Science.gov

Sample records for administration commercial space

  1. 14 CFR 401.3 - The Associate Administrator for Commercial Space Transportation.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 4 2011-01-01 2011-01-01 false The Associate Administrator for Commercial Space Transportation. 401.3 Section 401.3 Aeronautics and Space COMMERCIAL SPACE TRANSPORTATION, FEDERAL... Associate Administrator for Commercial Space Transportation. The Office is headed by an...

  2. 14 CFR 401.3 - The Associate Administrator for Commercial Space Transportation.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 4 2013-01-01 2013-01-01 false The Associate Administrator for Commercial Space Transportation. 401.3 Section 401.3 Aeronautics and Space COMMERCIAL SPACE TRANSPORTATION, FEDERAL... Associate Administrator for Commercial Space Transportation. The Office is headed by an...

  3. 14 CFR 401.3 - The Associate Administrator for Commercial Space Transportation.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 4 2014-01-01 2014-01-01 false The Associate Administrator for Commercial Space Transportation. 401.3 Section 401.3 Aeronautics and Space COMMERCIAL SPACE TRANSPORTATION, FEDERAL... Associate Administrator for Commercial Space Transportation. The Office is headed by an...

  4. 14 CFR 401.3 - The Associate Administrator for Commercial Space Transportation.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 4 2012-01-01 2012-01-01 false The Associate Administrator for Commercial Space Transportation. 401.3 Section 401.3 Aeronautics and Space COMMERCIAL SPACE TRANSPORTATION, FEDERAL... Associate Administrator for Commercial Space Transportation. The Office is headed by an...

  5. 14 CFR 401.3 - The Associate Administrator for Commercial Space Transportation.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Administrator to exercise the Secretary's authority to license or permit and otherwise regulate commercial space transportation and to discharge the Secretary's responsibility to encourage, facilitate, and promote...

  6. The Effect of the Commercial Space Launch Act on Department of Defense Contract Administration

    DTIC Science & Technology

    1990-09-01

    Furce Base, Ohio50 12 19 005 AFIT/GCM/LSP/90S-3 THE EFFECT OF THE COMMERCIAL SPACE LAUNCH ACT ON DEPARTMENT OF DEFENSE CONTRACT ADMINISTRATION THESIS...A i ., .u; AFIT/GCM/LSP/90S-3 THE EFFECT OF THE COMMERCIAL SPACE LAUNCH ACT ON DEPARTMENT OF DEFENSE CONTRACT ADMINISTRATION THESIS Presented to the...unlimited Preface The purpose of this study was to examine the Commercial Space Launch Act and the effect of the Act on the Department of Defense

  7. Space Commercialization

    NASA Technical Reports Server (NTRS)

    Martin, Gary L.

    2011-01-01

    A robust and competitive commercial space sector is vital to continued progress in space. The United States is committed to encouraging and facilitating the growth of a U.S. commercial space sector that supports U.S. needs, is globally competitive, and advances U.S. leadership in the generation of new markets and innovation-driven entrepreneurship. Energize competitive domestic industries to participate in global markets and advance the development of: satellite manufacturing; satellite-based services; space launch; terrestrial applications; and increased entrepreneurship. Purchase and use commercial space capabilities and services to the maximum practical extent Actively explore the use of inventive, nontraditional arrangements for acquiring commercial space goods and services to meet United States Government requirements, including measures such as public-private partnerships, . Refrain from conducting United States Government space activities that preclude, discourage, or compete with U.S. commercial space activities. Pursue potential opportunities for transferring routine, operational space functions to the commercial space sector where beneficial and cost-effective.

  8. Commercial ELV services and the National Aeronautics and Space Administration - Concord or discord?

    NASA Technical Reports Server (NTRS)

    Frankle, Edward A.

    1988-01-01

    In implementation of the U.S. policy to foster and encourage the commercial expendable launch vehicle (ELV) industry, tensions have developed between the industry and U.S. Government agencies in two distinct areas: industry use of government facilities and government purchase of commercial ELV services. The reasons for the tensions and discrete legal problems for each area are identified and discussed. Specifically, in the use of government facilities area, issues of insurance and indemnification for third-party liability and government property, concerns over priority and scheduling, and dispute-resolution procedures are discussed. In the area of government purchase of ELV launch services, a comparison is made between a launch service purchase and prior procurement practice. In all areas, the conclusion is reached that while problems still exist, they generally are understood and great progress has been made toward their resolution.

  9. 78 FR 53497 - Commercial Space Transportation Advisory Committee; Closed Session

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-29

    ... Federal Aviation Administration Commercial Space Transportation Advisory Committee; Closed Session AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Notice of Commercial Space Transportation Advisory... closed session of the Commercial Space Transportation Advisory Committee (COMSTAC). The special...

  10. 75 FR 23841 - Commercial Space Transportation Grant Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-04

    ... Federal Aviation Administration Commercial Space Transportation Grant Program AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Notice of request for grant proposals for the Commercial Space Transportation Grant Program. SUMMARY: The FAA's Office of Commercial Space Transportation (AST) requests...

  11. 76 FR 15039 - Commercial Space Transportation Grants Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-18

    ... Federal Aviation Administration Commercial Space Transportation Grants Program AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Notice of request for grant proposals for the Commercial Space Transportation... development of a Commercial Space Transportation infrastructure system, which supports the National...

  12. 77 FR 52067 - NASA Advisory Council; Commercial Space Committee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-28

    ... SPACE ADMINISTRATION NASA Advisory Council; Commercial Space Committee; Meeting AGENCY: National Aeronautics and Space Administration. ACTION: Notice of meeting. SUMMARY: This Committee reports to the NAC... Agreements --Ames Research Center's Commercial Space Activities and Plans --Dryden Flight Research...

  13. Commercial space services

    NASA Technical Reports Server (NTRS)

    Christensen, D. L.

    1984-01-01

    An overview of space service opportunities as identified by a Wyle Laboratories' research team is given. Through the use of a baseline space scenario, a variety of space hardware, services, and commercial activities are identified and related on a time-phased basis. A model is presented to relate the potential functions of government and the private sector in a commercialized space environment during the period 1984 to 2004. Barriers, incentives and key issues are likewise identified and addressed to aid in the implementation of private sector activities for spacerelated programs. Broader awareness, legislative actions, incentive development and benefit analyses are considered in the presentation. The time-phased plan provides a useful planning and management tool, allows broader communication, and supports overall space commercialization program assessment.

  14. 78 FR 14401 - Commercial Space Transportation Advisory Committee; Public Teleconference

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-05

    ... Practices for Crew and Space Flight Participants. We would like to explore industry views on medical best... Federal Aviation Administration Commercial Space Transportation Advisory Committee; Public Teleconference AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Notice of Commercial Space...

  15. 75 FR 70347 - Commercial Space Transportation Advisory Committee; Renewal

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-17

    ... Federal Aviation Administration Commercial Space Transportation Advisory Committee; Renewal AGENCY... given that the Commercial Space Transportation Advisory Committee (COMSTAC) has been renewed for a 2.... commercial space transportation industry. The ] primary goals of the Committee are to evaluate...

  16. 75 FR 17437 - NASA Advisory Council; Commercial Space Committee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-06

    ... SPACE ADMINISTRATION NASA Advisory Council; Commercial Space Committee; Meeting AGENCY: National Aeronautics and Space Administration. ACTION: Notice of meeting. SUMMARY: In accordance with the Federal Advisory Committee Act, Public Law 92-463, as amended, the National Aeronautics and Space...

  17. 75 FR 53349 - NASA Advisory Council; Commercial Space Committee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-31

    ... SPACE ADMINISTRATION NASA Advisory Council; Commercial Space Committee; Meeting AGENCY: National Aeronautics and Space Administration. ACTION: Notice of Meeting. SUMMARY: In accordance with the Federal Advisory Committee Act, Public Law 92-463, as amended, the National Aeronautics and Space...

  18. 75 FR 11200 - NASA Advisory Council; Commercial Space Committee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-10

    ... SPACE ADMINISTRATION NASA Advisory Council; Commercial Space Committee; Meeting AGENCY: National Aeronautics and Space Administration. ACTION: Notice of Meeting. SUMMARY: In accordance with the Federal Advisory Committee Act, Public Law 92-463, as amended, the National Aeronautics and Space...

  19. 78 FR 42111 - NASA Advisory Council; Commercial Space Committee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-15

    ... SPACE ADMINISTRATION NASA Advisory Council; Commercial Space Committee; Meeting AGENCY: National Aeronautics and Space Administration. ACTION: Notice of meeting. SUMMARY: In accordance with the Federal Advisory Committee Act, Public Law 92-462, as amended, the National Aeronautics and Space...

  20. 76 FR 17712 - NASA Advisory Council; Commercial Space Committee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-30

    ... SPACE ADMINISTRATION NASA Advisory Council; Commercial Space Committee; Meeting AGENCY: National Aeronautics and Space Administration. ACTION: Notice of meeting. SUMMARY: In accordance with the Federal Advisory Committee Act, Public Law 92-463, as amended, the National Aeronautics and Space...

  1. 75 FR 28821 - NASA Advisory Council; Commercial Space Committee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-24

    ... SPACE ADMINISTRATION NASA Advisory Council; Commercial Space Committee; Meeting AGENCY: National Aeronautics and Space Administration. ACTION: Notice of meeting. SUMMARY: In accordance with the Federal Advisory Committee Act, Public Law 92-463, as amended, the National Aeronautics and Space...

  2. 76 FR 3674 - NASA Advisory Council; Commercial Space Committee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-20

    ... SPACE ADMINISTRATION NASA Advisory Council; Commercial Space Committee; Meeting AGENCY: National Aeronautics and Space Administration. ACTION: Notice of meeting. SUMMARY: In accordance with the Federal Advisory Committee Act, Public Law 92-463, as amended, the National Aeronautics and Space...

  3. 77 FR 67028 - NASA Advisory Council; Commercial Space Committee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-11-08

    ... SPACE ADMINISTRATION NASA Advisory Council; Commercial Space Committee; Meeting AGENCY: National Aeronautics and Space Administration. ACTION: Notice of meeting. SUMMARY: In accordance with the Federal Advisory Committee Act, Public Law 92-462, as amended, the National Aeronautics and Space...

  4. 75 FR 39973 - NASA Advisory Council; Commercial Space Committee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-13

    ... SPACE ADMINISTRATION NASA Advisory Council; Commercial Space Committee; Meeting AGENCY: National Aeronautics and Space Administration. ACTION: Notice of meeting. SUMMARY: In accordance with the Federal Advisory Committee Act, Public Law 92-463, as amended, the National Aeronautics and Space...

  5. 77 FR 20852 - NASA Advisory Council; Commercial Space Committee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-06

    ... SPACE ADMINISTRATION NASA Advisory Council; Commercial Space Committee; Meeting AGENCY: National Aeronautics and Space Administration. ACTION: Notice of Meeting. SUMMARY: In accordance with the Federal Advisory Committee Act, Public Law 92-463, as amended, the National Aeronautics and Space...

  6. 78 FR 10213 - NASA Advisory Council; Commercial Space Committee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-13

    ... SPACE ADMINISTRATION NASA Advisory Council; Commercial Space Committee; Meeting AGENCY: National Aeronautics and Space Administration. ACTION: Notice of meeting. SUMMARY: In accordance with the Federal Advisory Committee Act, Public Law 92-462, as amended, the National Aeronautics and Space...

  7. Commercialization in NASA Space Operations

    NASA Technical Reports Server (NTRS)

    Gilbert, Charlene E.

    1998-01-01

    Various issues associated with commercialization in NASA space operations are presented in viewgraph form. Specific topics include: 1) NASA's financial outlook; 2) Space operations; 3) Space operations technology; and 4) Strategies associated with these operations.

  8. 75 FR 4875 - NASA Commercial Space Committee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-29

    ... SPACE ADMINISTRATION NASA Commercial Space Committee; Meeting AGENCY: National Aeronautics and Space... Law 92-463, as amended, the National Aeronautics and Space Administration announces a meeting of the Commercial Space Committee to the NASA Advisory Council. DATES: Tuesday, February 16, 2010, 10 a.m.-5...

  9. Space Station commercial user development

    NASA Technical Reports Server (NTRS)

    1984-01-01

    The commercial utilization of the space station is investigated. The interest of nonaerospace firms in the use of the space station is determined. The user requirements are compared to the space station's capabilities and a feasibility analysis of a commercial firm acting as an intermediary between NASA and the private sector to reduce costs is presented.

  10. 78 FR 70093 - Commercial Space Transportation Advisory Committee-Closed Session

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-22

    ... Federal Aviation Administration Commercial Space Transportation Advisory Committee--Closed Session AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Notice of Commercial Space Transportation Advisory... closed session of the Commercial Space Transportation Advisory Committee (COMSTAC). The special...

  11. Commercial Space Tourism and Space Weather

    NASA Astrophysics Data System (ADS)

    Turner, Ronald

    2007-08-01

    Space tourism, a concept which even a few years ago was perveived as science fantasy, is now a credible industry. Five individuals have paid up to $25 M to spend more than a week on the International Space Station. Several enterprises are working toward viable suborbital and orbital private space operations. while operational space weather support to human space flight has been the domain of government entities the emergence of space tourism now presents a new opportunity for the commercial space weather community. This article examines the space weather impact on crews and passengers of the future space tourism industry.

  12. 76 FR 40753 - NASA Advisory Council; Commercial Space; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-11

    ... SPACE ADMINISTRATION NASA Advisory Council; Commercial Space; Meeting AGENCY: National Aeronautics and Space Administration. ACTION: Notice of meeting. SUMMARY: In accordance with the Federal Advisory Committee Act, Public Law 92-463, as amended, the National Aeronautics and Space Administration announces...

  13. 76 FR 20070 - Commercial Space Transportation Safety Approval Performance Criteria

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-11

    ....19 (a)(4). NASTAR's ] STS-400 suborbital space flight simulator (a multi-axis centrifuge) is capable of replicating the G forces associated with suborbital space flight within the following parameters... Federal Aviation Administration Commercial Space Transportation Safety Approval Performance...

  14. Commercialization of solar space power

    NASA Astrophysics Data System (ADS)

    Pant, Alok; Sera, Gary

    1995-01-01

    The objective of this research is to help U.S. companies commercialize renewable energy in India, with a special focus on solar energy. The National Aeronautics and Space Administration (NASA) Mid-Continent Technology Transfer Center (MCTTC) is working with ENTECH, Inc., a solar photovoltaic (SPV) systems manufacturer to form partnerships with Indian companies. MCTTC has conducted both secondary and primary market research and obtained travel funding to meet potential Indian partners face to face. MCTTC and ENTECH traveled to India during June 2-20, 1994, and visited New Delhi, Bombay, Pune and Calcutta. Meetings were held with several key government officials and premier Indian business houses and entrepreneurs in the area of solar energy. A firsthand knowledge of India's renewable energy industry was gained, and companies were qualified in terms of capabilities and commitment to the SPV business. The World Bank has awarded India with 280 million to commercialize renewable energies, including 55 million for SPV. There is a market in India for both small-scale (kW) and large SPV (MW) applications. Each U.S. company needs to form a joint venture with an Indian firm and let the latter identify the states and projects with the greatest business potential. Several big Indian companies and entrepreneurs are planning to enter the SPV business, and they currently are seeking foreign technology partners. Since the lager companies have adopted a more conservative approach, however, partnerships with entrepreneurs might offer the quickest route to market entry in India.

  15. Commercial newsgathering from space

    NASA Astrophysics Data System (ADS)

    1987-05-01

    This memorandum does not examine the feasibility of a specific satellite system or business plan, but rather, assesses whether current government policy is appropriate to accommodate both current activities and future developments of the use of satellite images to cover newsworthy events. The mediasat term refers to a concept of a satellite system and business organization that would routinely collect news and information for media use from space. Because the mediasat concept is, for the most part, undefined, the Office of Technology Assessment (OTA) was forced to make a series of assumptions regarding fundamental issues as cost, markets, technical capability, and utility of a mediasat. Although these assumptions are critical to OTA's conclusions, they are only best guesses, based on the advice of experts in the media and in the field of remote sensing. With regard to specific issues, such as the economic viability of a mediasat or its effect on national security and foreign policy, altering these underlying assumptions could dramatically alter the conclusions reached.

  16. 78 FR 1917 - Commercial Space Transportation Advisory Committee-Public Teleconference

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-09

    ... TRANSPORTATION Federal Aviation Administration Commercial Space Transportation Advisory Committee--Public Teleconference AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Notice of Commercial Space... Space Transportation Advisory Committee (COMSTAC). DATES: The teleconference will take place on...

  17. 77 FR 71474 - Commercial Space Transportation Advisory Committee-Charter Renewal

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-11-30

    ... Federal Aviation Administration Commercial Space Transportation Advisory Committee--Charter Renewal AGENCY... Renewal of the Commercial Space Transportation Advisory Committee (COMSTAC). SUMMARY: FAA announces the... (FAA) on the critical matters facing the U.S. commercial space transportation industry. This...

  18. Commercial Space with Technology Maturation

    NASA Technical Reports Server (NTRS)

    McCleskey, Carey M.; Rhodes, Russell E.; Robinson, John W.

    2013-01-01

    To provide affordable space transportation we must be capable of using common fixed assets and the infrastructure for multiple purposes simultaneously. The Space Shuttle was operated for thirty years, but was not able to establish an effective continuous improvement program because of the high risk to the crew on every mission. An unmanned capability is needed to provide an acceptable risk to the primary mission. This paper is intended to present a case where a commercial space venture could share the large fixed cost of operating the infrastructure with the government while the government provides new advanced technology that is focused on reduced operating cost to the common launch transportation system. A conceivable commercial space venture could provide educational entertainment for the country's youth that would stimulate their interest in the science, technology, engineering, and mathematics (STEM) through access at entertainment parks or the existing Space Visitor Centers. The paper uses this example to demonstrate how growing public-private space market demand will re-orient space transportation industry priorities in flight and ground system design and technology development, and how the infrastructure is used and shared.

  19. 77 FR 4370 - NASA Advisory Council; Commercial Space Committee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-27

    ...: Thursday, February 23, 2012, 8 a.m.-2:30 p.m., Local Time. ADDRESSES: Marshall Space Flight Center (MSFC), Building 4200, Room P- 110, Marshall Space Flight Center, AL 35812. FOR FURTHER INFORMATION CONTACT: Mr... SPACE ADMINISTRATION NASA Advisory Council; Commercial Space Committee; Meeting AGENCY:...

  20. Collaborative Commercial Space Situational Awareness

    NASA Astrophysics Data System (ADS)

    Kelso, T. S.; Hendrix, D.; Sibert, D.; Hall, R. A.; Therien, W.

    2013-09-01

    There is an increasing recognition by commercial and civil space operators of the need for space situational awareness (SSA) data to support ongoing conjunction analysis, maneuver planning, and radio frequency interference mitigation as part of daily operations. While some SSA data is available from the Joint Space Operations Center via the Space Track web site, access to raw observations and photometric data is limited due to national security considerations. These data, however, are of significant value in calibrating intra- and inter-operator orbit determination results, determining inter-system biases, and assessing operating profiles in the geostationary orbit. This paper details an ongoing collaborative effort to collect and process optical observations and photometric data using a network of low-cost telescope installations and shows how these data are being used to support ongoing operations in the Space Data Center. This presentation will demonstrate how by leveraging advance photometric processing algorithms developed for Missile Defense Agency and the Ballistic Missile Defense (BMD) mission ExoAnalytic and AGI have been able to provide actionable SSA for satellite operators from small telescopes in less than optimal viewing conditions. Space has become an increasingly cluttered environment requiring satellite operators to remain forever vigilant in order to prevent collisions to preserve their assets and prevent further cluttering the space environment. The Joint Space Operations Center (JSpOC), which tracks all objects in earth orbit, reports possible upcoming conjunctions to operators by providing Conjunction Summary Messages (CSMs). However due to large positional uncertainties in the forward predicted position of space objects at the time closest approach the volume of CSMs is excessive to the point that maneuvers in response to CSMs without additional screening is cost prohibitive. CSSI and the Space Data Association have been able to screen most

  1. 78 FR 28275 - Office of Commercial Space Transportation; Safety Approval Performance Criteria

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-14

    ... hypobaric chamber training for crew and space flight participants to experience and demonstrate knowledge of... Federal Aviation Administration Office of Commercial Space Transportation; Safety Approval Performance...), FAA Office of Commercial Space Transportation (AST), 800 Independence Avenue SW., Room 331,...

  2. 77 FR 58607 - Office of Commercial Space Transportation Safety Approval Performance Criteria

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-21

    ... Federal Aviation Administration Office of Commercial Space Transportation Safety Approval Performance..., Licensing and Evaluation Division (AST-200), FAA Office of Commercial Space Transportation (AST), 800... Space Transportation. BILLING CODE 4910-13-P...

  3. A study of factors related to commercial space platform services

    NASA Technical Reports Server (NTRS)

    Hosenball, S. N.

    1986-01-01

    In the past four years, the issue of the commercial development of space has come to the forefront of the U. S. national space policy. Though the Administration, Congress and NASA have all shown strong support for encouraging the private sector to become more actively involved in the commercial utilization of space, the question remains whether they must do more to foster the creation and development of a viable U. S. commercial space industry. Marketing aspects, insurance and risk loss, tax related factors, space transportation, termination liability, institutional barriers, and procurement laws and regulations are discussed.

  4. 75 FR 30690 - Civil Penalty Inflation Adjustment for Commercial Space Adjudications

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-02

    ... Commercial Space Adjudications AGENCY: Federal Aviation Administration, DOT. ACTION: Final rule. SUMMARY: This final rule brings Federal Aviation Administration commercial space transportation regulations into... penalty contained in 14 CFR part 406 authorized for violations of the Commercial Space Launch Act of...

  5. 76 FR 4412 - Commercial Space Transportation Advisory Committee-Closed Session

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-25

    ... TRANSPORTATION Federal Aviation Administration Commercial Space Transportation Advisory Committee--Closed Session AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Notice of Commercial Space Transportation... 102-3.160, notice is hereby given of a special closed session of the Commercial Space...

  6. A gap analysis of meteorological requirements for commercial space operators

    NASA Astrophysics Data System (ADS)

    Stapleton, Nicholas James

    been generated for the Federal Aviation Administration, U.S. Congress, commercial space launch companies, and areas are identified for further research.

  7. National Space Agencies vs. Commercial Space: Towards Improved Space Safety

    NASA Astrophysics Data System (ADS)

    Pelton, J.

    2013-09-01

    Traditional space policies as developed at the national level includes many elements but they are most typically driven by economic and political objectives. Legislatively administered programs apportion limited public funds to achieve "gains" that can involve employment, stimulus to the economy, national defense or other advancements. Yet political advantage is seldom far from the picture.Within the context of traditional space policies, safety issues cannot truly be described as "afterthoughts", but they are usually, at best, a secondary or even tertiary consideration. "Space safety" is often simply assumed to be "in there" somewhere. The current key question is can "safety and risk minimization", within new commercial space programs actually be elevated in importance and effectively be "designed in" at the outset. This has long been the case with commercial aviation and there is at least reasonable hope that this could also be the case for the commercial space industry in coming years. The cooperative role that the insurance industry has now played for centuries in the shipping industry and for decades in aviation can perhaps now play a constructive role in risk minimization in the commercial space domain as well. This paper begins by examining two historical case studies in the context of traditional national space policy development to see how major space policy decisions involving "manned space programs" have given undue primacy to "political considerations" over "safety" and other factors. The specific case histories examined here include first the decision to undertake the Space Shuttle Program (i.e. 1970-1972) and the second is the International Space Station. In both cases the key and overarching decisions were driven by political, schedule and cost considerations, and safety seems absence as a prime consideration. In publicly funded space programs—whether in the United States, Europe, Russia, Japan, China, India or elsewhere—it seems realistic to

  8. Enabling Sustainable Exploration through the Commercial Development of Space

    NASA Technical Reports Server (NTRS)

    Nall, Mark; Casas, Joseph

    2003-01-01

    The commercial development of space offers enabling benefits to space exploration. This paper examines how those benefits can be realized, and how the Space Product Development Office of the National Aeronautics and Space Administration is taking the first steps towards opening the space frontier through vital and sustainable industrial development. The Space Product Development Office manages 15 Commercial Space Centers that partner with US industry to develop opportunities for commerce in space. This partnership directly benefits NASA exploration in four primary ways. First, by actively involving traditional and non-traditional companies in commercial space activities, it seeks and encourages to the maximum extent possible the fullest commercial use of space, as directed by NASA's charter. Second, the commercial research and technologies pursued and developed in the program often have direct applicability to NASA priority mission areas. This dual use strategy for research and technology has the potential to greatly expand what the NASA scientific community can do. Third, the commercial experiment hardware developed by the Commercial Space Centers and their industrial partners is available for use by NASA researchers in support of priority NASA research. By utilizing low cost and existing commercial hardware, essential NASA research can be more readily accomplished. Fourth, by assisting industry in understanding the use of the environment of space and in helping industry enhance the tools and technologies for NASA and commercial space systems, the market for commercial space utilization and the capability for meeting the future growing market needs is being developed. These two activities taken together form the beginning of a new space economy that will enable sustainable NASA exploration of the universe.

  9. Second Symposium on Space Industrialization. [space commercialization

    NASA Technical Reports Server (NTRS)

    Jernigan, C. M. (Editor)

    1984-01-01

    The policy, legal, and economic aspects of space industrialization are considered along with satellite communications, material processing, remote sensing, and the role of space carriers and a space station in space industrialization.

  10. Non-US approaches to space commercialization

    NASA Technical Reports Server (NTRS)

    Smith, P. G.

    1984-01-01

    The approaches to the commercialization of space taken by the four foreign countries most active in the field - Canada, France, the Federal Republic of Germany, and Japan are described. National space program elements with commercial potential are examined in the context of national industrial and science policies, with special attention to objectives, timetables, and budgetary priority relative to other sectors. The role of the European Space Agency in attaining national and regional commercialization objectives is also examined.

  11. CASH 2021: commercial access and space habitation.

    PubMed

    Aldrin, Andrew; Amara, Adam; Aris, Lodewijk; Baierl, Nida; Beatty, Patrick; Beaulieu, Catherine; Behnke, Torsten; Castegini, Roberta; Chauhan, Amitabh; Cojanis, Philip; Dayawansa, Pelawa; Diop, Marie; Eito, Kinya; Engle, Steve; Feretti, Stefano; Gassama, Hamet; Genova, Bojana; Goulding, Colin; Janjua, Jameel; Jansaeng, Thidarat; Jousset, Frederic; Kopik, Anatoly; Laurin, Catherine; Leggatt, Jason; Li, Hengnian; Mezzadri, Monica; Miura, Amane; Nolet, Simon; Ogami, Satoshi; Patry, Johanne; Patten, Laryssa; Payerne, Cyril; Peer, Guy; Prampolini, Marco; Rheaume, Caroline; Saary, Joan; Spehar, Daniela; Sufi, Atiya; Sun, Baosheng; Thompson, J Barry; Thomson, Ward; Trautner, Roland; Tursunmuratov, Murat; Venet, Vrata; Wilems, Elizabeth; Wilson, Helen; Wittwer, Karl; Wokke, Frank; Wu, Yansheng; Zhou, Shaobin; Zilioli, Ilaria

    2002-01-01

    Issues about commercialization of space have been a growing concern in the past decade for the space community. This paper focuses on the work from a team of 51 students attending the Summer Session Program of the International Space University in Bremen, Germany. CASH 2021 (Commercial Access and Space Habitation) documents a plan that identifies commercial opportunities for space utilization that will extend human presence in space, and will chart the way forward for the next 20 years. The group selected four commercial sectors that show the most promise for the future: tourism, entertainment, space system service, assembly and debris removal, and research and development/production. The content of this document presents the results of their research. Historical activities in each of the commercial sectors are reviewed along with the current market situation. To provide a coherent background for future commercialization possibilities a scenario has been developed. This scenario includes a postulated upon ideal future and includes social, political and economic factors that may affect the space industry over the timeline of the study. The study also presents a roadmap, within the limited optimistic scenario developed, for the successful commercialization of space leading to future human presence in space. A broad range of commercially viable opportunities, not only within the current limits of the International Space Station, but also among the many new developments that are expected by 2021 are discussed.

  12. CASH 2021: Commercial access and space habitation

    NASA Astrophysics Data System (ADS)

    Aldrin, Andrew; Amara, Adam; Aris, Lodewijk; Baierl, Nida; Beatty, Patrick; Beaulieu, Catherine; Behnke, Torsten; Castegini, Roberta; Chauhan, Amitabh; Cojanis, Philip; Dayawansa, Pelawa; Diop, Marie; Eito, Kinya; Engle, Steve; Ferretti, Stefano; Gassama, Hamet; Genova, Bojana; Goulding, Colin; Janjua, Jameel; Jansaeng, Thidarat; Jousset, Frédéric; Kopik, Anatoly; Laurin, Catherine; Leggatt, Jason; Li, Hengnian; Mezzadri, Monica; Miura, Amane; Nolet, Simon; Ogami, Satoshi; Patry, Johanne; Patten, Laryssa; Payerne, Cyril; Peer, Guy; Prampolini, Marco; Rheaume, Caroline; Saary, Joan; Spehar, Daniela; Sufi, Atiya; Sun, Baosheng; Thompson, J. Barry; Thomson, Ward; Trautner, Roland; Tursunmuratov, Murat; Venet, Vrata; Wilems, Elizabeth; Wilson, Helen; Wittwer, Karl; Wokke, Frank; Wu, Yansheng; Zhou, Shaobin; Zilioli, Ilaria

    2002-07-01

    Issues about commercialization of space have been a growing concern in the past decade for the space community. This paper focuses on the work from a team of 51 students attending the Summer Session Program of the International Space University in Bremen, Germany. CASH 2021 (Commercial Access and Space Habitation) documents a plan that identifies commercial opportunities for space utilization that will extend human presence in space, and will chart the way forward for the next 20 years. The group selected four commercial sectors that show the most promise for the future: tourism, entertainment, space system service, assembly and debris removal, and research and development/production. The content of this document presents the results of their research. Historical activities in each of the commercial sectors are reviewed along with the current market situation. To provide a coherent background for future commercialization possibilities a scenario has been developed. This scenario includes a postulated upon ideal future and includes social, political and economic factors that may affect the space industry over the timeline of the study. The study also presents a roadmap, within the limited optimistic scenario developed, for the successful commercialization of space leading to future human presence in space. A broad range of commercially viable opportunities, not only within the current limits of the International Space Station, but also among the many new developments that are expected by 2021 are discussed.

  13. Commercial Application of In-Space Assembly

    NASA Technical Reports Server (NTRS)

    Lymer, John; Hanson, Mark; Tadros, Al; Boccio, Joel; Hollenstein, Bruno; Emerick, Ken; Doughtery, Sean; Doggett, Bill; Dorsey, John T.; King, Bruce D.; Bowman, Lynn

    2016-01-01

    In-Space assembly (ISA) expands the opportunities for cost effective emplacement of systems in space. Currently, spacecraft are launched into space and deploy into their operational configuration through a carefully choreographed sequence of operations. The deployment operation dictates the arrangement of the primary systems on the spacecraft, limiting the ability to take full advantage of launch vehicles volume and mass capability. ISA enables vastly different spacecraft architectures and emplacement scenarios to be achieved, including optimal launch configurations ranging from single launch and assembly to on-orbit aggregation of multiple launches at different orbital locations and times. The spacecraft can be visited at different orbital locations and times to effect expansion and maintenance of an operational capability. To date, the primary application of ISA has been in large programs funded by government organizations, such as the International Space Station. Recently, Space Systems Loral (SSL) led a study funded by the Defense Advanced Research Projects Agency (DARPA), called Dragonfly, to investigate the commercial applicability and economic advantages of ISA. In the study, it was shown that ISA enables SSL to double the capability of a commercial satellite system by taking advantage of alternate packaging approaches for the reflectors. The study included an ultra-light-weight robotic system, derived from Mars manipulator designs, to complete assembly of portions of the antenna system using a tool derived from DARPA orbital express and National Aeronautics and Space Administration (NASA) automated structural assembly experience. The mechanical connector that enables robotic ISA takes advantage of decades of development by NASA from the 1970's to 1980's during the Space Station Freedom program, the precursor to the ISS. The mechanical connector was originally designed for rapid astronaut assembly while also providing a high quality structural connection

  14. Space Industry Commercialization: A Systems Engineering Evaluation of Alternatives

    NASA Astrophysics Data System (ADS)

    Dinally, Jihan

    The Constellation Program cancellation reversed the government and commercial space industry's roles and relationships by dedicating the majority of the federal funding and opportunities to the commercial space industry and left the government space industry in search of an approach to collaborate with the dominant organization, the commercial space industry service providers. The space industry government agencies, Air Force Space Command (AFSPC) and National Aeronautics and Space Administration (NASA) had realized that to gain resources in the new commercially oriented economic environment, they had to work together and possess the capabilities aligned with the National Space Policy's documented goals. Multi-organizational collaboration in space industry programs is challenging, as NASA, AFSPC, and commercial providers, follow different [1] enterprise architecture guidance such as the NASA systems engineering Handbook, MIL-STD-499 and "A Guide to the systems engineering Body of Knowledge" by the International Council on systems engineering [2] [3]. A solution to streamline their enterprise architecture documentation and meet National Space Policy goals is the Multi-User Architecture Maturity Model Methodology (MAM3), which offers a tailored systems engineering technique the government agencies and private companies can implement for the program's maturity level. In order to demonstrate the MAM3, a CubeSat motivated study was conducted partnering a commercial provider with a government agency. A survey of the commercial space industry service providers' capabilities was performed to select the private companies for the study. Using the survey results, the commercial space industry service providers were ranked using the Analytic Hierarchy Process (AHP) [4]. The AHP is a structured technique for making complex decisions for representing and quantifying its weights, relating those weights to overall goals, and evaluating alternative solutions [5] - [8]. The weights

  15. 76 FR 12403 - Office of Commercial Space Transportation; Notice of Availability of the Finding of No...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-07

    ... Federal Aviation Administration Office of Commercial Space Transportation; Notice of Availability of the... for Pegasus Expendable Launch Vehicles at Wallops Flight Facility, Virginia AGENCY: Federal Aviation... on the analysis and findings of the January 2005 National Aeronautics and Space Administration...

  16. NewSpace: The Emerging Commercial Space Industry

    NASA Technical Reports Server (NTRS)

    Martin, Gary

    2017-01-01

    We are at a turning point in the history of space exploration and development, where new industries are being born to use space in non-traditional ways. Established state-run industrial space sector is no longer the only game in town; commercial space is becoming competitive. Many new entrepreneurial companies, such as SpaceX, Deep Space Industries, etc. are developing new markets, such as Orbital, Suborbital, and Deep Space. Together, government and private industry can facilitate the birth of this new industry. The U.S. national policy on commercial space is to develop a robust and competitive U.S. commercial space sector and to energize competitive domestic industries to participate in global markets. NASA can do this by purchasing and using commercial space capabilities and services; exploring the use of nontraditional arrangements for acquiring space capabilities and services; refraining from activities that preclude, discourage, or compete with commercial space activities; and pursuing opportunities to transfer some functions to the commercial space sector, where beneficial. Commercial space must be competitive, while the government has other priorities such as safety, jobs, etc.

  17. 75 FR 16901 - Commercial Space Transportation Advisory Committee-Open Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-02

    ... Federal Aviation Administration Commercial Space Transportation Advisory Committee--Open Meeting AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Notice of Commercial Space Transportation Advisory.... 92-463, 5 U.S.C. App. 2), notice is hereby given of the meetings of the Commercial...

  18. Commercial biotechnology processing on International Space Station

    NASA Astrophysics Data System (ADS)

    Deuser, Mark S.; Vellinger, John C.; Hardin, Juanita R.; Lewis, Marian L.

    1998-01-01

    Commercial biotechnology processing in space has the potential to eventually exceed the $35 billion annual worldwide market generated by the current satellite communications industry (Parone 1997). The International Space Station provides the opportunity to conduct long-term, crew-tended biotechnology research in microgravity to establish the foundation for this new commercial biotechnology market. Industry, government, and academia are collaborating to establish the infrastructure needed to catalyze this biotechnology revolution that could eventually lead to production of medical and pharmaceutical products in space. The biotechnology program discussed herein is evidence of this collaborative effort, with industry involvement from Space Hardware Optimization Technology, Inc., government participation through the NASA Commercial Space program, and academic guidance from the Consortium for Materials Development in Space at the University of Alabama in Huntsville. Blending the strengths and resources of each collaborator creates a strong partnership, that offers enormous research and commercial opportunities.

  19. The Role of the FAA in US Commercial Space Transportation

    NASA Astrophysics Data System (ADS)

    Smith, Patricia Grace

    2002-01-01

    The Commercial Space Launch Act of 1984 granted the United States (U.S.) Secretary of Transportation authority to regulate launch and launch site operations conducted by U.S. citizens or from the U.S. This authority is exercised only to the extent necessary to protect public health and safety, protect property, and preserve U.S. national security and foreign policy interests. The Secretary of Transportation has delegated this responsibility to the U.S. Federal Aviation Administration (FAA), and the FAA Associate Administrator for Commercial Space Transportation carries out activities associated with this responsibility. Since 1984, the Commercial Space Launch Act has been amended several times and the FAA's responsibilities regarding U.S. commercial space transportation activities have been expanded to include regulation of reentry activities and operation of reentry sites by U.S. citizens. Additionally, the FAA can determine safety approval criteria for vehicles, safety systems, processes, services and personnel. Since 1984, there have been no fatalities or injuries suffered by the public resulting from U.S. commercial space launch activities. While public safety is its primary focus, the FAA also promotes launches by U.S. commercial space transportation entities in order to support U.S. competitiveness in the global marketplace.

  20. Centers for the commercial development of space

    NASA Technical Reports Server (NTRS)

    Walker, Susan E. (Editor)

    1989-01-01

    In 1985, NASA initiated an innovative effort called Centers for the Commercial Development of Space (CCDS). The CCDS program was designed to increase private-sector interest and investment in space-related activities, while encouraging U.S. economic leadership and stimulating advances in promising areas of research and development. Research conducted in the Centers handling the following areas is summarized: materials processing; life sciences; remote sensing; automation and robotics; space propulsion; space structures and materials; and space power.

  1. 78 FR 21003 - Office of Commercial Space Transportation; Notice of Availability of the Finding of No...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-08

    ... Federal Aviation Administration Office of Commercial Space Transportation; Notice of Availability of the... Licenses to Space Exploration Technologies Corp. (SpaceX) for Falcon 9 and Falcon Heavy Commercial Launch Operations at Vandenberg Air Force Base (VAFB), California AGENCY: Federal Aviation Administration (FAA),...

  2. Florida, National Space Club Embrace Commercial Endeavors

    NASA Video Gallery

    NASA's Commercial Crew Program (CCP) Manager Ed Mango and Florida's Lt. Gov. Jennifer Carroll were guest speakers at the National Space Club Florida Committee's luncheon at the Radisson Resort at t...

  3. Commercial use of space - The space business era

    NASA Technical Reports Server (NTRS)

    Griffin, G. D.

    1985-01-01

    Progress and avenues being explored by NASA to hasten the commercialization of space are described. A task force has recommended that the effort begin at once, that bureaucratic barriers to commercial space activities be removed, and that a partnership between government and industry be seriously explored. The government role is to establish links with private industry, invest in high-leverage technologies and space facilities which will be attractive to commercial ventures, and contribute to commercial enterprises where risks are high and significant economic benefits can be foreseen. The government/industry relationship can be legally evinced by MOUs, joint endeavor agreements, technical exchange agreements and industrial guest investigator arrangements. The Space Station is the first step in that it allows Americans to live and work in space. It is expected that international participation in Space Station development and utilization will accelerate the space business era.

  4. NewSpace: The Emerging Commercial Space Industry

    NASA Technical Reports Server (NTRS)

    Martin, Gary L.

    2014-01-01

    Presenter will give a lecture on the emerging commercial space industry at International Space University's 2014 Space Studies Program (SSP) at McGill University in Montreal, Canada. The presentation consists of 38 Powerpoint slides and describes the emerging commercial space sector, key players and capabilities. The slides explain which areas that the commercial sector is taking hold, what new markets are attracting start up companies, and which companies are participating. A discussion of how governments can help with the new industry's development is offered.

  5. Leasecraft - A commercial space platform

    NASA Astrophysics Data System (ADS)

    Burrowbridge, D. R.

    The Multimission Modular Spacecraft (MMS) is the result of a NASA program concerned with the identification of new approaches to spacecraft design. A mandatory requirement regarding the MMS was flexibility to accommodatae a wide variety of payloads. MMS derived subsystems will provide a platform in low orbit for scientific, commercial, and government users on a leased or service contract basis. The payload may consist of scientific instruments, materials processing equipment, or remote sensors. Secondary payloads may be mounted in standard MMS module boxes. The platform forms a part of the 'Leasecraft' system, which was developed by an American aerospace company. Attention is given to the Leasecraft vehicle, details regarding the Leasecraft platform, and payload accommodations and Leasecraft missions.

  6. Commercial Space Research: Entering a New Stage

    NASA Technical Reports Server (NTRS)

    Nall, Mark E.; Rose, M. Franklin (Technical Monitor)

    2001-01-01

    The Space Act which established NASA included direction that NASA is to foster to the maximum extent possible the commercial use of space. In order to achieve this, NASA began establishing in 1985, Commercial Space Centers (CSCs). These centers are a consortium of industry, academia, and government. Primarily university based, the CSCs are chartered to partner with industry to help companies learn how using space can improve their bottom line. Responsibility for the Commercial Space Centers rests with the Space Product Development Office at Marshall Space Flight Center. Since the program was established in 1985, SPD has sponsored nearly 180 commercial microgravity research payloads on 30 Shuttle missions. The vast majority of these missions were on the order of 6 days. Most companies have only had on average three flight opportunities to advance their product development efforts. From the product development standpoint of an individual company only three weeks of microgravity time have been obtained to date. Of key importance to a company is the fact that this time has not been continuous. Anywhere from one to three years elapses between flights. Despite these flight constraints, the companies in the SPD program have made considerable progress. For example, over the course of the program through 1999, industry has invested over half a billion dollars in cash and in-kind. Over a dozen new product lines are in development by the industrial partners of the Commercial Space Centers. Now the companies partnered with the SPD program have a new opportunity in the International Space Station. The long duration capability provided by the Station will provide double the amount of per company average microgravity time in just the first increment. Current planning through planning increment 5 shows that commercial investment in space research should now be positioned for greater returns.

  7. Space Resources Development: The Link Between Human Exploration and the Long-Term Commercialization of Space

    NASA Technical Reports Server (NTRS)

    Sanders, Gerald B.

    2000-01-01

    In a letter to the NASA Administrator, Dan Goldin, in January of 1999, the Office of Management and Budget (OMB) stated the following . OMB recommends that NASA consider commercialization in a broader context than the more focused efforts to date on space station and space shuttle commercialization. We suggest that NASA examine architectures that take advantage of a potentially robust future commercial infrastructure that could dramatically lower the cost of future human exploration." In response to this letter, the NASA Human Exploration and Development of Space (HEDS) Enterprise launched the BEDS Technology & Commercialization Initiative (HTCI) to link technology and system development for human exploration with the commercial development of space to emphasize the "D" (Development) in BEDS. The development of technologies and capabilities to utilize space resources is the first of six primary focus areas in this program. It is clear that Space Resources Development (SRD) is key for both long-term human exploration of our solar system and to the long-term commercialization of space since: a) it provides the technologies, products, and raw materials to support efficient space transportation and in-space construction and manufacturing, and b) it provides the capabilities and infrastructure to allow outpost growth, self-sufficiency, and commercial space service and utility industry activities.

  8. Bonneville Power Administration`s Commercial Sector Conservation Market.

    SciTech Connect

    Gordan, Frederick M.

    1992-11-10

    Bonneville has, as part of its resource plan, accepted targets for commercial conservation which are quite ambitious. To meet these targets, Bonneville will need to acquire as much cost-effective conservation as possible over the next twelve years. With this in mind, this document explores the relative importance of different commercial market segments and the types of assistance each market needs to install as many cost-effective conservation measures in as many buildings as possible. This document reviews Bonneville`s marketing environment and position, and suggests goals for commercial sector conservation marketing at Bonneville. Then it presents a broad market segmentation and series of additional demographic analyses. These analyses assess what groups of consumers Bonneville must reach to achieve most of the commercial conservation potential and what is needed to reach them. A final section reviews the success of Bonneville programs at reaching various markets. The market segmentation identifies different types of consumers and opportunities which would require distinct program approaches. Four large market segments are identified that have distinct program needs. Then four ``building life-cycle events`` are identified which provide important conservation opportunities and also require distinct program services. This creates a matrix of 16 cells which delineate distinct needs for program marketing. Each of the four key market segments manages at least 20% of the Region`s commercial floorspace.

  9. Commercialization is Required for Sustainable Space Exploration and Development

    NASA Technical Reports Server (NTRS)

    Martin, Gary L.; Olson, John M.

    2009-01-01

    The U.S. Space Exploration policy outlines an exciting new direction in space for human and robotic exploration and development beyond low Earth orbit. Pressed by this new visionary guidance, human civilization will be able to methodically build capabilities to move off Earth and into the solar system in a step-by-step manner, gradually increasing the capability for humans to stay longer in space and move further away from Earth. The new plans call for an implementation that would create an affordable and sustainable program in order to span over generations of explorers, each new generation pushing back the boundaries and building on the foundations laid by the earlier. To create a sustainable program it is important to enable and encourage the development of a selfsupporting commercial space industry leveraging both traditional and non-traditional segments of the industrial base. Governments will not be able to open the space frontier on their own because their goals change over relatively short timescales and because the large costs associated with human spaceflight cannot be sustained. A strong space development industrial sector is needed that can one day support the needs of commercial space enterprises as well as provide capabilities that the National Aeronautics and Space Administration (NASA) and other national space agencies can buy to achieve their exploration goals. This new industrial space sector will someday provide fundamental capabilities like communications, power, logistics, and even cargo and human space transportation, just as commercial companies are able to provide these services on Earth today. To help develop and bolster this new space industrial sector, NASA and other national space agencies can enable and facilitate it in many ways, including reducing risk by developing important technologies necessary for commercialization of space, and as a paying customer, partner, or anchor tenant. This transition from all or mostly government

  10. 75 FR 70951 - NASA Advisory Council; NASA Commercial Space Committee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-19

    ... SPACE ADMINISTRATION NASA Advisory Council; NASA Commercial Space Committee; Meeting AGENCY: National Aeronautics and Space Administration. ACTION: Notice of meeting. SUMMARY: In accordance with the Federal Advisory Committee Act, Public Law 92-463, as amended, the National Aeronautics and Space...

  11. Economic consequences of commercial space operations

    NASA Technical Reports Server (NTRS)

    Stone, Barbara A.; Wood, Peter W.

    1990-01-01

    The potential economic benefits generated from increased industry involvement and investment in space activities and the subsequent cost implications are discussed. A historical overview of commercial industry involvement in space is given and sources of new economic growth in space are discussed. These include communications satellites, small satellites, positioning and navigation services, space transportation and infrastructure, remote sensing, and materials processing in space such as the manufacturing of protein crystals and zeolites. Macroeconomic trends and principles such as limits on technology trade, eased restrictions on international joint ventures, foreign investments in U.S. firms, and increased foreign competition are discussed. Earth observations and mapping are considered. Opportunities for private sector involvement in building space infrastructure and space transportation are highlighted.

