Science.gov

Sample records for administration climate monitoring

  1. ADMINISTRATIVE CLIMATE.

    ERIC Educational Resources Information Center

    BRUCE, ROBERT L.; CARTER, G.L., JR.

    IN THE COOPERATIVE EXTENSION SERVICE, STYLES OF LEADERSHIP PROFOUNDLY AFFECT THE QUALITY OF THE SERVICE RENDERED. ACCORDINGLY, MAJOR INFLUENCES ON ADMINISTRATIVE CLIMATE AND EMPLOYEE PRODUCTIVITY ARE EXAMINED IN ESSAYS ON (1) SOURCES OF JOB SATISFACTION AND DISSATISFACTION, (2) MOTIVATIONAL THEORIES BASED ON JOB-RELATED SATISFACTIONS AND NEEDS,…

  2. Improving Climate Prediction By Climate Monitoring

    NASA Astrophysics Data System (ADS)

    Leroy, S. S.; Redaelli, G.; Grassi, B.

    2014-12-01

    Various climate agencies are pursuing concepts of space-based atmospheric monitoring based on ideas of empirically verifiable accuracy in observations. Anticipating that atmospheric monitoring systems based in observing the emitted longwave spectrum, the reflected shortwave spectrum, and radio occultation are implemented, we seek to discover how long-term records in these quantities might be used to improve our ability to predict climate change. This is a follow-up to a previous study that found that climate monitoring by remote sensing better informs climate prediction than does climate monitoring in situ. We have used the output of a CMIP5 historical scenario to hind-cast observation types being considered for space-based atmospheric monitoring to modify ensemble prediction of multi-decadal climate change produced by a CMIP5 future scenario. Specifically, we have considered spatial fingerprints of 1970­-2005 averages and trends in hind-cast observations to improve global average surface air temperature change from 2005 to 2100. Correlations between hind-cast observations at individual locations on the globe and multi-decadal change are generally consistent with a null-correlation distribution. We have found that the modes in inter-model differences in hind-casts are clearly identified with tropical clouds, but only Arctic warming as can be identified in radio occultation observations correlates with multi-decadal change, but only with 80% confidence. Understanding how long-term monitoring can be used to improve climate prediction remains an unsolved problem, but it is anticipated that improving climate prediction will depend strongly on an ability to distinguish between climate forcing and climate response in remotely sensed observables.

  3. Administrative reports for monitoring pharmacy purchasing.

    PubMed

    Chin, R K

    1984-11-01

    The use of administrative reports in a hospital pharmacy department to monitor communication regarding drug supply problems and to assist pharmacy administration in assessing the performance of its purchasing area is described. The weekly drug supply problems report was developed as a method to communicate problems in the storeroom to other pharmacy areas. The weekly borrow and loan report, which accounts for all borrow and loan transactions, helps determine the proper reorder quantities of drug products borrowed frequently and monitors repayment for loaned items. The inventory assessment report is prepared annually; in this report, drug expenditures for a "market-basket" list of drug products are compared for the current and previous years. To assess the use of nonformulary drugs, a quarterly report of expenditures for nonformulary drugs is compiled. The purchasing pharmacist, who is responsible for inventory control, prepares these reports. When considered in relation to the budget and workload statistics, the reports can be used to assess the performance of the purchasing area. Increased accountability and more orderly operation of the purchasing area has accompanied the use of these reports. PMID:6507438

  4. Bangladesh Agro-Climatic Environmental Monitoring Project

    NASA Technical Reports Server (NTRS)

    Vermillion, C.; Maurer, H.; Williams, M.; Kamowski, J.; Moore, T.; Maksimovich, W.; Obler, H.; Gilbert, E.

    1988-01-01

    The Agro-Climatic Environmental Monitoring Project (ACEMP) is based on a Participating Agency Service Agreement (PASA) between the Agency for International Development (AID) and the National Oceanic and Atmospheric Administration (NOAA). In FY80, the Asia Bureau and Office of Federal Disaster Assistance (OFDA), worked closely to develop a funding mechanism which would meet Bangladesh's needs both for flood and cyclone warning capability and for application of remote sensing data to development problems. In FY90, OFDA provided for a High Resolution Picture Transmission (HRPT) receiving capability to improve their forecasting accuracy for cyclones, flooding and storm surges. That equipment is primarily intended as a disaster prediction and preparedness measure. The ACEM Project was designed to focus on the development applications of remote sensing technology. Through this Project, AID provided to the Bangladesh Government (BDG) the equipment, technical assistance, and training necessary to collect and employ remote sensing data made available by satellites as well as hydrological data obtained from data collection platforms placed in major rivers. The data collected will enable the BDG to improve the management of its natural resources.

  5. Administrative Satisfaction and the Regulatory Climate at Public Universities.

    ERIC Educational Resources Information Center

    Volkwein, James Fredericks; Malik, Shaukat M.; Napierski-Prancl, Michelle

    1998-01-01

    A study measured the financial, personnel, and academic dimensions of state regulation at 122 public universities, and examined how university and state characteristics affect regulatory climate and administrative flexibility. It also analyzed the dimensions of administrator satisfaction in 12 specific administrative positions in relation to…

  6. Monitoring Earth's Climate with Shortwave Hyperspectral Reflectance

    NASA Astrophysics Data System (ADS)

    Pilewskie, Peter

    The Sun provides nearly all the energy that fuels the dynamical, chemical, and biological processes in the Earth system. Absorbed solar radiation, the difference between incoming and reflected sunlight, defines Earth’s equilibrium temperature and, along with the emitted infrared radiation, determines the climate state of the planet. The transfer of solar radiation through the atmosphere is modulated by wavelength-specific interactions that are unique for given surface types and the intervening atmospheric gases and condensed species. Reflected radiation that exits the Earth’s atmosphere carries with it the complex fingerprint of the Earth system state. How this signal varies temporally, spatially, and spectrally is a measure of those processes within the Earth system that affect climate change. Despite its importance to the basic energy balance between Earth and the solar-terrestrial environment in which it resides, a precise record of the nature of reflected solar spectral radiation over all climate-relevant time scales remains elusive. A primary goal of a climate observing system is to obtain climate benchmark data records with sufficient accuracy for identifying climate variability on decadal time scales and longer, and with sufficient information content to attribute change to underlying causes. Until recently, detecting climate change signatures in reflected solar radiance has been hindered by instrument accuracy and stability, insufficient spectral coverage and resolution, and inherent sampling limitations from low-Earth orbit observations. This talk will discuss the challenges to monitoring the shortwave energy budget from space. I will present new studies on methods to separate the various contributions in the top-of-atmosphere outgoing shortwave radiance using existing satellite (SCIAMACHY) data and explore methods to enhance trend detection in hyperspectral reflectance time series. Finally, I look ahead to the requirements for a climate observing

  7. Developing a Healthy Climate for Educational Change: An Administrative Approach.

    ERIC Educational Resources Information Center

    Walker, Paul D.

    1981-01-01

    Finds three areas of faculty/administrator interaction to have the greatest influence on organizational climate: goal setting and internal governance, application of resources, and organizational and personal development. Suggests strategies under each area for promoting a positive climate. Reports briefly on a panel's assessment of the analysis…

  8. An Assessment of a College of Business Administration's Ethical Climate

    ERIC Educational Resources Information Center

    Schulte, Laura; Carter, Amanda

    2004-01-01

    This study investigated graduate faculty and student perceptions of the ethical climate of a College of Business Administration within a Midwestern metropolitan university and the perceived importance of the ethical climate in the retention of students within graduate academic programs. Eighteen faculty and 90 graduate students completed the…

  9. Weather and Climate Monitoring Protocol, Channel Islands National Park, California

    USGS Publications Warehouse

    McEachern, Kathryn; Power, Paula; Dye, Linda; Rudolph, Rocky

    2008-01-01

    Weather and climate are strong drivers of population dynamics, plant and animal spatial distributions, community interactions, and ecosystem states. Information on local weather and climate is crucial in interpreting trends and patterns in the natural environment for resource management, research, and visitor enjoyment. This document describes the weather and climate monitoring program at the Channel Islands National Park (fig. 1), initiated in the 1990s. Manual and automated stations, which continue to evolve as technology changes, are being used for this program. The document reviews the history of weather data collection on each of the five Channel Islands National Park islands, presents program administrative structure, and provides an overview of procedures for data collection, archival, retrieval, and reporting. This program overview is accompanied by the 'Channel Islands National Park Remote Automated Weather Station Field Handbook' and the 'Channel Islands National Park Ranger Weather Station Field Handbook'. These Handbooks are maintained separately at the Channel Island National Park as 'live documents' that are updated as needed to provide a current working manual of weather and climate monitoring procedures. They are available on request from the Weather Program Manager (Channel Islands National Park, 1901 Spinnaker Dr., Ventura, CA 93001; 805.658.5700). The two Field Handbooks describe in detail protocols for managing the four remote automated weather stations (RAWS) and the seven manual Ranger Weather Stations on the islands, including standard operating procedures for equipment maintenance and calibration; manufacturer operating manuals; data retrieval and archiving; metada collection and archival; and local, agency, and vendor contracts.

  10. 25 CFR 23.44 - Grant administration and monitoring.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 25 Indians 1 2012-04-01 2011-04-01 true Grant administration and monitoring. 23.44 Section 23.44 Indians BUREAU OF INDIAN AFFAIRS, DEPARTMENT OF THE INTERIOR HUMAN SERVICES INDIAN CHILD WELFARE ACT General and Uniform Grant Administration Provisions and Requirements § 23.44 Grant administration...

  11. 25 CFR 23.44 - Grant administration and monitoring.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 25 Indians 1 2011-04-01 2011-04-01 false Grant administration and monitoring. 23.44 Section 23.44 Indians BUREAU OF INDIAN AFFAIRS, DEPARTMENT OF THE INTERIOR HUMAN SERVICES INDIAN CHILD WELFARE ACT General and Uniform Grant Administration Provisions and Requirements § 23.44 Grant administration...

  12. 25 CFR 23.44 - Grant administration and monitoring.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 25 Indians 1 2014-04-01 2014-04-01 false Grant administration and monitoring. 23.44 Section 23.44 Indians BUREAU OF INDIAN AFFAIRS, DEPARTMENT OF THE INTERIOR HUMAN SERVICES INDIAN CHILD WELFARE ACT General and Uniform Grant Administration Provisions and Requirements § 23.44 Grant administration...

  13. 25 CFR 23.44 - Grant administration and monitoring.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 25 Indians 1 2013-04-01 2013-04-01 false Grant administration and monitoring. 23.44 Section 23.44 Indians BUREAU OF INDIAN AFFAIRS, DEPARTMENT OF THE INTERIOR HUMAN SERVICES INDIAN CHILD WELFARE ACT General and Uniform Grant Administration Provisions and Requirements § 23.44 Grant administration...

  14. 25 CFR 23.44 - Grant administration and monitoring.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 25 Indians 1 2010-04-01 2010-04-01 false Grant administration and monitoring. 23.44 Section 23.44 Indians BUREAU OF INDIAN AFFAIRS, DEPARTMENT OF THE INTERIOR HUMAN SERVICES INDIAN CHILD WELFARE ACT General and Uniform Grant Administration Provisions and Requirements § 23.44 Grant administration...

  15. Canada invests in weather and climate monitoring

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    2012-01-01

    Canada is investing $78.7 million over the next 5 years to improve weather and climate monitoring infrastructure, Canada's minister of the environment Peter Kent announced on 20 January. The Canadian weather radar network, which consists of 31 radar sites around the country, is slated to receive the bulk of the funding ($45.2 million) to allow existing newer-generation radars to upgrade to dual-polarization technology. Of the remainder, $18.8 million is for the Canadian weather and climate observing networks to supplement existing resources and upgrade about 250 observing stations; $10.5 million is to improve the Canadian lightning detection network; and $4.2 million is to upgrade the Canadian aerological network's navigational technology with multisensor GPS radiosonde equipment.

  16. Administrative Climate and Novices' Intent to Remain Teaching

    ERIC Educational Resources Information Center

    Pogodzinski, Ben; Youngs, Peter; Frank, Kenneth A.; Belman, Dale

    2012-01-01

    Using survey data from novice teachers at the elementary and middle school level across 11 districts, multilevel logistic regressions were estimated to examine the association between novices' perceptions of the administrative climate and their desire to remain teaching within their schools. We find that the probability that a novice teacher…

  17. Accuracy requirements. [for monitoring of climate changes

    NASA Technical Reports Server (NTRS)

    Delgenio, Anthony

    1993-01-01

    Satellite and surface measurements, if they are to serve as a climate monitoring system, must be accurate enough to permit detection of changes of climate parameters on decadal time scales. The accuracy requirements are difficult to define a priori since they depend on unknown future changes of climate forcings and feedbacks. As a framework for evaluation of candidate Climsat instruments and orbits, we estimate the accuracies that would be needed to measure changes expected over two decades based on theoretical considerations including GCM simulations and on observational evidence in cases where data are available for rates of change. One major climate forcing known with reasonable accuracy is that caused by the anthropogenic homogeneously mixed greenhouse gases (CO2, CFC's, CH4 and N2O). Their net forcing since the industrial revolution began is about 2 W/sq m and it is presently increasing at a rate of about 1 W/sq m per 20 years. Thus for a competing forcing or feedback to be important, it needs to be of the order of 0.25 W/sq m or larger on this time scale. The significance of most climate feedbacks depends on their sensitivity to temperature change. Therefore we begin with an estimate of decadal temperature change. Presented are the transient temperature trends simulated by the GISS GCM when subjected to various scenarios of trace gas concentration increases. Scenario B, which represents the most plausible near-term emission rates and includes intermittent forcing by volcanic aerosols, yields a global mean surface air temperature increase Delta Ts = 0.7 degrees C over the time period 1995-2015. This is consistent with the IPCC projection of about 0.3 degrees C/decade global warming (IPCC, 1990). Several of our estimates below are based on this assumed rate of warming.

  18. Incorporating Fundamentals of Climate Monitoring into Climate Indicators at the National Climatic Data Center

    NASA Astrophysics Data System (ADS)

    Arndt, D. S.

    2014-12-01

    In recent years, much attention has been dedicated to the development, testing and implementation of climate indicators. Several Federal agencies and academic groups have commissioned suites of indicators drawing upon and aggregating information available across the spectrum of climate data stewards and providers. As a long-time participant in the applied climatology discipline, NOAA's National Climatic Data Center (NCDC) has generated climate indicators for several decades. Traditionally, these indicators were developed for sectors with long-standing relationships with, and needs of, the applied climatology field. These have recently been adopted and adapted to meet the needs of sectors who have newfound sensitivities to climate and needs for climate data. Information and indices from NOAA's National Climatic Data Center have been prominent components of these indicator suites, and in some cases have been drafted in toto by these aggregators, often with improvements to the communicability and aesthetics of the indicators themselves. Across this history of supporting needs for indicators, NCDC climatologists developed a handful of practical approaches and philosophies that inform a successful climate monitoring product. This manuscript and presentation will demonstrate the utility this set of practical applications that translate raw data into useful information.

  19. Contributions of GRACE to Climate Monitoring

    NASA Technical Reports Server (NTRS)

    Rodell, Matthew; Famiglietti, James; Chambers, Don P.; Wahr, John

    2011-01-01

    The NASA/German Gravity Recovery and Climate Experiment (GRACE) was launched in March 2002. Rather than looking downward, GRACE continuously monitors the locations of and precise distance between twin satellites which orbit in tandem about 200 km apart. Variations in mass near Earth's surface cause heterogeneities in its gravity field, which in turn affect the orbits of satellites. Thus scientists can use GRACE data to map Earth's gravity field with enough accuracy to discern month to month changes caused by ocean circulation and redistribution of water stored on and in the land. Other gravitational influences, such as atmospheric circulation, post-glacial rebound, and solid earth movements are either independently determined and removed or are negligible on a monthly to sub-decadal timescale. Despite its coarse spatial (>150,000 sq km at mid-latitudes) and temporal (approx monthly) resolutions, GRACE has enabled significant advancements in the oceanic, hydrologic, and cryospheric science, and has great potential for climate monitoring, because it is the only global observing system able to measure ocean bottom pressures, total terrestrial water storage, and ice mass changes. The best known GRACE results are estimates of Greenland and Antarctic ice sheet loss rates. Previously, scientists had estimated ice mass losses using ground and satellite based altimetry and surface mass balance estimates based on snowfall accumulation and glacier discharge. While such measurements are still very useful for their spatial detail, they are imperfectly correlated with large-scale ice mass changes, due to snow and ice compaction and incomplete spatial coverage. GRACE enables scientists to generate monthly time series of Greenland and Antarctic ice mass, which have confirmed the shrinking of the polar ice sheets, one of the most obvious and indisputable manifestations of climate change. Further, GRACE has located and quantified hot spots of ice loss in southeastern Greenland and

  20. Monitoring climate from space: a metrology perspective

    NASA Astrophysics Data System (ADS)

    Revercomb, Hank; Best, Fred; Tobin, Dave; Knuteson, Bob; Smith, Nadia; Smith, William L.; Weisz, Elisabeth

    2016-05-01

    Application of the principles of metrology for the NASA Climate Absolute Radiance and Refractivity Observatory (CLARREO) infrared high spectral resolution measurements is presented, starting with the use of a Standard International (SI) reference source on orbit, developing uncertainty traceability for intercalibration to other spaceborne sensors, and finally tracing the direct effects of radiance uncertainty on climate products originating from state parameter retrievals. The Absolute Radiance Interferometer (ARI) IR prototype employs an On-orbit Absolute Radiance Standard (OARS), developed under the NASA Instrument Incubator Program for CLARREO, for on-orbit calibration verification to better than 0.1 K 3-sigma. The OARS consists of a variable temperature, high emissivity blackbody with temperature calibration established to better than 16 mK on-orbit and provision for on-orbit emissivity monitoring. The temperature scale is established using miniature melt cells of Ga, H2O, and Hg. Transferring the high accuracy of ARI measurements to other IR instruments, especially the high spectral resolution operational sounders (AIRS, CrIS and IASI), is an important objective of CLARREO. The mathematical approach to rigorous traceability of sampling uncertainties is explained and applied in simulations of the intercalibration process. Results show that it will be possible to make intercomparisons of better than 0.05 K 3-sigma with just 6 months of observations from a single CLARREO in true polar orbit. Finally, the effects of radiance perturbations representing realistic uncertainties (for the CrIS on Suomi NPP) on retrieved temperature and water vapor profiles are evaluated. The results demonstrate a stable, physically reasonable impact of Dual regression retrievals.

  1. Long-Term Monitoring of Global Climate Forcings and Feedbacks

    NASA Technical Reports Server (NTRS)

    Hansen, J. (Editor); Rossow, W. (Editor); Fung, I. (Editor)

    1993-01-01

    A workshop on Long-Term Monitoring of Global Climate Forcings and Feedbacks was held February 3-4, 1992, at NASA's Goddard Institute for Space Studies to discuss the measurements required to interpret long-term global temperature changes, to critique the proposed contributions of a series of small satellites (Climsat), and to identify needed complementary monitoring. The workshop concluded that long-term (several decades) of continuous monitoring of the major climate forcings and feedbacks is essential for understanding long-term climate change.

  2. The new WMO RA VI Regional Climate Centre on Climate Monitoring

    NASA Astrophysics Data System (ADS)

    Rapp, J.; Nitsche, H.

    2010-09-01

    Regional Climate Centres (RCCs) are institutions with the capacity and mandate by WMO to develop high quality regional-scale products using global products and incorporating regional information. Recently a pilot network of three RCC consortia was established for the WMO region RA VI (Europe and Middle East): • RCC node on climate data, • RCC node on climate monitoring, • RCC node on long-range forecasting. DWD/Germany has taken the responsibility of the RCC node on climate monitoring (RRC-CM). Further consortium members are Armstatehydromet/Armenia, Météo-France/France, KNMI/The Netherlands, RHMS/Serbia, and TSMS/Turkey. RCCs provide online access to their products and services to national meteorological and hydrological services and to other regional users. Vice versa, RCCs receive data, products, know-how and feedbacks from the meteorological services as a main source for regional information. By the same time, they provide regional data, products and feedbacks to Global Production Centres and Lead Centres for respective verification and product optimisation of the global-scale information. The RCC-CM will perform basic functions covering the domain of climate monitoring: • Annual and monthly climate diagnostic bulletins, • Monthly monitoring maps: global, RAVI, Eastern Mediterranean, South Caucasus, • Reference climatologies and trend maps, • RA VI climate monitoring WebPortal, • Climate watches, • Training; Research and Development (R&D). The poster shows the current stage of development of the RCC-CM by means of example products.

  3. Geospatial climate monitoring products: Tools for food security assessment

    NASA Astrophysics Data System (ADS)

    Verdin, James Patrick

    Many of the 250 million people living in the drylands of Sub-Saharan Africa are food insecure---they lack access at all times to enough food for an active and healthy life. Their vulnerability is due in large measure to highly variable climatic conditions and a dependence on rainfed agriculture. Famine, the most extreme food security emergency, is caused by crop failure due to bad weather, conflict, or both. Famine is a slow onset disaster, culminating after two or more bad growing seasons. After the disastrous African famines of the 1970s and 1980s, the U.S. established the Famine Early Warning System (FEWS) to make the observations of climatic and socioeconomic variables needed for early detection of food security emergencies. Two geospatial climate monitoring products, rainfall estimate and vegetation index images derived from satellite data, are operationally used by FEWS analysts. This dissertation describes research to derive new products from them to reduce ambiguity and improve the link between early warning and early response. First, rainfall estimate images were used in a geospatial crop water accounting scheme. The resulting water requirement satisfaction index was used to estimate crop yield, and a correlation of 0.80 with conventional yield reports was obtained for the 1997 maize harvest in Zimbabwe. Thus, the agricultural significance of remotely sensed patterns of precipitation in time and space was made more clear. The second product tested was the expression of a seasonal climate forecast as a series of vegetation index anomaly images. Correlations between sea surface temperature anomalies in the equatorial Pacific and vegetation index anomalies in Southern Africa were established and predictive relationships cross-validated. Using model forecast values of Pacific sea surface temperature from the National Oceanic and Atmospheric Administration for January, February, and March, forecast images of vegetation index anomalies were prepared prior to the

  4. SnowClim: Snow climate monitoring for Europe

    NASA Astrophysics Data System (ADS)

    Bissolli, P.; Maier, U.

    2009-09-01

    Snow cover, particularly its depth and its frequency, is a very essential climate element. It influences the earth's surface radiation budget considerably due to its reflectivity properties and also it has large impact on economy and daily life (e.g. traffic, tourism). Although a lot of research and many national activities of snow monitoring have been done, there are very few products describing an integrated snow monitoring for whole Europe. In the light of a foreseen future Regional Climate Centre on Climate Monitoring (RCC-CM), the German Meteorological Service (Deutscher Wetterdienst, DWD) has established some first operational snow climate monitoring activities for the WMO Region VI (Europe and the Middle East). First selected key elements are the number of snowdays with a snow cover > 1 cm, the mean and the maximum snow depth per month. Results are presented in form of monthly and climatological maps, tables and diagrams of time series starting in 1981. Data presently are taken from observations at synoptical stations, received by the Global Telecommunication System. A first quality control based on threshold tests has been developed. The snow climate monitoring products are currently under further development. New evaluations will be carried out also on a daily data basis, additional satellite data, and also the quality control procedure will be extended. Some operational SnowClim products are available on the DWD web site: www.dwd.de/snowclim

  5. Pilot system on extreme climate monitoring and early warning for long range forecast in Korea

    NASA Astrophysics Data System (ADS)

    Cho, K.; Park, B. K.; E-hyung, P.; Gong, Y.; Kim, H. K.; Park, S.; Min, S. K.; Yoo, H. D.

    2015-12-01

    Recently, extreme weather/climate events such as heat waves, flooding/droughts etc. have been increasing in frequency and intensity under climate change over the world. Also, they can have substantial impacts on ecosystem and human society (agriculture, health, and economy) of the affected regions. According to future projections of climate, extreme weather and climate events in Korea are expected to occure more frequently with stronger intensity over the 21st century. For the better long range forecast, it is also fundamentally ruquired to develop a supporting system in terms of extreme weather and climate events including forequency and trend. In this context, the KMA (Korea Meteorological Administration) has recently initiated a development of the extreme climate monintoring and early warning system for long range forecast, which consists of three sub-system components; (1) Real-time climate monitoring system, (2) Ensemble prediction system, and (3) Mechanism analysis and display system for climate extremes. As a first step, a pilot system has been designed focusing on temperature extremes such heat waves and cold snaps using daily, monthly and seasonal observations and model prediction output on the global, regional and national levels. In parallel, the skills of the KMA long range prediction system are being evaluated comprehensively for weather and climate extremes, for which varous case studies are conducted to better understand the observed variations of extrem climates and responsible mechanisms and also to assess predictability of the ensemble prediction system for extremes. Details in the KMA extreme climate monitoring and early warning system will be intorduced and some preliminary results will be discussed for heat/cold waves in Korea.

  6. The satellite climate monitoring programme of the German Meteorological Service

    NASA Astrophysics Data System (ADS)

    Bissolli, P.; Nitsche, H.; Wollenweber, G.; Benesch, W.; Müller-Westermeier, G.; Rosenow, W.

    2003-04-01

    The German Meteorological Service (DWD) is host of the Satellite Application Facility on Climate Monitoring (CM-SAF) of EUMETSAT. The CM-SAF with its international partners will provide climate data (daily and monthly means, monthly mean diurnal cycles) based on the satellite systems MSG (Meteosat Second Generation, the first MSG satellite was launched in fall 2002) and the polar orbiting satellites NOAA and EPS (the latter one is the EUMETSAT Polar Satellite System, the first satellite named METOP-1 is planned to be launched in 2005; the NOAA and METOP satellites will form the Initial Joint Polar Satellite System). The parameters to be generated by the CM-SAF are cloud parameters, components of the radiation budget at the earth’s surface and at the top of the atmosphere, ocean wind stress and water vapour in the atmosphere. The data will cover in the initial phase an area of Europe and the North Atlantic, later the area is planned to be extended to the polar regions and the whole MSG disc. The purpose of the CM-SAF is to generate, with long-term commitments on a fully operational basis, homogeneous and consistent products in high quality, which are suitable for assessments of the status of the (regional) climate system. Together with data from the Global Precipitation Climatology Centre (GPCC), which is also operated by the DWD, the CM-SAF products are suitable for monitoring components of the energy and water cycle. To establish a really powerful climate monitoring system, the German Meteorological Service additionally set up a national satellite climatology project called SAT-KLIM. This project uses the CM-SAF products for climate monitoring, but also other satellite climate data, ground based in situ and remote observations as well as model output. In SAT-KLIM, climate monitoring products will be derived from the different data sources and merged to one final high quality product. While CM-SAF can only consider present and future data, SAT-KLIM uses

  7. A Global Framework for Monitoring Phenological Responses to Climate Change

    SciTech Connect

    White, Michael A; Hoffman, Forrest M; Hargrove, William Walter; Nemani, Ramakrishna R

    2005-01-01

    Remote sensing of vegetation phenology is an important method with which to monitor terrestrial responses to climate change, but most approaches include signals from multiple forcings, such as mixed phenological signals from multiple biomes, urbanization, political changes, shifts in agricultural practices, and disturbances. Consequently, it is difficult to extract a clear signal from the usually assumed forcing: climate change. Here, using global 8 km 1982 to 1999 Normalized Difference Vegetation Index (NDVI) data and an eight-element monthly climatology, we identified pixels whose wavelet power spectrum was consistently dominated by annual cycles and then created phenologically and climatically self-similar clusters, which we term phenoregions. We then ranked and screened each phenoregion as a function of landcover homogeneity and consistency, evidence of human impacts, and political diversity. Remaining phenoregions represented areas with a minimized probability of non-climatic forcings and form elemental units for long-term phenological monitoring.

  8. Coastal Ecosystems and Climate Change: Is Modeling and Monitoring Enough?

    NASA Astrophysics Data System (ADS)

    Cronin, T. M.; Walker, H. A.

    2005-05-01

    Many coastal ecosystems are severely degraded due to a variety of human factors, requiring large and expensive monitoring and modeling efforts for restoration and management. Climate variability, including abrupt climate change, is seldom factored into coastal ecosystem management despite growing evidence for climate forcing of precipitation, river discharge, water quality, salinity, turbidity, faunal and phytoplankton dynamics, dissolved oxygen, and other ecosystem processes. We will review evidence from long-term monitoring records, multi-proxy paleoclimatic and paleoecological records, and climatic modeling that suggests that the effects of climate can override local and regional human activities and may potentially diminish the success of restoration efforts. Because ecosystem restoration often involves long-term objectives requiring decades to achieve, our focus will be on examples from sub-tropical and temperate estuaries in North America that show ecosystem response over decadal timescales to variability related to El Niño-Southern Oscillation, the Pacific Decadal Oscillation and the North Atlantic Oscillation. Climatic variability evident from paleo-records of the past few centuries exceeds that recorded in most 20th century monitoring records. This raises issues about the efficacy of local and regional ecosystem and hydrodynamic models designed to simulate ecosystem response to anthropogenic changes in sediment and nutrient input, fresh-water discharge, and land-use because such models, though tested with rigorous validation procedures, use calibration data sets limited to a few years. Thus, they might not be appropriate for simulating response to climatic extremes on the scale and duration of past events outside their calibration range. Understanding the complexities of ecosystem response to climatic forcing, especially in the context of local and regional ecosystem disturbance, raises formidable challenges, but attempts to integrate climate

  9. 77 FR 74174 - National Oceanic and Atmospheric Administration (NOAA) National Climate Assessment and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-12-13

    ... National Oceanic and Atmospheric Administration (NOAA) National Climate Assessment and Development Advisory... notice sets forth the schedule of a forthcoming meeting of the DoC NOAA National Climate Assessment and... the call. Please check the National Climate Assessment Web site for additional information at...

  10. Chlorofluorocarbon-11, -12, and nitrous oxide measurements at the NOAA/GMCC (National Oceanic and Atmospheric Administration/Geophysical Monitoring for Climatic Change) baseline stations (16 September 1973 to 31 December 1979)

    SciTech Connect

    Thompson, T.M.; Komhyr, W.D.; Dutton, E.G.

    1985-06-01

    The National Oceanic and Atmospheric Administration's Air Resources Laboratory (NOAA/ARL) began measuring chlorofluorocarbon-11 in 1973 because of the interest in this anthropogenic pollutant as a tracer for the study of mass transfer processes in the atmosphere and the oceans. Interest in chlorofluorocarbon-11, and in chlorofluorocarbon-12 and nitrous oxide, was heightened during the mid-1970's with the realization that these compounds can be decomposed by photolysis in the stratosphere to cause stratospheric ozone destruction by released chlorine atoms. Measurements of chlorofluorocarbon-12 and nitrous oxide were begun by NOAA/ARL in 1977. The report describes the evolution of the chlorofluorocarbon and N/sub 2/O measurement programs through 1979. By that time, the sample collection and analysis techniques became standardized, and have remained the same to the present.

  11. Overview and Update of the North America Drought Monitor and North America Climate Extremes Monitoring System

    NASA Astrophysics Data System (ADS)

    Heim, R. R.

    2006-12-01

    The North America Drought Monitor (NADM) is a joint operational drought monitoring activity between scientists and other specialists in the United States, Mexico, and Canada. Like all weather phenomena, drought occurs irrespective of political and international boundaries. The monthly map and narrative product created by this first-of-its-kind effort provides an integrated continental-scale drought assessment tool for decision-makers in all three countries involved in drought monitoring, drought mitigation, and related climate services. The product is prepared by a rotating primary author who utilizes drought indicators which are computed using standard methodologies for stations across the continent, plus national drought monitoring products and feedback from local experts in each of the three countries. The participants include, within the United States: the NOAA National Climatic Data Center, NOAA Climate Prediction Center, USDA Joint Agricultural Weather Facility, and National Drought Mitigation Center; within Mexico: Servicio Meteorologico Nacional/Comision Nacional del Agua; and within Canada: Agriculture and Agrifood Canada and the Meteorological Service of Canada. The NADM is part of a North America Climate Extremes Monitoring (NACEM) system which will monitor and assess climate extremes across the continent. Several climate indicators are currently computed from station daily data to measure (in addition to drought) heavy precipitation, heat waves, and cold waves. Future efforts will add indicators to monitor storm severity and severe weather, including the creation of a North America Climate Extremes Index (NACEI) patterned after the U.S. Climate Extremes Index (USCEI). This presentation will review the history of the NADM/NACEM effort, the data utilized, the indicators computed, and the product preparation and peer review process.

  12. Improved ATLAS HammerCloud Monitoring for Local Site Administration

    NASA Astrophysics Data System (ADS)

    Böhler, M.; Elmsheuser, J.; Hönig, F.; Legger, F.; Mancinelli, V.; Sciacca, G.

    2015-12-01

    Every day hundreds of tests are run on the Worldwide LHC Computing Grid for the ATLAS, and CMS experiments in order to evaluate the performance and reliability of the different computing sites. All this activity is steered, controlled, and monitored by the HammerCloud testing infrastructure. Sites with failing functionality tests are auto-excluded from the ATLAS computing grid, therefore it is essential to provide a detailed and well organized web interface for the local site administrators such that they can easily spot and promptly solve site issues. Additional functionality has been developed to extract and visualize the most relevant information. The site administrators can now be pointed easily to major site issues which lead to site blacklisting as well as possible minor issues that are usually not conspicuous enough to warrant the blacklisting of a specific site, but can still cause undesired effects such as a non-negligible job failure rate. This paper summarizes the different developments and optimizations of the HammerCloud web interface and gives an overview of typical use cases.

  13. Third National Aeronautics and Space Administration Weather and climate program science review

    NASA Technical Reports Server (NTRS)

    Kreins, E. R. (Editor)

    1977-01-01

    Research results of developing experimental and prototype operational systems, sensors, and space facilities for monitoring, and understanding the atmosphere are reported. Major aspects include: (1) detection, monitoring, and prediction of severe storms; (2) improvement of global forecasting; and (3) monitoring and prediction of climate change.

  14. Monitoring of Climate Change in Germany - Data, products and services of Germany's National Climate Data Centre

    NASA Astrophysics Data System (ADS)

    Kaspar, F.; Penda, E.; Müller-Westermeier, G.; Zimmermann, K.; Mächel, H.

    2012-04-01

    Germany's meteorological service (Deutscher Wetterdienst, DWD) is responsible for monitoring climate change in Germany. The section "National Climate Monitoring" is responsible for operating the National Climate Data Centre (NCDC, "Nationales KlimaDatenZentrum NKDZ") and for provision of statistical data derived from these observations. The NCDC database mainly comprises 'conventional' in-situ observations that are observed within the station network of DWD, but also other categories of data, e.g. phenological observations. The main aim of the NCDC is the sustained development of a comprehensive data base of high quality, which provides basic information for climate research and applied climatology. A major focus of the activity is to guarantee a defined data quality by means of validation and correction of the data (or at least a description of errors), as well as a detailed description of the data base. The main focus of these quality assurance tasks has been shifted to the quality control of previously insufficiently verified historical data. The data base can be used to analyse the climate in Germany over a period of more than 100 years. DWD's National Climate Data Centre is thus the reference for climate data from stations in Germany and acts as data supplier especially for national climate research, but data and products are also used in international projects. In order to complete the data base for historic periods (esp. the first half of the 20th century), original paper documents are currently digitized and integrated into the data base. External customers may obtain data and products directly via Internet-based access tools. DWD currently starts to provide access to its climate data based on standards of the Open Geospatial Consortium (OGC), e.g. Web Mapping Services (WMS) to provide access to the derived gridded data products of NCDC.

  15. NuukBasic - Climate effects monitoring in low arctic Greenland

    NASA Astrophysics Data System (ADS)

    Aastrup, P.; Nymand, J.; Raundrup, K.; Tamstorf, M. P.; Forchhammer, M. C.; Schmidt, N. M.; Lauridsen, T. L.

    2009-12-01

    The climate effects research program in Zackenberg in high arctic Greenland got a counterpart in Nuuk in low arctic West Greenland in 2007. The programme NuukBasic is described and, for the first time, results will presented from several of the monitoring components (Table 1). In particular, we focus on changes in plant phenology, vegetation greenness, graded effects of UVB radiation and lake ecology. Results are compared and contrasted concurrent changes at the high arctic site Zackenberg in Northeast Greenland.Biological Monitoring elements in NuukBasis

  16. Geophysical Monitoring for Climatic Change number 9. Summary report 1980

    SciTech Connect

    DeLuisi, J.J.

    1981-12-01

    This document presents a summary of the research operations and accomplishments by the Geophysical Monitoring for Climatic Change (GMCC) program and by outside investigators working cooperatively with GMCC in 1980. It includes descriptions of management and operations at GMCC's four baseline sites, scientific data from the measurement projects, conclusions from analyses of data and recent basic research achievements. The four observatories are located in Barrow, Alaska; Mauna Loa, Hawaii; American Samoa; and South Pole.

  17. New Congressional Climate Change Task Force Calls on President to Use Administrative Authority

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    2013-02-01

    Spurred by U.S. congressional inaction on climate change and by President Barack Obama's comments on the topic in his 21 January inaugural address, several Democratic members of Congress announced at a Capitol Hill briefing the formation of a bicameral task force on climate change. In addition, they have called on the president to use his administrative authority to deal with the issue.

  18. The Campus Climate Revisited: Chilly for Women Faculty, Administrators, and Graduate Students.

    ERIC Educational Resources Information Center

    Sandler, Bernice R.; Hall, Roberta M.

    The professional climate often experienced by women faculty and administrators is reported, along with some consideration to the experiences of graduate and professional students. Attention is focused on subtle ways in which women are treated differently and common behaviors that create a chilly professional climate. The information was obtained…

  19. Administrative, Faculty, and Staff Perceptions of Organizational Climate and Commitment in Christian Higher Education

    ERIC Educational Resources Information Center

    Thomas, John Charles

    2008-01-01

    Findings of 957 surveyed employees from four evangelical higher education institutions found a negative correlation for climate and commitment and staff members. Administrators were found to have a more favorable view of their institutional climate than staff. Employee age, tenure, and classification had predictive value for organizational…

  20. Stationary monitoring of glacier response to climate change in China

    NASA Astrophysics Data System (ADS)

    Ren, Jiawen; Li, Zhongqin; Qin, Xiang; He, Yuanqing; He, Xiaobo; Li, Huilin

    2016-04-01

    At present, there are about 48571 glaciers with a total area of about 51.8×103 km2 and a volume of about 5.6×103 km3 in China. They are distributed widely in the high mountains in and surrounding the Tibetan Plateau and other high mountains such as Tianshan, Altay and Pamir. In view of differences in climatic conditions and glacier types, stationary monitoring of the glacier variations has been ongoing in different regions in order to investigate the glacier response to climate change. The monitoring results show that all the monitoring glaciers have been in retreat during the past decades and especially since 1990's the retreat rate has an accelerating trend. The accumulative mass balance is much negative and has a large annual variability for the monsoonal maritime glaciers in comparison with the continental and sub-continental glaciers. Under climate warming background, the acceleration of glacier melting is mainly attributed to rise in air temperature, ice temperature augment and albedo reduction of glacier surface. Particularly, the albedo reduction has a positive feedback effect on the glacier melting. Based on long term observation of glacier variations and physical properties, a simple dynamics model is coupled with mass balance modeling to make a projection of a typical glacier change in future. The primary modeling results suggest that the glacier will continue in shrinkage until vanishing within 50-90 years.

  1. Enhancing Middle East climate change monitoring and indexes

    SciTech Connect

    Sensoy, S.; Peterson, T.C.; Zhang, X.

    2007-08-15

    Extreme climate events can have significant impacts on both natural and human systems, and therefore it is important to know if and how climate extremes are changing. Analysis of extremes requires long-term daily station data and, unfortunately, there are many regions in the world where these data are not internationally exchanged. The Intergovernmental Panel on Climate Change (IPCC) Third Assessment Report (Folland et al. 2001) relied heavily on the multinational analysis of Frich et al (2002). However, Frich et al. had no results from all of Central and South America, and most of Africa and southern Asia, including the Middle East. To remedy this situation for the IPCC Fourth Assessment Report, the joint World Meteorological Organization Commission for Climatology/World Climate Research Programme (WCRP) project on Climate Variability and Predictability (CLIVAR) Expert Team on Climate Change Detection, Monitoring, and Indices (Zwiers et al. 2003) internationally coordinated a series of five regional climate change workshops and a set of indices for analyses of extremes. Two workshops covered the Americas, one in Brazil and one in Guatemala. One workshop addressed southern Africa. A workshop in India involved south and central Asia, while the workshop for the Middle East sought to address the region from Turkey to Iran and from Georgia to the southern tip of the Arabian Peninsula. The key to a successful workshop is a collaborative approach between outside experts and regional participants. The participants here broght long-term daily precipitation and maximum and minimum temperature data, station history information, an understanding of their country's climate, and a willingness to analyze thse data under the tutelage of outside experts. The outside experts brought knowledge of the crucial data and climate change issues, presentations to explain these issues, and user-friendly software to aid the analyses. Xuebin Zhang of Environment Canada wrote the workshop

  2. The Relationship between Organizational Climate and the Organizational Silence of Administrative Staff in Education Department

    ERIC Educational Resources Information Center

    Pozveh, Asghar Zamani; Karimi, Fariba

    2016-01-01

    The aim of the present study was to determine the relationship between organizational climate and the organizational silence of administrative staff in Education Department in Isfahan. The research method was descriptive and correlational-type method. The study population was administrative staff of Education Department in Isfahan during the…

  3. Space based observations for monitoring extreme weather and climate events

    SciTech Connect

    Rao, P.K.

    1996-12-31

    Observations are essential for monitoring, understanding, and predicting the potential for extreme weather and climate events. These events occur on all time and spatial scales. Current NOAA operational satellites have a unique capability of providing many of the observations that are critical for monitoring these events. These observations and derived geophysical quantities can also be used for diagnostics and prediction purposes. Extreme weather conditions such as severe thunderstorms and flash floods, occur very quickly, may last for a short time, and create a considerable amount of damage. Advance warnings of the order of a few minutes are needed to alert the public so they may take adequate precautions. Some extreme weather conditions such as tropical storms (hurricanes) may last for days, and in order to predict the exact track, intensity of the storm and forecast the land fall, frequent observations are critical. Examples of satellite data that are obtained from the NOAA satellites are presented to demonstrate their ability to monitor the extreme weather phenomena. Examples of extreme climate conditions are droughts over continents and the annual depletion of ozone over the Antarctic. Data derived from NOAA satellites were used to monitor the severe drought over Texas and Southwestern U.S.A. in early 1996. Similar data are being used by other countries to monitor the drought in their regions. The development of the ozone hole over the Antarctic during the last fifteen years has been a major scientific and environmental concern. Data from NOAA operational satellites have been extensively used to show the yearly development and dissipation of the ozone hole during the Southern Hemisphere springtime.

  4. A long-term Northern Hemisphere snow cover extent data record for climate studies and monitoring

    NASA Astrophysics Data System (ADS)

    Estilow, T. W.; Young, A. H.; Robinson, D. A.

    2015-06-01

    This paper describes the long-term, satellite-based visible snow cover extent National Oceanic and Atmospheric Administration (NOAA) climate data record (CDR) currently available for climate studies, monitoring, and model validation. This environmental data product is developed from weekly Northern Hemisphere snow cover extent data that have been digitized from snow cover maps onto a Cartesian grid draped over a polar stereographic projection. The data have a spatial resolution of 190.6 km at 60° latitude, are updated monthly, and span the period from 4 October 1966 to the present. The data comprise the longest satellite-based CDR of any environmental variable. Access to the data is provided in Network Common Data Form (netCDF) and archived by NOAA's National Climatic Data Center (NCDC) under the satellite Climate Data Record Program (doi:10.7289/V5N014G9). The basic characteristics, history, and evolution of the data set are presented herein. In general, the CDR provides similar spatial and temporal variability to its widely used predecessor product. Key refinements included in the CDR improve the product's grid accuracy and documentation and bring metadata into compliance with current standards for climate data records.

  5. Monitoring Surface Climate With its Emissivity Derived From Satellite Measurements

    NASA Technical Reports Server (NTRS)

    Zhou, Daniel K.; Larar, Allen M.; Liu, Xu

    2012-01-01

    Satellite thermal infrared (IR) spectral emissivity data have been shown to be significant for atmospheric research and monitoring the Earth fs environment. Long-term and large-scale observations needed for global monitoring and research can be supplied by satellite-based remote sensing. Presented here is the global surface IR emissivity data retrieved from the last 5 years of Infrared Atmospheric Sounding Interferometer (IASI) measurements observed from the MetOp-A satellite. Monthly mean surface properties (i.e., skin temperature T(sub s) and emissivity spectra epsilon(sub v) with a spatial resolution of 0.5x0.5-degrees latitude-longitude are produced to monitor seasonal and inter-annual variations. We demonstrate that surface epsilon(sub v) and T(sub s) retrieved with IASI measurements can be used to assist in monitoring surface weather and surface climate change. Surface epsilon(sub v) together with T(sub s) from current and future operational satellites can be utilized as a means of long-term and large-scale monitoring of Earth 's surface weather environment and associated changes.

  6. Climate Change, Carbon Dioxide, and Pest Biology: Monitor, Mitigate, Manage.

    PubMed

    Ziska, Lewis H; McConnell, Laura L

    2016-01-13

    Rising concentrations of atmospheric carbon dioxide ([CO2]) and subsequent changes in climate, including temperature and precipitation extremes, are very likely to alter pest pressures in both managed and unmanaged plant communities. Such changes in pest pressures can be positive (migration from a region) or negative (new introductions), but are likely to be accompanied by significant economic and environmental consequences. Recent studies indicate the range of invasive weeds such as kudzu and insects such as mountain pine beetle have already expanded to more northern regions as temperatures have risen. To reduce these consequences, a better understanding of the link between CO2/climate and pest biology is needed in the context of existing and new strategies for pest management. This paper provides an overview of the probable biological links and the vulnerabilities of existing pest management (especially chemical control) and provides a preliminary synthesis of research needs that could potentially improve the ability to monitor, mitigate, and manage pest impacts. PMID:25671793

  7. National Oceanic and Atmospheric Administration /NOAA/ contamination monitoring instrumentation

    NASA Technical Reports Server (NTRS)

    Maag, C. R.

    1980-01-01

    The JPL has designed and built a plume contamination monitoring package to be installed on a NOAA environmental services satellite. The package is designed to monitor any condensible contamination that occurs during the ignition and burn of a TE-M-364-15 apogee kick motor. The instrumentation and system interface are described, and attention is given to preflight analysis and test.

  8. The NOAA climate monitoring and diagnostics laboratory (CMDL) research program

    SciTech Connect

    Ferguson, E.

    1993-12-31

    The CMDL atmospheric measurement program (knows as GMCC--Global Monitoring for Climate Change, prior to 1990) involves monitoring a variety of environmentally important trace gases at four permanent observations. Mauna Loa, Hawaii, Samoa, South Pole and Barrow, Alaska, as well as numerous other global sites. Shipboard and stratospheric aircraft platforms are also utilized. The greenhouse gases CO{sub 2}, CH{sub 4} and CO are measured and analyzed in order to better understand the global carbon cycle. CFCs, HCFC`s and N{sub 2}O are measured, both because of their greenhouse roles as well as their role in the control of stratospheric ozone. Regular balloon borne measurements of ozone, water vapor and aerosols in the stratosphere, particularly over the South Pole, are contributing to the understanding of stratospheric ozone loss. Lidar and solar transmission measurements are being used to study volcanic aerosols. Some of the most recent results of this program will be described along with the implications related to future climate change.

  9. Nevada Monitoring System to Assess Climate Variability and Change

    NASA Astrophysics Data System (ADS)

    Devitt, D. A.; Arnone, J.; Biondi, F.; Fenstermaker, L. F.; Saito, L.; Young, M.; Riddle, B.; Strachan, S. D.; Bird, B.; McCurdy, G.; Lyles, B. F.

    2010-12-01

    The Nevada System of Higher Education (University of Nevada Las Vegas, University of Nevada Reno and the Desert Research Institute) was awarded a multiyear NSF EPSCoR grant to support infrastructure associated with regional climate change research. The overall project is comprised of 5 components: education, cyberinfrastructure, policy, climate modeling and water/ecology. The water and ecology components are using their infrastructure funding for the assessment of climate variability and change on ecosystem function and hydrologic services. A series of 10 m tall towers are under construction and are being equipped with a wide array of sensors to monitor atmospheric, soil and plant parameters over time. The towers are located within the Mojave and Great Basin Deserts in two transects; the Mojave Desert transect is located in the southern Nevada Sheep Mountain Range and the Great Basin transect is located in the east central Nevada Snake Mountain Range. The towers are centrally positioned in well-defined vegetation zones. In southern Nevada these zones are represented by the following plant species: Creosote/Bursage (Creosotebush scrub zone); Blackbrush/Joshua Tree (Blackbrush zone); Pinyon/ Juniper (pygmy conifer zone), Ponderosa Pine (montane zone) and Bristlecone Pine (subalpine zone). The Snake Mountain transect incorporates the eastern and western valleys on both sides of the mountain range. The vegetation zones are represented by: Greasewood and mixed shrub (salt desert zone); Big Sage (sagebrush zone); Pinyon/Juniper (pygmy conifer zone); White/Douglas Fir, Ponderosa Pine and Aspen (montane zone); and Bristlecone/Limber Pine and Engelmann Spruce (subalpine zone). We are currently in the third year of funding with a goal of having the majority of towers fully operational by winter 2010. In close collaboration with our cyberinfrastructure component team, all data acquired from the transect monitoring stations will be made available to other researchers and the

  10. Fourth National Aeronautics and Space Administration Weather and Climate Program Science Review

    NASA Technical Reports Server (NTRS)

    Kreins, E. R. (Editor)

    1979-01-01

    The NASA Weather and Climate Program has two major thrusts. The first involves the development of experimental and prototype operational satellite systems, sensors, and space facilities for monitoring and understanding the atmosphere. The second thrust involves basic scientific investigation aimed at studying the physical and chemical processes which control weather and climate. This fourth science review concentrated on the scientific research rather than the hardware development aspect of the program. These proceedings contain 65 papers covering the three general areas: severe storms and local weather research, global weather, and climate.

  11. Drought Monitoring in Peru as a Climate Service

    NASA Astrophysics Data System (ADS)

    Lavado, Waldo; Felipe, Oscar; Caycho, Tania; Sosa, Jesus; Fernandez, Carlos; Endara, Sofia

    2015-04-01

    Given the need to reduce socio- economic and environmental drought in Peru as well as the vulnerability and increasing responsiveness and recovery to these events, the National Service of Meteorology and Hydrology of Peru (SENAMHI ) in conjunction with the Peru's Environment Ministry has developed a plan Drought Monitoring nationwide, which consists of two components: 1) Monitoring System and 2 ) Dissemination System . The first component consists of calculating drought indicators at national level; and for that purpose we have selected the following indexes: Normal Precipitation Index (NPI), Standardized Precipitation Index (SPI) , Precipitation Concentration Index (PCI) , Vegetation Condition Index (VCI ) , Temperature Condition Index ( TCI) , Healthy Vegetation Index (VHI ) and Streamflow Drought Index (SDI). In order to estimate these index observed climatological and hydrological data of SENAMHI network is used as well as remote sensing data of precipitation, temperature and vegetation (TRMM, CHIRPS and MODIS). The second component is the spread of these indicators and a compilation thereof to a summary document that integrates all indicators (Monthly Bulletin). This will be done through newsletters and a website (www.senamhi.gob.pe/serviciosclimaticos); in the case of exceptional drought events special notes will be made. A date has launched the first newsletter in September 2014. This drought monitoring system will be used as an instrument of climate service and we intend to make it a useful tool for decision makers and the general population .

  12. The Effects of Teacher Perceptions of Administrative Support, School Climate, and Academic Success in Urban Schools

    ERIC Educational Resources Information Center

    Robinson, Lakishia N.

    2015-01-01

    Teacher turnover refers to major changes in teachers' assignments from one school year to the next. Past research has given an overview of several factors of teacher turnover. These factors include the school environment, teacher collaborative efforts, administrative support, school climate, location, salary, classroom management, academic…

  13. Administrative Satisfaction and the Regulatory Climate at Public Institutions. AIR 1997 Annual Forum Paper.

    ERIC Educational Resources Information Center

    Volkwein, James Fredericks; Malik, Shaukat M.; Napierski-Prancl, Michelle

    This study examined the effects of state regulation of financial, personnel, and academic resources on the administrative flexibility granted to universities, and tested the hypothesis that state regulatory climate influences levels of managerial satisfaction. Data were gathered through two surveys. The first covered management flexibility and…

  14. Climate Monitoring and Diagnostics Laboratory No. 18. Summary report, 1989

    SciTech Connect

    Komhyr, W.D.; Rosson, R.M.

    1990-12-01

    Contents: CMDL station information; observatory reports; aerosols and radiation monitoring group; carbon cycle group; ozone group; acquisition and data management; air quality group; nitrous oxide and halocarbons group; a joint U.S./U.S.S.R. experiment for the study of desert dust and its impact on local meteorological conditions and climate; annual ozone cycle and decade trend at South Pole; wintertime black carbon aerosol measurements over the southwestern United States, December 1989; cooperative programs; precipitation chemistry; continuous aerosol monitoring with the epiphaniometer at mlo; antarctic ultraviolet spectroradiometer monitoring program; chemical resolution of fine aerosol mass at mlo: the role of organic matter; artificial windshielding of precipitation gauges in the arctic; UVB monitoring data from Rockville, Maryland; Robertson-Berger UVB meter; the CSIRO latitudinal gradient study: methane data from air samples collected at Cape Grim, Tasmania; secular variation in the carbon-13 content of atmospheric carbon dioxide; snow bunting nesting study at Barrow, Alaska; optical depth retrieval with the sunphotometer; tropospheric nitrogen oxide during spring at Barrow; chemical analyses of atmospheric particulates and gases at mlo; a temperature inversion climatology for barrow: 1976-1985; the global precipitation chemistry project; radioactivity in the surface air at brw, mlo, smo, and spo; total nitrate variations at Mauna Loa; seasonal and latitudinal trends in the (13)c/(12)c ratio of methane; aerosol constituents at American Samoa, November 1989; update on the o-ring bias; trends of the carbon isotopi composition of atmospheric methane in the southern hemisphere; bromine and surface ozone atmospheric chemistry at Barrow, Alaska, during spring 1989; USGS Barrow Observatory; radon from distant continents detected at the Mauna Loa Observatory.

  15. Geophysical monitoring for climatic change. Number 8. Summary report 1979

    SciTech Connect

    Herbert, G.A.

    1980-12-01

    The Geophysical Monitoring for Climatic Change (GMCC) program, which has operated for eight years, is described. The most significant change in the GMCC operational program in 1979 was the initiation of 10 additional CO2 flask sampling stations. Continuous measurement of CO2 and aerosol scattering at four wavelengths, using a nephelometer, was begun at the South Pole station at the end of 1978 and continued throughout 1979. A filter collection system was installed at the Barrow station to make possible the determination of the mass of the carbonaceous aerosols. Early results show that graphitic carbon makes up a significant part of the arctic haze, and because of its optical absorptivity, it may cause a significant contribution to the radiative energy budget. At the Mauna Loa Observatory a new cooperative measurement program to observe the chemical composition of aerosols was initiated.

  16. Precise climate monitoring using complementary satellite data sets

    PubMed

    Wentz; Schabel

    2000-01-27

    Observations from Earth-orbiting satellites have been a key component in monitoring climate change for the past two decades. This has become possible with the availability of air temperatures from the Microwave Sounding Unit (MSU) since 1979, sea surface temperatures from the Advanced Very High Resolution Radiometer (AVHRR) since 1982 and, most recently, measurements of atmospheric water vapour content from the Special Sensor Microwave Imager (SSM/I) since 1987. Here we present a detailed comparison of each pair of these three time series, focusing on both interannual and decadal variations in climate. We find a strong association between sea surface temperature, lower-tropospheric air temperature and total column water-vapour content over large oceanic regions on both time scales. This lends observational support to the idea of a constant relative humidity model having a moist adiabatic lapse rate. On the decadal timescale, the combination of data sets shows a consistent warming and moistening trend of the marine atmosphere for 1987-1998. PMID:10667790

  17. Blood-component therapy: selection, administration and monitoring.

    PubMed

    Chiaramonte, Deirdre

    2004-05-01

    Transfusion of blood products is a frequent necessity in small animal practice. Transfusion medicine has become more sophisticated with increased access to blood components, knowledge of blood types, and cross-matching requirements. Although potentially life saving, this procedure does carry some risk. In addition to selecting the appropriate blood product, several steps need to be completed to prepare the product for administration and the patient for receiving a transfusion. PMID:15179925

  18. Global ocean monitoring for the World Climate Research Programme.

    PubMed

    Revelle, R; Bretherton, F

    1986-07-01

    -"Tropical Oceans and Global Atmosphere (TOGA)"-will be undertaken to sudy the sequence of events of air-sea interactions in the tropical oceans and their impact on climatic variations on land-for example, variations in the strength and location of the Indian Ocean monsoon, droughts in low latitudes, and climatic fluctuations in temperate latitudes.Experimental and continuing time series will be taken at fixed locations to obtain a better picture of the magnitude and causes of ocean climate variability. National and multinational systematic repeated measurements along selected ocean transects or in specific ocean areas will be taken to determine oceanic variability and teleconnections between oceanic and atmospheric processes. Examples are the long Japanese section along the meridian of 137° E and the 'Sections' program of the USSR and several other countries in Energy-Active zones.The results from this wide range of observations and experiments will be used to guide and define mathematical models of the ocean circulation and its interactions with the atmosphere.It can be shown that biogeochemical processes in the ocean play an important role in determining the carbon dioxide content of the atmosphere and thus in causing long-term climatic changes. Variations in the biological productivity of sub-surface waters cause variations in the effectveness of the biological pump which carries organic carbon down into deeper waters where it is oxidized. Studies of ice cores from 20 000 to 30 000 yr before the present indicate that atmospheric carbon dioxide varied by a factor of 2 within times of the order of 100 yr, and these variations were accompanied by large excursions in atmospheric temperature. Thus, ocean climatic monitoring must take into account measurements of both biological and physical variations in the ocean. PMID:24254799

  19. Regional Design Approach in Designing Climatic Responsive Administrative Building in the 21st Century

    NASA Astrophysics Data System (ADS)

    Haja Bava Mohidin, Hazrina Binti; Ismail, Alice Sabrina

    2015-01-01

    The objective of this paper is to explicate on the study of modern administrative building in Malaysia which portrays regional design approach that conforms to the local context and climate by reviewing two case studies; Perdana Putra (1999) and former Prime Minister's Office (1967). This paper is significant because the country's stature and political statement was symbolized by administrative building as a national icon. In other words, it is also viewed as a cultural object that is closely tied to a particular social context and nation historical moment. Administrative building, therefore, may exhibit various meanings. This paper uses structuralism paradigm and semiotic principles as a methodological approach. This paper is of importance for practicing architects and society in the future as it offers new knowledge and understanding in identifying the suitable climatic consideration that may reflect regionalist design approach in modern administrative building. These elements then may be adopted in designing public buildings in the future with regional values that are important for expressing national culture to symbolize the identity of place and society as well as responsive to climate change.

  20. The Climate Change Education Evidence Base: Lessons Learned from NOAA's Monitoring and Evaluation Framework Implementation

    NASA Astrophysics Data System (ADS)

    Baek, J.

    2012-12-01

    Federal science mission agencies are under increased pressure to ensure that their STEM education investments accomplish several objectives, including the identification and use of evidence-based approaches. Climate change education and climate literacy programs fall under these broader STEM initiatives. This paper is designed as a primer for climate change education evaluators and researchers to understand the policy context on the use of evidence. Recent initiatives, that include the National Science Foundation (NSF), the National Aeronautics and Space Administration (NASA), the National Oceanic and Atmospheric Administration (NOAA), point to a need for shared goals and measurements amongst the climate change education community. The Tri-agency Climate Change Education (CCE) collaboration, which includes NSF, NASA, and NOAA, developed the Tri-Agency Climate Change Education Common Evaluation Framework Initiative Stakeholder Statement (2012). An excerpt: From the perspective of the tri-agency collaboration, and its individual agency members, the goal of the common framework is not to build a required evaluation scheme or a set of new requirements for our funded climate change education initiatives. Rather, the collaboration would be strengthened by the development of a framework that includes tools, instruments, and/or documentation to: ● Help the agencies see and articulate the relationships between the individual pieces of the tri-agency CCE portfolio; ● Guide the agencies in reporting on the progress, lessons learned, and impacts of the collaboration between the three agencies in developing a coordinated portfolio of climate education initiatives; and ● Help the individual projects, as part of this broader portfolio, understand where they fit into a larger picture. The accomplishments of this initiative to date have been based on the collaborative nature of evaluators the climate change education community within the tri-agency portfolio. While this

  1. Regional monitoring of environmental physics climate related anomalies

    NASA Astrophysics Data System (ADS)

    El-Askary, Hesham

    2004-11-01

    Scientific communities have been working in creating and enhancing scientific research programs in which in situ and satellite data as well as remote sensing (RS) technologies are being applied to regional environmental issues. These issues include the effects of climate change on regional flooding, droughts and the impact of human activities as they relate to feedbacks on the global climate. More specifically, one needs to evaluate the potential impact of climatological variability on social, economic, and human activities. In addition, the study of their effects on agriculture, forests, local natural ecosystems and water climate-related resources, is most important. Finally, dust storms and other natural events such as droughts can have great local impacts. Approximately half of the dust in today's atmosphere may be the result of changes to the environment caused by human activities, including agriculture, overgrazing, and deforestation. Climate variability may lead to the occurrence of some severe environmental phenomena like dust storms, hurricanes, tornadoes, floods and droughts. Under normal conditions we can detect different dust effects associated with the movement of storms as well as different rain patterns that do not affect much of the surrounding environment either at regional or global scales. On the other hand, under abnormal climatological conditions, high anomalies of precipitation might occur due to the presence of hurricanes or other events, leading to severe flooding events. In this dissertation, we apply time series analysis techniques to remote sensing and in situ data to detect precipitation and dust storm anomalies and study their behavior on regional scales. The first application is the detection and monitoring of dust storms events over parts of the Middle East and Asia. Dust storms cause health and economic hazards. In this thesis dust storms development is examined based on using remote sensing. It utilizes a combination of optical

  2. The 21st century Museum Climatic Monitoring System

    NASA Astrophysics Data System (ADS)

    Liu, W.-S.

    2015-08-01

    Technology has provided us work convenience and shaped our quality of life; it has enabled an unprecedented level of access to knowledge by flipping screen of a hand-held electronic device without going elsewhere but stay connected wireless communication. This kind of technology has been broadly acquired at museums in Hong Kong for preserving their valuable collections. Similar gadget was applied on the monitoring system to record climatic conditions of museum's stores and galleries. Sensors have been equipped with chips for the wireless transmission of RH/Temp, without installation of any conduit or LAN lines. Useful and important data will then be grouped into a packet format for efficient delivery. As long as the static IP address of the target workstation has been set, data can be accurately retrieved from one place to another via commercially available browsers, such as: Firefox or Internet Explorer, even on hand-held electronic devices. This paper will discuss the detail of this system, its pros and cons in comparison with the old model. After all, the new technology is highly significant in supporting the current needs and the future developments of the museum service.

