Science.gov

Sample records for administration earth system

  1. Beyond Earth's Boundaries: Human Exploration of the Solar System in the 21st Century. 1988 Annual Report to the Administrator.

    ERIC Educational Resources Information Center

    National Aeronautics and Space Administration, Washington, DC. Office of Exploration.

    In June 1987, the National Aeronautics and Space Administration (NASA) Administrator established the Office of Exploration in response to a national need for a long-term goal to energize the civilian space program and stimulate the development of new technology. This document describes work accomplished in developing the knowledge base that will…

  2. Earth System Science Project

    ERIC Educational Resources Information Center

    Rutherford, Sandra; Coffman, Margaret

    2004-01-01

    For several decades, science teachers have used bottles for classroom projects designed to teach students about biology. Bottle projects do not have to just focus on biology, however. These projects can also be used to engage students in Earth science topics. This article describes the Earth System Science Project, which was adapted and developed…

  3. Modeling the earth system

    SciTech Connect

    Ojima, D.

    1992-12-31

    The 1990 Global Change Institute (GCI) on Earth System Modeling is the third of a series organized by the Office for Interdisciplinary Earth Studies to look in depth at particular issues critical to developing a better understanding of the earth system. The 1990 GCI on Earth System Modeling was organized around three themes: defining critical gaps in the knowledge of the earth system, developing simplified working models, and validating comprehensive system models. This book is divided into three sections that reflect these themes. Each section begins with a set of background papers offering a brief tutorial on the subject, followed by working group reports developed during the institute. These reports summarize the joint ideas and recommendations of the participants and bring to bear the interdisciplinary perspective that imbued the institute. Since the conclusion of the 1990 Global Change Institute, research programs, nationally and internationally, have moved forward to implement a number of the recommendations made at the institute, and many of the participants have maintained collegial interactions to develop research projects addressing the needs identified during the two weeks in Snowmass.

  4. The Earth System Model

    NASA Technical Reports Server (NTRS)

    Schoeberl, Mark; Rood, Richard B.; Hildebrand, Peter; Raymond, Carol

    2003-01-01

    The Earth System Model is the natural evolution of current climate models and will be the ultimate embodiment of our geophysical understanding of the planet. These models are constructed from components - atmosphere, ocean, ice, land, chemistry, solid earth, etc. models and merged together through a coupling program which is responsible for the exchange of data from the components. Climate models and future earth system models will have standardized modules, and these standards are now being developed by the ESMF project funded by NASA. The Earth System Model will have a variety of uses beyond climate prediction. The model can be used to build climate data records making it the core of an assimilation system, and it can be used in OSSE experiments to evaluate. The computing and storage requirements for the ESM appear to be daunting. However, the Japanese ES theoretical computing capability is already within 20% of the minimum requirements needed for some 2010 climate model applications. Thus it seems very possible that a focused effort to build an Earth System Model will achieve succcss.

  5. Earth Science Information System (ESIS)

    USGS Publications Warehouse

    ,

    1982-01-01

    The Earth Science Information System (ESIS) was developed in 1981 by the U.S. Geological Survey's Office of the Data Administrator. ESIS serves as a comprehensive data management facility designed to support the coordination, integration, and standardization of scientific, technical, and bibliographic data of the U.S. Geological Survey (USGS). ESIS provides, through an online interactive computer system, referral to information about USGS data bases, data elements which are fields in the records of data bases, and systems. The data bases contain information about many subjects from several scientific disciplines such as: geology, geophysics, geochemistry, hydrology, cartography, oceanography, geography, minerals exploration and conservation, and satellite data sensing.

  6. Universities Earth System Scientists Program

    NASA Technical Reports Server (NTRS)

    Estes, John E.

    1995-01-01

    This document constitutes the final technical report for the National Aeronautics and Space Administration (NASA) Grant NAGW-3172. This grant was instituted to provide for the conduct of research under the Universities Space Research Association's (USRA's) Universities Earth System Scientist Program (UESSP) for the Office of Mission to Planet Earth (OMTPE) at NASA Headquarters. USRA was tasked with the following requirements in support of the Universities Earth System Scientists Programs: (1) Bring to OMTPE fundamental scientific and technical expertise not currently resident at NASA Headquarters covering the broad spectrum of Earth science disciplines; (2) Conduct basic research in order to help establish the state of the science and technological readiness, related to NASA issues and requirements, for the following, near-term, scientific uncertainties, and data/information needs in the areas of global climate change, clouds and radiative balance, sources and sinks of greenhouse gases and the processes that control them, solid earth, oceans, polar ice sheets, land-surface hydrology, ecological dynamics, biological diversity, and sustainable development; (3) Evaluate the scientific state-of-the-field in key selected areas and to assist in the definition of new research thrusts for missions, including those that would incorporate the long-term strategy of the U.S. Global Change Research Program (USGCRP). This will, in part, be accomplished by study and evaluation of the basic science needs of the community as they are used to drive the development and maintenance of a global-scale observing system, the focused research studies, and the implementation of an integrated program of modeling, prediction, and assessment; and (4) Produce specific recommendations and alternative strategies for OMTPE that can serve as a basis for interagency and national and international policy on issues related to Earth sciences.

  7. Earth System Monitoring, Introduction

    NASA Astrophysics Data System (ADS)

    Orcutt, John

    This section provides sensing and data collection methodologies, as well as an understanding of Earth's climate parameters and natural and man-made phenomena, to support a scientific assessment of the Earth system as a whole, and its response to natural and human-induced changes. The coverage ranges from climate change factors and extreme weather and fires to oil spill tracking and volcanic eruptions. This serves as a basis to enable improved prediction and response to climate change, weather, and natural hazards as well as dissemination of the data and conclusions. The data collection systems include satellite remote sensing, aerial surveys, and land- and ocean-based monitoring stations. Our objective in this treatise is to provide a significant portion of the scientific and engineering basis of Earth system monitoring and to provide this in 17 detailed articles or chapters written at a level for use by university students through practicing professionals. The reader is also directed to the closely related sections on Ecological Systems, Introduction and also Climate Change Modeling Methodology, Introduction as well as Climate Change Remediation, Introduction to. For ease of use by students, each article begins with a glossary of terms, while at an average length of 25 print pages each, sufficient detail is presented for use by professionals in government, universities, and industries. The chapters are individually summarized below.

  8. The Earth Observing System

    NASA Technical Reports Server (NTRS)

    Shaffer, Lisa Robock

    1992-01-01

    The restructuring of the NASA Earth Observing System (EOS), designed to provide comprehensive long term observations from space of changes occurring on the Earth from natural and human causes in order to have a sound scientific basis for policy decisions on protection of the future, is reported. In response to several factors, the original program approved in the fiscal year 1991 budget was restructured and somewhat reduced in scope. The resulting program uses three different sized launch vehicles to put six different spacecraft in orbit in the first phase, followed by two replacement launches for each of five of the six satellites to maintain a long term observing capability to meet the needs of global climate change research and other science objectives. The EOS system, including the space observatories, the data and information system, and the interdisciplinary global change research effort, are approved and proceeding. Elements of EOS are already in place, such as the research investigations and initial data system capabilities. The flights of precursor satellite and Shuttle missions, the ongoing data analysis, and the evolutionary enhancements to the integrated Earth science data management capabilities are all important building blocks to the full EOS program.

  9. Earth Observing Data System Data and Information System (EOSDIS) Overview

    NASA Technical Reports Server (NTRS)

    Klene, Stephan

    2016-01-01

    The National Aeronautics and Space Administration (NASA) acquires and distributes an abundance of Earth science data on a daily basis to a diverse user community worldwide. The NASA Big Earth Data Initiative (BEDI) is an effort to make the acquired science data more discoverable, accessible, and usable. This presentation will provide a brief introduction to the Earth Observing System Data and Information System (EOSDIS) project and the nature of advances that have been made by BEDI to other Federal Users.

  10. The Weather Radar Toolkit, National Oceanic and Atmospheric Administration (NOAA) National Climatic Data Center's support of interoperability and the Global Earth Observation System of Systems (GEOSS)

    NASA Astrophysics Data System (ADS)

    Ansari, S.; Del Greco, S.

    2006-12-01

    In February 2005, 61 countries around the World agreed on a 10 year plan to work towards building open systems for sharing geospatial data and services across different platforms worldwide. This system is known as the Global Earth Observation System of Systems (GEOSS). The objective of GEOSS focuses on easy access to environmental data and interoperability across different systems allowing participating countries to measure the "pulse" of the planet in an effort to advance society. In support of GEOSS goals, NOAA's National Climatic Data Center (NCDC) has developed radar visualization and data exporter tools in an open systems environment. The NCDC Weather Radar Toolkit (WRT) loads Weather Surveillance Radar 1988 Doppler (WSR-88D) volume scan (S-band) data, known as Level-II, and derived products, known as Level-III, into an Open Geospatial Consortium (OGC) compliant environment. The application is written entirely in Java and will run on any Java- supported platform including Windows, Macintosh and Linux/Unix. The application is launched via Java Web Start and runs on the client machine while accessing these data locally or remotely from the NCDC archive, NOAA FTP server or any URL or THREDDS Data Server. The WRT allows the data to be manipulated to create custom mosaics, composites and precipitation estimates. The WRT Viewer provides tools for custom data overlays, Web Map Service backgrounds, animations and basic filtering. The export of images and movies is provided in multiple formats. The WRT Data Exporter allows for data export in both vector polygon (Shapefile, Well-Known Text) and raster (GeoTIFF, ESRI Grid, VTK, NetCDF, GrADS) formats. By decoding the various Radar formats into the NetCDF Common Data Model, the exported NetCDF data becomes interoperable with existing software packages including THREDDS Data Server and the Integrated Data Viewer (IDV). The NCDC recently partnered with NOAA's National Severe Storms Lab (NSSL) to decode Sigmet C-band Doppler

  11. Earth System Science Research Course

    NASA Astrophysics Data System (ADS)

    Leck, J. P.

    2005-12-01

    The Earth System Science Research Course is a unique class implemented by Frederick County Public Schools. The course (ESSR) was designed in conjunction with NASA Education Specialists and is supported by the NASA Goddard Space Flight Center. Students in this course have the opportunity to use data from cutting edge earth science experiments while researching their own topics and answering research questions. The course culminates with a group of the students presenting their findings to NASA scientists and touring the Goddard Space Flight Center. The Earth System Science Research course provides eleventh and twelfth grade students an opportunity to study Earth System Science using the most up-to-date data developed through current technologies. The systems approach to this course helps students understand the complexity and interrelatedness of the Earth system. This course is an elective offering designed to engage students in the study of the Atmosphere, Biosphere, Cryosphere, Geosphere, and Hydrosphere. This course allows students to utilize research skills and processes gained from previous science courses to study the physical, chemical, and biological aspects of the Earth system. The main goal of this course is to teach the students how to do original, independent research about the Earth system. At the conclusions of the course the students will have gathered and interpreted scientific data to answer a question that they have constructed, and design a presentation to reflect their results. Course Objectives: Describe the Earth as a dynamic and complex system. Describe the components of the Earth system. Describe how the system responds to natural and human induced changes. Access and process information from readings, investigations, and communications. Create and/or interpret graphics to analyze data and evaluate hypotheses. Analyze appropriate data to classify, identify trends and identify similarities and differences to form conclusions and apply what has

  12. NASA's Earth Science Data Systems

    NASA Technical Reports Server (NTRS)

    Ramapriyan, H. K.

    2015-01-01

    NASA's Earth Science Data Systems (ESDS) Program has evolved over the last two decades, and currently has several core and community components. Core components provide the basic operational capabilities to process, archive, manage and distribute data from NASA missions. Community components provide a path for peer-reviewed research in Earth Science Informatics to feed into the evolution of the core components. The Earth Observing System Data and Information System (EOSDIS) is a core component consisting of twelve Distributed Active Archive Centers (DAACs) and eight Science Investigator-led Processing Systems spread across the U.S. The presentation covers how the ESDS Program continues to evolve and benefits from as well as contributes to advances in Earth Science Informatics.

  13. Earth System Environmental Literacy

    NASA Astrophysics Data System (ADS)

    Lowman, Margaret

    If every citizen could read the above quote and understand its underlying ecological concepts, economic challenges, social services, and spiritual heritage, then it is likely that sustainability education would be achieved. The notion of a tree and its ecosystem services illustrate sustainability in the simplest yet most robust sense. To plant and grow a tree, economists struggle with volatile currencies; ecologists juggle development and conservation; religious leaders advocate stewardship; and social scientists examine equity in a world of declining resources. Sustainability education requires an integrated approach between ecology, risk analyses, economics, social sciences, biological sciences, political sciences, languages, biotechnology, physical sciences, health sciences, and religion. All these practitioners (and many others) contribute to sustainability education, an emerging discipline that requires an interdisciplinary synthesis of knowledge, translated into practice, to insure the future of life on Earth.

  14. Mission to Planet Earth - The Earth Observing System

    SciTech Connect

    Carruthers, G.R.; Lee, R.B. III NASA, Langley Research Center, Hampton, VA )

    1989-01-01

    The Earth Observing System (EOS) is a major component of NASA's Mission to Planet Earth initiative. It seeks to achieve a comprehensive understanding of the earth as a system, including its various components (solid earth, atmosphere, hydrosphere, and biosphere) and its various processes (hydrologic cycle, biogeochemical cycles, and climatic processes). This is to be achieved by space-based remote sensing, using a variety of instrumentation and observing techniques, operating simultaneously, and providing continuous and complete global coverage over a long time period. A few of the investigations to be carried out with EOS, in areas of (1) imagery of the earth from space, and (2) investigations of the earth's radiation budget are described. EOS is expected to make major contributions to the basic earth sciences (geology, meteorology, etc.), but its results also will have important immediate or near-term practical applications which will improve the quality of life on earth. 18 refs.

  15. Smarter Earth Science Data System

    NASA Technical Reports Server (NTRS)

    Huang, Thomas

    2013-01-01

    The explosive growth in Earth observational data in the recent decade demands a better method of interoperability across heterogeneous systems. The Earth science data system community has mastered the art in storing large volume of observational data, but it is still unclear how this traditional method scale over time as we are entering the age of Big Data. Indexed search solutions such as Apache Solr (Smiley and Pugh, 2011) provides fast, scalable search via keyword or phases without any reasoning or inference. The modern search solutions such as Googles Knowledge Graph (Singhal, 2012) and Microsoft Bing, all utilize semantic reasoning to improve its accuracy in searches. The Earth science user community is demanding for an intelligent solution to help them finding the right data for their researches. The Ontological System for Context Artifacts and Resources (OSCAR) (Huang et al., 2012), was created in response to the DARPA Adaptive Vehicle Make (AVM) programs need for an intelligent context models management system to empower its terrain simulation subsystem. The core component of OSCAR is the Environmental Context Ontology (ECO) is built using the Semantic Web for Earth and Environmental Terminology (SWEET) (Raskin and Pan, 2005). This paper presents the current data archival methodology within a NASA Earth science data centers and discuss using semantic web to improve the way we capture and serve data to our users.

  16. Network Systems Administration Needs Assessment.

    ERIC Educational Resources Information Center

    Lexington Community Coll., KY. Office of Institutional Research.

    In spring 1996, Lexington Community College (LCC) in Kentucky, conducted a survey to gather information on employment trends and educational needs in the field of network systems administration (NSA). NSA duties involve the installation and administration of network operating systems, applications software, and networking infrastructure;…

  17. Earth System Science Education Alliance

    NASA Astrophysics Data System (ADS)

    Myers, R.; Schwerin, T.

    2007-12-01

    The Earth System Science Education Alliance (ESSEA) professional development program is providing in-depth geoscience content and teaching methods to pre- and in-service teachers. The program is building and expanding on NASA's successful ESSEA program that was funded from 2000-2005. Now sponsored by NSF, the network has expanded to nearly 40 institutions of higher learning committed to teacher Earth system science education. The program supports participating institutions with funding, training, and standards-aligned courses and resources for pre- and in-service teachers. As a result, teachers are prepared to teach Earth system science using inquiry-based classroom methods, geoscience data and tools. From 1999-2005, the NASA funded ESSEA Program delivered online Earth system science professional development for K-12 teachers through a network of 20 colleges and universities. The program was led by the Institute for Global Environmental Strategies (IGES) and based on a trio of 16-week online courses (for elementary, middle, and high school teachers) that had been developed and piloted by NASA's Classroom of the Future at Wheeling Jesuit University. The ESSEA program's mission was to: 1) support universities, colleges, and science education organizations delivering the K-12 online graduate courses; 2) strengthen teachers' understanding of Earth system science; 3) demonstrate the ability to deliver exceptional professional development to a national audience; and 4) create a solid infrastructure to sustain the program. As of spring 2006, the courses had been used by 40 faculty at 20 institutions educating over 1,700 K-12 teachers in Earth system science. Through NSF funding beginning in late 2006, IGES is enhancing and building on the ESSEA foundation by: 1. Introducing extensive use of data, models and existing Earth system educational materials to support the courses; 2. Implementing a rigorous evaluation program designed to demonstrate growth in teachers' Earth

  18. Earth Observation System Flight Dynamics System Covariance Realism

    NASA Technical Reports Server (NTRS)

    Zaidi, Waqar H.; Tracewell, David

    2016-01-01

    This presentation applies a covariance realism technique to the National Aeronautics and Space Administration (NASA) Earth Observation System (EOS) Aqua and Aura spacecraft based on inferential statistics. The technique consists of three parts: collection calculation of definitive state estimates through orbit determination, calculation of covariance realism test statistics at each covariance propagation point, and proper assessment of those test statistics.

  19. Earth resources data analysis system

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The Earth Resources Laboratory Data Analysis System provides a valuable research tool in the evaluation of multispectral, radiometric, photographic, and passive microwave imagery data. The system has been in operational use for several months and has performed quite well. Emphasis on versatility of both the hardware and software design facilitates system expansion to many specialized data analysis tasks. The many independent software handlers provide building blocks for major processing programs.

  20. Earth System Science Education Alliance

    NASA Astrophysics Data System (ADS)

    Myers, R.; Schwerin, T.

    2006-12-01

    The Earth System Science Education Alliance (ESSEA) professional development program is providing in- depth geoscience content and teaching methods to pre- and in-service teachers. The program is building and expanding on NASA's successful ESSEA program that was funded from 2000-2005. Beginning in 2006 NSF funding will enable ESSEA will expand to 40 institutions of higher learning that are committed to teacher education in Earth system science. The program will support participating institutions with funding, training, and standards-aligned courses and resources for pre- and in-service teachers. As a result, teachers will be prepared to teach Earth system science using inquiry-based classroom methods, geoscience data and tools. From 1999-2005, the NASA funded ESSEA Program delivered online Earth system science professional development for K-12 teachers through a network of 20 colleges and universities. The program was led by the Institute for Global Environmental Strategies (IGES) and based on a trio of 16-week online courses (for elementary, middle, and high school teachers) that had been developed and piloted by NASA's Classroom of the Future at Wheeling Jesuit University. The ESSEA program's mission was to: 1) support universities, colleges, and science education organizations delivering the K-12 online graduate courses; 2) strengthen teachers' understanding of Earth system science; 3) demonstrate the ability to deliver exceptional professional development to a national audience; and 4) create a solid infrastructure to sustain the program. As of spring 2006, the courses had been used by 40 faculty at 20 institutions educating over 1,700 k-12 teachers in Earth system science. Although NASA funding ended in late 2005, the courses continue to be offered by 17 of the original 20 institutions. Through NSF funding beginning in late 2006, IGES will enhance and build upon the ESSEA foundation by: 1.Using the ESSEA courses as a model to introduce newly upgraded Earth

  1. The 1990 Reference Handbook: Earth Observing System

    NASA Technical Reports Server (NTRS)

    1990-01-01

    An overview of the Earth Observing System (EOS) including goals and requirements is given. Its role in the U.S. Global Change Research Program and the International--Biosphere Program is addressed. The EOS mission requirements, science, fellowship program, data and information systems architecture, data policy, space measurement, and mission elements are presented along with the management of EOS. Descriptions of the facility instruments, instrument investigations, and interdisciplinary investigations are also present. The role of the National Oceanic and Atmospheric Administration in the mission is mentioned.

  2. NASA's mission to planet Earth: Earth observing system

    NASA Technical Reports Server (NTRS)

    1993-01-01

    The topics covered include the following: global climate change; radiation, clouds, and atmospheric water; the ocean; the troposphere - greenhouse gases; land cover and the water cycle; polar ice sheets and sea level; the stratosphere - ozone chemistry; volcanoes; the Earth Observing System (EOS) - how NASA will support studies of global climate change?; research and assessment - EOS Science Investigations; EOS Data and Information System (EOSDIS); EOS observations - instruments and spacecraft; a national international effort; and understanding the Earth System.

  3. Modeling the Earth System, volume 3

    NASA Technical Reports Server (NTRS)

    Ojima, Dennis (Editor)

    1992-01-01

    The topics covered fall under the following headings: critical gaps in the Earth system conceptual framework; development needs for simplified models; and validating Earth system models and their subcomponents.

  4. CONTRACT ADMINISTRATIVE TRACKING SYSTEM (CATS)

    EPA Science Inventory

    The Contract Administrative Tracking System (CATS) was developed in response to an ORD NHEERL, Mid-Continent Ecology Division (MED)-recognized need for an automated tracking and retrieval system for Cost Reimbursable Level of Effort (CR/LOE) Contracts. CATS is an Oracle-based app...

  5. The Earth System Grid Federation (ESGF) Project

    NASA Astrophysics Data System (ADS)

    Carenton-Madiec, Nicolas; Denvil, Sébastien; Greenslade, Mark

    2015-04-01

    The Earth System Grid Federation (ESGF) Peer-to-Peer (P2P) enterprise system is a collaboration that develops, deploys and maintains software infrastructure for the management, dissemination, and analysis of model output and observational data. ESGF's primary goal is to facilitate advancements in Earth System Science. It is an interagency and international effort led by the US Department of Energy (DOE), and co-funded by National Aeronautics and Space Administration (NASA), National Oceanic and Atmospheric Administration (NOAA), National Science Foundation (NSF), Infrastructure for the European Network of Earth System Modelling (IS-ENES) and international laboratories such as the Max Planck Institute for Meteorology (MPI-M) german Climate Computing Centre (DKRZ), the Australian National University (ANU) National Computational Infrastructure (NCI), Institut Pierre-Simon Laplace (IPSL), and the British Atmospheric Data Center (BADC). Its main mission is to support current CMIP5 activities and prepare for future assesments. The ESGF architecture is based on a system of autonomous and distributed nodes, which interoperate through common acceptance of federation protocols and trust agreements. Data is stored at multiple nodes around the world, and served through local data and metadata services. Nodes exchange information about their data holdings and services, trust each other for registering users and establishing access control decisions. The net result is that a user can use a web browser, connect to any node, and seamlessly find and access data throughout the federation. This type of collaborative working organization and distributed architecture context en-lighted the need of integration and testing processes definition to ensure the quality of software releases and interoperability. This presentation will introduce the ESGF project and demonstrate the range of tools and processes that have been set up to support release management activities.

  6. Earth Systems Science and Engineering

    SciTech Connect

    Rotman, D A

    2006-02-21

    Providing the essential energy and water systems to support human needs while understanding and addressing their environmental consequences is a watershed problem for the 21st century. The LLNL Earth System Science and Engineering Program seeks to provide the scientific understanding and technological expertise to help provide solutions at both global and regional scales. Our work is highly collaborative with universities, laboratories and industrial partners across the world and involves observational data, laboratory experiments, and numerical simulations. The energy systems we have enjoyed for the last 100 years have resulted in the advanced standard of living in the developed world and a major emerging problem with climate change. Now we face a simultaneous realization that our reliance on fossil fuels is a source of conflict and economic disruption as well as causing potentially abrupt, even catastrophic global climate change. The climate and energy problem is perhaps the greatest challenge ever faced by mankind. Fossil fuel remains the least expensive and most available source of energy and the basis of our economy. The use of fossil fuels, especially over the last 100 years has led to a 30% increase in CO{sub 2} in the atmosphere. The problem is growing. The population of the Earth will increase by several billion people in the next 50 years. If economic growth is to continue, the demand for energy is estimated to approximately double in the next 50 years so that we will need approximately 10 TW more energy than the 15 TW we use now. Much of this demand will come from the developing world where most of the population growth will occur and where advanced energy technology is not generally used. The problem affects and is affected by a complex system of systems. The climate and energy problem will affect resources, social structure and the probability of increased conflict. No one person, no one nation, no one technology can solve the problem. There is no

  7. Fire in the Earth system

    USGS Publications Warehouse

    Bowman, David M.J.S.; Balch, Jennifer; Artaxo, Paulo; Bond, William J.; Carlson, Jean M.; Cochrane, Mark A.; D'Antonio, Carla M.; DeFries, Ruth S.; Doyle, John C.; Harrison, Sandy P.; Johnston, Fay H.; Keeley, Jon E.; Krawchuk, Meg A.; Kull, Christian A.; Marston, J. Brad; Moritz, Max A.; Prentice, I. Colin; Roos, Christopher I.; Scott, Andrew C.; Swetnam, Thomas W.; van der Werf, Guido R.; Pyne, Stephen

    2009-01-01

    Fire is a worldwide phenomenon that appears in the geological record soon after the appearance of terrestrial plants. Fire influences global ecosystem patterns and processes, including vegetation distribution and structure, the carbon cycle, and climate. Although humans and fire have always coexisted, our capacity to manage fire remains imperfect and may become more difficult in the future as climate change alters fire regimes. This risk is difficult to assess, however, because fires are still poorly represented in global models. Here, we discuss some of the most important issues involved in developing a better understanding of the role of fire in the Earth system.

  8. Fire in the Earth system.

    PubMed

    Bowman, David M J S; Balch, Jennifer K; Artaxo, Paulo; Bond, William J; Carlson, Jean M; Cochrane, Mark A; D'Antonio, Carla M; Defries, Ruth S; Doyle, John C; Harrison, Sandy P; Johnston, Fay H; Keeley, Jon E; Krawchuk, Meg A; Kull, Christian A; Marston, J Brad; Moritz, Max A; Prentice, I Colin; Roos, Christopher I; Scott, Andrew C; Swetnam, Thomas W; van der Werf, Guido R; Pyne, Stephen J

    2009-04-24

    Fire is a worldwide phenomenon that appears in the geological record soon after the appearance of terrestrial plants. Fire influences global ecosystem patterns and processes, including vegetation distribution and structure, the carbon cycle, and climate. Although humans and fire have always coexisted, our capacity to manage fire remains imperfect and may become more difficult in the future as climate change alters fire regimes. This risk is difficult to assess, however, because fires are still poorly represented in global models. Here, we discuss some of the most important issues involved in developing a better understanding of the role of fire in the Earth system.

  9. Spanish Earth Observation Satellite System

    NASA Astrophysics Data System (ADS)

    Borges, A.; Cerezo, F.; Fernandez, M.; Lomba, J.; Lopez, M.; Moreno, J.; Neira, A.; Quintana, C.; Torres, J.; Trigo, R.; Urena, J.; Vega, E.; Vez, E.

    2010-12-01

    The Spanish Ministry of Industry, Tourism and Trade (MITyC) and the Ministry of Defense (MoD) signed an agreement in 2007 for the development of a "Spanish Earth Observation Satellite System" based, in first instance, on two satellites: a high resolution optical satellite, called SEOSAT/Ingenio, and a radar satellite based on SAR technology, called SEOSAR/Paz. SEOSAT/Ingenio is managed by MITyC through the Centre for the Development of Industrial Technology (CDTI), with technical and contractual support from the European Space Agency (ESA). HISDESA T together with the Spanish Instituto Nacional de Técnica Aeroespacial (INTA, National Institute for Aerospace Technology) will be responsible for the in-orbit operation and the commercial operation of both satellites, and for the technical management of SEOSAR/Paz on behalf of the MoD. In both cases EADS CASA Espacio (ECE) is the prime contractor leading the industrial consortia. The ground segment development will be assigned to a Spanish consortium. This system is the most important contribution of Spain to the European Programme Global Monitoring for Environment and Security, GMES. This paper presents the Spanish Earth Observation Satellite System focusing on SEOSA T/Ingenio Programme and with special emphasis in the potential contribution to the ESA Third Party Missions Programme and to the Global Monitoring for Environment and Security initiative (GMES) Data Access.

  10. Earth Systems Science: An Analytic Framework

    ERIC Educational Resources Information Center

    Finley, Fred N.; Nam, Younkeyong; Oughton, John

    2011-01-01

    Earth Systems Science (ESS) is emerging rapidly as a discipline and is being used to replace the older earth science education that has been taught as unrelated disciplines--geology, meteorology, astronomy, and oceanography. ESS is complex and is based on the idea that the earth can be understood as a set of interacting natural and social systems.…

  11. Earth observing system: 1989 reference handbook

    NASA Technical Reports Server (NTRS)

    1989-01-01

    NASA is studying a coordinated effort called the Mission to Planet Earth to understand global change. The goals are to understand the Earth as a system, and to determine those processes that contribute to the environmental balance, as well as those that may result in changes. The Earth Observing System (Eos) is the centerpiece of the program. Eos will create an integrated scientific observing system that will enable multidisciplinary study of the Earth including the atmosphere, oceans, land surface, polar regions, and solid Earth. Science goals, the Eos data and information system, experiments, measuring instruments, and interdisciplinary investigations are described.

  12. NPP and the Earth System

    NASA Video Gallery

    NPP is a continuation of the existing Earth-observing satellites and it builds on the legacy of multi decades of critical data. NPP will continue to deliver data to all users on Earth who will use ...

  13. Earth Observing System Data Gateway

    NASA Technical Reports Server (NTRS)

    Pfister, Robin; McMahon, Joe; Amrhein, James; Sefert, Ed; Marsans, Lorena; Solomon, Mark; Nestler, Mark

    2006-01-01

    The Earth Observing System Data Gateway (EDG) software provides a "one-stop-shopping" standard interface for exploring and ordering Earth-science data stored at geographically distributed sites. EDG enables a user to do the following: 1) Search for data according to high-level criteria (e.g., geographic location, time, or satellite that acquired the data); 2) Browse the results of a search, viewing thumbnail sketches of data that satisfy the user s criteria; and 3) Order selected data for delivery to a specified address on a chosen medium (e.g., compact disk or magnetic tape). EDG consists of (1) a component that implements a high-level client/server protocol, and (2) a collection of C-language libraries that implement the passing of protocol messages between an EDG client and one or more EDG servers. EDG servers are located at sites usually called "Distributed Active Archive Centers" (DAACs). Each DAAC may allow access to many individual data items, called "granules" (e.g., single Landsat images). Related granules are grouped into collections called "data sets." EDG enables a user to send a search query to multiple DAACs simultaneously, inspect the resulting information, select browseable granules, and then order selected data from the different sites in a seamless fashion.

  14. Solid Earth Science ESDR System

    NASA Astrophysics Data System (ADS)

    Kedar, S.; Bock, Y.; Moore, A. W.; Squibb, M. B.; Liu, Z.; Hasse, J.; Fang, P.

    2013-12-01

    The Solid Earth Science ESDR System (SESES) provides mature, long-term calibrated and validated Earth System Data Records (ESDRs) that support NASA's Earth Surface and Interiors (ESI) focus area, routinely processing data from Earthscope's Plate Boundary Observatory GPS network, NASA's Real-time Earthquake Analysis for Disaster Mitigation network (READI), as well as from several global GPS networks. The project, which was initiated in 2006, provides multi-decade calibrated and validated GPS-derived deformation time series and deformation vectors, based on daily GPS data. The time series are a unique product in terms of number of stations and duration (over 20 years), and have been modeled and catalogued for coseismic, postseismic and transient deformation, as well as instrumental offsets. Calibration and validation of the GPS measured deformation time series are done through a combined solution of two independently derived GPS position time series. Improved sensitivity to real signals is provided by a Principal Component Analysis tool that is routinely applied to the Western North America time series. At its current stage SESES is in the process of generating and distributing the following new ESDRs: (a) Troposphere delay time series for calibrating atmospheric delay errors in Interferometric Synthetic Aperture Radar (InSAR) that are one of the limiting InSAR error sources. (b) Precipitable Water Vapor (PWV) time series for use in Probable Maximum Precipitation studies, historical weather event analysis, and studies of long-term water vapor trends. (c) Fusion of GPS and seismic measurements at collocated stations to estimate three-dimensional high-rate displacement time series with mm precision, during significant historic seismic events (e.g., 2003 Mw 8.3 Tokachi-oki earthquake in Japan; 2010 Mw 7.2 El Mayor-Cucapah earthquake in northern Baja California; 2011 Mw 9.0 Tohoku-oki earthquake in Japan) and new events during the project duration. Data sets to be used

  15. Clouds and the Earth's Radiant Energy System (CERES): An Earth Observing System Experiment

    NASA Technical Reports Server (NTRS)

    Wielicki, Bruce A.; Barkstrom, Bruce R.; Harrison, Edwin F.; Lee, Robert B., III; Smith, G. Louis; Cooper, John E.

    1996-01-01

    Clouds and the Earth's Radiant Energy System (CERES) is an investigation to examine the role of cloud/radiation feedback in the Earth's climate system. The CERES broadband scanning radiometers are an improved version of the Earth Radiation Budget Experiment (ERBE) radiometers. The CERES instruments will fly on several National Aeronautics and Space Administration Earth Observing System (EOS) satellites starting in 1998 and extending over at least 15 years. The CERES science investigations will provide data to extend the ERBE climate record of top-of-atmosphere shortwave (SW) and longwave (LW) radiative fluxes CERES will also combine simultaneous cloud property data derived using EOS narrowband imagers to provide a consistent set of cloud/radiation data, including SW and LW radiative fluxes at the surface and at several selected levels within the atmosphere. CERES data are expected to provide top-of-atmosphere radiative fluxes with a factor of 2 to 3 less error than the ERBE data Estimates of radiative fluxes at the surface and especially within the atmosphere will be a much greater challenge but should also show significant improvements over current capabilities.

  16. Earth System Science Education Modules

    NASA Astrophysics Data System (ADS)

    Hall, C.; Kaufman, C.; Humphreys, R. R.; Colgan, M. W.

    2009-12-01

    The College of Charleston is developing several new geoscience-based education modules for integration into the Earth System Science Education Alliance (ESSEA). These three new modules provide opportunities for science and pre-service education students to participate in inquiry-based, data-driven experiences. The three new modules will be discussed in this session. Coastal Crisis is a module that analyzes rapidly changing coastlines and uses technology - remotely sensed data and geographic information systems (GIS) to delineate, understand and monitor changes in coastal environments. The beaches near Charleston, SC are undergoing erosion and therefore are used as examples of rapidly changing coastlines. Students will use real data from NASA, NOAA and other federal agencies in the classroom to study coastal change. Through this case study, learners will acquire remotely sensed images and GIS data sets from online sources, utilize those data sets within Google Earth or other visualization programs, and understand what the data is telling them. Analyzing the data will allow learners to contemplate and make predictions on the impact associated with changing environmental conditions, within the context of a coastal setting. To Drill or Not To Drill is a multidisciplinary problem based module to increase students’ knowledge of problems associated with nonrenewable resource extraction. The controversial topic of drilling in the Arctic National Wildlife Refuge (ANWR) examines whether the economic benefit of the oil extracted from ANWR is worth the social cost of the environmental damage that such extraction may inflict. By attempting to answer this question, learners must balance the interests of preservation with the economic need for oil. The learners are exposed to the difficulties associated with a real world problem that requires trade-off between environmental trust and economic well-being. The Citizen Science module challenges students to translate scientific

  17. Earth Observing System: Global Observations to Study the Earth's Environment

    NASA Technical Reports Server (NTRS)

    King, Michael D.

    2001-01-01

    The Earth Observing System (EOS) is a space-based observing system comprised of a series of satellite sensors by which scientists can monitor the Earth, a Data and Information System (EOSDIS) enabling researchers worldwide to access the satellite data, and an interdisciplinary science research program to interpret the satellite data. During the last couple of years, four EOS science missions were launched, representing observations of (1) total solar irradiance, (2) Earth radiation budget, (3) land cover & land use change, (4) ocean processes (vector wind, sea surface temperature, and ocean color), (5) atmospheric processes (aerosol and cloud properties, water vapor, and temperature and moisture profiles), and (6) tropospheric chemistry. In succeeding years many more satellites will be launched that will contribute immeasurably to our understanding of the Earth's environment. In this presentation I will describe how scientists are using NASA's Earth science data to examine land use and natural hazards, environmental air quality, including dust storms over the world's deserts, cloud and radiation properties, sea surface temperature, and winds over the ocean.

  18. Earth Observing System: Global Observations to Study the Earth's Environment

    NASA Technical Reports Server (NTRS)

    King, Michael D.

    2003-01-01

    The Earth Observing System (EOS) is a space-based observing system comprised of a series of satellite sensors by which scientists can monitor the Earth, a Data and Information System (EOSDIS) enabling researchers worldwide to access the satellite data, and an interdisciplinary science research program to interpret the satellite data. During the last couple of years, four EOS science missions were launched, representing observations of (i) total solar irradiance, (ii) Earth radiation budget, (iii) land cover & land use change, (iv) ocean processes (vector wind, sea surface temperature, and ocean color), (v) atmospheric processes (aerosol and cloud properties, water vapor, and temperature and moisture profiles), and (vi) tropospheric chemistry. In succeeding years many more satellites will be launched that will contribute immeasurably to our understanding of the Earth's environment. In this presentation I will describe how scientists are using NASA's Earth science data to examine land use and natural hazards, environmental air quality, including: dust storms over the worlds deserts, cloud and radiation properties, sea surface temperature, and winds over the ocean, with a special emphasis on satellite observations available for studying the southern African environment.

  19. Baltic Earth - Earth System Science for the Baltic Sea Region

    NASA Astrophysics Data System (ADS)

    Meier, Markus; Rutgersson, Anna; Lehmann, Andreas; Reckermann, Marcus

    2014-05-01

    The Baltic Sea region, defined as its river catchment basin, spans different climate and population zones, from a temperate, highly populated, industrialized south with intensive agriculture to a boreal, rural north. It encompasses most of the Scandinavian Peninsula in the west; most of Finland and parts of Russia, Belarus, and the Baltic states in the east; and Poland and small parts of Germany and Denmark in the south. The region represents an old cultural landscape, and the Baltic Sea itself is among the most studied sea areas of the world. Baltic Earth is the new Earth system research network for the Baltic Sea region. It is the successor to BALTEX, which was terminated in June 2013 after 20 years and two successful phases. Baltic Earth stands for the vision to achieve an improved Earth system understanding of the Baltic Sea region. This means that the research disciplines of BALTEX continue to be relevant, i.e. atmospheric and climate sciences, hydrology, oceanography and biogeochemistry, but a more holistic view of the Earth system encompassing processes in the atmosphere, on land and in the sea as well as in the anthroposphere shall gain in importance in Baltic Earth. Specific grand research challenges have been formulated, representing interdisciplinary research questions to be tackled in the coming years. A major means will be scientific assessments of particular research topics by expert groups, similar to the BACC approach, which shall help to identify knowledge gaps and develop research strategies. Preliminary grand challenges and topics for which Working Groups have been installed include: • Salinity dynamics in the Baltic Sea • Land-Sea biogeochemical feedbacks in the Baltic Sea region • Natural hazards and extreme events in the Baltic Sea region • Understanding sea level dynamics in the Baltic Sea • Understanding regional variability of water and energy exchange • Utility of Regional Climate Models • Assessment of Scenario Simulations

  20. The global Earth observation system of systems

    NASA Astrophysics Data System (ADS)

    Achache, José

    2010-05-01

    Recognizing the growing need for improved Earth observations, 140 governments and leading international organizations have established the Group on Earth Observations, or GEO, to collaborate and implement a Global Earth Observation System of Systems (GEOSS) by the year 2015. Countries and organizations are contributing their respective Earth monitoring systems, from satellites in space and in situ instruments on land, in the oceans and in the atmosphere. They are interlinking these systems so that, together, they provide a more complete picture of Earth's systems dynamics. GEO is developing common technical standards to pool observations and ensure their cross calibration and validation. It is building a web-based infrastructure to ensure easy access to the wealth of data and services contributed to, or generated by, GEOSS. GEO has been promoting the free and open sharing and dissemination of Earth observation data which has already driven significant changes in data distribution policies of several key Earth observing satellites: Landsat, Cbers and the future Sentinels of GMES. GEO is also reflecting on solutions to transition research systems into operational observing systems and ensure their long-term sustainability. First, the current status of GEOSS implementation and these core activities of GEO will be presented. Then, examples of global data sets and information systems or services developed through GEOSS will be presented: - a high-resolution global digital elevation model (DEM) based on Aster data was released by Japan and the USA. In situ measurements are now being used to improve the model as well as the stacking procedure used to develop it; - the Supersites initiative ensures coordinated access to data and information on natural hazards in geologically active regions. In light of the recent tragedy in Haiti, this project created a dedicated web site regularly updated with maps of seismicity, tectonics, Coulomb stress changes, topography, real and

  1. Earth and ocean dynamics satellites and systems

    NASA Technical Reports Server (NTRS)

    Vonbun, F. O.

    1975-01-01

    An overview is presented of the present state of satellite and ground systems making observations of the dynamics of the solid earth and the oceans. Emphasis is placed on applications of space technology for practical use. Topics discussed include: satellite missions and results over the last two decades in the areas of earth gravity field, polar motions, earth tides, magnetic anomalies, and satellite-to-satellite tracking; laser ranging systems; development of the Very Long Baseline Interferometer; and Skylab radar altimeter data applications.

  2. Earth System Science and the Internet

    NASA Astrophysics Data System (ADS)

    Johnson, Donald R.; Ruzek, Martin; Kalb, Mike

    2000-07-01

    In 1991, NASA and the Universities Space Research Association (USRA) initiated a program to introduce college undergraduates to the interdisciplinary challenges of an emerging Earth system science approach to understanding our planet. Earth system science views the Earth as a synergistic physical system of interrelated phenomena, processes and cycles which remain largely unexplored in traditional disciplinary Earth science course offerings. The ongoing Cooperative University-based Program for Earth System Science Education (ESSE) challenges colleges and universities to develop and offer classroom courses which examine the Earth as a system and to share their progress, course materials and learning modules. Concurrent with the development of the ESSE community and its shared learning resources has been the exponential growth of the Internet and its suite of communication tools, which are a central resource for the ESSE Program. The Internet has enabled the rapid deployment of information and resources through shared repositories of learning materials and general Earth system science knowledge, all of which serve to create and maintain an active informed education community. ESSE participants are organizing to develop a suite of web-based Earth system science learning modules and sharing course materials and learning resources via the ESSE web site. The modular approach more easily assimilates peer-reviewed learning resources into a wide range of classroom environments. A web-based peer-reviewed Journal of Earth System Science Education is proposed to provide educators with quality classroom materials addressing the Earth as a system and to reward ESS resource developers with citable references. More sophisticated web search and retrieval functions, as well as advanced communication tools will be needed to maintain automated databases of networked resources and an informed user community as Earth system science and the Internet enter the new millennium.

  3. Bonneville, Power Administration Timing System

    NASA Technical Reports Server (NTRS)

    Martin, Kenneth E.

    1996-01-01

    Time is an integral part of the Bonneville Power Administration's (BPA) operational systems. Generation and power transfers are planned in advance. Utilities coordinate with each other by making these adjustments on a timed schedule. Price varies with demand, so billing is based on time. Outages for maintenance are scheduled to assure they do not interrupt reliable power delivery. Disturbance records are aligned with recorded timetags for analysis and comparison with related information. Advanced applications like traveling wave fault location and real-time phase measurement require continuous timing with high precision. Most of BPA is served by a Central Time System (CTS) at the Dittmer Control Center near Portland, OR. This system keeps time locally and supplies time to both the control center systems and field locations via a microwave signal. It is kept synchronized to national standard time and coordinated with interconnected utilities. It is the official BPA time. Powwer system control and operation is described, followed by a description of BPA timing systems including CTS, the Fault Location Acquisition Reporter, time dissemination, and phasor measurements. References are provided for further reading.

  4. TWRS information locator database system administrator`s manual

    SciTech Connect

    Knutson, B.J., Westinghouse Hanford

    1996-09-13

    This document is a guide for use by the Tank Waste Remediation System (TWRS) Information Locator Database (ILD) System Administrator. The TWRS ILD System is an inventory of information used in the TWRS Systems Engineering process to represent the TWRS Technical Baseline. The inventory is maintained in the form of a relational database developed in Paradox 4.5.

  5. Oddball Earths in Systems with Super-Earths

    NASA Astrophysics Data System (ADS)

    Asphaug, Erik

    2009-09-01

    During terrestrial planet formation most of the colliding matter comes late, in the form of similar-sized planetary bodies colliding at velocities ranging from 1 to a few times their mutual escape velocity (e.g. Wetherill 1985). I consider an edge effect under these conditions, where the next-largest bodies in a hierarchically accreting population (e.g. Earths) grow increasingly exotic as they survive non-accretionary collisions onto the largest bodies (e.g. super-Earths). Collisions between bodies within a factor of several in size, at around v_esc, are extended-source phenomena where the contact timescale equals the gravity timescale, and where for most geometries most of the colliding matter does not intersect. This sets similar-sized collisions, of which the giant impact formation of the Moon may be an example, far apart from point-source cratering impacts. It has been found and confirmed that in similar-sized collisions, hit-and-run is a more common outcome than efficient accretion. If the largest terrestrial planets grow by feeding on the next-largest planets, and if they eventually accrete most of these next-largest planets, then the surviving (unaccreted) next-largest planets are each likely to be survivors of one or more hit-and-run collisions. These events can cause the loss of atmospheres, oceans, crusts and outer mantles, and lead to exotic pressure-release petrology and degassing. This conclusion appears to be relatively scale invariant, provided the random velocities scale to v_esc, supporting the following corollary for solar systems with Super-Earths: If Earth-massed planets roamed among super-Earths, and survive as bounced-off unaccreted remnants from late stage accretion, then Earth-mass worlds will be as stunningly diverse in these solar systems, as the asteroids and smallest planets are (Moon, Mercury, Mars) in our own system, and may be devoid of atmospheres and oceans. Supported by the NASA Planetary Geology and Geophysics Program and the NASA

  6. ESPC Computational Efficiency of Earth System Models

    DTIC Science & Technology

    2014-09-30

    1 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. ESPC Computational Efficiency of Earth System Models...00-00-2014 to 00-00-2014 4. TITLE AND SUBTITLE ESPC Computational Efficiency of Earth System Models 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c...optimization in this system. 3 Figure 1 – Plot showing seconds per forecast day wallclock time for a T639L64 (~21 km at the equator) NAVGEM

  7. Evolution of the Earth-Moon system

    NASA Technical Reports Server (NTRS)

    Touma, Jihad; Wisdom, Jack

    1994-01-01

    The tidal evolution of the Earth-Moon system is reexamined. Several models of tidal friction are first compared in an averaged Hamiltonian formulation of the dynamics. With one of these models, full integrations of the tidally evolving Earth-Moon system are carried out in the complete, fully interacting, and chaotically evolving planetary system. Classic results on the history of the lunar orbit are confirmed by our more general model. A detailed history of the obliquity of the Earth which takes into account the evolving lunar orbit is presented.

  8. Transient electromagnetic fields near large earthing systems

    SciTech Connect

    Grcev, L.D.; Menter, F.E.

    1996-05-01

    Electromagnetic compatibility studies require knowledge of transient voltages that may be developed near earthing systems during lightning discharge, since such voltages may be coupled to sensitive electronic circuits. For such purpose accurate evaluation of transient electric field near to and/or at the surface of the grounding conductors is necessary. In this paper, a procedure for computation of transient fields near large earthing systems, as a response to a typical lightning current impulse, based on computational methodology developed in the field of antennas, is presented. Computed results are favorably compared with published measurement results. The model is applied to check the common assumption that the soil ionization can be neglected in case of large earthing systems. Presented results show that the soil ionization threshold is met and exceeded during typical lightning discharge in a large earthing system.

  9. Earth System Science: An Integrated Approach.

    ERIC Educational Resources Information Center

    Environment, 2001

    2001-01-01

    Details how an understanding of the role played by human activities in global environmental change has emerged. Presents information about the earth system provided by research programs. Speculates about the direction of future research. (DDR)

  10. In-flight measurement of the National Oceanic and Atmospheric Administration (NOAA)-10 static Earth sensor error

    NASA Technical Reports Server (NTRS)

    Harvie, E.; Filla, O.; Baker, D.

    1993-01-01

    Analysis performed in the Goddard Space Flight Center (GSFC) Flight Dynamics Division (FDD) measures error in the static Earth sensor onboard the National Oceanic and Atmospheric Administration (NOAA)-10 spacecraft using flight data. Errors are computed as the difference between Earth sensor pitch and roll angle telemetry and reference pitch and roll attitude histories propagated by gyros. The flight data error determination illustrates the effect on horizon sensing of systemic variation in the Earth infrared (IR) horizon radiance with latitude and season, as well as the effect of anomalies in the global IR radiance. Results of the analysis provide a comparison between static Earth sensor flight performance and that of scanning Earth sensors studied previously in the GSFC/FDD. The results also provide a baseline for evaluating various models of the static Earth sensor. Representative days from the NOAA-10 mission indicate the extent of uniformity and consistency over time of the global IR horizon. A unique aspect of the NOAA-10 analysis is the correlation of flight data errors with independent radiometric measurements of stratospheric temperature. The determination of the NOAA-10 static Earth sensor error contributes to realistic performance expectations for missions to be equipped with similar sensors.

  11. The EarthCARE Power System

    NASA Astrophysics Data System (ADS)

    Ruf, Daniel; Beaufils, Gilles

    2011-10-01

    This paper describes the Electrical Power System of the EarthCARE satellite. EarthCARE is an Earth-observation mission aiming to improve the understanding of the Earth's radiation balance. It will fly in a specifically low polar Earth orbit with an altitude of around 400 km. The satellite with an orbit average power demand of about 1700 W is supplied by an unregulated 28 V power bus. Electrical power is generated by a deployable, rotating solar array with an active area of 21.5 m2. Energy is stored by a Li-Ion battery with a capacity of 326 Ah. The central Power Conditioning and Control Unit controls the solar array power by maximum power point tracking. It distributes protected power supply lines to the electrical units, heaters and release initiators.

  12. 1993 Earth Observing System reference handbook

    NASA Technical Reports Server (NTRS)

    Asrar, Ghassem (Editor); Dokken, David Jon (Editor)

    1993-01-01

    Mission to Planet Earth (MTPE) is a NASA-sponsored concept that uses space- and ground-based measurement systems to provide the scientific basis for understanding global change. The space-based components of MTPE will provide a constellation of satellites to monitor the Earth from space. Sustained observations will allow researchers to monitor climate variables overtime to determine trends; however, space-based monitoring alone is not sufficient. A comprehensive data and information system, a community of scientists performing research with the data acquired, and extensive ground campaigns are all important components. Brief descriptions of the various elements that comprise the overall mission are provided. The Earth Observing System (EOS) - a series of polar-orbiting and low-inclination satellites for long-term global observations of the land surface, biosphere, solid Earth, atmosphere, and oceans - is the centerpiece of MTPE. The elements comprising the EOS mission are described in detail.

  13. Administrative Job Level Study and Factoring System.

    ERIC Educational Resources Information Center

    Portland Community Coll., OR.

    The administrative job classification system and generic job descriptions presented in this report were developed at Portland Community College (PCC) as management tools. After introductory material outlining the objectives of and criteria used in the administrative job-level study, and offering information on the administrative job factoring…

  14. Overview of NASA's Earth Science Data Systems

    NASA Technical Reports Server (NTRS)

    McDonald, Kenneth

    2004-01-01

    For over the last 15 years, NASA's Earth Science Enterprise (ESE) has devoted a tremendous effort to design and build the Earth Observing System (EOS) Data and Information System (EOSDIS) to acquire, process, archive and distribute the data of the EOS series of satellites and other ESE missions and field programs. The development of EOSDIS began with an early prototype to support NASA data from heritage missions and progressed through a formal development process to today's system that supports the data from multiple missions including Landsat 7, Terra, Aqua, SORCE and ICESat. The system is deployed at multiple Distributed Active Archive Centers (DAACs) and its current holdings are approximately 4.5 petabytes. The current set of unique users requesting EOS data and information products exceeds 2 million. While EOSDIS has been the centerpiece of NASA's Earth Science Data Systems, other initiatives have augmented the services of EOSDIS and have impacted its evolution and the future directions of data systems within the ESE. ESDIS had an active prototyping effort and has continued to be involved in the activities of the Earth Science Technology Office (ESTO). In response to concerns from the science community that EOSDIS was too large and monolithic, the ESE initiated the Earth Science Information Partners (ESP) Federation Experiment that funded a series of projects to develop specialized products and services to support Earth science research and applications. Last year, the enterprise made 41 awards to successful proposals to the Research, Education and Applications Solutions Network (REASON) Cooperative Agreement Notice to continue and extend the ESP activity. The ESE has also sponsored a formulation activity called the Strategy for the Evolution of ESE Data Systems (SEEDS) to develop approaches and decision support processes for the management of the collection of data system and service providers of the enterprise. Throughout the development of its earth science

  15. Exploring Earth Systems Through STEM

    NASA Astrophysics Data System (ADS)

    Chen, Loris; Salmon, Jennifer; Burns, Courtney

    2015-04-01

    During the 2010 school year, grade 8 science teachers at Dwight D. Eisenhower Middle School in Wyckoff, New Jersey, began using the draft of A Framework for K-12 Science Education to transition to the Next Generation Science Standards. In an evolutionary process of testing and revising, teachers work collaboratively to develop problem-based science, technology, engineering, and mathematics (STEM) units that integrate earth science, physical science, and life science topics. Students explore the interconnections of Earth's atmosphere, lithosphere, hydrosphere, and biosphere through problem-based learning. Problem-based learning engages students in (1) direct observations in the field and classroom, (2) collection and analysis of data from remote sensors and hand-held sensors, and (3) analysis of physical, mathematical, and virtual models. Students use a variety of technologies and applications in their investigations, for example iPad apps, Google Classroom, and Vernier sensors. Data from NASA, NOAA, non-government organizations, and scientific research papers inspire student questions and spark investigations. Teachers create materials and websites to support student learning. Teachers curate reading, video, simulations, and other Internet resources for students. Because curriculum is standards-based as opposed to textbook-based, teacher participation in workshops and institutes frequently translates into new or improved study units. Recent programs include Toyota International Teacher Program to Costa Rica, Japan Society Going Global, Siemens STEM Academy, U.S. Naval Academy SET Sail, and NJSTA Maitland P. Simmons Memorial Award Summer Institute. Unit themes include weather and climate, introduction to general chemistry and biochemistry, and cells and heredity. Each if the three 12-week units has embedded engineering challenges inspired by current events, community needs, and/or the work of scientists. The unit segments begin with a problem, progress to

  16. Clouds and the Earth's Radiant Energy System

    NASA Technical Reports Server (NTRS)

    Wielicki, Bruce A. (Principal Investigator); Barkstrom, Bruce R. (Principal Investigator)

    The Clouds and the Earth's Radiant Energy System (CERES) is a key component of the Earth Observing System (EOS) program. The CERES instrument provides radiometric measurements of the Earth's atmosphere from three broadband channels. The CERES missions are a follow-on to the successful Earth Radiation Budget Experiment (ERBE) mission. The first CERES instrument (PFM) was launched on November 27, 1997, as part of the Tropical Rainfall Measuring Mission (TRMM). Two CERES instruments (FM1 and FM2) were launched into polar orbit on board the EOS flagship Terra on December 18, 1999, and two additional CERES instruments (FM3 and FM4) were launched on board EOS Aqua on May 4,2002. [Mission Objectives] The scientific justification for the CERES measurements can be summarized by three assertions: (1) changes in the radiative energy balance of the Earth-atmosphere system can cause long-term climate changes (e.g., carbon dioxide inducing global warming); (2) besides the systematic diurnal and seasonal cycles of incoming solar energy, changes in cloud properties (amount, height, optical thickness) cause the largest changes of the Earth's radiative energy balance; and (3) cloud physics is one of the weakest components of current climate models used to predict potential global climate change. CERES has four main objectives: 1) For climate change analysis, provide a continuation of the ERBE record of radiative fluxes at the top of the atmosphere (TOA), analyzed using the same algorithms that produced the ERBE data. 2) Double the accuracy of estimates of radiative fluxes at TOA and the Earth's surface. 3) Provide the first long-term global estimates of the radiative fluxes within the Earth's atmosphere. 4) Provide cloud property estimates that are consistent with the radiative fluxes from surface to TOA. [Temporal_Coverage: Start_Date=1997-12-27; Stop_Date=] [Spatial_Coverage: Southernmost_Latitude=-90; Northernmost_Latitude=90; Westernmost_Longitude=-180; Easternmost_Longitude=180].

  17. Bidirectional Reflectance Round-Robin in Support of the Earth Observing System Program

    NASA Technical Reports Server (NTRS)

    Early, E.; Barnes, P.; Johnson, B.; Butler, J.; Bruegge, C.; Biggar, S.; Spyak, P.; Pavlov, M.

    1999-01-01

    Laboratory measurements of the bidirectional reflectance distribution function (BRDRF) of diffuse reflectors are required to support calibration in the Earth Observing System (EOS) program of the National Aeronautics and Space Administration.

  18. Earth orbital teleoperator systems evaluation

    NASA Technical Reports Server (NTRS)

    Shields, N. L., Jr.; Slaughter, P. H.; Brye, R. G.; Henderson, D. E.

    1979-01-01

    The mechanical extension of the human operator to remote and specialized environments poses a series of complex operational questions. A technical and scientific team was organized to investigate these questions through conducting specific laboratory and analytical studies. The intent of the studies was to determine the human operator requirements for remotely manned systems and to determine the particular effects that various system parameters have on human operator performance. In so doing, certain design criteria based on empirically derived data concerning the ultimate control system, the human operator, were added to the Teleoperator Development Program.

  19. NASA's Earth Observing Data and Information System

    NASA Technical Reports Server (NTRS)

    Mitchell, Andrew E.; Behnke, Jeanne; Lowe, Dawn; Ramapriyan, H. K.