  12. Economic benefits of commercial space activities

    NASA Technical Reports Server (NTRS)

    Stone, Barbara A.

    1988-01-01

    This paper discusses the current and potential impact on the economy of selected private sector space activities including materials processing in space and satellite communications. Spacehab, a commercially developed and manufactured pressurized metal cylinder which fits in the Shuttle payload bay and connects to the crew compartment is examined along with potential uses of the Shuttle external tank. Private sector upper stage development, the privatization of expendable launch vehicles, and the transfer of NASA technology are discussed.

  13. Enterprise: an International Commercial Space Station Option

    NASA Astrophysics Data System (ADS)

    Lounge, John M.

    2002-01-01

    In December 1999, the U.S. aerospace company SPACEHAB, Inc., (SPACEHAB) and the Russian aerospace company Rocket and Space Corporation Energia (RSC-Energia), initiated a joint project to establish a commercial venture on the International Space Station (ISS). The approach of this venture is to use private capital to build and attach a commercial habitable module (the "Enterprise Module") to the Russian Segment of the ISS. The module will become an element of the Russian Segment; in return, exclusive rights to use this module for commercial business will be granted to its developers. The Enterprise Module has been designed as a multipurpose module that can provide research accommodation, stowage and crew support services. Recent NASA budget decisions have resulted in the cancellation of NASA's ISS habitation module, a significant delay in its new ISS crew return vehicle, and a mandate to stabilize the ISS program. These constraints limit the ISS crew size to three people and result in very little time available for ISS research support. Since research activity is the primary reason this Space Station is being built, the ISS program must find a way to support a robust international research program as soon as possible. The time is right for a commercial initiative incorporating the Enterprise Module, outfitted with life support systems, and commercially procured Soyuz vehicles to provide the capability to increase ISS crew size to six by the end of 2005.

  14. Economic benefits of commercial space activities

    NASA Astrophysics Data System (ADS)

    Stone, Barbara A.

    Space is not only an endless frontier for exploration, but also a potentially rich arena for profitable commerce to benefit all mankind. Access to the unique environment of space provides opportunities for unprecedented kinds of research to develop new products and services. This research can lead to commercially viable enterprises, which will become permanent businesses, which will provide good jobs for workers, pay taxes to their governments, and return dividends to their investors. Seeking superior products and processes is vital if the economy is to grow and prosper. This paper discusses the current and potential impact on the economy of selected private sector space activities.

  15. Commercial Space Travel, Ethics and Society

    NASA Astrophysics Data System (ADS)

    Cox, N. L. J.

    2002-01-01

    For the past two decades interest in the possibilities of commercial (manned) space travel or space tourism has increased among engineers, scientists, entrepreneurs and also citizens. A continuously growing collection of papers is being published on space tourism itself and associated subjects, like new reusable launch vehicles, space habitats, space entertainment and corresponding law and regulation. Market research promises sufficient interest in tourist space travel to take off and develop into a multi billion-dollar business. The basic engineering knowledge and expertise is available to start development and designing of safe and affordable reusable vertical lift off and landing vehicles, like the Kankoh-Maru. However, many issues remain fairly untouched in literature. These include, for example, regulations, law, international agreement on space traffic control and also insurance policy. One important topic however has been barely touched upon. This concerns the ethical issues in commercial (manned) space travel, which need to be considered thoroughly, preferably before actual take off of the first regular space tourist services. The answer to the latter question comprises the major part of the paper. First, the paper deals with the issue of who wants, needs and will go to space at what stage in the development of the space tourism industry. A schematic pyramid differentiating between several community groups is made. Secondly, it discusses the way we can and should deal with our environment. Space is still fairly unspoiled, although there is a lot of (government) debris out there. Rules of the space tourist game need to be established. A few general directions are presented, for example on debris cleaning and garbage disposal. Also our right to exploit the asteroids and the moon for material is discussed. In the last part of this paper, the risks involved with the harsh environment of space are considered. Is it safe and responsible to eject people into outer

  16. 75 FR 75621 - Office of Commercial Space Transportation; Waiver of Autonomous Reentry Restriction for a Reentry...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-06

    ... Aeronautics and Space Administration (NASA) as part of NASA's Commercial Orbital Transportation Services (COTS..., reliable, and cost-effective space transportation to the International Space Station. SpaceX's petition for... orbit. Dragon is a reentry vehicle whose capability SpaceX plans to demonstrate for NASA....

  17. A Technology Plan for Enabling Commercial Space Business

    NASA Technical Reports Server (NTRS)

    Lyles, Garry M.

    1997-01-01

    The National Aeronautics and Space Administration's (NASA) Advanced Space Transportation Program is a customer driven, focused technology program that supports the NASA Strategic Plan and considers future commercial space business projections. The initial cycle of the Advanced Space Transportation Program implementation planning was conducted from December 1995 through February 1996 and represented increased NASA emphasis on broad base technology development with the goal of dramatic reductions in the cost of space transportation. The second planning cycle, conducted in January and February 1997, updated the program implementation plan based on changes in the external environment, increased maturity of advanced concept studies, and current technology assessments. The program has taken a business-like approach to technology development with a balanced portfolio of near, medium, and long-term strategic targets. Strategic targets are influenced by Earth science, space science, and exploration objectives as well as commercial space markets. Commercial space markets include those that would be enhanced by lower cost transportation as well as potential markets resulting in major increases in space business induced by reductions in transportation cost. The program plan addresses earth-to-orbit space launch, earth orbit operations and deep space systems. It also addresses all critical transportation system elements; including structures, thermal protection systems, propulsion, avionics, and operations. As these technologies are matured, integrated technology flight experiments such as the X-33 and X-34 flight demonstrator programs support near-term (one to five years) development or operational decisions. The Advanced Space Transportation Program and the flight demonstrator programs combine business planning, ground-based technology demonstrations and flight demonstrations that will permit industry and NASA to commit to revolutionary new space transportation systems

  18. 76 FR 51459 - Office of Commercial Space Transportation (AST); Notice of Availability of the Finding of No...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-18

    ... TRANSPORTATION Federal Aviation Administration Office of Commercial Space Transportation (AST); Notice of... Evolved Expendable Launch Vehicle (EELV) Program From Space Launch Complex-3 East (SLC-3E) at Vandenberg Air Force Base (VAFB), California AGENCY: Federal Aviation Administration, Department...

  19. The first decade of commercial space tourism

    NASA Astrophysics Data System (ADS)

    Chang, Yi-Wei

    2015-03-01

    In order to provide a basis for assessing the future prospects and challenges of space tourism, this paper begins with a brief overview of the history of space tourism. This is followed by a discussion on market demand and current developments in the academic community, as well as the status of traffic tools, regulations and legalization. In market demand, although studies conducted in 1990s assumed the possibility of 500,000 per year in space tourists and several billion USD of annual revenue, in 2008 a relatively modest 13,000 per year was predicted. At this time traffic transport tools including the Soyuz system, CST-100, DragonRider and International Space Station (ISS) can only provide a few tens in spare seats for space tourists per year compared to the projected 20,000 plus seat capacity of the Lynx, Dream Chaser and SpaceShipTwo (SS2) fleets, which have the potential to conduct their first full suborbital test flight and first commercial flight within the coming decade. Added to this, the US government has only a regulatory regime that supports privately owned suborbital space tourism (SST) and no government funded orbital space tourism (OST). These evidences reveal a very high and advantageous potential for SST to form a space tourism industry in the coming decade, whereas the possibility of OST is relatively low. However, even though the prosperity of SST in the coming years is expectable, its maturity, reliability and safety still need to win the confidence of the general public. For examples, the announcement of changes to fuel used in the SS2 rocket engine in May 2014 and the crash of one SS2 while performing test flight on 31 October 2014 indicated the need for much careful preparation, as any accident in commercial operation could seriously damage or even kill its future prospects.

  20. Commercial space policy - Theory and practice

    NASA Technical Reports Server (NTRS)

    Freibaum, Jerry

    1986-01-01

    NASA policy toward commercial space ventures is summarized and illustrated with a proposed system for mobile communications through satellite links (MSAT). The government's, i.e., NASA's, role in commercial space ventures is to provide funding and expertise to high risk projects with prospective large returns, provided no vital public services are displaced. MSAT would be realized with a relay spacecraft in GEO, linking mobile radios costing in the range $500-2500. The experimental ATS-6 satellite would be the first generation relay. It is estimated that by the 1990s a spacecraft with a 20-55 m antenna could provide transmission relays for between 640,000 to about 2.5 million nonurban communications units.

  1. (abstract) Space Science with Commercial Funding

    NASA Technical Reports Server (NTRS)

    1994-01-01

    The world-wide recession, and other factors, have led to reduced or flat budgets in real terms for space agencies around the world. Consequently space science projects and proposals have been under pressure and seemingly will continue to be pressured for some years into the future. A new concept for space science funding is underway at JPL. A partnership has been arranged with a commercial, for-profit, company that proposes to implement a (bandwidth-on-demand) information and telephone system through a network of low earth orbiting satellites (LEO). This network will consist of almost 1000 satellites operating in polar orbit at Ka-band. JPL has negotiated an agreement with this company that each satellite will also carry one or more science instruments for astrophysics, astronomy, and for earth observations. This paper discussed the details of the arrangement and the financial arrangements. It describes the technical parameters, such as the 60 GHz wideband inter-satellite links and the frequency, time, and position control, on which the science is based, and it also discusses the complementarity of this commercially funded space science with conventional space science.

  2. Concept for a commercial space station laboratory

    NASA Technical Reports Server (NTRS)

    Wood, P. W.; Stark, P. M.

    1984-01-01

    The concept of a privately owned and operated fee-for-service laboratory as an element of a civil manned space station, envisioned as the venture of a group of private investors and an experienced laboratory operator to be undertaken with the cooperation of NASA is discussed. This group would acquire, outfit, activate, and operate the labortory on a fee-for-service basis, providing laboratory services to commercial firms, universities, and government agencies, including NASA. This concept was developed to identify, stimulate, and assist potential commercial users of a manned space station. A number of the issues which would be related to the concept, including the terms under which NASA might consider permitting private ownership and operation of a major space station component, the policies with respect to international participation in the construction and use of the space station, the basis for charging users for services received from the space station, and the types of support that NASA might be willing to provide to assist private industry in carrying out such a venture are discussed.

  3. The design of a commercial space infrastructure

    NASA Technical Reports Server (NTRS)

    1989-01-01

    Space Services and Logistics, Inc. represents the complete engineering design of a technically and financially viable commercial space company. The final proposal offers an economically sound program of space vehicles and systems designed to substantially affect a variety of space markets and produce a vertically integrated structure within the next 20 years. Throughout this design process, particular stress has been placed on attaining the highest possible levels of safety and reliability. The final program financial design requires a considerable initial outlay, but promises a relatively quick return on invested capital, culminating in large annual profits by the end of the 20-year scope of the cost outlook. The overall design has been extensively researched and was primarily driven by the present and near-term projected market demands for services uniquely or competitively offered only by space-oriented operations. Heretofore, available capabilities, rather than these market demands, have determined the degree and type of commercial market access. Removing this limitation through extensive use of modularity and reconfigurability allows the company to gear itself to the market, while still remaining extremely competitive with existing systems. The markets identified as lucrative, and that have governed much of the design requirements, are: low-cost launch services to LEO over a wide range of payload masses and inclinations; upper stage payload delivery from LEO to GEO; manned space operations and human transport to and from orbit; EVA assembly and maintenance of large space structures; satellite servicing and repair by both humans and telerobotic operations; a line of customized satellites designed for extended life and capable of reconfiguration or technology upgrade on orbit; small-scale microgravity experimentation and manufacturing supported by spacecraft retrieval capabilities for experimental specimens and manufactured goods; and a full-range of payload

  4. Business in orbit - The commercial use of space

    NASA Technical Reports Server (NTRS)

    Gillam, I. T., IV

    1985-01-01

    Current and proposed business opportunities in space are discussed. The advantages offered by the zero gravity environment of space are examined. The roles of the Space Shuttle and the Space Station in space commercialization are described. International development and use of the Space Station is proposed. It is observed that the communications satellite industry is a successful space venture, and opportunities for materials processing and pharmaceuticals production in space are considered. The relationship between NASA's Office of Commercial Programs, which assists businesses in space commercialization, and industry is studied. The impact of space commercialization on the national economy and international trade is analyzed.

  5. Florida commercial space initiatives and technology transfer mechanisms

    NASA Technical Reports Server (NTRS)

    Moore, Roger L.

    1989-01-01

    This paper discusses commercial space policy for the State of Florida in the context of state initiatives for general technology and economic development. The paper also compares Florida's commercial space initiatives to national space policies and describes mechanisms for transferring space related technologies and research to Florida businesses for subsequent development and commercialization.

  6. Evaluation of Space Food for Commercial Astronauts

    NASA Astrophysics Data System (ADS)

    Ahlstrom, Britt Karin

    As commercial aerospace companies advance toward manned spaceflight, they must overcome many hurdles - not only technical, but also human. One of the greatest human challenges they face is food. Throughout the history of human spaceflight, astronauts have primarily eaten food developed by government space agencies. Now, with manned commercial flights on the horizon, astronauts will be provided with an entirely new diet - one comprised of commercially available, ready-to-eat food. Yet will this diet keep astronauts nourished, satisfied with their diet, and both psychologically and physically healthy? The purpose of this parallel crossover design study was to evaluate (a) nutrient intake, (b) food satisfaction, (c) psychological health, and (d) physical health in commercial aerospace employees (N = 7) as they ate a diet of commercial, ready-to-eat food for four days, as compared to eating as normal for four days. Findings from this study showed that the ready-to-eat diet did not lead to any significant changes in caloric intake, psychological health, or physical health, aside from weight loss. It is not clear whether this weight loss was due to the loss of body fat, muscle, or water. When eating the ready-to-eat food, participants reported being slightly less satisfied with the variety, reported lower cravings for sweets, and reported the food was slightly less hedonically rewarding. In post-study interviews, participants reported they wanted to see more meats, fruits, vegetables, and desserts added to the ready-to-eat diet, so as to provide more meal-like structure. Overall, these findings show the diet could be used in commercial spaceflight after making simple changes. The diet could also be used by individuals in remote areas on Earth and to provide food assistance to individuals in disaster or emergency situations. Due to the increasing popularity of ready-to-eat food around the world, these findings also provide knowledge about the potential consequences of

  7. 76 FR 59768 - Office of Commercial Space Transportation (AST); Notice of Availability and Request for Comment...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-27

    ... from Space Exploration Technologies Corporation (SpaceX). Under the Proposed Action, the FAA would... Federal Aviation Administration Office of Commercial Space Transportation (AST); Notice of Availability... to SpaceX for Operation of the Grasshopper Vehicle at the McGregor Test Site, Texas AGENCY:...

  8. Titan III - Commercial access to space

    NASA Astrophysics Data System (ADS)

    Gizinski, Stephen J., III; Herrington, Douglas B.

    1988-06-01

    The commercial Titan III launch vehicle is discussed, reviewing the history of the Titan program, the technical aspects of the launcher, and the market outlook. The solid rocket motors of the boost vehicle, core, attitude control system, and payload carrier are described. The vehicle can carry one or two payloads taking up a space of up to 3.65 m in diameter and 10.7 m in length. The avionics, communications, and electrical power systems of the vehicle are examined and the range of perigree stages with which the vehicle is compatible is given. An overview of the mission and the launch facilities is presented and future markets for commercial satellites are considered.

  9. Commercial Optics for Space Surveillance and Astronomy

    NASA Astrophysics Data System (ADS)

    Ackermann, M.; Kopit, E.; McGraw, J.; Zimmer, P.

    Since the first days of the space program, there have been both amateur and government satellite watchers. Large, expensive government systems with custom optics are still the most capable, but with modern sensors and high speed computers, amateur trackers are easily pushing the limits of what government systems achieved only a decade ago. A very recent trend in the space world is the emergence of commercial space operations centers. Once the exclusive purview of governments, corporations are now providing orbital environment awareness services to the operators of commercial satellites. The requirement for synoptic satellite observations has led to corporations developing world-wide observing networks. A problem facing both amateur and corporate observers is the limited availability of suitable optical systems. Most observing efforts rely on long focus (f/8 or greater) optical systems with focal reducers, and a somewhat limited field of view. Often, the cameras in use are not ideally matched to the optical system. While there are a few exceptions, the choices are not many. Celestron recently introduced the C-11 RASA optical system, with an 11-inch aperture and an f/2.2 focal ratio. This optical system is designed for dedicated imaging and is ideally suited for both wide-field astronomy and the detection and tracking of satellites. The larger C-14 RASA, to be introduced later this year, was specifically designed for wide-field imaging with large commercial CCDs. It offers greater sensitivity and a wider field of view than the smaller C-11 RASA and should prove to be the instrument of choice for both amateur and corporate satellite observers. We present data from satellite observations with a production model C-11 RASA and estimated performance for the new C-14 RASA.

  10. Commercialization of materials processing in space

    NASA Technical Reports Server (NTRS)

    Yost, Charles F.

    1986-01-01

    NASA research to date on materials processing in space (MPS) has revealed that microgravity conditions to a large degree eliminate normal convection, sedimentation, buoyancy, and deformations due to gravity, and permit the exploration of containerless processing. The goals of current NASA MPS work is to augment the fundamental database on MPS and to foster commercial participation in MPS. Techniques being applied by NASA to fulfill the latter goal are described, including technical exchange, industrial guest investigator and joint endeavor agreements, and tangible market incentives. Guidelines for each type of agreement are summarized.

  11. Opportunities for commercial materials processing in space

    NASA Technical Reports Server (NTRS)

    Fountain, James A.

    1985-01-01

    The availability status (as of November 1985) of NASA space and ground facilities for commercial materials-processing activities is surveyed. The organizational structure of the agencies managing these activities is outlined; ongoing joint-endeavor agreements are listed and described; the legal procedures involved are considered; the capabilities and limitations of the Shuttle middeck and cargo bay and the Hitchhiker module are characterized; experiments using the Drop Tower are examined; and the Industrial Guest Investigator program is reviewed. Extensive drawings, diagrams, and tables are provided.

  12. Commercialization of Space: National Policy and Defense Needs

    DTIC Science & Technology

    1985-04-01

    Commercial . A civilian space system that carries a payload intended for profit -making is a commercial system. Total. The sum of all military and civilian...included with any reproduced or adapted portions of this document. /1° REPORT NUMBER e5-2675 TITLE COMMERCIALIZATION OF SPACE: NATIONAL POLICY AND...Contistue on revuere if necessary and idenitify by blockt number) /ThLS report evaluates potential impacts of commercialization of space on U.S. space policy

  13. Commercial Space Port Planning in Texas

    NASA Astrophysics Data System (ADS)

    Bell, L.; Looke, B.

    2002-01-01

    The Texas Legislature is providing funding to support research and planning activities aimed at creating a commercial spaceport in the state. These monies have been allocated to regional Spaceport Development Corporations that have been established in three countries containing candidate site locations: Willacy County (in South Texas); Brazoria County (East Texas); and Pecos County (West Texas). This program is being sponsored and coordinated by the Texas Aerospace Commission (TAC). The Sasakawa International Center for Space Architecture (SICSA) at the University of Houston is providing research, planning and design support to TAC and is a member of each of the three regional development teams. Planning must carefully consider special support requirements and operational characteristics of all prospective launch systems along with geographic, infrastructure and environmental factors at each site. Two of the candidate sites are in coastal areas; a priority for certain launch service providers; whereas the third inland site is more attractive to others. Candidate launch systems include winged horizontal takeoff air-launch vehicles, vertical multi-stage reusable launch vehicles, and expendable sub-orbital surrounding rockets. Important research and planning activities include environmental impact assessments, analyses of overflight hazards, investigations of economic impacts and business plan development. The results of these activities will guide master plan development for each site, including: a physical plan (site layout, infrastructure improvements and facility construction); and a strategic plan (user agreements, licenses, finance sources and participants). Commercial spaceport development demands compliance with stringent FAA regulations established by the Office of Commercial Space Transportation (OCST) which exceed minimum standards allowed for U.S. Government spaceport facilities. Key among these requirements are 15,000 ft. radius on-site clear zones

  14. New initiatives in the commercial development of space

    NASA Technical Reports Server (NTRS)

    Rose, James T.; Stone, Barbara A.

    1988-01-01

    This paper provides a status report on aggressive new initiatives by the NASA Office of Commercial Programs to implement new commercial space policy. The promotion of a strong U.S. commercial presence in space via Spacehab, the Space Shuttle external tanks, privatization of the Space Station, and the development of commercial remote sensing systems is addressed. The privatization of launch services and the development of a talent base for commercial space efforts are considered. Groups, policies, and plans involved in these developments are discussed.

  15. Commercial space development needs cheap launchers

    NASA Astrophysics Data System (ADS)

    Benson, James William

    1998-01-01

    SpaceDev is in the market for a deep space launch, and we are not going to pay $50 million for it. There is an ongoing debate about the elasticity of demand related to launch costs. On the one hand there are the ``big iron'' NASA and DoD contractors who say that there is no market for small or inexpensive launchers, that lowering launch costs will not result in significantly more launches, and that the current uncompetitive pricing scheme is appropriate. On the other hand are commercial companies which compete in the real world, and who say that there would be innumerable new launches if prices were to drop dramatically. I participated directly in the microcomputer revolution, and saw first hand what happened to the big iron computer companies who failed to see or heed the handwriting on the wall. We are at the same stage in the space access revolution that personal computers were in the late '70s and early '80s. The global economy is about to be changed in ways that are just as unpredictable as those changes wrought after the introduction of the personal computer. Companies which fail to innovate and keep producing only big iron will suffer the same fate as IBM and all the now-extinct mainframe and minicomputer companies. A few will remain, but with a small share of the market, never again to be in a position to dominate.

  16. Commercial Use of Space: a New Economic Strength for America

    NASA Technical Reports Server (NTRS)

    1989-01-01

    Space commerce is composed of diverse activities which fall into four broad areas: satellite communications, earth and ocean observations, materials research and processing, and space transportation and industrial services. Space has become an industrial laboratory for materials research and processing. NASA's role in the commercial use of space is discussed through its commercial development program.

  17. NASA's approach to the commercial use of space

    NASA Technical Reports Server (NTRS)

    Gillam, I. T., IV

    1984-01-01

    NASA planning activities in the area of commercial development of space resources are reviewed. Examples of specific types of commercial space ventures are given, according to three different categories: new commercial high-technology ventures; new commercial application of existing space technology, and commercial ventures resulting from the transfer of existing space programs to the private sector. Basic objectives for reducing technical, financial and institutional risks for commercial space operations are considered. Attention is given to the cooperative working environment encouraged by Joint Endeavor Agreements (JEAs) and Technical Exchange Agreements (TEAs) between industrial organizations in the development of space systems. Benefits of the commercial development of space resources include the production of purer pharmaceuticals for the treatment of cancers, kidney diseases, and diabetes; and the development of ultra-pure semiconductor crystals for use in next generation electronic equipment.

  18. 75 FR 45196 - Office of Commercial Space Transportation; Notice of Availability of the Final Supplemental...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-02

    ... Air Force Station (CCAFS) in Brevard County, Florida. The license would allow Space Florida to support... Federal Aviation Administration Office of Commercial Space Transportation; Notice of Availability of the... Environmental Assessment for Space Florida Launch Site Operator License, Brevard County, FL AGENCY: The...

  19. NASA's Commercial Space Centers: Bringing Together Government and Industry for "Out of this World" Benefits

    NASA Technical Reports Server (NTRS)

    Robinson, R. Keith; Henderson, Robin N. (Technical Monitor)

    2002-01-01

    The National Aeronautics and Space Administration (NASA) is making significant effort to accommodate commercial research in the utilization plans of the International Space Station (ISS)[1]. NASA is providing 30% of the research accommodations in the ISS laboratory modules to support commercial endeavors. However, the availability of resources alone does not necessarily translate into significant private sector participation in NASA's ISS utilization plans. Due to the efforts of NASA's Commercial Space Centers (CSC's), NASA has developed a very robust plan for involving the private sector in ISS utilization activities. Obtaining participation from the private sector requires a demonstrated capability for obtaining commercially significant research results. Since 1985, NASA CSC's have conducted over 200 commercial research activities aboard parabolic aircraft, sounding rockets, the Space Shuttle, and the ISS. The success of these activities has developed substantial investment from private sector companies in commercial space research.

  20. Conference on NASA Centers for commercial Development of Space (NASACCDS)

    SciTech Connect

    El-Genk, M.S.; Raymond, P.W.

    1995-12-31

    These proceedings represent papers presented at the conference on NASA centersfor commercial development of space. The conference theme was ``commercialization andtechnology transfer``. The topics discussed included alternative power from space,accelerator-driven transmutation technologies, automation and robotics, materials suitablefor space applications, and remote sensing. The objective of the conference was to increaseindustry involvement in U.S. commercial activities in space. There were fifty two paperspresented for the Energy Science and Technology database. (AIP)

  1. An Evolutionary Approach to Space Launch Commercialization

    DTIC Science & Technology

    1993-01-01

    target profits . We are ignoring the award fee in the discussion here. Utilization of Commercial Launch Services 33 ities are 98 percent in the last 10...reluctant to charge a commercial customer a lower price for fear of lowering the profit margin on government contracts, even if commercial launches... Commercialization Brian G. Chow Prepared fir the Under Secretary of Defensefor Acquisition National Defense Research Institute Approved for public release

  2. Commercial Research Results from the International Space Station

    NASA Technical Reports Server (NTRS)

    Nall, Mark

    2003-01-01

    As part of NASA's mission of enabling commercial opportunities in space, the Space Product Development Office has sponsored the flight of twelve commercial payloads to the International Space Station (ISS) during calendar year 2002. These twelve follow seven commercial payloads flown to the ISS during 2001. Many of these payloads, which were among the first users of this new laboratory, built upon successful commercial investigations that previously were restricted to the limited flight duration of the Space Shuttle. While the majority of early commercial use of the ISS is in the area of biotechnology, there is a significant shift towards commercial materials research over the next two years. New commercial payloads such as Space-DRUMS and Vulcan will advance commercial materials research on the ISS. Commercial flight hardware is available to the broader NASA community in order to provide benefit to the entire NASA microgravity program, and the scientific community on a space available basis and at very low cost. The first commercial operations on the ISS provides not only a needed capability to the commercial development of space program, it will also augment the science program as well.

  3. Progression of Space Transportation - Transitioning from Government to Commercial

    NASA Technical Reports Server (NTRS)

    Lueders, Kathy

    2015-01-01

    Spaceflight began as the exclusive province of government, however, starting in the 1980's the United States began to promote commercial participation in space transportation. Beginning with Executive policy and extending through legislation and regulation, NASA has embarked on facilitating the commercialization of space transportation to serve NASA needs and enable a non-NASA market place. This presentation provides background on the transition to commercial space transportation and the specific role NASA is playing in that endeavor.

  4. Methods utilized in evaluating the profitability of commercial space processing

    NASA Technical Reports Server (NTRS)

    Bloom, H. L.; Schmitt, P. T.

    1976-01-01

    Profitability analysis is applied to commercial space processing on the basis of business concept definition and assessment and the relationship between ground and space functions. Throughput analysis is demonstrated by analysis of the space manufacturing of surface acoustic wave devices. The paper describes a financial analysis model for space processing and provides key profitability measures for space processed isoenzymes.

  5. 76 FR 30232 - Office of Commercial Space Transportation Safety Approval Performance Criteria

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-24

    ... associated with suborbital space flight. The reduced gravity levels are: --0.00 g 0.05 g for 17 continuous... Federal Aviation Administration Office of Commercial Space Transportation Safety Approval Performance... was evaluated by the FAA as a component of a flight crew qualification and training process....

  6. U.S. commercial space policies - Implications for developing countries

    NASA Technical Reports Server (NTRS)

    Gillam, Isaac T., IV; Stone, Barbara A.

    1987-01-01

    Recent U.S. policy developments on the commercial use of space are summarized and their international implications are considered. Attention is given to successful applications of technology developed in space, including an implantable cancer medication system, an implantable defibrillator, an ultrasonic residual stress monitor, and aquaculture treatment techniques. NASA projects involving bioengineering and rehabilitation applications are summarized, and plans to investigate high-temperature superconductors in space are addressed. Recent agreements entred into by NASA for space commercial studies are reviewed.

  7. Leasing Commercial Space for Your Child Care Program.

    ERIC Educational Resources Information Center

    Stephens, Keith

    1987-01-01

    Covers leasing of commercial space for child care centers, either as an enhancement to a developer's project or on a commercial basis in competition with other types of commercial development. Discusses different negotiating psychologies and key negotiating points to be used in each leasing situation. (NH)

  8. Commercial space opportunities - Advanced concepts and technology overview

    NASA Technical Reports Server (NTRS)

    Reck, Gregory M.

    1993-01-01

    The paper discusses the status of current and future commercial space opportunities. The goal is to pioneer innovative, customer-focused space concepts and technologies, leveraged through industrial, academic, and government alliance, to ensure U.S. commercial competitiveness and preeminence in space. The strategy is to develop technologies which enable new products and processes, deploy existing technology into commercial and military products and processes, and integrate military and commercial research and production activities. Technology development areas include information infrastructure, electronics design and manufacture, health care technology, environment technology, and aeronautical technologies.

  9. 77 FR 38678 - NASA Advisory Council; Commercial Space Committee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-28

    .... ] ADDRESSES: NASA Goddard Space Flight Center (GSFC), Building 1, Room E100B, 8800 Greenbelt Road, Greenbelt...: --Goddard Space Flight Center's Commercial Space Activities and Plans --Acquisition Process Lessons--Learned... place on Tuesday, July 24, 2012, 10:00 a.m.-1:00 p.m., Local Time at NASA Goddard Space Flight...

  10. NASA's Earth Observations Commercialization Applications Program: A model for government promotion of commercial space opportunities

    NASA Technical Reports Server (NTRS)

    Macauley, Molly K.

    1995-01-01

    The role of government in promoting space commerce is a topic of discussion in every spacefaring nation. This article describes a new approach to government intervention which, based on its five-year track record, appears to have met with success. The approach, developed in NASA's Earth Observations Commercialization Application Program (EOCAP), offer several lessons for effective government sponsorship of commercial space development in general and of commercial remote sensing in particular.

  11. Roadmaps—A new tool for commercial space processing

    NASA Astrophysics Data System (ADS)

    Whitten, Raymond P.; Crawford, James L.

    1996-03-01

    This paper presents a new management and planning tool ``roadmaps'' for the commercial development and use of space. It is focused around the disciplines of biotechnology and material science. Roadmaps have evolved from changes in U.S. space policy and NASA strategic plans. The evolution of the Roadmaps concept is tied to five observations: 1) Space Processing Division projects are not subject to standard ``peer'' reviews; 2) government funding requires early commercial investments in space; 3) marketable products are essential to the program mission; 4) funding of new science or technology is incidental to new product development; and 5) the use of roadmaps forces early planning to the market. The result is a course chartered for the future development of products in biotechnology and materials using space based infrastructure and technology development. These tools chart a course for commercial space processing; where the project completion is the development of new products in biotechnology and materials using space based technology.

  12. NASA's commercial space program - Initiatives for the future

    NASA Technical Reports Server (NTRS)

    Rose, James T.; Stone, Barbara A.

    1990-01-01

    NASA's commercial development of the space program aimed at the stimulation and assistance of expanded private sector involvement and investment in civil space activities is discussed, focusing on major new program initiatives and their implementation. NASA's Centers for the Commercial Development of Space (CCDS) program, composed of competitively selected consortia of universities, industries, and government involved in early research and testing phases of potentially commercially viable technologies is described. The 16 centers concentrate on seven different technical areas such as automation and robotics; remote sensing; life sciences; and space power, propulsion, and structures. Private sector participation, CCDS technology development, government and commercially supplied access to space in support of CCDS programs, CCDS hardware development, and CCDS spinoffs are discussed together with various cooperative and reimbursable agreements between NASA and the private sector.

  13. 76 FR 52732 - Office of Commercial Space Transportation Notice of Intent To Publish Current and Future Launch...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-23

    ... proposes to post launch, reentry and site licenses in the Commercial Space Data--Active Licenses section at... site operations. 51 U.S.C. ] 50901(b)(3). A license is required to launch a launch vehicle, reenter a... Federal Aviation Administration Office of Commercial Space Transportation Notice of Intent To...

  14. 78 FR 53496 - Commercial Space Transportation Advisory Committee; Public Teleconference

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-29

    ... to COMSTAC a draft document on Established Practices for Human Space Flight Occupant Safety for its... on commercial human space flight occupant safety. The document provides what we believe are occupant safety measures that have historically proven to be worth doing for most human space flight...

  15. From suborbital space tourism to commercial personal spaceflight

    NASA Astrophysics Data System (ADS)

    Peeters, Walter

    2010-06-01

    Excellent essays have been recently published on the profitability and the future of space tourism. This paper is intended to supplement the considerations in this field and emphasizes the further potential evolution of commercial personal spaceflights. Indeed, based upon work done at the International Space University (ISU) the oligopolistic character of suborbital space tourism has been linked to marketing and product life cycle (PLC) considerations and has led to the thesis that space tourism as a profitable sector will require a follow-on strategy. Orbital space tourism, on one hand, could become an extension of the PLC but, on the other hand, it is assumed that point-to-point (P2P) commercial space transport will become the long term sustainable market. Without ignoring technical challenges, this paper will mainly concentrate on marketing and commercial aspects of personal spaceflight.

  16. Informed consent v. ITAR: Regulatory conflicts that could constrain commercial human space flight

    NASA Astrophysics Data System (ADS)

    Blount, P. J.

    2010-06-01

    The Human Space Flight Requirements (promulgated by the U.S. Federal Aviation Administration) seek to protect the fledgling commercial space flight industry by shifting risk from the operator to the space flight participants. However, in order to do this effectively the regulations require a great deal of information to be given to the participants. The information required might be extensive enough that it could be considered "technical data" under the International Traffic in Arms Regulations. If this is the case then commercial spaceflight companies will have to get export licenses for non-U.S. participants on their flights which could cause additional costs as well as other problems.

  17. NewSpace: The Emerging Commercial Space Industry

    NASA Technical Reports Server (NTRS)

    Martin, Gary

    2016-01-01

    A lecture to students at the International Space University. Topics include: - We are at a turning point in the history of space exploration and development the cusp of a revolution, new industries are being born that use space in many non-traditional ways - The established military industrial space sector is no longer the only game in town - Increased competition and new capabilities will change the marketplace forever - Everyone interested in working in the space sector will be affected.

  18. Evaluation criteria for commercially oriented materials processing in space proposals

    NASA Technical Reports Server (NTRS)

    Moore, W. F.; Mcdowell, J. R.

    1979-01-01

    An approach and criteria for evaluating NASA funded experiments and demonstrations which have commercial potential were developed. Methods for insuring quick initial screening of commercial proposals are presented. Recommendations are given for modifying the current evaluation approach. New criteria for evaluating commercially orientated materials processing in space (MPS) proposals are introduced. The process for selection of qualified individuals to evaluate the phases of this approach and criteria is considered and guidelines are set for its implementation.

  19. Commercial 'Nanorack' Installed on Space Station's National Lab

    NASA Video Gallery

    In July, Astronaut Shannon Walker activated a fully commercial research facility designed to make access to the International Space Station easy and cost-effective for scientists and educators. Dev...

  20. Proprietary rights and commercial use of space stations

    NASA Technical Reports Server (NTRS)

    Kempf, Robert F.

    1986-01-01

    The treatment of proprietary rights related to commercial activity aboard an international space station is discussed, with a focus on the relationship between the acquisition (on earth or in space) and protection of such rights. The applicable national and international law is briefly characterized, and consideration is given to patent, trade-secret, and copyright considerations. It is concluded that the provisions of present commercial law can be applied relatively straightforwardly to rights acquired on earth, while the Outer Space Treaty of 1967 and the Convention on Registration of 1976 apply to rights obtained in space.

  1. Space station needs, attributes, and architectural options: Commercial opportunities in space

    NASA Technical Reports Server (NTRS)

    Wolbers, H. L., Jr.

    1983-01-01

    The roles of government and industry in the commercialization of space are examined and an approach for stimulating the interests of potential users is described. Several illustrative examples of potential commercial developments are presented. The role of manned space systems in space commercialization is discussed as well as some of the issues and opportunities that are likely to be encountered in the commercial exploitation of the unique characteristics of space. Results suggest that interest in space facilities can be found among a number of commercially oriented users. In order to develop and maintain the involvement of these potential users, however, space demonstrations are required, and commercial growth or evolution depends on the results of the initial in situ experience. Manned facilities are required for the conceptual research and development phases and for maintenance and servicing operations during production or operational missions. Space facilities must be easily accessible by dependable and regularly scheduled means.

  2. Commercial Development Plan for the International Space Station

    NASA Technical Reports Server (NTRS)

    1998-01-01

    The long term objective of the development plan for the International Space Station (ISS) is to establish the foundation for a marketplace and stimulate a national economy for space products and services in low-Earth orbit, where both demand and supply are dominated by the private sector. The short term objective is to begin the transition to private investment and offset a share of the public cost for operating the space shuttle fleet and space station through commercial enterprise in open markets.

  3. Alternative Architecture for Commercial Space Solar Power

    NASA Technical Reports Server (NTRS)

    Potter, Seth

    2000-01-01

    This presentation discuss the space solar power (SSP) concept. It takes us step by step through the process: the use of sunlight and solar cells to create power, the conversion of the sunlight into electricity, the conversion of electricity to microwaves, and finally the from microwaves back to electricity by the Rectennas on Earth.

  4. Commercial Platforms Allow Affordable Space Research

    NASA Technical Reports Server (NTRS)

    2013-01-01

    At an altitude of about 240 miles, its orbital path carries it over 90 percent of the Earth s population. It circles the Earth in continuous free fall; its crew of six and one Robonaut pass the days, experiencing 16 sunrises and 16 sunsets every 24 hours, in microgravity, an environment in which everything from bodily functions to the physical behavior of materials changes drastically from what is common on the ground. Outside its shielded confines, temperatures cycle from one extreme to the other, radiation is rampant, and atomic oxygen corrodes everything it touches. A unique feat of engineering, the International Space Station (ISS) also represents the most remarkable platform for scientific research ever devised. In 2005, anticipating the space station s potential for NASA and non-NASA scientists alike, the NASA Authorization Act designated the US segment of the ISS as a national laboratory, instructing the Agency to "increase the utilization of the ISS by other Federal entities and the private sector." With the ISS set to maintain operations through at least 2020, the station offers an unprecedented long-term access to space conditions, enabling research not previously possible. "There will be new drug discoveries, new pharmaceuticals, a better understanding of how we affect the planet and how we can maintain it," says Marybeth Edeen, the ISS National Laboratory manager, based at Johnson Space Center. The ISS, she says, represents a major example of the government s role in making such advancements possible. "The government is key in that researchers cannot afford to build the kind of infrastructure that the government can provide. But we then have to make that infrastructure available at a reasonable cost." Enter Jeff Manber, who saw in the ISS National Lab an extraordinary opportunity to advance science, education, and business in ways never before seen.

  5. 76 FR 57103 - Office of Commercial Space Transportation (AST); Notice of Availability of the Supplemental...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-15

    ... Federal Aviation Administration Office of Commercial Space Transportation (AST); Notice of Availability of... Systems International (SSI) for the Continued Operation of the California Spaceport at Vandenberg Air... at VAFB, California. The SEA supplements the U.S. Air Force February 1995 EA for the...

  6. Space Commercial Opportunities for Fluid Physics and Transport Phenomena Applications

    NASA Technical Reports Server (NTRS)

    Gavert, R.

    2000-01-01

    Microgravity research at NASA has been an undertaking that has included both science and commercial approaches since the late 80s and early 90s. The Fluid Physics and Transport Phenomena community has been developed, through NASA's science grants, into a valuable base of expertise in microgravity science. This was achieved through both ground and flight scientific research. Commercial microgravity research has been primarily promoted thorough NASA sponsored Centers for Space Commercialization which develop cost sharing partnerships with industry. As an example, the Center for Advanced Microgravity Materials Processing (CAMMP)at Northeastern University has been working with cost sharing industry partners in developing Zeolites and zeo-type materials as an efficient storage medium for hydrogen fuel. Greater commercial interest is emerging. The U.S. Congress has passed the Commercial Space Act of 1998 to encourage the development of a commercial space industry in the United States. The Act has provisions for the commercialization of the International Space Station (ISS). Increased efforts have been made by NASA to enable industrial ventures on-board the ISS. A Web site has been established at http://commercial/nasa/gov which includes two important special announcements. One is an open request for entrepreneurial offers related to the commercial development and use of the ISS. The second is a price structure and schedule for U.S. resources and accommodations. The purpose of the presentation is to make the Fluid Physics and Transport Phenomena community, which understands the importance of microgravity experimentation, aware of important aspects of ISS commercial development. It is a desire that this awareness will be translated into a recognition of Fluid Physics and Transport Phenomena application opportunities coordinated through the broad contacts of this community with industry.

  7. IRIDIUM (R): A Lockheed transition to commercial space

    NASA Technical Reports Server (NTRS)

    Tadano, Thomas N.

    1995-01-01

    At Lockheed Missiles & Space Company, the IRIDIUM commercial space program is dramatically revolutionizing spacecraft development and manufacturing processes to reduce cost while maintaining quality and reliability. This report includes the following sections: an overview of the IRIDIUM system, the Lockheed IRIDIUM project and challenges; cycle-time reduction through production reorganization; and design for manufacturing and quality.

  8. Commercial potential of European and Japanese space programs, task 5

    NASA Technical Reports Server (NTRS)

    1987-01-01

    The current and expected future competitive status in the commercialization of space of the two principal programs competitive with NASA: the European Space Agency (ESA) and the program sponsored by the Ministry of International Trade and Industry (MITI) of Japan are evaluated, quantitatively assessed, and presented in usable format.

  9. 14 CFR 401.1 - The Office of Commercial Space Transportation.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 4 2014-01-01 2014-01-01 false The Office of Commercial Space Transportation. 401.1 Section 401.1 Aeronautics and Space COMMERCIAL SPACE TRANSPORTATION, FEDERAL AVIATION... Commercial Space Transportation. The Office of Commercial Space Transportation, referred to in......

  10. 14 CFR 401.1 - The Office of Commercial Space Transportation.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 4 2012-01-01 2012-01-01 false The Office of Commercial Space Transportation. 401.1 Section 401.1 Aeronautics and Space COMMERCIAL SPACE TRANSPORTATION, FEDERAL AVIATION... Commercial Space Transportation. The Office of Commercial Space Transportation, referred to in......

  11. 14 CFR 401.1 - The Office of Commercial Space Transportation.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 4 2013-01-01 2013-01-01 false The Office of Commercial Space Transportation. 401.1 Section 401.1 Aeronautics and Space COMMERCIAL SPACE TRANSPORTATION, FEDERAL AVIATION... Commercial Space Transportation. The Office of Commercial Space Transportation, referred to in......

  12. 14 CFR 401.1 - The Office of Commercial Space Transportation.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 4 2010-01-01 2010-01-01 false The Office of Commercial Space Transportation. 401.1 Section 401.1 Aeronautics and Space COMMERCIAL SPACE TRANSPORTATION, FEDERAL AVIATION... Commercial Space Transportation. The Office of Commercial Space Transportation, referred to in......

  13. 14 CFR 401.1 - The Office of Commercial Space Transportation.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 4 2011-01-01 2011-01-01 false The Office of Commercial Space Transportation. 401.1 Section 401.1 Aeronautics and Space COMMERCIAL SPACE TRANSPORTATION, FEDERAL AVIATION... Commercial Space Transportation. The Office of Commercial Space Transportation, referred to in......

  14. Space Biotechnology and Commercial Applications University of Florida

    NASA Technical Reports Server (NTRS)

    Phillips, Winfred; Evanich, Peggy L.

    2004-01-01

    The Space Biotechnology and Commercial Applications grant was funded by NASA's Kennedy Space Center in FY 2002 to provide dedicated biotechnology and agricultural research focused on the regeneration of space flight environments with direct parallels in Earth-based applications for solving problems in the environment, advances in agricultural science, and other human support issues amenable to targeted biotechnology solutions. This grant had three project areas, each with multiple tasks. They are: 1) Space Agriculture and Biotechnology Research and Education, 2) Integrated Smart Nanosensors for Space Biotechnology Applications, and 3) Commercial Applications. The Space Agriculture and Biotechnology Research and Education (SABRE) Center emphasized the fundamental biology of organisms involved in space flight applications, including those involved in advanced life support environments because of their critical role in the long-term exploration of space. The SABRE Center supports research at the University of Florida and at the Space Life Sciences Laboratory (SLSL) at the Kennedy Space Center. The Integrated Smart Nanosensors for Space Biotechnology Applications component focused on developing and applying sensor technologies to space environments and agricultural systems. The research activities in nanosensors were coordinated with the SABRE portions of this grant and with the research sponsored by the NASA Environmental Systems Commercial Space Technology Center located in the Department of Environmental Engineering Sciences. Initial sensor efforts have focused on air and water quality monitoring essential to humans for living and working permanently in space, an important goal identified in NASA's strategic plan. The closed environment of a spacecraft or planetary base accentuates cause and effect relationships and environmental impacts. The limited available air and water resources emphasize the need for reuse, recycling, and system monitoring. It is essential to

  15. Defining Operational Space Suit Requirements for Commercial Orbital Spaceflight

    NASA Technical Reports Server (NTRS)

    Alpert, Brian K.

    2015-01-01

    As the commercial spaceflight industry transitions from suborbital brevity to orbital outposts, spacewalking will become a major consideration for tourists, scientists, and hardware providers. The challenge exists to develop a space suit designed for the orbital commercial spaceflight industry. The unique needs and requirements of this industry will drive space suit designs and costs that are unlike any existing product. Commercial space tourists will pay for the experience of a lifetime, while scientists may not be able to rely on robotics for all operations and external hardware repairs. This study was aimed at defining space suit operational and functional needs across the spectrum of spacewalk elements, identifying technical design drivers and establishing appropriate options. Recommendations from the analysis are offered for consideration

  16. Commercial Development Plan for the International Space Station

    NASA Technical Reports Server (NTRS)

    1998-01-01

    The long term objective is to establish the foundation for a marketplace and stimulate a national economy for space products and services in low-Earth orbit, where both demand and supply are dominated by the private sector. The short term objective is to begin the transition to private investment and offset a share of the public cost for operating the space shuttle fleet and space station through commercial enterprise in open markets.

  17. 75 FR 16551 - Office of Commercial Space Transportation; Notice of Availability and Request for Comment on the...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-01

    ... at Cape Canaveral Air Force Station (CCAFS) in Brevard County, Florida. The license would allow Space... Federal Aviation Administration Office of Commercial Space Transportation; Notice of Availability and... Environmental Assessment for Space Florida Launch Site Operator License, Brevard County, FL AGENCY: The...