  3. Monitoring Climate Variability and Change in Northern Alaska: Updates to the U.S. Geological Survey (USGS) Climate and Permafrost Monitoring Network

    NASA Astrophysics Data System (ADS)

    Urban, F. E.; Clow, G. D.; Meares, D. C.

    2004-12-01

    Observations of long-term climate and surficial geological processes are sparse in most of the Arctic, despite the fact that this region is highly sensitive to climate change. Instrumental networks that monitor the interplay of climatic variability and geological/cryospheric processes are a necessity for documenting and understanding climate change. Improvements to the spatial coverage and temporal scale of Arctic climate data are in progress. The USGS, in collaboration with The Bureau of Land Management (BLM) and The Fish and Wildlife Service (FWS) currently maintains two types of monitoring networks in northern Alaska: (1) A 15 site network of continuously operating active-layer and climate monitoring stations, and (2) a 21 element array of deep bore-holes in which the thermal state of deep permafrost is monitored. Here, we focus on the USGS Alaska Active Layer and Climate Monitoring Network (AK-CLIM). These 15 stations are deployed in longitudinal transects that span Alaska north of the Brooks Range, (11 in The National Petroleum Reserve Alaska, (NPRA), and 4 in The Arctic National Wildlife Refuge (ANWR)). An informative overview and update of the USGS AK-CLIM network is presented, including insight to current data, processing and analysis software, and plans for data telemetry. Data collection began in 1998 and parameters currently measured include air temperature, soil temperatures (5-120 cm), snow depth, incoming and reflected short-wave radiation, soil moisture (15 cm), wind speed and direction. Custom processing and analysis software has been written that calculates additional parameters such as active layer thaw depth, thawing-degree-days, albedo, cloudiness, and duration of seasonal snow cover. Data from selected AK-CLIM stations are now temporally sufficient to begin identifying trends, anomalies, and inter-annual variability in the climate of northern Alaska.

  4. Using Copernicus earth observation services to monitor climate change impacts and adaptations

    NASA Astrophysics Data System (ADS)

    Becker, Daniel; Zebisch, Marc; Sonnenschein, Ruth; Schönthaler, Konstanze; von Andrian-Werburg, Stefan

    2016-04-01

    In the last years, earth observation made a big leap towards an operational monitoring of the state of environment. Remote sensing provides for instance information on the dynamics, trends and anomalies of snow and glaciers, vegetation, soil moisture or water temperature. In particular, the European Copernicus initiative offers new opportunities through new satellites with a higher temporal and spatial resolution, operational services for environmental monitoring and an open data access policy. With the Copernicus climate change service and the ESA climate change initiative, specific earth observation programs are in place to address the impacts of climate change. However, such products and services are until now rarely picked up in the field of policy or decision making oriented climate impact or climate risk assessments. In this talk, we will present results of a study, which focus on the question, if and how remote sensing approaches could be integrated into operational monitoring activities of climate impacts and response measures on a national and subnational scale. We assessed all existing and planned Copernicus services regarding their relevance for climate impact monitoring by comparing them against the indication fields from an indicator system for climate impact and response monitoring in Germany, which has lately been developed in the framework of the German national adaptation strategy. For several climate impact or response indicators, an immediate integration of remote sensing data could be identified and been recommended. For these cases, we will show practical examples on the benefit of remote sensing data. For other indication fields, promising approaches were found, which need further development. We argue that remote sensing is a very valuable complement to the existing indicator schemes by contributing with spatial explicit, timely information but not always easy to integrate with classical approaches, which are oriented towards consistent long

  5. Collaboration pathway(s) using new tools for optimizing operational climate monitoring from space

    NASA Astrophysics Data System (ADS)

    Helmuth, Douglas B.; Selva, Daniel; Dwyer, Morgan M.

    2014-10-01

    Consistently collecting the earth's climate signatures remains a priority for world governments and international scientific organizations. Architecting a solution requires transforming scientific missions into an optimized robust `operational' constellation that addresses the needs of decision makers, scientific investigators and global users for trusted data. The application of new tools offers pathways for global architecture collaboration. Recent (2014) rulebased decision engine modeling runs that targeted optimizing the intended NPOESS architecture, becomes a surrogate for global operational climate monitoring architecture(s). This rule-based systems tools provide valuable insight for Global climate architectures, through the comparison and evaluation of alternatives considered and the exhaustive range of trade space explored. A representative optimization of Global ECV's (essential climate variables) climate monitoring architecture(s) is explored and described in some detail with thoughts on appropriate rule-based valuations. The optimization tools(s) suggest and support global collaboration pathways and hopefully elicit responses from the audience and climate science shareholders.

  6. A simple urine spot test for monitoring dapsone self-administration in leprosy treatment

    PubMed Central

    Huikeshoven, Han

    1986-01-01

    A simple urine spot test for monitoring patient compliance to dapsone self-administration in leprosy therapy was recommended by WHO but later abandoned. The present article describes some important improvements to the test, which is characterized by its validity and straightforwardness. PMID:3488843

  7. NASA's Sentinels Monitoring Weather and Climate: Past, Present, and Future

    NASA Technical Reports Server (NTRS)

    Shepherd, J. Marshall; Herring, David; Gutro, Rob; Huffman, George; Halverson, Jeff

    2002-01-01

    Weatherwise is probably the most popular newstand magazine focusing on the subject of weather. It is published six times per year and includes features on weather, climate, and technology. This article (to appear in the January/February Issue) provides a comprehensive review of NASA s past, present, and future contributions in satellite remote sensing for weather and climate processes. The article spans the historical strides of the TIROS program through the scientific and technological innovation of Earth Observer-3 and Global Precipitation Measurement (GPM). It is one of the most thorough reviews of NASA s weather and climate satellite efforts to appear in the popular literature.

  8. A Long-Term and Reproducible Passive Microwave Sea Ice Concentration Data Record for Climate Studies and Monitoring

    NASA Technical Reports Server (NTRS)

    Peng, G.; Meier, W. N.; Scott, D. J.; Savoie, M. H.

    2013-01-01

    A long-term, consistent, and reproducible satellite-based passive microwave sea ice concentration climate data record (CDR) is available for climate studies, monitoring, and model validation with an initial operation capability (IOC). The daily and monthly sea ice concentration data are on the National Snow and Ice Data Center (NSIDC) polar stereographic grid with nominal 25 km × 25 km grid cells in both the Southern and Northern Hemisphere polar regions from 9 July 1987 to 31 December 2007. The data files are available in the NetCDF data format at http://nsidc.org/data/g02202.html and archived by the National Climatic Data Center (NCDC) of the National Oceanic and Atmospheric Administration (NOAA) under the satellite climate data record program (http://www.ncdc.noaa.gov/cdr/operationalcdrs.html). The description and basic characteristics of the NOAA/NSIDC passive microwave sea ice concentration CDR are presented here. The CDR provides similar spatial and temporal variability as the heritage products to the user communities with the additional documentation, traceability, and reproducibility that meet current standards and guidelines for climate data records. The data set, along with detailed data processing steps and error source information, can be found at http://dx.doi.org/10.7265/N5B56GN3.

  9. Monitoring Users' Satisfactions of the NOAA NWS Climate Products and Services

    NASA Astrophysics Data System (ADS)

    Horsfall, F. M.; Timofeyeva, M. M.; Dixon, S.; Meyers, J. C.

    2011-12-01

    The NOAA's National Weather Service (NWS) Climate Services Division (CSD) ensures the relevance of NWS climate products and services. There are several ongoing efforts to identify the level of user satisfaction. One of these efforts includes periodical surveys conducted by Claes Fornell International (CFI) Group using the American Customer Satisfaction Index (ACSI), which is "the only uniform, national, cross-industry measure of satisfaction with the quality of goods and services available in the United States" (http://www.cfigroup.com/acsi/overview.asp). The CFI Group conducted NWS Climate Products and Services surveys in 2004 and 2009. In 2010, a prominent routine was established for a periodical assessment of the customer satisfaction. From 2010 onward, yearly surveys will cover major climate services products and services. An expanded suite of climate products will be surveyed every other year. Each survey evaluated customer satisfaction with a range of NWS climate services, data, and products, including Climate Prediction Center (CPC) outlooks, drought monitoring, and ENSO monitoring and forecasts, as well as NWS local climate data and forecast products and services. The survey results provide insight into the NWS climate customer base and their requirements for climate services. They also evaluate whether we are meeting the needs of customers and the ease of their understanding for routine climate services, forecasts, and outlooks. In addition, the evaluation of specific topics, such as NWS forecast product category names, probabilistic nature of climate products, interpretation issues, etc., were addressed to assess how our users interpret prediction terminology. This paper provides an analysis of the following products: hazards, extended-range, long-lead and drought outlooks, El Nino Southern Oscillation monitoring and predictions as well as local climate data products. Two key issues make comparing the different surveys challenging, including the

  10. CTFS/ForestGEO: A global network to monitor forest interactions with a changing climate

    NASA Astrophysics Data System (ADS)

    Anderson-Teixeira, K. J.; Muller-Landau, H.; McMahon, S.; Davies, S. J.

    2013-12-01

    Forests are an influential component of the global carbon cycle and strongly influence Earth's climate. Climate change is altering the dynamics of forests globally, which may result in significant climate feedbacks. Forest responses to climate change entail both short-term ecophysiological responses and longer-term directional shifts in community composition. These short- and long-term responses of forest communities to climate change may be better understood through long-term monitoring of large forest plots globally using standardized methodology. Here, we describe a global network of forest research plots (CTFS/ForestGEO) of utility for understanding forest responses to climate change and consequent feedbacks to the climate system. CTFS/ForestGEO is an international network consisting of 51 sites ranging in size from 2-150 ha (median size: 25 ha) and spanning from 25°S to 52°N latitude. At each site, every individual > 1cm DBH is mapped and identified, and recruitment, growth, and mortality are monitored every 5 years. Additional measurements include aboveground productivity, carbon stocks, soil nutrients, plant functional traits, arthropod and vertebrates monitoring, DNA barcoding, airborne and ground-based LiDAR, micrometeorology, and weather monitoring. Data from this network are useful for understanding how forest ecosystem structure and function respond to spatial and temporal variation in abiotic drivers, parameterizing and evaluating ecosystem and earth system models, aligning airborne and ground-based measurements, and identifying directional changes in forest productivity and composition. For instance, CTFS/ForestGEO data have revealed that solar radiation and night-time temperature are important drivers of aboveground productivity in moist tropical forests; that tropical forests are mixed in terms of productivity and biomass trends over the past couple decades; and that the composition of Panamanian forests has shifted towards more drought

  11. Climate change, carbon dioxide, and pest biology: Monitor, mitigate, manage

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Rising concentrations of atmospheric carbon dioxide [CO2] and subsequent changes in climate, including temperature and precipitation extremes, are very likely to alter pest pressures in both managed and unmanaged plant communities. Such changes in pest pressures can be positive (migration from a re...

  12. Long-term air quality monitoring at the South Pole by the NOAA program Geophysical Monitoring for Climatic Change

    SciTech Connect

    Robinson, E.; Rodhaine, B.A.; Komhyr, W.D.; Oltmans, S.J.; Steele, L.P.

    1988-02-01

    The objectives of the NOAA program of Geophysical Monitoring for Climatic Change (GMCC) for the South Pole include measurements of atmospheric changes which can potentially impact climate. This paper discusses the long-term GMCC South Pole air chemistry data for carbon dioxide, total ozone, surface ozone, methane, halocarbons, nitrous oxide, and aerosol concentrations, comparing the findings with GMCC data for other regions. Special consideration is given to the results of recent GMCC ozonesonde operations and to an asessment of Dobson ozone spectrophotometer data taken at South Pole by NOAA since 1964. Data are discussed in the framework of Antarctic ozone hole phenomenon. 49 references.

  13. CalClim: An accessible data archive to monitor California climate

    NASA Astrophysics Data System (ADS)

    Edwards, L. M.; Cayan, D. R.; Redmond, K. T.; McCurdy, G. D.; Riddle, L.; Tyree, M. M.

    2004-12-01

    Climate data for the state of California has historically been provided by several independent sources, requiring time-consuming searches to find the appropriate information. The CalClim California Climate Data Archive (CCDA) provides centralized climate data access to assist those interested in monitoring California climate variability and change. The CalClim website (http://www.calclim.dri.edu) is a gateway to a number of climate observation networks that operate in California, including NWS Cooperative Network, SNOTEL, Remote Automated Weather Station (RAWS), and other statewide and regional networks. This archive enables scientists, state agencies and others with California interests to retrieve climate data at their convenience, for periods from days to years, and from one or multiple networks. Software on the website can also produce summaries of data, and graphs of daily or monthly data with options such as running means. Currently a limited selection of data is available, but additional datasets will be added over the next several months to one year. A coastal-focused climate data archive is anticipated to be added in early 2005. Both graphical and text interfaces are used to select networks and/or individual stations. Other products available at the website include the monthly California Climate Watch online newsletter and recent climate maps for periods ranging from the last week to 3 years, updated daily. A climate metadata inventory for the state is being assembled in conjunction with this project, and will be made available online at its completion. An additional aspect in development involves support of an enhanced California climate monitoring network.

  14. Monitoring and Predicting the African Climate for Food Security

    NASA Astrophysics Data System (ADS)

    Thiaw, W. M.

    2015-12-01

    Drought is one of the greatest challenges in Africa due to its impact on access to sanitary water and food. In response to this challenge, the international community has mobilized to develop famine early warning systems (FEWS) to bring safe food and water to populations in need. Over the past several decades, much attention has focused on advance risk planning in agriculture and water. This requires frequent updates of weather and climate outlooks. This paper describes the active role of NOAA's African Desk in FEWS. Emphasis is on the operational products from short and medium range weather forecasts to subseasonal and seasonal outlooks in support of humanitarian relief programs. Tools to provide access to real time weather and climate information to the public are described. These include the downscaling of the U.S. National Multi-model Ensemble (NMME) to improve seasonal forecasts in support of Regional Climate Outlook Forums (RCOFs). The subseasonal time scale has emerged as extremely important to many socio-economic sectors. Drawing from advances in numerical models that can now provide a better representation of the MJO, operational subseasonal forecasts are included in the African Desk product suite. These along with forecasts skill assessment and verifications are discussed. The presentation will also highlight regional hazards outlooks basis for FEWSNET food security outlooks.

  15. The National Oceanic and Atmospheric Administration (NOAA) Climate Services Portal: A New Centralized Resource for Distributed Climate Information

    NASA Astrophysics Data System (ADS)

    Burroughs, J.; Baldwin, R.; Herring, D.; Lott, N.; Boyd, J.; Handel, S.; Niepold, F.; Shea, E.

    2010-09-01

    With the rapid rise in the development of Web technologies and climate services across NOAA, there has been an increasing need for greater collaboration regarding NOAA's online climate services. The drivers include the need to enhance NOAA's Web presence in response to customer requirements, emerging needs for improved decision-making capabilities across all sectors of society facing impacts from climate variability and change, and the importance of leveraging climate data and services to support research and public education. To address these needs, NOAA (during fiscal year 2009) embarked upon an ambitious program to develop a NOAA Climate Services Portal (NCS Portal). Four NOAA offices are leading the effort: 1) the NOAA Climate Program Office (CPO), 2) the National Ocean Service's Coastal Services Center (CSC), 3) the National Weather Service's Climate Prediction Center (CPC), and 4) the National Environmental Satellite, Data, and Information Service's (NESDIS) National Climatic Data Center (NCDC). Other offices and programs are also contributing in many ways to the effort. A prototype NCS Portal is being placed online for public access in January 2010, http://www.climate.gov. This website only scratches the surface of the many climate services across NOAA, but this effort, via direct user engagement, will gradually expand the scope and breadth of the NCS Portal to greatly enhance the accessibility and usefulness of NOAA's climate data and services.

  16. Preliminary Development of the Brief-California School Climate Survey: Dimensionality and Measurement Invariance across Teachers and Administrators

    ERIC Educational Resources Information Center

    You, Sukkyung; O'Malley, Meagan D.; Furlong, Michael J.

    2014-01-01

    A brief 15-item version of the California School Climate Scale (Brief-CSCS) is presented to fill a need for a measure that could be used for periodic monitoring of school personnel's general perception of the climate of their school campus. From a sample of 81,261 California school personnel, random subsamples of 2,400 teachers and 2,400…

  17. Development and Implementation of Flood Risk Mapping, Water Bodies Monitoring and Climate Information for Human Health

    NASA Astrophysics Data System (ADS)

    Ceccato, P.; McDonald, K. C.; Jensen, K.; Podest, E.; De La Torre Juarez, M.

    2013-12-01

    Public health professionals are increasingly concerned about the potential impact that climate variability and change can have on infectious disease. The International Research Institute for Climate and Society (IRI), City College of New York (CCNY) and NASA Jet Propulsion Laboratory (JPL) are developing new products to increase the public health community's capacity to understand, use, and demand the appropriate climate data and climate information to mitigate the public health impacts of climate on vector-borne diseases such as malaria, leishmaniasis, rift valley fever. In this poster we present the new and improved products that have been developed for monitoring water bodies for monitoring and forecasting risks of vector-borne disease epidemics. The products include seasonal inundation patterns in the East African region based on the global mappings of inundated water fraction derived at the 25-km scale from both active and passive microwave instruments QuikSCAT, AMSR-E, SSM/I, ERS, ASCAT, and MODIS and LANDSAT data. We also present how the products are integrated into a knowledge system (IRI Data Library Map room, SERVIR) to support the use of climate and environmental information in climate-sensitive health decision-making.

  18. Collaboration pathway(s) using new tools for optimizing `operational' climate monitoring from space

    NASA Astrophysics Data System (ADS)

    Helmuth, Douglas B.; Selva, Daniel; Dwyer, Morgan M.

    2015-09-01

    Consistently collecting the earth's climate signatures remains a priority for world governments and international scientific organizations. Architecting a long term solution requires transforming scientific missions into an optimized robust `operational' constellation that addresses the collective needs of policy makers, scientific communities and global academic users for trusted data. The application of new tools offers pathways for global architecture collaboration. Recent rule-based expert system (RBES) optimization modeling of the intended NPOESS architecture becomes a surrogate for global operational climate monitoring architecture(s). These rulebased systems tools provide valuable insight for global climate architectures, by comparison/evaluation of alternatives and the sheer range of trade space explored. Optimization of climate monitoring architecture(s) for a partial list of ECV (essential climate variables) is explored and described in detail with dialogue on appropriate rule-based valuations. These optimization tool(s) suggest global collaboration advantages and elicit responses from the audience and climate science community. This paper will focus on recent research exploring joint requirement implications of the high profile NPOESS architecture and extends the research and tools to optimization for a climate centric case study. This reflects work from SPIE RS Conferences 2013 and 2014, abridged for simplification30, 32. First, the heavily securitized NPOESS architecture; inspired the recent research question - was Complexity (as a cost/risk factor) overlooked when considering the benefits of aggregating different missions into a single platform. Now years later a complete reversal; should agencies considering Disaggregation as the answer. We'll discuss what some academic research suggests. Second, using the GCOS requirements of earth climate observations via ECV (essential climate variables) many collected from space-based sensors; and accepting their

  19. Global satellite monitoring of climate-induced vegetation disturbances.

    PubMed

    McDowell, Nate G; Coops, Nicholas C; Beck, Pieter S A; Chambers, Jeffrey Q; Gangodagamage, Chandana; Hicke, Jeffrey A; Huang, Cho-ying; Kennedy, Robert; Krofcheck, Dan J; Litvak, Marcy; Meddens, Arjan J H; Muss, Jordan; Negrón-Juarez, Robinson; Peng, Changhui; Schwantes, Amanda M; Swenson, Jennifer J; Vernon, Louis J; Williams, A Park; Xu, Chonggang; Zhao, Maosheng; Running, Steve W; Allen, Craig D

    2015-02-01

    Terrestrial disturbances are accelerating globally, but their full impact is not quantified because we lack an adequate monitoring system. Remote sensing offers a means to quantify the frequency and extent of disturbances globally. Here, we review the current application of remote sensing to this problem and offer a framework for more systematic analysis in the future. We recommend that any proposed monitoring system should not only detect disturbances, but also be able to: identify the proximate cause(s); integrate a range of spatial scales; and, ideally, incorporate process models to explain the observed patterns and predicted trends in the future. Significant remaining challenges are tied to the ecology of disturbances. To meet these challenges, more effort is required to incorporate ecological principles and understanding into the assessments of disturbance worldwide. PMID:25500552

  20. A High Elevation Climate Monitoring Network: Strategy and Progress

    NASA Astrophysics Data System (ADS)

    Redmond, K. T.

    2004-12-01

    Populations living at low elevations are critically dependent on processes and resources at higher elevations. Most western U.S. streamflow begins as mountain snowmelt. Observational evidence and theoretical considerations indicate that climate variations in a given geographic domain can and do exhibit different characteristics and temporal behavior at different elevations. Subtleties in the interplay between topography and airflow can significantly affect precipitation patterns. However, there are very few systematic, long-term, in-situ, climate quality, high-altitude observational time series with hourly resolution for the western North American mountains to investigate these issues at the proper scales. Climate at high elevations is severely undersampled, a consequence of the harsh physical environment, and demands on sensors, maintenance, access, communications, time, and budgets. Costs are higher, human presence is limited, AC power is often not available, and there are permitting and aesthetic constraints. The observational strategy should include these main elements: 1) All major mountain ranges should be sampled. 2) Along-axis and cross-axis sampling for major mountain chains. 3) Approximately 5-10 sites per state (1 per 56000 sq km to 1 per 28000 sq km). 4) Highest sites as high as possible within each state, but at both high relative and absolute elevations. 5) Free air exposures at higher sites. 6) Utilize existing measurements and networks, and extend existing records, when possible. 7) AC power to prevent ice/rime when practical. 8) Temperature, relative humidity, wind speed and direction, solar radiation as main elements, others as feasible. 9) Hourly readings, and real time communication whenever possible. 10) Absence of local artificial influences, site stable for next 5-10 decades. 11) Current and historical measurements accessible via World Wide Web when possible. 12) Hydro measurements (precipitation, snow water content and depth) are not

  1. Submarine Cables for Ocean/Climate Monitoring and Disaster Warning

    NASA Astrophysics Data System (ADS)

    Bueti, Cristina; Barnes, Chris; Meldrum, David

    2013-04-01

    A joint initiative between International Telecommunication Union (ITU), the World Meteorological Organization (WMO) and the Intergovernmental Oceanographic Commission (IOC) of UNESCO is examining novel uses for submarine telecommunication cables. The initiative addresses two main issues: the need for sustained climate-quality data from the sparsely observed deep oceans, and the desire to increase the reliability and integrity of the global tsunami warning networks. In the latter case, a significant proportion of the network suffers from failure and vandalism of the sea-surface telemetry buoys that relay the tsunami signals from the sea-bed sensor package: incorporating the sensors within a submarine cable repeater is an obvious way of increasing system reliability. At the present time, plans are well advanced to launch a pilot project with the active involvement of cable industry players.

  2. Solving the Global Climate Monitoring Problem in the Atmosphere: Towards SI-tied Climate Records with Integrated Uncertainty Propagation

    NASA Astrophysics Data System (ADS)

    Kirchengast, G.; Schwaerz, M.; Fritzer, J.; Schwarz, J.; Scherllin-Pirscher, B.; Steiner, A. K.

    2013-12-01

    Monitoring the atmosphere to gain accurate and long-term stable records of essential climate variables (ECVs) such as temperature and greenhouse gases is the backbone of contemporary atmospheric and climate science. Earth observation from space is the key to obtain such data globally in the atmosphere. Currently, however, not any existing satellite-based atmospheric ECV record can serve as authoritative benchmark over months to decades so that climate variability and change in the atmosphere are not yet reliably monitored. Radio occultation (RO) using Global Navigation Satellite System (GNSS) signals provides a unique opportunity to solve this problem in the free atmosphere (from ~1-2 km altitude upwards) for core ECVs: the thermodynamic variables temperature and pressure, and to some degree water vapor, which are key parameters for tracking climate change. On top of RO we have recently conceived next-generation methods, microwave and infrared-laser occultation and nadir-looking infrared-laser reflectometry. These can monitor a full set of thermo-dynamic ECVs (incl. wind) as well as the greenhouse gases such as carbon dioxide and methane as main drivers of climate change; for the latter we also target the boundary layer for tracking carbon sources and sinks. We briefly introduce to why the atmospheric climate monitoring challenge is unsolved so far and why just the above methods have the capabilities to break through. We then focus on RO, which already provided more than a decade of observations. RO accurately measures time delays from refraction of GNSS signals during atmospheric occultation events. This enables to tie RO-derived ECVs and their uncertainty to fundamental time standards, effectively the SI second, and to their unique long-term stability and narrow uncertainty. However, despite impressive advances since the pioneering RO mission GPS/Met in the mid-1990ties no rigorous trace from fundamental time to the ECVs (duly accounting also for relevant side

  3. Monitoring Mechanism in Preservation of Monuments in Hot and Wet Climate Area

    NASA Astrophysics Data System (ADS)

    Lee, M. C.; Tsai, Y. L.; Lin, M. L.; Hang, L. W.; Chen, C. Y.

    2015-08-01

    Historic monuments and buildings are critical cultural assets which cannot be presented by again by human beings. Longer affected by natural climate, environment and biological behavior (including human), resulting in damage and the need for repair. Therefore, UNESCO proposed periodic reporting and reactive monitoring in 2007, in order to achieve "early detection, early repair". This study discusses about suitable preservation monitoring methods for Taiwan. To shed light on damage and impact factors of historical buildings and cultural relics, the study is based on impact and sensor, monitoring method, monitoring period and maintenance personnel in order to propose standard operating procedures of monitoring method. To reduce the rate of the human and sensor monitoring, with the long-term monitoring data analysis, it is calculated that 30 minutes is the best period of data collecting. Besides, the study is adopted regression analysis to select temperature variable only then calculate humidity variable function. This study provides a reference monitoring method for monitoring personnel and maintenance personnel, and establishes a long-term monitoring data based information for damage and destroy in the future. Monitoring period and maintenance personnel can follow the data based to find out the damage points and problems, to keep the value of cultural assets.

  4. Applications of Advanced Technology for Monitoring Forest Carbon to Support Climate Change Mitigation

    NASA Astrophysics Data System (ADS)

    Birdsey, R.; Hurtt, G. C.; Dubayah, R.; Hagen, S. C.; Vargas, R.; Nehrkorn, T.; Domke, G. M.; Houghton, R. A.

    2015-12-01

    Measurement, Reporting, and Verification (MRV) is a broad concept guiding the application of monitoring technology to the needs of countries or entities for reporting and verifying reductions in greenhouse gas emissions or increases in greenhouse gas sinks. Credibility, cost-effectiveness, and compatibility are important features of global MRV efforts that can support implementation of climate change mitigation programs such as Reducing Emissions from Deforestation and Forest Degradation and Sustainable Forest Management (REDD+). Applications of MRV technology may be tailored to individual country circumstances following guidance provided by the Intergovernmental Panel on Climate Change; hence, there is no single approach that is uniquely viable but rather a range of ways to integrate new MRV methods. MRV technology is advancing rapidly with new remote sensing and advanced measurement of atmospheric CO2, and in situ terrestrial and ocean measurements, coupled with improvements in data analysis, modeling, and assessing uncertainty. Here we briefly summarize some of the most application-ready MRV technologies being developed under NASA's Carbon Monitoring System (CMS) program, and illustrate how these technologies may be applied for monitoring forests using several case studies that span a range of scales, country circumstances, and stakeholder reporting requirements. We also include remarks about the potential role of advanced monitoring technology in the context of the global climate accord that is expected to result from the 21st session of the Conference of the Parties to the United Nations Framework Convention on Climate Change, which is expected to take place in December 2015, in Paris, France.

  5. Schoolwide Social-Behavioral Climate, Student Problem Behavior, and Related Administrative Decisions: Empirical Patterns from 1,510 Schools Nationwide

    ERIC Educational Resources Information Center

    Spaulding, Scott A.; Irvin, Larry K.; Horner, Robert H.; May, Seth L.; Emeldi, Monica; Tobin, Tary J.; Sugai, George

    2010-01-01

    Office discipline referral (ODR) data provide useful information about problem behavior and consequence patterns, social-behavioral climates, and effects of social-behavioral interventions in schools. The authors report patterns of ODRs and subsequent administrative decisions from 1,510 schools nationwide that used the School-Wide Information…

  6. Monitoring alpine plants for climate change: The North American GLORIA Project

    USGS Publications Warehouse

    Millar, C.; Fagre, Daniel B.

    2007-01-01

    Globally, alpine environments are hotspots of biodiversity, often harboring higher diversity of plant species than corresponding areas at lower elevations. These regions are also likely to experience more severe and rapid change in climate than lowlands under conditions of anthropogenic warming (Theurillat & Guisan 2001; Halloy & Mark 2003; Pickering & Armstrong 2003). Such climatic effects are already being documented by instrumental monitoring in the few places in western North America where long-term climate stations are available at high elevations. New sites are being planned (see GCOS article, pg 15). Climate Change is augmenting concern for alpine vegetation because available habitat diminishes at increasingly higher elevations. This creates an “elevational squeeze,” whereby the geometry of mountain peaks means that escape routes to cooler environments uphill are dead ends for migrating alpine species. While monitoring and modeling efforts have begun to elucidate climate of alpine environments in North America, very little is known about corresponding responses of alpine plant species to changing climate. Indeed, for many mountain regions in the West, little information exists even about alpine plant distribution and abundance.

  7. A long-term and reproducible passive microwave sea ice concentration data record for climate studies and monitoring

    NASA Astrophysics Data System (ADS)

    Peng, G.; Meier, W. N.; Scott, D. J.; Savoie, M. H.

    2013-05-01

    A long-term, consistent, and reproducible satellite-based passive microwave sea ice concentration climate data record (CDR) is available for climate studies, monitoring, and model validation with an initial operation capability (IOC). The daily and monthly sea ice concentration data are on the National Snow and Ice Data Center (NSIDC) polar stereographic grid with nominal 25 × 25 km grid cells in both the Southern and Northern Hemisphere Polar Regions from 9 July 1987 to 31 December 2007 with an update through 2011 underway. The data files are available in the NetCDF data format at http://nsidc.org/data/g02202.html and archived by the National Oceanic and Atmospheric Administration (NOAA)'s National Climatic Data Center (NCDC) under the satellite climate data record program (http://www.ncdc.noaa.gov/cdr/operationalcdrs.html). The description and basic characteristics of the NOAA/NSIDC passive microwave sea ice concentration CDR are presented here. The CDR provides similar spatial and temporal variability as the heritage products to the user communities with the additional documentation, traceability, and reproducibility that meet current standards and guidelines for climate data records. The dataset along with detailed data processing steps and error source information can be found at: doi:10.7265/N5B56GN3.

  8. A long-term and reproducible passive microwave sea ice concentration data record for climate studies and monitoring

    NASA Astrophysics Data System (ADS)

    Peng, G.; Meier, W. N.; Scott, D. J.; Savoie, M. H.

    2013-10-01

    A long-term, consistent, and reproducible satellite-based passive microwave sea ice concentration climate data record (CDR) is available for climate studies, monitoring, and model validation with an initial operation capability (IOC). The daily and monthly sea ice concentration data are on the National Snow and Ice Data Center (NSIDC) polar stereographic grid with nominal 25 km × 25 km grid cells in both the Southern and Northern Hemisphere polar regions from 9 July 1987 to 31 December 2007. The data files are available in the NetCDF data format at http://nsidc.org/data/g02202.html and archived by the National Climatic Data Center (NCDC) of the National Oceanic and Atmospheric Administration (NOAA) under the satellite climate data record program (http://www.ncdc.noaa.gov/cdr/operationalcdrs.html). The description and basic characteristics of the NOAA/NSIDC passive microwave sea ice concentration CDR are presented here. The CDR provides similar spatial and temporal variability as the heritage products to the user communities with the additional documentation, traceability, and reproducibility that meet current standards and guidelines for climate data records. The data set, along with detailed data processing steps and error source information, can be found at http://dx.doi.org/10.7265/N5B56GN3.

  9. NASA's Earth Observing System: The Transition from Climate Monitoring to Climate Change Prediction

    NASA Technical Reports Server (NTRS)

    King, Michael D.; Herring, David D.

    1998-01-01

    Earth's 4.5 billion year history is a study in change. Natural geological forces have been rearranging the surface features and climatic conditions of our planet since its beginning. There is scientific evidence that some of these natural changes have not only led to mass extinctions of species (e.g., dinosaurs), but have also severely impacted human civilizations. For instance, there is evidence that a relatively sudden climate change caused a 300-year drought that contributed to the downfall of Akkadia, one of the most powerful empires in the Middle-East region around 2200 BC. More recently, the "little ice age" from 1200-1400 AD forced the Vikings to abandon Greenland when temperatures there dropped by about 1.5 C, rendering it too difficult to grow enough crops to sustain the population. Today, there is compelling scientific evidence that human activities have attained the magnitude of a geological force and are speeding up the rate of global change. For example, carbon dioxide levels have risen 30 percent since the industrial revolution and about 40 percent of the world's land surface has been transformed by humans. We don't understand the cause-and-effect relationships among Earth's land, ocean, and atmosphere well enough to predict what, if any, impacts these rapid changes will have on future climate conditions. We need to make many measurements all over the world, over a long period of time, in order to assemble the information needed to construct accurate computer models that will enable us to forecast climate change. In 1988, the Earth System Sciences Committee, sponsored by NASA, issued a report calling for an integrated, long-term strategy for measuring the vital signs of Earth's climate system. The report urged that the measurements must all be intimately coupled with focused process studies, they must facilitate development of Earth system models, and they must be stored in an information system that ensures open access to consistent, long-term data

  10. Monitoring, reporting and verifying emissions in the climate economy

    NASA Astrophysics Data System (ADS)

    Bellassen, Valentin; Stephan, Nicolas; Afriat, Marion; Alberola, Emilie; Barker, Alexandra; Chang, Jean-Pierre; Chiquet, Caspar; Cochran, Ian; Deheza, Mariana; Dimopoulos, Christopher; Foucherot, Claudine; Jacquier, Guillaume; Morel, Romain; Robinson, Roderick; Shishlov, Igor

    2015-04-01

    The monitoring, reporting and verification (MRV) of greenhouse-gas emissions is the cornerstone of carbon pricing and management mechanisms. Here we consider peer-reviewed articles and 'grey literature' related to existing MRV requirements and their costs. A substantial part of the literature is the regulatory texts of the 15 most important carbon pricing and management mechanisms currently implemented. Based on a comparison of key criteria such as the scope, cost, uncertainty and flexibility of procedures, we conclude that conventional wisdom on MRV is not often promoted in existing carbon pricing mechanisms. Quantification of emissions uncertainty and incentives to reduce this uncertainty are usually only partially applied, if at all. Further, the time and resources spent on small sources of emissions would be expected to be limited. Although provisions aiming at an effort proportionate to the amount of emissions at stake -- 'materiality' -- are widespread, they are largely outweighed by economies of scale: in all schemes, MRV costs per tonne are primarily driven by the size of the source.

  11. A Safer Place? LGBT Educators, School Climate, and Implications for Administrators

    ERIC Educational Resources Information Center

    Wright, Tiffany E.; Smith, Nancy J.

    2015-01-01

    Over an 8-year span, two survey studies were conducted to analyze LGBT -teachers' perceptions of their school climate and the impact of school leaders on that climate. This article presents nonparametric, descriptive, and qualitative results of the National Survey of Educators' Perceptions of School Climate 2011 compared with survey results from…

  12. Climate Monitoring Satellite Designed in a Concurrent Engineering Process

    NASA Astrophysics Data System (ADS)

    Bauer, Waldemar; Braukhane, A.; Quantius, D.; Dumont, E.; Grundmann, J. T.; Romberg, O.

    An effective method of detecting Green House Gases (GHG CO2 and CH4) is using satellites, operating in Low Earth Orbit (LEO). Satellite based greenhouse gas emissions monitoring is challenging and shows an ambitions level of requirements. Until now for corresponding scientific payload it is common to use a purpose-built satellite bus, or to install the payload on board of a larger conventional satellite. These approaches fulfils all customer requirements but could be critical from a financial point of view. Between 2014 and 2020, no space-based CH4 detection and if at all limited CO2 detection capabilities are planned internationally. In order to fill this gap the Institute for Environmental Physics (IUP) of the University of Bremen plans a GHG satellite mission with near-surface sensitivity called "CarbonSat". It shall perform synchronous global atmospheric CO2 and CH4 observations with the accuracy, precision and coverage needed to significantly advance our knowledge about the sources and sinks of Green House Gases. In order to verify technical and financial opportunities of a small satellite a Concurrent Engi-neering Study (CE-study) has been performed at DLR Bremen, Germany. To reuse knowledge in compact satellite design, the Compact/SSB (Standard Satellite Bus) was chosen as baseline design. The SSB has been developed by DLR and was already used for BIRD (Bispectral Infra-Red Detection) mission but also adapted to the ongoing missions like TET (Technologie-Erprobungs-Trüger) or AsteroidFinder. This paper deals with the highly effective design process a within the DLR-CE-Facility and with the outcomes of the CE-study. It gives an overview of the design status as well as an outlook for comparable missions.

  13. Climate Monitoring Network on Maunakea - Master Station at Summit and Lower Elevation Satellite Stations

    NASA Astrophysics Data System (ADS)

    McKenzie, M. M.; Klasner, F.; Giambelluca, T. W.; Businger, S.

    2014-12-01

    Maunakea, a dormant shield volcano on the Big Island of Hawai'i, rises 13,796 feet above sea level, making it the highest point in the Pacific Basin. From sea floor to summit, it's the tallest mountain in the world. The high elevation, low air and light pollution, as well as dry weather year round make it the best location in the world for astronomy observations. The summit is home to 13 ground based telescope facilities. Like all alpine regions, it is an extremely fragile and unique ecosystem because of the harsh conditions and short growing seasons located at high altitudes. The summit is home to several federal and/or state protected species. It supports 11 species of arthropods found nowhere else on Earth. Most noted of these is the Wēkiu bug, whose habitat has been altered by the infrastructural development on the mountain. Arthropod habitat model development has highlighted gaps in climate information, for example, lack of climate precipitation data, snow data and reliable temperature data. Furthermore, in tropical regions, precipitation is the most variable climate component due to topography and local winds. The telescopes collect weather data for the purpose of knowing when it is dry and clear for astronomical observation. Although existing weather stations associated with the telescopes meet some weather and climate monitoring needs, it cannot address the full range of issues needed due to technological limitation and site design. Precipitation does not occur often and is likely to be in the form of snow or ice. Snow cover data has not been directly recorded despite astronomical recording of other meteorological data that began in the1960s. Therefore, the need to monitor the weather and climate in a long-term and well-calibrated way is critical for management of the ecosystems on the slopes of Maunakea. Long-term weather and climate monitoring stations are the primary building blocks for research partnerships, which encourage collaboration and ultimately

  14. Understanding Climate Adaptation on Public Lands in the Upper Midwest: Implications for Monitoring and Tracking Progress

    NASA Astrophysics Data System (ADS)

    Anhalt-Depies, Christine M.; Knoot, Tricia Gorby; Rissman, Adena R.; Sharp, Anthony K.; Martin, Karl J.

    2016-05-01

    There are limited examples of efforts to systematically monitor and track climate change adaptation progress in the context of natural resource management, despite substantial investments in adaptation initiatives. To better understand the status of adaptation within state natural resource agencies, we utilized and problematized a rational decision-making framework to characterize adaptation at the level of public land managers in the Upper Midwest. We conducted in-depth interviews with 29 biologists and foresters to provide an understanding of managers' experiences with, and perceptions of, climate change impacts, efforts towards planning for climate change, and a full range of actions implemented to address climate change. While the majority of managers identified climate change impacts affecting their region, they expressed significant uncertainty in interpreting those signals. Just under half of managers indicated planning efforts are underway, although most planning is remote from local management. Actions already implemented include both forward-looking measures and those aimed at coping with current impacts. In addition, cross-scale dynamics emerged as an important theme related to the overall adaptation process. The results hold implications for tracking future progress on climate change adaptation. Common definitions or measures of adaptation (e.g., presence of planning documents) may need to be reassessed for applicability at the level of public land managers.

  15. Understanding Climate Adaptation on Public Lands in the Upper Midwest: Implications for Monitoring and Tracking Progress.

    PubMed

    Anhalt-Depies, Christine M; Knoot, Tricia Gorby; Rissman, Adena R; Sharp, Anthony K; Martin, Karl J

    2016-05-01

    There are limited examples of efforts to systematically monitor and track climate change adaptation progress in the context of natural resource management, despite substantial investments in adaptation initiatives. To better understand the status of adaptation within state natural resource agencies, we utilized and problematized a rational decision-making framework to characterize adaptation at the level of public land managers in the Upper Midwest. We conducted in-depth interviews with 29 biologists and foresters to provide an understanding of managers' experiences with, and perceptions of, climate change impacts, efforts towards planning for climate change, and a full range of actions implemented to address climate change. While the majority of managers identified climate change impacts affecting their region, they expressed significant uncertainty in interpreting those signals. Just under half of managers indicated planning efforts are underway, although most planning is remote from local management. Actions already implemented include both forward-looking measures and those aimed at coping with current impacts. In addition, cross-scale dynamics emerged as an important theme related to the overall adaptation process. The results hold implications for tracking future progress on climate change adaptation. Common definitions or measures of adaptation (e.g., presence of planning documents) may need to be reassessed for applicability at the level of public land managers. PMID:26888074

  16. National Oceanic and Atmospheric Administration(NOAA) Arctic Climate Change Studies: A Contribution to IPY

    NASA Astrophysics Data System (ADS)

    Calder, J.; Overland, J.; Uttal, T.; Richter-Menge, J.; Rigor, I.; Crane, K.

    2004-12-01

    NOAA has initiated four activities that respond to the Arctic Climate Impact Assessment(ACIA) recommendations and represent contributions toward the IPY: 1) Arctic cloud, radiation and aerosol observatories, 2) documentation and attribution of changes in sea-ice thickness through direct measurement and modeling, 3) deriving added value from existing multivariate and historical data, and 4) following physical and biological changes in the northern Bering and Chukchi Seas. Northeast Canada, the central Arctic coast of Russia and the continuing site at Barrow have been chosen as desirable radiation/cloud locations as they exhibit different responses to Arctic Oscillation variability. NOAA is closely collaborating with Canadian groups to establish an observatory at Eureka. NOAA has begun deployment of a network of ice-tethered ice mass balance buoys complemented by several ice profiling sonars. In combination with other sea ice investigators, the Arctic buoy program, and satellites, changes can be monitored more effectively in sea ice throughout the Arctic. Retrospective data analyses includes analysis of Arctic clouds and radiation from surface and satellite measurements, correction of systematic errors in TOVS radiance data sets for the Arctic which began in 1979, addressing the feasibility of an Arctic System Reanalysis, and an Arctic Change Detection project that incorporates historical and recent physical and biological observations and news items at a website, www.arctic.noaa.gov. NOAA has begun a long-term effort to detect change in ecosystem indicators in the northern Bering and Chukchi Seas that could provide a model for other northern marine ecosystems. The first efforts were undertaken in summer 2004 during a joint Russian-US cruise that mapped the regions physical, chemical and biological parameters to set the stage for future operations over the longer term. A line of biophysical moorings provide detection of the expected warming of this area. A

  17. Monitoring strategies of stream phosphorus under contrasting climate-driven flow regimes

    NASA Astrophysics Data System (ADS)

    Goyenola, G.; Meerhoff, M.; Teixeira-de Mello, F.; González-Bergonzoni, I.; Graeber, D.; Fosalba, C.; Vidal, N.; Mazzeo, N.; Ovesen, N. B.; Jeppesen, E.; Kronvang, B.

    2015-10-01

    Climate and hydrology are relevant control factors determining the timing and amount of nutrient losses from land to downstream aquatic systems, in particular of phosphorus (P) from agricultural lands. The main objective of the study was to evaluate the differences in P export patterns and the performance of alternative monitoring strategies in streams under contrasting climate-driven flow regimes. We compared a set of paired streams draining lowland micro-catchments under temperate climate and stable discharge conditions (Denmark) and under sub-tropical climate and flashy conditions (Uruguay). We applied two alternative nutrient sampling programs (high-frequency composite sampling and low-frequency instantaneous-grab sampling) and estimated the contribution derived from point and diffuse sources fitting a source apportionment model. We expected to detect a pattern of higher total and particulate phosphorus export from diffuse sources in streams in Uruguay streams, mostly as a consequence of higher variability in flow regime (higher flashiness). Contrarily, we found a higher contribution of dissolved P in flashy streams. We did not find a notably poorer performance of the low-frequency sampling program to estimate P exports in flashy streams compared to the less variable streams. We also found signs of interaction between climate/hydrology and land use intensity, in particular in the presence of point sources of P, leading to a bias towards underestimation of P in hydrologically stable streams and overestimation of P in flashy streams. Based on our findings, we suggest that the evaluation and use of more accurate monitoring methods, such as automatized flow-proportional water samplers and automatized bankside analyzers, should be prioritized whenever logistically possible. However, it seems particularly relevant in currently flashy systems and also in systems where climate change predictions suggest an increase in stream flashiness.

  18. Using the Global Electric Circuit to monitor global climate change (Invited)

    NASA Astrophysics Data System (ADS)

    Price, C. G.

    2013-12-01

    The global atmospheric electric circuit describes the global link between fair weather electric fields and currents measured at the Earth's surface, and the generator of these fields and currents in regions of stormy weather. Ever since the 1920s we have known about the global nature of these electric parameters, which appear to vary as a function of universal time (UT) and not local time (LT). It was also shown in the late 1920s that the "batteries" of the GEC are related to thunderstorm activity around the globe, that produce a clear global diurnal cycle due to the longitudinal distribution of the tropical landmasses. Due to the global nature of these electric fields and currents, the GEC supplies perhaps the only global geophysical index that can be measured at a single location on the Earth's surface, representing global electrical activity on the planet. The GEC can be broken down into a DC (direct current) part, and an AC (alternating current) part. Due to the global nature of the electric circuit it has been proposed by some to use geo-electric indices as proxies for changes in the global climate. If global warming results in changes in thunderstorm distribution, number and/or intensity, the GEC may allow us to monitor these changes from only a few ground stations. The advantages and disadvantages of using the GEC to monitor climate change will be presented together with some examples of how the global electric circuit has already been used to monitor changes in the Earth's climate.

  19. Maintaining effective mass drug administration for lymphatic filariasis through in-process monitoring in Sierra Leone

    PubMed Central

    2012-01-01

    Background Since 2007 Sierra Leone has conducted mass drug administration (MDA) for the elimination of lymphatic filariasis (LF) implemented by unpaid community health volunteers (CHVs). Other health campaigns such as Mother and Child Health Weeks (MCHW) pay for services to be implemented at community level and these persons are then known as community health workers (CHWs). In 2010, the LF MDA in the 12 districts of the Southern, Northern and Eastern Provinces un-expectantly coincided with universal distribution of Long Lasting Insecticide Treated Nets (LLITNs) during the MCHW. In-process monitoring of LF MDA was performed to ensure effective coverage was attained in hard to reach sites (HTR) in both urban and rural locations where vulnerable populations reside. Methods Independent monitors interviewed individuals eligible for LF MDA and tallied those who recalled having taken ivermectin and albendazole, calculated program coverage and reported results daily by phone. Monitoring of coverage in HTR sites in the 4 most rapidly urbanizing towns was performed after 4 weeks of LF MDA and again after 8 weeks throughout all 12 districts. End process monitoring was performed in randomly selected HTR sites not previously sampled throughout all 12 districts and compared to coverage calculated from the pre-MDA census and reported treatments. Results Only one town had reached effective program coverage (≥80%) after 4 weeks following which CHWs were recruited for LF MDA in all district headquarter towns. After 8 weeks only 4 of 12 districts had reached effective coverage so LF MDA was extended for a further month in all districts. By 12 weeks effective program coverage had been reached in all districts except Port Loko and there was no significant difference between those interviewed in communities versus households or by sex. Effective epidemiological coverage (≥65%) was reported in all districts and overall was significantly higher in males versus females. Conclusions

  20. The role of the U.S. Food and Drug Administration in device evaluation and monitoring.

    PubMed

    Diehl, David L; Tierney, William M; Adler, Douglas G; Conway, Jason D; Farraye, Francis A; Kantsevoy, Sergey V; Kaul, Vivek; Kethu, Sripathi R; Kwon, Richard S; Mamula, Petar; Pedrosa, Marcos C; Rodriguez, Sarah A

    2010-07-01

    The American Society for Gastrointestinal Endoscopy (ASGE) Technology Committee provides reviews of existing, new, or emerging endoscopic technologies that have an impact on the practice of GI endoscopy. Evidence-based methodology is used by performing a MEDLINE literature search to identify pertinent clinical studies on the topic and a MAUDE (U.S. Food and Drug Administration Center for Devices and Radiological Health) database search to identify the reported complications of a given technology. Both are supplemented by accessing the "related articles" feature of PubMed and by scrutinizing pertinent references cited by the identified studies. Technology Status Evaluation Reports are drafted by 1 or 2 members of the ASGE Technology Committee, reviewed and edited by the committee as a whole, and approved by the Governing Board of the ASGE. When financial guidance is indicated, the most recent coding data and list prices at the time of publication are provided. For this review, the MEDLINE database was searched through October 2009 for articles and references related to devices and the U.S. Food and Drug Administration by using the keywords "FDA" and "devices." In addition, the Web was searched using the same keywords. The U.S. Food and Drug Administration website was also thoroughly reviewed. Practitioners should continue to monitor the medical literature for subsequent data about these issues. Technology Status Evaluation Reports are scientific reviews provided solely for educational and informational purposes. Technology Status Evaluation Reports are not rules and should not be construed as establishing a legal standard of care or as encouraging, advocating, requiring, or discouraging any particular treatment or payment for such treatment. PMID:20421100

  1. Environmental Monitoring in the Northeast US: Foundation for Assessing the Impact of Our Changing Climate

    NASA Astrophysics Data System (ADS)

    Wake, C. P.; Frumhoff, P.; Spanger-Siegfried, E.; Hayhoe, K.

    2007-12-01

    Regional assessment of the impacts of climate change have proven to be a valuable tool for providing scientists, policymakers, private sector decision makers, not-for-profit organizations, and the general public with the best available science upon which to base informed choices concerning adaptation and mitigation strategies. Recent examples include a set of regional assessments that were undertaken as part of the US Global Climate Change Research Program in the late 1990s, and more recently four regional assessments that were performed by independent scientists working in collaboration with the Union of Concerned Scientists. The most recent of these the Northeast Climate Impacts Assessment (NECIA), relied upon environmental monitoring of key aspects of our climate system (e.g., temperature, precipitation, snow cover, streamflow, sea level rise, first leaf out dates, etc.) to track changes in the past and provide data sets for evaluating the regional performance of global and regional circulation model simulations. These types of environmental data sets also provide the basis for analyzing the impacts of climate change on society over the past several decades.

  2. The food and drug administration is now preparing to establish tighter performance requirements for blood glucose monitors.

    PubMed

    Klonoff, David C

    2010-05-01

    On March 16 and 17, 2010, the Food and Drug Administration (FDA) presented a public meeting about blood glucose monitoring at the Gaithersberg Hilton Hotel. The meeting was intended to present expert opinions and solicit input from the public about whether to develop new regulatory policies for blood glucose monitors. The meeting was divided into three sections: (1) Clinical Accuracy Requirements for Blood Glucose Monitors, (2) Interferences and Limitations of Blood Glucose Monitors, and (3) Tight Glycemic Control. Many officials from the Center for Devices and Radiologic Health and the Office of In Vitro Diagnostic Devices, which are the parts of FDA that regulate approval of blood glucose monitors, either spoke on the agenda or attended in the audience. Approximately 300 people attended; they were mostly clinicians (such as adult endocrinologists, pediatric endocrinologists, internists, clinical chemists, intensivists, surgeons, nurses, and diabetes educators) or industry officials from companies involved in glucose monitoring, pharmaceutical products, data analysis, or regulatory consulting. PMID:20513313

  3. Design of ecoregional monitoring in conservation areas of high-latitude ecosystems under contemporary climate change

    USGS Publications Warehouse

    Beever, Erik A.; Woodward, Andrea

    2011-01-01

    Land ownership in Alaska includes a mosaic of federally managed units. Within its agency’s context, each unit has its own management strategy, authority, and resources of conservation concern, many of which are migratory animals. Though some units are geographically isolated, many are nevertheless linked by paths of abiotic and biotic flows, such as rivers, air masses, flyways, and terrestrial and aquatic migration routes. Furthermore, individual land units exist within the context of a larger landscape pattern of shifting conditions, requiring managers to understand at larger spatial scales the status and trends in the synchrony and spatial concurrence of species and associated suitable habitats. Results of these changes will determine the ability of Alaska lands to continue to: provide habitat for local and migratory species; absorb species whose ranges are shifting northward; and experience mitigation or exacerbation of climate change through positive and negative atmospheric feedbacks. We discuss the geographic and statutory contexts that influence development of ecological monitoring; argue for the inclusion of significant amounts of broad-scale monitoring; discuss the importance of defining clear programmatic and monitoring objectives; and draw from lessons learned from existing long-term, broad-scale monitoring programs to apply to the specific contexts relevant to high-latitude protected areas such as those in Alaska. Such areas are distinguished by their: marked seasonality; relatively large magnitudes of contemporary change in climatic parameters; and relative inaccessibility due to broad spatial extent, very low (or zero) road density, and steep and glaciated areas. For ecological monitoring to effectively support management decisions in high-latitude areas such as Alaska, a monitoring program ideally would be structured to address the actual spatial and temporal scales of relevant processes, rather than the artificial boundaries of individual land

  4. The potential of cellular network infrastructures for sudden rainfall monitoring in dry climate regions

    NASA Astrophysics Data System (ADS)

    David, N.; Alpert, P.; Messer, H.

    2013-09-01

    Monitoring of precipitation and in particular sudden rain, in rural dry climate regions, is a subject of great significance in several weather related processes such as soil erosion, flash flooding, triggering epidemics and more. The rainfall monitoring facilities in these regions and as a result precipitation data are, however, commonly, severely lacking. As was recently shown, cellular networks infrastructures supply high resolution precipitation measurements at ground level while often being situated in dry areas, covering large parts of these climatic zones. The potential found in these systems to provide early monitoring and essential precipitation information, directly from arid regions, based on standard measurements of commercial microwave links, is exemplified here over the Negev and the Southern Judean desert, South Israel. We present the results of two different rainfall events occurred in these regions. It is shown that the microwave system measured precipitation between at least 50 min (in case 1) and at least 1 h and 40 min (in case 2) before each of the sparse rain gauges. During each case, the radar system, located relatively far from the arid sites, provided measurements from heights of at least 1500 m and 2000 m above surface, respectively. A third case study demonstrates a relative advantage of microwave links to measure precipitation intensity with respect to the radar system, over an area of complex topography located in northeastern Israel, which is relatively far (~ 150 km) from the radar.

  5. I-AMICA: infrastructure of high technology for environmental and climate monitoring in Southern Italy

    NASA Astrophysics Data System (ADS)

    Bonasoni, Paolo

    2013-04-01

    I-AMICA (Infrastruttura di Alta tecnologia per il Monitoraggio Climatico Ambientale - Infrastructure of High Technology for Environmental and Climate Monitoring -) is a three years Italian National Operative Program (PON) project co-founded by the European Regional Development Fund. The project is devoted to strengthen the environmental monitoring in Southern Italy with the aim to support the integration among research, high training, and innovation also providing synergies among public and private research organizations. The activities are focused on actions addressed to strengthen the observational infrastructures for atmosphere, forest and coastal areas in the regions of Southern Italy, whose economic growth and social well-being are strongly related to the environment quality. In such Convergence Regions (Campania, Apulia, Calabria and Sicily), instrumental networks (e.g. advanced sensors, software tools, integrated platforms and mobile laboratory and stations) dedicated to the environmental and climatic monitoring in the Mediterranean area, in terms of air quality, forest and agriculture, coastal marine ecosystems are promoted and developed. In order to increase the competitive capacity at national and international level, four "pillar" activities are aimed to (1) strengthen observing infrastructures for climate and environment and data processing systems, (2) promote innovation, technological development and industrial transfer, (3) integrate these observational activities into international programs (i.e. GAW-WMO, ACTRIS, EARLINET, GMOS, ICOS, FLUXNET, SHARE, NEXT DATA) that will allow I-AMICA to effectively be integrated with important networks. Finally, (4) through the implementation of observations, networking, technological applications and territorial services in the Convergence Regions, I-AMICA provides an important support to the local and regional communities.

  6. Monitoring agricultural drought with climate-based drought indices in China

    NASA Astrophysics Data System (ADS)

    Wang, H.; Zhang, C., Sr.; Jeffery, R. C.

    2015-12-01

    Agricultural drought monitoring significantly influences food security in recent decades. Soil moisture shortages adversely affecting agriculture is one important indicator for agricultural drought monitoring. Because of limited soil moisture observations, characterizing soil moisture using climate-based drought indices has great practical meaning. The agricultural area in China was identified by crop identification from remotely sensed data. Drought indices of multiple timescale or from two-layer bucket model were analyzed. In most agricultural areas of China, surface soil moisture is more affected by drought indices having shorter time scales while deep-layer soil moisture is more related on longer time scales. In general, multiscalar drought indices work better than drought indices from two-layer bucket models. The standardized precipitation evapotranspiration index (SPEI) works similarly or better than the standardized precipitation index (SPI) in characterizing soil moisture at different soil layers. In most stations in China, the Z index has a higher correlation with soil moisture at 0-5 cm than the Palmer drought severity index (PDSI), which in turn has a higher correlation with soil moisture at 90-100-cm depth than the Z index. Soil moisture-drought indices relationship was significantly affected by soil organic carbon density. Effective agriculture drought monitoring can be conducted with climate-based drought indices from widely available climatic data and crop area identification from remote sensing. Authors:Hongshuo wang1, Chao Zhang1, Jeffery C Rogers2 1 China agricultural university 2 Ohio state University Key words: Agricultural drought, SPI, SPEI, PDSI, Z index, crop identification

  7. Development of Distributed Research Center for monitoring and projecting regional climatic and environmental changes: first results

    NASA Astrophysics Data System (ADS)

    Gordov, Evgeny; Shiklomanov, Alexander; Okladinikov, Igor; Prusevich, Alex; Titov, Alexander

    2016-04-01

    Description and first results of the cooperative project "Development of Distributed Research Center for monitoring and projecting of regional climatic and environmental changes" recently started by SCERT IMCES and ESRC UNH are reported. The project is aimed at development of hardware and software platform prototype of Distributed Research Center (DRC) for monitoring and projecting regional climatic and environmental changes over the areas of mutual interest and demonstration the benefits of such collaboration that complements skills and regional knowledge across the northern extratropics. In the framework of the project, innovative approaches of "cloud" processing and analysis of large geospatial datasets will be developed on the technical platforms of two U.S. and Russian leading institutions involved in research of climate change and its consequences. Anticipated results will create a pathway for development and deployment of thematic international virtual research centers focused on interdisciplinary environmental studies by international research teams. DRC under development will comprise best features and functionality of earlier developed by the cooperating teams' information-computational systems RIMS (http://rims.unh.edu) and CLIMATE(http://climate.scert.ru/), which are widely used in Northern Eurasia environment studies. The project includes several major directions of research (Tasks) listed below. 1. Development of architecture and defining major hardware and software components of DRC for monitoring and projecting of regional environmental changes. 2. Development of an information database and computing software suite for distributed processing and analysis of large geospatial data hosted at ESRC and IMCES SB RAS. 3. Development of geoportal, thematic web client and web services providing international research teams with an access to "cloud" computing resources at DRC; two options will be executed: access through a basic graphical web browser and

  8. NASA follow-on to the Bangladesh Agro-Climatic Environmental Monitoring Project

    NASA Technical Reports Server (NTRS)

    Vermillion, C.; Maurer, H.; Williams, M.; Desjardins, M.; Mollo-Christensen, E.; Mason, C. D.; Kerber, A.; Gervin, J.; Elrod, J.

    1988-01-01

    The NASA responsibility and activities for the follow-on to the original Agro-Climatic Environmental Monitoring Project (ACEMP) which was completed during 1987 is described. Five training sessions which comprise the NASA ACEMP follow-on are: Agrometeorology, Meteorology of Severe Storms Using GEMPAK, Satellite Oceanography, Hydrology, and Meteorology with TOVS. The objective of the follow-on is to train Bangladesh Government staff in the use of satellite data for remote sensing applications. This activity also encourages the scientific connection between NASA/Goddard Space Flight Center and The Bangladesh Space and Remote Sensing Organization (SPARRSO).

  9. Communication Climate and Administrative Burnout: A Technique for Relieving Some of the Pressures.

    ERIC Educational Resources Information Center

    Pood, Elliott; Jellicorse, John Lee

    1984-01-01

    Reports on how a communication audit was used as a technique to reduce burnout. Covers designing and administrating the instruments and then analyzing the results through group discussion. Includes a sample Communication Audit Instrument. (PD)

  10. A Study of the Perceived Relationships between the Leadership Style of Elementary Administrators and School Climate

    ERIC Educational Resources Information Center

    Ferree, Stephanie A.

    2013-01-01

    As national and state demands continue to mandate school improvement, leaders in schools have continued to seek answers from leadership theory and research to improve and sustain the culture and climate that has been created in order for diverse populations to meet academic excellence. The purpose of this research was to determine the relationship…

  11. The Effects of School Administration Self-Efficacy on School Climate and Student Achievement

    ERIC Educational Resources Information Center

    Davis, Brian R.

    2013-01-01

    The purpose of the study was to determine if there are significant relationships between the efficacies of the school principal, the climate of the school, and student achievement. Five schools within a small rural school district participated in this study. The principals completed the Principal Sense of Efficacy Scale, while the teachers at the…

  12. Weather and Climate on the Reliability of Enviromagnetic Studies of Tree Leaves in Air Pollution Monitoring

    NASA Astrophysics Data System (ADS)

    Rey, D.; Rodríguez-Germade, I.; Mohamed Falcon, K. J.; Rubio, B.; Garcia, A.

    2014-12-01

    Monthly monitoring of the magnetic properties of Platanus hispanica tree leaves to assess atmospheric pollution in Madrid (Spain) and its suburban town of Pozuelo de Alarcon showed anthropogenic time-related klf enhancement of tree leaves. We established a significant correlation between metal concentration (leaching) in the leaves with Klf and IRM1T. This relationship was not as high as those found in other studies carried out on airborne dust, sediments and soils. Further analyses pointed out that local humidity played a dual roll, controlling availability of airborne lithogenic dust and the incorporation of trace metals in the leaf tissue, modulating the magnetic enhancement. Further to these findings, the comparison between cities of different climatic regimes showed that air humidity is the major factor controlling the interaction of the atmosphere and tree leaves, thus their magnetic properties. The relative influence of pollutants, lithogenic dust and biological effects depends not only on local meteorology but also on climate. Their influence should be most seriously considered to design methodological approaches that are appropriate to the environmental characteristics of each study area, if the magnetic properties of tree leaves are intended as an atmospheric pollution-monitoring tool.

  13. Global climate change mitigation and sustainable forest management--The challenge of monitoring and verification

    SciTech Connect

    Makundi, Willy R.

