall.

    PubMed

    Gao, Sarah J; Corso, Christopher D; Blasberg, Justin D; Detterbeck, Frank C; Boffa, Daniel J; Decker, Roy H; Kim, Anthony W

    2017-03-01

    The present study investigated the effect of adjuvant chemotherapy and radiation on survival among patients undergoing chest wall resection for T3N0 non-small cell lung cancer (NSCLC). Patients with T3N0 NSCLC who underwent chest wall resection were identified in the National Cancer Data Base in 2004 to 2012. The cohort was divided into patients who had received adjuvant chemotherapy, radiation therapy, chemoradiation therapy, or no adjuvant treatment. Kaplan-Meier and log-rank tests were used to compare overall survival, and a bootstrapped Cox proportional hazards model was used to determine the significant contributors to survival. A subset analysis was performed with stratification by margin status and tumor size. Of 759 patients identified, 42.0% underwent surgery alone, 23.3% underwent surgery followed by chemotherapy, 22.3% underwent surgery followed by chemoradiation therapy, and 12.3% underwent surgery followed by radiotherapy alone. Tumors > 4 cm benefited from adjuvant chemotherapy and radiation therapy in the multivariable analysis, and those ≤ 4 cm benefited only from adjuvant chemotherapy. The subgroup analysis by margin status identified that margin-positive patients with tumors > 4 cm benefited significantly from either adjuvant chemoradiation therapy or radiation therapy alone. T3N0 NSCLC with chest wall invasion requires unique management compared with other stage IIB tumors. An important determinant of management is tumor size, with tumors ≤ 4 cm benefiting from adjuvant chemotherapy and tumors > 4 cm benefiting from adjuvant chemotherapy if margin negative and adjuvant chemoradiation therapy or radiotherapy if margin positive. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. Exploring patient experiences of neo-adjuvant chemotherapy for breast cancer.

    PubMed

    Beaver, Kinta; Williamson, Susan; Briggs, Jean

    2016-02-01

    Neo-adjuvant chemotherapy is recommended for 'inoperable' locally advanced and inflammatory breast cancers. For operable breast cancers, trials indicate no survival differences between chemotherapy given pre or post-surgery. Communicating evidence based information to patients is complex and studies examining patient experiences of neo-adjuvant chemotherapy are lacking. This study aims to explore the experiences of women who received neo-adjuvant chemotherapy for breast cancer. A qualitative approach using in-depth interviews with 20 women who had completed neo-adjuvant chemotherapy for breast cancer. Interview data were analysed using thematic analysis. The sample included a relatively young group of women, with caring responsibilities. Five main themes emerged: coping with the rapid transition from 'well' to 'ill', information needs and decision making, needing support and empathy, impact on family, and creating a new 'normal'. More support was needed towards the end of chemotherapy, when side effects were at their most toxic, and decisions about forthcoming surgery were being made. Some women were referred to psychological services, but usually when a crisis point had been reached. Information and support would have been beneficial at key time points. This information is vital in developing services and interventions to meet the complex needs of these patients and potentially prevent late referral to psychological services. Specialist oncology nurses are able to develop empathetic relationships with patients and have the experience, knowledge and skills to inform and support women experiencing neo-adjuvant chemotherapy. Targeting key time points and maintaining relationship throughout neo-adjuvant chemotherapy would be highly beneficial. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Intranasal hydroxypropyl-β-cyclodextrin-adjuvanted influenza vaccine protects against sub-heterologous virus infection.

    PubMed

    Kusakabe, Takato; Ozasa, Koji; Kobari, Shingo; Momota, Masatoshi; Kishishita, Natsuko; Kobiyama, Kouji; Kuroda, Etsushi; Ishii, Ken J

    2016-06-08

    Intranasal vaccination with inactivated influenza viral antigens is an attractive and valid alternative to currently available influenza (flu) vaccines; many of which seem to need efficient and safe adjuvant, however. In this study, we examined whether hydroxypropyl-β-cyclodextrin (HP-β-CD), a widely used pharmaceutical excipient to improve solubility and drug delivery, can act as a mucosal adjuvant for intranasal flu vaccines. We found that intranasal immunization of mice with hemagglutinin split- as well as inactivated whole-virion influenza vaccine with HP-β-CD resulted in secretion of antigen-specific IgA and IgGs in the airway mucosa and the serum as well. As a result, both HP-β-CD adjuvanted-flu intranasal vaccine protected mice against lethal challenge with influenza virus, equivalent to those induced by experimental cholera toxin-adjuvanted ones. Of note, intranasal use of HP-β-CD as an adjuvant induced significantly lower antigen-specific IgE responses than that induced by aluminum salt adjuvant. These results suggest that HP-β-CD may be a potent mucosal adjuvant for seasonal and pandemic influenza vaccine. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Biosafe Nanoscale Pharmaceutical Adjuvant Materials