    2009-01-01

    NASA's Earth Observing System Data and Information System (EOSDIS) has been a central component of NASA Earth observation program for over 10 years. It is one of the largest civilian science information system in the US, performing ingest, archive and distribution of over 3 terabytes of data per day much of which is from NASA s flagship missions Terra, Aqua and Aura. The system supports a variety of science disciplines including polar processes, land cover change, radiation budget, and most especially global climate change. The EOSDIS data centers, collocated with centers of science discipline expertise, archive and distribute standard data products produced by science investigator-led processing systems. Key to the success of EOSDIS is the concept of core versus community requirements. EOSDIS supports a core set of services to meet specific NASA needs and relies on community-developed services to meet specific user needs. EOSDIS offers a metadata registry, ECHO (Earth Observing System Clearinghouse), through which the scientific community can easily discover and exchange NASA s Earth science data and services. Users can search, manage, and access the contents of ECHO s registries (data and services) through user-developed and community-tailored interfaces or clients. The ECHO framework has become the primary access point for cross-Data Center search-and-order of EOSDIS and other Earth Science data holdings archived at the EOSDIS data centers. ECHO s Warehouse Inventory Search Tool (WIST) is the primary web-based client for discovering and ordering cross-discipline data from the EOSDIS data centers. The architecture of the EOSDIS provides a platform for the publication, discovery, understanding and access to NASA s Earth Observation resources and allows for easy integration of new datasets. The EOSDIS also has developed several methods for incorporating socioeconomic data into its data collection. Over the years, we have developed several methods for determining

  20. A European Network for Earth System Modeling

    NASA Astrophysics Data System (ADS)

    Valcke, Sophie; Budich, Reinhard; Carter, Mick; Guilyardi, Eric; Foujols, Marie-Alice; Lautenschlager, Michael; Redler, René; Steenman-Clark, Lois; Wedi, Nils

    2007-03-01

    The increasing complexity of Earth system models and the computing facilities needed to run those models put a heavy technical burden on research teams active in climate modeling. To ease this burden, a European collaborative venture called PRISM was initiated in December 2001 to organize a network of experts in order to share the development, maintenance, and support of Earth system modeling software tools and community standards. PRISM was recently reorganized, and a new Web portal (http://prism.enes.org) was unveiled in July 2006.

  1. The Earth System (ES-DOC) Project

    NASA Astrophysics Data System (ADS)

    Greenslade, Mark; Murphy, Sylvia; Treshansky, Allyn; DeLuca, Cecilia; Guilyardi, Eric; Denvil, Sebastien

    2014-05-01

    ESSI1.3 New Paradigms, Modelling, and International Collaboration Strategies for Earth System Sciences Earth System Documentation (ES-DOC) is an international project supplying tools & services in support of earth system documentation creation, analysis and dissemination. It is nurturing a sustainable standards based documentation eco-system that aims to become an integral part of the next generation of exa-scale dataset archives. ES-DOC leverages open source software and places end-user narratives at the heart of all it does. ES-DOC has initially focused upon nurturing the Earth System Model (ESM) documentation eco-system. Within this context ES-DOC leverages emerging documentation standards and supports the following projects: Coupled Model Inter-comparison Project Phase 5 (CMIP5); Dynamical Core Model Inter-comparison Project (DCMIP); National Climate Predictions and Projections Platforms Quantitative Evaluation of Downscaling Workshop. This presentation will introduce the project to a wider audience and demonstrate the range of tools and services currently available for use. It will also demonstrate how international collaborative efforts are essential to the success of ES-DOC.

  2. Earth System Science Education Interdisciplinary Partnerships

    NASA Astrophysics Data System (ADS)

    Ruzek, M.; Johnson, D. R.

    2002-05-01

    Earth system science in the classroom is the fertile crucible linking science with societal needs for local, national and global sustainability. The interdisciplinary dimension requires fruitful cooperation among departments, schools and colleges within universities and among the universities and the nation's laboratories and agencies. Teaching and learning requires content which brings together the basic and applied sciences with mathematics and technology in addressing societal challenges of the coming decades. Over the past decade remarkable advances have emerged in information technology, from high bandwidth Internet connectivity to raw computing and visualization power. These advances which have wrought revolutionary capabilities and resources are transforming teaching and learning in the classroom. With the launching of NASA's Earth Observing System (EOS) the amount and type of geophysical data to monitor the Earth and its climate are increasing dramatically. The challenge remains, however, for skilled scientists and educators to interpret this information based upon sound scientific perspectives and utilize it in the classroom. With an increasing emphasis on the application of data gathered, and the use of the new technologies for practical benefit in the lives of ordinary citizens, there comes the even more basic need for understanding the fundamental state, dynamics, and complex interdependencies of the Earth system in mapping valid and relevant paths to sustainability. Technology and data in combination with the need to understand Earth system processes and phenomena offer opportunities for new and productive partnerships between researchers and educators to advance the fundamental science of the Earth system and in turn through discovery excite students at all levels in the classroom. This presentation will discuss interdisciplinary partnership opportunities for educators and researchers at the undergraduate and graduate levels.

  3. Advanced technologies to support earth orbiting systems

    NASA Technical Reports Server (NTRS)

    Rosen, Robert; Johnston, Gordon I.

    1992-01-01

    Within NASA, the Office of Aeronautics and Space Technology (OAST) is conducting a major, ongoing engineering research and technology program directed toward the support of future programs, with a major focus on technology for future space science missions. OAST is conducting a substantial effort to identify the technologies required to support the evolution of Mission to Planet Earth. The effort consists of studies, workshops, and technology research programs to explore: (1) new concepts for multisatellite, earth-observing instrumentation and sensor sets; (2) information system advances for continuous and reliable processing of terabit per day data streams; and (3) infrastructure development, including spacecraft bus technology and operations for substantial performance, cost, and reliabiltiy gains. This paper discusses the technological needs of future earth science systems, reviews current and planned activities, and highlights significant achievements in the research and technology program.

  4. Apollo experience report: Earth landing system

    NASA Technical Reports Server (NTRS)

    West, R. B.

    1973-01-01

    A brief discussion of the development of the Apollo earth landing system and a functional description of the system are presented in this report. The more significant problems that were encountered during the program, the solutions, and, in general, the knowledge that was gained are discussed in detail. Two appendixes presenting a detailed description of the various system components and a summary of the development and the qualification test programs are included.

  5. Space-to-earth power transmission system

    NASA Technical Reports Server (NTRS)

    Stevens, G. H.; Schuh, R.

    1976-01-01

    A preliminary analysis was conducted to establish the requirements of a space-to-earth microwave power transmission system. The need for accurate phase control on the transmitter was established and methods for assessing the impact of power density and thermal constraints on system performance were demonstrated. Potential radio frequency interference was considered. The sensitivity of transmission system scale to variations in power source, transportation and orbital fabrication and assembly costs was also determined.

  6. System implementation for earth radiation budget satellite system

    NASA Technical Reports Server (NTRS)

    Cooper, J. E.; Woerner, C. V.

    1978-01-01

    The earth-orbiting satellite provides a platform, outside the earth's atmosphere, which is capable of simultaneously monitoring the outgoing reflection of the sun's energy from the earth's surface and atmosphere, and the longwave radiation emitted by the earth and its atmosphere. These capabilities provide the opportunity to conduct detailed studies of the variations in the earth's radiation budget, the effects of natural and manmade changes in the environment on this budget, and the effects which changes in the energy budget produce on earth's weather and climate. A description is presented of the instrument system requirements and a conceptual design of an instrument approach to meet these requirements for providing the earth radiation budget data.

  7. Precession of the Earth-Moon System

    ERIC Educational Resources Information Center

    Urbassek, Herbert M.

    2009-01-01

    The precession rate of the Earth-Moon system by the gravitational influence of the Sun is derived. Attention is focussed on a physically transparent but complete presentation accessible to first- or second-year physics students. Both a shortcut and a full analysis are given, which allows the inclusion of this material as an example of the physics…

  8. 5th Annual Earth System Grid Federation

    SciTech Connect

    Williams, Dean N.

    2016-04-01

    The purpose of the Fifth Annual Earth System Grid Federation (ESGF) Face-to-Face (F2F) Conference was to present the most recent information on the state of ESGF’s software stack and to identify and address the data needs and gaps for the climate and weather communities that ESGF supports.

  9. Modeling Earth system changes of the past

    NASA Technical Reports Server (NTRS)

    Kutzbach, John E.

    1992-01-01

    This review outlines some of the challenging problems to be faced in understanding the causes and mechanisms of large climatic changes and gives examples of initial studies of these problems with climate models. The review covers climatic changes in three main periods of earth history: (1) the past several centuries; (2) the past several glacial-interglacial cycles; and (3) the past several million years. The review will concentrate on studies of climate but, where possible, will mention broader aspects of the earth system.

  10. Distributed Administrative Management Information System (DAMIS).

    ERIC Educational Resources Information Center

    Juckiewicz, Robert; Kroculick, Joseph

    Columbia University's major program to distribute its central administrative data processing to its various schools and departments is described. The Distributed Administrative Management Information System (DAMIS) will link every department and school within the university via micrcomputers, terminals, and/or minicomputers to the central…

  11. Addressing the Complexity of the Earth System

    SciTech Connect

    Nobre, Carlos; Brasseur, Guy P.; Shapiro, Melvyn; Lahsen, Myanna; Brunet, Gilbert; Busalacchi, Antonio; Hibbard, Kathleen A.; Seitzinger, Sybil; Noone, Kevin; Ometto, Jean P.

    2010-10-01

    This paper highlights the role of the Earth-system biosphere and illustrates the complex: biosphere-atmosphere interactions in the Amazon Basin, changes in nitrogen cycling, ocean chemistry, and land use. It introduces three important requirements for accelerating the development and use of Earth system information. The first requirement is to develop Earth system analysis and prediction models that account for multi-scale physical, chemical and biological processes, including their interactions in the coupled atmosphere-ocean-land-ice system. The development of these models requires partnerships between academia, national research centers, and operational prediction facilities, and builds upon accomplishments in weather and climate predictions. They will highlight the regional aspects of global change, and include modules for water system, agriculture, forestry, energy, air quality, health, etc. The second requirement is to model the interactions between humans and the weather-climate-biogeochemical system. The third requirement is to introduce novel methodologies to account for societal drivers, impacts and feedbacks. This is a challenging endeavor requiring creative solutions and some compromising because human behavior cannot be fully represented within the framework of present-day physical prediction systems.

  12. Earth-like habitats in planetary systems

    NASA Astrophysics Data System (ADS)

    Fritz, J.; Bitsch, B.; Kührt, E.; Morbidelli, A.; Tornow, C.; Wünnemann, K.; Fernandes, V. A.; Grenfell, J. L.; Rauer, H.; Wagner, R.; Werner, S. C.

    2014-08-01

    Understanding the concept of habitability is clearly related to an evolutionary knowledge of the particular planet-in-question. However, additional indications so-called "systemic aspects" of the planetary system as a whole governs a particular planet's claim on habitability. In this paper we focus on such systemic aspects and discuss their relevance to the formation of an "Earth-like" habitable planet. This contribution summarizes our results obtained by lunar sample work and numerical models within the framework of the Research Alliance "Planetary Evolution and Life". We consider various scenarios which simulate the dynamical evolution of the Solar System and discuss the consequences for the likelihood of forming an Earth-like world orbiting another star. Our model approach is constrained by observations of the modern Solar System and the knowledge of its history. Results suggest that on the one hand the long-term presence of terrestrial planets is jeopardized due to gravitational interactions if giant planets are present. On the other hand the habitability of inner rocky planets may be supported in those planetary systems hosting giant planets. Gravitational interactions within a complex multiple-body structure including giant planets may supply terrestrial planets with materials which formed in the colder region of the proto-planetary disk. During these processes, water, the prime requisite for habitability, is delivered to the inner system. This may occur either during the main accretion phase of terrestrial planets or via impacts during a post-accretion bombardment. Results for both processes are summarized and discussed with reference to the lunar crater record. Starting from a scenario involving migration of the giant planets this contribution discusses the delivery of water to Earth, the modification of atmospheres by impacts in a planetary system context and the likelihood of the existence of extrasolar Earth-like habitable worlds.

  13. Nasa-wide Standard Administrative Systems

    NASA Technical Reports Server (NTRS)

    Schneck, P.

    1984-01-01

    Factors to be considered in developing agency-wide standard administrative systems for NASA include uniformity of hardware and software; centralization vs. decentralization; risk exposure; and models for software development.

  14. NASA's Earth Observing Data and Information System

    NASA Astrophysics Data System (ADS)

    Mitchell, A. E.; Behnke, J.; Lowe, D.; Ramapriyan, H. K.

    2009-12-01

    NASA’s Earth Observing System Data and Information System (EOSDIS) has been a central component of NASA Earth observation program for over 10 years. It is one of the largest civilian science information system in the US, performing ingest, archive and distribution of over 3 terabytes of data per day much of which is from NASA’s flagship missions Terra, Aqua and Aura. The system supports a variety of science disciplines including polar processes, land cover change, radiation budget, and most especially global climate change. The EOSDIS data centers, collocated with centers of science discipline expertise, archive and distribute standard data products produced by science investigator-led processing systems. Key to the success of EOSDIS is the concept of core versus community requirements. EOSDIS supports a core set of services to meet specific NASA needs and relies on community-developed services to meet specific user needs. EOSDIS offers a metadata registry, ECHO (Earth Observing System Clearinghouse), through which the scientific community can easily discover and exchange NASA’s Earth science data and services. Users can search, manage, and access the contents of ECHO’s registries (data and services) through user-developed and community-tailored interfaces or clients. The ECHO framework has become the primary access point for cross-Data Center search-and-order of EOSDIS and other Earth Science data holdings archived at the EOSDIS data centers. ECHO’s Warehouse Inventory Search Tool (WIST) is the primary web-based client for discovering and ordering cross-discipline data from the EOSDIS data centers. The architecture of the EOSDIS provides a platform for the publication, discovery, understanding and access to NASA’s Earth Observation resources and allows for easy integration of new datasets. The EOSDIS also has developed several methods for incorporating socioeconomic data into its data collection. Over the years, we have developed several methods for

  15. Introduction to the NOAA Earth Information System (NEIS)

    NASA Astrophysics Data System (ADS)

    Stewart, J.; MacDermaid, C.; Hackathorn, E.; Lynge, J.; Smith, J.; Pierce, R.; Davis, D.

    2012-12-01

    Across the National Oceanic and Atmospheric Administration (NOAA) and other government agencies, there exists a wide variety of environmental data and information systems meeting various agency missions. To meet NOAA's mission -- to understand and predict changes in climate, weather, oceans, and coasts, to share that knowledge and information with others, and to conserve and manage coastal and marine ecosystems and resources -- NOAA's data and systems need to be easily accessible and interoperable. Achieving this would lead to a more efficient organization. A concept conceived at Earth System Research Laboratory (ESRL) called the NOAA Earth Information System (NEIS) can provide this functionality. While the concept is visionary, the core requirements of this new system are: 1. Provide access to all information and data for all time scales 2. Provide the information when the user needs it 3. Provide the information in a form the user can interpret 4. Make information available on all platforms NOAA Earth Information System (NEIS) is a framework of layered services designed to help NOAA's mission areas by facilitating the discovery, access, integration, and understanding of all NOAA data (past, present, and future). Designed for a world where everything is in motion, NEIS allows fluid data integration and interaction across 4D time and space. This presentation will provide an overview the NEIS concept and prototype, as well as information regarding ongoing and future activities related to this project.

  16. EOS Reference Handbook 1999: A Guide to NASA's Earth Science Enterprise and the Earth Observing System

    NASA Technical Reports Server (NTRS)

    King, M. D. (Editor); Greenstone, R. (Editor)

    2000-01-01

    The content of this handbook includes Earth Science Enterprise; The Earth Observing System; EOS Data and Information System (EOSDIS); Data and Information Policy; Pathfinder Data Sets; Earth Science Information Partners and the Working Prototype-Federation; EOS Data Quality: Calibration and Validation; Education Programs; International Cooperation; Interagency Coordination; Mission Elements; EOS Instruments; EOS Interdisciplinary Science Investigations; and Points-of-Contact.

  17. System Administrator for LCS Development Sets

    NASA Technical Reports Server (NTRS)

    Garcia, Aaron

    2013-01-01

    The Spaceport Command and Control System Project is creating a Checkout and Control System that will eventually launch the next generation of vehicles from Kennedy Space Center. KSC has a large set of Development and Operational equipment already deployed in several facilities, including the Launch Control Center, which requires support. The position of System Administrator will complete tasks across multiple platforms (Linux/Windows), many of them virtual. The Hardware Branch of the Control and Data Systems Division at the Kennedy Space Center uses system administrators for a variety of tasks. The position of system administrator comes with many responsibilities which include maintaining computer systems, repair or set up hardware, install software, create backups and recover drive images are a sample of jobs which one must complete. Other duties may include working with clients in person or over the phone and resolving their computer system needs. Training is a major part of learning how an organization functions and operates. Taking that into consideration, NASA is no exception. Training on how to better protect the NASA computer infrastructure will be a topic to learn, followed by NASA work polices. Attending meetings and discussing progress will be expected. A system administrator will have an account with root access. Root access gives a user full access to a computer system and or network. System admins can remove critical system files and recover files using a tape backup. Problem solving will be an important skill to develop in order to complete the many tasks.

  18. A Database System for Course Administration.

    ERIC Educational Resources Information Center

    Benbasat, Izak; And Others

    1982-01-01

    Describes a computer-assisted testing system which produces multiple-choice examinations for a college course in business administration. The system uses SPIRES (Stanford Public Information REtrieval System) to manage a database of questions and related data, mark-sense cards for machine grading tests, and ACL (6) (Audit Command Language) to…

  19. Earth observing satellite: Understanding the Earth as a system

    NASA Technical Reports Server (NTRS)

    Soffen, Gerald

    1990-01-01

    There is now a plan for global studies which include two very large efforts. One is the International Geosphere/Biosphere Program (IGBP) sponsored by the International Council of Scientific Unions. The other initiative is Mission to Planet Earth, an unbrella program for doing three kinds of space missions. The major one is the Earth Observation Satellite (EOS). EOS is large polar orbiting satellites with heavy payloads. Two will be placed in orbit by NASA, one by the Japanese and one or two by ESA. The overall mission measurement objectives of EOS are summarized: (1) the global distribution of energy input to and energy output from the Earth; (2) the structure, state variables, composition, and dynamics of the atmosphere from the ground to the mesopause; (3) the physical and biological structure, state, composition, and dynamics of the land surface, including terrestrial and inland water ecosystems; (4) the rates, important sources and sinks, and key components and processes of the Earth's biogeochemical cycles; (5) the circulation, surface temperature, wind stress, sea state, and the biological activity of the oceans; (6) the extent, type, state, elevation, roughness, and dynamics of glaciers, ice sheets, snow and sea ice, and the liquid equivalent of snow in the global cryosphere; (7) the global rates, amounts, and distribution of precipitation; and (8) the dynamic motions of the Earth (geophysics) as a whole, including both rotational dynamics and the kinematic motions of the tectonic plates.

  20. Precipitation from Space: Advancing Earth System Science

    NASA Technical Reports Server (NTRS)

    Kucera, Paul A.; Ebert, Elizabeth E.; Turk, F. Joseph; Levizzani, Vicenzo; Kirschbaum, Dalia; Tapiador, Francisco J.; Loew, Alexander; Borsche, M.

    2012-01-01

    Of the three primary sources of spatially contiguous precipitation observations (surface networks, ground-based radar, and satellite-based radar/radiometers), only the last is a viable source over ocean and much of the Earth's land. As recently as 15 years ago, users needing quantitative detail of precipitation on anything under a monthly time scale relied upon products derived from geostationary satellite thermal infrared (IR) indices. The Special Sensor Microwave Imager (SSMI) passive microwave (PMW) imagers originated in 1987 and continue today with the SSMI sounder (SSMIS) sensor. The fortunate longevity of the joint National Aeronautics and Space Administration (NASA) and Japan Aerospace Exploration Agency (JAXA) Tropical Rainfall Measuring Mission (TRMM) is providing the environmental science community a nearly unbroken data record (as of April 2012, over 14 years) of tropical and sub-tropical precipitation processes. TRMM was originally conceived in the mid-1980s as a climate mission with relatively modest goals, including monthly averaged precipitation. TRMM data were quickly exploited for model data assimilation and, beginning in 1999 with the availability of near real time data, for tropical cyclone warnings. To overcome the intermittently spaced revisit from these and other low Earth-orbiting satellites, many methods to merge PMW-based precipitation data and geostationary satellite observations have been developed, such as the TRMM Multisatellite Precipitation Product and the Climate Prediction Center (CPC) morphing method (CMORPH. The purpose of this article is not to provide a survey or assessment of these and other satellite-based precipitation datasets, which are well summarized in several recent articles. Rather, the intent is to demonstrate how the availability and continuity of satellite-based precipitation data records is transforming the ways that scientific and societal issues related to precipitation are addressed, in ways that would not be

  1. Integrated Earth System Model (iESM)

    SciTech Connect

    Thornton, Peter Edmond; Mao, Jiafu; Shi, Xiaoying

    2016-12-02

    The iESM is a simulation code that represents the physical and biological aspects of Earth's climate system, and also includes the macro-economic and demographic properties of human societies. The human aspect of the simulation code is focused in particular on the effects of human activities on land use and land cover change, but also includes aspects such as energy economies. The time frame for predictions with iESM is approximately 1970 through 2100.

  2. Earth system commitments due to delayed mitigation

    NASA Astrophysics Data System (ADS)

    Pfister, Patrik L.; Stocker, Thomas F.

    2016-01-01

    As long as global CO2 emissions continue to increase annually, long-term committed Earth system changes grow much faster than current observations. A novel metric linking this future growth to policy decisions today is the mitigation delay sensitivity (MDS), but MDS estimates for Earth system variables other than peak temperature (ΔT max) are missing. Using an Earth System Model of Intermediate Complexity, we show that the current emission increase rate causes a ΔT max increase roughly 3-7.5 times as fast as observed warming, and a millenial steric sea level rise (SSLR) 7-25 times as fast as observed SSLR, depending on the achievable rate of emission reductions after the peak of emissions. These ranges are only slightly affected by the uncertainty range in equilibrium climate sensitivity, which is included in the above values. The extent of ocean acidification at the end of the century is also strongly dependent on the starting time and rate of emission reductions. The preservable surface ocean area with sufficient aragonite supersaturation for coral reef growth is diminished globally at an MDS of roughly 25%-80% per decade. A near-complete loss of this area becomes unavoidable if mitigation is delayed for a few years to decades. Also with respect to aragonite, 12%-18% of the Southern Ocean surface become undersaturated per decade, if emission reductions are delayed beyond 2015-2040. We conclude that the consequences of delaying global emission reductions are much better captured if the MDS of relevant Earth system variables is communicated in addition to current trends and total projected future changes.

  3. 2016 Earth System Grid Federation Annual Report

    SciTech Connect

    Williams, Dean N.

    2016-05-10

    The Earth System Grid Federation (ESGF) experienced a major setback in June 2015, when it experienced a security incident that brought all systems to a halt for more than half a year. However, federation developers and management committee members turned the incident into an opportunity to dramatically upgrade the system security and functionality and to develop planning and policy documents to guide ESGF evolution and success. Moreover, despite the incident, ESGF developer working teams continue to make strong and significant progress on various enhancement projects that will help ensure ESGF can meet the needs of the climate community in the coming years.

  4. Earth Observation Missions at OHB System

    NASA Astrophysics Data System (ADS)

    Tobehn, C.; Penné, B.; Kassebom, M.; Ziegler, B.; Mahal, S.; Greinacher, R.; Holsten, S.; Borowy, C.

    2008-08-01

    This paper covers the current OHB-System AG activities in the field of Earth Observation with small satellites ranging from science and research towards commercial and security missions. Very highresolution, multi-spectral, hyperspectral, as well as very high resolution SAR mission concepts are presented including the following projects: The SAR-Lupe constellation generates very high resolution SAR images for military reconnaissance purposes. It is developed by OHB-System and reaches full in-orbit deployment in 2008. EnMAP - featuring an innovative hyperspectral sensor systems for the detailed and global analysis of eco-system parameters. Very high resolution SAR and Optical Constellations of 1m resolution are currently investigated for emergency response and disaster management, which require a fast system response-time. Data Relay from GEO relaxes the typical EO bottle-neck in downloading data. Therefore it enables an increase of LEO observation time and reduces image ageing as well as system response time by direct EO satellite tasking. Ocean-Colour from GEO shall be a sustainable source for intra-daily observations of coastal zones for environment monitoring, fishery management and coastal water pollution. Next Generation very high resolution missions below 1m resolution are proposed for reconnaissance and dual-use applications for commercial customers. New services and products are under development for a range of applications, including hyperspectral data exploitation, data fusion with in-situ systems for maritime environment, security as well as for air quality services. The realisation of an end-user oriented infrastructure - including space and ground segment - for commercial Earth observation is a key element of OHB-System's Earth observation activities.

  5. ERIPS: Earth Resource Interactive Processing System

    NASA Technical Reports Server (NTRS)

    Quinn, M. J.

    1975-01-01

    The ERIPS is an interactive computer system used in the analysis of remotely sensed data. It consists of a set of software programs which are executed on an IBM System/360 Model 75J computer under the direction of a trained analyst. The software was a derivative of the Purdue LARSYS program and has evolved to include an extensive pattern recognition system and a number of manipulative, preprocessing routines which prepare the imagery for the pattern recognition application. The original purpose of the system was to analyze remotely sensed data, to develop and perfect techniques to process the data, and to determine the feasibility of applying the data to significant earth resources problems. The System developed into a production system. Error recovery and multi-jobbing capabilities were added to the system.

  6. The Group on Earth Observations and the Global Earth Observation System of Systems

    NASA Astrophysics Data System (ADS)

    Achache, J.

    2006-05-01

    The Group on Earth Observations (GEO) is leading a worldwide effort to build a Global Earth Observation System of Systems (GEOSS) over the next 10 years. The GEOSS vision, articulated in its 10-Year Implementation Plan, represents the consolidation of a global scientific and political consensus: the assessment of the state of the Earth requires continuous and coordinated observation of our planet at all scales. GEOSS aims to achieve comprehensive, coordinated and sustained observations of the Earth system in order to improve monitoring of the state of the Earth; increase understanding of Earth processes; and enhance prediction of the behaviour of the Earth system. After the World Summit on Sustainable Development in 2002 highlighted the urgent need for coordinated observations relating to the state of the Earth, GEO was established at the Third Earth Observation Summit in February 2005 and the GEOSS 10-Year Implementation Plan was endorsed. GEO currently involves 60 countries; the European Commission; and 43 international organizations and has begun implementation of the GEOSS 10-Year Implementation Plan. GEO programme activities cover nine societal benefit areas (Disasters; Health; Energy; Climate; Water; Weather; Ecosystems; Agriculture; Biodiversity) and five transverse or crosscutting elements (User Engagement; Architecture; Data Management; Capacity Building; Outreach). All these activities have as their final goal the establishment of the "system of systems" which will yield a broad range of basic societal benefits, including the reduction of loss of life and property from tsunamis, hurricanes, and other natural disasters; improved water resource and energy management; and improved understanding of environmental factors significant to public health. As a "system of systems", GEOSS will work with and build upon existing national, regional, and international systems to provide comprehensive, coordinated Earth observations from thousands of instruments worldwide

  7. Administrators' Personal and Social Support Systems.

    ERIC Educational Resources Information Center

    Lindle, Jane Clark; Miller, Linda Demarco

    This study maintains that social support systems alleviate the physical and psychological effects of stress; however, the school administrator often has no peers in the same building and therefore stands apart from any of the built in support systems developed by the subculture within his school. Further, as discovered through interviews with 35…

  8. Research Administration as a Living System

    ERIC Educational Resources Information Center

    Cole, Sharon Stewart

    2007-01-01

    The purpose of this Delphi study was to gather expert opinions and recommendations for change in the research administration system to bring about growth and collaboration. This study was deemed important because at the heart of every system is the fact that individuals need each other to continue to exist. The results of the Delphi study give…

  9. Smouldering Fires in the Earth System

    NASA Astrophysics Data System (ADS)

    Rein, G.

    2012-04-01

    Smouldering fires, the slow, low-temperature, flameless burning, represent the most persistent type of combustion phenomena and the longest continuously fires on Earth system. Indeed, smouldering mega-fires of peatlands occur with some frequency during the dry session in, for example, Indonesia, Canada, Russia, UK and USA. Smouldering fires propagate slowly through organic layers of the ground and can reach depth >5 m if large cracks, natural piping or channel systems exist. It threatens to release sequestered carbon deep into the soil. Once ignited, they are particularly difficult to extinguish despite extensive rains, weather changes or fire-fighting attempts, and can persist for long periods of time (months, years) spreading deep and over extensive areas. Recent figures at the global scale estimate that average annual greenhouse gas emissions from smouldering fires are equivalent to 15% of man-made emissions. These fires are difficult or impossible to detect with current remote sensing methods because the chemistry is significantly different, their thermal radiation signature is much smaller, and the plume is much less buoyant. These wildfires burn fossil fuels and thus are a carbon-positive fire phenomena. This creates feedbacks in the climate system because soil moisture deficit and self-heating are enchanted under warmer climate scenarios and lead to more frequent fires. Warmer temperatures at high latitudes are resulting in more frequent Artic fires. Unprecedented permafrost thaw is leaving large soil carbon pools exposed to smouldering fires for the fist time since millennia. Although interactions between flaming fires and the Earth system have been a central focus, smouldering fires are as important but have received very little attention. DBut differences with flaming fires are important. This paper reviews the current knowledge on smouldering fires in the Earth system regarding combustion dynamics, damage to the soil, emissions, remote sensing and

  10. NASA Now: A-Train: Monitoring the Earth System

    NASA Video Gallery

    The topic for this NASA Now is the Earth system and how NASA uses a constellation of satellites called the A-Train to monitor the Earth system. All five satellites in the A-Train fly over the same ...

  11. Earth Observatory Satellite (EOS) system definition study

    NASA Technical Reports Server (NTRS)

    1974-01-01

    An executive summary of a study on the Earth Observatory Satellite (EOS) was presented. It was concluded that the overall costs of space systems could be reduced significantly by the development of a modular shuttle compatible standard spacecraft, and the use of that spacecraft with the Shuttle Transportation System. It was also demonstrated that the development of the standard spacecraft is feasible, desirable, and cost effective if applied to a series of missions. The ability to initially retrieve, refurbish, and reuse the spacecraft and its payload, and ultimately to perform in-orbit servicing, would result in significant cost savings. A number of specific conclusions and recommendations were also suggested.

  12. NASA's Earth Science Data Systems - Lessons Learned and Future Directions

    NASA Technical Reports Server (NTRS)

    Ramapriyan, Hampapuram K.

    2010-01-01

    In order to meet the increasing demand for Earth Science data, NASA has significantly improved the Earth Science Data Systems over the last two decades. This improvement is reviewed in this slide presentation. Many Earth Science disciplines have been able to access the data that is held in the Earth Observing System (EOS) Data and Information System (EOSDIS) at the Distributed Active Archive Centers (DAACs) that forms the core of the data system.

  13. NASA's Earth Observing System Data and Information System - EOSDIS

    NASA Technical Reports Server (NTRS)

    Ramapriyan, Hampapuram K.

    2011-01-01

    This slide presentation reviews the work of NASA's Earth Observing System Data and Information System (EOSDIS), a petabyte-scale archive of environmental data that supports global climate change research. The Earth Science Data Systems provide end-to-end capabilities to deliver data and information products to users in support of understanding the Earth system. The presentation contains photographs from space of recent events, (i.e., the effects of the tsunami in Japan, and the wildfires in Australia.) It also includes details of the Data Centers that provide the data to EOSDIS and Science Investigator-led Processing Systems. Information about the Land, Atmosphere Near-real-time Capability for EOS (LANCE) and some of the uses that the system has made possible are reviewed. Also included is information about how to access the data, and evolutionary plans for the future of the system.

  14. Earth System Oxygenation: Toward an Integrated Theory of Earth Evolution

    NASA Astrophysics Data System (ADS)

    Anbar, A. D.

    2015-12-01

    The cause of the progressive oxygenation of Earth's biosphere remains poorly understood. The problem is bounded by the interplay of three irreversible, secular changes: the escape of H to space, which makes the planet more oxidized; the evolution of photoautotrophy - which converts solar energy into redox disequilbrium - and related metabolisms; and the cooling of the planet, which affects the exchange of material between Earth's reduced interior and relatively oxidized surface through a variety of processes. The first of these changes is quantitatively considered elsewhere, and is connected to the other two because H escape depends on atmospheric H2 and CH4 contents. The second of these changes is an area of vigorous research, particularly over the past decade. Important work included efforts to constrain the timing of key evolutionary events using organic geochemical and genomic records, and to understand the timing and tempo of environmental oxidation, particularly preceding the "Great Oxidation Event" (GOE) at ~2.4 Ga. As the community sorts through various debates, evidence is accumulating that the pre-GOE period was a dynamic era of transient "whiffs" of oxidation, most likely due to small amounts of biogenic O2 that appeared as early as ~3.0 Ga. The implication is that O2 sinks generally overwhelmed substantial O2 sources through the first half of Earth history, and that a decrease in sink strength and/or increase in source strength could have resulted in increasing instability of trace pO2 in the runup to the GOE. The most likely sinks are coupled to reductants in Earth's interior, which leads us to the third major change—secular cooling of the planet. It is almost certain that this cooling led to changes in mantle dynamics, rates of plate motion, and melting behaviors, which in turn affected volcanism, crust composition, hydrothermal and metamorphic alteration, ocean nutrient budgets, and recycling at subduction zones. These factors have all been

  15. Earth system science: A program for global change

    NASA Technical Reports Server (NTRS)

    1989-01-01

    The Earth System Sciences Committee (ESSC) was appointed to consider directions for the NASA Earth-sciences program, with the following charge: review the science of the Earth as a system of interacting components; recommend an implementation strategy for Earth studies; and define the role of NASA in such a program. The challenge to the Earth system science is to develop the capability to predict those changes that will occur in the next decade to century, both naturally and in response to human activity. Sustained, long-term measurements of global variables; fundamental descriptions of the Earth and its history; research foci and process studies; development of Earth system models; an information system for Earth system science; coordination of Federal agencies; and international cooperation are examined.

  16. Tipping elements in the Earth's climate system

    SciTech Connect

    Lenton, T.M.; Held, H.; Lucht, W.; Rahmstorf, S.; Kriegler, E. |; Hall, J.W.; Schellnhuber, H.J. |

    2008-02-12

    The term 'tipping point' commonly refers to a critical threshold at which a tiny perturbation can qualitatively alter the state or development of a system. Here the authors introduce the term 'tipping element' to describe large-scale components of the Earth system that may pass a tipping point. They critically evaluate potential policy-relevant tipping elements in the climate system under anthropogenic forcing, drawing on the pertinent literature and a recent international workshop to compile a short list, and they assess where their tipping points lie. An expert elicitation is used to help rank their sensitivity to global warming and the uncertainty about the underlying physical mechanisms. Then the authors explain how, in principle, early warning systems could be established to detect the proximity of some tipping points.

  17. NASA's Earth Observing System Data and Information System (EOSDIS)

    NASA Technical Reports Server (NTRS)

    Behnke, Jeanne

    2017-01-01

    EOSDIS is a data system created by NASA to manage its collection of Earth Science data. This presentation is a brief description of the data system provided to the general user community. The presentation reviews the data types, management and software development techniques in use to organize the system.

  18. Earth Observing System: Science Objectives and Challenges

    NASA Technical Reports Server (NTRS)

    King, Michael D.

    1999-01-01

    The Earth Observing System (EOS) is a space-based observing system comprised of a series of satellite sensors by which scientists can monitor the Earth, a Data and Information System (EOSDIS) enabling researchers worldwide to access the satellite data, and an interdisciplinary science research program to interpret the satellite data. In this presentation we review the key areas of scientific uncertainty in understanding climate and global change, and follow that with a description of the EOS goals, objectives, and scientific research elements that comprise the program (instrument science teams and interdisciplinary investigations). Finally, I will describe how scientists and policy makers intend to use EOS data improve our understanding of key global change uncertainties, such as: (i) clouds and radiation, including fossil fuel and natural emissions of sulfate aerosol and its potential impact on cloud feedback, (ii) man's impact on ozone depletion, with examples of ClO and O3 obtained from the UARS satellite during the Austral Spring, and (iii) volcanic eruptions and their impact on climate, with examples from the eruption of Mt. Pinatubo.

  19. Earth Observing System: Science Objectives and Challenges

    NASA Technical Reports Server (NTRS)

    King, Michael D.

    1998-01-01

    The Earth Observing System (EOS) is a space-based observing system comprised of a series of satellite sensors by which scientists can monitor the Earth, a Data and Information System (EOSDIS) enabling researchers worldwide to access the satellite data, and an interdisciplinary science research program to interpret the satellite data. In this presentation I will describe the key areas of scientific uncertainty in understanding climate and global change, and follow that with a description of the EOS goals, objectives, and scientific research elements that comprise the program (instrument science teams and interdisciplinary investigations). Finally, I will describe how scientists and policy makers intend to use EOS data to improve our understanding of key global change uncertainties, such as: (i) clouds and radiation, including fossil fuel and natural emissions of sulfate aerosol and its potential impact on cloud feedback, (ii) man's impact on ozone depletion, with examples of ClO and O3 obtained from the UARS satellite during the Austral Spring, and (iii) volcanic eruptions and their impact on climate, with examples from the eruption of Mt. Pinatubo.

  20. TMACS Test Procedure TP007: System administration

    SciTech Connect

    Scanlan, P.; Washburn, S.; Seghers, R.

    1994-05-24

    The TMACS Software Project Test Procedures translate the project`s acceptance criteria into test steps. Software releases are certified when the affected Test Procedures are successfully performed and the customers authorize installation of these changes. This Test Procedure tests the TMACS System Administration functions.

  1. People & Change: Success in Implementing Administrative Systems.

    ERIC Educational Resources Information Center

    Hannan, Cecil

    The implementation of an administrative on-line data-base system for the San Diego Community College District (SDCCD) is explained in this report. The report begins by describing the SDCCD environment, a multi-campus district under the direction of a chancellor and a cabinet. District headcount in Fall, 1981 consisted of over 100,000 students and…

  2. Michigan Occupational Information System. Administrator's Handbook.

    ERIC Educational Resources Information Center

    Michigan State Dept. of Education, Lansing. Michigan Occupational Information System.

    This handbook is designed to give introductory and reference information about the Michigan Occupational Information System (MOIS). Although focused in Michigan, it is not specifically oriented to any particular population; rather, it answers basic questions common to administrators, school principals, Michigan Employment Security Directors,…

  3. Decision Support Systems for Academic Administration.

    ERIC Educational Resources Information Center

    Moore, Laurence J.; Greenwood, Allen G.

    1984-01-01

    The history and features of Decision Support Systems (DSS) and use of the approach by academic administrators are discussed. The objective of DSS is to involve the manager/decision maker in the decision-analysis process while simultaneously relieving that person of the burden of developing and performing detailed analysis. DSS represents a…

  4. Improving subsurface hydrology in Earth System Models

    NASA Astrophysics Data System (ADS)

    Volk, J. M.; Clark, M. P.; Swenson, S. C.; Lawrence, D. M.; Tyler, S. W.

    2015-12-01

    Hydrologic processes that govern storage and transport of soil water and groundwater can have strong dynamic relationships with biogeochemical and atmospheric processes. This understanding has lead to a push to improve subsurface hydrologic parametrization in Earth System Models. Here we present results related to improving the implementation of soil moisture distribution, groundwater recharge/discharge, and subsurface drainage in the Community Land Model (CLM) which is the land surface model in the Community Earth System Model. First we identified geo-climatically different locations around the world to develop test cases. For each case we compare the vertical soil moisture distribution from the different implementations of 1D Richards equation, considering the boundary conditions, the treatment of the groundwater sink term, the vertical discretization, and the time stepping schemes. Generally, large errors in the hydrologic mass balance within the soil column occur when there is a large vertical gradient in soil moisture or when there is a shallow water table within a soil column. We then test the sensitivity of the algorithmic parameters that control temporal discretization and error tolerance of the adaptive time-stepping scheme to help optimize its computational efficiency. In addition, we vary the spatial discretization of soil layers (i.e. quantity of layers and their thicknesses) to better understand the sensitivity of vertical discretization of soil columns on soil moisture variability in ESMs. We present multivariate and multi-scale evaluation for the different model options and suggest ways to move forward with future model improvements.

  5. CLARA: an integrated clinical research administration system

    PubMed Central

    Bian, Jiang; Xie, Mengjun; Hogan, William; Hutchins, Laura; Topaloglu, Umit; Lane, Cheryl; Holland, Jennifer; Wells, Thomas

    2014-01-01

    Administration of human subject research is complex, involving not only the institutional review board but also many other regulatory and compliance entities within a research enterprise. Its efficiency has a direct and substantial impact on the conduct and management of clinical research. In this paper, we report on the Clinical Research Administration (CLARA) platform developed at the University of Arkansas for Medical Sciences. CLARA is a comprehensive web-based system that can streamline research administrative tasks such as submissions, reviews, and approval processes for both investigators and different review committees on a single integrated platform. CLARA not only helps investigators to meet regulatory requirements but also provides tools for managing other clinical research activities including budgeting, contracting, and participant schedule planning. PMID:24778201

  6. CLARA: an integrated clinical research administration system.

    PubMed

    Bian, Jiang; Xie, Mengjun; Hogan, William; Hutchins, Laura; Topaloglu, Umit; Lane, Cheryl; Holland, Jennifer; Wells, Thomas

    2014-10-01

    Administration of human subject research is complex, involving not only the institutional review board but also many other regulatory and compliance entities within a research enterprise. Its efficiency has a direct and substantial impact on the conduct and management of clinical research. In this paper, we report on the Clinical Research Administration (CLARA) platform developed at the University of Arkansas for Medical Sciences. CLARA is a comprehensive web-based system that can streamline research administrative tasks such as submissions, reviews, and approval processes for both investigators and different review committees on a single integrated platform. CLARA not only helps investigators to meet regulatory requirements but also provides tools for managing other clinical research activities including budgeting, contracting, and participant schedule planning.

  7. Development and application of earth system models.

    PubMed

    Prinn, Ronald G

    2013-02-26

    The global environment is a complex and dynamic system. Earth system modeling is needed to help understand changes in interacting subsystems, elucidate the influence of human activities, and explore possible future changes. Integrated assessment of environment and human development is arguably the most difficult and most important "systems" problem faced. To illustrate this approach, we present results from the integrated global system model (IGSM), which consists of coupled submodels addressing economic development, atmospheric chemistry, climate dynamics, and ecosystem processes. An uncertainty analysis implies that without mitigation policies, the global average surface temperature may rise between 3.5 °C and 7.4 °C from 1981-2000 to 2091-2100 (90% confidence limits). Polar temperatures, absent policy, are projected to rise from about 6.4 °C to 14 °C (90% confidence limits). Similar analysis of four increasingly stringent climate mitigation policy cases involving stabilization of greenhouse gases at various levels indicates that the greatest effect of these policies is to lower the probability of extreme changes. The IGSM is also used to elucidate potential unintended environmental consequences of renewable energy at large scales. There are significant reasons for attention to climate adaptation in addition to climate mitigation that earth system models can help inform. These models can also be applied to evaluate whether "climate engineering" is a viable option or a dangerous diversion. We must prepare young people to address this issue: The problem of preserving a habitable planet will engage present and future generations. Scientists must improve communication if research is to inform the public and policy makers better.

  8. Development and application of earth system models

    NASA Astrophysics Data System (ADS)

    Prinn, Ronald G.

    2013-02-01

    The global environment is a complex and dynamic system. Earth system modeling is needed to help understand changes in interacting subsystems, elucidate the influence of human activities, and explore possible future changes. Integrated assessment of environment and human development is arguably the most difficult and most important "systems" problem faced. To illustrate this approach, we present results from the integrated global system model (IGSM), which consists of coupled submodels addressing economic development, atmospheric chemistry, climate dynamics, and ecosystem processes. An uncertainty analysis implies that without mitigation policies, the global average surface temperature may rise between 3.5 °C and 7.4 °C from 1981-2000 to 2091-2100 (90% confidence limits). Polar temperatures, absent policy, are projected to rise from about 6.4 °C to 14 °C (90% confidence limits). Similar analysis of four increasingly stringent climate mitigation policy cases involving stabilization of greenhouse gases at various levels indicates that the greatest effect of these policies is to lower the probability of extreme changes. The IGSM is also used to elucidate potential unintended environmental consequences of renewable energy at large scales. There are significant reasons for attention to climate adaptation in addition to climate mitigation that earth system models can help inform. These models can also be applied to evaluate whether "climate engineering" is a viable option or a dangerous diversion. We must prepare young people to address this issue: The problem of preserving a habitable planet will engage present and future generations. Scientists must improve communication if research is to inform the public and policy makers better.

  9. Development and application of earth system models

    PubMed Central

    Prinn, Ronald G.

    2013-01-01

    The global environment is a complex and dynamic system. Earth system modeling is needed to help understand changes in interacting subsystems, elucidate the influence of human activities, and explore possible future changes. Integrated assessment of environment and human development is arguably the most difficult and most important “systems” problem faced. To illustrate this approach, we present results from the integrated global system model (IGSM), which consists of coupled submodels addressing economic development, atmospheric chemistry, climate dynamics, and ecosystem processes. An uncertainty analysis implies that without mitigation policies, the global average surface temperature may rise between 3.5 °C and 7.4 °C from 1981–2000 to 2091–2100 (90% confidence limits). Polar temperatures, absent policy, are projected to rise from about 6.4 °C to 14 °C (90% confidence limits). Similar analysis of four increasingly stringent climate mitigation policy cases involving stabilization of greenhouse gases at various levels indicates that the greatest effect of these policies is to lower the probability of extreme changes. The IGSM is also used to elucidate potential unintended environmental consequences of renewable energy at large scales. There are significant reasons for attention to climate adaptation in addition to climate mitigation that earth system models can help inform. These models can also be applied to evaluate whether “climate engineering” is a viable option or a dangerous diversion. We must prepare young people to address this issue: The problem of preserving a habitable planet will engage present and future generations. Scientists must improve communication if research is to inform the public and policy makers better. PMID:22706645

  10. Acquisition/expulsion system for earth orbital propulsion system study. Volume 5: Earth storable design

    NASA Technical Reports Server (NTRS)

    1973-01-01

    A comprehensive analysis and parametric design effort was conducted under the earth-storable phase of the program. Passive Acquisition/expulsion system concepts were evaluated for a reusable Orbital Maneuvering System (OMS) application. The passive surface tension technique for providing gas free liquid on demand was superior to other propellant acquisition methods. Systems using fine mesh screens can provide the requisite stability and satisfy OMS mission requirements. Both fine mesh screen liner and trap systems were given detailed consideration in the parametric design, and trap systems were selected for this particular application. These systems are compatible with the 100- to 500-manned mission reuse requirements.

  11. The Earth System Modeling Framework and Earth System Curator: Software Components as Building Blocks of Community

    NASA Astrophysics Data System (ADS)

    Deluca, C.; Balaji, V.; da Silva, A.; Dunlap, R.; Hill, C.; Mark, L.; Mechoso, C. R.; Middleton, D.; Nikonov, S.; Rugaber, S.; Suarez, M.

    2006-05-01

    The Earth System Modeling Framework (ESMF) is an established U.S. initiative to develop high performance common modeling infrastructure for climate and weather models. ESMF is the technical foundation for the NASA Modeling, Analysis, and Prediction (MAP) Climate Variability and Change program and the DoD Battlespace Environments Institute (BEI). It has been incorporated into the Community Climate System Model (CCSM), the Weather Research and Forecast (WRF) Model, NOAA NCEP and GFDL models, Army, Navy, and Air Force models, and many others. The new, NSF-funded Earth System Curator is a related database and toolkit that will store information about model configurations, prepare models for execution, and run them locally or in a distributed fashion. The key concept that underlies both ESMF and the Earth System Curator is that of software components. Components are software units that are "composable", meaning they can be combined to form coupled applications. These components may be representations of physical domains, such as atmospheres or oceans; processes within particular domains such as atmospheric radiation or chemistry; or computational functions, such as data assimilation or I/O. ESMF provides interfaces, an architecture, and tools for structuring components hierarchically to form complex, coupled modeling applications. The Earth System Curator will enable modelers to describe, archive, search, compose, and run ESMF and similar components. Together these projects encourage a new paradigm for modeling: one in which the community can draw from a federation of many interoperable components in order to create and deploy applications. The goal is to enable a network of collaborations and new scientific opportunities for the Earth modeling community.

  12. Pliocene Constraints on Earth System Senstivity

    NASA Astrophysics Data System (ADS)

    Haywood, A.; Dolan, A. M.; Hunter, S. J.; Harrison, L.; Hill, D. J.; Howell, F.; Prescott, C.; Tindall, J. C.

    2015-12-01

    The magnitude of long-term global temperature rise due to an increasing concentration of carbon dioxide (CO2) in the atmosphere is a question of relevance to society and policy makers. Previous studies have addressed this issue on the basis of the equilibrium response of the climate system to a doubling of CO2 due to fast feedbacks, such as clouds and sea-ice albedo (Climate or Charney Sensitivity). Here however we use the concept of Earth System Sensitivity (ESS) that additionally includes slow feedbacks such as those derived from changes in the major ice sheets and vegetation distribution. We have produced a robust estimate of ESS using the mid-Pliocene, the last interval in Earth history when CO2 was at modern or near future levels (around 3 million years ago). The mid-Pliocene warm period (mPWP; 3.264 to 3.025 Ma) is useful for investigating the concept of ESS because it represents a world in quasi-equilibrium with high CO2 for a sufficient period that the long term feedbacks are close to equilibrium. Over 300 simulations have been completed using coupled-atmosphere ocean climate models and Earth System models in order to rigorously estimate ESS. We have performed ensembles of experiments which have perturbed physical components in the models and tested the sensitivity of critical model boundary conditions in order to explore the plausible range of Pliocene-based estimates of ESS. Additionally, we have used output from the international Pliocene Model Intercomparison Project (PlioMIP) to take into account structural uncertainty in our modelled estimates of ESS. Our entire ensemble of plausible mid-Pliocene scenarios demonstrates temperature anomalies of 0-5.5°C between end member CO2 levels of 300 ppmv and 500 ppmv. We present a range of probability density functions to demonstrate the most likely value of ESS based on the modelled scenarios we have included. Our results are compatible with initial studies of ESS (e.g. Lunt et al. 2010) that suggest ESS is

  13. Clouds and the Earth's Radiant Energy System (CERES) - An Earth Observing System experiment

    NASA Technical Reports Server (NTRS)

    Wielicki, Bruce A.; Barkstrom, Bruce R.

    1991-01-01

    An overview is presented of the CERES experiment that is designed not only to monitor changes in the earth's radiant energy system and cloud systems but to provide these data with enough accuracy and simultaneity to examine the critical climate/cloud feedback mechanisms which may play a major role in determining future changes in the climate system. CERES will estimate not only the flow of radiation at the top of the atmosphere, but also more complete cloud properties that will permit determination of radiative fluxes within the atmosphere and at the surface. The CERES radiation budget data is also planned for utilization in a wide range of other Earth Observing System interdisciplinary science investigations, including studies of land, biological, ocean and atmospheric processes.

  14. Assessing biosphere feedbacks on Earth System Processes

    NASA Astrophysics Data System (ADS)

    McElwain, Jennifer

    2016-04-01

    The evolution and ecology of plant life has been shaped by the direct and indirect influence of plate tectonics. Climatic change and environmental upheaval associated with the emplacement of large igneous provinces have triggered biosphere level ecological change, physiological modification and pulses of both extinction and origination. This talk will investigate the influence of large scale changes in atmospheric composition on plant ecophysiology at key intervals of the Phanerozoic. Furthermore, I will assess the extent to which plant ecophysiological response can in turn feedback on earth system processes such as the global hydrological cycle and biogeochemical cycling of nitrogen and carbon. Palaeo-atmosphere simulation experiments, palaeobotanical data and recent historical (last 50 years) data-model comparison will be used to address the extent to which plant physiological responses to atmospheric CO2 can modulate global climate change via biosphere level feedback.

  15. Phanerozoic Earth system evolution and marine biodiversity.

    PubMed

    Hannisdal, Bjarte; Peters, Shanan E

    2011-11-25

    The Phanerozoic fossil record of marine animal diversity covaries with the amount of marine sedimentary rock. The extent to which this covariation reflects a geologically controlled sampling bias remains unknown. We show that Phanerozoic records of seawater chemistry and continental flooding contain information on the diversity of marine animals that is independent of sedimentary rock quantity and sampling. Interrelationships among variables suggest long-term interactions among continental flooding, sulfur and carbon cycling, and macroevolution. Thus, mutual responses to interacting Earth systems, not sampling biases, explain much of the observed covariation between Phanerozoic patterns of sedimentation and fossil biodiversity. Linkages between biodiversity and environmental records likely reflect complex biotic responses to changing ocean redox conditions and long-term sea-level fluctuations driven by plate tectonics.

  16. Advanced Earth Observation System Instrumentation Study (AEOSIS)

    NASA Technical Reports Server (NTRS)

    Var, R. E.

    1976-01-01

    The feasibility, practicality, and cost are investigated for establishing a national system or grid of artificial landmarks suitable for automated (near real time) recognition in the multispectral scanner imagery data from an earth observation satellite (EOS). The intended use of such landmarks, for orbit determination and improved mapping accuracy is reviewed. The desirability of using xenon searchlight landmarks for this purpose is explored theoretically and by means of experimental results obtained with LANDSAT 1 and LANDSAT 2. These results are used, in conjunction with the demonstrated efficiency of an automated detection scheme, to determine the size and cost of a xenon searchlight that would be suitable for an EOS Searchlight Landmark Station (SLS), and to facilitate the development of a conceptual design for an automated and environmentally protected EOS SLS.

  17. NASA's Earth Science Data Systems Standards Process

    NASA Astrophysics Data System (ADS)

    Ullman, R.; Enloe, Y.

    2006-12-01

    Starting in January 2004, NASA instituted a set of internal working groups to develop ongoing recommendations for the continuing broad evolution of Earth Science Data Systems development and management within NASA. One of these Data Systems Working Groups is called the Standards Process Group (SPG). This group's goal is to facilitate broader use of standards that have proven implementation and operational benefit to NASA Earth science by facilitating the approval of proposed standards and directing the evolution of standards. We have found that the candidate standards that self defined communities are proposing for approval to the SPG are one of 3 types: (1) A NASA community developed standard used within at least one self defined community where the proposed standard has not been approved or adopted by an external standards organization and where new implementations are expected to be developed from scratch, using the proposed standard as the implementation specification; (2) A NASA community developed standard used within at least one self defined community where the proposed standard has not been approved or adopted by an external standards organization and where new implementations are not expected to be developed from scratch but use existing software libraries or code;. (3) A standard already approved by an external standards organization but is being proposed for use for the NASA Earth science community. There are 3 types of reviews potentially needed to evaluate a proposed standard: (1) A detailed technical review to determine the quality, accuracy, and clarity of the proposed specification and where a detailed technical review ensures that implementers can use the proposed standard as an implementation specification for any future implementations with confidence; (2) A "usefulness" user review that determines if the proposed standard is useful or helpful or necessary to the user to carry out his work; (3) An operational review that evaluates if the

  18. NASA's Earth Science Data Systems Standards Process

    NASA Astrophysics Data System (ADS)

    Enloe, Y.; Ullman, R.

    2008-12-01

    NASA's Standards Process Group (SPG) facilitates the approval of proposed standards that have proven implementation and operational benefit for use in NASA's Earth science data systems. After some initial experience in approving proposed standards, the SPG has tailored its Standards Process to remove redundant reviews to shorten the review process. We have found that the candidate submissions that self defined communities are proposing for endorsement to the SPG are one of 4 types: (1) A NASA community developed standard used within at least one self defined community where the proposed standard has not been approved or adopted by an external standards organization and where new implementations are expected to be developed from scratch, using the proposed standard as the implementation specification; (2) A standard already approved by an external standards organization but is being proposed for use for the NASA Earth science community; (3) A defacto standard already widely used; or a (4) Technical Note We will discuss real examples of the different types of candidate standards that have been proposed and endorsed (i.e. OPeNDAP's Data Access Protocol, Open Geospatial Consortium's Web Map Server, and the Hierarchical Data Format). We will discuss a potential defacto standard (NASA's Global Change Master Directory (GCMD) Directory Interchange Format (DIF)) that is currently being reviewed. This past year, the SPG has modified its Standards Process to provide a comprehensive but not redundant review of the submitted RFC. The end result of the process tailoring is that the reviews will be completed faster. At each RFC submission, the SPG will decide which reviews will be performed. These reviews are conducted simultaneously and can include these three types: (1) A Technical review to review the technical specification and associated implementations; (2) An Operational Readiness review to evaluate whether the proposed standard works in a NASA environment with NASA Earth

  19. Contemporary Development Trends in Administrative-Legal Relations in the System of Administrative Justice

    ERIC Educational Resources Information Center

    Abdikerimova, Aynur A.

    2016-01-01

    The purpose of the study is to determine the main contemporary development trends in administrative-legal relations in the field of administrative justice. In order to examine theoretical and practical issues of modern administrative justice, normative legal acts identifying the relations in the system of administrative justice in the Republic in…

  20. The early Earth Observing System reference handbook: Earth Science and Applications Division missions, 1990-1997

    NASA Technical Reports Server (NTRS)

    1990-01-01

    Prior to the launch of the Earth Observing System (EOS) series, NASA will launch and operate a wide variety of new earth science satellites and instruments, as well as undertake several efforts collecting and using the data from existing and planned satellites from other agencies and nations. These initiatives will augment the knowledge base gained from ongoing Earth Science and Applications Division (ESAD) programs. This volume describes three sets of ESAD activities -- ongoing exploitation of operational satellite data, research missions with upcoming launches between now and the first launch of EOS, and candidate earth probes.

  1. Earth System Science in a Nutshell: A Starting Point Module

    NASA Astrophysics Data System (ADS)

    Ruzek, M.; Manduca, C. A.