    1997-12-31

    In this paper, sustainable forest management is discussed within the historical and theoretical framework of the sustainable development debate. The various criteria and indicators for sustainable forest management put forth by different institutions are critically explored. Specific types of climate change mitigation policies/projects in the forest sector are identified and examined in the light of the general criteria for sustainable forest management. Areas of compatibility and contradiction between the climate mitigation objectives and the minimum criteria for sustainable forest management are identified and discussed. Emphasis is put on the problems of monitoring and verifying carbon benefits associated with such projects given their impacts on pre-existing policy objectives on sustainable forest management. The implications of such policy interactions on assignment of carbon credits from forest projects under Joint Implementation/Activities Implemented Jointly initiatives are discussed. The paper concludes that a comprehensive monitoring and verification regime must include an impact assessment on the criteria covered under other agreements such as the Biodiversity and/or Desertification Conventions. The actual carbon credit assigned to a specific project should at least take into account the negative impacts on the criteria for sustainable forest management. The value of the impacts and/or the procedure to evaluate them need to be established by interested parties such as the Councils of the respective Conventions.

  14. Multi-year GNSS monitoring of atmospheric IWV over Central and South America for climate studies

    NASA Astrophysics Data System (ADS)

    Bianchi, Clara Eugenia; Mendoza, Luciano Pedro Oscar; Fernández, Laura Isabel; Natali, María Paula; Meza, Amalia Margarita; Francisco Moirano, Juan

    2016-07-01

    Atmospheric water vapour has been acknowledged as an essential climate variable. Weather prediction and hazard assessment systems benefit from real-time observations, whereas long-term records contribute to climate studies. Nowadays, ground-based global navigation satellite system (GNSS) products have become widely employed, complementing satellite observations over the oceans. Although the past decade has seen a significant development of the GNSS infrastructure in Central and South America, its potential for atmospheric water vapour monitoring has not been fully exploited. With this in mind, we have performed a regional, 7-year-long and homogeneous analysis, comprising 136 GNSS tracking stations, obtaining high-rate and continuous observations of column-integrated water vapour and troposphere zenith total delay. As a preliminary application for this data set, we have estimated local water vapour trends, their significance, and their relation with specific climate regimes. We have found evidence of drying at temperate regions in South America, at a rate of about 2 % per decade, while a slow moistening of the troposphere over tropical regions is also weakly suggested by our results. Furthermore, we have assessed the regional performance of the empirical model GPT2w to blindly estimate troposphere delays. The model reproduces the observed mean delays fairly well, including their annual and semi-annual variations. Nevertheless, a long-term evaluation has shown systematical biases, up to 20 mm, probably inherited from the underlying atmospheric reanalysis. Additionally, the complete data set has been made openly available as supplementary material.

  15. Preface: Monitoring and modelling to guide coastal adaptation to extreme storm events in a changing climate

    NASA Astrophysics Data System (ADS)

    Brown, J. M.; Ciavola, P.; Masselink, G.; McCall, R.; Plater, A. J.

    2016-02-01

    Storms across the globe and their associated consequences in coastal zones (flooding and erosion), combined with the long-term geomorphic evolution of our coastlines, are a threat to life and assets, both socioeconomic and environmental. In a changing climate, with a rising global sea level, potentially changing patterns in storm tracks and storminess, and rising population density and pressures on the coastal zone, the future risk of coastal storm impacts is likely to increase. Coastal managers and policy makers therefore need to make effective and timely decisions on the use of resources for the immediate and longer Research focused on "monitoring and modelling to guide coastal adaptation to extreme storm events in a changing climate" is becoming more common; its goal is to provide science-based decision support for effective adaptation to the consequences of storm impacts, both now and under future climate scenarios at the coast. The growing transfer of information between the science community and end-users is enabling leading research to have a greater impact on the socioeconomic resilience of coastal communities. This special issue covers recent research activities relating to coastal hazard mapping in response to extreme events, economic impacts of long-term change, coastal processes influencing management decisions and the development of online decision support tools.

  16. Monitoring landscape response to climate change using remote sensing and GIS techniques

    SciTech Connect

    Yuhas, R.H.; Dolan, P.H.; Goetz, A.F.H. )

    1992-01-01

    Increasing concern over the threat of global warming has precipitated the need for study sites which can be scientifically monitored to detect and follow the effects of environmental landscape change. Extensive eolian dune deposits in northeastern Colorado provide an ideal study site. These dune complexes, found along the South Platte River, are currently stabilized by a thin cover of shortgrass prairie vegetation. However, stratigraphic evidence demonstrates that during at least four times in the past 10,000 years, the dunes were actively migrating across the landscape. In addition, climate models indicate that the High Plains could be one of the first areas to react to climate changes when they occur. The scaling relationships that contribute to the evolution of the landscape are nearly impossible to understand without the regional perspective that remote sensing and geographical information system (GIS) techniques provide. Imagery acquired with the NASA/JPL Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) is processed to detect the amount of sand exposed, as well as the percent vegetation cover that is currently stabilizing the dunes. Excellent discrimination is found between areas of low and no vegetation, something not possible with traditional analysis methods. Seasonal changes are also emphasized. This information is incorporated into the GIS database the authors created, which also has information on parameters that influence the landscape: elevation, soil type, surface/subsurface hydrology, etc. With these data areas that are susceptible to climate change are highlighted, but more importantly, the reasons for the susceptibility are determined using the GIS's analytical capabilities.

  17. SLICEIT and TAHMO Partnerships: Students Local and International Collaboration for Climate and Environmental Monitoring, Technology Development, Education, Adaptation and Mitigation

    NASA Astrophysics Data System (ADS)

    Aishlin, P. S.; Selker, J. S.

    2015-12-01

    Climate change understanding and impacts vary by community, yet the global nature of climate change requires international collaboration to address education, monitoring, adaptation and mitigation needs. We propose that effective climate change monitoring and education can be accomplished via student-led local and international community partnerships. By empowering students as community leaders in climate-environmental monitoring and education, as well as exploration of adaptation/mitigation needs, well-informed communities and young leadership are developed to support climate change science moving forward. Piloted 2013-2015, the SLICEIT1 program partnered with TAHMO2 to connect student leaders in North America, Europe and Africa. At the international level, schools in the U.S.A and Netherlands were partnered with schools in Ghana, Kenya, and Uganda for science and cultural exchange. Each school was equipped with a climate or other environmental sensing system, real-time data publication and curricula for both formal and informal science, technology, engineering and math education and skill development. African counterparts in TAHMO's School-2-School program collect critically important data for enhanced on-the-ground monitoring of weather conditions in data-scarce regions of Africa. In Idaho, student designed, constructed and installed weather stations provide real time data for classroom and community use. Student-designed formal educational activities are disseminated to project partners, increasing hands-on technology education and peer-based learning. At the local level, schools are partnered with a local agency, research institute, nonprofit organization, industry and/or community partner that supplies a climate science expert mentor to SLICEIT program leaders and teachers. Mentor engagement is facilitated and secured by program components that directly benefit the mentor's organization and local community via climate/environment monitoring, student workforce

  18. Air - Ground - Bedrock Temperature Coupling, Its Monitoring at Borehole Climate Observatories

    NASA Astrophysics Data System (ADS)

    Cermák, V.

    2012-04-01

    Reconstructing ground surface temperature (GST) histories from present-day temperature-depth logs is now generally accepted as one of the independent and physically justified method to obtain information about the past climate history on the time scale of hundreds to thousands years. Any temperature change at the Earth`s surface slowly propagates downward and deeper we go farther back in time the measured temperature carries certain memory on what has happened on the surface in the past. Due to diffusive character of the process, however, the resolution quickly decreases for the remote events and the reconstructed GST at a given moment is a weighted average of temperature over a certain period of time. For better understanding of the temperature state in the subsurface T(z) logs can be suitably completed with long-run temperature-time monitoring at selected depth intervals, namely within the near-surface active layer affected by seasonal temperature variations (usually uppermost 30-40 m). In addition to GST inversions applied on deep T(z) profiles existing all over the world, several permanent borehole climate observatories were actually established in the last two decades to test the validity of the assumption that GST variations track the SAT (surface air temperature) changes as well as to study various environmental/local effects, such as the vegetation cover type/change, rain/snow precipitation, thawing/melting/freezing, etc. which controls the whole heat transfer process. Long-term monitoring of the shallow subsurface temperature field in suitably geographically located sites may additionally also help to understand the different conditions in e.g. urban vs. countryside environments and to assess the potential anthropogenic contribution to the present-day warming rate within the natural climate variability. This presentation summarizes main results obtained at the Czech borehole sites since 1992 completed with brief comparison of similar results collected

  19. Social Climate and Administrative Decision-Making Research for Institutional Renewal.

    ERIC Educational Resources Information Center

    Rasheed, Mohammed A.

    An Arabic translation of the "Work Environment Scale" was administered to the employees of Riyadh University's College of Education in Saudi Arabia for the purpose of gathering data useful in administrative decision-making. The survey investigated the work environment of the college as it is perceived by three distinct groups: the faculty, the…

  20. Atmospheric Parameter Climatologies from AIRS: Monitoring Short-, and Longer-Term Climate Variabilities and 'Trends'

    NASA Technical Reports Server (NTRS)

    Molnar, Gyula; Susskind, Joel

    2008-01-01

    The AIRS instrument is currently the best space-based tool to simultaneously monitor the vertical distribution of key climatically important atmospheric parameters as well as surface properties, and has provided high quality data for more than 5 years. AIRS analysis results produced at the GODDARD/DAAC, based on Versions 4 & 5 of the AIRS retrieval algorithm, are currently available for public use. Here, first we present an assessment of interrelationships of anomalies (proxies of climate variability based on 5 full years, since Sept. 2002) of various climate parameters at different spatial scales. We also present AIRS-retrievals-based global, regional and 1x1 degree grid-scale "trend"-analyses of important atmospheric parameters for this 5-year period. Note that here "trend" simply means the linear fit to the anomaly (relative the mean seasonal cycle) time series of various parameters at the above-mentioned spatial scales, and we present these to illustrate the usefulness of continuing AIRS-based climate observations. Preliminary validation efforts, in terms of intercomparisons of interannual variabilities with other available satellite data analysis results, will also be addressed. For example, we show that the outgoing longwave radiation (OLR) interannual spatial variabilities from the available state-of-the-art CERES measurements and from the AIRS computations are in remarkably good agreement. Version 6 of the AIRS retrieval scheme (currently under development) promises to further improve bias agreements for the absolute values by implementing a more accurate radiative transfer model for the OLR computations and by improving surface emissivity retrievals.

  1. Monitoring direct and indirect climate effects on whitebark pine ecosystems at Crater Lake National park

    USGS Publications Warehouse

    Smith, S.B.; Odion, D.C.; Sarr, D.A.; Irvine, K.M.

    2011-01-01

    Whitebark pine (Pinus albicaulis) is the distinctive, often stunted, and picturesque tree line species in the American West. As a result of climate change, mountain pine beetles (Dendroctonus ponderosae) have moved up in elevation, adding to nonnative blister rust (Cronartium ribicola) disease as a major cause of mortality in whitebark pine. At Crater Lake National Park, Oregon, whitebark pine is declining at the rate of 1% per year. The Klamath Network, National Park Service, has elected to monitor whitebark pine and associated high-elevation vegetation. This program is designed to sample whitebark pine throughout the park to look for geographic patterns in its exposure to and mortality from disease and beetles. First-year monitoring has uncovered interesting patterns in blister rust distribution. Incidence of rust disease was higher on the west side of the park, where conditions are wetter and more humid than on the east side. However, correlating climate alone with rust disease is not straightforward. On the east side of the park, the odds of blister rust infection were much greater in plots having Ribes spp., shrubs that act as the alternate host for a portion of the rust's life cycle. However, on the park's west side, there was not a statistically significant increase in blister rust in plots with Ribes. This suggests that different species of Ribes associated with whitebark pine can increase pine exposure to blister rust disease. There is also convincing evidence of an association between total tree density and the incidence of blister rust. Warmer temperatures and possibly increased precipitation will affect both whitebark pine and Ribes physiology as well as tree density and mountain pine beetle numbers, all of which may interact with blister rust to cause future changes in tree line communities at Crater Lake. The Klamath Network monitoring program plans to document and study these ongoing changes.

  2. Potential Enhancements to the Cross-track Infrared Sounder (CrIS) Ground Test, Data Downlink and Processing for Climate Monitoring including Trace Gas Retrievals

    NASA Astrophysics Data System (ADS)

    Farrow, S. V.; Christensen, T.; Hagan, D. E.

    2009-12-01

    Together with ATMS, the Cross-track Infrared Sounder (CrIS) sensor is a critical payload for National Polar-orbiting Operational Environmental Satellite System (NPOESS) and will first fly on the NPOESS Preparatory Project (NPP) mission, the risk reduction flight for NPOESS. NPOESS is the next generation weather and climate monitoring system for the Department of Defense and National Oceanic and Atmospheric Administration (NOAA), being developed under contract by Northrop Grumman Aerospace Systems. The paper describes potential changes to the program baseline to make CrIS data useful for climate monitoring, including trace gas retrievals such as CO2. Specifically, these are changes to ground calibration tests, changes to the Sensor Data Record (SDR) algorithm, and changes in the spacecraft interface to downlink all of the spectral channels the sensor produces. These changes are presented to promote discussion in the science community of an alternative to achieving some of the key requirements of NASA's OCO mission, which was to monitor CO2, but was destroyed during launch.

  3. Monitoring Crop Yield in USA Using a Satellite-Based Climate-Variability Impact Index

    NASA Technical Reports Server (NTRS)

    Zhang, Ping; Anderson, Bruce; Tan, Bin; Barlow, Mathew; Myneni, Ranga

    2011-01-01

    A quantitative index is applied to monitor crop growth and predict agricultural yield in continental USA. The Climate-Variability Impact Index (CVII), defined as the monthly contribution to overall anomalies in growth during a given year, is derived from 1-km MODIS Leaf Area Index. The growing-season integrated CVII can provide an estimate of the fractional change in overall growth during a given year. In turn these estimates can provide fine-scale and aggregated information on yield for various crops. Trained from historical records of crop production, a statistical model is used to produce crop yield during the growing season based upon the strong positive relationship between crop yield and the CVII. By examining the model prediction as a function of time, it is possible to determine when the in-season predictive capability plateaus and which months provide the greatest predictive capacity.

  4. Satellite observation of lake ice as a climate indicator - Initial results from statewide monitoring in Wisconsin

    NASA Technical Reports Server (NTRS)

    Wynne, Randolph H.; Lillesand, Thomas M.

    1993-01-01

    The research reported herein focused on the general hypothesis that satellite remote sensing of large-area, long-term trends in lake ice phenology (formation and breakup) is a robust, integrated measure of regional and global climate change. To validate this hypothesis, we explored the use of data from the Advanced Very High Resolution Radiometer (AVHRR) to discriminate the presence and extent of lake ice during the winter of 1990-1991 on the 45 lakes and reservoirs in Wisconsin with a surface area greater than 1,000 hectares. Our results suggest both the feasibility of using the AVHRR to determine the date of lake ice breakup as well as the strong correlation (R= -0.87) of the date so derived with local surface-based temperature measurements. These results suggest the potential of using current and archival satellite data to monitor changes in the date of lake ice breakup as a means of detecting regional 'signals' of greenhouse warming.

  5. Monitoring of Crop Production Using a new Satellite-Based Climate-Variability Impact Index

    NASA Astrophysics Data System (ADS)

    Zhang, P.; Anderson, B.; Tan, B.; Huang, D.; Myneni, R.

    2005-12-01

    The capabilities of the MODerate resolution Imaging Spectroradiometer (MODIS) present some exciting possibilities for improved and timely monitoring of crop production. A quantitative index is introduced in this paper to study the relationship between remotely-sensed leaf area index (LAI) and crop production. The Climate-Variability Impact Index (CVII), defined as the monthly contribution to anomalies in annual growth, quantifies the percentage of the climatological production either gained or lost due to climatic variability during a given month. By examining the integrated CVII over the growing season, this LAI-based index can provide both fine-scale and aggregated information on vegetation productivity for various crop types. Once the relationship between the CVII and crop production is developed based on the historical record, a trained statistical model can be applied to produce homogeneous production forecasts (in which the model is trained and tested for a particular region), as well as heterogeneous forecasts (in which the model is trained in a particular region and applied to a different region). Both the homogeneous and the heterogeneous model predictions are consistent with USDA/FAO estimates at regional scales. Finally, by determining the estimated production as a function of the growing-season months the CVII can provide significant in-season predictions for end-of-year production. Overall, the high temporal and spatial resolution of the satellite LAI products makes the CVII a useful tool in near-real time crop monitoring and production estimation. Case-studies from recent droughts in Niger and the U.S. Midwest Corn Belt will be presented.

  6. Simulation of Greenhouse Climate Monitoring and Control with Wireless Sensor Network and Event-Based Control

    PubMed Central

    Pawlowski, Andrzej; Guzman, Jose Luis; Rodríguez, Francisco; Berenguel, Manuel; Sánchez, José; Dormido, Sebastián

    2009-01-01

    Monitoring and control of the greenhouse environment play a decisive role in greenhouse production processes. Assurance of optimal climate conditions has a direct influence on crop growth performance, but it usually increases the required equipment cost. Traditionally, greenhouse installations have required a great effort to connect and distribute all the sensors and data acquisition systems. These installations need many data and power wires to be distributed along the greenhouses, making the system complex and expensive. For this reason, and others such as unavailability of distributed actuators, only individual sensors are usually located in a fixed point that is selected as representative of the overall greenhouse dynamics. On the other hand, the actuation system in greenhouses is usually composed by mechanical devices controlled by relays, being desirable to reduce the number of commutations of the control signals from security and economical point of views. Therefore, and in order to face these drawbacks, this paper describes how the greenhouse climate control can be represented as an event-based system in combination with wireless sensor networks, where low-frequency dynamics variables have to be controlled and control actions are mainly calculated against events produced by external disturbances. The proposed control system allows saving costs related with wear minimization and prolonging the actuator life, but keeping promising performance results. Analysis and conclusions are given by means of simulation results. PMID:22389597

  7. 'Green' Submarine Cable Systems for Ocean/Climate Monitoring and Disaster Warning

    NASA Astrophysics Data System (ADS)

    Barnes, C. R.; Butler, R.; Howe, B. M.; Bueti, M. C.

    2013-12-01

    A recent joint initiative between three UN agencies is proposing to develop trans-ocean mini-observatories to measure changing seafloor ocean observables. A Joint Task Force (JTF), established in 2012 by the International Telecommunication Union (ITU), the World Meteorological Organization (WMO) and the Intergovernmental Oceanographic Commission (IOC) of UNESCO, is examining novel uses for submarine telecommunication cables. With ITU secretariat support, the JTF is developing a strategy and roadmap that could lead to enabling the availability of modified 'green' submarine cable systems equipped with scientific sensors (such as temperature, pressure and acceleration) for climate monitoring and disaster risk reduction (particularly tsunamis). If successful and needing support from industry and regulatory bodies, a wide network of mini-observatories could be established at many places across the world's ocean floors to measure these important parameters accurately over several decades. The initiative addresses two main issues: a) the need for sustained climate-quality data from the sparsely observed deep oceans and continental slopes but extending into coastal waters; and b) the desire to increase the reliability and integrity of the global tsunami warning networks. Presently, plans are being developed to launch a pilot project with the active involvement of cable industry players and existing ocean observatory researchers.

  8. The monitoring evaluation, reporting and verification of climate change mitigation projects

    SciTech Connect

    Vine, E.; Sathaye, J.

    1998-05-01

    Because of concerns with the growing threat of global climate change from increasing emissions of greenhouse gases, the US and other countries are implementing, by themselves or in cooperation with one or more other nations, climate change mitigation projects. These projects will reduce greenhouse gas (GHG) emissions or sequester carbon, and will also result in non-GHG benefits (i.e., environmental, economic, and social benefits). Monitoring, evaluating, reporting, and verifying (MERV) guidelines are needed for these projects to accurately determine their net GHG, and other, benefits. Implementation of MERV guidelines is also intended to: (1) increase the reliability of data for estimating GHG benefits; (2) provide real-time data so that mid-course corrections can be made; (3) introduce consistency and transparency across project types and reporters; and (4) enhance the credibility of the projects with stakeholders. In this paper, the authors review the issues involved in MERV activities. They identify several topics that future protocols and guidelines need to address, such as: (1) establishing a credible baseline; (2) accounting for impacts outside project boundaries through leakage; (3) net GHG reductions and other benefits; (4) precision of measurement; (5) MERV frequency; (6) persistence (sustainability) of savings, emissions reduction, and carbon sequestration; (7) reporting by multiple project participants; (8) verification of GHG reduction credits; (9) uncertainty and risk; (10) institutional capacity in conducting MERV; and (11) the cost of MERV.

  9. Improved methods for reprocessing of GNSS data for climate monitoring over Poland

    NASA Astrophysics Data System (ADS)

    Stepniak, Katarzyna; Bock, Olivier; Wielgosz, Pawel

    2016-04-01

    The goal of this work is to determine the most accurate and homogeneous processing strategy to reprocess ground-based GNSS data for climate monitoring applications (analysis of trends and variability of Zenith Total Delay, ZTD, and Integrated Water Vapor, IWV). Namely, we investigate the impact of network design strategy and tropospheric modeling approach on the quality and homogeneity of both relative (double difference) and absolute (PPP) solutions. A network of 138 GNSS stations (including 33 stations from the EUREF Permanent Network, EPN, and 105 stations from ASG-EUPOS in Poland) is reprocessed for year 2014 using Bernese 5.2 GNSS software with the final IGS (International GNSS Service) orbits and clocks. First a standard (the shortest) "star" baseline design strategy is used in which the EPN stations are connected together defining a reference network and every ASG-EUPOS station is connected to the nearest EPN station. The initial network is modified automatically by the Bernese software every day depending on the availability of observations at the EPN stations. We show that in case of sub-daily gaps in the measurements of the reference stations, small clusters of stations can be disconnected from the main reference network. As a result, offsets of a few centimeters in ZTD estimates and spikes in formal errors can appear. These offsets and spikes cannot always be detected. This phenomenon is quite frequent in a large network such as considered in this study. It is also responsible for significant discontinuities in the estimated ZTD series which are detrimental to climate monitoring applications. We developed a new baseline design strategy algorithm to circumvent this event and assure that all the stations remain connected to the main reference network. It is shown that using this strategy, the reprocessed ZTD series are much more continuous and homogeneous in comparison to the standard strategy. The results are further validated against a Precise Point

  10. e-phenology: monitoring leaf phenology and tracking climate changes in the tropics

    NASA Astrophysics Data System (ADS)

    Morellato, Patrícia; Alberton, Bruna; Almeida, Jurandy; Alex, Jefersson; Mariano, Greice; Torres, Ricardo

    2014-05-01

    The e-phenology is a multidisciplinary project combining research in Computer Science and Phenology. Its goal is to attack theoretical and practical problems involving the use of new technologies for remote phenological observation aiming to detect local environmental changes. It is geared towards three objectives: (a) the use of new technologies of environmental monitoring based on remote phenology monitoring systems; (b) creation of a protocol for a Brazilian long term phenology monitoring program and for the integration across disciplines, advancing our knowledge of seasonal responses within tropics to climate change; and (c) provide models, methods and algorithms to support management, integration and analysis of data of remote phenology systems. The research team is composed by computer scientists and biology researchers in Phenology. Our first results include: Phenology towers - We set up the first phenology tower in our core cerrado-savanna 1 study site at Itirapina, São Paulo, Brazil. The tower received a complete climatic station and a digital camera. The digital camera is set up to take daily sequence of images (five images per hour, from 6:00 to 18:00 h). We set up similar phenology towers with climatic station and cameras in five more sites: cerrado-savanna 2 (Pé de Gigante, SP), cerrado grassland 3 (Itirapina, SP), rupestrian fields 4 ( Serra do Cipo, MG), seasonal forest 5 (Angatuba, SP) and Atlantic raiforest 6 (Santa Virginia, SP). Phenology database - We finished modeling and validation of a phenology database that stores ground phenology and near-remote phenology, and we are carrying out the implementation with data ingestion. Remote phenology and image processing - We performed the first analyses of the cerrado sites 1 to 4 phenology derived from digital images. Analysis were conducted by extracting color information (RGB Red, Green and Blue color channels) from selected parts of the image named regions of interest (ROI). using the green color

  11. Satellite cloud and precipitation property retrievals for climate monitoring and hydrological applications

    NASA Astrophysics Data System (ADS)

    Wolters, E. L. A.

    2012-03-01

    This thesis presents the retrieval, evaluation, and application of cloud physical property datasets (cloud phase, cloud particle effective radius, and precipitation occurrence and intensity) obtained from Spinning Enhanced Visible and Infrared Imager (SEVIRI) reflectance measurements using the Cloud Physical Properties (CPP) retrieval algorithm. In Chapter 3 it is shown that the CPP cloud-phase retrieval algorithm has sufficient accuracy (< 5%) and precision (< 10%) for climate monitoring purposes through comparisons with ground-based radar and lidar cloud-phase observations. In addition, the increase in ice cloud occurrence frequency throughout the day resulting from convection can be followed well. In Chapter 4, the effect of different horizontal sampling resolutions on the cloud particle effective radius (re) and cloud-phase retrievals in case of broken and inhomogeneous overcast clouds is quantified using both simulations and retrievals. At low cloud fractions, the retrieved low-resolution re is overestimated by up to 5 μm compared to at high resolution, due to the contribution of the underlying surface to the observed reflectances. In about 4% of the cases this overestimation leads to cloud-phase misclassifications, which is reduced to 2% when applying an additional cloud-top temperature check in the cloud-phase retrieval algorithm. The accuracy of CPP precipitation retrievals is evaluated with TRMM-PR and CMORPH observations in Chapter 5. Rain occurrence frequency from CPP-PP agrees well with TRMM-PR-observed values (corr=0.86), while rain rates agree to a lesser extent (corr=0.50). Investigation of the precipitation intensity frequency distributions from CPP reveal good agreement with TRMM-PR and rain gauge observations, although at moderate rain rates CPP overestimates relative to the rain gauges. Further, it is demonstrated that CPP is suitable to monitor both the seasonal and diurnal cycle of rainfall during daytime. CPP detects a larger dynamical range

  12. Enhanced Monitoring for the Eastern Pacific Investigation of Climate Processes (EPIC) Experiment

    NASA Astrophysics Data System (ADS)

    Cronin, M. F.; Bond, N.; Fairall, C.; Hare, J.; McPhaden, M. J.; Weller, R. A.

    2002-12-01

    The Eastern Pacific Investigation of Climate Processes (EPIC) is a five-year experiment designed to improve understanding of the intertropical convergence zone (ITCZ), its interactions with the cold tongue of water that extends along the equator, and the physics of the cloud deck that forms over the cool waters off South America. EPIC fieldwork began in 1999 and involves short-term process studies, embedded within longer-term (3-4 years) enhanced monitoring, built on the El Niño-Southern Oscillation (ENSO) observing system. As part of EPIC enhanced monitoring, an IMET mooring was deployed at 20°S, 85°W in the stratus deck region, and the easternmost (95°W) Tropical Atmosphere and Ocean (TAO) line of moorings was enhanced with additional sensors and moorings. With 10 EPIC-enhanced TAO moorings between 8°S, 95°W and 12°N, 95°W, the 95°W mooring line provides a picket fence of time series of heat, moisture and momentum fluxes and upper ocean temperature, salinity, and horizontal currents from the stratocumulus region, across the cold tongue / ITCZ complex and into the northeastern tropical Pacific warm pool. Six-monthly TAO maintenance cruises were also specially equipped to monitor air-sea fluxes and boundary layer properties. In this presentation we combine ship transect measurements with moored time series to show the structure and evolution of the cold tongue / ITCZ complex. In addition, southern moorings along 95°W are compared with the 20°S, 85°W stratus mooring to show the meridional extent of the cold season stratiform. Implications for understanding and modeling eastern tropical Pacific ocean-atmosphere interactions will be discussed.

  13. Valuation of Mortality Risk Attributable to Climate Change: Investigating the Effect of Survey Administration Modes on a VSL

    PubMed Central

    Ščasný, Milan; Alberini, Anna

    2012-01-01

    The health impact attributable to climate change has been identified as one of the priority areas for impact assessment. The main goal of this paper is to estimate the monetary value of one key health effect, which is premature mortality. Specifically, our goal is to derive the value of a statistical life from people’s willingness to pay for avoiding the risk of dying in one post-transition country in Europe, i.e., the Czech Republic. We carried out a series of conjoint choice experiments in order to value mortality risk reductions. We found the responses to the conjoint choice questions to be reasonable and consistent with the economic paradigm. The VSL is about EUR 2.4 million, and our estimate is comparable with the value of preventing a fatality as used in one of the integrated assessment models. To investigate whether carrying out the survey through the internet may violate the welfare estimate, we administered our questionnaire to two independent samples of respondents using two different modes of survey administration. The results show that the VSLs for the two groups of respondents are €2.25 and €2.55 million, and these figures are statistically indistinguishable. However, the key parameters of indirect utility between the two modes of survey administration are statistically different when specific subgroups of population, such as older respondents, are concerned. Based on this evidence, we conclude that properly designed and administered on-line surveys are a reliable method for administering questionnaires, even when the latter are cognitively challenging. However, attention should be paid to sampling and choice regarding the mode of survey administration if the preference of specific segments of the population is elicited. PMID:23249861

  14. The validity of hospital administrative data in monitoring variations in breast cancer surgery.

    PubMed Central

    Kahn, L H; Blustein, J; Arons, R R; Yee, R; Shea, S

    1996-01-01

    To assess the validity of using hospital administrative data to measure variations in surgery for early-stage breast cancer, ICD-9-CM coded information was compared with corresponding tumor registry data for 1293 breast cancer patients undergoing lumpectomy or mastectomy at a tertiary referral center from January 1989 to October 1993. Relative to "gold standard" tumor registry data, the administrative data proved 83.4% sensitive and 80.4% specific in identifying women with localized disease who would be potential candidates for lumpectomy. The proportion of women with localized disease undergoing lumpectomy in groups defined by race and insurance status was nearly identical, whichever data were used. Administrative data, which is often readily and publicly available, may be useful in studying variations in breast cancer treatment in key demographic groups. PMID:8633744

  15. Rationale for monitoring cyclosporine concentration at 2 hours after administration in infants posttransplantation.

    PubMed

    Furlan, V; Lykavieris, P; Maubert, M A; Habes, D; Debray, D

    2009-10-01

    Therapeutic drug monitoring is critical to avoid overimmunosuppression or underimmunosuppression in young pediatric transplant recipients. The objective of this study was to examine cyclosporine (CsA) trough (C0) and 2-hour post-dose (C2) concentrations in the early period after liver transplantation (OLT) to determine whether CsA C2 monitoring is justified. Seventeen infants younger than 2 years treated with CsA (Neoral) were monitored at C0. The biopsy-proved acute rejection rate was 65% at 3 months post-OLT. No correlation was observed between values at C0 and C2. Poor absorption of CsA was observed in most infants during the first 2 weeks post-OLT, as well as interindividual variability in CsA clearance. Exposure to CsA could not be estimated using either C0 or C2 determinations in the early post-OLT period. As a marker of poor absorption, C2 is useful but does not indicate delayed or rapid clearance of drug without simultaneous measurement of concentration at C0. We suggest the use of both C0 and C2 monitoring, or AUC monitoring on an individual basis during at least the first 2 weeks post-OLT. PMID:19857744

  16. COST Action ES1206: Advanced GNSS Tropospheric Products for Monitoring Severe Weather Events and Climate (GNSS4SWEC)

    NASA Astrophysics Data System (ADS)

    Jones, Jonathan; Guerova, Guergana; Dousa, Jan; Dick, Galina; de Haan, Siebren; Pottiaux, Eric; Bock, Olivier; Pacione, Rosa

    2016-04-01

    GNSS is a well established atmospheric observing system which can accurately sense water vapour, the most abundant greenhouse gas, accounting for 60-70% of atmospheric warming. Water vapour observations are currently under-sampled in operational meteorology and obtaining and exploiting additional high-quality humidity observations is essential to improve severe weather forecasting and climate monitoring. Inconsistencies introduced into long-term time series from improved GNSS processing algorithms make climate trend analysis challenging. Ongoing re-processing efforts using state-of-the-art models are underway which will provide consistent time series' of tropospheric data, using 15+ years of GNSS observations and from over 600 stations worldwide. These datasets will enable validation of systematic biases from a range of instrumentation, improve the knowledge of climatic trends of atmospheric water vapour, and will potentially be of great benefit to global and regional NWP reanalyses and climate model simulations (e.g. IPCC AR5)

  17. A Multi-Sensor Approach for Satellite Soil Moisture Monitoring for Agricultural Climate Risk Assessment

    NASA Astrophysics Data System (ADS)

    Champagne, C.; Cherneski, P.; Hadwen, T. A.; Davidson, A.

    2014-12-01

    Satellite missions specifically dedicated to soil moisture retrieval have become a reality in the past few years, with the launch of SMOS in 2009 and SMAP in 2014. While much of the work on applications around these missions has focussed on data assimilation systems for numerical weather prediction, there is also potential to use the data to support agricultural applications such as drought and flood assessment and yield forecasting. Previous work has examined the potential for using SMOS soil moisture for detecting spatial and temporal patterns of agroclimate risk, such as drought and excess wetness. This research builds upon that work through the examination of a data set with a longer reference period to determine if the dataset can be used as a baseline for detecting anomalies from normal conditions. Surface satellite soil moisture from a multi-sensor climate reference data set (1993 to 2010) and the SMOS surface soil moisture data (2010 - 2014) set were examined in hindsight to detect relevant trends for monitoring the climate conditions in agricultural regions of Canada. Soil moisture and soil moisture anomalies were examined against precipitation and temperature records over the relevant time periods, and compared against agroclimatic drought risk indicators, including the Palmer Drought Severity Index, the Standardized Precipitation Index and the MODIS Normalized Difference Vegetation Condition anomalies. High impact events, including the 2002 drought in the Canadian Prairies, excess wetness in the southern Manitoba in 2009 and 2011 were evaluated in detail. The potential for using these data sets in near real time to support agricultural decision making will be discussed.

  18. Tropospheric Wind Monitoring During Day-of-Launch Operations for National Aeronautics and Space Administration's Space Shuttle Program

    NASA Technical Reports Server (NTRS)

    Decker, Ryan K.; Leach, Richard

    2004-01-01

    The Environments Group at the National Aeronautics and Space Administration's Marshall Space Flight Center (NASA/MSFC) monitors the winds aloft at Kennedy Space Center (KSC) during the countdown for all Space Shuttle launches. Assessment of tropospheric winds is used to support the ascent phase of launch. Three systems at KSC are used to generate independent tropospheric wind profiles prior to launch; 1) high resolution Jimsphere balloon system, 2) 50-MHz Doppler Radar Wind Profiler (DRWP) and 3) low resolution radiosonde system. Data generated by the systems are used to assess spatial and temporal wind variability during launch countdown to ensure wind change observed does not violate wind change criteria constraints.

  19. Monitoring the hydrology of Canadian prairie wetlands to detect the effects of climate change and land use changes.

    PubMed

    Conly, F M; Van der Kamp, G

    2001-01-01

    There are millions of small isolated wetlands in the semi-arid Canadian prairies. These sloughs' are refuges for wildlife in an area that is otherwise intensively used for agriculture. They are particularly important as waterfowl habitat, with more than half of all North American ducks nesting in prairie sloughs. The water levels and ecology of the wetlands are sensitive to atmospheric change and to changes of agricultural practices in the surrounding fields. Monitoring of the hydrological conditions of the wetlands across the region is vital for detecting long-term trends and for studying the processes that control the water balance of the wetlands. Such monitoring therefore requires extensive regional-scale data complemented by intensive measurements at a few locations. At present, wetlands are being enumerated across the region once each year and year-round monitoring is being carried out at a few locations. The regional-scale data can be statistically related to regional climate data, but such analyses cast little light on the hydrological processes and have limited predictive value when climate and land use are changing. The intensive monitoring network has provided important insights but it now needs to be expanded and revised to meet new questions concerning the effects of climate change and land use. PMID:11339699

  20. Monitoring Top-of-Atmosphere Radiative Energy Imbalance for Climate Prediction

    NASA Technical Reports Server (NTRS)

    Lin, Bing; Chambers, Lin H.; Stackhouse, Paul W., Jr.; Minnis, Patrick

    2009-01-01

    Large climate feedback uncertainties limit the prediction accuracy of the Earth s future climate with an increased CO2 atmosphere. One potential to reduce the feedback uncertainties using satellite observations of top-of-atmosphere (TOA) radiative energy imbalance is explored. Instead of solving the initial condition problem in previous energy balance analysis, current study focuses on the boundary condition problem with further considerations on climate system memory and deep ocean heat transport, which is more applicable for the climate. Along with surface temperature measurements of the present climate, the climate feedbacks are obtained based on the constraints of the TOA radiation imbalance. Comparing to the feedback factor of 3.3 W/sq m/K of the neutral climate system, the estimated feedback factor for the current climate system ranges from -1.3 to -1.0 W/sq m/K with an uncertainty of +/-0.26 W/sq m/K. That is, a positive climate feedback is found because of the measured TOA net radiative heating (0.85 W/sq m) to the climate system. The uncertainty is caused by the uncertainties in the climate memory length. The estimated time constant of the climate is large (70 to approx. 120 years), implying that the climate is not in an equilibrium state under the increasing CO2 forcing in the last century.

  1. Monitoring of Terrestrial Gamma-Ray Flashes: relevance for climate studies and aircraft environment

    NASA Astrophysics Data System (ADS)

    Tavani, Marco

    Terrestrial gamma-ray flashes (TGFs) are sudden (typically lasting a few millisecond) bursts of energy originating in tropical thunderstorms. TGFs are very energetic (typicall 10-20 kJ) and are characterized by a high-energy spectrum reaching many tens of megaelectronvolts. We summarize the satellite observations of the AGILE satellite, a high-energy astrophysics mis-sion operating in an equatorial orbit since mid-2007. AGILE is ideally suited to detect TGFs because of an on-board dedicated millisecond trigger logic, and a wide energy range extending up to 100 MeV. AGILE has been detecting hundreds of high-quality TGFs in about 2 years of data acquisition, and substantially improved the high-energy detection of these impulsive phenomena. AGILE is detecting an emission spectrum up and above 40 MeV, and establishes that the particle accelerating TGF potential difference can reach hundreds of MegaVolt. We will discuss the relevance of our observations for climate studies and especially for the possible implications for aircraft traveling in equatorial regions. Both the radiative and electromagnetic environment related to TGFs will be considered for a possible influence on aircraft naviga-tion. High-energy satellite data are of crucial importance for the study and monitoring of this important atmospheric phenomenon that deserves the highest level of attention in the future.

  2. Promise and Capability of NASA's Earth Observing System to Monitor Human-Induced Climate Variations

    NASA Technical Reports Server (NTRS)

    King, M. D.

    2003-01-01

    The Earth Observing System (EOS) is a space-based observing system comprised of a series of satellite sensors by which scientists can monitor the Earth, a Data and Information System (EOSDIS) enabling researchers worldwide to access the satellite data, and an interdisciplinary science research program to interpret the satellite data. The Moderate Resolution Imaging Spectroradiometer (MODIS), developed as part of the Earth Observing System (EOS) and launched on Terra in December 1999 and Aqua in May 2002, is designed to meet the scientific needs for satellite remote sensing of clouds, aerosols, water vapor, and land and ocean surface properties. This sensor and multi-platform observing system is especially well suited to observing detailed interdisciplinary components of the Earth s surface and atmosphere in and around urban environments, including aerosol optical properties, cloud optical and microphysical properties of both liquid water and ice clouds, land surface reflectance, fire occurrence, and many other properties that influence the urban environment and are influenced by them. In this presentation I will summarize the current capabilities of MODIS and other EOS sensors currently in orbit to study human-induced climate variations.

  3. Deriving dynamics from GPS radio occultation: Three-dimensional wind fields for monitoring the climate

    PubMed Central

    Scherllin-Pirscher, Barbara; Steiner, Andrea Karin; Kirchengast, Gottfried

    2014-01-01

    Global Positioning System (GPS) radio occultation (RO) measurements are proven highly useful for observing the thermal structure of the troposphere and stratosphere. Here we use RO data for the first time to derive climatological wind fields from sampling error-corrected geopotential height fields on isobaric surfaces from about 800 hPa to 3 hPa. We find monthly mean RO geostrophic wind and gradient wind fields (2007 to 2012, about 500 km horizontal resolution, outside tropics) to clearly capture all main wind features, with differences to atmospheric analysis winds being, in general, smaller than 2 m/s. Larger differences (up to 10 m/s) occur close to the subtropical jet where RO winds underestimate actual winds. Such biases are caused by the geostrophic and gradient wind approximations, while RO retrieval errors introduce negligible effect. These results demonstrate that RO wind fields are of high quality and can provide new information on troposphere-stratosphere dynamics, for the benefit of monitoring the climate from weekly to decadal scales. PMID:26074640

  4. Employing GNSS radio occultation for solving the global climate monitoring problem for the fundamental state of the atmosphere

    NASA Astrophysics Data System (ADS)

    Kirchengast, Gottfried; Schwaerz, Marc; Schwarz, Jakob; Scherllin-Pirscher, Barbara; Pock, Christian; Innerkofler, Josef; Proschek, Veronika; Steiner, Andrea; Danzer, Julia; Ladstaedter, Florian; Foelsche, Ulrich

    2016-04-01

    Monitoring the atmosphere to gain accurate and long-term stable records of essential climate variables (ECVs) such as temperature is the backbone of atmospheric and climate science. Earth observation from space is the key to obtain such data globally. Currently, however, not any atmospheric ECV record can serve as authoritative reference from weekly to decadal scales so that climate variability and change is not yet reliably monitored, despite of satellite data since the 1970s. We aim to solve this decades-long problem for the fundamental state of the atmosphere, the thermodynamic state of the gas as expressed by air density, pressure, temperature, and tropospheric water vapor, which are the fundamental ECVs for tracking climate change and in fact fundamental to all weather and climate processes. We base the solution on the unique SI-traceable data of the GNSS radio occultation (RO) space geodetic observing system, available since 2001 and scheduled long-term into the future. We introduce a new system modeling and data analysis approach which, in contrast to current RO retrieval chains using classical data inversion, enables us to exploit the traceability to universal time (SI second) and to realize SI-traced profiles of atmospheric ECVs, accounting also for relevant side influences such as from the ionosphere, with unprecedented utility for climate monitoring and science. We work to establish such a trace first-time in form of the Reference Occultation Processing System rOPS, providing reference RO data for calibration/validation and climate applications. This rOPS development is a current cornerstone endeavor at the WEGC Graz over 2013 to 2016, supported also by colleagues from EUMETSAT Darmstadt, ECMWF Reading, DMI Copenhagen, AIUB Berne, UCAR Boulder, JPL Pasadena, and others. The rOPS approach demands to process the full chain from the SI-tied raw data to the ECVs with integrated uncertainty propagation, both of estimated systematic and estimated random

  5. Web-GIS platform for monitoring and forecasting of regional climate and ecological changes

    NASA Astrophysics Data System (ADS)

    Gordov, E. P.; Krupchatnikov, V. N.; Lykosov, V. N.; Okladnikov, I.; Titov, A. G.; Shulgina, T. M.

    2012-12-01

    presented. Platform software developed (Shulgina et al, 2012, Okladnikov et al, 2012) includes dedicated modules for numerical processing of regional and global modeling results for consequent analysis and visualization. Also data preprocessing, run and visualization of modeling results of models WRF and «Planet Simulator» integrated into the platform is provided. All functions of the center are accessible by a user through a web-portal using common graphical web-browser in the form of an interactive graphical user interface which provides, particularly, capabilities of visualization of processing results, selection of geographical region of interest (pan and zoom) and data layers manipulation (order, enable/disable, features extraction). Platform developed provides users with capabilities of heterogeneous geophysical data analysis, including high-resolution data, and discovering of tendencies in climatic and ecosystem changes in the framework of different multidisciplinary researches (Shulgina et al, 2011). Using it even unskilled user without specific knowledge can perform computational processing and visualization of large meteorological, climatological and satellite monitoring datasets through unified graphical web-interface.

  6. Conservation in the face of climate change: The roles of alternative models, monitoring, and adaptation in confronting and reducing uncertainty

    USGS Publications Warehouse

    Conroy, M.J.; Runge, M.C.; Nichols, J.D.; Stodola, K.W.; Cooper, R.J.

    2011-01-01

    The broad physical and biological principles behind climate change and its potential large scale ecological impacts on biota are fairly well understood, although likely responses of biotic communities at fine spatio-temporal scales are not, limiting the ability of conservation programs to respond effectively to climate change outside the range of human experience. Much of the climate debate has focused on attempts to resolve key uncertainties in a hypothesis-testing framework. However, conservation decisions cannot await resolution of these scientific issues and instead must proceed in the face of uncertainty. We suggest that conservation should precede in an adaptive management framework, in which decisions are guided by predictions under multiple, plausible hypotheses about climate impacts. Under this plan, monitoring is used to evaluate the response of the system to climate drivers, and management actions (perhaps experimental) are used to confront testable predictions with data, in turn providing feedback for future decision making. We illustrate these principles with the problem of mitigating the effects of climate change on terrestrial bird communities in the southern Appalachian Mountains, USA. ?? 2010 Elsevier Ltd.

  7. Combined administration of antibiotics and direct oral anticoagulants: a renewed indication for laboratory monitoring?

    PubMed

    Lippi, Giuseppe; Favaloro, Emmanuel J; Mattiuzzi, Camilla

    2014-10-01

    The recent development and marketing of novel direct oral anticoagulants (DOACs) represents a paradigm shift in the management of patients requiring long-term anticoagulation. The advantages of these compounds over traditional therapy with vitamin K antagonists include a reportedly lower risk of severe hemorrhages and the limited need for laboratory measurements. However, there are several scenarios in which testing should be applied. The potential for drug-to-drug interaction is one plausible but currently underrecognized indication for laboratory assessment of the anticoagulant effect of DOACs. In particular, substantial concern has been raised during Phase I studies regarding the potential interaction of these drugs with some antibiotics, especially those that interplay with permeability glycoprotein (P-gp) and cytochrome 3A4 (CYP3A4). A specific electronic search on clinical trials published so far confirms that clarithromycin and rifampicin significantly impair the bioavailability of dabigatran, whereas clarithromycin, erythromycin, fluconazole, and ketoconazole alter the metabolism of rivaroxaban in vivo. Because of their more recent development, no published data were found for apixaban and edoxaban, or for potential interactions of DOACs with other and widely used antibiotics. It is noteworthy, however, that an online resource based on Food and Drug Administration and social media information, reports several hemorrhagic and thrombotic events in patients simultaneously taking dabigatran and some commonly used antibiotics such as amoxicillin, cephalosporin, and metronidazole. According to these reports, the administration of antibiotics in patients undergoing therapy with DOACs would seem to require accurate evaluation as to whether dose adjustments (personalized or antibiotic class driven) of the anticoagulant drug may be advisable. This might be facilitated by direct laboratory assessments of their anticoagulant effect ex vivo. PMID:24919144

  8. Midwest Climate and Agriculture - Monitoring Tillage Practices with NASA Remote Sensors

    NASA Astrophysics Data System (ADS)

    Makar, N. I.; Archer, S.; Rooks, K.; Sparks, K.; Trigg, C.; Lourie, J.; Wilkins, K.

    2011-12-01

    Concerns about climate change have driven efforts to reduce or offset greenhouse gas emissions. Agricultural activity has drawn considerable attention because it accounts for nearly twelve percent of total anthropogenic emissions. Depending on the type of tillage method utilized, farm land can be either a source or a sink of carbon. Conventional tillage disturbs the soil and can release greenhouse gases into the atmosphere. Conservational tillage practices have been advocated for their ability to sequester carbon, reduce soil erosion, maintain soil moisture, and increase long-term productivity. If carbon credit trading systems are implemented, a cost-effective, efficient tillage monitoring system is needed to enforce offset standards. Remote sensing technology can expedite the process and has shown promising results in distinguishing crop residue from soil. Agricultural indices such as the CAI, SINDRI, and LCA illuminate the unique reflectance spectra of crop residue and are thus able to classify fields based on percent crop cover. The CAI requires hyperspectral data, as it relies on narrow bands within the shortwave infrared portion of the electromagnetic spectrum. Although limited in availability, hyperspectral data has been shown to produce the most accurate results for detecting crop residue on the soil. A new approach to using the CAI was the focus of this study. Previously acquired field data was located in a region covered by a Hyperion swath and is thus the primary study area. In previous studies, ground-based data were needed for each satellite swath to correctly calibrate the linear relationship between the index values and the fraction of residue cover. We hypothesized that there should be a standard method which is able to convert index values into residue classifications without ground data analysis. To do this, end index values for a particular data set were assumed to be associated with end values of residue cover percentages. This method may prove

  9. Diagnostic Solution Assistant cornerstone for intelligent system monitoring, management, analysis and administration

    NASA Astrophysics Data System (ADS)

    Aaseng, Gordon; Holland, Courtney; Nelson, Bill

    2000-01-01

    The Diagnostic Solution Assistant (DSA) provides diagnostics for space hardware and subsystems. Advanced Honewell `smart' model-based technology performs the real-time fault detection, isolation and diagnostics. This model-based technology provides 24-hour access to the operational knowledge of the system experts. The complexity of the International Space Station (ISS) and other manned space vehicles requires that a full staff of ground based system diagnosis experts be trained and available at all times. Response to critical situations must be immediate no matter what time of the day or night. Installation of new systems plus normal staff turnover cause personnel to be in training constantly. Domain knowledge lost due to staff attrition may also never be regained. All of these factors lead to higher cost ground based flight system monitoring stations and sub-optimal efficiency. The Diagnostic Solution Assistant (DSA) provides a solution to these issues. The DSA can be deployed into the ISS Mission Control Center to enhance Flight Controller awareness and decision making. DSA can be utilized onboard the vehicle to enhance crew awareness and potentially offload the crew in time- or safety-critical situations. The DSA can be used to isolate and diagnose faults during flight preparation, thus reducing the overall vehicle turn-around time. In addition to having diagnostic capability, DSA is a tremendous requirements and operations knowledge capture tool that could streamline training for the flight controller and crew, and facilitate the rapid location of important information. .

  10. Quasi-real-time monitoring of SW radiation budget using geostationary satellite for Climate study and Renewable energy. (Invited)

    NASA Astrophysics Data System (ADS)

    Takenaka, H.; Nakajima, T. Y.; Kuze, H.; Takamura, T.; Pinker, R. T.; Nakajima, T.

    2013-12-01

    Solar radiation is the only source of energy that drives the weather and climate of the Earth's surface. Earth is warmed by incoming solar radiation, and emitted energy to space by terrestrial radiation due to its temperature. It has been kept to the organisms viable environment by the effect of heating and cooling. Clouds can cool the Earth by reflecting solar radiation and also can keep the Earth warm by absorbing and emitting terrestrial radiation. They are important in the energy balance at the Earth surface and the Top of the Atmosphere (TOA) and are connected complicatedly into the Earth system as well as other climate feedback processes. Thus it is important to estimate Earth's radiation budget for better understanding of climate and environmental change. We have shared several topics related to climate change. Energy issues close to the climate change, it is an environmental problems. Photovoltaics is one of the power generation method to converts from solar radiation to electric power directly. It does not emit greenhouse gases during power generation. Similarly, drainage, exhaust, vibration does not emit. PV system can be distributed as a small power supply in urban areas and it can installed to near the power demand points. Also solar thermal is heat generator with high efficiency. Therefor it is an effective energy source that the solar power is expected as one of the mitigation of climate change (IPCC Special Report on Renewable Energy Sources and Climate Change Mitigation). It is necessary to real-time-monitoring of the surface solar radiation for safety operation of electric power system. We introduce a fusion analysis of renewable energy and Quasi-real-time analysis of SW radiation budget. Sample of estimated PV power mapping using geostationary satellite.

  11. Radar monitoring of hydrology in Maryland's forested coastal plain wetlands: Implications for predicted climate change and improved mapping

    NASA Astrophysics Data System (ADS)

    Weiner Lang, Megan

    Wetlands provide important services to society but Mid-Atlantic wetlands are at high risk for loss, with forested wetlands being especially vulnerable. Hydrology (flooding and soil moisture) controls wetland function and extent but it may be altered due to changes in climate and anthropogenic influence. Wetland hydrology must better understood in order to predict and mitigate the impact of these changes. Broad-scale forested wetland hydrology is difficult to monitor using ground-based and traditional remote sensing methods. C-band synthetic aperture radar (SAR) data could improve the capability to monitor forested wetland hydrology but the abilities and limitations of these data need further investigation. This study examined: (1) the link between climate and wetland hydrology; (2) the ability of ENVISAT SAR (C-HH and C-VV) data to monitor inundation and soil moisture in forested wetlands; (3) limitations inherent to C-band data (incidence angle, polarization, and phenology) when monitoring forested wetland hydrology; and (4) the accuracy of forested wetland maps produced using SAR data. The study was primarily conducted near the Patuxent River in Maryland but the influence of incidence angle was considered along the Roanoke River in North Carolina. This study showed: (1) climate was highly correlated with wetland inundation; (2) significant differences in C-VV and C-HH backscatter existed between forested areas of varying hydrology (uplands and wetlands) throughout the year; (3) C-HH backscatter was better correlated to hydrology than C-VV backscatter; (4) correlations were stronger during the leaf-off season; (5) the difference in backscatter between flooded and non-flooded areas did not sharply decline with incidence angle, as predicted; and (6) maps produced using SAR data had relatively high accuracy levels. Based on these findings, I concluded that hydrology is influenced by climate at the study site, and C-HH data should be able to monitor changes in

  12. The monitoring of heparin administration by screening tests in experimental dogs.

    PubMed

    Mischke, R; Jacobs, C

    2001-04-01

    The objective of this study was to investigate the relationship between different screening tests of haemostasis and amidolytic plasma activities of unfractionated (standard) heparin in dogs. Different doses of intravenous (i.v.) [25, 50 or 100 IU Kg(-1)bodyweight (BW)] and subcutaneous (s.c.) heparin (250, 500 and 750 IU kg(-1)) were given to groups each of five clinically healthy adult beagles. Measurements of heparin activity with a factor Xa-dependent chromogenic substrate, activated partial thromboplastin time (APTT) (two different reagents), thrombin time (TT, two different thrombin activities in the reagent: 3 and 6 IU ml(-1)) and the reaction time of the resonance thrombogram (RTG -r) with two different measuring devices were performed at different times. The relationship between ratio values (actual/baseline values) of the coagulation tests and heparin activity was analysed based on regression analysis and correlation coefficient. The greatest alterations were seen for the TT([3 IU ml(-1)])and the RTG -r which were near or exceeded the upper limit of measuring range, if 25 IU kg(-1)BW heparin were given i.v. at heparin plasma levels of 0.54 +/- 0.13 IU ml(-1). These results show, that only APTT and TT measured with high thrombin activity assay appear suitable for guiding high dose heparin therapy in dogs. Averaged alterations of APTT ratio in canine plasma were less than those observed in people for similar plasma heparin levels, indicating that the guideline extrapolated from people for monitoring high dose heparin therapy using APTT may not be valid for use in dogs. After coagulation times had been converted into ratio values, based on regression analysis and Wilcoxon's test, differences of heparin sensitivity were found not only for TT measured with different thrombin activities but also for different APTT reagents (P < 0.001). The correlation between amidylotic antifactor Xa activity and ratio of coagulation times was only moderate and found to be

  13. Developing a Climate Service: Using Hydroclimate Monitoring and Forecasting to Aid Decision Making in Africa and Latin America

    NASA Astrophysics Data System (ADS)

    Wood, E. F.; Sheffield, J.; Fisher, C. K.; Chaney, N.; Wanders, N.

    2015-12-01

    Hydrological and water scarcity predictions have the potential to provide vital information for a variety of needs including water resources management, agricultural and urban water supply, and flood mitigation. In particular, seasonal forecasts of drought risk can enable farmers to make adaptive choices on crop varieties, labor usage, and technology investments. Forecast skill is generally derived from teleconnections with ocean variability specifically sea surface temperature (SST) anomalies and, equally important persistence in the state of the land in terms of soil moisture, snowpack, or streamflow conditions. Short term precipitation forecasts are critical in flood prediction by extending flood prediction lead times beyond the basin travel time, and thus allows for extended warnings. The Global Framework for Climate Services (GFCS) is a UN-wide initiative in which WMO Members and inter- and non- governmental, regional, national and local stakeholders work in partnership to develop targeted climate services. Thus, GFCS offers the potential for hydroclimatologists to develop products (hydroclimatic forecasts) and information services (i.e. product dissemination) to users with the expectation that GFCS will increase the resilience of the society to weather and climate events and to reduce operational costs for economic sectors and regions dependent on water. This presentation will discuss the development of a nascent climate service system focused on hydroclimatic monitoring and forecasting, and initially developed by the authors for Africa and Latin America. Central to this system is the use of satellite remote sensing and hydroclimate forecasts (from days to seasons) in the development of weather and climate information useful for water management in sectors such as flood protection (precipitation and streamflow forecasting) and agriculture (drought and crop forecasting). The elements of this system will be discussed, including the challenges of monitoring and

  14. Satellite Remote Sensing Missions for Monitoring Water, Carbon, and global Climate Change

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In recent years, the subjects of water, carbon, and global climate change have attracted worldwide attention by scientists and the media. Climate change, whether associated with human- induced or natural variations, has and will continue to be important to policy makers and the public. It is clear t...

  15. Molecular Monitoring of the Fecal Microbiota of Healthy Human Subjects during Administration of Lactulose and Saccharomyces boulardii

    PubMed Central

    Vanhoutte, Tom; De Preter, Vicky; De Brandt, Evie; Verbeke, Kristin; Swings, Jean; Huys, Geert

    2006-01-01

    Diet is a major factor in maintaining a healthy human gastrointestinal tract, and this has triggered the development of functional foods containing a probiotic and/or prebiotic component intended to improve the host's health via modulation of the intestinal microbiota. In this study, a long-term placebo-controlled crossover feeding study in which each subject received several treatments was performed to monitor the effect of a prebiotic substrate (i.e., lactulose), a probiotic organism (i.e., Saccharomyces boulardii), and their synbiotic combination on the fecal microbiota of three groups of 10 healthy human subjects differing in prebiotic dose and/or intake of placebo versus synbiotic. For this purpose, denaturing gradient gel electrophoresis (DGGE) analysis of 16S rRNA gene amplicons was used to detect possible changes in the overall bacterial composition using the universal V3 primer and to detect possible changes at the subpopulation level using group-specific primers targeting the Bacteroides fragilis subgroup, the genus Bifidobacterium, the Clostridium lituseburense group (cluster XI), and the Clostridium coccoides-Eubacterium rectale group (cluster XIVa). Although these populations remained fairly stable based on DGGE profiling, one pronounced change was observed in the universal fingerprint profiles after lactulose ingestion. Band position analysis and band sequencing revealed that a band appearing or intensifying following lactulose administration could be assigned to the species Bifidobacterium adolescentis. Subsequent analysis with real-time PCR (RT-PCR) indicated a statistically significant increase (P < 0.05) in total bifidobacteria in one of the three subject groups after lactulose administration, whereas a similar but nonsignificant trend was observed in the other two groups. Combined RT-PCR results from two subject groups indicated a borderline significant increase (P = 0.074) of B. adolescentis following lactulose intake. The probiotic yeast S

  16. A NASA-NOAA Update on Global Fire Monitoring Capabilities for Studying Fire-Climate Interactions: Focus on Northern Eurasia

    NASA Astrophysics Data System (ADS)

    Gutman, G.; Csiszar, I.

    2012-04-01

    The global, long-term effects of fires are not well understood and we are learning more every year about its global impacts and potential feedbacks to climate change. The frequency, intensity, severity, and emissions of fires may be changing as a result of climate warming as has been manifested by the observations in northern Eurasia. The climate-fire interaction may produce important societal and environmental impacts in the long run. NASA and NOAA have been developing long-term fire datasets and improving systems to monitor active fires, study fire severity, fire growth, emissions into the atmosphere, and fire effects on carbon stocks. Almost every year there are regions in the world that experience particularly severe fires. For example, less than two years ago the European part of Russia was the focus of attention due to the anomalous heat and dry wave with record high temperatures that caused wildfires rage for weeks and that led to thousands of deaths. The fires also have spread to agricultural land and damaged crops, causing sharp increases of global wheat commodity prices. Remote sensing observations are widely used to monitor fire occurrence, fire spread; smoke dispersion, and atmospheric pollutant levels. In the context of climate warming and acute interest to large-scale emissions from various land-cover disturbances studying spatial-temporal dynamics of forest fire activity is critical. NASA supports several activities related to fires and the Earth system. These include GOFC-GOLD Fire Project Office at University of Maryland and the Rapid Response System for global fire monitoring. NASA has funded many research projects on biomass burning, which cover various geographic regions of the world and analyze impacts of fires on atmospheric carbon in support of REDD initiative, as well as on atmospheric pollution with smoke. Monitoring active fires, studying their severity and burned areas, and estimating fire-induced atmospheric emissions has been the

  17. Mapping and Modeling Web Portal to Advance Global Monitoring and Climate Research

    NASA Astrophysics Data System (ADS)

    Chang, G.; Malhotra, S.; Bui, B.; Sadaqathulla, S.; Goodale, C. E.; Ramirez, P.; Kim, R. M.; Rodriguez, L.; Law, E.

    2011-12-01

    principal investigators to share their research and analysis seamlessly. In addition, this extension will allow users to easily share their tools and data, and to enrich their mapping and analysis experiences. In this talk, we will describe the advanced data management and portal technologies used to power this collaborative environment. We will further illustrate how this environment can enable, enhance and advance global monitoring and climate research.

  18. Relevance of hydro-climatic change projection and monitoring for assessment of water cycle changes in the Arctic.

    PubMed

    Bring, Arvid; Destouni, Georgia

    2011-06-01

    Rapid changes to the Arctic hydrological cycle challenge both our process understanding and our ability to find appropriate adaptation strategies. We have investigated the relevance and accuracy development of climate change projections for assessment of water cycle changes in major Arctic drainage basins. Results show relatively good agreement of climate model projections with observed temperature changes, but high model inaccuracy relative to available observation data for precipitation changes. Direct observations further show systematically larger (smaller) runoff than precipitation increases (decreases). This result is partly attributable to uncertainties and systematic bias in precipitation observations, but still indicates that some of the observed increase in Arctic river runoff is due to water storage changes, for example melting permafrost and/or groundwater storage changes, within the drainage basins. Such causes of runoff change affect sea level, in addition to ocean salinity, and inland water resources, ecosystems, and infrastructure. Process-based hydrological modeling and observations, which can resolve changes in evapotranspiration, and groundwater and permafrost storage at and below river basin scales, are needed in order to accurately interpret and translate climate-driven precipitation changes to changes in freshwater cycling and runoff. In contrast to this need, our results show that the density of Arctic runoff monitoring has become increasingly biased and less relevant by decreasing most and being lowest in river basins with the largest expected climatic changes. PMID:21809779

  19. Experiment, monitoring, and gradient methods used to infer climate change effects on plant communities yield consistent patterns

    PubMed Central

    Elmendorf, Sarah C.; Henry, Gregory H. R.; Hollister, Robert D.; Fosaa, Anna Maria; Gould, William A.; Hermanutz, Luise; Hofgaard, Annika; Jónsdóttir, Ingibjörg S.; Jorgenson, Janet C.; Lévesque, Esther; Magnusson, Borgþór; Molau, Ulf; Myers-Smith, Isla H.; Oberbauer, Steven F.; Rixen, Christian; Tweedie, Craig E.; Walker, Marilyn D.