  18. Superconductivity devices: Commercial use of space

    NASA Technical Reports Server (NTRS)

    Haertling, Gene; Furman, Eugene; Li, Guang

    1995-01-01

    The work described in this report covers various aspects of the Rainbow solid-state actuator technology. It is presented in six parts dealing with materials, processing, fabrication, properties and associated phenomena. The Rainbow actuator technology is a relatively new materials development which had its inception in 1992. It consists of a new processing technology for preparing piezoelectric and electrostrictive ceramic materials. It involves a high temperature chemical reduction process which leads to an internal pre-stressing of the oxide wafer, thus the name Rainbow, an acronym for Reduced And INternally Biased Oxide Wafer. Ceramics fabricated by this method produce bending-mode actuator devices which possess several times more displacement and load bearing capacity than present-day benders (unimorphs, bimorphs). It is anticipated that these solid-state, electromechanical actuators which can be used in a number of applications in space such as cryopump motors, anti-vibration active structures, autoleveling platforms, telescope mirror correctors and autofocusing devices. When considering any of these applications, the key to the development of a successful device is the successful development of a ceramic material which can produce maximum displacement per volt input; hence, this initiative involving a solid-state means for achieving unusually high electromechanical displacement can be significant and far reaching. An additional benefit obtained from employing the piezoelectric effect in these actuator devices is the ability to also utilize them as sensors; and, indeed, they can be used as both motor (actuator) and generator (sensor) in multifunction devices.

  19. Implications of previous space commercialization experiences for the reusable launch vehicle

    NASA Astrophysics Data System (ADS)

    Obermann, Richard M.; Williamson, Ray A.

    2003-07-01

    The United States' 1994 National Space Transportation Policy directed the National Aeronautics and Space Administration (NASA) to work with industry on the development of technologies required for a reusable launch vehicle (RLV). In the partnership that has evolved from that directive, NASA envisions its role as providing support for technological risk reduction and for developing space transportation to serve government needs. NASA officials assume that the development of an operational, commercial RLV will be carried out by the private sector without use of government funds. Under that scenario, the Federal government will simply become a customer for commercial RLV services. In evaluating the prospects for the development of a commercially viable RLV, it may be useful to examine "lessons learned" from previous space commercialization efforts—both those that succeeded and those that did not. It can be argued that several distinct streams of market and technological development may have to converge for successful commercialization of space systems to occur. Potential factors influencing the prospects for commercialization include the size and growth rate of the potential customer base, the extent to which a governmental customer exists to underpin the market, the development of associated "value-added" markets, the stability of governmental policies, the levels of technological and business risk, and the degree to which competitive markets exist. This paper examines two previous space commercialization experiences, evaluates the relative importance of the various factors that influence the prospects for success of commercialization efforts, and assesses the implications of those factors for the commercial viability of the proposed RLV.

  20. International cooperation in the commercial era of space

    NASA Technical Reports Server (NTRS)

    Allnutt, R. F.

    1984-01-01

    NASA plans permitting international participation in space activities are reviewed, with an emphasis on the increasing commercialization of these endeavors. The potential indicated by the recent success of the STS, long-term and large-scale Soviet missions, and the Ariane launcher is discussed; the development of the Space Station concept is traced; the increasing use of remote-sensing and telecommunications satellites is documented; currently planned space science missions are listed; and the NASA policy on international cooperation (full payment by the second nation, clean payload-spacecraft interfaces to prevent technology transfer, and open availability of scientific results) is outlined. It is argued that space activity, having passed through first and second phases dominated by exploration and military goals, respectively, will now soon enter a primarily commercial phase, with competition in telecommunications and remote-sensing services and private investment in space processing, manufacturing, and even launchers.

  1. Space Station Workshop: Commercial Missions and User Requirements

    NASA Technical Reports Server (NTRS)

    1988-01-01

    The topics of discussion addressed during a three day workshop on commercial application in space are presented. Approximately half of the program was directed towards an overview and orientation to the Space Station Project; the technical attributes of space; and present and future potential commercial opportunities. The remaining time was spent addressing technological issues presented by previously-formed industry working groups, who attempted to identify the technology needs, problems or issues faced and/or anticipated by the following industries: extraction (mining, agriculture, petroleum, fishing, etc.); fabrication (manufacturing, automotive, aircraft, chemical, pharmaceutical and electronics); and services (communications, transportation and retail robotics). After the industry groups presented their technology issues, the workshop divided into smaller discussion groups composed of: space experts from NASA; academia; industry experts in the appropriate disciplines; and other workshop participants. The needs identified by the industry working groups, space station technical requirements, proposed commercial ventures and other issues related to space commercialization were discussed. The material summarized and reported are the consensus from the discussion groups.

  2. A business man views commercial ventures in space.

    NASA Technical Reports Server (NTRS)

    Scarff, D. D.; Bloom, H. L.

    1973-01-01

    Paper reviews technical, resource planning and marketing steps an industrial organization must perform in arriving at a decision to undertake space development and production of commercial products or services for Users on the ground. Technical elements are supported by particular examples. Analysis of required resources emphasizes facility and financial inter-relationships between commercial organizations and NASA. Marketing planning covers elements of profitability. Paper addresses questions related to protection of corporate stockholders and public interest, investment decision timing, budget variations. Paper concludes with observations on timeliness of planning shuttle-based commercial ventures and on key industry/NASA problems and decisions.

  3. Commercial Spacewalking: Designing an EVA Qualification Program for Space Tourism

    NASA Technical Reports Server (NTRS)

    Gast, Matthew A.

    2010-01-01

    In the near future, accessibility to space will be opened to anyone with the means and the desire to experience the weightlessness of microgravity, and to look out upon both the curvature of the Earth and the blackness of space, from the protected, shirt-sleeved environment of a commercial spacecraft. Initial forays will be short-duration, suborbital flights, but the experience and expertise of half a century of spaceflight will soon produce commercial vehicles capable of achieving low Earth orbit. Even with the commercial space industry still in its infancy, and manned orbital flight a number of years away, there is little doubt that there will one day be a feasible and viable market for those courageous enough to venture outside the vehicle and into the void, wearing nothing but a spacesuit, armed with nothing but preflight training. What that Extravehicular Activity (EVA) preflight training entails, however, is something that has yet to be defined. A number of significant factors will influence the composition of a commercial EVA training program, but a fundamental question remains: 'what minimum training guidelines must be met to ensure a safe and successful commercial spacewalk?' Utilizing the experience gained through the development of NASA's Skills program - designed to qualify NASA and International Partner astronauts for EVA aboard the International Space Station - this paper identifies the attributes and training objectives essential to the safe conduct of an EVA, and attempts to conceptually design a comprehensive training methodology meant to represent an acceptable qualification standard.

  4. Summary results of the Industry Conference on the Commercial Use of Space

    NASA Technical Reports Server (NTRS)

    REUSE; Thuerbach, R. P.

    1985-01-01

    The future intentions of the Federal Republic of Germany in the area of the commercialization of space are presented. It is shown that significant advances in microgravity research, particulary in the areas of materials science, composite materials, physical chemistry, crystal growth, biology, and process engineering will have an effect on future plans for establishing sponsoring organizations to guide commercial interests in German space research. An organizational and functional outline of a proposed sponsoring organization to promote space commercialization under German supervision, including the objectives, the target group to be served, and the administrative structure, is presented. The role of the DFVLR (German Aerospace Research Establishment) and the BMFT (German Ministry for Research and Technology) as sponsoring organizations representing the interests of the German government is shown.

  5. The venture space alliance commercial application of microgravity research

    NASA Astrophysics Data System (ADS)

    Whitton, Dave

    1999-01-01

    The Venture Space Alliance is a Canadian commercial enterprise formed to develop a successful sustainable business, providing industrial and institutional clients with cost effective timely access to space and microgravity facilities for commercial and scientific benefit. The goal is to offer users a comprehensive and reliable set of products and services from the early stages of research, where access to short duration microgravity such as drop towers, aircraft and sub-orbital rockets is required, to more complex missions requiring free flyers, shuttle or Space Station. The service is designed to relieve the researcher from having to be concerned with the special processes associated with space flight, and to assist in the commercial application of their research through the development of business plans and investment strategy. Much of this research could lead to new and better medicines, high disease tolerant and more prolific agricultural products, new materials and alloys, and improvements in fundamental human health. This paper will describe the commercial successes derived from microgravity research, and the anticipated growth of this segment particularly with the completion of the International Space Station.

  6. Space Colony from a Commercial Asteroid Mining Company Town

    NASA Astrophysics Data System (ADS)

    Taylor, Thomas C.; Grandl, Werner; Pinni, Martina; Benaroya, Haym

    2008-01-01

    Commercial mining towns on Earth become cities. Company towns need commerce to drive the growth and economy of early space colonies. Water is an early resource for camp consumables plus propellant export sales from asteroid mining operations at proposed burned out comets with water methane ice cores for sustainable growth over 50 years, financed from profits and capable with affordable logistics to support resource recovery. One co-author's perspective includes remote resource recovery sites on Earth. Other co-authors' experiences include architecture, lunar habitation, and architectural space colony concepts. This paper combines these experiences to propose commercial opportunities possible as mankind moves beyond one planet. Alaska's North Slope commercial history indicates that different multiple logistics transportation systems are required to reduce the risk to humans and families moved in before the oil flowed. Commercial enterprises have risked $20 billion and spent hundreds of billions in private money after profits were created. The lessons learned are applied to a burned out comet designated Wilson-Harrington (1979) and explores the architecture for early living within the burned out comet disk created from ice recovery and later sealed with an expected methane ice interior. Considered is the recovery of the resources, the transport of water back to Earth orbit or L-1, plus later the development of more comfortable space colony living. Commercial markets produce cities on Earth and the same can happen on Space Colonies. The key is an ``in place'' affordable commercial logistics system that can service, stimulate and sustain a 50-year commercial propellant market.

  7. Heat Shield Paves the Way for Commercial Space

    NASA Technical Reports Server (NTRS)

    2014-01-01

    The Phenolic-Impregnated Carbon Ablator (PICA) heat shield, a lightweight material designed to withstand high temperatures, was used for the Stardust’s reentry into Earth’s atmosphere. Hawthorne, California-based SpaceX later worked with the inventors at Ames Research Center to outfit PICA on its Dragon capsule, which is now delivering cargo to and from the International Space Station through NASA’s Commercial Resupply Services contracts program.

  8. Collaborative Approaches in Developing Environmental and Safety Management Systems for Commercial Space Transportation

    NASA Technical Reports Server (NTRS)

    Zee, Stacey; Murray, D.

    2009-01-01

    The Federal Aviation Administration (FAA), Office of Commercial Space Transportation (AST) licenses and permits U.S. commercial space launch and reentry activities, and licenses the operation of non-federal launch and reentry sites. ASTs mission is to ensure the protection of the public, property, and the national security and foreign policy interests of the United States during commercial space transportation activities and to encourage, facilitate, and promote U.S. commercial space transportation. AST faces unique challenges of ensuring the protection of public health and safety while facilitating and promoting U.S. commercial space transportation. AST has developed an Environmental Management System (EMS) and a Safety Management System (SMS) to help meet its mission. Although the EMS and SMS were developed independently, the systems share similar elements. Both systems follow a Plan-Do-Act-Check model in identifying potential environmental aspects or public safety hazards, assessing significance in terms of severity and likelihood of occurrence, developing approaches to reduce risk, and verifying that the risk is reduced. This paper will describe the similarities between ASTs EMS and SMS elements and how AST is building a collaborative approach in environmental and safety management to reduce impacts to the environment and risks to the public.

  9. 76 FR 82031 - Commercial Space Transportation Advisory Committee; Public Teleconference

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-29

    ... Advisory Committee Risk Management Working Group Teleconference. SUMMARY: Pursuant to Section 10(a)(2) of... teleconference of the Commercial Space Transportation Advisory Committee (COMSTAC) Risk Management Working Group. The teleconference will take place on Tuesday, January 24, 2012, starting at 1:30 p.m....

  10. 77 FR 35102 - Commercial Space Transportation Advisory Committee; Public Teleconference

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-12

    ... Working Group (OWG) of the Commercial Space Transportation Advisory Committee (COMSTAC). The teleconference will take place on Tuesday, July 17, 2012, starting at 1 p.m. Eastern Daylight Time. Individuals... relevant written statements for the COMSTAC working group members to consider under the advisory...

  11. 78 FR 18416 - Commercial Space Transportation Advisory Committee; Open Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-26

    ... Advisory Committee (COMSTAC). The meeting will take place on Tuesday, May 14, 2013, from 8:00 a.m. to 5:00... the COMSTAC working group meetings on May 14 is below: --Operations (8:00 a.m.-10:00 a.m.) --Business... relevant to the commercial space transportation industry; and reports and recommendations from the...

  12. 77 FR 52108 - Commercial Space Transportation Advisory Committee; Open Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-28

    ... Transportation Advisory Committee (COMSTAC). The meeting will take place on Tuesday, October 9, 2012, from 8:00 a.... The proposed agenda for October 9 features meetings of the working groups as follows: --Operations (8... commercial space transportation industry; --Reports and recommendations from the working groups....

  13. Financial issues for commercial space ventures: Paying for the dreams

    NASA Technical Reports Server (NTRS)

    Egan, J. J.

    1984-01-01

    Various financial issues involved in commercial space enterprise are discussed. Particular emphasis is placed on the materials processing area: the current state of business plan and financial developments, what is needed for enhanced probability of success of future materials development efforts in attracting financial backing, and finally, the risks involved in this entire business area.

  14. Government and Industry Issues for Expanding Commercial Markets into Space

    NASA Technical Reports Server (NTRS)

    Smitherman, David V., Jr.

    2003-01-01

    In 2002, the Foresight and Governance Project at the Woodrow Wilson Center in Washington, D.C, organized a "Global Foresight Workshop" in partnership with NASA and in cooperation with other Federal Agencies to provide integrated consideration of broad challenges for the 2lst century. Many long-range goals for the nation were discussed and selected, among them were space related goals of interest to NASA. During much of the Agency's history, NASA advanced studies have focused consistently on the challenges of science-driven space exploration and operations. However, workshop findings indicate little interest in these goals unless they can also solve national and global issues. Many technologies and space development studies indicate great potential to enable new, important commercial markets in space that could address the many global challenges facing America in this century. But communication of these ideas are lacking. In conclusion, it appears that the commercial development of space could have broad implications on many impending problems, including energy resources, environmental impact, and climate changes. The challenge will be to develop a consistent coordinated effort among the many industries and Agencies that should be involved in opening this new frontier for these new commercial markets.

  15. Hyperspectral Imaging on the International Space Station: An Innovative Approach to Commercial Development of Space

    NASA Technical Reports Server (NTRS)

    2003-01-01

    NASA s Space Partnership Division (SPD) was established to promote the commercial development of space by providing access to space ai opportunity to perform commercial research in the microgravity environment. NASA, through SPD, has established Research Partnership Centers (RPC s) that bring the government, universities at private industry together to perform research in space for commercial applica!.!lons. The SPD Office has fostered a re!ationship between an RPC and an aerospace company to perform hyperspectral imaging on the Window Observational Research Facility (WORF) on board the International Space Station (ISS). As a result of this relationship and M the capabilities of the WORF, the ISS will serve the private sector with platform to conduct hyperspectral imaging for commercial research.

  16. BioServe space technologies: A NASA Center for the Commercial Development of Space

    NASA Technical Reports Server (NTRS)

    1992-01-01

    BioServe Space Technologies, a NASA Center for the Commercial Development of Space (CCDS), was established in 1987. As is characteristic of each CCDS designated by NASA, the goals of this commercial center are aimed at stimulating high technology research that takes advantage of the space environment and at leading in the development of new products and services which have commercial potential or that contribute to possible new commercial ventures. BioServe's efforts in these areas focus upon space life science studies and the development of enabling devices that will facilitate ground-based experiments as well as the conversion of such to the microgravity environment. A direct result of BioServe's hardware development and life sciences studies is the training of the next generation of bioengineers who will be knowledgeable and comfortable working with the challenges of the space frontier.

  17. Commercial combustion research aboard the International Space Station

    NASA Astrophysics Data System (ADS)

    Schowengerdt, F. D.

    1999-01-01

    The Center for Commercial Applications of Combustion in Space (CCACS) is planning a number of combustion experiments to be done on the International Space Station (ISS). These experiments will be conducted in two ISS facilities, the SpaceDRUMS™ Acoustic Levitation Furnace (ALF) and the Combustion Integrated Rack (CIR) portion of the Fluids and Combustion Facility (FCF). The experiments are part of ongoing commercial projects involving flame synthesis of ceramic powders, catalytic combustion, water mist fire suppression, glass-ceramics for fiber and other applications and porous ceramics for bone replacements, filters and catalyst supports. Ground- and parabolic aircraft-based experiments are currently underway to verify the scientific bases and to test prototype flight hardware. The projects have strong external support.

  18. Mars Missions Using Emerging Commercial Space Transportation Capabilities

    NASA Technical Reports Server (NTRS)

    Gonzales, Andrew A.

    2016-01-01

    New Discoveries regarding the Martian Environment may impact Mars mission planning. Transportation of investigation payloads can be facilitated by Commercial Space Transportation options. The development of Commercial Space Transportation. Capabilities anticipated from various commercial entities are examined objectively. The potential for one of these options, in the form of a Mars Sample Return mission, described in the results of previous work, is presented to demonstrate a high capability potential. The transportation needs of the Mars Environment Team Project at ISU 2016 may fit within the payload capabilities of a Mars Sample Return mission, but the payload elements may or may not differ. Resource Modules will help you develop a component of a strategy to address the Implications of New Discoveries in the Martian Environment using the possibility of efficient, commercial space transportation options. Opportunities for open discussions as appropriate during the team project formulation period at the end of each Resource Module. The objective is to provide information that can be incorporated into your work in the Team Project including brainstorming.

  19. Materials processing in space - A strategy for commercialization

    NASA Technical Reports Server (NTRS)

    Naumann, R. J.

    1978-01-01

    Major aerospace companies are talking about space factories manufacturing billions of dollars worth of high technology materials per year. On the other hand, a recent National Academy of Sciences study team saw little prospect for space manufacturing because, in their opinion, most of the disturbing effects of gravity in the processes they considered could be overcome on the ground for much less expenditure. This paper presents a current assessment of the problems and promises of the Materials Processing in Space Program and outlines a strategy for developing the first products of commercial value. These early products are expected to serve as paradigms of what can be accomplished by manufacturing in space and should stimulate industry to develop space manufacturing to whatever degree is economically justifiable.

  20. 76 FR 42160 - Commercial Space Transportation Advisory Committee-Public Teleconference

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-18

    ... Working Group of the Commercial Space Transportation Advisory Committee Teleconference. SUMMARY: Pursuant... is hereby given of a teleconference of the Space Transportation Operations Working Group (STOWG) of the Commercial Space Transportation Advisory Committee (COMSTAC). The teleconference will take...

  1. Space commerce in a global economy - Comparison of international approaches to commercial space

    NASA Technical Reports Server (NTRS)

    Stone, Barbara A.; Kleber, Peter

    1992-01-01

    A historical perspective, current status, and comparison of national government/commercial space industry relationships in the United States and Europe are presented. It is noted that space technology has been developed and used primarily to meet the needs of civil and military government initiatives. Two future trends of space technology development include new space enterprises, and the national drive to achieve a more competitive global economic position.

  2. Legal considerations and cooperative opportunities for space commercial activities

    NASA Technical Reports Server (NTRS)

    Hosenball, S. N.

    1984-01-01

    It is a national policy to make the capabilities of the Space Transportation System available to a wide range of potential users. This includes its availability as a space manufacturing facility for commercial activities, which may be carried out on a reimbursable basis or as a joint endeavor with NASA, but with substantial private investment. In any high risk, long lead-time research and development activity directed towards commercialization, the protection afforded the results of the research and development under the laws relating to intellectual property rights may provide an important incentive for private investment. The policies and practices of NASA directed towards the protection of privately-established intellectual property rights involved in STS use are reviewed with particular emphasis on reimbursable launch agreements and joint endeavor agreements.

  3. Research in space commercialization, technology transfer, and communications

    NASA Technical Reports Server (NTRS)

    1982-01-01

    Research and internship programs in technology transfer, space commercialization, and information and communications policy are described. The intern's activities are reviewed. On-campus research involved work on the costs of conventional telephone technology in rural areas, an investigation of the lag between the start of a research and development project and the development of new technology, using NASA patent and patent waiver data, studies of the financial impact and economic prospects of a space operation center, a study of the accuracy of expert forecasts of uncertain quantities and a report on frequency coordination in the fixed and fixed satellite services at 4 and 6 GHz.

  4. The Texas space flight liability act and efficient regulation for the private commercial space flight era

    NASA Astrophysics Data System (ADS)

    Johnson, Christopher D.

    2013-12-01

    In the spring of 2011, the American state of Texas passed into law an act limiting the liability of commercial space flight entities. Under it, those companies would not be liable for space flight participant injuries, except in cases of intentional injury or injury proximately caused by the company's gross negligence. An analysis within the framework of international and national space law, but especially informed by the academic discipline of law and economics, discusses the incentives of all relevant parties and attempts to understand whether the law is economically "efficient" (allocating resources so as to yield maximum utility), and suited to further the development of the fledgling commercial suborbital tourism industry. Insights into the Texas law are applicable to other states hoping to foster commercial space tourism and considering space tourism related legislation.

  5. 3 CFR - Designation of Officers of the National Aeronautics And Space Administration To Act as Administrator

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 3 The President 1 2010-01-01 2010-01-01 false Designation of Officers of the National Aeronautics... Memorandum of January 16, 2009 Designation of Officers of the National Aeronautics And Space Administration To Act as Administrator Memorandum for the Administrator of the National Aeronautics and...

  6. In-Space Internet-Based Communications for Space Science Platforms Using Commercial Satellite Networks

    NASA Technical Reports Server (NTRS)

    Kerczewski, Robert J.; Bhasin, Kul B.; Fabian, Theodore P.; Griner, James H.; Kachmar, Brian A.; Richard, Alan M.

    1999-01-01

    The continuing technological advances in satellite communications and global networking have resulted in commercial systems that now can potentially provide capabilities for communications with space-based science platforms. This reduces the need for expensive government owned communications infrastructures to support space science missions while simultaneously making available better service to the end users. An interactive, high data rate Internet type connection through commercial space communications networks would enable authorized researchers anywhere to control space-based experiments in near real time and obtain experimental results immediately. A space based communications network architecture consisting of satellite constellations connecting orbiting space science platforms to ground users can be developed to provide this service. The unresolved technical issues presented by this scenario are the subject of research at NASA's Glenn Research Center in Cleveland, Ohio. Assessment of network architectures, identification of required new or improved technologies, and investigation of data communications protocols are being performed through testbed and satellite experiments and laboratory simulations.

  7. Center for the development of commercial crystal growth in space

    NASA Technical Reports Server (NTRS)

    Wilcox, William R.

    1989-01-01

    The second year of operation of the Center for Commercial Crystal Growth in Space is described. This center is a consortium of businesses, universities and national laboratories. The primary goal of the Center's research is the development of commercial crystal growth in space. A secondary goal is to develop scientific understanding and technology which will improve commercial crystal growth on earth. In order to achieve these goals the Center's research is organized into teams by growth technique; melt growth, solution growth, and vapor growth. The melt growth team is working on solidification and characterization of bulk crystals of gallium arsenide and cadmium telluride. They used high resolution X-ray topography performed at the National Synchrotron Light Source at Brookhaven National Laboratory. Streak-like features were found in the diffraction images of semi-insulating undoped LEC GaAs. These were shown to be (110) antiphase boundaries, which have not been reported before but appear to be pervasive and responsible for features seen via less-sensitive characterization methods. The results on CdTe were not as definitive, but indicate that antiphase boundaries may also be responsible for the double peaks often seen in X-ray rocking curves of this material. A liquid encapsulated melt zone system for GaAs has been assembled and techniques for casting feed rods developed. It was found that scratching the inside of the quartz ampoules with silicon carbide abrasive minimized sticking of the GaAs to the quartz. Twelve floating zone experiments were done.

  8. Space industrialization. [space flight and environment for commercial/utilitarian purposes

    NASA Technical Reports Server (NTRS)

    Disher, J. H.

    1977-01-01

    Space industrialization is defined as the use of space flight and the space environment for commercial or utilitarian purposes in contrast to other uses such as gains in basic scientific knowledge, national defense, or exploration. Some unique attributes of space that make it amenable to industrial use include overview of the earth, the 'zero gravity' effect, potential for near perfect vacuum, unlimited reservoir for disposal of waste products, availability of essentially uninterrupted flow of solar energy, and the 'perpetual motion' characteristic of orbital mechanics. The role of human participation in assembling and maintaining the large sophisticated systems that will be required for future space industrialization needs is considered.

  9. Three near term commercial markets in space and their potential role in space exploration

    NASA Astrophysics Data System (ADS)

    Gavert, Raymond B.

    2001-02-01

    Independent market studies related to Low Earth Orbit (LEO) commercialization have identified three near term markets that have return-on-investment potential. These markets are: (1) Entertainment (2) Education (3) Advertising/sponsorship. Commercial activity is presently underway focusing on these areas. A private company is working with the Russians on a commercial module attached to the ISS that will involve entertainment and probably the other two activities as well. A separate corporation has been established to commercialize the Russian Mir Space Station with entertainment and promotional advertising as important revenue sources. A new startup company has signed an agreement with NASA for commercial media activity on the International Space Station (ISS). Profit making education programs are being developed by a private firm to allow students to play the role of an astronaut and work closely with space scientists and astronauts. It is expected that the success of these efforts on the ISS program will extend to exploration missions beyond LEO. The objective of this paper is to extrapolate some of the LEO commercialization experiences to see what might be expected in space exploration missions to Mars, the Moon and beyond. .

  10. NASA Deputy Administrator Tours Marshall Space Flight Center

    NASA Technical Reports Server (NTRS)

    1968-01-01

    Pictured from the left, in the Saturn I mockup, are: William Brooksbank, Marshall Space Flight Center (MSFC) Propulsion and Vehicle Engineering Laboratory; Dr. Thomas O. Paine, Deputy Administrator of the National Aeronautics and Space Administration (NASA); Dr. Wernher von Braun, MSFC director; Colonel Clare F. Farley, executive officer of the Office of the Administrator; and Charles J. Donlan, newly appointed deputy associate administrator for Manned Space Flight, technical. The party examined an ordinary man's shoe (held by Paine) outfitted for use in the Saturn I Workshop. The shoe had a unique fastener built into the sole to allow an astronaut to move about the workshop floor and to remain in one position if he desired. Dr. Paine and his party indulged in a two-day tour at the Marshall Space Flight Center getting acquainted with Marshall personnel and programs. It was Paine's first visit to the center since assuming the NASA post on February 1, 1968.

  11. National Aeronautics and Space Administration technology application team program

    NASA Technical Reports Server (NTRS)

    1972-01-01

    Contracts are reported between the RTI TATeam and the National Aeronautics and Space Administration (NASA), the Environmental Protection Agency (EPA), and other governmental, educational, and industrial organizations participating in NASA's Technology Utilization Program.

  12. First Semiannual Report of the National Aeronautics and Space Administration

    NASA Technical Reports Server (NTRS)

    Glennan, T. Keith

    1959-01-01

    The First Semiannual Report of the National Aeronautics and Space Administration (NASA) is submitted to Congress pursuant to section 206 (a) of the National Aeronautics and Space Act of 1958 (Public Law 85-568) to provide for research into problems of flight within and outside the Earth's atmosphere, which states: The Administration shall submit to the President for transmittal to Congress, semiannually and at such other times as it deems desirable, a report on its activities and accomplishments.

  13. 75 FR 38866 - Commercial Space Transportation Advisory Committee-Public Teleconference

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-06

    ... given of a teleconference of the Space Transportation Operations Working Group (STOWG) of the Commercial Space Transportation Advisory Committee (COMSTAC). The teleconference will take place on Wednesday,...

  14. National Aeronautics and Space Administration Scientific and Technical Information Programs.

    ERIC Educational Resources Information Center

    Pinelli, Thomas E., Ed.

    1990-01-01

    Eleven articles discuss informational and educational programs of the National Aeronautics and Space Administration (NASA). Some of the areas discussed include scientific and technical information management, the new Space and Earth Science Information Systems, transfer of technology to other industries, intellectual property issues, and the…

  15. National Aeronautics and Space Administration plans for space communication technology

    NASA Technical Reports Server (NTRS)

    Alexovich, R. E.

    1979-01-01

    A program plan is presented for a space communications application utilizing the 30/20 GHz frequency bands (30 GHz uplink and 20 GHz downlink). Results of market demand studies and spacecraft systems studies which significantly affect the supporting research and technology program are also presented, along with the scheduled activities of the program plan.

  16. Center for commercial applications of combustion in space (CCACS); A partnership for space commercialization at the Colorado School of Mines

    NASA Astrophysics Data System (ADS)

    Schowengerdt, F. D.; Kee, Bob; Linne, Mark; McKinnon, Tom; Moore, John; Parker, Terry; Readey, Dennis; Tilton, John E.; Helble, Joe

    1997-01-01

    The Center for Commercial Applications of Combustion in Space (CCACS) is a NASA/Industry/University consortium at the Colorado School of Mines (CSM). The mission of the Center is to assist industry in developing commercial products by conducting combustion research which takes advantage of the unique properties of space. By conducting experiments in near-zero gravity, convection and buoyancy effects can be minimized and new fundamental design-related knowledge can be gained which can be used to improve combustion-related products and processes on earth. Companies, government laboratories and universities most actively involved in CCACS at present include ABB Combustion, ADA Technologies, Advanced Refractory Technologies, Golden Technologies, Lockheed-Martin, Southwest Sciences, Space Systems/Lora, NASA-Lewis, JPL, the Baylor Dental School and the University of Connecticut. Products and processes of interest to the Center participants include industrial process combustors; catalytic combustion; Halon replacements; ceramic powders, whiskers and fibers; metal-matrix composites; NiTi for bone replacement; diamond coatings for oil-well drill bits; zeolites; imaging sensor arrays and other instrumentation for flame and particulate diagnostics. The center also assists member companies in marketing the resulting products and processes.

  17. Life-sciences research opportunities in commercial suborbital space flight

    NASA Astrophysics Data System (ADS)

    Shelhamer, Mark

    2014-11-01

    Commercial suborbital space flights will reach altitudes above 100 km, with 3-5 min of weightlessness bracketed by high-g launch and landing phases. The proposed frequency of these flights, and the large passenger population, present interesting opportunities for researchers in the life sciences. The characteristics of suborbital flight are between those of parabolic and orbital flights, opening up new scientific possibilities and easing the burden for obtaining access to 0g. There are several areas where these flights might be used for research in the life sciences: (1) operational research: preparation for “real” space flight, such as rehearsal of medical procedures, (2) applied research-to answer questions relevant to long-term space flight; (3) passenger health and safety-effects on passengers, relevant to screening and training; (4) basic research in physiological mechanisms-to address issues of fundamental science. We describe possible projects in each of these categories. One in particular spans several areas. Based on the anticipated suborbital flight profiles, observations from parabolic flight, and the wide range of fitness and experience levels of suborbital passengers, sensorimotor disturbances such as motion sickness and disorientation are major concerns. Protocols for pre-flight adaptation of sensorimotor responses might help to alleviate some of these problems, based on results from research in the initial flights. This would improve the passenger experience and add to the knowledge base relevant to space flight more generally.

  18. 76 FR 51459 - Office of Commercial Space Transportation (AST); Notice of Availability of the Record of Decision...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-18

    ... Federal Aviation Administration Office of Commercial Space Transportation (AST); Notice of Availability of... (EELV) Program, Which Include Atlas V and Delta IV Vehicles, From Cape Canaveral Air Force Station (CCAFS), Florida and Vandenberg Air Force Base (VAFB), California AGENCY: Federal Aviation...

  19. Space Environment Stability and Physical Properties of New Materials for Space Power and Commercial Applications

    NASA Technical Reports Server (NTRS)

    Hambourger, Paul D.

    1997-01-01

    To test and evaluate suitability of materials for use in space power systems and related space and commercial applications, and to achieve sufficient understanding of the mechanisms by which, the materials perform in their intended applications. Materials and proposed applications included but were not limited to: Improved anodes for lithium ion batteries, highly-transparent arc-proof solar array coatings, and improved surface materials for solar dynamic concentrators and receivers. Cooperation and interchange of data with industrial companies as appropriate.

  20. 77 FR 7183 - Public Availability of the National Aeronautics and Space Administration FY 2011 Service Contract...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-10

    ... From the Federal Register Online via the Government Publishing Office NATIONAL AERONAUTICS AND SPACE ADMINISTRATION Public Availability of the National Aeronautics and Space Administration FY 2011 Service Contract Inventory AGENCY: National Aeronautics and Space Administration. ACTION: Notice of...

  1. The Impact of Space Commercialization on Space Agencies: the Case of NASA

    NASA Astrophysics Data System (ADS)

    Zervos, Vasilis

    2002-01-01

    The purpose of this paper is to examine the hypothesis that commercialisation of space results in inefficient contracting policies by the space agencies, using the US NASA as a case study. Though commercialisation is seen by many as a way to reduce costs in space programmes, as the space industry is seen as a decreasing costs industry, this is not a problem-free process. Commercialisation of space has affected the US and European space industries and policies in two major ways. The first is that the public sector actively encourages mergers and acquisitions of major contractors, confined, however, within the geographical borders of the US and Europe. This follows largely from the perceived benefits of economies of size when competing in global commercial markets. The second is the formation of an increasing number of public-private partnerships (PPPs) in space programmes and a more `cosy' relationship between the two within a public-assistance strategic trade theoretic framework. As ESA's contracting policy of `juste retour' is marked by limited competition, the paper focuses on the case of NASA, which is expected to be more pro- competitive, to examine the impact of commercialisation. With the use of quantitative methods based on time series econometric analysis, the paper shows that NASA's contracting policy, results in increasingly less competition and more rent-favouring contracting. This is attributed to the decreasing number of major contractors in conjunction with the preferential treatment of the domestic space industry (`Buy American'). The results of the paper verify that the support of the domestic space industry in commercial and public space markets results in inefficient contracting policies, with NASA facing the conflicting tasks of a stated policy of enhancing competition and efficiency in contracting, as well as, supporting the competitiveness of the domestic space industry. The paper concludes with an analysis and assessment of solutions to this

  2. 48 CFR 32.207 - Administration and payment of commercial financing payments.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... contractual information, and the account(s) (see 32.206(d)) to be charged for the payment. (c) Management of... 48 Federal Acquisition Regulations System 1 2011-10-01 2011-10-01 false Administration and payment of commercial financing payments. 32.207 Section 32.207 Federal Acquisition Regulations...

  3. GEO vs. LEO Space Telecommunication Systems Commercial Set Up, Finance &Economics

    NASA Astrophysics Data System (ADS)

    Kreisel, Joerg

    2002-01-01

    Space-based commercial telecommunication systems - especially in GEO - still represent the big volume segment in commercial space and probably will do so for a while. Although such end-to-end systems both in GEO and LEO are using satellites, ground stations, and service centers, etc., their commercial genesis differs significantly. Based on existing and planned space telecommunication businesses, this paper deals with prime characteristics of commercial GEO and LEO systems and their differences. In a tutorial way the stages of development of both LEO- and GEO-type business ventures are presented. The entire commercial development path is covered (concept, business plan, financing, partnership, growth, etc.). Focus is to understand what drives space telecommunication business and what it takes to start such new commercial space ventures. The perspective given is also based on the author's longstanding background in space commercialization and experiences made as a venture capitalist.

  4. National Aeronautics and Space Administration (NASA) Education 1993-2009

    ERIC Educational Resources Information Center

    Ivie, Christine M.

    2009-01-01

    The National Aeronautics and Space Administration was established in 1958 and began operating a formal education program in 1993. The purpose of this study was to analyze the education program from 1993-2009 by examining strategic plan documents produced by the NASA education office and interviewing NASA education officials who served during that…

  5. National Aeronautics and Space Administration Biological Specimen Repository

    NASA Technical Reports Server (NTRS)

    McMonigal, Kathleen A.; Pietrzyk, Robert a.; Johnson, Mary Anne

    2008-01-01

    The National Aeronautics and Space Administration Biological Specimen Repository (Repository) is a storage bank that is used to maintain biological specimens over extended periods of time and under well-controlled conditions. Samples from the International Space Station (ISS), including blood and urine, will be collected, processed and archived during the preflight, inflight and postflight phases of ISS missions. This investigation has been developed to archive biosamples for use as a resource for future space flight related research. The International Space Station (ISS) provides a platform to investigate the effects of microgravity on human physiology prior to lunar and exploration class missions. The storage of crewmember samples from many different ISS flights in a single repository will be a valuable resource with which researchers can study space flight related changes and investigate physiological markers. The development of the National Aeronautics and Space Administration Biological Specimen Repository will allow for the collection, processing, storage, maintenance, and ethical distribution of biosamples to meet goals of scientific and programmatic relevance to the space program. Archiving of the biosamples will provide future research opportunities including investigating patterns of physiological changes, analysis of components unknown at this time or analyses performed by new methodologies.

  6. [Doctor, may I travel in space? Aeromedical considerations regarding commercial suborbital space flights].

    PubMed

    Haerkens, Marck H T M; Simons, Ries; Kuipers, André

    2011-01-01

    Within a few years, the first commercial operators will start flying passengers on suborbital flights to the verge of space. Medical data on the effects of space journeys on humans have mainly been provided by professional astronauts. There is very little research into the aeromedical consequences of suborbital flights for the health of untrained passengers. Low air pressure and oxygen tension can be compensated for by pressurising the spacecraft or pressure suit. Rapid changes in gravitational (G-)force pose ultimate challenges to cardiovascular adaptation mechanisms. Zero-gravity and G-force may cause motion sickness. Vibrations and noise during the flight may disturb communication between passengers and crew. In addition, the psychological impact of a suborbital flight should not be underestimated. There are currently no legal requirements available for medical examinations for commercial suborbital flights, but it seems justifiable to establish conditions for potential passengers' states of health.

  7. SP-100 nuclear space power systems with application to space commercialization

    NASA Technical Reports Server (NTRS)

    Smith, John M.

    1988-01-01

    The purpose of this paper is to familiarize the Space Commercialization Community with the status and characteristics of the SP-100 space nuclear power system. The program is a joint undertaking by the Department of Defense, the Department of Energy and NASA. The goal of the program is to develop, validate, and demonstrate the technology for space nuclear power systems in the range of 10 to 1000 kWe electric for use in the future civilian and military space missions. Also discussed are mission applications which are enhanced and/or enabled by SP-100 technology and how this technology compares to that of more familiar solar power systems. The mission applications include earth orbiting platforms and lunar/Mars surface power.

  8. Proceedings of the Goddard Space Flight Center Workshop on Robotics for Commercial Microelectronic Processes in Space

    NASA Technical Reports Server (NTRS)

    1987-01-01

    Potential applications of robots for cost effective commercial microelectronic processes in space were studied and the associated robotic requirements were defined. Potential space application areas include advanced materials processing, bulk crystal growth, and epitaxial thin film growth and related processes. All possible automation of these processes was considered, along with energy and environmental requirements. Aspects of robot capabilities considered include system intelligence, ROM requirements, kinematic and dynamic specifications, sensor design and configuration, flexibility and maintainability. Support elements discussed included facilities, logistics, ground support, launch and recovery, and management systems.

  9. SPECIAL COLLOQUIUM : Building a Commercial Space Launch System and the Role of Space Tourism in the Future (exceptionally on Tuesday)

    ScienceCinema

    None

    2016-07-12

    The talk will explore a little of the history of space launch systems and rocketry, will explain why commercial space tourism did not take off after Apollo, and what is happening right now with commercial space systems such as Virgin's, utilising advances in aerospace technology not exploited by conventional ground-based rocket systems. I will then explain the Virgin Galactic technology, its business plan as a US-regulated space tourism company, and the nature of its applications. I will then go on to say a little of how our system can be utilised for sub-orbital space science based on a commercial business plan

  10. SPECIAL COLLOQUIUM : Building a Commercial Space Launch System and the Role of Space Tourism in the Future (exceptionally on Tuesday)

    SciTech Connect

    2011-02-25

    The talk will explore a little of the history of space launch systems and rocketry, will explain why commercial space tourism did not take off after Apollo, and what is happening right now with commercial space systems such as Virgin's, utilising advances in aerospace technology not exploited by conventional ground-based rocket systems. I will then explain the Virgin Galactic technology, its business plan as a US-regulated space tourism company, and the nature of its applications. I will then go on to say a little of how our system can be utilised for sub-orbital space science based on a commercial business plan

  11. Enabling the Commercial Space Transportation Industry at the Mid-Atlantic Regional Spaceport

    DTIC Science & Technology

    2011-09-01

    reliability, as of September 2011, SpaceX has signed contracts for 38 Falcon 9 launches. The economic performance data for Commercial space...NASA does not control” (NASA, 2010). Commercial Resupply Service (CRS) contracts were awarded to SpaceX and Orbital Sciences Corporation through...2016. SpaceX was awarded 1.6 billion dollars for twelve resupply missions to the International Space Station (ISS). Orbital Sciences Corporation was

  12. 76 FR 12211 - Commercial Space Transportation Advisory Committee-Public Teleconference

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-04

    ... Commercial Space Transportation Advisory Committee (COMSTAC). The teleconference will take place on Thursday... February 15, 2011, teleconference. This discussion looked at the structure of the COMSTAC working...

  13. Space-Hotel Early Bird - Visions for a Commercial Space Hotel

    NASA Astrophysics Data System (ADS)

    Amekrane, R.; Holze, C.; Apel, U.

    2002-01-01

    rachid.amekrane@astrium-space.com/Fax: +49 421 539-24801, cholze@zarm.uni-bremen.de/Fax: +49 421 218-7473, The International Space Station was planed for research purposes. In 2001 the first private man, Denis Tito,visited the ISS and the second private man, Mark Shuttleworth is following him. The gate towards the commercial utilization of manned space flight has been pushed open. Space pioneers as Wernher von Braun and Sir Arthur C. Clarke had the dream that one day a space station in earth orbit will host tourists. It is evident that the ISS is not designed to host tourists. Therefore the dream of the pioneers is still open. By asking the question "how should a space station should look like to host tourists?", the German Aerospace Society DGLR e.V. organized a contest under the patronage of Mr. Joerg Feustel-Buechl, the Director of Manned Spaceflight and Microgravity, European Space Agency (ESA) in April 2001. Because the definition and design of living space is the content of architecture the approach was to gather new ideas from young architects in cooperation with space experts. This contest was directed at students of architecture and the task set was to design a hotel for the earth orbit and to accommodate 220 guests. The contest got the name "Early Bird - Visions of a Space Hotel". The results and models of the student's work were shown in an exhibition in Hamburg/Germany, which was open to the public from September 19th till October 20th 2001. During the summer term of 2001 seventeen designs were completed. Having specialists, as volunteers, in the field of space in charge meant that it could be ensured that the designs reflected a certain possibility of being able to be realized. Within this interdisciplinary project both parties learned from each other. The 17 different designs were focused on the expectations and needs of a future space tourist. The designs are for sure not feasible today, but the designs are in that sense realistic that they could be

  14. Highlights from Commercial Flights to the International Space Station

    NASA Video Gallery

    A little more than two years after the end of the Space Shuttle Program, the United States now has two space transportation systems -- SpaceX's Falcon rocket and Dragon spacecraft and Orbital's Ant...

  15. Traffic model for commercial payloads in the Materials Experiment Assembly (MEA). [market research in commercial space processing

    NASA Technical Reports Server (NTRS)

    Tietzel, F. A.

    1979-01-01

    One hundred individuals representing universities, technical institutes, government agencies, and industrial facilities were surveyed to determine potential commercial use of a self-contained, automated assembly for the space processing of materials during frequent shuttle flights for the 1981 to 1987 period. The approach used and the results of the study are summarized. A time time-phased projection (traffic model) of commercial usage of the materials experiment assembly is provided.

  16. Modeling of Space Radiation Exposure Estimation Program for Pilots, Crew and Passengers on Commercial Flights

    NASA Astrophysics Data System (ADS)

    Hwang, Junga; Dokgo, Kyunghwan; Choi, Enjin; Park, Jong-Sun; Kim, Kyung-Chan; Kim, Hang-Pyo

    2014-03-01

    There has been a rapid increase of the concern on the space radiation effect on pilots, crew and passengers at the commercial aircraft altitude (~ 10 km) recently. It is because domestic airline companies, Korean Air and Asiana Airlines have just begun operating the polar routes over the North Pole since 2006 and 2009 respectively. CARI-6 and CARI-6M are commonly used space radiation estimation programs which are provided officially by the U.S. federal aviation administration (FAA). In this paper, the route doses and the annual radiation doses for Korean pilots and cabin crew were estimated by using CARI-6M based on 2012 flight records. Also the modeling concept was developed for our own space radiation estimation program which is composed of GEANT4 and NRLMSIS00 models. The GEANT4 model is used to trace the incident particle transports in the atmosphere and the NRLMSIS00 model is used to get the background atmospheric densities of various neutral atoms at the aircraft altitude. Also presented are the results of simple integration tests of those models and the plan to include the space weather variations through the solar proton event (SPE) prediction model such as UMASEP and the galactic cosmic ray (GCR) prediction model such as Badhwar-O¡¯Neill 2010.

  17. Space station needs, attributes and architectural options study commercialization working group briefing

    NASA Technical Reports Server (NTRS)

    1983-01-01

    The benefits for each of the following commercial areas was investigated: communications, remote sensing, materials processing in space, low Earth orbit (LEO) satellite assembly, testing, and servicing, and space tourism. In each case, where economic benefits are derived, the costs for accomplishing tasks with the Space Station are compared with the cost with the Space Transportation System only.

  18. Economic Metrics for Commercial Reusable Space Transportation Systems

    NASA Technical Reports Server (NTRS)

    Shaw, Eric J.; Hamaker, Joseph (Technical Monitor)

    2000-01-01

    baseline. Still, economic metrics for technology development in these Programs and projects remain fairly straightforward, being based on reductions in acquisition and operating costs of the Systems. One of the most challenging requirements that NASA levies on its Programs is to plan for the commercialization of the developed technology. Some NASA Programs are created for the express purpose of developing technology for a particular industrial sector, such as aviation or space transportation, in financial partnership with that sector. With industrial investment, another set of goals, constraints and expectations are levied on the technology program. Economic benefit metrics then expand beyond cost and cost savings to include the marketability, profit, and investment return requirements of the private sector. Commercial investment criteria include low risk, potential for high return, and strategic alignment with existing product lines. These corporate criteria derive from top-level strategic plans and investment goals, which rank high among the most proprietary types of information in any business. As a result, top-level economic goals and objectives that industry partners bring to cooperative programs cannot usually be brought into technical processes, such as systems engineering, that are worked collaboratively between Industry and Government. In spite of these handicaps, the top-level economic goals and objectives of a joint technology program can be crafted in such a way that they accurately reflect the fiscal benefits from both Industry and Government perspectives. Valid economic metrics can then be designed that can track progress toward these goals and objectives, while maintaining the confidentiality necessary for the competitive process.

  19. Space Station Crew Welcomes World's First Commercial Cargo Craft

    NASA Video Gallery

    Aboard the International Space Station, Expedition 31 Flight Engineer Don Pettit of NASA, Flight Engineer Andre Kuipers of the European Space Agency and Flight Engineer Joe Acaba of NASA grappled a...

  20. Creating Processes Associated with Providing Government Goods and Services Under the Commercial Space Launch Act at Kennedy Space Center

    NASA Technical Reports Server (NTRS)

    Letchworth, Janet F.

    2011-01-01

    Kennedy Space Center (KSC) has decided to write its agreements under the Commercial Space Launch Act (CSLA) authority to cover a broad range of categories of support that KSC could provide to our commercial partner. Our strategy was to go through the onerous process of getting the agreement in place once and allow added specificity and final cost estimates to be documented on a separate Task Order Request (TOR). This paper is written from the implementing engineering team's perspective. It describes how we developed the processes associated with getting Government support to our emerging commercial partners, such as SpaceX and reports on our success to date.