    2004-12-01

    "Earth System Science in a Nutshell" is a learning module describing an interdisciplinary approach for treating Earth as an integrated system. The module is one of twelve within the Starting Point project, an NSF-supported effort which explores the ability of on-line resources to catalyze improvements in undergraduate teaching. The Starting Point collection of modules integrate pedagogy with teaching resources to support a virtual community of educators teaching undergraduate entry-level geoscience, environmental science, or related courses. The Earth system science module outlines basic representations of the Earth system, and presents a series of short illustrated vignettes describing the Earth in space, the traditional air, water, land and life spheres, and the human dimension. Each section is linked to relevant online resources cataloged within the Starting Point Digital Library Collection, also linked to the Digital Library for Earth System Education (DLESE). The module also identifies and summarizes additional learning resources by Earth system sphere and theme. In a final section, the module catalogs, summarizes and links to Earth system science courses being offered at colleges and universities across the country. "Earth System Science in a Nutshell" is designed as a quick overview of Earth as a system, for faculty or students, with ready links to resources and programs offering more depth. The module serves as a content resource and reference for the other sections of Starting Point, which offer additional ideas for teaching entry level geoscience courses. A parallel module, Designing an Earth System Course, offers strategies and materials for course design and presents several examples of Earth system science courses with different emphases, each based on a matrix approach that systematically looks at interactions among the different spheres within a particular content area.

  2. Network Performance Measurements for NASA's Earth Observation System

    NASA Technical Reports Server (NTRS)

    Loiacono, Joe; Gormain, Andy; Smith, Jeff

    2004-01-01

    NASA's Earth Observation System (EOS) Project studies all aspects of planet Earth from space, including climate change, and ocean, ice, land, and vegetation characteristics. It consists of about 20 satellite missions over a period of about a decade. Extensive collaboration is used, both with other US. agencies (e.g., National Oceanic and Atmospheric Administration (NOA), United States Geological Survey (USGS), Department of Defense (DoD), and international agencies (e.g., European Space Agency (ESA), Japan Aerospace Exploration Agency (JAXA)), to improve cost effectiveness and obtain otherwise unavailable data. Scientific researchers are located at research institutions worldwide, primarily government research facilities and research universities. The EOS project makes extensive use of networks to support data acquisition, data production, and data distribution. Many of these functions impose requirements on the networks, including throughput and availability. In order to verify that these requirements are being met, and be pro-active in recognizing problems, NASA conducts on-going performance measurements. The purpose of this paper is to examine techniques used by NASA to measure the performance of the networks used by EOSDIS (EOS Data and Information System) and to indicate how this performance information is used.

  3. Peptide synthesis in early earth hydrothermal systems

    USGS Publications Warehouse

    Lemke, K.H.; Rosenbauer, R.J.; Bird, D.K.

    2009-01-01

    We report here results from experiments and thermodynamic calculations that demonstrate a rapid, temperature-enhanced synthesis of oligopeptides from the condensation of aqueous glycine. Experiments were conducted in custom-made hydrothermal reactors, and organic compounds were characterized with ultraviolet-visible procedures. A comparison of peptide yields at 260??C with those obtained at more moderate temperatures (160??C) gives evidence of a significant (13 kJ ?? mol-1) exergonic shift. In contrast to previous hydrothermal studies, we demonstrate that peptide synthesis is favored in hydrothermal fluids and that rates of peptide hydrolysis are controlled by the stability of the parent amino acid, with a critical dependence on reactor surface composition. From our study, we predict that rapid recycling of product peptides from cool into near-supercritical fluids in mid-ocean ridge hydrothermal systems will enhance peptide chain elongation. It is anticipated that the abundant hydrothermal systems on early Earth could have provided a substantial source of biomolecules required for the origin of life. Astrobiology 9, 141-146. ?? 2009 Mary Ann Liebert, Inc. 2009.

  4. A Desktop Virtual Reality Earth Motion System in Astronomy Education

    ERIC Educational Resources Information Center

    Chen, Chih Hung; Yang, Jie Chi; Shen, Sarah; Jeng, Ming Chang

    2007-01-01

    In this study, a desktop virtual reality earth motion system (DVREMS) is designed and developed to be applied in the classroom. The system is implemented to assist elementary school students to clarify earth motion concepts using virtual reality principles. A study was conducted to observe the influences of the proposed system in learning.…

  5. Silica-associated limited systemic sclerosis after occupational exposure to calcined diatomaceous earth.

    PubMed

    Moisan, Stéphanie; Rucay, Pierre; Ghali, Alaa; Penneau-Fontbonne, Dominique; Lavigne, Christian

    2010-10-01

    Silica-associated systemic sclerosis can occur in persons using calcined diatomaceous earth for filtration purpose. A limited systemic sclerosis was diagnosed in a 52-year-old male winegrower who had a combination of Raynaud's phenomenon, oesophageal dysfunction, sclerodactyly and telangectasia. The anti-centromere antibodies titre was 1/5000. The patient was frequently exposed to high atmospheric concentrations of calcined diatomaceous earth when performing the filtration of wines. Calcined diatomaceous earth is almost pure crystalline silica under the cristobalite form. The diagnosis of silica-associated limited systemic sclerosis after exposure to calcined diatomaceous earth was made. The patient's disease met the medical, administrative and occupational criteria given in the occupational diseases list 22 bis of the agriculture Social Security scheme and thence was presumed to be occupational in origin, without need to be proved. The diagnosis of occupational disease had been recognized by the compensation system of the agricultural health insurance.

  6. NCAR Earth Observing Laboratory's Data Tracking System

    NASA Astrophysics Data System (ADS)

    Cully, L. E.; Williams, S. F.

    2014-12-01

    The NCAR Earth Observing Laboratory (EOL) maintains an extensive collection of complex, multi-disciplinary datasets from national and international, current and historical projects accessible through field project web pages (https://www.eol.ucar.edu/all-field-projects-and-deployments). Data orders are processed through the EOL Metadata Database and Cyberinfrastructure (EMDAC) system. Behind the scenes is the institutionally created EOL Computing, Data, and Software/Data Management Group (CDS/DMG) Data Tracking System (DTS) tool. The DTS is used to track the complete life cycle (from ingest to long term stewardship) of the data, metadata, and provenance for hundreds of projects and thousands of data sets. The DTS is an EOL internal only tool which consists of three subsystems: Data Loading Notes (DLN), Processing Inventory Tool (IVEN), and Project Metrics (STATS). The DLN is used to track and maintain every dataset that comes to the CDS/DMG. The DLN captures general information such as title, physical locations, responsible parties, high level issues, and correspondence. When the CDS/DMG processes a data set, IVEN is used to track the processing status while collecting sufficient information to ensure reproducibility. This includes detailed "How To" documentation, processing software (with direct links to the EOL Subversion software repository), and descriptions of issues and resolutions. The STATS subsystem generates current project metrics such as archive size, data set order counts, "Top 10" most ordered data sets, and general information on who has ordered these data. The DTS was developed over many years to meet the specific needs of the CDS/DMG, and it has been successfully used to coordinate field project data management efforts for the past 15 years. This paper will describe the EOL CDS/DMG Data Tracking System including its basic functionality, the provenance maintained within the system, lessons learned, potential improvements, and future developments.

  7. Hydrodynamic complexity in the Earth system

    NASA Astrophysics Data System (ADS)

    Peltier, W. Richard

    Geophysical fluid Dynamics (GFD), as a recognizably distinct subdiscipline in the geophysical sciences, was probably born in the continuing series of Summer Schools in GFD that began at the Woods Hole Oceanographic Institution over 20 years ago. The goal of these schools was to bring together relatively small groups of gifted graduate students with professional academics working in the areas of astrophysics, atmospheric science, geophysics, oceanography and other areas in which models based upon the concepts of classical hydrodynamics were coming to be seen as central to the understanding of a wide range of dynamical processes. The point of this effort was, and remains, to emphasize the commonality of physical process that underlies the behaviour of such apparently unrelated systems and thereby to stimulate the growth of a new group of theoretical geophysicists whose members are as comfortable in analyzing the behaviour of the infinite Reynold number flows that dominate the general circulation of the planetary atmosphere as they are in developing models of the zero Reynolds number flow associated with convection in the earth's mantle. The goal was, and remains, for example, to educate astrophysicists to understand that the double diffusive processes at work in magnetoconvection in the earth's core (say) have many similarities with the processes that operate in the oceanographically important heat-salt system; and similarly to educate oceanographers to understand that the process of Gulf Stream ring formation has everything to do with the process of occlusion of a frontal baroclinic wave in the atmosphere, etc. The summary of the present state and future promise of this young science, by Raymond Hyde, in the preceding paper of this volume, has provided an interesting view of some of the areas of present research that are liable to be most productive of new insights in the immediate future. By way of this invited response to what Dr. Hyde has written I thought I

  8. Tropical forests and the changing earth system

    PubMed Central

    Lewis, Simon L

    2005-01-01

    Tropical forests are global epicentres of biodiversity and important modulators of the rate of climate change. Recent research on deforestation rates and ecological changes within intact forests, both areas of recent research and debate, are reviewed, and the implications for biodiversity (species loss) and climate change (via the global carbon cycle) addressed. Recent impacts have most likely been: (i) a large source of carbon to the atmosphere, and major loss of species, from deforestation and (ii) a large carbon sink within remaining intact forest, accompanied by accelerating forest dynamism and widespread biodiversity changes. Finally, I look to the future, suggesting that the current carbon sink in intact forests is unlikely to continue, and that the tropical forest biome may even become a large net source of carbon, via one or more of four plausible routes: changing photosynthesis and respiration rates, biodiversity changes in intact forest, widespread forest collapse via drought, and widespread forest collapse via fire. Each of these scenarios risks potentially dangerous positive feedbacks with the climate system that could dramatically accelerate and intensify climate change. Given that continued land-use change alone is already thought to be causing the sixth mass extinction event in Earth's history, should such feedbacks occur, the resulting biodiversity and societal consequences would be even more severe. PMID:16553317

  9. Tropical forests and the changing earth system.

    PubMed

    Lewis, Simon L

    2006-01-29

    Tropical forests are global epicentres of biodiversity and important modulators of the rate of climate change. Recent research on deforestation rates and ecological changes within intact forests, both areas of recent research and debate, are reviewed, and the implications for biodiversity (species loss) and climate change (via the global carbon cycle) addressed. Recent impacts have most likely been: (i) a large source of carbon to the atmosphere, and major loss of species, from deforestation and (ii) a large carbon sink within remaining intact forest, accompanied by accelerating forest dynamism and widespread biodiversity changes. Finally, I look to the future, suggesting that the current carbon sink in intact forests is unlikely to continue, and that the tropical forest biome may even become a large net source of carbon, via one or more of four plausible routes: changing photosynthesis and respiration rates, biodiversity changes in intact forest, widespread forest collapse via drought, and widespread forest collapse via fire. Each of these scenarios risks potentially dangerous positive feedbacks with the climate system that could dramatically accelerate and intensify climate change. Given that continued land-use change alone is already thought to be causing the sixth mass extinction event in Earth's history, should such feedbacks occur, the resulting biodiversity and societal consequences would be even more severe.

  10. ERISTAR: Earth Resources Information Storage, Transformation, Analysis, and Retrieval administrative report

    NASA Technical Reports Server (NTRS)

    Vachon, R. I.; Obrien, J. F., Jr.; Lueg, R. E.; Cox, J. E.

    1972-01-01

    The 1972 Systems Engineering program at Marshall Space Flight Center where 15 participants representing 15 U.S. universities, 1 NASA/MSFC employee, and another specially assigned faculty member, participated in an 11-week program is discussed. The Fellows became acquainted with the philosophy of systems engineering, and as a training exercise, used this approach to produce a conceptional design for an Earth Resources Information Storage, Transformation, Analysis, and Retrieval System. The program was conducted in three phases; approximately 3 weeks were devoted to seminars, tours, and other presentations to subject the participants to technical and other aspects of the information management problem. The second phase, 5 weeks in length, consisted of evaluating alternative solutions to problems, effecting initial trade-offs and performing preliminary design studies and analyses. The last 3 weeks were occupied with final trade-off sessions, final design analyses and preparation of a final report and oral presentation.

  11. Earth evolution as a thermal system

    NASA Astrophysics Data System (ADS)

    Tang, C.

    2014-12-01

    After fifty years of plate-tectonic theory, the reasons why earth sometime freezed as a snowball or sometime became lethally hot resulting in mass extinction remain enigmatic. This article proposes a new hypothesis on Earth evolution. The unbalance of heat between the input and output is considered as the driving force for the Earth evolution, the lithospheric expansion and associated uplift are the triggers, the self-organized progressive failure leading to collapse of the Earth are the amplifier, and the global scale response in terms of volcanism and magmatism is the globalizer. This shallow process of lithosphere may reach a critical state with a positive feedback loop, and result in the formation of no-plume original Large Igneous Provinces (NPOLIP) in a top-down pattern. Endothermic phase changes during de-compressive melting remove heat from and cool their surroundings, including the upper parts of the lithosphere. The huge loss of Earth's heat during eruption of LIPs, together with the endothermic cooling, may put the thermal cycle to an end and a new start of the cycle initiates. In summary, Earth drives itself to evolve in terms of thermal cycles. Global cooling and warming are the two stages of the many cycles during the Earth evolution. Glaciations are the extreme result of global cooling, whereas the LIPs, sometime accompanied with remarkable sea level dropping, are the extreme result of global warming, with a long recovering age, the interglacialstage, between them. They come and go as thermal cycle evolves, with climate warming, being caused by Earth itself rather than by external forces or human activities, as the most attractive prediction.

  12. High Latitude Dust in the Earth System

    NASA Technical Reports Server (NTRS)

    Bullard, Joanna E.; Baddock, Matthew; Bradwell, Tom; Crusius, John; Darlington, Eleanor; Gaiero, Diego; Gasso, Santiago; Gisladottir, Gudrun; Hodgkins, Richard; McCulloch, Robert; McKenna-Neuman, Cheryl; Mockford, Tom; Stewart, Helena; Thorsteinsson, Throstur

    2016-01-01

    Natural dust is often associated with hot, subtropical deserts, but significant dust events have been reported from cold, high latitudes. This review synthesizes current understanding of high-latitude (> or = 50degN and > or = 40degS) dust source geography and dynamics and provides a prospectus for future research on the topic. Although the fundamental processes controlling aeolian dust emissions in high latitudes are essentially the same as in temperate regions, there are additional processes specific to or enhanced in cold regions. These include low temperatures, humidity, strong winds, permafrost and niveo-aeolian processes all of which can affect the efficiency of dust emission and distribution of sediments. Dust deposition at high latitudes can provide nutrients to the marine system, specifically by contributing iron to high-nutrient, low-chlorophyll oceans; it also affects ice albedo and melt rates. There have been no attempts to quantify systematically the expanse, characteristics, or dynamics of high-latitude dust sources. To address this, we identify and compare the main sources and drivers of dust emissions in the Northern (Alaska, Canada, Greenland, and Iceland) and Southern (Antarctica, New Zealand, and Patagonia) Hemispheres. The scarcity of year-round observations and limitations of satellite remote sensing data at high latitudes are discussed. It is estimated that under contemporary conditions high-latitude sources cover >500,000 sq km and contribute at least 80-100 Tg/yr1 of dust to the Earth system (approx. 5% of the global dust budget); both are projected to increase under future climate change scenarios.

  13. Early evolution of the Earth-Moon system with a fast-spinning Earth

    NASA Astrophysics Data System (ADS)

    Wisdom, Jack; Tian, ZhenLiang

    2015-08-01

    The isotopic similarity of the Earth and Moon has motivated a recent investigation of the formation of the Moon with a fast-spinning Earth (Cuk, M., Stewart, S.T., [2012]. Science, doi:10.1126/science.1225542). Angular momentum was found to be drained from the system through a resonance between the Moon and Sun. They found a narrow range of parameters that gave results consistent with the current angular momentum of the Earth-Moon system. However, a tidal model was used that was described as approximating a constant Q tidal model, but it was not a constant Q model. Here we use a conventional constant Q tidal model to explore the process. We find that there is still a narrow range of parameters in which angular momentum is withdrawn from the system that corresponds roughly to the range found earlier, but the final angular momentum is too low to be consistent with the Earth-Moon system. Exploring a broader range of parameters we find a new phenomenon, not found in the earlier work, that extracts angular momentum from the Earth-Moon system over a broader range of parameters. The final angular momentum is more consistent with the actual angular momentum of the Earth-Moon system. We develop a simple model that exhibits the phenomenon.

  14. Systems definition summary. Earth Observatory Satellite system definition study (EOS)

    NASA Technical Reports Server (NTRS)

    1974-01-01

    A standard spacecraft bus for performing a variety of earth orbit missions in the late 1970's and 1980's is defined. Emphasis is placed on a low-cost, multimission capability, benefitting from the space shuttle system. The subjects considered are as follows: (1) performance requirements, (2) internal interfaces, (3) redundancy and reliability, (4) communications and data handling module design, (5) payload data handling, (6) application of the modular design to various missions, and (7) the verification concept.

  15. Altimetric system: Earth observing system. Volume 2h: Panel report

    NASA Technical Reports Server (NTRS)

    Bindschadler, Robert A.; Born, George; Chase, Robert R. P.; Fu, Lee-Lueng; Mouginis-Mark, Peter; Parsons, Chester; Tapley, Byron

    1987-01-01

    A rationale and recommendations for planning, implementing, and operating an altimetric system aboard the Earth observing system (Eos) spacecraft is provided. In keeping with the recommendations of the Eos Science and Mission Requirements Working Group, a complete altimetric system is defined that is capable of perpetuating the data set to be derived from TOPEX/Poseidon, enabling key scientific questions to be addressed. Since the scientific utility and technical maturity of spaceborne radar altimeters is well documented, the discussion is limited to highlighting those Eos-specific considerations that materially impact upon radar altimetric measurements.

  16. ACCESS Earth: Promoting Accessibility to Earth System Science for Students with Disabilities

    NASA Astrophysics Data System (ADS)

    Locke, S. M.; Cohen, L.; Lightbody, N.

    2001-05-01

    ACCESS Earth is an intensive summer institute for high school students with disabilities and their teachers that is designed to encourage students with disabilities to consider careers in earth system science. Participants study earth system science concepts at a Maine coastal estuary, using Geographic Information Systems, remote sensing, and field observations to evaluate the impacts of climate change, sea level rise, and development on coastal systems. Teachers, students, and scientists work together to adapt field and laboratory activities for persons with disabilities, including those with mobility and visual impairments. Other sessions include demonstrations of assistive technology, career discussions, and opportunities for students to meet with successful scientists with disabilities from throughout the U.S. The summer institute is one of several programs in development at the University of Southern Maine to address the problem of underrepresentation of people with disabilities in the earth sciences. Other projects include a mentoring program for high school students, a web-based clearinghouse of resources for teaching earth sciences to students with disabilities, and guidebooks for adaptation of popular published earth system science curricula for disabled learners.

  17. EPA Regional Administrator to kick off Run for Clean Air as part of Philadelphia Earth Day festivities

    EPA Pesticide Factsheets

    PHILADELPHIA, Pa. (April 17, 2015) - EPA Mid-Atlantic Regional Administrator Shawn M. Garvin will get regional Earth Day festivities started Saturday morning as he opens ceremonies for the Run for Clean Air presented by Toyota Hybrids in front of th

  18. From Laboratory Manipulations To Earth System Models

    NASA Astrophysics Data System (ADS)

    Ridgwell, A.; Schmidt, D.

    2008-12-01

    The apparent incongruence between coccolithophore calcification responses observed across different experimental manipulations, particularly those involving Emiliania huxleyi, raises new challenges particularly for modellers. This is because the global models used for predicting future fossil fuel CO2 uptake by the ocean base their parameterizations for plankton calcification and carbonate export from the ocean surface closely on laboratory results. Predictions of such models will be unreliable if rooted in unrepresentative and/or poorly understood laboratory experiments. The difficulty in making sense of the differing responses reported and thus correctly informing models is compounded by fundamental differences between laboratory culture studies, particularly in the strain (ecotype or likely even genotype) of E. huxleyi cultured. However, two pertinent observations offer the promise of resolving these difficulties: (1) experiments using other coccolithophore species have delineated the existence of a calcification 'optimum' in environmental conditions (pH), and (2) there is an unambiguous direction to the calcification-CO2 response in mesocosm and shipboard incubations. We propose that an equivalence can be drawn between species or even ecosystem integrated phytoplankton calcification rate as a function of pH (or saturation), and widely used descriptions of plankton growth rate vs. temperature (the Eppley curve). An 'Eppley' like calcification formulation provides not only a conceptual framework for reconciling the results of available experimental manipulations of coccolithophores, but also a means of constructing a simple quasi-empirical relationship for describing ocean acidification impacts on planktonic carbonate production in carbon cycle models. The implications of this for future fossil fuel CO2 uptake by the ocean are assessed in an Earth system model.

  19. Clouds and the Earth's Radiant Energy System (CERES) experiment

    NASA Technical Reports Server (NTRS)

    Cooper, John E.; Barkstrom, Bruce R.; Kopia, Leonard P.

    1992-01-01

    The Clouds and the Earth's Radiant Energy System (CERES) experiment will play a major role in NASA's planned multi-instrument multi-satellite Earth Observing System (EOS) program to observe and study the total Earth System on a global scale. The CERES experiment will provide EOS with a consistent data base of accurately known fields of radiation and of clouds; and will investigate the important question of the impact of clouds upon the radiative energy flow through the earth-atmosphere system. The CERES instruments will be an improved version of the Earth Radiation Budget Experiment (ERBE) broadband scanning radiometer instruments flown by NASA in the 1980s. This paper describes the CERES experiment approach and the current CERES instrument design status.

  20. Advanced Earth Observation System Instrumentation Study (aeosis)

    NASA Technical Reports Server (NTRS)

    White, R.; Grant, F.; Malchow, H.; Walker, B.

    1975-01-01

    Various types of measurements were studied for estimating the orbit and/or attitude of an Earth Observation Satellite. An investigation was made into the use of known ground targets in the earth sensor imagery, in combination with onboard star sightings and/or range and range rate measurements by ground tracking stations or tracking satellites (TDRSS), to estimate satellite attitude, orbital ephemeris, and gyro bias drift. Generalized measurement equations were derived for star measurements with a particular type of star tracker, and for landmark measurements with a multispectral scanner being proposed for an advanced Earth Observation Satellite. The use of infra-red horizon measurements to estimate the attitude and gyro bias drift of a geosynchronous satellite was explored.

  1. Terra - the Earth Observing System flagship observatory

    NASA Astrophysics Data System (ADS)

    Thome, K. J.

    2013-12-01

    The Terra platform enters its teenage years with an array of accomplishments but also with the potential to do much more. Efforts continue to extend the Terra data record to build upon its array of accomplishments and make its data more valuable by creating a record length that allows examination of inter annual variability, observe trends on the decadal scale, and gather statistics relevant to the define climate metrics. Continued data from Terra's complementary instruments will play a key role in creating the data record needed for scientists to develop an understanding of our climate system. Terra's suite of instruments: ASTER (contributed by the Japanese Ministry of Economy and Trade and Industry with a JPL-led US Science Team), CERES (NASA LaRC - PI), MISR (JPL - PI), MODIS (NASA GSFC), and MOPITT (sponsored by Canadian Space Agency with NCAR-led Science Team) are providing an unprecedented 81 core data products. The annual demand for Terra data remains with >120 million files distributed in 2011 and >157 million in 2012. More than 1,100 peer-reviewed publications appeared in 2012 using Terra data bringing the lifetime total >7,600. Citation numbers of 21,000 for 2012 and over 100,000 for the mission's lifetime. The broad range of products enable the community to provide answers to the overarching question, 'How is the Earth changing and what are the consequences for life on Earth?' Terra continues to provide data that: (1) Extend the baseline of morning-orbit collections; (2) Enable comparison of measurements acquired from past high-impact events; (3) Add value to recently-launched and soon-to-be launched missions, and upcoming field programs. Terra data continue to support monitoring and relief efforts for natural and man-made disasters that involve U.S. interests. Terra also contributes to Applications Focus Areas supporting the U.S. National Objectives for agriculture, air quality, climate, disaster management, ecological forecasting, public health, water

  2. Modeling the Earth system in the Mission to Planet Earth era

    NASA Technical Reports Server (NTRS)

    Unninayar, Sushel; Bergman, Kenneth H.

    1993-01-01

    A broad overview is made of global earth system modeling in the Mission to Planet Earth (MTPE) era for the multidisciplinary audience encompassed by the Global Change Research Program (GCRP). Time scales of global system fluctuation and change are described in Section 2. Section 3 provides a rubric for modeling the global earth system, as presently understood. The ability of models to predict the future state of the global earth system and the extent to which their predictions are reliable are covered in Sections 4 and 5. The 'engineering' use of global system models (and predictions) is covered in Section 6. Section 7 covers aspects of an increasing need for improved transform algorithms and better methods to assimilate this information into global models. Future monitoring and data requirements are detailed in Section 8. Section 9 covers the NASA-initiated concept 'Mission to Planet Earth,' which employs space and ground based measurement systems to provide the scientific basis for understanding global change. Section 10 concludes this review with general remarks concerning the state of global system modeling and observing technology and the need for future research.

  3. Climate Change Education in Earth System Science

    NASA Astrophysics Data System (ADS)

    Hänsel, Stephanie; Matschullat, Jörg

    2013-04-01

    The course "Atmospheric Research - Climate Change" is offered to master Earth System Science students within the specialisation "Climate and Environment" at the Technical University Bergakademie Freiberg. This module takes a comprehensive approach to climate sciences, reaching from the natural sciences background of climate change via the social components of the issue to the statistical analysis of changes in climate parameters. The course aims at qualifying the students to structure the physical and chemical basics of the climate system including relevant feedbacks. The students can evaluate relevant drivers of climate variability and change on various temporal and spatial scales and can transform knowledge from climate history to the present and the future. Special focus is given to the assessment of uncertainties related to climate observations and projections as well as the specific challenges of extreme weather and climate events. At the end of the course the students are able to critically reflect and evaluate climate change related results of scientific studies and related issues in media. The course is divided into two parts - "Climate Change" and "Climate Data Analysis" and encompasses two lectures, one seminar and one exercise. The weekly "Climate change" lecture transmits the physical and chemical background for climate variation and change. (Pre)historical, observed and projected climate changes and their effects on various sectors are being introduced and discussed regarding their implications for society, economics, ecology and politics. The related seminar presents and discusses the multiple reasons for controversy in climate change issues, based on various texts. Students train the presentation of scientific content and the discussion of climate change aspects. The biweekly lecture on "Climate data analysis" introduces the most relevant statistical tools and methods in climate science. Starting with checking data quality via tools of exploratory

  4. Our Mission to Planet Earth: A guide to teaching Earth system science

    NASA Technical Reports Server (NTRS)

    1994-01-01

    Volcanic eruptions, hurricanes, floods, and El Nino are naturally occurring events over which humans have no control. But can human activities cause additional environmental change? Can scientists predict the global impacts of increased levels of pollutants in the atmosphere? Will the planet warm because increased levels of greenhouse gases, produced by the burning of fossil fuels, trap heat and prevent it from being radiated back into space? Will the polar ice cap melt, causing massive coastal flooding? Have humans initiated wholesale climatic change? These are difficult questions, with grave implications. Predicting global change and understanding the relationships among earth's components have increased in priority for the nation. The National Aeronautics and Space Administration (NASA), along with many other government agencies, has initiated long-term studies of earth's atmosphere, oceans, and land masses using observations from satellite, balloon, and aircraft-borne instruments. NASA calls its research program Mission to Planet Earth. Because NASA can place scientific instruments far above earth's surface, the program allows scientists to explore earth's components and their interactions on a global scale.

  5. Stratigraphic and Earth System approaches to defining the Anthropocene

    NASA Astrophysics Data System (ADS)

    Steffen, Will; Leinfelder, Reinhold; Zalasiewicz, Jan; Waters, Colin N.; Williams, Mark; Summerhayes, Colin; Barnosky, Anthony D.; Cearreta, Alejandro; Crutzen, Paul; Edgeworth, Matt; Ellis, Erle C.; Fairchild, Ian J.; Galuszka, Agnieszka; Grinevald, Jacques; Haywood, Alan; Ivar do Sul, Juliana; Jeandel, Catherine; McNeill, J. R.; Odada, Eric; Oreskes, Naomi; Revkin, Andrew; Richter, Daniel deB.; Syvitski, James; Vidas, Davor; Wagreich, Michael; Wing, Scott L.; Wolfe, Alexander P.; Schellnhuber, H. J.

    2016-08-01

    Stratigraphy provides insights into the evolution and dynamics of the Earth System over its long history. With recent developments in Earth System science, changes in Earth System dynamics can now be observed directly and projected into the near future. An integration of the two approaches provides powerful insights into the nature and significance of contemporary changes to Earth. From both perspectives, the Earth has been pushed out of the Holocene Epoch by human activities, with the mid-20th century a strong candidate for the start date of the Anthropocene, the proposed new epoch in Earth history. Here we explore two contrasting scenarios for the future of the Anthropocene, recognizing that the Earth System has already undergone a substantial transition away from the Holocene state. A rapid shift of societies toward the UN Sustainable Development Goals could stabilize the Earth System in a state with more intense interglacial conditions than in the late Quaternary climate regime and with little further biospheric change. In contrast, a continuation of the present Anthropocene trajectory of growing human pressures will likely lead to biotic impoverishment and a much warmer climate with a significant loss of polar ice.

  6. The Crew Earth Observations Experiment: Earth System Science from the ISS

    NASA Technical Reports Server (NTRS)

    Stefanov, William L.; Evans, Cynthia A.; Robinson, Julie A.; Wilkinson, M. Justin

    2007-01-01

    This viewgraph presentation reviews the use of Astronaut Photography (AP) as taken from the International Space Station (ISS) in Earth System Science (ESS). Included are slides showing basic remote sensing theory, data characteristics of astronaut photography, astronaut training and operations, crew Earth observations group, targeting sites and acquisition, cataloging and database, analysis and applications for ESS, image analysis of particular interest urban areas, megafans, deltas, coral reefs. There are examples of the photographs and the analysis.

  7. 5 CFR 930.205 - Administrative law judge pay system.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 5 Administrative Personnel 2 2014-01-01 2014-01-01 false Administrative law judge pay system. 930.205 Section 930.205 Administrative Personnel OFFICE OF PERSONNEL MANAGEMENT (CONTINUED) CIVIL SERVICE REGULATIONS (CONTINUED) PROGRAMS FOR SPECIFIC POSITIONS AND EXAMINATIONS (MISCELLANEOUS) Administrative...

  8. 5 CFR 930.205 - Administrative law judge pay system.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 5 Administrative Personnel 2 2013-01-01 2013-01-01 false Administrative law judge pay system. 930.205 Section 930.205 Administrative Personnel OFFICE OF PERSONNEL MANAGEMENT (CONTINUED) CIVIL SERVICE REGULATIONS (CONTINUED) PROGRAMS FOR SPECIFIC POSITIONS AND EXAMINATIONS (MISCELLANEOUS) Administrative...

  9. 5 CFR 930.205 - Administrative law judge pay system.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 5 Administrative Personnel 2 2012-01-01 2012-01-01 false Administrative law judge pay system. 930.205 Section 930.205 Administrative Personnel OFFICE OF PERSONNEL MANAGEMENT (CONTINUED) CIVIL SERVICE REGULATIONS (CONTINUED) PROGRAMS FOR SPECIFIC POSITIONS AND EXAMINATIONS (MISCELLANEOUS) Administrative...

  10. 2012 Community Earth System Model (CESM) Tutorial - Proposal to DOE

    SciTech Connect

    Holland, Marika; Bailey, David A

    2013-03-18

    The Community Earth System Model (CESM) is a fully-coupled, global climate model that provides state-of-the-art computer simulations of the Earth's past, present, and future climate states. This document provides the agenda and list of participants for the conference. Web materials for all lectures and practical sessions available from: http://www.cesm.ucar.edu/events/tutorials/073012/ .

  11. Photosynthesis, Earth System Models and the Arctic

    NASA Astrophysics Data System (ADS)

    Rogers, A.; Sloan, V. L.; Xu, C.; Wullschleger, S. D.

    2013-12-01

    The primary goal of Earth System Models (ESMs) is to improve understanding and projection of future global change. In order to do this they must accurately represent the huge carbon fluxes associated with the terrestrial carbon cycle. Photosynthetic CO2 uptake is the largest of these fluxes, and is well described by the Farquhar, von Caemmerer and Berry (FvCB) model of photosynthesis. Most ESMs use a derivation of the FvCB model to calculate gross primary productivity (GPP). One of the key parameters required by the FvCB model is an estimate of the maximum rate of carboxylation by the enzyme Rubisco (Vc,max). In ESMs the parameter Vc,max is usually fixed for a given plant functional type (PFT). Although Arctic GPP a small flux relative to global GPP, uncertainty is large. Only four ESMs currently have an explicit Arctic PFT and the data used to derive Vc,max for the Arctic PFT in these models relies on small data sets and unjustified assumptions. As part of a multidisciplinary project to improve the representation of the Arctic in ESMs (Next Generation Ecosystem Experiments - Arctic) we examined the derivation of Vc,max in current Arctic PFTs and estimated Vc,max for 12 species representing both dominant vegetation and key PFTs growing on the Barrow Environmental Observatory, Barrow, AK. The values of Vc,max currently used to represent Arctic PFTs in ESMs are 70% lower than the values we measured in these species. Separate measurements of CO2 assimilation (A) made at ambient conditions were compared with A modeled using the Vc,max values we measured in Barrow and those used by the ESMs. The A modeled with the Vc,max values used by the ESMs was 80% lower than the observed A. When our measured Vc,max values were used, modeled A was within 5% of observed A. Examination of the derivation of Vc,max in ESMs identified that the cause of the relatively low Vc,max value was the result of underestimating both the leaf N content and the investment of that N in Rubisco. Here

  12. The computational challenges of Earth-system science.

    PubMed

    O'Neill, Alan; Steenman-Clark, Lois

    2002-06-15

    The Earth system--comprising atmosphere, ocean, land, cryosphere and biosphere--is an immensely complex system, involving processes and interactions on a wide range of space- and time-scales. To understand and predict the evolution of the Earth system is one of the greatest challenges of modern science, with success likely to bring enormous societal benefits. High-performance computing, along with the wealth of new observational data, is revolutionizing our ability to simulate the Earth system with computer models that link the different components of the system together. There are, however, considerable scientific and technical challenges to be overcome. This paper will consider four of them: complexity, spatial resolution, inherent uncertainty and time-scales. Meeting these challenges requires a significant increase in the power of high-performance computers. The benefits of being able to make reliable predictions about the evolution of the Earth system should, on their own, amply repay this investment.

  13. Progress Towards a NASA Earth Science Reuse Enablement System (RES)

    NASA Technical Reports Server (NTRS)

    Marshall, James J.; Downs, Robert R.; Mattmann, Chris A.

    2010-01-01

    A Reuse Enablement System (RES) allows developers of Earth science software to contribute software for reuse by others and.for users to find, select, and obtain software for reuse in their own systems. This paper describes work that the X4S,4 Earth Science Data Systems (ESDS) Software Reuse Working Group has completed to date in the development of an RES for NASA.

  14. Earth resources ground data handling systems for the 1980's

    NASA Technical Reports Server (NTRS)

    Vanvleck, E. M.; Sinclair, K. F.; Pitts, S. W.; Slye, R. E.

    1973-01-01

    The system requirements of an operational data handling system for earth resources in the decade of the 1980's are investigated. Attention is drawn to problems encountered in meeting the stringent agricultural user requirements of that time frame. Such an understanding of requirements is essential not only in designing the ground system that will ultimately handle the data, but also in design studies of the earth resources platform, sensors, and data relay satellites which may be needed.

  15. Moving Heaven and Earth: Administrative Search and Selection Processes and the Experience of an African American Woman Senior Administrator

    ERIC Educational Resources Information Center

    Barnett-Johnson, Kim R.

    2009-01-01

    The purpose of this case/phenomenological study was to examine a collegiate administrative search and selection process and the experience of an African American woman who was selected to the position of chancellor. A case concerning the search process of a regional campus of Ivy Tech Community College of Indiana was identified and chosen.…

  16. WHERE TO FIND HABITABLE ''EARTHS'' IN CIRCUMBINARY SYSTEMS

    SciTech Connect

    Liu Huigen; Zhang Hui; Zhou Jilin

    2013-04-20

    Six P-type planets have been found thus far around five binary systems, i.e., Kepler-16b, 34b, 35b, 38b, and 47b and c, which are all Neptune- or Jupiter-like planets. The stability of planets and the habitable zones are influenced by the gravitational and radiative perturbations of binary companions. In this Letter, we check the stability of an additional habitable Earth-mass planet in each system. Based on our simulations in 10 Myr, a habitable ''Earth'' is hardly stable in Kepler-16, while a stable ''Earth'' in Kepler-47 close to the boundaries of the habitable zone is possible. In contrast, Kepler-34, 35, and 38 seem to have high probabilities of being able to tolerante a stable ''Earth'' in their habitable zones. The affects of transit time variations are quite small due to the small mass of an undetected ''Earth,'' except that of Kepler-16b. With a time precision of 10{sup -3} day ({approx}88 s), an ''Earth'' in the corotational resonance with Kepler-16b can be detected in three years, while habitable ''Earths'' in the Kepler-34 and 38 systems can be detected in 10 yr. Habitable ''Earths'' in Kepler-35 and 47 are not likely to be detected in 10 yr under this precision.

  17. The Spatial Structure of Administrative Systems.

    ERIC Educational Resources Information Center

    Massam, Byran H.

    Designed to supplement undergraduate college geography courses, this paper discusses a particular type of territorial division--the administrative area within a state. The study of administrative patterns allows geographers to formulate and test hypotheses about man's organization of space, and also to assist in a very practical way by applying…

  18. Earth-moon system: Dynamics and parameter estimation

    NASA Technical Reports Server (NTRS)

    Breedlove, W. J., Jr.

    1975-01-01

    A theoretical development of the equations of motion governing the earth-moon system is presented. The earth and moon were treated as finite rigid bodies and a mutual potential was utilized. The sun and remaining planets were treated as particles. Relativistic, non-rigid, and dissipative effects were not included. The translational and rotational motion of the earth and moon were derived in a fully coupled set of equations. Euler parameters were used to model the rotational motions. The mathematical model is intended for use with data analysis software to estimate physical parameters of the earth-moon system using primarily LURE type data. Two program listings are included. Program ANEAMO computes the translational/rotational motion of the earth and moon from analytical solutions. Program RIGEM numerically integrates the fully coupled motions as described above.

  19. NASDA's earth observation satellite data archive policy for the earth observation data and information system (EOIS)

    NASA Technical Reports Server (NTRS)

    Sobue, Shin-ichi; Yoshida, Fumiyoshi; Ochiai, Osamu

    1996-01-01

    NASDA's new Advanced Earth Observing Satellite (ADEOS) is scheduled for launch in August, 1996. ADEOS carries 8 sensors to observe earth environmental phenomena and sends their data to NASDA, NASA, and other foreign ground stations around the world. The downlink data bit rate for ADEOS is 126 MB/s and the total volume of data is about 100 GB per day. To archive and manage such a large quantity of data with high reliability and easy accessibility it was necessary to develop a new mass storage system with a catalogue information database using advanced database management technology. The data will be archived and maintained in the Master Data Storage Subsystem (MDSS) which is one subsystem in NASDA's new Earth Observation data and Information System (EOIS). The MDSS is based on a SONY ID1 digital tape robotics system. This paper provides an overview of the EOIS system, with a focus on the Master Data Storage Subsystem and the NASDA Earth Observation Center (EOC) archive policy for earth observation satellite data.

  20. Reform and Development of Educational Administration System in China

    ERIC Educational Resources Information Center

    Li, Qiang; Wu, Zhongyuan

    2008-01-01

    The paper mainly introduces the development of the educational administration agency in China, including the evolution of the educational administration agency, the Course of instituting legal system of education in China, the missions of the now Minister of Education, questions emerged in the development of the educational administration system,…

  1. Towards a community Earth System Model

    NASA Astrophysics Data System (ADS)

    Blackmon, M.

    2003-04-01

    The Community Climate System Model, version 2 (CCSM2), was released in June 2002. CCSM2 has several new components and features, which I will discuss briefly. I will also show a few results from a multi-century equilibrium run with this model, emphasizing the improvements over the earlier simulation using the original CSM. A few flaws and inadequacies in CCSM2 have been identified. I will also discuss briefly work underway to improve the model and present results, if available. CCSM2, with improvements, will be the basis for the development of a Community Earth System Model (CESM). The highest priority for expansion of the model involves incorporation of biogeosciences into the coupled model system, with emphasis given to the carbon, nitrogen and iron cycles. The overall goal of the biogeosciences project within CESM is to understand the regulation of planetary energetics, planetary ecology, and planetary metabolism through exchanges of energy, momentum, and materials among atmosphere, land, and ocean, and the response of the climate system through these processes to changes in land cover and land use. In particular, this research addresses how biogeochemical coupling of carbon, nitrogen, and iron cycles affects climate and how human perturbations of these cycles alter climate. To accomplish these goals, the Community Land Model, the land component of CCSM2, is being developed to include river routing, carbon and nitrogen cycles, emissions of mineral aerosols and biogenic volatile organic compounds, dry deposition of various gases, and vegetation dynamics. The carbon and nitrogen cycles are being implemented using parameterizations developed as part of a state-of-the-art ecosystem biogeochemistry model. The primary goal of this research is to provide an accurate net flux of CO2 between the land and the atmosphere so that CESM can be used to study the dynamics of the coupled climate-carbon system. Emissions of biogenic volatile organic compounds are also based on a

  2. Sampling analysis for the earth radiation budget satellite system mission

    NASA Technical Reports Server (NTRS)

    Harrison, E. F.; Gibson, G. G.

    1977-01-01

    A study was conducted to identify problems related to sampling the Earth's radiant energy budget and to define a satellite system with sufficient sampling to satisfy science requirements on global, zonal, and regional scales.

  3. Collaborative Project. Mode and Intermediate Waters in Earth System Models

    SciTech Connect

    Sarmiento, Jorge L.; Dufour, Carolina; Rodgers, Keith B.

    2015-12-16

    The focus of this grant was on diagnosing the physical mechanisms controlling upper ocean water mass formation and carbon distribution in Earth System Models (ESMs), with the goal of improving the physics that controls their formation.

  4. A new program in earth system science education

    NASA Technical Reports Server (NTRS)

    Huntress, Wesley; Kalb, Michael W.; Johnson, Donald R.

    1990-01-01

    A program aimed at accelerating the development of earth system science curricula at the undergraduate level and at seeding the establishment of university-based mechanisms for cooperative research and education among universities and NASA has been initiated by the Universities Space Research Association (USRA) in conjunction with NASA. Proposals were submitted by 100 U.S. research universities which were selected as candidates to participate in a three-year pilot program to develop undergraduate curricula in earth system science. Universities were then selected based upon peer review and considerations of overall scientific balance among proposed programs. The program will also aim to integrate a number of universities with evolving earth system programs, linking them with a cooperative curriculum, shared faculty, and NASA scientists in order to establish a stronger base for earth systems related education and interdisciplinary research collaboration.

  5. The Community Earth System Model: A Framework for Collaborative Research

    SciTech Connect

    Hurrell, Jim; Holland, Marika M.; Gent, Peter R.; Ghan, Steven J.; Kay, Jennifer; Kushner, P.; Lamarque, J.-F.; Large, William G.; Lawrence, David M.; Lindsay, Keith; Lipscomb, William; Long , Matthew; Mahowald, N.; Marsh, D.; Neale, Richard; Rasch, Philip J.; Vavrus, Steven J.; Vertenstein, Mariana; Bader, David C.; Collins, William D.; Hack, James; Kiehl, J. T.; Marshall, Shawn

    2013-09-30

    The Community Earth System Model (CESM) is a flexible and extensible community tool used to investigate a diverse set of earth system interactions across multiple time and space scales. This global coupled model is a natural evolution from its predecessor, the Community Climate System Model, following the incorporation of new earth system capabilities. These include the ability to simulate biogeochemical cycles, atmospheric chemistry, ice sheets, and a high-top atmosphere. These and other new model capabilities are enabling investigations into a wide range of pressing scientific questions, providing new predictive capabilities and increasing our collective knowledge about the behavior and interactions of the earth system. Simulations with numerous configurations of the CESM have been provided to the Coupled Model Intercomparison Project Phase 5 (CMIP5) and are being analyzed by the broader community of scientists. Additionally, the model source code and associated documentation are freely available to the scientific community to use for earth system studies, making it a true community tool. Here we describe this earth modeling system, its various possible configurations, and illustrate its capabilities with a few science highlights.

  6. Laurel Clark Earth Camp: Building a Framework for Teacher and Student Understanding of Earth Systems

    NASA Astrophysics Data System (ADS)

    Colodner, D.; Buxner, S.; Schwartz, K.; Orchard, A.; Titcomb, A.; King, B.; Baldridge, A.; Thomas-Hilburn, H.; Crown, D. A.

    2013-04-01

    Laurel Clark Earth Camp is designed to inspire teachers and students to study their world through field experiences, remote sensing investigations, and hands on exploration, all of which lend context to scientific inquiry. In three different programs (for middle school students, for high school students, and for teachers) participants are challenged to understand Earth processes from the perspectives of both on-the ground inspection and from examination of satellite images, and use those multiple perspectives to determine best practices on both a societal and individual scale. Earth Camp is a field-based program that takes place both in the “natural” and built environment. Middle School Earth Camp introduces students to a variety of environmental science, engineering, technology, and societal approaches to sustainability. High School Earth Camp explores ecology and water resources from southern Arizona to eastern Utah, including a 5 day rafting trip. In both camps, students compare environmental change observed through repeat photography on the ground to changes observed from space. Students are encouraged to utilize their camp experience in considering their future course of study, career objectives, and lifestyle choices. During Earth Camp for Educators, teachers participate in a series of weekend workshops to explore relevant environmental science practices, including water quality testing, biodiversity surveys, water and light audits, and remote sensing. Teachers engage students, both in school and after school, in scientific investigations with this broad based set of tools. Earth Stories from Space is a website that will assist in developing skills and comfort in analyzing change over time and space using remotely sensed images. Through this three-year NASA funded program, participants will appreciate the importance of scale and perspective in understanding Earth systems and become inspired to make choices that protect the environment.

  7. Evaluation of Clouds and the Earth's Radiant Energy System (CERES) Scanner Pointing Accuracy using a Coastline Detection System

    NASA Technical Reports Server (NTRS)

    Currey, Chris; Smith, Lou; Neely, Bob

    1998-01-01

    Clouds and the Earth's Radiant Energy System (CERES) is a National Aeronautics and Space Administration (NASA) investigation to examine the role of clouds in the radiative energy flow through the Earth-atmosphere system. The first CERES scanning radiometer was launched on November 27, 1997 into a 35 inclination, 350 km altitude orbit, on the Tropical Rainfall Measuring Mission (TRMM) spacecraft. The CERES instrument consists of a three channel scanning broadband radiometer. The spectral bands measure shortwave (0.3 - 5 microns), window (8 - 12 microns), and total (0.3 - 100 microns) radiation reflected or emitted from the Earth-atmosphere system. Each Earth viewing measurement is geolocated to the Earth fixed coordinate system using satellite ephemeris, Earth rotation and geoid, and instrument pointing data. The interactive CERES coastline detection system is used to assess the accuracy of the CERES geolocation process. By analyzing radiative flux gradients at the boundaries of ocean and land masses, the accuracy of the scanner measurement locations may be derived for the CERES/TRMM instrument/satellite system. The resulting CERES measurement location errors are within 10% of the nadir footprint size. Precise pointing knowledge of the Visible and Infrared Scanner (VIRS) is required for convolution of cloud properties onto the CERES footprint; initial VIRS coastline results are included.

  8. Earth Sciences Requirements for the Information Sciences Experiment System

    NASA Technical Reports Server (NTRS)

    Bowker, David E. (Editor); Katzberg, Steve J. (Editor); Wilson, R. Gale (Editor)

    1990-01-01

    The purpose of the workshop was to further explore and define the earth sciences requirements for the Information Sciences Experiment System (ISES), a proposed onboard data processor with real-time communications capability intended to support the Earth Observing System (Eos). A review of representative Eos instrument types is given and a preliminary set of real-time data needs has been established. An executive summary is included.

  9. Syllabus for Weizmann Course: Earth System Science 101

    NASA Technical Reports Server (NTRS)

    Wiscombe, Warren J.

    2011-01-01

    This course aims for an understanding of Earth System Science and the interconnection of its various "spheres" (atmosphere, hydrosphere, etc.) by adopting the view that "the microcosm mirrors the macrocosm". We shall study a small set of microcosims, each residing primarily in one sphere, but substantially involving at least one other sphere, in order to illustrate the kinds of coupling that can occur and gain a greater appreciation of the complexity of even the smallest Earth System Science phenomenon.

  10. Marine Aerosol Precursor Emissions for Earth System Models

    SciTech Connect

    Maltrud, Mathew Einar

    2016-07-25

    Dimethyl sulfide (DMS) is generated by marine ecosystems and plays a major role in cloud formation over the ocean. Currently, Earth System Models use imposed flux of DMS from the ocean to the atmosphere that is independent of the climate state. We have added DMS as a prognostic variable to the Community Earth System Model (CESM) that depends on the distribution of phytoplankton species, and thus changes with climate.

  11. The Role and Evolution of NASA's Earth Science Data Systems

    NASA Technical Reports Server (NTRS)

    Ramapriyan, H. K.

    2015-01-01

    One of the three strategic goals of NASA is to Advance understanding of Earth and develop technologies to improve the quality of life on our home planet (NASA strategic plan 2014). NASA's Earth Science Data System (ESDS) Program directly supports this goal. NASA has been launching satellites for civilian Earth observations for over 40 years, and collecting data from various types of instruments. Especially since 1990, with the start of the Earth Observing System (EOS) Program, which was a part of the Mission to Planet Earth, the observations have been significantly more extensive in their volumes, variety and velocity. Frequent, global observations are made in support of Earth system science. An open data policy has been in effect since 1990, with no period of exclusive access and non-discriminatory access to data, free of charge. NASA currently holds nearly 10 petabytes of Earth science data including satellite, air-borne, and ground-based measurements and derived geophysical parameter products in digital form. Millions of users around the world are using NASA data for Earth science research and applications. In 2014, over a billion data files were downloaded by users from NASAs EOS Data and Information System (EOSDIS), a system with 12 Distributed Active Archive Centers (DAACs) across the U. S. As a core component of the ESDS Program, EOSDIS has been operating since 1994, and has been evolving continuously with advances in information technology. The ESDS Program influences as well as benefits from advances in Earth Science Informatics. The presentation will provide an overview of the role and evolution of NASAs ESDS Program.

  12. 48 CFR 252.242-7006 - Accounting system administration.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 48 Federal Acquisition Regulations System 3 2014-10-01 2014-10-01 false Accounting system... of Provisions And Clauses 252.242-7006 Accounting system administration. As prescribed in 242.7503, use the following clause: Accounting System Administration (FEB 2012) (a) Definitions. As used in...

  13. Incorporating Geoethics in Introductory Earth System Science Courses

    NASA Astrophysics Data System (ADS)

    Schmitt, J.

    2014-12-01

    The integrative nature of Earth System Science courses provides extensive opportunities to introduce students to geoethical inquiry focused on globally significant societal issues. Geoscience education has traditionally lagged in its efforts to increase student awareness of the significance of geologic knowledge to understanding and responsibly confronting causes and possible solutions for emergent, newly emerging, and future problems of anthropogenic cause and consequence. Developing an understanding of the human impact on the earth system requires early (lower division) and for geoscience majors, repeated (upper division) curricular emphasis on the interactions of the lithosphere, hydrosphere, atmosphere, biosphere, and pedosphere across space and through time. Capturing the interest of university students in globally relevant earth system issues and their ethical dimensions while first learning about the earth system is an important initial step in bringing geoethical deliberation and awareness to the next generation of geoscientists. Development of a new introductory Earth System Science course replacing a traditional introductory Physical Geology course at Montana State University has involved abandonment of concept-based content organization in favor of a place-based approach incorporating examination of the complex interactions of earth system components and emergent issues and dilemmas deriving from the unique component interactions that characterize each locale. Thirteen different place-based week-long modules (using web- and classroom-based instruction) were developed to ensure cumulative broad coverage across the earth geographically and earth system components conceptually. Each place-based instructional module contains content of societal relevance requiring synthesis, critical evaluation, and reflection by students. Examples include making linkages between deforestation driven by economics and increased seismicity in Haiti, agriculture and development

  14. Anthropogenic warming of Earth's climate system.

    PubMed

    Levitus, S; Antonov, J I; Wang, J; Delworth, T L; Dixon, K W; Broccoli, A J

    2001-04-13

    We compared the temporal variability of the heat content of the world ocean, of the global atmosphere, and of components of Earth's cryosphere during the latter half of the 20th century. Each component has increased its heat content (the atmosphere and the ocean) or exhibited melting (the cryosphere). The estimated increase of observed global ocean heat content (over the depth range from 0 to 3000 meters) between the 1950s and 1990s is at least one order of magnitude larger than the increase in heat content of any other component. Simulation results using an atmosphere-ocean general circulation model that includes estimates of the radiative effects of observed temporal variations in greenhouse gases, sulfate aerosols, solar irradiance, and volcanic aerosols over the past century agree with our observation-based estimate of the increase in ocean heat content. The results we present suggest that the observed increase in ocean heat content may largely be due to the increase of anthropogenic gases in Earth's atmosphere.

  15. Our Mission to Planet Earth: A Guide to Teaching Earth System Science.

    ERIC Educational Resources Information Center

    National Aeronautics and Space Administration, Washington, DC.

    The primary goal of this guide is for children to become familiar with the concept of cycles and to learn that some human activities can cause changes in their environment. Although the guide addresses Earth's components, it does so from the perspective of space to show the planet as a large system with interacting parts. To demonstrate on a much…

  16. Earth-Moon-Sun System: Eclipses Models

    NASA Astrophysics Data System (ADS)

    Ros, Rosa M.

    Everybody understands what is meant by an eclipse: a body that covers another one. However, the general audience and the students in particular do not know exactly “What the relative positions of the Earth, the Sun and the Moon have to be in order for an eclipse to take place?”You can read a newspaper or watch TV and observe that the information about an eclipse is not correct. In my country, it was stated, in a very important newspaper, that “the solar eclipse will take place tomorrow because there will be a Full Moon”.Teaching this topic in schools or in educational sessions in observatories, it is a good idea to introduce a simple model that maintains the proportion between the diameters and distances of these three bodies. This contribution will introduce this model, showing their applications in the playgrounds of the school, for sunny days or in the classroom for cloudy days.

  17. Administrator Perspectives of Ohio's Teacher Evaluation System: Implications for Educational Administration Programs in Higher Education

    ERIC Educational Resources Information Center

    Williams, Nicole V.; Crates, Kathleen

    2015-01-01

    The purpose of this study was to elicit elementary and middle school administrators' perceptions of the Ohio Teacher Evaluation System (OTES). The researchers created a questionnaire to learn administrators' experiences with and attitudes, opinions, beliefs, and knowledge of OTES thus far. The questionnaire consisted of twenty-five Likert-based…

  18. Clouds and the Earth's Radiant Energy System (CERES)

    NASA Technical Reports Server (NTRS)

    Carman, Stephen L.; Cooper, John E.; Miller, James; Harrison, Edwin F.; Barkstrom, Bruce R.

    1992-01-01

    The CERES (Clouds and the Earth's Radiant Energy System) experiment will play a major role in NASA's multi-platform Earth Observing System (EOS) program to observe and study the global climate. The CERES instruments will provide EOS scientists with a consistent data base of accurately known fields of radiation and of clouds. CERES will investigate the important question of cloud forcing and its influence on the radiative energy flow through the Earth's atmosphere. The CERES instrument is an improved version of the ERBE (Earth Radiation Budget Experiment) broadband scanning radiometer flown by NASA from 1984 through 1989. This paper describes the science of CERES, presents an overview of the instrument preliminary design, and outlines the issues related to spacecraft pointing and attitude control.

  19. Documenting Long-term Earth System Evolution With Satellite Observations

    NASA Astrophysics Data System (ADS)

    Kaye, J. A.; Koblinsky, C. J.; Cramer, B.; Karl, T.; Privette, J. L.

    2007-12-01

    Satellite observations play a critical role in documenting earth system evolution, both in terms of characterizing prior and current evolution of the Earth and providing a baseline against which future measurements can be compared. Given that the construction of the necessary long-term data sets requires the use of multiple instruments on multiple platforms, each of which may have their own characteristics, drifts, and degradation, this represents a significant challenge to the scientific community. Over the last 30-or so years, going back to the launch of the Nimbus 7 in 1978, earth scientists learned significant lessons about how to create accurate and stable long-term data records. Sponsoring agencies have tried to capture the lessons and use them as a basis for planning for future systems. This presentation will examine and present future approaches to maximize the quality of the long-term data records produced from earth satellites.

  20. Connecting Earth Systems: Developing Holistic Understanding through the Earth-System-Science Model

    ERIC Educational Resources Information Center

    Gagnon, Valoree; Bradway, Heather

    2012-01-01

    For many years, Earth science concepts have been taught as thematic units with lessons in nice, neat chapter packages complete with labs and notes. But compartmentalized Earth science no longer exists, and implementing teaching methods that support student development of holistic understandings can be a time-consuming and difficult task. While…

  1. On-Line Administrative Information Systems: A Case Study.

    ERIC Educational Resources Information Center

    Sire, Paul W.

    A case study approach is used to document the on-line information system developed by the Office of Management Information and Computing at the University of Vermont. Stanford University's Project INFO On-Line Administration Information System, OASIS, was chosen as a model. The administrative system is one of two on campus, the other designed for…

  2. Discover Earth: an earth system science program for libraries and their communities

    NASA Astrophysics Data System (ADS)

    Dusenbery, P.