    PubMed Central

    Jin, Shubin; Li, Shengliang; Wang, Chongxi; Liu, Juan; Yang, Xiaolong; Wang, Paul C.; Zhang, Xin; Liang, Xing-Jie

    2014-01-01

    Thanks to developments in the field of nanotechnology over the past decades, more and more biosafe nanoscale materials have become available for use as pharmaceutical adjuvants in medical research. Nanomaterials possess unique properties which could be employed to develop drug carriers with longer circulation time, higher loading capacity, better stability in physiological conditions, controlled drug release, and targeted drug delivery. In this review article, we will review recent progress in the application of representative organic, inorganic and hybrid biosafe nanoscale materials in pharmaceutical research, especially focusing on nanomaterial-based novel drug delivery systems. In addition, we briefly discuss the advantages and notable functions that make these nanomaterials suitable for the design of new medicines; the biosafety of each material discussed in this article is also highlighted to provide a comprehensive understanding of their adjuvant attributes. PMID:25429253

  9. Adjuvant Effects on Evaporation Time and Wetted Area of Droplets

    USDA-ARS?s Scientific Manuscript database

    Appropriate adjuvant selection for pesticide applications is central to improve spray performances on waxy leaves and to reduce off-target losses. Evaporation and deposition patterns of 500 µm sessile droplets with five classes of adjuvants on five different waxy plants were investigated. Droplets g...

  10. Adjuvant therapy for resected colon cancer 2017, including the IDEA analysis.

    PubMed

    Tang, Monica; Price, Timothy Jay; Shapiro, Jeremy; Gibbs, Peter; Haller, Daniel G; Arnold, Dirk; Peeters, Marc; Segelov, Eva; Roy, Amitesh; Tebbutt, Niall; Pavlakis, Nick; Karapetis, Chris; Burge, Matthew

    2018-04-01

    Oxaliplatin-based adjuvant chemotherapy has been the standard of care for resected early colon cancer for over a decade. Recent results from the IDEA meta-analysis attempt to address the question of whether 3 or 6 months of adjuvant chemotherapy is preferable in Stage III colon cancer. Areas covered: A review of the literature and recent conference presentations was undertaken on the topic of adjuvant therapy for resected early colon cancers. This article reviews the current evidence for adjuvant treatment of Stage II and III colon cancer, as well as up-to-date data regarding optimal duration of therapy. This article reviews the evidence for lifestyle modifications in the management of early colorectal cancer and other future directions for research in early colon cancer. Expert commentary: In recent years, there have been no advances in the development of novel agents for adjuvant therapy in colorectal cancer. Although the IDEA meta-analysis was negative for its primary non-inferiority endpoint, the detailed results provide valuable information that allows personalisation of treatment regimen and duration.

  11. Adjuvant Therapy for Stage II Colorectal Cancer: Who and with What?

    PubMed

    Chung, Ki-Young Y; Kelsen, David

    2006-06-01

    The role of adjuvant chemotherapy for patients with stage II colon adenocarcinoma remains controversial. The high surgical cure rate for patients with "low-risk" stage II colon cancer, ranging from 75% to 80%, and the available clinical trials and meta-analyses provide conflicting recommendations for or against adjuvant chemotherapy for this group of patients. For fit "high-risk" stage II patients with clinical obstruction or perforation at presentation, in which the 5-year survival rate is 60% to 70%, there is little controversy, as these patients are routinely treated with adjuvant chemotherapy. Other potential high-risk factors, including high histologic grade, microsatellite instability, and loss of 18q, have yet to be validated in prospective trials. Patients with fewer than 12 regional lymph nodes identified in the surgical specimen have a statistically unclear risk of lymph node involvement. These patients may have stage III disease and should receive adjuvant therapy. The decision to use adjuvant chemotherapy to treat low-risk stage II colon cancer patients (no obstruction or perforation) should be an informed decision weighing the magnitude of a net 2% to 5% survival benefit, a 0.5% to 1.0% risk of mortality with chemotherapy in addition to 6 months of chemotherapy-related toxicities, other coexisting patient morbidities, and the anticipated life expectancy of each patient. As adjuvant chemotherapy is therapy addressing local or metastatic microscopic disease, and the effectiveness of systemic and biologically targeted therapy for advanced macroscopic colon cancer continues to improve rapidly, it remains to be determined by clinical trials whether therapies including newer agents such as cetuximab and bevacizumab administered in the adjuvant setting may affect survival for stage II cancer patients.