  1. The commercial development of space: is an international regulatory framework needed?

    PubMed

    Contant, Corinne M; Logsdon, John M

    2004-04-01

    The commercial space sector to date has failed to develop comprehensive regulations--"rules of the road"--for its international activities. Within the next 5 years, conflicts with respect to international trade in satellite sales and launch services could emerge, highlighting the need for such a regulatory framework. If the commercial space sector is to continue to develop, it is important to begin discussions now, before these conflicts become significant, on the elements of an appropriate international regulatory framework. The existing framework for space activities was developed when government, not commercial, space activities were dominant, or was adapted from regulations in other sectors such as terrestrial telecommunications.

  2. 48 CFR 1812.7000 - Prohibition on guaranteed customer bases for new commercial space hardware or services.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... customer bases for new commercial space hardware or services. 1812.7000 Section 1812.7000 Federal... PLANNING ACQUISITION OF COMMERCIAL ITEMS Commercial Space Hardware or Services 1812.7000 Prohibition on guaranteed customer bases for new commercial space hardware or services. Public Law 102-139, title...

  3. 48 CFR 1812.7000 - Prohibition on guaranteed customer bases for new commercial space hardware or services.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... customer bases for new commercial space hardware or services. 1812.7000 Section 1812.7000 Federal... PLANNING ACQUISITION OF COMMERCIAL ITEMS Commercial Space Hardware or Services 1812.7000 Prohibition on guaranteed customer bases for new commercial space hardware or services. Public Law 102-139, title...

  4. 48 CFR 1812.7000 - Prohibition on guaranteed customer bases for new commercial space hardware or services.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... customer bases for new commercial space hardware or services. 1812.7000 Section 1812.7000 Federal... PLANNING ACQUISITION OF COMMERCIAL ITEMS Commercial Space Hardware or Services 1812.7000 Prohibition on guaranteed customer bases for new commercial space hardware or services. Public Law 102-139, title...

  5. International space research perspectives of commercialization for German industry

    NASA Technical Reports Server (NTRS)

    Jordan, H. L.

    1985-01-01

    A brief overview of space flight activities is presented. West German contributions to satellite mapping, communication satellites, navigation, Spacelab, diffusion under weightlessness, crystal growth in space, metal bonding, and biochemistry are described. The future of the research in the space station is analyzed.

  6. National Aeronautics and Space Administration Science and Engineering Apprentice Program

    NASA Technical Reports Server (NTRS)

    1997-01-01

    The National Aeronautics and Space Administration's Science and Engineering Apprentice Program for high school students is one of NASA's many efforts toward a goal of scientific literacy. It embraces science, mathematics, and technology as keys to purposeful and sustained progress and security for our nation and its people. It serves as a model for helping reform education by striving to address mechanisms to influence the knowledge, skills, and attitudes of our students. It focuses on what to do today to meet the challenges of tomorrow.

  7. The U.S. Commercial Space Launch Program and the Department of Defense Dilemma

    NASA Technical Reports Server (NTRS)

    Clapp, William G.

    1995-01-01

    The U.S. space launch program no longer dominates the world and is now playing 'catch-up' with the world's first commercial launch company, Arianespace. A healthy U.S. commercial launch program is essential and will assure continued low-cost military access to space. The effort to regain the lead in commercial space launch market has been hindered by declining Department of Defense budgets. President Clinton's space policy prohibits expensive new launch vehicles and limits the Department of Defense to low cost upgrades of existing launch vehicles. The U.S. government created the space sector and must ensure a smooth and effective split from the emerging commercial space program in order to regain world dominance. Until U.S. government and commercial ties are severed, the Department of Defense must consider commercial space launch interests when making military decisions. Ariane provides an excellent 'bench mark' for the U.S. to base future launch vehicle upgrades. Ariane advantages were identified and low-cost recommendations have been made. If the U.S. sets the target of first equaling and then surpassing Ariane by incorporating these recommendations, then the U.S. could once again dominate the world commercial launch market and ensure low cost military access to space.

  8. National Aeronautics and Space Administration Fiscal Year 2001 Accountability Report

    NASA Technical Reports Server (NTRS)

    2002-01-01

    The National Aeronautics and Space Administration (NASA) is an independent Agency established to plan and manage the future of the Nation's civil aeronautics and space program. This Accountability Report covers Federal Fiscal Year (FY) 2001 (October 1, 2000, through September 30, 2001), with discussion of some subsequent events. The Report contains an overview addressing the Agency's critical programs and financial performance and includes highlights of performance organized by goals and objectives of the Enterprises and Crosscutting Processes. The Report also summarizes NASA's stewardship over budget and financial resources, including audited financial statements and footnotes. The financial statements reflect an overall position of offices and activities, including assets and liabilities, as well as results of operations, pursuant to requirements of Federal law (31 U.S.C. 3515(b)). The auditor's opinions on NASA's financial statements, reports on internal controls, and compliance with laws and regulations are included in this report.

  9. National Aeronautics and Space Administration FY 2001 Accountability Report

    NASA Technical Reports Server (NTRS)

    2001-01-01

    The National Aeronautics and Space Administration (NASA) is an independent Agency established to plan and manage the future of the Nation's civil aeronautics and space program. This Accountability Report covers Federal Fiscal Year (FY) 2001 (October 1, 2000, through September 30, 2001), with discussion of some subsequent events The Report contains an overview addressing the Agency's critical programs and financial performance and includes highlights of performance organized by goals and objectives of the Enterprises and Crosscutting Processes. The Report also summarizes NASA's stewardship over budget and financial resources, including audited financial statements and footnotes. The financial statements reflect an overall position of offices and activities, including assets and liabilities, as well as results of operations, pursuant to requirements of Federal law (31 U.S.C. 3515(b)). The auditor's opinions on NASA's financial statements, reports on internal controls, and compliance with laws and regulations are included in this Report.

  10. International Space Station Requirement Verification for Commercial Visiting Vehicles

    NASA Technical Reports Server (NTRS)

    Garguilo, Dan

    2017-01-01

    The COTS program demonstrated NASA could rely on commercial providers for safe, reliable, and cost-effective cargo delivery to ISS. The ISS Program has developed a streamlined process to safely integrate commercial visiting vehicles and ensure requirements are met Levy a minimum requirement set (down from 1000s to 100s) focusing on the ISS interface and safety, reducing the level of NASA oversight/insight and burden on the commercial Partner. Partners provide a detailed verification and validation plan documenting how they will show they've met NASA requirements. NASA conducts process sampling to ensure that the established verification processes is being followed. NASA participates in joint verification events and analysis for requirements that require both parties verify. Verification compliance is approved by NASA and launch readiness certified at mission readiness reviews.

  11. Research in space commercialization, technology transfer, and communications, volume 2

    NASA Technical Reports Server (NTRS)

    Dunn, D. A.; Agnew, C. E.

    1983-01-01

    Spectrum management, models for evaluating communication systems, the communications regulatory environment, expert prediction and consensus, remote sensing, and manned space operations research are discussed.

  12. Proceedings of the Second Annual Symposium on Industrial Involvement and Successes in Commercial Space

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The proceedings of the conference are presented. It is proposed that commercial development in space is an important element in the future competitive posture of the industrial nations of the world. The resources and characteristics of space will play a major role in opening a new economic frontier for all the spacefaring nations of the world. Some topics of discussion are as follow: NASA's mission and the role of CCD's; A balanced commercial access to space; Systems for COMET; SPACEHAB; Space Station Freedom; The center for macromolecular crystallography; Center for space power and advanced electronics; and The center for mapping.

  13. US Interpretation of International Space Policies Regarding Commercial Resource Acquisitions

    DTIC Science & Technology

    2015-06-12

    led the international effort to bring into existence globally accepted laws to regulate space endeavors. The existing void of space regulation was...responsibility for the activity, operate in accordance with typical market -based incentives for controlling cost and optimizing return on investment, and have

  14. Research in space commercialization, technology transfer and communications, vol. 2

    NASA Technical Reports Server (NTRS)

    Dunn, D. A.; Agnew, C. E.

    1983-01-01

    Spectrum management, models for evaluating communications systems, and implications of communications regulations for NASA are considered as major parts of communications policy. Marketing LANDSAT products in developing countries, a political systems analysis of LANDSAT, and private financing and operation of the space operations center (space station) are discussed. Investment requirements, risks, government support, and other primary business and management considerations are examined.

  15. 78 FR 13383 - Public Availability of the National Aeronautics and Space Administration FY 2012 Service Contract...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-27

    ... From the Federal Register Online via the Government Publishing Office NATIONAL AERONAUTICS AND SPACE ADMINISTRATION Public Availability of the National Aeronautics and Space Administration FY 2012 Service Contract Inventory (SCI) AGENCY: Office of Procurement, National Aeronautics and...

  16. The administration of the NASA space tracking system and the NASA space tracking system in Australia

    NASA Technical Reports Server (NTRS)

    Hollander, N.

    1973-01-01

    The international activities of the NASA space program were studied with emphasis on the development and maintenance of tracking stations in Australia. The history and administration of the tracking organization and the manning policies for the stations are discussed, and factors affecting station operation are appraised. A field study of the Australian tracking network is included.

  17. 75 FR 52058 - Commercial Space Transportation Advisory Committee-Public Teleconference

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-24

    ... Transportation Operations Working Group (STOWG) of the Commercial Space Transportation Advisory Committee (COMSTAC). The teleconference will take place on Friday, September 17, 2010, starting at 11 a.m....

  18. 75 FR 51332 - Commercial Space Transportation Advisory Committee-Public Teleconference

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-19

    ... Transportation Operations Working Group (STOWG) of the Commercial Space Transportation Advisory Committee (COMSTAC). The teleconference will take place on Friday, September 17, 2010, starting at 11:00 a.m....

  19. Accessing space: A catalogue of process, equipment and resources for commercial users, 1990

    NASA Technical Reports Server (NTRS)

    1990-01-01

    A catalogue is presented which is intended for commercial developers who are considering, or who have in progress, a project involving the microgravity environment of space or remote sensing of the Earth. An orientation is given to commercial space activities along with a current inventory of equipment, apparatus, carriers, vehicles, resources, and services available from NASA, other government agencies and U.S. industry. The information describes the array of resources that commercial users should consider when planning ground or space based developments. Many items listed have flown in space or been tested in labs and aboard aircraft and can be reused, revitalized, or adapted to suit specific requirements. New commercial ventures are encouraged to exploit existing inventory and expertise to the greatest extent possible.

  20. Part 3: NASA Future Forum: How Commercial Space Benefits U.S.

    NASA Video Gallery

    A NASA Future Forum panel moderated by Doug King of The Museum of Flight in Seattle examines how commercial investments in space exploration and research will help build the American economy. (Part...

  1. National Aeronautics and Space Administration 1999 Accountability Report

    NASA Technical Reports Server (NTRS)

    1999-01-01

    This Accountability Report consolidates reports required by various statutes and summarizes NASA's program accomplishments and its stewardship over budget and financial resources. It is a culmination of NASA's management process, which begins with mission definition and program planning, continues with the formulation and justification of budgets for the President and Congress, and ends with the resulting scientific and engineering program accomplishments. The report covers activities from October 1, 1998, through September 30, 1999, with a discussion of some subsequent events. Program accomplishments included the deployment and operation of the Chandra X-ray Observatory, the delivery of supplies and equipment needed to live and operate on the International Space Station, and the development of the first global 3-D map of Mars. Achievements are highlighted in the Statement of the Administrator and summarized in the performance section of this report.

  2. Report of the committee on a commercially developed space facility

    NASA Technical Reports Server (NTRS)

    Shea, Joseph F.; Stever, H. Guyford; Cutter, W. Bowman, III; Demisch, Wolfgang H.; Fink, Daniel J.; Flax, Alexander H.; Gatos, Harry C.; Glicksman, Martin E.; Lanzerotti, Louis J.; Logsdon, John M., III

    1989-01-01

    Major facilities that could support significant microgravity research and applications activity are discussed. The ground-based facilities include drop towers, aircraft flying parabolic trajectories, and sounding rockets. Facilities that are intrinsically tied to the Space Shuttle range from Get-Away-Special canisters to Spacelab long modules. There are also orbital facilities which include recoverable capsules launched on expendable launch vehicles, free-flying spacecraft, and space stations. Some of these existing, planned, and proposed facilities are non-U.S. in origin, but potentially available to U.S. investigators. In addition, some are governmentally developed and operated whereas others are planned to be privately developed and/or operated. Tables are provided to show the facility, developer, duration, estimated gravity level, crew interaction, flight frequency, year available, power to payload, payload volume, and maximum payload mass. The potential of direct and indirect benefits of manufacturing in space are presented.

  3. Potential Commercial Applications from Combustion and Fire Research in Space

    NASA Technical Reports Server (NTRS)

    Friedman, Robert; Lyons, Valerie J.

    1996-01-01

    The near-zero (microgravity) environment of orbiting spacecraft minimizes buoyant flows, greatly simplifying combustion processes and isolating important phenomena ordinarily concealed by the overwhelming gravity-driven forces and flows. Fundamental combustion understanding - the focus to date of the NASA microgravity-combustion program - has greatly benefited from analyses and experiments conducted in the microgravity environment. Because of the economic and commercial importance of combustion in practice, there is strong motivation to seek wider applications for the microgravity-combustion findings. This paper reviews selected technology developments to illustrate some emerging applications. Topics cover improved fire-safety technology in spacecraft and terrestrial systems, innovative combustor designs for aerospace and ground propulsion, applied sensors and controls for combustion processes, and self-sustaining synthesis techniques for advanced materials.

  4. Thermally stable polyimide components for space and commercial applications

    NASA Technical Reports Server (NTRS)

    Gagliani, J.; Supkis, D. E.

    1978-01-01

    The properties and applications of the thermally stable polyimide foams are discussed, together with an investigation of the methods for producing these materials. The qualities of the polyimide foams such as resistance to fire, not emitting smoke below 204 C, not producing incapacitating toxic by-products below 204 C, and resiliency and flexibility from minus 184 C to 315 C are stressed. The thermal, dielectric, induction, and microwave heating methods are discussed, particularly in relation to producing flexible resilient foams, thermal acoustical polyimide foams, and polyimide foam structural materials. It is concluded that the microwave approach shows to be a viable concept for generating flexible, low density cellular materials possessing a homogeneous structure and applicable to the aerospace industry and for commercial uses.

  5. Use of space to commercially produce ZBLAN optical fibers

    NASA Astrophysics Data System (ADS)

    Tucker, Dennis S.; Workman, Gary L.; Smith, Guy A.

    1996-03-01

    Construction of the International Space Station Alpha (ISSA) will provide a platform not only for materials research but also a possible means to produce products in space which cannot be easily produced on the ground. Some products may even be superior to those now produced in 1g due to the lack of gravity induced convection effects. One such product is ZrF4-BaF2-LaF3-AlF3-NaF (ZBLAN) glass. At the present time this material is being produced on earth in fiber optic form for use in surgical lasers and fiber optic lasers. High attenuation coefficients, however, have kept this material from being used in other applications such as long haul data transmission links. The high attenuation is due to impurities which can be removed through improved processing techniques and crystals which can only be removed or prevented from forming by processing ZBLAN in a microgravity environment.

  6. Current and Projected Government and Commercial Space Activities

    DTIC Science & Technology

    1975-04-01

    satellites. Reimbursable. Figure 1 Space Launches by NASA in 197 5—Continued m mm* m~ammm^m i^» ■^ Mission Improved TIPOS Operational Satellite...expects to be doing $12 billion in annual business. An additional market of $2 billion for viral insecticides for the year 2000 also is forecast...terminals, and collecting data utilizing thousands of small terrestrial telecommunications units. The ATS-F is expected to create new markets in

  7. Case Study of Using High Performance Commercial Processors in Space

    NASA Technical Reports Server (NTRS)

    Ferguson, Roscoe C.; Olivas, Zulema

    2009-01-01

    The purpose of the Space Shuttle Cockpit Avionics Upgrade project (1999 2004) was to reduce crew workload and improve situational awareness. The upgrade was to augment the Shuttle avionics system with new hardware and software. A major success of this project was the validation of the hardware architecture and software design. This was significant because the project incorporated new technology and approaches for the development of human rated space software. An early version of this system was tested at the Johnson Space Center for one month by teams of astronauts. The results were positive, but NASA eventually cancelled the project towards the end of the development cycle. The goal to reduce crew workload and improve situational awareness resulted in the need for high performance Central Processing Units (CPUs). The choice of CPU selected was the PowerPC family, which is a reduced instruction set computer (RISC) known for its high performance. However, the requirement for radiation tolerance resulted in the re-evaluation of the selected family member of the PowerPC line. Radiation testing revealed that the original selected processor (PowerPC 7400) was too soft to meet mission objectives and an effort was established to perform trade studies and performance testing to determine a feasible candidate. At that time, the PowerPC RAD750s were radiation tolerant, but did not meet the required performance needs of the project. Thus, the final solution was to select the PowerPC 7455. This processor did not have a radiation tolerant version, but had some ability to detect failures. However, its cache tags did not provide parity and thus the project incorporated a software strategy to detect radiation failures. The strategy was to incorporate dual paths for software generating commands to the legacy Space Shuttle avionics to prevent failures due to the softness of the upgraded avionics.

  8. Implementation and Service error: Veterans Administration health care and the commercial market option.

    PubMed

    Thompson, F J; Campbell, R W

    1981-01-01

    As government has attempted to deal with complex social problems, the inevitability of error has become increasingly apparent to students of public policy and implementation. This essay focuses on errors of service, initially drawing on the experience of the Veterans Administration (VA) medical system to explore problems of defining, detecting and correcting such errors when government directly delivers care. It probes the complex blend of errors of liberality and stringency that appeared to be present in the VA during the 1970s, the formidable barriers to error correction, and the steps taken by the VA in response to the problem. Second, the essay examines whether a commercial market strategy, as embodied by Medicare or Medicaid, offers certain advantages in dealing with service errors similar to those confronted by VA. The experience of Medicare and Medicaid casts doubt on whether a commercial market model yields superior results in coping with these kinds of error. Finally, the study points to some more general implications of the VA's experience for discussions of service problems in the health policy arena.

  9. The Virginia Space Flight Center model for an integrated federal/commercial launch range

    NASA Astrophysics Data System (ADS)

    Reed, Billie M.

    2000-01-01

    Until 1998, the federal government has been the predominant purchaser of space launches in the U.S. through the purchase of hardware and services. Historically, the government provided the necessary infrastructure for launches from the federal DoD and NASA launch ranges. In this historical model, the federal government had complete ownership, responsibility, liability, and expense for launch activities. In 1998, commercial space launches accounted for 60% of U.S. launches. This growth in commercial launches has increased the demand for launch range services. However, the expense, complexity of activities, and issues over certification of flight safety have deterred the establishment of purely commercial launch sites, with purely commercial being defined as without benefit of capabilities provided by the federal government. Provisions of the Commercial Space Launch Act have enabled DoD and NASA to support commercial launches from government launch ranges on a cost-reimbursable, non-interference basis. The government provides services including use of facilities, tracking and data services, and range and flight safety. In the 1990's, commercial space market projections indicated strong potential for large numbers of commercial satellites to be launched well into the first decade of the 21st century. In response to this significant opportunity for economic growth, several states established spaceports to provide the services necessary to meet these forecast commercial needs. In 1997, NASA agreed to the establishment of the Virginia Space Flight Center (VSFC), a commercial spaceport, at its Wallops Flight Facility. Under this arrangement, NASA agreed to allow the Virginia Commercial Space Flight Authority (VCSFA) to construct facilities on NASA property and agreed to provide launch range and other services in accordance with the Space Act and Commercial Space Launch Act in support of VSFC launch customers. A partnership relationship between NASA and VCSFA has emerged

  10. 75 FR 50036 - Office of Commercial Space Transportation; Availability of Finding of No Significant Impact...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-16

    ... Spaceport (MARS) at NASA's Goddard Space Flight Center Wallops Flight Facility (WFF). As the MARS expansion... (1) licensing the Virginia Commercial Space Flight Authority (VCSFA) which operates MARS as a... at MARS. The FAA has formally adopted the EA and is using the FONSI/ROD to support the...

  11. NASA in-house Commercially Developed Space Facility (CDSF) study report. Volume 1: Concept configuration definition

    NASA Technical Reports Server (NTRS)

    Deryder, L. J.; Chiger, H. D.; Deryder, D. D.; Detweiler, K. N.; Dupree, R. L.; Gillespie, V. P.; Hall, J. B.; Heck, M. L.; Herrick, D. C.; Katzberg, S. J.

    1989-01-01

    The results of a NASA in-house team effort to develop a concept definition for a Commercially Developed Space Facility (CDSF) are presented. Science mission utilization definition scenarios are documented, the conceptual configuration definition system performance parameters qualified, benchmark operational scenarios developed, space shuttle interface descriptions provided, and development schedule activity was assessed with respect to the establishment of a proposed launch date.

  12. Physical Properties and Durability of New Materials for Space and Commercial Applications

    NASA Technical Reports Server (NTRS)

    Hambourger, Paul D.

    2003-01-01

    To develop and test new materials for use in space power systems and related space and commercial applications, to assist industry in the application of these materials, and to achieve an adequate understanding of the mechanisms by which the materials perform in their intended applications.

  13. Space Station Freedom Workshop Opportunities for Commercial Users and Providers: Issues and Recommendations

    NASA Technical Reports Server (NTRS)

    1989-01-01

    The responses to issues and questions raised at the Space Station Freedom Workshops are compiled. The findings are presented under broad divisions of general, materials processing in space, commercial earth and ocean observations, life sciences, infrastructure services, and infrastructure policy. The responses represent the best answers available at this time and future modifications may be expected. Contact names, telephone numbers, and organizations are included.

  14. "From Bricks to Clicks": Hybrid Commercial Spaces in the Landscape of Early Literacy and Learning

    ERIC Educational Resources Information Center

    Nixon, Helen

    2011-01-01

    In their quest for resources to support children's early literacy learning and development, parents encounter and traverse different spaces in which discourses and artifacts are produced and circulated. This paper uses conceptual tools from the field of geosemiotics to examine some commercial spaces designed for parents and children that…

  15. National Aeronautics and Space Administration (NASA) education 1993--2009

    NASA Astrophysics Data System (ADS)

    Ivie, Christine M.

    The National Aeronautics and Space Administration was established in 1958 and began operating a formal education program in 1993. The purpose of this study was to analyze the education program from 1993 -- 2009 by examining strategic plan documents produced by the NASA education office and interviewing NASA education officials who served during that time period. Constant changes in education leadership at NASA resulted in changes in direction in the education program and the documents produced by each administration reflected both small and some significant changes in program direction. The result of the analysis of documents and interview data was the identification of several trends in the NASA education program. This study identified three significant trends in NASA education. First, the approach that NASA took in both its EPO efforts and in the efforts directed by the Office of Education is disjointed and seems to reflect individual preferences in education approaches designed to reach populations that are of interest to the individuals in decision-making positions rather than reflect a systematic approach designed to meet identified goals and outcomes. Second, this disjointed and person-driven approach led to a lack of consistent evaluation data available for review and planning purposes. Third, there was an ongoing assumption made by the education community that NASA education efforts were tied to larger education reports, concerns, needs, initiatives and evidence collected and presented in Science Technology Engineering and Math (STEM) education-related studies over the past twenty years. In fact, there is no evidence that the programs and projects initiated were a response to these identified needs or initiatives. That does not mean that NASA's efforts did not contribute to STEM education initiatives in the United States. This study, however, indicates that contributions to those initiatives occurred as a byproduct of the effort and not because of specific

  16. Space Flight Qualification Program for the AMS-2 Commercial Cryocoolers

    NASA Technical Reports Server (NTRS)

    Shirey, K. A.; Banks, I. S.; Breon, S. R.; Boyle, R. F.; Krebs, Carolyn A. (Technical Monitor)

    2002-01-01

    The Alpha Magnetic Spectrometer-02 (AMS-02) experiment is a state-of-the-art particle physics detector containing a large superfluid helium-cooled superconducting magnet. Highly sensitive detector plates inside the magnet measure a particle's speed, momentum, charge, and path. The AMS-02 experiment will study the properties and origin of cosmic particles and nuclei including antimatter and dark matter. AMS-02 will be installed on the International Space Station on Utilization Flight-4. The experiment will be run for at least three years. To extend the life of the stored cryogen and minimize temperature gradients around the magnet, four Stirling-cycle Sunpower M87N cryocoolers will be integrated with AMS-02. The cryocooler cold tip will be connected via a flexible strap to the outer vapor cooled shield of the dewar. Initial thermal analysis shows the lifetime of the experiment is increased by a factor of 2.8 with the use of the cryocooler. The AMS-02 project selected the Sunpower M87 cryocoolers and has asked NASA Goddard to qualify the cryocoolers for space flight use. This paper describes the interfaces with the cryocoolers and presents data collected during testing of the two engineering model cryocoolers. Tests include thermal performance characterization and launch vibration testing. Magnetic field compatibility testing will be presented in a separate paper at the conference.

  17. Commercial Production of Heavy Metal Fluoride Glass Fiber in Space

    NASA Technical Reports Server (NTRS)

    Tucker, Dennis S.; Workman, Gary L.; Smith, Guy A.

    1998-01-01

    International Space Station Alpha (ISSA) will provide a platform not only for materials research but also a possible means to produce products in space which cannot be easily produced on the ground. Some products may even be superior to those now produced in unit gravity due to the lack of gravity induced convection effects. Our research with ZrF4-BaF2-LaF3-AlF3-NaF (ZBLAN glass) has shown that gravity does indeed play a major role in the crystallization behavior of this material. At the present time ZBLAN is being produced on earth in fiber optic form for use in surgical lasers and fiber optic lasers among other applications. High attenuation coefficients, however, have kept this material from being used in other applications such as long haul data transmission links. The high attenuation coefficients are due to impurities which can be removed through improved processing techniques and crystals which can only be removed or prevented from forming by processing in a reduced gravity environment.

  18. Commercial production of heavy metal fluoride glass fiber in space

    NASA Astrophysics Data System (ADS)

    Tucker, Dennis S.; Workman, Gary L.; Smith, Guy A.

    1998-01-01

    International Space Station Alpha (ISSA) will provide a platform not only for materials research but also a possible means to produce products in space which cannot be easily produced on the ground. Some products may even be superior to those now produced in unit gravity due to the lack of gravity induced convection effects. Our research with ZrF4-BaF2-LaF3-AlF3-NaF (ZBLAN glass) has shown that gravity does indeed play a major role in the crystallization behavior of this material. At the present time ZBLAN is being produced on earth in fiber optic form for use in surgical lasers and fiber optic lasers among other applications. High attenuation coefficients, however, have kept this material from being used in other applications such as long haul data transmission links. The high attenuation coefficients are due to impurities which can be removed through improved processing techniques and crystals which can only be removed or prevented from forming by processing in a reduced gravity environment.

  19. Space commercialization: Analysis of R and D investments with long time horizons

    NASA Technical Reports Server (NTRS)

    Sheahen, T. P.

    1984-01-01

    By following a single hypothetical example through a series of variations, the way different potential investors might look at the opportunity to participate in space commercialization is described. The example itself is fairly typical of commercial opportunities in space. The chief characteristics are a steadily increasing requirement for capital infusion over an 8 year period, followed by a very generous stream of profits running another decade or more beyond. There is a decision point at 3 years, at the conclusion of laboratory R&D; and another at 6 years, following 2 initial space flights.

  20. Commercial suborbital space tourism-proposal on passenger's medical selection

    NASA Astrophysics Data System (ADS)

    Kluge, Götz; Stern, Claudia; Trammer, Martin; Chaudhuri, Indra; Tuschy, Peter; Gerzer, Rupert

    2013-12-01

    Commercial human spaceflight has excellent economic and technical perspectives in the next decades. Passengers will be persons from a general population differing from culture, age, gender and health status. They all will have to withstand physical loads of spaceflight such as acceleration and deceleration forces, microgravity, vibration, noise and radiation. There is a necessity to mitigate all negative impacts on the passengers' health. Besides precautionary measures in construction and equipment, a diligent medical selection and pre-flight training is recommended. To ensure an easy and at the same time qualified selection procedure, it is necessary to define medical selection criteria and training methods. As experiences with suborbital spaceflight of private passengers are still few we recommend to implement in the beginning of this new era maximum safety standards. Having performed a satisfactory number of successful flights, some of the selection criteria and training sessions might be loosened or modified. This judicious approach is in the interest of the spaceflight participants as well as of the providing companies. As a guideline we propose a four step approach that allows a quick decision concerning the fitness of participants to fly as well as an intensive preparation of the passengers. For the first two steps positive experiences from medical screening and examination of professional pilots can be utilised. According to JAR-FCL 3 (Joint Aviation Requirements-Flight Crew Licensing, Chapter 3) a questionnaire with medical interview targeting the medical background of the respective person and including no-go criteria provides a first estimation for applicants and medical examiners whether there will be a chance to be accepted as a passenger. The second step of selection comprises the physical examination of the applicant adjusted to the professional pilot's examination procedure. As the physical challenges of the suborbital flight will exceed the impact

  1. SPACEHAB: A giant step in the commercial development of space

    NASA Astrophysics Data System (ADS)

    Shepard, James E.

    SPACEHAB is a privately developed and operated system offering customers a crew-tended microgravity environment for experimentation and product development. The first SPACEHAB flight module was delivered to the SPACEHAB Payload Processing Facility (SPPF) in Florida and 22 experiments are being integrated for an April 1993 mission. SPACEHAB modules are flown in the forward quarter-bay of the NASA Orbiter and are supported by two crew members. The paylaod accommodations include up to 61 experiment lockers, double and single racks and standard mounting plates for mounting unique payload containers directly to the module structure. Experiments designed for the Orbiter mid-deck, Spacelab or Space Station Freedom can be flown in SPACEHAB. The 24-month integration cycle is currently the shortest for any crew-tended carrier; a goal of 18 months is being actively pursued.

  2. Friction Stir Welding Development at National Aeronautics and Space Administration-Marshall Space Flight Center

    NASA Technical Reports Server (NTRS)

    Bhat, Biliyar N.; Carter, Robert W.; Ding, Robert J.; Lawless, Kirby G.; Nunes, Arthur C., Jr.; Russell, Carolyn K.; Shah, Sandeep R.; Munafo, Paul M. (Technical Monitor)

    2001-01-01

    This paper presents an over-view of friction stir welding (FSW) process development and applications at Marshall Space Flight Center (MSFC). FSW process development started as a laboratory curiosity but soon found support from many users. The FSW process advanced very quickly and has found many applications both within and outside the aerospace industry. It is currently being adapted for joining key elements of the Space Shuttle External Tank for improved producibility and reliability. FSW process modeling is done to better understand and improve the process. Special tools have been developed to weld variable thickness materials including very thin and very thick materials. FSW is now being applied to higher temperature materials such as copper and to advanced materials such as metal matrix composites. FSW technology is being successfully transferred from MSFC laboratory to shop floors of many commercial companies.

  3. The Commercial Application of Missile/Space Technology, Parts 1 and 2

    NASA Technical Reports Server (NTRS)

    Welles, John G.; Marts, Lloyd G.; Waterman, Robert H., Jr.; Gilmore, John S.; Venuti, Robert

    1963-01-01

    This report is concerned with the transfer of technology from missile and space programs to non-missile/space applications in the United States. It presents the findings of a University of Denver Research Institute study sponsored by a National Aeronautics and Space Administration (NASA) grant awarded in November 1961. Initial stimulation for the unsolicited proposal leading to this study came from a 1960 Brookings Institution report to NASA, Proposed Studies on the Implications of Peaceful Space Activities for Human Affairs.

  4. Automated resupply of consumables: Enhancement of space commercialization opportunities

    NASA Technical Reports Server (NTRS)

    Manouchehri, Davoud; Mauceri, A. J.

    1992-01-01

    This paper addresses work performed at Rockwell International's Space Systems Division to investigate the feasibility of, and develop concepts for, automated and/or robotic resupply of consumables on orbit. The work focuses on the resupply of satellites and is described in five sections. First, the various problems relating the resupply on orbit are discussed: for example, economic concerns, fuel handling problems, and safety issues. Next major methods of effecting fuel transfer on orbit are summarized, together with their advantages and disadvantages. Direct fuel exchange is emphasized as the most feasible technique. Third, guidelines are developed for automated/robotic refueling mechanisms to accomplish on-orbit consumable resupply. For example, the guidelines cover safety, reliability, maintainability, alignment, induced loads, thermal protection, leaks, extravehicular activity (EVA) interface, and so on. The fourth part of the paper covers the development of design concepts for satellite resupply robotic interfaces that comply with the guidelines. Concepts include servicer fluid transfer system and satellite propulsion system, and a combined docking/umbilical device. Last, future technical development in these areas are discussed.

  5. Leadership in Space: Selected Speeches of NASA Administrator Michael Griffin, May 2005 - October 2008

    NASA Technical Reports Server (NTRS)

    Griffin, Michael

    2008-01-01

    Speech topics include: Leadership in Space; Space Exploration: Real and Acceptable Reasons; Why Explore Space?; Space Exploration: Filling up the Canvas; Continuing the Voyage: The Spirit of Endeavour; Incorporating Space into Our Economic Sphere of Influence; The Role of Space Exploration in the Global Economy; Partnership in Space Activities; International Space Cooperation; National Strategy and the Civil Space Program; What the Hubble Space Telescope Teaches Us about Ourselves; The Rocket Team; NASA's Direction; Science and NASA; Science Priorities and Program Management; NASA and the Commercial Space Industry; NASA and the Business of Space; American Competitiveness: NASA's Role & Everyone's Responsibility; Space Exploration: A Frontier for American Collaboration; The Next Generation of Engineers; System Engineering and the "Two Cultures" of Engineering; Generalship of Engineering; NASA and Engineering Integrity; The Constellation Architecture; Then and Now: Fifty Years in Space; The Reality of Tomorrow; and Human Space Exploration: The Next 50 Years.

  6. Commercial Space Policy in the 1980s: Proceedings of a Roundtable Discussion

    NASA Technical Reports Server (NTRS)

    Dahlstrom, Neil (Editor)

    2000-01-01

    The Space Business Archives and the NASA History Office signed a Memorandum of Understanding in March of 1999. The MOU outlines several opportunities for cooperative endeavors between the two agencies in historical programming. This oral history, and subsequently this publication, are the first products of that cooperation. In accordance with the purpose of the Space Business Archives--to provide an impartial forum for lessons learned in the development of the commercial space industry--the idea for this roundtable discussion seemed appropriate as the Archives first public program. With the combined resources of the Archives and the NASA History Office we were fortunate to assemble a panel of individuals that served in both industry and government during the 1980s, many working in both sectors during that time. When envisioning the focus of this oral history, we decided that it was appropriate to highlight space policy in the 1980s, with an emphasis on the emerging commercial industry. Panelists were sent several documents in preparation, such as the Land Remote Sensing Commercialization Act and the Commercial Space Launch Act of 1984, President Reagan's 1982 National Space Policy, and other memoranda and letters that outline important policy issues of the decade. This discussion, we think, fills in some of the gaps that would otherwise be left unfilled when simply reading through the documents themselves. Some of these gaps include: how were these policy directives, legislation and decisions introduced and developed, by whom, and at what political and financial cost? This transcript is meant to serve as a reference to some of the issues, organizations and individuals involved in the creation and development of space policy during the 1980s. It is also the result of the first of many future roundtable discussions aimed at providing an open exchange of ideas concerning past success and failure in order to provide a stronger base for future endeavors in governmental

  7. Commercialization of Kennedy Space Center Instrumentation Developed to Improve Safety, Reliability, Cost Effectiveness of Space Shuttle Processing, Launch, and Landing

    NASA Technical Reports Server (NTRS)

    Helms, William R.; Starr, Stanley O.

    1997-01-01

    Priorities and achievements of the Kennedy Space Center (KSF) Instrumentation Laboratories in improving operational safety and decreasing processing costs associated with the Shuttle vehicle are addressed. Technologies that have been or are in the process of technology transfer are reviewed, and routes by which commercial concerns can obtain licenses to other KSF Instrumentation Laboratory technologies are discussed.

  8. Accessing space: A catalogue of process, equipment and resources for commercial users

    NASA Technical Reports Server (NTRS)

    1988-01-01

    This catalogue, produced by NASA's Office of Commercial Programs, provides a broad source of information for the commercial developer interested in the areas of microgravity research and remote sensing. Methods for accessing space for research are reviewed including the shuttle, expendable launch vehicles, suborbital sounding rockets, experimental aircraft, and drop towers and other ground-based facilities. Procedures for using these vehicles and facilities are described along with funding options to pay for their use. Experiment apparatus and carriers for microgravity research are also described. A separate directory of resources and services is also included which contains a listing of transportation products and services, a listing of businesses and industries which provide space-related services and products, and a listing of the NASA and CCDS (Center for the Commercial Development of Space) points of contact.

  9. Benefits Awareness: Educating Industry, Finance, and the Public About Space Commercialization

    NASA Technical Reports Server (NTRS)

    Powers, Blake; Nall, Mark; Casas, Joseph C.; Henderson, Robin N. (Technical Monitor)

    2002-01-01

    For space to be truly commercialized, businesses of all sizes and types must be involved, from foundries to agricultural research initiatives. Achieving this goal, however, requires three separate but integrated educational efforts to support it. The first is to educate industry leaders about the possibilities available through such research, while dispelling some of the myths and misinformation educate the financial community about the economic benefits that result both from the research and the leveraging of private research dollars through the use of space and microgravity research. The third is to educate the public about the tangible benefits that come directly to them from such efforts, the economic benefits to national economies from same, and the other less tangible benefits that will cascade from commercial operations. Together, these steps will educate and provide the framework necessary to help advance space commercialization.

  10. The US commercial space launch program and the Department of Defense dilemma

    NASA Astrophysics Data System (ADS)

    Clapp, William G.

    1994-08-01

    A scenario by which the United States might regain its lost advantage in launching commercial satellites is developed using the Ariane space commercial launch company as a benchmark. Ariane's advantages are identified and low-cost recommendations for countering them are presented The four areas selected for analysis inidentifying an American strategy are launch vehicle: (1) payload characteristics; (2) delivery costs; (3) selection process; and (4) technology. Several of the recommendations require Department of Defense funding even though the primary beneficiary appears to be the commercial space sector. But this will ensure that the military has affordable access to space and it is part of a dual purpose strategy whereby government spending benefits both the public and private sector. There is also a brief discussion of other foreign launch vehicle competition.

  11. National Aeronautics and Space Administration and the Indian Space Research Organisation Synthetic Aperture Radar Mission Concept

    NASA Astrophysics Data System (ADS)

    Bawden, G. W.; Rosen, P. A.; Dubayah, R.; Hager, B. H.; Joughin, I. R.

    2014-12-01

    The U.S. National Aeronautics and Space Administration and the Indian Space Research Organisation are planning a synthetic aperture radar (currently named NISAR) mission for launch in 2020. The mission is a dual L- and S-band polarimetric SAR satellite with a 12-day interferometric orbit and 240 km wide ground swath. The 3-year mission will have a circular sun synchronous orbit (6 am and 6 pm) with a 98° inclination and 747 km altitude that will provide systematic global coverage. Its primary science objectives are to: measure solid Earth surface deformation (earthquakes, volcanic unrest, land subsidence/uplift, landslides); track and understand cryosphere dynamics (glaciers, ice sheets, sea ice, and permafrost); characterize and track changes in vegetation structure and wetlands for understanding ecosystem dynamics and carbon cycle; and support global disaster response. We will describe the current mission concept: the satellite design/capabilities, spacecraft, launch vehicle, and data flow.

  12. Space processing applications payload equipment study. Volume 2E: Commercial equipment utility

    NASA Technical Reports Server (NTRS)

    Smith, A. G. (Editor)

    1974-01-01

    Examination of commercial equipment technologies revealed that the functional performance requirements of space processing equipment could generally be met by state-of-the-art design practices. Thus, an apparatus could be evolved from a standard item or derived by custom design using present technologies. About 15 percent of the equipment needed has no analogous commercial base of derivation and requires special development. This equipment is involved primarily with contactless heating and position control. The derivation of payloads using commercial equipment sources provides a broad and potentially cost-effective base upon which to draw. The derivation of payload equipment from commercial technologies poses other issues beyond that of the identifiable functional performance, but preliminary results on testing of selected equipment testing appear quite favorable. During this phase of the SPA study, several aspects of commercial equipment utility were assessed and considered. These included safety, packaging and structural, power conditioning (electrical/electronic), thermal and materials of construction.

  13. An Initial Strategy for Commercial Industry Awareness of the International Space Station

    NASA Technical Reports Server (NTRS)

    Jorgensen, Catherine A.

    1999-01-01

    While plans are being developed to utilize the ISS for scientific research, and human and microgravity experiments, it is time to consider the future of the ISS as a world-wide commercial marketplace developed from a government owned, operated and controlled facility. Commercial industry will be able to seize this opportunity to utilize the ISS as a unique manufacturing platform and engineering testbed for advanced technology. NASA has begun the strategic planning of the evolution and commercialization of the ISS. The Pre-Planned Program Improvement (P3I) Working Group at NASA is assessing the future ISS needs and technology plans to enhance ISS performance. Some of these enhancements will allow the accommodation of commercial applications and the Human Exploration and Development of Space mission support. As this information develops, it is essential to disseminate this information to commercial industry, targeting not only the private and public space sector but also the non-aerospace commercial industries. An approach is presented for early distribution of this information via the ISS Evolution Data book that includes ISS baseline system information, baseline utilization and operations plans, advanced technologies, future utilization opportunities, ISS evolution and Design Reference Missions (DRM). This information source and tool can be used as catalyst in the commercial world for the generation of ideas and options to enhance the current capabilities of the ISS.

  14. Opportunities for research in space life sciences aboard commercial suborbital flights.

    PubMed

    Wagner, Erika B; Charles, John B; Cuttino, Charles Marsh

    2009-11-01

    The emergence of commercial suborbital spaceflight offers a wide range of new research and development opportunities for those in the space life sciences. Large numbers of diverse flyers, frequent re-flights, and flexible operations provide a fertile ground for both basic and applied science, as well as technology demonstrations. This commentary explores some of the unique features available to the space life science community and encourages engagement with commercial developers and operators during the design phase to help optimize platform designs and operations for future research.

  15. Development of a shuttle recovery Commercial Materials Processing in Space (CMPS) program

    NASA Technical Reports Server (NTRS)

    1989-01-01

    The work performed has covered the following tasks: update commercial users requirements; assess availability of carriers and facilities; shuttle availability assessment; development of optimum accommodations plan; and payload documentation requirements assessment. The results from the first four tasks are presented. To update commercial user requirements, contacts were made with the JEA and CCDS partners to obtain copies of their most recent official flight requests. From these requests the commercial partners' short and long range plans for flight dates, flight frequency, experiment hardware and carriers was determined. A 34 by 44 inch chart was completed to give a snapshot view of the progress of commercialization in space. Further, an assessment was made of the availability of carriers and facilities. Both existing carriers and those under development were identified for use by the commercial partners. A data base was compiled to show the capabilities of the carriers. A shuttle availability assessment was performed using the primary and secondary shuttle manifests released by NASA. Analysis of the manifest produced a flight-by-flight list of flight opportunities available to commercial users. Using inputs from the first three tasks, an Optimum Accommodations Plan was developed. The Accommodation Plan shows the commercial users manifested by flight, the experiment flown, the carrier used and complete list of commercial users that could not be manifested in each calendar year.

  16. COTS/CRS: KSC Evolving Host Initiatives with Commercial Space Partners

    NASA Technical Reports Server (NTRS)

    Yohpe, Megan

    2010-01-01

    NASA's Commercial Crew and Cargo Program Office (C3PO) leads the agency's commercial efforts to stimulate United States private companies as the shuttle program comes to a close. Through the Commercial Orbital Transportation Services (COTS) program, two companies, SpaceX and Orbital, were selected to demonstrate their ability to perform flights to the International Space Station. The Commercial Resupply Services (CRS) Project leverages off the COTS experience, and awarded these two private companies contracts to resupply the International Space Station after shuttle fly out. As a 2010 summer intern, I supported the COTS/CRS team in their team meetings, attended and contributed to project discussions and planning, and assisted in developing visual representations for the variety of processes and organizational endeavors required for the program to run smoothly. One aspect of the COTS/CRS program gives the involved private companies the opportunity to request available services from Kennedy Space Center (KSC); one of my projects included assisting in the development of a related Task Order Request (TOR) process. In addition, an integral part of the project was to maintain and enhance the team database for processing the variety of TORS. My experience in the project gave me great insight into the growing field of commercial space activities. The development of the TOR process involved coordinating representatives from a variety of backgrounds at KSC. A clear and concise visual representation of the TOR process in the form of a flow chart was necessary to successfully implement a task order request from one of NASA's commercial partners. The goals of the process charts were to communicate the team's ideas and foster a common thought process while at the same time allow the process to grow and evolve. It was critical that the requests from the private companies were addressed quickly and thoroughly as the process developed this summer is expected to have extensive

  17. Feasibility of commercial space manufacturing, production of pharmaceuticals. Volume 1: Executive summary

    NASA Technical Reports Server (NTRS)

    1978-01-01

    The feasibility of the commercial manufacturing of pharmaceuticals in space is examined. The method of obtaining pharmaceutical company involvement, laboratory results of the separation of serum proteins by the continuous flow electrophoresis process, the selection and study of candidate products, and their production requirements is presented. Antihemophilic factor, beta cells, erythropoietin, epidermal growth factor, alpha-1-antitrypsin and interferon were studied. Production mass balances for antihemophilic factor, beta cells, and erythropoietin were compared for space verus ground operation.

  18. Economic benefits of the Space Station to commercial communication satellite operators

    NASA Technical Reports Server (NTRS)

    Price, Kent M.; Dixson, John E.; Weyandt, Charles J.

    1987-01-01

    The economic and financial aspects of newly defined space-based activities, procedures, and operations (APOs) and associated satellite system designs are presented that have the potential to improve economic performance of future geostationary communications satellites. Launch insurance, launch costs, and the economics of APOs are examined. Retrieval missions and various Space Station scenarios are addressed. The potential benefits of the new APOs to the commercial communications satellite system operator are quantified.

  19. Microgravity polymer and crystal growth at the Advanced Materials Center for the Commercial Development of Space

    NASA Technical Reports Server (NTRS)

    Mccauley, Lisa A.

    1990-01-01

    The microgravity research programs currently conducted by the Advanced Materials Center for the Commercial Development of Space (CCDS) are briefly reviewed. Polymer processing in space, which constitutes the most active microgravity program at the Advanced Materials CCDS, is conducted in three areas: membrane processing, multiphase composite behavior, and plasma polymerization. Current work in microgravity crystal growth is discussed with particular reference to the development of the Zeolite Crystal Growth facility.

  20. 77 FR 65443 - Commercial Space Transportation Advisory Committee-Public Teleconference

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-26

    ... Working Group of the Commercial Space Transportation Advisory Committee (COMSTAC). The teleconferences will take place on: Tuesday November 13, 2012, Tuesday December 18, 2012, and Tuesday January 15, 2013...? Interested members of the public may submit relevant written statements for the COMSTAC working group...