    2011-12-01

    The view from space has deepened our understanding of Earth as a global, dynamic system. Instruments on satellites and spacecraft, coupled with advances in ground-based research, have provided us with astonishing new perspectives of our planet. Now more than ever, enhancing the public's understanding of Earth's physical and biological systems is vital to helping citizens make informed policy decisions especially when they are faced with the consequences of global climate change. While the focus for education reform is on school improvement, there is considerable research that supports the role that out-of-school experiences can play in student achievement. Libraries provide an untapped resource for engaging underserved youth and their families in fostering an appreciation and deeper understanding of science and technology topics. The Space Science Institute's National Center for Interactive Learning (NCIL) in partnership with the American Library Association (ALA), the Lunar and Planetary Institute (LPI), and the National Girls Collaborative Project (NGCP) have received funding from NSF to develop a national project called the STAR Library Education Network: a hands-on learning program for libraries and their communities (or STAR-Net for short). STAR stands for Science-Technology, Activities and Resources. STAR-Net includes two exhibitions: Discover Earth and Discover Tech. The Discover Earth exhibition will focus on local earth science topics-such as weather, water cycle, and ecosystem changes-as well as a global view of our changing planet. The main take-away message (or Big Idea) for this exhibition is that the global environment changes - and is changed by - the host community's local environment. The project team is testing whether this approach will be a good strategy for engaging the public, especially in rural America. This presentation will provide an overview of the Discover Earth project and how it is integrating climate change ideas into the exhibit

  3. Earth Science by Design: Teaching the Big Ideas in Earth System Science

    NASA Astrophysics Data System (ADS)

    McWilliams, H.; McAuliffe, C.

    2007-12-01

    Developed by TERC and the American Geological Institute with funding from the National Science Foundation, Earth Science by Design (ESBD) is a year-long program of professional development for middle or high school teachers based on the Understanding by Design approach pioneered by Grant Wiggins and Jay McTighe. ESBD is designed to help teachers: · Teach for deep and enduring understanding of the "big ideas" in Earth system science. · Use "backward design" to create curriculum units and lessons that are engaging, rigorous, and aligned with national, state, and local standards. · Design effective classroom assessments and rubrics. · Incorporate powerful web-based Earth science visualizations and satellite imagery into an Earth system science approach. ESBD has developed a complete professional development package for staff developers and geoscience educators, including: · The ESBD Handbook, which provides everything you need to offer the program, including detailed workshop lesson plans. · The ESBD Web Site, where teachers can develop curriculum units online (www.esbd.org). · Online resources for Earth Science teaching and learning. · PowerPoint presentations for workshops and courses. · DVD of teacher reflections on their implementation experiences. In this session we will review the resources which ESBD makes available for geoscience educators: ·sample Earth science units produced by teachers in the program, ·field test results, ·the effect of the program on teacher practice, ·and how geoscience educators can get involved with ESBD. ESBD has been field-tested by staff developers in eight sites nationwide and is being adapted by college and university geoscience educators for use with pre-service teachers. In this session we will report on the results of field testing and on an experimental study of ESBD and other professional development approaches funded by the US Department of Education, Institute of Educational Sciences.

  4. Orbital Noise in the Earth System and Climate Fluctuations

    NASA Technical Reports Server (NTRS)

    Liu, Han-Shou; Smith, David E. (Technical Monitor)

    2001-01-01

    Frequency noise in the variations of the Earth's obliquity (tilt) can modulate the insolation signal for climate change. Including this frequency noise effect on the incoming solar radiation, we have applied an energy balance climate model to calculate the climate fluctuations for the past one million years. Model simulation results are in good agreement with the geologically observed paleoclimate data. We conclude that orbital noise in the Earth system may be the major cause of the climate fluctuation cycles.

  5. Regional Earth System Prediction for the Chesapeake Bay

    NASA Astrophysics Data System (ADS)

    Murtugudde, R. G.

    2009-12-01

    While the IPCC will continue to lead Earth System projections for global issues such as greenhouse gas levels and global temperature increase, high-resolution regional Earth System predictions will be crucial for producing effective decision-making tools for day-to-day, sustainable Earth System management and adaptive management of resources. Regional Earth System predictions and projections at the order of a few meters resolution from days to decades must be validated and provide uncertainties and skill scores to be usable. While the task is daunting, it would be criminally negligent of the global human not to embark on this task immediately. The observational needs for the integrated natural-human system for the regional Earth System are distinct from the global needs even though there are many overlaps. A prototype has been built for the Chesapeake Bay which issues routine seasonal outlooks and decadal projections for the air and watershed with linked products that include forecasts of pathogens, harmful algal blooms, sea nettles, fisheries, etc. A decision-making tool has been developed to allow the users to explore what-if scenarios and see the impact on the health of the Bay. Environmental indicators are being developed using mortality and morbidity data to generate predictive, pre-emptive, and personalized health forecasts. Skill of the forecasts and future plans will be discussed.

  6. Earth orbital teleoperator visual system evaluation program

    NASA Technical Reports Server (NTRS)

    Frederick, P. N.; Shields, N. L., Jr.; Kirkpatrick, M., III

    1977-01-01

    Visual system parameters and stereoptic television component geometries were evaluated for optimum viewing. The accuracy of operator range estimation using a Fresnell stereo television system with a three dimensional cursor was examined. An operator's ability to align three dimensional targets using vidicon tube and solid state television cameras as part of a Fresnell stereoptic system was evaluated. An operator's ability to discriminate between varied color samples viewed with a color television system was determined.

  7. Earth orbital teleoperator visual system evaluation program

    NASA Technical Reports Server (NTRS)

    Shields, N. L., Jr.; Kirkpatrick, M., III; Frederick, P. N.; Malone, T. B.

    1975-01-01

    Empirical tests of range estimation accuracy and resolution, via television, under monoptic and steroptic viewing conditions are discussed. Test data are used to derive man machine interface requirements and make design decisions for an orbital remote manipulator system. Remote manipulator system visual tasks are given and the effects of system parameters of these tasks are evaluated.

  8. Earth System Stability Through Geologic Time

    NASA Astrophysics Data System (ADS)

    Rothman, D.; Bowring, S. A.

    2015-12-01

    Five times in the past 500 million years, mass extinctions haveresulted in the loss of greater than three-fourths of living species.Each of these events is associated with significant environmentalchange recorded in the carbon-isotopic composition of sedimentaryrocks. There are also many such environmental events in the geologicrecord that are not associated with mass extinctions. What makes themdifferent? Two factors appear important: the size of theenvironmental perturbation, and the time scale over which it occurs.We show that the natural perturbations of Earth's carbon cycle during thepast 500 million years exhibit a characteristic rate of change overtwo orders of magnitude in time scale. This characteristic rate isconsistent with the maximum rate that limits quasistatic (i.e., nearsteady-state) evolution of the carbon cycle. We identify this rate withmarginal stability, and show that mass extinctions occur on the fast,unstable side of the stability boundary. These results suggest thatthe great extinction events of the geologic past, and potentially a"sixth extinction" associated with modern environmental change, arecharacterized by common mechanisms of instability.

  9. Advanced Diagnostic System on Earth Observing One

    NASA Technical Reports Server (NTRS)

    Hayden, Sandra C.; Sweet, Adam J.; Christa, Scott E.; Tran, Daniel; Shulman, Seth

    2004-01-01

    In this infusion experiment, the Livingstone 2 (L2) model-based diagnosis engine, developed by the Computational Sciences division at NASA Ames Research Center, has been uploaded to the Earth Observing One (EO-1) satellite. L2 is integrated with the Autonomous Sciencecraft Experiment (ASE) which provides an on-board planning capability and a software bridge to the spacecraft's 1773 data bus. Using a model of the spacecraft subsystems, L2 predicts nominal state transitions initiated by control commands, monitors the spacecraft sensors, and, in the case of failure, isolates the fault based on the discrepant observations. Fault detection and isolation is done by determining a set of component modes, including most likely failures, which satisfy the current observations. All mode transitions and diagnoses are telemetered to the ground for analysis. The initial L2 model is scoped to EO-1's imaging instruments and solid state recorder. Diagnostic scenarios for EO-1's nominal imaging timeline are demonstrated by injecting simulated faults on-board the spacecraft. The solid state recorder stores the science images and also hosts: the experiment software. The main objective of the experiment is to mature the L2 technology to Technology Readiness Level (TRL) 7. Experiment results are presented, as well as a discussion of the challenging technical issues encountered. Future extensions may explore coordination with the planner, and model-based ground operations.

  10. Evolution of the Earth Observing System (EOS) Data and Information System (EOSDIS)

    NASA Technical Reports Server (NTRS)

    Ramapriyan, Hampapuram K.; Behnke, Jeanne; Sofinowski, Edwin; Lowe, Dawn; Esfandiari, Mary Ann

    2008-01-01

    One of the strategic goals of the U.S. National Aeronautics and Space Administration (NASA) is to "Develop a balanced overall program of science, exploration, and aeronautics consistent with the redirection of the human spaceflight program to focus on exploration". An important sub-goal of this goal is to "Study Earth from space to advance scientific understanding and meet societal needs." NASA meets this subgoal in partnership with other U.S. agencies and international organizations through its Earth science program. A major component of NASA s Earth science program is the Earth Observing System (EOS). The EOS program was started in 1990 with the primary purpose of modeling global climate change. This program consists of a set of space-borne instruments, science teams, and a data system. The instruments are designed to obtain highly accurate, frequent and global measurements of geophysical properties of land, oceans and atmosphere. The science teams are responsible for designing the instruments as well as scientific algorithms to derive information from the instrument measurements. The data system, called the EOS Data and Information System (EOSDIS), produces data products using those algorithms as well as archives and distributes such products. The first of the EOS instruments were launched in November 1997 on the Japanese satellite called the Tropical Rainfall Measuring Mission (TRMM) and the last, on the U.S. satellite Aura, were launched in July 2004. The instrument science teams have been active since the inception of the program in 1990 and have participation from Brazil, Canada, France, Japan, Netherlands, United Kingdom and U.S. The development of EOSDIS was initiated in 1990, and this data system has been serving the user community since 1994. The purpose of this chapter is to discuss the history and evolution of EOSDIS since its beginnings to the present and indicate how it continues to evolve into the future. this chapter is organized as follows. Sect

  11. Explicitly representing soil microbial processes in Earth system models: Soil microbes in earth system models

    SciTech Connect

    Wieder, William R.; Allison, Steven D.; Davidson, Eric A.; Georgiou, Katerina; Hararuk, Oleksandra; He, Yujie; Hopkins, Francesca; Luo, Yiqi; Smith, Matthew J.; Sulman, Benjamin; Todd-Brown, Katherine; Wang, Ying-Ping; Xia, Jianyang; Xu, Xiaofeng

    2015-10-01

    Microbes influence soil organic matter (SOM) decomposition and the long-term stabilization of carbon (C) in soils. We contend that by revising the representation of microbial processes and their interactions with the physicochemical soil environment, Earth system models (ESMs) may make more realistic global C cycle projections. Explicit representation of microbial processes presents considerable challenges due to the scale at which these processes occur. Thus, applying microbial theory in ESMs requires a framework to link micro-scale process-level understanding and measurements to macro-scale models used to make decadal- to century-long projections. Here, we review the diversity, advantages, and pitfalls of simulating soil biogeochemical cycles using microbial-explicit modeling approaches. We present a roadmap for how to begin building, applying, and evaluating reliable microbial-explicit model formulations that can be applied in ESMs. Drawing from experience with traditional decomposition models we suggest: (1) guidelines for common model parameters and output that can facilitate future model intercomparisons; (2) development of benchmarking and model-data integration frameworks that can be used to effectively guide, inform, and evaluate model parameterizations with data from well-curated repositories; and (3) the application of scaling methods to integrate microbial-explicit soil biogeochemistry modules within ESMs. With contributions across scientific disciplines, we feel this roadmap can advance our fundamental understanding of soil biogeochemical dynamics and more realistically project likely soil C response to environmental change at global scales.

  12. Electromagnetic Calculation of Combined Earthing System with Ring Earth Electrode and Vertical Rods for Wind Turbine

    NASA Astrophysics Data System (ADS)

    Fujii, Toshiaki; Yasuda, Yoh; Ueda, Toshiaki

    With the worldwide spread of wind turbine installations, various problems such as landscape issues, bird strikes and grid connections have arisen. Protection of wind turbines from lightning is cited as one of the main problems. Wind turbines are often struck by lightning because of their open-air locations, such as in mountainous areas, and their special configuration and very-high construction. Especially, low-voltage and control circuits can fail or suffer burnout while blades can incur serious damage if struck by lightning. Wind turbine failures caused by lightning strikes account for approximately 25% of all failures. The problem is regarded as a global one that needs immediate resolution. It is important to understand the impedance characteristics of wind turbine earthing systems from the viewpoint of lightning protection. A report from IEC TR61400-24 recommends a “ring earth electrode”. This was originally defined in IEC 61024 (currently revised and re-numbered as IEC 62305), where such an electrode is recommended to reduce touch and step voltages in households and buildings. IEC TR61400-24 also recommended additional electrodes of vertical or horizontal rods. However, these concepts have not been fully discussed from the viewpoint of its application to wind turbines. To confirm the effect of a combination of a ring earth electrode and additional vertical rods for protection of a wind turbine, this report uses the Finite Difference Time Domain (FDTD) method to present an electromagnetic transient analysis on such a wind turbine earthing system. The results show that an optimal combination can be arranged from viewpoints of lightning protection and construction cost. Thus, this report discusses how to establish a quantitative design methodology of the wind turbine earthing system to provide effective lightning protection.

  13. Horseshoe orbits in the Earth-Moon system

    NASA Astrophysics Data System (ADS)

    Kreisman, B. B.

    2016-11-01

    Horseshoe orbits in the restricted three-body problem have been mostly considered in the Sun-Jupiter system and, in recent years, in the Sun-Earth system. Here, these orbits have been used to find asteroids that have orbits of this kind. We have built a planar family of horseshoe orbits in the Earth-Moon system and determined the points of planar and 1/1 vertical resonances on this family. We have presented examples of orbits generated by these spatial families.

  14. Sun, the Earth, and Near-Earth Space: A Guide to the Sun-Earth System

    NASA Technical Reports Server (NTRS)

    Eddy, John A.

    2010-01-01

    In a world of warmth and light and living things we soon forget that we are surrounded by a vast universe that is cold and dark and deadly dangerous, just beyond our door. On a starry night, when we look out into the darkness that lies around us, the view can be misleading in yet another way: for the brightness and sheer number of stars, and their chance groupings into familiar constellations, make them seem much nearer to each other, and to us, that in truth they are. And every one of them--each twinkling, like a diamond in the sky--is a white-hot sun, much like our own. The nearest stars in our own galaxy--the Milky Way-- are more than a million times further away from us than our star, the Sun. We could make a telephone call to the Moon and expect to wait but a few seconds between pieces of a conversation, or but a few hours in calling any planet in our solar system.

  15. Earth orbital teleoperator manipulator system evaluation program

    NASA Technical Reports Server (NTRS)

    Kirkpatrick, M., III; Shields, N. L., Jr.; Frederick, P. N.; Brye, R.; Malone, T. B.

    1975-01-01

    The performance of an orbital teleoperator system which includes small dextrous servicing manipulators to be used in satellite servicing was examined. System/operator performance testing was implemented and the results of a fine positioning control test using two different manipulator systems varying widely in manipulator configuration and control systems are presented. Fine position control is viewed as representing a fundamental requirement placed on manipulator control. The relationship of position control to more complex tasks which directly represent on-orbit servicing operations are also presented.

  16. Overview of the Earth System Science Education Alliance Online Courses

    NASA Astrophysics Data System (ADS)

    Botti, J.; Myers, R.

    2002-12-01

    Science education reform has skyrocketed over the last decade in large part thanks to technology-and one technology in particular, the Internet. The World Wide Web has opened up dynamic new online communities of learners. It has allowed educators from around the world to share thoughts about Earth system science and reexamine the way science is taught. A positive offshoot of this reform effort is the Earth System Science Education Alliance (ESSEA). This partnership among universities, colleges, and science education organizations is led by the Institute for Global Environmental Strategies and the Center for Educational Technologiestm at Wheeling Jesuit University. ESSEA's mission is to improve Earth system science education. ESSEA has developed three Earth system science courses for K-12 teachers. These online courses guide teachers into collaborative, student-centered science education experiences. Not only do these courses support teachers' professional development, they also help teachers implement Earth systems science content and age-appropriate pedagogical methods into their classrooms. The ESSEA courses are open to elementary, middle school, and high school teachers. Each course lasts one semester. The courses begin with three weeks of introductory content. Then teachers develop content and pedagogical and technological knowledge in four three-week learning cycles. The elementary school course focuses on basic Earth system interactions between land, life, air, and water. In week A of each learning cycle, teachers do earth system activities with their students. In week B teachers investigate aspects of the Earth system-for instance, the reason rocks change to soil, the relationship between rock weathering and soil nutrients, and the consequent development of biomes. In week C teachers develop classroom activities and share them online with other course participants. The middle school course stresses the effects of real-world events-volcanic eruptions

  17. Overview of the Earth System Science Education Alliance Online Courses

    NASA Astrophysics Data System (ADS)

    Botti, J. A.

    2001-12-01

    Science education reform has skyrocketed over the last decade in large part thanks to technology-and one technology in particular, the Internet. The World Wide Web has opened up dynamic new online communities of learners. It has allowed educators from around the world to share thoughts about Earth system science and reexamine the way science is taught. A positive offshoot of this reform effort is the Earth System Science Education Alliance (ESSEA). This partnership among universities, colleges, and science education organizations is led by the Institute for Global Environmental Strategies and the Center for Educational TechnologiesTM at Wheeling Jesuit University. ESSEA's mission is to improve Earth system science education. ESSEA has developed three Earth system science courses for K-12 teachers. These online courses guide teachers into collaborative, student-centered science education experiences. Not only do these courses support teachers' professional development, they also help teachers implement Earth systems science content and age-appropriate pedagogical methods into their classrooms. The ESSEA courses are open to elementary, middle school, and high school teachers. Each course lasts one semester. The courses begin with three weeks of introductory content. Then teachers develop content and pedagogical and technological knowledge in four three-week learning cycles. The elementary school course focuses on basic Earth system interactions between land, life, air, and water. In week A of each learning cycle, teachers do earth system activities with their students. In week B teachers investigate aspects of the Earth system -- for instance, the reason rocks change to soil, the relationship between rock weathering and soil nutrients, and the consequent development of biomes. In week C teachers develop classroom activities and share them online with other course participants. The middle school course stresses the effects of real-world events -- volcanic eruptions

  18. RITD - Adapting Mars Entry, Descent and Landing System for Earth

    NASA Astrophysics Data System (ADS)

    Haukka, H.; Heilimo, J.; Harri, A.-M.; Aleksashkin, S.; Koryanov, V.; Arruego, I.; Schmidt, W.; Finchenko, V.; Martynov, M.; Ponomarenko, A.; Kazakovtsev, V.; Martin, S.

    2015-10-01

    We have developed an atmospheric re-entry and descent system concept based on inflatable hypersonic decelerator techniques that were originally developed for Mars. The ultimate goal of this EU-funded RITD-project (Re-entry: Inflatable Technology Development) was to assess the benefits of this technology when deploying small payloads from low Earth orbits to the surface of the Earth with modest costs. The principal goal was to assess and develop a preliminary EDLS design for the entire relevant range of aerodynamic regimes expected to be encountered in Earth's atmosphere during entry, descent and landing. Low Earth Orbit (LEO) and even Lunar applications envisaged include the use of the EDLS approach in returning payloads of 4-8 kg down to the surface.

  19. Determination of Earth orientation using the Global Positioning System

    NASA Technical Reports Server (NTRS)

    Freedman, A. P.

    1989-01-01

    Modern spacecraft tracking and navigation require highly accurate Earth-orientation parameters. For near-real-time applications, errors in these quantities and their extrapolated values are a significant error source. A globally distributed network of high-precision receivers observing the full Global Positioning System (GPS) configuration of 18 or more satellites may be an efficient and economical method for the rapid determination of short-term variations in Earth orientation. A covariance analysis using the JPL Orbit Analysis and Simulation Software (OASIS) was performed to evaluate the errors associated with GPS measurements of Earth orientation. These GPS measurements appear to be highly competitive with those from other techniques and can potentially yield frequent and reliable centimeter-level Earth-orientation information while simultaneously allowing the oversubscribed Deep Space Network (DSN) antennas to be used more for direct project support.

  20. Rhode Island Model Evaluation & Support System: Building Administrator. Edition III

    ERIC Educational Resources Information Center

    Rhode Island Department of Education, 2015

    2015-01-01

    Rhode Island educators believe that implementing a fair, accurate, and meaningful educator evaluation and support system will help improve teaching, learning, and school leadership. The primary purpose of the Rhode Island Model Building Administrator Evaluation and Support System (Rhode Island Model) is to help all building administrators improve.…

  1. Earth Orbiting Support Systems for commercial low Earth orbit data relay: Assessing architectures through tradespace exploration

    NASA Astrophysics Data System (ADS)

    Palermo, Gianluca; Golkar, Alessandro; Gaudenzi, Paolo

    2015-06-01

    As small satellites and Sun Synchronous Earth Observation systems are assuming an increased role in nowadays space activities, including commercial investments, it is of interest to assess how infrastructures could be developed to support the development of such systems and other spacecraft that could benefit from having a data relay service in Low Earth Orbit (LEO), as opposed to traditional Geostationary relays. This paper presents a tradespace exploration study of the architecture of such LEO commercial satellite data relay systems, here defined as Earth Orbiting Support Systems (EOSS). The paper proposes a methodology to formulate architectural decisions for EOSS constellations, and enumerate the corresponding tradespace of feasible architectures. Evaluation metrics are proposed to measure benefits and costs of architectures; lastly, a multicriteria Pareto criterion is used to downselect optimal architectures for subsequent analysis. The methodology is applied to two case studies for a set of 30 and 100 customer-spacecraft respectively, representing potential markets for LEO services in Exploration, Earth Observation, Science, and CubeSats. Pareto analysis shows how increased performance of the constellation is always achieved by an increased node size, as measured by the gain of the communications antenna mounted on EOSS spacecraft. On the other hand, nonlinear trends in optimal orbital altitude, number of satellites per plane, and number of orbital planes, are found in both cases. An upward trend in individual node memory capacity is found, although never exceeding 256 Gbits of onboard memory for both cases that have been considered, assuming the availability of a polar ground station for EOSS data downlink. System architects can use the proposed methodology to identify optimal EOSS constellations for a given service pricing strategy and customer target, thus identifying alternatives for selection by decision makers.

  2. The function of the earth observing system - Data information system Distributed Active Archive Centers

    NASA Technical Reports Server (NTRS)

    Lapenta, C. C.

    1992-01-01

    The functionality of the Distributed Active Archive Centers (DAACs) which are significant elements of the Earth Observing System Data and Information System (EOSDIS) is discussed. Each DAAC encompasses the information management system, the data archival and distribution system, and the product generation system. The EOSDIS DAACs are expected to improve the access to earth science data set needed for global change research.

  3. The CICT Earth Science Systems Analysis Model

    NASA Technical Reports Server (NTRS)

    Pell, Barney; Coughlan, Joe; Biegel, Bryan; Stevens, Ken; Hansson, Othar; Hayes, Jordan

    2004-01-01

    Contents include the following: Computing Information and Communications Technology (CICT) Systems Analysis. Our modeling approach: a 3-part schematic investment model of technology change, impact assessment and prioritization. A whirlwind tour of our model. Lessons learned.

  4. Climate-induced tree mortality: Earth system consequences

    USGS Publications Warehouse

    Adams, Henry D.; Macalady, Alison K.; Breshears, David D.; Allen, Craig D.; Stephenson, Nathan L.; Saleska, Scott; Huxman, Travis E.; McDowell, Nathan G.

    2010-01-01

    One of the greatest uncertainties in global environmental change is predicting changes in feedbacks between the biosphere and the Earth system. Terrestrial ecosystems and, in particular, forests exert strong controls on the global carbon cycle and influence regional hydrology and climatology directly through water and surface energy budgets [Bonan, 2008; Chapin et al., 2008].According to new research, tree mortality associated with elevated temperatures and drought has the potential to rapidly alter forest ecosystems, potentially affecting feedbacks to the Earth system [Allen et al., 2010]. Several lines of recent research demonstrate how tree mortality rates in forests may be sensitive to climate change—particularly warming and drying. This emerging consequence of global change has important effects on Earth system processes (Figure 1).

  5. The National Aeronautics and Space Administration's Earth Science Applications Program: Exploring Partnerships to Enhance Decision Making in Public Health Practice

    NASA Technical Reports Server (NTRS)

    Vann, Timi S.; Venezia, Robert A.

    2002-01-01

    The National Aeronautics and Space Administration (NASA), Earth Science Enterprise is engaged in applications of NASA Earth science and remote sensing technologies for public health. Efforts are focused on establishing partnerships with those agencies and organizations that have responsibility for protecting the Nation's Health. The program's goal is the integration of NASA's advanced data and technology for enhanced decision support in the areas of disease surveillance and environmental health. A focused applications program, based on understanding partner issues and requirements, has the potential to significantly contribute to more informed decision making in public health practice. This paper intends to provide background information on NASA's investment in public health and is a call for partnership with the larger practice community.

  6. Computer-Based Administrative Support Systems: The Stanford Experience.

    ERIC Educational Resources Information Center

    Massy, William F.

    1983-01-01

    Computer-based administrative support tools are having a profound effect on the management of colleges and universities. Several such systems at Stanford University are discussed, including modeling, database management systems, networking, and electronic mail. (JN)

  7. System administrator`s guide to CDPS. Version 1.0

    SciTech Connect

    Didier, B.T.; Portwood, M.H.

    1994-05-01

    The System Administrator`s Guide to CDPS is intended for those responsible for setting up and maintaining the hardware and software of a Common Mapping Standard (CMS) Date Production System (CDPS) installation. This guide assists the system administrator in performing typical administrative functions. It is not intended to replace the Ultrix Documentation Set that should be available for a DCPS installation. The Ultrix Documentation Set will be required to provide details on referenced Ultrix commands as well as procedures for performing Ultrix maintenance functions. There are six major sections in this guide. Section 1 introduces the system administrator to CDPS and describes the assumptions that are made by this guide. Section 2 describes the CDPS platform configuration. Section 3 describes the platform preparation that is required to install the CDPS software. Section 4 describes the CPS software and its installation procedures. Section 5 describes the CDS software and its installation procedures. Section 6 describes various operation and maintenance procedures. Four appendices are also provided. Appendix A contains a list of used acronyms. Appendix B provides a terse description of common Ultrix commands that are used in administrative functions. Appendix C provides sample CPS and CDS configuration files. Appendix D provides a required list and a recommended list of Ultrix software subsets for installation on a CDPS platform.

  8. Management Information Systems: Applications to Educational Administration.

    ERIC Educational Resources Information Center

    Witkin, Belle Ruth

    An orientation to management information systems (MIS) is offered which presents information about MIS in the context of public education and suggests some considerations that should be taken into account in designing and operating such systems. MIS is defined as a set of operating procedures that act as a control system to automatically provide…

  9. Earth orbital teleoperator manipulator system evaluation program

    NASA Technical Reports Server (NTRS)

    Brye, R. G.; Frederick, P. N.; Kirkpatrick, M., III; Shields, N. L., Jr.

    1977-01-01

    The operator's ability to perform five manipulator tip movements while using monoptic and stereoptic video systems was assessed. Test data obtained were compared with previous results to determine the impact of camera placement and stereoptic viewing on manipulator system performance. The tests were performed using the NASA MSFC extendible stiff arm Manipulator and an analog joystick controller. Two basic manipulator tasks were utilized. The minimum position change test required the operator to move the manipulator arm to touch a target contract. The dexterity test required removal and replacement of pegs.

  10. Small asteroids temporarily captured in the Earth-Moon system

    NASA Astrophysics Data System (ADS)

    Jedicke, Robert; Bolin, Bryce; Bottke, William F.; Chyba, Monique; Fedorets, Grigori; Granvik, Mikael; Patterson, Geoff

    2015-08-01

    We will present an update on our work on understanding the population of natural objects that are temporarily captured in the Earth-Moon system, such as the 2-3 meter diameter 2006 RH120 that was discovered by the Catalina Sky Survey. We use the term 'minimoon' to refer to objects that are gravitationally bound to the Earth-Moon system, make at least one revolution around the barycenter in a co-rotating frame relative to the Earth-Sun axis, and are within 3 Earth Hill-sphere radii. There are one or two 1 to 2 meter diameter minimoons in the steady state population at any time, and about a dozen larger than 50 cm diameter. `Drifters' are also bound to the Earth-Moon system but make less than one revolution about the barycenter. The combined population of minimoons and drifters provide a new opportunity for scientific exploration of small asteroids and testing concepts for in-situ resource utilization. These objects provide interesting challenges for rendezvous missions because of their limited lifetime and complicated trajectories. Furthermore, they are difficult to detect because they are small, available for a limited time period, and move quickly across the sky.

  11. NASA's Earth Science Data Systems Standards Process Experiences

    NASA Technical Reports Server (NTRS)

    Ullman, Richard E.; Enloe, Yonsook

    2007-01-01

    NASA has impaneled several internal working groups to provide recommendations to NASA management on ways to evolve and improve Earth Science Data Systems. One of these working groups is the Standards Process Group (SPC). The SPG is drawn from NASA-funded Earth Science Data Systems stakeholders, and it directs a process of community review and evaluation of proposed NASA standards. The working group's goal is to promote interoperability and interuse of NASA Earth Science data through broader use of standards that have proven implementation and operational benefit to NASA Earth science by facilitating the NASA management endorsement of proposed standards. The SPC now has two years of experience with this approach to identification of standards. We will discuss real examples of the different types of candidate standards that have been proposed to NASA's Standards Process Group such as OPeNDAP's Data Access Protocol, the Hierarchical Data Format, and Open Geospatial Consortium's Web Map Server. Each of the three types of proposals requires a different sort of criteria for understanding the broad concepts of "proven implementation" and "operational benefit" in the context of NASA Earth Science data systems. We will discuss how our Standards Process has evolved with our experiences with the three candidate standards.

  12. Small asteroids temporarily captured in the Earth-Moon system

    NASA Astrophysics Data System (ADS)

    Jedicke, Robert; Bolin, Bryce; Bottke, William F.; Chyba, Monique; Fedorets, Grigori; Granvik, Mikael; Patterson, Geoff

    2016-01-01

    We present an update on our work on understanding the population of natural objects that are temporarily captured in the Earth-Moon system like the 2-3 meter diameter, 2006 RH120, that was discovered by the Catalina Sky Survey. We use the term `minimoon' to refer to objects that are gravitationally bound to the Earth-Moon system, make at least one revolution around the barycenter in a co-rotating frame relative to the Earth-Sun axis, and are within 3 Earth Hill-sphere radii. There are one or two 1 to 2 meter diameter minimoons in the steady state population at any time, and about a dozen larger than 50 cm diameter. `Drifters' are also bound to the Earth-Moon system but make less than one revolution about the barycenter. The combined population of minimoons and drifters provide a new opportunity for scientific exploration of small asteroids and testing concepts for in-situ resource utilization. These objects provide interesting challenges for rendezvous missions because of their limited lifetime and complicated trajectories. Furthermore, they are difficult to detect because they are small, available for a limited time period, and move quickly across the sky.

  13. Earth System Science Online Courses for K-12 Teachers

    NASA Astrophysics Data System (ADS)

    Schwerin, T. G.

    2001-05-01

    The Earth System Science Education Alliance (ESSEA) is a partnership between the Institute for Global Environmental Strategies (IGES) and the Center for Educational Technologies (CET) at Wheeling Jesuit University, through funding from NASA's Earth Science Enterprise. ESSEA is supporting universities, colleges, and science education organizations in offering K-12 Earth system science online graduate courses that have been developed within the CET at Wheeling Jesuit University for NASA's Earth Science Enterprise. The Earth system science courses use an inquiry-based instructional design model, are delivered over the Internet, and feature student-centered, knowledge-building virtual communities. They have been successfully implemented for both in-service and pre-service teacher education. An annual announcement by ESSEA solicits proposals from US teams interested in offering the courses. Currently 12 institutions from across the US are offering the courses to teachers, with plans to select 7 new organizations in early 2001. This presentation will focus on the content and structure of the courses, which can be freely downloaded and used by any organization, as well as lessons learned about online instruction.

  14. An Earth-Moon System Trajectory Design Reference Catalog

    NASA Technical Reports Server (NTRS)

    Folta, David; Bosanac, Natasha; Guzzetti, Davide; Howell, Kathleen C.

    2014-01-01

    As demonstrated by ongoing concept designs and the recent ARTEMIS mission, there is, currently, significant interest in exploiting three-body dynamics in the design of trajectories for both robotic and human missions within the Earth-Moon system. The concept of an interactive and 'dynamic' catalog of potential solutions in the Earth-Moon system is explored within this paper and analyzed as a framework to guide trajectory design. Characterizing and compiling periodic and quasi-periodic solutions that exist in the circular restricted three-body problem may offer faster and more efficient strategies for orbit design, while also delivering innovative mission design parameters for further examination.

  15. Landscape settings as part of earth wall systems for defence

    NASA Astrophysics Data System (ADS)

    van den Ancker, Hanneke; Jungerius, Pieter Dirk

    2013-04-01

    Remnants of earth wall systems from different periods are preserved in many European countries. They were built for different functions, such as defence, demarcating ownership or keeping wild animals or cattle in or out a terrain, and often changed function over time. Earth walls date from a past in which man had limited access to man- and horsepower. In the case of defence systems, our ancestors made use of the landscape settings to improve the strength. The poster gives an overview of landscape settings used for this purpose, from prehistoric up to medieval age, for building round and linear earth wall defence systems. Round earth walls systems are found on: • High viewpoints along a river, often in combination with marshland at its feet, • Almost completely cut-off meanders of antecedent rivers. This natural setting offered an ideal defence. It allowed an almost 360 degree view and exposed the enemy for a long time when passing the river, while the steep slopes and narrow entrance made the hill fort difficult to access, • Islands in lakes, • Bordering a lake at one side, • Confluences of rivers, • Hills near the sea and a natural harbour with possibilities for defence, • High flat hill tops of medium size with steep sides. Of each situation examples are presented. Linear earth wall defence systems For linear defence earth walls no overview of landscape settings can be given, for lack of sufficient data. The Celtic, 10 m steep Beech Bottom Dyke earth wall system from around 20 A.D. connects two steeply incised river valleys. For building the Hadrian Wall (UK) the Romans made use of earth walls paralleling the steepest cuesta of the Cheviot hills. The Viking Danewerk (Ger), was built on push moraines and used the coastal marsh lands at their feet for defence. And the defence of the earth wall around the Velder (NL, probably 13th century) made use of the many small streams crossing this marshy coversand landscape, by diverting them into a canal

  16. Embodying Earth's Place in the Solar System

    ERIC Educational Resources Information Center

    Plummer, Julia

    2015-01-01

    Elementary students find it difficult to connect the apparent motion of objects in the sky with how celestial objects actually move in the solar system. As a university astronomy education researcher, the author has been investigating methods to help children learn astronomy through workshops and summer camps at science museums and planetariums.…

  17. The Earth System Documentation (ES-DOC) Software Process

    NASA Astrophysics Data System (ADS)

    Greenslade, M. A.; Murphy, S.; Treshansky, A.; DeLuca, C.; Guilyardi, E.; Denvil, S.

    2013-12-01

    Earth System Documentation (ES-DOC) is an international project supplying high-quality tools & services in support of earth system documentation creation, analysis and dissemination. It is nurturing a sustainable standards based documentation eco-system that aims to become an integral part of the next generation of exa-scale dataset archives. ES-DOC leverages open source software, and applies a software development methodology that places end-user narratives at the heart of all it does. ES-DOC has initially focused upon nurturing the Earth System Model (ESM) documentation eco-system and currently supporting the following projects: * Coupled Model Inter-comparison Project Phase 5 (CMIP5); * Dynamical Core Model Inter-comparison Project (DCMIP); * National Climate Predictions and Projections Platforms Quantitative Evaluation of Downscaling Workshop. This talk will demonstrate that ES-DOC implements a relatively mature software development process. Taking a pragmatic Agile process as inspiration, ES-DOC: * Iteratively develops and releases working software; * Captures user requirements via a narrative based approach; * Uses online collaboration tools (e.g. Earth System CoG) to manage progress; * Prototypes applications to validate their feasibility; * Leverages meta-programming techniques where appropriate; * Automates testing whenever sensibly feasible; * Streamlines complex deployments to a single command; * Extensively leverages GitHub and Pivotal Tracker; * Enforces strict separation of the UI from underlying API's; * Conducts code reviews.

  18. The Earth and Environmental Systems Podcast, and the Earth Explorations Video Series

    NASA Astrophysics Data System (ADS)

    Shorey, C. V.

    2015-12-01

    The Earth and Environmental Systems Podcast, a complete overview of the theoretical basics of Earth Science in 64 episodes, was completed in 2009, but has continued to serve the worldwide community as evidenced by listener feedback (e.g. "I am a 65 year old man. I have been retired for awhile and thought that retirement would be nothing more than waiting for the grave. However I want to thank you for your geo podcasts. They have given me a new lease on life and taught me a great deal." - FP, 2015). My current project is a video series on the practical basics of Earth Science titled "Earth Explorations". Each video is under 12 minutes long and tackles a major Earth Science concept. These videos go beyond a talking head, or even voice-over with static pictures or white-board graphics. Moving images are combined with animations created with Adobe After Effects, and aerial shots using a UAV. The dialog is scripted in a way to make it accessible at many levels, and the episodes as they currently stand have been used in K-12, and Freshman college levels with success. Though these videos are made to be used at this introductory level, they are also designed as remedial episodes for upper level classes, freeing up time given to review for new content. When completed, the series should contain close to 200 episodes, and this talk will cover the full range of resources I have produced, plan to produce, and how to access these resources. Both resources are available on iTunesU, and the videos are also available on YouTube.

  19. EarthTutor: An Interactive Intelligent Tutoring System for Remote Sensing

    NASA Astrophysics Data System (ADS)

    Bell, A. M.; Parton, K.; Smith, E.

    2005-12-01

    Earth science classes in colleges and high schools use a variety of satellite image processing software to teach earth science and remote sensing principles. However, current tutorials for image processing software are often paper-based or lecture-based and do not take advantage of the full potential of the computer context to teach, immerse, and stimulate students. We present EarthTutor, an adaptive, interactive Intelligent Tutoring System (ITS) being built for NASA (National Aeronautics and Space Administration) that is integrated directly with an image processing application. The system aims to foster the use of satellite imagery in classrooms and encourage inquiry-based, hands-on earth science scientific study by providing students with an engaging imagery analysis learning environment. EarthTutor's software is available as a plug-in to ImageJ, a free image processing system developed by the NIH (National Institute of Health). Since it is written in Java, it can be run on almost any platform and also as an applet from the Web. Labs developed for EarthTutor combine lesson content (such as HTML web pages) with interactive activities and questions. In each lab the student learns to measure, calibrate, color, slice, plot and otherwise process and analyze earth science imagery. During the activities, EarthTutor monitors students closely as they work, which allows it to provide immediate feedback that is customized to a particular student's needs. As the student moves through the labs, EarthTutor assesses the student, and tailors the presentation of the content to a student's demonstrated skill level. EarthTutor's adaptive approach is based on emerging Artificial Intelligence (AI) research. Bayesian networks are employed to model a student's proficiency with different earth science and image processing concepts. Agent behaviors are used to track the student's progress through activities and provide guidance when a student encounters difficulty. Through individual

  20. Expert Systems for Civilian Personnel Administration,

    DTIC Science & Technology

    1985-07-01

    of them in a comparative mode, having an identical problem being solved using each system (see Hayes- Roth, Waterman and Douglas). There are several...This is fairly obvious. After a system is developed, certified expert, and placed in operation as a standardized system, identical ...results would be obtained given identical facts in all locations throughout Army. Although we do not like to admit it, human specialists do not always

  1. Occurrence of Earth-like bodies in planetary systems.

    PubMed

    Wetherill, G W

    1991-08-02

    Present theories of terrestrial planet formation predict the rapid ;;runaway formation'' of planetary embryos. The sizes of the embryos increase with heliocentric distance. These embryos then merge to form planets. In earlier Monte Carlo simulations of the merger of these embryos it was assumed that embryos did not form in the asteroid belt, but this assumption may not be valid. Simulations in which runaways were allowed to form in the asteroid belt show that, although the initial distributions of mass, energy, and angular momentum are different from those observed today, during the growth of the planets these distributions spontaneously evolve toward those observed, simply as a result of known solar system processes. Even when a large planet analogous to ;;Jupiter'' does not form, an Earth-sized planet is almost always found near Earth's heliocentric distance. These results suggest that occurrence of Earth-like planets may be a common feature of planetary systems.

  2. RITD - Adapting Mars Entry, Descent and Landing System for Earth

    NASA Astrophysics Data System (ADS)

    Heilimo, Jyri; Harri, Ari-Matti; Aleksashkin, Sergei; Koryanov, Valeri; Arruego, Ignacio; Schmidt, Walter; Haukka, Harri; Finchenko, Valeri; Martynov, Maxim; Ponomarenko, Andrey; Kazakovtsev, Victor; Martin, Susana

    2015-04-01

    We have developed an atmospheric re-entry and descent system concept based on inflatable hypersonic decelerator techniques that were originally developed for Mars. The ultimate goal of this EU-funded RITD-project (Re-entry: Inflatable Technology Development) was to assess the benefits of this technology when deploying small payloads from low Earth orbits to the surface of the Earth with modest costs. The principal goal was to assess and develop a preliminary EDLS design for the entire relevant range of aerodynamic regimes expected to be encountered in Earth's atmosphere during entry, descent and landing. Low Earth Orbit (LEO) and even Lunar applications envisaged include the use of the EDLS approach in returning payloads of 4-8 kg down to the surface. Our development and assessments show clearly that this kind of inflatable technology originally developed for the Martian atmosphere, is feasible for use by Earth entry and descent applications. The preliminary results are highly promising indicating that the current Mars probe design could be used as it is for the Earth. According tp our analyses, the higher atmospheric pressure at an altitude of 12 km and less requires an additional pressurizing device for the in atable system increasing the entry mass by approximately 2 kg. These analyses involved the calculation of 120 different atmospheric entry and descent trajectories. The analysis of the existing technologies and current trends have indicated that the kind of inflatable technology pursued by RITD has high potential to enhance the European space technology expertise. This kind of technology is clearly feasible for utilization by Earth entry and descent applications.

  3. NASA Administrative Data Base Management Systems, 1984

    NASA Technical Reports Server (NTRS)

    Radosevich, J. D. (Editor)

    1984-01-01

    Strategies for converting to a data base management system (DBMS) and the implementation of the software packages necessary are discussed. Experiences with DBMS at various NASA centers are related including Langley's ADABAS/NATURAL and the NEMS subsystem of the NASA metrology informaton system. The value of the integrated workstation with a personal computer is explored.

  4. Closed ecological systems: From test tubes to Earth's biosphere

    NASA Technical Reports Server (NTRS)

    Frye, Robert J.; Mignon, George

    1992-01-01

    Artificially constructed closed ecological systems (CES) have been researched both experimentally and theoretically for over 25 years. The size of these systems have varied from less than one liter to many thousands of cubic meters in volume. The diversity of the included components has a similarly wide range from purely aquatic systems to soil based systems that incorporate many aspects of Earth's biosphere. While much has been learned about the functioning of these closed systems, much remains to be learned. In this paper, we compare and contrast the behavior of closed ecological systems of widely different sizes through an analysis of their atmospheric composition. In addition, we will compare the performance of relatively small CES with the behavior of Earth's biosphere. We address the applicability of small CES as replicable analogs for planetary biospheres and discuss the use of small CES as an experimental milieu for an examination of the evolution of extra-terrestrial colonies.

  5. The Journal of Earth System Science Education: Peer Review for Digital Earth and Digital Library Content

    NASA Astrophysics Data System (ADS)

    Johnson, D.; Ruzek, M.; Weatherley, J.

    2001-05-01

    The Journal of Earth System Science Education is a new interdisciplinary electronic journal aiming to foster the study of the Earth as a system and promote the development and exchange of interdisciplinary learning resources for formal and informal education. JESSE will serve educators and students by publishing and providing ready electronic access to Earth system and global change science learning resources for the classroom and will provide authors and creators with professional recognition through publication in a peer reviewed journal. JESSE resources foster a world perspective by emphasizing interdisciplinary studies and bridging disciplines in the context of the Earth system. The Journal will publish a wide ranging variety of electronic content, with minimal constraints on format, targeting undergraduate educators and students as the principal readership, expanding to a middle and high school audience as the journal matures. JESSE aims for rapid review and turn-around of resources to be published, with a goal of 12 weeks from submission to publication for resources requiring few changes. Initial publication will be on a quarterly basis until a flow of resource submissions is established to warrant continuous electronic publication. JESSE employs an open peer review process in which authors and reviewers discuss directly the acceptability of a resource for publication using a software tool called the Digital Document Discourse Environment. Reviewer comments and attribution will be available with the resource upon acceptance for publication. JESSE will also implement a moderated peer commentary capability where readers can comment on the use of a resource or make suggestions. In the development phase, JESSE will also conduct a parallel anonymous review of content to validate and ensure credibility of the open review approach. Copyright of materials submitted remains with the author, granting JESSE the non-exclusive right to maintain a copy of the resource

  6. RITD - Adapting Mars Entry, Descent and Landing System for Earth

    NASA Astrophysics Data System (ADS)

    Heilimo, Jyri; Harri, Ari-Matti; Aleksashkin, Sergey; Koryanov, Vsevolod; Arruego, Ignacio; Schmidt, Walter; Haukka, Harri; Finchenko, Valery; Martynov, Maxim; Ostresko, Boris; Ponomarenko, Andrey; Kazakovtsev, Viktor; Martin, Susanna; Siili, Tero

    2014-05-01

    A new generation of inflatable Entry, Descent and Landing System (EDLS) for Mars has been developed. It is used in both the initial atmospheric entry and atmospheric descent before the semi-hard impact of the penetrator into Martian surface. The EDLS applicability to Earth's atmosphere is studied by the EU/RITD [1] project. Project focuses to the analysis and tests of the transonic behaviour of this compact and light weight payload entry system at the Earth re-entry. 1. EDLS for Earth The dynamical stability of the craft is analysed, concentrating on the most critical part of the atmospheric re-entry, the transonic phase. In Martian atmosphere the MetNet vehicle stability during the transonic phase is understood. However, in the more dense Earth's atmosphere, the transonic phase is shorter and turbulence more violent. Therefore, the EDLS has to be sufficiently dynamically stable to overcome the forces tending to deflect the craft from its nominal trajectory and attitude. The preliminary design of the inflatable EDLS for Earth will be commenced once the scaling of the re-entry system and the dynamical stability analysis have been performed. The RITD-project concentrates on mission and applications achievable with the current MetNet-type (i.e. 'Mini-1' category) of lander, and on requirements posed by other type Earth re-entry concepts. 2. Entry Angle Determination for Mini-1 - lander For successful Earth landing, the suitable re-entry angle and velocity with specific descent vehicle (DV) mass and heat flux parameters need to be determined. These key parameters in determining the Earth re-entry for DV are: qmax (kW/m2): maximal specific heat flux, Q (MJ/m2): specific integral heat flux to DV front shield, m (kg): descent vehicle (DV) mass, V (m/s): re-entry velocity and Θ (deg.): flight-path angle at Earth re-entry For Earth re-entry, the calculation results in the optimal value of entry velocity for MetNet ('Mini-1' category) -type lander, with mass of 22kg, being

  7. Data acquisition system for operational earth observation missions

    NASA Technical Reports Server (NTRS)

    Deerwester, J. M.; Alexander, D.; Arno, R. D.; Edsinger, L. E.; Norman, S. M.; Sinclair, K. F.; Tindle, E. L.; Wood, R. D.

    1972-01-01

    The data acquisition system capabilities expected to be available in the 1980 time period as part of operational Earth observation missions are identified. By data acquisition system is meant the sensor platform (spacecraft or aircraft), the sensors themselves and the communication system. Future capabilities and support requirements are projected for the following sensors: film camera, return beam vidicon, multispectral scanner, infrared scanner, infrared radiometer, microwave scanner, microwave radiometer, coherent side-looking radar, and scatterometer.

  8. The Earth System CoG Collaboration Environment: Connecting Resources in the Earth Sciences

    NASA Astrophysics Data System (ADS)

    Murphy, S.; DeLuca, C.; Cinquini, L.; Overeem, I.; Edwards, P. N.; Jablonowski, C.; Rood, R. B.; Balaji, V.

    2012-12-01

    The Earth System CoG collaboration environment supports Earth science research and product development in virtual organizations comprised of multiple projects and communities. It provides data, metadata, and visualization services along with tools for collaboration, and can be used to host individual projects or to profile projects hosted elsewhere. All projects on CoG are described using a project ontology - an organized common vocabulary - that exposes information needed for collaboration and decision-making. Projects can be linked into a network, and the underlying ontology enables views of this information across the network. This access to information, and the community-driven evolution of a project ontology that includes a description of management and governance roles, bodies, and processes, promote the creation of active and knowledgeable project governance, at both individual and aggregate project levels. A description of the environment along with results of recent use by an model intercomparison project (MIP) and international software project will be presented.

  9. Administration: Planning, Programming, Budgeting, and Execution System

    DTIC Science & Technology

    2007-11-02

    Staffing Standards System MSA Manpower Standards Application MSLS Missiles Procurement, Army (appropriation) MTMC Military Traffic Management Command MTOE...command. Military Traffic Management Command ( MTMC ), assigned to U.S. Transportation Command (USTRANSCOM) National command authorities The President and

  10. EarthCube - Earth System Bridge: Spanning Scientific Communities with Interoperable Modeling Frameworks

    NASA Astrophysics Data System (ADS)

    Peckham, S. D.; DeLuca, C.; Gochis, D. J.; Arrigo, J.; Kelbert, A.; Choi, E.; Dunlap, R.

    2014-12-01

    In order to better understand and predict environmental hazards of weather/climate, ecology and deep earth processes, geoscientists develop and use physics-based computational models. These models are used widely both in academic and federal communities. Because of the large effort required to develop and test models, there is widespread interest in component-based modeling, which promotes model reuse and simplified coupling to tackle problems that often cross discipline boundaries. In component-based modeling, the goal is to make relatively small changes to models that make it easy to reuse them as "plug-and-play" components. Sophisticated modeling frameworks exist to rapidly couple these components to create new composite models. They allow component models to exchange variables while accommodating different programming languages, computational grids, time-stepping schemes, variable names and units. Modeling frameworks have arisen in many modeling communities. CSDMS (Community Surface Dynamics Modeling System) serves the academic earth surface process dynamics community, while ESMF (Earth System Modeling Framework) serves many federal Earth system modeling projects. Others exist in both the academic and federal domains and each satisfies design criteria that are determined by the community they serve. While they may use different interface standards or semantic mediation strategies, they share fundamental similarities. The purpose of the Earth System Bridge project is to develop mechanisms for interoperability between modeling frameworks, such as the ability to share a model or service component. This project has three main goals: (1) Develop a Framework Description Language (ES-FDL) that allows modeling frameworks to be described in a standard way so that their differences and similarities can be assessed. (2) Demonstrate that if a model is augmented with a framework-agnostic Basic Model Interface (BMI), then simple, universal adapters can go from BMI to a

  11. Activities for the Changing Earth System. Earth Systems Education, Middle School and High School Activities.

    ERIC Educational Resources Information Center

    Ohio State Univ., Columbus. Research Foundation.

    This book is intended to help teachers fulfill the need for children and future leaders to understand issues of global change and the science that lies behind them. Important changes are occurring in several of the earth's subsystems. The changes are thought to be the result from the expanding use of technology for the improvement of living…

  12. Anthropogenic biomes: a key contribution to earth-system science.

    PubMed

    Alessa, Lilian; Chapin, F Stuart

    2008-10-01

    Human activities now dominate most of the ice-free terrestrial surface. A recent article presents a classification and global map of human-influenced biomes of the world that provides a novel and potentially appropriate framework for projecting changes in earth-system dynamics.

  13. Sensor Webs as Virtual Data Systems for Earth Science

    NASA Astrophysics Data System (ADS)

    Moe, K. L.; Sherwood, R.

    2008-05-01

    The NASA Earth Science Technology Office established a 3-year Advanced Information Systems Technology (AIST) development program in late 2006 to explore the technical challenges associated with integrating sensors, sensor networks, data assimilation and modeling components into virtual data systems called "sensor webs". The AIST sensor web program was initiated in response to a renewed emphasis on the sensor web concepts. In 2004, NASA proposed an Earth science vision for a more robust Earth observing system, coupled with remote sensing data analysis tools and advances in Earth system models. The AIST program is conducting the research and developing components to explore the technology infrastructure that will enable the visionary goals. A working statement for a NASA Earth science sensor web vision is the following: On-demand sensing of a broad array of environmental and ecological phenomena across a wide range of spatial and temporal scales, from a heterogeneous suite of sensors both in-situ and in orbit. Sensor webs will be dynamically organized to collect data, extract information from it, accept input from other sensor / forecast / tasking systems, interact with the environment based on what they detect or are tasked to perform, and communicate observations and results in real time. The focus on sensor webs is to develop the technology and prototypes to demonstrate the evolving sensor web capabilities. There are 35 AIST projects ranging from 1 to 3 years in duration addressing various aspects of sensor webs involving space sensors such as Earth Observing-1, in situ sensor networks such as the southern California earthquake network, and various modeling and forecasting systems. Some of these projects build on proof-of-concept demonstrations of sensor web capabilities like the EO-1 rapid fire response initially implemented in 2003. Other projects simulate future sensor web configurations to evaluate the effectiveness of sensor-model interactions for producing

  14. Current Status and Future Earth System Studies in Northern Eurasia

    NASA Astrophysics Data System (ADS)

    Groisman, Pavel; Gordov, Evgeny; Maksyutov, Shamil

    2013-12-01

    Northern Eurasia is a sensitive and rapidly changing area with the signal of climate change effects already observed in many components of the Earth's system. The ongoing warming in the Northern Eurasia Earth Science Partnership Initiative (NEESPI) domain was substantially larger than for the globe and during the past 50 years, with a rate of the annual temperature increase of 0.33°C per decade. In addition, this region experienced impacts of abrupt institutional and economic changes in the former Soviet Union countries, east Europe, Mongolia, and China.

  15. NASA Earth Sciences Data Support System and Services for the Northern Eurasia Earth Science Partnership Initiative

    NASA Technical Reports Server (NTRS)

    Leptoukh, Gregory

    2006-01-01

    The presentation describes the recently awarded ACCESS project to provide data management of NASA remote sensing data for the Northern Eurasia Earth Science Partnership Initiative (NEESPI). The project targets integration of remote sensing data from MODIS, and other NASA instruments on board US-satellites (with potential expansion to data from non-US satellites), customized data products from climatology data sets (e.g., ISCCP, ISLSCP) and model data (e.g., NCEP/NCAR) into a single, well-architected data management system. It will utilize two existing components developed by the Goddard Earth Sciences Data & Information Services Center (GES DISC) at the NASA Goddard Space Flight Center: (1) online archiving and distribution system, that allows collection, processing and ingest of data from various sources into the online archive, and (2) user-friendly intelligent web-based online visualization and analysis system, also known as Giovanni. The former includes various kinds of data preparation for seamless interoperability between measurements by different instruments. The latter provides convenient access to various geophysical parameters measured in the Northern Eurasia region without any need to learn complicated remote sensing data formats, or retrieve and process large volumes of NASA data. Initial implementation of this data management system will concentrate on atmospheric data and surface data aggregated to coarse resolution to support collaborative environment and climate change studies and modeling, while at later stages, data from NASA and non-NASA satellites at higher resolution will be integrated into the system.

  16. Discover Earth: An earth system science program for libraries and their communities

    NASA Astrophysics Data System (ADS)

    Curtis, L.; Dusenbery, P.

    2010-12-01

    The view from space has deepened our understanding of Earth as a global, dynamic system. Instruments on satellites and spacecraft, coupled with advances in ground-based research, have provided us with astonishing new perspectives of our planet. Now more than ever, enhancing the public’s understanding of Earth’s physical and biological systems is vital to helping citizens make informed policy decisions especially when they are faced with the consequences of global climate change. In spite of this relevance, there are many obstacles to achieving broad public understanding of key earth system science (ESS) concepts. Strategies for addressing climate change can only succeed with the full engagement of the general public. As reported by U.S. News and World Report in 2010, small towns in rural America are emerging as the front line in the climate change debate in the country. The Space Science Institute’s National Center for Interactive Learning (NCIL) in partnership with the American Library Association (ALA), the Lunar and Planetary Institute (LPI), and the National Girls Collaborative Project (NGCP) have received funding from NSF to develop a national project called the STAR Library Education Network: a hands-on learning program for libraries and their communities (or STAR-Net for short). STAR stands for Science-Technology, Activities and Resources. There are two distinct components of STAR-Net: Discover Earth and Discover Tech. While the focus for education reform is on school improvement, there is considerable research that supports the role that out-of-school experiences can play in student achievement. Libraries provide an untapped resource for engaging underserved youth and their families in fostering an appreciation and deeper understanding of science and technology topics. The overarching goal of the project is to reach underserved youth and their families with informal STEM learning experiences. The Discover Earth part of STAR_Net will produce ESS

  17. Simple System to Measure the Earth's Magnetic Field

    NASA Astrophysics Data System (ADS)

    Akoglu, R.; Halilsoy, M.; Mazharimousavi, S. Habib

    2010-11-01

    Our aim in this proposal is to use Faraday's law of induction as a simple lecture demonstration to measure the Earths magnetic field (B). This will also enable the students to learn about how electric power is generated from rotational motion. Obviously the idea is not original, yet it may be attractive in the sense that no sophisticated devices are used. All the equipment needed is available in an elementary physics laboratory and is displayed in Fig. 1. The square wooden coil and handmade belt system to rotate the coil may require some craftsmanship; once made, it can be used for years. Using a compass, we first orient the table parallel to the direction of the Earth's horizontal component of B field. This is necessary to maximize the Earth's field which can suppress the noise effects as much as possible. It is preferable to minimize also any environmental effects by conducting the experiment away from power lines, if possible of course.

  18. Tidal-friction theory of the earth-moon system

    NASA Technical Reports Server (NTRS)

    Lyttleton, R. A.