    2015-01-01

    Inference about future climate change impacts typically relies on one of three approaches: manipulative experiments, historical comparisons (broadly defined to include monitoring the response to ambient climate fluctuations using repeat sampling of plots, dendroecology, and paleoecology techniques), and space-for-time substitutions derived from sampling along environmental gradients. Potential limitations of all three approaches are recognized. Here we address the congruence among these three main approaches by comparing the degree to which tundra plant community composition changes (i) in response to in situ experimental warming, (ii) with interannual variability in summer temperature within sites, and (iii) over spatial gradients in summer temperature. We analyzed changes in plant community composition from repeat sampling (85 plant communities in 28 regions) and experimental warming studies (28 experiments in 14 regions) throughout arctic and alpine North America and Europe. Increases in the relative abundance of species with a warmer thermal niche were observed in response to warmer summer temperatures using all three methods; however, effect sizes were greater over broad-scale spatial gradients relative to either temporal variability in summer temperature within a site or summer temperature increases induced by experimental warming. The effect sizes for change over time within a site and with experimental warming were nearly identical. These results support the view that inferences based on space-for-time substitution overestimate the magnitude of responses to contemporary climate warming, because spatial gradients reflect long-term processes. In contrast, in situ experimental warming and monitoring approaches yield consistent estimates of the magnitude of response of plant communities to climate warming. PMID:25548195

  20. Experiment, monitoring, and gradient methods used to infer climate change effects on plant communities yield consistent patterns.

    PubMed

    Elmendorf, Sarah C; Henry, Gregory H R; Hollister, Robert D; Fosaa, Anna Maria; Gould, William A; Hermanutz, Luise; Hofgaard, Annika; Jónsdóttir, Ingibjörg S; Jónsdóttir, Ingibjörg I; Jorgenson, Janet C; Lévesque, Esther; Magnusson, Borgþór; Molau, Ulf; Myers-Smith, Isla H; Oberbauer, Steven F; Rixen, Christian; Tweedie, Craig E; Walker, Marilyn D; Walker, Marilyn

    2015-01-13

    Inference about future climate change impacts typically relies on one of three approaches: manipulative experiments, historical comparisons (broadly defined to include monitoring the response to ambient climate fluctuations using repeat sampling of plots, dendroecology, and paleoecology techniques), and space-for-time substitutions derived from sampling along environmental gradients. Potential limitations of all three approaches are recognized. Here we address the congruence among these three main approaches by comparing the degree to which tundra plant community composition changes (i) in response to in situ experimental warming, (ii) with interannual variability in summer temperature within sites, and (iii) over spatial gradients in summer temperature. We analyzed changes in plant community composition from repeat sampling (85 plant communities in 28 regions) and experimental warming studies (28 experiments in 14 regions) throughout arctic and alpine North America and Europe. Increases in the relative abundance of species with a warmer thermal niche were observed in response to warmer summer temperatures using all three methods; however, effect sizes were greater over broad-scale spatial gradients relative to either temporal variability in summer temperature within a site or summer temperature increases induced by experimental warming. The effect sizes for change over time within a site and with experimental warming were nearly identical. These results support the view that inferences based on space-for-time substitution overestimate the magnitude of responses to contemporary climate warming, because spatial gradients reflect long-term processes. In contrast, in situ experimental warming and monitoring approaches yield consistent estimates of the magnitude of response of plant communities to climate warming. PMID:25548195

  1. Long-term monitoring at multiple trophic levels suggests heterogeneity in responses to climate change in the Canadian Arctic tundra

    PubMed Central

    Gauthier, Gilles; Bêty, Joël; Cadieux, Marie-Christine; Legagneux, Pierre; Doiron, Madeleine; Chevallier, Clément; Lai, Sandra; Tarroux, Arnaud; Berteaux, Dominique

    2013-01-01

    Arctic wildlife is often presented as being highly at risk in the face of current climate warming. We use the long-term (up to 24 years) monitoring records available on Bylot Island in the Canadian Arctic to examine temporal trends in population attributes of several terrestrial vertebrates and in primary production. Despite a warming trend (e.g. cumulative annual thawing degree-days increased by 37% and snow-melt date advanced by 4–7 days over a 23-year period), we found little evidence for changes in the phenology, abundance or productivity of several vertebrate species (snow goose, foxes, lemmings, avian predators and one passerine). Only primary production showed a response to warming (annual above-ground biomass of wetland graminoids increased by 123% during this period). We nonetheless found evidence for potential mismatches between herbivores and their food plants in response to warming as snow geese adjusted their laying date by only 3.8 days on average for a change in snow-melt of 10 days, half of the corresponding adjustment shown by the timing of plant growth (7.1 days). We discuss several reasons (duration of time series, large annual variability, amplitude of observed climate change, nonlinear dynamic or constraints imposed by various rate of warming with latitude in migrants) to explain the lack of response by herbivores and predators to climate warming at our study site. We also show how length and intensity of monitoring could affect our ability to detect temporal trends and provide recommendations for future monitoring. PMID:23836788

  2. European monitoring systems and data for assessing environmental and climate impacts on human infectious diseases.

    PubMed

    Nichols, Gordon L; Andersson, Yvonne; Lindgren, Elisabet; Devaux, Isabelle; Semenza, Jan C

    2014-04-01

    Surveillance is critical to understanding the epidemiology and control of infectious diseases. The growing concern over climate and other drivers that may increase infectious disease threats to future generations has stimulated a review of the surveillance systems and environmental data sources that might be used to assess future health impacts from climate change in Europe. We present an overview of organizations, agencies and institutions that are responsible for infectious disease surveillance in Europe. We describe the surveillance systems, tracking tools, communication channels, information exchange and outputs in light of environmental and climatic drivers of infectious diseases. We discuss environmental and climatic data sets that lend themselves to epidemiological analysis. Many of the environmental data sets have a relatively uniform quality across EU Member States because they are based on satellite measurements or EU funded FP6 or FP7 projects with full EU coverage. Case-reporting systems for surveillance of infectious diseases should include clear and consistent case definitions and reporting formats that are geo-located at an appropriate resolution. This will allow linkage to environmental, social and climatic sources that will enable risk assessments, future threat evaluations, outbreak management and interventions to reduce disease burden. PMID:24722542

  3. European Monitoring Systems and Data for Assessing Environmental and Climate Impacts on Human Infectious Diseases

    PubMed Central

    Nichols, Gordon L.; Andersson, Yvonne; Lindgren, Elisabet; Devaux, Isabelle; Semenza, Jan C.

    2014-01-01

    Surveillance is critical to understanding the epidemiology and control of infectious diseases. The growing concern over climate and other drivers that may increase infectious disease threats to future generations has stimulated a review of the surveillance systems and environmental data sources that might be used to assess future health impacts from climate change in Europe. We present an overview of organizations, agencies and institutions that are responsible for infectious disease surveillance in Europe. We describe the surveillance systems, tracking tools, communication channels, information exchange and outputs in light of environmental and climatic drivers of infectious diseases. We discuss environmental and climatic data sets that lend themselves to epidemiological analysis. Many of the environmental data sets have a relatively uniform quality across EU Member States because they are based on satellite measurements or EU funded FP6 or FP7 projects with full EU coverage. Case-reporting systems for surveillance of infectious diseases should include clear and consistent case definitions and reporting formats that are geo-located at an appropriate resolution. This will allow linkage to environmental, social and climatic sources that will enable risk assessments, future threat evaluations, outbreak management and interventions to reduce disease burden. PMID:24722542

  4. A Phenomenological Study of Perceptions of Early Childhood Administrators Related to Transformational Leadership, Educational Paths, and Organizational Climate

    ERIC Educational Resources Information Center

    Hayes, Lori

    2012-01-01

    Early childhood (EC) administrators could be the most important contributors to quality experiences in EC settings; they are also responsible for the caliber of experiences for children and staff. A quality EC program is licensed and accredited with administrators who have professional preparation and work experience and can lead and manage EC…

  5. The Use of Large-Scale Administrative Data Sets to Monitor Progression from Vocational Education and Training into Higher Education in the UK: Possibilities and Methodological Challenges

    ERIC Educational Resources Information Center

    Hayward, Geoff; Hoelscher, Michael

    2011-01-01

    This article describes two administrative data sources--UCAS applicant data and Higher Education Statistical Agency (HESA) data--and demonstrates how they can be utilised to monitor the progression of students from vocational and educational training (VET) programmes in to higher education (HE) in the UK. First the article provides a general…

  6. Stable hydrogen and oxygen isotope ratios for selected sites of the National Oceanic and Atmospheric Administration's Atmospheric Integrated Research Monitoring Network (AIRMoN)

    USGS Publications Warehouse

    Coplen, Tyler B.; Huang, Richard

    2000-01-01

    Increasingly, hydrologic studies require information on the isotopic composition of natural waters. This report presents stable hydrogen (δ2H) and oxygen isotope ratios (δ180) of precipitation samples from seven selected sites of the National Oceanic and Atmospheric Administration's Atmospheric Integrated Research Monitoring Network (AIRMoN) collected during the years 1992-1994.

  7. Modelling marine community responses to climate-driven species redistribution to guide monitoring and adaptive ecosystem-based management.

    PubMed

    Marzloff, Martin Pierre; Melbourne-Thomas, Jessica; Hamon, Katell G; Hoshino, Eriko; Jennings, Sarah; van Putten, Ingrid E; Pecl, Gretta T

    2016-07-01

    As a consequence of global climate-driven changes, marine ecosystems are experiencing polewards redistributions of species - or range shifts - across taxa and throughout latitudes worldwide. Research on these range shifts largely focuses on understanding and predicting changes in the distribution of individual species. The ecological effects of marine range shifts on ecosystem structure and functioning, as well as human coastal communities, can be large, yet remain difficult to anticipate and manage. Here, we use qualitative modelling of system feedback to understand the cumulative impacts of multiple species shifts in south-eastern Australia, a global hotspot for ocean warming. We identify range-shifting species that can induce trophic cascades and affect ecosystem dynamics and productivity, and evaluate the potential effectiveness of alternative management interventions to mitigate these impacts. Our results suggest that the negative ecological impacts of multiple simultaneous range shifts generally add up. Thus, implementing whole-of-ecosystem management strategies and regular monitoring of range-shifting species of ecological concern are necessary to effectively intervene against undesirable consequences of marine range shifts at the regional scale. Our study illustrates how modelling system feedback with only limited qualitative information about ecosystem structure and range-shifting species can predict ecological consequences of multiple co-occurring range shifts, guide ecosystem-based adaptation to climate change and help prioritise future research and monitoring. PMID:26990671

  8. Automatic monitoring of weather and climate in mountain areas. The case of Peñalara Meteorological Network (RMPNP)

    NASA Astrophysics Data System (ADS)

    Durán, Luis; Rodríguez-Muñoz, Irene

    2016-05-01

    Mountains have a very peculiar climate, are an essential factor in the climate system and are excellent areas for monitoring weather and climate. Nevertheless there is still a lack of long term observations at these areas, mainly due to their harsh conditions for instruments and humans. This work describes the results obtained in the design, installation and operation during more than a decade of a mountain meteorological network located in Sierra de Guadarrama (Iberian Central System, Spain). This work includes information about the measuring strategy, objectives and performance of the network with some technical and operational conlussions that might be useful for the mountain meteorology observation community. Discussions about the representativeness of the data are shown. These are important for future users of this data base. Also some basic statistics of the available data is shown as a framework for further and deeper analysis. Finally some recommendations are made about mountain meteorology observation which could be taken into account for future improvements of this network or for other mountain meteorological networks.

  9. Application of seasonal climate forecasts in agricultural crop monitoring in Brazil

    NASA Astrophysics Data System (ADS)

    de Avila, A. M. H.; Pereira, V. R.; Lopes, F. A.

    2014-12-01

    This work is investigating the contribution of seasonal climate forecasts of Eta regional climate model to support crops in Brazil. The weather conditions are directed related with the crop yield, being a basic parameter for its forecast. The southern region has a subtropical climate and is the major national producer of rice and wheat and also is the second one for soybean, bean and corn. The Eta seasonal forecast model data for southern Brazil was evaluated from 2001 to 2010. Observed data from National and state meteorological agencies were used to evaluate the monthly model performance. The model performance was evaluated by calculating two parameters. The Root Mean Square Error (RMSE) was used to evaluate the monthly forecast averages and the observed precipitation standard deviation. The Skill Score Climatology (SSC) was used to compare the accuracy between the forecast and the climatology. The RMSE showed that in some locations the predicted values by the model were closer to the observed. The SSC showed a systematic error for the predicted values by the Eta seasonal model. This behavior indicates that the climatological analysis is more accurate to predict the monthly climate than the ETA model forecast. Also the consecutive negative bias was observed in some locations that can be corrected removing the systematic error.

  10. Stream Classification in Support of Monitoring to Detect Climate Change Effects

    EPA Science Inventory

    Climate-related impacts on streams are occurring now and are predicted to increase. Expected impacts include rising temperatures, changes in the timing, intensity, and frequency of precipitation, and extended summer low flows. A number of state biomonitoring programs have express...

  11. Remote Sensing Methods for Monitoring the Climates of Venus, Earth and Mars

    NASA Astrophysics Data System (ADS)

    Crisp, D.

    2008-12-01

    A wide range of remote sensing methods have been used to study the climates of Venus, Earth, and Mars. In some cases, techniques pioneered for Earth were subsequently used to study the climates of Venus and Mars. For example, the thermal infrared limb sounders used on NIMBUS 7 (LIMS, SAMS) and UARS (ISAMS, CLAES) were the precursors of the Mars Reconnaissance Orbiter Mars Climate Sounder (MRO MCS). In other cases, methods first used to study planetary environments, were then used to study the Earth's climate. The Pioneer Venus Orbiter Cloud Photopolarimeter (PV OCPP) was a precursor to the POLDER instruments on ADEOS and PARASOL, and the Aerosol Polarimetry Sensor (APS) on the Glory spacecraft. Similarly, hyperspectral imagers that have long been used for studying planetary environments (NIMS, VIMS, OMEGA, VIRTIS) have only recently been used for studying the Earth (EO1 Hyperion). High spectral resolution solar remote sensing methods like those being developed for measuring CO2 and other greenhouse gases, such as those on the NASA Orbiting Carbon Observatory (OCO) and the Japanese Greenhouse Gases Observing Satellite (GOSAT) provide new tools for measuring surface pressures, trace gas abundances, and the dust and ice distributions in the Martian atmosphere. Active radar and lidar sounders, like those deployed on the CloudSat and CALIPSO spacecraft, provide new methods for studying the vertical structures of the H2SO4 clouds of Venus as well as dust and ice clouds on Mars. These and other opportunities will be reviewed here.

  12. ROLE OF CLIMATE IN FOREST MONITORING AND ASSESSMENT: A NEW ENGLAND EXAMPLE

    EPA Science Inventory

    The development of climatological information products to support ecological data collection and analysis is described. he scope of research is narrowed to issues of direct interest to the joint U.S. Environmental Protection Agency Environmental Monitoring and Assessment Program ...

  13. Overview of Regional Monitoring Networks to Detect Climate Change in Streams

    EPA Science Inventory

    In partnership with states, tribes, and other organizations, the U.S. Environmental Protection Agency has worked to establish regional monitoring networks (RMNs) at which biological, thermal, and hydrologic data are collected from freshwater wadeable streams to quantify and monit...

  14. Ecoregional-scale monitoring within conservation areas, in a rapidly changing climate

    USGS Publications Warehouse

    Beever, Erik A.; Woodward, Andrea

    2011-01-01

    Long-term monitoring of ecological systems can prove invaluable for resource management and conservation. Such monitoring can: (1) detect instances of long-term trend (either improvement or deterioration) in monitored resources, thus providing an early-warning indication of system change to resource managers; (2) inform management decisions and help assess the effects of management actions, as well as anthropogenic and natural disturbances; and (3) provide the grist for supplemental research on mechanisms of system dynamics and cause-effect relationships (Fancy et al., 2009). Such monitoring additionally provides a snapshot of the status of monitored resources during each sampling cycle, and helps assess whether legal standards and regulations are being met. Until the last 1-2 decades, tracking and understanding changes in condition of natural resources across broad spatial extents have been infrequently attempted. Several factors, however, are facilitating the achievement of such broad-scale investigation and monitoring. These include increasing awareness of the importance of landscape context, greater prevalence of regional and global environmental stressors, and the rise of landscape-scale programs designed to manage and monitor biological systems. Such programs include the US Forest Service's Forest Inventory and Analysis (FIA) Program (Moser et al., 2008), Canada's National Forest Inventory, the 3Q Programme for monitoring agricultural landscapes of Norway (Dramstad et al., 2002), and the emerging (US) Landscape Conservation Cooperatives (USDOI Secretarial Order 3289, 2009; Anonymous, 2011). This Special Section explores the underlying design considerations, as well as many pragmatic aspects associated with program implementation and interpretation of results from broad-scale monitoring systems, particularly within the constraints of high-latitude contexts (e.g., low road density, short field season, dramatic fluctuations in temperature). Although Alaska is

  15. Atmospheric carbon dioxide at Mauna Loa Observatory 1. NOAA global monitoring for climatic change measurements with a nondispersive infrared analyzer, 1974--1985

    SciTech Connect

    Komhyr, W. D.; Harris, T. B.; Waterman, L. S.; Chin, J. F. S.; Thoning, K. W.

    1989-06-20

    Atmospheric CO/sub 2/ measurements made with a nondispersive infrared analyzer during 1974--1985 at Mauna Lao Observatory, Hawaii, are described, with emphasis on the measurement methodology, calibrations, and data accuracy. Monthly mean CO/sub 2/ data, representative of global background conditions, are presented for the period of record. The monthly means were derived from an all-data base of CO/sub 2/ hourly averged archived at the National Oceanic and Atmospheric Administration (NOAA) Geophysical Monitoring for Climatic Change (GMCC) facility in Boulder, Colorado; at the Carbon Dioxide Information Analysis Center (CDIAC) in Oak Ridge, Tennessee; and in the microfiche version of this paper. Flags in the all-data base identify CO/sub 2/ hourly averages that have been deemed unreliable because of sampling and analysis problems or that are unrepresentative of clean background air because of influences of the local environment, for example, CO/sub 2/ uptake by nearby vegetation or contamination and pollution effects. The select NOAA GMCC monthly mean data are compared with similar data obtained independently at Mauna Loa Observatory by the Scripps Institution of Oceanography. The averge difference of corresponding monthly mean CO/sub 2/ values for the two data sets is 0.15/plus minus/0.18 ppm, where the indicated variability is the standard deviation. Careful scrutiny of the NOAA GMCC measurement, calibration, and data processing procedures that might have caused the small bias in the data has revealed no unusual errors. /copyright/ American Geophysical Union 1989

  16. Optimizing cloud removal from satellite remotely sensed data for monitoring vegetation dynamics in humid tropical climate

    NASA Astrophysics Data System (ADS)

    Hashim, M.; Pour, A. B.; Onn, C. H.

    2014-02-01

    Remote sensing technology is an important tool to analyze vegetation dynamics, quantifying vegetation fraction of Earth's agricultural and natural vegetation. In optical remote sensing analysis removing atmospheric interferences, particularly distribution of cloud contaminations, are always a critical task in the tropical climate. This paper suggests a fast and alternative approach to remove cloud and shadow contaminations for Landsat Enhanced Thematic Mapper+ (ETM+) multi temporal datasets. Band 3 and Band 4 from all the Landsat ETM+ dataset are two main spectral bands that are very crucial in this study for cloud removal technique. The Normalise difference vegetation index (NDVI) and the normalised difference soil index (NDSI) are two main derivatives derived from the datasets. Change vector analysis is used in this study to seek the vegetation dynamics. The approach developed in this study for cloud optimizing can be broadly applicable for optical remote sensing satellite data, which are seriously obscured with heavy cloud contamination in the tropical climate.

  17. Monitors.

    ERIC Educational Resources Information Center

    Powell, David

    1984-01-01

    Provides guidelines for selecting a monitor to suit specific applications, explains the process by which graphics images are produced on a CRT monitor, and describes four types of flat-panel displays being used in the newest lap-sized portable computers. A comparison chart provides prices and specifications for over 80 monitors. (MBR)

  18. Monitoring climate and man-made induced variations in terrestrial water storage (TWS) across Africa using GRACE data

    NASA Astrophysics Data System (ADS)

    Ahmed, M. E.; Sultan, M.; Wahr, J. M.; Yan, E.; Bonin, J. A.; Chouinard, K.

    2012-12-01

    It is common practice for researchers engaged in research related to climate change to examine the temporal variations in relevant climatic parameters (e.g., temperature, precipitation) and to extract and examine drought indices reproduced from one or more such parameters. Drought indices (meteorological, agricultural and hydrological) define departures from normal conditions and are used as proxies for monitoring water availability. Many of these indices exclude significant controlling factor(s), do not work well in specific settings and regions, and often require long (≥50 yr) calibration time periods and substantial meteorological data, limiting their application in areas lacking adequate observational networks. Additional uncertainties are introduced by the models used in computing model-dependent indices. Aside from these uncertainties, none of these indices measure the variability in terrestrial water storage (TWS), a term that refers to the total vertically integrated water content in an area regardless of the reservoir in which it resides. Inter-annual trends in TWS were extracted from monthly Gravity Recovery and Climate Experiment (GRACE) data acquired (04/2002 to 08/2011) over Africa and correlated (in a GIS environment) with relevant temporal remote sensing, geologic, hydrologic, climatic, and topographic datasets. Findings include the following: (1) large sectors of Africa are undergoing statistically significant variations (+36 mm/yr to -16 mm/yr) due to natural and man-made causes; (2) warming of the tropical Atlantic ocean apparently intensified Atlantic monsoons and increased precipitation and TWS over western and central Africa's coastal plains, proximal mountainous source areas, and inland areas as far as central Chad; (3) warming in the central Indian Ocean decreased precipitation and TWS over eastern and southern Africa; (4) the high frequency of negative phases of the North Atlantic Oscillation (NAO) increased precipitation and TWS over

  19. Fourteen Years of Pond Monitoring in Boreal Plain, northern Alberta, Canada: The effects of climate variability and harvesting practices

    NASA Astrophysics Data System (ADS)

    Abnizova, A.; Devito, K. J.; Petrone, R. M.

    2013-12-01

    Western Boreal forest of Canada is experiencing rapid increase in rates of cumulative impacts of disturbance for resource extraction, climate change and forest fires. To understand their sensitivity and response to multi-decadal natural and anthropogenic disturbances a long-term (1998-2013) and extensive pond ecosystem monitoring has been conducted on the Boreal Plains at the Utikuma Region Study Area (URSA) (56o N, 115o W). Hydrological, chemical and nutrient data were collected along a forest-peatland-pond transect in a paired catchment aspen harvest study in the area underlain by fine-grained till moraines glacial deposits. The aims of this study were (1) to identify the main characteristics in pond hydrologic regime, specifically water level dynamics, both seasonally and between years; (2) to identify factors controlling variation in measured hydro-chemistry and nutrients; and (3) to provide evidence on how water quality conditions in the ponds are changing on long (multi-year to decadal) time scales in response to harvesting practices and climatic trends during wet and dry cycles. No difference in pond or catchment hydrologic and hydro-chemical response was observed between harvested and reference sites pre- or post- harvesting. Wetland and pond waters were not affected by the harvesting practices due to lack of hydrologic connectivity between pond and forest systems. The hydrologic relationship between forestlands and open-water wetlands is a response in their water balance differences driven by their storage characteristics. Temporal trends in ponds' water levels, chemical and nutrient concentrations during the 14 year record were most closely related to relative connectivity to groundwater systems and flow direction in response to climatic cycles and vegetation water use and were the most useful parameters for characterizing duration and type of connectivity during wet and dry cycles. Using empirical relationships from such long-term monitoring, this study

  20. Climate Change in the School Yard: Monitoring the Health of Acer Saccharum with A Maple Report Card

    NASA Astrophysics Data System (ADS)

    Carlson, M.; Diller, A.; Rock, B. N.

    2012-12-01

    K-12 Teachers and students engage in authentic science and a research partnership with scientists in Maple Watch, a University of New Hampshire outreach program. Maple Watch is a hands-on, inquiry-based program in which students learn about climate change and air quality as well as many other environmental stress factors which may affect the health of sugar maple. The iconic New England tree is slated to lose 52% of its range in this century. Maple Watch builds on the 20-year record of Forest Watch, a K-12 program in which students and teachers have contributed annual research specimens and data to a UNH study of tropospheric ozone and its impact on white pine (Pinus strobus). Maple Watch students monitor sugar maples (Acer saccharum) year-round for signals of strain and disease. Students report the first run in sap season, bud burst and leaf development, and leaf senescence and fall. Across New England the timing of these phenologic events is changing with climate warming. Students assess maple health with simple measures of leaf development in May, leaf senescence in early fall and bud quality in late fall. Simple student arithmetic rankings of leaf and bud health correlate with chlorophyll content and spectral reflectance measures that students can analyze and compare with researchers at UNH. Grading their trees for each test on a one-two-three scale, students develop a Maple Report Card for each type of measurement, which presents an annual portrait of tree health. Year-by-year, schools across the sugar maple's 31 million acre range could monitor changes in tree health. The change over time in maple health can be graphed in parallel with the Goddard Space Institute's Common Sense Climate Index. Four teachers, listed as co-authors here, began a pilot study with Maple Watch in 2010, contributing sap samples and sharing curricular activities with UNH. Pilot Maple Watch schools already manage stands of sugar maples and make maple syrup and are assisting in training

  1. Climate Monitoring and Recommendations on the Optimum Sowing Period for the Main Crops in the Transylvanian Plain, Romania

    NASA Astrophysics Data System (ADS)

    Rusu, T.; Moraru, P. I.; Sopterean, M. L.; Pop, A. I.; Cacovean, H.

    2012-04-01

    The Transylvanian Plain (TP) is a geographical region located in north-central Romania and is bordered by large rivers to the north and south, the Somes and the Mures, respectively. TP with an area of approx. 395,616 ha, includes areas of three counties (Cluj - CJ, Mures -MS, Bistrita-Nasaud - BN), has a predominantly agricultural character, and is characterized by hilly climate floor with oceanic influences, 6-10 0C average annual temperatures and 500-700 mm/year average annual precipitations. The presence of the Carpathian mountains ring and the arrangement, almost concentric, of the relief from Transylvanian Depression, determines the development of a zonal sequence of soil types, a horizontal zonality as a direct influence of lithology and indirect of the relief, by changing climate and vegetation. Diversity of the pedogenetical factors - highly fragmented relief, forest and herbaceous vegetation grafted on a lithological background predominantly acid in the north - west and predominantly basic in south - est, parent rock composition and especially their combination in the contact zones, have conditioned in this hilly area of TP a tessellated soil cover. During soil pedogenesis, soil properties and features developed in response to differential lithology and macro/microrelief. Evaluated soils were found to largely be a complex mix of Cernisols, Luvisols and Antrisols. Zoning cultures and establishing the optimum sowing periods was made after the observations arising from practice and after the results obtained in the agricultural experimental research stations. Climate changes in recent years and climate monitoring from TP offers the possibility to check the calendar for the optimum sowing period. Monitorization of the thermal and water regime from TP was performed with twenty HOBO microstations which determine the temperature (to a height of 1 m) and rainfalls, same as temperature (at 10, 30, 50 cm depth in soil) and soil moisture (at 10 cm depth). Recorded

  2. Designing Optimized Multi-Species Monitoring Networks to Detect Range Shifts Driven by Climate Change: A Case Study with Bats in the North of Portugal

    PubMed Central

    Amorim, Francisco; Carvalho, Sílvia B.; Honrado, João; Rebelo, Hugo

    2014-01-01

    Here we develop a framework to design multi-species monitoring networks using species distribution models and conservation planning tools to optimize the location of monitoring stations to detect potential range shifts driven by climate change. For this study, we focused on seven bat species in Northern Portugal (Western Europe). Maximum entropy modelling was used to predict the likely occurrence of those species under present and future climatic conditions. By comparing present and future predicted distributions, we identified areas where each species is likely to gain, lose or maintain suitable climatic space. We then used a decision support tool (the Marxan software) to design three optimized monitoring networks considering: a) changes in species likely occurrence, b) species conservation status, and c) level of volunteer commitment. For present climatic conditions, species distribution models revealed that areas suitable for most species occur in the north-eastern part of the region. However, areas predicted to become climatically suitable in the future shifted towards west. The three simulated monitoring networks, adaptable for an unpredictable volunteer commitment, included 28, 54 and 110 sampling locations respectively, distributed across the study area and covering the potential full range of conditions where species range shifts may occur. Our results show that our framework outperforms the traditional approach that only considers current species ranges, in allocating monitoring stations distributed across different categories of predicted shifts in species distributions. This study presents a straightforward framework to design monitoring schemes aimed specifically at testing hypotheses about where and when species ranges may shift with climatic changes, while also ensuring surveillance of general population trends. PMID:24475265

  3. Regional Monitoring Networks to Detect Climate Change Effects in Stream Ecosystems (External Review Draft)

    EPA Science Inventory

    The United States Environmental Protection Agency (U.S. EPA) is working with its regional offices, states, tribes, and other entities to establish Regional Monitoring Networks (RMNs) at which biological, thermal, and hydrologic data will be collected from freshwater wadeable stre...

  4. Monitoring climate model performance in an era of explosive data growth (Invited)

    NASA Astrophysics Data System (ADS)

    Gleckler, P. J.

    2013-12-01

    Increased resolution, additional complexity, and multiple realizations from a variety of experiments have all contributed to larger data volumes of climate model output and the need for a distributed approach to data delivery. The Earth System Grid Federation (ESGF) serves this need for the Coupled Model Intercomparison Project (CMIP5) and related Model Intercomparisons (MIPs). By adhering to the Climate and Forecast (CF) metadata convention for model output, MIPs ensure that critical metadata can be both readily searched via ESGF and efficiently analyzed by scientists. These advancements to the organization and delivery of climate model output are now being applied to observational datasets in the obs4MIPs project initiated by NASA and the DOE. Select NASA products routinely used for model evaluation are now accessible on ESGF via the obs4MIPs project, and others are also becoming available. The simulations available from CMIP5 are being studied by hundreds of scientists, most of whom are publishing their research in peer-reviewed publications. Collectively, the resulting body of literature represents comprehensive model evaluation, however, a distillation of this work into model performance summaries is difficult. With the same data conventions and delivery methods now being exploited for model and observational data, a more integrated approach to model evaluation in MIPs may be possible. Well-established performance metrics offer one viable pathway. This presentation will describe efforts underway to exploit the above infrastructural advancements for the purpose of improving how routine model benchmarking is performed in MIPs. Technological challenges to this endeavor will be highlighted.

  5. Alpine Plant Monitoring for Global Climate Change; Analysis of the Four California GLORIA Target Regions

    NASA Astrophysics Data System (ADS)

    Dennis, A.; Westfall, R. D.; Millar, C. I.

    2007-12-01

    The Global Observation Research Initiative in Alpine Environments (GLORIA) is an international research project with the goal to assess climate-change impacts on vegetation in alpine environments worldwide. Standardized protocols direct selection of each node in the network, called a Target Region (TR), which consists of a set of four geographically proximal mountain summits at elevations extending from treeline to the nival zone. For each summit, GLORIA specifies a rigorous mapping and sampling design for data collection, with re-measurement intervals of five years. Whereas TRs have been installed in six continents, prior to 2004 none was completed in North America. In cooperation with the Consortium for Integrated Climate Research in Western Mountains (CIRMOUNT), California Native Plant Society, and the White Mountain Research Station, four TRs have been installed in California: two in the Sierra Nevada and two in the White Mountains. We present comparative results from analyses of baseline data across these four TRs. The number of species occurring in the northern Sierra (Tahoe) TR was 35 (16 not found in other TRs); in the central Sierra (Dunderberg) TR 65 species were found. In the White Mountains, 54 species were found on the granitic/volcanic soils TR and 46 (19 not found in other TRs) on the dolomitic soils TR. In all, we observed 83 species in the Sierra Nevada range TRs and 75 in the White Mountain TRs. Using a mixed model ANOVA of percent cover from summit-area-sections and quadrat data, we found primary differences to be among mountain ranges. Major soil differences (dolomite versus non-dolomite) also contribute to floristic differentiation. Aspect did not seem to contribute significantly to diversity either among or within target regions. Summit floras in each target region comprised groups of two distinct types of species: those with notably broad elevational ranges and those with narrow elevational ranges. The former we propose to be species that

  6. Air, Ocean and Climate Monitoring Enhancing Undergraduate Training in the Physical, Environmental and Computer Sciences

    NASA Technical Reports Server (NTRS)

    Hope, W. W.; Johnson, L. P.; Obl, W.; Stewart, A.; Harris, W. C.; Craig, R. D.

    2000-01-01

    Faculty in the Department of Physical, Environmental and Computer Sciences strongly believe in the concept that undergraduate research and research-related activities must be integrated into the fabric of our undergraduate Science and Technology curricula. High level skills, such as problem solving, reasoning, collaboration and the ability to engage in research, are learned for advanced study in graduate school or for competing for well paying positions in the scientific community. One goal of our academic programs is to have a pipeline of research activities from high school to four year college, to graduate school, based on the GISS Institute on Climate and Planets model.

  7. Data-Intensive Drought Monitoring, Forecasting, and Outlooks for Climate-Resilient Water Management in Western Agriculture

    NASA Astrophysics Data System (ADS)

    Ryu, J.

    2014-12-01

    Drought increasingly threatens the sustainability of regional water resources in many states in the United States. Drought has large economic impacts and significant environmental and societal effects. Although much research on drought at national, regional, and local scales has been conducted to mitigate drought impacts, still drought claims economic losses estimated at about $8.5 billion per year. One possible reason for such huge losses may be a lack of clear understanding of the characteristics of drought at local scales that the end user can relate to the particular water management constraints of their basin. Sustainable water management alternatives are explored and discussed to mitigate climate-induced drought impacts on western agriculture. Current drought monitoring, forecasting, and outlooks efforts are demonstrated along with visualization and research survey. Future direction for Big Drought research is also highlighted.

  8. Monitoring Thermal Performance of Hollow Bricks with Different Cavity Fillers in Difference Climate Conditions

    NASA Astrophysics Data System (ADS)

    Pavlík, Zbyšek; Jerman, Miloš; Fořt, Jan; Černý, Robert

    2015-03-01

    Hollow brick blocks have found widespread use in the building industry during the last decades. The increasing requirements to the thermal insulation properties of building envelopes given by the national standards in Europe led the brick producers to reduce the production of common solid bricks. Brick blocks with more or less complex systems of internal cavities replaced the traditional bricks and became dominant on the building ceramics market. However, contrary to the solid bricks where the thermal conductivity can easily be measured by standard methods, the complex geometry of hollow brick blocks makes the application of common techniques impossible. In this paper, a steady-state technique utilizing a system of two climatic chambers separated by a connecting tunnel for sample positioning is used for the determination of the thermal conductivity, thermal resistance, and thermal transmittance ( U value) of hollow bricks with the cavities filled by air, two different types of mineral wool, polystyrene balls, and foam polyurethane. The particular brick block is provided with the necessary temperature- and heat-flux sensors and thermally insulated in the tunnel. In the climatic chambers, different temperatures are set. After steady-state conditions are established in the measuring system, the effective thermal properties of the brick block are calculated using the measured data. Experimental results show that the best results are achieved with hydrophilic mineral wool as a cavity filler; the worst performance exhibits the brick block with air-filled cavities.

  9. A new dynamic approach for statistical optimization of GNSS radio occultation bending angles for optimal climate monitoring utility

    NASA Astrophysics Data System (ADS)

    Li, Y.; Kirchengast, G.; Scherllin-Pirscher, B.; Wu, S.; Schwaerz, M.; Fritzer, J.; Zhang, S.; Carter, B. A.; Zhang, K.

    2013-12-01

    Navigation Satellite System (GNSS)-based radio occultation (RO) is a satellite remote sensing technique providing accurate profiles of the Earth's atmosphere for weather and climate applications. Above about 30 km altitude, however, statistical optimization is a critical process for initializing the RO bending angles in order to optimize the climate monitoring utility of the retrieved atmospheric profiles. Here we introduce an advanced dynamic statistical optimization algorithm, which uses bending angles from multiple days of European Centre for Medium-range Weather Forecasts (ECMWF) short-range forecast and analysis fields, together with averaged-observed bending angles, to obtain background profiles and associated error covariance matrices with geographically varying background uncertainty estimates on a daily updated basis. The new algorithm is evaluated against the existing Wegener Center Occultation Processing System version 5.4 (OPSv5.4) algorithm, using several days of simulated MetOp and observed CHAMP and COSMIC data, for January and July conditions. We find the following for the new method's performance compared to OPSv5.4: 1.) it significantly reduces random errors (standard deviations), down to about half their size, and leaves less or about equal residual systematic errors (biases) in the optimized bending angles; 2.) the dynamic (daily) estimate of the background error correlation matrix alone already improves the optimized bending angles; 3.) the subsequently retrieved refractivity profiles and atmospheric (temperature) profiles benefit by improved error characteristics, especially above about 30 km. Based on these encouraging results, we work to employ similar dynamic error covariance estimation also for the observed bending angles and to apply the method to full months and subsequently to entire climate data records.

  10. Surface water hydrology and geomorphic characterization of a playa lake system: Implications for monitoring the effects of climate change

    NASA Astrophysics Data System (ADS)

    Adams, Kenneth D.; Sada, Donald W.

    2014-03-01

    Playa lakes are sensitive recorders of subtle climatic perturbations because these ephemeral water bodies respond to the flux of diffuse and channelized flow from their watersheds as well as from direct precipitation. The Black Rock Playa in northwestern Nevada is one of the largest playas in North America and is noted for its extreme flatness, varying less than one meter across a surface area of 310 km2. Geo-referenced Landsat imagery was used to map surface-area fluctuations of ephemeral lakes on the playa from 1972 to 2013 to provide baseline data on surface water hydrology of this system to compare to future hydrologic conditions caused by climate change. The area measurements were transformed into depth and volumetric estimates using results of detailed topographic global positioning system (GPS) surveys and correlated with available surface hydrological and meteorological monitoring data. Playa lakes reach their maximum size (<350 km2) in spring, fed by melting snows from high mountains on the periphery of the drainage basin, and usually desiccate by early- to mid-summer. The combination of a shallow groundwater table, sediment deposition, and hydro-aeolian planation probably are largely responsible for the flatness of the playa. When lakes do not form for a period of several years, the clay- and silt-rich playa surface transforms from one that is hard and durable into one that is soft and puffy, probably from upward capillary movement of water and resultant evaporation. Subsequent flooding restores the hard and durable surface. The near-global availability of Landsat imagery for the last 41 years should allow the documentation of baseline surface hydrologic characteristics for a large number of widely-distributed playa lake systems that can be used to assess the hydrologic effects of future climate changes.

  11. The USA National Phenology Network: A national science and monitoring program for understanding climate change

    NASA Astrophysics Data System (ADS)

    Weltzin, J.

    2009-04-01

    Patterns of phenology for plants and animals control ecosystem processes, determine land surface properties, control biosphere-atmosphere interactions, and affect food production, health, conservation, and recreation. Although phenological data and models have applications related to scientific research, education and outreach, agriculture, tourism and recreation, human health, and natural resource conservation and management, until recently there was no coordinated effort to understand phenology at the national scale in the United States. The USA National Phenology Network (USA-NPN; www.usanpn.org), established in 2007, is an emerging and exciting partnership between federal agencies, the academic community, and the general public to establish a national science and monitoring initiative focused on phenology. The first year of operation of USA-NPN produced many new phenology products and venues for phenology research and citizen involvement. Products include a new web-site (www.usanpn.org) that went live in June 2008; the web-site includes a tool for on-line data entry, and serves as a clearinghouse for products and information to facilitate research and communication related to phenology. The new core Plant Phenology Program includes profiles for 200 vetted local, regional, and national plant species with descriptions and (BBCH-consistent) monitoring protocols, as well as templates for addition of new species. A partnership program describes how other monitoring networks can engage with USA-NPN to collect, manage or disseminate phenological information for science, health, education, management or predictive service applications. Project BudBurst, a USA-NPN field campaign for citizen scientists, went live in February 2008, and now includes over 3000 registered observers monitoring 4000 plants across the nation. For 2009 and beyond, we will initiate a new Wildlife Phenology Program, create an on-line clearing-house for phenology education and outreach, strengthen

  12. [Computerized temperature monitoring of the vaccine cold chain in a tropical climate, Chad].

    PubMed

    Schlumberger, M; Mireux, F; Tchang, S G; Mboutbogol, D; Cheikh, D O; Hissein, A A; Youssouf, B O; Brahimi, M M; Gamatié, Y

    2011-06-01

    Because new EPI liquid vaccines are highly sensitive to freezing and overheating, close monitoring of the cold chain is mandatory. The new Testostore 171-1 electronic thermometer (Testo) provides more reliable monitoring of cold chain temperature than freezer indicators, vaccine vial monitors and color strips that only indicate if vaccines are out-of-date. The Testo thermometer uses a probe placed in refrigeration units to periodically measure and store temperature readings. Temperature curves are displayed via a USB connection on a laptop computer running special software (Comfort software light). Testo temperature data can easily be communicated to all management levels by e-mail. The first experience using the Testo system in Africa involved regional EPI supervision in Mondou, Logone Occidental, Chad. After a preliminary mission in Chad in 2006 showed the feasibility of using this method to manage the national cold chain at all levels, a nurse was appointed as EPI supervisor and given a refresher course in Chad's capital Ndjamena in March 2009. In April-May 2009, the supervisor was sent back to the Logone Occidental Region to monitor, by himself, refrigeration units making up the regional and district cold chain for vaccine storage in five health centers (rural and urban). Temperature curve readings were performed on site in the presence of the medical staff and results were compared to those recorded twice a day on conventional temperature charts using lamellar thermometers installed in refrigerators doors. Testo curves showed that liquid vaccine storage temperatures fell below freezing too frequently and that temperatures readings of door thermometers were often inaccurate. Testo readings also detected power outages in refrigeration units used in urban settings and flame extinctions in kerosene lamp refrigerators due to refrigerator breakdown or windy weather conditions before the rainy season. The main advantage of this monitoring method is to provide

  13. Remote sensing of California estuaries: Monitoring climate change and invasive species

    NASA Astrophysics Data System (ADS)

    Mulitsch, Melinda Jennifer

    The spread of invasive species and climate change are among the most serious global environmental threats. The goal of this dissertation was to link inter-annual climate change and biological invasions at a landscape scale using novel remote sensing techniques applied to the San Francisco Bay/Sacramento- San Joaquin Delta Estuary. I evaluated the use of hyperspectral imagery for detecting invasive aquatic species in the Delta using 3 m HyMap hyperspectral imagery. The target invasive aquatics weeds were the emergent water hyacinth (Eichhornia crassipes) and the submerged Brazilian waterweed (Egeria densa). Data were analyzed using linear spectral mixture analysis (SMA). The results show the weeds were mapped with a classification accuracy of 90.6% compared to 2003 sample sites and 82.6% accuracy compared to 2004 sample sites. Brazilian waterweed locations were successfully mapped but the abundances were overestimated because we did not separate it from other submerged aquatic vegatation (SAV). I evaluated 3 m HyMap imagery, from 2004, for SAV species in the Delta, including: Brazilian waterweed ( Egeria densa), Eurasian watermilfoil (Myriophyllum spicatum ), curlyleaf pondweed (Potamogeton crispus), coontail (Ceratophyllum demersum), American pondweed (Potamogeton nodosus), fanwort (Cabomba caroliniana), and common elodea (Elodea canadensis). Data were analyzed using SMA with a classification accuracy of 84.4%. Spectral simulations of Brazilian waterweed and American pondweed show how spectral properties can change at different water depths and varying water quality. Finally I address the effect of inter-annual climate change on the estuary ecology in the San Francisco Bay by analyzing current (2002) and historical (1994-1996) Airborne Visible Infrared Imaging Spectrometer (AVIRIS) datasets to map salt marsh species distribution. The species in the estuary, Salicornia virginica, Spartinia foliosa, Scirpus robustus, and Distichlis spicata undergo dramatic changes in

  14. AATSR - Precise Sea-Surface Temperature for Climate Monitoring and for Operational Applications

    NASA Astrophysics Data System (ADS)

    Llewellyn-Jones, David; Corlett, Gary; Donlon, Craig; Stark, John

    The Advanced Along-Track Scanning Radiometer (AATSR) is an imaging radiometer specifi- cally designed to measure Sea-Surface Temperature (SST) to the demanding levels of accuracy and stability required for climate research. AATSR, which has been operating continuously on ESA's Envisat Satellite since its launch in 2002, achieves the required levels of accuracy on account of its unique dual view, whereby each terrestrial scene is viewed twice, once at nadir and then through an inclined path which uses a different atmospheric path-length, thereby providing a direct observation of atmospheric effects, leading to an exceptionally accurate atmospheric correction. This feature is accompanied by an advanced calibration system combined with excellent optical and thermal designs. Recent rigorous and extensive comparisons with in situ data have shown that, for most of the global oceans, AATSR can achieve and accuracy of around 0.2o C with high stability, which has qualified them for use in climate analysis schemes. Because AATSR is the third sensor in a near-continuous series which started with the launch of ATSR-1 on ERS-1 satellite in 1991, there is a time-series of 16+ years of climate standard SSTs which have recently been re-processed and are now becoming available to the World-wide user community from data centres in Europe. SST data from AATSR have been included in the suite of operational SST products generated by the GODAE/GHRSST Pilot Project, on a timescale needed by operational users and in a format which allows easy ingestion and error estimates for data from AATSR and most of the other sensors currently providing SST measurements from space. Within the GODAE/GHRSST data-products, AATSR SST data are generally regarded as the benchmark for accuracy and are used to provide bias corrections for data from the other sensors, which often have superior coverage, thus exploiting synergistically the complementary qualities if the different data-sets. The UK Met Office

  15. DIAL monitoring of atmospheric climate-determining gases employing high-power pulsed laser diodes

    NASA Astrophysics Data System (ADS)

    Penchev, Stoyan P.; Naboko, Sergei V.; Naboko, Vassily N.; Pencheva, Vasilka H.; Donchev, T.; Pavlov, Lyubomir Y.; Simeonov, P.

    2003-11-01

    High-power pulsed laser diodes are employed for determining atmospheric humidity and methane. The proposed DIAL method optimizes the spectral properties of laser radiation within the molecular absorption bands of 0.86 - 0.9 μm of these major greenhouse gases. The explicit absorption spectrum is explored by computational convolution method based on reference data on spectral linestrengths modulated by the characteristic broad laser line of the selected laser diodes. The lidar scheme is ultimately compact, of low-energy consumption and suggests a large potential for ecological monitoring.

  16. Groundwater Recharge Estimates under Agricultural Lands based on Deep Vadose Zone Sampling, Monitoring and Modeling, Mediterranean Climate, Israel

    NASA Astrophysics Data System (ADS)

    Kurtzman, D.; Turkeltub, T.; Shapira, R.; Dahan, O.

    2011-12-01

    Models of unsaturated flow and chloride transport under different agricultural settings were calibrated to deep vadose-zone samples or monitoring systems' data. The land settings include irrigated citrus orchards in light and heavy soils, a rain-fed winter crop field, an irrigated summer crop field and a bare sand dune. Vadose zone monitoring system (VMS), which enables continuous measurements of the vadose zone water content and frequent sampling of pore water at selected points across the entire vadose zone were used in three sites. In other sites direct push rigs were used for obtaining continuous core to depths ~ 10 m, and all physical and chemical characterization were derived in the lab. Hydrus 1D code was used for calibrating the models, validation runs (only in monitored sites) and simulations. In orchards, large variability of rechrge rates within the same orchard was observed. On average, relatively low recharge rates were calculated (~10% of precipitation+ irrigation), and high masses of chloride accumulations are found in many profiles obtained under orchards. Recharge variability within the same crop-field was usually smaller than the variability found in orchards while average relative recharge rates are usually higher than in orchards. Calibrated models were used for simulation of long periods and some simple precipitation-recharge statistics for the different land uses were obtained. Scenarios of land-use and climate change where used to produce estimates of the effects of these changes on recharge (e.g. 25% drop in rainfall will lead to ~50% drop in recharge under rain-fed crop).

  17. MVIRI/SEVIRI TOA Radiation Datasets within the Climate Monitoring SAF

    NASA Astrophysics Data System (ADS)

    Urbain, Manon; Clerbaux, Nicolas; Ipe, Alessandro; Baudrez, Edward; Velazquez Blazquez, Almudena; Moreels, Johan

    2016-04-01

    Within CM SAF, Interim Climate Data Records (ICDR) of Top-Of-Atmosphere (TOA) radiation products from the Geostationary Earth Radiation Budget (GERB) instruments on the Meteosat Second Generation (MSG) satellites have been released in 2013. These datasets (referred to as CM-113 and CM-115, resp. for shortwave (SW) and longwave (LW) radiation) are based on the instantaneous TOA fluxes from the GERB Edition-1 dataset. They cover the time period 2004-2011. Extending these datasets backward in the past is not possible as no GERB instruments were available on the Meteosat First Generation (MFG) satellites. As an alternative, it is proposed to rely on the Meteosat Visible and InfraRed Imager (MVIRI - from 1982 until 2004) and the Spinning Enhanced Visible and Infrared Imager (SEVIRI - from 2004 onward) to generate a long Thematic Climate Data Record (TCDR) from Meteosat instruments. Combining MVIRI and SEVIRI allows an unprecedented temporal (30 minutes / 15 minutes) and spatial (2.5 km / 3 km) resolution compared to the Clouds and the Earth's Radiant Energy System (CERES) products. This is a step forward as it helps to increase the knowledge of the diurnal cycle and the small-scale spatial variations of radiation. The MVIRI/SEVIRI datasets (referred to as CM-23311 and CM-23341, resp. for SW and LW radiation) will provide daily and monthly averaged TOA Reflected Solar (TRS) and Emitted Thermal (TET) radiation in "all-sky" conditions (no clear-sky conditions for this first version of the datasets), as well as monthly averaged of the hourly integrated values. The SEVIRI Solar Channels Calibration (SSCC) and the operational calibration have been used resp. for the SW and LW channels. For MFG, it is foreseen to replace the latter by the EUMETSAT/GSICS recalibration of MVIRI using HIRS. The CERES TRMM angular dependency models have been used to compute TRS fluxes while theoretical models have been used for TET fluxes. The CM-23311 and CM-23341 datasets will cover a 32 years

  18. The climate hazards infrared precipitation with stations--a new environmental record for monitoring extremes.

    PubMed

    Funk, Chris; Peterson, Pete; Landsfeld, Martin; Pedreros, Diego; Verdin, James; Shukla, Shraddhanand; Husak, Gregory; Rowland, James; Harrison, Laura; Hoell, Andrew; Michaelsen, Joel

    2015-01-01

    The Climate Hazards group Infrared Precipitation with Stations (CHIRPS) dataset builds on previous approaches to 'smart' interpolation techniques and high resolution, long period of record precipitation estimates based on infrared Cold Cloud Duration (CCD) observations. The algorithm i) is built around a 0.05° climatology that incorporates satellite information to represent sparsely gauged locations, ii) incorporates daily, pentadal, and monthly 1981-present 0.05° CCD-based precipitation estimates, iii) blends station data to produce a preliminary information product with a latency of about 2 days and a final product with an average latency of about 3 weeks, and iv) uses a novel blending procedure incorporating the spatial correlation structure of CCD-estimates to assign interpolation weights. We present the CHIRPS algorithm, global and regional validation results, and show how CHIRPS can be used to quantify the hydrologic impacts of decreasing precipitation and rising air temperatures in the Greater Horn of Africa. Using the Variable Infiltration Capacity model, we show that CHIRPS can support effective hydrologic forecasts and trend analyses in southeastern Ethiopia. PMID:26646728

  19. The climate hazards infrared precipitation with stations—a new environmental record for monitoring extremes

    PubMed Central

    Funk, Chris; Peterson, Pete; Landsfeld, Martin; Pedreros, Diego; Verdin, James; Shukla, Shraddhanand; Husak, Gregory; Rowland, James; Harrison, Laura; Hoell, Andrew; Michaelsen, Joel

    2015-01-01

    The Climate Hazards group Infrared Precipitation with Stations (CHIRPS) dataset builds on previous approaches to ‘smart’ interpolation techniques and high resolution, long period of record precipitation estimates based on infrared Cold Cloud Duration (CCD) observations. The algorithm i) is built around a 0.05° climatology that incorporates satellite information to represent sparsely gauged locations, ii) incorporates daily, pentadal, and monthly 1981-present 0.05° CCD-based precipitation estimates, iii) blends station data to produce a preliminary information product with a latency of about 2 days and a final product with an average latency of about 3 weeks, and iv) uses a novel blending procedure incorporating the spatial correlation structure of CCD-estimates to assign interpolation weights. We present the CHIRPS algorithm, global and regional validation results, and show how CHIRPS can be used to quantify the hydrologic impacts of decreasing precipitation and rising air temperatures in the Greater Horn of Africa. Using the Variable Infiltration Capacity model, we show that CHIRPS can support effective hydrologic forecasts and trend analyses in southeastern Ethiopia. PMID:26646728

  20. Coupled Monitoring and Modeling of Air Quality and Regional Climate during the 2008 Beijing Olympic Games

    NASA Astrophysics Data System (ADS)

    Zhang, Y.; Smith, J. A.; Michel, A. P.; Baeck, M. L.; Wang, Z.; Fast, J. D.; Gmachl, C.

    2009-12-01

    The 2008 Summer Olympic Games focused attention on the air quality of Beijing, China, especially through emission reduction measures designed to improve air quality for the 2008 Games. The Quantum Cascade Laser Open-Path System (QCLOPS) is a mid-infrared laser absorption spectrometer that uses a tunable, thermoelectrically cooled, and pulsed quantum cascade laser for continuous measurement of multiple trace gases. QCLOPS was used in a field campaign from July to September 2008 in Beijing to study trace gas concentrations before, during, and after the Olympic Games to examine changes induced by emissions reduction methods. Jointly, numerical simulation experiments were carried out with the Weather Research and Forecasting Model with chemistry module (WRF-Chem) for the same time period to examine the air quality, regional climate, and aerosol-cloud-precipitation interactions in the Beijing metropolitan region, by taking advantage of high-resolution emission inventories developed by the Institute of Atmospheric Physics - Chinese Academy of Sciences to represent the effects of emission reduction policies for the Olympic period. Intercomparisons between QCLOPS observations and WRF-Chem simulations were performed, and results are presented. Furthermore we present detailed analyses on the atmospheric environment and air quality variables during the first week of August in 2008 followed by the opening ceremony of the 2008 Summer Olympics.

  1. Blackbird Creek Monitoring Program to Study the impact of Climate Change and Land Use

    NASA Astrophysics Data System (ADS)

    Ozbay, G.; Chintapenta, L. K.; Roeske, K. P.; Stone, M.; Phalen, L.

    2014-12-01

    The Blackbird Creek Monitoring Program at Delaware State University continues to utilize various perspectives to study the dynamics of one of Delaware's most pristine ecosystems. The water quality of Blackbird Creek has been constantly monitored for 3 years and correlated with the rain and storm events. Soil nutrients composition has been studied by extracting the water associated with soil aggregates and analyzing the levels of different nutrients. Soil quality is also assessed for heavy metals to identify potential human impact that may affect the health of ecosystem. Within the Blackbird Creek there is a threat to native plant communities from invasive plant species as they alter the ecosystem dynamics. Saltmarsh cord grass (Spartina alterniflora) and common reed (Phragmites australius) are the common wetland plants. Aerial mapping of the creek has been conducted to determine the area covered by invasive plant species. The microbial community structure plays a key role in soil carbon and nitrogen cycles in the ecosystem. Molecular analysis has been performed to study the microbial diversity with respect to the type of marsh grasses. This program has also incorporated the use of diatoms as biological indicators to assess the health of ecosystem and correlate that data with physical and chemical water quality data. The abundance and diversity of macro fauna such as blue crabs, fish and other significant species has also been studied. Stable isotopic analysis of these macro fauna has also been performed to study the food web. The results from this program will be helpful in addressing environmental challenges and designing management strategies.

  2. Electric load monitoring to support a shared energy savings procurement at the US Maritime Administration Merchant Marine Academy

    SciTech Connect

    Armstrong, P.R.; Parker, G.B.

    1992-06-01

    Equipment from the Mobile Energy Laboratory (MEL) testing and application program supported by the US Department of Energy Federal Energy Management Program (DOE-FEMP) was applied to measure three-phase power demand of three large buildings at the US Merchant Marine Academy (MMA) on Long Island, New York. The selected buildings were Bowditch Hall, Fulton-Gibbs Hall, and the Library. The MEL equipment was installed on March 17, 1991. Instruments to monitor the Bowditch Hall chiller as a separate load were added on June 2, 1991. MEL Test Procedure {number_sign}1, Building Energy Monitoring, was followed in the installation and operation of the monitoring equipment. The monitoring objectives were to (1) provide a baseline for assessing energy savings resulting from future energy conservation measures that are to be implemented in the monitored buildings, and (2) provide information for recommending cost-effective energy conservation opportunities. Results of the long-term, whole building monitoring project at the MMA are presented in this report.

  3. Electric load monitoring to support a shared energy savings procurement at the US Maritime Administration Merchant Marine Academy

    SciTech Connect

    Armstrong, P.R.; Parker, G.B.

    1992-06-01

    Equipment from the Mobile Energy Laboratory (MEL) testing and application program supported by the US Department of Energy Federal Energy Management Program (DOE-FEMP) was applied to measure three-phase power demand of three large buildings at the US Merchant Marine Academy (MMA) on Long Island, New York. The selected buildings were Bowditch Hall, Fulton-Gibbs Hall, and the Library. The MEL equipment was installed on March 17, 1991. Instruments to monitor the Bowditch Hall chiller as a separate load were added on June 2, 1991. MEL Test Procedure {number sign}1, Building Energy Monitoring, was followed in the installation and operation of the monitoring equipment. The monitoring objectives were to (1) provide a baseline for assessing energy savings resulting from future energy conservation measures that are to be implemented in the monitored buildings, and (2) provide information for recommending cost-effective energy conservation opportunities. Results of the long-term, whole building monitoring project at the MMA are presented in this report.

  4. Evaluating a system of systems approach for integrated global weather, climate, and hazard monitoring

    NASA Astrophysics Data System (ADS)

    Birk, Ronald; Baldauf, Brian; Ohlemacher, Rick; Andreoli, Leo

    2008-08-01

    Northrop Grumman Corporation (NGC) provides systems and technologies to ensure national security based on technologies - from undersea to outer space, and in cyberspace. With a heritage of developing and integrating science instruments on space platforms and airborne systems, NGC is conducting analysis of alternatives for a global observing system that integrates data collected from geostationary and polar-orbiting satellites with Unmanned Aerial System (UAS) platforms. This enhanced acquisition of environmental data will feed decision support systems such as the TouchTable ® to deliver improved decision making capabilities. Rapidly fusing and displaying multiple types of weather and ocean observations, imagery, and environmental data with geospatial data to create an integrated source of information for end users such as emergency managers and planners will deliver innovative solutions to improve disaster warning, mitigate disaster impacts, and reduce the loss of life and property. We present analysis of alternatives of combinations of sensor platforms that integrate space and airborne systems with ground and ocean observing sensors and form the basis for vertically integrated global observing systems with the capacity to improve measurements associated with hazard and climate-related uncertainties. The analyses include candidate sensors deployed on various configurations of satellites that include NPOESS, GOES R, and future configurations, augmented by UAS vehicles including Global Hawk, configured to deliver innovative environmental data collection capabilities over a range of environmental conditions, including severe hazards, such as hurricanes and extreme wildland fires. Resulting approaches are evaluated based on metrics that include their technical feasibility, capacity to be integrated with evolving Earth science models and relevant decision support tools, and life cycle costs.

  5. Suitability of modelled and remotely sensed essential climate variables for monitoring Euro-Mediterranean droughts

    NASA Astrophysics Data System (ADS)

    Szczypta, C.; Calvet, J.-C.; Maignan, F.; Dorigo, W.; Baret, F.; Ciais, P.

    2014-05-01

    Two new remotely sensed leaf area index (LAI) and surface soil moisture (SSM) satellite-derived products are compared with two sets of simulations of the ORganizing Carbon and Hydrology In Dynamic EcosystEms (ORCHIDEE) and Interactions between Soil, Biosphere and Atmosphere, CO2-reactive (ISBA-A-gs) land surface models. We analyse the interannual variability over the period 1991-2008. The leaf onset and the length of the vegetation growing period (LGP) are derived from both the satellite-derived LAI and modelled LAI. The LGP values produced by the photosynthesis-driven phenology model of ISBA-A-gs are closer to the satellite-derived LAI and LGP than those produced by ORCHIDEE. In the latter, the phenology is based on a growing degree day model for leaf onset, and on both climatic conditions and leaf life span for senescence. Further, the interannual variability of LAI is better captured by ISBA-A-gs than by ORCHIDEE. In order to investigate how recent droughts affected vegetation over the Euro-Mediterranean area, a case study addressing the summer 2003 drought is presented. It shows a relatively good agreement of the modelled LAI anomalies with the observations, but the two models underestimate plant regrowth in the autumn. A better representation of the root-zone soil moisture profile could improve the simulations of both models. The satellite-derived SSM is compared with SSM simulations of ISBA-A-gs only, as ORCHIDEE has no explicit representation of SSM. Overall, the ISBA-A-gs simulations of SSM agree well with the satellite-derived SSM and are used to detect regions where the satellite-derived product could be improved. Finally, a correspondence is found between the interannual variability of detrended SSM and LAI. The predictability of LAI is less pronounced using remote sensing observations than using simulated variables. However, consistent results are found in July for the croplands of the Ukraine and southern Russia.

  6. Event based recharge assessment from soil moisture monitoring sites under a steep Mediterranean - semi-arid climatic gradient

    NASA Astrophysics Data System (ADS)

    Ries, Fabian; Sauter, Martin; Lange, Jens

    2014-05-01

    The unsaturated soil zone is of fundamental importance for the understanding of temporal and spatial variability of groundwater recharge. This is especially true for the Mediterranean region where a large fraction of long-term groundwater recharge occurs during above-average wet winters. To improve process knowledge, a dense monitoring network consisting of rainfall gauges, meteorological stations and soil moisture plots was installed along a steep climatic gradient in the Jordan Valley region. Ten-minute soil moisture dynamics of two entire years were modelled by Hydrus-1D whose parameters were calibrated with the help of the Shuffled Complex Evolution algorithm. The scrutinized model was applied to four locations with entirely different soil depth and annual rainfall. During high intensity rainfall events, saturation of deep soil layers was observed for several hours. The continuously modelled water balance yielded percolation pulses that depended on rainfall amounts and occurred simultaneously to a cooling of karst groundwater in a nearby groundwater well. Overall, a strong correlation between the magnitude of deep percolation and soil depth was observed. When the model was applied to a 40-year time series of rainfall data, a mean annual percolation fraction of 40% resulted. This value varied by up to 30% between years with similar (average) rainfall but different rainfall distribution. Here the length of dry spells between single recharge events was one important factor. Percolation fraction of exceptional wet years reached up to 69% of rainfall while for very dry years no percolation was modelled at all. A focused view on the unsaturated soil zone in areas with highly variable annual rainfall can provide valuable insights into recharge heterogeneity under Mediterranean and semi-arid climates.