  12. Adjuvant whole brain radiotherapy: strong emotions decide but rational studies are needed.

    PubMed

    Brown, Paul D; Asher, Anthony L; Farace, Elana

    2008-04-01

    Brain metastases are common in cancer patients and cause considerable morbidity and mortality. For patients with limited disease and good performance status, treatment typically involves a combination of focal measures (e.g., surgical resection or radiosurgery) for the radiographically apparent disease, followed by adjuvant whole brain radiotherapy (WBRT) to treat subclinical disease. Because of concerns regarding the toxicity of WBRT, especially neurocognitive deterioration, many have advocated withholding adjuvant WBRT. Recently published studies have shed more light on the efficacy of adjuvant WBRT and the neurocognitive effects of WBRT. However, the inclusion of neurocognitive and quality-of-life data in clinical trials are still required to better define the role of adjuvant WBRT. Currently, two Phase III trials are underway, one in Europe and one in North America, that will determine the effect of adjuvant WBRT on patients' quality of life, neurocognitive function, and survival.

  13. Adjuvant Whole Brain Radiotherapy: Strong Emotions Decide But Rational Studies Are Needed

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, Paul D.; Asher, Anthony L.; Farace, Elana

    2008-04-01

    Brain metastases are common in cancer patients and cause considerable morbidity and mortality. For patients with limited disease and good performance status, treatment typically involves a combination of focal measures (e.g., surgical resection or radiosurgery) for the radiographically apparent disease, followed by adjuvant whole brain radiotherapy (WBRT) to treat subclinical disease. Because of concerns regarding the toxicity of WBRT, especially neurocognitive deterioration, many have advocated withholding adjuvant WBRT. Recently published studies have shed more light on the efficacy of adjuvant WBRT and the neurocognitive effects of WBRT. However, the inclusion of neurocognitive and quality-of-life data in clinical trials are stillmore » required to better define the role of adjuvant WBRT. Currently, two Phase III trials are underway, one in Europe and one in North America, that will determine the effect of adjuvant WBRT on patients' quality of life, neurocognitive function, and survival.« less

  14. Rainfastening of bifenthrine to cotton leaves with selected adjuvants

    Treesearch

    J. E. Mulrooney; C. D. Elmore

    2000-01-01

    There are thousands of adjuvants on the market, yet little is known about their effects on the activity of insecticides on plant surfaces. The effects of 11 selected adjuvants on the rainfastness and retention of bifenthrin ([lάJά-(Z)-(±)-(2 methyl[l,l'-biphenyl]-3-yl) methyl 3-(2-chloro-3,3,3-trifluoro-l-propenyl)-2,2-...

  15. The Vaccine Formulation Laboratory: a platform for access to adjuvants.

    PubMed

    Collin, Nicolas; Dubois, Patrice M

    2011-07-01

    Adjuvants are increasingly used by the vaccine research and development community, particularly for their ability to enhance immune responses and for their dose-sparing properties. However, they are not readily available to the majority of public sector vaccine research groups, and even those with access to suitable adjuvants may still fail in the development of their vaccines because of lack of knowledge on how to correctly formulate the adjuvants. This shortcoming led the World Health Organization to advocate for the establishment of the Vaccine Formulation Laboratory at the University of Lausanne, Switzerland. The primary mission of the laboratory is to transfer adjuvants and formulation technology free of intellectual property rights to academic institutions, small biotechnology companies and developing countries vaccine manufacturers. In this context, the transfer of an oil-in-water emulsion to Bio Farma, an Indonesian vaccine manufacturer, was initiated to increase domestic pandemic influenza vaccine production capacity as part of the national pandemic influenza preparedness plan. Copyright © 2011 Elsevier Ltd. All rights reserved.