    1980-01-01

    Serious errors contained in Jeffreys' (1952, 1959, 1970, 1976) discussion of tidal friction in the earth-moon system are identified and their consequences are discussed. A direct solution of the dynamical tidal equations for the couple from the earth acting upon the moon and the couple from the earth acting upon the sun, which were left unsolved by Jeffreys, is found to be incompatible with observations and the predictions of linear or quadratic friction theory, due to his failure to take into account the possible change of the moment of inertia of the earth with time in the derivation of the dynamical equations. Consideration of this factor leads to the conclusion that the earth must be contracting at a rate of 14.7 x 10 to the -11th/year, which can be accounted for only by the Ramsey theory, in which the terrestrial core is considered as a phase change rather than a change in chemical composition. Implications of this value for the rates of changes in day length and lunar distance are also indicated.

  19. Spheres of Earth: An Introduction to Making Observations of Earth Using an Earth System's Science Approach. Student Guide

    NASA Technical Reports Server (NTRS)

    Graff, Paige Valderrama; Baker, Marshalyn (Editor); Graff, Trevor (Editor); Lindgren, Charlie (Editor); Mailhot, Michele (Editor); McCollum, Tim (Editor); Runco, Susan (Editor); Stefanov, William (Editor); Willis, Kim (Editor)

    2010-01-01

    Laboratory (ISAL) at NASA s Johnson Space Center (JSC) work with astronauts onboard the International Space Station (ISS) who take images of Earth. Astronaut photographs, sometimes referred to as Crew Earth Observations, are taken using hand-held digital cameras onboard the ISS. These digital images allow scientists to study our Earth from the unique perspective of space. Astronauts have taken images of Earth since the 1960s. There is a database of over 900,000 astronaut photographs available at http://eol.jsc.nasa.gov . Images are requested by ISAL scientists at JSC and astronauts in space personally frame and acquire them from the Destiny Laboratory or other windows in the ISS. By having astronauts take images, they can specifically frame them according to a given request and need. For example, they can choose to use different lenses to vary the amount of area (field of view) an image will cover. Images can be taken at different times of the day which allows different lighting conditions to bring out or highlight certain features. The viewing angle at which an image is acquired can also be varied to show the same area from different perspectives. Pointing the camera straight down gives you a nadir shot. Pointing the camera at an angle to get a view across an area would be considered an oblique shot. Being able to change these variables makes astronaut photographs a unique and useful data set. Astronaut photographs are taken from the ISS from altitudes of 300 - 400 km (approx.185 to 250 miles). One of the current cameras being used, the Nikon D3X digital camera, can take images using a 50, 100, 250, 400 or 800mm lens. These different lenses allow for a wider or narrower field of view. The higher the focal length (800mm for example) the narrower the field of view (less area will be covered). Higher focal lengths also show greater detail of the area on the surface being imaged. There are four major systems or spheres of Earth. They are: Atmosphere, Biosphere, Hydrosphe, and

  20. Energy Transfer in the Earth-Sun System

    NASA Astrophysics Data System (ADS)

    Lui, A. T. Y.; Kamide, Y.

    2007-02-01

    Conference on Earth-Sun System Exploration: Energy Transfer; Kailua-Kona, Hawaii, USA, 16-20 January 2006; The goal of this conference, which was supported by several agencies and organizations, was to provide a forum for physicists engaged in the Earth-Sun system as well as in laboratory experiments to discuss and exchange knowledge and ideas on physical processes involving energy transfer. The motivation of the conference stemmed from the following realization: Space assets form an important fabric of our society, performing functions such as television broadcasting, cell- phone communication, navigation, and remote monitoring of tropospheric weather. There is increasing awareness of how much our daily activities can be adversely affected by space disturbances stretching all the way back to the Sun. In some of these energetic phenomena, energy in various forms can propagate long distances from the solar surface to the interplanetary medium and eventually to the Earth's immediate space environment, namely, its magnetosphere, ionosphere, and thermosphere. In addition, transformation of energy can take place in these space disturbances, allowing charged-particle energy to be transformed to electromagnetic energy or vice versa. In- depth understanding of energy transformation and transmission in the Earth-Sun system will foster the identification of physical processes responsible for space disturbances and the prediction of their occurrences and effects. Participants came from 15 countries.

  1. System Administration Support/SWORDS G2

    NASA Technical Reports Server (NTRS)

    Dito, Scott Joseph

    2014-01-01

    The Soldier-Warfighter Operationally Responsive Deployer for Space (SWORDS) rocket is a dedicated small satellite launcher that will minimize danger and complexity in order to allow soldiers in the field to put payloads of up to 25kg into orbit from the field. The SWORDSG2 project is the development of a model, simulation, and ultimately a working application that will control and monitor the cryogenic fluid delivery to the SWORDS rocket for testing purposes. To accomplish this, the project is using the programming language environment Gensym G2. The environment is an all-inclusive application that allows development, testing, modeling, and finally operation of the unique application through graphical and programmatic methods. In addition, observation of the current cryogenic fluid delivery system in the Kennedy Space Center Cry Lab has allowed me to gain valuable experience of fluid systems and propelant delivery that is valuable to our team when developing amd modeling our own system.The ultimate goal of having a test-ready application to show to the heads of the project, and demonstrating G2's capabilities, by late 2014 will require hard work and intense study and understanding of not only the programming aspect but also the physical phenomena we want to model, observe, and control.

  2. Arctic tipping points in an Earth system perspective.

    PubMed

    Wassmann, Paul; Lenton, Timothy M

    2012-02-01

    We provide an introduction to the volume The Arctic in the Earth System perspective: the role of tipping points. The terms tipping point and tipping element are described and their role in current science, general debates, and the Arctic are elucidated. From a wider perspective, the volume focuses upon the role of humans in the Arctic component of the Earth system and in particular the envelope for human existence, the Arctic ecosystems. The Arctic climate tipping elements, the tipping elements in Arctic ecosystems and societies, and the challenges of governance and anticipation are illuminated through short summaries of eight publications that derive from the Arctic Frontiers conference in 2011 and the EU FP7 project Arctic Tipping Points. Then some ideas based upon resilience thinking are developed to show how wise system management could ease pressures on Arctic systems in order to keep them away from tipping points.

  3. RITD - Adapting Mars Entry, Descent and Landing System for Earth

    NASA Astrophysics Data System (ADS)

    Heilimo, Jyri; Aleksashkin, Sergey; Martynov, Maxim; Schmidt, Walter; Harri, Ari-Matti; Vsevolod Koryanov, D.; Kazakovtcev, Victor; Haukka, Harri; Arruego, Ignacio; Finchenko, Valery; Ostresko, Boris; Ponomarenko, Andrei; Martin, Susanna; Siili, Tero

    Abstract A new generation of inflatable Entry, Descent and Landing System (EDLS) or Mars has been developed. It is used in both the initial atmospheric entry and atmospheric descent before the semi-hard impact of the penetrator into Martian surface. The EDLS applicability to Earth’s atmosphere is studied by the EU/RITD [1] project. Project focuses to the analysis and tests of the transonic behaviour of this compact and light weight payload entry system at the Earth re-entry 1. EDLS for Earth The dynamical stability of the craft is analysed, concentrating on the most critical part of the atmospheric re-entry, the transonic phase. In Martian atmosphere the MetNet vehicle stability during the transonic phase is understood. However, in the more dense Earth’s atmosphere, the transonic phase is shorter and turbulence more violent. Therefore, the EDLS has to be sufficiently dynamically stable to overcome the forces tending to deflect the craft from its nominal trajectory and attitude. The preliminary design of the inflatable EDLS for Earth will be commenced once the scaling of the re-entry system and the dynamical stability analysis have been performed. The RITD-project concentrates on mission and applications achievable with the current MetNet-type (i.e. “Mini-1” category) of lander, and on requirements posed by other type Earth re-entry concepts. 2. Entry Angle Determination for Mini-1 - lander For successful Earth landing, the suitable re-entry angle and velocity with specific descent vehicle (DV) mass and heat flux parameters need to be determined. These key parameters in determining the Earth re-entry for DV are: - qmax (kW/m2): maximal specific heat flux, - Q (MJ/m2): specific integral heat flux to DV front shield, - m (kg): descent vehicle (DV) mass, - V (m/s): re-entry velocity and - theta(deg.): flight-path angle at Earth re-entry For Earth re-entry, the calculation results in the optimal value of entry velocity for MetNet (“Mini-1” category) -type

  4. The integrated Earth System Model Version 1: formulation and functionality

    SciTech Connect

    Collins, William D.; Craig, Anthony P.; Truesdale, John E.; Di Vittorio, Alan; Jones, Andrew D.; Bond-Lamberty, Benjamin; Calvin, Katherine V.; Edmonds, James A.; Kim, Son H.; Thomson, Allison M.; Patel, Pralit L.; Zhou, Yuyu; Mao, Jiafu; Shi, Xiaoying; Thornton, Peter E.; Chini, Louise M.; Hurtt, George C.

    2015-07-23

    The integrated Earth System Model (iESM) has been developed as a new tool for pro- jecting the joint human/climate system. The iESM is based upon coupling an Integrated Assessment Model (IAM) and an Earth System Model (ESM) into a common modeling in- frastructure. IAMs are the primary tool for describing the human–Earth system, including the sources of global greenhouse gases (GHGs) and short-lived species, land use and land cover change, and other resource-related drivers of anthropogenic climate change. ESMs are the primary scientific tools for examining the physical, chemical, and biogeochemical impacts of human-induced changes to the climate system. The iESM project integrates the economic and human dimension modeling of an IAM and a fully coupled ESM within a sin- gle simulation system while maintaining the separability of each model if needed. Both IAM and ESM codes are developed and used by large communities and have been extensively applied in recent national and international climate assessments. By introducing heretofore- omitted feedbacks between natural and societal drivers, we can improve scientific under- standing of the human–Earth system dynamics. Potential applications include studies of the interactions and feedbacks leading to the timing, scale, and geographic distribution of emissions trajectories and other human influences, corresponding climate effects, and the subsequent impacts of a changing climate on human and natural systems. This paper de- scribes the formulation, requirements, implementation, testing, and resulting functionality of the first version of the iESM released to the global climate community.

  5. An operational, multistate, earth observation data management system

    NASA Technical Reports Server (NTRS)

    Eastwood, L. F., Jr.; Hill, C. T.; Morgan, R. P.; Gohagan, J. K.; Hays, T. R.; Ballard, R. J.; Crnkovich, G. G.; Schaeffer, M. A.

    1977-01-01

    State, local, and regional agencies involved in natural resources management were investigated as potential users of satellite remotely sensed data. This group's needs are assessed and alternative data management systems serving some of those needs are outlined. It is concluded that an operational earth observation data management system will be of most use to these user agencies if it provides a full range of information services -- from raw data acquisition to interpretation and dissemination of final information products.

  6. The integrated Earth system model version 1: formulation and functionality

    NASA Astrophysics Data System (ADS)

    Collins, W. D.; Craig, A. P.; Truesdale, J. E.; Di Vittorio, A. V.; Jones, A. D.; Bond-Lamberty, B.; Calvin, K. V.; Edmonds, J. A.; Kim, S. H.; Thomson, A. M.; Patel, P.; Zhou, Y.; Mao, J.; Shi, X.; Thornton, P. E.; Chini, L. P.; Hurtt, G. C.

    2015-07-01

    The integrated Earth system model (iESM) has been developed as a new tool for projecting the joint human/climate system. The iESM is based upon coupling an integrated assessment model (IAM) and an Earth system model (ESM) into a common modeling infrastructure. IAMs are the primary tool for describing the human-Earth system, including the sources of global greenhouse gases (GHGs) and short-lived species (SLS), land use and land cover change (LULCC), and other resource-related drivers of anthropogenic climate change. ESMs are the primary scientific tools for examining the physical, chemical, and biogeochemical impacts of human-induced changes to the climate system. The iESM project integrates the economic and human-dimension modeling of an IAM and a fully coupled ESM within a single simulation system while maintaining the separability of each model if needed. Both IAM and ESM codes are developed and used by large communities and have been extensively applied in recent national and international climate assessments. By introducing heretofore-omitted feedbacks between natural and societal drivers, we can improve scientific understanding of the human-Earth system dynamics. Potential applications include studies of the interactions and feedbacks leading to the timing, scale, and geographic distribution of emissions trajectories and other human influences, corresponding climate effects, and the subsequent impacts of a changing climate on human and natural systems. This paper describes the formulation, requirements, implementation, testing, and resulting functionality of the first version of the iESM released to the global climate community.

  7. The integrated Earth system model version 1: formulation and functionality

    DOE PAGES

    Collins, W. D.; Craig, A. P.; Truesdale, J. E.; ...

    2015-07-23

    The integrated Earth system model (iESM) has been developed as a new tool for projecting the joint human/climate system. The iESM is based upon coupling an integrated assessment model (IAM) and an Earth system model (ESM) into a common modeling infrastructure. IAMs are the primary tool for describing the human–Earth system, including the sources of global greenhouse gases (GHGs) and short-lived species (SLS), land use and land cover change (LULCC), and other resource-related drivers of anthropogenic climate change. ESMs are the primary scientific tools for examining the physical, chemical, and biogeochemical impacts of human-induced changes to the climate system. Themore » iESM project integrates the economic and human-dimension modeling of an IAM and a fully coupled ESM within a single simulation system while maintaining the separability of each model if needed. Both IAM and ESM codes are developed and used by large communities and have been extensively applied in recent national and international climate assessments. By introducing heretofore-omitted feedbacks between natural and societal drivers, we can improve scientific understanding of the human–Earth system dynamics. Potential applications include studies of the interactions and feedbacks leading to the timing, scale, and geographic distribution of emissions trajectories and other human influences, corresponding climate effects, and the subsequent impacts of a changing climate on human and natural systems. This paper describes the formulation, requirements, implementation, testing, and resulting functionality of the first version of the iESM released to the global climate community.« less

  8. A summary of Michigan program for earth resource information systems

    NASA Technical Reports Server (NTRS)

    Erickson, J. D.

    1972-01-01

    A summary and guide to the development of earth resources information systems which employ multispectral remote sensing are reported. Major areas of activities center on improved throughput parallel processing systems, improved processing techniques, practical use of techniques in user applications, and improved sensors. Cost effectiveness considerations point to signature extension, parallel processing all-digital computers, and airborne multispectral imaging radar as some of the improvement technologies.

  9. Using Word Processing to Implement an Effective Administrative Support System

    ERIC Educational Resources Information Center

    Taylor, Wendy

    1978-01-01

    Describes the steps taken to reorganize the Administrative Support System of Houston Independent School District, to make it more efficient. A more flexible multi-function support team replaced the traditional private secretaries arrangement. (GA)

  10. Evolving Metadata in NASA Earth Science Data Systems

    NASA Astrophysics Data System (ADS)

    Mitchell, A.; Cechini, M. F.; Walter, J.

    2011-12-01

    NASA's Earth Observing System (EOS) is a coordinated series of satellites for long term global observations. NASA's Earth Observing System Data and Information System (EOSDIS) is a petabyte-scale archive of environmental data that supports global climate change research by providing end-to-end services from EOS instrument data collection to science data processing to full access to EOS and other earth science data. On a daily basis, the EOSDIS ingests, processes, archives and distributes over 3 terabytes of data from NASA's Earth Science missions representing over 3500 data products ranging from various types of science disciplines. EOSDIS is currently comprised of 12 discipline specific data centers that are collocated with centers of science discipline expertise. Metadata is used in all aspects of NASA's Earth Science data lifecycle from the initial measurement gathering to the accessing of data products. Missions use metadata in their science data products when describing information such as the instrument/sensor, operational plan, and geographically region. Acting as the curator of the data products, data centers employ metadata for preservation, access and manipulation of data. EOSDIS provides a centralized metadata repository called the Earth Observing System (EOS) ClearingHouse (ECHO) for data discovery and access via a service-oriented-architecture (SOA) between data centers and science data users. ECHO receives inventory metadata from data centers who generate metadata files that complies with the ECHO Metadata Model. NASA's Earth Science Data and Information System (ESDIS) Project established a Tiger Team to study and make recommendations regarding the adoption of the international metadata standard ISO 19115 in EOSDIS. The result was a technical report recommending an evolution of NASA data systems towards a consistent application of ISO 19115 and related standards including the creation of a NASA-specific convention for core ISO 19115 elements. Part of

  11. Big Data Visual Analytics for Exploratory Earth System Simulation Analysis

    SciTech Connect

    Steed, Chad A.; Ricciuto, Daniel M.; Shipman, Galen M.; Smith, Brian E.; Thornton, Peter E.; Wang, Dali; Shi, Xiaoying; Williams, Dean N.

    2013-12-01

    Rapid increases in high performance computing are feeding the development of larger and more complex data sets in climate research, which sets the stage for so-called big data analysis challenges. However, conventional climate analysis techniques are inadequate in dealing with the complexities of today s data. In this paper, we describe and demonstrate a visual analytics system, called the Exploratory Data analysis ENvironment (EDEN), with specific application to the analysis of complex earth system simulation data sets. EDEN represents the type of interactive visual analysis tools that are necessary to transform data into insight, thereby improving critical comprehension of earth system processes. In addition to providing an overview of EDEN, we describe real-world studies using both point ensembles and global Community Land Model Version 4 (CLM4) simulations.

  12. The Earth Observing System AM Spacecraft - Thermal Control Subsystem

    NASA Technical Reports Server (NTRS)

    Chalmers, D.; Fredley, J.; Scott, C.

    1993-01-01

    Mission requirements for the EOS-AM Spacecraft intended to monitor global changes of the entire earth system are considered. The spacecraft is based on an instrument set containing the Advanced Spaceborne Thermal Emission and Reflection radiometer (ASTER), Clouds and Earth's Radiant Energy System (CERES), Multiangle Imaging Spectro-Radiometer (MISR), Moderate-Resolution Imaging Spectrometer (MODIS), and Measurements of Pollution in the Troposphere (MOPITT). Emphasis is placed on the design, analysis, development, and verification plans for the unique EOS-AM Thermal Control Subsystem (TCS) aimed at providing the required environments for all the onboard equipment in a densely packed layout. The TCS design maximizes the use of proven thermal design techniques and materials, in conjunction with a capillary pumped two-phase heat transport system for instrument thermal control.

  13. The Earth System Documentation (ES-DOC) project

    NASA Astrophysics Data System (ADS)

    Murphy, S.; Greenslade, M. A.; Treshansky, A.; DeLuca, C.; Guilyardi, E.; Denvil, S.

    2013-12-01

    Earth System Documentation (ES-DOC) is an international project supplying high quality tools and services in support of Earth system documentation creation, analysis and dissemination. It is nurturing a sustainable standards based documentation ecosystem that aims to become an integral part of the next generation of exa-scale dataset archives. ES-DOC leverages open source software, and applies a software development methodology that places end-user narratives at the heart of all it does. ES-DOC has initially focused upon nurturing the Earth System Model (ESM) documentation eco-system. Within this context ES-DOC leverages the emerging Common Information Model (CIM) metadata standard, which has supported the following projects: ** Coupled Model Inter-comparison Project Phase 5 (CMIP5); ** Dynamical Core Model Inter-comparison Project (DCMIP-2012); ** National Climate Predictions and Projections Platforms (NCPP) Quantitative Evaluation of Downscaling Workshop (QED-2013). This presentation will introduce the project to a wider audience and will demonstrate the current production level capabilities of the eco-system: ** An ESM documentation Viewer embeddable into any website; ** An ESM Questionnaire configurable on a project by project basis; ** An ESM comparison tool reusable across projects; ** An ESM visualization tool reusable across projects; ** A search engine for speedily accessing published documentation; ** Libraries for streamlining document creation, validation and publishing pipelines.

  14. Earth system sensitivity inferred from Pliocene modelling and data

    USGS Publications Warehouse

    Lunt, D.J.; Haywood, A.M.; Schmidt, G.A.; Salzmann, U.; Valdes, P.J.; Dowsett, H.J.

    2010-01-01

    Quantifying the equilibrium response of global temperatures to an increase in atmospheric carbon dioxide concentrations is one of the cornerstones of climate research. Components of the Earths climate system that vary over long timescales, such as ice sheets and vegetation, could have an important effect on this temperature sensitivity, but have often been neglected. Here we use a coupled atmosphere-ocean general circulation model to simulate the climate of the mid-Pliocene warm period (about three million years ago), and analyse the forcings and feedbacks that contributed to the relatively warm temperatures. Furthermore, we compare our simulation with proxy records of mid-Pliocene sea surface temperature. Taking these lines of evidence together, we estimate that the response of the Earth system to elevated atmospheric carbon dioxide concentrations is 30-50% greater than the response based on those fast-adjusting components of the climate system that are used traditionally to estimate climate sensitivity. We conclude that targets for the long-term stabilization of atmospheric greenhouse-gas concentrations aimed at preventing a dangerous human interference with the climate system should take into account this higher sensitivity of the Earth system. ?? 2010 Macmillan Publishers Limited. All rights reserved.

  15. Mission operations concepts for Earth Observing System (EOS)

    NASA Technical Reports Server (NTRS)

    Kelly, Angelita C.; Taylor, Thomas D.; Hawkins, Frederick J.

    1991-01-01

    Mission operation concepts are described which are being used to evaluate and influence space and ground system designs and architectures with the goal of achieving successful, efficient, and cost-effective Earth Observing System (EOS) operations. Emphasis is given to the general characteristics and concepts developed for the EOS Space Measurement System, which uses a new series of polar-orbiting observatories. Data rates are given for various instruments. Some of the operations concepts which require a total system view are also examined, including command operations, data processing, data accountability, data archival, prelaunch testing and readiness, launch, performance monitoring and assessment, contingency operations, flight software maintenance, and security.

  16. The Dysfunctional Nature of Political Systems in University Administration.

    ERIC Educational Resources Information Center

    Gunn, Bruce

    This paper argues that the rapid influx of information technology into society requires a change in university administration from the current political system to a computer based management system for higher productivity. The paper describes the dysfunctional nature of the political system of management in its lack of full accountability. The…

  17. Administrative Decision-Making and Computer-Based Planning Systems.

    ERIC Educational Resources Information Center

    Weischadle, David E.

    This paper presents the overall conceptual framework in which information gathered and stored by computers can be transformed into a comprehensive planning system useful in administrative decisionmaking. Identified and discussed are information needs (enrollment, costs, resources, and measurements) and a sample system (STEP - System for Trenton's…

  18. NASA Earth Sciences Data Support System and Services for the Northern Eurasia Earth Science Partnership Initiative

    NASA Technical Reports Server (NTRS)

    Leptoukh, Gregory

    2005-01-01

    The presentation describes data management of NASA remote sensing data for Northern Eurasia Earth Science Partnership Initiative (NEESPI). Many types of ground and integrative (e.g., satellite, GIs) data will be needed and many models must be applied, adapted or developed for properly understanding the functioning of Northern Eurasia cold and diverse regional system. Mechanisms for obtaining the requisite data sets and models and sharing them among the participating scientists are essential. The proposed project targets integration of remote sensing data from AVHRR, MODIS, and other NASA instruments on board US- satellites (with potential expansion to data from non-US satellites), customized data products from climatology data sets (e.g., ISCCP, ISLSCP) and model data (e.g., NCEPNCAR) into a single, well-architected data management system. It will utilize two existing components developed by the Goddard Earth Sciences Data & Information Services Center (GES DISC) at the NASA Goddard Space Flight Center: (1) online archiving and distribution system, that allows collection, processing and ingest of data from various sources into the online archive, and (2) user-friendly intelligent web-based online visualization and analysis system, also known as Giovanni. The former includes various kinds of data preparation for seamless interoperability between measurements by different instruments. The latter provides convenient access to various geophysical parameters measured in the Northern Eurasia region without any need to learn complicated remote sensing data formats, or retrieve and process large volumes of NASA data. Initial implementation of this data management system will concentrate on atmospheric data and surface data aggregated to coarse resolution to support collaborative environment and climate change studies and modeling, while at later stages, data from NASA and non-NASA satellites at higher resolution will be integrated into the system.

  19. Change in Water Cycle- Important Issue on Climate Earth System

    NASA Astrophysics Data System (ADS)

    Singh, Pratik

    Change in Water Cycle- Important Issue on Climate Earth System PRATIK KUMAR SINGH1 1BALDEVRAM MIRDHA INSTITUTE OF TECHNOLOGY,JAIPUR (RAJASTHAN) ,INDIA Water is everywhere on Earth and is the only known substance that can naturally exist as a gas, liquid, and solid within the relatively small range of air temperatures and pressures found at the Earth's surface.Changes in the hydrological cycle as a consequence of climate and land use drivers are expected to play a central role in governing a vast range of environmental impacts.Earth's climate will undergo changes in response to natural variability, including solar variability, and to increasing concentrations of green house gases and aerosols.Further more, agreement is widespread that these changes may profoundly affect atmospheric water vapor concentrations, clouds and precipitation patterns.As we know that ,a warmer climate, directly leading to increased evaporation, may well accelerate the hydrological cycle, resulting in an increase in the amount of moisture circulating through the atmosphere.The Changing Water Cycle programmer will develop an integrated, quantitative understanding of the changes taking place in the global water cycle, involving all components of the earth system, improving predictions for the next few decades of regional precipitation, evapotranspiration, soil moisture, hydrological storage and fluxes.The hydrological cycle involves evaporation, transpiration, condensation, precipitation, and runoff. NASA's Aqua satellite will monitor many aspects of the role of water in the Earth's systems, and will do so at spatial and temporal scales appropriate to foster a more detailed understanding of each of the processes that contribute to the hydrological cycle. These data and the analyses of them will nurture the development and refinement of hydrological process models and a corresponding improvement in regional and global climate models, with a direct anticipated benefit of more accurate weather and

  20. The Earth System's Missing Energy and Land Warming

    NASA Astrophysics Data System (ADS)

    Huang, S.; Wang, H.; Duan, W.

    2013-05-01

    The energy content of the Earth system is determined by the balance or imbalance between the incoming energy from solar radiation and the outgoing energy of terrestrial long wavelength radiation. Change in the Earth system energy budget is the ultimate cause of global climate change. Satellite data show that there is a small yet persistent radiation imbalance at the top-of-atmosphere such that Earth has been steadily accumulating energy, consistent with the theory of greenhouse effect. It is commonly believed [IPCC, 2001; 2007] that up to 94% of the energy trapped by anthropogenic greenhouse gases is absorbed by the upper several hundred meter thick layer of global oceans, with the remaining to accomplish ice melting, atmosphere heating, and land warming, etc. However, the recent measurements from ocean monitoring system indicated that the rate of oceanic heat uptake has not kept pace with the greenhouse heat trapping rate over the past years [Trenberth and Fasullo, Science, 328: 316-317, 2010]. An increasing amount of energy added to the earth system has become unaccounted for, or is missing. A recent study [Loeb et al., Nature Geoscience, 5:110-113, 2012] suggests that the missing energy may be located in the deep ocean down to 1,800 m. Here we show that at least part of the missing energy can be alternatively explained by the land mass warming. We argue that the global continents alone should have a share greater than 10% of the global warming energy. Although the global lands reflect solar energy at a higher rate, they use less energy for evaporation than do the oceans. Taken into accounts the terrestrial/oceanic differences in albedo (34% vs. 28%) and latent heat (27% vs. 58% of net solar radiation at the surface), the radiative energy available per unit surface area for storage or other internal processes is more abundant on land than on ocean. Despite that the lands cover only about 29% of the globe, the portion of global warming energy stored in the lands

  1. The Earth Phenomena Observing System: Intelligent Autonomy for Satellite Operations

    NASA Technical Reports Server (NTRS)

    Ricard, Michael; Abramson, Mark; Carter, David; Kolitz, Stephan

    2003-01-01

    Earth monitoring systems of the future may include large numbers of inexpensive small satellites, tasked in a coordinated fashion to observe both long term and transient targets. For best performance, a tool which helps operators optimally assign targets to satellites will be required. We present the design of algorithms developed for real-time optimized autonomous planning of large numbers of small single-sensor Earth observation satellites. The algorithms will reduce requirements on the human operators of such a system of satellites, ensure good utilization of system resources, and provide the capability to dynamically respond to temporal terrestrial phenomena. Our initial real-time system model consists of approximately 100 satellites and large number of points of interest on Earth (e.g., hurricanes, volcanoes, and forest fires) with the objective to maximize the total science value of observations over time. Several options for calculating the science value of observations include the following: 1) total observation time, 2) number of observations, and the 3) quality (a function of e.g., sensor type, range, slant angle) of the observations. An integrated approach using integer programming, optimization and astrodynamics is used to calculate optimized observation and sensor tasking plans.

  2. The earth radiation budget satellite system for climate research

    NASA Technical Reports Server (NTRS)

    Woerner, C. V.; Cooper, J. E.; Harrison, E. F.

    1978-01-01

    The mission implications of providing earth radiation budget data for climate studies have been thoroughly studied. The results of these studies indicate the need for a multisensor, multisatellite system consisting of high and midinclination orbits. To meet this need, NASA and NOAA are planning a joint Earth Radiation Budget Satellite System (ERBSS) composed of instruments on two of NOAA's near-polar Sun-synchronous TIROS-N/NOAA A through G series of operational satellites and on an NASA midinclination satellite of the Applications Explorer Mission (AEM) type referred to as ERBS-A/AEM. This paper describes the scientific objectives of ERBSS, the associated data analysis methods, mission analysis (sampling), and instrument definition.

  3. Sustainability Indicators for Coupled Human-Earth Systems

    NASA Astrophysics Data System (ADS)

    Motesharrei, S.; Rivas, J. R.; Kalnay, E.

    2014-12-01

    Over the last two centuries, the Human System went from having a small impact on the Earth System (including the Climate System) to becoming dominant, because both population and per capita consumption have grown extremely fast, especially since about 1950. We therefore argue that Human System Models must be included into Earth System Models through bidirectional couplings with feedbacks. In particular, population should be modeled endogenously, rather than exogenously as done currently in most Integrated Assessment Models. The growth of the Human System threatens to overwhelm the Carrying Capacity of the Earth System, and may be leading to catastrophic climate change and collapse. We propose a set of Ecological and Economic "Sustainability Indicators" that can employ large data-sets for developing and assessing effective mitigation and adaptation policies. Using the Human and Nature Dynamical Model (HANDY) and Coupled Human-Climate-Water Model (COWA), we carry out experiments with this set of Sustainability Indicators and show that they are applicable to various coupled systems including Population, Climate, Water, Energy, Agriculture, and Economy. Impact of nonrenewable resources and fossil fuels could also be understood using these indicators. We demonstrate interconnections of Ecological and Economic Indicators. Coupled systems often include feedbacks and can thus display counterintuitive dynamics. This makes it difficult for even experts to see coming catastrophes from just the raw data for different variables. Sustainability Indicators boil down the raw data into a set of simple numbers that cross their sustainability thresholds with a large time-lag before variables enter their catastrophic regimes. Therefore, we argue that Sustainability Indicators constitute a powerful but simple set of tools that could be directly used for making policies for sustainability.

  4. EarthSat spring wheat yield system test 1975

    NASA Technical Reports Server (NTRS)

    1976-01-01

    The results of an operational test of the EarthSat System during the period 1 June - 30 August 1975 over the spring wheat regions of North Dakota, South Dakota, and Minnesota are presented. The errors associated with each sub-element of the system during the operational test and the sensitivity of the complete system and each major functional sub-element of the system to the observed errors were evaluated. Evaluations and recommendations for future operational users of the system include: (1) changes in various system sub-elements, (2) changes in the yield model to affect improved accuracy, (3) changes in the number of geobased cells needed to develop an accurate aggregated yield estimate, (4) changes associated with the implementation of future operational satellites and data processing systems, and (5) detailed system documentation.

  5. Mode and Intermediate Waters in Earth System Models

    SciTech Connect

    Gnanadesikan, Anand; Sarmiento, Jorge L.

    2015-12-22

    This report describes work done as part of a joint Princeton-Johns Hopkins project to look at the impact of mode and intermediate waters in Earth System Models. The Johns Hopkins portion of this work focussed on the role of lateral mixing in ventilating such waters, with important implications for hypoxia, the uptake of anthropogenic carbon, the dynamics of El Nino and carbon pumps. The Johns Hopkins group also collaborated with the Princeton Group to help develop a watermass diagnostics framework.

  6. Optimized Infrastructure for the Earth System Prediction Capability

    DTIC Science & Technology

    2014-09-30

    research and operational prediction communities. The ESPC goal is to coordinate scientific development and operational implementation of improved... Coordinate Ocean Model (HYCOM) to couple it to the Community Earth System Model (CESM). This will enable HYCOM to be evaluated in many new coupled...the ESMF implementation and design strategies. Couple HYCOM to CESM The integration of the HYbrid Coordinate Ocean Model (HYCOM) with the Community

  7. Imaging spectrometry of the Earth and other solar system bodies

    NASA Technical Reports Server (NTRS)

    Vane, Gregg

    1993-01-01

    Imaging spectrometry is a relatively new tool for remote sensing of the Earth and other bodies of the solar system. The technique dates back to the late 1970's and early 1980's. It is a natural extension of the earlier multi-spectral imagers developed for remote sensing that acquire images in a few, usually broad spectral bands. Imaging spectrometers combine aspects of classical spectrometers and imaging systems, making it possible to acquire literally hundreds of images of an object, each image in a separate, narrow spectral band. It is thus possible to perform spectroscopy on a pixel-by-pixel basis with the data acquired with an imaging spectrometer. Two imaging spectrometers have flown in space and several others are planned for future Earth and planetary missions. The French-built Phobos Infrared Spectrometer (ISM) was part of the payload of the Soviet Mars mission in 1988, and the JPL-built Near Infrared Mapping Spectrometer (NIMS) is currently en route to Jupiter aboard the Galileo spacecraft. Several airborne imaging spectrometers have been built in the past decade including the JPL-built Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) which is the only such sensor that covers the full solar reflected portion of the spectrum in narrow, contiguous spectral bands. NASA plans two imaging spectrometers for its Earth Observing System, the Moderate and the High Resolution Imaging Spectrometers (MODIS and HIRIS). A brief overview of the applications of imaging spectrometry to Earth science will be presented to illustrate the value of the tool to remote sensing and indicate the types of measurements that are required. The system design for AVIRS and a planetary imaging spectrometer will be presented to illustrate the engineering considerations and challenges that must be met in building such instruments. Several key sensor technology areas will be discussed in which miniaturization and/or enhanced performance through micromachining and nanofabrication may

  8. Management approach recommendations. Earth Observatory Satellite system definition study (EOS)

    NASA Technical Reports Server (NTRS)

    1974-01-01

    Management analyses and tradeoffs were performed to determine the most cost effective management approach for the Earth Observatory Satellite (EOS) Phase C/D. The basic objectives of the management approach are identified. Some of the subjects considered are as follows: (1) contract startup phase, (2) project management control system, (3) configuration management, (4) quality control and reliability engineering requirements, and (5) the parts procurement program.

  9. On the development of earth observation satellite systems

    NASA Technical Reports Server (NTRS)

    1977-01-01

    Subsequent to the launching of the first LANDSAT by NASA, Japan has recognized the importance of data from earth observation satellites, has conducted studies, and is preparing to develop an independent system. The first ocean observation satellite will be launched in 1983, the second in 1985. The first land observation satellite is scheduled to be launched in 1987 and by 1990 Japan intends to have both land and ocean observation systems in regular operation. The association reception and data processing systems are being developed.

  10. Linkages between the Urban Environment and Earth's Climate System

    NASA Technical Reports Server (NTRS)

    Shepherd, J. Marshall; Jin, Menglin

    2003-01-01

    Urbanization is one of the extreme cases of land use change. Although currently only 1.2% of the land is considered urban, the spatial coverage and density of cities are expected to rapidly increase in the near future. It is estimated that by the year 2025 60% of the world s population will live in cities (UNFP, 1999). Though urban areas are local in scale, human activity in urban environments has impacts at local, to global scale by changing atmospheric composition; impacting components of the water cycle; and modifying the carbon cycle 2nd ecosystems. For example, urban dwellers are undoubtedly familiar with "high" ozone pollution days, flash flooding in city streets, or heat stress on summer days. However, our understanding of urbanization on the total Earth-climate system is incomplete. Better understanding of how the Earth s weather, oceans, and land work together and the influence of the urban environment on this climate system is critical. This paper highlights some of the major and current issues involving interactions between urban environments and the Earth's climate system. It also captures some of the most current thinking and findings of the authors and key experts in the field.

  11. Bioaerosols in the Earth system: Climate, health, and ecosystem interactions

    SciTech Connect

    Fröhlich-Nowoisky, Janine; Kampf, Christopher J.; Weber, Bettina; Huffman, J. Alex; Pöhlker, Christopher; Andreae, Meinrat O.; Lang-Yona, Naama; Burrows, Susannah M.; Gunthe, Sachin S.; Elbert, Wolfgang; Su, Hang; Hoor, Peter; Thines, Eckhard; Hoffmann, Thorsten; Després, Viviane R.; Pöschl, Ulrich

    2016-12-01

    Aerosols of biological origin play a vital role in the Earth system, particularly in the in-teractions between atmosphere, biosphere, climate, and public health. Airborne bacteria, fungal spores, pollen, and other bioparticles are essential for the reproduction and spread of organisms across various ecosystems, and they can cause or enhance human, animal, and plant diseases. Moreover, they can serve as nuclei for cloud droplets, ice crystals, and precipitation, thus influencing the hydrological cycle and climate. The actual formation, abundance, composition, and effects of biological aerosols and the atmospheric microbi-ome are, however, not yet well characterized and constitute a large gap in the scientific understanding of the interaction and co-evolution of life and climate in the Earth system. This review presents an overview of the state of bioaerosol research and highlights recent advances in terms of bioaerosol identification, characterization, transport, and transfor-mation processes, as well as their interactions with climate, health, and ecosystems, focus-ing on the role bioaerosols play in the Earth system.

  12. Tested Tools You Can Use: Evaluating Earth System Science Courses

    NASA Astrophysics Data System (ADS)

    Lee, S. P.; Prakash, A.; Reider, D.; Baker, D.

    2006-12-01

    Earth System Science Education for the 21st Century (ESSE 21) has created a public access on-line evaluation resource available at http://esse21.usra.edu/evaltoolkit in collaboration with the ESSE 21 institutions, PIs, and evaluators. The purpose of the ESSE toolkit is to offer examples of how evaluation and assessment are/have been used in Earth System Science courses and programs. Our goal is to help instructors recognize different types of assessment and evaluation tools and uses that have proved useful in these courses and provide models for designing assessments in new courses. We have included actual examples of evaluations used by ESSE institution faculty in their own courses. This is not a comprehensive toolkit on educational evaluation and assessment, but it does provide several examples of evaluations that have been used successfully in Earth System Science courses and links to many good web resources on course evaluation. We have provided examples of assessments that are designed to collect information from students before, during and after courses. Some, presented in different formats, are designed to assess what students learn, others are designed to provide course instructors with information they can use to revise their courses. These assessments range from content tests to portfolios, from feedback forms to interviews, and from concept maps to attitude surveys.

  13. Bioaerosols in the Earth system: Climate, health, and ecosystem interactions

    NASA Astrophysics Data System (ADS)

    Fröhlich-Nowoisky, Janine; Kampf, Christopher J.; Weber, Bettina; Huffman, J. Alex; Pöhlker, Christopher; Andreae, Meinrat O.; Lang-Yona, Naama; Burrows, Susannah M.; Gunthe, Sachin S.; Elbert, Wolfgang; Su, Hang; Hoor, Peter; Thines, Eckhard; Hoffmann, Thorsten; Després, Viviane R.; Pöschl, Ulrich

    2016-12-01

    Aerosols of biological origin play a vital role in the Earth system, particularly in the interactions between atmosphere, biosphere, climate, and public health. Airborne bacteria, fungal spores, pollen, and other bioparticles are essential for the reproduction and spread of organisms across various ecosystems, and they can cause or enhance human, animal, and plant diseases. Moreover, they can serve as nuclei for cloud droplets, ice crystals, and precipitation, thus influencing the hydrological cycle and climate. The sources, abundance, composition, and effects of biological aerosols and the atmospheric microbiome are, however, not yet well characterized and constitute a large gap in the scientific understanding of the interaction and co-evolution of life and climate in the Earth system. This review presents an overview of the state of bioaerosol research, highlights recent advances, and outlines future perspectives in terms of bioaerosol identification, characterization, transport, and transformation processes, as well as their interactions with climate, health, and ecosystems, focusing on the role bioaerosols play in the Earth system.

  14. Live Interrogation and Visualization of Earth Systems (LIVES)

    NASA Astrophysics Data System (ADS)

    Nunn, J. A.; Anderson, L. C.

    2007-12-01

    Twenty tablet PCs and associated peripherals acquired through a HP Technology for Teaching grant are being used to redesign two freshman laboratory courses as well as a sophomore geobiology course in Geology and Geophysics at Louisiana State University. The two introductory laboratories serve approximately 750 students per academic year including both majors and non-majors; the geobiology course enrolls about 35 students/year and is required for majors in the department's geology concentration. Limited enrollments and 3 hour labs make it possible to incorporate hands-on visualization, animation, GIS, manipulation of data and images, and access to geological data available online. Goals of the course redesigns include: enhancing visualization of earth materials, physical/chemical/biological processes, and biosphere/geosphere history; strengthening student's ability to acquire, manage, and interpret multifaceted geological information; fostering critical thinking, the scientific method, and earth-system science/perspective in ancient and modern environments (such as coastal erosion and restoration in Louisiana or the Snowball Earth hypothesis); improving student communication skills; and increasing the quantity, quality, and diversity of students pursuing Earth Science careers. IT resources available in the laboratory provide students with sophisticated visualization tools, allowing them to switch between 2-D and 3-D reconstructions more seamlessly, and enabling them to manipulate larger integrated data- sets, thus permitting more time for critical thinking and hypothesis testing. IT resources also enable faculty and students to simultaneously work with simulation software to animate earth processes such as plate motions or groundwater flow and immediately test hypothesis formulated in the data analysis. Finally, tablet PCs make it possible for data gathering and analysis outside a formal classroom. As a result, students will achieve fluency in using visualization

  15. USGEO National Earth Observation Assessment Methods for Evaluating the Relative Contributions of Earth Observing Systems to Societal Benefit

    NASA Astrophysics Data System (ADS)

    Gallo, J.; Stryker, T.

    2015-12-01

    The second National Civil Earth Observation Assessment identifies the inputs and relative contributions of the portfolio of observing systems currently relied upon by Federal agencies to meet key Earth observing objectives. The Assessment employs a hierarchical value-tree framework that traces the pathways through which Earth observing systems contribute value across 13 societal benefit areas, utilizing multiple levels to provide logical traceability. This presentation describes the methods used to construct societal benefit area value-trees that include key objectives and the information products, services, and research derived from Earth observations that help satisfy them. It describes the methods for weighting nodes at multiple levels of each value-tree and the expert elicitation process for assessing the relative contributions of Earth observing systems to the development of information products, services, and research. The methodology employed in the Assessment is especially useful at assessing the interdependence and relative contributions of multiple Earth observing systems on the development of blended information products and tracing information pathways from direct observations through intermediate products, such as models, to end-products used to improve decision-making. This presentation will highlight case study examples from the 13 societal benefit areas (agriculture and forestry, biodiversity, climate, disasters, ecosystems, energy and mineral resources, human health, ocean and costal resources, space weather, transportation, water resources weather, and reference measurements) to demonstrate tractability from Earth observing systems, through information products and research that satisfy key objectives, to societal benefit.

  16. Norfolk State University Research Experience in Earth System Science

    NASA Technical Reports Server (NTRS)

    Chaudhury, Raj

    2002-01-01

    The truly interdisciplinary nature of Earth System Science lends itself to the creation of research teams comprised of people with different scientific and technical backgrounds. In the annals of Earth System Science (ESS) education, the lack of an academic major in the discipline might be seen as a barrier to the involvement of undergraduates in the overall ESS-enterprise. This issue is further compounded at minority-serving institutions by the rarity of departments dedicated to Atmospheric Science, Oceanography or even the geosciences. At Norfolk State University, a Historically Black College, a six week, NASA-supported, summer undergraduate research program (REESS - Research Experience in Earth System Science) is creating a model that involves students with majors in diverse scientific disciplines in authentic ESS research coupled with a structured education program. The project is part of a wider effort at the University to enhance undergraduate education by identifying specific areas of student weaknesses regarding the content and process of science. A pre- and post-assessment test, which is focused on some fundamental topics in global climate change, is given to all participants as part of the evaluation of the program. Student attitudes towards the subject and the program's approach are also surveyed at the end of the research experience. In 2002, 11 undergraduates participated in REESS and were educated in the informed use of some of the vast remote sensing resources available through NASA's Earth Science Enterprise (ESE). The program ran from June 3rd through July 12, 2002. This was the final year of the project.

  17. Catalog of Space Shuttle Earth Observations Hand-Held Photography: Space Transportation System (STS) 41-6 Mission

    NASA Technical Reports Server (NTRS)

    Nowakowski, Barbara S.; Palmer, Wesley F.

    1985-01-01

    This document catalogs Space Shuttle hand-held Earth observations photography which was collected on the Space Transportation System (STS) 41-G mission of October 1984. The catalog includes the following data for each of 2480 frames: geographical name, feature description, latitude and longitude, percentage of cloud cover, look direction and tilt, lens focal length, exposure evaluation, stereopairs, and orbit number. The catalog is a product of the Space Shuttle Earth Observations Project, Solar System Exploration Division, Space and Life Sciences Directorate, of the National Aeronautics and Space Administration, Lyndon B. Johnson Space Center.

  18. 'One physical system': Tansley's ecosystem as Earth's critical zone.

    PubMed

    Richter, Daniel deB; Billings, Sharon A

    2015-05-01

    Integrative concepts of the biosphere, ecosystem, biogeocenosis and, recently, Earth's critical zone embrace scientific disciplines that link matter, energy and organisms in a systems-level understanding of our remarkable planet. Here, we assert the congruence of Tansley's (1935) venerable ecosystem concept of 'one physical system' with Earth science's critical zone. Ecosystems and critical zones are congruent across spatial-temporal scales from vegetation-clad weathering profiles and hillslopes, small catchments, landscapes, river basins, continents, to Earth's whole terrestrial surface. What may be less obvious is congruence in the vertical dimension. We use ecosystem metabolism to argue that full accounting of photosynthetically fixed carbon includes respiratory CO₂ and carbonic acid that propagate to the base of the critical zone itself. Although a small fraction of respiration, the downward diffusion of CO₂ helps determine rates of soil formation and, ultimately, ecosystem evolution and resilience. Because life in the upper portions of terrestrial ecosystems significantly affects biogeochemistry throughout weathering profiles, the lower boundaries of most terrestrial ecosystems have been demarcated at depths too shallow to permit a complete understanding of ecosystem structure and function. Opportunities abound to explore connections between upper and lower components of critical-zone ecosystems, between soils and streams in watersheds, and between plant-derived CO₂ and deep microbial communities and mineral weathering.

  19. Concept Mapping: Linking Spheres in Earth System Science

    NASA Astrophysics Data System (ADS)

    Czajkowski, K. P.; Hedley, M.

    2009-12-01

    The Earth System Science Education Alliance (ESSEA) distance learning courses focus teachers on linking spheres of the earth: atmosphere, hydrosphere, lithosphere and biosphere. The University of Toledo has offered the ESSEA middle school grade course using jigsaw pedagogy nine times since 2002. Traditionally, the ESSEA course has teachers link spheres in linear causal chains. This past year we used concept mapping as a way for the teachers and pre-service students in the class to organize their study of the events: melting of ice sheets, Mt. Pinatubo eruption, Hurricane Katrina and draining of the Great Black Swamp. Concept mapping is a good way to visualize linkages between events and spheres. The outcome was that teachers and pre-service students enjoyed concept mapping, it fostered teamwork and helped with grading the material.

  20. Atmospheric evaporation in super-Earth exoplanet systems

    NASA Astrophysics Data System (ADS)

    Moller, Spencer; Miller, Brendan P.; Gallo, Elena; Wright, Jason; Poppenhaeger, Katja

    2017-01-01

    We investigate the influence of stellar activity on atmospheric heating and evaporation in four super-Earth exoplanets: HD 97658 b, GJ 1214 b, 55 Cnc e, and CoRoT-7 b. We use X-ray observations of the host stars to estimate planetary mass loss. We extracted net count rates from a soft band image, converted it to flux using PIMMS for a standard coronal model, calculated the intrinsic stellar luminosity, and estimated the current-epoch mass-loss rate and the integrated mass lost. Our aim is to determine under what circumstances current super-Earths will have experienced significant mass loss through atmospheric irradiation over the system lifetime. We hypothesize that closely-orbiting exoplanets receiving the greatest amount of high-energy stellar radiation will also tend to be sculpted into lower mass and more dense remnant cores.

  1. Rugged telemetry system for coiled-tubing earth drilling

    NASA Astrophysics Data System (ADS)

    Weis, R. Stephen; Beadle, Brad M.

    1997-09-01

    The development of a rugged optical fiber telemetry system for coiled-tubing earth-drilling is described. The transmitter and receiver of the telemetry system are located on the surface. A high temperature fiber cable connects a serial array of downhole modulators with the surface. Each modulator consists of an intrinsic fiber Bragg grating (FBG) fixed to a piezoelectric transducer (PZ). Each modulating signal causes a PZ to stretch its attached FBG, shifting the wavelength of the light reflected by the grating. The wavelength shift of the grating-reflected light is detected at the output using a Mach-Zehnder interferometer.

  2. Nonlinear dynamics of global atmospheric and earth system processes

    NASA Technical Reports Server (NTRS)

    Zhang, Taiping; Verbitsky, Mikhail; Saltzman, Barry; Mann, Michael E.; Park, Jeffrey; Lall, Upmanu

    1995-01-01

    During the grant period, the authors continued ongoing studies aimed at enhancing their understanding of the operation of the atmosphere as a complex nonlinear system interacting with the hydrosphere, biosphere, and cryosphere in response to external radiative forcing. Five papers were completed with support from the grant, representing contributions in three main areas of study: (1) theoretical studies of the interactive atmospheric response to changed biospheric boundary conditions measurable from satellites; (2) statistical-observational studies of global-scale temperature variability on interannual to century time scales; and (3) dynamics of long-term earth system changes associated with ice sheet surges.

  3. An operational, multistate, earth observation data management system

    NASA Technical Reports Server (NTRS)

    Eastwood, L. F., Jr.; Hays, T. R.; Hill, C. T.; Ballard, R. J.; Morgan, R. P.; Crnkovich, G. G.; Gohagan, J. K.; Schaeffer, M. A.

    1977-01-01

    The purpose of this paper is to investigate a group of potential users of satellite remotely sensed data - state, local, and regional agencies involved in natural resources management. We assess this group's needs in five states and outline alternative data management systems to serve some of those needs. We conclude that an operational Earth Observation Data Management System (EODMS) will be of most use to these user agencies if it provides a full range of information services - from raw data acquisition to interpretation and dissemination of final information products.

  4. Aircraft earth station for experimental mobile satellite system

    NASA Astrophysics Data System (ADS)

    Ohmori, S.; Hase, Y.; Kosaka, K.; Tanaka, M.

    A mobile satellite communication system, which can provide high quality service for small ships and aircraft, has been studied in Japan. This system is scheduled to be carried into experimental and evaluation phase in 1987, when a geostationary satellite (ETS-V) is launched by a Japanese rocket. This paper describes an aircraft earth station, which can establish telephone communication links for passengers on board the aircraft. The new technologies, especially an airborne phased array antenna, are developed. This is the first development in the world in mobile satellite communication areas.

  5. Re-Evaluating Satellite Solar Power Systems for Earth

    NASA Technical Reports Server (NTRS)

    Landis, Geoffrey A.

    2006-01-01

    The Solar Power Satellite System is a concept to collect solar power in space, and then transport it to the surface of the Earth by microwave (or possibly laser) beam, where if is converted into electrical power for terrestrial use. The recent increase in energy costs, predictions of the near-term exhaustion of oil, and prominence of possible climate change due to the "greenhouse effect" from burning of fossil fuels has again brought alternative energy sources to public attention, and the time is certainly appropriate to reexamine the economics of space based power. Several new concepts for Satellite Power System designs were evaluated to make the concept more economically feasible.

  6. Orbit Determination System for Low Earth Orbit Satellites

    NASA Technical Reports Server (NTRS)

    Elisha, Yossi; Shyldkrot, Haim; Hankin, Maxim

    2007-01-01

    The IAI/MBT Precise Orbit Determination system for Low Earth Orbit satellites is presented. The system is based on GPS pesudorange and carrier phase measurements and implements the Reduced Dynamics method. The GPS measurements model, the dynamic model, and the least squares orbit determination are discussed. Results are shown for data from the CHAMP satellite and for simulated data from the ROKAR GPS receiver. In both cases the one sigma 3D position and velocity accuracy is about 0.2 m and 0.5 mm/sec respectively.

  7. GENESIS: GPS Environmental and Earth Science Information System

    NASA Technical Reports Server (NTRS)

    Hajj, George

    1999-01-01

    This presentation reviews the GPS ENvironmental and Earth Science Information System (GENESIS). The objectives of GENESIS are outlined (1) Data Archiving, searching and distribution for science data products derived from Space borne TurboRogue Space Receivers for GPS science and other ground based GPS receivers, (2) Data browsing using integrated visualization tools, (3) Interactive web/java-based data search and retrieval, (4) Data subscription service, (5) Data migration from existing GPS archived data, (6) On-line help and documentation, and (7) participation in the WP-ESIP federation. The presentation reviews the products and services of Genesis, and the technology behind the system.

  8. Comparison of scientific and administrative database management systems

    NASA Technical Reports Server (NTRS)

    Stoltzfus, J. C.

    1983-01-01

    Some characteristics found to be different for scientific and administrative data bases are identified and some of the corresponding generic requirements for data base management systems (DBMS) are discussed. The requirements discussed are especially stringent for either the scientific or administrative data bases. For some, no commercial DBMS is fully satisfactory, and the data base designer must invent a suitable approach. For others, commercial systems are available with elegant solutions, and a wrong choice would mean an expensive work-around to provide the missing features. It is concluded that selection of a DBMS must be based on the requirements for the information system. There is no unique distinction between scientific and administrative data bases or DBMS. The distinction comes from the logical structure of the data, and understanding the data and their relationships is the key to defining the requirements and selecting an appropriate DBMS for a given set of applications.

  9. New Dimensions of Discovery About Earth and Space Science Using the Digital Library for Earth System Education(DLESE)

    NASA Astrophysics Data System (ADS)

    Mogk, D. W.; Manduca, C. A.

    2001-12-01

    The mission of DLESE is to support excellence in Earth and space science education for all learners in all educational settings. DLESE is envisioned as an information network that will provide a) rapid, sophisticated access to collections of peer-reviewed teaching and learning resources, b) interfaces and tools to allow student exploration of Earth data sets, c) services to help users effectively create and use materials, and d) a community center to facilitate sharing and collaboration. The current DLESE discovery system enables searching and browsing for educational resources according to sub-disciplines in the Earth and space sciences, target audience (K-16, informal education), and resource type (e.g. lab exercises, simulations, curricula...). Future search capabilities will include compliance of resources with national science standards (e.g. National Science Education Standards, NRC, 1996; Project 2061, AAAS, 1989; state standards) and geospatial referencing. A special focus is being placed on discovery that describes multiple attributes of the Earth system: fundamental scientific principles, Earth system processes, Earth system components (physiographic, climatologic, biomes), principles of time and Earth history, "hot topics" in the news and emerging research, and ways of knowing about the Earth (observation, analysis, measurement, modeling, theory). Earth datasets will become increasingly accessible, supported by interfaces, tools, and instructional resources that promote their effective use in the classroom. Instructional resources can also be linked to examples of best practices in the use of these resources, and to community postings of opportunities (e.g. workshops, student internships), calendars, and other aggregated resources. Through the DLESE discovery system, any interested learner will be able to navigate deeply into a subject, or laterally to related topics, according to personal needs and interests.

  10. Earth observing system. Data and information system. Volume 2A: Report of the EOS Data Panel

    NASA Technical Reports Server (NTRS)

    1986-01-01

    The purpose of this report is to provide NASA with a rationale and recommendations for planning, implementing, and operating an Earth Observing System data and information system that can evolve to meet the Earth Observing System's needs in the 1990s. The Earth Observing System (Eos), defined by the Eos Science and Mission Requirements Working Group, consists of a suite of instruments in low Earth orbit acquiring measurements of the Earth's atmosphere, surface, and interior; an information system to support scientific research; and a vigorous program of scientific research, stressing study of global-scale processes that shape and influence the Earth as a system. The Eos data and information system is conceived as a complete research information system that would transcend the traditional mission data system, and include additional capabilties such as maintaining long-term, time-series data bases and providing access by Eos researchers to relevant non-Eos data. The Working Group recommends that the Eos data and information system be initiated now, with existing data, and that the system evolve into one that can meet the intensive research and data needs that will exist when Eos spacecraft are returning data in the 1990s.

  11. Intermediate phases in some rare earth-ruthenium systems

    NASA Technical Reports Server (NTRS)

    Sharifrazi, P.; Raman, A.; Mohanty, R. C.

    1984-01-01

    The phase equilibria and crystal structures of intermediate phases were investigated in eight representative RE-Ru systems using powder X-ray diffraction and metallographic techniques. The Fe3C, Mn5C2 and Er5Ru3 structures occur in all but the Ce-Ru systems. Phases analogous to Er5Ru3 possess an unknown crystal structure similar to Er5Rh3(I). MgCu2 and MgZn2 type Laves phases are encountered in the light rare earth and heavy rare earth systems, respectively, and RERu2 phases, where RE = Nd and Sm, possess both the Laves phase structures. An intermediate phase, NdRu, with an unknown structure, occurs only in the Nd-Ru system. A bcc structure with 40 atoms per unit cell is encountered in the phases Er3Ru2 and Y3Ru2. The behavior of cerium in Ce-Ru alloys is unique in that four unidentified structures, not encountered in other RE-Ru systems, have been encountered. Also a phase designated as Ce3Ru is found with the Th7Fe3 type structure.

  12. Earth System Science Education Alliance (ESSEA) IPY Modules

    NASA Astrophysics Data System (ADS)

    Blaney, L. S.; Myers, R. J.; Schwerin, T.