  7. Baseline map of organic carbon in Australian soil to support national carbon accounting and monitoring under climate change.

    PubMed

    Viscarra Rossel, Raphael A; Webster, Richard; Bui, Elisabeth N; Baldock, Jeff A

    2014-09-01

    Australia's National Carbon Accounting System, help guide the formulation of policy around carbon offset schemes, improve Australia's carbon balances, serve to direct future sampling for inventory, guide the design of monitoring networks and provide a benchmark against which to assess the impact of changes in land cover, land management and climate on the stock of C in Australia. In this way, these estimates would help us to develop strategies to adapt and mitigate the effects of climate change. PMID:24599716

  8. Retrieval of temperature profiles from CHAMP for climate monitoring: intercomparison with Envisat MIPAS and GOMOS and different atmospheric analyses

    NASA Astrophysics Data System (ADS)

    Gobiet, A.; Kirchengast, G.; Manney, G. L.; Borsche, M.; Retscher, C.; Stiller, G.

    2007-07-01

    This study describes and evaluates a Global Navigation Satellite System (GNSS) radio occultation (RO) retrieval scheme particularly aimed at delivering bias-free atmospheric parameters for climate monitoring and research. The focus of the retrieval is on the sensible use of a priori information for careful high-altitude initialisation in order to maximise the usable altitude range. The RO retrieval scheme has been meanwhile applied to more than five years of data (September 2001 to present) from the German CHAllenging Minisatellite Payload for geoscientific research (CHAMP) satellite. In this study it was validated against various correlative datasets including the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) and the Global Ozone Monitoring for Occultation of Stars (GOMOS) sensors on Envisat, five different atmospheric analyses, and the operational CHAMP retrieval product from GeoForschungsZentrum (GFZ) Potsdam. In the global mean within 10 to 30 km altitude we find that the present validation observationally constrains the potential RO temperature bias to be <0.2 K. Latitudinally resolved analyses show biases to be observationally constrained to <0.2-0.5 K up to 35 km in most cases, and up to 30 km in any case, even if severely biased (about 10 K or more) a priori information is used in the high altitude initialisation of the retrieval. No evidence is found for the 10-35 km altitude range of residual RO bias sources other than those potentially propagated downward from initialisation, indicating that the widely quoted RO promise of "unbiasedness and long-term stability due to intrinsic self-calibration" can indeed be realised given care in the data processing to strictly limit structural uncertainty. The results thus reinforce that adequate high-altitude initialisation is crucial for accurate stratospheric RO retrievals. The common method of initialising, at some altitude in the upper stratosphere, the hydrostatic integral with an upper

  9. Retrieval of temperature profiles from CHAMP for climate monitoring: intercomparison with Envisat MIPAS and GOMOS and different atmospheric analyses

    NASA Astrophysics Data System (ADS)

    Gobiet, A.; Kirchengast, G.; Manney, G. L.; Borsche, M.; Retscher, C.; Stiller, G.

    2007-02-01

    This study describes and evaluates a Global Navigation Satellite System (GNSS) radio occultation (RO) retrieval scheme particularly aimed at delivering bias-free atmospheric parameters for climate monitoring and research. The focus of the retrieval is on the sensible use of a priori information for careful high-altitude initialisation in order to maximise the usable altitude range. The RO retrieval scheme has been meanwhile applied to more than five years of data (September 2001 to November 2006) from the German CHAllenging Minisatellite Payload for geoscientific research (CHAMP) satellite. In this study it was validated against various correlative datasets including the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) and the Global Ozone Monitoring for Occultation of Stars (GOMOS) sensors on Envisat, five different atmospheric analyses, and the operational CHAMP retrieval product from GeoForschungsZentrum (GFZ) Potsdam. In the global mean within 10 to 30 km altitude we find that the present validation observationally constrains the potential RO temperature bias to be <0.2 K. Latitudinally resolved analyses show biases to be observationally constrained to <0.2-0.5 K up to 35 km in most cases, and up to 30 km in any case, even if severely biased (about 10 K or more) a priori information is used in the high altitude initialisation of the retrieval. No evidence is found for the 10-35 km altitude range of RO bias sources other than those potentially propagated downward from initialisation, indicating that the widely quoted RO promise of "unbiasedness and long-term stability due to intrinsic self-calibration" can indeed be realized given care in the data processing to strictly limit structural uncertainty. The results demonstrate that an adequate high-altitude initialisation technique is crucial for accurate stratospheric RO retrievals and that still common methods of initialising the involved hydrostatic integral with an upper boundary temperature or

  10. Baseline map of organic carbon in Australian soil to support national carbon accounting and monitoring under climate change

    PubMed Central

    Viscarra Rossel, Raphael A; Webster, Richard; Bui, Elisabeth N; Baldock, Jeff A

    2014-01-01

    could support Australia's National Carbon Accounting System, help guide the formulation of policy around carbon offset schemes, improve Australia's carbon balances, serve to direct future sampling for inventory, guide the design of monitoring networks and provide a benchmark against which to assess the impact of changes in land cover, land management and climate on the stock of C in Australia. In this way, these estimates would help us to develop strategies to adapt and mitigate the effects of climate change. PMID:24599716

  11. The C6 Program: Monitoring Climatic Changes in Canyons and Caves Involving Scientific Istitutions, Environmental NGOs and Mountain Sport Associations

    NASA Astrophysics Data System (ADS)

    di Pietro, R.; Casamento, G.; Interlandi, M.; Madonia, P.

    2007-12-01

    The acronym "C6" means "Climatic Changes and Carbon Cycle in Canyons and Caves". The project was born in 2005, joining under the scientific supervision of the Palermo branch of the Istituto Nazionale di Geofisica e Vulcanologia two different programs both active since 1999; the first was due to the initiative of the Italian Canyoning Association, a no-profit association aimed to the diffusion of the canyoning sport practise in Italy, the second one, developed by the NGO Legambiente Sicilia and funded by the Regione Siciliana-Assessorato Territorio e Ambiente (Sicilian Regional Government, Territorial and Environmental Department), managing the natural reserves of Santa Ninfa, Carburangeli and Sant'Angelo Muxaro caves (Sicily), was focused to verify the existence of a possible environmental negative feedback of human fruition. In 2005 the Royal Society for the Conservation of Nature of Jordan joined the program, and a new site was established inside the Shagher Daghleh Canyon in the Wadi Dana Reserve. In October 2006 the Caver Federation of Bosnia Herzegovina joined the C6 program and another observational site was instituted into a cave close to Sarajevo. Preliminary data acquired indicate how canyons play a very important role in biodiversity preservation in arid and semi-arid environments, whereas caves are extraordinary natural laboratories for the study of carbon dioxide partition between atmosphere and lithosphere, of the effect of rain dynamic on the underground aquifer recharge and, last but not least, of the monitoring of climatic changes. The success of the initiative is based on the very different nature of the co-participants. Caver and canyoning associations guarantee the safe accessibility to difficult environments, like canyons and caves. The selection as measuring sites of natural reserves managed by NGOs, whose activity is essentially based on volunteers, ensure on one hand their environmental stability on a long term perspective, on the other hand

  12. Monitoring

    DOEpatents

    Orr, Christopher Henry; Luff, Craig Janson; Dockray, Thomas; Macarthur, Duncan Whittemore

    2004-11-23

    The invention provides apparatus and methods which facilitate movement of an instrument relative to an item or location being monitored and/or the item or location relative to the instrument, whilst successfully excluding extraneous ions from the detection location. Thus, ions generated by emissions from the item or location can successfully be monitored during movement. The technique employs sealing to exclude such ions, for instance, through an electro-field which attracts and discharges the ions prior to their entering the detecting location and/or using a magnetic field configured to repel the ions away from the detecting location.

  13. LEONET(TM): a new spontaneous constituted Lidar network for climate change studies and monitoring transcontinental pollution

    NASA Astrophysics Data System (ADS)

    Sauvage, L.; Lolli, S.

    2009-04-01

    The EZ Lidar® community evolved fast in the last period with more than fourteen deployed instruments all over the world. LEOSPHERE gathered some user wills to group in order to share data measurements. From these premises is born LEONET™, a spontaneous new world network of EZ Lidar® instruments, which are compact and rugged eye safe UV Lidars with scanning capabilities, designed to monitor and study the atmospheric vertical structure of aerosols and clouds in a continuous way, night and day, unattended. LEONET™ output data, in netcdf format, have the same architecture of those of NASA Micro Pulse Lidar Network (MPLNET) and will be soon available to the scientific community through the AERONET data synergy tool which provides ground-based, satellite, and model data products to characterize aerosol optical and microphysical properties, spatial and temporal distribution, transport, and chemical and radiative properties. LEONET™ aim is to integrate the existing Nasa Lidar network to significantly contribute to climate change studies and monitoring transcontinental pollution. In the future, EZ Lidars will be co-located, when possible, on the same sites of MPL Network, in order to create an ultimate station capable of measuring the Lidar Ratio coefficient, thanks to the sun photometers, fundamental for the Klett inversion, and the Angstrom coefficient. In this paper, it is presented an overview of the network dimension outputs and methodologies as the backscattering and extinction coefficients, depolarization ratio, cloud layer heights and subsequent optical depths, provided to the limit of detection capability from a range of 50 m up to 20 km as well as the recent automatic height retrieval method of the different Planetary Boundary Layers (PBL). Further are presented some data examples from several diverse sites in the network

  14. The Impact of Leadership Styles of Special Education Administrators in Region 10 on Performance-Based Monitoring Analysis System

    ERIC Educational Resources Information Center

    Key, Gloria C.

    2009-01-01

    This study uncovered and analyzed the relationship between districts' percentage levels for special education identification, according to a state level measure, and leadership profiles of current special education administrators within Texas Region 10 school districts. The leadership profiles were measured using the Multifactor Leadership…

  15. Machine Learning Approaches to Drought Monitoring and Assessment through Blending of Multi-sensor Indices for Different Climate Regions

    NASA Astrophysics Data System (ADS)

    Park, Seonyoung; Im, Jungho; Jang, Eunna; Yoon, Hyunjin; Rhee, Jinyoung

    2014-05-01

    Drought causes a water shortage problem which threats human life as well as affects agricultural resources. Unlike other natural disasters such as floods, earthquakes, and landslides, drought is a slow-moving disaster, which is hard to accurately quantify spatio-temporal starting and ending points of the process. It is also difficult to estimate the damage from drought, because such damage combines social, economic, and environmental components in multi-temporal scales. There are many definitions of drought considering its type, temporal scales and regions. Drought has been actively monitored all over the world using in situ meteorological and climate measurements and satellite remote sensing measurements. There are many drought indices that use in situ measurements collected at weather stations, including z-score, Standard Precipitation Index (SPI), and Palmer Drought Severity Index (PDSI). However, these indices are point-based and limited in covering vast areas to show spatial distribution of drought. Since spatial interpolation is required to estimate spatial distribution of drought from in-situ measurements, uncertainty of drought estimation typically increases where in situ data are limited. Drought monitoring and assessment using satellite products provide an effective way as satellite data cover vast areas at high temporal resolution (e.g., daily). Most of remote sensing-based drought studies have focused on arid regions because satellite products usually well respond to the surface condition of short-term drought in arid regions. While drought often occurs in humid regions, satellite-based drought monitoring of such regions needs further investigation. In this study, remote sensing-based drought monitoring and assessment were evaluated for both arid and humid regions in the United States between 2000 and 2012 focusing on metrological and agricultural drought. Since there is no single indicator that represents complexity and diversity of drought, a total 11

  16. Climate and energy exchange at the snow surface in the Alpine Region of the Sierra Nevada: 1. Meteorological measurements and monitoring

    NASA Astrophysics Data System (ADS)

    Marks, Danny; Dozier, Jeff; Davis, Robert E.

    1992-11-01

    A detailed evaluation of climate conditions in a small alpine watershed, typical of much of the southern Sierra Nevada, is presented for the 1986 water year. Measurements of snowfall, meteorological and snow cover conditions, and snow cover ablation are used to characterize the climate at four locations in the watershed during that snow season. Data from these locations are then combined into two representative sites for the watershed. Measurement approaches and methodologies and the effectiveness of instrumentation used in the study are discussed, and an estimate of the uncertainty of the monitored meteorological parameters is made. The data are integrated into a continuous hourly time series of solar and thermal radiation, air, snow and soil temperature, humidity, and wind at the two representative sites in this remote alpine watershed for an entire snow season. Snow deposition and snow cover depth and density are measured manually at regular intervals throughout the snow season. While problems were encountered monitoring air and snow surface temperature, humidity, and wind, because of the extreme conditions which are likely to occur in an alpine environment, radiation is easily monitored, and the estimated uncertainty of all measured parameters was acceptably low. This effort was required to develop a high quality time series of integrated climate data to evaluate the components of the energy balance of the snow cover during both deposition and ablation conditions.

  17. Monitoring climate-driven interannual variability of European Larch phenology in an alpine environment: results of the REPHLEX project

    NASA Astrophysics Data System (ADS)

    Busetto, L.; Migliavacca, M.; Cremonese, E.; Colombo, R.; Galvagno, M.; Morra di Cella, U.; Pari, E.; Siniscalco, C.

    2009-04-01

    In this contribute we present the results of the REPHLEX experiment (REmote sensing of PHenology Larix Experiment), conducted by the Environmental Dynamics Remote Sensing Laboratory of the University of Milano-Bicocca, by the Regional Protection Agency of the Aosta Valley and by Vegetation Biology Department of the University of Torino. The project was aimed at developing appropriate techniques for monitoring the interannual variability of European Larch (Larix decidua Mill.) phenological cycle in the Alpine region of Valle d'Aosta (Northern Italy), and to evaluate its relationships with environmental and climatic drivers. This was achieved by combining field observations, phenological models and satellite remote sensing. Phenological field observations were weekly conducted in 8 test sites during 2005, 2006 and 2007 in order to determine the dates of completion of different phenological phases of the analyzed Larch stands. MODIS 250 16-days composite NDVI data (Product MOD13Q1 - v005) acquired from TERRA platform for the 2000-2007 time period were used to estimate budburst and senescence dates, as well as the length of the growing season. With this aim, NDVI time series were fitted with a double logistic curve, and the dates corresponding to different characteristic points of the curve (maximum of the first derivative and zeroes of the third and fourth derivative) were determined. The comparison between MODIS estimated dates and field data showed that the points of the fitted NDVI curve that allow to better estimate larch phenological dates are the zeroes of its third derivative, which allowed to estimate the start and the end of the growing season with Mean Absolute Errors (MAE) of about 6 and 4 days, respectively. This result is particularly significant since to our knowledge these inflection points have never been used for the estimation of phenological dates in previous studies. Start and end of season were also estimated by applying the Spring Warming and the

  18. Understanding Climate Policy Data Needs. NASA Carbon Monitoring System Briefing: Characterizing Flux Uncertainty, Washington D.C., 11 January 2012

    NASA Technical Reports Server (NTRS)

    Brown, Molly E.; Macauley, Molly

    2012-01-01

    Climate policy in the United States is currently guided by public-private partnerships and actions at the local and state levels. This mitigation strategy is made up of programs that focus on energy efficiency, renewable energy, agricultural practices and implementation of technologies to reduce greenhouse gases. How will policy makers know if these strategies are working, particularly at the scales at which they are being implemented? The NASA Carbon Monitoring System (CMS) will provide information on carbon dioxide fluxes derived from observations of earth's land, ocean and atmosphere used in state of the art models describing their interactions. This new modeling system could be used to assess the impact of specific policy interventions on CO2 reductions, enabling an iterative, results-oriented policy process. In January of 2012, the CMS team held a meeting with carbon policy and decision makers in Washington DC to describe the developing modeling system to policy makers. The NASA CMS will develop pilot studies to provide information across a range of spatial scales, consider carbon storage in biomass, and improve measures of the atmospheric distribution of carbon dioxide. The pilot involves multiple institutions (four NASA centers as well as several universities) and over 20 scientists in its work. This pilot study will generate CO2 flux maps for two years using observational constraints in NASA's state-of -the-art models. Bottom-up surface flux estimates will be computed using data-constrained land and ocean models; comparison of the different techniques will provide some knowledge of uncertainty in these estimates. Ensembles of atmospheric carbon distributions will be computed using an atmospheric general circulation model (GEOS-5), with perturbations to the surface fluxes and to transport. Top-down flux estimates will be computed from observed atmospheric CO2 distributions (ACOS/GOSAT retrievals) alongside the forward-model fields, in conjunction with an

  19. A national upgrade of the climate monitoring grid in Sri Lanka. The place of Open Design, OSHW and FOSS.

    NASA Astrophysics Data System (ADS)

    Chemin, Yann; Bandara, Niroshan; Eriyagama, Nishadi

    2015-04-01

    The National Climate Observatory of Sri lanka is a proposition designed for the Government of Sri Lanka in September and discussed with private and public stakeholders in November 2014. The idea was initially to install a networked grid of weather instruments from locally-made open source hardware technology, on land and seas, that report live the state of climate. After initial stakeholder meetings, it was agreed to first try to connect any existing weather stations from different governmental and private sector agencies. This would bring existing information to a common ground through the Internet. At this point, it was realized that extracting information from various vendors set up would take a large amount of efforts, that is still the best and fastest anyway, as considerations from ownership and maintenance are the most important issues in a tropical humid country as Sri Lanka. Thus, the question of Open Design, open source hardware (OSHW) and free and open source software (FOSS) became a pivotal element in considering operationalization of any future elements of a national grid. Reasons range from ownership, to low-cost and customization, but prominently it is about technology ownership, royalty-free and local availability. Building on previous work from (Chemin and Bandara, 2014) we proposed to open design specifications and prototypes for weather monitoring for various kinds of needs, the Meteorological Department clearly specified that the highest variability observed spatially in Sri Lanka is rainfall, and their willingness to investigate OSHW electronics using their new team of electronics and sensors specialists. A local manufacturer is providing an OSHW micro-controller product, a start up is providing additional sensor boards under OSHW specifications and local manufacture of the sensors (tipping-bucket and other wind sensors) is under development and blueprints have been made available in the Public Domain for CNC machine, 3D printing or Plastic

  20. Enrollment and Monitoring of Women in Post-Approval Studies for Medical Devices Mandated by the Food and Drug Administration

    PubMed Central

    Herz, Naomi; Loyo-Berrios, Nilsa; Tarver, Michelle

    2014-01-01

    Abstract Background: Disease presentation, prevalence, and treatment effects vary by sex, thus it is important to ensure adequate participation of both sexes in medical device post-approval studies (PAS). Methods: The goals of this study were to determine the participation rate of women in PAS mandated by the Food and Drug Administration (FDA) and if participation varied by clinical area. The study also evaluated the frequency in which enrollment by sex is reported by applicant reports and FDA reviews, as well as the frequency in which final study reports analyze whether outcomes differ by sex. Results: Of 89 studies with enrollment completed, data on sex of participants were available in 93% of submitted reports, while data on enrollment by sex was evaluated and noted in 43% of FDA review memos. Study participation varied by clinical area, with female participation ranging from 32% in cardiovascular PAS to 90% in PAS for reconstructive devices. Of 53 completed studies, data on enrollment by sex was provided in 49 of the final reports. Of these 14% included a multivariate analysis that included sex as a covariate and 4% included a subgroup analysis for female participants. Conclusions: Data on sex was not routinely assessed in FDA reviews. Based on these findings, FDA implemented new procedures to ensure participation by sex is evaluated in PAS reviews. FDA will continue working with applicants to develop PAS that enroll and retain proportions of women consistent with the sex-specific prevalence for the disease or condition the device is used to treat. PMID:24405314

  1. COST Action ES1206 : Advanced Global Navigation Satellite Systems Tropospheric Products for Monitoring Severe Weather Events and Climate (GNSS4SWEC) (Invited)

    NASA Astrophysics Data System (ADS)

    Jones, J.

    2013-12-01

    Global Navigation Satellite Systems (GNSS) have revolutionised positioning, navigation, and timing, becoming a common part of our everyday life. Aside from these well-known civilian and commercial applications, GNSS is now an established atmospheric observing system which can accurately sense water vapour, the most abundant greenhouse gas, accounting for 60-70% of atmospheric warming. Severe weather forecasting is challenging, in part due to the high temporal and spatial variation of atmospheric water vapour. Water vapour is under-sampled in the current meteorological and climate observing systems, obtaining and exploiting more high-quality humidity observations is essential to weather forecasting and climate monitoring. The new COST Action, ES1206, will address new and improved capabilities from con-current developments in both the GNSS and meteorological communities. For the first time, the synergy of the three GNSS systems (GPS, GLONASS and Galileo) will be used to develop new, advanced tropospheric products, exploiting the full potential of multi-GNSS water vapour estimates on a wide range of temporal and spatial scales, from real-time monitoring and forecasting of severe weather, to climate research. In addition the Action will promote the use of meteorological data in GNSS positioning, navigation, and timing services. The Action will stimulate knowledge transfer and data sharing throughout Europe.

  2. COST Action ES1206 : Advanced Global Navigation Satellite Systems Tropospheric Products for Monitoring Severe Weather Events and Climate (GNSS4SWEC)

    NASA Astrophysics Data System (ADS)

    Jones, Jonathan; Guerova, Guergana; Dousa, Jan; de Haan, Siebren; Bock, Olivier; Dick, Galina; Pottiaux, Eric; Pacione, Rosa

    2014-05-01

    Global Navigation Satellite Systems (GNSS) have revolutionised positioning, navigation, and timing, becoming a common part of our everyday life. Aside from these well-known civilian and commercial applications, GNSS is now an established atmospheric observing system which can accurately sense water vapour, the most abundant greenhouse gas, accounting for 60-70% of atmospheric warming. Severe weather forecasting is challenging, in part due to the high temporal and spatial variation of atmospheric water vapour. Water vapour is under-sampled in the current meteorological and climate observing systems, obtaining and exploiting more high-quality humidity observations is essential to weather forecasting and climate monitoring. The new COST Action, ES1206, will address new and improved capabilities from con-current developments in both the GNSS and meteorological communities. For the first time, the synergy of the three GNSS systems (GPS, GLONASS and Galileo) will be used to develop new, advanced tropospheric products, exploiting the full potential of multi-GNSS water vapour estimates on a wide range of temporal and spatial scales, from real-time monitoring and forecasting of severe weather, to climate research. In addition the Action will promote the use of meteorological data in GNSS positioning, navigation, and timing services. The Action will stimulate knowledge transfer and data sharing throughout Europe.

  3. Analyzing the Effects of Climate Change on Sea Surface Temperature in Monitoring Coral Reef Health in the Florida Keys Using Sea Surface Temperature Data

    NASA Technical Reports Server (NTRS)

    Jones, Jason; Burbank, Renane; Billiot, Amanda; Schultz, Logan

    2011-01-01

    This presentation discusses use of 4 kilometer satellite-based sea surface temperature (SST) data to monitor and assess coral reef areas of the Florida Keys. There are growing concerns about the impacts of climate change on coral reef systems throughout the world. Satellite remote sensing technology is being used for monitoring coral reef areas with the goal of understanding the climatic and oceanic changes that can lead to coral bleaching events. Elevated SST is a well-documented cause of coral bleaching events. Some coral monitoring studies have used 50 km data from the Advanced Very High Resolution Radiometer (AVHRR) to study the relationships of sea surface temperature anomalies to bleaching events. In partnership with NOAA's Office of National Marine Sanctuaries and the University of South Florida's Institute for Marine Remote Sensing, this project utilized higher resolution SST data from the Terra's Moderate Resolution Imaging Spectroradiometer (MODIS) and AVHRR. SST data for 2000-2010 was employed to compute sea surface temperature anomalies within the study area. The 4 km SST anomaly products enabled visualization of SST levels for known coral bleaching events from 2000-2010.

  4. An integrated multi-parameter monitoring approach for the quantification and mitigation of the climate change impact on the coasts of Eastern Crete, S. Aegean Sea (Project AKTAIA)

    NASA Astrophysics Data System (ADS)

    Ghionis, George; Alexandrakis, George; Karditsa, Aikaterini; Sifnioti, Dafni; Vousdoukas, Michalis; Andreadis, Olympos; Petrakis, Stelios; Poulos, Serafim; Velegrakis, Adonis; Kampanis, Nikolaos; Lipakis, Michalis

    2014-05-01

    The AKTAIA project aims at the production of new knowledge regarding the forms of manifestation of the climate change and its influence on the stability and evolution of the coastal landforms along the shoreline of eastern Crete (approximate length: 757 km), taking into account the various aspects of human intervention. Aerial photographs, satellite images and orthophotomaps have been used to produce a detailed coastline map and to study the morphological characteristics of the coastal zone of Eastern Crete. More than 100 beach zones have been visited during three field campaigns, which included geomorphological and human intervention mapping, topographic, meteorological and oceanographic measurements and sedimentological sampling and observations. In addition, two pilot sites (one in the north and one in the south part of Crete) are being monitored, via the installation of coastal video monitoring systems, shore-based meteorological stations and wave-tide recorders installed in the nearshore zone. Detailed seafloor mapping with the use of side scan sonar and scuba diving and bathymetric surveys were conducted in the two pilot sites. Meteorological and oceanographic data from all existing land-based meteorological stations, oceanographic buoys and the ERA-interim dataset are used to determine the wind and wave climate of each beach. The collected climatic, sedimentological and coastal environmental data are being integrated in a GIS database that will be used to forecast the climatic trends in the area of Crete for the next decades and to model the impact of the climatic change on the future evolution of the coastal zone. New methodologies for the continuous monitoring of land-sea interaction and for the quantification of the loss of sensitive coastal zones due to sea-level rise and a modified Coastal Vulnerability Index for a comparative evaluation of the vulnerability of the coasts are being developed. Numerical modelling of the nearshore hydrodynamics and the

  5. Real-Time Monitoring of Mountain Conifer Growth Response to Seasonal Climate and the Summer Monsoon in the Great Basin of North America

    NASA Astrophysics Data System (ADS)

    Strachan, S.; Biondi, F.

    2013-12-01

    Tree rings in the American intermountain west are often used for palaeoclimatic purposes, including reconstructions of precipitation, temperature, and drought. Specific seasonal phenomena such as the North American Monsoon (NAM) are also being identified in tree-ring studies as being related to certain growth features in the rings (such as early-onset 'false' latewood). These relationships have historically been developed using statistical relationships between tree-ring chronologies and regional weather observations. In zones near the periphery of the NAM, summertime precipitation may be more sporadic, yet localized vegetation assemblages in the northern Mojave desert and Great Basin regions indicate that these events are still important for some ecosystems which have established in areas where NAM activity is present. Major shifts in NAM behavior in the past may have been recorded by tree rings, and identifying the specific mechanisms/circumstances by which this occurs is critical for efforts seeking to model ecosystem response to climate changes. By establishing in-situ monitoring of climate/weather, soils, and tree-growth variables in Pinus ponderosa scopulorum and Pinus monophylla zones at study sites in eastern/southern Nevada, we are able to address these issues at very fine spatial and temporal scales. Data from two seasons of monitoring precipitation, solar radiation, air temperature, soil temperature, soil water content, tree sap flow, tree radial distance increment, and hourly imagery are presented. Point dendrometers along with sap flow sensors monitor growth in these ponderosa pine around the clock to help researchers understand tree-ring/climate relationships.

  6. Designing Hydroecologic - Geomorphic Monitoring Networks to Capture Heterogeneity and Predict the Influence of Climate Change on Hydrologic, Ecologic and Geomorphic Processes

    NASA Astrophysics Data System (ADS)

    Tennant, C. J.; Crosby, B. T.

    2010-12-01

    Regional differences in topography and climate in mountainous catchments cause heterogeneity in hydrologic and geomorphic processes and complicate the prediction of climate change impacts on anthropogenic and ecologic systems. To elucidate these complexities and provide measurements that strengthen our predictive power of the influence of climate change on hydrologic, ecologic and geomorphic processes we have designed and implemented a monitoring network that encompasses large elevation, climatic and orographic gradients in the Salmon River basin, central Idaho. Our methodology places strong influence on understanding and characterizing the range and distribution of physical elements across a landscape. Elevation is a characteristic of landscapes that can vary a great deal within a single drainage and exerts strong control on precipitation phase and magnitude, affecting hydroecologic and geomorphic processes. We use hypsometry to characterize elevation distributions and provide a novel method to assess the sensitivity of a landscape to rising snowlines. For example, hypsometry can be used to identify landscape features such as large plateaus or valleys that make up a significant percentage of a watershed’s total land area yet are confined within a small elevation range. These types of landscape elements that are close to freezing line elevations can be thought of as thresholds that will yield non-linear responses to rising snowlines. They will produce disproportionate affects on the percentage of a basin that transitions from snow, to rain domination. In addition, we have used hypsometry to identify sub-basins of the Salmon River that are contained entirely within distinct elevation zones. The low (400 - 1800 m), mid (1000 - 2200 m) and high (2200 - 3200 m) elevation ranges correspond to distinct precipitation regimes (liquid, mixed-phase, and solid phase respectively). From our hydrologic monitoring network we have learned that the frequency, duration and

  7. Integrating Research on Global Climate Change and Human Use of the Oceans: a Geospatial Method for Daily Monitoring of Sea Ice and Ship Traffic in the Arctic

    NASA Astrophysics Data System (ADS)

    Eucker, W.; McGillivary, P. A.

    2012-12-01

    One apparent consequence of global climate change has been a decrease in the extent and thickness of Arctic sea ice more rapidly than models have predicted, while Arctic ship traffic has likewise increased beyond economic predictions. To ensure representative observations of changing climate conditions and human use of the Arctic Ocean, we concluded a method of tracking daily changes in both sea ice and shipping in the Arctic Ocean was needed. Such a process improves the availability of sea ice data for navigational safety and allows future developments to be monitored for understanding of ice and shipping in relation to policy decisions appropriate to optimize sustainable use of a changing Arctic Ocean. The impetus for this work was the 2009 Arctic Marine Shipping Assessment (AMSA) which provided baseline data on Arctic ship traffic. AMSA was based on responses from circumpolar countries, was manpower intensive, and took years to compile. A more timely method of monitoring human use of the Arctic Ocean was needed. To address this, a method of monitoring sea ice on a scale relevant to ship-navigation (<10km) was developed and implemented in conjunction with arctic ship tracking using S-AIS (Satellite Automatic Identification Systems). S-AIS is internationally required on ships over a certain size, which includes most commercial vessels in the Arctic Ocean. Daily AIS and sea ice observations were chosen for this study. Results of this method of geospatial analysis of the entire arctic are presented for a year long period from April 1, 2010 to March 31, 2011. This confirmed the dominance of European Arctic ship traffic. Arctic shipping is maximal during August and diminishes in September with a minimum in winter, although some shipping continues year-round in perennially ice-free areas. Data are analyzed for the four principal arctic quadrants around the North Pole by season for number and nationality of vessels. The goal of this study was not merely to monitor ship

  8. Developing Climate Resilience Toolkit Decision Support Training Sectio

    NASA Astrophysics Data System (ADS)

    Livezey, M. M.; Herring, D.; Keck, J.; Meyers, J. C.

    2014-12-01

    The Climate Resilience Toolkit (CRT) is a Federal government effort to address the U.S. President's Climate Action Plan and Executive Order for Climate Preparedness. The toolkit will provide access to tools and products useful for climate-sensitive decision making. To optimize the user experience, the toolkit will also provide access to training materials. The National Oceanic and Atmospheric Administration (NOAA) has been building a climate training capability for 15 years. The target audience for the training has historically been mainly NOAA staff with some modified training programs for external users and stakeholders. NOAA is now using this climate training capacity for the CRT. To organize the CRT training section, we collaborated with the Association of Climate Change Officers to determine the best strategy and identified four additional complimentary skills needed for successful decision making: climate literacy, environmental literacy, risk assessment and management, and strategic execution and monitoring. Developing the climate literacy skills requires knowledge of climate variability and change, as well as an introduction to the suite of available products and services. For the development of an environmental literacy category, specific topics needed include knowledge of climate impacts on specific environmental systems. Climate risk assessment and management introduces a process for decision making and provides knowledge on communication of climate information and integration of climate information in planning processes. The strategic execution and monitoring category provides information on use of NOAA climate products, services, and partnership opportunities for decision making. In order to use the existing training modules, it was necessary to assess their level of complexity, catalog them, and develop guidance for users on a curriculum to take advantage of the training resources to enhance their learning experience. With the development of this CRT

  9. Monitoring the effects of climate and agriculture intensity on nutrient fluxes in lowland streams: a comparison between temperate Denmark and subtropical Uruguay

    NASA Astrophysics Data System (ADS)

    Goyenola, Guillermo; Meerhof, Mariane; Teixeira de Mello, Franco; González-Bergonzoni, Ivan; Graeber, Daniel; Vidal, Nicolas; Mazzeo, Nestor; Ovesen, Niels; Jeppesen, Erik; Thodsen, Hans; Kronvang, Brian

    2014-05-01

    Climate is changing towards more extreme conditions all over the world. At the same time, land use is becoming more intensive worldwide and particularly in many developing countries, whereas several developed countries are trying to reduce the impacts of intensive agricultural production and lower the excessive nutrient loading and eutrophication symptoms in water bodies. In 2009, we initiated a comparative research project between the subtropical region (Uruguay) and the temperate region (Denmark) to compare the hydrology and nutrient fluxes in paired micro-catchments with extensive production or intensive agriculture. The four selected streams drained catchments of similar size (7 to 19 km2). We have established similarly equipped monitoring stations in the four micro-catchments in spring (November 2009, Uruguay; March 2010, Denmark) to monitor the effects of land use and agriculture intensity on stream hydrology and nutrient concentrations and fluxes under different climate conditions. We have conducted high frequency measurements in the four lowland streams with underwater probes (turbidity, pH, conductivity and oxygen measured every 15 minutes), fortnight grab sampling of water and automatic sampling of composite water samples for nutrient analysis (total and dissolved nitrogen and phosphorus; sampled every four hours and accumulated fortnightly). Moreover, water level and meteorological information (precipitation, air temperature, global radiation, humidity) has been recorded every 10 minutes and instantaneous flow measurements have been conducted at regular intervals, to facilitate the calculation of instantaneous discharge from continuous records of water level (stage-discharge relationships). We will show results of ca. 2 years from this comparative study between Uruguay and Denmark, and the importance of differences in climate and land use will be discussed.

  10. Exploiting Sentinel 5's synergy with IRS and 3MI on METOP-SG for Protocol Monitoring and Air Quality-Climate Interaction

    NASA Astrophysics Data System (ADS)

    Levelt, P. F.; Veefkind, J. P.; van Weele, M.; Aben, E. A. A.; Clerbaux, C.; Phulpin, T.

    2012-04-01

    Last Year's unprecedented low ozone episode in the Arctic (March 2011) made again clear that it is important to continue to monitor the ozone layer in support of the Montreal Protocol. Although scientists showed that the developments at the Arctic could be fully understood and explained by the same heterogeneous chemistry as is used for the SP hole (G. Manney et al., Nature, 2011) , an ozone destruction of that order was not seen before at the NP. Continuation of monitoring the Ozone Layer in order to detect the expected recovery of the ozone layer is therefore of paramount importance. Both S5-Precursor (S5P)/TROPOMI as well as Sentinel5 will play a crucial role in that monitoring capacity. A new capacity of sentinel 5 will be synergistic use of data and synergistic retrievals from Sentinel 5, the IRS instrument and 3MI, all mounted on the same METOP-SG platform. Combination of CO, O3 and CH4 measurements of the Sentinel 5 and IRS instrument will enable distinction of lower tropospheric, PBL related, concentrations from free tropospheric amounts. These combined retrievals will largely benefit from the fact that the same air mass is sensed at the same time. Synergistic analyses of the aerosol measurements of 3MI and the AQ pollutants measured by Sentinel 5 and IRS will for the first time provide a co-located and synergistic data base that can be used for studying secondary aerosol formation. Secondary aerosol formation is the largest unknown contribution to the total aerosol load of the atmosphere, which is in turn the largest unknown factor in the anthropogenic climate forcing. Moreover, these co-located trace gas and aerosol measurements are essential for further understanding of the relation between climate change and air quality (Shindell, Science, 2009). 3MI will be the only instrument in that timeframe with the needed detailed aerosol detection capacity for this type of analyses. The presentation will elaborate on the importance of the monitoring capacity of

  11. Copyright Implications for Administrators.

    ERIC Educational Resources Information Center

    Simpson, Carol Mann

    1994-01-01

    Discusses copyright compliance policies for school administrators and the librarian's role in policy implementation. Topics addressed include fines; court litigation; monitoring compliance; training sessions for teachers and staff; computer software audits; and sources for more information. (LRW)

  12. Improved ground-based remote-sensing systems help monitor plant response to climate and other changes

    USGS Publications Warehouse

    Dye, Dennis G.; Bogle, Rian C.

    2016-01-01

    Scientists at the U.S. Geological Survey are improving and developing new ground-based remote-sensing instruments and techniques to study how Earth’s vegetation responds to changing climates. Do seasonal grasslands and forests “green up” early (or late) and grow more (or less) during unusually warm years? How do changes in temperature and precipitation affect these patterns? Innovations in ground-based remote-sensing instrumentation can help us understand, assess, and mitigate the effects of climate change on vegetation and related land resources.

  13. Tier-Scalable Reconnaissance Missions for Autonomous Exploration and Spatio-Temporal Monitoring of Climate Change with Particular Application to Glaciers and their Environs

    NASA Astrophysics Data System (ADS)

    Fink, W.; Tarbell, M. A.; Furfaro, R.; Kargel, J. S.

    2010-12-01

    Spatio-temporal monitoring of climate change and its impacts is needed globally and thus requires satellite-based observations and analysis. However, needed ground truth can only be obtained in situ. In situ exploration of extreme and often hazardous environments can pose a significant challenge to human access. We propose the use of a disruptive exploration paradigm that has earlier been introduced with autonomous robotic space exploration, termed Tier-Scalable Reconnaissance (PSS 2005; SCIENCE 2010). Tier-scalable reconnaissance utilizes orbital, aerial, and surface/subsurface robotic platforms working in concert, enabling event-driven and integrated global to regional to local reconnaissance capabilities. We report on the development of a robotic test bed for Tier-scalable Reconnaissance at the University of Arizona and Caltech (SCIENCE 2010) for distributed and science-driven autonomous exploration, mapping, and spatio-temporal monitoring of climate change in hazardous or inaccessible environments. We focus in particular on glaciers and their environs, especially glacier lakes. Such glacier lakes can pose a significant natural hazard to inhabited areas and economies downstream. The test bed currently comprises several robotic surface vehicles: rovers equipped with cameras, and boats equipped with cameras and side-scanning sonar technology for bathymetry and the characterization of subsurface structures in glacier lakes and other water bodies. To achieve a fully operational Tier-scalable Reconnaissance test bed, aerial platforms will be integrated in short order. Automated mapping and spatio-temporal monitoring of glaciers and their environs necessitate increasing degrees of operational autonomy: (1) Automatic mapping of an operational area from different vantages (i.e., airborne, surface, subsurface); (2) automatic sensor deployment and sensor data gathering; (3) automatic feature extraction and region-of-interest/anomaly identification within the mapped

  14. Improved hydrological model parametrization for climate change impact assessment under data scarcity - The potential of field monitoring techniques and geostatistics.

    PubMed

    Meyer, Swen; Blaschek, Michael; Duttmann, Rainer; Ludwig, Ralf

    2016-02-01

    According to current climate projections, Mediterranean countries are at high risk for an even pronounced susceptibility to changes in the hydrological budget and extremes. These changes are expected to have severe direct impacts on the management of water resources, agricultural productivity and drinking water supply. Current projections of future hydrological change, based on regional climate model results and subsequent hydrological modeling schemes, are very uncertain and poorly validated. The Rio Mannu di San Sperate Basin, located in Sardinia, Italy, is one test site of the CLIMB project. The Water Simulation Model (WaSiM) was set up to model current and future hydrological conditions. The availability of measured meteorological and hydrological data is poor as it is common for many Mediterranean catchments. In this study we conducted a soil sampling campaign in the Rio Mannu catchment. We tested different deterministic and hybrid geostatistical interpolation methods on soil textures and tested the performance of the applied models. We calculated a new soil texture map based on the best prediction method. The soil model in WaSiM was set up with the improved new soil information. The simulation results were compared to standard soil parametrization. WaSiMs was validated with spatial evapotranspiration rates using the triangle method (Jiang and Islam, 1999). WaSiM was driven with the meteorological forcing taken from 4 different ENSEMBLES climate projections for a reference (1971-2000) and a future (2041-2070) times series. The climate change impact was assessed based on differences between reference and future time series. The simulated results show a reduction of all hydrological quantities in the future in the spring season. Furthermore simulation results reveal an earlier onset of dry conditions in the catchment. We show that a solid soil model setup based on short-term field measurements can improve long-term modeling results, which is especially important

  15. Vulnerability of climate change and its adaptation in the Mekong Delta: monitoring and resident's perception along the coast

    NASA Astrophysics Data System (ADS)

    Tamura, M.; Yasuhara, K.

    2014-12-01

    The Mekong Delta in Vietnam is expected to face challenges from various forms of climate-induced events. In addition, a growing population, which currently stands at 18.6 million people lives in the Mekong Delta, Vietnam. Therefore, the Mekong Delta is the focus of international action for adaptation. However, many climate sensitive regions and communities are unprepared for climate-induced natural disasters due to mismatch in perception with their respective risks. This study examines the vulnerability and appropriate adaptation in the Mekong Delta from both scientific and regional aspects. First, we show the change in coastal areas in Soc Trang province, comparing the past to the present images using Unmanned Aerial Vehicle (UAV) and satellite. We identify some vulnerable areas which derived from multiple factors due to coastal erosion, flooding, and sea level rise. Second, we present results of perception survey about climate change and the adaptation at community level in Ca Mau, Soc Trang, and An Giang Provinces, which were conducted in 2012 and 2014. While the findings suggest varying degrees of adaptation to seasonal flooding by raising the ground floors of their homes and repairing houses, their capacity to prepare for extreme flooding is limited in spite of the residents' awareness of the increasing frequency and intensity of natural disasters. Third, we propose an erosion-resistant dyke reinforcement technique by mixing natural palm tree fiber and cement, both of which are locally available materials in the Mekong Delta. It is expected that adaptation with multiple protections in accordance to regional feature can work well for such coastal disasters.

  16. GIS development to monitor climate change and its geohydrological consequences on non-monsoon crop pattern in Himalaya

    NASA Astrophysics Data System (ADS)

    Rawat, Pradeep K.

    2014-09-01

    The main objective of the study was to assess climate change and its geohydrological impacts on non-monsoon crop pattern at watershed level through GIS development on climate informatics, land use informatics, hydro-informatics and agro-informatics. The Dabka watershed constitutes a part of the Kosi Basin in densely populated Lesser Himalaya, India in district Nainital has been selected for the case illustration. This reconnaissance study analyzed the climatic database for last three decades (1982-2012) and estimates that the average temperature and evaporation loss have been rising with the rate of 0.07 °C/yr and 4.03 mm/yr respectively whereas the average rainfall has been decreasing with the rate of 0.60 mm/yr. These rates of climate change increasing with mounting elevations. Consequently the existing microclimatic zones (sub-tropical, temperate and moist temperate) shifting towards higher altitudes and affecting the favorable conditions of the land use pattern and decreased the eco-friendly forest and vegetation cover. The land use degradation and high rate of deforestation (0.22 km2 or 1.5%/yr) leads to accelerate several hydrological problems during non-monsoon period (i.e. decreasing infiltration capacity of land surface, declining underground water level, drying up natural perennial springs and streams, decreasing irrigation water availability etc.). In order to that the non-monsoon crops yield has been decreasing with the rate of 0.60% each year as the results suggest that the average crop yield is just about 58 q/ha whereas twenty five to thirty year back it was recorded about 66 q/ha which is about 12% higher (8 q/ha) than existing yield. On the other hand the population increasing with the growth rate of 2% each year. Therefore, decreasing crop yield and increasing population raised food deficiency problem and the people adopting other occupations which ultimately affecting rural livelihood of the Himalaya.

  17. Monitoring phenological changes in lake ice as a robust indicator of regional climate change using the AVHRR

    SciTech Connect

    Wynne Randolph, H.; Lillesand, T.M. )

    1993-06-01

    The length of the growing season, effectively defined by the onset or breakup of ice, may be one of the more important ways in which climate change is likely to influence lake environments. In addition, interannual variation in the dates of lake ice formation and breakup has been shown to be an effective climate change indicator. We explored the use of data from the Advanced Very High Resolution Radiometer (AVHRR) to discriminate the presence of lake ice during the winter of 1990-1991 on the 45 lakes and reservoirs in Wisconsin with a surface area of greater than 1,000 hectares. Our results suggest both the feasibility of using the AVHRR to determine the date of lake ice breakup as well as the strong correlation (R=[minus]0.87) of the dates so derived with January-March mean local temperatures. These results indicate the inherent promise of utilizing archive satellite to detect the climate expected as a result of greenhouse warming.

  18. Cooperation between public administration and scientific research in raising awareness on the role of urban planning in responding to climate change in Portugal

    NASA Astrophysics Data System (ADS)

    Alcoforado, M. J.; Campos, V.; Oliveira, S.; Andrade, H.; Festas, M. J.

    2009-09-01

    Following the IPCC predictions of climate change, even considering one of the "best” scenarios (B1), temperature will rise circa 2°C by 2100. In southern Europe, predictions also indicate a greater precipitation variability, that is the increase in drought frequency, together with an increment of flood risk, with detrimental impacts on water availability and quality, summer tourism and crop productivity, among others. Urban areas create their own local climate, resulting in higher temperatures (UHI), modified wind patterns and lower air quality, among several other consequences. Therefore, as a result of both global and urban induced changes, the climate of cities has suffered several modifications over time, particularly in sprawling urban areas. In November 2007, the ministers responsible for spatial planning and territorial cohesion of the European Union, gathered at the Azores Informal Ministerial on Territorial Cohesion during the Portuguese Presidency, considered climate change to be one of the most important territorial challenges Europe is facing and stated that "our cities and regions need to become more resilient in the context of climate change”. They also agreed that spatial and urban planning is a suitable tool to define cost-effective adaptation measures. Furthermore, the Ministers committed themselves to put mitigation and adaptation issues of climate change into the mainstream of spatial and urban development policy at national, regional and local level. These decisions have lead to different actions in the Member States. In Portugal, the new Policy for the Cities POLIS XXI has selected the relationship between climate change and urban development as one of the key issues to be addressed by projects initiated by local authorities and submitted for co-financing through the OP "Territorial Enhancement” of the NSRF. This paper presents one of the actions taken by the Portuguese Directorate General for Spatial Planning and Urban Development

  19. Satellite monitoring the rangeland degradation under the impacts of climatic and socio-economic changes over central Asia

    NASA Astrophysics Data System (ADS)

    Wang, K.; Zhang, L.; Dai, L.; Yan, D.

    2012-12-01

    Central Asia, encompassing the republics of Kazakhstan, Kyrgyz, Uzbekistan, Turkmenistan, Tajikistan and China's western Sinkiang, is a typical arid and semi-arid area. The climate in Central Asia is extreme arid, where summer is hot, cloudless and dry, and winter is moist and relatively warm in the south and cold and dry in the north. Rangeland, accounting for 46% of the entire area, is the main vegetation type in this area. Recent findings showed that climate change had caused unprecedented rangeland degradation in Central Asia over the past 30 years. Socio-economical change and environmental change due to the collapse of Soviet Union also accelerated rangeland degradation. Rangeland degradation adversely further deteriorated the environment. With the development of high resolution remote sensing images, an increasing attention has paid to study rangeland degradation in this area. However, previous investigations based on either Advanced Very High Resolution Radiometer (AVHRR) or Moderate Resolution Imaging Spectroradiometer (MODIS) data, has not integrate multi-resolution satellite data for investigating vegetation change and its response to climatic and socio-economic change . In this paper, we employed 30 years' remote sensing data, including both AVHRR ( 1982-2006) and MODIS (2000-2011) satellite data, and in-situ meteorological and social data (e.g. population, economic, and land use change data), to investigate rangeland degradation in the central Asia. We 1) analyzed the spatial-temporal variations of vegetation changes during the past 30 years, and 2) evaluated the roles of climatic and socio-economic factors as potential causes of observed vegetation changes. The results showed extensive area had statistically significant degradation trends (p<0.05). Precipitation was the main driver of rangeland degradation, while there were relatively weaker relationships between temperature and NDVI, indicating that water deficit largely limited vegetation activity

  20. 16S ribosomal RNA-based methods to monitor changes in the hindgut bacterial community of piglets after oral administration of Lactobacillus sobrius S1.

    PubMed

    Su, Yong; Yao, Wen; Perez-Gutierrez, Odette N; Smidt, Hauke; Zhu, Wei-Yun

    2008-04-01

    16S ribosomal RNA (rRNA) gene based PCR/denaturing gradient gel electrophoresis (DGGE) and real-time PCR were used to monitor the changes in the composition of microbiota in the hindgut of piglets after oral administration of Lactobacillus sobrius S1. Six litters of neonatal piglets were divided randomly into control group and treatment group. At 7, 9, and 11 days of age, piglets in the treatment group orally received a preparation of L. sobrius S1. At 7, 14, 21(weaning), 24, and 35 days of age, one piglet from each litter was sacrificed and digesta samples of hindgut were collected. DGGE analysis of 16S rRNA gene V6-V8 region for all bacteria showed that several populations present in the hindgut of piglets, represented by far-migrating bands, disappeared after weaning. Most of these bands corresponded to Lactobacillus spp. as revealed by sequence analysis. Quantitative real-time PCR specific for lactobacilli further demonstrated that the number of lactobacilli population tended to decrease after the piglets were weaned. Drastic changes of L. amylovorus and L. sobrius in total Lactobacillus populations were also observed in the colon of piglets around weaning, as monitored by 16S rRNA gene V2-V3 region based Lactobacillus-specific PCR-DGGE. Species-specific real-time PCR also revealed that the population of L. sobrius declined apparently in the colon of piglets after weaning. No remarkable changes in the overall microbial community in the hindgut were found between control and treatment groups. However, comparison of DGGE profiles between the two groups revealed a specific band related to Clostridium disporicum that was found in treatment group on day 14. On day 35, a specific band appeared only in the control group, representing a population most closely related to Streptococcus suis (99%). Real-time PCR showed that L. sobrius 16S rRNA gene copies in treatment group were relatively higher than in the control group (10(8.45) vs. 10(6.83)) on day 35, but no

  1. Improving School Climate.

    ERIC Educational Resources Information Center

    Kelley, Edgar A.; And Others

    1989-01-01

    School climate improvements rely either on changes in the school's culture or changes in perceptions of the climate held by the school's employees and clients. To maintain and develop a culture that is supportive of school effectiveness, it is important to monitor the influence of the school's climate on student outcomes. The National Association…

  2. Migrant Education Administrative Guide.

    ERIC Educational Resources Information Center

    North Carolina State Dept. of Public Instruction, Raleigh. Div. of Compensatory Education.

    Relating specifically to the North Carolina migrant education program's administrative responsibilities, this guide is designed to aid administrators in program management, monitoring project activities, project evaluation, self-assessment, determining needs for training and staff development, site-visit preparation, policy development, and…

  3. Climate Change

    NASA Astrophysics Data System (ADS)

    Cowie, Jonathan

    2001-05-01

    In recent years climate change has become recognised as the foremost environmental problem of the twenty-first century. Not only will climate change potentially affect the multibillion dollar energy strategies of countries worldwide, but it also could seriously affect many species, including our own. A fascinating introduction to the subject, this textbook provides a broad review of past, present and likely future climate change from the viewpoints of biology, ecology and human ecology. It will be of interest to a wide range of people, from students in the life sciences who need a brief overview of the basics of climate science, to atmospheric science, geography, and environmental science students who need to understand the biological and human ecological implications of climate change. It will also be a valuable reference for those involved in environmental monitoring, conservation, policy-making and policy lobbying. The first book to cover not only the human impacts on climate, but how climate change will affect humans and the species that we rely on Written in an accessible style, with specialist terms used only when necessary and thoroughly explained The author has years of experience conveying the views of biological science learned societies to policy-makers

  4. The Climate Hazards Group InfraRed Precipitation with Stations (CHIRPS) v2.0 Dataset: 35 year Quasi-Global Precipitation Estimates for Drought Monitoring

    NASA Astrophysics Data System (ADS)

    Peterson, P.; Funk, C. C.; Landsfeld, M. F.; Pedreros, D. H.; Shukla, S.; Husak, G. J.; Harrison, L.; Verdin, J. P.

    2015-12-01

    A high quality, long-term, high-resolution precipitation dataset is a key requirement for supporting drought monitoring and long term trend analysis. In this presentation we introduce a new dataset: the Climate Hazards group InfraRed Precipitation with Stations (CHIRPS) v2.0, developed by scientists at the University of California, Santa Barbara and the U.S. Geological Survey Earth Resources Observation and Science Center. This new quasi-global precipitation product is available at daily to seasonal time scales, with a spatial resolution of 0.05°, and a 1981 to near real-time period of record. The three main types of information used in the CHIRPS are: (1) global 0.05° precipitation climatologies, (2) gridded precipitation estimates derived from time-varying cold cloud duration, and (3) in situ precipitation observations. The Climate Hazards Group (CHG) has developed an extensive database of in situ daily, pentadal, and monthly precipitation totals with over a billion daily observations worldwide. A screening procedure was developed to flag and remove potential false zeros from the daily GTS and GSOD data. These potentially spurious data can artificially suppress CHIRPS rainfall totals. Using GPCC v7 as the best-available standard, we compare CHIRPS with ARC2, CFS-Reanalysis, CHIRP, CMORPH, CPC-Unified, ECMWF, PERSIANNE, RFE2, TAMSAT, TRMM-RT7, and TRMM-V7. The CHIRPS is shown to have higher correlation, and lower systematic errors (bias) and mean absolute errors with GPCC v7 than the other datasets. Comparison with independent validation data suggests that the CHIRPS performance is similar to research quality products like the GPCC and GPCP, but with higher resolution and lower latency. We conclude by looking at the change in availability of station data within a monitoring time frame, contrasting countries with and without near real time data.

  5. Female-Bias in a Long-Term Study of a Species with Temperature-Dependent Sex Determination: Monitoring Sex Ratios for Climate Change Research.

    PubMed

    Braun McNeill, Joanne; Avens, Larisa; Goodman Hall, April; Goshe, Lisa R; Harms, Craig A; Owens, David W

    2016-01-01

    Alterations have occurred and continue to manifest in the Earth's biota as a result of climate change. Animals exhibiting temperature dependent sex determination (TSD), including sea turtles, are perhaps most vulnerable to a warming of the Earth as highly skewed sex ratios can result, potentially leading to population extinction resulting from decreased male recruitment. Recent studies have begun to quantify climate change impacts to sea turtle populations, especially in terms of predicting effects on hatchling sex ratios. However, given the inherent difficulty in studying sex ratios at this life stage, a more accurate assessment of changes in population sex ratios might be derived by evaluating the juvenile portion of foraging aggregations. We investigated the long-term trend in sex ratio of a juvenile loggerhead (Caretta caretta) sea turtle population inhabiting Pamlico and Core Sounds, North Carolina, USA. We used plasma testosterone reference ranges measured using radioimmunoassay (RIA) to assign sex for 959 turtles and confirmed sex assignment of a subset (N = 58) of the sampled turtles through laparoscopic examination of their gonads. Our results demonstrate that for this particular population of loggerheads, sex ratios (3Females:1Male) had not significantly changed over a 10 year period (1998-2007), nor showed any significant difference among 5-cm straight carapace length (SCL) size classes. Ultimately, these findings provide a basis for comparison with future sex ratios, and highlight the importance of establishing similar long-term studies monitoring secondary, rather than primary, sex ratios, so that needed mitigation measures to climate change impacts can be implemented. PMID:27579608

  6. Merging climate and multi-sensor time-series data in real-time drought monitoring across the U.S.A.

    USGS Publications Warehouse

    Brown, J.F.; Miura, T.; Wardlow, B.; Gu, Y.

    2011-01-01

    Droughts occur repeatedly in the United States resulting in billions of dollars of damage. Monitoring and reporting on drought conditions is a necessary function of government agencies at multiple levels. A team of Federal and university partners developed a drought decision- support tool with higher spatial resolution relative to traditional climate-based drought maps. The Vegetation Drought Response Index (VegDRI) indicates general canopy vegetation condition assimilation of climate, satellite, and biophysical data via geospatial modeling. In VegDRI, complementary drought-related data are merged to provide a comprehensive, detailed representation of drought stress on vegetation. Time-series data from daily polar-orbiting earth observing systems [Advanced Very High Resolution Radiometer (AVHRR) and Moderate Resolution Imaging Spectroradiometer (MODIS)] providing global measurements of land surface conditions are ingested into VegDRI. Inter-sensor compatibility is required to extend multi-sensor data records; thus, translations were developed using overlapping observations to create consistent, long-term data time series. 

  7. Tele-monitoring reduces exacerbation of COPD in the context of climate change–a randomized controlled trial

    PubMed Central

    2013-01-01

    Background A home based tele-monitoring system was developed to assess the effects of heat stress (days > 25°C) on clinical and functional status in patients with chronic obstructive pulmonary disease (COPD). Methods Sixty-two COPD patients (GOLD II–IV) were randomized into a tele-monitoring Group (TG, N = 32) or Control Group (CG, N = 30). Tele-monitoring included 1) daily clinical status (COPD Assessment Test-CAT), 2) daily lung function and 3) weekly 6-minute walk test (6MWT). Duration of monitoring lasted a total of nine months (9 M). Results From June 1st–August 31st 2012, 32 days with heat stress (29.0 ± 2.5°C) were recorded and matched with 32 thermal comfort days (21.0 ± 2.9°C). During heat stress, the TG showed a significant reduction in lung function and exercise capacity (FEV1% predicted: 51.1 ± 7.2 vs. 57.7 ± 5.0%; P <0.001 and 6MWT performance: 452 ± 85 vs. 600 ± 76 steps; P <0.001) and increase in CAT scores (19.2 ± 7.9 vs. 16.2 ± 7.2; P <0.001). Over summer, significantly fewer TG patients suffered exacerbation of COPD compared to CG patients (3 vs. 14; P = 0.006). Over entire 9 M follow-up, the TG group had fewer exacerbations compared to CG (7 vs. 22; P = 0.012), shorter cumulative hospital stay (34 vs. 97 days) and 43% fewer specialist consultations (24. vs. 42; P = 0.04). Conclusion Heat stress affects clinical and functional status in COPD. Tele-monitoring reduces exacerbation frequency and health care utilization during heat stress and other periods of the year. Trial registration DRKS-ID: DRK00000705. PMID:24261700

  8. Using the New Floating Month Drought Index to Monitor Extreme Moisture Spells and Assess Century-Scale Climate Change

    NASA Astrophysics Data System (ADS)

    Heim, R. R.

    2009-12-01

    The evolution of drought indices over the 20th century culminated in the U.S. Drought Monitor (USDM) as a drought monitoring tool that incorporated the various existing drought indicators, drought impacts information, and input from local field experts. A set of objective blends was created to integrate appropriately-scaled indices which assessed short-term and long-term moisture conditions. Unfortunately, the objective blends provide indeterminate information when short-term conditions are wet and long-term conditions are dry, or vice versa. The new Floating Month Drought Index (FMDI) improves upon the objective blends by including a temporal component. The FMDI computes the precipitation percentile for the current month and for the current N-month dry spell, the length and starting year/month of the current dry spell, and the Dx dry spell category based on USDM categories (and similar statistics for wet spells). In this way, the FMDI provides an objective decision-support tool for integrating the multiple time scales of drought. This presentation will discuss the development of the FMDI and how it can be used to assess changes in extreme moisture conditions on regional and national scales over the 20th to 21st centuries.

  9. PhenoCam: A Continental Observatory in Support of Monitoring, Modeling, and Forecasting Phenological Responses to Climate Change

    NASA Astrophysics Data System (ADS)

    Friedl, M. A.; Richardson, A. D.; Pless, R.; Frolking, S.; Milliman, T. E.; Klosterman, S.; Toomey, M. P.; Gray, J. M.

    2012-12-01

    Phenological events, such as budburst and leaf abscission, regulate many ecosystem processes and significantly influence biosphere-atmosphere exchanges and feedbacks in the climate system. Phenology is also a sensitive indicator of biological responses to climate change, particularly warming trends and altered precipitation regimes. However, phenological theory is incomplete and phenology sub-models implemented in state-of-the-art land surface schemes are overly simplistic, resulting in biased predictions. To address these needs the PhenoCam project is developing continental-scale data sets designed to quantify and characterize spatiotemporal variation in vegetation phenology. To do this, the datasets we are developing link near-surface remote sensing images collected from webcams at sub-daily time scales with lower spatial and temporal resolution imagery collected by satellite remote sensing. The observatory currently consists of 53 core sites where webcams have been installed using uniform protocols, supplemented by approximately 70 affiliated sites provided by contributors with high quality webcams with fields of view that include substantial vegetation. Core sites are frequently co-located with FLUXNET towers, supporting modeling studies that link flux measurements to phenological observations. Raw data and derived products designed to maximize information related to vegetation phenology at each site (e.g., vegetation indices) are archived in a publicly available database. Tools are also provided for users to process imagery and extract phenology time series based on their own needs and interests. The observatory is growing rapidly, and as new sites are added to the network they are included in the archive. In the future, PhenoCams will also be installed at NEON core site towers. Finally, we have ongoing efforts to calibrate and organize an image archive captured from 21,000 publicly available outdoor webcams. This paper discusses two main elements of the Pheno

  10. Identifying Decision Support Tools to Bridge Climate and Agricultural Needs in the Midwest

    NASA Astrophysics Data System (ADS)

    Hall, B. L.; Kluck, D. R.; Hatfield, J.; Black, C.; Kellner, O.; Woloszyn, M.; Timlin, M. S.

    2015-12-01

    Climate monitoring tools designed to help stakeholders reduce climate impacts have been developed for the primary Midwest field crops of corn and soybean. However, the region also produces vital livestock and specialty crops that currently lack similar climate monitoring and projection tools. In autumn 2015, the National Oceanic and Atmospheric Administration's (NOAA's) National Integrated Drought Information System (NIDIS) and Midwestern Regional Climate Center (MRCC) partnered with the US Department of Agriculture's Midwest Climate Hub to convene agriculture stakeholders, climate scientists, and climate service specialists to discuss climate impacts and needs for these two, often under-represented, sectors. The goals of this workshop were to (1) identify climate impacts that specialty crops and livestock producers face within the Midwest, (2) develop an understanding of the types of climate and weather information and tools currently available in the Midwest that could be applied to decision making, and (3) discover the types of climate and weather information and tools needed to address concerns of specialty crop and livestock commodities across the Midwest. This presentation will discuss the workshop and provide highlights of the outcomes that developed into strategic plans for the future to better serve these sectors of agriculture in the Midwest.