  16. Enhanced efficacy of combined temozolomide and bromodomain inhibitor therapy for gliomas using targeted nanoparticles.

    PubMed

    Lam, Fred C; Morton, Stephen W; Wyckoff, Jeffrey; Vu Han, Tu-Lan; Hwang, Mun Kyung; Maffa, Amanda; Balkanska-Sinclair, Elena; Yaffe, Michael B; Floyd, Scott R; Hammond, Paula T

    2018-05-18

    Effective treatment for glioblastoma (GBM) is limited by the presence of the blood-brain barrier (BBB) and rapid resistance to single agent therapies. To address these issues, we developed a transferrin-functionalized nanoparticle (Tf-NP) that can deliver dual combination therapies. Using intravital imaging, we show the ability of Tf-NPs to traverse intact BBB in mice as well as achieve direct tumor binding in two intracranial orthotopic models of GBM. Treatment of tumor-bearing mice with Tf-NPs loaded with temozolomide and the bromodomain inhibitor JQ1 leads to increased DNA damage and apoptosis that correlates with a 1.5- to 2-fold decrease in tumor burden and corresponding increase in survival compared to equivalent free-drug dosing. Immunocompetent mice treated with Tf-NP-loaded drugs also show protection from the effects of systemic drug toxicity, demonstrating the preclinical potential of this nanoscale platform to deliver novel combination therapies to gliomas and other central nervous system tumors.

  17. Aluminium based adjuvants and their effects on mitochondria and lysosomes of phagocytosing cells.

    PubMed

    Ohlsson, Lars; Exley, Christopher; Darabi, Anna; Sandén, Emma; Siesjö, Peter; Eriksson, Håkan

    2013-11-01

    Aluminium oxyhydroxide, Al(OH)3 is one of few compounds approved as an adjuvant in human vaccines. However, the mechanism behind its immune stimulating properties is still poorly understood. In vitro co-culture of an aluminium adjuvant and the human monocytic cell line THP-1 resulted in reduced cell proliferation. Inhibition occurred at concentrations of adjuvant several times lower than would be found at the injection site using a vaccine formulation containing an aluminium adjuvant. Based on evaluation of the mitochondrial membrane potential, THP-1 cells showed no mitochondrial rupture after co-culture with the aluminium adjuvant, instead an increase in mitochondrial activity was seen. The THP-1 cells are phagocytosing cells and after co-culture with the aluminium adjuvant the phagosomal pathway was obstructed. Primary or early phagosomes mature into phagolysosomes with an internal pH of 4.5 - 5 and carry a wide variety of hydrolysing enzymes. Co-culture with the aluminium adjuvant yielded a reduced level of acidic vesicles and cathepsin L activity, a proteolytic enzyme of the phagolysosomes, was almost completely inhibited. THP-1 cells are an appropriate in vitro model in order to investigate the mechanism behind the induction of a phagocytosing antigen presenting cell into an inflammatory cell by aluminium adjuvants. Much information will be gained by investigating the phagosomal pathway and what occurs inside the phagosomes and to elucidate the ultimate fate of phagocytosed aluminium particles. © 2013.

  18. Bisphosphonates as adjuvant therapy for breast cancer.

    PubMed

    Burkinshaw, Roger; Coleman, Robert

    2006-01-01

    Great strides have been made over the last 20 years in the treatment of breast cancer and despite an increasing incidence, the number of deaths has fallen sharply since the late 1980s. The advent of new therapies, including taxanes and aromatase inhibitors, and exciting results announced recently using trastuzumab in the adjuvant treatment of HER2-positive patients should decrease this even further. However, although most patients present with disease that appears to be localized to the breast, a significant proportion of women will eventually develop metastatic breast cancer. Therefore, the detection and treatment of micrometastatic disease represents perhaps the most important remaining challenge in breast cancer management, and is the focus of extensive ongoing research. Bone is the most frequent site of distant relapse, accounting for approximately 40% of all first recurrences. In addition to the well recognized release of bone cell-activating factors from the tumor, it is now appreciated that the release of bone-derived growth factors and cytokines from resorbing bone can attract cancer cells to the bone surface and facilitate their growth and proliferation. Bisphosphonates are potent inhibitors of bone osteolysis and the inhibition of bone resorption could therefore have an effect on the development and progression of metastatic bone disease. They could represent an adjuvant therapeutic strategy of potential importance. Clinical trial results with the early bisphosphonate, clodronate, have proved inconclusive. A large, randomized, controlled trial has recently completed accrual and should provide the definitive answer to the question of the role of clodronate in this setting. More potent second- and third-generation bisphosphonates have also shown enhanced antitumor effects in preclinical evaluation and further studies are required to determine whether this antitumor potential of bisphosphonates translates to the clinical setting. Adjuvant bisphosphonates are