  1. 76 FR 4743 - Commercial Space Transportation Advisory Committee-Public Teleconference

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-26

    ... Transportation Operations Working Group (STOWG) of the Commercial Space Transportation Advisory Committee (COMSTAC). The teleconference will take place on Thursday, February 17, 2011, starting at 11 a.m. Eastern... teleconference is to continue the discussion started during the October 6, 2010, working group meeting,...

  2. 77 FR 48585 - Commercial Space Transportation Advisory Committee-Public Teleconference

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-14

    ... Working Group (OWG) of the Commercial Space Transportation Advisory Committee (COMSTAC). The teleconference will take place on Wednesday, September 12, 2012, starting at 10:00 a.m. Eastern Daylight Time... authority for the FAA and receive a report from the smaller working group tasked to explore case...

  3. 77 FR 44707 - Commercial Space Transportation Advisory Committee-Public Teleconference

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-30

    ... Working Group of the Commercial Space Transportation Advisory Committee (COMSTAC). The teleconferences will take place on: Tuesday August 14, 2012, Tuesday September 18, 2012, and Tuesday October 23, 2012... regulations, and what place government and industry standards should have in FAA licensing. Interested...

  4. 76 FR 15041 - Commercial Space Transportation Advisory Committee-Public Teleconference

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-18

    ... Transportation Operations Working Group (STOWG) of the Commercial Space Transportation Advisory Committee (COMSTAC). The teleconference will take place on Tuesday, April 5, 2011, starting at 11 a.m. Eastern... being drafted by the European Union. The working group will also finalize plans for the May...

  5. 75 FR 71791 - Commercial Space Transportation Advisory Committee-Public Teleconference

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-24

    ... Transportation Operations Working Group (STOWG) of the Commercial Space Transportation Advisory Committee (COMSTAC). The teleconference will take place on Wednesday, December 8, 2010, starting at 11 a.m. Eastern... teleconference is to continue the discussion started during the October 6, 2010, working group meeting....

  6. 76 FR 67018 - Commercial Space Transportation Advisory Committee-Public Teleconference

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-28

    ... Transportation Operations Working Group (STOWG) of the Commercial Space Transportation Advisory Committee (COMSTAC). The teleconference will take place on Thursday, November 17, 2011, starting at 11 a.m. Eastern... written statements for the COMSTAC working group members to consider under the advisory...

  7. Feasibility of commercial space manufacturing, production of pharmaceuticals. Volume 3: Product data

    NASA Technical Reports Server (NTRS)

    1978-01-01

    The feasibility of commercial manufacturing of pharmaceuticals in space is analyzed and the study results are presented. The chronology of the study process is discussed. The separation of serum proteins by the continuous flow electrophoresis process is investigated. The production requirements of twelve candidate products including antihemophilic factor, beta cells, erythropoietin, epidermal growth factor, alpha-1-antitrypsin, and interferon are evaluated.

  8. Space Tourism - The Moon and the Popular and Commercial Exploitation of Space

    NASA Astrophysics Data System (ADS)

    Taylor, R. L. S.

    Increasing numbers of people, within the space community, argue that the development of space tourism - initially to low-Earth-obit (LEO) and with `stop-over' orbiting hotel facilities - would provide an important and significant economic and financial driver for the further expansion and utilization of space resources. In this paper the case for space-tourism is reviewed and it is concluded that the long-term economic expansion of the use and exploitation of space to meet and fulfill human needs cannot be based on operating from the surface of the Earth. A stable and viable Earth-space economy has to be centred upon the Moon. The technological, engineering and scientific requirements and a possible development scenario are discussed briefly and some of the wider implications are noted.

  9. Commercial opportunities in bioseparations and physiological testing aboard Space Station Freedom

    NASA Technical Reports Server (NTRS)

    Hymer, W. C.

    1992-01-01

    The Center for Cell Research (CCR) is a NASA Center for the Commercial Development of Space which has as its main goal encouraging industry-driven biomedical/biotechnology space projects. Space Station Freedom (SSF) will provide long duration, crew-tended microgravity environments which will enhance the opportunities for commercial biomedical/biotechnology projects in bioseparations and physiological testing. The CCR bioseparations program, known as USCEPS (for United States Commercial Electrophoresis Program in Space), is developing access for American industry to continuous-flow electrophoresis aboard SSF. In space, considerable scale-up of continuous free-flow electrophoresis is possible for cells, sub cellular particles, proteins, growth factors, and other biological products. The lack of sedemination and buoyancy-driven convection flow enhances purity of separations and the amount of material processed/time. Through the CCR's physiological testing program, commercial organizations will have access aboard SSF to physiological systems experiments (PSE's); the Penn State Biomodule; and telemicroscopy. Physiological systems experiments involve the use of live animals for pharmaceutical product testing and discovery research. The Penn State Biomodule is a computer-controlled mini lab useful for projects involving live cells or tissues and macro molecular assembly studies, including protein crystallization. Telemicroscopy will enable staff on Earth to manipulate and monitor microscopic specimens on SSF for product development and discovery research or for medical diagnosis of astronaut health problems. Space-based product processing, testing, development, and discovery research using USCEPS and CCR's physiological testing program offer new routes to improved health on Earth. Direct crew involvement-in biomedical/biotechnology projects aboard SSF will enable better experimental outcomes. The current data base shows that there is reason for considerable optimism

  10. Potential commercial use of the International Space Station by the biotechnology/pharmaceutical/biomedical sector

    NASA Astrophysics Data System (ADS)

    Morgenthaler, George W.; Stodieck, Louis

    1999-01-01

    The International Space Station (ISS) is the linch-pin of NASA's future space plans. It emphasizes scientific research by providing a world-class scientific laboratory in which to perform long-term basic science experiments in the space environment of microgravity, radiation, vacuum, vantage-point, etc. It will serve as a test-bed for determining human system response to long-term space flight and for developing the life support equipment necessary for NASA's Human Exploration and Development of Space (HEDS) enterprise. The ISS will also provide facilities (up to 30% of the U.S. module) for testing material, agricultural, cellular, human, aquatic, and plant/animal systems to reveal phenomena heretofore shrouded by the veil of 1-g. These insights will improve life on Earth and will provide a commercial basis for new products and services. In fact, some products, e.g., rare metal-alloys, semiconductor chips, or protein crystals that cannot now be produced on Earth may be found to be sufficiently valuable to be manufactured on-orbit. Biotechnology, pharmaceutical and biomedical experiments have been regularly flown on 10-16 day Space Shuttle flights and on three-month Mir flights for basic science knowledge and for life support system and commercial product development. Since 1985, NASA has created several Commercial Space Centers (CSCs) for the express purpose of bringing university, government and industrial researchers together to utilize space flight and space technology to develop new industrial products and processes. BioServe Space Technologies at the University of Colorado at Boulder and Kansas State University, Manhattan, Kansas, is such a NASA sponsored CSC that has worked with over 65 companies and institutions in the Biotech Sector in the past 11 years and has successfully discovered and transferred new product and process information to its industry partners. While tests in the space environment have been limited to about two weeks on Shuttle or a few

  11. Feasibility of commercial space manufacturing, production of pharmaceuticals. Volume 2: Technical analysis

    NASA Technical Reports Server (NTRS)

    1978-01-01

    A technical analysis on the feasibility of commercial manufacturing of pharmaceuticals in space is presented. The method of obtaining pharmaceutical company involvement, laboratory results of the separation of serum proteins by the continuous flow electrophoresis process, the selection and study of candidate products, and their production requirements is described. The candidate products are antihemophilic factor, beta cells, erythropoietin, epidermal growth factor, alpha-1-antitrypsin and interferon. Production mass balances for antihemophelic factor, beta cells, and erythropoietin were compared for space versus ground operation. A conceptual description of a multiproduct processing system for space operation is discussed. Production requirements for epidermal growth factor of alpha-1-antitrypsin and interferon are presented.

  12. Administrator Bolden on the SpaceX Falcon 9 Launch

    NASA Video Gallery

    While rocket launches from the Cape are considered a common occurrence to some, the historic significance of today’s achievement by SpaceX should not be lost. This is the first in a new generat...

  13. Risk Mitigation Approach to Commercial Resupply to the International Space Station

    NASA Technical Reports Server (NTRS)

    Koons, Diane S.; Schreiber, Craig

    2010-01-01

    In August 2006, NASA awarded Space Act Agreements (SAAs) for Commercial Orbital Transportation Services (COTS) under the Commercial Crew and Cargo Project Office at Johnson Space Center. One of the goals of the SAAs is to facilitate U.S. private industry demonstration of cargo transportation capabilities, ultimately achieving reliable, cost effective access to low-Earth orbit (LEO). Each COTS provider is required to complete International Space Stations (ISS) Integration activities, which includes meeting the physical and functional interfaces and interface requirements between the ISS and COTS vehicles. These requirements focus on the areas of risk to the ISS during rendezvous and proximity operations, as well as the integration operations while the COTS vehicle is berthed to the ISS. On December 23, 2008, NASA awarded Commercial Resupply Service (CRS) contracts to provide resupply services to the ISS, following the Shuttle retirement. In addition to performing any ISS Integration activities, NASA will be performing independent assessments of the launch vehicle and orbital vehicle to evaluate the readiness of the contractor to deliver NASA cargo safely to the ISS. This paper will address the activities NASA Centers, both JSC and KSC, in the oversight and insight function over commercial visiting vehicles to the ISS.

  14. Towards the use of Commercial Off-The-Shelf motors in space

    NASA Astrophysics Data System (ADS)

    Lewis, S. D.; Roberts, E. W.; Anderson, M. J.

    2003-09-01

    There is growing interest in use of Commercial-Off-The-Shelf (COTS) motors (and other components) in space. These offer low-cost and occasionally unique performance benefits compared to bespoke space motors. Recent examples of their use include Beagle II, Rosetta and numerous micro-satellite applications. However, application engineers who propose the use of COTS devices face a challenging series of materials and tribology-related issues, together with performance uncertainties. The way these challenges are met will ultimately determine whether a COTS approach to space motors and other devices will be deemed acceptable. This paper takes examples of recent programmes in which ESTL has played a role, either supporting manufacturers or space-equipment developers, in the adaptation of COTS technologies, primarily motors, to space use. The range of devices used, the scope of modifications and lubricant evaluation programmes carried out and the approach to performance evaluation are discussed.

  15. Two new advanced forms of spectrometry for space and commercial applications

    NASA Technical Reports Server (NTRS)

    Schlager, Kenneth J.

    1991-01-01

    Reagentless ultraviolet absorption spectrometry (UVAS) and Liquid Atomic Emission Spectrometry (LAES) represent new forms of spectrometry with extensive potential in both space and commercial applications. Originally developed under KSC sponsorship for monitoring nutrient solutions for the Controlled Ecological Life Support System (CELSS), both UVAS and LAES have extensive analytical capabilities for both organic and inorganic chemical compounds. Both forms of instrumentation involve the use of remote fiber optic probes and real-time measurements for on-line process monitoring. Commercial applications exist primarily in environmental analysis and for process control in the chemical, pulp and paper, food processing, metal plating, and water/wastewater treatment industries.

  16. Office of Commercial Programs' research activities for Space Station Freedom utilization

    NASA Astrophysics Data System (ADS)

    Fountain, James A.

    One of the objectives of the Office of Commercial Programs (OCP) is to encourage, enable, and help implement space research which meets the needs of the U.S. industrial sector. This is done mainly through seventeen Centers for the Commercial Development of Space (CCDS's) which are located throughout the United States. The CCDS's are composed of members from U.S. companies, universities, and other government agencies. These Centers are presently engaged in industrial research in space using a variety of carriers to reach low Earth orbit. One of the goals is to produce a body of experience and knowledge that will allow U.S. industrial entities to make informed decisions regarding their participation in commercial space endeavors. A total of 32 items of payload hardware were built to date. These payloads have flown in space a total of 73 times. The carriers range from the KC-135 parabolic aircraft and expendable launch vehicles to the Space Shuttle. This range of carriers allows the experimenter to evolve payloads in complexity and cost by progressively extending the time in microgravity. They can start with a few seconds in the parabolic aircraft and go to several minutes on the rocket flights, before they progress to the complexities of manned flight on the Shuttle. Next year, two new capabilities will become available: COMET, an expendable-vehicle-launched experiment capsule that can carry experiments aloft for thirty days; and SPACEHAB, a new Shuttle borne module which will greatly add to the capability to accommodate small payloads. All of these commercial research activities and carrier capabilities are preparing the OCP to evolve those experiments that prove successful to Space Station Freedom. OCP and the CCDS's are actively involved in Space Station design and utilization planning and have proposed a set of experiments to be launched in 1996 and 1997. These experiments are to be conducted both internal and external to Space Station Freedom and will

  17. Office of Commercial Programs' research activities for Space Station Freedom utilization

    NASA Technical Reports Server (NTRS)

    Fountain, James A.

    1992-01-01

    One of the objectives of the Office of Commercial Programs (OCP) is to encourage, enable, and help implement space research which meets the needs of the U.S. industrial sector. This is done mainly through seventeen Centers for the Commercial Development of Space (CCDS's) which are located throughout the United States. The CCDS's are composed of members from U.S. companies, universities, and other government agencies. These Centers are presently engaged in industrial research in space using a variety of carriers to reach low Earth orbit. One of the goals is to produce a body of experience and knowledge that will allow U.S. industrial entities to make informed decisions regarding their participation in commercial space endeavors. A total of 32 items of payload hardware were built to date. These payloads have flown in space a total of 73 times. The carriers range from the KC-135 parabolic aircraft and expendable launch vehicles to the Space Shuttle. This range of carriers allows the experimenter to evolve payloads in complexity and cost by progressively extending the time in microgravity. They can start with a few seconds in the parabolic aircraft and go to several minutes on the rocket flights, before they progress to the complexities of manned flight on the Shuttle. Next year, two new capabilities will become available: COMET, an expendable-vehicle-launched experiment capsule that can carry experiments aloft for thirty days; and SPACEHAB, a new Shuttle borne module which will greatly add to the capability to accommodate small payloads. All of these commercial research activities and carrier capabilities are preparing the OCP to evolve those experiments that prove successful to Space Station Freedom. OCP and the CCDS's are actively involved in Space Station design and utilization planning and have proposed a set of experiments to be launched in 1996 and 1997. These experiments are to be conducted both internal and external to Space Station Freedom and will

  18. The law applicable to the use of space for commercial activities

    NASA Technical Reports Server (NTRS)

    Hosenball, S. N.

    1983-01-01

    The general principles of space law that have an impact on commercial space activities are discussed. The Outer Space Treaty guaranteed the right of private enterprise in space, with jurisdiction over the participating parties residing in the country of origin. The liability for damages caused to a third party is also assigned to the country of origin. Government consent is necessary in the U.S. before a private firm is permitted to launch an object into space, with the relevant statute sections being part of the Arms Export Control Act; launches are legally treated as exports. FAA regulations define the safe area and flight conditions that must be satisfied for a private launch, although NASA, in the 1958 act which formed the agency, potentialy has the power to regulate space launch activities. The DoD must be notified of any launches in order to notify the U.S.S.R., filings must be made with the Bureau of Alcohol, Tobacco, and Firearms, and fees must be paid to the IRS. It is presently U.S. government policy to encourage and facilitate private sector development of commercial launch services.

  19. National Aeronautics and Space Administration Exploration Systems Interim Strategy

    NASA Technical Reports Server (NTRS)

    2004-01-01

    Contents include the following: 1. The Exploration Systems Mission Directorate within NASA. Enabling the Vision for Space Exploration. The Role of the Directorate. 2. Strategic Context and Approach. Corporate Focus. Focused, Prioritized Requirements. Spiral Transformation. Management Rigor. 3. Achieving Directorate Objectives. Strategy to Task Process. Capability Development. Research and Technology Development. 4. Beyond the Horizon. Appendices.

  20. Qualification of Commercial XIPS(R) Ion Thrusters for NASA Deep Space Missions

    NASA Technical Reports Server (NTRS)

    Goebel, Dan M.; Polk, James E.; Wirz, Richard E.; Snyder, J.Steven; Mikellides, Ioannis G.; Katz, Ira; Anderson, John

    2008-01-01

    Electric propulsion systems based on commercial ion and Hall thrusters have the potential for significantly reducing the cost and schedule-risk of Ion Propulsion Systems (IPS) for deep space missions. The large fleet of geosynchronous communication satellites that use solar electric propulsion (SEP), which will approach 40 satellites by year-end, demonstrates the significant level of technical maturity and spaceflight heritage achieved by the commercial IPS systems. A program to delta-qualify XIPS(R) ion thrusters for deep space missions is underway at JPL. This program includes modeling of the thruster grid and cathode life, environmental testing of a 25-centimeter electromagnetic (EM) thruster over DAWN-like vibe and temperature profiles, and wear testing of the thruster cathodes to demonstrate the life and benchmark the model results. This paper will present the delta-qualification status of the XIPS thruster and discuss the life and reliability with respect to known failure mechanisms.

  1. Prospects for commercialization of SELV-based in-space operations

    NASA Astrophysics Data System (ADS)

    Katzberg, Stephen J.; Garrison, James L., Jr.

    1995-09-01

    A workshop was hosted by the Langley Research Center as a part of an activity to assess the commercialization potential of Small Expendible Launch Vehicle-based in-space operations. Representatives of the space launch insurance industry, industrial consultants, producers of spacecraft, launch vehicle manufacturers, and government researchers constituted the participants. The workshop was broken into four sessions: Customers Small Expendible Launch Systems, Representative Missions, and Synthesis-Government role. This publication contains the presentation material, written synopses of the sessions, and conclusions developed at the workshop.

  2. Prospects for commercialization of SELV-based in-space operations

    NASA Technical Reports Server (NTRS)

    Katzberg, Stephen J. (Compiler); Garrison, James L., Jr. (Compiler)

    1995-01-01

    A workshop was hosted by the Langley Research Center as a part of an activity to assess the commercialization potential of Small Expendible Launch Vehicle-based in-space operations. Representatives of the space launch insurance industry, industrial consultants, producers of spacecraft, launch vehicle manufacturers, and government researchers constituted the participants. The workshop was broken into four sessions: Customers Small Expendible Launch Systems, Representative Missions, and Synthesis-Government role. This publication contains the presentation material, written synopses of the sessions, and conclusions developed at the workshop.

  3. 75 FR 54002 - Commercial Space Transportation Advisory Committee-Open Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-02

    ...Pursuant to Section 10(a)(2) of the Federal Advisory Committee Act (Pub. L. 92-463, 5 U.S.C. App. 2), notice is hereby given of a meeting of the Commercial Space Transportation Advisory Committee (COMSTAC). The meeting will take place on Thursday, October 7, 2010, starting at 8 a.m. at the National Housing Center, 1201 15th Street, NW., Washington, DC 20005. The proposed agenda for this......

  4. Commercial Eyes in Space: Implications for U.S. Military Operations in 2030

    DTIC Science & Technology

    2008-03-01

    techniques could provide valuable sources of information. Differential LIDAR is a technique used by airborne systems today where multiple laser ... laser technologies will be required effectively implement commercial space-based LIDAR for specific niche markets. If the challenges can be...type of radar that takes advantage of the sensor’s movement to create a more detailed image. LIDAR emits light or lasers of specific wavelengths

  5. 27. INTERIOR, ADMINISTRATION BUILDING, 2ND FLOOR, SOUTHEAST CORNER SPACE, LOOKING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    27. INTERIOR, ADMINISTRATION BUILDING, 2ND FLOOR, SOUTHEAST CORNER SPACE, LOOKING UP AT CIRCULAR MOTIF AND BANDS IN THE CEILING ABOVE THE ACOUSTICAL TILES - Ford Motor Company Plant, 700 South Union Street, Alexandria, Independent City, VA

  6. Acquisition of a Biomedical Database of Acute Responses to Space Flight during Commercial Personal Suborbital Flights

    NASA Technical Reports Server (NTRS)

    Charles, John B.; Richard, Elizabeth E.

    2010-01-01

    There is currently too little reproducible data for a scientifically valid understanding of the initial responses of a diverse human population to weightlessness and other space flight factors. Astronauts on orbital space flights to date have been extremely healthy and fit, unlike the general human population. Data collection opportunities during the earliest phases of space flights to date, when the most dynamic responses may occur in response to abrupt transitions in acceleration loads, have been limited by operational restrictions on our ability to encumber the astronauts with even minimal monitoring instrumentation. The era of commercial personal suborbital space flights promises the availability of a large (perhaps hundreds per year), diverse population of potential participants with a vested interest in their own responses to space flight factors, and a number of flight providers interested in documenting and demonstrating the attractiveness and safety of the experience they are offering. Voluntary participation by even a fraction of the flying population in a uniform set of unobtrusive biomedical data collections would provide a database enabling statistical analyses of a variety of acute responses to a standardized space flight environment. This will benefit both the space life sciences discipline and the general state of human knowledge.

  7. Tropospheric Wind Monitoring During Day-of-Launch Operations for National Aeronautics and Space Administration's Space Shuttle Program

    NASA Technical Reports Server (NTRS)

    Decker, Ryan K.; Leach, Richard

    2004-01-01

    The Environments Group at the National Aeronautics and Space Administration's Marshall Space Flight Center (NASA/MSFC) monitors the winds aloft at Kennedy Space Center (KSC) during the countdown for all Space Shuttle launches. Assessment of tropospheric winds is used to support the ascent phase of launch. Three systems at KSC are used to generate independent tropospheric wind profiles prior to launch; 1) high resolution Jimsphere balloon system, 2) 50-MHz Doppler Radar Wind Profiler (DRWP) and 3) low resolution radiosonde system. Data generated by the systems are used to assess spatial and temporal wind variability during launch countdown to ensure wind change observed does not violate wind change criteria constraints.

  8. A low cost commercial approach to space systems development and operations

    NASA Astrophysics Data System (ADS)

    Bonner, T. F.; Faget, M. A.; Allen, J. P.; Langstaff, D. H.

    In recent years a number of factors have led to increased attention to the lowering of costs for space flight systems and the operation of those systems. To that end Space Industries Inc. (SII), a small commercial space company based in Houston, Tex., is employing proven methods derived from over three decades of space flight development and space operations. These methods are based on a philosophy that is cost-sensitive focused with a primary objective to drive the cost of space systems and their operations down to the lowest level practical, consistent with the mission objectives, acceptable risk and safety considerations. This approach involves a process of: (1) addressing the basic requirements in the simplest and most cost effective manner, i.e. limit new development wherever possible, maximize use of proven and existing technology and eliminate non-essential requirements; (2) incorporation of proven industrial practices where possible, i.e. focus on performance envelopes (not on restrictive, specific and detailed specifications) and streamline program management, documentation, testing and other procedures; and (3) delivery of the "best" price, i.e. maximum customer utility at minimum cost with emphasis on customer service. The overriding factor, and indeed the most important aspect of the low cost commercial approach, is the willingness to accept greater risks to achieve all of the user's objectives. Our development approach is customer focused with emphasis on fully understanding the customer needs while striving constantly to limit new development requirements and, consequently, additional costs. This approach involves a process of designing for operations, i.e. low operation and life-cycle costs, while ensuring a reliability level consistent with customer budget constraints, mission objectives and safety consideration. In executing this low cost, customer-focused approach, we strive to maintain minimal overheads, simple interfaces, reduced documentation

  9. NASA's Commercial Crew Program, the Next Step in U.S. Space Transportation

    NASA Astrophysics Data System (ADS)

    Mango, Edward J.; Thomas, Rayelle E.

    2013-09-01

    The Commercial Crew Program (CCP) is leading NASA's efforts to develop the next U.S. capability for crew transportation and rescue services to and from the International Space Station (ISS) by the mid-decade timeframe. The outcome of this capability is expected to stimulate and expand the U.S. space transportation industry. NASA is relying on its decades of human space flight experience to certify U.S. crewed vehicles to the ISS and is doing so in a two phase certification approach. NASA Certification will cover all aspects of a crew transportation system, including development, test, evaluation, and verification; program management and control; flight readiness certification; launch, landing, recovery, and mission operations; sustaining engineering and maintenance/upgrades. To ensure NASA crew safety, NASA Certification will validate technical and performance requirements, verify compliance with NASA requirements, validate the crew transportation system operates in appropriate environments, and quantify residual risks.

  10. NASA's Commercial Crew Program, The Next Step in U.S. Space Transportation

    NASA Technical Reports Server (NTRS)

    Mango, Edward J.; Thomas, Rayelle E.

    2013-01-01

    The Commercial Crew Program (CCP) is leading NASA's efforts to develop the next U.S. capability for crew transportation and rescue services to and from the International Space Station (ISS) by the mid-decade timeframe. The outcome of this capability is expected to stimulate and expand the U.S. space transportation industry. NASA is relying on its decades of human space flight experience to certify U.S. crewed vehicles to the ISS and is doing so in a two phase certification approach. NASA Certification will cover all aspects of a crew transportation system, including development, test, evaluation, and verification; program management and control; flight readiness certification; launch, landing, recovery, and mission operations; sustaining engineering and maintenance/upgrades. To ensure NASA crew safety, NASA Certification will validate technical and performance requirements, verify compliance with NASA requirements, validate the crew transportation system operates in appropriate environments, and quantify residual risks.

  11. National Aeronautics and Space Administration 2003 Strategic Plan

    NASA Technical Reports Server (NTRS)

    2003-01-01

    Imagine knowing that we are not alone, but that life is abundant in our solar system and throughout the universe. Imagine a world where we can safely travel anywhere, anytime, on our home planet, and in space. Imagine a world in which long-term weather forecasts are reliable, and natural disasters are predictable and perhaps even preventable. NASA is changing our understanding of the world, exploring the unknown, and creating new awareness about who we are and what our place is in the cosmos. For the first time in history, we have the tools, the insight and ability to seek answers to some of humanity's most profound questions: 1) How did we get here? 2) Where are we going? 3) Are we alone? In addition to pursuing these compelling questions, NASA helps the Nation to meet its challenges and address its urgent national needs. Among these are the requirements to improve the security and safety of our air transportation system and counter the looming shortage of U.S. scientists and engineers in our next generation of Americans.

  12. Integration of structural health monitoring solutions onto commercial aircraft via the Federal Aviation Administration structural health monitoring research program

    NASA Astrophysics Data System (ADS)

    Swindell, Paul; Doyle, Jon; Roach, Dennis

    2017-02-01

    The Federal Aviation Administration (FAA) started a research program in structural health monitoring (SHM) in 2011. The program's goal was to understand the technical gaps of implementing SHM on commercial aircraft and the potential effects on FAA regulations and guidance. The program evolved into a demonstration program consisting of a team from Sandia National Labs Airworthiness Assurance NDI Center (AANC), the Boeing Corporation, Delta Air Lines, Structural Monitoring Systems (SMS), Anodyne Electronics Manufacturing Corp (AEM) and the FAA. This paper will discuss the program from the selection of the inspection problem, the SHM system (Comparative Vacuum Monitoring-CVM) that was selected as the inspection solution and the testing completed to provide sufficient data to gain the first approved use of an SHM system for routine maintenance on commercial US aircraft.

  13. National Aeronautics and Space Administration Training Grant Supplement

    NASA Technical Reports Server (NTRS)

    DeWitt, Kenneth J.

    2005-01-01

    The following section summarizes the impact of the Ohio Space Grant Consortium (OSGC) in Ohio and to NASA over the last four-year period (February 1, 2001 to April 30, 2005) and highlights the important accomplishments of the consortium. The strength of the OSGC network of universities, community colleges, government agencies, industry, and outreach affiliates is well-established and is growing. The OSGC Consortium Management Structure was designed and remains committed to using the talents and diversity of everyone within this collaborative network, and operational policies and procedures are such that all consortium members are active contributors resulting in quality OSGC programs in research, education and service, while receiving a relatively small amount of NASA funds. The number of quality activities, both on- and off-campus, and collaborations/partnerships that OSGC has established with NASA and government agencies, state and local government, educational institutions, and private industry, has been impressive. Further desired university affiliate expansion requires additional funds. Diversity is shown in the OSGC 12-member Executive Committee by the presence of three campus representatives from Central State University, Wilberforce University, and The Ohio State University (two underrepresented minority, one female). One additional female campus representative (Cleveland State University) is currently on sabbatical leave and a valuable alternate member attends. Other additional female and underrepresented minority members are on the larger OSGC Advisory committee. All committee members participate fully in all consortium management and policy decisions. The OSGC Executive Committee strives to achieve and communicate a culture of trust, respect, teamwork, open communication, creativity, and empowerment. These programs have shown results and impact by their visibility and importance to Ohio and to NASA, resulting in strategic alliances created throughout

  14. The Deployment of a Commercial RGA to the International Space Station

    NASA Technical Reports Server (NTRS)

    Kowitt, Matt; Hawk, Doug; Rossetti, Dino; Woronowicz, Michael

    2015-01-01

    The International Space Station (ISS) uses ammonia as a medium for heat transport in its Active Thermal Control System. Over time, there have been intermittent component failures and leaks in the ammonia cooling loop. One specific challenge in dealing with an ammonia leak on the exterior of the ISS is determining the exact location from which ammonia is escaping before addressing the problem. Together, researchers and engineers from Stanford Research Systems (SRS) and NASA's Johnson Space Center and Goddard Space Flight Center have adapted a commercial off-the-shelf (COTS) residual gas analyzer (RGA) for repackaging and operation outside the ISS as a core component in the ISS Robotic External Leak Locator, a technology demonstration payload currently scheduled for launch during 2015. The packaging and adaptation of the COTS RGA to the Leak Locator will be discussed. The collaborative process of adapting a commercial instrument for spaceflight will also be reviewed, including the build-­-up of the flight units. Measurements from a full-­-scale thermal vacuum test will also be presented demonstrating the absolute and directional sensitivity of the RGA.

  15. Twelve Channel Optical Fiber Connector Assembly: From Commercial Off the Shelf to Space Flight Use

    NASA Technical Reports Server (NTRS)

    Ott, Melaine N.

    1998-01-01

    The commercial off the shelf (COTS) twelve channel optical fiber MTP array connector and ribbon cable assembly is being validated for space flight use and the results of this study to date are presented here. The interconnection system implemented for the Parallel Fiber Optic Data Bus (PFODB) physical layer will include a 100/140 micron diameter optical fiber in the cable configuration among other enhancements. As part of this investigation, the COTS 62.5/125 microns optical fiber cable assembly has been characterized for space environment performance as a baseline for improving the performance of the 100/140 micron diameter ribbon cable for the Parallel FODB application. Presented here are the testing and results of random vibration and thermal environmental characterization of this commercial off the shelf (COTS) MTP twelve channel ribbon cable assembly. This paper is the first in a series of papers which will characterize and document the performance of Parallel FODB's physical layer from COTS to space flight worthy.

  16. NASA's Commercial Crew Program, the Next Step in U.S. Space Transportation

    NASA Technical Reports Server (NTRS)

    Mango, Edward J., Jr.

    2013-01-01

    The Commercial Crew Program (CCP) is leading NASA's efforts to develop the next U.S. capability for crew transportation and rescue services to and from the International Space Station (ISS) by the middecade timeframe. The outcome of this capability is expected to stimulate and expand the U.S. space transportation industry. NASA is relying on its decades of human space flight experience to certify U.S. crewed vehicles to the ISS and is doing so in a two phase certification approach. NASA certification will cover all aspects of a crew transportation system, including: Development, test, evaluation, and verification. Program management and control. Flight readiness certification. Launch, landing, recovery, and mission operations. Sustaining engineering and maintenance/upgrades. To ensure NASA crew safety, NASA certification will validate technical and performance requirements, verify compliance with NASA requirements, validate that the crew transportation system operates in the appropriate environments, and quantify residual risks. The Commercial Crew Program will present progress to date and how it manages safety and reduces risk.

  17. Space Radiation Measurement on the Polar Route onboard the Korean Commercial Flights

    NASA Astrophysics Data System (ADS)

    Hwang, Junga; Lee, Jaejin; Cho, Kyung-Suk; Choi, Ho-Sung

    2010-03-01

    This study was performed by the policy research project of Ministry of Land, Transport and Maritime Affairs, which title is "Developing safety standards and management of space radiation on the polar route". In this research, total six experiments were performed using Korean commercial flights (B747). Three of those are on the polar route and the other three are on the north pacific route. Space radiation exposure measured on the polar route is the average 84.7 uSv. The simulation result using CARI-6M program gives 84.9 uSv, which is very similar to measured value. For the departure flight using the north pacific route, the measured space radiation is the average 74.4 uSv. It seems that is not so different to use the polar route or not for the return flight because the higher latitude effect causing the increase of space radiation is compensated by the shortened flight time effect causing decreasing space radiation exposure.

  18. Safety Evaluation of Two Commercial Lithium-ion Batteries for Space Applications

    NASA Technical Reports Server (NTRS)

    Jeevarajan, Judith A.; Collins, Jacob; Cook, Joseph S.

    2004-01-01

    Lithium-ion batteries have been used for applications on the Shuttle and Station for the past six years. A majority of the li-ion batteries flown are Commercial-off-the-shelf (COTS) varieties. The COTS batteries and cells were tested under nominal and abusive conditions for performance and safety characterization. Within the past six months two batteries have been certified for flight and use on the Space Station. The first one is a Hand Spring PDA battery that had a single prismatic li-ion cell and the second is an Iridium satellite phone that had a two-cell pack with prismatic li-ion cells.

  19. Electron Induced Scintillation Testing of Commercially Available Optical Fibers for Space Flight

    NASA Technical Reports Server (NTRS)

    Ott, Melanie N.

    1999-01-01

    A test to verify the performance of several commercial and military optical fibers available on the market today was conducted, via usage of an electron accelerator, to monitor radiation induced scintillation or luminescence. The test results showed that no significant effects could be detected with the PMT system used, above a noise floor of 50 photons/sec that were due to optical fiber scintillation. Although some data appeared to show events taking place, noise scan results have correlated these events to arcing inside the electron accelerator facility. This test was to simply characterize for space flight, which optical fiber candidates were the largest scintillators among the eighteen optical fiber candidates tested.

  20. Understanding the cost bases of Space Shuttle pricing policies for commercial and foreign customers

    NASA Technical Reports Server (NTRS)

    Stone, Barbara A.

    1984-01-01

    The principles and underlying cost bases of the 1977 and 1982 Space Shuttle Reimbursement Policies are compared and contrasted. Out-of-pocket cost recovery has been chosen as the base of the price for the 1986-1988 time period. With this cost base, it is NASA's intent to recover the total cost of consumables and the launch and flight operations costs added by commercial and foreign customers over the 1986-1988 time period. Beyond 1988, NASA intends to return to its policy of full cost recovery.

  1. Space crew radiation exposure analysis system based on a commercial stand-alone CAD system

    NASA Technical Reports Server (NTRS)

    Appleby, Matthew H.; Golightly, Michael J.; Hardy, Alva C.

    1992-01-01

    Major improvements have recently been completed in the approach to spacecraft shielding analysis. A Computer-Aided Design (CAD)-based system has been developed for determining the shielding provided to any point within or external to the spacecraft. Shielding analysis is performed using a commercially available stand-alone CAD system and a customized ray-tracing subroutine contained within a standard engineering modeling software package. This improved shielding analysis technique has been used in several vehicle design projects such as a Mars transfer habitat, pressurized lunar rover, and the redesigned Space Station. Results of these analyses are provided to demonstrate the applicability and versatility of the system.

  2. Computers for Manned Space Applications Base on Commercial Off-the-Shelf Components

    NASA Astrophysics Data System (ADS)

    Vogel, T.; Gronowski, M.

    2009-05-01

    Similar to the consumer markets there has been an ever increasing demand in processing power, signal processing capabilities and memory space also for computers used for science data processing in space. An important driver of this development have been the payload developers for the International Space Station, requesting high-speed data acquisition and fast control loops in increasingly complex systems. Current experiments now even perform video processing and compression with their payload controllers. Nowadays the requirements for a space qualified computer are often far beyond the capabilities of, for example, the classic SPARC architecture that is found in ERC32 or LEON CPUs. An increase in performance usually demands costly and power consuming application specific solutions. Continuous developments over the last few years have now led to an alternative approach that is based on complete electronics modules manufactured for commercial and industrial customers. Computer modules used in industrial environments with a high demand for reliability under harsh environmental conditions like chemical reactors, electrical power plants or on manufacturing lines are entered into a selection procedure. Promising candidates then undergo a detailed characterisation process developed by Astrium Space Transportation. After thorough analysis and some modifications, these modules can replace fully qualified custom built electronics in specific, although not safety critical applications in manned space. This paper focuses on the benefits of COTS1 based electronics modules and the necessary analyses and modifications for their utilisation in manned space applications on the ISS. Some considerations regarding overall systems architecture will also be included. Furthermore this paper will also pinpoint issues that render such modules unsuitable for specific tasks, and justify the reasons. Finally, the conclusion of this paper will advocate the implementation of COTS based

  3. 14 CFR 1274.508 - Contract administration.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 5 2012-01-01 2012-01-01 false Contract administration. 1274.508 Section 1274.508 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION COOPERATIVE AGREEMENTS WITH COMMERCIAL FIRMS Procurement Standards § 1274.508 Contract administration. A system for...

  4. Space Heaters, Computers, Cell Phone Chargers: How Plugged In AreCommercial Buildings?

    SciTech Connect

    Sanchez, Marla; Webber, Carrie; Brown, Richard; Busch, John; Pinckard, Margaret; Roberson, Judy

    2007-02-28

    Evidenceof electric plug loads in commercial buildings isvisible everyday: space heaters, portable fans, and the IT technician'stwo monitors connected to one PC. The Energy Information Administrationestimates that office and miscellaneous equipment together will consume2.18 quads in 2006, nearly 50 percent of U.S. commercial electricity use.Although the importance of commercial plug loads is documented, its verynature (diverse product types, products not installed when buildinginitially constructed, and products often hidden in closets) makes itdifficult to accurately count and categorize the end use.We auditedsixteen buildings in three cities (San Francisco, Atlanta, Pittsburgh)including office, medical and education building types. We inventoriedthe number and types of office and miscellaneous electric equipment aswell as estimated total energy consumption due to these product types. Intotal, we audited approximately 4,000 units of office equipment and 6,000units of miscellaneous equipment and covered a diverse range of productsranging from electric pencil sharpeners with a unit energy consumption(UEC) of 1 kWh/yr to a kiln with a UEC of 7,000 kWh/yr. Our paperpresents a summary of the density and type of plug load equipment foundas well as the estimated total energy consumption of the equipment.Additionally, we present equipment trends observed and provide insightsto how policy makers can target energy efficiency for this growing enduse.

  5. MOSES: a modular sensor electronics system for space science and commercial applications

    NASA Astrophysics Data System (ADS)

    Michaelis, Harald; Behnke, Thomas; Tschentscher, Matthias; Mottola, Stefano; Neukum, Gerhard

    1999-10-01

    The camera group of the DLR--Institute of Space Sensor Technology and Planetary Exploration is developing imaging instruments for scientific and space applications. One example is the ROLIS imaging system of the ESA scientific space mission `Rosetta', which consists of a descent/downlooking and a close-up imager. Both are parts of the Rosetta-Lander payload and will operate in the extreme environment of a cometary nucleus. The Rosetta Lander Imaging System (ROLIS) will introduce a new concept for the sensor electronics, which is referred to as MOSES (Modula Sensor Electronics System). MOSES is a 3D miniaturized CCD- sensor-electronics which is based on single modules. Each of the modules has some flexibility and enables a simple adaptation to specific application requirements. MOSES is mainly designed for space applications where high performance and high reliability are required. This concept, however, can also be used in other science or commercial applications. This paper describes the concept of MOSES, its characteristics, performance and applications.

  6. Space Station needs, attributes and architectural options. Volume 2, book 1, part 3: Manned Space Station relevance to commercial telecommunications satellites

    NASA Astrophysics Data System (ADS)

    1983-04-01

    A document containing a forecast of satellite traffic and revelant technology trends to the year 2000 was prepared which includes those space station capabilities and characteristics that should be provided to make the station useful to commercial satellite owners. The document was circulated to key representative organizations within the commercial telecommunications satellite and related communities of interest, including spacecraft manufacturers, commercial satellite owners, communications carriers, networks and risk insurers. The prospectus document is presented as well as the transmittal letter and the mailing list of the people and companies that were asked to review it. Key commercial telecommunications comments are summarized the actual response letters from the industry are included.

  7. Space Station needs, attributes and architectural options. Volume 2, book 1, part 3: Manned Space Station relevance to commercial telecommunications satellites

    NASA Technical Reports Server (NTRS)

    1983-01-01

    A document containing a forecast of satellite traffic and revelant technology trends to the year 2000 was prepared which includes those space station capabilities and characteristics that should be provided to make the station useful to commercial satellite owners. The document was circulated to key representative organizations within the commercial telecommunications satellite and related communities of interest, including spacecraft manufacturers, commercial satellite owners, communications carriers, networks and risk insurers. The prospectus document is presented as well as the transmittal letter and the mailing list of the people and companies that were asked to review it. Key commercial telecommunications comments are summarized the actual response letters from the industry are included.

  8. Space technology: A study of the significance of recognition for innovators of spinoff technologies. Commercial Space Expo-USA, 1993

    NASA Technical Reports Server (NTRS)

    1993-01-01

    This is a report on the data collected at the Commercial Space Expo. The Expo was held 13-14 April 1993, in conjunction with the National Space Symposium. There were two modes of data gathering: surveys of expo registrants and exhibit feedback. In addition, exhibitors were interviewed to get their perspectives on the format of the expo and exhibits. Expo registrants were given a paper-pencil survey instrument at the beginning of the day and were asked to turn in the survey when they left for the day. Of the approximately 100 registrants, 22 surveys were returned. In the exhibit hall were five computers set up to collect people's reactions to specific exhibits. It was envisioned that people would react to each (or several) exhibits they visited. In fact, few people did this: almost everyone who visited a computer responded to one exhibit and did not stop by another computer. Therefore, we did not get a large number of responses for any particular exhibit. Nevertheless, there are some interesting data.

  9. NASA Associate Administrator for Space Flight Rothenberg addresses guests at ribbon cutting for the

    NASA Technical Reports Server (NTRS)

    2000-01-01

    NASA Associate Administrator for Space Flight Joseph Rothenberg addresses attendees at a ribbon cutting for the new Checkout and Launch Control System (CLCS) at the Hypergolic Maintenance Facility (HMF). The CLCS was declared operational in a ribbon cutting ceremony earlier. The new control room will be used to process the Orbital Maneuvering System pods and Forward Reaction Control System modules at the HMF. This hardware is removed from Space Shuttle orbiters and routinely taken to the HMF for checkout and servicing.

  10. Space allowance during commercial long distance transport of cattle in North America.

    PubMed

    González, L A; Schwartzkopf-Genswein, K S; Bryan, M; Silasi, R; Brown, F

    2012-10-01

    The objective of the present work was to study space allowance in cattle during commercial long haul transport (≥400 km; n = 6,152 journeys). Surveys, delivered to livestock transport carriers, gathered information on the number, BW, and distribution of cattle by trailer compartment as well as the characteristics of the transport vehicles used. Space allowance (SA; m(2)/animal), allometric coefficient (k = SA / BW(0.6667)), and the percentage of deviation from recommended SA (DRSA; %) in the Canadian Codes of Practice were calculated for each compartment of the trailers. All quad-axle (77%) and tri-axle (23%) cattle trailers were reported with 5 compartments (nose, deck, belly, back, and doghouse). Sixty percent of all animals were carried in the middle compartments (deck and belly), 30% in the rear (back and doghouse), and 10% in the front or nose. Approximately 30% of the journeys required that the cattle be redistributed at the Canada-USA border to comply with different axle weight regulations, and most journeys moved them between the deck and the doghouse. Total loaded weight increased and the number of animals decreased with increasing BW of the animals. space allowance, k-value, and DRSA were least for calves and feeders compared with fat and cull cattle (p < 0.01). Both total loaded weight and number of animals increased with the number of axles in the trailer, being greatest in quad-axle trailers pulled by push tractors, which were most frequently used. Space allowance (k-value) was least in vehicles with greater number of axles and transporting the lightest cattle (i.e., quad-axles trailers transporting calves and feeders). Space allowance, k-value, and variability among journeys were least in the middle compartments (belly and deck), followed by the back, then doghouse and nose compartments of the trailers showing the largest values (p < 0.05). Many factors contributed to the variability in SA such as body size (smaller animals are placed more densely

  11. Space-Derived Imagery and a Commercial Remote Sensing Industry: Impossible Dream or Inevitable Reality?

    NASA Astrophysics Data System (ADS)

    Murray, Felsher

    Landsat-1 was launched in 1972 as a research satellite. Many of us viewed this satellite as a precursor to remote sensing "commercialization." Indeed since that time, the birth, growth and maturation of a remote sensing "industry" has been an ongoing objective for much of the U.S. private sector engaged in space and ground-segment activities related to the acquisition, analysis, and dissemination of imagery. In September 1999 a U.S. commercial entity, Space Imaging, Inc. launched its 1-meter pan/4-meter multispectral IKONOS sensor. DigitalGlobe, Inc. (nee EarthWatch, Inc.) matched this feat in October 2001. Thus, a full 30 years later, we are finally on the brink of building a true remote sensing information industry based on the global availability of competitively-priced space- derived imagery of the Earth. The upcoming availability of similar imagery from non-U.S. sources as ImageSat and U.S. sources as ORBIMAGE will only strengthen that reality. However, a remote sensing industry can only grow by allowing these entities (in times of peace) unencumbered access to a world market. And that market continues to expand -- up 11% in 2001, with gross revenues of U.S. commercial remote sensing firms alone reaching 2.44 billion, according to a joint NASA/ASPRS industry survey. However, the 30-year gap between the research-labeled Landsat-1 and our current commercial successes was not technology-driven. That lacuna was purely political -- driven by valid concerns related to national security. Although the world's governments have cooperated thoroughly and completely in areas related to satellite telecommunications, cooperation in space-derived image information is still today done cautiously and on a case-by-case basis -- and then only for science- based undertakings. It is still a fact that, except for the United States, all other Earth-imaging satellites/sensors flying today are owned, operated, and their products disseminated, by national governments -- and not private

  12. An economic analysis of a commercial approach to the design and fabrication of a space power system

    NASA Technical Reports Server (NTRS)

    Putney, Z.; Been, J. F.

    1979-01-01

    A commercial approach to the design and fabrication of an economical space power system is presented. Cost reductions are projected through the conceptual design of a 2 kW space power system built with the capability for having serviceability. The approach to system costing that is used takes into account both the constraints of operation in space and commercial production engineering approaches. The cost of this power system reflects a variety of cost/benefit tradeoffs that would reduce system cost as a function of system reliability requirements, complexity, and the impact of rigid specifications. A breakdown of the system design, documentation, fabrication, and reliability and quality assurance cost estimates are detailed.

  13. 78 FR 37648 - Space Transportation Infrastructure Matching (STIM) Grants Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-21

    ... Federal Aviation Administration Space Transportation Infrastructure Matching (STIM) Grants Program AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Notice of non-availability of Space Transportation Infrastructure Matching Grants in FY 2013. SUMMARY: The Office of Commercial Space Transportation (AST) will...

  14. 77 FR 14462 - Space Transportation Infrastructure Matching Grants Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-09

    ... Federal Aviation Administration Space Transportation Infrastructure Matching Grants Program AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Notice of request for grant proposals for the Space... proposals to continue the development of a Commercial Space Transportation infrastructure system...

  15. Stennis Visitors Center and Administrative Complex

    NASA Technical Reports Server (NTRS)

    1990-01-01

    This aerial view shows the John C. Stennis Space Center Visitors Center and main Administrative complex. The Stennis Space Center in Hancock County, Mississippi is NASA's lead center for rocket propulsion testing and for commercial remote sensing.