  11. An Algorithm to Generate Deep-Layer Temperatures from Microwave Satellite Observations for the Purpose of Monitoring Climate Change. Revised

    NASA Technical Reports Server (NTRS)

    Goldberg, Mitchell D.; Fleming, Henry E.

    1994-01-01

    An algorithm for generating deep-layer mean temperatures from satellite-observed microwave observations is presented. Unlike traditional temperature retrieval methods, this algorithm does not require a first guess temperature of the ambient atmosphere. By eliminating the first guess a potentially systematic source of error has been removed. The algorithm is expected to yield long-term records that are suitable for detecting small changes in climate. The atmospheric contribution to the deep-layer mean temperature is given by the averaging kernel. The algorithm computes the coefficients that will best approximate a desired averaging kernel from a linear combination of the satellite radiometer's weighting functions. The coefficients are then applied to the measurements to yield the deep-layer mean temperature. Three constraints were used in deriving the algorithm: (1) the sum of the coefficients must be one, (2) the noise of the product is minimized, and (3) the shape of the approximated averaging kernel is well-behaved. Note that a trade-off between constraints 2 and 3 is unavoidable. The algorithm can also be used to combine measurements from a future sensor (i.e., the 20-channel Advanced Microwave Sounding Unit (AMSU)) to yield the same averaging kernel as that based on an earlier sensor (i.e., the 4-channel Microwave Sounding Unit (MSU)). This will allow a time series of deep-layer mean temperatures based on MSU measurements to be continued with AMSU measurements. The AMSU is expected to replace the MSU in 1996.

  12. Biological monitoring of chlorinated pesticides among exposed workers of mango orchards: A case study in tropical climate

    SciTech Connect

    Chandra, H.; Pangtey, B.S.; Modak, D.P.; Singh, K.P.; Gupta, B.N.; Bharti, R.S.; Srivastava, S.P. )

    1992-02-01

    Organochlorine, organophosphorus and carbamate compounds are widely used pesticides in India for controlling disease carrying vectors and agricultural pests. Organochlorine compounds being persistent and lipophilic in nature, accumulate in the human body through food chain and environmental exposure. Accumulation of DDT, BHC and endosulfan has been implicated in the pathogenesis of cardiovascular disorders, hypertension and other health related problems. Earlier, the authors have observed respiratory impairment (36.5%) among workers engaged in spraying of organochlorine pesticides on mango trees at Malihabad. In the present investigation, the levels of chlorinated present investigation, the levels of chlorinated pesticides among exposed workers have been monitored to study the distribution pattern in blood and their excretion in urine of human subjects.

  13. A low cost Mobile Network System for monitoring climate and air quality of urban areas at high resolution: a preliminary application in Florence (IT) metropolitan area

    NASA Astrophysics Data System (ADS)

    Dibari, Camilla; Moriondo, Marco; Matese, Alessandro; Sabatini, Francesco; Trombi, Giacomo; Zaldei, Alessandro; Bindi, Marco

    2013-04-01

    The combination of the "Heat island effect" coupled with higher frequencies of extreme events (e.g. heat waves) due to climate change is of great concern for human health in urban areas. Anomalies of summer 2003, mentioned as possible typical climate for the near future summers (Schär et al., 2004), caused about 7,000 deaths in Italy and over 35,000 in the whole Europe. Furthermore, more than 50% of world's population is living in urban areas and, given the unprecedented urbanization rate that is expected in the next future, cities will likely be exposed to a growing environmental pressure in the following decades. Accordingly, climate monitoring of urban areas is gradually becoming a key element of planning that cannot be disregarded for an efficient public health management and for the development of a city scale Heat Waves Warning System tool, which is based on meteorological forecast of both air temperatures and humidity at a synoptic scale (Pascal et al., 2006). Building on these premises, a low cost Mobile Weather Station (MWS), to be placed on urban public transport, has been assembled. This mobile station logs every minute both meteorological variables (i.e. temperature and air humidity) and air quality parameters (i.e. atmospheric CO2 concentration and noise detection); the geographical position of each MWS's measurement is also recorded thanks to the built-in GPS antenna. The system, equipped with a data logger for data storage based on the open-source hardware platform Arduino, can also transmit data in real time via GPRS. The quality of meteorological and environmental data acquired by MWS was evaluated both on pre-existing steady meteorological stations of the metropolitan area of Florence (Petralli et al., 2010), and on professional research-grade data logger (Campbell CR800), logging air temperature in a non-aspirated shield by means of sensors at fast (thermocouple) and slower (digital) time response. Two prototypes of stations were thus designed

  14. Developing Remote Sensing Products for Monitoring and Modeling Great Lakes Coastal Wetland Vulnerability to Climate Change and Land Use

    NASA Astrophysics Data System (ADS)

    Bourgeau-Chavez, L. L.; Miller, M. E.; Battaglia, M.; Banda, E.; Endres, S.; Currie, W. S.; Elgersma, K. J.; French, N. H. F.; Goldberg, D. E.; Hyndman, D. W.

    2014-12-01

    Spread of invasive plant species in the coastal wetlands of the Great Lakes is degrading wetland habitat, decreasing biodiversity, and decreasing ecosystem services. An understanding of the mechanisms of invasion is crucial to gaining control of this growing threat. To better understand the effects of land use and climatic drivers on the vulnerability of coastal zones to invasion, as well as to develop an understanding of the mechanisms of invasion, research is being conducted that integrates field studies, process-based ecosystem and hydrological models, and remote sensing. Spatial data from remote sensing is needed to parameterize the hydrological model and to test the outputs of the linked models. We will present several new remote sensing products that are providing important physiological, biochemical, and landscape information to parameterize and verify models. This includes a novel hybrid radar-optical technique to delineate stands of invasives, as well as natural wetland cover types; using radar to map seasonally inundated areas not hydrologically connected; and developing new algorithms to estimate leaf area index (LAI) using Landsat. A coastal map delineating wetland types including monocultures of the invaders (Typha spp. and Phragmites austrailis) was created using satellite radar (ALOS PALSAR, 20 m resolution) and optical data (Landsat 5, 30 m resolution) fusion from multiple dates in a Random Forests classifier. These maps provide verification of the integrated model showing areas at high risk of invasion. For parameterizing the hydrological model, maps of seasonal wetness are being developed using spring (wet) imagery and differencing that with summer (dry) imagery to detect the seasonally wet areas. Finally, development of LAI remote sensing high resolution algorithms for uplands and wetlands is underway. LAI algorithms for wetlands have not been previously developed due to the difficulty of a water background. These products are being used to

  15. Satellite-based monitoring of decadal soil salinization and climate effects in a semi-arid region of China

    NASA Astrophysics Data System (ADS)

    Wang, Hesong; Jia, Gensuo

    2012-09-01

    Soil salinization is a common phenomenon that affects both the environment and the socio-economy in arid and semi-arid regions; it is also an important aspect of land cover change. In this study, we integrated multi-sensor remote sensing data with a field survey to analyze processes of soil salinization in a semi-arid area in China from 1979 to 2009. Generally, the area of salt-affected soils increased by 0.28% per year with remarkable acceleration from 1999 to 2009 (0.42% increase per year). In contrast, the area of surface water bodies showed a decreasing trend (-0.08% per year) in the same period. Decreases in precipitation and increases in aridity due to annual (especially summer) warming provided a favorable condition for soil salinization. The relatively flat terrain favored waterlogging at the surface, and continuous drought facilitated upward movement of soil water and accumulation of surface saline and calcium. Meanwhile, land-use practices also played a crucial role in accelerating soil salinization. The conversion to cropland from natural vegetation greatly increased the demand for groundwater irrigation and aggravated the process of soil salinization. Furthermore, there are potential feedbacks of soil salinization to regional climate. The salinization of soils can limit the efficiency of plant water use as well as photosynthesis; therefore, it reduces the amount of carbon sequestrated by terrestrial ecosystem. Soil salinization also reduces the absorbed solar radiation by increasing land surface albedo. Such conversions of land cover significantly change the energy and water balance between land and atmosphere.

  16. Almost 50 years of monitoring shows that climate, not forestry, controls long-term organic carbon fluxes in a large boreal watershed.

    PubMed

    Lepistö, Ahti; Futter, Martyn N; Kortelainen, Pirkko

    2014-04-01

    Here, we use a unique long-term data set on total organic carbon (TOC) fluxes, its climatic drivers and effects of land management from a large boreal watershed in northern Finland. TOC and runoff have been monitored at several sites in the Simojoki watershed (3160 km(2) ) since the early 1960s. Annual TOC fluxes have increased significantly together with increased inter-annual variability. Acid deposition in the area has been low and has not significantly influenced losses of TOC. Forest management, including ditching and clear felling, had a minor influence on TOC fluxes - seasonal and long-term patterns in TOC were controlled primarily by changes in soil frost, seasonal precipitation, drought, and runoff. Deeper soil frost led to lower spring TOC concentrations in the river. Summer TOC concentrations were positively correlated with precipitation and soil moisture not temperature. There is some indication that drought conditions led to elevated TOC concentrations and fluxes in subsequent years (1998-2000). A sensitivity analysis of the INCA-C model results showed the importance of landscape position, land-use type, and soil temperature as controls of modeled TOC concentrations. Model predictions were not sensitive to forest management. Our results are contradictory to some earlier plot-scale and small catchment studies that have shown more profound forest management impacts on TOC fluxes. This shows the importance of scale when assessing the mechanisms controlling TOC fluxes and concentrations. The results highlight the value of long-term multiple data sets to better understand ecosystem response to land management, climate change and extremes in northern ecosystems. PMID:24501106

  17. The monitoring, evaluation, reporting, and verification of climate change mitigation projects: Discussion of issues and methodologies and review of existing protocols and guidelines

    SciTech Connect

    Vine, E.; Sathaye, J.

    1997-12-01

    Because of concerns with the growing threat of global climate change from increasing emissions of greenhouse gases, the US and other countries are implementing, by themselves or in cooperation with one or more other nations (i.e., joint implementation), climate change mitigation projects. These projects will reduce greenhouse gas (GHG) emissions or sequester carbon, and will also result in non-GHG impacts (i.e., environmental, economic, and social impacts). Monitoring, evaluating, reporting, and verifying (MERV) guidelines are needed for these projects in order to accurately determine their net GHG, and other, benefits. Implementation of MERV guidelines is also intended to: (1) increase the reliability of data for estimating GHG benefits; (2) provide real-time data so that mid-course corrections can be made; (3) introduce consistency and transparency across project types and reporters; and (4) enhance the credibility of the projects with stakeholders. In this paper, the authors review the issues and methodologies involved in MERV activities. In addition, they review protocols and guidelines that have been developed for MERV of GHG emissions in the energy and non-energy sectors by governments, nongovernmental organizations, and international agencies. They comment on their relevance and completeness, and identify several topics that future protocols and guidelines need to address, such as (1) establishing a credible baseline; (2) accounting for impacts outside project boundaries through leakage; (3) net GHG reductions and other impacts; (4) precision of measurement; (5) MERV frequency; (6) persistence (sustainability) of savings, emissions reduction, and carbon sequestration; (7) reporting by multiple project participants; (8) verification of GHG reduction credits; (9) uncertainty and risk; (10) institutional capacity in conducting MERV; and (11) the cost of MERV.

  18. Trans-African Hydro-Meteorological Observatory (TAHMO): A network to monitor weather, water, and climate in Africa

    NASA Astrophysics Data System (ADS)

    Van De Giesen, N.; Hut, R.; Andreini, M.; Selker, J. S.

    2013-12-01

    The Trans-African Hydro-Meteorological Observatory (TAHMO) has a goal to design, build, install and operate a dense network of hydro-meteorological monitoring stations in sub-Saharan Africa; one every 35 km. This corresponds to a total of 20,000 stations. By applying ICT and innovative sensors, each station should cost not more than $500. The stations would be placed at schools and integrated in the environmental curriculum. Data will be combined with models and satellite observations to obtain a very complete insight into the distribution of water and energy stocks and fluxes. Within this project, we have built a prototype of an acoustic disdrometer (rain gauge) that can be produced for much less than the cost of a commercial equivalent with the same specifications. The disdrometer was developed in The Netherlands and tested in Tanzania for a total project cost of Euro 5000. First tests have been run at junior high schools in Ghana to incorporate hydro-meteorological measurements in the science curriculum. The latest activity concerns the organization of a crowdsourcing competitions across Africa to address business development and the design and building of new robust sensors. This has resulted in a wide network throughout the continent to bring this program forward.

  19. Monitoring the effect of watershed development and climate on coral reefs in the U.S. Virgin Islands using satellite based sensors

    NASA Astrophysics Data System (ADS)

    Ali, K. A.; Kerrigan, K.

    2015-12-01

    Previous research in the US Virgin Islands (USVI) has demonstrated that land-based sources of pollution associated with watershed development are one of the primary causes of coral reef degradation. Combined with projections of increased storm frequency from climate change, coral reef communities are facing unprecedented pressures. Water quality is a key index that can be used to assess stress on these environments. Current assessment methods are based on in situ measurements, suggesting the need for more effective monitoring. Satellite remote sensing provides timely and spatially explicit information regarding changes in aquatic systems once the data is calibrated using in situ measurements. The challenges when utilizing high resolution satellite sensors to acquire data in USVI are accounting for atmospheric path radiance, absorption from optically complex particles in the water column, and bottom reflectance from various substrates. In this study, field and lab based data were collected from 18 sites within the Caribbean Sea across St. Thomas and St. John to characterize optical water quality parameters (WQPs) (suspended sediments, phytoplankton, and colored dissolved organic matter) and bottom reflectance of different substrates. Results show that the optical properties of these waters are a function of multiple WQPs with chlorophyll-a values ranging from 0.10 to 2.35 μg/l and total suspended matter (TSM) values between 8.97 and 15.70 mg/l. Currently, a regionally tiered bio-optical model is being developed to accurately quantify WQPs in St. Thomas and St. John using multispectral and hyperspectral satellite sensors. Successful generation of this model would strongly advance tools for near-real-time and long-term monitoring at large spatial scales.

  20. A long-term record of blended satellite and in situ sea-surface temperature for climate monitoring, modeling and environmental studies

    NASA Astrophysics Data System (ADS)

    Banzon, Viva; Smith, Thomas M.; Chin, Toshio Mike; Liu, Chunying; Hankins, William

    2016-04-01

    This paper describes a blended sea-surface temperature (SST) data set that is part of the National Oceanic and Atmospheric Administration (NOAA) Climate Data Record (CDR) program product suite. Using optimum interpolation (OI), in situ and satellite observations are combined on a daily and 0.25° spatial grid to form an SST analysis, i.e., a spatially complete field. A large-scale bias adjustment of the input infrared SSTs is made using buoy and ship observations as a reference. This is particularly important for the time periods when volcanic aerosols from the El Chichón and Mt. Pinatubo eruptions are widespread globally. The main source of SSTs is the Advanced Very High Resolution Radiometer (AVHRR), available from late 1981 to the present, which is also the temporal span of this CDR. The input and processing choices made to ensure a consistent data set that meets the CDR requirements are summarized. A brief history and an explanation of the forward production schedule for the preliminary and science-quality final product are also provided. The data set is produced and archived at the newly formed National Centers for Environmental Information (NCEI) in Network Common Data Form (netCDF) at doi:10.7289/V5SQ8XB5.

  1. Mitigation potential of horizontal ground coupled heat pumps for current and future climatic conditions: UK environmental modelling and monitoring studies

    NASA Astrophysics Data System (ADS)

    García González, Raquel; Verhoef, Anne; Vidale, Pier Luigi; Gan, Guohui; Wu, Yupeng; Hughes, Andrew; Mansour, Majdi; Blyth, Eleanor; Finch, Jon; Main, Bruce

    2010-05-01

    An increased uptake of alternative low or non-CO2 emitting energy sources is one of the key priorities for policy makers to mitigate the effects of environmental change. Relatively little work has been undertaken on the mitigation potential of Ground Coupled Heat Pumps (GCHPs) despite the fact that a GCHP could significantly reduce CO2 emissions from heating systems. It is predicted that under climate change the most probable scenario is for UK temperatures to increase and for winter rainfall to become more abundant; the latter is likely to cause a general rise in groundwater levels. Summer rainfall may reduce considerably, while vegetation type and density may change. Furthermore, recent studies underline the likelihood of an increase in the number of heat waves. Under such a scenario, GCHPs will increasingly be used for cooling as well as heating. These factors will affect long-term performance of horizontal GCHP systems and hence their economic viability and mitigation potential during their life span ( 50 years). The seasonal temperature differences encountered in soil are harnessed by GCHPs to provide heating in the winter and cooling in the summer. The performance of a GCHP system will depend on technical factors (heat exchanger (HE) type, length, depth, and spacing of pipes), but also it will be determined to a large extent by interactions between the below-ground parts of the system and the environment (atmospheric conditions, vegetation and soil characteristics). Depending on the balance between extraction and rejection of heat from and to the ground, the soil temperature in the neighbourhood of the HE may fall or rise. The GROMIT project (GROund coupled heat pumps MITigation potential), funded by the Natural Environment Research Council (UK), is a multi-disciplinary research project, in collaboration with EarthEnergy Ltd., which aims to quantify the CO2 mitigation potential of horizontal GCHPs. It considers changing environmental conditions and combines

  2. Online Impact Prioritization of Essential Climate Variables on Climate Change

    NASA Astrophysics Data System (ADS)

    Forsythe-Newell, S. P.; Barkstrom, B. B.; Roberts, K. P.

    2007-12-01

    The National Oceanic & Atmospheric Administration (NOAA)'s NCDC Scientific Data Stewardship (SDS) Team has developed an online prototype that is capable of displaying the "big picture" perspective of all Essential Climate Variable (ECV) impacts on society and value to the IPCC. This prototype ECV-Model provides the ability to visualize global ECV information with options to drill down in great detail. It offers a quantifiable prioritization of ECV impacts that potentially may significantly enhance collaboration with respect to dealing effectively with climate change. The ECV-Model prototype assures anonymity and provides an online input mechanism for subject matter experts and decision makers to access, review and submit: (1) ranking of ECV"s, (2) new ECV's and associated impact categories and (3) feedback about ECV"s, satellites, etc. Input and feedback are vetted by experts before changes or additions are implemented online. The SDS prototype also provides an intuitive one-stop web site that displays past, current and planned launches of satellites; and general as well as detailed information in conjunction with imagery. NCDC's version 1.0 release will be available to the public and provide an easy "at-a-glance" interface to rapidly identify gaps and overlaps of satellites and associated instruments monitoring climate change ECV's. The SDS version 1.1 will enhance depiction of gaps and overlaps with instruments associated with In-Situ and Satellites related to ECVs. NOAA's SDS model empowers decision makers and the scientific community to rapidly identify weaknesses and strengths in monitoring climate change ECV's and potentially significantly enhance collaboration.

  3. 76 FR 65183 - National Oceanic and Atmospheric Administration

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-20

    ... National Oceanic and Atmospheric Administration National Climate Assessment and Development Advisory... Administration (NOAA), Department of Commerce (DOC). ACTION: Notice of open meeting. SUMMARY: The National... of Oceanic and Atmospheric Research, National Oceanic and Atmospheric Administration. BILLING...

  4. Administrative Synergy

    ERIC Educational Resources Information Center

    Hewitt, Kimberly Kappler; Weckstein, Daniel K.

    2012-01-01

    One of the biggest obstacles to overcome in creating and sustaining an administrative professional learning community (PLC) is time. Administrators are constantly deluged by the tyranny of the urgent. It is a Herculean task to carve out time for PLCs, but it is imperative to do so. In this article, the authors describe how an administrative PLC…

  5. What Is Climate Change? (Environmental Health Student Portal)

    MedlinePlus

    ... vs Climate Change Global Warming (National Ocean and Atmospheric Administration) - Introduction to global warming with links to greenhouse effect, sea levels, and future climate change. Games and ...

  6. A high-quality, homogenized, global, long-term (1993-2008) DORIS precipitable water data set for climate monitoring and model verification

    NASA Astrophysics Data System (ADS)

    Bock, Olivier; Willis, Pascal; Wang, Junhong; Mears, Carl

    2014-06-01

    For the first time a high-quality, consistent, global, long-term data set of zenith tropospheric delay (ZTD) and precipitable water (PW) is produced from Doppler orbitography radiopositioning integrated by satellite (DORIS) measurements at 81 sites. The data set was screened using a two-level procedure. First, postprocessing information is used to apply range checks and outlier checks to ZTD and formal error estimates. Second, outliers are detected by comparing DORIS ZTD with European Centre for Medium-Range Weather Forecasts reanalysis (ERA-Interim) data. These procedures reject 3% and 1% of the data, respectively. A linear drift is evidenced in the screened DORIS ZTD data compared to ERA-Interim and Global Positioning System (GPS) data, which potentially results from biases introduced by the progressive replacement of Alcatel antennas with Starec antennas. The DORIS PW is homogenized by applying a bias correction computed form comparison with ERA-Interim data each time station equipment is changed. The homogenized DORIS data are in excellent agreement with GPS data (correlation of 0.98 and standard deviation of differences of 1.5 kg m-2) and with ERA-Interim and satellite PW data (correlation > 0.95 and standard deviation of differences < 2.7 kg m-2). The agreement with radiosonde data is less good. Preliminary results of water vapor trends and variability are shown for 31 sites with more than 10 years of data. Good consistency is found between DORIS PW trends and ERA-Interim trends, which demonstrates the high potential of the DORIS PW data set for climate monitoring and model verification. The final DORIS PW data set is freely available in the supporting information.

  7. A high-quality, homogenized, global, long-term (1993-2008) DORIS precipitable water dataset for climate monitoring and model verification

    NASA Astrophysics Data System (ADS)

    Bock, Olivier; Willis, Pascal; Wang, Junhong; Mears, Carl

    2014-05-01

    A high-quality, consistent, global, long-term dataset of zenith tropospheric delay (ZTD) and precipitable water (PW) was produced from Doppler Orbitography Radiopositioning Integrated by Satellite (DORIS) measurements. DORIS measurements from 81 sites are reprocessed homogeneously from January 1993 to August 2008. The dataset was screened and homogenized. A two-level screening method was developed. The first level uses post-processing information and applies range checks and outlier checks to ZTD and formal error estimates. It rejects less than 3% of the data. The second level detects outliers by comparing DORIS ZTD data with ECMWF reanalysis (ERA-Interim) data and rejects about 1% of the data. There is consistency between the screened DORIS ZTD data, ERA-Interim and Global Positioning System (GPS) data. A linear drift in mean differences is evidenced, which potentially results from biases introduced by the progressive replacement of Alcatel antennas with Starec antennas at the DORIS sites. The DORIS PW was homogenized by applying a bias correction based on the median difference between DORIS and ERA-Interim PW data each time the station equipment is changed. The homogenized DORIS PW data were compared with ERA-Interim, GPS, radiosonde, and microwave radiometer satellite data (SSM/I and AMSRE). There is excellent agreement with GPS data with a correlation of 0.98 and a standard deviation of differences of 1.5 kg m-2, and with ERA-Interim and satellite PW data, with a correlation > 0.95 and a standard deviation of differences < 2.7 kg m-2. Radiosonde data show less good agreement with the DORIS PW data. Preliminary results of water vapor trends and variability are shown for 31 sites with more than 10 years of data and 23 sites with more than 15 years of data. Good consistency is found between DORIS PW trends and ERA-Interim trends, which demonstrates the high potential of the DORIS PW dataset for climate monitoring and model verification.

  8. The Weather Radar Toolkit, National Oceanic and Atmospheric Administration (NOAA) National Climatic Data Center's support of interoperability and the Global Earth Observation System of Systems (GEOSS)

    NASA Astrophysics Data System (ADS)

    Ansari, S.; Del Greco, S.

    2006-12-01

    In February 2005, 61 countries around the World agreed on a 10 year plan to work towards building open systems for sharing geospatial data and services across different platforms worldwide. This system is known as the Global Earth Observation System of Systems (GEOSS). The objective of GEOSS focuses on easy access to environmental data and interoperability across different systems allowing participating countries to measure the "pulse" of the planet in an effort to advance society. In support of GEOSS goals, NOAA's National Climatic Data Center (NCDC) has developed radar visualization and data exporter tools in an open systems environment. The NCDC Weather Radar Toolkit (WRT) loads Weather Surveillance Radar 1988 Doppler (WSR-88D) volume scan (S-band) data, known as Level-II, and derived products, known as Level-III, into an Open Geospatial Consortium (OGC) compliant environment. The application is written entirely in Java and will run on any Java- supported platform including Windows, Macintosh and Linux/Unix. The application is launched via Java Web Start and runs on the client machine while accessing these data locally or remotely from the NCDC archive, NOAA FTP server or any URL or THREDDS Data Server. The WRT allows the data to be manipulated to create custom mosaics, composites and precipitation estimates. The WRT Viewer provides tools for custom data overlays, Web Map Service backgrounds, animations and basic filtering. The export of images and movies is provided in multiple formats. The WRT Data Exporter allows for data export in both vector polygon (Shapefile, Well-Known Text) and raster (GeoTIFF, ESRI Grid, VTK, NetCDF, GrADS) formats. By decoding the various Radar formats into the NetCDF Common Data Model, the exported NetCDF data becomes interoperable with existing software packages including THREDDS Data Server and the Integrated Data Viewer (IDV). The NCDC recently partnered with NOAA's National Severe Storms Lab (NSSL) to decode Sigmet C-band Doppler

  9. Modernizing Administration.

    ERIC Educational Resources Information Center

    Lombardi, Vincent L.; Hildebrand, Verna

    1981-01-01

    Suggests assignment of research duties and rotation of teaching and management roles for college administrators, to increase their effectiveness and diminish the negative effects of declining enrollments. (JD)

  10. 49 CFR 1.37 - Assistant Secretary for Administration.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... Administration's responsibilities include: strategic management of human capital; monitoring the progress of... responsible for recommending performance objectives for the Operating Administrations' Directors of...

  11. 49 CFR 1.37 - Assistant Secretary for Administration.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... Administration's responsibilities include: strategic management of human capital; monitoring the progress of... responsible for recommending performance objectives for the Operating Administrations' Directors of...

  12. 49 CFR 1.37 - Assistant Secretary for Administration.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... Administration's responsibilities include: strategic management of human capital; monitoring the progress of... responsible for recommending performance objectives for the Operating Administrations' Directors of...

  13. Administrative Support.

    ERIC Educational Resources Information Center

    Doran, Dorothy; And Others

    This guide is intended to assist business education teachers in administrative support courses. The materials presented are based on the Arizona validated occupational competencies and tasks for the occupations of receptionist, secretary, and administrative assistant. Word processing skills have been infused into each of the three sections. The…

  14. Administrative Ecology

    ERIC Educational Resources Information Center

    McGarity, Augustus C., III; Maulding, Wanda

    2007-01-01

    This article discusses how all four facets of administrative ecology help dispel the claims about the "impossibility" of the superintendency. These are personal ecology, professional ecology, organizational ecology, and community ecology. Using today's superintendency as an administrative platform, current literature describes a preponderance of…

  15. Hydrology of precipitation and groundwater in a plateau area, southward South Carpathians, Mehedinti district, Romania, identified from isotope and climate monitoring

    NASA Astrophysics Data System (ADS)

    Bojar, Ana-Voica; Halas, Stanislaw

    2014-05-01

    The investigated region of around 100 square km and is situated on a plateau between 270 and 350 m elevation, between the South Carpathians to the north and Danube to the south. The area is represented by a plateau crossed from north-west to south-east by dry valleys, which cut in the sandy and clayely deposits of Pliocene age. In the region, the primary sources of drinking and irrigation waters are related to natural springs or wells. Through the valleys, water is flowing only temporarily after strong storms or during rainy periods. Between July to September, due the hot summer continental climate, population and crops suffer of water shortage. The objectives of this study are: 1) to determine the Local Meteoric Water Line (LMWL) for the plateau area by measuring the isotopic composition of precipitation in the region; 2) to determine the position of various aquifers in the region; 3) to measure the isotopic composition of spring waters and compare it to precipitation waters, in order to evaluate the source of water. The data set consists of monthly monitoring of rain isotopic composition (for 2012 to 2013), locating the regional distribution of springs and their isotopic composition and measuring daily variations of air temperature and humidity. Water samples were analysed for hydrogen and oxygen isotopic composition at the centre of Environmental Research, Lublin, Poland. The hydrogen and oxygen isotopic composition of precipitation range from -119 to -23 permil and -14 to -4 permil, respectively. Regression of the data resulted in a meteoric water line which is highly significant (r square = 0.98). The monthly isotopic composition indicates temperature-dependent seasonality. The more negative values occur in the winter to early spring (November-April) and more positive values occur in the late spring to early fall (May-October). The deuterium excess (d-excess) value of precipitation range between 16.3 to 5.7 permil, with an amount weighted mean value of 10

  16. NPOESS, Essential Climates Variables and Climate Change

    NASA Astrophysics Data System (ADS)

    Forsythe-Newell, S. P.; Bates, J. J.; Barkstrom, B. R.; Privette, J. L.; Kearns, E. J.

    2008-12-01

    Advancement in understanding, predicting and mitigating against climate change implies collaboration, close monitoring of Essential Climate Variable (ECV)s through development of Climate Data Record (CDR)s and effective action with specific thematic focus on human and environmental impacts. Towards this end, NCDC's Scientific Data Stewardship (SDS) Program Office developed Climate Long-term Information and Observation system (CLIO) for satellite data identification, characterization and use interrogation. This "proof-of-concept" online tool provides the ability to visualize global CDR information gaps and overlaps with options to temporally zoom-in from satellite instruments to climate products, data sets, data set versions and files. CLIO provides an intuitive one-stop web site that displays past, current and planned launches of environmental satellites in conjunction with associated imagery and detailed information. This tool is also capable of accepting and displaying Web-based input from Subject Matter Expert (SME)s providing a global to sub-regional scale perspective of all ECV's and their impacts upon climate studies. SME's can access and interact with temporal data from the past and present, or for future planning of products, datasets/dataset versions, instruments, platforms and networks. CLIO offers quantifiable prioritization of ECV/CDR impacts that effectively deal with climate change issues, their associated impacts upon climate, and this offers an intuitively objective collaboration and consensus building tool. NCDC's latest tool empowers decision makers and the scientific community to rapidly identify weaknesses and strengths in climate change monitoring strategies and significantly enhances climate change collaboration and awareness.

  17. Assessing Extremes Climatology Using NWS Local Climate Analysis Tool

    NASA Astrophysics Data System (ADS)

    Timofeyeva, M. M.; Hollingshead, A.; Hilderbrand, D.; Mayes, B.; Hartley, T.; Kempf McGavock, N. M.; Lau, E.; Olenic, E. A.; Motta, B.; Bunge, R.; Brown, L. E.; Fritsch, F.

    2010-12-01

    The Local Climate Analysis Tool (LCAT) is evolving out of a need to support and enhance the National Oceanic and Atmospheric Administration (NOAA) National Weather Service (NWS) field offices’ ability to access, manipulate, and interpret local climate data and characterize climate variability and change impacts. LCAT will enable NWS Regional Headquarters, Weather Forecast Offices, Weather Service Offices, and River Forecast Centers the ability to conduct regional and local climate studies using station and reanalysis gridded data and various statistical techniques for climate analysis. The analysis results will be used for climate services to guide local decision makers in weather and climate sensitive actions and to deliver information to the general public. Field offices need standardized, scientifically sound methodology for local climate analysis (such as trend, composites, and principal statistical and time-series analysis) that is comprehensive, accessible, and efficient, with the potential to expand with growing NOAA Climate Services needs. The methodology for climate analyses is practiced by the NWS Climate Prediction Center (CPC), NOAA National Climatic Data Center, and NOAA Earth System Research Laboratory, as well as NWS field office staff. LCAT will extend this practice at the local level, allowing it to become both widespread and standardized, and thus improve NWS climate services capabilities. LCAT focus is on the local scale (as opposed to national and global scales of CPC products). The LCAT will: -Improve professional competency of local office staff and expertise in providing local information to their users. LCAT will improve quality of local climate services -Ensure adequate local input to CPC products that depend on local information, such as the U.S. Drought Monitor. LCAT will allow improvement of CPC climate products -Allow testing of local climate variables beyond temperature averages and precipitation totals such as climatology of

  18. Qualification and application of a surface plasmon resonance-based assay for monitoring potential HAHA responses induced after passive administration of a humanized anti Lewis-Y antibody.

    PubMed

    Szolar, O H J; Stranner, S; Zinoecker, I; Mudde, G C; Himmler, G; Waxenecker, G; Nechansky, A

    2006-06-16

    A sensitive, surface plasmon resonance (SPR)-based assay monitoring potential human-anti-human antibody (HAHA) reactions against the monoclonal antibody (mAb) IGN311 is presented. The latter is a fully humanized Lewis-Y carbohydrate specific mAb that is currently tested in a passive immune therapy approach in a clinical phase I trial. For the SPR experiments a BIACORE 3000 analyzer was used. The ligand IGN311 was covalently coupled to the carboxy-methylated dextran matrix of a CM5 research grade chip (BIACORE). In the course of a fully nested experimental design, a four parameter logistic equation was identified as appropriate calibration model ranging from 0.3 microg/mL (lower limit of quantitation, LLOQ) to 200 microg/mL (upper limit of quantitation, ULOQ) using an anti-idiotypic mAb ('HAHA mimic') as calibrator. The bias ranged from -2.4% to 5.5% and the intermediate precision expressed as 95% CI revealed values from 5.6% to 8.3%. Specificity was evaluated using six human serum matrices from healthy donors spiked with calibrator at the limit of quantitation (LOQ) with >80% of values being recovered with less than 25% relative error. The qualified assay was applied to monitor potentially induced HAHA reactivity in 11 patients from a clinical phase I trial with passively administered IGN311. Of the 11 patients, one high HAHA responder and several low responders were identified. Protein-G depletion experiments with human serum samples revealed that the observed response is predominantly caused by IgG binding to the ligand. The characteristics of these HAHA responses were all of the so-called 'Type I' which is defined by a peak response around day 15 that decreases from this point steadily suggesting that some kind of tolerance is established. Therefore, this type of HAHA response is regarded as non critical for the patient's safety. PMID:16644171

  19. 78 FR 17640 - National Climate Assessment and Development Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-22

    ... National Oceanic and Atmospheric Administration National Climate Assessment and Development Advisory... the National Climate Assessment and Development Advisory Committee (NCADAC) for a six-month period.... Decker, Designated Federal Officer, National Climate Assessment and Development Advisory Committee,...

  20. Evaluations of alternative methods for monitoring and estimating responses of salmon productivity in the North Pacific to future climatic change and other processes: A simulation study

    EPA Science Inventory

    Estimation of the relative influence of climate change, compared to other human activities, on dynamics of Pacific salmon (Oncorhynchus spp.) populations can help management agencies take appropriate management actions. We used empirically based simulation modelling of 48 sockeye...

  1. Climate forcings and feedbacks

    NASA Technical Reports Server (NTRS)

    Hansen, James

    1993-01-01

    Global temperature has increased significantly during the past century. Understanding the causes of observed global temperature change is impossible in the absence of adequate monitoring of changes in global climate forcings and radiative feedbacks. Climate forcings are changes imposed on the planet's energy balance, such as change of incoming sunlight or a human-induced change of surface properties due to deforestation. Radiative feedbacks are radiative changes induced by climate change, such as alteration of cloud properties or the extent of sea ice. Monitoring of global climate forcings and feedbacks, if sufficiently precise and long-term, can provide a very strong constraint on interpretation of observed temperature change. Such monitoring is essential to eliminate uncertainties about the relative importance of various climate change mechanisms including tropospheric sulfate aerosols from burning of coal and oil smoke from slash and burn agriculture, changes of solar irradiance changes of several greenhouse gases, and many other mechanisms. The considerable variability of observed temperature, together with evidence that a substantial portion of this variability is unforced indicates that observations of climate forcings and feedbacks must be continued for decades. Since the climate system responds to the time integral of the forcing, a further requirement is that the observations be carried out continuously. However, precise observations of forcings and feedbacks will also be able to provide valuable conclusions on shorter time scales. For example, knowledge of the climate forcing by increasing CFC's relative to the forcing by changing ozone is important to policymakers, as is information on the forcing by CO2 relative to the forcing by sulfate aerosols. It will also be possible to obtain valuable tests of climate models on short time scales, if there is precise monitoring of all forcings and feedbacks during and after events such as a large volcanic eruption

  2. Monitoring bone strontium levels of an osteoporotic subject due to self-administration of strontium citrate with a novel diagnostic tool, in vivo XRF: a case study.

    PubMed

    Moise, H; Adachi, J D; Chettle, D R; Pejović-Milić, A

    2012-07-01

    A previously developed in vivo X-ray fluorescence (IVXRF) I-125 based system was used to measure bone strontium levels non-invasively in an osteoporotic female volunteer. The volunteer was recruited in December 2008, as part of the Ryerson and McMaster University Strontium in Bone Research Study and measured at twice weekly, weekly and monthly intervals. Thirty minute measurements were taken at the finger and ankle bone sites, representing primarily cortical and trabecular bone, respectively and the strontium K-alpha X-ray peak at 14.16 keV was used in the analysis. Since the volunteer had no prior history of strontium based medications or supplementation, baseline natural strontium levels were obtained followed by a 24h measurement of first intake of strontium citrate supplements (680 mg Sr/day). While the baseline levels of 0.38 ± 0.05 and 0.39 ± 0.10 for the finger and ankle, respectively, were on par with those previously reported in Caucasians among twenty-two healthy non-supplementing strontium individuals by our group, an increase began to be seen after 24 hrs of 0.62 ± 0.14 and 0.45 ± 0.12 for the finger and ankle, respectively. By 120 h, the increase was statistically significant at 0.68 ± 0.07 and 0.93 ± 0.05, respectively. Further increases occurred within an interval of 90-180 days, with the most recent, after 800 days, at the finger and ankle being 7 and 15 times higher than the initial baseline reading. The intriguing results show bone strontium incorporation and retention follow a pattern, suggesting strontium levels, at least in the ankle, do not plateau within two to three years and will continue to increase over time, as an individual takes strontium supplements. The ability of this IVXRF system to monitor and measure bone strontium levels over time provides a useful diagnostic tool to help gain insight into strontium bone kinetics. PMID:22549020

  3. View from the Administrator's Office.

    ERIC Educational Resources Information Center

    Shaub, Walter M.

    1999-01-01

    Discusses Environmental Protection Agency (EPA) administrator Carol Browner's views on facilitating practical approaches that address major environmental issues in the United States. Examines issues of helping local communities, climate impact and prevention, water quality and quantity, and the EPA's changing role in society. (WRM)

  4. Administrative IT

    ERIC Educational Resources Information Center

    Grayson, Katherine, Ed.

    2006-01-01

    When it comes to Administrative IT solutions and processes, best practices range across the spectrum. Enterprise resource planning (ERP), student information systems (SIS), and tech support are prominent and continuing areas of focus. But widespread change can also be accomplished via the implementation of campuswide document imaging and sharing,…

  5. Engineering Administration.

    ERIC Educational Resources Information Center

    Naval Personnel Program Support Activity, Washington, DC.

    This book is intended to acquaint naval engineering officers with their duties in the engineering department. Standard shipboard organizations are analyzed in connection with personnel assignments, division operations, and watch systems. Detailed descriptions are included for the administration of directives, ship's bills, damage control, training…

  6. Database Administrator

    ERIC Educational Resources Information Center

    Moore, Pam

    2010-01-01

    The Internet and electronic commerce (e-commerce) generate lots of data. Data must be stored, organized, and managed. Database administrators, or DBAs, work with database software to find ways to do this. They identify user needs, set up computer databases, and test systems. They ensure that systems perform as they should and add people to the…

  7. Climate Change Impacts and Responses: Societal Indicators for the National Climate Assessment

    NASA Technical Reports Server (NTRS)

    Kenney, Melissa A.; Chen, Robert S.; Maldonado, Julie; Quattrochi, Dale

    2011-01-01

    The Climate Change Impacts and Responses: Societal Indicators for the National Climate Assessment workshop, sponsored by the National Aeronautics and Space Administration (NASA) for the National Climate Assessment (NCA), was held on April 28-29, 2011 at The Madison Hotel in Washington, DC. A group of 56 experts (see list in Appendix B) convened to share their experiences. Participants brought to bear a wide range of disciplinary expertise in the social and natural sciences, sector experience, and knowledge about developing and implementing indicators for a range of purposes. Participants included representatives from federal and state government, non-governmental organizations, tribes, universities, and communities. The purpose of the workshop was to assist the NCA in developing a strategic framework for climate-related physical, ecological, and socioeconomic indicators that can be easily communicated with the U.S. population and that will support monitoring, assessment, prediction, evaluation, and decision-making. The NCA indicators are envisioned as a relatively small number of policy-relevant integrated indicators designed to provide a consistent, objective, and transparent overview of major variations in climate impacts, vulnerabilities, adaptation, and mitigation activities across sectors, regions, and timeframes. The workshop participants were asked to provide input on a number of topics, including: (1) categories of societal indicators for the NCA; (2) alternative approaches to constructing indicators and the better approaches for NCA to consider; (3) specific requirements and criteria for implementing the indicators; and (4) sources of data for and creators of such indicators. Socioeconomic indicators could include demographic, cultural, behavioral, economic, public health, and policy components relevant to impacts, vulnerabilities, and adaptation to climate change as well as both proactive and reactive responses to climate change. Participants provided

  8. Climate Change

    MedlinePlus

    Climate is the average weather in a place over a period of time. Climate change is major change in temperature, rainfall, snow, ... by natural factors or by human activities. Today climate changes are occurring at an increasingly rapid rate. ...

  9. Climate Change

    MedlinePlus

    ... in a place over a period of time. Climate change is major change in temperature, rainfall, snow, or ... by natural factors or by human activities. Today climate changes are occurring at an increasingly rapid rate. Climate ...

  10. 49 CFR 385.711 - Administrative review.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 5 2010-10-01 2010-10-01 false Administrative review. 385.711 Section 385.711... Safety Monitoring System for Non-North American Carriers § 385.711 Administrative review. (a) A non-North America-domiciled motor carrier may request FMCSA to conduct an administrative review if it believes...

  11. 49 CFR 385.113 - Administrative review.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 5 2011-10-01 2011-10-01 false Administrative review. 385.113 Section 385.113... Safety Monitoring System for Mexico-Domiciled Carriers § 385.113 Administrative review. (a) A Mexico-domiciled motor carrier may request the FMCSA to conduct an administrative review if it believes the...

  12. 49 CFR 385.113 - Administrative review.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 5 2010-10-01 2010-10-01 false Administrative review. 385.113 Section 385.113... Safety Monitoring System for Mexico-Domiciled Carriers § 385.113 Administrative review. (a) A Mexico-domiciled motor carrier may request the FMCSA to conduct an administrative review if it believes the...

  13. 49 CFR 385.711 - Administrative review.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 5 2011-10-01 2011-10-01 false Administrative review. 385.711 Section 385.711... Safety Monitoring System for Non-North American Carriers § 385.711 Administrative review. (a) A non-North America-domiciled motor carrier may request FMCSA to conduct an administrative review if it believes...

  14. Administrator-Teacher Ratio Study: Executive Summary.

    ERIC Educational Resources Information Center

    School Services of California, Inc., Sacramento.

    Since the early 1970s, financial penalties have been levied in California school districts if their administrator-to-teacher ratio is in excess of a standard set by law. A study was conducted to determine whether the provisions of administrator-teacher maximum ratio are effective for calculating, monitoring, and reporting administrative costs.…

  15. PARENTERAL NUTRITION INDICATIONS, ADMINISTRATION, AND MONITORING

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Parenteral nutrition (PN) can be lifesaving or life threatening, depending on when and how it is used. In infants and children who are unable to meet their nutritional requirements over extended periods, it can prevent death from malnutrition. On the other hand, if appropriate attention is not paid ...

  16. The Immatsiak network of groundwater wells in a small catchment basin in the discontinuous permafrost zone of Northern Quebec, Canada: A unique opportunity for monitoring the impacts of climate change on groundwater (Invited)

    NASA Astrophysics Data System (ADS)

    Fortier, R.; Lemieux, J.; Molson, J. W.; Therrien, R.; Ouellet, M.; Bart, J.

    2013-12-01

    During a summer drilling campaign in 2012, a network of nine groundwater monitoring wells was installed in a small catchment basin in a zone of discontinuous permafrost near the Inuit community of Umiujaq in Northern Quebec, Canada. This network, named Immatsiak, is part of a provincial network of groundwater monitoring wells to monitor the impacts of climate change on groundwater resources. It provides a unique opportunity to study cold region groundwater dynamics in permafrost environments and to assess the impacts of permafrost degradation on groundwater quality and availability as a potential source of drinking water. Using the borehole logs from the drilling campaign and other information from previous investigations, an interpretative cryo-hydrogeological cross-section of the catchment basin was produced which identified the Quaternary deposit thickness and extent, the depth to bedrock, the location of permafrost, one superficial aquifer located in a sand deposit, and another deep aquifer in fluvio-glacial sediments and till. In the summer of 2013, data were recovered from water level and barometric loggers which were installed in the wells in August 2012. Although the wells were drilled in unfrozen zones, the groundwater temperature is very low, near 0.4 °C, with an annual variability of a few tenths of a degree Celsius at a depth of 35 m. The hydraulic head in the wells varied as much as 6 m over the last year. Pumping tests performed in the wells showed a very high hydraulic conductivity of the deep aquifer. Groundwater in the wells and surface water in small thermokarst lakes and at the catchment outlet were sampled for geochemical analysis (inorganic parameters, stable isotopes of oxygen (δ18O) and hydrogen (δ2H), and radioactive isotopes of carbon (δ14C), hydrogen (tritium δ3H) and helium (δ3He)) to assess groundwater quality and origin. Preliminary results show that the signature of melt water from permafrost thawing is observed in the

  17. Linking hydro-climate to the sediment archive: a combined monitoring and calibration study from a varved lake in central Turkey

    NASA Astrophysics Data System (ADS)

    Roberts, C. Neil; Dean, Jonathan R.; Eastwood, Warren J.; Jones, Matthew D.; Allcock, Samantha L.; Leng, Melanie J.; Metcalfe, Sarah E.; Woodbridge, Jessie; Yiǧitbaşıoǧlu, Hakan

    2016-04-01

    Hydro-climatic reconstructions from lake sediment proxies require an understanding of modern formation processes and calibration over multiple years. Here we use Nar Gölü, a non-outlet, monomictic maar lake in central Turkey, as a field site for such a natural experiment. Fieldwork since 1997 has included observations and measurements of lake water and sediment trap samples, and automated data logging (Jones et al., 2005; Woodbridge and Roberts, 2010; Dean et al., 2015). We compare these data to isotopic, chemical and biotic proxies preserved in the lake's annually-varved sediments. Nar Gölü underwent a 3 m lake-level fall between 2000 and 2010, and δ18O in both water and carbonates is correlated with this lake-level fall, responding to the change in water balance. Over the same period, sedimentary diatom assemblages responded via changes in habitat availability and mixing regime, while conductivity inferred from diatoms showed a rise in inferred salinity, although with a non-linear response to hydro-climatic forcing. There were also non-linear shifts in carbonate mineralogy and elemental chemistry. Building on the relationship between lake water balance and the sediment isotope record, we calibrated sedimentary δ18O against local meteorological records to derive a P/E drought index for central Anatolia. Application to of this to the longer sediment core isotope record from Nar Gölü (Jones et al. 2006) highlights major drought events over the last 600 years (Yiǧitbaşıoǧlu et al., 2015). Although this lacustrine record offers an archive of annually-dated, decadally-averaged hydro-climatic change, there were also times of non-linear lake response to climate. Robust reconstruction therefore requires understanding of physical processes as well as application of statistical correlations. Dean, J.R., Eastwood, W.J., Roberts, N., Jones, M.D., Yiǧitbaşıoǧlu, H., Allcock, S.L., Woodbridge, J., Metcalfe, S.E. and Leng, M.J. (2015) Tracking the hydro-climatic

  18. Stable isotope variation in tooth enamel from Neogene hippopotamids: monitor of meso and global climate and rift dynamics on the Albertine Rift, Uganda

    NASA Astrophysics Data System (ADS)

    Brachert, Thomas Christian; Brügmann, Gerhard B.; Mertz, Dieter F.; Kullmer, Ottmar; Schrenk, Friedemann; Jacob, Dorrit E.; Ssemmanda, Immaculate; Taubald, Heinrich

    2010-10-01

    The Neogene was a period of long-term global cooling and increasing climatic variability. Variations in African-Asian monsoon intensity over the last 7 Ma have been deduced from patterns of eolian dust export into the Indian Ocean and Mediterranean Sea as well as from lake level records in the East African Rift System (EARS). However, lake systems not only depend on rainfall patterns, but also on the size and physiography of river catchment areas. This study is based on stable isotope proxy data (18O/16O, 13C/12C) from tooth enamel of hippopotamids (Mammalia) and aims in unravelling long-term climate and watershed dynamics that control the evolution of palaeolake systems in the western branch of the EARS (Lake Albert, Uganda) during the Late Neogene (7.5 Ma to recent). Having no dietary preferences with respect to wooded (C3) versus grassland (C4) vegetation, these territorial, water-dependant mammals are particularly useful for palaeoclimate analyses. As inhabitants of lakes and rivers, hippopotamid tooth enamel isotope data document mesoclimates of topographic depressions, such as the rift valleys and, therefore, changes in relative valley depth instead of exclusively global climate changes. Consequently, we ascribe a synchronous maximum in 18O/16O and 13C/12C composition of hippopotamid enamel centred around 1.5-2.5 Ma to maximum aridity and/or maximum hydrological isolation of the rift floor from rift-external river catchment areas in response to the combined effects of rift shoulder uplift and subsidence of the rift valley floor. Structural rearrangements by ~2.5 Ma within the northern segment of the Albertine Rift are well constrained by reversals in river flow, cannibalisation of catchments, biogeographic turnover and uplift of the Rwenzori horst. However, a growing rain shadow is not obvious in 18O/16O signatures of the hippopotamid teeth of the Albertine Rift. According to our interpretation, this is the result of the overriding effect of evaporation on 18

  19. Understanding a migratory species in a changing world: climatic effects and demographic declines in the western monarch revealed by four decades of intensive monitoring.

    PubMed

    Espeset, Anne E; Harrison, Joshua G; Shapiro, Arthur M; Nice, Chris C; Thorne, James H; Waetjen, David P; Fordyce, James A; Forister, Matthew L

    2016-07-01

    Migratory animals pose unique challenges for conservation biologists, and we have much to learn about how migratory species respond to drivers of global change. Research has cast doubt on the stability of the eastern monarch butterfly (Danaus plexippus) population in North America, but the western monarchs have not been as intensively examined. Using a Bayesian hierarchical model, sightings of western monarchs over approximately 40 years were investigated using summer flight records from ten sites along an elevational transect in Northern California. Multiple weather variables were examined, including local and regional temperature and precipitation. Population trends from the ten focal sites and a subset of western overwintering sites were compared to summer and overwintering data from the eastern migration. Records showed western overwintering grounds and western breeding grounds had negative trends over time, with declines concentrated early in the breeding season, which were potentially more severe than in the eastern population. Temporal variation in the western monarch also appears to be largely independent of (uncorrelated with) the dynamics in the east. For our focal sites, warmer temperatures had positive effects during winter and spring, and precipitation had a positive effect during spring. These climatic associations add to our understanding of biotic-abiotic interactions in a migratory butterfly, but shifting climatic conditions do not explain the overall, long-term, negative population trajectory observed in our data. PMID:27000943

  20. Changing ecophysiological processes and carbon budget in East Asian ecosystems under near-future changes in climate: implications for long-term monitoring from a process-based model.

    PubMed

    Ito, Akihiko

    2010-07-01

    Using a process-based model, I assessed how ecophysiological processes would respond to near-future global changes predicted by coupled atmosphere-ocean climate models. An ecosystem model, Vegetation Integrative SImulator for Trace gases (VISIT), was applied to four sites in East Asia (different types of forest in Takayama, Tomakomai, and Fujiyoshida, Japan, and an Alpine grassland in Qinghai, China) where observational flux data are available for model calibration. The climate models predicted +1-3 degrees C warming and slight change in annual precipitation by 2050 as a result of an increase in atmospheric CO2. Gross primary production (GPP) was estimated to increase substantially at each site because of improved efficiency in the use of water and radiation. Although increased respiration partly offset the GPP increase, the simulation showed that these ecosystems would act as net carbon sinks independent of disturbance-induced uptake for recovery. However, the carbon budget response relied strongly on nitrogen availability, such that photosynthetic down-regulation resulting from leaf nitrogen dilution largely decreased GPP. In relation to long-term monitoring, these results indicate that the impacts of global warming may be more evident in gross fluxes (e.g., photosynthesis and respiration) than in the net CO2 budget, because changes in these fluxes offset each other. PMID:20169411

  1. Monitoring of the ground surface temperature and the active layer in NorthEastern Canadian permafrost areas using remote sensing data assimilated in a climate land surface scheme.

    NASA Astrophysics Data System (ADS)

    Marchand, N.; Royer, A.; Krinner, G.; Roy, A.

    2014-12-01

    Projected future warming is particularly strong in the Northern high latitudes where increases of temperatures are up to 2 to 6 °C. Permafrost is present on 25 % of the northern hemisphere lands and contain high quantities of « frozen » carbon, estimated at 1400 Gt (40 % of the global terrestrial carbon). The aim of this study is to improve our understanding of the climate evolution in arctic areas, and more specifically of land areas covered by snow. The objective is to describe the ground temperature year round including under snow cover, and to analyse the active layer thickness evolution in relation to the climate variability. We use satellite data (fusion of MODIS land surface temperature « LST » and microwave AMSR-E brightness temperature « Tb ») assimilated in the Canadian Land Surface Scheme (CLASS) of the Canadian climate model coupled with a simple radiative transfer model (HUT). This approach benefits from the advantages of each of the data type in order to complete two objectives : 1- build a solid methodology for retrieving the ground temperature, with and without snow cover, in taïga and tundra areas ; 2 - from those retrieved ground temperatures, derive the summer melt duration and the active layer depth. We describe the coupling of the models and the methodology that adjusts the meteorological input parameters of the CLASS model (mainly air temperature and precipitations derived from the NARR database) in order to minimise the simulated LST and Tb ouputs in comparison with satellite measurements. Using ground-based meteorological data as validation references in NorthEastern Canadian tundra, the results show that the proposed approach improves the soil temperatures estimates when using the MODIS LST and Tb at 10 and 19 GHz to constrain the model in comparison with the model outputs without satellite data. Error analysis is discussed for the summer period (2.5 - 4 K) and for the snow covered winter period (2 - 3.5 K). Further steps are

  2. Access 1996: A directory of permanent plots which monitor flora, fauna, climate, hydrology, soil, geology, and the effects of anthropogenic changes at 132 biosphere reserves in 27 countries

    SciTech Connect

    1996-07-01

    This directory summarizes information about environmental data collected in permanent monitoring and research plots in 132 biosphere reserves in Canada, the United States, and 25 European countries. The text of the directory is organized alphabetically by country and, within each country, alphabetically according to the name of the biosphere reserve. Tabular summaries of information on permanent plots are provided. The summaries are organized topically . A general summary of basic information on permanent plots is followed by more detailed information on permanent plots dedicated primarily to monitroing and research on particular topics.

  3. Climate Informatics

    NASA Technical Reports Server (NTRS)

    Monteleoni, Claire; Schmidt, Gavin A.; Alexander, Francis J.; Niculescu-Mizil, Alexandru; Steinhaeuser, Karsten; Tippett, Michael; Banerjee, Arindam; Blumenthal, M. Benno; Ganguly, Auroop R.; Smerdon, Jason E.; Tedesco, Marco

    2013-01-01

    The impacts of present and potential future climate change will be one of the most important scientific and societal challenges in the 21st century. Given observed changes in temperature, sea ice, and sea level, improving our understanding of the climate system is an international priority. This system is characterized by complex phenomena that are imperfectly observed and even more imperfectly simulated. But with an ever-growing supply of climate data from satellites and environmental sensors, the magnitude of data and climate model output is beginning to overwhelm the relatively simple tools currently used to analyze them. A computational approach will therefore be indispensable for these analysis challenges. This chapter introduces the fledgling research discipline climate informatics: collaborations between climate scientists and machine learning researchers in order to bridge this gap between data and understanding. We hope that the study of climate informatics will accelerate discovery in answering pressing questions in climate science.

  4. 76 FR 17626 - National Climate Assessment Development and Advisory Committee; Announcement of Time Change and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-30

    ... FR 4562, March 2, 2011) for background information on the meeting. The full details of the meeting... National Oceanic and Atmospheric Administration National Climate Assessment Development and Advisory... Administration, Department of Commerce. ACTION: National Climate Assessment Development and Advisory...

  5. Present weather and climate: evolving conditions

    USGS Publications Warehouse

    Hoerling, Martin P; Dettinger, Michael; Wolter, Klaus; Lukas, Jeff; Eischeid, Jon K.; Nemani, Rama; Liebmann, Brant; Kunkel, Kenneth E.

    2013-01-01

    This chapter assesses weather and climate variability and trends in the Southwest, using observed climate and paleoclimate records. It analyzes the last 100 years of climate variability in comparison to the last 1,000 years, and links the important features of evolving climate conditions to river flow variability in four of the region’s major drainage basins. The chapter closes with an assessment of the monitoring and scientific research needed to increase confidence in understanding when climate episodes, events, and phenomena are attributable to human-caused climate change.

  6. School Climate.

    ERIC Educational Resources Information Center

    Lindelow, John; And Others

    Chapter 8 of a revised volume on school leadership, this chapter defines school climate and suggests ways to improve the learning environment at the school building level. School climate is defined as the feeling an individual gets from experiences within a school system. More specifically, climate is the composite of norms, expectations, and…

  7. Climate@Home: Crowdsourcing Climate Change Research

    NASA Astrophysics Data System (ADS)

    Xu, C.; Yang, C.; Li, J.; Sun, M.; Bambacus, M.

    2011-12-01

    Climate change deeply impacts human wellbeing. Significant amounts of resources have been invested in building super-computers that are capable of running advanced climate models, which help scientists understand climate change mechanisms, and predict its trend. Although climate change influences all human beings, the general public is largely excluded from the research. On the other hand, scientists are eagerly seeking communication mediums for effectively enlightening the public on climate change and its consequences. The Climate@Home project is devoted to connect the two ends with an innovative solution: crowdsourcing climate computing to the general public by harvesting volunteered computing resources from the participants. A distributed web-based computing platform will be built to support climate computing, and the general public can 'plug-in' their personal computers to participate in the research. People contribute the spare computing power of their computers to run a computer model, which is used by scientists to predict climate change. Traditionally, only super-computers could handle such a large computing processing load. By orchestrating massive amounts of personal computers to perform atomized data processing tasks, investments on new super-computers, energy consumed by super-computers, and carbon release from super-computers are reduced. Meanwhile, the platform forms a social network of climate researchers and the general public, which may be leveraged to raise climate awareness among the participants. A portal is to be built as the gateway to the climate@home project. Three types of roles and the corresponding functionalities are designed and supported. The end users include the citizen participants, climate scientists, and project managers. Citizen participants connect their computing resources to the platform by downloading and installing a computing engine on their personal computers. Computer climate models are defined at the server side. Climate

  8. 76 FR 25309 - National Climate Assessment and Development Advisory Committee (NCADAC)

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-04

    ... National Oceanic and Atmospheric Administration National Climate Assessment and Development Advisory... National Climate Assessment and Development Advisory Committee (NCADAC). The members will discuss and... be determined. Please check the National Climate Assessment Web site for this information at...

  9. 77 FR 61574 - National Climate Assessment and Development Advisory Committee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-10

    ... National Oceanic and Atmospheric Administration National Climate Assessment and Development Advisory... notice sets forth the schedule of a forthcoming meeting of the DoC NOAA National Climate Assessment and... the National Climate Assessment Web site for additional information at...

  10. 77 FR 56191 - National Climate Assessment and Development Advisory Committee (NCADAC)

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-12

    ... National Oceanic and Atmospheric Administration National Climate Assessment and Development Advisory... notice sets forth the schedule of a forthcoming meeting of the DoC NOAA National Climate Assessment and... the National Climate Assessment Web site for additional information at...

  11. 78 FR 56866 - National Climate Assessment and Development Advisory Committee (NCADAC)

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-16

    ... National Oceanic and Atmospheric Administration National Climate Assessment and Development Advisory... National Climate Assessment and Development Advisory Committee (NCADAC) was established by the Secretary of... science and information pertaining to current and future impacts of climate. Time and Date: The...

  12. 78 FR 35259 - National Climate Assessment and Development Advisory Committee (NCADAC)

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-12

    ... National Oceanic and Atmospheric Administration National Climate Assessment and Development Advisory... National Climate Assessment and Development Advisory Committee (NCADAC) was established by the Secretary of... science and information pertaining to current and future impacts of climate. Time And Date: The...

  13. 77 FR 20794 - National Climate Assessment and Development Advisory Committee (NCADAC)

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-06

    ... National Oceanic and Atmospheric Administration National Climate Assessment and Development Advisory... announces the selection of the authors for the report of the next National Climate Assessment by the National Climate Assessment and Development Advisory Committee (NCADAC). The next National...

  14. Water erosion monitoring and experimentation for global change studies

    SciTech Connect

    Poesen, J.W.; Boardman, J.; Wilcox, B.

    1996-09-01

    This report describes the need for monitoring the effects of climatic change on soil erosion. The importance of monitoring not only runoff, but monitoring and experimental studies at the larger scale of hillslope and catchments is stressed.

  15. SWUSV: a microsatellite mission for space weather early forecasting of major flares and CMEs and the complete monitoring of the ultraviolet solar variability influence on climate

    NASA Astrophysics Data System (ADS)

    Damé, Luc

    The SWUSV (Space Weather & Ultraviolet Solar Variability) proposed microsatellite mission encompasses three major scientific objectives: (1) Space Weather including the prediction and detection of major eruptions and coronal mass ejections (using Lyman-Alpha and Herzberg continuum imaging and H-Alpha ground support); (2) solar forcing on the climate through radiation and their interactions with the local stratosphere (UV spectral irradiance from 180 to 400 nm by bands of 10 to 20 nm, including ozone, plus Lyman-Alpha and the CN bandhead); (3) simultaneous local radiative budget of the Earth, UV to IR, with an accuracy better than 1% in differential. The mission is on a sun-synchronous polar orbit and proposes 5 instruments to the model payload: SUAVE (Solar Ultraviolet Advanced Variability Experiment), an optimized telescope for FUV (Lyman-Alpha) and MUV (200-220 nm Herzberg continuum) imaging (sources of variability); UPR (Ultraviolet Passband Radiometers), with 64 UV filter radiometers; a vector magnetometer; thermal plasma measurements and Langmuir probes; and a total and spectral solar irradiance and Earth radiative budget ensemble (SERB, Solar irradiance & Earth Radiative Budget). SWUSV is proposed as a small mission to CNES and to ESA for a possible flight as early as 2020-2021. With opening to Chinese collaboration (ESA-CAS Small Mission) a further instrument could be added (HEBS, High Energy Burst Spectrometers) to reinforced Space Weather flares prediction objectives.