    2008-12-01

    The Earth System Science Education Alliance (ESSEA) is a National Science Foundation-supported program implemented by the Institute for Global Environmental Strategies (IGES) to improve the quality of geoscience instruction for pre-service, middle, and high school teachers. ESSEA increases teachers' access to quality materials, standards-based instructional methods and content knowledge. With additional support from NASA, the ESSEA program is being enhanced to reflect emphasis on the International Polar Year. From 1999-2005 the ESSEA program was based on a trio of online courses (for elementary, middle, and high school teachers), the courses have been used by 40 faculty at 20 institutions educating over 1,700 teachers in Earth system science. Program evaluation of original course participants indicated that the courses had significant impact on teachers Earth system content knowledge and beliefs about teaching and learning. Seventeen of the original participating institutions have continued to use the courses and many have developed new programs that incorporate the courses in Earth science education opportunities for teachers. Today the ESSEA program lists nearly 40 colleges and universities as participants. With NASA support, the K-4 course and modules have been revised to include topics and resources focusing on the International Polar Year. Additional modules examining the changes in black carbon, ice sheets and permafrost have been added for middle and high school levels. The new modules incorporate geoscience data and analysis tools into classroom instruction. By exploring IPY related topics and data, participating teachers and their students will develop new understandings about the interactions and dependencies of the Earth spheres and our polar regions. Changes in climate, air, water, and land quality and animal and plant populations make the news everyday. The ESSEA IPY modules will help teachers inform rather than frighten their students as they learn

  13. Systemic IL-12 Administration Alters Hepatic Dendritic Cell Stimulation Capabilities

    PubMed Central

    Chan, Tim; Back, Timothy C.; Subleski, Jeffrey J.; Weiss, Jonathan M.; Ortaldo, John R.; Wiltrout, Robert H.

    2012-01-01

    The liver is an immunologically unique organ containing tolerogenic dendritic cells (DC) that maintain an immunosuppressive microenvironment. Although systemic IL-12 administration can improve responses to tumors, the effects of IL-12-based treatments on DC, in particular hepatic DC, remain incompletely understood. In this study, we demonstrate systemic IL-12 administration induces a 2–3 fold increase in conventional, but not plasmacytoid, DC subsets in the liver. Following IL-12 administration, hepatic DC became more phenotypically and functionally mature, resembling the function of splenic DC, but differed as compared to their splenic counterparts in the production of IL-12 following co-stimulation with toll-like receptor (TLR) agonists. Hepatic DCs from IL-12 treated mice acquired enhanced T cell proliferative capabilities similar to levels observed using splenic DCs. Furthermore, IL-12 administration preferentially increased hepatic T cell activation and IFNγ expression in the RENCA mouse model of renal cell carcinoma. Collectively, the data shows systemic IL-12 administration enables hepatic DCs to overcome at least some aspects of the inherently suppressive milieu of the hepatic environment that could have important implications for the design of IL-12-based immunotherapeutic strategies targeting hepatic malignancies and infections. PMID:22428016

  14. Prediction of Earth rotation parameters by fuzzy inference systems

    NASA Astrophysics Data System (ADS)

    Akyilmaz, O.; Kutterer, H.

    2004-09-01

    The short-term prediction of Earth rotation parameters (ERP) (length-of-day and polar motion) is studied up to 10 days by means of ANFIS (adaptive network based fuzzy inference system). The prediction is then extended to 40 days into the future by using the formerly predicted values as input data. The ERP C04 time series with daily values from the International Earth Rotation Service (IERS) serve as the data base. Well-known effects in the ERP series, such as the impact of the tides of the solid Earth and the oceans or seasonal variations of the atmosphere, were removed a priori from the C04 series. The residual series were used for both training and validation of the network. Different network architectures are discussed and compared in order to optimize the network solution. The results of the prediction are analyzed and compared with those of other methods. Short-term ERP values predicted by ANFIS show root-mean-square errors which are equal to or even lower than those from the other considered methods. The presented method is easy to use.

  15. Impacts of Western Area Power Administration`s power marketing alternatives on electric utility systems

    SciTech Connect

    Veselka, T.D.; Portante, E.C.; Koritarov, V.

    1995-03-01

    This technical memorandum estimates the effects of alternative contractual commitments that may be initiated by the Western Area Power Administration`s Salt Lake City Area Office. It also studies hydropower operational restrictions at the Salt Lake City Area Integrated Projects in combination with these alternatives. Power marketing and hydropower operational effects are estimated in support of Western`s Electric Power Marketing Environmental Impact Statement (EIS). Electricity production and capacity expansion for utility systems that will be directly affected by alternatives specified in the EIS are simulated. Cost estimates are presented by utility type and for various activities such as capacity expansion, generation, long-term firm purchases and sales, fixed operation and maintenance expenses, and spot market activities. Operational changes at hydropower facilities are also investigated.

  16. Intelligent Systems Technologies and Utilization of Earth Observation Data

    NASA Technical Reports Server (NTRS)

    Ramapriyan, H. K.; McConaughy, G. R.; Morse, H. S.

    2004-01-01

    The addition of raw data and derived geophysical parameters from several Earth observing satellites over the last decade to the data held by NASA data centers has created a data rich environment for the Earth science research and applications communities. The data products are being distributed to a large and diverse community of users. Due to advances in computational hardware, networks and communications, information management and software technologies, significant progress has been made in the last decade in archiving and providing data to users. However, to realize the full potential of the growing data archives, further progress is necessary in the transformation of data into information, and information into knowledge that can be used in particular applications. Sponsored by NASA s Intelligent Systems Project within the Computing, Information and Communication Technology (CICT) Program, a conceptual architecture study has been conducted to examine ideas to improve data utilization through the addition of intelligence into the archives in the context of an overall knowledge building system (KBS). Potential Intelligent Archive concepts include: 1) Mining archived data holdings to improve metadata to facilitate data access and usability; 2) Building intelligence about transformations on data, information, knowledge, and accompanying services; 3) Recognizing the value of results, indexing and formatting them for easy access; 4) Interacting as a cooperative node in a web of distributed systems to perform knowledge building; and 5) Being aware of other nodes in the KBS, participating in open systems interfaces and protocols for virtualization, and achieving collaborative interoperability.

  17. Neoproterozoic Earth System change: Observations of the rock record

    NASA Astrophysics Data System (ADS)

    Prave, A. R.; Fallick, A. E.; Hoffmann, K. H.; Benn, D.

    2003-04-01

    Radically nonuniformitarian modes of Earth System behaviour have been hypothesized as hallmarks of Neoproterozoic Earth history. In particular, severe climatic extremes (worldwide glaciations marked by globally frozen oceans to ultra-greenhouses) are envisaged to have occurred at least twice; these inferred harsh climates are invoked as a potential driving mechanism for biospheric evolution. Such hypotheses are intellectually elegant and their vividness grabs public attention, but how strictly do they adhere to the observational facts of the rock record? Here we show examples of Neoproterozoic glacigenic successions that imply severe, but not catastrophic climate change. The first example is the Port Askaig Tillite of Scotland. This unit was deposited in low latitudes (<30^o) and records the older ("Sturtian") glacial episode. Importantly, it contains evidence for freeze-thaw cycles on a number of time scales and, when combined with similar features observed in glacial rocks elsewhere (from both the younger and older glacial episodes), indicates that low-latitude climate does not record a simple unidirectional, long-term refrigeration of Earth. The second example is δ13C datasets associated with the older and younger glacial episodes in Namibia and California, USA. When combined with detailed stratigraphic data, these show: (1) that presumed coeval carbonates that cap the glacigenic successions display a wide range in δ13C values but share similar long-term trends; and (2) carbonates units below the erosive base of the glacigenic rocks record a decline in δ13C (as noted by previous workers) but in several cases a recovery towards heavier values is preserved in the topmost carbonate strata. These data imply that biogeochemically mediated conditions were regionally variable, both before and in the immediate aftermath of Neoproterozoic glaciations. Thus, any attempts to infer or model the nature, magnitude and potential significance of Neoproterozoic climate change

  18. Dynamical constraints on outer planets in super-Earth systems

    NASA Astrophysics Data System (ADS)

    Read, Matthew J.; Wyatt, Mark C.

    2016-03-01

    This paper considers secular interactions within multi-planet systems. In particular, we consider dynamical evolution of known planetary systems resulting from an additional hypothetical planet on an eccentric orbit. We start with an analytical study of a general two-planet system, showing that a planet on an elliptical orbit transfers all of its eccentricity to an initially circular planet if the two planets have comparable orbital angular momenta. Application to the single super-Earth system HD 38858 shows that an additional hypothetical planet below current radial velocity (RV) constraints with M sini = 3-10 M⊕, semi-major axis 1-10 au and eccentricity 0.2-0.8 is unlikely to be present from the eccentricity that would be excited in the known planet (albeit cyclically). However, additional planets in proximity to the known planet could stabilize the system against secular perturbations from outer planets. Moreover, these additional planets can have an M sini below RV sensitivity and still affect their neighbours. For example, application to the two super-Earth system 61 Vir shows that an additional hypothetical planet cannot excite high eccentricities in the known planets, unless its mass and orbit lie in a restricted area of parameter space. Inner planets in HD 38858 below RV sensitivity would also modify conclusions above about excluded parameter space. This suggests that it may be possible to infer the presence of additional stabilizing planets in systems with an eccentric outer planet and an inner planet on an otherwise suspiciously circular orbit. This reinforces the point that the full complement of planets in a system is needed to assess its dynamical state.

  19. Payee's Guide for the Grant Administration and Payment System (GAPS).

    ERIC Educational Resources Information Center

    Department of Education, Washington, DC. Office of the Chief Financial and Chief Information Officer.

    Information that payees need for program operation, as well as guidelines for grants and contracts paid through the Grant Administration and Payment System (GAPS), is provided in this guide. The guide is intended to help users understand their responsibilities in expediting payments, in completing forms and reports, and in controlling federal cash…

  20. Blending Administrative and Academic Units in a Systems Application.

    ERIC Educational Resources Information Center

    Fowler, George C.; Rose, Warren

    1981-01-01

    Describes how the business computing science department at Texas A. & M. University devised a computerized information system about students for the university's new medical school. Discusses the roles of faculty members and administrators in the project and the design, implementation, and evaluation of the project. (Author/RW)

  1. Developing a Performance Measurement System for University Central Administrative Services

    ERIC Educational Resources Information Center

    Arena, Marika; Arnaboldi, Michela; Azzone, Giovanni; Carlucci, Paola

    2009-01-01

    Central administrative services have recently received increasing attention from practitioners and academics due to the challenging need to both manage scarce resources and provide high-quality services. In this context, performance measurement systems (PMSs) may assume a central role, although an unresolved debate remains on the claimed benefits…

  2. Integration of Earth System Models and Workflow Management under iRODS for the Northeast Regional Earth System Modeling Project

    NASA Astrophysics Data System (ADS)

    Lengyel, F.; Yang, P.; Rosenzweig, B.; Vorosmarty, C. J.

    2012-12-01

    The Northeast Regional Earth System Model (NE-RESM, NSF Award #1049181) integrates weather research and forecasting models, terrestrial and aquatic ecosystem models, a water balance/transport model, and mesoscale and energy systems input-out economic models developed by interdisciplinary research team from academia and government with expertise in physics, biogeochemistry, engineering, energy, economics, and policy. NE-RESM is intended to forecast the implications of planning decisions on the region's environment, ecosystem services, energy systems and economy through the 21st century. Integration of model components and the development of cyberinfrastructure for interacting with the system is facilitated with the integrated Rule Oriented Data System (iRODS), a distributed data grid that provides archival storage with metadata facilities and a rule-based workflow engine for automating and auditing scientific workflows.

  3. Satellite emission radio interferometric earth surveying series - GPS geodetic system

    NASA Technical Reports Server (NTRS)

    Macdoran, P. F.

    1979-01-01

    A concept called SERIES (satellite emissions radio interferometric earth surveying) which makes use of GPS (global positioning system) radio transmissions without any satellite modifications, is described. Through the use of very long baseline interferometry (VLBI) and its calibration methods, 0.5 to 3 cm three dimensional baseline accuracy can be achieved over distances of 2 to 200 km respectively, with only 2 hours of on-site data acquisition. Attention is given to such areas as: the radio flux equivalent of GPS transmissions, synthesized delay precision, transmission and frequency subsystem requirements, tropospheric and ionospheric errors. Applications covered include geodesy and seismic tectonics.

  4. Climate Model Datasets on Earth System Grid II (ESG II)

    DOE Data Explorer

    Earth System Grid (ESG) is a project that combines the power and capacity of supercomputers, sophisticated analysis servers, and datasets on the scale of petabytes. The goal is to provide a seamless distributed environment that allows scientists in many locations to work with large-scale data, perform climate change modeling and simulation,and share results in innovative ways. Though ESG is more about the computing environment than the data, still there are several catalogs of data available at the web site that can be browsed or search. Most of the datasets are restricted to registered users, but several are open to any access.

  5. Program on Earth Observation Data Management Systems (EODMS), appendixes

    NASA Technical Reports Server (NTRS)

    Eastwood, L. F., Jr.; Gohagan, J. K.; Hill, C. T.; Morgan, R. P.; Bay, S. M.; Foutch, T. K.; Hays, T. R.; Ballard, R. J.; Makin, K. P.; Power, M. A.

    1976-01-01

    The needs of state, regional, and local agencies involved in natural resources management in Illinois, Iowa, Minnesota, Missouri, and Wisconsin are investigated to determine the design of satellite remotely sensed derivable information products. It is concluded that an operational Earth Observation Data Management System (EODMS) will be most beneficial if it provides a full range of services - from raw data acquisition to interpretation and dissemination of final information products. Included is a cost and performance analysis of alternative processing centers, and an assessment of the impacts of policy, regulation, and government structure on implementing large scale use of remote sensing technology in this community of users.

  6. U.S. Earth Observing System beginning a rapid decline, report states

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    2012-05-01

    The U.S. Earth Observing System "is beginning a rapid decline in capability as long-running missions end and key new missions are delayed, lost, or canceled," according to a 2 May report by the U.S. National Research Council (NRC) titledEarth Science and Applications From Space: A Midterm Assessment of NASA's Implementation of the Decadal Survey. By 2020 the number of NASA and National Oceanic and Atmospheric Administration (NOAA) Earth observing instruments in space is likely to decline to as little as 25% of the current number, a concern that reinforces earlier studies that have warned that the U.S. system of environmental satellites is at risk of collapse, according to the report. "The projected loss of observing capability will have profound consequences on science and society, from weather forecasting to responding to natural hazards," said NRC committee chair Dennis Hartmann, professor of atmospheric sciences at the University of Washington, Seattle. The report does not include planned or proposed missions that are not yet funded. The report notes, though, that "even the most optimistic projected launch cadence remains significantly below what would be required to prevent a major decline in NASA and NOAA's orbiting space assets."

  7. Personnel transportation systems between Earth and Mars: Project Camelot

    NASA Technical Reports Server (NTRS)

    1987-01-01

    Based on previous design studies the 1986-87 design team developed a personnel transportation system between Earth and Mars in support of an established manned Mars base. The vehicle designed, an interplanetary space station, will make use of specialized trajectories known as 'circulating orbits'. These trajectories have the property of periodically repeating encounters with Earth and Mars. They have been studied in the past, but have attracted renewed interest since the National Commission on Space has proposed the idea of placing large interplanetary space stations in such orbits. During planetary flybys, small, austere, taxi vehicles from the planet surface will rendezvous with the station and transfer the personnel to it. Here the space travelers will have roomier, more elaborate living quarters for the long journey. This method of manned travel is visualized to be more economical for supporting a manned Mars surface operation than others thus far conceived. The Aerospace System Design class produced a conceptual design of a circulating orbit transportation system. The design included the station configuration, other usual subsystems treated to the necessary degree e.g., propulsion, power, attitude and thermal control, and communications. Special attention was given the gravity environment and the human needs for the long trip. An operational scenario was developed which included the initial construction and establishment in orbit as well as provisions for maintenance of replenishment of consumables.

  8. Power smoothing system for lunar base LSS and Earth applications

    NASA Astrophysics Data System (ADS)

    Bartsev, Sergey; Okhonin, Victor

    2012-07-01

    Biological Life Support System based on higher plants is shown to be the most appropriate component of a long-term lunar base. The main technical problem of this system usage is the long period of the moonlit night. Possible solution based on energy storage in thermal battery, which is heated to high temperature during the lunar daytime is proposed. The problems of thermal insulation and providing constant power while cooling the battery are discussed. The achievable performance of the thermal battery (power, size, the mass of components delivered from the Earth) in comparison with alternative solutions is estimated. Additional characteristics (operational safety, the complexity of repair, the possibility of using parts from other devices) qualitatively examined. The possibility of increasing the effective coefficient of conversion of electricity into photo synthetically active radiation is analyzed. Using similar energy storage systems to economically viable storage of large amounts of energy from sources with a high duty cycle (wind and wave energy) on Earth is discussed.

  9. 2014 Earth System Grid Federation and Ultrascale Visualization Climate Data Analysis Tools Conference Report

    SciTech Connect

    Williams, Dean N.

    2015-01-27

    The climate and weather data science community met December 9–11, 2014, in Livermore, California, for the fourth annual Earth System Grid Federation (ESGF) and Ultrascale Visualization Climate Data Analysis Tools (UV-CDAT) Face-to-Face (F2F) Conference, hosted by the Department of Energy, National Aeronautics and Space Administration, National Oceanic and Atmospheric Administration, the European Infrastructure for the European Network of Earth System Modelling, and the Australian Department of Education. Both ESGF and UVCDATremain global collaborations committed to developing a new generation of open-source software infrastructure that provides distributed access and analysis to simulated and observed data from the climate and weather communities. The tools and infrastructure created under these international multi-agency collaborations are critical to understanding extreme weather conditions and long-term climate change. In addition, the F2F conference fosters a stronger climate and weather data science community and facilitates a stronger federated software infrastructure. The 2014 F2F conference detailed the progress of ESGF, UV-CDAT, and other community efforts over the year and sets new priorities and requirements for existing and impending national and international community projects, such as the Coupled Model Intercomparison Project Phase Six. Specifically discussed at the conference were project capabilities and enhancements needs for data distribution, analysis, visualization, hardware and network infrastructure, standards, and resources.

  10. Web Enabled Collaborative Climate Visualization in the Earth System Grid

    SciTech Connect

    Kendall, Wesley; Glatter, Markus; Huang, Jian; Hoffman, Forrest M; Bernholdt, David E

    2008-01-01

    The recent advances in high performance computing, storage and networking technologies have enabled fundamental changes in current climate research. While sharing datasets and results is already common practice in climate modeling, direct sharing of the analysis and visualization process is also becoming feasible. We report our efforts to develop a capability, coupled with the Earth System Grid (ESG), for sharing an entire executable workspace of visualization among collaborators. Evolutionary history of visualizations of research findings can also be captured and shared. The data intensive nature of the visualization system requires using several advanced techniques of visualization and parallel computing. With visualization clients implemented through standard web browsers, however, the ensuing complexity is made transparent to end-users. We demonstrate the efficacy of our system using cutting edge climate datasets.

  11. NASA's Standards Process For Earth Science Data Systems (Invited)

    NASA Astrophysics Data System (ADS)

    Ullman, R.; Enloe, Y.

    2010-12-01

    NASA’s Standards Process Group (SPG) facilitates the approval of proposed standards that have proven implementation and operational benefit for use in NASA’s Earth science data systems. After some initial experience in approving proposed standards, the SPG has tailored its Standards Process to remove redundant reviews to shorten the review process. We will discuss real examples of the different types of candidate standards that have been proposed and endorsed (i.e. OPeNDAP’s Data Access Protocol, Open Geospatial Consortium’s Web Map Server, the Hierarchical Data Format, Global Change Master Directory’s Directory Interchange Format, NetCDF Classic, CF Metadata). We will discuss real examples of the different types of best practices and implementation experiences that have been documented and endorsed as Technical Notes (i.e. Interoperability between OGC CS/W and WCS Protocols, Lessons Learned Regarding WCS Server Design and Implementation, Mapping HDF5 to DAP2, Creating File Format Guidelines - The Aura Experience, ECHO Metadata) The NASA Earth science community benefits by having a repository of endorsed Earth science data systems standards that have been successfully implemented and used within the NASA environment. NASA’s Earth science data providers can rely on these endorsed standards for demonstrated readiness for mission use and science investigators are assured that standards contribute to science success in their discipline. The SPG is working with NASA’s Decadal Survey Missions (e.g. SMAP, CLARREO, ICESat II and DESDynI) to facilitate the use of NASA’s endorsed standards in these future mission data systems. We have also observed that the Standards process itself can encourage the development consensus within a community through the RFC development and review experience. An RFC can grow the use of common practices among related activities, then once the standard is endorsed, other discipline communities can learn from the successful

  12. Remote Sensing and Earth System Dynamics: The Helmholtz Alliance

    NASA Astrophysics Data System (ADS)

    Hajnsek, I.; Eineder, M.; Walter, T. R.; Friedrich, A. M.; Bieber, P.; Huth, A.; Papathanassiou, K.; Montzka, C.; Wollschläger, U.; Thies, B.; Humbert, A.; Braun, M.; Krieger, G.; Moreira, A.

    2014-12-01

    The main objective of the five year funded German Helmholtz Alliance "Remote Sensing and Earth System Dynamics" is the development and evaluation of novel bio/geo-physical information products derived from data acquired by a new generation of remote sensing satellites; and their integration in Earth system models for improving understanding and modelling the ability of global environmental processes and ecosystem change. The Alliance is organized in 4 research topics, each one dedicated to a specific Earth sphere with a specific scientific goal: Biosphere: Global forest structure and biomass dynamics are evaluated for forest and biodiversity monitoring and the quantification of the global carbon cycle; Geosphere: The ability to measure topographic variations with millimeter accuracy is explored for improving the understanding of earthquake and volcano activities; Hydrosphere: The quantification of soil moisture and its variations at high spatial resolution is assessed with respect to hydrological models and the global water cycle; Cryosphere: The estimation of melting processes in snow, ice and permafrost regions is addressed in terms of global climate change. The Alliance has been founded in June 2012 and comprises around 120 scientists with a financial support for 50 PhDs and Postdocs having different backgrounds and nationalities. 18 national research centers and universities are participating which represent a unique opportunity to exploit and widen the expertise of all participating centers and to maximize their role and contribution in the international environmental change science. In this talk the objectives of the Alliance and research highlights will be presented which were obtained in the first 2.5 years of its research activities.

  13. Exploring the Earth System through online interactive models

    NASA Astrophysics Data System (ADS)

    Coogan, L. A.

    2013-12-01

    Upper level Earth Science students commonly have a strong background of mathematical training from Math courses, however their ability to use mathematical models to solve Earth Science problems is commonly limited. Their difficulty comes, in part, because of the nature of the subject matter. There is a large body of background ';conceptual' and ';observational' understanding and knowledge required in the Earth Sciences before in-depth quantification becomes useful. For example, it is difficult to answer questions about geological processes until you can identify minerals and rocks and understand the general geodynamic implications of their associations. However, science is fundamentally quantitative. To become scientists students have to translate their conceptual understanding into quantifiable models. Thus, it is desirable for students to become comfortable with using mathematical models to test hypotheses. With the aim of helping to bridging the gap between conceptual understanding and quantification I have started to build an interactive teaching website based around quantitative models of Earth System processes. The site is aimed at upper-level undergraduate students and spans a range of topics that will continue to grow as time allows. The mathematical models are all built for the students, allowing them to spend their time thinking about how the ';model world' changes in response to their manipulation of the input variables. The web site is divided into broad topics or chapters (Background, Solid Earth, Ocean and Atmosphere, Earth history) and within each chapter there are different subtopic (e.g. Solid Earth: Core, Mantle, Crust) and in each of these individual webpages. Each webpage, or topic, starts with an introduction to the topic, followed by an interactive model that the students can use sliders to control the input to and watch how the results change. This interaction between student and model is guided by a series of multiple choice questions that

  14. The Effect of Dark Matter on Solar System and Perihelion Precession of Earth Planet

    NASA Astrophysics Data System (ADS)

    Saadat, Hassan; Mousavi, S. N.; Saadat, M.; Saadat, N.; Saadat, A. M.

    2010-10-01

    This paper visualizes effect of dark matter on solar system and especially perihelion precession of Earth planet. The relation between the rate of perihelion shift of Earth planet and dark matter are obtained.

  15. Using The Global Positioning System For Earth Orbiter and Deep Space Network

    NASA Technical Reports Server (NTRS)

    Lichten, Stephen M.; Haines, Bruce J.; Young, Lawrence E.; Dunn, Charles; Srinivasan, Jeff; Sweeney, Dennis; Nandi, Sumita; Spitzmesser, Don

    1994-01-01

    The Global Positioning System (GPS) can play a major role in supporting orbit and trajectory determination for spacecraft in a wide range of applications, including low-Earth, high-earth, and even deep space (interplanetary) tracking.

  16. Earth System Documentation (ES-DOC) Preparation for CMIP6

    NASA Astrophysics Data System (ADS)

    Denvil, S.; Murphy, S.; Greenslade, M. A.; Lawrence, B.; Guilyardi, E.; Pascoe, C.; Treshanksy, A.; Elkington, M.; Hibling, E.; Hassell, D.

    2015-12-01

    During the course of 2015 the Earth System Documentation (ES-DOC) project began its preparations for CMIP6 (Coupled Model Inter-comparison Project 6) by further extending the ES-DOC tooling ecosystem in support of Earth System Model (ESM) documentation creation, search, viewing & comparison. The ES-DOC online questionnaire, the ES-DOC desktop notebook, and the ES-DOC python toolkit will serve as multiple complementary pathways to generating CMIP6 documentation. It is envisaged that institutes will leverage these tools at different points of the CMIP6 lifecycle. Institutes will be particularly interested to know that the documentation burden will be either streamlined or completely automated.As all the tools are tightly integrated with the ES-DOC web-service, institutes can be confident that the latency between documentation creation & publishing will be reduced to a minimum. Published documents will be viewable with the online ES-DOC Viewer (accessible via citable URL's). Model inter-comparison scenarios will be supported using the ES-DOC online Comparator tool. The Comparator is being extended to:• Support comparison of both Model descriptions & Simulation runs;• Greatly streamline the effort involved in compiling official tables.The entire ES-DOC ecosystem is open source and built upon open standards such as the Common Information Model (CIM) (versions 1 and 2).

  17. Imaging Spectroscopy Instrumentation for Earth Science and Solar System Exploration

    NASA Astrophysics Data System (ADS)

    Green, Robert; Vane, Gregg

    2016-07-01

    Spectroscopy is a powerful analytical method based in physics that is used to investigate questions and test hypotheses across an extraordinary range of scientific disciplines as well as for quantitative applications. In the late 1970's the concept for an instrument that measured spectra for every point in an image was conceived and proposed using the most advanced infrared detector array available at the time. The Airborne Imaging Spectrometer as developed and first flew in 1982. New discoveries were made with the first flights of this instrument. Since that time increasingly advanced airborne and space imaging spectrometer have been developed and deployed. These instruments have been used for science and applications on Earth and for science and exploration throughout the solar system. This talk presents the advances in imaging spectrometer instrumentation and key discoveries of imaging spectrometers for Earth and elsewhere in our solar system. It also presents examples of new imaging spectrometer architectures enabled by new detectors and spectrometer design forms as well as some of the science and applications objectives that can be pursued ranging 50 micron spatial imaging for planetary surface rovers to spectroscopic instruments measuring exoplanet composition and structure.

  18. Impact-generated hydrothermal systems on Earth and Mars

    NASA Astrophysics Data System (ADS)

    Osinski, Gordon R.; Tornabene, Livio L.; Banerjee, Neil R.; Cockell, Charles S.; Flemming, Roberta; Izawa, Matthew R. M.; McCutcheon, Jenine; Parnell, John; Preston, Louisa J.; Pickersgill, Annemarie E.; Pontefract, Alexandra; Sapers, Haley M.; Southam, Gordon

    2013-06-01

    It has long been suggested that hydrothermal systems might have provided habitats for the origin and evolution of early life on Earth, and possibly other planets such as Mars. In this contribution we show that most impact events that result in the formation of complex impact craters (i.e., >2-4 and >5-10 km diameter on Earth and Mars, respectively) are potentially capable of generating a hydrothermal system. Consideration of the impact cratering record on Earth suggests that the presence of an impact crater lake is critical for determining the longevity and size of the hydrothermal system. We show that there are six main locations within and around impact craters on Earth where impact-generated hydrothermal deposits can form: (1) crater-fill impact melt rocks and melt-bearing breccias; (2) interior of central uplifts; (3) outer margin of central uplifts; (4) impact ejecta deposits; (5) crater rim region; and (6) post-impact crater lake sediments. We suggest that these six locations are applicable to Mars as well. Evidence for impact-generated hydrothermal alteration ranges from discrete vugs and veins to pervasive alteration depending on the setting and nature of the system. A variety of hydrothermal minerals have been documented in terrestrial impact structures and these can be grouped into three broad categories: (1) hydrothermally-altered target-rock assemblages; (2) primary hydrothermal minerals precipitated from solutions; and (3) secondary assemblages formed by the alteration of primary hydrothermal minerals. Target lithology and the origin of the hydrothermal fluids strongly influences the hydrothermal mineral assemblages formed in these post-impact hydrothermal systems. There is a growing body of evidence for impact-generated hydrothermal activity on Mars; although further detailed studies using high-resolution imagery and multispectral information are required. Such studies have only been done in detail for a handful of martian craters. The best example so

  19. Science Data Processing for the Advanced Microwave Scanning Radiometer: Earth Observing System

    NASA Technical Reports Server (NTRS)

    Goodman, H. Michael; Regner, Kathryn; Conover, Helen; Ashcroft, Peter; Wentz, Frank; Conway, Dawn; Lobl, Elena; Beaumont, Bruce; Hawkins, Lamar; Jones, Steve

    2004-01-01

    The National Aeronautics and Space Administration established the framework for the Science Investigator-led Processing Systems (SIPS) to enable the Earth science data products to be produced by personnel directly associated with the instrument science team and knowledgeable of the science algorithms. One of the first instantiations implemented for NASA was the Advanced Microwave Scanning Radiometer - Earth Observing System (AMSR-E) SIPS. The AMSR-E SIPS is a decentralized, geographically distributed ground data processing system composed of two primary components located in California and Alabama. Initial science data processing is conducted at Remote Sensing Systems (RSS) in Santa Rosa, California. RSS ingests antenna temperature orbit data sets from JAXA and converts them to calibrated, resampled, geolocated brightness temperatures. The brightness temperatures are sent to the Global Hydrology and Climate Center in Huntsville, Alabama, which generates the geophysical science data products (e.g., water vapor, sea surface temperature, sea ice extent, etc.) suitable for climate research and applications usage. These science products are subsequently sent to the National Snow and Ice Data Center Distributed Active Archive Center in Boulder, Colorado for archival and dissemination to the at-large science community. This paper describes the organization, coordination, and production techniques employed by the AMSR-E SIPS in implementing, automating and operating the distributed data processing system.

  20. Representing natural and manmade drainage systems in an earth system modeling framework

    SciTech Connect

    Li, Hongyi; Wu, Huan; Huang, Maoyi; Leung, Lai-Yung R.

    2012-08-27

    Drainage systems can be categorized into natural or geomorphological drainage systems, agricultural drainage systems and urban drainage systems. They interact closely among themselves and with climate and human society, particularly under extreme climate and hydrological events such as floods. This editorial articulates the need to holistically understand and model drainage systems in the context of climate change and human influence, and discusses the requirements and examples of feasible approaches to representing natural and manmade drainage systems in an earth system modeling framework.

  1. Quality Assurance System for Earth Science Data and Information

    NASA Astrophysics Data System (ADS)

    Koziana, J. V.; Olson, J.; Lu, W.; Anselmo, T. M.; Ramsayer, D. B.

    2008-12-01

    The US Integrated Ocean Observing System (IOOS) vision for the observing systems will bring a wide variety of real-time data from a distributed sensor network. Data quality assurance is the foundation that allows the earth science data and information to be used to create environmental data records and climate data records. We have developed a scalar, modular automated data quality assurance system that can be used by a single data provider or a large data center to characterize the relative quality of various data sets for various collections and platforms and standards. Furthermore, the system is easily configurable to work with different observations and model outputs and only requires minimal code changes to accommodate the addition of quality assurance algorithms and data products. A major component of the system is an Algorithm Library that was implemented using a modular architecture that encapsulates algorithms into decoupled, re-useable modules while providing the mechanism for assembling them into a working system. We are continuing to build and enhance the library from simple rate and limit checks to more sophisticated quality assurance methods for same senor inter-comparisons to comparisons with models. This paper will present an overview of the architecture of the quality assurance system and the application of the Algorithm Library.

  2. Meteoroid environment near the Earth-Moon system

    NASA Astrophysics Data System (ADS)

    Nakamura, Yosio

    1992-03-01

    We undertook a research program to investigate the properties of small objects crossing the orbit of the Earth-Moon system using a unique set of data obtained during the Apollo lunar landing missions with a network of seismic stations on the surface of the Moon. The primary objectives of the study were to find out the nature of these objects, whether they were of cometary or asteroidal origin based on their orbital distributions and seismic effects upon impacts, and then to infer the role these small objects play in the evolution of the solar system. In this final technical report, we briefly summarize the results of this study. Detailed results of the study have been published in a series of papers and a dissertation, which are listed in the PUBLICATIONS section. Abstracts of the published papers and the dissertation are attached as an appendix.

  3. Meteoroid environment near the Earth-Moon system

    NASA Technical Reports Server (NTRS)

    Nakamura, Yosio

    1992-01-01

    We undertook a research program to investigate the properties of small objects crossing the orbit of the Earth-Moon system using a unique set of data obtained during the Apollo lunar landing missions with a network of seismic stations on the surface of the Moon. The primary objectives of the study were to find out the nature of these objects, whether they were of cometary or asteroidal origin based on their orbital distributions and seismic effects upon impacts, and then to infer the role these small objects play in the evolution of the solar system. In this final technical report, we briefly summarize the results of this study. Detailed results of the study have been published in a series of papers and a dissertation, which are listed in the PUBLICATIONS section. Abstracts of the published papers and the dissertation are attached as an appendix.

  4. Tropospheric emission spectrometer for the Earth Observing System's Aura satellite.

    PubMed

    Beer, R; Glavich, T A; Rider, D M

    2001-05-20

    The Tropospheric Emission Spectrometer (TES) is an imaging infrared Fourier-transform spectrometer scheduled to be launched into polar Sun-synchronous orbit aboard the Earth Observing System's Aura satellite in June 2003. The primary objective of the TES is to make global three-dimensional measurements of tropospheric ozone and of the physical-chemical factors that control its formation, destruction, and distribution. Such an ambitious goal requires a highly sophisticated cryogenic instrument operating over a wide frequency range, which, in turn, demands state-of-the-art infrared detector arrays. In addition, the measurements require an instrument that can operate in both nadir and limb-sounding modes with a precision pointing system. The way in which these mission objectives flow down to the specific science and measurement requirements and in turn are implemented in the flight hardware are described. A brief overview of the data analysis approach is provided.

  5. Plant functional type mapping for earth system models

    NASA Astrophysics Data System (ADS)

    Poulter, B.; Ciais, P.; Hodson, E.; Lischke, H.; Maignan, F.; Plummer, S.; Zimmermann, N. E.

    2011-11-01

    The sensitivity of global carbon and water cycling to climate variability is coupled directly to land cover and the distribution of vegetation. To investigate biogeochemistry-climate interactions, earth system models require a representation of vegetation distributions that are either prescribed from remote sensing data or simulated via biogeography models. However, the abstraction of earth system state variables in models means that data products derived from remote sensing need to be post-processed for model-data assimilation. Dynamic global vegetation models (DGVM) rely on the concept of plant functional types (PFT) to group shared traits of thousands of plant species into usually only 10-20 classes. Available databases of observed PFT distributions must be relevant to existing satellite sensors and their derived products, and to the present day distribution of managed lands. Here, we develop four PFT datasets based on land-cover information from three satellite sensors (EOS-MODIS 1 km and 0.5 km, SPOT4-VEGETATION 1 km, and ENVISAT-MERIS 0.3 km spatial resolution) that are merged with spatially-consistent Köppen-Geiger climate zones. Using a beta (ß) diversity metric to assess reclassification similarity, we find that the greatest uncertainty in PFT classifications occur most frequently between cropland and grassland categories, and in dryland systems between shrubland, grassland and forest categories because of differences in the minimum threshold required for forest cover. The biogeography-biogeochemistry DGVM, LPJmL, is used in diagnostic mode with the four PFT datasets prescribed to quantify the effect of land-cover uncertainty on climatic sensitivity of gross primary productivity (GPP) and transpiration fluxes. Our results show that land-cover uncertainty has large effects in arid regions, contributing up to 30% (20%) uncertainty in the sensitivity of GPP (transpiration) to precipitation. The availability of PFT datasets that are consistent with current

  6. Plant functional type mapping for earth system models

    NASA Astrophysics Data System (ADS)

    Poulter, B.; Ciais, P.; Hodson, E.; Lischke, H.; Maignan, F.; Plummer, S.; Zimmermann, N. E.

    2011-08-01

    The sensitivity of global carbon and water cycling to climate variability is coupled directly to land cover and the distribution of vegetation. To investigate biogeochemistry-climate interactions, earth system models require a representation of vegetation distributions that are either prescribed from remote sensing data or simulated via biogeography models. However, the abstraction of earth system state variables in models means that data products derived from remote sensing need to be post-processed for model-data assimilation. Dynamic global vegetation models (DGVM) rely on the concept of plant functional types (PFT) to group shared traits of thousands of plant species into just several classes. Available databases of observed PFT distributions must be relevant to existing satellite sensors and their derived products, and to the present day distribution of managed lands. Here, we develop four PFT datasets based on land-cover information from three satellite sensors (EOS-MODIS 1 km and 0.5 km, SPOT4-VEGETATION 1 km, and ENVISAT-MERIS 0.3 km spatial resolution) that are merged with spatially-consistent Köppen-Geiger climate zones. Using a beta (β) diversity metric to assess reclassification similarity, we find that the greatest uncertainty in PFT classifications occur most frequently between cropland and grassland categories, and in dryland systems between shrubland, grassland and forest categories because of differences in the minimum threshold required for forest cover. The biogeography-biogeochemistry DGVM, LPJmL, is used in diagnostic mode with the four PFT datasets prescribed to quantify the effect of land-cover uncertainty on climatic sensitivity of gross primary productivity (GPP) and transpiration fluxes. Our results show that land-cover uncertainty has large effects in arid regions, contributing up to 30 % (20 %) uncertainty in the sensitivity of GPP (transpiration) to precipitation. The availability of plant functional type datasets that are consistent

  7. Coupled orbital-thermal evolution of the early Earth-Moon system with a fast-spinning Earth

    NASA Astrophysics Data System (ADS)

    Tian, ZhenLiang; Wisdom, Jack; Elkins-Tanton, Linda

    2017-01-01

    Several new scenarios of the Moon-forming giant impact have been proposed to reconcile the giant impact theory with the recent recognition of the volatile and refractory isotopic similarities between Moon and Earth. Two scenarios leave the post-impact Earth spinning much faster than what is inferred from the present Earth-Moon system's angular momentum. The evection resonance has been proposed to drain the excess angular momentum, but the lunar orbit stays at high orbital eccentricities for long periods in the resonance, which would cause large tidal heating in the Moon. A limit cycle related to the evection resonance has also been suggested as an alternative mechanism to reduce the angular momentum, which keeps the lunar orbit at much lower eccentricities, and operates in a wider range of parameters. In this study we use a coupled thermal-orbital model to determine the effect of the change of the Moon's thermal state on the Earth-Moon system's dynamical history. The evection resonance no longer drains angular momentum from the Earth-Moon system since the system rapidly exits the resonance. Whereas the limit cycle works robustly to drain as much angular momentum as in the non-thermally-coupled model, though the Moon's tidal properties change throughout the evolution.

  8. Thermodynamic Vent System Test in a Low Earth Orbit Simulation

    NASA Technical Reports Server (NTRS)

    VanOverbeke, Thomas J.

    2004-01-01

    A thermodynamic vent system for a cryogenic nitrogen tank was tested in a vacuum chamber simulating oxygen storage in low earth orbit. The nitrogen tank was surrounded by a cryo-shroud at -40 F. The tank was insulated with two layers of multi-layer insulation. Heat transfer into cryogenic tanks causes phase change and increases tank pressure which must be controlled. A thermodynamic vent system was used to control pressure as the location of vapor is unknown in low gravity and direct venting would be wasteful. The thermodynamic vent system consists of a Joule-Thomson valve and heat exchanger installed on the inlet side of the tank mixer-pump. The combination is used to extract thermal energy from the tank fluid, reducing temperature and ullage pressure. The system was sized so that the tank mixer-pump operated a small fraction of the time to limit motor heating. Initially the mixer used sub-cooled liquid to cool the liquid-vapor interface inducing condensation and pressure reduction. Later, the thermodynamic vent system was used. Pressure cycles were performed until steady-state operation was demonstrated. Three test runs were conducted at tank fills of 97, 80, and 63 percent. Each test was begun with a boil-off test to determine heat transfer into the tank. The lower tank fills had time averaged vent rates very close to steady-state boil-off rates showing the thermodynamic vent system was nearly as efficient as direct venting in normal gravity.

  9. Scientific Visualization & Modeling for Earth Systems Science Education

    NASA Technical Reports Server (NTRS)

    Chaudhury, S. Raj; Rodriguez, Waldo J.

    2003-01-01

    Providing research experiences for undergraduate students in Earth Systems Science (ESS) poses several challenges at smaller academic institutions that might lack dedicated resources for this area of study. This paper describes the development of an innovative model that involves students with majors in diverse scientific disciplines in authentic ESS research. In studying global climate change, experts typically use scientific visualization techniques applied to remote sensing data collected by satellites. In particular, many problems related to environmental phenomena can be quantitatively addressed by investigations based on datasets related to the scientific endeavours such as the Earth Radiation Budget Experiment (ERBE). Working with data products stored at NASA's Distributed Active Archive Centers, visualization software specifically designed for students and an advanced, immersive Virtual Reality (VR) environment, students engage in guided research projects during a structured 6-week summer program. Over the 5-year span, this program has afforded the opportunity for students majoring in biology, chemistry, mathematics, computer science, physics, engineering and science education to work collaboratively in teams on research projects that emphasize the use of scientific visualization in studying the environment. Recently, a hands-on component has been added through science student partnerships with school-teachers in data collection and reporting for the GLOBE Program (GLobal Observations to Benefit the Environment).

  10. Public Science: From Earth to the Solar System

    NASA Astrophysics Data System (ADS)

    Arcand, K. K.; Watzke, M.

    2012-09-01

    This talk will describe how the International Year of Astronomy (IYA2009) was used to launch a new initiative of science outreach, which the authors describe as "public science." The enormous scope and range of IYA2009 allowed From Earth to the Universe (FETTU) to reach millions of people around the globe by putting large-scale astronomical images into public and community-based settings such as parks, metro stations, libraries, and more. Currently, its derivative project, From Earth to the Solar System (FETTSS), continues the implementation of this public science paradigm. Public science projects, like FETTU and FETTSS, are very much akin to public art, which attempts to gain attention and expose large numbers of people to its content. Can such public science projects be used to increase exposure and awareness for STEM (science, technology, engineering, and mathematics) topics? This talk will briefly describe some of the measureable outcomes in this area found in FETTU, which have already been published in scholarly journals. We will also share some preliminary findings from new data being collected from FETTSS, as well as discuss other public science projects in development. The presenter will finally explore how this concept of public science may be useful for science communication efforts in the future.

  11. EKOSAT/DIAMANT - The Earth Observation Programme at OHB- System

    NASA Astrophysics Data System (ADS)

    Penne, B.; Tobehn, C.; Kassebom, M.; Luebberstedt

    This paper covers the EKOSAT / DIAMANT programme heading for superspectral geo-information products. The EKOSAT / DIAMANT programme is based on a commercial strategy just before the realization of the first step - the EKOSAT launch in 2004. Further, we give an overview on OHB-System earth observation prime activities especially for infrared and radar. The EKOSAT/ DIAMANT is based on the MSRS sensor featuring 12 user dedicated spectral bands in the VIS/NIR with 5m spatial resolution and 26 km swath at an orbit of 670 km. The operational demonstrator mission EKOSAT is a Korean-Israelean-German-Russian initiative that aims in utilizing the existing proto-flight model of the KOMPSAT-1 spacecraft for the MSRS sensor, which development is finished. The EKOSAT pointing capability will allow a revisit time of 3 days. DIAMANT stands for the future full operational system based on dedicated small satellites. The basic constellation relying on 2-3 satellites with about one day revisit is extendend on market demand. EKOSAT/ DIAMANT is designed to fill the gap between modern high spatial resolution multispectral (MS) systems and hyperspectral systems with moderate spatial resolution. On European level, there is currently no remote sensing system operational with comparable features and capabilities concerning applications especially in the field of environmental issues, vegetation, agriculture and water bodies. The Space Segment has been designed to satisfy the user requirements based on a balance between commercial aspects and scientific approaches. For example eight spectral bands have been identified to cover almost the entire product range for the current market. Additional four bands have been implemented to be prepared for future applications as for example the improved red edge detection, which give better results regarding environmental conditions. The spacecraft design and its subsystems are still reasonable small in order to keep the mass below 200 kg. This is an

  12. 5 CFR 930.205 - Administrative law judge pay system.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... judge position to one of the three levels of basic pay, AL-3, AL-2 or AL-1 of the administrative law judge pay system established under 5 U.S.C. 5372 in accordance with this section. Pay level AL-3 has six rates of basic pay, A, B, C, D, E, and F. (1) The rate of basic pay for AL-3, rate A, may not be...

  13. Data Management and Analysis for the Earth System Grid

    SciTech Connect

    Williams, Dean N.; Ananthakrishnan, R.; Bernholdt, D.; Bharathi, S.; Brown, D.; Chen, M.; Chervenak, A. L.; Cinquini, L.; Drach, R.; Foster, I. T.; Fox, P.; Hankin, S.; Henson, V.; Jones, P.; Middleton, D. E.; Schwidder, J.; Schweitzer, R.; Schuler, R.; Shoshani, A.; Siebenlist, F.; Sim, A.; Strand, W. G.; Wilhelmi, N.; Su, M.

    2008-06-19

    The international climate community is expected to generate hundreds of petabytes of simulation data within the next five to seven years. This data must be accessed and analyzed by thousands of analysts worldwide in order to provide accurate and timely estimates of the likely impact of climate change on physical, biological, and human systems. Climate change is thus not only a scientific challenge of the first order but also a major technological challenge. To address this technological challenge, the Earth System Grid Center for Enabling Technologies (ESG-CET) has been established within the U.S. Department of Energy's Scientific Discovery through Advanced Computing (SciDAC)-2 program, with support from the offices of Advanced Scientific Computing Research and Biological and Environmental Research. ESG-CET's mission is to provide climate researchers worldwide with access to the data, information, models, analysis tools, and computational capabilities required to make sense of enormous climate simulation datasets. Its specific goals are to (1) make data more useful to climate researchers by developing Grid technology that enhances data usability; (2) meet specific distributed database, data access, and data movement needs of national and international climate projects; (3) provide a universal and secure web-based data access portal for broad multi-model data collections; and (4) provide a wide-range of Grid-enabled climate data analysis tools and diagnostic methods to international climate centers and U.S. government agencies. Building on the successes of the previous Earth System Grid (ESG) project, which has enabled thousands of researchers to access tens of terabytes of data from a small number of ESG sites, ESG-CET is working to integrate a far larger number of distributed data providers, high-bandwidth wide-area networks, and remote computers in a highly collaborative problem-solving environment.

  14. An Earth System Scientist Network for Student and Scientist Partnerships

    NASA Astrophysics Data System (ADS)

    Ledley, T. S.

    2001-05-01

    Successful student and scientist partnerships require that there is a mutual benefit from the partnership. This means that the scientist needs to be able to see the advantage of having students work on his/her project, and the students and teachers need to see that the students contribute to the project and develop the skills in inquiry and the content knowledge in the geosciences that are desired. Through the Earth System Scientist Network (ESSN) for Student and Scientist Partnerships project we are working toward developing scientific research projects for the participation of high school students. When these research projects are developed they will be posted on the ESSN web site that will appear in the Digital Library for Earth System Education (DLESE). In DLESE teachers and students who are interested in participating in a research program will be able to examine the criteria for each project and select the one that matches their needs and situation. In this paper we will report on how the various ESSN research projects are currently being developed to assure that both the scientist and the students benefit from the partnership. The ESSN scientists are working with a team of scientists and educators to 1) completely define the research question that the students will be addressing, 2) determine what role the students will have in the project, 3) identify the data that the students and teachers will work with, 4) map out the scientific protocols that the students will follow, and 5) determine the background and support materials needed to facilitate students successfully participating in the project. Other issues that the team is addressing include 1) identifying the selection criteria for the schools, 2) identifying rewards and recognition for the students and teacher by the scientist, and 3) identifying issues in Earth system science, relevant to the scientists data, that the students and teachers could use as a guide help develop students investigative

  15. Revolutionizing Earth System Science Education for the 21st Century: Report and Recommendations from a 50-State Analysis of Earth Science Education Standards

    ERIC Educational Resources Information Center

    Hoffman, Martos; Barstow, Daniel

    2007-01-01

    The National Oceanic and Atmospheric Administration (NOAA) commissioned TERC to complete a review of science education standards for all 50 states. The study analyzed K-12 Earth science standards to determine how well each state addresses key Earth-science content, concepts and skills. This report reveals that few states have thoroughly integrated…

  16. Solar energy system case study: Telex Communications, Blue Earth, Minnesota

    SciTech Connect

    Raymond, M.G.

    1984-09-01

    A study is made of a solar energy system for space heating a 97,000-square-foot office, factory, and warehouse building owned by Telex Communications, Inc. in Blue Earth, Minnesota. The solar system has 11,520 square feet of ground-oriented flat-plate collectors and a 20,000-gallon storage tank inside the building. Freeze protection is by drainback. Solar heated water from the storage tank circulates around the clock throughout the heating season to heating coils in the ducts. The system achieves its design solar fraction, is efficient, and generally reliable, but not cost-effective. Performance data for the solar system was collected by the National Solar Data Network for three heating seasons from 1978 to 1981. Because of a freeze-up of the collector array in December 1978, the solar system was only partially operational in the 1978 to 1979 heating season. The data in this report were collected in the 1979 to 1980 and 1980 to 1981 heating seasons.

  17. Optimal design of near-Earth asteroid sample-return trajectories in the Sun-Earth-Moon system

    NASA Astrophysics Data System (ADS)

    He, Shengmao; Zhu, Zhengfan; Peng, Chao; Ma, Jian; Zhu, Xiaolong; Gao, Yang

    2016-08-01

    In the 6th edition of the Chinese Space Trajectory Design Competition held in 2014, a near-Earth asteroid sample-return trajectory design problem was released, in which the motion of the spacecraft is modeled in multi-body dynamics, considering the gravitational forces of the Sun, Earth, and Moon. It is proposed that an electric-propulsion spacecraft initially parking in a circular 200-km-altitude low Earth orbit is expected to rendezvous with an asteroid and carry as much sample as possible back to the Earth in a 10-year time frame. The team from the Technology and Engineering Center for Space Utilization, Chinese Academy of Sciences has reported a solution with an asteroid sample mass of 328 tons, which is ranked first in the competition. In this article, we will present our design and optimization methods, primarily including overall analysis, target selection, escape from and capture by the Earth-Moon system, and optimization of impulsive and low-thrust trajectories that are modeled in multi-body dynamics. The orbital resonance concept and lunar gravity assists are considered key techniques employed for trajectory design. The reported solution, preliminarily revealing the feasibility of returning a hundreds-of-tons asteroid or asteroid sample, envisions future space missions relating to near-Earth asteroid exploration.

  18. Upper Atmospheric Research Satellite (UARS) ground data system - The first operational data system for the Mission to Planet Earth

    NASA Technical Reports Server (NTRS)

    Herring, Ellen L.; Smith, Janice K.; Taylor, K. D.

    1993-01-01

    The initiation of the National Aeronautics and Space Administration (NASA) Mission to Planet Earth was realized with the activation of the Upper Atmosphere Research Satellite (LIARS) in mid-September 1991 following deployment from the Shuttle Transport System (STS) - 48. The UARS provides the first comprehensive study of the chemistry and dynamics of the upper atmosphere. The UARS ground data system provides the capabilities required to support upper atmospheric studies in a timely and flexible manner. The UARS ground data system policy and implementation plan incorporated by the UARS Project team provided the flexibility necessary to be able to respond to changing priorities and requirements and to permit the ground data system to evolve far beyond initial expectations. This paper describes the policies and plans in place during the initial design and implementation phases and provides an overview of the UARS ground data system. The paper then addresses the changing UARS ground data system design and implementation priorities, the early mission experiences instrumental in the achievement of higher than expected goals, and a brief look at the future for UARS, the first Mission to Planet Earth.

  19. Non-rocket Earth-Moon transportation system

    NASA Astrophysics Data System (ADS)

    Bolonkin, A.

    Author suggests and researches one of his methods of flights to outer Space, described in book "Non Rocket Flights in Space", which is prepared and offered for publication. In given report the method and facilities named "Bolonkin Transport System" (BTS) for delivering of payload and people to Moon and back is presented. BTS can be used also for free trip to outer Space up at altitude 60,000 km and more. BTS can be applying as a trust system for atmospheric supersonic aircrafts, and as a free energy source. This method uses, in general, the rotary and kinetic energy of the Moon. The manuscript contains the theory and results of computation of special Project. This project uses three cables (main and two for driving of loads) from artificial material: fiber, whiskers, nanotubes, with the specific tensile strength (ratio the tensile stress to density) k=/=4*10^7 or more. The nanotubes with same and better parameters are received in scientific laboratories. Theoretical limit of nanotubes SWNT is about k=100*10^7. The upper end of the cable is connected to the Moon. The lower end of the cable is connected to an aircraft (or buoy), which flies (i.e. glides or slides) in Earth atmosphere along the planet's surface. The aircraft (and Moon) has devices, which allows the length of cables to be changed. The device would consists of a spool, motor, brake, transmission, and controller. The facility could have devices for delivering people and payloads t o the Moon and back using the suggested Transport System. The delivery devices include: containers, cables, motors, brakes, and controllers. If the aircraft is small and the cable is strong the motion of the Moon can be used to move the airplane. For example (see enclosed project), if the airplane weighs 15 tons and has an aerodynamic ratio (the lift force to the drag force) equal 5, a thrust of 3000 kg would be enough for the aircraft to fly for infinity without requiring any fuel. The aircraft could use a small turbine engine

  20. Southern Africa Validation of NASA's Earth Observing System (SAVE EOS)

    NASA Technical Reports Server (NTRS)

    Privette, Jeffrey L.

    2000-01-01

    Southern Africa Validation of EOS (SAVE) is 4-year, multidisciplinary effort to validate operational and experimental products from Terra-the flagship satellite of NASA's Earth Observing System (EOS). At test sites from Zambia to South Africa, we are measuring soil, vegetation and atmospheric parameters over a range of ecosystems for comparison with products from Terra, Landsat 7, AVHRR and SeaWiFS. The data are also employed to parameterize and improve vegetation process models. Fixed-point and mobile "transect" sampling are used to collect the ground data. These are extrapolated over larger areas with fine-resolution multispectral imagery. We describe the sites, infrastructure, and measurement strategies developed underSAVE, as well as initial results from our participation in the first Intensive Field Campaign of SAFARI 2000. We also describe SAVE's role in the Kalahari Transect Campaign (February/March 2000) in Zambia and Botswana.

  1. A new stomatal paradigm for earth system models? (Invited)

    NASA Astrophysics Data System (ADS)

    Bonan, G. B.; Williams, M. D.; Fisher, R. A.; Oleson, K. W.; Lombardozzi, D.

    2013-12-01

    The land component of climate, and now earth system, models has simulated stomatal conductance since the introduction in the mid-1980s of the so-called second generation models that explicitly represented plant canopies. These second generation models used the Jarvis-style stomatal conductance model, which empirically relates stomatal conductance to photosynthetically active radiation, temperature, vapor pressure deficit, CO2 concentration, and other factors. Subsequent models of stomatal conductance were developed from a more mechanistic understanding of stomatal physiology, particularly that stomata are regulated so as to maximize net CO2 assimilation (An) and minimize water loss during transpiration (E). This concept is embodied in the Ball-Berry stomatal conductance model, which relates stomatal conductance (gs) to net assimilation (An), scaled by the ratio of leaf surface relative humidity to leaf surface CO2 concentration, or the Leuning variant which replaces relative humidity with a vapor pressure deficit term. This coupled gs-An model has been widely used in climate and earth system models since the mid-1990s. An alternative approach models stomatal conductance by directly optimizing water use efficiency, defined as the ratio An/gs or An/E. Conceptual developments over the past several years have shown that the Ball-Berry style model can be derived from optimization theory. However, an explicit optimization model has not been tested in an earth system model. We compare the Ball-Berry model with an explicit optimization model, both implemented in a new plant canopy parameterization developed for the Community Land Model, the land component of the Community Earth System Model. The optimization model is from the Soil-Plant-Atmosphere (SPA) model, which integrates plant and soil hydraulics, carbon assimilation, and gas diffusion. The canopy parameterization is multi-layer and resolves profiles of radiation, temperature, vapor pressure, leaf water stress

  2. Biogenic volatile organic compounds in the Earth system.

    PubMed

    Laothawornkitkul, Jullada; Taylor, Jane E; Paul, Nigel D; Hewitt, C Nicholas

    2009-01-01

    Biogenic volatile organic compounds produced by plants are involved in plant growth, development, reproduction and defence. They also function as communication media within plant communities, between plants and between plants and insects. Because of the high chemical reactivity of many of these compounds, coupled with their large mass emission rates from vegetation into the atmosphere, they have significant effects on the chemical composition and physical characteristics of the atmosphere. Hence, biogenic volatile organic compounds mediate the relationship between the biosphere and the atmosphere. Alteration of this relationship by anthropogenically driven changes to the environment, including global climate change, may perturb these interactions and may lead to adverse and hard-to-predict consequences for the Earth system.

  3. Technology requirements for advanced earth-orbital transportation systems

    NASA Technical Reports Server (NTRS)

    Haefeli, R. C.; Littler, E. G.; Hurley, J. B.; Winter, M. G.