  16. The National Aeronautics and Space Administration interdisciplinary studies in space technology at the University of Kansas

    NASA Technical Reports Server (NTRS)

    Barr, B. G.

    1974-01-01

    A broad range of research projects contained in a cooperative space technology program at the University of Kansas are reported as they relate to the following three areas of interdisciplinary interest: (1) remote sensing of earth resources; (2) stability and control of light and general aviation aircraft; and (3) the vibrational response characteristics of aeronautical and space vehicles. Details of specific research efforts are given under their appropriate departments, among which are aerospace engineering, chemical and petroleum engineering, environmental health, water resources, the remote sensing laboratory, and geoscience applications studies.

  17. 77 FR 20531 - Correction of Authority Citations for Commercial Space Transportation

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-05

    ... CFR Part 413 Confidential business information, Human space flight, Reporting and recordkeeping... Airspace, Human space flight, Space safety, Space transportation and exploration. 14 CFR Part 431 Aviation safety, Environmental protection, Human space flight, Reporting and recordkeeping, Rockets, Space...

  18. 77 FR 63897 - Notice of License Terminations for National Aeronautics and Space Administration; Plum Brook...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-17

    ... COMMISSION Notice of License Terminations for National Aeronautics and Space Administration; Plum Brook Reactor and Plum Brook Mock-Up Reactor The U.S. Nuclear Regulatory Commission (NRC or the Commission) is...-3 and R-93 for the Plum Brook Reactor Facility (PBRF) near Sandusky, Ohio. The NRC has...

  19. Quality improvement prototype: Johnson Space Center, National Aeronautics and Space Administration

    NASA Technical Reports Server (NTRS)

    1990-01-01

    The Johnson Space Flight Center was recognized by the Office of Management and Budget as a model for its high standards of quality. Included are an executive summary of the center's activities, an organizational overview, techniques for improving quality, the status of the quality effort and a listing of key personnel.

  20. The Next Frontier - Commercialization of the Lunar Surface and CisLunar Space in the 21st Century

    NASA Astrophysics Data System (ADS)

    Lin, W.; Dholakia, K.; Elliott, E.

    Over the past three decades, commercial activities in space, such as telecommunications, satellite launch system mapping and remote sensing for natural resources and weather prediction, among others, have become increasingly important aspects of economic activity. While still contributing only a small part to overall economic growth, such activities are likely to gain increasing importance over the next several decades. This paper examines the possibilities and potential problems in bringing to fruition a new era in commercial applications on the Moon and in cislunar (between the Earth and the Moon) space. The authors provide a brief history of space exploration and how this history provides a basis for understanding ongoing developments. This is followed by a discussion of timelines for lunar commercial developments, and potential specific applications of commercial activities on the Lunar surface and in cislunar space. Various hurdles to success, including technical issues, incentives, and property rights concerns are noted. While the authors recognize that most potential commercial prospects are decades away, there are some commercial activities that are worthy of early attention.

  1. Identifying Federal Contracting Policy Changes to Improve Government Acquisition of Commercial Space-Launch Capacity

    DTIC Science & Technology

    1991-09-01

    68 iv Page Investigative Question3 .. . . . . . . . . . . . 71 Analysis of Commercial-Like Contracting Benefits . 78 Analysis of Open-ended...Barriers .. ...... 132 Appendix 1: Respondent Comments on Commercial-Like Contracting Benefits ... .. .. .......... 140 Bibliography...69 27. Benefits of Commercial-like Contracting . . . . . 71 28. Well-being Promoted by Commercial-Like Contracting

  2. Race, space, place: notes on the racialisation and spatialisation of commercial sex work in Dubai, UAE.

    PubMed

    Mahdavi, Pardis

    2010-11-01

    This paper focuses on the perceived racialisation and resultant spatialisation of commercial sex in Dubai. In recent years, the sex industry in Dubai has grown to include women from the Middle East, Eastern Europe, East Asia and Africa. With the increase in sex workers of different nationalities has come a form of localised racism that is embedded in structures and desires seen within specific locations. The physical spatialisation of sex work hinges on perceived race and produces distinct income generating potential for women engaged in the sex industry in Dubai. The social and physical topography of Dubai is important in marginalising or privileging these various groups of sex workers, which correlates race, space and place with rights and assistance. I begin with a description of the multidirectional flows of causality between race, space, place and demand. I then discuss how these various groups are inversely spatialised within the discourse on assistance, protection and rights. The findings presented here are based on ethnographic research conducted with transnational migrants in the UAE in 2004, 2008 and 2009.

  3. Space Research Data Management in the National Aeronautics and Space Administration

    NASA Technical Reports Server (NTRS)

    Ludwig, G. H.

    1986-01-01

    Space related scientific research has passed through a natural evolutionary process. The task of extracting the meaningful information from the raw data is highly involved and will require data processing capabilities that do not exist today. The results are presented of a three year examination of this subject, using an earlier report as a starting point. The general conclusion is that there are areas in which NASA's data management practices can be improved and recommends specific actions. These actions will enhance NASA's ability to extract more of the potential data and to capitalize on future opportunities.

  4. Project Mercury: Man-In-Space Program of the National Aeronautics and Space Administration. [Report of the Committee on Aeronautical and Space Sciences United States Senate

    NASA Technical Reports Server (NTRS)

    1959-01-01

    The purpose of this staff study, made at the request of the chairman, is to serve members of the Committee on Aeronautical and Space Sciences as a source of basic information on Project Mercury, the man-in-space program of the National Aeronautics and Space Administration. The study is largely derived from unclassified information released by the National Aeronautics and Space Administration and testimony concerning Project Mercury given during hearings before this committee. The program descriptions are based upon current program planning. Since this is a highly advanced research and development program, the project is obviously subject to changes that may result from future developments and accomplishments characteristic of such research activities. Certain information with respect to revised schedules, obtained on a classified basis by the committee during inspection trips, is necessarily omitted. The appendixes to the study include information that may prove helpful on various aspects of space flight and exploration. Included are unofficial comments and observations relating to Russia's manned space flight activities and also a complete chronology of all satellites, lunar probes, and space probes up to the present.

  5. The 2006 Kennedy Space Center Range Reference Atmosphere Model Validation Study and Sensitivity Analysis to the Performance of the National Aeronautics and Space Administration's Space Shuttle Vehicle

    NASA Technical Reports Server (NTRS)

    Burns, Lee; Decker, Ryan; Harrington, Brian; Merry, Carl

    2008-01-01

    The Kennedy Space Center (KSC) Range Reference Atmosphere (RRA) is a statistical model that summarizes wind and thermodynamic atmospheric variability from surface to 70 km. The National Aeronautics and Space Administration's (NASA) Space Shuttle program, which launches from KSC, utilizes the KSC RRA data to evaluate environmental constraints on various aspects of the vehicle during ascent. An update to the KSC RRA was recently completed. As part of the update, the Natural Environments Branch at NASA's Marshall Space Flight Center (MSFC) conducted a validation study and a comparison analysis to the existing KSC RRA database version 1983. Assessments to the Space Shuttle vehicle ascent profile characteristics were performed by JSC/Ascent Flight Design Division to determine impacts of the updated model to the vehicle performance. Details on the model updates and the vehicle sensitivity analyses with the update model are presented.

  6. A Tribute to National Aeronautics and Space Administration Minority Astronauts: Past and Present

    NASA Technical Reports Server (NTRS)

    1999-01-01

    The National Aeronautics and Space Administration (NASA) has been selecting astronauts since 1959. The first group was called the "Mercury Seven." These seven men were chosen because of their performance as military officers and test pilots, their character, their intelligence, and their guts. Six of these seven flew in the Mercury capsule. Several additional groups were chosen between 1959 and 1978. It was an exciting period in the American space program. Many of these astronauts participated in the Gemini and Apollo programs, traveled and walked on the Moon, docked with the Russians during the Apollo-Soyuz Test Project, and occupied America's first space station, the Skylab. With the onset of the Space Shuttle, a new era began. The astronauts selected in 19 78 broke the traditional mold. For the first time, minorities and women became part of America's astronaut corps. Since then, eight additional groups have been selected, with an increasing mix of African American, Hispanic, Latino, Asian/Pacific Islander, and Native American men and women. These astronauts will continue the American space program into the new millennium by continuing flights on the Space Shuttle and participating in the construction and occupancy of the International Space Station. These astronauts, and those who will be chosen in the future, will lead America and its partners to future voyages beyond the influence of Earth's gravity.

  7. Profile of software engineering within the National Aeronautics and Space Administration (NASA)

    NASA Technical Reports Server (NTRS)

    Sinclair, Craig C.; Jeletic, Kellyann F.

    1994-01-01

    This paper presents findings of baselining activities being performed to characterize software practices within the National Aeronautics and Space Administration. It describes how such baseline findings might be used to focus software process improvement activities. Finally, based on the findings to date, it presents specific recommendations in focusing future NASA software process improvement efforts. The findings presented in this paper are based on data gathered and analyzed to date. As such, the quantitative data presented in this paper are preliminary in nature.

  8. The New Anechoic Shielded Chambers Designed for Space and Commercial Applications at LIT

    NASA Technical Reports Server (NTRS)

    da Silva, Benjamim; Galvao, M. C.; Pereira, Clovis Solano

    2008-01-01

    The main objective of this paper is to present the capabilities of the new anechoic shielded rooms designed for space and commercial applications as part of the Integration and Testing Laboratory (LIT, Laboratorio de Integracao e Testes) in Brazil. A new anechoic shielded room named CBA2 has been in full operation since March 2007 and a remodeled chamber CBA1 is planned to be ready by the end of 2008, replacing an old facility which was in operation for the last 18 years. The Brazilian Space Program started with very small and simple satellites and the old CBA1 chamber was conceived in 1987 to accomplish the EMI/EMC tests not requiring significant volumes. Since the very beginning this facility was also used by the private sector for other applications mainly due to the absorption of digital electronics in all kind of products. The intense use of this facility during the last years, operating three shifts a day, caused a normal degradation and imposed several limitations. Therefore, a new totally remodeled chamber was designed considering the state of the art in terms of absorbers and associated instrumentation. On the other hand the facility CBA2 was conceived, designed and implemented to test large satellites taking into account the advance of the technology in terms of RF frequencies, power level, testing methodologies and several other factors. A very interesting and unique aspect of this project was the partnership between the private sector and governmental institution. As a result, the total investment was shared between several companies and consequently a time-sharing use of the facility as well.

  9. The effects of simulated space environmental parameters on six commercially available composite materials

    NASA Technical Reports Server (NTRS)

    Funk, Joan G.; Sykes, George F., Jr.

    1989-01-01

    The effects of simulated space environmental parameters on microdamage induced by the environment in a series of commercially available graphite-fiber-reinforced composite materials were determined. Composites with both thermoset and thermoplastic resin systems were studied. Low-Earth-Orbit (LEO) exposures were simulated by thermal cycling; geosynchronous-orbit (GEO) exposures were simulated by electron irradiation plus thermal cycling. The thermal cycling temperature range was -250 F to either 200 F or 150 F. The upper limits of the thermal cycles were different to ensure that an individual composite material was not cycled above its glass transition temperature. Material response was characterized through assessment of the induced microcracking and its influence on mechanical property changes at both room temperature and -250 F. Microdamage was induced in both thermoset and thermoplastic advanced composite materials exposed to the simulated LEO environment. However, a 350 F cure single-phase toughened epoxy composite was not damaged during exposure to the LEO environment. The simuated GEO environment produced microdamage in all materials tested.

  10. Commercial off the Shelf Ground Control Supports Calibration and Conflation from Ground to Space Based Sensors

    NASA Astrophysics Data System (ADS)

    Danielová, M.; Hummel, P.

    2016-06-01

    The need for rapid deployment of aerial and satellite imagery in support of GIS and engineering integration projects require new sources of geodetic control to ensure the accuracy for geospatial projects. In the past, teams of surveyors would need to deploy to project areas to provide targeted or photo identifiable points that are used to provide data for orthorecificaion, QA/QC and calibration for multi-platform sensors. The challenge of integrating street view, UAS, airborne and Space based sensors to produce the common operational picture requires control to tie multiple sources together. Today commercial off the shelf delivery of existing photo identifiable control is increasing the speed of deployment of this data without having to revisit sites over and over again. The presentation will discuss the processes developed by CompassData to build a global library of 40,000 control points available today. International Organization for Standardization (ISO) based processes and initiatives ensure consistent quality of survey data, photo identifiable features selected and meta data to support photogrammetrist, engineers and GIS professionals to quickly deliver projects with better accuracy.

  11. A Study on the Commercialization of Space-Based Remote Sensing in the Twenty-First Century and Its Implications to United States National Security

    DTIC Science & Technology

    2011-06-01

    Remote sensing from space provides critical data for many commercial space applications. Due to global market demand, it has undergone tremendous...commercial space imaging capability in the future, remote sensing policy makers, systems engineers, and industry analysts must be aware of the implications to United States National Security....available dissemination and accessibility. The analysis results, together with the findings from a review of commercial programs, initiatives, and remote

  12. Fuels and Space Propellants for Reusable Launch Vehicles: A Small Business Innovation Research Topic and Its Commercial Vision

    NASA Technical Reports Server (NTRS)

    Palaszewski, Bryan A.

    1997-01-01

    Under its Small Business Innovation Research (SBIR) program (and with NASA Headquarters support), the NASA Lewis Research Center has initiated a topic entitled "Fuels and Space Propellants for Reusable Launch Vehicles." The aim of this project would be to assist in demonstrating and then commercializing new rocket propellants that are safer and more environmentally sound and that make space operations easier. Soon it will be possible to commercialize many new propellants and their related component technologies because of the large investments being made throughout the Government in rocket propellants and the technologies for using them. This article discusses the commercial vision for these fuels and propellants, the potential for these propellants to reduce space access costs, the options for commercial development, and the benefits to nonaerospace industries. This SBIR topic is designed to foster the development of propellants that provide improved safety, less environmental impact, higher density, higher I(sub sp), and simpler vehicle operations. In the development of aeronautics and space technology, there have been limits to vehicle performance imposed by traditionally used propellants and fuels. Increases in performance are possible with either increased propellant specific impulse, increased density, or both. Flight system safety will also be increased by the use of denser, more viscous propellants and fuels.

  13. New Strategy for Exploration Technology Development: The Human Exploration and Development of Space (HEDS) Exploration/Commercialization Technology Initiative

    NASA Technical Reports Server (NTRS)

    Mankins, John C.

    2000-01-01

    In FY 2001, NASA will undertake a new research and technology program supporting the goals of human exploration: the Human Exploration and Development of Space (HEDS) Exploration/Commercialization Technology Initiative (HTCI). The HTCI represents a new strategic approach to exploration technology, in which an emphasis will be placed on identifying and developing technologies for systems and infrastructures that may be common among exploration and commercial development of space objectives. A family of preliminary strategic research and technology (R&T) road maps have been formulated that address "technology for human exploration and development of space (THREADS). These road maps frame and bound the likely content of the HTCL Notional technology themes for the initiative include: (1) space resources development, (2) space utilities and power, (3) habitation and bioastronautics, (4) space assembly, inspection and maintenance, (5) exploration and expeditions, and (6) space transportation. This paper will summarize the results of the THREADS road mapping process and describe the current status and content of the HTCI within that framework. The paper will highlight the space resources development theme within the Initiative and will summarize plans for the coming year.

  14. The impact of WARC '79 on space applications and research. [World Administrative Radio Conference

    NASA Technical Reports Server (NTRS)

    Kiebler, J. W.

    1980-01-01

    Prior to the 1979 World Administrative Radio Conference (WARC), no frequency bands were allocated for remote sensing measurements. Actions taken by the WARC insure that frequencies will be available for such use, and that operations can be conducted without harmful interference on a worldwide basis for the benefit of all nations. New global allocations for Space Research will permit worldwide acquisition of research data via relay satellites. Wideband allocations for deep-space research will allow more accurate position determination of deep-space probes and transmission of higher resolution data. The WARC had an impact on a number of other applications and research areas such as: meteorological satellites, land-mobile satellites, search and rescue systems, solar power satellites, standard-frequency satellites, radio astronomy and the search for extraterrestrial intelligence. The actions taken at the WARC affecting these services and applications will be described in the paper.

  15. The National Aeronautics and Space Administration Nondestructive Evaluation Program for Safe and Reliable Operations

    NASA Technical Reports Server (NTRS)

    Generazio, Ed

    2005-01-01

    The National Aeronautics and Space Administration (NASA) Nondestructive Evaluation (NDE) Program is presented. As a result of the loss of seven astronauts and the Space Shuttle Columbia on February 1, 2003, NASA has undergone many changes in its organization. NDE is one of the key areas that are recognized by the Columbia Accident Investigation Board (CAIB) that needed to be strengthened by warranting NDE as a discipline with Independent Technical Authority (iTA). The current NASA NDE system and activities are presented including the latest developments in inspection technologies being applied to the Space Transportation System (STS). The unfolding trends and directions in NDE for the future are discussed as they apply to assuring safe and reliable operations.

  16. First intramuscular administration in the U.S. space program. [of motion sickness drugs

    NASA Technical Reports Server (NTRS)

    Bagian, James P.

    1991-01-01

    In the past, the only kind of medicines used for symptomatic treatment of space motion sickness (SMS) in space had been oral, transdermal, or suppositories. This paper describes the effect of the first intramuscular (IM) administration of Phenergan (50-mg in single dose) on SMS in one subject who exhibited grade-3 symptoms and signs which persisted unabated throughout the first and the second flight days aboard the Space Shuttle. Thirty minutes after the injection, the subject had completely recovered. His symptoms were gone, his appetite was back, and he had no recurrences for the remainder of the flight. Since that experiment, intramuscular injections have been given nine more times on subsequent flights, with similar results.

  17. Guidelines for Selection, Screening and Qualification of Low-Voltage Commercial Multilayer Ceramic Capacitors for Space Programs

    NASA Technical Reports Server (NTRS)

    Teverovsky, Alexander A.

    2012-01-01

    This document has been developed in the course of NASA Electronic Parts and Packaging (NEPP) program and is not an official endorsement of the insertion of commercial capacitors in space programs or an established set of requirements for their testing. The purpose of this document is to suggest possible ways for selection, screening, and qualification of commercial capacitors for NASA projects and open discussions in the parts engineering community related to the use of COTS ceramic capacitors. This guideline is applicable to commercial surface mount chip, simple parallel plate design, multi-layer ceramic capacitors (MLCCs) rated to voltages of 100V and less. Parts with different design, e.g. low inductance ceramic capacitors (LICA), land grid array (LGA) etc., might need additional testing and tailoring of the requirements described in this document. Although the focus of this document is on commercial MLCCs, many procedures discussed below would be beneficial for military-grade capacitors

  18. Private Astronaut Training Prepares Commercial Crews of Tomorrow

    NASA Technical Reports Server (NTRS)

    2015-01-01

    A new company that includes a handful of former NASA personnel is already taking applications for the first comprehensive commercial astronaut training approved by the Federal Aviation Administration. Waypoint 2 Space, located at Johnson Space Center, hopes to draw space tourists and enthusiasts and future commercial crewmembers with first-hand NASA know-how, as well as agency training technology.

  19. National Aeronautics and Space Administration Twenty-Fifth Anniversary, 1958-1983

    NASA Technical Reports Server (NTRS)

    1983-01-01

    This year marks a major milestone for the National Aeronautics and Space Administration: its silver anniversary. It seems appropriate, on this occasion, to sum up how NASA has responded to the legislative charter that established the agency. Among the responsibilities the Congress assigned NASA in the National Aeronautics and Space Act of 1958 were these: preservation of U.S. leadership in aerospace science and technology; cooperation with other nations in the peaceful application of technology; expansion of human knowledge of phenomena in the atmosphere and in space; pursuit of the practical benefits to be gained from aeronautical and space activities. There can be no doubt that NASA's quarter century of effort has preserved the nation's leadership role and strengthened its posture in aerospace science and technology. As for international cooperation. NASA has - since its inception - fostered the concept that the fruits of civil space research are to be shared with all mankind. The agency has provided technical assistance to scores of nations and has actively promoted cooperative ventures; indeed, virtually every major NASA space project today boasts some degree of foreign participation. In the last 25 years, man has teamed more about his planet, the near-Earth environment, and the universe than in all the prior years of history. NASA's space science program has spearheaded this great expansion of human knowledge. And, from the beginning, NASA has vigorously pursued the practical benefits that aerospace research offers. The agency pioneered in weather, communications and Earth resources survey satellites, the prime examples of space technology applied for Earth benefit, and it has built a broad base for expanding into new applications, some of which promise direct benefits of exceptional order. In aeronautical research, NASA has contributed in substantial degree to safer, better performing, more efficient, more environmentally acceptable aircraft.

  20. Advanced space design program to the Universities Space Research Association and the National Aeronautics and Space Administration

    NASA Technical Reports Server (NTRS)

    Nevill, Gale E., Jr.

    1988-01-01

    The goal of the Fall 1987 class of EGM 4000 was the investigation of engineering aspects contributing to the development of NASA's Controlled Ecological Life Support System (CELSS). The areas investigated were the geometry of plant growth chambers, automated seeding of plants, remote sensing of plant health, and processing of grain into edible forms. The group investigating variable spacing of individual soybean plants designed growth trays consisting of three dimensional trapezoids arranged in a compact circular configuration. The automated seed manipulation and planting group investigated the electrical and mechanical properties of wheat seeds and developed three seeding concepts based upon these properties. The plant health and disease sensing group developed a list of reliable plant health indicators and investigated potential detection technologies.

  1. Testing of Commercial Hollow Fiber Membranes for Space Suit Water Membrane Evaporator

    NASA Technical Reports Server (NTRS)

    Bue, Grant C.; Trevino, Luis; Tsioulos, Gus; Hanford, Anthony

    2009-01-01

    Three commercial-off-the-shelf (COTS) hollow fiber (HoFi) membrane evaporators, modified for low pressure, were tested in a vacuum chamber at pressures below 33 pascals as potential space suit water membrane evaporator (SWME) heat rejection technologies. Water quality was controlled in a series of 25 tests, first simulating potable water reclaimed from waste water and then changing periodically to simulate the ever concentrating make-up of the circulating coolant over that is predicted over the course of 100 EVAs. Two of the systems, comprised of non-porous tubes with hydrophilic molecular channels as the water vapor transport mechanism, were severely impacted by the increasing concentrations of cations in the water. One of the systems, based on hydrophobic porous polypropylene tubes was not affected by the degrading water quality, or the presence of microbes. The polypropylene system, called SWME 1, was selected for further testing. An inverse flow configuration was also tested with SWME 1, with vacuum exposure on the inside of the tubes, provided only 20% of the performance of the standard configuration. SWME 1 was also modified to block 50% and 90% of the central tube layers, and tested to investigate performance efficiency. Performance curves were also developed in back-pressure regulation tests, and revealed important design considerations arising from the fully closed valve. SWME 1 was shown to be insensitive to air bubbles injected into the coolant loop. Development and testing of a full-scale prototype based on this technology and these test results is in progress.

  2. Technology data characterizing space conditioning in commercial buildings: Application to end-use forecasting with COMMEND 4.0

    SciTech Connect

    Sezgen, O.; Franconi, E.M.; Koomey, J.G.; Greenberg, S.E.; Afzal, A.; Shown, L.

    1995-12-01

    In the US, energy consumption is increasing most rapidly in the commercial sector. Consequently, the commercial sector is becoming an increasingly important target for state and federal energy policies and also for utility-sponsored demand side management (DSM) programs. The rapid growth in commercial-sector energy consumption also makes it important for analysts working on energy policy and DSM issues to have access to energy end-use forecasting models that include more detailed representations of energy-using technologies in the commercial sector. These new forecasting models disaggregate energy consumption not only by fuel type, end use, and building type, but also by specific technology. The disaggregation of space conditioning end uses in terms of specific technologies is complicated by several factors. First, the number of configurations of heating, ventilating, and air conditioning (HVAC) systems and heating and cooling plants is very large. Second, the properties of the building envelope are an integral part of a building`s HVAC energy consumption characteristics. Third, the characteristics of commercial buildings vary greatly by building type. The Electric Power Research Institute`s (EPRI`s) Commercial End-Use Planning System (COMMEND 4.0) and the associated data development presented in this report attempt to address the above complications and create a consistent forecasting framework. This report describes the process by which the authors collected space-conditioning technology data and then mapped it into the COMMEND 4.0 input format. The data are also generally applicable to other end-use forecasting frameworks for the commercial sector.

  3. Impact of the 1985 Space World Administrative Radio Conference on frequency/orbit planning and use

    NASA Technical Reports Server (NTRS)

    Miller, E. F.

    1986-01-01

    The 1985 World Administrative Radio Conference (WARC-ORB-85) was held to determine which space radio services should be planned and which planning methods should be used. The second session of this Conference (WARC-ORB-88) will meet to develop the required plans. This paper presents the results of WARC-ORB-85, assesses the impact of those decisions, and identifies the intersessional work to be conducted by administrations and the CCIR (Consultative Committee on International Radio). The major decisions of WARC-ORB-85 were: (1) the restriction of additional planning to the fixed satellite service at identified frequencies; and (2) the selection of a planning method consisting of two parts (a) an allotment plan, and (b) improved procedures. The paper also discusses WARC-ORB-85 decisions relative to the Region 2 broadcast satellite service plans at 12 GHz, feederlink planning for Regions 1 and 3 broadcast satellites at 12 GHz, and sound broadcast satellite service.

  4. 77 FR 27111 - Office of Commercial Space Transportation (AST); Notice of Availability of the Final...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-08

    ... and Reentry of SpaceShipTwo Reusable Suborbital Rockets at the Mojave Air and Space Port AGENCY... at the Mojave Air and Space Port. The Final EA was prepared to analyze the potential environmental... rockets and WhiteKnightTwo carrier aircraft at the Mojave Air and Space Port in Mojave, California....

  5. Intellectual Property Rights at the National Aeronautics and Space Administration, Lewis Research Center

    NASA Technical Reports Server (NTRS)

    Williams, Vernon E.

    1994-01-01

    At a fundamental level, intellectual property is the core work product of a technical organization. The National Aeronautics and Space Administration (NASA), produces a variety of intellectual property including: patents, trademarks, data rights, copyright and rights associated with National Security. For a scientific organization to properly manage its work product it has to manage its intellectual property. This paper endeavors to describe how the intellectual property rights are generated and allocated at NASA. The author then goes on to discuss how the intellectual property might be managed to meet the objectives of program implementation, technology transfer and security.

  6. Summary Report of the NASA Management Study Group: Recommendations to the Administrator, National Aeronautics and Space Administration

    NASA Technical Reports Server (NTRS)

    Phillips, Samuel C.

    1986-01-01

    The NASA Management Study Group (NMSG) was established under the auspices of the National Acedamy of Public Administration at the request of the Administrator of NASA to assess NASA's management practices and to evaluate the effectiveness of the NASA organization. This report summarizes the conclusions and recommendations of the NMSG on the overall management and organization of NASA.

  7. Measures for minimizing radiation hazardous to the environment in the advent of large-scale space commercialization

    NASA Astrophysics Data System (ADS)

    Murthy, S. Nataraja

    The nature of hazardous effects from radio-frequency (RF), light, infrared, and nuclear radiation on human and other biological species in the advent of large-scale space commercialization is considered. Attention is focused on RF/microwave radiation from earth antennas and domestic picture phone communication links, exposure to microwave radiation from space solar-power satellites, and the continuous transmission of information from spacecraft as well as laser radiation from space. Measures for preventing and/or reducing these effects are suggested, including the use of interlocks for cutting off radiation toward ground, off-pointing microwave energy beams in cases of altitude failure, limiting the satellite off-axis gain data-rate product, the use of reflective materials on buildings and in personnel clothing to protect from space-borne lasers, and underwater colonies in cases of high-power lasers. For nuclear-power satellites, deposition in stable points in the solar system is proposed.

  8. The Attached Payload Facility Program: A Family of In-Space Commercial Facilities for Technology, Science and Industry

    NASA Technical Reports Server (NTRS)

    Avery, Don E.; Kaszubowski, Martin J.; Kearney, Michael E.; Howard, Trevor P.

    1996-01-01

    It is anticipated that as the utilization of space increases in both the government and commercial sec tors the re will be a high degree of interest in materials and coatings research as well as research in space environment definition, deployable structures, multi-functional structures and electronics. The International Space Station (ISS) is an excellent platform for long-term technology development because it provides large areas for external attached payloads, power and data capability, and ready access for experiment exchange and return. An alliance of SPACEHAB, MicroCraft, Inc. and SpaceTec, Inc. has been formed to satisfy this research need through commercial utilization of the capabilities of ISS. The alliance will provide a family of facilities designed to provide low-cost, reliable access to space for experimenters. This service would start as early as 1997 and mature to a fully functional attached facility on ISS by 2001. The alliances facilities are based on early activities by NASA, Langley Research Center (LaRC) to determine the feasibility of a Material Exposure Facility (MEF).

  9. Outside Of Normal Operating Conditions: Using Commercial Hardware In Space Computing Platforms For Ubiquitous Sensing

    SciTech Connect

    Quinn, Heather M

    2008-01-01

    Over the past decade field-programmable gate arrays (FPGAs) have been useful in speeding up digital signal processing (DSP) algorithms, and FPGA implementations can be orders of magnitude faster than microprocessor implementations. As many national security satellites are DSP-oriented, many organizations have started using commercial FPGAs to process data closer to the sensor. Using commercial technology successfully in this environment has lead to new research into fault tolerance and resilience.

  10. Space station needs, attributes and architectural options study. Volume 7-2: Data book. Commercial missions

    NASA Technical Reports Server (NTRS)

    1983-01-01

    The history of NASA's materials processing in space activities is reviewed. Market projections, support requirements, orbital operations issues, cost estimates and candidate systems (orbiter sortie flight, orbiter serviced free flyer, space station, space station serviced free flyer) for the space production of semiconductor crystals are examined. Mission requirements are identified for materials processing, communications missions, bioprocessing, and for transferring aviation maintenance training technology to spacecraft.

  11. An Architecture to Promote the Commercialization of Space Mission Command and Control

    NASA Technical Reports Server (NTRS)

    Jones, Michael K.

    1996-01-01

    This paper describes a command and control architecture that encompasses space mission operations centers, ground terminals, and spacecraft. This architecture is intended to promote the growth of a lucrative space mission operations command and control market through a set of open standards used by both gevernment and profit-making space mission operators.

  12. Remarks of Ruth Bates Harris, Deputy Assistant Administrator, National Aeronautics and Space Administration at summer institute closing activity

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Applications of experience and knowledge gained from aeronautical and space research and exploration are discussed briefly. Spinoffs are presented which improve the quality of life by contributing to advances in health, transportation, foods, communications, energy, safety, and manufacturing.

  13. 76 FR 4988 - Commercial Space Transportation Advisory Committee-Public Teleconference

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-27

    ... Space Transportation Advisory Committee (COMSTAC). The teleconference will take place on Tuesday... working groups and the organization of the COMSTAC meetings themselves. Interested members of the...

  14. 76 FR 621 - Commercial Space Transportation Advisory Committee-Public Teleconference

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-05

    ... Space Transportation Advisory Committee (COMSTAC). The teleconference will take place on Thursday... Working Groups. The Committee will examine the current Working Groups and discuss whether it should...

  15. 76 FR 24836 - Regulatory Approach for Commercial Orbital Human Spaceflight

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-03

    ... Federal Aviation Administration 14 CFR Part 460 Regulatory Approach for Commercial Orbital Human... regulatory approach to commercial orbital human spaceflight by the FAA. This public meeting is intended to... Amendments Act of 2004 (CSLAA) assigned the FAA responsibility for regulating commercial human space...

  16. NASA Historical Data Book. Volume 6; NASA Space Applications, Aeronautics and Space Research and Technology, Tracking and Data Acquisition/Support Operations, Commercial Programs and

    NASA Technical Reports Server (NTRS)

    Rumerman, Judy A.

    2000-01-01

    This sixth volume of the NASA Historical Data Book is a continuation of those earlier efforts. This fundamental reference tool presents information, much of it statistical, documenting the development of several critical areas of NASA responsibility for the period between 1979 and 1988. This volume includes detailed information on the space applications effort, the development and operation of aeronautics and space research and technology programs, tracking and data acquisition/space operations, commercial programs, facilities and installations, personnel, and finances and procurement during this era. Special thanks are owed to the student research assistants who gathered and input much of the tabular material-a particularly tedious undertaking. There are numerous people at NASA associated with historical study, technical information, and the mechanics of publishing who helped in myriad ways in the preparation of this historical data book.

  17. Dynamic Space for Rent: Using Commercial Web Hosting to Develop a Web 2.0 Intranet

    ERIC Educational Resources Information Center

    Hodgins, Dave

    2010-01-01

    The explosion of Web 2.0 into libraries has left many smaller academic libraries (and other libraries with limited computing resources or support) to work in the cloud using free Web applications. The use of commercial Web hosting is an innovative approach to the problem of inadequate local resources. While the idea of insourcing IT will seem…

  18. Bioculture System Expanding ISS Capabilities for Space Biosciences Research and Commercial Applications

    NASA Technical Reports Server (NTRS)

    Sato, Kevin Y.

    2013-01-01

    Oral presentation at the ASGSR 2013 Annual Meeting. The presentation describes the NASA Bioculture System hardware design, capabilities, enabling science research capabilities, and flight concept of operations. The presentation is part of the Enabling Technologies special session and will be presented to perspective users in both academics and commercial communities.

  19. Practicality of Evaluating Soft Errors in Commercial sub-90 nm CMOS for Space Applications

    NASA Technical Reports Server (NTRS)

    Pellish, Jonathan A.; LaBel, Kenneth A.

    2010-01-01

    The purpose of this presentation is to: Highlight space memory evaluation evolution, Review recent developments regarding low-energy proton direct ionization soft errors, Assess current space memory evaluation challenges, including increase of non-volatile technology choices, and Discuss related testing and evaluation complexities.

  20. Rapid transport within cerebral perivascular spaces underlies widespread tracer distribution in the brain after intranasal administration.

    PubMed

    Lochhead, Jeffrey J; Wolak, Daniel J; Pizzo, Michelle E; Thorne, Robert G

    2015-03-01

    The intranasal administration route is increasingly being used as a noninvasive method to bypass the blood-brain barrier because evidence suggests small fractions of nasally applied macromolecules may reach the brain directly via olfactory and trigeminal nerve components present in the nasal mucosa. Upon reaching the olfactory bulb (olfactory pathway) or brainstem (trigeminal pathway), intranasally delivered macromolecules appear to rapidly distribute within the brains of rodents and primates. The mechanisms responsible for this distribution have yet to be fully characterized. Here, we have used ex vivo fluorescence imaging to show that bulk flow within the perivascular space (PVS) of cerebral blood vessels contributes to the rapid central distribution of fluorescently labeled 3 and 10 kDa dextran tracers after intranasal administration in anesthetized adult rats. Comparison of tracer plasma levels and fluorescent signal distribution associated with the PVS of surface arteries and internal cerebral vessels showed that the intranasal route results in unique central access to the PVS not observed after matched intravascular dosing in separate animals. Intranasal targeting to the PVS was tracer size dependent and could be regulated by modifying nasal epithelial permeability. These results suggest cerebral perivascular convection likely has a key role in intranasal drug delivery to the brain.

  1. 76 FR 41307 - NASA Advisory Council; Space Operations Committee and Exploration Committee; Joint Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-13

    ... SPACE ADMINISTRATION NASA Advisory Council; Space Operations Committee and Exploration Committee; Joint.... ] International Space Station Mars Analog Status Update. Commercial Orbital Transportation Services/Cargo Resupply... they are attending the NASA Advisory Council Space Operations Committee and Exploration Committee...

  2. Residential and commercial space heating and cooling with possible greenhouse operation: Baca Grande development, San Luis Valley, Colorado

    NASA Astrophysics Data System (ADS)

    Goering, S. W.; Garing, K. L.; Coury, G. E.; Fritzler, E. A.

    1980-05-01

    A feasibility study was performed to evaluate the potential of multipurpose applications of moderate temperature geothermal waters in the vicinity of the Baca Grande community development in the San Luis Valley, Colorado. Engineering designs were developed for geothermal district heating systems for space heating and domestic hot water heating for residences, including a mobile home park, an existing motel, a greenhouse complex, and other small commercial uses such as aquaculture. In addition, a thorough institutional analysis of the study area was performed to highlight factors which might pose barriers to the ultimate commercial development of the resource. Finally, an environmental evaluation of the possible impacts of the proposed action was also performed. The institutional and environmental analyses indicate that no significant barriers to development are apparent.

  3. Concepts, strategies and potentials using hypo-g and other features of the space environment for commercialization using higher plants

    NASA Technical Reports Server (NTRS)

    Krikorian, A. D.

    1985-01-01

    Opportunities for releasing, capturing, constructing and/or fixing the differential expressions or response potentials of the higher plant genome in the hypo-g environment for commercialization are explored. General strategies include improved plant-growing, crop and forestry production systems which conserve soil, water, labor and energy resources, and nutritional partitioning and mobilization of nutrients and synthates. Tissue and cell culture techniques of commercial potential include the growing and manipulation of cultured plant cells in vitro in a bioreactor to produce biologicals and secondary plants of economic value. The facilitation of plant breeding, the cloning of specific pathogen-free materials, the elimination of growing point or apex viruses, and the increase of plant yield are other O-g applications. The space environment may be advantageous in somatic embryogenesis, the culture of alkaloids, and the development of completely new crop plant germ plasm.

  4. Commercial biotechnology processing thermal control for transfer payloads to/from the International Space Station

    NASA Astrophysics Data System (ADS)

    Jennings, William M.; Vellinger, John C.; Deuser, Mark S.

    2000-01-01

    Biotechnology is undergoing a period of rapid and sustained growth, a trend which is expected to continue as the general population ages and as new medical treatments and products are conceived. As pharmaceutical and biomedical companies continue to search for improved methods of production and, for answers to basic research questions, they will seek out new avenues of research. Space processing on the International Space Station (ISS) offers such an opportunity! Space is rapidly becoming an industrial laboratory for biotechnology research and processing. Space bioprocessing offers exciting possibilities for developing new pharmaceuticals and medical treatments which can be used to benefit mankind on Earth. It also represents a new economic frontier for the private sector. .

  5. Interactions between lighting and space conditioning energy use in U.S. commercial buildings

    SciTech Connect

    Sezgen, O.; Koomey, J.G.

    1998-04-01

    Reductions in lighting energy have secondary effects on cooling and heating energy consumption. In general, lighting energy reductions increase heating and decrease cooling requirements of a building. The net change in a building`s annual energy requirements, however, is difficult to quantify and depends on the building characteristics, operating conditions, and climate. This paper characterizes the effects of lighting/HVAC interactions on the annual heating/cooling requirements of prototypical US commercial buildings through computer simulations using the DOE-2.1E building energy analysis program. Twelve building types of two vintages and five climates are chosen to represent the US commercial building stock. For each combination of building type, vintage, and climate, a prototypical building is simulated with varying lighting power densities, and the resultant changes in heating and cooling loads are recorded. These loads are used together with market information on the saturation of the different HVAC equipment in the commercial buildings to determine the changes i energy use and expenditures for heating and cooling. Results are presented by building type for the US as a whole. Therefore, the data presented in this paper can be utilized to assess the secondary effects of lighting-related federal policies with widespread impacts, like minimum efficiency standards. Generally, in warm climates the interactions will induce monetary savings and in cold climates the interactions will induce monetary penalties. For the commercial building stock in the US, a reduction in lighting energy that is well distributed geographically will induce neither significant savings nor significant penalties from associated changes in HVAC primary energy and energy expenditures.

  6. Space Station Workshop Commercial Missions and User Requirements: Issues and Recommendations

    NASA Technical Reports Server (NTRS)

    1988-01-01

    The issues and recommendations of a conference on the Space Station are presented. The subjects are organized under three headings of: materials and processing in space, earth and ocean observations, and industrial services. One hundred and two issues and recommendations which resulted from the workskop are categorized for each discipline subpanel. Responses to these issues and recommendations are based on more than twenty interviews with highly qualified NASA personnel and represent the best answers available at this time.

  7. The Crisis in Astrophysics and Planetary Science: How Commercial Space and Program Design Principles will let us Escape

    NASA Astrophysics Data System (ADS)

    Elvis, Martin

    2017-01-01

    Astrophysics and planetary science are in crisis. The large missions we need for the next generation of observations cost too much to let us do more than one at a time. This spreads the science out onto a generational timescale, inhibiting progress in both fields. There are two escape paths. In the long run, but still well within our planning horizon, commercial space will bring mission costs down substantially allowing parallel missions at multiple wavelengths or to multiple destinations. In the short run, adopting prudent principles for designing a research program will let us maintain vitality in the field by retaining breadth at a modest cost in depth.

  8. Developments of international space communications regulation against the background of progressive commercialization

    NASA Astrophysics Data System (ADS)

    van Traa-Engelman, H. L.

    1991-12-01

    The legal concept of equity has been developed and applied to satellite communications regulation within the ITU. The institutional framework of commercial organizations for satellite communications has been reevaluated in the context of competing systems. The amendments to the Coordinating Committee for Multilateral Controls rules regarding the relaxation of export controls on telecommunications and the proposal by a European Economic Community commission contained in the Green Paper on a common approach toward European-wide satellite communications systems and services are considered to be important steps toward a liberalized world market.

  9. NASA's commercial research plans and opportunities

    NASA Technical Reports Server (NTRS)

    Arnold, Ray J.

    1992-01-01

    One of the primary goals of the National Aeronautics and Space Administration's (NASA) commercial space development plan is to encourage the development of space-based products and markets, along with the infrastructure and transportation that will support those products and markets. A three phased program has been instituted to carry out this program. The first phase utilizes government grants through the Centers for the Commercial Development of Space (CCDS) for space-related, industry driven research; the development of a technology data base; and the development of commercial space transportation and infrastructure. The second phase includes the development of these technologies by industry for new commercial markets, and features unique industry/government collaborations such as Joint Endeavor Agreements. The final phase will feature technical applications actually brought to the marketplace. The government's role will be to support industry required infrastructure to encourage start-up markets and industries through follow-on development agreements such as the Space Systems Development Agreement. The Office of Commercial Programs has an aggressive flight program underway on the Space Shuttle, suborbital rockets, orbital expendable launch vehicles, and the Commercial Middeck Accommodation Module with SPACEHAB Inc. The Office of Commercial Program's has been allocated 35 percent of the U.S. share of the Space Station Freedom resources for 1997 utilization. A utilization plan has been developed with the Centers for the Commercial Development of Space and has identified eleven materials processing and biotechnology payloads occupying 5 double racks in the pressurized module as well as two payloads external to the module in materials exposure and environment monitoring. The Office of Commercial Programs will rely on the Space Station Freedom to provide the long duration laboratory component for space-based commercial research.

  10. Code of conduct for the International Space Station Crew. National Aeronautics and Space Administration (NASA). Interim final rule.

    PubMed

    2000-12-21

    NASA is issuing new regulations entitled "International Space Station Crew," to implement certain provisions of the International Space Station (ISS) Intergovernmental Agreement (IGA) regarding ISS crewmembers' observance of an ISS Code of Conduct.

  11. The Nuclear Thermal Propulsion Stage (NTPS): A Key Space Asset for Human Exploration and Commercial Missions to the Moon

    NASA Technical Reports Server (NTRS)

    Borowski, Stanley K.; McCurdy, David R.; Burke, Laura M.

    2014-01-01

    The nuclear thermal rocket (NTR) has frequently been discussed as a key space asset that can bridge the gap between a sustained human presence on the Moon and the eventual human exploration of Mars. Recently, a human mission to a near Earth asteroid (NEA) has also been included as a "deep space precursor" to an orbital mission of Mars before a landing is attempted. In his "post-Apollo" Integrated Space Program Plan (1970 to 1990), Wernher von Braun, proposed a reusable Nuclear Thermal Propulsion Stage (NTPS) to deliver cargo and crew to the Moon to establish a lunar base initially before sending human missions to Mars. The NTR was selected because it was a proven technology capable of generating both high thrust and high specific impulse (Isp approx. 900 s)-twice that of today's best chemical rockets. During the Rover and NERVA programs, 20 rocket reactors were designed, built and successfully ground tested. These tests demonstrated the (1) thrust levels; (2) high fuel temperatures; (3) sustained operation; (4) accumulated lifetime; and (5) restart capability needed for an affordable in-space transportation system. In NASA's Mars Design Reference Architecture (DRA) 5.0 study, the "Copernicus" crewed NTR Mars transfer vehicle used three 25 klbf "Pewee" engines-the smallest and highest performing engine tested in the Rover program. Smaller lunar transfer vehicles-consisting of a NTPS with three approx. 16.7 klbf "SNRE-class" engines, an in-line propellant tank, plus the payload-can be delivered to LEO using a 70 t to LEO upgraded SLS, and can support reusable cargo delivery and crewed lunar landing missions. The NTPS can play an important role in returning humans to the Moon to stay by providing an affordable in-space transportation system that can allow initial lunar outposts to evolve into settlements capable of supporting commercial activities. Over the next decade collaborative efforts between NASA and private industry could open up new exploration and commercial

  12. 76 FR 17474 - Commercial Space Transportation Advisory Committee-Open Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-29

    ... Advisory Committee (COMSTAC). The meeting will take place on Tuesday, May 10, 2011, starting at 8 a.m., and... meetings of the working groups as follows: --Reusable Launch Vehicles (8 a.m.-10 a.m.) --Space... --Reports and recommendations from the working groups. Interested members of the public may submit...

  13. Forecast of space shuttle flight requirements for launch of commercial communications satellites

    NASA Technical Reports Server (NTRS)

    1977-01-01

    The number of communication satellites required over the next 25 years to support domestic and regional communication systems for telephony, telegraphy and other low speed data; video teleconferencing, new data services, direct TV broadcasting; INTELSAT; and maritime and aeronautical services was estimated to determine the number of space shuttle flights necessary for orbital launching.

  14. 77 FR 21619 - Office of Commercial Space Transportation; Notice of Intent To Prepare an Environmental Impact...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-10

    ... Environmental Impact Statement (EIS), Open a Public Scoping Period, and Conduct a Public Scoping Meeting AGENCY... Federal Regulations parts 1500- 1508), and FAA Order 1050.1E, Change 1, Environmental Impacts: Policies...: Background The FAA is preparing an EIS to analyze the potential environmental ] impacts of SpaceX's...

  15. Residential and commercial space heating and cooling with possible greenhouse operation; Baca Grande development, San Luis Valley, Colorado. Final report

    SciTech Connect

    Goering, S.W.; Garing, K.L.; Coury, G.E.; Fritzler, E.A.

    1980-05-01

    A feasibility study was performed to evaluate the potential of multipurpose applications of moderate-temperature geothermal waters in the vicinity of the Baca Grande community development in the San Luis Valley, Colorado. The project resource assessment, based on a thorough review of existing data, indicates that a substantial resource likely exists in the Baca Grande region capable of supporting residential and light industrial activity. Engineering designs were developed for geothermal district heating systems for space heating and domestic hot water heating for residences, including a mobile home park, an existing motel, a greenhouse complex, and other small commercial uses such as aquaculture. In addition, a thorough institutional analysis of the study area was performed to highlight factors which might pose barriers to the ultimate commercial development of the resource. Finally, an environmental evaluation of the possible impacts of the proposed action was also performed. The feasibility evaluation indicates the economics of the residential areas are dependent on the continued rate of housing construction. If essentially complete development could occur over a 30-year period, the economics are favorable as compared to existing alternatives. For the commercial area, the economics are good as compared to existing conventional energy sources. This is especially true as related to proposed greenhouse operations. The institutional and environmental analyses indicates that no significant barriers to development are apparent.