  16. Spatial distribution of the persistent organic pollutants across the Tibetan Plateau and its linkage with the climate systems: a 5-year air monitoring study

    NASA Astrophysics Data System (ADS)

    Wang, Xiaoping; Ren, Jiao; Gong, Ping; Wang, Chuanfei; Xue, Yonggang; Yao, Tandong; Lohmann, Rainer

    2016-06-01

    The Tibetan Plateau (TP) has been contaminated by persistent organic pollutants (POPs), including legacy organochlorine pesticides (OCPs) and polychlorinated biphenyls (PCBs) through atmospheric transport. The exact source regions, transport pathways and time trends of POPs to the TP are not well understood. Here polystyrene-divinylbenzene copolymer resin (XAD)-based passive air samplers (PASs) were deployed at 16 Tibetan background sites from 2007 to 2012 to gain further insight into spatial patterns and temporal trends of OCPs and PCBs. The southeastern TP was characterized by dichlorodiphenyltrichloroethane (DDT)-related chemicals delivered by Indian monsoon air masses. The northern and northwestern TP displayed the greatest absolute concentration and relative abundance of hexachlorobenzene (HCB) in the atmosphere, caused by the westerly-driven European air masses. The interactions between the DDT polluted Indian monsoon air and the clean westerly winds formed a transition zone in central Tibet, where both DDT and HCB were the dominant chemicals. Based on 5 years of continuous sampling, our data indicated declining concentrations of HCB and hexachlorocyclohexanes (HCHs) across the Tibetan region. Inter-annual trends of DDT class chemicals, however, showed less variation during this 5-year sampling period, which may be due to the ongoing usage of DDT in India. This paper demonstrates the possibility of using POP fingerprints to investigate the climate interactions and the validity of using PAS to derive inter-annual atmospheric POP time trends.

  17. Atmospheric Transport Studies Using In-situ Airborne Gas Chromatograph Measurements: An Overview of the NOAA Climate Monitoring and Diagnostics Laboratory (CMDL) Contribution.

    NASA Astrophysics Data System (ADS)

    Moore, F.; Dutton, G.; Elkins, J.; Hall, B.; Hurst, D.; Nance, D.; Ray, E.; Romashkin, P.; Thompson, T.; Volk, C. M.

    2005-12-01

    Accurate models of atmospheric transport are crucial to our current understanding of ozone production/loss and its coupling with climate change. Over the last ``20 years'', improvements in the ability to predict ``The Antarctic Ozone Hole and Polar Ozone Loss'' have tracked improvements in transport models. Data taken from the NOAA/CMDL airborne in-situ GC's (ACATS, LACE, PANTHER, and UCATS) have and will continue to play key roles in quantifying many aspects of stratospheric transport. Our data have been used in many of the model assessments to date. We will display an overview of the transport issues studied over the years using our data. They include descent with mixing within and into the polar vortex, entrainment of mid-latitude air across the vortex edge, upwelling and entrainment in the tropical pipe, isentropic transport across the tropopause into the lowermost stratosphere, mean ages of air parcels in the stratosphere, and stratospheric path distributions. ACATS - Airborne Chromatograph for Atmospheric Trace Species LACE - Lightweight Airborne Chromatograph Experiment PANTHER - PAN and Other Trace Hydrohalocarbons ExpeRiment UCATS - Unmanned aerial systems Chromatograph for Atmospheric Trace Species

  18. Climate variability and vulnerability to climate change: a review.

    PubMed

    Thornton, Philip K; Ericksen, Polly J; Herrero, Mario; Challinor, Andrew J

    2014-11-01

    The focus of the great majority of climate change impact studies is on changes in mean climate. In terms of climate model output, these changes are more robust than changes in climate variability. By concentrating on changes in climate means, the full impacts of climate change on biological and human systems are probably being seriously underestimated. Here, we briefly review the possible impacts of changes in climate variability and the frequency of extreme events on biological and food systems, with a focus on the developing world. We present new analysis that tentatively links increases in climate variability with increasing food insecurity in the future. We consider the ways in which people deal with climate variability and extremes and how they may adapt in the future. Key knowledge and data gaps are highlighted. These include the timing and interactions of different climatic stresses on plant growth and development, particularly at higher temperatures, and the impacts on crops, livestock and farming systems of changes in climate variability and extreme events on pest-weed-disease complexes. We highlight the need to reframe research questions in such a way that they can provide decision makers throughout the food system with actionable answers, and the need for investment in climate and environmental monitoring. Improved understanding of the full range of impacts of climate change on biological and food systems is a critical step in being able to address effectively the effects of climate variability and extreme events on human vulnerability and food security, particularly in agriculturally based developing countries facing the challenge of having to feed rapidly growing populations in the coming decades. PMID:24668802

  19. Climate variability and vulnerability to climate change: a review

    PubMed Central

    Thornton, Philip K; Ericksen, Polly J; Herrero, Mario; Challinor, Andrew J

    2014-01-01

    The focus of the great majority of climate change impact studies is on changes in mean climate. In terms of climate model output, these changes are more robust than changes in climate variability. By concentrating on changes in climate means, the full impacts of climate change on biological and human systems are probably being seriously underestimated. Here, we briefly review the possible impacts of changes in climate variability and the frequency of extreme events on biological and food systems, with a focus on the developing world. We present new analysis that tentatively links increases in climate variability with increasing food insecurity in the future. We consider the ways in which people deal with climate variability and extremes and how they may adapt in the future. Key knowledge and data gaps are highlighted. These include the timing and interactions of different climatic stresses on plant growth and development, particularly at higher temperatures, and the impacts on crops, livestock and farming systems of changes in climate variability and extreme events on pest-weed-disease complexes. We highlight the need to reframe research questions in such a way that they can provide decision makers throughout the food system with actionable answers, and the need for investment in climate and environmental monitoring. Improved understanding of the full range of impacts of climate change on biological and food systems is a critical step in being able to address effectively the effects of climate variability and extreme events on human vulnerability and food security, particularly in agriculturally based developing countries facing the challenge of having to feed rapidly growing populations in the coming decades. PMID:24668802

  20. 40 CFR 75.66 - Petitions to the Administrator.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 16 2010-07-01 2010-07-01 false Petitions to the Administrator. 75.66... (CONTINUED) CONTINUOUS EMISSION MONITORING Reporting Requirements § 75.66 Petitions to the Administrator. (a... submit a petition to the Administrator requesting that the Administrator exercise his or her...

  1. New software methods in radar ornithology using WSR-88D weather data and potential application to monitoring effects of climate change on bird migration

    USGS Publications Warehouse

    Mead, Reginald; Paxton, John; Sojda, Richard S.

    2010-01-01

    Radar ornithology has provided tools for studying the movement of birds, especially related to migration. Researchers have presented qualitative evidence suggesting that birds, or at least migration events, can be identified using large broad scale radars such as the WSR-88D used in the NEXRAD weather surveillance system. This is potentially a boon for ornithologists because such data cover a large portion of the United States, are constantly being produced, are freely available, and have been archived since the early 1990s. A major obstacle to this research, however, has been that identifying birds in NEXRAD data has required a trained technician to manually inspect a graphically rendered radar sweep. A single site completes one volume scan every five to ten minutes, producing over 52,000 volume scans in one year. This is an immense amount of data, and manual classification is infeasible. We have developed a system that identifies biological echoes using machine learning techniques. This approach begins with training data using scans that have been classified by experts, or uses bird data collected in the field. The data are preprocessed to ensure quality and to emphasize relevant features. A classifier is then trained using this data and cross validation is used to measure performance. We compared neural networks, naive Bayes, and k-nearest neighbor classifiers. Empirical evidence is provided showing that this system can achieve classification accuracies in the 80th to 90th percentile. We propose to apply these methods to studying bird migration phenology and how it is affected by climate variability and change over multiple temporal scales.

  2. Water governance in Chile: Availability, management and climate change

    NASA Astrophysics Data System (ADS)

    Valdés-Pineda, Rodrigo; Pizarro, Roberto; García-Chevesich, Pablo; Valdés, Juan B.; Olivares, Claudio; Vera, Mauricio; Balocchi, Francisco; Pérez, Felipe; Vallejos, Carlos; Fuentes, Roberto; Abarza, Alejandro; Helwig, Bridget

    2014-11-01

    Chile has a unique geography that provides an extraordinary variety of climatic conditions and availability of water resources. The objective of this manuscript was to describe and analyze the spatial and temporal distribution patterns, as well as the management of water resources, along a country with a narrow distance from the Andes Mountains to the Pacific Ocean. This presents challenges to water governance from data collection and analysis perspectives, and for administration of the resource. The Water Resources Directorate (Dirección General de Aguas, DGA), is the federal government organization in charge of the water resources of the country. The DGA and other relevant public and private institutions are examined in terms of competition and conflict resolution across different scales and levels of interaction associated with water resources governance. Both monitoring stations (rainfall, streamflow, water quality, groundwater, sediment and snowfall), and the Chilean management and legislation of water resources are also analyzed. Finally, the success (or lack) of the national administration to upgrade its monitoring stations and equalize water resources distribution throughout the country is discussed including the influence of climate change on data collection, and decision making across different scales of water governance.

  3. Faculty: Thy Administrator's Keeper? Some Evidence

    ERIC Educational Resources Information Center

    Cunningham, Brendan M.

    2009-01-01

    Colleges and universities face a principal-agent problem. There are information asymmetries over the actions chosen by administrators. Because non-profit constraints limit the financial stake of trustees there may be insufficient monitoring of administrators and, consequentially, shirking. It is conceivable that faculty will serve as "delegated…

  4. 49 CFR 385.711 - Administrative review.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... Safety Monitoring System for Non-North American Carriers § 385.711 Administrative review. (a) A non-North... new entrant registration and include any information or documents that support its argument. (d) FMCSA... review. The Associate Administrator's decision will constitute the final Agency action....

  5. 49 CFR 385.113 - Administrative review.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... Safety Monitoring System for Mexico-Domiciled Carriers § 385.113 Administrative review. (a) A Mexico... authority or provisional Certificate of Registration and include any information or documents that support... carrier submits its request for review. The Associate Administrator's decision will constitute the...

  6. 49 CFR 385.711 - Administrative review.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... Safety Monitoring System for Non-North American Carriers § 385.711 Administrative review. (a) A non-North... new entrant registration and include any information or documents that support its argument. (d) FMCSA... review. The Associate Administrator's decision will constitute the final Agency action....

  7. 49 CFR 385.113 - Administrative review.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... Safety Monitoring System for Mexico-Domiciled Carriers § 385.113 Administrative review. (a) A Mexico... authority or provisional Certificate of Registration and include any information or documents that support... carrier submits its request for review. The Associate Administrator's decision will constitute the...

  8. Ethical climate in managed care organizations.

    PubMed

    Bell, Sue Ellen

    2003-01-01

    Managed care organizations employ nurses as medical utilization reviewers; however, little is known about the ethical climate of these organizations. This study describes different ethical climates in which utilization review nurses work and the implications of these differences for nurse administrators. The nurse participants, although demographically similar across three managed care organizations, perceived distinct ethical climates across the organizations. Nurses were employed to make complex decisions regarding medical care utilization; however, none of the organizations had an ethics committee to help nurse reviewers in this decision-making process. The need for such committees, as well as clarification of a consistent and deliberate ethical climate by nurse administrators, is discussed. PMID:12765105

  9. Receivers Gather Data for Climate, Weather Prediction

    NASA Technical Reports Server (NTRS)

    2012-01-01

    Signals from global positioning system (GPS) satellites are now being used for more than just location and navigation information. By looking at the radio waves from GPS satellites, a technology developed at NASA s Jet Propulsion Laboratory (JPL) not only precisely calculates its position, but can also use a technique known as radio occultation to help scientists study the Earth s atmosphere and gravity field to improve weather forecasts, monitor climate change, and enhance space weather research. The University Corporation for Atmospheric Research (UCAR), a nonprofit group of universities in Boulder, Colorado, compares radio occultation to the appearance of a pencil when viewed though a glass of water. The water molecules change the path of visible light waves so that the pencil appears bent, just like molecules in the air bend GPS radio signals as they pass through (or are occulted by) the atmosphere. Through measurements of the amount of bending in the signals, scientists can construct detailed images of the ionosphere (the energetic upper part of the atmosphere) and also gather information about atmospheric density, pressure, temperature, and moisture. Once collected, this data can be input into weather forecasting and climate models for weather prediction and climate studies. Traditionally, such information is obtained through the use of weather balloons. In 1998, JPL started developing a new class of GPS space science receivers, called Black Jack, that could take precise measurements of how GPS signals are distorted or delayed along their way to the receiver. By 2006, the first demonstration of a GPS radio occultation constellation was launched through a collaboration among Taiwan s National Science Council and National Space Organization, the U.S. National Science Foundation, NASA, the National Oceanic and Atmospheric Administration (NOAA), and other Federal entities. Called the Constellation Observing System for Meteorology, Ionosphere, and Climate (COSMIC

  10. Ozone-Depleting Gases in the Atmosphere: Results From 28 Years of Measurements by the NOAA Climate Monitoring and Diagnostics Laboratory (CMDL)

    NASA Astrophysics Data System (ADS)

    Hurst, D. F.; Elkins, J. W.; Montzka, S. A.; Butler, J. H.; Dutton, G. S.; Hall, B. D.; Mondeel, D. J.; Moore, F. L.; Nance, J. D.; Romashkin, P. A.; Thompson, T. M.

    2005-12-01

    Back in 1978, NOAA/CMDL initiated the weekly filling of flasks at CMDL observatories in Alaska, Hawaii, American Samoa, and Antarctica for analyses of CFC-11, CFC-12 and N2O in the home laboratory. A decade later, each observatory was outfitted with an automated gas chromatograph to make routine, in situ measurements of these three source gases plus methyl chloroform and carbon tetrachloride. Both measurement programs are ongoing, having expanded over the years to include methyl halides and substitutes for regulated halocarbons, to presently account for 95% of the total burden of long-lived Cl and Br believed to enter the stratosphere. These long-term monitoring data have been assimilated into temporal records of the global tropospheric burdens of ozone-depleting chlorine and bromine which are critical input to models that predict future trends in stratospheric ozone. Other information pivotal to ozone projections, such as the atmospheric lifetimes of source gases, stratospheric entry values for total chlorine and total bromine, and identification of the stratospheric sink regions for long-lived source gases, has been gained from in situ measurements by NOAA/CMDL instruments aboard NASA high-altitude aircraft (ER-2 and WB-57) and balloons since 1991. Though CMDL's routine monitoring activities provide important historical records of halogenated source gases in the atmosphere, significant inaccuracies in ozone projections may propagate from the uncertain estimates of impending emissions of ozone-depleting gases. Scenarios of future halocarbon emissions require substantial assumptions about past and pending compliance with the Montreal Protocol, and the sizes and release rates of existing global reservoirs (banks) of halocarbons. Recent work by CMDL has focused on quantifying halocarbon bank emission rates in Russia, the USA, and Canada through geographically extensive measurements aboard trains and low-altitude aircraft. The USA and Canada results indicate that

  11. Climate Change May Bring More Tainted Shellfish to Northern Seas

    MedlinePlus

    ... page: https://medlineplus.gov/news/fullstory_160300.html Climate Change May Bring More Tainted Shellfish to Northern Seas ... must be monitored "in the light of ongoing climate change, especially in coastal areas most heavily affected by ...

  12. Radiation recommendation series: administratively required dental radiographs

    SciTech Connect

    Not Available

    1981-09-01

    Administrative requirements for radiographs are found in many segments of the United States health care system. This document presents an FDA radiation recommendation on administratively required dental x-ray examinations. In general, such examinations are not requested to further the patient's dental health, but rather as a means of monitoring claims. However, the administrative use of radiographs that have been taken in the normal course of patient care is usually appropriate, as long as the patient's right to privacy is respected.

  13. The Portuguese Climate Portal

    NASA Astrophysics Data System (ADS)

    Gomes, Sandra; Deus, Ricardo; Nogueira, Miguel; Viterbo, Pedro; Miranda, Miguel; Antunes, Sílvia; Silva, Alvaro; Miranda, Pedro

    2016-04-01

    The Portuguese Local Warming Website (http://portaldoclima.pt) has been developed in order to support the society in Portugal in preparing for the adaptation to the ongoing and future effects of climate change. The climate portal provides systematic and easy access to authoritative scientific data ready to be used by a vast and diverse user community from different public and private sectors, key players and decision makers, but also to high school students, contributing to the increase in knowledge and awareness on climate change topics. A comprehensive set of regional climate variables and indicators are computed, explained and graphically presented. Variables and indicators were built in agreement with identified needs after consultation of the relevant social partners from different sectors, including agriculture, water resources, health, environment and energy and also in direct cooperation with the Portuguese National Strategy for Climate Change Adaptation (ENAAC) group. The visual interface allows the user to dynamically interact, explore, quickly analyze and compare, but also to download and import the data and graphics. The climate variables and indicators are computed from state-of-the-art regional climate model (RCM) simulations (e.g., CORDEX project), at high space-temporal detail, allowing to push the limits of the projections down to local administrative regions (NUTS3) and monthly or seasonal periods, promoting local adaptation strategies. The portal provides both historical data (observed and modelled for the 1971-2000 period) and future climate projections for different scenarios (modelled for the 2011-2100 period). A large effort was undertaken in order to quantify the impacts of the risk of extreme events, such as heavy rain and flooding, droughts, heat and cold waves, and fires. Furthermore the different climate scenarios and the ensemble of RCM models, with high temporal (daily) and spatial (~11km) detail, is taken advantage in order to

  14. Elements of a Successful Climate Data Records Generation Program

    NASA Astrophysics Data System (ADS)

    Robinson, D. A.

    2005-12-01

    For the past four decades, data flowing from satellite-borne sensors have provided environmental information at spatial scales only dreamed of previously. Remarkable insights have been gained regarding Earth's land, atmosphere, oceans and cryosphere systems. This includes their internal dynamics and kinematics, along with important interrelationships. Additionally, time series of elements within these systems have been scrutinized in attempts to better understand climate variability and to identify critical trends that may signal changes in the climate system. From these studies, has emerged a growing appreciation for the importance of satellite climate data records (CDRs) that possess the accuracy, longevity and stability to facilitate credible climate monitoring. These satellite CDRs provide abundant information to assist those making decisions regarding the fate of our environment. Recently, a National Research Council committee was tasked with assisting the National Oceanic and Atmospheric Administration as it designs a plan to establish this agency as the chief steward of satellite CDRs. Based on an evaluation of historical lessons learned, community surveys, a workshop, and committee expertise, the committee identified 14 key elements for creating a CDR program based mainly on satellites. They are divided into three general categories that include organizational, generation and sustaining elements, many of which are applicable to any CDR endeavor. This presentation will address the 14 elements and provide examples of candidate satellite CDRs.

  15. Determination of elemental baseline using peltigeralean lichens from Northeastern Canada (Québec): Initial data collection for long term monitoring of the impact of global climate change on boreal and subarctic area in Canada.

    PubMed

    Darnajoux, Romain; Lutzoni, François; Miadlikowska, Jolanta; Bellenger, Jean-Philippe

    2015-11-15

    Northeastern Canada is mostly free of anthropogenic activities. The extent to which this territory has been impacted by anthropogenic atmospheric depositions remains to be studied. The main goal of our study was to establish background levels for metals in boreal muscicolous/terricolous macrolichens over non-urbanized areas of northeastern Canada (Québec). Concentrations of 18 elements (Na, Mg, Al, P, K, Ca, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Mo, Cd, and Pb) were determined for three species of the genus Peltigera (Peltigera aphthosa (L.) Willd. s.l., Peltigera neopolydactyla (Gyeln.) Gyeln. s.l., Peltigera scabrosa Th. Fr. s.l.), and Nephroma arcticum (L.) Torss., along a 1080 km south-north transect and along a of 730 km west-east transect. We report that elemental contents in the sampled lichen thalli are very low and similar to background levels found in other studies performed in pristine places (high elevation or remote ecosystems) throughout the world. Overall, our results demonstrate that most of the boreal and subarctic zone of Québec (northeastern Canada) is still pristine. The elemental baseline established in these lichen populations will contribute to monitor metal pollution in boreal and sub-polar ecosystems due to global climate change and future industrial expansion. PMID:26151649

  16. Senior Administrators Should Have Administrative Contracts.

    ERIC Educational Resources Information Center

    Posner, Gary J.

    1987-01-01

    Recognizing that termination is viewed by the employee as the equivalent to capital punishment of a career, an administrative contract can reduce the emotional and financial entanglements that often result. Administrative contracts are described. (MLW)

  17. Novice Administrators: Personality and Administrative Style Changes.

    ERIC Educational Resources Information Center

    Schmidt, Linda J.; Kosmoski, Georgia J.; Pollack, Dennis R.

    Since the advent of effective-schools research findings, educational administration experts have advocated a democratic and collegial leadership style for school administrators. This paper provides the findings of a study that examined 43 beginning administrators (25 females, 32 Caucasians, 9 African-Americans, 2 Hispanics) to determine what…

  18. Electronic bolus design impacts on administration.

    PubMed

    Hentz, F; Umstätter, C; Gilaverte, S; Prado, O R; Silva, C J A; Monteiro, A L G

    2014-06-01

    Electronic identification of animals has become increasingly important worldwide to improve and ensure traceability. In warm and hot climates, such as Brazil, boluses can have advantages over ear tags as the internal devices reduce the risks of ear tag losses, tissue damage, and lesions on the ear. Electronic boluses, however, are often perceived as having negative characteristics, including reported difficulties of administration in small ruminants. This paper describes the factors associated with bolus design that affect the swallowing of a bolus in sheep. Other factors that might influence bolus swallowing time have also been considered. In addition, the effect of bolus design on its performance was evaluated. A total of 56 Suffolk ewes were used to assess the ease of administration and retention of 3 types of electronic ruminal boluses (mini, 11.5 × 58.0 mm and 21.7 g; small, 14.8 × 48.5 mm and 29.5 g; standard, 19.3 × 69.8 mm and 74.4 g) during a whole productive year, including pregnancy and lamb suckling. Ewe age (5.6 ± 2.3 yr) and weight (85.07 ± 8.2 kg BW) were recorded, as well as time for bolus swallowing. The deglutition of the bolus and any resulting blockages in the esophagus were monitored by visual observations. Retention and readability of the boluses were regularly monitored for d 1, wk 1, mo 1, and every mo until 1 yr. Time for bolus swallowing differed substantially with bolus type and was greater (P < 0.05) for the standard bolus (32.8 ± 6.9 s) when compared to small and mini boluses, which did not differ (8.5 ± 2.0 vs. 9.2 ± 2.7 s; P > 0.05). The bolus o.d. and length were positively correlated with swallowing time (P < 0.01). The ewe weight was negatively correlated with swallowing time (P < 0.05). At 6 mo all electronic boluses showed 100% retention rate, and at 12 mo, bolus retention was 100%, 94.5%, and 100% for mini, small, and standard boluses, respectively (P > 0.05). At 12 mo, all boluses showed 100% readability, except for

  19. Climate Physics

    ERIC Educational Resources Information Center

    Space, William

    2007-01-01

    Numerous connections exist between climate science and topics normally covered in physics and physical science courses. For instance, lessons on heat and light can be used to introduce basic climate science, and the study of electric circuits provides a context for studying the relationship between electricity consumption and carbon pollution. To…

  20. Climate Kids

    MedlinePlus

    ... Kids NASA's Eyes on the Earth Global Climate Change Home Play Make Know Keep up Watch Dream Teach Hide Subjects Browse by Subject Guided Tour of the Big Questions Or, go to menu. Weather & Climate Air Ocean Fresh Water Carbon Travels Energy Plants & Animals Technology 10 Things About Air Learn about ...

  1. Climate Controlled?

    ERIC Educational Resources Information Center

    Harney, John O.

    2014-01-01

    More than 250 higher education leaders from campuses across the U.S. met last week in Boston for the 2014 Presidential Summit on Climate Leadership. The summit was organized by Second Nature, the supporting organization for the American College & University Presidents' Climate Commitment (ACUPCC). Almost 700 colleges and universities have…

  2. Zoonoses and climate variability.

    PubMed

    Cardenas, Rocio; Sandoval, Claudia M; Rodriguez-Morales, Alfonso J; Vivas, Paul

    2008-12-01

    Leishmaniasis in the Americas is transmitted by Lutzomyia spp., which have many animal reservoirs. Previous studies indicated potential changes in vectors of climate-related distribution, but impact outcomes need to be further studied. We report climatic and El Niño events during 1985-2002 that may have had an impact on leishmaniasis in 11 southern departments of Colombia: Amazonas, Caquetá, Cauca (Ca), Huila, Meta (Mt), Nariño, Putumayo (Py), Tolima, Valle (Va), Vaupes (Vp), and Vichada. Climatic data were obtained by satellite and epidemiologic data were obtained from the Health Ministry. NOAA climatic classification and SOI/ONI indexes were used as indicators of global climate variability. Yearly variation comparisons and median trend deviations were made for disease incidence and climatic variability. During this period there was considerable climatic variability, with a strong El Niño for 6 years and a strong La Niña for 8. During this period, 19,212 cases of leishmaniasis were registered, for a mean of 4756.83 cases/year. Disease in the whole region increased (mean of 4.98%) during the El Niño years in comparison to the La Niña years, but there were differences between departments with increases during El Niño (Mt 6.95%, Vp 4.84%), but the rest showed an increase during La Niña (1.61%-64.41%). Differences were significant in Va (P= 0.0092), Py (P= 0.0001), Ca (P= 0.0313), and for the whole region (P= 0.0023), but not in the rest of the departments. The importance of climate change is shown by shifts in insect and animal distributions. These data reflect the importance of climate on transmission of leishmaniasis and open further investigations related to forecasting and monitoring systems, where understanding the relationship between zoonoses and climate variability could help to improve the management of these emerging and reemerging diseases. PMID:19120241

  3. Individualizing Administrator Continuing Education. An Occasional Paper.

    ERIC Educational Resources Information Center

    Brainard, Edward

    This paper is one of a series of vocational papers reporting results of individualized continuing education (ICE) programs for school administrators and school climate improvement programs. It summarizes the practices of some 45 school districts throughout the nation that have actually been operating individualized continuing education programs.…

  4. Administrator Job Satisfaction in Higher Education

    ERIC Educational Resources Information Center

    Howard-Baldwin, Tonia; Celik, Bekir; Kraska, Marie

    2012-01-01

    The purpose of the study was to investigate the job satisfaction of men and women administrators in higher education in a four-year university in the southeast. In addition, the study examined whether there was a relationship between gender and overall job satisfaction, work climate, and job structure. Data were collected in the spring of 2009. …

  5. Administrator Job Satisfaction in Higher Education

    ERIC Educational Resources Information Center

    Howard Baldwin, Tonia Toinette

    2009-01-01

    The purpose of the study was to investigate the job satisfaction of men and women administrators in higher education in four-year public institutions in Alabama. In addition, the study examined whether there was a relationship between gender and overall job satisfaction, work climate, and job structure. In conducting the study, the researcher…

  6. The Administrative Team: Dynamism vs. Dysfunction

    ERIC Educational Resources Information Center

    Tyson, Nathan

    2008-01-01

    Before real success can come to any school, the administrative team must become a dynamic entity. The team and its ability to work within the school setting are fundamental to improving instruction and increasing student achievement. The team spirit that this group develops has ramifications on school climate that directly affect teachers,…

  7. 8. View north from hallway, through administration area to front ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    8. View north from hallway, through administration area to front entrance. - Natick Research & Development Laboratories, Climatic Chambers Building, U.S. Army Natick Research, Development & Engineering Center (NRDEC), Natick, Middlesex County, MA

  8. 40 CFR 75.66 - Petitions to the Administrator.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... produces data acceptable for use in the Acid Rain Program, including accuracy and precision statements... specified by the Administrator. (e) Parametric monitoring procedure petitions. The designated representative... information specified in § 75.58(b) for the use of a parametric monitoring method. The Administrator...

  9. 40 CFR 75.66 - Petitions to the Administrator.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... produces data acceptable for use in the Acid Rain Program, including accuracy and precision statements... specified by the Administrator. (e) Parametric monitoring procedure petitions. The designated representative... information specified in § 75.58(b) for the use of a parametric monitoring method. The Administrator...

  10. 40 CFR 75.66 - Petitions to the Administrator.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... produces data acceptable for use in the Acid Rain Program, including accuracy and precision statements... specified by the Administrator. (e) Parametric monitoring procedure petitions. The designated representative... information specified in § 75.58(b) for the use of a parametric monitoring method. The Administrator...

  11. 40 CFR 75.66 - Petitions to the Administrator.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... produces data acceptable for use in the Acid Rain Program, including accuracy and precision statements... specified by the Administrator. (e) Parametric monitoring procedure petitions. The designated representative... information specified in § 75.58(b) for the use of a parametric monitoring method. The Administrator...

  12. Self-Configuring Network Monitor

    2004-05-01

    Self-Configuring Network Monitor (SCNM) is a passive monitoring that can collect packet headers from any point in a network path. SCNM uses special activation packets to automatically activate monitors deployed at the layer three ingress and egress routers of the wide-area network, and at critical points within the site networks. Monitoring output data is sent back to the application data source or destination host. No modifications are required to the application or network routing infrastructuremore » in order to activate monitoring of traffic for an application. This ensures that the monitoring operation does not add a burden to the networks administrator.« less

  13. High Performance Network Monitoring

    SciTech Connect

    Martinez, Jesse E

    2012-08-10

    Network Monitoring requires a substantial use of data and error analysis to overcome issues with clusters. Zenoss and Splunk help to monitor system log messages that are reporting issues about the clusters to monitoring services. Infiniband infrastructure on a number of clusters upgraded to ibmon2. ibmon2 requires different filters to report errors to system administrators. Focus for this summer is to: (1) Implement ibmon2 filters on monitoring boxes to report system errors to system administrators using Zenoss and Splunk; (2) Modify and improve scripts for monitoring and administrative usage; (3) Learn more about networks including services and maintenance for high performance computing systems; and (4) Gain a life experience working with professionals under real world situations. Filters were created to account for clusters running ibmon2 v1.0.0-1 10 Filters currently implemented for ibmon2 using Python. Filters look for threshold of port counters. Over certain counts, filters report errors to on-call system administrators and modifies grid to show local host with issue.

  14. Climate Conditioning for the Learning Environment.

    ERIC Educational Resources Information Center

    Perkins and Will, Architects, Chicago, IL.

    Discusses heating, cooling, and ventilation for the classroom in relationship to students' learning abilities. It is designed to assist school boards, administrators, architects and engineers in understanding the beneficial effects of total climate control, and in evaluating the climate conditioning systems available for schools. Discussion…

  15. Inequalities in School Climate in California

    ERIC Educational Resources Information Center

    Jain, Sonia; Cohen, Alison K.; Huang, Kevin; Hanson, Thomas L.; Austin, Gregory

    2015-01-01

    Purpose: School climate, or the physical and social conditions of the learning environment, has implications for academic achievement. The paper aims to discuss this issue. Design/Methodology/Approach: The authors examine how school climate varies by school-level characteristics in California using administrative data and the California School…

  16. Climate change: Carbon losses in the Alps

    NASA Astrophysics Data System (ADS)

    Kirk, Guy

    2016-07-01

    Soil carbon stocks depend on inputs from decomposing vegetation and return to the atmosphere as CO2. Monitoring of carbon stocks in German alpine soils has shown large losses linked to climate change and a possible positive feedback loop.

  17. Earth System Monitoring, Introduction

    NASA Astrophysics Data System (ADS)

    Orcutt, John

    This section provides sensing and data collection methodologies, as well as an understanding of Earth's climate parameters and natural and man-made phenomena, to support a scientific assessment of the Earth system as a whole, and its response to natural and human-induced changes. The coverage ranges from climate change factors and extreme weather and fires to oil spill tracking and volcanic eruptions. This serves as a basis to enable improved prediction and response to climate change, weather, and natural hazards as well as dissemination of the data and conclusions. The data collection systems include satellite remote sensing, aerial surveys, and land- and ocean-based monitoring stations. Our objective in this treatise is to provide a significant portion of the scientific and engineering basis of Earth system monitoring and to provide this in 17 detailed articles or chapters written at a level for use by university students through practicing professionals. The reader is also directed to the closely related sections on Ecological Systems, Introduction and also Climate Change Modeling Methodology, Introduction as well as Climate Change Remediation, Introduction to. For ease of use by students, each article begins with a glossary of terms, while at an average length of 25 print pages each, sufficient detail is presented for use by professionals in government, universities, and industries. The chapters are individually summarized below.

  18. Climate Sensitivity

    SciTech Connect

    Lindzen, Richard

    2011-11-09

    Warming observed thus far is entirely consistent with low climate sensitivity. However, the result is ambiguous because the sources of climate change are numerous and poorly specified. Model predictions of substantial warming aredependent on positive feedbacks associated with upper level water vapor and clouds, but models are notably inadequate in dealing with clouds and the impacts of clouds and water vapor are intimately intertwined. Various approaches to measuring sensitivity based on the physics of the feedbacks will be described. The results thus far point to negative feedbacks. Problems with these approaches as well as problems with the concept of climate sensitivity will be described.

  19. Advancing Drought Understanding, Monitoring and Prediction

    NASA Technical Reports Server (NTRS)

    Mariotti, Annarita; Schubert, Siegfried D.; Mo, Kingtse; Peters-Lidard, Christa; Wood, Andy; Pulwarty, Roger; Huang, Jin; Barrie, Dan

    2013-01-01

    , focused and coordinated research efforts are needed, drawing from excellence across the broad drought research community. To meet this challenge, National Oceanic and Atmospheric Administration (NOAA)'s Drought Task Force was established in October 2011 with the ambitious goal of achieving significant new advances in the ability to understand, monitor, and predict drought over North America. The Task Force (duration of October 2011-September 2014) is an initiative of NOAA's Climate Program Office Modeling, Analysis, Predictions, and Projections (MAPP) program in partnership with NIDIS. It brings together over 30 leading MAPP-funded drought scientists from multiple academic and federal institutions [involves scientists from NOAA's research laboratories and centers, the National Aeronautics and Space Administration (NASA), U.S. Department of Agriculture, National Center for Atmospheric Research (NCAR), and many universities] in a concerted research effort that builds on individual MAPP research projects. These projects span the wide spectrum of drought research needed to make fundamental advances, from those aimed at the basic understanding of drought mechanisms to those aimed at testing new drought monitoring and prediction tools for operational and service purposes (as part of NCEP's Climate Test Bed). The Drought Task Force provides focus and coordination to MAPP drought research activities and also facilitates synergies with other national and international drought research efforts, including those by the GDIS.

  20. Features of Duration and Borders of the Bedding of Snow Cover in the Conditions of Climatic Changes in the Territory of Northern Kazakhstan According to Land and Space Monitoring

    NASA Astrophysics Data System (ADS)

    Salnikov, Vitaliy; Turulina, Galina; Polyakova, Svetlana; Muratova, Nadiya; Kauazov, Azamat; Abugalieva, Aigul; Tazhibayeva, Tamara

    2014-05-01

    Precipitation and air temperature datasets from 34 meteorological stations were analyzed to reveal the regional climate changes at the territory in North Kazakhstan over the last 58 years (i.e., 1950-2008). Peculiarities and conditions of snow cover formation and melting have been analyzed at territory of Northern Kazakhstan using surface and space monitoring data. Methods of both the geo-informational processing of remote probing data and statistical processing of databases on snow cover, air temperature and precipitations have been used. Analysis of snow cover observations data for territory of Northern Kazakhstan has shown that the stable snow cover might be observed since the middle of November till the beginning of April. In a few last decades the tendency is observed for longevity decrease of snow cover bedding that appears to be on the background air temperature increase and insignificant increase of cold period precipitations due to the later bedding of the snow cover and its earlier destruction. Peculiarities of atmospheric circulation in Atlantic-Eurasian sector of Northern Semi sphere and their influence of formation of snow cover at territory of Northern Kazakhstan. The higher longevity of the snow cover bedding is defined by the predominance of E form circulation and lower longevity - by the predominance of W+C circulation form. Analysis conducted of the highest height of snow cover bedding has shown that for period of 1936-2012 in the most cases the statistically reliable decreasing trends are observed with the linear trend coefficients of 0,50 - 0,60 cm/year. The method is offered for determination of probable characteristics of the snow cover decade height. Using data of space monitoring are allocated the frontiers of snow cover bedding for the period of snow melting 1982-2008 and the snow cover melting maps are developed. The results further confirm the proposition that snow cover availability is an important and limiting factor in the generation

  1. Regional Collaborations to Combat Climate Change: The Climate Science Centers as Strategies for Climate Adaptation

    NASA Astrophysics Data System (ADS)

    Morelli, T. L.; Palmer, R. N.

    2014-12-01

    The Department of Interior Northeast Climate Science Center (NE CSC) is part of a federal network of eight Climate Science Centers created to provide scientific information, tools, and techniques that managers and other parties interested in land, water, wildlife and cultural resources can use to anticipate, monitor, and adapt to climate change. The consortium approach taken by the CSCs allows the academic side of the Centers to gather expertise across departments, disciplines, and even institutions. This interdisciplinary approach is needed for successfully meeting regional needs for climate impact assessment, adaptive management, education, and stakeholder outreach. Partnership with the federal government facilitates interactions with the key on-the-ground stakeholders who are able to operationalize the results and conclusions of that research, monitor the progress of management actions, and provide feedback to refine future methodology and decisions as new information on climate impacts is discovered. For example, NE CSC researchers are analyzing the effect of climate change on the timing and volume of seasonal and annual streamflows and the concomitant effects on ecological and cultural resources; developing techniques to monitor tree range dynamics as affected by natural disturbances which can enable adaptation of projected climate impacts; studying the effects of changes in the frequency and magnitude of drought and stream temperature on brook trout habitats, spatial distribution and population persistence; and conducting assessments of northeastern regional climate projections and high-resolution downscaling. Project methods are being developed in collaboration with stakeholders and results are being shared broadly with federal, state, and other partners to implement and refine effective and adaptive management actions.

  2. 20 CFR 653.108 - State agency self-monitoring.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 20 Employees' Benefits 3 2014-04-01 2014-04-01 false State agency self-monitoring. 653.108 Section... agency self-monitoring. (a) State Administrators shall assure that their State agencies monitor their own... overall responsibility for State agency self-monitoring. (b) The State Administrator shall appoint a...

  3. 20 CFR 653.108 - State agency self-monitoring.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 20 Employees' Benefits 3 2012-04-01 2012-04-01 false State agency self-monitoring. 653.108 Section... agency self-monitoring. (a) State Administrators shall assure that their State agencies monitor their own... overall responsibility for State agency self-monitoring. (b) The State Administrator shall appoint a...

  4. 20 CFR 653.108 - State agency self-monitoring.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 20 Employees' Benefits 3 2013-04-01 2013-04-01 false State agency self-monitoring. 653.108 Section... agency self-monitoring. (a) State Administrators shall assure that their State agencies monitor their own... overall responsibility for State agency self-monitoring. (b) The State Administrator shall appoint a...

  5. The Northeast Climate Science Center

    NASA Astrophysics Data System (ADS)

    Ratnaswamy, M. J.; Palmer, R. N.; Morelli, T.; Staudinger, M.; Holland, A. R.

    2013-12-01

    The Department of Interior Northeast Climate Science Center (NE CSC) is part of a federal network of eight Climate Science Centers created to provide scientific information, tools, and techniques that managers and other parties interested in land, water, wildlife and cultural resources can use to anticipate, monitor, and adapt to climate change. Recognizing the critical threats, unique climate challenges, and expansive and diverse nature of the northeast region, the University of Massachusetts Amherst, College of Menominee Nation, Columbia University, Marine Biological Laboratory, University of Minnesota, University of Missouri Columbia, and University of Wisconsin-Madison have formed a consortium to host the NE CSC. This partnership with the U.S. Geological Survey climate science center network provides wide-reaching expertise, resources, and established professional collaborations in both climate science and natural and cultural resources management. This interdisciplinary approach is needed for successfully meeting the regional needs for climate impact assessment, adaptive management, education, and stakeholder outreach throughout the northeast region. Thus, the NE CSC conducts research, both through its general funds and its annual competitive award process, that responds to the needs of natural resource management partners that exist, in part or whole, within the NE CSC bounds. This domain includes the North Atlantic, Upper Midwest and Great Lakes, Eastern Tallgrass and Big Rivers, and Appalachian Landscape Conservation Cooperatives (LCCs), among other management stakeholders. For example, researchers are developing techniques to monitor tree range dynamics as affected by natural disturbances which can enable adaptation of projected climate impacts; conducting a Designing Sustainable Landscapes project to assess the capability of current and potential future landscapes in the Northeast to provide integral ecosystems and suitable habitat for a suite of

  6. Aquarius: Climate

    NASA Video Gallery

    Sea surface salinity has a massive influence on Earth’s climate. With Aquarius, scientists will have a new way to measure that influence in a consistent way. With its unprecedented accurate and ...

  7. Climate catastrophes

    NASA Astrophysics Data System (ADS)

    Budyko, Mikhail

    1999-05-01

    Climate catastrophes, which many times occurred in the geological past, caused the extinction of large or small populations of animals and plants. Changes in the terrestrial and marine biota caused by the catastrophic climate changes undoubtedly resulted in considerable fluctuations in global carbon cycle and atmospheric gas composition. Primarily, carbon dioxide and other greenhouse gas contents were affected. The study of these catastrophes allows a conclusion that climate system is very sensitive to relatively small changes in climate-forcing factors (transparency of the atmosphere, changes in large glaciations, etc.). It is important to take this conclusion into account while estimating the possible consequences of now occurring anthropogenic warming caused by the increase in greenhouse gas concentration in the atmosphere.

  8. Organization/Administration.

    ERIC Educational Resources Information Center

    Chaffee, Ellen Earle

    Patterns that emerged from reviewing 26 syllabi for courses on organization and administration in higher education are discussed, and six sample syllabi are presented. The syllabi focused more on organization than administration. Of the 26 syllabi, 19 dealt with organization and administration generally; 5 with administration in a specific…

  9. A Behavioral Analysis of the Charles F. Kettering Climate Scale.

    ERIC Educational Resources Information Center

    Johnson, William L.; Nussbaum, Claire A.

    In the past several years, numerous educational climate instruments and questionnaires have been developed. One such instrument is the Charles F. Kettering (CFK) School Climate Profile, a popular measure of school climate that is widely used to gather data for administrative planning and curriculum revision. The instrument is patterned on the…

  10. 78 FR 46923 - National Climate Assessment and Development Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-02

    ... National Oceanic and Atmospheric Administration National Climate Assessment and Development Advisory... the National Climate Assessment and Development Advisory Committee (NCADAC) for a period of time that is either 90 days after the government's Third National Climate Assessment is released to the...

  11. 78 FR 4132 - National Climate Assessment and Development Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-18

    ... report on climate change science and impacts, is conducted pursuant to the Global Change Research Act... National Oceanic and Atmospheric Administration RIN 0648-XC433 National Climate Assessment and Development... of the National Climate Assessment and Development Advisory Committee (NCADAC) to announce...

  12. Monitoring the urban heat island of Bucharest (Romania) through a network of automatic meteorological sensors - first results

    NASA Astrophysics Data System (ADS)

    Cheval, Sorin; Lucaschi, Bogdan; Ioja, Cristian; Dumitrescu, Alexandru; Manea, Ancuta; Radulescu, Adrian; Dumitrache, Catalin; Tudorache, George; Vanau, Gabriel; Onose, Diana

    2015-04-01

    Extreme warm temperatures and heat waves represent one of the major climate hazards which impact the city of Bucharest (Romania), favoured by the climate background and by the urban characteristics. Previous studies based either on sparse ground sensors or satellite remote sensing indicate that the average differences between the monthly temperature of the built area and the neighbouring rural buffers of Bucharest can reach 3-4°C, but instantaneous values are certainly higher. Since the city shelters about 2 million residents, as well as the major administrative and economic facilities of the country, the hazard management should receive a vivid attention. The meteorological monitoring of the city is currently performed in a systematic manner by the National Meteorological Administration (NMA) through 3 ground-based stations following the standards of the World Meteorological Organization, and through radar and satellite remote sensing. In 2014, NMA set up 7 automatic sensors in specific urban conditions, while the University of Bucharest deployed 30 mobile sensors in a joint effort for enhancing the accuracy of the urban heat island monitoring. Both sensor devices are designed for continuous monitoring (24/7). This presentation focuses on the technical characteristics of the recently implemented network (1), and brings to the public the first results of the monitoring (2), including the implementation experience, the observed benefits and plans for development and applications. The data obtained are compared with the existing data sets from meteorological stations and satellite products, and they are currently integrated in a common database, providing valuable information about the Bucharest's urban heat island. The results have been obtained within the project UCLIMESA (Urban Heat Island Monitoring under Present and Future Climate), ongoing between 2013 and 2015 in the framework of the Programme for Research-Development-Innovation for Space Technology and

  13. Climate Models

    NASA Technical Reports Server (NTRS)

    Druyan, Leonard M.

    2012-01-01

    Climate models is a very broad topic, so a single volume can only offer a small sampling of relevant research activities. This volume of 14 chapters includes descriptions of a variety of modeling studies for a variety of geographic regions by an international roster of authors. The climate research community generally uses the rubric climate models to refer to organized sets of computer instructions that produce simulations of climate evolution. The code is based on physical relationships that describe the shared variability of meteorological parameters such as temperature, humidity, precipitation rate, circulation, radiation fluxes, etc. Three-dimensional climate models are integrated over time in order to compute the temporal and spatial variations of these parameters. Model domains can be global or regional and the horizontal and vertical resolutions of the computational grid vary from model to model. Considering the entire climate system requires accounting for interactions between solar insolation, atmospheric, oceanic and continental processes, the latter including land hydrology and vegetation. Model simulations may concentrate on one or more of these components, but the most sophisticated models will estimate the mutual interactions of all of these environments. Advances in computer technology have prompted investments in more complex model configurations that consider more phenomena interactions than were possible with yesterday s computers. However, not every attempt to add to the computational layers is rewarded by better model performance. Extensive research is required to test and document any advantages gained by greater sophistication in model formulation. One purpose for publishing climate model research results is to present purported advances for evaluation by the scientific community.

  14. Administration in the Research Environment--A New Perspective.

    ERIC Educational Resources Information Center

    Foutty, Jennifer

    1996-01-01

    Principles of effective research administration originally written over a decade ago are revised to reflect the challenges of a new, technologically advanced, and rapidly changing climate. They now include establishing, communicating, and constantly evaluating the goals of research administration in conjunction with institutional partners;…

  15. Using Web GIS "Climate" for Adaptation to Climate Change

    NASA Astrophysics Data System (ADS)

    Gordova, Yulia; Martynova, Yulia; Shulgina, Tamara

    2015-04-01

    A work is devoted to the application of an information-computational Web GIS "Climate" developed by joint team of the Institute of Monitoring of Climatic and Ecological Systems SB RAS and Tomsk State University to raise awareness about current and future climate change as a basis for further adaptation. Web-GIS "Climate» (http://climate.scert.ru/) based on modern concepts of Web 2.0 provides opportunities to study regional climate change and its consequences by providing access to climate and weather models, a large set of geophysical data and means of processing and visualization. Also, the system is used for the joint development of software applications by distributed research teams, research based on these applications and undergraduate and graduate students training. In addition, the system capabilities allow creating information resources to raise public awareness about climate change, its causes and consequences, which is a necessary step for the subsequent adaptation to these changes. Basic information course on climate change is placed in the public domain and is aimed at local population. Basic concepts and problems of modern climate change and its possible consequences are set out and illustrated in accessible language. Particular attention is paid to regional climate changes. In addition to the information part, the course also includes a selection of links to popular science network resources on current issues in Earth Sciences and a number of practical tasks to consolidate the material. These tasks are performed for a particular territory. Within the tasks users need to analyze the prepared within the "Climate" map layers and answer questions of direct interest to the public: "How did the minimum value of winter temperatures change in your area?", "What are the dynamics of maximum summer temperatures?", etc. Carrying out the analysis of the dynamics of climate change contributes to a better understanding of climate processes and further adaptation

  16. SORCE: Solar Radiation and Climate Experiment

    NASA Technical Reports Server (NTRS)

    Cahalan, Robert; Rottman, Gary; Lau, William K. M. (Technical Monitor)

    2002-01-01

    Contents include the following: Understanding the Sun's influence on the Earth; How the Sun affect Earth's climate; By how much does the Sun's radiation very; Understanding Solar irradiance; History of Solar irradiance observations; The SORCE mission; How do the SORCE instruments measure solar radiation; Total irradiance monitor (TIM); Spectral irradiance monitor (SIM); Solar stellar irradiance comparison experiment (SOLSTICE); XUV photometer system (XPS).

  17. Integrating Climate Information and Decision Processes for Regional Climate Resilience

    NASA Astrophysics Data System (ADS)

    Buizer, James; Goddard, Lisa; Guido, Zackry

    2015-04-01

    under which they make their decisions, and the non-public institutions of support that are available to them. We then interpret this complex reality in terms of the demand for science-based climate products and analyze the channels through which such climate support must pass, thus linking demand assessment with the scientific capacity to create appropriate decision support tools. In summary, the approach we employ is: 1) Demand-driven, beginning with a knowledge of the impacts of climate variability and change upon targeted populations, 2) Focused on vulnerability and resilience, which requires an understanding of broader networks of institutional actors who contribute to the adaptive capacity of vulnerable peoples, 3) Needs-based in that the climate needs matrix set priorities for the assessment of relevant climate products, 4) Dynamic in that the producers of climate products are involved at the point of demand assessment and can respond directly to stated needs, 5) Reflective in that the impacts of climate product interventions are subject to monitoring and evaluation throughout the process. Methods, approaches and preliminary results of our work in the Caribbean will be presented.

  18. Hybrid Zones: Windows on Climate Change

    PubMed Central

    Larson, Erica L.; Harrison, Richard G.

    2016-01-01

    Defining the impacts of anthropogenic climate change on biodiversity and species distributions is currently a high priority. Niche models focus primarily on predicted changes in abiotic factors; however, species interactions and adaptive evolution will impact the ability of species to persist in the face of changing climate. Our review focuses on the use of hybrid zones to monitor species' responses to contemporary climate change. Monitoring hybrid zones provides insight into how range boundaries shift in response to climate change by illuminating the combined effects of species interactions and physiological sensitivity. At the same time, the semi-permeable nature of species boundaries allows us to document adaptive introgression of alleles associated with response to climate change. PMID:25982153

  19. Monitoring materials

    DOEpatents

    Orr, Christopher Henry; Luff, Craig Janson; Dockray, Thomas; Macarthur, Duncan Whittemore

    2002-01-01

    The apparatus and method provide techniques for effectively implementing alpha and/or beta and/or gamma monitoring of items or locations as desired. Indirect alpha monitoring by detecting ions generated by alpha emissions, in conjunction with beta and/or gamma monitoring is provided. The invention additionally provides for screening of items prior to alpha monitoring using beta and/or gamma monitoring, so as to ensure that the alpha monitoring apparatus is not contaminated by proceeding direct to alpha monitoring of a heavily contaminated item or location. The invention provides additional versatility in the emission forms which can be monitored, whilst maintaining accuracy and avoiding inadvertent contamination.

  20. 5 CFR 430.306 - Monitoring performance.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 5 Administrative Personnel 1 2010-01-01 2010-01-01 false Monitoring performance. 430.306 Section 430.306 Administrative Personnel OFFICE OF PERSONNEL MANAGEMENT CIVIL SERVICE REGULATIONS PERFORMANCE MANAGEMENT Managing Senior Executive Performance § 430.306 Monitoring performance. (a) Supervisors...

  1. 5 CFR 430.306 - Monitoring performance.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 5 Administrative Personnel 1 2012-01-01 2012-01-01 false Monitoring performance. 430.306 Section 430.306 Administrative Personnel OFFICE OF PERSONNEL MANAGEMENT CIVIL SERVICE REGULATIONS PERFORMANCE MANAGEMENT Managing Senior Executive Performance § 430.306 Monitoring performance. (a) Supervisors...

  2. 5 CFR 430.306 - Monitoring performance.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 5 Administrative Personnel 1 2014-01-01 2014-01-01 false Monitoring performance. 430.306 Section 430.306 Administrative Personnel OFFICE OF PERSONNEL MANAGEMENT CIVIL SERVICE REGULATIONS PERFORMANCE MANAGEMENT Managing Senior Executive Performance § 430.306 Monitoring performance. (a) Supervisors...

  3. 5 CFR 430.306 - Monitoring performance.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 5 Administrative Personnel 1 2013-01-01 2013-01-01 false Monitoring performance. 430.306 Section 430.306 Administrative Personnel OFFICE OF PERSONNEL MANAGEMENT CIVIL SERVICE REGULATIONS PERFORMANCE MANAGEMENT Managing Senior Executive Performance § 430.306 Monitoring performance. (a) Supervisors...

  4. 5 CFR 430.306 - Monitoring performance.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 5 Administrative Personnel 1 2011-01-01 2011-01-01 false Monitoring performance. 430.306 Section 430.306 Administrative Personnel OFFICE OF PERSONNEL MANAGEMENT CIVIL SERVICE REGULATIONS PERFORMANCE MANAGEMENT Managing Senior Executive Performance § 430.306 Monitoring performance. (a) Supervisors...

  5. AIRS radiometric calibration validation for climate research

    NASA Technical Reports Server (NTRS)

    Aumann, Hartmut H.; Pagano, Thomas S.; Elliott, Denis; Gaiser, Steve; Gregorich, Dave; Broberg, Steve

    2005-01-01

    Climate research using data from satellite based radiometers makes extreme demands on the traceability and stability of the radiometric calibration. The selection of a cooled grating array spectrometer for the Atmospheric Infrared Sounder, AIRS, is key, but does not ensured that AIRS data will be of climate quality. Additional design features, plus additional pre-launch testing, and extensive on-orbit calibration subsystem monitoring beyond what would suffice for application of the data to weather forecasting were required to ensure the radiometric data quality required for climate research. Validation that climate data quality are being generated makes use of the sea surface skin temperatures (SST and (obs-calc).

  6. Administration for Community Living

    MedlinePlus

    ... by Acting Assistant Secretary for Aging and ACL Administrator Edwin Walker at the HCBS Conference (08/29/ ... Remarks by Assistant Secretary on Aging and ACL Administrator Kathy Greenlee at the n4a Answers on Aging ...

  7. The New Administrative Computing.

    ERIC Educational Resources Information Center

    Green, Kenneth C.

    1988-01-01

    The past decade has seen dramatic changes in administrative computing, including more systems, more applications, a new group of computer users, and new opportunities for computer use in campus administration. (Author/MSE)

  8. Transportation Security Administration

    MedlinePlus

    ... content Official website of the Department of Homeland Security Transportation Security Administration When I fly can I bring my... ... to know if you could bring through the security checkpoint. Main menu Administrator Travel Security Screening Special ...

  9. Monitoring the source monitoring.

    PubMed

    Luna, Karlos; Martín-Luengo, Beatriz

    2013-11-01

    The hypothesis that the retrieval of correct source memory cues, those leading to a correct source attribution, increases confidence, whereas the retrieval of incorrect source memory cues, those leading to a source misattribution, decreases confidence was tested. Four predictions were derived from this hypothesis: (1) confidence should be higher for correct than incorrect source attribution except; (2) when no source cues are retrieved; (3) only the source misattributions inferred from the retrieval of incorrect source cues will be rated with low confidence; and (4) the number of source cues retrieved, either correct or incorrect, will affect the confidence in the source attributions. To test these predictions, participants read two narratives from two witnesses to a bank robbery, a customer and a teller. Then, participants completed a source monitoring test with four alternatives, customer, teller, both, or neither, and rated their confidence in their source attribution. Results supported the first three predictions, but they also suggested that the number of correct source monitoring cues retrieved did not play a role in the monitoring of the accuracy of the source attributions. Attributions made from the recovery of incorrect source cues could be tagged as dubious or uncertain, thus leading to lowered confidence irrespective of the number of incorrect source cues or whether another correct source cue was also recovered. This research has potential applications for eyewitness memory because it shows that confidence can be an indicator of the accuracy of a source attribution. PMID:23553316

  10. On the usability of frequency distributions and source attribution of Cs-137 detections encountered in the IMS radio-nuclide network for radionuclide event screening and climate change monitoring

    NASA Astrophysics Data System (ADS)

    Becker, A.; Wotawa, G.; Zähringer, M.

    2009-04-01

    Under the provisions of the Comprehensive Nuclear-Test-Ban Treaty (CTBT), airborne radioactivity is measured by means of high purity Germanium gamma ray detectors deployed in a global monitoring network. Almost 60 of the scheduled 80 stations have been put in provisional operations by the end of 2008. Each station daily sends the 24 hour samples' spectroscopic data to the Vienna based Provisional Technical Secretariat (PTS) of the CTBT Organization (CTBTO) for review for treaty-relevant nuclides. Cs-137 is one of these relevant isotopes. Its typical minimum detectable concentration is in the order of a few Bq/m3. However, this isotope is also known to occur in atmospheric trace concentrations, due to known non CTBT relevant processes and sources related to, for example, the re-suspension of cesium from historic nuclear tests and/or the Chernobyl reactor disaster, temporarily enhanced by bio-mass burning (Wotawa et al. 2006). Properly attributed cesium detections can be used as a proxy to detect Aeolian dust events (Igarashi et al, 2001) that potentially carry cesium from all aforementioned sources but are also known to play an important role for the radiative forcing in the atmosphere (shadow effect), at the surface (albedo) and the carbon dioxide cycle when interacting with oceanic phytoplankton (Mikami and Shi, 2005). In this context this paper provides a systematic attribution of recent Cs-137 detections in the PTS monitoring network in order to Characterize those stations which are regularly affected by Cs-137 Provide input for procedures that distinguish CTBT relevant detection from other sources (event screening) Explore on the capability of certain stations to use their Cs-137 detections as a proxy to detect aeolian dust events and to flag the belonging filters to be relevant for further investigations in this field (-> EGU-2009 Session CL16/AS4.6/GM10.1: Aeolian dust: initiator, player, and recorder of environmental change). References Igarashi, Y., M

  11. Isotopic monitoring (2H, 18O) of the St. Lawrence and Ottawa rivers between 1997 and 2003- Links with interannual climatic variability and hydrological processes in their catchment basins

    NASA Astrophysics Data System (ADS)

    Myre, A.; Hillaire-Marcel, C.

    2004-05-01

    This study based on a water isotope (18O and 2H) monitoring of the St. Lawrence and Ottawa rivers (Canada) is a contribution to the international IAEA project: Isotopes tracing of hydrologic processes in large river basins [Gibson et al., 2002. EOS 83: 613 et p.]. Sampling of the St. Lawrence and Ottawa river waters started in 1997, on a biweekly to weekly basis. Monitoring stations are located at Montreal (i.e., at the outlet of the Great Lakes), Quebec City (the estuary of the St. Lawrence) and at the Carillon hydroelectric dam, near the outlet of a major tributary, the Ottawa River into the St. Lawrence itself. The goal of the study was to examine the seasonal and interannual variability of isotopic signatures of the St. Lawrence and Ottawa rivers, in relation notably with interannual climatic variations, and seasonal hydrologic processes in the watershed (summer evaporation, snowmelt, transit time of precipitation signals into runoff). Waters sampled at the three stations depict distinct isotopic compositions. At Montreal, relatively stable isotopic composition are observed with a mean weighted annual value of -54 % for 2H and -7.1 % for 18O. The Ottawa River water at Carillon also displays stable isotopic compositions but much lighter values (weighted mean annual values: -80 % for 2H and -10.8 % for 18O). Finally, isotopic compositions at Quebec City are intermediate between those of Montreal and Carillon, but show a much larger variability. They reflect mixing between the heavy isotope enriched Great Lakes water, the lighter water from the Ottawa River, and highly variable inputs from smaller tributaries (from the Laurentides and Appalachian mountains). The mean weighted isotopic compositions at Quebec City are -65 % and -8.6 %, respectively for 2H and 18O). Evaporative enrichment, in particular during low water level episodes, seem to be more important in the Ottawa River catchment than in the Great Lakes basin, based on a comparison of isotopic clusters at

  12. NASA, NOAA administrators nominated

    NASA Astrophysics Data System (ADS)

    Richman, Barbara T.

    President Ronald Reagan recently said he intended to nominate James Montgomery Beggs as NASA Administrator and John V. Byrne as NOAA Administrator. These two positions are key scientific posts that have been vacant since the start of the Reagan administration on January 20. The President also said he intends to nominate Hans Mark as NASA Deputy Administrator. At press time, Reagan had not designated his nominee for the director of the Office of Science and Technology Policy.

  13. Jason-3, climate and outreach

    NASA Astrophysics Data System (ADS)

    Rosmorduc, Vinca; Bronner, Emilie; De Staerke, Danielle

    2016-04-01

    Two radar altimetry satellites are to be launched beginning of 2016. Jason-3 is a EUMETSAT/NOAA/CNES/NASA mission follow-on to Jason-2, Jason-1 and previously Topex/Poseidon, thus continuing on the now 23-year homogeneous time series into a 30-year climate-relevant length. Sentinel-3 is an European mission in the frame of the Copernicus programme. A few weeks before the launches, late 2015, the United Nations Climate Change Conference 21st yearly session of the Conference of the Parties (COP 21) meeting took place in Paris end of 2015 (30 November to 11 December 2015), so the talk in France and in quite a lot of countries at that time was about climate, climate monitoring and climate change. And, at the same time, a nimportant El Niño episode was reaching its peak, with its impacts seen all over the globe. On both subjects, radar altimetry has a monitoring role to play, and from the very beginning of the CNES/NASA Topex/Poseidon-Jason series of satellites, these subjects were broached in its outreach. We will detail how those subjects were disseminated, and especially how they got into media coverages, what seem the best (nowadays) canals to outreach a subject to a more or less wide audience.

  14. A Philosophy of Administration.

    ERIC Educational Resources Information Center

    Bruening, William H.

    Justification is given for paying relatively large salaries to college administrators, specifically the president or chancellor and the chief academic officer. Three administrative task areas are discussed as criteria: management, administration per se, and leadership. It is contended that only leadership can be used as a criterion for…

  15. School Business Administration.

    ERIC Educational Resources Information Center

    Jordan, K. Forbis; And Others

    This textbook reviews the principal concerns within each of 13 major responsibility areas in school business administration. The first chapter assesses the political, social, and economic context in which schools function and school administrators work. The role and function of the school business administrator within this context is addressed in…

  16. Climate Fluctuations and Climate Sensitivity

    NASA Technical Reports Server (NTRS)

    North, Gerald R.; Yip, Kuor-Jier Joseph

    1990-01-01

    Some evidence is presented that the main part of the atmospheric climate system is such that small forcings in the heat balance lead to linear responses in the surface temperature field. By examining first a noise forced energy-balance climate model and then comparing it with a long run of a highly symmetrical general circulation model, one finds a remarkable connection between spatial autocorrelation statistics and the thermal influence function for a point heat source. These findings are brought together to indicate that this particular climatological field may be largely governed by linear processes.

  17. 75 FR 22391 - Notice of Web Site Publication for the Climate Program Office

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-28

    ... National Oceanic and Atmospheric Administration Notice of Web Site Publication for the Climate Program... Climate Program Office solicitation of grant proposals on its Web site at http://www.climate.noaa.gov... Climate Program Office Web site pertaining to the CPO's research strategies, objectives, and...