    1977-01-01

    Areas of advanced technology that are either critical or offer significant benefits to the development of future Earth-orbit transportation systems were identified. Technology assessment was based on the application of these technologies to fully reusable, single-stage-to-orbit (SSTO) vehicle concepts with horizontal landing capability. Study guidelines included mission requirements similar to space shuttle, an operational capability begining in 1995, and main propulsion to be advanced hydrogen-fueled rocket engines. Also evaluated was the technical and economic feasibility of this class of SSTO concepts and the comparative features of three operational take-off modes, which were vertical boost, horizontal sled launch, and horizontal take-off with subsequent inflight fueling. Projections of both normal and accelerated technology growth were made. Figures of merit were derived to provide relative rankings of technology areas. The influence of selected accelerated areas on vehicle design and program costs was analyzed by developing near-optimum point designs.

  4. Tropospheric Emission Spectrometer for the Earth Observing System

    NASA Technical Reports Server (NTRS)

    Glavich, Thomas A.; Beer, Reinhard

    1991-01-01

    A Tropospheric Emission Spectrometer (TES) for the Earth Observing System (EOS) series of polar-orbiting platforms is described. TES is aimed at studying tropospheric chemistry, in particular, the exchange of gases between the surface and the atmosphere, urban and regional pollution, acid rain precursors, sources and sinks of greenhouse gases, and the interchange of gases between the troposphere and the stratosphere. TES is a high-resolution (0.025/cm) infrared Fourier transform spectrometer operating in the passive thermal-emission mode in a very wide spectral range (600 to 4350/cm; 2.3 to 16.7 microns). TES has 32 spatial pixels in each of four optically conjugated linear detector arrays, each optimized for a different spectral region.

  5. The NASA earth resources spectral information system: A data compilation

    NASA Technical Reports Server (NTRS)

    Leeman, V.; Earing, D.; Vincent, R. K.; Ladd, S.

    1971-01-01

    The NASA Earth Resources Spectral Information System and the information contained therein are described. It contains an ordered, indexed compilation of natural targets in the optical region from 0.3 to 45.0 microns. The data compilation includes approximately 100 rock and mineral, 2600 vegetation, 1000 soil, and 60 water spectral reflectance, transmittance, and emittance curves. Most of the data have been categorized by subject, and the curves in those subject areas have been plotted on a single graph. Those categories with too few curves and miscellaneous categories have been plotted as single-curve graphs. Each graph, composite of single, is fully titled to indicate curve source and is indexed by subject to facilitate user retrieval.

  6. Contributions to a thermodynamic model of Earth systems on rivers

    NASA Technical Reports Server (NTRS)

    Iberall, A. S.

    1981-01-01

    A model for the chemical (ground water) erosion and physical (bed load, including sedimentation) erosion of the land was developed. The rudiments of the relation between a regulated sea level (for the past 2500 million years) and the episodic rise and erosion of continents was examined to obtain some notion of the process scalings. Major process scales of about 200 years, 100,000 years, 3 My, 40 My, 300 My were estimated. It was suggested that a program targeted at ecological management would have to become familiar with processes at the first four scales (i.e., from glaciation to the horizontal movement of continents). The study returns to the initial premise. In order to understand and manage Earth biology (life, and modern man), it is necessary minimally to pursue systems' biogeology at a considerable number of process space and time scales via their irreversible thermodynamic couplings.

  7. Modelling the carbon cycle though Neoproterozoic Earth system changes

    NASA Astrophysics Data System (ADS)

    Bjerrum, C. J.; Canfield, D. E.

    2011-12-01

    The Neoproterozoic-Cambrian records major changes in geochemical proxies as a result of a profound reorganization of the Earth system. Extensive glaciations and the first oxygenation of the deep ocean with a shift from sulfidic/ferruginous conditions to more oxic conditions was accompanied by the radiation of the first animals. The reorganization was also recorded in enigmatic large-amplitude fluctuations in the isotopic composition of marine carbonate carbon (δ13CIC ), were only some are associated with major known glaciations. The carbon isotope events seem to grow in amplitude through the Neoproterozoic culminating in the Shuram anomaly - the largest in Earth history. The δ13CIC events are also accompanied by changes in the isotope composition of marine organic carbon (δ13COC), where the co-variation of δ13CIC and δ13COC seems to evolve from markedly positive relationship over a subdued δ13COC variation and an almost inverse pattern. There is limited understanding as to why or how the structure of these isotope events evolved over time and how these events may tie to the reorganization of the Earth system. We use our published quantitative model of the Shuram anomaly to explore carbon cycle dynamics during the Neoproterozoic. By changing in pre-event atmosphere-ocean chemistry we explore which factors contribute to the observed patterns of the large Neoproterozoic carbon isotope events. In particular, decreasing atmospheric CO2 and a slight increase of oxygen together with an increasing CO source from rising DOC concentrations results in progressively larger event amplitudes with changing co-variation between δ13CIC and δ13COC , culminating with the structure observed for the Shurum-Wonaka anomaly in the Ediacaran. In our model, the carbon isotope excursions were driven by methane from sediment-hosted clathrate hydrate deposits. Being a powerful greenhouse gas, methane increased temperature and melted icecaps. These combined to produce a negative 18O

  8. Layered virus protection for the operations and administrative messaging system

    NASA Technical Reports Server (NTRS)

    Cortez, R. H.

    2002-01-01

    NASA's Deep Space Network (DSN) is critical in supporting the wide variety of operating and plannedunmanned flight projects. For day-to-day operations it relies on email communication between the three Deep Space Communication Complexes (Canberra, Goldstone, Madrid) and NASA's Jet Propulsion Laboratory. The Operations & Administrative Messaging system, based on the Microsoft Windows NTand Exchange platform, provides the infrastructure that is required for reliable, mission-critical messaging. The reliability of this system, however, is threatened by the proliferation of email viruses that continue to spread at alarming rates. A layered approach to email security has been implemented across the DSN to protect against this threat.

  9. Greenhouse gases in the Earth system: a palaeoclimate perspective.

    PubMed

    Wolff, Eric W

    2011-05-28

    While the trends in greenhouse gas concentrations in recent decades are clear, their significance is only revealed when viewed in the context of a longer time period. Fortunately, the air bubbles in polar ice cores provide an unusually direct method of determining the concentrations of stable gases over a period of (so far) 800,000 years. Measurements on different cores with varying characteristics, as well as an overlap of ice-core and atmospheric measurements covering the same time period, show that the ice-core record provides a faithful record of changing atmospheric composition. The mixing ratio of CO(2) is now 30 per cent higher than any value observed in the ice-core record, while methane is more than double any observed value; the rate of change also appears extraordinary compared with natural changes. Before the period when anthropogenic changes have dominated, there are very interesting natural changes in concentration, particularly across glacial/interglacial cycles, and these can be used to understand feedbacks in the Earth system. The phasing of changes in temperature and CO(2) across glacial/interglacial transitions is consistent with the idea that CO(2) acts as an important amplifier of climate changes in the natural system. Even larger changes are inferred to have occurred in periods earlier than the ice cores cover, and these events might be used to constrain assessments of the way the Earth could respond to higher than present concentrations of CO(2), and to a large release of carbon: however, more certainty about CO(2) concentrations beyond the time period covered by ice cores is needed before such constraints can be fully realized.

  10. Improving the representation of photosynthesis in Earth system models

    NASA Astrophysics Data System (ADS)

    Rogers, A.; Medlyn, B. E.; Dukes, J.; Bonan, G. B.; von Caemmerer, S.; Dietze, M.; Kattge, J.; Leakey, A. D.; Mercado, L. M.; Niinemets, U.; Prentice, I. C. C.; Serbin, S.; Sitch, S.; Way, D. A.; Zaehle, S.

    2015-12-01

    Continued use of fossil fuel drives an accelerating increase in atmospheric CO2 concentration ([CO2]) and is the principal cause of global climate change. Many of the observed and projected impacts of rising [CO2] portend increasing environmental and economic risk, yet the uncertainty surrounding the projection of our future climate by Earth System Models (ESMs) is unacceptably high. Improving confidence in our estimation of future [CO2] is essential if we seek to project global change with greater confidence. There are critical uncertainties over the long term response of terrestrial CO2 uptake to global change, more specifically, over the size of the terrestrial carbon sink and over its sensitivity to rising [CO2] and temperature. Reducing the uncertainty associated with model representation of the largest CO2 flux on the planet is therefore an essential part of improving confidence in projections of global change. Here we have examined model representation of photosynthesis in seven process models including several global models that underlie the representation of photosynthesis in the land surface model component of ESMs that were part of the recent Fifth Assessment Report from the IPCC. Our approach was to focus on how physiological responses are represented by these models, and to better understand how structural and parametric differences drive variation in model responses to light, CO2, nutrients, temperature, vapor pressure deficit and soil moisture. We challenged each model to produce leaf and canopy responses to these factors to help us identify areas in which current process knowledge and emerging data sets could be used to improve model skill, and also identify knowledge gaps in current understanding that directly impact model outputs. We hope this work will provide a roadmap for the scientific activity that is necessary to advance process representation, parameterization and scaling of photosynthesis in the next generation of Earth System Models.

  11. Central nervous system administration of interleukin-6 produces splenic sympathoexcitation

    PubMed Central

    Helwig, Bryan G.; Craig, Robin A.; Fels, Richard J.; Blecha, Frank; Kenney, Michael J.

    2008-01-01

    Interleukin-6 (IL-6) is a multifunctional cytokine that has been shown to play a pivotal role in centrally-mediated physiological responses including activation of the hypothalamic-pituitary-adrenal axis. Cerebral spinal fluid (CSF) concentrations of IL-6 are elevated in multiple pathophysiological conditions including Alzheimer’s disease, autoimmune disease, and meningitis. Despite this, the effect of IL-6 on central regulation of sympathetic nerve discharge (SND) remains unknown which limits understanding of sympathetic-immune interactions in health and disease. In the present study we determined the effect of intracerebroventricular (icv, lateral ventricle) administration of IL-6 on splenic SND in urethane-chloralose-anesthetized rats. A second goal was to determine if icv injected IL-6 enters the brain parenchyma and acts as a volume transmission signal to access areas of the brain involved in regulation of sympathetic nerve outflow. Icv administration of IL-6 (10 ng, 100 ng, and 400 ng) significantly and progressively increased splenic SND from control levels in baroreceptor denervated Sprague-Dawley rats. Administration of 100 ng and 400 ng IL-6 resulted in significantly higher SND responses when compared to those elicited with a 10 ng dose. Sixty minutes following icv administration, fluorescently labeled IL-6 was not distributed throughout the parenchyma of the brain but was localized to the periventricular areas of the ventricular system. Brain sections counter-stained for the IL-6 receptor (IL-6R) revealed that IL-6 and the IL-6R were co-localized in periventricular areas adjoining the third ventricle. These results demonstrate that icv IL-6 administration increases splenic SND, an effect likely achieved via signaling mechanisms originating in the periventricular cells. PMID:18547874

  12. Pulsed field magnetization in rare-earth kagome systems.

    PubMed

    Hoch, M J R; Zhou, H D; Mun, E; Harrison, N

    2016-02-03

    The rare-earth kagome systems R 3Ga5SiO14 (R  =  Nd or Pr) exhibit cooperative paramagnetism at low temperatures. Evidence for correlated spin clusters in these weakly frustrated systems has previously been obtained from neutron scattering and from ESR and NMR results. The present pulsed field (0-60 T, 25 ms) magnetization measurements made on single crystals of Nd3Ga5SiO14 (NGS) and Pr3Ga5SiO14 (PGS) at temperatures down to 450 mK have revealed striking differences in the magnetic responses of the two materials. For NGS the magnetization shows a low field plateau, saturation in high transient fields, and significant hysteresis while the PGS magnetization does not saturate in transient fields up to 60 T and shows no hysteresis or plateaus. Nd(3+) is a Kramers ion while Pr(3+) is a non-Kramers ion and the crystal field effects are quite different in the two systems. For the conditions used in the experiments the magnetization behavior is not in agreement with Heisenberg model predictions for kagome systems in which easy-axis anisotropy is much larger than the exchange coupling. The extremely slow spin dynamics found below 4 K in NGS is, however, consistent with the model for Kramers ions and provides a basis for explaining the pulsed field magnetization features.

  13. The detection of gravitational waves using electrodynamic system of Earth

    NASA Astrophysics Data System (ADS)

    Grunskaya, Lubov; Isakevich, Valiriy

    There is studied the interconnection of tide processes of geophysical and astrophysical origin with the Earth electromagnetic fields. There has been developed a programme-analytical system (PAS) to investigate signal structures in spectral and time series, caused by geophysical and astrophysical processes based on the method of eigen vectors. There were discovered frequencies in the electrical and geomagnetical field of ELF range with PAS, which coincide with the frequency of gravitational -wave radiation of a number of double stellar systems. In the electrical and geomagnetic field there was discovered a specific axion frequency VA=0.5*10-5 Hz belonging to the ELF range which was predicted by the theory. The problem of the anomalous behavior of the electrodynamic system response to the gravitational - wave affect is being discussed. On the basis of the rich experimental material have been investigated the frequencies of gravitational-wave radiation of a number of binary systems: J0700+6418, J1012+5307, J1537+1155, J1959+2048, J2130+1210, J1915+1606. The work is carried out with supporting of RFFI № 14-07-97510, State Task to Universities on 2014-2016.

  14. Recent and Anticipated Changes to the International Earth Rotation and Reference Systems Service (IERS) Conventions

    DTIC Science & Technology

    2009-01-01

    object, it must utilize the five Earth orientation parameters (EOPs): polar motion (2 angles), UT1-UTC, and nutation (2 angles) (see Seidelmann...Recent and Anticipated Changes to the International Earth Rotation and Reference Systems Service (IERS) Conventions Brian Luzum, U.S. Naval...the Earth Orientation Parameters Combination and Prediction Division in the USNO Earth Orientation Department. He is also the co-director of the

  15. Inhibition of nociceptive responses after systemic administration of amidated kyotorphin

    PubMed Central

    Ribeiro, MMB; Pinto, A; Pinto, M; Heras, M; Martins, I; Correia, A; Bardaji, E; Tavares, I; Castanho, M

    2011-01-01

    BACKGROUND AND PURPOSE Kyotorphin (KTP; L-Tyr-L-Arg), an endogenous neuropeptide, is potently analgesic when delivered directly to the central nervous system. Its weak analgesic effects after systemic administration have been explained by inability to cross the blood–brain barrier (BBB) and detract from the possible clinical use of KTP as an analgesic. In this study, we aimed to increase the lipophilicity of KTP by amidation and to evaluate the analgesic efficacy of a new KTP derivative (KTP-amide – KTP-NH2). EXPERIMENTAL APPROACH We synthesized KTP-NH2. This peptide was given systemically to assess its ability to cross the BBB. A wide range of pain models, including acute, sustained and chronic inflammatory and neuropathic pain, were used to characterize analgesic efficacies of KTP-NH2. Binding to opioid receptors and toxicity were also measured. KEY RESULTS KTP-NH2, unlike its precursor KTP, was lipophilic and highly analgesic following systemic administration in several acute and chronic pain models, without inducing toxic effects or affecting motor responses and blood pressure. Binding to opioid receptors was minimal. KTP-NH2 inhibited nociceptive responses of spinal neurons. Its analgesic effects were prevented by intrathecal or i.p. administration of naloxone. CONCLUSIONS AND IMPLICATIONS Amidation allowed KTP to show good analgesic ability after systemic delivery in acute and chronic pain models. The indirect opioid-mediated actions of KTP-NH2 may explain why this compound retained its analgesic effects although the usual side effects of opioids were absent, which is a desired feature in next-generation pain medications. PMID:21366550

  16. Quantifying planetary limits of Earth system processes relevant to human activity using a thermodynamic view of the whole Earth system

    NASA Astrophysics Data System (ADS)

    Kleidon, Axel

    2014-05-01

    Food, water, and energy play, obviously, a central role in maintaining human activity. In this contribution, I derive estimates for the fundamental limits on the rates by which these resources are provided by Earth system processes and the levels at which these can be used sustainably. The key idea here is that these resources are, directly or indirectly, generated out of the energy associated with the absorption of sunlight, and that the energy conversions from sunlight to other forms ultimately limit the generation of these resources. In order to derive these conversion limits, we need to trace the links between the processes that generate food, water and energy to the absorption of sunlight. The resource "food" results from biomass production by photosynthesis, which requires light and a sufficient magnitude of gas exchange of carbon dioxide at the surface, which is maintained by atmospheric motion which in turn is generated out of differential radiative heating and cooling. The resource "water" is linked to hydrologic cycling, with its magnitude being linked to the latent heat flux of the surface energy balance and water vapor transport in the atmosphere which is also driven by differential radiative heating and cooling. The availability of (renewable) energy is directly related to the generation of different forms of energy of climate system processes, such as the kinetic energy of atmospheric motion, which, again, relates to radiative heating differences. I use thermodynamics and its limits as a basis to establish the planetary limits of these processes and use a simple model to derive first-order estimates. These estimates compare quite well with observations, suggesting that this thermodynamic view of the whole Earth system provides an objective, physical basis to define and quantify planetary boundaries as well as the factors that shape these boundaries.

  17. Administrative compensation for medical injuries: lessons from three foreign systems.

    PubMed

    Mello, Michelle M; Kachalia, Allen; Studdert, David M

    2011-07-01

    The United States requires patients injured by medical negligence to seek compensation through lawsuits, an approach that has drawbacks related to fairness, cost, and impact on medical care. Several countries, including New Zealand, Sweden, and Denmark, have replaced litigation with administrative compensation systems for patients who experience an avoidable medical injury. Sometimes called "no-fault" systems, such schemes enable patients to file claims for compensation without using an attorney. A governmental or private adjudicating organization uses neutral medical experts to evaluate claims of injury and does not require patients to prove that health care providers were negligent in order to receive compensation. Information from claims is used to analyze opportunities for patient safety improvement. The systems have successfully limited liability costs while improving injured patients' access to compensation. American policymakers may find many of the elements of these countries' systems to be transferable to demonstration projects in the U.S.

  18. I/O Parallelization for the Goddard Earth Observing System Data Assimilation System (GEOS DAS)

    NASA Technical Reports Server (NTRS)

    Lucchesi, R.; Sawyer, W.; Takacs, L. L.; Lyster, P.; Zero, J.

    1999-01-01

    The National Aeronautics and Space Administration (NASA) Data Assimilation Office (DAO) at the Goddard Space Flight Center (GSFC) has developed the GEOS DAS, a data assimilation system that provides production support for NASA missions and will support NASA's Earth Observing System (EOS) in the coming years. The DAO's support of the EOS project along with the requirement of producing long-term reanalysis datasets with an unvarying system levy a large I/O burden on the future system. The DAO has been involved in prototyping parallel implementations of the GEOS DAS for a number of years and is now converting the production version from shared-memory parallelism to distributed-memory parallelism using the portable Message-Passing Interface (MPI). If the MPI-based GEOS DAS is to meet these production requirements, we must make I/O from the parallel system efficient. We have designed a scheme that allows efficient I/O processing while retaining portability, reducing the need for post-processing, and producing data formats that are required by our users, both internal and external. The first phase of the GEOS DAS Parallel I/O System (GPIOS) will expand upon the common method of gathering global data to a Single PE for output. Instead of using a PE also tasked with primary computation, a number of PEs will be dedicated to I/O and its related tasks. This allows the data transformations and formatting required prior to output to take place asynchronously with respect to the GEOS DAS assimilation cycle, improving performance and generating output data sets in a format convenient for our users. I/O PEs can be added as needed to handle larger data volumes or to meet user file specifications. We will show I/O performance results from a prototype MPI GCM integrated with GPIOS. Phase two of GPIOS development will examine ways of integrating new software technologies to further improve performance and build scalability into the system. The maturing of MPI-IO implementations and

  19. Classified Computer Configuration Control System (C{sup 4}S), Revision 3, Database Administrator`s Guide

    SciTech Connect

    O`Callaghan, P.B.; Nelson, R.A.; Grambihler, A.J.

    1994-04-01

    This document provides a guide for database administration and specific information for the Classified Computer Configuration Control System (C{sup 4}S). As a guide, this document discusses required database administration functions for the set up of database tables and for users of the system. It is assumed that general and user information has been obtained from the Classified Computer Configuration Control System (C{sup 4}S), Revision 3, User`s Information (WHC 1994).

  20. The Earth System Science Pathfinder VOLCAM Volcanic Hazard Mission

    NASA Technical Reports Server (NTRS)

    Krueger, Arlin J.

    1999-01-01

    The VOLCAM mission is planned for research on volcanic eruptions and as a demonstration of a satellite system for measuring the location and density of volcanic eruption clouds for use in mitigating hazards to aircraft by the operational air traffic control systems. A requirement for 15 minute time resolution is met by flight as payloads of opportunity on geostationary satellites. Volcanic sulfur dioxide and ash are detected using techniques that have been developed from polar orbiting TOMS (UV) and AVHRR (IR) data. Seven band UV and three band IR filter wheel cameras are designed for continuous observation of the full disk of the earth with moderate (10 - 20 km) ground resolution. This resolution can be achieved with small, low cost instruments but is adequate for discrimination of ash and sulfur dioxide in the volcanic clouds from meteorological clouds and ozone. The false alarm rate is small through use of sulfur dioxide as a unique tracer of volcanic clouds. The UV band wavelengths are optimized to detect very small sulfur dioxide amounts that are present in pre-eruptive outgassing of volcanoes. The system is also capable of tracking dust and smoke clouds, and will be used to infer winds at tropopause level from the correlation of total ozone with potential vorticity.

  1. Earth life support for aquatic organisms, system and technical aspects

    NASA Astrophysics Data System (ADS)

    König, B.; Dünne, M.; Slenzka, K.

    The importance of the research on Bioregenerative Life Support has increased dramatically in the last decade not only with regard to possible space flight application but also as a way to obtain a better understanding of our Earth's ecology. A major goal was to reach long-term stability of artificial model systems. Preliminary data are presented on the development of an improved aquatic system, currently dedicated for ground-based research. Closed aquatic ecosystems require reliability of the key parameters of pH, O 2 and CO 2 concentration and stability of sensors for monitoring. Besides the integration of an artificial lung (holofiber system and air pump with valves, allowing controlled oxygen uptake of air), in parallel to the oxygen producing water plants. Our new approach is to implement opto-chemical sensors, for such environmental monitoring. One major advantage of the new sensor technique is their better long-term reliability as compared to the electrochemical sensors. Our experiment with the new sensor technique has demonstrated satisfactory performance in closed aquatic ecosystems.

  2. The unassisted visual system on earth and in space.

    PubMed

    Harris, Laurence R; Jenkin, Michael; Jenkin, Heather; Dyde, Richard; Zacher, Jim; Allison, Robert S

    2010-01-01

    Chuck Oman has been a guide and mentor for research in human perception and performance during space exploration for over 25 years. His research has provided a solid foundation for our understanding of how humans cope with the challenges and ambiguities of sensation and perception in space. In many of the environments associated with work in space the human visual system must operate with unusual combinations of visual and other perceptual cues. On Earth physical acceleration cues are normally available to assist the visual system in interpreting static and dynamic visual features. Here we consider two cases where the visual system is not assisted by such cues. Our first experiment examines perceptual stability when the normally available physical cues to linear acceleration are absent. Our second experiment examines perceived orientation when there is no assistance from the physically sensed direction of gravity. In both cases the effectiveness of vision is paradoxically reduced in the absence of physical acceleration cues. The reluctance to rely heavily on vision represents an important human factors challenge to efficient performance in the space environment.

  3. Artificial intelligence in the service of system administrators

    NASA Astrophysics Data System (ADS)

    Haen, C.; Barra, V.; Bonaccorsi, E.; Neufeld, N.

    2012-12-01

    The LHCb online system relies on a large and heterogeneous IT infrastructure made from thousands of servers on which many different applications are running. They run a great variety of tasks: critical ones such as data taking and secondary ones like web servers. The administration of such a system and making sure it is working properly represents a very important workload for the small expert-operator team. Research has been performed to try to automatize (some) system administration tasks, starting in 2001 when IBM defined the so-called “self objectives” supposed to lead to “autonomic computing”. In this context, we present a framework that makes use of artificial intelligence and machine learning to monitor and diagnose at a low level and in a non intrusive way Linux-based systems and their interaction with software. Moreover, the multi agent approach we use, coupled with an “object oriented paradigm” architecture should increase our learning speed a lot and highlight relations between problems.

  4. Development of System Thinking Skills in the Context of Earth System Education

    ERIC Educational Resources Information Center

    Assaraf, Orit Ben-Zvi; Orion, Nir

    2005-01-01

    The current study deals with the development of system thinking skills at the junior high school level. The sample population included about 50 eighth-grade students from two different classes of an urban Israeli junior high school who studied an earth systems-based curriculum that focused on the hydro cycle. The study addressed the following…

  5. System design and specifications. Earth Observatory Satellite system definition study (EOS)

    NASA Technical Reports Server (NTRS)

    1974-01-01

    A design summary of the Earth Observatory Satellite (EOS) is presented. The systems considered in the summary are: (1) the spacecraft structure, (2) electrical power modules, (3) communications and data handling module, (4) attitude determination module, (5) actuation module, and (6) solar array and drive module. The documents which provide the specifications for the systems and the equipment are identified.

  6. Federal Emergency Management Information System (FEMIS) system administration guide. Version 1.2

    SciTech Connect

    Burford, M.J.; Burnett, R.A.; Curtis, L.M.

    1996-05-01

    The Federal Emergency Management Information System (FEMIS) is an emergency management planning and analysis tool that is being developed under the direction of the US Army Chemical biological Defense Command. The FEMIS System Administration Guide defines FEMIS hardware and software requirements and gives instructions for installing the FEMIS system package. System administrators, database administrators, and general users can use this guide to install, configure, and maintain the FEMIS client software package. This document provides a description of the FEMIS environment; distribution media; data, communications, and electronic mail servers; user workstations; and system management.

  7. Looking for earths : the race to find new solar systems

    NASA Astrophysics Data System (ADS)

    Boss, Alan

    1998-09-01

    The ultimate insider's account of astronomy's fantastic voyage in search of brave new worlds in faraway galaxies "Highly recommended." -Science and Technology "Full of humor, heartbreak, and a deep understanding of the ardor and luck that compose years of research. . . . The reader becomes not merely a receiver of Boss's vision, but a fellow explorer." -Astronomy "A rewarding account." -Scientific American Are we alone in the universe . . . or are there other planets generating and sustaining life? The question may be as old as civilization, but in the twilight of a century marked by countless frustrated quests to find other solar systems, several teams of pioneering astronomers have at last discovered a rich crop of mammoth, Jupiter-sized gas planets -the first compelling evidence that there may indeed be life in other galaxies. In Looking for Earths, a prominent planetary scientist takes us along on this thrilling hunt for new life, revealing the behind-the-scenes stories of scientific determination, frustration, and triumph. Ushering us to the mountaintop observatories that house the world's most powerful telescopes, and into the tension-filled scientific meetings where new results are announced and old results overturned, Alan Boss brings the process of exploration vividly alive. Experience the roller-coaster ride as intricate observations of minuscule stellar wobbles raise hopes that at last a true planet has been found, only to be almost immediately shattered by more powerful observations. Boss also introduces the principal players whose dreams defied all odds and made the first major discovery possible. Like no other book, Looking for Earths captures the lively tension between theory and observation that defines cutting-edge astronomical discovery, along with the heated battles that will determine the direction of big-ticket American astronomy for years to come. "You will find no better introduction to one of the truly revolutionary developments in modern

  8. Charcoal in the soil and the Earth System

    NASA Astrophysics Data System (ADS)

    Scott, A. C.

    2012-04-01

    Charcoal occurs in the natural environment as either a result of wildfire or volcanic processes. Charcoal is one of a range of pyrolysis products that may be included in the term black carbon. This paper outlines aspects of charcoal formation (both natural and experimental) and briefly considers the taphonomic processes leading to a final assemblage. This is done using examples from recent fires and through experimentation. In particular, it is shown that the temperature of charcoal formation may influence the rate of subsequent decay. This has significance for biochar studies. While charcoal may remain near the place of it's formation and be buried in soils it still may be affected by physical and chemical changes that result in fragmentation and subsequent loss to the soil. Charcoal may also be washed out of the fire site by overland flow particularly if the rain occurs soon after the fire. Charcoal is abundant in many sedimentary rocks deposited in a wide range of environments, from terrestrial to marine. Charcoal has a long fossil record and is found in rock sequences from the late Silurian onwards. Charcoal provides evidence of the deep time history of wildfire. There is an intimate relationship between the history of oxygen in the atmosphere and periods of extensive wildfires. High atmospheric oxygen levels (around 30%) in the late Palaeozoic and Cretaceous had a profound effect on the Earth System. The use of charcoal for plant evolution studies, fire history studies, vegetation studies, anatomical studies, climate and atmospheric studies and the wider importance of charcoal for the Earth and Biological Sciences will be considered (Scott 2010, Glasspool and Scott in press). Charcoal is information-rich but yet is an under-utilized resource.

  9. The Earth System Prediction Suite: Toward a Coordinated U.S. Modeling Capability

    DTIC Science & Technology

    2015-01-01

    JAN 2015 2. REPORT TYPE 3. DATES COVERED 00-00-2015 to 00-00-2015 4. TITLE AND SUBTITLE The Earth System Prediction Suite: Toward a Coordinated...DISTRIBUTION/AVAILABILITY STATEMENT Approved for public release; distribution unlimited 13. SUPPLEMENTARY NOTES 14. ABSTRACT The Earth System Prediction...culmination of efforts to create a common Earth system model architecture, and the advent of increasingly coordinated model development activities in

  10. Public sector administration of ecological economics systems using mediated modeling.

    PubMed

    van den Belt, Marjan; Kenyan, Jennifer R; Krueger, Elizabeth; Maynard, Alison; Roy, Matthew Galen; Raphael, Ian

    2010-01-01

    In today's climate of government outsourcing and multiple stakeholder involvement in public sector management and service delivery, it is more important than ever to rethink and redesign the structure of how policy decisions are made, implemented, monitored, and adapted to new realities. The traditional command-and-control approach is now less effective because an increasing amount of responsibility to deliver public goods and services falls on networks of nongovernment agencies. Even though public administrators are seeking new decision-making models in an increasingly more complex environment, the public sector currently only sparsely utilizes Mediated Modeling (MM). There is growing evidence, however, that by employing MM and similar tools, public interest networks can be better equipped to deal with their long-term viability while maintaining the short-term needs of their clients. However, it may require a shift in organizational culture within and between organizations to achieve the desired results. This paper explores the successes and barriers to implementing MM and similar tools in the public sector and offers insights into utilizing them through a review of case studies and interdisciplinary literature. We aim to raise a broader interest in MM and similar tools among public sector administrators at various administrative levels. We focus primarily, but not exclusively, on those cases operating at the interface of ecology and socio-economic systems.

  11. Semantics-enabled knowledge management for global Earth observation system of systems

    NASA Astrophysics Data System (ADS)

    King, Roger L.; Durbha, Surya S.; Younan, Nicolas H.

    2007-10-01

    The Global Earth Observation System of Systems (GEOSS) is a distributed system of systems built on current international cooperation efforts among existing Earth observing and processing systems. The goal is to formulate an end-to-end process that enables the collection and distribution of accurate, reliable Earth Observation data, information, products, and services to both suppliers and consumers worldwide. One of the critical components in the development of such systems is the ability to obtain seamless access of data across geopolitical boundaries. In order to gain support and willingness to participate by countries around the world in such an endeavor, it is necessary to devise mechanisms whereby the data and the intellectual capital is protected through procedures that implement the policies specific to a country. Earth Observations (EO) are obtained from a multitude of sources and requires coordination among different agencies and user groups to come to a shared understanding on a set of concepts involved in a domain. It is envisaged that the data and information in a GEOSS context will be unprecedented and the current data archiving and delivery methods need to be transformed into one that allows realization of seamless interoperability. Thus, EO data integration is dependent on the resolution of conflicts arising from a variety of areas. Modularization is inevitable in distributed environments to facilitate flexible and efficient reuse of existing ontologies. Therefore, we propose a framework for modular ontologies based knowledge management approach for GEOSS and present methods to enable efficient reasoning in such systems.

  12. Global analysis of river systems: from Earth system controls to Anthropocene syndromes.

    PubMed Central

    Meybeck, Michel

    2003-01-01

    Continental aquatic systems from rivers to the coastal zone are considered within two perspectives: (i) as a major link between the atmosphere, pedosphere, biosphere and oceans within the Earth system with its Holocene dynamics, and (ii) as water and aquatic biota resources progressively used and transformed by humans. Human pressures have now reached a state where the continental aquatic systems can no longer be considered as being controlled by only Earth system processes, thus defining a new era, the Anthropocene. Riverine changes, now observed at the global scale, are described through a first set of syndromes (flood regulation, fragmentation, sediment imbalance, neo-arheism, salinization, chemical contamination, acidification, eutrophication and microbial contamination) with their related causes and symptoms. These syndromes have direct influences on water uses, either positive or negative. They also modify some Earth system key functions such as sediment, water, nutrient and carbon balances, greenhouse gas emissions and aquatic biodiversity. Evolution of river syndromes over the past 2000 years is complex: it depends upon the stages of regional human development and on natural conditions, as illustrated here for the chemical contamination syndrome. River damming, eutrophication and generalized decrease of river flow due to irrigation are some of the other global features of river changes. Future management of river systems should also consider these long-term impacts on the Earth system. PMID:14728790

  13. Building a Global Earth Observation System of Systems (GEOSS) and Its Interoperability Challenges

    NASA Astrophysics Data System (ADS)

    Ryan, B. J.

    2015-12-01

    Launched in 2005 by industrialized nations, the Group on Earth Observations (GEO) began building the Global Earth Observation System of Systems (GEOSS). Consisting of both a policy framework, and an information infrastructure, GEOSS, was intended to link and/or integrate the multitude of Earth observation systems, primarily operated by its Member Countries and Participating Organizations, so that users could more readily benefit from global information assets for a number of society's key environmental issues. It was recognized that having ready access to observations from multiple systems was a prerequisite for both environmental decision-making, as well as economic development. From the very start, it was also recognized that the shear complexity of the Earth's system cannot be captured by any single observation system, and that a federated, interoperable approach was necessary. While this international effort has met with much success, primarily in advancing broad, open data policies and practices, challenges remain. In 2014 (Geneva, Switzerland) and 2015 (Mexico City, Mexico), Ministers from GEO's Member Countries, including the European Commission, came together to assess progress made during the first decade (2005 to 2015), and approve implementation strategies and mechanisms for the second decade (2016 to 2025), respectively. The approved implementation strategies and mechanisms are intended to advance GEOSS development thereby facilitating the increased uptake of Earth observations for informed decision-making. Clearly there are interoperability challenges that are technological in nature, and several will be discussed in this presentation. There are, however, interoperability challenges that can be better characterized as economic, governmental and/or political in nature, and these will be discussed as well. With the emergence of the Sustainable Development Goals (SDGs), the World Conference on Disaster Risk Reduction (WCDRR), and the United Nations

  14. Implementing a bar-coded bedside medication administration system.

    PubMed

    Yates, Cindy

    2007-01-01

    Hospitals across the nation are struggling with implementing electronic medication administration and reporting (eMAR) systems as part of patient safety programs. St Luke's Hospital in Chesterfield, Mo, initiated their eMAR initiative in June 2003, initiating program start-up in September 2004. This case study documents how the project was approached, its overall success, and what was learned along the way. Also included is a recent update highlighting the expansion of St Luke's patient safety initiative, adapting eMAR to two specialty units: dialysis and laboratory processes.

  15. Promoting the Earth Charter in Sao Paulo's Municipal Education System

    ERIC Educational Resources Information Center

    Inojosa, Rose Marie

    2010-01-01

    This article presents the process of widespread teacher training based on the Earth Charter in the municipal area of Sao Paulo, Brazil, South America. This effort diffused knowledge of the Earth Charter through 800 educators and by means of them, to one million children. This process was developed by the team from UMAPAZ--Open University of the…

  16. The Early Years: The Earth-Sun System

    ERIC Educational Resources Information Center

    Ashbrook, Peggy

    2015-01-01

    We all experience firsthand many of the phenomena caused by Earth's Place in the Universe (Next Generation Science Standard 5-ESS1; NGSS Lead States 2013) and the relative motion of the Earth, Sun, and Moon. Young children can investigate phenomena such as changes in times of sunrise and sunset (number of daylight hours), Moon phases, seasonal…

  17. BioEarth: Envisioning and developing a new regional earth system model to inform natural and agricultural resource management

    SciTech Connect

    Adam, J. C.; Stephens, J. C.; Chung, Serena; Brady, M. P.; Evans, R. D.; Kruger, C. E.; Lamb, Brian K.; Liu, M. L.; Stockle, Claudio O.; Vaughan, Joseph K.; Rajagopalan, K.; Harrison, John; Tague, C. L.; Kalyanaraman, Anantharaman; Chen, Yong; Guenther, Alex B.; Leung, F. Y.; Leung, Lai-Yung R.; Perleberg, A. B.; Yoder, J.; Allen, Elizabeth; Anderson, S.; Chandrasekharan, B.; Malek, K.; Mullis, T.; Miller, C.; Nergui, T.; Poinsatte, J.; Reyes, J.; Zhu, J.; Choate, J. S.; Jiang, X.; Nelson, R.; Yoon, Jin-Ho; Yorgey, G. G.; Johnson, Kristen; Chinnayakanhalli, K. J.; Hamlet, A. F.; Nijssen, B.; Walden, Von

    2015-04-01

    As managers of agricultural and natural resources are confronted with uncertainties in global change impacts, the complexities associated with the interconnected cycling of nitrogen, carbon, and water present daunting management challenges. Existing models provide detailed information on specific sub-systems (land, air, water, economics, etc). An increasing awareness of the unintended consequences of management decisions resulting from interconnectedness of these sub-systems, however, necessitates coupled regional earth system models (EaSMs). Decision makers’ needs and priorities can be integrated into the model design and development processes to enhance decision-making relevance and "usability" of EaSMs. BioEarth is a current research initiative with a focus on the U.S. Pacific Northwest region that explores the coupling of multiple stand-alone EaSMs to generate usable information for resource decision-making. Direct engagement between model developers and non-academic stakeholders involved in resource and environmental management decisions throughout the model development process is a critical component of this effort. BioEarth utilizes a "bottom-up" approach, upscaling a catchment-scale model to basin and regional scales, as opposed to the "top-down" approach of downscaling global models utilized by most other EaSM efforts. This paper describes the BioEarth initiative and highlights opportunities and challenges associated with coupling multiple stand-alone models to generate usable information for agricultural and natural resource decision-making.

  18. BioEarth: Envisioning and developing a new regional earth system model to inform natural and agricultural resource management

    DOE PAGES

    Adam, Jennifer C.; Stephens, Jennie C.; Chung, Serena H.; ...

    2014-04-24

    Uncertainties in global change impacts, the complexities associated with the interconnected cycling of nitrogen, carbon, and water present daunting management challenges. Existing models provide detailed information on specific sub-systems (e.g., land, air, water, and economics). An increasing awareness of the unintended consequences of management decisions resulting from interconnectedness of these sub-systems, however, necessitates coupled regional earth system models (EaSMs). Decision makers’ needs and priorities can be integrated into the model design and development processes to enhance decision-making relevance and “usability” of EaSMs. BioEarth is a research initiative currently under development with a focus on the U.S. Pacific Northwest region thatmore » explores the coupling of multiple stand-alone EaSMs to generate usable information for resource decision-making. Direct engagement between model developers and non-academic stakeholders involved in resource and environmental management decisions throughout the model development process is a critical component of this effort. BioEarth utilizes a bottom-up approach for its land surface model that preserves fine spatial-scale sensitivities and lateral hydrologic connectivity, which makes it unique among many regional EaSMs. Here, we describe the BioEarth initiative and highlights opportunities and challenges associated with coupling multiple stand-alone models to generate usable information for agricultural and natural resource decision-making.« less

  19. BioEarth: Envisioning and developing a new regional earth system model to inform natural and agricultural resource management

    SciTech Connect

    Adam, Jennifer C.; Stephens, Jennie C.; Chung, Serena H.; Brady, Michael P.; Evans, R. David; Kruger, Chad E.; Lamb, Brian K.; Liu, Mingliang; Stöckle, Claudio O.; Vaughan, Joseph K.; Rajagopalan, Kirti; Harrison, John A.; Tague, Christina L.; Kalyanaraman, Ananth; Chen, Yong; Guenther, Alex; Leung, Fok-Yan; Leung, L. Ruby; Perleberg, Andrew B.; Yoder, Jonathan; Allen, Elizabeth; Anderson, Sarah; Chandrasekharan, Bhagyam; Malek, Keyvan; Mullis, Tristan; Miller, Cody; Nergui, Tsengel; Poinsatte, Justin; Reyes, Julian; Zhu, Jun; Choate, Janet S.; Jiang, Xiaoyan; Nelson, Roger; Yoon, Jin-Ho; Yorgey, Georgine G.; Johnson, Kristen; Chinnayakanahalli, Kiran J.; Hamlet, Alan F.; Nijssen, Bart; Walden, Von

    2014-04-24

    Uncertainties in global change impacts, the complexities associated with the interconnected cycling of nitrogen, carbon, and water present daunting management challenges. Existing models provide detailed information on specific sub-systems (e.g., land, air, water, and economics). An increasing awareness of the unintended consequences of management decisions resulting from interconnectedness of these sub-systems, however, necessitates coupled regional earth system models (EaSMs). Decision makers’ needs and priorities can be integrated into the model design and development processes to enhance decision-making relevance and “usability” of EaSMs. BioEarth is a research initiative currently under development with a focus on the U.S. Pacific Northwest region that explores the coupling of multiple stand-alone EaSMs to generate usable information for resource decision-making. Direct engagement between model developers and non-academic stakeholders involved in resource and environmental management decisions throughout the model development process is a critical component of this effort. BioEarth utilizes a bottom-up approach for its land surface model that preserves fine spatial-scale sensitivities and lateral hydrologic connectivity, which makes it unique among many regional EaSMs. Here, we describe the BioEarth initiative and highlights opportunities and challenges associated with coupling multiple stand-alone models to generate usable information for agricultural and natural resource decision-making.

  20. Enlarging the Human Dimensions of Earth System Science

    NASA Astrophysics Data System (ADS)

    Seielstad, G. A.; Rattling Leaf, J.

    2005-12-01

    Sustainability, meaning meeting human needs and values while also preserving Earth's life-support systems, can only be achieved if a just and equitable distribution of access to natural resources exists. The same environment is shared by all peoples; all must have an interest in preserving it; therefore all must receive a fair share of the benefits that preservation allows. As with most sustainability objectives, the most effective strategy remains to "think globally but act locally." In the Northern Great Plains, the Upper Midwest Aerospace Consortium (UMAC) is committed to providing leadership toward sustainability. UMAC realized it needed to serve its region's largest minority, Native Americans, in order to nurture regionally the type of just society a sustainable system demands. The consortium therefore added a tribal university, Sinte Gleska, to its original seven partners. SGU shares with the other consortium universities the longer history Native Americans have with the region's environment and the closer connection they experience to Nature. Both cultures, indigenous and western, benefit. A path has been set that allows Sinte Gleska University to help organize a parallel consortium of tribal colleges committed to economic benefit and responsible planetary stewardship.

  1. Program on Earth Observation Data Management Systems (EODMS)

    NASA Technical Reports Server (NTRS)

    Eastwood, L. F., Jr.; Gohagan, J. K.; Hill, C. T.; Morgan, R. P.; Hays, T. R.; Ballard, R. J.; Crnkovick, G. R.; Schaeffer, M. A.

    1976-01-01

    An assessment was made of the needs of a group of potential users of satellite remotely sensed data (state, regional, and local agencies) involved in natural resources management in five states, and alternative data management systems to satisfy these needs are outlined. Tasks described include: (1) a comprehensive data needs analysis of state and local users; (2) the design of remote sensing-derivable information products that serve priority state and local data needs; (3) a cost and performance analysis of alternative processing centers for producing these products; (4) an assessment of the impacts of policy, regulation and government structure on implementing large-scale use of remote sensing technology in this community of users; and (5) the elaboration of alternative institutional arrangements for operational Earth Observation Data Management Systems (EODMS). It is concluded that an operational EODMS will be of most use to state, regional, and local agencies if it provides a full range of information services -- from raw data acquisition to interpretation and dissemination of final information products.

  2. Interleaved Observation Execution and Rescheduling on Earth Observing Systems

    NASA Technical Reports Server (NTRS)

    Khatib, Lina; Frank, Jeremy; Smith, David; Morris, Robert; Dungan, Jennifer

    2003-01-01

    Observation scheduling for Earth orbiting satellites solves the following problem: given a set of requests for images of the Earth, a set of instruments for acquiring those images distributed on a collecting of orbiting satellites, and a set of temporal and resource constraints, generate a set of assignments of instruments and viewing times to those requests that satisfy those constraints. Observation scheduling is often construed as a constrained optimization problem with the objective of maximizing the overall utility of the science data acquired. The utility of an image is typically based on the intrinsic importance of acquiring it (for example, its importance in meeting a mission or science campaign objective) as well as the expected value of the data given current viewing conditions (for example, if the image is occluded by clouds, its value is usually diminished). Currently, science observation scheduling for Earth Observing Systems is done on the ground, for periods covering a day or more. Schedules are uplinked to the satellites and are executed rigorously. An alternative to this scenario is to do some of the decision-making about what images are to be acquired on-board. The principal argument for this capability is that the desirability of making an observation can change dynamically, because of changes in meteorological conditions (e.g. cloud cover), unforeseen events such as fires, floods, or volcanic eruptions, or un-expected changes in satellite or ground station capability. Furthermore, since satellites can only communicate with the ground between 5% to 10% of the time, it may be infeasible to make the desired changes to the schedule on the ground, and uplink the revisions in time for the on-board system to execute them. Examples of scenarios that motivate an on-board capability for revising schedules include the following. First, if a desired visual scene is completely obscured by clouds, then there is little point in taking it. In this case

  3. 75 FR 64389 - Proposed Recommendation to the Social Security Administration for Occupational Information System...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-19

    ... ADMINISTRATION Proposed Recommendation to the Social Security Administration for Occupational Information System... on plans and activities to create an occupational information system tailored specifically for our... System Development Planning. The comment period is open through November 8, 2010. Contact...

  4. Attitude Accuracy Study for the Earth Observing System (EOS) AM-1 Spacecraft

    NASA Technical Reports Server (NTRS)

    Lesikar, James D., II; Garrick, Joseph C.

    1996-01-01

    Earth Observing System (EOS) spacecraft will take measurements of the Earth's clouds, oceans, atmosphere, land, and radiation balance. These EOS spacecraft are part of the National Aeronautics and Space Administration's Mission to Planet Earth, and consist of several series of satellites, with each series specializing in a particular class of observations. This paper focuses on the EOS AM-1 spacecraft, which is the first of three satellites constituting the EOS AM series (morning equatorial crossing) and the initial spacecraft of the EOS program. EOS AM-1 has a stringent onboard attitude knowledge requirement, of 36/41/44 arc seconds (3 sigma) in yaw/roll/pitch, respectively. During normal mission operations, attitude is determined onboard using an extended Kalman sequential filter via measurements from two charge coupled device (CCD) star trackers, one Fine Sun Sensor, and an Inertial Rate Unit. The attitude determination error analysis system (ADEAS) was used to model the spacecraft and mission profile, and in a worst case scenario with only one star tracker in operation, the attitude uncertainty was 9.7/ll.5/12.2 arc seconds (3 sigma) in yaw/roll/pitch. The quoted result assumed the spacecraft was in nominal attitude, using only the 1-rotation per orbit motion of the spacecraft about the pitch axis for calibration of the gyro biases. Deviations from the nominal attitude would show greater attitude uncertainties, unless calibration maneuvers which roll and/or yaw the spacecraft have been performed. This permits computation of the gyro misalignments, and the attitude knowledge requirement would remain satisfied.

  5. Selected computer system controls at the Energy Information Administration

    SciTech Connect

    Not Available

    1991-09-01

    The purpose of our review of the Energy Information Administration's (EIA) computer system was to evaluate disk and tape information storage and the adequacy of internal controls in the operating system programs. We used a set of computer-assisted audit techniques called CAATS, developed by the US Department of Transportation, Office of Inspector General, in performing the review at the EIA Forrestal Computer Facility. Improved procedures are needed to assure more efficient use of disk space. By transferring data sets from disk to tape, deleting invalid data, releasing unused reserve space and blocking data efficiently, disk space with an estimated value of $1.1 million a year could be recovered for current use. Also, procedures governing the maximum times for storage of information on tapes should be enforced to help ensure that data is not lost. In addition, improved internal controls are needed over granting users system-wide privileges and over authorized program library names to prevent unauthorized access to the system and possible destruction or manipulation of data. Automated Data Processing (ADP) Services Staff officials indicated that software maintenance was not current, due to contractual difficulties with the operating contractor for the Forrestal Facility. Our review confirmed that improvements were needed to help prevent malfunctions of the operating system, which could cause performance degradations, system failures, or loss of either system or user data. Management generally concurred with the recommendations in the report.

  6. TERSSE: Definition of the Total Earth Resources System for the Shuttle Era. Volume 4: The Role of the Shuttle in the Earth Resources Program

    NASA Technical Reports Server (NTRS)

    1974-01-01

    The potential of the space shuttle as a platform for captive earth resources payloads in the sortie mode, and as a launch and services vehicle for automated earth resources spacecraft is examined. The capabilities of the total space transportation system which are pertinent to earth resources sorties and automated spacecraft are included.

  7. Distributed Computation Resources for Earth System Grid Federation (ESGF)

    NASA Astrophysics Data System (ADS)

    Duffy, D.; Doutriaux, C.; Williams, D. N.

    2014-12-01

    The Intergovernmental Panel on Climate Change (IPCC), prompted by the United Nations General Assembly, has published a series of papers in their Fifth Assessment Report (AR5) on processes, impacts, and mitigations of climate change in 2013. The science used in these reports was generated by an international group of domain experts. They studied various scenarios of climate change through the use of highly complex computer models to simulate the Earth's climate over long periods of time. The resulting total data of approximately five petabytes are stored in a distributed data grid known as the Earth System Grid Federation (ESGF). Through the ESGF, consumers of the data can find and download data with limited capabilities for server-side processing. The Sixth Assessment Report (AR6) is already in the planning stages and is estimated to create as much as two orders of magnitude more data than the AR5 distributed archive. It is clear that data analysis capabilities currently in use will be inadequate to allow for the necessary science to be done with AR6 data—the data will just be too big. A major paradigm shift from downloading data to local systems to perform data analytics must evolve to moving the analysis routines to the data and performing these computations on distributed platforms. In preparation for this need, the ESGF has started a Compute Working Team (CWT) to create solutions that allow users to perform distributed, high-performance data analytics on the AR6 data. The team will be designing and developing a general Application Programming Interface (API) to enable highly parallel, server-side processing throughout the ESGF data grid. This API will be integrated with multiple analysis and visualization tools, such as the Ultrascale Visualization Climate Data Analysis Tools (UV-CDAT), netCDF Operator (NCO), and others. This presentation will provide an update on the ESGF CWT's overall approach toward enabling the necessary storage proximal computational

  8. Digital Object Identifiers for NASA's Earth Observing System Products

    NASA Astrophysics Data System (ADS)

    Moses, J. F.; James, N.

    2012-12-01

    The science community has long recognized the importance of citing data in published literature to encourage replication of experiments and verification of results. Authors that try to cite their data often find that publishers will not accept Internet addresses because they are viewed as transient references, frequently changed by the data provider after the paper is published. Digital Object Identifiers (DOIs) and the DOI® System were created to avoid this problem by providing a unique and persistent identifier scheme and an online resolution service. DOIs and the Internet service provided by the DOI System have emerged as the most acceptable scheme for publishers. NASA's Earth Science Data and Information System (ESDIS) Project, in cooperation with several Earth Observing System (EOS) instrument teams and data providers, has developed methods for assigning DOIs to EOS products. By assigning DOIs we are enabling authors and publishers to find it easier and more compelling to cite EOS data products. DOIs are unique alphanumeric strings that consist of a prefix and suffix. The prefix is assigned by a registration agency for the DOI System. The suffix must be unique, but is otherwise free to be constructed by the publisher, in this case NASA ESDIS Project. A strategy was needed for constructing DOI suffix names that corresponds to each EOS product. Since the onset of the DOI System, publishers have developed conventions to suit their own purposes. These range from random generation to complex, formally controlled vocabularies. An overarching ESDIS goal has been for the DOI names to be attractive for researchers to use in publication applications. Keeping them short and simple is paramount. When adding meaning to the string, it is also important that the name only refer to the data and not to the publisher, so that the DOI can be accepted as persistent even if the data is moved to a new publisher. Most users download EOS product files to their local facilities when

  9. Remote Sensing of Tolkien's Middle Earth: A Unique Interactive Application of Earth System Observational Tools

    NASA Astrophysics Data System (ADS)

    Almberg, L. D.; Dean, K.; Foster, R.; Kalbfleisch, D.; Peirce, M.; Simmons, T.

    2004-12-01

    The power of remote sensing tools were combined with the creativity of bright young minds and the magic of J.R.R. Tolkien's Middle Earth to provide a unique educational opportunity. Four students, age 12 to 15, were introduced to the basics of space-based Earth observation tools and aerial photography interpretation during the 10-day Alaska Summer Research Academy at the University of Alaska Fairbanks June 9-18, 2004. The students created an interactive map of Tolkein's Middle Earth by selecting aerial photographs, Landsat and FLIR images to represent areas of the Hobbits' journey as described in the popular Lord of the Rings books and films. Ground truthing excursions were made in the Alaskan interior to determine if the regions selected from the images and photographs indeed fit with Tolkein's descriptions. The students presented their final results to their peers in a morning news format, following the flight of the Hobbits across the landscape in their quest to destroy the One Ring.

  10. A Web-Based Earth-Systems Knowledge Portal and Collaboration Platform

    NASA Astrophysics Data System (ADS)

    D'Agnese, F. A.; Turner, A. K.

    2010-12-01

    In support of complex water-resource sustainability projects in the Great Basin region of the United States, Earth Knowledge, Inc. has developed several web-based data management and analysis platforms that have been used by its scientists, clients, and public to facilitate information exchanges, collaborations, and decision making. These platforms support accurate water-resource decision-making by combining second-generation internet (Web 2.0) technologies with traditional 2D GIS and web-based 2D and 3D mapping systems such as Google Maps, and Google Earth. Most data management and analysis systems use traditional software systems to address the data needs and usage behavior of the scientific community. In contrast, these platforms employ more accessible open-source and “off-the-shelf” consumer-oriented, hosted web-services. They exploit familiar software tools using industry standard protocols, formats, and APIs to discover, process, fuse, and visualize earth, engineering, and social science datasets. Thus, they respond to the information needs and web-interface expectations of both subject-matter experts and the public. Because the platforms continue to gather and store all the contributions of their broad-spectrum of users, each new assessment leverages the data, information, and expertise derived from previous investigations. In the last year, Earth Knowledge completed a conceptual system design and feasibility study for a platform, which has a Knowledge Portal providing access to users wishing to retrieve information or knowledge developed by the science enterprise and a Collaboration Environment Module, a framework that links the user-access functions to a Technical Core supporting technical and scientific analyses including Data Management, Analysis and Modeling, and Decision Management, and to essential system administrative functions within an Administrative Module. The over-riding technical challenge is the design and development of a single

  11. Systems definition space-based power conversion systems. [for satellite power transmission to earth

    NASA Technical Reports Server (NTRS)

    1976-01-01

    Potential space-located systems for the generation of electrical power for use on Earth are discussed and include: (1) systems producing electrical power from solar energy; (2) systems producing electrical power from nuclear reactors; and (3) systems for augmenting ground-based solar power plants by orbital sunlight reflectors. Systems (1) and (2) would utilize a microwave beam system to transmit their output to Earth. Configurations implementing these concepts were developed through an optimization process intended to yield the lowest cost for each. A complete program was developed for each concept, identifying required production rates, quantities of launches, required facilities, etc. Each program was costed in order to provide the electric power cost appropriate to each concept.

  12. Advancing Capabilities for Understanding the Earth System Through Intelligent Systems, the NSF Perspective

    NASA Astrophysics Data System (ADS)

    Gil, Y.; Zanzerkia, E. E.; Munoz-Avila, H.

    2015-12-01

    The National Science Foundation (NSF) Directorate for Geosciences (GEO) and Directorate for Computer and Information Science (CISE) acknowledge the significant scientific challenges required to understand the fundamental processes of the Earth system, within the atmospheric and geospace, Earth, ocean and polar sciences, and across those boundaries. A broad view of the opportunities and directions for GEO are described in the report "Dynamic Earth: GEO imperative and Frontiers 2015-2020." Many of the aspects of geosciences research, highlighted both in this document and other community grand challenges, pose novel problems for researchers in intelligent systems. Geosciences research will require solutions for data-intensive science, advanced computational capabilities, and transformative concepts for visualizing, using, analyzing and understanding geo phenomena and data. Opportunities for the scientific community to engage in addressing these challenges are available and being developed through NSF's portfolio of investments and activities. The NSF-wide initiative, Cyberinfrastructure Framework for 21st Century Science and Engineering (CIF21), looks to accelerate research and education through new capabilities in data, computation, software and other aspects of cyberinfrastructure. EarthCube, a joint program between GEO and the Advanced Cyberinfrastructure Division, aims to create a well-connected and facile environment to share data and knowledge in an open, transparent, and inclusive manner, thus accelerating our ability to understand and predict the Earth system. EarthCube's mission opens an opportunity for collaborative research on novel information systems enhancing and supporting geosciences research efforts. NSF encourages true, collaborative partnerships between scientists in computer sciences and the geosciences to meet these challenges.

  13. Western Area Power Administration. Combined power system financial statements

    SciTech Connect

    1998-02-26

    This report presents the results of the independent certified public accountants` audit of the Western Area Power Administration`s combined power system statements of assets, Federal investment and liabilities, and the related combined statements of revenues, expenses and accumulated net revenues, and cash flows. The auditors` report on Westerns internal control structure disclosed three new reportable conditions concerning the lack of: (1) a reconciliation of stores inventory from subsidiary ledgers to summary financial information, (2) communication of interest during construction and related adjustments to interest on Federal investment, and (3) a system to prevent and detect power billing errors. None of the conditions were considered to be material weaknesses. Western provided concurrence and corrective action plans. The auditors` report on Western`s compliance with laws and regulations also disclosed two new instances of noncompliance. Western failed to calculate nonreimbursable expenses in accordance with the Grand Canyon Protection Act and had an unexplained difference in gross Federal investment balances used to calculate interest on Federal investment. Western provided concurrence and corrective action plans for the instances.