  16. Space Shuttle main engine. NASA has not evaluated the alternate fuel turbopump costs and benefits. Report to the Administrator of the National Aeronautics and Space Administration

    NASA Astrophysics Data System (ADS)

    1993-10-01

    NASA's plans to develop an alternate high pressure fuel turbopump for the Space Shuttle's main engines were assessed by the General Accounting Office as a part of the evaluation of the Space Shuttle Safety and Obsolescence Upgrade program. The objective was to determine whether NASA has adequately analyzed cost, performance, and benefits that are expected to result from this program in comparison to other alternatives before resuming development of the alternate pump, which was suspended in 1992. The alternate fuel pump is one of five improvements being developed or planned to significantly enhance safety margins of the engines.

  17. Compelled commercial speech: the Food and Drug Administration's effort to smoke out the tobacco industry through graphic warning labels.

    PubMed

    Haynes, Bryan M; Andrews, Anne Hampton; Jacob, C Reade

    2013-01-01

    FDA's proposed graphic warning labels for cigarette packages have been scrutinized for potentially violating the First Amendment's free speech clause. This article addresses the distinction between the commercial speech and compelled speech doctrines and their applicability in analyzing the constitutionality of the labels. The government's position is that the labels evoke an emotional response and educate consumers, while tobacco companies argue that the labels forcibly promote the government's message. Two federal appellate courts, applying different legal standards, have arrived at different conclusions. This article advocates that the Supreme Court, if faced with review of the labels, should apply strict scrutiny and declare the labels unconstitutional.

  18. Benefits of the integrated solar upper stage (ISUS) to commercial space systems

    NASA Astrophysics Data System (ADS)

    Malloy, John; Miles, Barry

    1997-01-01

    The Integrated Solar Upper Stage (ISUS) is a solar thermal system that provides both propulsion and electric power. Using hydrogen as the propellant, ISUS can provide average specific impulses between 750 and 800 seconds. Once in final orbit, the stage uses thermionic diodes to produce electricity for the satellite payload throughout its operating lifetime. Because of its high specific impulse, ISUS can increase the total mass delivered to GEO by any launch vehicle by up to 250%. ISUS can provide benefits to commercial system in lower orbits as well. These orbits are particularly demanding on battery system because of the short orbit periods and the resulting number of battery cycles. Thermal storage in the ISUS receiver can accommodate these cycles without increasing system mass. ISUS also provide more efficient propulsion for station keeping and for separation of satellites when multiple satellites are launched for a single launch vehicle.

  19. Design by Prototype: Examples from the National Aeronautics and Space Administration

    NASA Technical Reports Server (NTRS)

    Mulenburg, Gerald M.; Gundo, Daniel P.

    2002-01-01

    This paper describes and provides exa.mples of a technique called Design-by-Prototype used in the development of research hardware at the National Aeronautics and Space Administration's (NASA) Ames Research Center. This is not a new idea. Artisans and great masters have used prototyping as a design technique for centuries. They created prototypes to try out their ideas before making the primary artifact they were planning. This abstract is itself a prototype for others to use in determining the value of the paper it describes. At the Ames Research Center Design-by-Prototype is used for developing unique, one-of-a-kind hardware for small, high-risk projects. The need tor this new/old process is the proliferation of computer "design tools" that can result in both excessive time expended in design, and a lack of imbedded reality in the final product. Despite creating beautiful three-dimensional models and detailed computer drawings that can consume hundreds of engineering hours, the resulting designs can be extremely difficult to make, requiring many changes that add to the cost and schedule. Much design time can be saved and expensive rework eliminated using Design-by-Prototype.

  20. Case Study of Using High Performance Commercial Processors in a Space Environment

    NASA Technical Reports Server (NTRS)

    Ferguson, Roscoe C.; Olivas, Zulema

    2009-01-01

    The purpose of the Space Shuttle Cockpit Avionics Upgrade project was to reduce crew workload and improve situational awareness. The upgrade was to augment the Shuttle avionics system with new hardware and software. A major success of this project was the validation of the hardware architecture and software design. This was significant because the project incorporated new technology and approaches for the development of human rated space software. An early version of this system was tested at the Johnson Space Center for one month by teams of astronauts. The results were positive, but NASA eventually cancelled the project towards the end of the development cycle. The goal to reduce crew workload and improve situational awareness resulted in the need for high performance Central Processing Units (CPUs). The choice of CPU selected was the PowerPC family, which is a reduced instruction set computer (RISC) known for its high performance. However, the requirement for radiation tolerance resulted in the reevaluation of the selected family member of the PowerPC line. Radiation testing revealed that the original selected processor (PowerPC 7400) was too soft to meet mission objectives and an effort was established to perform trade studies and performance testing to determine a feasible candidate. At that time, the PowerPC RAD750s where radiation tolerant, but did not meet the required performance needs of the project. Thus, the final solution was to select the PowerPC 7455. This processor did not have a radiation tolerant version, but faired better than the 7400 in the ability to detect failures. However, its cache tags did not provide parity and thus the project incorporated a software strategy to detect radiation failures. The strategy was to incorporate dual paths for software generating commands to the legacy Space Shuttle avionics to prevent failures due to the softness of the upgraded avionics.

  1. What Happens If They Say No? Preserving Access to Critical Commercial Space Capabilities during Future Crises

    DTIC Science & Technology

    2014-12-01

    Operation Nickel Grass ( ONG ) resupply of Israeli forces. Arab forces used the de- lay to inflict heavy losses on Israeli forces and secure territorial...PLACE The basic lesson from ONG should speak loudly to national security space professionals. Despite Washington’s cachet as a customer, Ameri- can...planning for them now. Failure to do so places the nation at risk of experiencing the same dilemma that oc- curred during ONG . Without meaningful

  2. The University of Arizona Nanosat Program: Making Space accessible to scientific and commercial packages.

    NASA Astrophysics Data System (ADS)

    Fink, U.; Fevig, R. A.

    2003-05-01

    For the last couple of years we have been engaged in building nanosatellites within a student-mentor framework. The satellites are 10x10x10cm cubes, have a maximum mass of 1 kg, and power of a few watts. The standardized "cube-sat" form factor was suggested by Bob Twiggs of Stanford University so that a common launch platform could be utilized and more Universities could participate. We have now built four "cube-sats': a launchable Engineering model, Rincon 1 & 2, (funded by Rincon corporation), and Alcatel funded by Alcatel Espace. The costs for the four satellites are \\250,000. Launch costs using a Russian SS-18 are typically \\10,000 per kg. The payload for Rincon 1 & 2 is a sophisticated telecommunications board using only 10 mw of transmitting power. The Alcatel payload consists of three communications IC's whose radiation exposure and annealing properties will be studied over a period of years. Future nanosatellites will have considerable value in providing low cost access to space for experiments in nanotechnology, space electronics, micropropulsion, radiation experiments, astrobionics and climate change studies. For the latter area we are considering experiments to monitor the solar constant, the solar UV spectrum, the chromospheric activity through the Mg II index, the Earth's Albedo, etc. For this purpose we are developing a slightly larger satellite, 20x20x20cm and 10 kg. We have built a C-MOS camera with a 1 ms exposure time for attitude determination, and we are working with Honeywell Industries to develop micro-reaction wheels for attitude control. We are also working on micro-propulsion units with the Air Force and several aerospace companies. Preliminary calculations show that we can develop delta-V's of 5km/s which will allow us to visit 5% (about 100) of the NEA population or possibly some comets. We firmly believe a vigorous nanosatellite program will allow useful space experiments for costs of millions of Dollars instead of the present tens of

  3. On Using Commercial Off-the-Shelf (COTS) Electronic Products in Space

    NASA Technical Reports Server (NTRS)

    Culpepper, William X.

    2002-01-01

    NASA's Johnson Space Center (JSC) has utilized COTS products in its programs since the early 1990's. Recently it has become evident that, of all failure modes possible, radiation will probably dominate; sometimes to the point of driving system architecture. It is now imperative that radiation susceptibility be addressed when writing the system requirements. Susceptibility assessment, e.g. testing, must begin early in the design phase to establish performance and continue through the hardware qualification program to prove satisfaction of the original requirements(s). Examples of requirements, testing, and architecture versus failure rate will be given.

  4. Suspended in Liminal Space: Special Education Administrators and the Decade of Educational Reform within the NYC School System

    ERIC Educational Resources Information Center

    Connor, David J.

    2012-01-01

    Highly politicized educational reforms in New York City have seen special education become marginalized as a casualty of the accountability movement. There is a liminal space between "old" and "new" ways where special education administrators find themselves as they consider their roles and responsibilities in continuing to…

  5. 14 CFR 406.109 - Administrative law judges-powers and limitations.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 4 2011-01-01 2011-01-01 false Administrative law judges-powers and limitations. 406.109 Section 406.109 Aeronautics and Space COMMERCIAL SPACE TRANSPORTATION, FEDERAL AVIATION... Rules of Practice in FAA Space Transportation Adjudications § 406.109 Administrative law...

  6. 14 CFR 406.109 - Administrative law judges-powers and limitations.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 4 2010-01-01 2010-01-01 false Administrative law judges-powers and limitations. 406.109 Section 406.109 Aeronautics and Space COMMERCIAL SPACE TRANSPORTATION, FEDERAL AVIATION... Rules of Practice in FAA Space Transportation Adjudications § 406.109 Administrative law...

  7. 14 CFR 406.109 - Administrative law judges-powers and limitations.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 4 2014-01-01 2014-01-01 false Administrative law judges-powers and limitations. 406.109 Section 406.109 Aeronautics and Space COMMERCIAL SPACE TRANSPORTATION, FEDERAL AVIATION... Rules of Practice in FAA Space Transportation Adjudications § 406.109 Administrative law...

  8. 14 CFR 406.109 - Administrative law judges-powers and limitations.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 4 2013-01-01 2013-01-01 false Administrative law judges-powers and limitations. 406.109 Section 406.109 Aeronautics and Space COMMERCIAL SPACE TRANSPORTATION, FEDERAL AVIATION... Rules of Practice in FAA Space Transportation Adjudications § 406.109 Administrative law...

  9. 14 CFR 406.109 - Administrative law judges-powers and limitations.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 4 2012-01-01 2012-01-01 false Administrative law judges-powers and limitations. 406.109 Section 406.109 Aeronautics and Space COMMERCIAL SPACE TRANSPORTATION, FEDERAL AVIATION... Rules of Practice in FAA Space Transportation Adjudications § 406.109 Administrative law...

  10. Ambivalent spaces--the emergence of a new gay male norm situated between notions of the commercial and the political in the Swedish gay press, 1969-1986.

    PubMed

    Bertilsdotter Rosqvist, Hanna; Arnberg, Klara

    2015-01-01

    Within sexual geographies, sexual struggles over urban public spaces are frequently explored. Less common is research on sexual struggles within sexually shared spaces and gay spaces. The aim of the article is to examine discursive struggles of meanings of gay male identity enacted in discussions of commodification/capitalism, disclosure, and space in Swedish gay press during 1969-1986. We trace the ambivalent feelings or the emergence of a new gay male norm situated between commercialism and non-commercialism within the Swedish gay press back to the 1970s. In the article we show how a monosexualization process was taking place in both the Swedish gay press as well as within sexual spaces. We explore rhetorical struggles between two competing discursive meanings of (ideal homonormative) male homosexuality, gay culture, and space: one wider (inclusive) and one narrower (exclusive).

  11. Bioculture System: Expanding ISS Space Bioscience Capabilities for Fundamental Stem Cell Research and Commercial Applications

    NASA Astrophysics Data System (ADS)

    Blaber, Elizabeth; Dvorochkin, Natalya; Almeida, Eduardo; Fitzpatrick, Garret; Ellingson, Lance; Mitchell, Sarah; Yang, Anthony; Kosnik, Cristine; Rayl, Nicole; Cannon, Tom; Austin, Edward; Sato, Kevin

    With the recent call by the 2011 Decadal Report and the 2010 Space Biosciences Roadmap for the International Space Station (ISS) to be used as a National Laboratory for scientific research, there is now a need for new laboratory instruments on ISS to enable such research to occur. The Bioculture System supports the extended culturing of multiple cell types and microbiological specimens. It consists of a docking station that carries ten independent incubation units or ‘Cassettes’. Each Cassette contains a cooling chamber (5(°) C) for temperature sensitive solutions and samples, or long duration fluids and sample storage, as well as an incubation chamber (ambient up to 42(°) C). Each Cassette houses an independent fluidics system comprised of a biochamber, medical-grade fluid tubing, medium warming module, oxygenation module, fluid pump, and sixteen solenoid valves for automated biochamber injections of sampling. The Bioculture System provides the user with the ability to select the incubation temperature, fluid flow rate and automated biochamber sampling or injection events for each separate Cassette. Furthermore, the ISS crew can access the biochamber, media bag, and accessory bags on-orbit using the Microgravity Science Glovebox. The Bioculture System also permits initiation of cultures, subculturing, injection of compounds, and removal of samples for on-orbit processing using ISS facilities. The Bioculture System therefore provides a unique opportunity for the study of stem cells and other cell types in space. The first validation flight of the Bioculture System will be conducted on SpaceX5, consisting of 8 Cassettes and lasting for 30-37 days. During this flight we plan to culture two different mammalian cell types in bioreactors: a mouse osteocytic-like cell line, and human induced pluripotent stem cell (iPS)-derived cardiomyocytes. Specifically, the osteocytic line will enable the study of a type of cell that has been flown on the Bioculture System

  12. Inductive knowledge acquisition experience with commercial tools for space shuttle main engine testing

    NASA Technical Reports Server (NTRS)

    Modesitt, Kenneth L.

    1990-01-01

    Since 1984, an effort has been underway at Rocketdyne, manufacturer of the Space Shuttle Main Engine (SSME), to automate much of the analysis procedure conducted after engine test firings. Previously published articles at national and international conferences have contained the context of and justification for this effort. Here, progress is reported in building the full system, including the extensions of integrating large databases with the system, known as Scotty. Inductive knowledge acquisition has proven itself to be a key factor in the success of Scotty. The combination of a powerful inductive expert system building tool (ExTran), a relational data base management system (Reliance), and software engineering principles and Computer-Assisted Software Engineering (CASE) tools makes for a practical, useful and state-of-the-art application of an expert system.

  13. Effect of commercial and military performance requirements for transport category aircraft on space shuttle booster design and operation

    NASA Technical Reports Server (NTRS)

    Bithell, R. A.; Pence, W. A., Jr.

    1972-01-01

    The effect of two sets of performance requirements, commercial and military, on the design and operation of the space shuttle booster is evaluated. Critical thrust levels are established according to both sets of operating rules for the takeoff, cruise, and go-around flight modes, and the effect on engine requirements determined. Both flyback and ferry operations are considered. The impact of landing rules on potential shuttle flyback and ferry bases is evaluated. Factors affecting reserves are discussed, including winds, temperature, and nonstandard flight operations. Finally, a recommended set of operating rules is proposed for both flyback and ferry operations that allows adequate performance capability and safety margins without compromising design requirements for either flight phase.

  14. MOA2—an R&D paradigm buster enabling space propulsion by commercial applications

    NASA Astrophysics Data System (ADS)

    Frischauf, Norbert; Hettmer, Manfred; Koudelka, Otto; Löb, Horst

    2012-04-01

    More than 60 years after the late Nobel laureate Hannes Alfvén had published a letter stating that oscillating magnetic fields can accelerate ionised matter via magneto-hydrodynamic interactions in a wave like fashion, the technical implementation of Alfvén waves for propulsive purposes has been proposed, patented and examined for the first time by a group of inventors. Consequently improved since then, the name of the latest concept, relying on magneto-acoustic waves to accelerate electric conductive matter, is MOA2—Magnetic field Oscillating Amplified Accelerator. Based on computer simulations, which were undertaken to get a first estimate on the performance of the system, MOA2 is a corrosion free and highly flexible propulsion system, whose performance parameters might easily be adapted in operation, by changing the mass flow and/or the power level. As such the system is capable of delivering a maximum specific impulse of 13116 s (12.87 mN) at a power level of 11.16 kW, using Xe as propellant, but can also be attuned to provide a thrust of 236.5 mN (2411 s) at 6.15 kW of power. First tests—that are further described in this paper—have been conducted successfully with a 400 W prototype system at an ambient pressure of 0.20 Pa, delivered 9.24 mN of thrust at 1472 s ISP, thereby underlining the feasibility of the concept. Based on these results, space propulsion is expected to be a prime application for MOA2—a claim that is supported by numerous applications such as Solar and/or Nuclear Electric Propulsion or even as an 'afterburner system' for Nuclear Thermal Propulsion. However, MOA2 has so far seen most of its R&D impetus from terrestrial applications, like coating, semiconductor implantation and manufacturing as well as steel cutting. Based on this observation, MOA2 resembles an R&D paradigm buster, as it is the first space propulsion system, whose R&D is driven primarily by its terrestrial applications. Different terrestrial applications exist, but

  15. The National Aeronautics and Space Administration (NASA)/Goddard Space Flight Center (GSFC) sounding-rocket program

    NASA Technical Reports Server (NTRS)

    Guidotti, J. G.

    1976-01-01

    An overall introduction to the NASA sounding rocket program as managed by the Goddard Space Flight Center is presented. The various sounding rockets, auxiliary systems (telemetry, guidance, etc.), launch sites, and services which NASA can provide are briefly described.

  16. The 2006 Cape Canaveral Air Force Station Range Reference Atmosphere Model Validation Study and Sensitivity Analysis to the National Aeronautics and Space Administration's Space Shuttle

    NASA Technical Reports Server (NTRS)

    Burns, Lee; Merry, Carl; Decker, Ryan; Harrington, Brian

    2008-01-01

    The 2006 Cape Canaveral Air Force Station (CCAFS) Range Reference Atmosphere (RRA) is a statistical model summarizing the wind and thermodynamic atmospheric variability from surface to 70 kin. Launches of the National Aeronautics and Space Administration's (NASA) Space Shuttle from Kennedy Space Center utilize CCAFS RRA data to evaluate environmental constraints on various aspects of the vehicle during ascent. An update to the CCAFS RRA was recently completed. As part of the update, a validation study on the 2006 version was conducted as well as a comparison analysis of the 2006 version to the existing CCAFS RRA database version 1983. Assessments to the Space Shuttle vehicle ascent profile characteristics were performed to determine impacts of the updated model to the vehicle performance. Details on the model updates and the vehicle sensitivity analyses with the update model are presented.

  17. The 2006 Cape Canaveral Air Force Station Range Reference Atmosphere Model Validation Study and Sensitivity Analysis to the National Aeronautics and Space Administration's Space Shuttle

    NASA Technical Reports Server (NTRS)

    Decker, Ryan K.; Burns, Lee; Merry, Carl; Harrington, Brian

    2008-01-01

    Atmospheric parameters are essential in assessing the flight performance of aerospace vehicles. The effects of the Earth's atmosphere on aerospace vehicles influence various aspects of the vehicle during ascent ranging from its flight trajectory to the structural dynamics and aerodynamic heatmg on the vehicle. Atmospheric databases charactenzing the wind and thermodynamic environments, known as Range Reference Atmospheres (RRA), have been developed at space launch ranges by a governmental interagency working group for use by aerospace vehicle programs. The National Aeronantics and Space Administration's (NASA) Space Shuttle Program (SSP), which launches from Kennedy Space Center, utilizes atmosphenc statistics derived from the Cape Canaveral Air Force Station Range Reference Atmosphere (CCAFS RRA) database to evaluate environmental constraints on various aspects of the vehlcle during ascent.

  18. Using Commercial Off-the-Shelf Software Tools for Space Shuttle Scientific Software

    NASA Technical Reports Server (NTRS)

    Groleau, Nicolas; Friedland, Peter (Technical Monitor)

    1994-01-01

    In October 1993, the Astronaut Science Advisor (ASA) was on board the STS-58 flight of the space shuttle. ASA is an interactive system providing data acquisition and analysis, experiment step re-scheduling, and various other forms of reasoning. As fielded, the system runs on a single Macintosh PowerBook 170, which hosts the six ASA modules. There is one other piece of hardware, an external (GW Instruments, Sommerville, Massachusetts) analog-to-digital converter connected to the PowerBook's SCSI port. Three main software tools were used: LabVIEW, CLIPS, and HyperCard: First, a module written in LabVIEW (National Instruments, Austin, Texas) controls the A/D conversion and stores the resulting data in appropriate arrays. This module also analyzes the numerical data to produce a small set of characteristic numbers or symbols describing the results of an experiment trial. Second, a forward-chaining inference system written in CLIPS (NASA) uses the symbolic information provided by the first stage with a static rule base to infer decisions about the experiment. This expert system shell is used by the system for diagnosis. The third component of the system is the user interface, written in HyperCard (Claris Inc. and Apple Inc., both in Cupertino, California).

  19. Flight Computer Processing Avionics for Space Station Microgravity Experiments: A Risk Assessment of Commercial Off-the-Shelf Utilization

    NASA Technical Reports Server (NTRS)

    Estes, Howard; Liggin, Karl; Crawford, Kevin; Humphries, Rick (Technical Monitor)

    2001-01-01

    NASA/Marshall Space Flight Center (MSFC) is continually looking for ways to reduce the costs and schedule and minimize the technical risks during the development of microgravity programs. One of the more prominent ways to minimize the cost and schedule is to use off-the-shelf hardware (OTS). However, the use of OTS often increases the risk. This paper addresses relevant factors considered during the selection and utilization of commercial off-the-shelf (COTS) flight computer processing equipment for the control of space station microgravity experiments. The paper will also discuss how to minimize the technical risks when using COTS processing hardware. Two microgravity experiments for which the COTS processing equipment is being evaluated for are the Equiaxed Dendritic Solidification Experiment (EDSE) and the Self-diffusion in Liquid Elements (SDLE) experiment. Since MSFC is the lead center for Microgravity research, EDSE and SDLE processor selection will be closely watched by other experiments that are being designed to meet payload carrier requirements. This includes the payload carriers planned for the International Space Station (ISS). The purpose of EDSE is to continue to investigate microstructural evolution of, and thermal interactions between multiple dendrites growing under diffusion controlled conditions. The purpose of SDLE is to determine accurate self-diffusivity data as a function of temperature for liquid elements selected as representative of class-like structures. In 1999 MSFC initiated a Center Director's Discretionary Fund (CDDF) effort to investigate and determine the optimal commercial data bus architecture that could lead to faster, better, and lower cost data acquisition systems for the control of microgravity experiments. As part of this effort various commercial data acquisition systems were acquired and evaluated. This included equipment with various form factors, (3U, 6U, others) and equipment that utilized various bus structures, (VME

  20. Inter-Module Ventilation Changes to the International Space Station Vehicle to Support Integration of the International Docking Adapter and Commercial Crew Vehicles

    NASA Technical Reports Server (NTRS)

    Link, Dwight E., Jr.; Balistreri, Steven F., Jr.

    2015-01-01

    The International Space Station (ISS) Environmental Control and Life Support System (ECLSS) is continuing to evolve in the post-Space Shuttle era. The ISS vehicle configuration that is in operation was designed for docking of a Space Shuttle vehicle, and designs currently under development for commercial crew vehicles require different interfaces. The ECLSS Temperature and Humidity Control Subsystem (THC) Inter-Module Ventilation (IMV) must be modified in order to support two docking interfaces at the forward end of ISS, to provide the required air exchange. Development of a new higher-speed IMV fan and extensive ducting modifications are underway to support the new Commercial Crew Vehicle interfaces. This paper will review the new ECLSS IMV development requirements, component design and hardware status, subsystem analysis and testing performed to date, and implementation plan to support Commercial Crew Vehicle docking.

  1. 14 CFR 435.8 - Human space flight.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 4 2014-01-01 2014-01-01 false Human space flight. 435.8 Section 435.8 Aeronautics and Space COMMERCIAL SPACE TRANSPORTATION, FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... Human space flight. An applicant for a license to conduct a reentry with flight crew or a space...

  2. 14 CFR 435.8 - Human space flight.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 4 2013-01-01 2013-01-01 false Human space flight. 435.8 Section 435.8 Aeronautics and Space COMMERCIAL SPACE TRANSPORTATION, FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... Human space flight. An applicant for a license to conduct a reentry with flight crew or a space...

  3. 14 CFR 435.8 - Human space flight.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 4 2012-01-01 2012-01-01 false Human space flight. 435.8 Section 435.8 Aeronautics and Space COMMERCIAL SPACE TRANSPORTATION, FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... Human space flight. An applicant for a license to conduct a reentry with flight crew or a space...

  4. 14 CFR 435.8 - Human space flight.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 4 2010-01-01 2010-01-01 false Human space flight. 435.8 Section 435.8 Aeronautics and Space COMMERCIAL SPACE TRANSPORTATION, FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... Human space flight. An applicant for a license to conduct a reentry with flight crew or a space...

  5. 14 CFR 435.8 - Human space flight.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 4 2011-01-01 2011-01-01 false Human space flight. 435.8 Section 435.8 Aeronautics and Space COMMERCIAL SPACE TRANSPORTATION, FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... Human space flight. An applicant for a license to conduct a reentry with flight crew or a space...

  6. Re-Living Dangerous Memories: Online Journaling to Interrogate Spaces of "Otherness" in an Educational Administration Program at a Midwestern University

    ERIC Educational Resources Information Center

    Friend, Jennifer; Caruthers, Loyce; McCarther, Shirley Marie

    2009-01-01

    This theoretical paper explores the use of online journaling in an educational administration program to interrogate spaces of "otherness"--the geographical spaces of cities where poor children and children of color live--and the dangerous memories prospective administrators may have about diversity. The cultures of most educational administration…

  7. National Aeronautics and Space Administration Biological and Physical Research Enterprise Strategy

    NASA Technical Reports Server (NTRS)

    2003-01-01

    As the 21st century begins, NASA's new Vision and Mission focuses the Agency's Enterprises toward exploration and discovery.The Biological and Physical Research Enterprise has a unique and enabling role in support of the Agency's Vision and Mission. Our strategic research seeks innovations and solutions to enable the extension of life into deep space safely and productively. Our fundamental research, as well as our research partnerships with industry and other agencies, allow new knowledge and tech- nologies to bring improvements to life on Earth. Our interdisciplinary research in the unique laboratory of microgravity addresses opportunities and challenges on our home planet as well as in space environments. The Enterprise maintains a key role in encouraging and engaging the next generation of explorers from primary school through the grad- uate level via our direct student participation in space research.The Biological and Physical Research Enterprise encompasses three themes. The biological sciences research theme investigates ways to support a safe human presence in space. This theme addresses the definition and control of physiological and psychological risks from the space environment, including radiation,reduced gravity, and isolation. The biological sciences research theme is also responsible for the develop- ment of human support systems technology as well as fundamental biological research spanning topics from genomics to ecologies. The physical sciences research theme supports research that takes advantage of the space environment to expand our understanding of the fundamental laws of nature. This theme also supports applied physical sciences research to improve safety and performance of humans in space. The research partnerships and flight support theme establishes policies and allocates space resources to encourage and develop entrepreneurial partners access to space research.Working together across research disciplines, the Biological and Physical

  8. 14 CFR § 1274.508 - Contract administration.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 5 2014-01-01 2014-01-01 false Contract administration. § 1274.508... AGREEMENTS WITH COMMERCIAL FIRMS Procurement Standards § 1274.508 Contract administration. A system for contract administration shall be maintained to ensure contractor conformance with the terms, conditions...

  9. NASA commercial programs

    NASA Technical Reports Server (NTRS)

    1988-01-01

    An expanded role for the U.S. private sector in America's space future has emerged as a key national objective, and NASA's Office of Commercial Programs is providing a focus for action. The Office supports new high technology commercial space ventures, the commercial application of existing aeronautics and space technology, and expanded commercial access to available NASA capabilities and services. The progress NASA has made in carrying out its new assignment is highlighted.

  10. Why commercial broadband satellites absolutely must have laser intersatellite links (ISLs) and how the free-space laser communications community could let them down

    NASA Astrophysics Data System (ADS)

    Freidell, James E.

    1998-05-01

    Large commercial satellite programs needing high bandwidth inter-satellite links (ISLs) are growing rapidly in number. Precious few are visibly maturing. These commercial needs present greater customer diversity and opportunity for free- space laser communications application than the current plans of all the world's governments combined, multiplied manyfold. However, commercial customers generally do not have access to the independent, knowledgeable, but often heterogeneous laser communications expertise upon which government programs have historically relied. Moreover, commercial needs differ substantially from those of governments, particularly in the areas of price sensitivity and assured delivery on schedule and meeting all requirements. And the number of would-be laser ISL terminal suppliers also grows despite little verifiable expertise in actually delivering complete, working space-based laser ISL terminals, regardless of price or performance. Consequently, the opportunity for mistakes, disappointments, and outright failure is intensified. More 'red meatballs' are unfortunately on the horizon and neither customers nor suppliers recognize the warning signs. Is ignorance bliss? Virtually the entire space communications community appears oblivious to emerging terrestrial broadband communications projects which appear better backed with superior management far more attentive to time-to-market and other schedule and business considerations than any space venture. Space systems offer advantages through realizing global network operations not possible terrestrially, yet few promoters recogni the potential. Might these be omens worth capitalizing upon, or perhaps from which escape may be warranted? This paper provides a commercial market status update to that presented in preceding years' papers. Laser ISL applications are reviewed which enable commercial broadband satellite customer opportunities not yet recognized among most in the customer community, despite

  11. Overview of the National Aeronautics and Space Administration's Nondestructive Evaluation (NDE) Program

    NASA Technical Reports Server (NTRS)

    Generazio, Edward R.

    2002-01-01

    NASA's Office of Safety and Mission Assurance sponsors an Agency-wide NDE Program that supports Aeronautics and Space Transportation Technology, Human Exploration and Development of Space, Earth Science, and Space Science Enterprises. For each of these Enterprises, safety is the number one priority. Development of the next generation aero-space launch and transportation vehicles, satellites, and deep space probes have highlighted the enabling role that NDE plays in these advanced technology systems. Specific areas of advanced component development, component integrity, and structural heath management are critically supported by NDE technologies. The simultaneous goals of assuring safety, maintaining overall operational efficiency, and developing and utilizing revolutionary technologies to expand human activity and space-based commerce in the frontiers of air and space places increasing demands on the Agencies NDE infrastructure and resources. In this presentation, an overview of NASA's NDE Program will be presented, that includes a background and status of current Enterprise NDE issues, and the NDE investment areas being developed to meet Enterprise safety and mission assurance needs through the year 2009 and beyond.

  12. 14 CFR 121.489 - Flight time limitations: Other commercial flying.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... flying. 121.489 Section 121.489 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... § 121.489 Flight time limitations: Other commercial flying. No pilot that is employed as a pilot by a certificate holder conducting flag operations may do any other commercial flying if that commercial...

  13. 14 CFR 121.517 - Flight time limitations: Other commercial flying: airplanes.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... flying: airplanes. 121.517 Section 121.517 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION... Limitations: Supplemental Operations § 121.517 Flight time limitations: Other commercial flying: airplanes. No... commercial flying, if that commercial flying plus his flying in operations under this part will exceed...

  14. 14 CFR 121.489 - Flight time limitations: Other commercial flying.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... flying. 121.489 Section 121.489 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... § 121.489 Flight time limitations: Other commercial flying. No pilot that is employed as a pilot by a certificate holder conducting flag operations may do any other commercial flying if that commercial...

  15. 14 CFR 121.489 - Flight time limitations: Other commercial flying.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... flying. 121.489 Section 121.489 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... § 121.489 Flight time limitations: Other commercial flying. No pilot that is employed as a pilot by a certificate holder conducting flag operations may do any other commercial flying if that commercial...

  16. 14 CFR 121.517 - Flight time limitations: Other commercial flying: airplanes.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... flying: airplanes. 121.517 Section 121.517 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION... Limitations: Supplemental Operations § 121.517 Flight time limitations: Other commercial flying: airplanes. No... commercial flying, if that commercial flying plus his flying in operations under this part will exceed...

  17. 14 CFR 121.489 - Flight time limitations: Other commercial flying.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... flying. 121.489 Section 121.489 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... § 121.489 Flight time limitations: Other commercial flying. No pilot that is employed as a pilot by a certificate holder conducting flag operations may do any other commercial flying if that commercial...

  18. 14 CFR 121.517 - Flight time limitations: Other commercial flying: airplanes.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... flying: airplanes. 121.517 Section 121.517 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION... Limitations: Supplemental Operations § 121.517 Flight time limitations: Other commercial flying: airplanes. No... commercial flying, if that commercial flying plus his flying in operations under this part will exceed...

  19. 14 CFR 121.489 - Flight time limitations: Other commercial flying.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... flying. 121.489 Section 121.489 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... § 121.489 Flight time limitations: Other commercial flying. No pilot that is employed as a pilot by a certificate holder conducting flag operations may do any other commercial flying if that commercial...

  20. Address by James C. Fletcher, Administrator National Aeronautics and Space Administration at the National Academy of Engineering, Washington, D.C., 10 November 1975

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Future plans and programs of the space agency are discussed. Topics discussed include solar energy, space stations, planetary exploration, interstellar exploration, the space shuttles, and satellites.

  1. An Analysis of Acquisition Logistics within the National Aeronautics and Space Administration

    DTIC Science & Technology

    1992-09-01

    The search for information concerning an acquisition logistics model included discussions with AFIT faculty members, a search of the card catalogs and...current plans. We proposed an acquisition logistics model with which we compare the two programs. We had a great deal of help with this research. First, we...logistics models . Logistics managers from the Space Shuttle and Space Station Freedom programs were interviewed, surveyed, and observed to provide evidence

  2. The CERN-EU high-energy reference field (CERF) facility for dosimetry at commercial flight altitudes and in space.

    PubMed

    Mitaroff, A; Cern, M Silari

    2002-01-01

    A reference facility for the calibration and intercomparison of active and passive detectors in broad neutron fields has been available at CERN since 1992. A positively charged hadron beam (a mixture of protons and pions) with momentum of 120 GeV/c hits a copper target, 50 cm thick and 7 cm in diameter. The secondary particles produced in the interaction traverse a shield, at 90 degrees with respect to the direction of the incoming beam. made of either 80 to 160 cm of concrete or 40 cm of iron. Behind the iron shield, the resulting neutron spectrum has a maximum at about 1 MeV, with an additional high-energy component. Behind the 80 cm concrete shield, the neutron spectrum has a second pronounced maximum at about 70 MeV and resembles the high-energy component of the radiation field created by cosmic rays at commercial flight altitudes. This paper describes the facility, reports on the latest neutron spectral measurements, gives an overview of the most important experiments performed by the various collaborating institutions over recent years and briefly addresses the possible application of the facility to measurements related to the space programme.

  3. Shifting Spaces and Emerging Voices: Participation, Support, and Conflict in One School Administrative Team

    ERIC Educational Resources Information Center

    Austin, Manila S.; Harkins, Debra A.

    2008-01-01

    Research Findings: Collaborative work and supportive relationships are highly valued by teachers and school administrators. Collaboration, however, necessitates constructive conflict resolution (P. M. Senge, 1990); yet conflict is often experienced as interpersonally threatening and undermining supportive working conditions. This contradiction is…

  4. 76 FR 6827 - Public Availability of the National Aeronautic and Space Administration FY 2010 Service Contract...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-08

    ... Administration (NASA) is publishing this notice to advise the public of the availability of its FY 2010 Service... November 5, 2010, by the Office of Management and Budget's Office of Federal Procurement Policy (OFPP). NASA has posted its inventory and a summary of the inventory on the NASA Office of Procurement...

  5. 14 CFR 121.517 - Flight time limitations: Other commercial flying: airplanes.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Flight time limitations: Other commercial flying: airplanes. 121.517 Section 121.517 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION... Limitations: Supplemental Operations § 121.517 Flight time limitations: Other commercial flying: airplanes....

  6. 14 CFR 121.517 - Flight time limitations: Other commercial flying: airplanes.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Flight time limitations: Other commercial flying: airplanes. 121.517 Section 121.517 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION... Limitations: Supplemental Operations § 121.517 Flight time limitations: Other commercial flying: airplanes....

  7. 14 CFR 414.41 - Administrative law judge's recommended decision in safety approval actions.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 4 2013-01-01 2013-01-01 false Administrative law judge's recommended decision in safety approval actions. 414.41 Section 414.41 Aeronautics and Space COMMERCIAL SPACE TRANSPORTATION, FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION LICENSING SAFETY APPROVALS...

  8. 14 CFR 414.41 - Administrative law judge's recommended decision in safety approval actions.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 4 2012-01-01 2012-01-01 false Administrative law judge's recommended decision in safety approval actions. 414.41 Section 414.41 Aeronautics and Space COMMERCIAL SPACE TRANSPORTATION, FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION LICENSING SAFETY APPROVALS...

  9. 14 CFR 414.41 - Administrative law judge's recommended decision in safety approval actions.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 4 2014-01-01 2014-01-01 false Administrative law judge's recommended decision in safety approval actions. 414.41 Section 414.41 Aeronautics and Space COMMERCIAL SPACE TRANSPORTATION, FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION LICENSING SAFETY APPROVALS...

  10. 14 CFR 414.41 - Administrative law judge's recommended decision in safety approval actions.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 4 2011-01-01 2011-01-01 false Administrative law judge's recommended decision in safety approval actions. 414.41 Section 414.41 Aeronautics and Space COMMERCIAL SPACE TRANSPORTATION, FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION LICENSING SAFETY APPROVALS...

  11. 14 CFR 414.41 - Administrative law judge's recommended decision in safety approval actions.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 4 2010-01-01 2010-01-01 false Administrative law judge's recommended decision in safety approval actions. 414.41 Section 414.41 Aeronautics and Space COMMERCIAL SPACE TRANSPORTATION, FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION LICENSING SAFETY APPROVALS...

  12. The 1985 National Aeronautics and Space Administration's Summer High School Apprenticeship Research Program (SHARP)

    NASA Technical Reports Server (NTRS)

    1985-01-01

    In 1985, a total of 126 talented high school students gained first hand knowledge about science and engineering careers by working directly with a NASA scientist or engineer during the summer. This marked the sixth year of operation for NASA's Summer High School Apprenticeship Research Program (SHARP). The major priority of maintaining the high standards and success of prior years was satisfied. The following eight sites participated in the Program: Ames Research Center, Ames' Dryden Flight Research Facility, Goddard Space Flight Center, Goddard's Wallop Flight Facility, Kennedy Space Center, Langley Research Center, Lewis Research Center, and Marshall Space Flight Center. Tresp Associates served as the SHARP contractor and worked closely with NASA staff at headquarters and the sites just mentioned to plan, implement, and evaluate the program.

  13. Summer High School Apprenticeship Research Program (SHARP) of the National Aeronautics and Space Administration

    NASA Technical Reports Server (NTRS)

    1984-01-01

    A total of 125 talented high school students had the opportunity to gain first hand experience about science and engineering careers by working directly with a NASA scientist or engineer during the summer. This marked the fifth year of operation for NASA's Summer High School Apprenticehsip Research Program (SHARP). Ferguson Bryan served as the SHARP contractor and worked closely with NASA staff at Headquarters and the eight participating sites to plan, implement, and evaluate the Program. The main objectives were to strengthen SHARP and expand the number of students in the Program. These eight sites participated in the Program: Ames Research Center North, Ames' Dryden Flight Research Facility, Goddard Space Flight Center, Goddard's Wallops Flight Facility, Kennedy Space Center, Langley Research Center, Lewis Research Center, and Marshall Space Flight Center.

  14. Third National Aeronautics and Space Administration Weather and climate program science review

    NASA Technical Reports Server (NTRS)

    Kreins, E. R. (Editor)

    1977-01-01

    Research results of developing experimental and prototype operational systems, sensors, and space facilities for monitoring, and understanding the atmosphere are reported. Major aspects include: (1) detection, monitoring, and prediction of severe storms; (2) improvement of global forecasting; and (3) monitoring and prediction of climate change.

  15. Aeronautical concerns and National Aeronautics and Space Administration atmospheric electricity projects

    NASA Technical Reports Server (NTRS)

    Vaughan, W. W.

    1980-01-01

    The phenomenology of lightning and lightning measurement techniques are briefly examined with a particular reference to aeronautics. Developments made in airborne and satellite detection methods are reported. NASA research efforts are outlined which cover topics including in-situ measurements, design factors and protection, remote optical and radio frequency measurements, and space vehicle design.

  16. A Primer for the talk ""Outside of Normal Operating Conditions: Using Commercial Hardware in Space Computing Platforms for Ubiquitous Sensing

    SciTech Connect

    Quinn, Heather M

    2008-01-01

    Over the past decade field-programmable gate arrays (FPGAs) have been useful in speeding up digital signal processing (DSP) algorithms, and FPGA implementations can be orders of magnitude faster than microprocessor implementations. As many commercial and national security satellites are DSP-oriented, many organizations have started using commercial FPGAs to process data closer to the sensor. Using commercial technology successfully in this environment has lead to new research into fault tolerance and resilience.

  17. Implementation of the Enhanced Flight Termination System at National Aeronautics and Space Administration Dryden Flight Research Center

    NASA Technical Reports Server (NTRS)

    Tow, David

    2010-01-01

    This paper discusses the methodology, requirements, tests, and results of the implementation of the current operating capability for the Enhanced Flight Termination System (EFTS) at the National Aeronautics and Space Administration (NASA) Dryden Flight Research Center (DFRC). The implementation involves the development of the EFTS at NASA DFRC starting from the requirements to system safety review to full end to end system testing, and concluding with the acceptance of the system as an operational system. The paper discusses the first operational usage and subsequent flight utilizing EFTS successfully.

  18. The Characteristics of Project Managers: An Exploration of Complex Projects in the National Aeronautics and Space Administration

    NASA Technical Reports Server (NTRS)

    Mulenburg, Gerald M.

    2000-01-01

    Study of characteristics and relationships of project managers of complex projects in the National Aeronautics and Space Administration. Study is based on Research Design, Data Collection, Interviews, Case Studies, and Data Analysis across varying disciplines such as biological research, space research, advanced aeronautical test facilities, aeronautic flight demonstrations, and projects at different NASA centers to ensure that findings were not endemic to one type of project management, or to one Center's management philosophies. Each project is treated as a separate case with the primary data collected during semi-structured interviews with the project manager responsible for the overall project. Results of the various efforts show some definite similarities of characteristics and relationships among the project managers in the study. A model for how the project managers formulated and managed their projects is included.

  19. National Aeronautics and Space Administration (NASA)/American Society for Engineering Education (ASEE) Summer Faculty Fellowship Program 1988, volume 2

    NASA Technical Reports Server (NTRS)

    Bannerot, Richard B.; Goldstein, Stanley H.

    1989-01-01

    The 1988 Johnson Space Center (JSC) National Aeronautics and Space Administration (NASA)/American Society for Engineering Education (ASEE) Summer Faculty Fellowship Program was conducted by the University of Houston and JCS. The 10-week program was operated under the auspices of the ASEE. The program at JSC, as well as the programs at other NASA Centers, was funded by the Office of University Affairs, NASA Headquarters, Washington, D.C. The objectives of the program, which began in 1965 at JSC and in 1964 nationally, are: (1) to further the professional knowledge of qualified engineering and science faculty members; (2) to stimulate an exchange of ideas between participants and NASA; (3) to enrich and refresh the research and teaching activities of participants' institutions; and (4) to contribute to the research objectives of the NASA Centers.

  20. National Aeronautics and Space Administration (NASA)/American Society for Engineering Education (ASEE) Summer Faculty Fellowship Program, 1992, volume 2

    NASA Technical Reports Server (NTRS)

    Bannerot, Richard B. (Editor); Goldstein, Stanley H. (Editor)

    1992-01-01

    The 1992 Johnson Space Center (JSC) National Aeronautics and Space Administration (NASA)/American Society for Engineering Education (ASEE) Summer Faculty Fellowship Program was conducted by the University of Houston and JSC. The program at JSC, as well as the programs at other NASA Centers, was funded by the Office of University Affairs, NASA Headquarters Washington, DC. The objectives of the program, which began nationally in 1964 and at JSC in 1965, are (1) to further the professional knowledge of qualified engineering and science faculty members; (2) to stimulate an exchange of ideas between participants and NASA; (3) to enrich and refresh the research and teaching activities of participants' institutions; and (4) to contribute to the research objective of the NASA Centers. This document contains reports 13 through 24.

  1. National Aeronautics and Space Administration (NASA)/American Society for Engineering Education (ASEE) Summer Faculty Fellowship Program 1988, volume 1

    NASA Technical Reports Server (NTRS)

    Bannerot, Richard B. (Editor); Goldstein, Stanley H. (Editor)

    1989-01-01

    The 1988 Johnson Space Center (JSC) National Aeronautics and Space Administration (NASA)/American Society for Engineering Education (ASEE) Summer Faculty Fellowship Program was conducted by the University of Houston and JSC. The 10-week program was operated under the auspices of the ASEE. The program at JSC, as well as the programs at other NASA Centers, was funded by the Office of University Affairs, NASA Headquarters, Washington, D.C. The objectives of the program, which began in 1965 at JSC and in 1964 nationally, are (1) to further the professional knowledge of qualified engineering and science faculty members; (2) to stimulate an exchange of ideas between participants and NASA; (3) to enrich and refresh the research and teaching activities of participants' institutions; and (4) to contribute to the research objectives of the NASA Centers.

  2. National Aeronautics and Space Administration (NASA)/American Society for Engineering Education (ASEE) Summer Faculty Fellowship Program, 1987, volume 2

    NASA Technical Reports Server (NTRS)

    Jones, William B., Jr. (Editor); Goldstein, Stanley H. (Editor)

    1987-01-01

    The 1987 Johnson Space Center (JCS) National Aeronautics and Space Administration (NASA)/American Society for Engineering Education (ASEE) Summer Faculty Fellowship program was conducted by Texas A and M University and JSC. The 10-week program was operated under the auspices of ASEE. The basic objectives of the program are: to further the professional knowledge of qualified engineering and science faculty members; to stimulate an exchange of ideas between participants and NASA; to enrich and refresh the research and teaching activities of participants' institutions; and to contribute to the research objective of the NASA Centers. This document is a compilation of the final reports on the research projects done by the faculty fellows during the summer of 1987.

  3. National Aeronautics and Space Administration (NASA)/American Society for Engineering Education (ASEE) Summer Faculty Fellowship Program, 1989, volume 1

    NASA Technical Reports Server (NTRS)

    Jones, William B., Jr. (Editor); Goldstein, Stanley H. (Editor)

    1989-01-01

    The 1989 Johnson Space Center (JSC) National Aeronautics and Space Administration (NASA)/American Society for Engineering Education (ASEE) Summer Faculty Fellowship Program was conducted by Texas A and M University and JSC. The 10-week program was operated under the auspices of the ASEE. The program at JSC, as well as the programs at other NASA Centers, was funded by the Office of University Affairs, NASA Headquarters, Washington, D.C. The objectives of the program, which began nationally in 1964 and at JSC in 1965, are: (1) to further the professional knowledge of qualified engineering and science faculty members; (2) to stimulate an exchange of ideas between participants and NASA; (3) to enrich and refresh the research and teaching activities of participants' institutions; and (4) to contribute to the research objective of the NASA Centers.