  18. Mars Climate Orbiter

    NASA Technical Reports Server (NTRS)

    1998-01-01

    The Mars Surveyor '98 Climate Orbiter is shown here during acoustic tests that simulate launch conditions. The orbiter was to conduct a two year primary mission to profile the Martian atmosphere and map the surface. To carry out these scientific objectives, the spacecraft carried a rebuilt version of the pressure modulated infrared radiometer, lost with the Mars Observer spacecraft, and a miniaturized dual camera system the size of a pair of binoculars, provided by Malin Space Science Systems, Inc., San Diego, California. During its primary mission, the orbiter was to monitor Mars atmosphere and surface globally on a daily basis for one Martian year (two Earth years), observing the appearance and movement of atmospheric dust and water vapor, as well as characterizing seasonal changes of the planet's surface. Imaging of the surface morphology would also provide important clues about the planet's climate in its early history. The mission was part of NASA's Mars Surveyor program, a sustained program of robotic exploration of the red planet, managed by the Jet Propulsion Laboratory for NASA's Office of Space Science, Washington, DC. Lockheed Martin Astronautics was NASA's industrial partner in the mission. Unfortunately, Mars Climate Orbiter burned up in the Martian atmosphere on September 23, 1999, due to a metric conversion error that caused the spacecraft to be off course.

  19. 7 CFR 1467.2 - Administration.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... AGRICULTURE LOANS, PURCHASES, AND OTHER OPERATIONS WETLANDS RESERVE PROGRAM § 1467.2 Administration. (a) The... historically underserved producers as authorized by 16 U.S.C. 3844; special pilot programs for wetland management and monitoring; acquisition of wetland easements with emergency funding; cooperative...

  20. Lunar Health Monitor (LHM)

    NASA Technical Reports Server (NTRS)

    Lisy, Frederick J.

    2015-01-01

    Orbital Research, Inc., has developed a low-profile, wearable sensor suite for monitoring astronaut health in both intravehicular and extravehicular activities. The Lunar Health Monitor measures respiration, body temperature, electrocardiogram (EKG) heart rate, and other cardiac functions. Orbital Research's dry recording electrode is central to the innovation and can be incorporated into garments, eliminating the need for conductive pastes, adhesives, or gels. The patented dry recording electrode has been approved by the U.S. Food and Drug Administration. The LHM is easily worn under flight gear or with civilian clothing, making the system completely versatile for applications where continuous physiological monitoring is needed. During Phase II, Orbital Research developed a second-generation LHM that allows sensor customization for specific monitoring applications and anatomical constraints. Evaluations included graded exercise tests, lunar mission task simulations, functional battery tests, and resting measures. The LHM represents the successful integration of sensors into a wearable platform to capture long-duration and ambulatory physiological markers.

  1. Good neighbor monitoring

    SciTech Connect

    Schukraft, D.F.

    1995-11-01

    Since 1896, when a Unocal 76 products oil refinery was sited overlooking San Pablo bay, urban sprawl has crept up and neighbors now include housing projects, shopping centers and schools. To ensure that the area is a safe and enjoyable place for all to live and work, Unocal is working with local community groups to monitor air quality. The refinery has recently installed a sophisticated air quality and meterological monitoring system designed to provide an early warning should sulfur compounds or hydrocarbons begin to reach unhealthful levels. Siting of the monitoring station was a joint effort by school administrators from the nearby Hillcrest Elementary School and the Bay Area Air Quality Management District. By strategically locating the station adjacent to the school, emission levels coming from the refinery or other local sources can be effectively monitored. A unique part of this program is how closely Unocal, Hillcrest School and BAAQMD work together. All three groups have access to the data.

  2. Climate information products for users: Examples from the German Climate Service Center

    NASA Astrophysics Data System (ADS)

    Hänsler, Andreas; Jacob, Daniela; Brasseur, Guy; Pfeifer, Susanne; Rechid, Diana; Hennemuth, Barbara; Keup-Thiel, Elke

    2014-05-01

    In 2009, the German Federal Government (BMBF) established the German Climate Service Center (CSC) as part of the Hightech-Strategy for protection against climate change and the German Adaptation Strategy. The fundamental objective of the CSC is to support society (business, administration) to cope with climate risks and opportunities. In the first five years, the CSC developed a set of tools and products in order to provide climate information to users. These products were mostly developed in close cooperation with the customers and are therefore sector-specific and tailored to the actual users needs. In the presentation a selection of those user-tailored climate service products such as Climate-Fact-Sheets or Climate Signal Maps will be introduced and their application will be highlighted.

  3. Climate and development

    SciTech Connect

    Biswas, A.K.

    1984-01-01

    The authors review the existing knowledge on the inter-relationships between climate and patterns of development; the impact variables on water and agricultural development; and the effects of climate on human health. A case study is also given of the effect of climatic fluctuations on human population in Mesopotamia. Contents: Climate and Development; Climate and Agriculture; Climate and Water Management; Climate and Health; Effects of Climate Fluctation on Human Populations; Study of Mesopotamian Society.

  4. 75 FR 81233 - National Climate Assessment Development and Advisory Committee; Establishment and Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-27

    ... National Oceanic and Atmospheric Administration National Climate Assessment Development and Advisory...: This Notice advises of the public of the establishment of the National Climate Assessment Development... with GSA, the Secretary of Commerce has determined that the establishment of the National...

  5. An application of the Multi-Purpose System Simulation /MPSS/ model to the Monitor and Control Display System /MACDS/ at the National Aeronautics and Space Administration /NASA/ Goddard Space Flight Center /GSFC/

    NASA Technical Reports Server (NTRS)

    Mill, F. W.; Krebs, G. N.; Strauss, E. S.

    1976-01-01

    The Multi-Purpose System Simulator (MPSS) model was used to investigate the current and projected performance of the Monitor and Control Display System (MACDS) at the Goddard Space Flight Center in processing and displaying launch data adequately. MACDS consists of two interconnected mini-computers with associated terminal input and display output equipment and a disk-stored data base. Three configurations of MACDS were evaluated via MPSS and their performances ascertained. First, the current version of MACDS was found inadequate to handle projected launch data loads because of unacceptable data backlogging. Second, the current MACDS hardware with enhanced software was capable of handling two times the anticipated data loads. Third, an up-graded hardware ensemble combined with the enhanced software was capable of handling four times the anticipated data loads.

  6. 49 CFR 238.445 - Automated monitoring.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 4 2012-10-01 2012-10-01 false Automated monitoring. 238.445 Section 238.445 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION... Equipment § 238.445 Automated monitoring. (a) Each passenger train shall be equipped to monitor...

  7. 49 CFR 238.445 - Automated monitoring.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 4 2013-10-01 2013-10-01 false Automated monitoring. 238.445 Section 238.445 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION... Equipment § 238.445 Automated monitoring. (a) Each passenger train shall be equipped to monitor...

  8. 49 CFR 238.445 - Automated monitoring.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 4 2014-10-01 2014-10-01 false Automated monitoring. 238.445 Section 238.445 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION... Equipment § 238.445 Automated monitoring. (a) Each passenger train shall be equipped to monitor...

  9. 49 CFR 238.445 - Automated monitoring.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 4 2011-10-01 2011-10-01 false Automated monitoring. 238.445 Section 238.445 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION... Equipment § 238.445 Automated monitoring. (a) Each passenger train shall be equipped to monitor...

  10. 49 CFR 238.445 - Automated monitoring.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Automated monitoring. 238.445 Section 238.445 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION... Equipment § 238.445 Automated monitoring. (a) Each passenger train shall be equipped to monitor...

  11. 40 CFR 58.60 - Federal monitoring.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 6 2013-07-01 2013-07-01 false Federal monitoring. 58.60 Section 58.60 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) AMBIENT AIR QUALITY SURVEILLANCE Federal Monitoring § 58.60 Federal monitoring. The Administrator may locate...

  12. 40 CFR 58.60 - Federal monitoring.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 6 2012-07-01 2012-07-01 false Federal monitoring. 58.60 Section 58.60 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) AMBIENT AIR QUALITY SURVEILLANCE Federal Monitoring § 58.60 Federal monitoring. The Administrator may locate...

  13. 40 CFR 58.60 - Federal monitoring.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 5 2011-07-01 2011-07-01 false Federal monitoring. 58.60 Section 58.60 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) AMBIENT AIR QUALITY SURVEILLANCE Federal Monitoring § 58.60 Federal monitoring. The Administrator may locate...

  14. 40 CFR 58.60 - Federal monitoring.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 5 2010-07-01 2010-07-01 false Federal monitoring. 58.60 Section 58.60 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) AMBIENT AIR QUALITY SURVEILLANCE Federal Monitoring § 58.60 Federal monitoring. The Administrator may locate...

  15. 40 CFR 58.60 - Federal monitoring.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 6 2014-07-01 2014-07-01 false Federal monitoring. 58.60 Section 58.60 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) AMBIENT AIR QUALITY SURVEILLANCE Federal Monitoring § 58.60 Federal monitoring. The Administrator may locate...

  16. NPOESS Contributions to Climate Observations

    NASA Astrophysics Data System (ADS)

    Day, D. W.; Mussetto, M.

    2009-12-01

    The Environmental Data Products (EDRs) generated from the science instrument suite on the National Polar-orbiting Operational Environmental Satellite System (NPOESS) contribute to 16 of the 26 essential climate variables (ECVs) that are observable from space. NPOESS has the capacity to accommodate additional sensors to increase support for observing climate variables. This poster provides an overview of the ECVs that NPOESS will support and potential sensors that NPOESS could accommodate to support additional ECVs. Northrop Grumman Space Technology (NGST) is the system prime contractor for the National Polar-orbiting Operational Environmental Satellite System (NPOESS). The United States is developing the National Polar-orbiting Operational Environmental Satellite System through the Integrated Program Office (IPO), comprised of the National Oceanic and Atmospheric Administration (NOAA), the Department of Defense (DoD), and the National Aeronautics and Space Administration (NASA).

  17. Climate: Into the 21st Century

    NASA Astrophysics Data System (ADS)

    Burroughs, William

    2003-08-01

    Toward the end of the twentieth century, it became evident to professionals working within the meterological arena that the world's climate system was showing signs of change that could not be adequately explained in terms of natural variation. Since that time there has been an increasing recognition that the climate system is changing as a result of human industries and lifestyles, and that the outcomes may prove catastrophic to the world's escalating population. Compiled by an international team formed under the auspices of the World Meteorological Organization (WMO), Climate: Into the 21st Century features an unrivalled collection of essays by the world's leading meteorological experts. These fully integrated contributions provide a perspective of the global climate system across the twentieth century, and describe some of the most arresting and extreme climatic events and their effects that have occurred during that time. In addition, the book traces the development of our capabilities to observe and monitor the climate system, and outlines our understanding of the predictability of climate on time-scales of months and longer. It concludes with a summary of the prospects for applying the twentieth century climate experience in order to benefit society in the twenty-first century. Lavishly illustrated in color, Climate is an accessible acccount of the challenges that climate poses at the start of the twenty-first century. Filled with fascinating facts and diagrams, it is written for a wide audience and will captivate the general reader interested in climate issues, and will be a valuable teaching resource. William Burroughs is a successful science author of books on climate, including Weather (Time Life, 2000), and Climate Change: A Multidisciplinary Approach (2001), Does the Weather Really Matter? (1997) and The Climate Revealed (1999), all published by Cambridge University Press.

  18. 28 CFR 512.17 - Monitoring approved research projects.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 28 Judicial Administration 2 2013-07-01 2013-07-01 false Monitoring approved research projects... MANAGEMENT AND ADMINISTRATION RESEARCH Research § 512.17 Monitoring approved research projects. The BRRB shall monitor all research projects for compliance with Bureau policies. At a minimum, yearly...

  19. 28 CFR 512.17 - Monitoring approved research projects.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 28 Judicial Administration 2 2011-07-01 2011-07-01 false Monitoring approved research projects... MANAGEMENT AND ADMINISTRATION RESEARCH Research § 512.17 Monitoring approved research projects. The BRRB shall monitor all research projects for compliance with Bureau policies. At a minimum, yearly...

  20. 28 CFR 512.17 - Monitoring approved research projects.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 28 Judicial Administration 2 2010-07-01 2010-07-01 false Monitoring approved research projects... MANAGEMENT AND ADMINISTRATION RESEARCH Research § 512.17 Monitoring approved research projects. The BRRB shall monitor all research projects for compliance with Bureau policies. At a minimum, yearly...

  1. 28 CFR 512.17 - Monitoring approved research projects.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 28 Judicial Administration 2 2014-07-01 2014-07-01 false Monitoring approved research projects... MANAGEMENT AND ADMINISTRATION RESEARCH Research § 512.17 Monitoring approved research projects. The BRRB shall monitor all research projects for compliance with Bureau policies. At a minimum, yearly...

  2. 28 CFR 512.17 - Monitoring approved research projects.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 28 Judicial Administration 2 2012-07-01 2012-07-01 false Monitoring approved research projects... MANAGEMENT AND ADMINISTRATION RESEARCH Research § 512.17 Monitoring approved research projects. The BRRB shall monitor all research projects for compliance with Bureau policies. At a minimum, yearly...

  3. Metadata Access Tool for Climate and Health

    NASA Astrophysics Data System (ADS)

    Trtanji, J.

    2012-12-01

    The need for health information resources to support climate change adaptation and mitigation decisions is growing, both in the United States and around the world, as the manifestations of climate change become more evident and widespread. In many instances, these information resources are not specific to a changing climate, but have either been developed or are highly relevant for addressing health issues related to existing climate variability and weather extremes. To help address the need for more integrated data, the Interagency Cross-Cutting Group on Climate Change and Human Health, a working group of the U.S. Global Change Research Program, has developed the Metadata Access Tool for Climate and Health (MATCH). MATCH is a gateway to relevant information that can be used to solve problems at the nexus of climate science and public health by facilitating research, enabling scientific collaborations in a One Health approach, and promoting data stewardship that will enhance the quality and application of climate and health research. MATCH is a searchable clearinghouse of publicly available Federal metadata including monitoring and surveillance data sets, early warning systems, and tools for characterizing the health impacts of global climate change. Examples of relevant databases include the Centers for Disease Control and Prevention's Environmental Public Health Tracking System and NOAA's National Climate Data Center's national and state temperature and precipitation data. This presentation will introduce the audience to this new web-based geoportal and demonstrate its features and potential applications.

  4. Evaluating the Performance of Administrators: The Process and the Tools.

    ERIC Educational Resources Information Center

    Herman, Jerry J.

    1991-01-01

    Describes the various roles (monitor, information gatherer, communicator and feedback provider, clarifier, coanalyzer, assister, resource provider, and motivator) played by the supervisor when evaluating administrators. Presents a sample evaluation instrument assessing five major performance areas (management, professionalism, leadership,…

  5. The new climate data record of total and spectral solar irradiance: Current progress and future steps

    NASA Astrophysics Data System (ADS)

    Coddington, Odele; Lean, Judith; Rottman, Gary; Pilewskie, Peter; Snow, Martin; Lindholm, Doug

    2016-04-01

    We present a climate data record of Total Solar Irradiance (TSI) and Solar Spectral Irradiance (SSI), with associated time and wavelength dependent uncertainties, from 1610 to the present. The data record was developed jointly by the Laboratory for Atmospheric and Space Physics (LASP) at the University of Colorado Boulder and the Naval Research Laboratory (NRL) as part of the National Oceanographic and Atmospheric Administration's (NOAA) National Centers for Environmental Information (NCEI) Climate Data Record (CDR) Program, where the data record, source code, and supporting documentation are archived. TSI and SSI are constructed from models that determine the changes from quiet Sun conditions arising from bright faculae and dark sunspots on the solar disk using linear regression of proxies of solar magnetic activity with observations from the SOlar Radiation and Climate Experiment (SORCE) Total Irradiance Monitor (TIM), Spectral Irradiance Monitor (SIM), and SOlar Stellar Irradiance Comparison Experiment (SOLSTICE). We show that TSI can be separately modeled to within TIM's measurement accuracy from solar rotational to solar cycle time scales and we assume that SSI measurements are reliable on solar rotational time scales. We discuss the model formulation, uncertainty estimates, and operational implementation and present comparisons of the modeled TSI and SSI with the measurement record and with other solar irradiance models. We also discuss ongoing work to assess the sensitivity of the modeled irradiances to model assumptions, namely, the scaling of solar variability from rotational-to-cycle time scales and the representation of the sunspot darkening index.

  6. A Landsat Agricultural Monitoring Program

    NASA Technical Reports Server (NTRS)

    Aaronson, A. C.; Buchman, P. E.; Wescott, T.; Fries, R. E.

    1977-01-01

    The paper discusses the Landsat Agricultural Monitoring Program which was developed to identify, observe, and evaluate alarm conditions influencing Iowa corn production in 1976. Used in conjunction with climatic and field reports, studies were made of crop development, crop alarms (such as heavy rainfall, hail, tornadoes, and drought) and estimated crop yield.

  7. Veterans Administration Databases

    Cancer.gov

    The Veterans Administration Information Resource Center provides database and informatics experts, customer service, expert advice, information products, and web technology to VA researchers and others.

  8. The Atlantic Climate Change Program

    SciTech Connect

    Molinari, R.L. ); Battisti, D. ); Bryan, K. ); Walsh, J. )

    1994-07-01

    The Atlantic Climate Change Program (ACCP) is a component of NOAA's Climate and Global Change Program. ACCP is directed at determining the role of the thermohaline circulation of the Atlantic Ocean on global atmospheric climate. Efforts and progress in four ACCP elements are described. Advances include (1) descriptions of decadal and longer-term variability in the coupled ocean-atmosphere-ice system of the North Atlantic; (2) development of tools needed to perform long-term model runs of coupled simulations of North Atlantic air-sea interaction; (3) definition of mean and time-dependent characteristics of the thermohaline circulation; and (4) development of monitoring strategies for various elements of the thermohaline circulation. 20 refs., 4 figs., 1 tab.

  9. CDS - Database Administrator's Guide

    NASA Astrophysics Data System (ADS)

    Day, J. P.

    This guide aims to instruct the CDS database administrator in: o The CDS file system. o The CDS index files. o The procedure for assimilating a new CDS tape into the database. It is assumed that the administrator has read SUN/79.

  10. Vocational Education Administration Handbook.

    ERIC Educational Resources Information Center

    Ryals, Karen, Ed.; Doherty, Susan Sloan, Ed.

    This handbook for vocational administrators presents an overview of vocational education programs, services, and administrative structures in Alaska. The manual contains three parts. The first, brief section introduces secondary vocational education and lists its enabling legislation. The second part presents a detailed overview of vocational…

  11. Reframing Research Administration

    ERIC Educational Resources Information Center

    Cole, Sharon Stewart

    2010-01-01

    The purpose of this paper is to inform administrators and organizational leaders that a change in the support offered to faculty and the environment of research administration is desirable. This recommendation is supported by the results of a Delphi study that was undertaken to gather expert opinions and recommendations from research faculty…

  12. Justifying Educational Administration.

    ERIC Educational Resources Information Center

    Evers, Colin; Lakomski, Gabriele

    1993-01-01

    The traditional conceptions of science dominating educational administration are mistaken. Unacceptable epistemologies, like those implicit in logical positivism, justify knowledge solely in terms of empirical adequacy. An improved science of educational administration embraces a coherent global theory accounting for all the phenomena of human…

  13. DIMENSIONS OF ADMINISTRATIVE PERFORMANCE.

    ERIC Educational Resources Information Center

    HEMPHILL, JOHN; AND OTHERS

    THE MAJOR OBJECTIVES WERE TO DEVELOP CRITERIA FOR THE EVALUATION OF SCHOOL ADMINISTRATION, TO DEFINE THE NATURE OF THE JOB, AND TO DEVELOP AN INSTRUMENT FOR THE SELECTION OF ADMINISTRATORS. THE ELEMENTARY SCHOOL PRINCIPAL WAS CHOSEN FOR THE STUDY BECAUSE OF THE HOST OF PROBLEMS RELATED TO THE CONDUCT OF AN EDUCATIONAL PROGRAM, INCLUDING THE…

  14. Test Administration Models

    ERIC Educational Resources Information Center

    Becker, Kirk A.; Bergstrom, Betty A.

    2013-01-01

    The need for increased exam security, improved test formats, more flexible scheduling, better measurement, and more efficient administrative processes has caused testing agencies to consider converting the administration of their exams from paper-and-pencil to computer-based testing (CBT). Many decisions must be made in order to provide an optimal…

  15. Networked Administration Streamlines Operations.

    ERIC Educational Resources Information Center

    School Planning and Management, 1996

    1996-01-01

    An Iowa school district has retooled its computer systems for more standardized administration. In addition to administration, the district is doing inhouse databasing of financial accounting, and doing inhouse scheduling and grade reporting. A partnership with the Chamber of Commerce contributed $500,000 for the network system. (MLF)

  16. The Administrative Power Grab

    ERIC Educational Resources Information Center

    Sorenson, Richard D.

    2007-01-01

    Administrative power for some school teachers can be an aphrodisiac that can be applied negatively, especially when a leader has devastating instinct for the weaknesses of others. A leader's intellect and heart closes shop and ceases to function when drunk on power. In this article, the author describes how the use of administrative power can be…

  17. Champions of Children. Administrators . . .

    ERIC Educational Resources Information Center

    Chaffee, John; Olds, H. Robert

    Today, in an era of taxpayer revolts, lack of clarity in values, and changing family structure, children need advocates in the political arena as well as in the schools. This pamphlet suggests that administrators are in an excellent position to defend the rights of children on all fronts. It focuses on what administrators have done and specific…

  18. Administration for Student Development.

    ERIC Educational Resources Information Center

    Bergen, J. J., Ed.

    This collection of papers focuses on school administration and its relation to students. It is contended that toay's student matures earlier; has higher expectations; is more affluent; is more isolated from adults; is more critical and outspoken; and, therefore, must be heard by teachers and administrators. A related document is EA 001578.…

  19. Administration of Computer Resources.

    ERIC Educational Resources Information Center

    Franklin, Gene F.

    Computing at Stanford University has, until recently, been performed at one of five facilities. The Stanford hospital operates an IBM 370/135 mainly for administrative use. The university business office has an IBM 370/145 for its administrative needs and support of the medical clinic. Under the supervision of the Stanford Computation Center are…

  20. Rural Administrative Leadership Handbook.

    ERIC Educational Resources Information Center

    Tift, Carolyn

    This resource book on rural administrative leadership is the result of 1988 interviews with school administrators involved in successful rural educational programs. The material is divided into eight chapters, each self-contained for separate use. Chapter 1, "Getting to Know the Community," addresses qualities of living and working in rural…

  1. School Business Administration.

    ERIC Educational Resources Information Center

    Jordan, K. Forbis; Webb, L. Dean

    1986-01-01

    Reviews the societal and organizational changes affecting school business administration, describes major activities encompassed in the practice of school business administration, and reviews current literature specifically related to such activities as electronic data processing, fiscal planning and budgeting, purchasing and property management,…

  2. The Administrative Team.

    ERIC Educational Resources Information Center

    Ohio Association of Elementary School Principals, Westerville.

    Although needs of school districts vary with size, degree of teacher negotiation procedures, and type of community involvement, the administrative team model is presented as an effective, appropriate administrative organization. Based on an assumption that each level of authority in a school district possesses and exercises expertise and unique…

  3. Handbook for Alumni Administration.

    ERIC Educational Resources Information Center

    Webb, Charles H., Ed.

    A definitive look at the field of alumni administration is presented, noting that the subject has until now received little attention. The 34 chapters are divided into nine sections: an overview of alumni administration; alumni as an essential resource; people management; budget and records; programming; communications; alumni education programs…

  4. 47 CFR 54.715 - Administrative expenses of the Administrator.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 3 2011-10-01 2011-10-01 false Administrative expenses of the Administrator. 54.715 Section 54.715 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) COMMON CARRIER SERVICES (CONTINUED) UNIVERSAL SERVICE Administration § 54.715 Administrative expenses of the Administrator. (a) The annual administrative expenses...

  5. 47 CFR 54.715 - Administrative expenses of the Administrator.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 3 2010-10-01 2010-10-01 false Administrative expenses of the Administrator. 54.715 Section 54.715 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) COMMON CARRIER SERVICES (CONTINUED) UNIVERSAL SERVICE Administration § 54.715 Administrative expenses of the Administrator. (a) The annual administrative expenses...

  6. Head of Administration

    NASA Astrophysics Data System (ADS)

    2005-03-01

    Purpose and scope of the position: The main task is to provide efficient administrative services and advice to the Director General, Division Leaders and to staff members in the scientific and technical areas in the fields of financial planning and accounting, personnel management, purchasing, legal and contractual matters, information systems and building and site maintenance. As a member of the ESO Management the Head of Administration contributes essentially to the development of the overall policy, strategic planning, relations to the members of the personnel and maintains professional contacts at highest level outside the Organisation. ESO employs in total approximately 650 staff members and the Administration Division comprises the Administration at the Headquarters in Garching near Munich and the Administration in Santiago (Chile). The successful candidate will be supported by some 50 qualified staff members.

  7. Does climate directly influence NPP globally?

    PubMed

    Chu, Chengjin; Bartlett, Megan; Wang, Youshi; He, Fangliang; Weiner, Jacob; Chave, Jérôme; Sack, Lawren

    2016-01-01

    The need for rigorous analyses of climate impacts has never been more crucial. Current textbooks state that climate directly influences ecosystem annual net primary productivity (NPP), emphasizing the urgent need to monitor the impacts of climate change. A recent paper challenged this consensus, arguing, based on an analysis of NPP for 1247 woody plant communities across global climate gradients, that temperature and precipitation have negligible direct effects on NPP and only perhaps have indirect effects by constraining total stand biomass (Mtot ) and stand age (a). The authors of that study concluded that the length of the growing season (lgs ) might have a minor influence on NPP, an effect they considered not to be directly related to climate. In this article, we describe flaws that affected that study's conclusions and present novel analyses to disentangle the effects of stand variables and climate in determining NPP. We re-analyzed the same database to partition the direct and indirect effects of climate on NPP, using three approaches: maximum-likelihood model selection, independent-effects analysis, and structural equation modeling. These new analyses showed that about half of the global variation in NPP could be explained by Mtot combined with climate variables and supported strong and direct influences of climate independently of Mtot , both for NPP and for net biomass change averaged across the known lifetime of the stands (ABC = average biomass change). We show that lgs is an important climate variable, intrinsically correlated with, and contributing to mean annual temperature and precipitation (Tann and Pann ), all important climatic drivers of NPP. Our analyses provide guidance for statistical and mechanistic analyses of climate drivers of ecosystem processes for predictive modeling and provide novel evidence supporting the strong, direct role of climate in determining vegetation productivity at the global scale. PMID:26442433

  8. Special Education Administration and Microcomputers: Some Considerations for Hardware and Software in the 1980's.

    ERIC Educational Resources Information Center

    White, George T., Jr.

    Increasingly, software is being developed for special education administrative purposes, including Individualized Education Program development and documentation, database management for reporting and monitoring instructional programs for federal accountability, statistical analysis for program monitoring, and creative uses. The widespread use of…

  9. Global change monitoring with lichens

    SciTech Connect

    Insarov, G.

    1997-12-31

    Environmental monitoring involves observations and assessment of changes in ecosystems and their components caused by anthropogenetic influence. An ideal monitoring system enables quantification of the contemporary state of the environment and detect changes in it. An important function of monitoring is to assess environment quality of areas that are not affected by local anthropogenic impacts, i.e. background areas. In background areas terrestrial ecosystems are mainly affected by such anthropogenic factors as lowered air pollution and global climate change. Assessment of biotic responses to altered climatic and atmospheric conditions provides an important basis for ecosystem management and environmental decision making. Without the ability to make such assessment, sustainability of ecosystems as a support system for humans remains uncertain.

  10. Oklahoma Criteria for Effective Teaching and Administrative Performance. Activities Workbook.

    ERIC Educational Resources Information Center

    Oklahoma State Dept. of Education, Oklahoma City.

    This publication presents activities for monitoring effective teacher and administrator performance in Oklahoma. The state mandates that each board of education maintains and annually reviews a written policy of evaluation for all teachers and administrators. Section 1, "Criteria for Effective Teaching Performance," focuses on practice and…

  11. Architecting next 30 years of climate monitoring from space with instructive examples from NPOESS and GCOS plus new rule-based decision tools: suggesting and promoting global collaborative paths forward (Part V)

    NASA Astrophysics Data System (ADS)

    Helmuth, Douglas B.; Bell, Raymond M.; Lentz, Christopher A.

    2013-10-01

    Collecting the earth's critical climate signatures over the next 30 years is an obvious priority for many world governments and international organizations. Implementing a solution requires bridging from today's scientific missions to `operational' constellations that are adequate to support the future demands of decision makers, scientific investigators and global users for trusted data.

  12. Philosophy of Climate Science.

    NASA Astrophysics Data System (ADS)

    Petersen, Arthur C.

    2000-02-01

    The use of climate simulations in scientific assessments of climate change and in the formulation of climatechange scenarios has been contested for, among others, methodological reasons. The philosophy of climate science encompasses discussions about the methodology of climate science. Three issues with respect to climate simulation arediscussed: (i) model hierarchy and complexity, (ii) tuning and falsifiability, and (iii) uncertainty. In this discussion paperit is argued that high-resolution and low-resolution climate models have complementary roles to play in the scienceof climate change. The role of computer simulations in climate science deserves further philosophical study in orderto better assess their quality for informing climate policy making.

  13. Aquarius: An Instrument to Monitor Sea Surface Salinity from Space

    NASA Technical Reports Server (NTRS)

    LeVine, D. M.; Lagerloef, G. S .E.; Colomb, R.; Yueh, S.; Pellerano, F.

    2007-01-01

    Aquarius is a combined passive/active L-band microwave instrument that is being developed to map the salinity field at the surface of the ocean from space. The data will support studies of the coupling between ocean circulation, global water cycle, and climate. Aquarius is part of the Aquarius/SAC-D mission, which is a partnership between the U.S. (National Aeronautics and Space Administration) and Argentina (CONAE). The primary science objective of this mission is to monitor the seasonal and interannual variation of the large-scale features of the surface salinity field in the open ocean with a spatial resolution of 150 km and a retrieval accuracy of 0.2 psu globally on a monthly basis.

  14. The community environmental monitoring program: a model for stakeholder involvement in environmental monitoring

    SciTech Connect

    Hartwell, William T.; Shafer, David S.

    2007-07-01

    Since 1981, the Community Environmental Monitoring Program (CEMP) has involved stakeholders directly in its daily operation and data collection, as well as in dissemination of information on radiological surveillance in communities surrounding the Nevada Test Site (NTS), the primary location where the United States (US) conducted nuclear testing until 1992. The CEMP is funded by the US Department of Energy's National Nuclear Security Administration, and is administered by the Desert Research Institute (DRI) of the Nevada System of Higher Education. The CEMP provides training workshops for stakeholders involved in the program, and educational outreach to address public concerns about health risk and environmental impacts from past and ongoing NTS activities. The network includes 29 monitoring stations located across an approximately 160,000 km{sup 2} area of Nevada, Utah and California in the southwestern US. The principal radiological instruments are pressurized ion chambers for measuring gamma radiation, and particulate air samplers, primarily for alpha/beta detection. Stations also employ a full suite of meteorological instruments, allowing for improved interpretation of the effects of meteorological events on background radiation levels. Station sensors are wired to state-of-the-art data-loggers that are capable of several weeks of on-site data storage, and that work in tandem with a communications system that integrates DSL and wireless internet, land line and cellular phone, and satellite technologies for data transfer. Data are managed through a platform maintained by the Western Regional Climate Center (WRCC) that DRI operates for the U.S. National Oceanic and Atmospheric Administration. The WRCC platform allows for near real-time upload and display of current monitoring information in tabular and graphical formats on a public web site. Archival data for each station are also available on-line, providing the ability to perform trending analyses or calculate

  15. Assessing customer satisfaction for improving NOAA's climate products and services

    NASA Astrophysics Data System (ADS)

    Meyers, J. C.; Hawkins, M. D.; Timofeyeva, M. M.

    2009-12-01

    NOAA's National Weather Service (NWS) Climate Services Division (CSD) is developing a comprehensive climate user requirements process with the ultimate goal of producing climate services that meet the needs of NWS climate information users. An important part of this effort includes engaging users through periodical surveys conducted by the Claes Fornell International (CFI) Group using the American Customer Satisfaction Index (ACSI). The CFI Group conducted a Climate Services Satisfaction (CSS) Survey in May of 2009 to measure customer satisfaction with current products and services and to gain insight on areas for improvement. The CSS Survey rates customer satisfaction on a range of NWS climate services data and products, including Climate Prediction Center (CPC) outlooks, drought monitoring, and ENSO monitoring and forecasts, as well as NWS local climate data services. In addition, the survey assesses the users of the products to give the NWS insight into its climate customer base. The survey also addresses specific topics such as NWS forecast category names, probabilistic nature of climate products, and interpretation issues. The survey results identify user requirements for improving existing NWS climate services and introducing new ones. CSD will merge the survey recommendations with available scientific methodologies and operational capabilities to develop requirements for improved climate products and services. An overview of the 2009 survey results will be presented, such as users' satisfaction with the accuracy, reliability, display and functionality of products and services.

  16. Permafrost and Climate Change

    NASA Astrophysics Data System (ADS)

    Basnet, S.; Shahroudi, N.

    2012-12-01

    This paper examines the effects of climate change on Permafrost. Climate change has been shown to have a global correlation with decreased snow cover in high latitudes. In the current research station and satellite data were used to detect the location of permafrost. Permafrost is dependent on the temperature of the ground surface. Air temperature and snow cover from Integrated Surface Database (ISD) downloaded from National Climatic Data Center (NCDC) were observed for six consecutive years (1999-2004). The research was carried out over the entire globe to study the trend between fluctuating temperature and snow cover. Number of days with temperature below zero (freezing) and above zero (melting) was counted over a 6-year period. It was observed that each year the area of ice cover decreased by 0.3% in the Northern Hemisphere; a 1% increase in air temperature was also observed. Furthermore, the results from station data for snow cover and air temperature were compared with the snow cover and skin temperature from the satellite data. The skin temperature was retrieved from infrared (IR) radiance at International Satellite Cloud Climatology Project (ISCCP) and the snow cover is derived from visible satellite data at The National Environmental Satellite, Data, and Information Service (NESDIS), part of the National Oceanic and Atmospheric Administration (NOAA). Both dataset projected that the higher latitudes had the highest number of days with temperature below zero degree Celsius and these locations will be able to house permafrost. In order to improve the data quality as well as for more accurate results, in the future ISD data and satellite skin temperature will be analyzed for longer period of time (1979-2011) and (1983-2007) respectively also, two additional station data will be studied. The two datasets for future studies are Integrated Global Radiosonde Archive (IGRA) and International Comprehensive Ocean-Atmosphere Data Set (ICOADS). The results outputted by

  17. Climate Change and Climate Modeling

    NASA Astrophysics Data System (ADS)

    Schmidt, Gavin

    2011-06-01

    In long-established fields like fluid mechanics or quantum theory, the contents of introductory textbooks are mostly predictable: The basics are covered in more or less the same order, and while cutting-edge research occasionally gets a look-in (depending on the inclinations of the authors), the contents are far more frequently reworkings of previous textbooks than a synthesis of recent primary literature. In a field like climate science, however, where there is a much shorter history of textbook writing, much of the subject matter is extracted directly from papers published in the past 10 years. This makes the resulting textbooks far more varied and interesting.

  18. A Bibliometric Analysis of Climate Engineering Research

    NASA Astrophysics Data System (ADS)

    Belter, C. W.; Seidel, D. J.

    2013-12-01

    The past five years have seen a dramatic increase in the number of media and scientific publications on the topic of climate engineering, or geoengineering, and some scientists are increasingly calling for more research on climate engineering as a possible supplement to climate change mitigation and adaptation strategies. In this context, understanding the current state of climate engineering research can help inform policy discussions and guide future research directions. Bibliometric analysis - the quantitative analysis of publications - is particularly applicable to fields with large bodies of literature that are difficult to summarize by traditional review methods. The multidisciplinary nature of the published literature on climate engineering makes it an ideal candidate for bibliometric analysis. Publications on climate engineering are found to be relatively recent (more than half of all articles during 1988-2011 were published since 2008), include a higher than average percentage of non-research articles (30% compared with 8-15% in related scientific disciplines), and be predominately produced by countries located in the Northern Hemisphere and speaking English. The majority of this literature focuses on land-based methods of carbon sequestration, ocean iron fertilization, and solar radiation management and is produced with little collaboration among research groups. This study provides a summary of existing publications on climate engineering, a perspective on the scientific underpinnings of the global dialogue on climate engineering, and a baseline for quantitatively monitoring the development of climate engineering research in the future.

  19. Vadose zone monitoring for hazardous waste sites

    SciTech Connect

    Everett, L.G.; Wilson, L.G.; Hoylman, E.W.

    1983-10-01

    This book describes the applicability of vadose zone monitoring techniques to hazardous waste site investigations. More than 70 different sampling and nonsampling vadose zone monitoring techniques are described in terms of their advantages and disadvantages. Physical, chemical, geologic, topographic, geohydrologic, and climatic constraints for vadose zone monitoring are quantitatively determined. Vadose zone monitoring techniques are categorized for premonitoring, active, and postclosure site assessments. Waste disposal methods are categorized for piles, landfills, impoundments, and land treatment. Conceptual vadose zone monitoring approaches are developed for specific waste disposal method categories.

  20. 78 FR 46923 - National Climate Assessment and Development Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-02

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF COMMERCE National Oceanic and Atmospheric Administration National Climate Assessment and Development Advisory Committee AGENCY: Office of Oceanic and Atmospheric Research (OAR), National Oceanic and...

  1. Nonscanning climate sensor study

    NASA Technical Reports Server (NTRS)

    Hoffman, James W.; Grush, Ronald C.

    1989-01-01

    The Nonscanning Climate Sensor represents a new instrument for climate research and global monitoring of the earth radiation budget. It contains a mosaic of array of detectors which measures the outgoing radiation of the earth in all directions without the need for mechanical scanning. The goal is to eliminate all moving parts and obtain highly calibrated measurements for up to one solar cycle (11 years) without being susceptible to mechanical failure. Over set intervals of time, the angular measurements are integrated up to produce total reflected and emitted flux values from each target area on the Earth. To achieve the require sensitivity while maintaining a flat spectral response, an improved dual cavity detector with digital control loop was developed. The detector is self calibrating to maintain high precision over the life of the instrument. Prototype detectors and a complete set of electronics with a microprocessor controller were fabricated and tested. Measurements show that the new detectors are more than an order of magnitude more sensitive than previous versions.

  2. The Total Irradiance Monitors

    NASA Astrophysics Data System (ADS)

    Kopp, Greg

    2015-08-01

    The first Total Irradiance Monitor (TIM) launched on NASA’s Solar Radiation and Climate Experiment in 2003 and quickly proved to be the most accurate and stable instrument on orbit for measuring the total solar irradiance (TSI). The TIM’s design improvements over the older classical radiometers helped its selection on many subsequent missions, including NASA’s Glory, NOAA’s TSI Calibration Transfer Experiment, and the series of NASA’s Total and Spectral Solar Irradiance Sensor instruments currently underway. I will summarize the status of and differences between each of the TIMs currently on-orbit or in production.

  3. 40 CFR 58.20 - Special purpose monitors (SPM).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... (CONTINUED) AMBIENT AIR QUALITY SURVEILLANCE Special Purpose Monitors § 58.20 Special purpose monitors (SPM... Administrator will not base a NAAQS violation determination for the PM2.5 or ozone NAAQS solely on data from...

  4. 40 CFR 58.20 - Special purpose monitors (SPM).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... (CONTINUED) AMBIENT AIR QUALITY SURVEILLANCE Special Purpose Monitors § 58.20 Special purpose monitors (SPM... Administrator will not base a NAAQS violation determination for the PM2.5 or ozone NAAQS solely on data from...

  5. Dirk Forrister -- Looking at U.S. climate change policy

    SciTech Connect

    1997-11-01

    This month, American Gas presents another in its series of interviews with influential policy-makers in Washington. This interview with Dirk Forrister, chairman of the White House Climate Change Task Force, focuses on the upcoming United Nations conference on global warming, being held December 1--10 in Kyoto, Japan, and on the Clinton administration`s position and policies on global climate change.

  6. Serving the Space Administration

    ERIC Educational Resources Information Center

    Campbell, Jack E.; Thompson, Arthur W.

    1974-01-01

    The purpose of the current program was to establish an upward mobility program that afforded employees an opportunity to improve their credibility in job opportunity selection under the directives of the National Aeronautics and Space Administration. (Author/RK)

  7. Goldstone (GDSCC) administrative computing

    NASA Technical Reports Server (NTRS)

    Martin, H.

    1981-01-01

    The GDSCC Data Processing Unit provides various administrative computing services for Goldstone. Those activities, including finance, manpower and station utilization, deep-space station scheduling and engineering change order (ECO) control are discussed.

  8. Confrontation and Administrative Response

    ERIC Educational Resources Information Center

    Auerbach, Arnold J.

    1969-01-01

    Describes some of the sociological and psychological effects of organizational conflict and offers 10 operational principles to guide public administrators of schools and social agencies in meeting the confrontation tactics of activist groups. (JH)

  9. One for the Administrators

    ERIC Educational Resources Information Center

    American School and University, 1978

    1978-01-01

    Earth berms, a heavily insulated roof, and a narrow band of thermal pane windows, save energy at the administrative headquarters of the Anoka Hennepin school district in Coon Rapids, a suburb of Minneapolis, Minnesota. (Author/MLF)

  10. The Purchasing Administrator.

    ERIC Educational Resources Information Center

    Ferguson, Joyce E.

    1985-01-01

    Discusses the professional purchasing administrator's most common areas of responsibility: (1) staffing the department, (2) maintaining professional objectivity in vendor relationships, (3) following bidding policies, (4) receiving user input and feedback, and (5) seeking local equipment service and maintenance. (MLF)

  11. Introducing Public Administration

    ERIC Educational Resources Information Center

    Stein, Jay W.

    1975-01-01

    The use of documents and the analysis of definitions are recommended as a means for adding zest to an introduction to public administration course to obtain student interest and motivation. (Author/ND)

  12. Toward an Ethical Framework for Climate Services

    NASA Astrophysics Data System (ADS)

    Wilby, R.; Adams, P.; Eitland, E.; Hewitson, B.; Shumake, J.; Vaughan, C.; Zebiak, S. E.

    2015-12-01

    Climate services offer information and tools to help stakeholders anticipate and/or manage risks posed by climate change. However, climate services lack a cohesive ethical framework to govern their development and application. This paper describes a prototype, open-ended process to form a set of ethical principles to ensure that climate services are effectively deployed to manage climate risks, realize opportunities, and advance human security.We begin by acknowledging the multiplicity of competing interests and motivations across individuals and institutions. Growing awareness of potential climate impacts has raised interest and investments in climate services and led to the entrance of new providers. User demand for climate services is also rising, as are calls for new types of services. Meanwhile, there is growing pressure from funders to operationalize climate research.Our proposed ethical framework applies reference points founded on diverse experiences in western and developing countries, fundamental and applied climate research, different sectors, gender, and professional practice (academia, private sector, government). We assert that climate service providers should be accountable for both their practices and products by upholding values of integrity, transparency, humility, and collaboration.Principles of practice include: communicating all value judgements; eschewing climate change as a singular threat; engaging in the co-exploration of knowledge; establishing mechanisms for monitoring/evaluating procedures and products; declaring any conflicts of interest. Examples of principles of products include: clear and defensible provenance of information; descriptions of the extent and character of uncertainties using terms that are meaningful to intended users; tools and information that are tailored to the context of the user; and thorough documentation of methods and meta-data.We invite the community to test and refine these points.

  13. Managing Climate Change Refugia for Climate Adaptation

    PubMed Central

    Daly, Christopher; Dobrowski, Solomon Z.; Dulen, Deanna M.; Ebersole, Joseph L.; Jackson, Stephen T.; Lundquist, Jessica D.; Millar, Constance I.; Maher, Sean P.; Monahan, William B.; Nydick, Koren R.; Redmond, Kelly T.; Sawyer, Sarah C.; Stock, Sarah; Beissinger, Steven R.

    2016-01-01

    Refugia have long been studied from paleontological and biogeographical perspectives to understand how populations persisted during past periods of unfavorable climate. Recently, researchers have applied the idea to contemporary landscapes to identify climate change refugia, here defined as areas relatively buffered from contemporary climate change over time that enable persistence of valued physical, ecological, and socio-cultural resources. We differentiate historical and contemporary views, and characterize physical and ecological processes that create and maintain climate change refugia. We then delineate how refugia can fit into existing decision support frameworks for climate adaptation and describe seven steps for managing them. Finally, we identify challenges and opportunities for operationalizing the concept of climate change refugia. Managing climate change refugia can be an important option for conservation in the face of ongoing climate change. PMID:27509088

  14. Managing Climate Change Refugia for Climate Adaptation.

    PubMed

    Morelli, Toni Lyn; Daly, Christopher; Dobrowski, Solomon Z; Dulen, Deanna M; Ebersole, Joseph L; Jackson, Stephen T; Lundquist, Jessica D; Millar, Constance I; Maher, Sean P; Monahan, William B; Nydick, Koren R; Redmond, Kelly T; Sawyer, Sarah C; Stock, Sarah; Beissinger, Steven R

    2016-01-01

    Refugia have long been studied from paleontological and biogeographical perspectives to understand how populations persisted during past periods of unfavorable climate. Recently, researchers have applied the idea to contemporary landscapes to identify climate change refugia, here defined as areas relatively buffered from contemporary climate change over time that enable persistence of valued physical, ecological, and socio-cultural resources. We differentiate historical and contemporary views, and characterize physical and ecological processes that create and maintain climate change refugia. We then delineate how refugia can fit into existing decision support frameworks for climate adaptation and describe seven steps for managing them. Finally, we identify challenges and opportunities for operationalizing the concept of climate change refugia. Managing climate change refugia can be an important option for conservation in the face of ongoing climate change. PMID:27509088

  15. Administrative Response to Conflict.

    ERIC Educational Resources Information Center

    Wynn, Richard

    Enduring resolution of conflict is not so much the result of clever tricks as of the state of mind of superintendents, school boards, teachers, students, and citizens and of the organizational climate of the schools and the community. It is important to view conflict in neutral terms, realizing that conflict may be good or bad. Effective…

  16. Bladder Monitor

    NASA Technical Reports Server (NTRS)

    1993-01-01

    Diagnostic Ultrasound Corporation's Bladder Scan Monitor continuously records and monitors bladder fullness and alerts the wearer or caretaker when voiding is required. The sensor is held against the lower abdomen by a belt and connected to the monitor by a cable. The sensor obtains bladder volume data from sound waves reflecting off the bladder wall. The device was developed by Langley Research Center, the Ames Research Center and the NASA Technology Applications Team. It utilizes Langley's advanced ultrasound technology. It is licensed to the ARC for medical applications, and sublicensed to Diagnostics Ultrasound. Central monitoring systems are planned for the future.

  17. Monitoring Instruments

    ERIC Educational Resources Information Center

    Environmental Science and Technology (Environmental Control Issue), 1977

    1977-01-01

    This section contains a listing of the manufacturers of environmental monitoring instruments. The manufacturers are listed alphabetically under product headings. Addresses are included in a different section. (MA)

  18. White House Climate Action Plan Hotly Debated in Senate Hearing

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    2014-01-01

    Emotions ran high among senators at a 16 January U.S. Senate hearing on the White House's Climate Action Plan; the hearing included administration officials and other supporters of the plan as well as opponents. The plan, which President Barack Obama presented in June 2013 (see Eos, 94(27), 239, doi:10.1002/2013EO270003), calls for cutting carbon pollution, preparing the nation for the impacts of climate change, and leading international efforts to address climate change.

  19. Residential Dehumidification Systems Research for Hot-Humid Climates

    SciTech Connect

    2005-02-01

    Twenty homes were tested and monitored in the hot-humid climate of Houston, Texas, to evaluate the humidity control performance and operating cost of six integrated dehumidification and ventilation systems.

  20. A Network for Observing Great Basin Climate Change

    NASA Astrophysics Data System (ADS)

    Mensing, Scott; Strachan, Scotty; Arnone, Jay; Fenstermaker, Lynn; Biondi, Franco; Devitt, Dale; Johnson, Brittany; Bird, Brian; Fritzinger, Eric

    2013-03-01

    The ability to evaluate accurately the response of the environment to climate change ideally involves long-term continuous in situ measurements of climate and landscape processes. This is the goal of the Nevada Climate-Ecohydrology Assessment Network (NevCAN), a novel system of permanent monitoring stations located across elevational and latitudinal gradients within the Great Basin hydrographic region (Figure 1). NevCAN was designed, first, to quantify the daily, seasonal, and interannual variability in climate that occurs from basin valleys to mountain tops of the Great Basin in the arid southwest of the United States; second, to relate the temporal patterns of ecohydrologic response to climate occurring within each of the major ecosystems that compose the Great Basin; and, last, to monitor changes in climate that modulate water availability, sequestration of carbon, and conservation of biological diversity.

  1. USDA Southwest climate hub for climate change

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The USDA Southwest (SW) Climate Hub was created in February 2014 to develop risk adaptation and mitigation strategies for coping with climate change effects on agricultural productivity. There are seven regional hubs across the country with three subsidiary hubs. The SW Climate Hub Region is made up...

  2. Fatal anaphylactoid reaction following ioversol administration.

    PubMed

    Jansman, Frank Ga; Kieft, Hans; Harting, Johannes W

    2007-12-01

    We report a fatal intravenous ioversol administration in a 60-year old male patient. Although the introduction of new low-osmolar non-ionogenic contrast media with a more favourable efficacy-toxicity balance has diminished the side-effects significantly, everyone involved in radiodiagnostic procedures should be aware of the potential life-threatening effects. Especially patients with risk factors for side-effects should be monitored carefully. PMID:17557212

  3. Classification of the MGR Administration System

    SciTech Connect

    J.A. Ziegler

    1999-08-31

    The purpose of this analysis is to document the Quality Assurance (QA) classification of the Monitored Geologic Repository (MGR) administration system structures, systems and components (SSCs) performed by the MGR Safety Assurance Department. This analysis also provides the basis for revision of YMP/9O-55Qy Q-List (YMP 1998). The Q-List identifies those MGR SSCs subject to the requirements of DOE/RW-0333P, ''Quality Assurance Requirements and Description'' (QARD) (DOE 1998).

  4. The Copernicus Climate Change Service (C3S): Open Access to a Climate Data Store

    NASA Astrophysics Data System (ADS)

    Thepaut, Jean-Noel; Dee, Dick

    2016-04-01

    In November 2014, The European Centre for Medium-range Weather Forecasts (ECMWF) signed an agreement with the European Commission to deliver two of the Copernicus Earth Observation Programme Services on the Commission's behalf. The ECMWF delivered services - the Copernicus Climate Change Service (C3S) and Atmosphere Monitoring Service (CAMS) - will bring a consistent standard to how we monitor and predict atmospheric conditions and climate change. They will maximise the potential of past, current and future earth observations - ground, ocean, airborne, satellite - and analyse these to monitor and predict atmospheric conditions and in the future, climate change. With the wealth of free and open data that the services provide, they will help business users to assess the impact of their business decisions and make informed choices, delivering a more energy efficient and climate aware economy. These sound investment decisions now will not only stimulate growth in the short term, but reduce the impact of climate change on the economy and society in the future. C3S is in its proof of concept phase and through its Climate Data Store will provide • global and regional climate data reanalyses; • multi-model seasonal forecasts; • customisable visual data to enable examination of wide range of scenarios and model the impact of changes; • access to all the underlying data, including climate data records from various satellite and in-situ observations. In addition, C3S will provide key indicators on climate change drivers (such as carbon dioxide) and impacts (such as reducing glaciers). The aim of these indicators will be to support European adaptation and mitigation policies in a number of economic sectors. At the heart of the Service is the provision of open access to a one stop shop (the Climate Data Store) of climate data and modelling, analysing more than 20 Essential Climate Variables to build a global picture of our past, present and future climate and developing

  5. Nursing academic administration: who will take on the challenge?

    PubMed

    Adams, Lavonne

    2007-01-01

    To address the shortage of qualified candidates interested in nursing academic administration, this study explored factors that influence nursing faculty to pursue administrative positions. Nursing academic administrators and full-time faculty from randomly selected accredited nursing programs in private colleges and universities in the United States participated in this study. Administrators completed the Leadership Practices Inventory-Self and a recruitment questionnaire, whereas faculty completed the Leadership Practices Inventory-Observer and a career aspiration questionnaire. Most faculty respondents (63%) indicated that they would not consider a position with greater administrative responsibility. Respondents identified workload and conflict-related issues as factors likely to discourage their pursuit of administration. Respondents identified additional challenge/variety of work, opportunity to influence organizational climate for change, opportunity to facilitate faculty growth and development, and mix of administration with teaching as likely to encourage their pursuit of administration. Faculty interest in a position with greater administrative responsibility was significantly increased for those who had completed additional course work beyond their highest degree. Practice recommendations included making leadership development opportunities available for faculty interested in administration, exploring methods to manage workload and conflict, and exploring methods to maximize factors identified as likely to encourage the pursuit of academic administration. PMID:17903790

  6. Detecting the climatic effects of increasing carbon dioxide

    SciTech Connect

    MacCracken, M C; Luther, F M

    1985-12-01

    This report documents what is known about detecting the CO2-induced changes in climate, and describes the uncertainties and unknowns associated with this monitoring and analysis effort. The various approaches for detecting CO2-induced climate changes are discussed first, followed by a review of applications of these strategies to the various climatic variables that are expected to be changing. Recommendations are presented for research and analysis activities. Separate abstracts have been prepared for the individual papers. (ACR)

  7. Mapping Climate Change: Six U.S. Case Studies

    ERIC Educational Resources Information Center

    Holmberg, Marjorie O.

    2010-01-01

    This research focuses on the current role of mapping practices in communicating climate change in the United States. This includes maps used in monitoring climate change, projecting its potential impacts, and identifying potential adaptation strategies at particular scales. Since few, if any, studies have been done specifically on mapping…

  8. Climate selection and development of climate indicators

    SciTech Connect

    Bowen, W.M.; Moreno, S.; Olsen, A.R.

    1982-09-01

    A climate analysis procedure for selecting climate locations which would represent the variation in climate conditions throughout the United States is documented. Separate energy analysis projects for three building categories were to use the results of the climate location project. The categories are: commercial buildings (including multifamily residences), single family residences, and mobile homes. The overall objectives, approach, and method used for all three categories are presented, then the specific application of the general method to each building category is discussed. Climate selection results, conclusions, recommendations, and limits for each building category are presented within the description of the application of the method for that category. (LEW)

  9. Ion Monitoring

    DOEpatents

    Orr, Christopher Henry; Luff, Craig Janson; Dockray, Thomas; Macarthur, Duncan Whittemore

    2003-11-18

    The apparatus and method provide a technique for significantly reducing capacitance effects in detector electrodes arising due to movement of the instrument relative to the item/location being monitored in ion detection based techniques. The capacitance variations are rendered less significant by placing an electrically conducting element between the detector electrodes and the monitored location/item. Improved sensitivity and reduced noise signals arise as a result. The technique also provides apparatus and method suitable for monitoring elongate items which are unsuited to complete enclosure in one go within a chamber. The items are monitored part by part as the pass through the instrument, so increasing the range of items or locations which can be successfully monitored.

  10. A New Climate Data Record of Solar Spectral Irradiance from 1610 to Present

    NASA Astrophysics Data System (ADS)

    Coddington, O.; Lean, J.; Pilewskie, P.; Snow, M. A.; Lindholm, D. M.

    2015-12-01

    We present a climate data record of Solar Spectral Irradiance (SSI), with associated time and wavelength dependent uncertainties, from 1610 to the present. The data record was developed jointly by the University of Colorado at Boulder's Laboratory for Atmospheric and Space Physics (LASP) and the Naval Research Laboratory (NRL) as part of the National Oceanographic and Atmospheric Administration's (NOAA) National Centers for Environmental Information (NCEI) Climate Data Record (CDR) Program, where the data record, source code, and supporting documentation are archived. SSI is constructed from models that determine the changes from quiet Sun conditions arising from bright faculae and dark sunspots on the solar disk using linear regression of proxies of solar magnetic activity with observations from the SOlar Radiation and Climate Experiment (SORCE) Spectral Irradiance Monitor (SIM); the measurements are assumed to be reliable on solar rotational time scales. We extend the SSI record to longer time scales by reproducing the integral of the SSI with independent measurements of Total Solar Irradiance (TSI) measurements made by the SORCE Total Irradiance Monitor (TIM); TSI can be separately modeled to within TIM's measurement accuracy from solar rotational to solar cycle time scales. We discuss the model formulation, uncertainty estimates, and operational implementation and present comparisons of the modeled SSI with the measurement record and with other solar irradiance models. We also discuss future work to improve the Solar Irradiance Climate Data Record with new measurements from the Total and Spectral Solar Irradiance Sensor (TSIS), different proxy representations of sunspot darkening and facular brightening, including the improved composite record of Mg II index being developed as part of the European-led SOlar Irradiance Data exploitation (SOLID) project, and to expand the uncertainty estimates to include model assumptions.

  11. Astronaut Administrator Richard Truly

    NASA Technical Reports Server (NTRS)

    1979-01-01

    Astronaut Richard H. Truly, pilot of the Space Shuttle Columbia on mission STS-2 and Commander of Shuttle Challenger on mission STS-8, became NASA's eighth Administrator on July 1, 1989. One day earlier he concluded a 30 year Naval career retiring as a Vice Admiral. He was the first astronaut to head the nation's civilian space agency. Truly became Deputy Associate Administrator for Space Flight on February 20, 1986. In this position, he led the painstaking rebuilding of the Space Shuttle program less than one month after the Challenger disaster. This was highlighted by the much heralded 'Return to Flight' on September 29, 1988 with the launch of Shuttle Discovery, 32 months after Challenger's final flight. On February 12th, 1992 Richard Truly resigned as NASA Administrator at the request of President George Bush.

  12. Towards innovative roadside monitoring

    NASA Astrophysics Data System (ADS)

    Ojha, G.; Appel, E.; Magiera, T.

    2012-04-01

    Soil contamination along roadsides is an important factor of anthropogenic point source pollution. Climatic and traffic-specific factors influence the amount and characteristics of pollution emitted and deposited in the roadside soil. In our present study we focus on monitoring typical traffic pollutants (heavy metals HM, platinum group elements, polycyclic hydrocarbons PAH), and investigate the use of magnetic parameters, especially magnetic susceptibility (MS) as proxy. Monitoring plots were installed along roadside in areas with different climatic conditions and different traffic-specific activities (traffic density and speed, vehicle types, abrasion of tires, brake linings, petrol/diesel compounds and road maintenance). For monitoring we removed 10-15 cm of top soil at 1 m distance from the roadside edge and placed 30 plastic boxes there filled with clean quartz sand, to be sampled after regular intervals within two years. Preliminary data from the first year of monitoring are presented. Magnetic results revealed that a coarse grained magnetite-like phase is responsible for the enhancement of magnetic concentration. The mass-specific MS and concentration of pollutants (HM, PAH) all show a significant increase with time, however, there are obviously also seasonal and site-dependent effects which lead to more stable values over several months or even some decrease in the upper few cm due to migration into depth. Source identification indicates that the accumulated PAHs are primarily emissions from traffic. In order to be able to discriminate in between different kinds of transport and deposition (surface run off from the road and neighbouring soil material, splash water, air transport), we additionally established pillars at the roadside with clean quartz sampling boxes at different heights (surface, 0.5 m, 2 m). As a first surprising result we observed that the increase in the boxes at surface is not necessarily higher than at 0.5 m height. The results from our

  13. Looking through Different Lenses: Teachers' and Administrators' Views of Accountability

    ERIC Educational Resources Information Center

    Jones, Brett D.; Egley, Robert J.

    2006-01-01

    Teachers and principals don't always agree about the effects on education of accountability systems based on high-stakes testing. Mr. Jones and Mr. Egley look at the implications of these differing perceptions and suggest some strategies for creating a climate in which teachers and administrators can move forward on improving student learning.…

  14. School Administration Leadership Style and Academic Achievement: A Case Study

    ERIC Educational Resources Information Center

    Brvenik-Estrella, Marianna

    2013-01-01

    The purpose of this case study was to gather current teacher and administrator perceptions on leadership in a school environment. The study sought to identify patterns of leadership style as elements in building a school climate that focused on performance and intrinsic rewards. The study also sought to establish an understanding of how leadership…

  15. The pilot climate data system

    NASA Technical Reports Server (NTRS)

    Reph, M. G.; Treinish, L. A.; Smith, P. H.

    1984-01-01

    The Pilot Climate Data System (PCDS) is an interactive scientific information management system for locating, obtaining, manipulating, and displaying climate-research data. The PCDS was developed to manage a large collection of data of interest to the National Aeronautics and Space Administration's (NASA) research community and currently provides such support for approximately twenty data sets. In order to provide the PCDS capabilities, NASA's Goddard Space Flight Center (NASA/GSFC) has integrated the capabilities of several general-purpose software packages with specialized software for reading and reformatting the supported data sets. These capabilities were integrated in a manner which allows the PCDS to be easily expanded, either to provide support for additional data sets or to provide additional functional capabilities. This also allows the PCDS to take advantage of new technology as it becomes available, since parts of the system can be replaced with more powerful components without significantly affecting the user interface.

  16. Remote Sensing for Climate and Environmental Change

    NASA Technical Reports Server (NTRS)

    Evans, Diane

    2011-01-01

    Remote sensing is being used more and more for decision-making and policy development. Specific examples are: (1) Providing constraints on climate models used in IPCC assessments (2) Framing discussions about greenhouse gas monitoring (3) Providing support for hazard assessment and recovery.

  17. Using Clients to Monitor Performance.

    ERIC Educational Resources Information Center

    Molnar, Jack; Stup, Brenda

    1994-01-01

    This article describes an ongoing survey that illustrates how evaluators, working with program managers, have effectively used client-based data to monitor performance in the Social Security Administration. The value of client-based data outweighs the limitations and problems collecting it. Customer perceptions are a critical barometer of quality.…

  18. CONTINUOUS MONITORING OF VOC PRECURSORS

    EPA Science Inventory

    Section 182 (c) (1) of the 1990 Clean Air Act Amendments requires the EPA Administrator to promulgate rules for the enhanced monitoring of ozone, oxides of nitrogen and volatile organic compounds to obtain more comprehensive and representative data on ozone air pollution. he Subs...

  19. Computer hardware fault administration

    DOEpatents

    Archer, Charles J.; Megerian, Mark G.; Ratterman, Joseph D.; Smith, Brian E.

    2010-09-14

    Computer hardware fault administration carried out in a parallel computer, where the parallel computer includes a plurality of compute nodes. The compute nodes are coupled for data communications by at least two independent data communications networks, where each data communications network includes data communications links connected to the compute nodes. Typical embodiments carry out hardware fault administration by identifying a location of a defective link in the first data communications network of the parallel computer and routing communications data around the defective link through the second data communications network of the parallel computer.

  20. MCS Systems Administration Toolkit

    2001-09-30

    This package contains a number of systems administration utilities to assist a team of system administrators in managing a computer environment by automating routine tasks and centralizing information. Included are utilities to help install software on a network of computers and programs to make an image of a disk drive, to manage and distribute configuration files for a number of systems, and to run self-testss on systems, as well as an example of using amore » database to manage host information and various utilities.« less