  19. Unraveling Molecular Signatures of Immunostimulatory Adjuvants in the Female Genital Tract through Systems Biology

    PubMed Central

    Brinkenberg, Ingrid; Samuelson, Emma; Thörn, Karolina; Nielsen, Jens; Harandi, Ali M.

    2011-01-01

    Sexually transmitted infections (STIs) unequivocally represent a major public health concern in both industrialized and developing countries. Previous efforts to develop vaccines for systemic immunization against a large number of STIs in humans have been unsuccessful. There is currently a drive to develop mucosal vaccines and adjuvants for delivery through the genital tract to confer protective immunity against STIs. Identification of molecular signatures that can be used as biomarkers for adjuvant potency can inform rational development of potent mucosal adjuvants. Here, we used systems biology to study global gene expression and signature molecules and pathways in the mouse vagina after treatment with two classes of experimental adjuvants. The Toll-like receptor 9 agonist CpG ODN and the invariant natural killer T cell agonist alpha-galactosylceramide, which we previously identified as equally potent vaginal adjuvants, were selected for this study. Our integrated analysis of genome-wide transcriptome data determined which signature pathways, processes and networks are shared by or otherwise exclusive to these 2 classes of experimental vaginal adjuvants in the mouse vagina. To our knowledge, this is the first integrated genome-wide transcriptome analysis of the effects of immunomodulatory adjuvants on the female genital tract of a mammal. These results could inform rational development of effective mucosal adjuvants for vaccination against STIs. PMID:21666746

  20. Adjuvant Chemoradiation Therapy After Pancreaticoduodenectomy in Elderly Patients With Pancreatic Adenocarcinoma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Horowitz, David P.; Hsu, Charles C.; Wang Jingya

    2011-08-01

    Purpose: To evaluate the efficacy of adjuvant chemoradiation therapy (CRT) for pancreatic adenocarcinoma patients {>=}75 years of age. Methods: The study group of 655 patients underwent pancreaticoduodenectomy (PD) for pancreatic adenocarcinoma at the Johns Hopkins Hospital over a 12-year period (8/30/1993 to 2/28/2005). Demographic characteristics, comorbidities, intraoperative data, pathology data, and patient outcomes were collected and analyzed by adjuvant treatment status and age {>=}75 years. Cox proportional hazards analysis determined clinical predictors of mortality and morbidity. Results: We identified 166 of 655 (25.3%) patients were {>=}75 years of age and 489 of 655 patients (74.7%) were <75 years of age.more » Forty-nine patients in the elderly group (29.5%) received adjuvant CRT. For elderly patients, node-positive metastases (p = 0.008), poor/anaplastic differentiation (p = 0.012), and undergoing a total pancreatectomy (p = 0.010) predicted poor survival. The 2-year survival for elderly patients receiving adjuvant therapy was improved compared with surgery alone (49.0% vs. 31.6%, p = 0.013); however, 5-year survival was similar (11.7% vs. 19.8%, respectively, p = 0.310). After adjusting for major confounders, adjuvant therapy in elderly patients had a protective effect with respect to 2-year survival (relative risk [RR] 0.58, p = 0.044), but not 5-year survival (RR 0.80, p = 0.258). Among the nonelderly, CRT was significantly associated with 2-year survival (RR 0.60, p < 0.001) and 5-year survival (RR 0.69, p < 0.001), after adjusting for confounders. Conclusions: Adjuvant therapy after PD is significantly associated with increased 2-year but not 5-year survival in elderly patients. Additional studies are needed to select which elderly patients are likely to benefit from adjuvant CRT.« less