  4. National Aeronautics and Space Administration (NASA)/American Society for Engineering Education (ASEE) Summer Faculty Fellowship Program, 1992, volume 1

    NASA Technical Reports Server (NTRS)

    Bannerot, Richard B. (Editor); Goldstein, Stanley H. (Editor)

    1992-01-01

    The 1992 Johnson Space Center (JSC) National Aeronautics and Space Administration (NASA)/American Society for Engineering Education (ASEE) Summer Faculty Fellowship Program was conducted by the University of Houston and JSC. The program at JSC, as well as the programs at other NASA Centers, was funded by the Office of University Affairs, Washington, DC. The objectives of the program, which began nationally in 1964 and at JSC in 1965, are (1) to further the professional knowledge of qualified engineering and science faculty members; (2) to stimulate an exchange of ideas between participants and NASA; (3) to enrich and refresh the research and teaching activities of participants' institutions; and (4) to contribute to the research objective of the NASA Centers. This document is a compilation of the final reports 1 through 12.

  5. National Aeronautics and Space Administration (NASA)/American Society for Engineering Education (ASEE) Summer Faculty Fellowship Program, 1989, volume 2

    NASA Technical Reports Server (NTRS)

    Jones, William B., Jr. (Editor); Goldstein, Stanley H. (Editor)

    1989-01-01

    The 1989 Johnson Space Center (JSC) National Aeronautics and Space Administration (NASA)/American Society for Engineering Education (ASEE) Summer Faculty Fellowship Program was conducted by Texas A and M University and JSC. The 10-week program was operated under the auspices of the ASEE. The program at JSC, as well as the programs at other NASA Centers, was funded by the Office of University Affairs, NASA Headquarters, Washington, D.C. The objectives of the program, which began nationally in 1964 and at JSC in 1965, are: (1) to further the professional knowledge of qualified engineering and science faculty members; (2) to stimulate an exchange of ideas between participants and NASA; (3) to enrich and refresh the research and teaching activities of participants' institutions; and (4) to contribute to the research objective of the NASA Centers.

  6. 14 CFR 417.19 - Registration of space objects.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 4 2014-01-01 2014-01-01 false Registration of space objects. 417.19 Section 417.19 Aeronautics and Space COMMERCIAL SPACE TRANSPORTATION, FEDERAL AVIATION ADMINISTRATION... Registration of space objects. (a) To assist the U.S. Government in implementing Article IV of the...

  7. 14 CFR 417.19 - Registration of space objects.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 4 2013-01-01 2013-01-01 false Registration of space objects. 417.19 Section 417.19 Aeronautics and Space COMMERCIAL SPACE TRANSPORTATION, FEDERAL AVIATION ADMINISTRATION... Registration of space objects. (a) To assist the U.S. Government in implementing Article IV of the...

  8. 14 CFR 417.19 - Registration of space objects.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 4 2012-01-01 2012-01-01 false Registration of space objects. 417.19 Section 417.19 Aeronautics and Space COMMERCIAL SPACE TRANSPORTATION, FEDERAL AVIATION ADMINISTRATION... Registration of space objects. (a) To assist the U.S. Government in implementing Article IV of the...

  9. 14 CFR 415.8 - Human space flight.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 4 2010-01-01 2010-01-01 false Human space flight. 415.8 Section 415.8 Aeronautics and Space COMMERCIAL SPACE TRANSPORTATION, FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION LICENSING LAUNCH LICENSE General § 415.8 Human space flight. To obtain a launch license,...

  10. 14 CFR 431.8 - Human space flight.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 4 2011-01-01 2011-01-01 false Human space flight. 431.8 Section 431.8 Aeronautics and Space COMMERCIAL SPACE TRANSPORTATION, FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION LICENSING LAUNCH AND REENTRY OF A REUSABLE LAUNCH VEHICLE (RLV) General § 431.8 Human space...

  11. 14 CFR 431.8 - Human space flight.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 4 2010-01-01 2010-01-01 false Human space flight. 431.8 Section 431.8 Aeronautics and Space COMMERCIAL SPACE TRANSPORTATION, FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION LICENSING LAUNCH AND REENTRY OF A REUSABLE LAUNCH VEHICLE (RLV) General § 431.8 Human space...

  12. 14 CFR 415.8 - Human space flight.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 4 2011-01-01 2011-01-01 false Human space flight. 415.8 Section 415.8 Aeronautics and Space COMMERCIAL SPACE TRANSPORTATION, FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION LICENSING LAUNCH LICENSE General § 415.8 Human space flight. To obtain a launch license,...

  13. 14 CFR 417.19 - Registration of space objects.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 4 2010-01-01 2010-01-01 false Registration of space objects. 417.19 Section 417.19 Aeronautics and Space COMMERCIAL SPACE TRANSPORTATION, FEDERAL AVIATION ADMINISTRATION... Registration of space objects. (a) To assist the U.S. Government in implementing Article IV of the...

  14. 14 CFR 417.19 - Registration of space objects.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 4 2011-01-01 2011-01-01 false Registration of space objects. 417.19 Section 417.19 Aeronautics and Space COMMERCIAL SPACE TRANSPORTATION, FEDERAL AVIATION ADMINISTRATION... Registration of space objects. (a) To assist the U.S. Government in implementing Article IV of the...

  15. Report from the MPP Working Group to the NASA Associate Administrator for Space Science and Applications

    NASA Technical Reports Server (NTRS)

    Fischer, James R.; Grosch, Chester; Mcanulty, Michael; Odonnell, John; Storey, Owen

    1987-01-01

    NASA's Office of Space Science and Applications (OSSA) gave a select group of scientists the opportunity to test and implement their computational algorithms on the Massively Parallel Processor (MPP) located at Goddard Space Flight Center, beginning in late 1985. One year later, the Working Group presented its report, which addressed the following: algorithms, programming languages, architecture, programming environments, the way theory relates, and performance measured. The findings point to a number of demonstrated computational techniques for which the MPP architecture is ideally suited. For example, besides executing much faster on the MPP than on conventional computers, systolic VLSI simulation (where distances are short), lattice simulation, neural network simulation, and image problems were found to be easier to program on the MPP's architecture than on a CYBER 205 or even a VAX. The report also makes technical recommendations covering all aspects of MPP use, and recommendations concerning the future of the MPP and machines based on similar architectures, expansion of the Working Group, and study of the role of future parallel processors for space station, EOS, and the Great Observatories era.

  16. National Aeronautics and Space Administration Manned Spacecraft Center data base requirements study

    NASA Technical Reports Server (NTRS)

    1971-01-01

    A study was conducted to evaluate the types of data that the Manned Spacecraft Center (MSC) should automate in order to make available essential management and technical information to support MSC's various functions and missions. In addition, the software and hardware capabilities to best handle the storage and retrieval of this data were analyzed. Based on the results of this study, recommendations are presented for a unified data base that provides a cost effective solution to MSC's data automation requirements. The recommendations are projected through a time frame that includes the earth orbit space station.

  17. Fourth National Aeronautics and Space Administration Weather and Climate Program Science Review

    NASA Technical Reports Server (NTRS)

    Kreins, E. R. (Editor)

    1979-01-01

    The NASA Weather and Climate Program has two major thrusts. The first involves the development of experimental and prototype operational satellite systems, sensors, and space facilities for monitoring and understanding the atmosphere. The second thrust involves basic scientific investigation aimed at studying the physical and chemical processes which control weather and climate. This fourth science review concentrated on the scientific research rather than the hardware development aspect of the program. These proceedings contain 65 papers covering the three general areas: severe storms and local weather research, global weather, and climate.

  18. Swamp Works: A New Approach to Develop Space Mining and Resource Extraction Technologies at the National Aeronautics Space Administration (NASA) Kennedy Space Center (KSC)

    NASA Technical Reports Server (NTRS)

    Mueller, R. P.; Sibille, L.; Leucht, K.; Smith, J. D.; Townsend, I. I.; Nick, A. J.; Schuler, J. M.

    2015-01-01

    The first steps for In Situ Resource Utilization (ISRU) on target bodies such as the Moon, Mars and Near Earth Asteroids (NEA), and even comets, involve the same sequence of steps as in the terrestrial mining of resources. First exploration including prospecting must occur, and then the resource must be acquired through excavation methods if it is of value. Subsequently a load, haul and dump sequence of events occurs, followed by processing of the resource in an ISRU plant, to produce useful commodities. While these technologies and related supporting operations are mature in terrestrial applications, they will be different in space since the environment and indigenous materials are different than on Earth. In addition, the equipment must be highly automated, since for the majority of the production cycle time, there will be no humans present to assist or intervene. This space mining equipment must withstand a harsh environment which includes vacuum, radical temperature swing cycles, highly abrasive lofted dust, electrostatic effects, van der Waals forces effects, galactic cosmic radiation, solar particle events, high thermal gradients when spanning sunlight terminators, steep slopes into craters / lava tubes and cryogenic temperatures as low as 40 K in permanently shadowed regions. In addition the equipment must be tele-operated from Earth or a local base where the crew is sheltered. If the tele-operation occurs from Earth then significant communications latency effects mandate the use of autonomous control systems in the mining equipment. While this is an extremely challenging engineering design scenario, it is also an opportunity, since the technologies developed in this endeavor could be used in the next generations of terrestrial mining equipment, in order to mine deeper, safer, more economical and with a higher degree of flexibility. New space technologies could precipitate new mining solutions here on Earth. The NASA KSC Swamp Works is an innovation

  19. The applicability and availability of Former Soviet Union (FSU) space-related capabilities and facilities to energy-related space activities of Department of Energy, Department of Defense and National Aeronautics and Space Administration

    NASA Astrophysics Data System (ADS)

    Pellechi, M.

    1993-01-01

    A senior-level Department of Energy (DOE), Department of Defense (DoD), and National Aeronautics and Space Administration (NASA) team visited the former Soviet Union (FSU) from 16-28 Oct. 1992. The purpose of the visit was to investigate the applicability and availability of FSU space-related capabilities and facilities to the energy-related space activities of the three agencies. This included renewable energy, nuclear power and propulsion, radiation effects, remote sensing, optics, and lasers. The U.S. delegation was successful in identifying some capabilities that would be useful to the three organizations. Efforts to utilize some of the FSU capabilities viewed are being initiated. Concurrently, there will be a technical assessment performed on the information gained from this and other recent visits to the FSU relative to space research.

  20. A systems approach to the commercialization of space communications technology - The NASA/JPL Mobile Satellite Program

    NASA Technical Reports Server (NTRS)

    Weber, William J., III; Gray, Valerie W.; Jackson, Byron; Steele, Laura C.

    1991-01-01

    This paper discusss the systems approach taken by NASA and the Jet Propulsion Laboratory in the commercialization of land-mobile satellite services (LMSS) in the United States. As the lead center for NASA's Mobile Satellite Program, JPL was involved in identifying and addressing many of the key barriers to commercialization of mobile satellite communications, including technical, economic, regulatory and institutional risks, or uncertainties. The systems engineering approach described here was used to mitigate these risks. The result was the development and implementation of the JPL Mobile Satellite Experiment Project. This Project included not only technology development, but also studies to support NASA in the definition of the regulatory, market, and investment environments within which LMSS would evolve and eventually operate, as well as initiatives to mitigate their associated commercialization risks. The end result of these government-led endeavors was the acceleration of the introduction of commercial mobile satellite services, both nationally and internationally.

  1. Natural Atmospheric Environment Model Development for the National Aeronautics and Space Administration's Second Generation Reusable Launch Vehicle

    NASA Technical Reports Server (NTRS)

    Roberts, Barry C.; Leahy, Frank; Overbey, Glenn; Batts, Glen W.; Parker, Nelson (Technical Monitor)

    2002-01-01

    The National Aeronautics and Space Administration (NASA) recently began development of a new reusable launch vehicle. The program office is located at Marshall Space Flight Center (MSFC) and is called the Second Generation Reusable Launch Vehicle (2GRLV). The purpose of the program is to improve upon the safety and reliability of the first generation reusable launch vehicle, the Space Shuttle. Specifically, the goals are to reduce the risk of crew loss to less than 1-in-10,000 missions and decreased costs by a factor of 10 to approximately $1,000 per pound of payload launched to low Earth orbit. The program is currently in the very early stages of development and many two-stage vehicle concepts will be evaluated. Risk reduction activities are also taking place. These activities include developing new technologies and advancing current technologies to be used by the vehicle. The Environments Group at MSFC is tasked by the 2GRLV Program to develop and maintain an extensive series of analytical tools and environmental databases which enable it to provide detailed atmospheric studies in support of structural, guidance, navigation and control, and operation of the 2GRLV.

  2. The past, present, and future of National Aeronautics and Space Administration spaceflight diet in support of microgravity rodent experiments.

    PubMed

    Sun, Gwo-Shing; Tou, Janet C; Yu, Diane; Girten, Beverly E; Cohen, Jacob

    2014-02-01

    Rodents have been the most frequently flown animal model used to study physiological responses to the space environment. In support of future of space exploration, the National Aeronautics and Space Administration (NASA) envisions an animal research program focused on rodents. Therefore, the development of a rodent diet that is suitable for the spaceflight environment including long duration spaceflight is a high priority. Recognizing the importance of nutrition in affecting spaceflight physiological responses and ensuring reliable biomedical and biological science return, NASA developed the nutrient-upgraded rodent food bar (NuRFB) as a standard diet for rodent spaceflight. Depending on future animal habitat hardware and planned spaceflight experiments, modification of the NuRFB or development of a new diet formulation may be needed, particularly for long term spaceflights. Research in this area consists primarily of internal technical reports that are not readily accessible. Therefore, the aims of this contribution are to provide a brief history of the development of rodent spaceflight diets, to review the present diet used in rodent spaceflight studies, and to discuss some of the challenges and potential solutions for diets to be used in future long-term rodent spaceflight studies.

  3. Uniform administrative requirements for grants and agreements with institutions of higher education, hospitals, other non-profit, and commercial organizations--Department of Commerce. Interim final rule.

    PubMed

    1998-09-04

    This interim final rule implements the revisions to the Office of Management and Budget (OMB) Circular A-110, "Uniform Administrative Requirements for Grants and Agreements With Institutions of Higher Education, Hospitals, and Other Non-Profit Organizations" which was published in the Federal Register on November 29, 1993. The revised Circular was developed by an interagency task force for governmentwide use in a model rule format to facilitate regulatory adoption by executive departments and agencies. In the published revised Circular, OMB specified as "required action" that Federal agencies responsible for awarding and administering grants and other agreements to recipients described therein, shall adopt the language of the Circular unless other provisions are required by Federal statute or exceptions or deviations are approved by OMB. This interim final rule adopts the provisions of the Circular and its language to the maximum extent feasible. However, minor changes were made to update the procedures, clarify the language, and make the language apply specifically to the DoC and its operating units. No changes are intended to deviate from the substance of Circular A-110. The Circular covers both grants and cooperative agreements made by Federal agencies and subawards, unless sections of the Circular specifically exclude subrecipients from coverage. Consistent with guidance provided in the Circular, DoC will apply its provisions to grants and agreements with institutions of higher education, hospitals, other nonprofit, and commercial organizations. The provisions of the interim final rule will also apply to foreign governments, organizations under the jurisdiction of foreign governments, and international organizations when appropriate.

  4. Characterization of Seven Outbreaks of Hemorrhagic Hepatopathy Syndrome in Commercial Pullets Following the Administration of a Salmonella Enteritidis Bacterin in California.

    PubMed

    Carnaccini, S; Shivaprasad, H L; Cutler, G; Bland, M; Meng, X J; Kenney, S P; Bickford, A A; Cooper, G; Charlton, B; Sentíes-Cué, C G

    2016-03-01

    Between April 2013 and April 2015, seven flocks belonging to three different major commercial egg producers inCalifornia experienced a mild increase in mortality 2 to 3 wk after administration of Salmonella Enteritidis bacterins. Strains of chickens involved were H&N (flock A1, A2, B2, C1, C2, and C3) and Lohmann white (flock B1). Vaccination was administered individually through injection either in the breast muscles or subcutis in the legs between 11 and 18 wk of age in all flocks. Clinical signs ranged from inapparent to lameness, reluctance to walk, greenish diarrhea, and retching-like symptoms. The mortality ranged from 0.16% to 1.38% per week, with the highest peaks occurring usually 2 to 3 wk postvaccination, and then declined rapidly. Postmortem examinations revealed enlarged livers with disseminated hemorrhages and pale foci of necrosis. Also, severe extensive hemorrhages in the intestine, heart, and proventriculus were observed in a few birds. Various degrees of productive, exudative giant cell granulomatous myositis were observed invading deeply the muscles and subcutis at the site of vaccination. The myositis was always associated with optically empty vacuoles positive for neutral lipids by Oil Red O stain. Droplets of Oil Red O material were also noticed in the affected livers and intestines. Congo red stain highlighted the presence of amyloid in moderate to severe amounts in the breast muscles and moderate amounts in livers, spleens, and intestines. Salmonella antigens were detected in the injection sites and livers by immunohistochemical staining. No viruses or toxic substances were recovered from the liver, spleen, intestine, and pectoral muscles, and the few bacteria isolated were interpreted as secondary postmortem invaders. In addition, livers and bile tested for hepatitis E virus were negative by reverse-transcriptase polymerase chain reaction.

  5. National Aeronautics and Space Administration (NASA) Environmental Control and Life Support (ECLS) Integrated Roadmap Development

    NASA Technical Reports Server (NTRS)

    Metcalf, Jordan; Peterson, Laurie; Carrasquillo, Robyn; Bagdigian, Robert

    2011-01-01

    At present, NASA has considered a number of future human space exploration mission concepts . Yet, detailed mission requirements and vehicle architectures remain mostly undefined, making technology investment strategies difficult to develop and sustain without a top-level roadmap to serve as a guide. This paper documents a roadmap for development of Environmental Control and Life Support Systems (ECLSS) capabilities required to enhance the long-term operation of the International Space Station (ISS) as well as enable beyond-Low Earth Orbit (LEO) human exploration missions. Three generic mission types were defined to serve as a basis for developing a prioritized list of needed capabilities and technologies. Those are 1) a short duration micro gravity mission; 2) a long duration transit microgravity mission; and 3) a long duration surface exploration mission. To organize the effort, ECLSS was categorized into three major functional groups (atmosphere, water, and solid waste management) with each broken down into sub-functions. The ability of existing state-of-the-art (SOA) technologies to meet the functional needs of each of the three mission types was then assessed by NASA subject matter experts. When SOA capabilities were deemed to fall short of meeting the needs of one or more mission types, those gaps were prioritized in terms of whether or not the corresponding capabilities enable or enhance each of the mission types. The result was a list of enabling and enhancing capabilities needs that can be used to guide future ECLSS development, as well as a list of existing hardware that is ready to go for exploration-class missions. A strategy to fulfill those needs over time was then developed in the form of a roadmap. Through execution of this roadmap, the hardware and technologies intended to meet exploration needs will, in many cases, directly benefit the ISS operational capability, benefit the Multi-Purpose Crew Vehicle (MPCV), and guide long-term technology

  6. National Aeronautics and Space Administration (NASA) Environmental Control and Life Support (ECLS) Integrated Roadmap Development

    NASA Technical Reports Server (NTRS)

    Metcalf, Jordan; Peterson, Laurie; Carrasquillo, Robyn; Bagdigian, Robert

    2012-01-01

    Although NASA is currently considering a number of future human space exploration mission concepts, detailed mission requirements and vehicle architectures remain mostly undefined, making technology investment strategies difficult to develop and sustain without a top-level roadmap to serve as a guide. This paper documents the process and results of an effort to define a roadmap for Environmental Control and Life Support Systems (ECLSS) capabilities required to enhance the long-term operation of the International Space Station (ISS) as well as enable beyond-Low Earth Orbit (LEO) human exploration missions. Three generic mission types were defined to serve as a basis for developing a prioritized list of needed capabilities and technologies. Those are 1) a short duration micro-gravity mission; 2) a long duration microgravity mission; and 3) a long duration partial gravity (surface) exploration mission. To organize the effort, a functional decomposition of ECLSS was completed starting with the three primary functions: atmosphere, water, and solid waste management. Each was further decomposed into sub-functions to the point that current state-of-the-art (SOA) technologies could be tied to the sub-function. Each technology was then assessed by NASA subject matter experts as to its ability to meet the functional needs of each of the three mission types. When SOA capabilities were deemed to fall short of meeting the needs of one or more mission types, those gaps were prioritized in terms of whether or not the corresponding capabilities enable or enhance each of the mission types. The result was a list of enabling and enhancing capability needs that can be used to guide future ECLSS development, as well as a list of existing hardware that is ready to go for exploration-class missions. A strategy to fulfill those needs over time was then developed in the form of a roadmap. Through execution of this roadmap, the hardware and technologies intended to meet exploration needs

  7. 14 CFR 406.165 - Argument before the administrative law judge.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 4 2014-01-01 2014-01-01 false Argument before the administrative law judge. 406.165 Section 406.165 Aeronautics and Space COMMERCIAL SPACE TRANSPORTATION, FEDERAL AVIATION... Rules of Practice in FAA Space Transportation Adjudications § 406.165 Argument before the...

  8. 14 CFR 406.165 - Argument before the administrative law judge.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 4 2013-01-01 2013-01-01 false Argument before the administrative law judge. 406.165 Section 406.165 Aeronautics and Space COMMERCIAL SPACE TRANSPORTATION, FEDERAL AVIATION... Rules of Practice in FAA Space Transportation Adjudications § 406.165 Argument before the...

  9. 14 CFR 406.165 - Argument before the administrative law judge.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 4 2012-01-01 2012-01-01 false Argument before the administrative law judge. 406.165 Section 406.165 Aeronautics and Space COMMERCIAL SPACE TRANSPORTATION, FEDERAL AVIATION... Rules of Practice in FAA Space Transportation Adjudications § 406.165 Argument before the...

  10. 14 CFR 406.165 - Argument before the administrative law judge.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 4 2010-01-01 2010-01-01 false Argument before the administrative law judge. 406.165 Section 406.165 Aeronautics and Space COMMERCIAL SPACE TRANSPORTATION, FEDERAL AVIATION... Rules of Practice in FAA Space Transportation Adjudications § 406.165 Argument before the...

  11. 14 CFR 406.165 - Argument before the administrative law judge.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 4 2011-01-01 2011-01-01 false Argument before the administrative law judge. 406.165 Section 406.165 Aeronautics and Space COMMERCIAL SPACE TRANSPORTATION, FEDERAL AVIATION... Rules of Practice in FAA Space Transportation Adjudications § 406.165 Argument before the...

  12. Modeling, Analysis and Simulation Approaches Used in Development of the National Aeronautics and Space Administration Max Launch Abort System

    NASA Technical Reports Server (NTRS)

    Yuchnovicz, Daniel E.; Dennehy, Cornelius J.; Schuster, David M.

    2011-01-01

    The National Aeronautics and Space Administration (NASA) Engineering and Safety Center was chartered to develop an alternate launch abort system (LAS) as risk mitigation for the Orion Project. Its successful flight test provided data for the design of future LAS vehicles. Design of the flight test vehicle (FTV) and pad abort trajectory relied heavily on modeling and simulation including computational fluid dynamics for vehicle aero modeling, 6-degree-of-freedom kinematics models for flight trajectory modeling, and 3-degree-of-freedom kinematics models for parachute force modeling. This paper highlights the simulation techniques and the interaction between the aerodynamics, flight mechanics, and aerodynamic decelerator disciplines during development of the Max Launch Abort System FTV.

  13. The National Aeronautics and Space Administration's Earth Science Applications Program: Exploring Partnerships to Enhance Decision Making in Public Health Practice

    NASA Technical Reports Server (NTRS)

    Vann, Timi S.; Venezia, Robert A.

    2002-01-01

    The National Aeronautics and Space Administration (NASA), Earth Science Enterprise is engaged in applications of NASA Earth science and remote sensing technologies for public health. Efforts are focused on establishing partnerships with those agencies and organizations that have responsibility for protecting the Nation's Health. The program's goal is the integration of NASA's advanced data and technology for enhanced decision support in the areas of disease surveillance and environmental health. A focused applications program, based on understanding partner issues and requirements, has the potential to significantly contribute to more informed decision making in public health practice. This paper intends to provide background information on NASA's investment in public health and is a call for partnership with the larger practice community.

  14. National Aeronautics and Space Administration (NASA)/American Society of Engineering Education (ASEE) Summer Faculty Fellowship Program - 2000

    NASA Technical Reports Server (NTRS)

    Bannerot, Richard B. (Editor); Sickorez, Donn G. (Editor)

    2003-01-01

    The 2000 Johnson Space Center (JSC) National Aeronautics and Space Administration (NASA)/American Society for Engineering Education (ASEE) Summer Faculty Fellowship Program was conducted by the University of Houston and JSC. The 10-week program was operated under the auspices of the ASEE. The program at JSC, as well as the programs at other NASA Centers, was funded by the Office of University Affairs, NASA Headquarters, Washington, D.C. The objectives of the program, which began in 1965 at JSC and 1964 nationally, are to (1) further the professional knowledge of qualified engineering and science faculty, (2) stimulate an exchange of ideas between participants and NASA, (3) enrich and refresh the research and teaching activities of participants' institutions, and (4) contribute to the research objectives of the NASA Centers. Each faculty fellow spent at least 10 weeks at JSC engaged in a research project commensurate with her/his interests and background, and worked in collabroation with a NASA/JSC colleague. This document is a compilation of the final reports on the research projects done by the faculty fellows during the summer of 2000.

  15. Quantitative Analysis of the Principal-Agent Problem in Commercial Buildings in the U.S.: Focus on Central Space Heating and Cooling

    SciTech Connect

    Blum, Helcio; Sathaye, Jayant

    2010-05-14

    We investigate the existence of the principal-agent (PA) problem in non-government, non-mall commercial buildings in the U.S. in 2003. The analysis concentrates on space heating and cooling energy consumed by centrally installed equipment in order to verify whether a market failure caused by the PA problem might have prevented the installation of energy-efficient devices in non-owner-occupied buildings (efficiency problem) and/or the efficient operation of space-conditioning equipment in these buildings (usage problem). Commercial Buildings Energy Consumption Survey (CBECS) 2003 data for single-owner, single-tenant and multi-tenant occupied buildings were used for conducting this evaluation. These are the building subsets with the appropriate conditions for assessing both the efficiency and the usage problems. Together, these three building types represent 51.9percent of the total floor space of all buildings with space heating and 59.4percent of the total end-use energy consumption of such buildings; similarly, for space cooling, they represent 52.7percent of floor space and 51.6percent of energy consumption. Our statistical analysis shows that there is a usage PA problem. In space heating it applies only to buildings with a small floor area (<_50,000 sq. ft.). We estimate that in 2003 it accounts for additional site energy consumption of 12.3 (+ 10.5 ) TBtu (primary energy consumption of 14.6 [+- 12.4] TBtu), corresponding to 24.0percent (+- 20.5percent) of space heating and 10.2percent (+- 8.7percent) of total site energy consumed in those buildings. In space cooling, however, the analysis shows that the PA market failure affects the complete set of studied buildings. We estimate that it accounts for a higher site energy consumption of 8.3 (+-4.0) TBtu (primary energy consumption of 25.5 [+- 12.2]TBtu), which corresponds to 26.5percent (+- 12.7percent) of space cooling and 2.7percent (+- 1.3percent) of total site energy consumed in those buildings.

  16. Lunar Commercialization Workshop

    NASA Technical Reports Server (NTRS)

    Martin, Gary L.

    2009-01-01

    This slide presentation outlines a competition that has as its goal to explores the viability of using public-private partnerships to open space frontier for commercial uses. The teams have the objective of designing a business plan to open the space frontier to commercial interests.

  17. 14 CFR 431.85 - Registration of space objects.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 4 2012-01-01 2012-01-01 false Registration of space objects. 431.85 Section 431.85 Aeronautics and Space COMMERCIAL SPACE TRANSPORTATION, FEDERAL AVIATION ADMINISTRATION... Requirements-Reusable Launch Vehicle Mission License Terms and Conditions § 431.85 Registration of...

  18. 14 CFR 431.85 - Registration of space objects.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 4 2013-01-01 2013-01-01 false Registration of space objects. 431.85 Section 431.85 Aeronautics and Space COMMERCIAL SPACE TRANSPORTATION, FEDERAL AVIATION ADMINISTRATION... Requirements-Reusable Launch Vehicle Mission License Terms and Conditions § 431.85 Registration of...

  19. 14 CFR 431.85 - Registration of space objects.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 4 2014-01-01 2014-01-01 false Registration of space objects. 431.85 Section 431.85 Aeronautics and Space COMMERCIAL SPACE TRANSPORTATION, FEDERAL AVIATION ADMINISTRATION... Requirements-Reusable Launch Vehicle Mission License Terms and Conditions § 431.85 Registration of...

  20. 14 CFR 431.85 - Registration of space objects.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 4 2011-01-01 2011-01-01 false Registration of space objects. 431.85 Section 431.85 Aeronautics and Space COMMERCIAL SPACE TRANSPORTATION, FEDERAL AVIATION ADMINISTRATION... Requirements-Reusable Launch Vehicle Mission License Terms and Conditions § 431.85 Registration of...

  1. 14 CFR 431.85 - Registration of space objects.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 4 2010-01-01 2010-01-01 false Registration of space objects. 431.85 Section 431.85 Aeronautics and Space COMMERCIAL SPACE TRANSPORTATION, FEDERAL AVIATION ADMINISTRATION... Requirements-Reusable Launch Vehicle Mission License Terms and Conditions § 431.85 Registration of...

  2. Commercial Buildings Characteristics, 1992

    SciTech Connect

    Not Available

    1994-04-29

    Commercial Buildings Characteristics 1992 presents statistics about the number, type, and size of commercial buildings in the United States as well as their energy-related characteristics. These data are collected in the Commercial Buildings Energy Consumption Survey (CBECS), a national survey of buildings in the commercial sector. The 1992 CBECS is the fifth in a series conducted since 1979 by the Energy Information Administration. Approximately 6,600 commercial buildings were surveyed, representing the characteristics and energy consumption of 4.8 million commercial buildings and 67.9 billion square feet of commercial floorspace nationwide. Overall, the amount of commercial floorspace in the United States increased an average of 2.4 percent annually between 1989 and 1992, while the number of commercial buildings increased an average of 2.0 percent annually.

  3. Commercial Capaciflector

    NASA Astrophysics Data System (ADS)

    Vranish, John M.

    1991-12-01

    A capacitive proximity/tactile sensor with unique performance capabilities ('capaciflector' or capacitive reflector) is being developed by NASA/Goddard Space Flight Center (GSFC) for use on robots and payloads in space in the interests of safety, efficiency, and ease of operation. Specifically, this sensor will permit robots and their attached payloads to avoid collisions in space with humans and other objects and to dock these payloads in a cluttered environment. The sensor is simple, robust, and inexpensive to manufacture with obvious and recognized commercial possibilities. Accordingly, NASA/GSFC, in conjunction with industry, is embarking on an effort to 'spin' this technology off into the private sector. This effort includes prototypes aimed at commercial applications. The principles of operation of these prototypes are described along with hardware, software, modelling, and test results. The hardware description includes both the physical sensor in terms of a flexible printed circuit board and the electronic circuitry. The software description will include filtering and detection techniques. The modelling will involve finite element electric field analysis and will underline techniques used for design optimization.

  4. Commercial Capaciflector

    NASA Technical Reports Server (NTRS)

    Vranish, John M.

    1991-01-01

    A capacitive proximity/tactile sensor with unique performance capabilities ('capaciflector' or capacitive reflector) is being developed by NASA/Goddard Space Flight Center (GSFC) for use on robots and payloads in space in the interests of safety, efficiency, and ease of operation. Specifically, this sensor will permit robots and their attached payloads to avoid collisions in space with humans and other objects and to dock these payloads in a cluttered environment. The sensor is simple, robust, and inexpensive to manufacture with obvious and recognized commercial possibilities. Accordingly, NASA/GSFC, in conjunction with industry, is embarking on an effort to 'spin' this technology off into the private sector. This effort includes prototypes aimed at commercial applications. The principles of operation of these prototypes are described along with hardware, software, modelling, and test results. The hardware description includes both the physical sensor in terms of a flexible printed circuit board and the electronic circuitry. The software description will include filtering and detection techniques. The modelling will involve finite element electric field analysis and will underline techniques used for design optimization.

  5. An Analysis for the Use of Research and Education Networks and Commercial Network Vendors in Support of Space Based Mission Critical and Non-Critical Networking

    NASA Technical Reports Server (NTRS)

    Bradford, Robert N.

    2002-01-01

    Currently, and in the past, dedicated communication circuits and "network services" with very stringent performance requirements are being used to support manned and unmanned mission critical ground operations at GSFC, JSC, MSFC, KSC and other NASA facilities. Because of the evolution of network technology, it is time to investigate using other approaches to providing mission services for space ground operations. The current NASA approach is not in keeping with the evolution of network technologies. In the past decade various research and education networks dedicated to scientific and educational endeavors have emerged, as well as commercial networking providers, that employ advanced networking technologies. These technologies have significantly changed networking in recent years. Significant advances in network routing techniques, various topologies and equipment have made commercial networks very stable and virtually error free. Advances in Dense Wave Division Multiplexing will provide tremendous amounts of bandwidth for the future. The question is: Do these networks, which are controlled and managed centrally, provide a level of service that equals the stringent NASA performance requirements. If they do, what are the implication(s) of using them for critical space based ground operations as they are, without adding high cost contractual performance requirements? A second question is the feasibility of applying the emerging grid technology in space operations. Is it feasible to develop a Space Operations Grid and/or a Space Science Grid? Since these network's connectivity is substantial, both nationally and internationally, development of these sorts of grids may be feasible. The concept of research and education networks has evolved to the international community as well. Currently there are international RENs connecting the US in Chicago to and from Europe, South America, Asia and the Pacific rim, Russia and Canada. And most countries in these areas have their

  6. Characteristics of small residential and commercial water systems that influence their likelihood of being on drinking water advisories in rural British Columbia, Canada: a cross-sectional study using administrative data.

    PubMed

    Edwards, Joanne E; Henderson, Sarah B; Struck, Sylvia; Kosatsky, Tom

    2012-12-01

    Health officials often lack information about characteristics that predict which water systems are most likely to be placed on and to persist on drinking water advisories (e.g. health warnings offering advice or information). This study uses data collected by the Interior Health Authority in British Columbia to characterize water systems on advisory for microbiological threats and to identify the variables associated with advisory status and length. By systematically extracting key characteristics, this study explores advisory status by examining associated variables: water systems size, administrative area, governance structure, water source, treatment level, and service type (e.g. residential or commercial systems). Results show residential and commercial water systems have different characteristics associated with advisory status and length. For residential systems, certain governance structures are more likely to be placed on and to stay on advisory, especially the cooperative governance structures not operated by local governments. For commercial systems, administrative area and system size were associated with advisory status, but not advisory length. The overall results highlight the influence of governance structure and support the need for targeted interventions to improve residential small water systems not operated by local governments or utilities. Lastly, these results show how health officials can use administrative data for program planning and evaluation.

  7. Space product development: bringing the benefits of space down to Earth.

    PubMed

    Tygielski, A P; Allen, R W; Gabris, E A; Nall, M E

    1997-01-01

    In fulfilling the National Aeronautics and Space Administration's (NASA) responsibility to encourage the fullest commercial use of space the Space Product Development (SPD) Program, within the Microgravity Research Program Office (MRPO) located at the Marshall Space Flight Center (MSFC) in Huntsville, Alabama, is managing an organization of Commercial Space Centers (CSC's) that have successfully employed methods for encouraging private industries to exploit the benefits of space-based research. Unique research opportunities of the space environment are being made available to private industry in an effort to develop new, competitive products; create jobs; and enhance the country's quality of life. Over 200 commercial research activities have been conducted in space by the CSC's and their industrial partners during the last several years. The success of this research is evidenced by the increasing amount of industrial participation in commercial microgravity research and the potential products nearing marketability.

  8. Point-to-point people with purpose—Exploring the possibility of a commercial traveler market for point-to-point suborbital space transportation

    NASA Astrophysics Data System (ADS)

    Webber, Derek

    2013-12-01

    An argument was made at the First Arcachon Conference on Private Human Access to Space in 2008 [1] that some systematic market research should be conducted into potential market segments for point-to-point suborbital space transportation (PtP), in order to understand whether a commercial market exists which might augment possible government use for such a vehicle. The cargo market potential was subsequently addressed via desk research, and the results, which resulted in a pessimistic business case outlook, were presented in [2]. The same desk research approach is now used in this paper to address the potential business and wealthy individual passenger traveler market segment ("point-to-point people with purpose"). The results, with the assumed ticket pricing, are not encouraging.

  9. ISS Flight 2A.2B (STS-106): Commercial Generic Bioprocessing Apparatus (CGBA) Payload BioServe Space Technologies

    NASA Technical Reports Server (NTRS)

    Stodieck, Louis; Klaus, David

    2001-01-01

    The two experiments housed in the Commercial Generic Bioprocessing Apparatus (CGBA) during STS-106 were designed to explore how biological processes are affected by microgravity. The first was a developmental study into the effects of microgravity on motor-neuronal growth in the fruit fly species Drosophila melanogaster and the second study was designed to characterize changes in kidney cell gene expression. The objective of the primary experiment, called NIH-B1, was to determine how gravity affects neuronal development of the D. melanogaster embryo and larvae in microgravity, specifically observing the neural connections to muscle fibers.

  10. The Pine Ridge-Mayo National Aeronautics and Space Administration Telemedicine Project: Program Activities and Participant Reactions

    NASA Technical Reports Server (NTRS)

    Kottke, T. E.; Little Finger, L.; Trapp, M. A.; Panser, L. A.; Novotny, P. J.

    1996-01-01

    OBJECTIVE: To determine the response of participants to the Pine Ridge-Mayo National Aeronautics and Space Administration telemedicine project. DESIGN: We describe a 3-month demonstration project of medical education and clinical consultations conducted by means of satellite transmission. Postparticipation questionnaires and a postproject survey were used to assess the success of the activity. MATERIAL AND METHODS: Patients and employees at the Pine Ridge Indian Health Service Hospital in southwestern South Dakota and employees at Mayo Clinic Rochester participated in a telemedicine project, after which they completed exit surveys and a postproject questionnaire to ascertain the acceptability of this mode of health care. RESULTS: Almost all Pine Ridge and Mayo Clinic participants viewed the project as beneficial. The educational sessions received favorable evaluations, and almost two-thirds of the patients who completed evaluations thought the consultation had contributed to their medical care. More than 90% of the respondents from Pine Ridge and more than 85% of the respondents from Mayo Clinic Rochester said that they would recommend participation in this project to others. More than 90% of respondents from Pine Ridge and 80% of Mayo respondents agreed with the statement that the project should continue. CONCLUSION: These data suggest that a program of clinical consultation services, professional education, and patient education available by telemedicine might be viewed as beneficial.

  11. NASA's telemedicine testbeds: Commercial benefit

    NASA Astrophysics Data System (ADS)

    Doarn, Charles R.; Whitten, Raymond

    1998-01-01

    The National Aeronautics and Space Administration (NASA) has been developing and applying telemedicine to support space flight since the Agency's beginning. Telemetry of physiological parameters from spacecraft to ground controllers is critical to assess the health status of humans in extreme and remote environments. Requisite systems to support medical care and maintain readiness will evolve as mission duration and complexity increase. Developing appropriate protocols and procedures to support multinational, multicultural missions is a key objective of this activity. NASA has created an Agency-wide strategic plan that focuses on the development and integration of technology into the health care delivery systems for space flight to meet these challenges. In order to evaluate technology and systems that can enhance inflight medical care and medical education, NASA has established and conducted several testbeds. Additionally, in June of 1997, NASA established a Commercial Space Center (CSC) for Medical Informatics and Technology Applications at Yale University School of Medicine. These testbeds and the CSC foster the leveraging of technology and resources between government, academia and industry to enhance health care. This commercial endeavor will influence both the delivery of health care in space and on the ground. To date, NASA's activities in telemedicine have provided new ideas in the application of telecommunications and information systems to health care. NASA's Spacebridge to Russia, an Internet-based telemedicine testbed, is one example of how telemedicine and medical education can be conducted using the Internet and its associated tools. Other NASA activities, including the development of a portable telemedicine workstation, which has been demonstrated on the Crow Indian Reservation and in the Texas Prison System, show promise in serving as significant adjuncts to the delivery of health care. As NASA continues to meet the challenges of space flight, the

  12. The Space Radiation Environment as it Relates to Electronic System Performance: Or Why Not to Fly Commercial Electronic Components in Space

    NASA Technical Reports Server (NTRS)

    Barth, Janet L.; Xapsos, Michael A.; LaBel, Kenneth A.; Polvey, Christian

    2005-01-01

    This viewgraph presentation offers an overview of the space radiation environment, primarily in near-Earth environments such as Low Earth Orbit (LEO). The presentation describes the Halloween solar event of 2003 as an example of how solar activity can affect spacecraft electronic systems. The lunar radiation environment is also briefly summarized.

  13. Overview of Commercial Buildings, 2003

    EIA Publications

    2008-01-01

    The Energy Information Administration conducts the Commercial Buildings Energy Consumption Survey (CBECS) to collect information on energy-related building characteristics and types and amounts of energy consumed in commercial buildings in the United States.

  14. Integrated Space Transportation Plan: Defining Technology Requirements and Next Generation Launch Systems to Meet Commercial and Government Needs. Revision 20 Oct. 1999

    NASA Technical Reports Server (NTRS)

    Davidoff, Larry D.; Reichert, Jack M.

    1999-01-01

    NASA continues to focus on improving safety and reliability while reducing the annual cost of meeting human space flight and unique ISS and exploration needs. NASA's Space Transportation Architecture Study (STAS) Phase 2 in early 1998 focused on space transportation options. Subsequently, NASA directed parallel industry and government teams to conduct the Integrated Space Transportation Plan effort (STAS Phase 3). The objective of ISTP was to develop technology requirements, roadmaps, and risk reduction portfolio that considered expanded definition of "clean-sheet" and Shuttle-derived second generation ETO transportation systems in support of a 2005 RLV competition for NASA missions beginning 2010. NASA provided top-level requirements for improvements in safety, reliability, and cost and a set of design reference missions representing NASA ISS, human exploration, commercial, and other civil and government needs. This paper addresses the challenges of meeting NASA's objectives while servicing the varied market segments represented in the ISTP design reference missions and provides a summary of technology development needs and candidate system concepts. A comparison of driving requirements, architectures and technology needs is discussed and descriptions of viable Shuttle-derived and next generation systems to meet the market needs are presented.

  15. NASA commercial programs

    NASA Technical Reports Server (NTRS)

    1990-01-01

    Highlights of NASA-sponsored and assisted commercial space activities of 1989 are presented. Industrial R and D in space, centers for the commercial development of space, and new cooperative agreements are addressed in the U.S. private sector in space section. In the building U.S. competitiveness through technology section, the following topics are presented: (1) technology utilization as a national priority; (2) an exploration of benefits; and (3) honoring Apollo-Era spinoffs. International and domestic R and D trends, and the space sector are discussed in the section on selected economic indicators. Other subjects included in this report are: (1) small business innovation; (2) budget highlights and trends; (3) commercial programs management; and (4) the commercial programs advisory committee.

  16. Proceedings of the 2006 Civil Commercial Imagery Evaluation Workshop

    NASA Technical Reports Server (NTRS)

    Stanley, Thomas; Pagnutti, Mary

    2007-01-01

    The Joint Agency Commercial Imagery Evaluation (JACIE) team is a collaborative interagency working group formed to leverage different government agencies' capabilities for the characterization of commercial remote sensing products. The team is composed of staff from the National Aeronautics and Space Administration (NASA), the National Geospatial-Intelligence Agency (NGA), and the U.S. Geological Survey (USGS). Each JACIE agency has a vested interest in the purchase and use of commercial imagery to support government research and operational applications. The intent of the 2006 workshop is to exchange information regarding the characterization and application of commercial imagery used by the government. The main focus of previous workshops has been on high-resolution satellite imagery from systems; such as, IKONOS (Space Imaging, Inc.), QuickBird (DigitalGlobe, Inc.), and OrbView-3 (ORBIMAGE). This workshop is being expanded to cover all civil medium- and high-resolution commercial imagery used by the government.

  17. Special investigation report: Commercial space launch incident, launch procedure anomaly orbital sciences corporation PEGASUS/SCD-1, 80 nautical miles east of Cape Canaveral, Florida, February 9, 1993

    NASA Technical Reports Server (NTRS)

    1993-01-01

    This report explains the procedural anomaly that occurred during the launch sequence of an Orbital Sciences Corporation Pegasus expendable launch vehicle, which was subsequently deployed successfully from an NB-52B airplane, on 9 Feb. 1993. The safety issues discussed in the report include command, control and communications responsibility, launch crew fatigue, launch interphone procedures, efficiency of launch constraints, and the lack of common launch documents. Safety recommendations concerning these issues were made to the Department of Transportation, the National Aeronautics and Space Administration, and the Orbital Sciences Corporation.

  18. Primary research efforts on exploring the commercial possibilities of thin film growth and materials purification in space

    NASA Technical Reports Server (NTRS)

    1989-01-01

    The progress made on research programs in the 1987 to 1988 year is reported. The research is aimed at producing thin film semiconductors and superconductor materials in space. Sophisticated vacuum chambers and equipment were attained for the epitaxial thin film growth of semiconductors, metals and superconductors. In order to grow the best possible epitaxial films at the lowest possible temperatures on earth, materials are being isoelectronically doped during growth. It was found that isoelectrically doped film shows the highest mobility in comparison with films grown at optimal temperatures. Success was also attained in growing epitaxial films of InSb on sapphire which show promise for infrared sensitive devices in the III-V semiconductor system.

  19. Future Nanotube Commercialization Opportunities at the NASA Marshall Space Flight Center and the US Army Aviation and Missile Command

    NASA Technical Reports Server (NTRS)

    Watson, Michael; Shah, Sandeep; Kaul, Raj; Zhu, Shen; Vandiver, Terry; Zimmerman, Joe E. (Technical Monitor)

    2001-01-01

    Nanotube technology has broad applicability to programs at both the NASA Marshall Space Flight Center (MSFC) and the US Army Aviation and Missile Command (AMCOM). MSFC has interest in applications of nanotubes as sensors and high strength lightweight materials for propulsion system components, avionic systems, and scientific instruments. MSFC is currently pursuing internal programs to develop nanotube temperature sensors, heat pipes, and metal matrix composites. In support of these application areas MSFC is interested in growth of long nanotubes, growth of nanotubes in the microgravity environment, and nanotubes fabricated from high temperature materials such as Boron Nitride or Silicon Carbide. AMCOM is similarly interested in nanotube applications which take advantage of the nanotube thermal conductance properties, high strength, and lightweight. Applications of interest to AMCOM include rocket motor casing structures, rocket nozzles, and lightweight structure and aeronautic skins.

  20. Lunar Commercialization Workshop

    NASA Technical Reports Server (NTRS)

    Martin, Gary L.

    2008-01-01

    This slide presentation describes the goals and rules of the workshop on Lunar Commercialization. The goal of the workshop is to explore the viability of using public-private partnerships to open the new space frontier. The bulk of the workshop was a team competition to create a innovative business plan for the commercialization of the moon. The public private partnership concept is reviewed, and the open architecture as an infrastructure for potential external cooperation. Some possible lunar commercialization elements are reviewed.