  14. Image data processing system requirements study. Volume 1: Analysis. [for Earth Resources Survey Program

    NASA Technical Reports Server (NTRS)

    Honikman, T.; Mcmahon, E.; Miller, E.; Pietrzak, L.; Yorsz, W.

    1973-01-01

    Digital image processing, image recorders, high-density digital data recorders, and data system element processing for use in an Earth Resources Survey image data processing system are studied. Loading to various ERS systems is also estimated by simulation.

  15. The Clouds and the Earth's Radiant Energy System Elevation Bearing Assembly Life Test

    NASA Technical Reports Server (NTRS)

    Brown, Phillip L.; Miller, James B.; Jones, William R., Jr.; Rasmussen, Kent; Wheeler, Donald R.; Rana, Mauro; Peri, Frank

    1999-01-01

    The Clouds and the Earth's Radiant Energy System (CERES) elevation scan bearings lubricated with Pennzane SHF X2000 and 2% lead naphthenate (PbNp) were life tested for a seven-year equivalent Low Earth Orbit (LEO) operation. The bearing life assembly was tested continuously at an accelerated and normal rate using the scanning patterns developed for the CERES Earth Observing System AM-1 mission. A post-life-test analysis was performed on the collected data, bearing wear, and lubricant behavior.

  16. System for Packaging Planetary Samples for Return to Earth

    NASA Technical Reports Server (NTRS)

    Badescu, Mircea; Bar-Cohen, Yoseph; Backes, paul G.; Sherrit, Stewart; Bao, Xiaoqi; Scott, James S.

    2010-01-01

    A system is proposed for packaging material samples on a remote planet (especially Mars) in sealed sample tubes in preparation for later return to Earth. The sample tubes (Figure 1) would comprise (1) tubes initially having open tops and closed bottoms; (2) small, bellows-like collapsible bodies inside the tubes at their bottoms; and (3) plugs to be eventually used to close the tops of the tubes. The top inner surface of each tube would be coated with solder. The side of each plug, which would fit snugly into a tube, would feature a solder-filled ring groove. The system would include equipment for storing, manipulating, filling, and sealing the tubes. The containerization system (see Figure 2) will be organized in stations and will include: the storage station, the loading station, and the heating station. These stations can be structured in circular or linear pattern to minimize the manipulator complexity, allowing for compact design and mass efficiency. The manipulation of the sample tube between stations is done by a simple manipulator arm. The storage station contains the unloaded sample tubes and the plugs before sealing as well as the sealed sample tubes with samples after loading and sealing. The chambers at the storage station also allow for plug insertion into the sample tube. At the loading station the sample is poured or inserted into the sample tube and then the tube is topped off. At the heating station the plug is heated so the solder ring melts and seals the plug to the sample tube. The process is performed as follows: Each tube is filled or slightly overfilled with sample material and the excess sample material is wiped off the top. Then, the plug is inserted into the top section of the tube packing the sample material against the collapsible bellowslike body allowing the accommodation of the sample volume. The plug and the top of the tube are heated momentarily to melt the solder in order to seal the tube.

  17. Nuclear electric power and propulsion system for earth orbital and solar system exploration applications

    NASA Technical Reports Server (NTRS)

    Phillips, W. M.

    1979-01-01

    This paper discusses the design of a Nuclear Electric Propulsion (NEP) system, selection of thrusters and propellant. Outer planet exploration requirements are compared to earth orbital power requirements and a nuclear electric power system with a power level of 200 to 250 kWe is recommended. Current technology appears capable of accomplishing the early missions and growth potential exists for accomplishing more difficult later missions without significant changes in the basic system.

  18. Big Data in the Earth Observing System Data and Information System

    NASA Technical Reports Server (NTRS)

    Lynnes, Chris; Baynes, Katie; McInerney, Mark

    2016-01-01

    Approaches that are being pursued for the Earth Observing System Data and Information System (EOSDIS) data system to address the challenges of Big Data were presented to the NASA Big Data Task Force. Cloud prototypes are underway to tackle the volume challenge of Big Data. However, advances in computer hardware or cloud won't help (much) with variety. Rather, interoperability standards, conventions, and community engagement are the key to addressing variety.

  19. In-orbit performance of the ITOS improved attitude control system with Hall generator brushless motor and earth-splitting technique

    NASA Technical Reports Server (NTRS)

    Peacock, W. M.

    1973-01-01

    The National Aeronautics and Space Administration (NASA), launched ITOS-D with an improved attitude control system. A Hall generator brushless dc torque motor replaced the brush dc torque motor on Tiros-M and ITOS-A. Two CO2 attitude horizon sensors and one mirror replaced the four wideband horizon sensors and two mirrors on ITOS-1 and NOAA-1. Redundant pitch-control electronic boxes containing additional electronic circuitry for earth-splitting and brushless motor electronics were used. A method of generating a spacecraft earth-facing side reference for comparison to the time occurrence of the earth-splitting pulse was used to automatically correct pitch-attitude error. A single rotating flywheel, supported by a single bearing, provided gyroscopic stability and the required momentum interchange to keep one side of the satellite facing the earth. Magnetic torquing against the earth's magnetic field eliminated the requirement for expendable propellants which would limit satellite life in orbit.

  20. Global Analysis, Interpretation and Modelling: An Earth Systems Modelling Program

    NASA Technical Reports Server (NTRS)

    Moore, Berrien, III; Sahagian, Dork

    1997-01-01

    The Goal of the GAIM is: To advance the study of the coupled dynamics of the Earth system using as tools both data and models; to develop a strategy for the rapid development, evaluation, and application of comprehensive prognostic models of the Global Biogeochemical Subsystem which could eventually be linked with models of the Physical-Climate Subsystem; to propose, promote, and facilitate experiments with existing models or by linking subcomponent models, especially those associated with IGBP Core Projects and with WCRP efforts. Such experiments would be focused upon resolving interface issues and questions associated with developing an understanding of the prognostic behavior of key processes; to clarify key scientific issues facing the development of Global Biogeochemical Models and the coupling of these models to General Circulation Models; to assist the Intergovernmental Panel on Climate Change (IPCC) process by conducting timely studies that focus upon elucidating important unresolved scientific issues associated with the changing biogeochemical cycles of the planet and upon the role of the biosphere in the physical-climate subsystem, particularly its role in the global hydrological cycle; and to advise the SC-IGBP on progress in developing comprehensive Global Biogeochemical Models and to maintain scientific liaison with the WCRP Steering Group on Global Climate Modelling.

  1. Scaling the Earth System Grid to 100Gbps Networks

    SciTech Connect

    Balman, Mehmet; Sim, Alex

    2012-03-02

    The SC11 demonstration, titled Scaling the Earth System Grid to 100Gbps Networks, showed the ability to use underlying infrastructure for the movement of climate data over 100Gbps network. Climate change research is one of the critical data intensive sciences, and the amount of data is continuously growing. Climate simulation data is geographically distributed over the world, and it needs to be accessed from many sources for fast and efficient analysis and inter-comparison of simulations. We used a 100Gbps link connecting National Energy Research Scientific Computing Center (NERSC) at Lawrence Berkeley National Laboratory (LBNL), Argonne National Laboratory (ANL) and Oak Ridge National Laboratory (ORNL). In the demo, the Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment Report (AR4) phase 3 of the Coupled Model Intercomparison Project (CMIP-3) dataset was staged into the memory of computing nodes at ANL and ORNL from NERSC over the 100Gbps network for analysis and visualization. In general, climate simulation data consists of relatively small and large files with irregular file size distribution in each dataset. In this demo, we addressed challenges on data management in terms of high bandwidth networks, usability of existing protocols and middleware tools, and how applications can adapt and benefit from next generation networks.

  2. Basic GAPS: A Dynamic Earth System Model For Students

    NASA Astrophysics Data System (ADS)

    Robin, J.; Levine, E.

    2004-12-01

    Basic GAPS is a computer model for students that can simulate the cycles of water and energy between the atmosphere, soil, and vegetation. Students can easily obtain the required soil, vegetation, phenology, and climate data from sources such as the GLOBE program data archive and input the information through guided menus. As the model simulation runs, the flow of water and other environmental processes are displayed so students can observe how different parts of the system change and are affected by each other. A major goal of the Basic GAPS model is to teach students that the Earth's ecosystems are the result of closely linked, dynamic interactions among many processes and many components. Basic GAPS enables students to study the interplay among these processes in a quantitative way with dynamic visualizations. They can examine linkages within a particular biome, such as the sensitivity of soil moisture to seasonal changes in the overlying vegetation or the amount of evaporation and transpiration under certain types of soil or land use. Using Basic GAPS, students can also make up different scenarios (such as increasing the temperature, changing the pattern of precipitation, or modifying the soil properties or vegetation type) to make predictions about how the ecosystem may respond. In this way, students, just like scientists, can pose and address questions regarding the impact of climate, including global climate change, on the environment.

  3. Lightning Imaging Sensor (LIS) for the Earth Observing System

    NASA Technical Reports Server (NTRS)

    Christian, Hugh J.; Blakeslee, Richard J.; Goodman, Steven J.

    1992-01-01

    Not only are scientific objectives and instrument characteristics given of a calibrated optical LIS for the EOS but also for the Tropical Rainfall Measuring Mission (TRMM) which was designed to acquire and study the distribution and variability of total lightning on a global basis. The LIS can be traced to a lightning mapper sensor planned for flight on the GOES meteorological satellites. The LIS consists of a staring imager optimized to detect and locate lightning. The LIS will detect and locate lightning with storm scale resolution (i.e., 5 to 10 km) over a large region of the Earth's surface along the orbital track of the satellite, mark the time of occurrence of the lightning, and measure the radiant energy. The LIS will have a nearly uniform 90 pct. detection efficiency within the area viewed by the sensor, and will detect intracloud and cloud-to-ground discharges during day and night conditions. Also, the LIS will monitor individual storms and storm systems long enough to obtain a measure of the lightning flashing rate when they are within the field of view of the LIS. The LIS attributes include low cost, low weight and power, low data rate, and important science. The LIS will study the hydrological cycle, general circulation and sea surface temperature variations, along with examinations of the electrical coupling of thunderstorms with the ionosphere and magnetosphere, and observations and modeling of the global electric circuit.

  4. Above-belowground Carbon Allocation in Earth System Models

    NASA Astrophysics Data System (ADS)

    Song, X.; Hoffman, F. M.; Xu, X.; Iversen, C. M.; Kumar, J.

    2014-12-01

    Above-belowground carbon allocation is a critical mechanism for vegetation growth and its adaptation to the changing environment. The model representation of carbon allocation mechanisms significantly influence the simulated carbon stock and land-atmosphere exchange in Earth System Models (ESMs). Few previous studies, however, have investigated and evaluated the above-belowground carbon allocation in ESMs. In this study, we analyzed carbon density in belowground, total vegetation (above + belowground), and belowground:vegetation ratios of eleven ESMs from the Coupled Model Inter-comparison Project Phase 5 (CMIP5), which were used for the latest IPCC Assessment Report (AR5). Overall, results of ESMs are not consistent with observational data; both the belowground and total vegetation carbon density are underestimated in tropical/subtropical and temperate regions, while overestimated in arctic/subarctic regions. Moreover, the ratios of belowground:total vegetation carbon are underestimated in all three climate zones. The model-data discrepancies in carbon density vary substantially among biomes, while the ratios of belowground:total vegetation carbon are consistently underestimated across all major biomes expect tropical moist forests. This study indicates that the carbon allocation algorithms in current ESMs need to be improved to better simulate vegetation growth and its responses to global change.

  5. Simulating the Earth system response to negative emissions

    NASA Astrophysics Data System (ADS)

    Jones, C. D.; Ciais, P.; Davis, S. J.; Friedlingstein, P.; Gasser, T.; Peters, G. P.; Rogelj, J.; van Vuuren, D. P.; Canadell, J. G.; Cowie, A.; Jackson, R. B.; Jonas, M.; Kriegler, E.; Littleton, E.; Lowe, J. A.; Milne, J.; Shrestha, G.; Smith, P.; Torvanger, A.; Wiltshire, A.

    2016-09-01

    Natural carbon sinks currently absorb approximately half of the anthropogenic CO2 emitted by fossil fuel burning, cement production and land-use change. However, this airborne fraction may change in the future depending on the emissions scenario. An important issue in developing carbon budgets to achieve climate stabilisation targets is the behaviour of natural carbon sinks, particularly under low emissions mitigation scenarios as required to meet the goals of the Paris Agreement. A key requirement for low carbon pathways is to quantify the effectiveness of negative emissions technologies which will be strongly affected by carbon cycle feedbacks. Here we find that Earth system models suggest significant weakening, even potential reversal, of the ocean and land sinks under future low emission scenarios. For the RCP2.6 concentration pathway, models project land and ocean sinks to weaken to 0.8 ± 0.9 and 1.1 ± 0.3 GtC yr-1 respectively for the second half of the 21st century and to -0.4 ± 0.4 and 0.1 ± 0.2 GtC yr-1 respectively for the second half of the 23rd century. Weakening of natural carbon sinks will hinder the effectiveness of negative emissions technologies and therefore increase their required deployment to achieve a given climate stabilisation target. We introduce a new metric, the perturbation airborne fraction, to measure and assess the effectiveness of negative emissions.

  6. Earth System Grid II, Turning Climate Datasets into Community Resources

    SciTech Connect

    Middleton, Don

    2006-08-01

    The Earth System Grid (ESG) II project, funded by the Department of Energy’s Scientific Discovery through Advanced Computing program, has transformed climate data into community resources. ESG II has accomplished this goal by creating a virtual collaborative environment that links climate centers and users around the world to models and data via a computing Grid, which is based on the Department of Energy’s supercomputing resources and the Internet. Our project’s success stems from partnerships between climate researchers and computer scientists to advance basic and applied research in the terrestrial, atmospheric, and oceanic sciences. By interfacing with other climate science projects, we have learned that commonly used methods to manage and remotely distribute data among related groups lack infrastructure and under-utilize existing technologies. Knowledge and expertise gained from ESG II have helped the climate community plan strategies to manage a rapidly growing data environment more effectively. Moreover, approaches and technologies developed under the ESG project have impacted datasimulation integration in other disciplines, such as astrophysics, molecular biology and materials science.

  7. LAWS (Laser Atmospheric Wind Sounder) earth observing system

    NASA Technical Reports Server (NTRS)

    1988-01-01

    Wind profiles can be measured from space using current technology. These wind profiles are essential for answering many of the interdisciplinary scientific questions to be addressed by EOS, the Earth Observing System. This report provides guidance for the development of a spaceborne wind sounder, the Laser Atmospheric Wind Sounder (LAWS), discussing the current state of the technology and reviewing the scientific rationale for the instrument. Whether obtained globally from the EOS polar platform or in the tropics and subtropics from the Space Station, wind profiles from space will provide essential information for advancing the skill of numerical weather prediction, furthering knowledge of large-scale atmospheric circulation and climate dynamics, and improving understanding of the global biogeochemical and hydrologic cycles. The LAWS Instrument Panel recommends that it be given high priority for new instrument development because of the pressing scientific need and the availability of the necessary technology. LAWS is to measure wind profiles with an accuracy of a few meters per second and to sample at intervals of 100 km horizontally for layers km thick.

  8. The Earth System Science Pathfinder Orbiting Carbon Observatory (OCO) Mission

    NASA Technical Reports Server (NTRS)

    Crisp, David

    2003-01-01

    A viewgraph presentation describing the Earth System Science Pathfinder Orbiting Carbon Observatory (OCO) Mission is shown. The contents include: 1) Why CO2?; 2) What Processes Control CO2 Sinks?; 3) OCO Science Team; 4) Space-Based Measurements of CO2; 5) Driving Requirement: Precise, Bias-Free Global Measurements; 6) Making Precise CO2 Measurements from Space; 7) OCO Spatial Sampling Strategy; 8) OCO Observing Modes; 9) Implementation Approach; 10) The OCO Instrument; 11) The OCO Spacecraft; 12) OCO Will Fly in the A-Train; 13) Validation Program Ensures Accuracy and Minimizes Spatially Coherent Biases; 14) Can OCO Provide the Required Precision?; 15) O2 Column Retrievals with Ground-based FTS; 16) X(sub CO2) Retrieval Simulations; 17) Impact of Albedo and Aerosol Uncertainty on X(sub CO2) Retrievals; 18) Carbon Cycle Modeling Studies: Seasonal Cycle; 19) Carbon Cycle Modeling Studies: The North-South Gradient in CO2; 20) Carbon Cycle Modeling Studies: Effect of Diurnal Biases; 21) Project Status and Schedule; and 22) Summary.

  9. Improving the representation of hydrologic processes in Earth System Models

    SciTech Connect

    Clark, Martyn P.; Fan, Ying; Lawrence, David M.; Adam, Jennifer C.; Bolster, Diogo; Gochis, David J.; Hooper, Richard P.; Kumar, Mukesh; Leung, L. Ruby; Mackay, D. Scott; Maxwell, Reed M.; Shen, Chaopeng; Swenson, Sean C.; Zeng, Xubin

    2015-08-21

    Many of the scientific and societal challenges in understanding and preparing for global environmental change rest upon our ability to understand and predict the water cycle change at large river basin, continent, and global scales. However, current large-scale models, such as the land components of Earth System Models (ESMs), do not yet represent the terrestrial water cycle in a fully integrated manner or resolve the finer-scale processes that can dominate large-scale water budgets. This paper reviews the current representation of hydrologic processes in ESMs and identifies the key opportunities for improvement. This review suggests that (1) the development of ESMs has not kept pace with modeling advances in hydrology, both through neglecting key processes (e.g., groundwater) and neglecting key aspects of spatial variability and hydrologic connectivity; and (2) many modeling advances in hydrology can readily be incorporated into ESMs and substantially improve predictions of the water cycle. Accelerating modeling advances in ESMs requires comprehensive hydrologic benchmarking activities, in order to systematically evaluate competing modeling alternatives, understand model weaknesses, and prioritize model development needs. This demands stronger collaboration, both through greater engagement of hydrologists in ESM development and through more detailed evaluation of ESM processes in research watersheds. Advances in the representation of hydrologic process in ESMs can substantially improve energy, carbon and nutrient cycle prediction capabilities through the fundamental role the water cycle plays in regulating these cycles.

  10. Terra - 15 Years as the Earth Observing System Flagship Observatory

    NASA Astrophysics Data System (ADS)

    Thome, K. J.

    2014-12-01

    Terra marks its 15th year on orbit with an array of accomplishments and the potential to do much more. Efforts continue to extend the Terra data record to make its data more valuable by creating a record length to examine interannual variability, observe trends on the decadal scale, and gather statistics relevant to climate metrics. Continued data from Terra's complementary instruments will play a key role in creating the data record needed for scientists to develop an understanding of our climate system. Terra's suite of instruments: ASTER (contributed by the Japanese Ministry of Economy and Trade and Industry with a JPL-led US Science Team), CERES (NASA LaRC - PI), MISR (JPL - PI), MODIS (NASA GSFC), and MOPITT (sponsored by Canadian Space Agency with NCAR-led Science Team) are providing an unprecedented 81 core data products. The annual demand for Terra data remains with >120 million files distributed in 2011 and >157 million in 2012. More than 1,100 peer-reviewed publications appeared in 2012 using Terra data bringing the lifetime total >7,600. Citation numbers of 21,000 for 2012 and over 100,000 for the mission's lifetime. The power of Terra is in the high quality of the data calibration, sensor characterization, and the complementary nature of the instruments covering a range of scientific measurements as well as scales. The broad range of products enable the community to provide answers to the overarching question, "How is the Earth changing and what are the consequences for life on Earth?" Terra continues to provide data that: (1) Extend the baseline of morning-orbit collections; (2) Enable comparison of measurements acquired from past high-impact events; (3) Add value to recently-launched and soon-to-be launched missions, and upcoming field programs. Terra data continue to support monitoring and relief efforts for natural and man-made disasters that involve U.S. interests. Terra also contributes to Applications Focus Areas supporting the U.S. National

  11. Understanding and quantifying foliar temperature acclimation for Earth System Models

    NASA Astrophysics Data System (ADS)

    Smith, N. G.; Dukes, J.

    2015-12-01

    Photosynthesis and respiration on land are the two largest carbon fluxes between the atmosphere and Earth's surface. The parameterization of these processes represent major uncertainties in the terrestrial component of the Earth System Models used to project future climate change. Research has shown that much of this uncertainty is due to the parameterization of the temperature responses of leaf photosynthesis and autotrophic respiration, which are typically based on short-term empirical responses. Here, we show that including longer-term responses to temperature, such as temperature acclimation, can help to reduce this uncertainty and improve model performance, leading to drastic changes in future land-atmosphere carbon feedbacks across multiple models. However, these acclimation formulations have many flaws, including an underrepresentation of many important global flora. In addition, these parameterizations were done using multiple studies that employed differing methodology. As such, we used a consistent methodology to quantify the short- and long-term temperature responses of maximum Rubisco carboxylation (Vcmax), maximum rate of Ribulos-1,5-bisphosphate regeneration (Jmax), and dark respiration (Rd) in multiple species representing each of the plant functional types used in global-scale land surface models. Short-term temperature responses of each process were measured in individuals acclimated for 7 days at one of 5 temperatures (15-35°C). The comparison of short-term curves in plants acclimated to different temperatures were used to evaluate long-term responses. Our analyses indicated that the instantaneous response of each parameter was highly sensitive to the temperature at which they were acclimated. However, we found that this sensitivity was larger in species whose leaves typically experience a greater range of temperatures over the course of their lifespan. These data indicate that models using previous acclimation formulations are likely incorrectly

  12. Integration of satellite fire products into MPI Earth System Model

    NASA Astrophysics Data System (ADS)

    Khlystova, Iryna G.; Kloster, Silvia

    2013-04-01

    Fires are the ubiquitous phenomenon affecting all natural biomes. Since the beginning of the satellite Era, fires are being continuously observed from satellites. The most interesting satellite parameter retrieved from satellite measurements is the burned area. Combined with information on biomass available for burning the burned area can be translated into climate relevant carbon emissions from fires into the atmosphere. In this study we integrate observed burned area into a global vegetation model to derive global fire emissions. Global continuous burned area dataset is provided by the Global Fire Emissions Dataset (GFED). GFED products were obtained from MODIS (and pre-MODIS) satellites and are available for the time period of 14 years (1997-2011). This dataset is widely used, well documented and supported by periodical updates containing new features. We integrate the global burned area product into the land model JSBACH, a part of the Earth-System model developed at the Max Plank Institute for Meteorology. The land model JSBACH simulates land biomass in terms of carbon content. Fire is an important disturbance process in the Earth's carbon cycle and affects mainly the carbon stored in vegetation. In the standard JSBACH version fire is represented by process based algorithms. Using the satellite data as an alternative we are targeting better comparability of modeled carbon emissions with independent satellite measurements of atmospheric composition. The structure of burned vegetation inside of a biome can be described as the balance between woody and herbaceous vegetation. GFED provides in addition to the burned area satellite derived information of the tree cover distribution within the burned area. Using this dataset, we can attribute the burned area to the respective simulated herbaceous or woody biomass within the vegetation model. By testing several extreme cases we evaluate the quantitative impact of vegetation balance between woody and herbaceous

  13. Land and Atmosphere Near-Real-Time Capability for Earth Observing System

    NASA Technical Reports Server (NTRS)

    Murphy, Kevin J.

    2011-01-01

    The past decade has seen a rapid increase in availability and usage of near-real-time data from satellite sensors. The EOSDIS (Earth Observing System Data and Information System) was not originally designed to provide data with sufficiently low latency to satisfy the requirements for near-real-time users. The EOS (Earth Observing System) instruments aboard the Terra, Aqua and Aura satellites make global measurements daily, which are processed into higher-level 'standard' products within 8-40 hours of observation and then made available to users, primarily earth science researchers. However, applications users, operational agencies, and even researchers desire EOS products in near-real-time to support research and applications, including numerical weather and climate prediction and forecasting, monitoring of natural hazards, ecological/invasive species, agriculture, air quality, disaster relief and homeland security. These users often need data much sooner than routine science processing allows, usually within 3 hours, and are willing to trade science product quality for timely access. While Direct Broadcast provides more timely access to data, it does not provide global coverage. In 2002, a joint initiative between NASA (National Aeronautics and Space Administration), NOAA (National Oceanic and Atmospheric Administration), and the DOD (Department of Defense) was undertaken to provide data from EOS instruments in near-real-time. The NRTPE (Near Real Time Processing Effort) provided products within 3 hours of observation on a best-effort basis. As the popularity of these near-real-time products and applications grew, multiple near-real-time systems began to spring up such as the Rapid Response System. In recognizing the dependence of customers on this data and the need for highly reliable and timely data access, NASA's Earth Science Division sponsored the Earth Science Data and Information System Project (ESDIS)-led development of a new near-real-time system called

  14. Data mining in earth system science (DMESS 2011).

    SciTech Connect

    Hoffman, F. M.; Larson, J. W.; Mills, R. T.; Brooks, B. G. J.; Ganguly, A. R.; Hargrove, W. W.; Huang, J.; Kumar, J.; Vatsavai, R. R.; , USDA Forest Service)

    2011-01-01

    From field-scale measurements to global climate simulations and remote sensing, the growing body of very large and long time series Earth science data are increasingly difficult to analyze, visualize, and interpret. Data mining, information theoretic, and machine learning techniques - such as cluster analysis, singular value decomposition, block entropy, Fourier and wavelet analysis, phase-space reconstruction, and artificial neural networks - are being applied to problems of segmentation, feature extraction, change detection, model-data comparison, and model validation. The size and complexity of Earth science data exceed the limits of most analysis tools and the capacities of desktop computers. New scalable analysis and visualization tools, running on parallel cluster computers and supercomputers, are required to analyze data of this magnitude. This workshop will demonstrate how data mining techniques are applied in the Earth sciences and describe innovative computer science methods that support analysis and discovery in the Earth sciences.

  15. Data Mining in Earth System Science (DMESS 2011)

    SciTech Connect

    Hoffman, Forrest M; Larson, Jay; Mills, Richard T; Brooks, Bjorn; Ganguly, Auroop R; Hargrove, William Walter; Huang, Jian; Kumar, Jitendra; Vatsavai, Raju

    2011-01-01

    From field-scale measurements to global climate simulations and remote sensing, the growing body of very large and long time series Earth science data are increasingly difficult to analyze, visualize, and interpret. Data mining, information theoretic, and machine learning techniques - such as cluster analysis, singular value decomposition, block entropy, Fourier and wavelet analysis, phase-space reconstruction, and artificial neural networks - are being applied to problems of segmentation, feature extraction, change detection, model-data comparison, and model validation. The size and complexity of Earth science data exceed the limits of most analysis tools and the capacities of desktop computers. New scalable analysis and visualization tools, running on parallel cluster computers and supercomputers, are required to analyze data of this magnitude. This workshop will demonstrate how data mining techniques are applied in the Earth sciences and describe innovative computer science methods that support analysis and discovery in the Earth sciences.

  16. Earth Observing System (EOS) Terra Spacecraft 120 Volt Power Subsystem: Requirements, Development and Implementation

    NASA Technical Reports Server (NTRS)

    Keys, Denney J.

    2000-01-01

    Built by the Lockheed-Martin Corporation, the Earth Observing System (EOS) TERRA spacecraft represents the first orbiting application of a 120 Vdc high voltage spacecraft electrical power system implemented by the National Aeronautics and Space Administration (NASA) Goddard Space Flight Center (GSFC). The EOS TERRA spacecraft's launch provided a major contribution to the NASA Mission to Planet Earth program while incorporating many state of the art electrical power system technologies to achieve its mission goals. The EOS TERRA spacecraft was designed around five state-of-the-art scientific instrument packages designed to monitor key parameters associated with the earth's climate. The development focus of the TERRA electrical power system (EPS) resulted from a need for high power distribution to the EOS TERRA spacecraft subsystems and instruments and minimizing mass and parasitic losses. Also important as a design goal of the EPS was maintaining tight regulation on voltage and achieving low conducted bus noise characteristics. This paper outlines the major requirements for the EPS as well as the resulting hardware implementation approach adopted to meet the demands of the EOS TERRA low earth orbit mission. The selected orbit, based on scientific needs, to achieve the EOS TERRA mission goals is a sun-synchronous circular 98.2degree inclination Low Earth Orbit (LEO) with a near circular average altitude of 705 kilometers. The nominal spacecraft orbit is approximately 99 minutes with an average eclipse period of about 34 minutes. The scientific goal of the selected orbit is to maintain a repeated 10:30 a.m. +/- 15 minute descending equatorial crossing which provides a fairly clear view of the earth's surface and relatively low cloud interference for the instrument observation measurements. The major EOS TERRA EPS design requirements are single fault tolerant, average orbit power delivery of 2, 530 watts with a defined minimum lifetime of five years (EOL). To meet

  17. Monitoring the Earth System Grid Federation through the ESGF Dashboard

    NASA Astrophysics Data System (ADS)

    Fiore, S.; Bell, G. M.; Drach, B.; Williams, D.; Aloisio, G.

    2012-12-01

    The Climate Model Intercomparison Project, phase 5 (CMIP5) is a global effort coordinated by the World Climate Research Programme (WCRP) involving tens of modeling groups spanning 19 countries. It is expected the CMIP5 distributed data archive will total upwards of 3.5 petabytes, stored across several ESGF Nodes on four continents (North America, Europe, Asia, and Australia). The Earth System Grid Federation (ESGF) provides the IT infrastructure to support the CMIP5. In this regard, the monitoring of the distributed ESGF infrastructure represents a crucial part carried out by the ESGF Dashboard. The ESGF Dashboard is a software component of the ESGF stack, responsible for collecting key information about the status of the federation in terms of: 1) Network topology (peer-groups composition), 2) Node type (host/services mapping), 3) Registered users (including their Identity Providers), 4) System metrics (e.g., round-trip time, service availability, CPU, memory, disk, processes, etc.), 5) Download metrics (both at the Node and federation level). The last class of information is very important since it provides a strong insight of the CMIP5 experiment: the data usage statistics. In this regard, CMCC and LLNL have developed a data analytics management system for the analysis of both node-level and federation-level data usage statistics. It provides data usage statistics aggregated by project, model, experiment, variable, realm, peer node, time, ensemble, datasetname (including version), etc. The back-end of the system is able to infer the data usage information of the entire federation, by carrying out: - at node level: a 18-step reconciliation process on the peer node databases (i.e. node manager and publisher DB) which provides a 15-dimension datawarehouse with local statistics and - at global level: an aggregation process which federates the data usage statistics into a 16-dimension datawarehouse with federation-level data usage statistics. The front-end of the

  18. The Role of NASA Observations in Understanding Earth System Change

    NASA Technical Reports Server (NTRS)

    Fladeland, Matthew M.

    2009-01-01

    This presentation will introduce a non-technical audience to NASA Earth science research goals and the technologies used to achieve them. The talk will outline the primary science focus areas and then provide overviews of current and planned missions, in addition to instruments, aircraft, and other technologies that are used to turn data into useful information for scientists and policy-makers. This presentation is part of an Earth Day symposium at the University of Mary.

  19. High-latitude dust in the Earth system

    NASA Astrophysics Data System (ADS)

    Bullard, Joanna E.; Baddock, Matthew; Bradwell, Tom; Crusius, John; Darlington, Eleanor; Gaiero, Diego; Gassó, Santiago; Gisladottir, Gudrun; Hodgkins, Richard; McCulloch, Robert; McKenna-Neuman, Cheryl; Mockford, Tom; Stewart, Helena; Thorsteinsson, Throstur

    2016-06-01

    Natural dust is often associated with hot, subtropical deserts, but significant dust events have been reported from cold, high latitudes. This review synthesizes current understanding of high-latitude (≥50°N and ≥40°S) dust source geography and dynamics and provides a prospectus for future research on the topic. Although the fundamental processes controlling aeolian dust emissions in high latitudes are essentially the same as in temperate regions, there are additional processes specific to or enhanced in cold regions. These include low temperatures, humidity, strong winds, permafrost and niveo-aeolian processes all of which can affect the efficiency of dust emission and distribution of sediments. Dust deposition at high latitudes can provide nutrients to the marine system, specifically by contributing iron to high-nutrient, low-chlorophyll oceans; it also affects ice albedo and melt rates. There have been no attempts to quantify systematically the expanse, characteristics, or dynamics of high-latitude dust sources. To address this, we identify and compare the main sources and drivers of dust emissions in the Northern (Alaska, Canada, Greenland, and Iceland) and Southern (Antarctica, New Zealand, and Patagonia) Hemispheres. The scarcity of year-round observations and limitations of satellite remote sensing data at high latitudes are discussed. It is estimated that under contemporary conditions high-latitude sources cover >500,000 km2 and contribute at least 80-100 Tg yr-1 of dust to the Earth system (~5% of the global dust budget); both are projected to increase under future climate change scenarios.

  20. Observed tidal braking in the earth/moon/sun system

    NASA Astrophysics Data System (ADS)

    Christodoulidis, D. C.; Smith, D. E.; Williamson, R. G.; Klosko, S. M.

    1988-06-01

    The low degree and order terms in the spherical harmonic model of the tidal potential were observed through the perturbations which are induced on near-earth satellite orbital motions. Evaluations of tracking observations from 17 satellites and a GEM-T1 geopotential model were used in the tidal recovery which was made in the presence of over 600 long-wavelength coefficients from 32 major and minor tides. Wahr's earth tidal model was used as a basis for the recovery of the ocean tidal terms. Using this tidal model, the secular change in the moon's mean motion due to tidal dissipation was found to be -25.27 + or - 0.61 arcsec/century-squared. The estimation of lunar acceleration agreed with that observed from lunar laser ranging techniques (-24.9 + or - 1.0 arcsec/century-squared), with the corresponding tidal braking of earth's rotation being -5.98 + or - 0.22 X 10 to the -22 rad/second-squared. If the nontidal braking of the earth due to the observed secular change in the earth's second zonal harmonic is considered, satellite techniques yield a total value of the secular change in the earth's rotation rate of -4.69 + or - 0.36 X 10 to the -22 rad/second-squared.

  1. Observed tidal braking in the earth/moon/sun system

    NASA Technical Reports Server (NTRS)

    Christodoulidis, D. C.; Smith, D. E.; Williamson, R. G.; Klosko, S. M.

    1987-01-01

    The low degree and order terms in the spherical harmonic model of the tidal potential were observed through the perturbations which are induced on near-earth satellite orbital motions. Evaluations of tracking observations from 17 satellites and a GEM-T1 geopotential model were used in the tidal recovery which was made in the presence of over 600 long-wavelength coefficients from 32 major and minor tides. Wahr's earth tidal model was used as a basis for the recovery of the ocean tidal terms. Using this tidal model, the secular change in the moon's mean motion due to tidal dissipation was found to be -25.27 + or - 0.61 arcsec/century squared. The estimation of lunar acceleration agreed with that observed from lunar laser ranging techniques (-24.9 + or - 1.0 arcsec/century squared), with the corresponding tidal braking of earth's rotation being -5.98 + or - 0.22 x 10 to the minus 22 rad/second squared. If the nontidal braking of the earth due to the observed secular change in the earth's second zonal harmonic is considered, satellite techniques yield a total value of the secular change of the earth's rotation rate of -4.69 + or - 0.36 x 10 to the minus 22 rad/second squared.

  2. Observed tidal braking in the earth/moon/sun system

    NASA Technical Reports Server (NTRS)

    Christodoulidis, D. C.; Smith, D. E.; Williamson, R. G.; Klosko, S. M.

    1988-01-01

    The low degree and order terms in the spherical harmonic model of the tidal potential were observed through the perturbations which are induced on near-earth satellite orbital motions. Evaluations of tracking observations from 17 satellites and a GEM-T1 geopotential model were used in the tidal recovery which was made in the presence of over 600 long-wavelength coefficients from 32 major and minor tides. Wahr's earth tidal model was used as a basis for the recovery of the ocean tidal terms. Using this tidal model, the secular change in the moon's mean motion due to tidal dissipation was found to be -25.27 + or - 0.61 arcsec/century-squared. The estimation of lunar acceleration agreed with that observed from lunar laser ranging techniques (-24.9 + or - 1.0 arcsec/century-squared), with the corresponding tidal braking of earth's rotation being -5.98 + or - 0.22 X 10 to the -22 rad/second-squared. If the nontidal braking of the earth due to the observed secular change in the earth's second zonal harmonic is considered, satellite techniques yield a total value of the secular change in the earth's rotation rate of -4.69 + or - 0.36 X 10 to the -22 rad/second-squared.

  3. A review of the US Global Change Research Program and NASA's Mission to Planet Earth/Earth Observing System

    NASA Technical Reports Server (NTRS)

    Moore, Berrien, III; Anderson, James G.; Costanza, Robert; Gates, W. Lawrence; Grew, Priscilla C.; Leinen, Margaret S.; Mayewski, Paul A.; McCarthy, James J.; Sellers, Piers J.

    1995-01-01

    This report reflects the results of a ten-day workshop convened at the Scripps Institution of Oceanography July 19-28, 1995. The workshop was convened as the first phase of a two part review of the U.S. Global Change Research Program (USGCRP). The workshop was organized to provide a review of the scientific foundations and progress to date in the USGCRP and an assessment of the implications of new scientific insights for future USGCRP and Mission to Planet Earth/Earth Observing System (MTPE/EOS) activities; a review of the role of NASA's MTPE/EOS program in the USGCRP observational strategy; a review of the EOS Data and Information System (EOSDIS) as a component of USGCRP data management activities; and an assessment of whether recent developments in the following areas lead to a need to readjust MTPE/EOS plans. Specific consideration was given to: proposed convergence of U.S. environmental satellite systems and programs, evolving international plans for Earth observation systems, advances in technology, and potential expansion of the role of the private sector. The present report summarizes the findings and recommendations developed by the Committee on Global Change Research on the basis of the presentations, background materials, working group deliberations, and plenary discussions of the workshop. In addition, the appendices include summaries prepared by the six working groups convened in the course of the workshop.

  4. High School Symposium for Earth Systems Education (Columbus, Ohio, October 1994). Proceedings and Summary.

    ERIC Educational Resources Information Center

    Fortner, Rosanne W., Ed.; Mayer, Victor J., Ed.

    This volume contains the proceedings and summary for the Earth Systems Education high school symposium conducted in October, 1994. Selected participants were invited to contribute papers for inclusion in this volume so that other teachers can see how Earth Systems Education (ESE) looks in practice. The volume also contains the context for ESE in…

  5. Earth Systems Education: Origins and Opportunities. Science Education for Global Understanding. Second Edition.

    ERIC Educational Resources Information Center

    University of Northern Colorado, Greeley.

    This publication introduces and provides a framework for Earth Systems Education (ESE), an effort to establish within U.S. schools more effective programs designed to increase the public's understanding of the Earth system. The publication presents seven "understandings" around which curriculum can be organized and materials selected in…

  6. Earth Observing System. Science and Mission Requirements, Volume 1, Part 1

    NASA Technical Reports Server (NTRS)

    1984-01-01

    The Earth Observing System (EOS) is a planned NASA program, which will carry the multidisciplinary Earth science studies employing a variety of remote sensing techniques in the 1990's, as a prime mission, using the Space Station polar platform. The scientific rationale, recommended observational needs, the broad system configuration and a recommended implementation strategy to achieve the stated mission goals are provided.

  7. Atmospheric radiative flux divergence from Clouds and Earth Radiant Energy System (CERES)

    NASA Technical Reports Server (NTRS)

    Smith, Louis G.; Charlock, Thomas P.; Crommelynk, D.; Rutan, David; Gupta, Shashi

    1990-01-01

    A major objective of the Clouds and Earth Radiant Energy System (CERES) is the computation of vertical profiles through the atmosphere of the divergence of radiation flux, with global coverage. This paper discusses the need for radiation divergence and presents some options for its inference from CERES measurements and other data from the Earth Observating System.

  8. Using Digital Globes to Explore the Deep Sea and Advance Public Literacy in Earth System Science

    ERIC Educational Resources Information Center

    Beaulieu, Stace E.; Emery, Emery; Brickley, Annette; Spargo, Abbey; Patterson, Kathleen; Joyce, Katherine; Silva, Tim; Madin, Katherine

    2015-01-01

    Digital globes are new technologies increasingly used in informal and formal education to display global datasets and show connections among Earth systems. But how effective are digital globes in advancing public literacy in Earth system science? We addressed this question by developing new content for digital globes with the intent to educate and…

  9. Systemic and behavioral effects of intranasal administration of silver nanoparticles.

    PubMed

    Davenport, Laurie L; Hsieh, Heidi; Eppert, Bryan L; Carreira, Vinicius S; Krishan, Mansi; Ingle, Taylor; Howard, Paul C; Williams, Michael T; Vorhees, Charles V; Genter, Mary Beth

    2015-01-01

    Use of silver nanoparticles (AgNPs) for their antimicrobial properties is widespread. Much of the previous work on the toxicity of AgNPs has been conducted in vitro or following oral or intravenous administration in vivo. Intranasal (IN) instillation of AgNPs mimics inhalation exposure and allows further exploration of the toxicity of these particles via respiratory tract exposure. The present study involved 1) single-dose exposures to assess tissue distribution and toxicity and 2) repeated exposures to assess behavioral effects of IN AgNP exposure (nominally uncoated 25 nm AgNP). AgNP deposition was localized in the liver, gut-associated lymphoid tissue, and brain. Decrease cellularity in spleen follicles was observed in treated mice, along with changes in cell number and populations in the spleen. The splenic GSH:GSSG ratio was also reduced following AgNP exposure. Expression of the oxidative stress-responsive gene Hmox1 was elevated in the hippocampus, but not cortex of treated mice, as was the level of HMOX1 protein. Mice receiving 7 days of IN exposure to 50 mg/kg AgNPs exhibited similar learning- and memory-related behaviors to control mice, except that treated mice spent significantly less time in the target quadrant of the Morris Water Maze during the acquisition phase probe trial. These findings indicate systemic distribution and toxicity following IN administration of AgNPs.

  10. Systemic and Behavioral Effects of Intranasal Administration of Silver Nanoparticles

    PubMed Central

    Davenport, Laurie L.; Hsieh, Heidi; Eppert, Bryan L.; Carreira, Vinicius S.; Krishan, Mansi; Ingle, Taylor; Howard, Paul C.; Williams, Michael T.; Vorhees, Charles V.; Genter, Mary Beth

    2015-01-01

    Use of silver nanoparticles (AgNPs) for their antimicrobial properties is widespread. Much of the previous work on the toxicity of AgNPs has been conducted in vitro or following oral or intravenous administration in vivo. Intranasal (IN) instillation of AgNPs mimics inhalation exposure and allows further exploration of the toxicity of these particles via respiratory tract exposure. The present study involved 1) single-dose exposures to assess tissue distribution and toxicity and 2) repeated exposures to assess behavioral effects of IN AgNP exposure (nominally uncoated 25 nm AgNP). AgNP deposition was localized in the liver, gut-associated lymphoid tissue, and brain. Decrease cellularity in spleen follicles was observed in treated mice, along with changes in cell number and populations in the spleen. The splenic GSH:GSSG ratio was also reduced following AgNP exposure. Expression of the oxidative stress-responsive gene Hmox1 was elevated in the hippocampus, but not cortex of treated mice, as was the level of HMOX1 protein. Mice receiving 7 days of IN exposure to 50 mg/kg AgNPs exhibited similar learning- and memory-related behaviors to control mice, except that treated mice spent significantly less time in the target quadrant of the Morris Water Maze during the acquisition phase probe trial. These findings indicate systemic distribution and toxicity following IN administration of AgNPs. PMID:26340819

  11. A Conceptual Framework for Assessment of the Benefits of a Global Earth Observation System of Systems

    NASA Astrophysics Data System (ADS)

    Fritz, S.; Scholes, R. J.; Obersteiner, M.; Bouma, J.

    2007-12-01

    The aim of the Global Earth Observation System of Systems (GEOSS) is to contribute to human wellbeing though improving the information available to decision-makers at all levels relating to human health and safety, protection of the global environment, the reduction of losses from natural disasters, and achieving sustainable development. Specifically, GEOSS proposes that better international co-operation in the collection, interpretation and sharing of Earth Observation information is an important and cost-effective mechanism for achieving this aim. While there is a widespread intuition that this proposition is correct, at some point the following question needs to be answered: how much additional investment in Earth Observation (and specifically, in its international integration) is enough? This leads directly to some challenging subsidiary questions, such as how can the benefits of Earth Observation be assessed? What are the incremental costs of GEOSS? Are there societal benefit areas where the return on investment is higher than in others? The Geo-Bene project has developed a `benefit chain' concept as a framework for addressing these questions. The basic idea is that an incremental improvement in the observing system (including its data collection, interpretation and information-sharing aspects) will result in an improvement in the quality of decisions based on that information. This will in turn lead to better societal outcomes, which have a value. This incremental value must be judged against the incremental cost of the improved observation system. Since in many cases there will be large uncertainties in the estimation of both the costs and the benefits, and it may not be possible to express one or both of them in monetary terms, we show how order-of-magnitude approaches and a qualitative understanding of the shape of the cost-benefit curves can help guide rational investment decision in Earth Observation systems.

  12. What Makes Earth and Space Science Sexy? A Model for Developing Systemic Change in Earth and Space Systems Science Curriculum and Instruction

    NASA Astrophysics Data System (ADS)

    Slutskin, R. L.

    2001-12-01

    Earth and Space Science may be the neglected child in the family of high school sciences. In this session, we examine the strategies that Anne Arundel County Public Schools and NASA Goddard Space Flight Center used to develop a dynamic and highly engaging program which follows the vision of the National Science Education Standards, is grounded in key concepts of NASA's Earth Science Directorate, and allows students to examine and apply the current research of NASA scientists. Find out why Earth/Space Systems Science seems to have usurped biology and has made students, principals, and teachers clamor for similar instructional practices in what is traditionally thought of as the "glamorous" course.

  13. Development of an Interdisciplinary Undergraduate Major in The Earth System, Environment and Society

    NASA Astrophysics Data System (ADS)

    Wuebbles, D. J.

    2003-12-01

    Humanity faces great challenges in the 21st Century to understand and limit our impact on the Earth System. To address these challenges, it is essential to understand the nature and implications of environmental change, and the complexity of the Earth system. We need to educate citizens that have the background to make new developments in understanding technical aspects of the Earth System, and to develop an understanding the interactions between society and the Earth System sufficient to make informed policy choices. Traditional disciplinary departments and majors don't fully address this; teaching and research talent in the study of the Earth System is spread over many disciplinary-oriented departments. At the University of Illinois, we are currently developing a new cross-disciplinary undergraduate major being called The Earth system, environment and Society. This development is co-sponsored by a number of departments centered in the College of Liberal Arts & Sciences (but including other departments throughout the university). Our intention is that this major will be a catalyst for bringing together the many disciplines involved in Earth System Science education. The curriculum and course for study will focus on the science and human dimensions of the Earth system, with special emphasis on the processes and issues related to the environment across a range of spatial scales from local and regional to global. Along with meeting the requirements expected of all students in a liberal arts and sciences major, students in The Earth System, Environment and Society major will be required to complete a core set of courses designed to introduce students to all of the different components of the Earth System (students will choose from course options in both the sciences and the social sciences). After completing the core courses, students will then focus their studies on one of the two options within the major, Science of the Earth System (this option will emphasize the

  14. Administrators Build Their Own Systems at Loyola University.

    ERIC Educational Resources Information Center

    Doty, Kathlyn E.; Krumrey, Arthur J.

    1982-01-01

    The administrative user services instituted at Loyola University of Chicago, which provides administrators with immediate access to computing at low cost, is described. After preliminary training and file initialization, users are responsible for their own data processing. (Author/MLW)

  15. Study and prototype of data system interactions for the Earth Observing System Data and Information System

    NASA Technical Reports Server (NTRS)

    Emmitt, G. D.; Wood, S. A.; Morris, M.

    1990-01-01

    A crucial part of the Earth Observing System (EOS) is its Data and Information System (EOSDIS). The success of EOS depends not only on its instruments and science studies, but also on its ability to help scientists integrate data sets of geophysical and biological measurements taken by various instruments and investigators. NASA contractors have completed Phase B studies of EOSDIS, in particular its architecture, functionality, and user interfacing. At this point in time, it may seem impossible to exercise the EOSDIS or any of its components since they do not exist; i.e., if the EOSDIS is accepted as a totally new system, distinct from any existing DIS. However, if EOSDIS is seen as evolving from existing data systems, then some limited prototyping studies can be conducted by using currently functioning systems. In support of both the EOSDIS Science Advisory Panel and the EOSDIS Project, a prototyping activity was carried out by a cross section of interdisciplinary scientists. That prototyping activity is summarized and some conclusions are drawn that can be used by NASA-Goddard to evaluate and modify the specifications soon to be released in an RFP to build EOSDIS.

  16. Implementation of an advanced clinical and administrative hospital information system.

    PubMed

    Vegoda, P R; Dyro, J F

    1986-01-01

    Over the last six years since University Hospital opened, the University Hospital Information System (UHIS) has continued to evolve to what is today an advanced administrative and clinical information system. At University Hospital UHIS is the way of conducting business. A wide range of patient care applications are operational including Patient Registration, ADT for Inpatient/Outpatient/Emergency Room visits, Advanced Order Entry/Result Reporting, Medical Records, Lab Automated Data Acquisition/Quality Control, Pharmacy, Radiology, Dietary, Respiratory Therapy, ECG, EEG, Cardiology, Physical/Occupational Therapy and Nursing. These systems and numerous financial systems have been installed in a highly tuned, efficient computer system. All applications are real-time, on-line, and data base oriented. Each system is provided with multiple data security levels, forward file recovery, and dynamic transaction backout of in-flight tasks. Sensitive medical information is safeguarded by job function passwords, identification codes, need-to-know master screens and terminal keylocks. University Hospital has an IBM 3083 CPU with five 3380 disk drives, four dual density tape drives, and a 3705 network controller. The network of 300 terminals and 100 printers is connected to the computer center by an RF broadband cable. The software is configured around the IBM/MVS operating system using CICS as the telecommunication monitor, IMS as the data base management system and PCS/ADS as the application enabling tool. The most extensive clinical system added to UHIS is the Physiological Monitoring/Patient Data Management System with serves 92 critical care beds. In keeping with the Hospital's philosophy of integrated computing, the PMS/PDMS with its network of minicomputers was linked to the UHIS system. In a pilot program, remote access to UHIS through the IBM personal computer has been implemented in several physician offices in the local community, further extending the communications

  17. An overview of the Earth system science of solar geoengineering: Overview of the earth system science of solar geoengineering

    SciTech Connect

    Irvine, Peter J.; Kravitz, Ben; Lawrence, Mark G.; Muri, Helene

    2016-07-14

    Solar geoengineering has been proposed as a means to cool the planet by increasing the reflection of sunlight back to space, for example by injecting reflective aerosol particles into the middle atmosphere. Such proposals are not able to physically substitute for mitigation of greenhouse gas emissions as a response to the risks of climate change, but might eventually be applied as a complementary approach to reduce climate risks. Thus, the Earth system consequences of solar geoengineering are central to understanding its potentials and risks. Here we review the state-of-the-art knowledge about geoengineering by stratospheric sulphate aerosol injection. We examine the common responses found in studies of an idealized form of solar geoengineering, in which the intensity of incoming sunlight is directly reduced in models. The studies reviewed are consistent in suggesting that solar geoengineering would generally reduce the differences in climate in comparison to future scenarios with elevated greenhouse gas concentrations and no solar geoengineering. However, it is clear that a solar geoengineered climate would be novel in some respects, for example a notable reduction in the intensity of the hydrological cycle. We provide an overview of the unique aspects of the response to stratospheric aerosol injection and the uncertainties around its consequences. We also consider the issues raised by the partial control over the climate that solar geoengineering would allow. Finally, this overview also highlights the key research gaps that will need to be resolved in order to effectively guide future decisions on the potential use of solar geoengineering.

  18. Earth Observatory Satellite system definition study. Report 5: System design and specifications. Volume 2: EOS-A system specification

    NASA Technical Reports Server (NTRS)

    1974-01-01

    The objectives of the Earth Observatory Satellite (EOS) program are defined. The system specifications for the satellite payload are examined. The broad objectives of the EOS-A program are as follows: (1) to develop space-borne sensors for the measurement of land resources, (2) to evolve spacecraft systems and subsystems which will permit earth observation with greater accuracy, coverage, spatial resolution, and continuity than existing systems, (3) to develop improved information processing, extraction, display, and distribution systems, and (4) to use space transportation systems for resupply and retrieval of the EOS.

  19. The Emergence of Land Use as a Global Force in the Earth System

    NASA Astrophysics Data System (ADS)

    Ellis, E. C.

    2015-12-01

    Human societies have emerged as a global force capable of transforming the biosphere, hydrosphere, lithosphere, atmosphere and climate. As a result, the long-term dynamics of the Earth system can no longer be understood or predicted without understanding their coupling with human societal dynamics. Here, a general causal theory is presented to explain why behaviorally modern humans, unlike any prior multicellular species, gained this unprecedented capacity to reshape the Earth system and how this societal capacity has changed from the Pleistocene to the present and future. Sociocultural niche construction theory, building on existing theories of ecosystem engineering, niche construction, the extended evolutionary synthesis, cultural evolution, ultrasociality and social change, can explain both the long-term upscaling of human societies and their unprecedented capacity to transform the Earth system. Regime shifts in human sociocultural niche construction, from the clearing of land using fire, to shifting cultivation, to intensive agriculture, to global food systems dependent on fossil fuel combustion, have enabled human societies to scale up while gaining the capacity to reshape the global patterns and processes of biogeography, ecosystems, landscapes, biomes, the biosphere, and ultimately the functioning of the Earth system. Just as Earth's geophysical climate system shapes the long-term dynamics of energy and material flow across the "spheres" of the Earth system, human societies, interacting at global scale to form "human systems", are increasingly shaping the global dynamics of energy, material, biotic and information flow across the spheres of the Earth system, including a newly emerged anthroposphere comprised of human societies and their material cultures. Human systems and the anthroposphere are strongly coupled with climate and other Earth systems and are dynamic in response to evolutionary changes in human social organization, cooperative ecosystem

  20. Statistical Treatment of Earth Observing System Pyroshock Separation Test Data

    NASA Technical Reports Server (NTRS)

    McNelis, Anne M.; Hughes, William O.

    1998-01-01

    The Earth Observing System (EOS) AM-1 spacecraft for NASA's Mission to Planet Earth is scheduled to be launched on an Atlas IIAS vehicle in June of 1998. One concern is that the instruments on the EOS spacecraft are sensitive to the shock-induced vibration produced when the spacecraft separates from the launch vehicle. By employing unique statistical analysis to the available ground test shock data, the NASA Lewis Research Center found that shock-induced vibrations would not be as great as the previously specified levels of Lockheed Martin. The EOS pyroshock separation testing, which was completed in 1997, produced a large quantity of accelerometer data to characterize the shock response levels at the launch vehicle/spacecraft interface. Thirteen pyroshock separation firings of the EOS and payload adapter configuration yielded 78 total measurements at the interface. The multiple firings were necessary to qualify the newly developed Lockheed Martin six-hardpoint separation system. Because of the unusually large amount of data acquired, Lewis developed a statistical methodology to predict the maximum expected shock levels at the interface between the EOS spacecraft and the launch vehicle. Then, this methodology, which is based on six shear plate accelerometer measurements per test firing at the spacecraft/launch vehicle interface, was used to determine the shock endurance specification for EOS. Each pyroshock separation test of the EOS spacecraft simulator produced its own set of interface accelerometer data. Probability distributions, histograms, the median, and higher order moments (skew and kurtosis) were analyzed. The data were found to be lognormally distributed, which is consistent with NASA pyroshock standards. Each set of lognormally transformed test data produced was analyzed to determine if the data should be combined statistically. Statistical testing of the data's standard deviations and means (F and t testing, respectively) determined if data sets were

  1. Potential of nanoparticulate drug delivery systems by intranasal administration.

    PubMed

    Ali, Javed; Ali, Mushir; Baboota, Sanjula; Sahani, Jasjeet Kaur; Ramassamy, Charles; Dao, Lé; Bhavna

    2010-05-01

    Due to number of problems related with oral, parenteral, rectal and other routes of drug administration, the interest of pharmaceutical scientists has increased towards exploring the possibilities of intranasal delivery of various drugs. Nasal drug delivery system is commonly known for the treatment of local ailments like cold, cough, rhinitis, etc. Efforts have been made to deliver various drugs, especially peptides and proteins, through nasal route for systemic use; utilizing the principles and concepts of various nanoparticulate drug delivery systems using various polymers and absorption promoters. The incorporation of drugs into nanoparticles might be a promising approach, since colloidal formulations have been shown to protect them from the degrading milieu in the nasal cavity and facilitate their transport across the mucosal barriers. The use of nanoparticles for vaccine delivery provides beneficial effect, by achieving good immune responses. This could be due to the fact that small particles can be transported preferentially by the lymphoid tissue of the nasal cavity (NALT). The brain gets benefited through the intranasal delivery as direct olfactory transport bypasses the blood brain barrier and nanoparticles are taken up and conveyed along cell processes of olfactory neurons through the cribriform plate to synaptic junctions with neurons of the olfactory bulb. The intranasal delivery is aimed at optimizing drug bioavailability for systemic drugs, as absorption decreases with increasing molecular weight, and for drugs, which are susceptible to enzymatic degradation such as proteins and polypeptides. This review discusses the potential benefits of using nanoparticles for nasal delivery of drugs and vaccines for brain, systemic and topical delivery. The article aims at giving an insight into nasal cavity, consideration of factors affecting and strategies to improve drug absorption through nasal route, pharmaceutical dosage forms and delivery systems with

  2. The Impact of Methane Clathrate Emissions on the Earth System

    NASA Astrophysics Data System (ADS)

    Cameron-Smith, P. J.; Bhattacharyya, S.; Bergmann, D. J.; Reagan, M. T.; Elliott, S.; Moridis, G. J.

    2013-12-01

    Methane is locked in ice-like deposits called clathrates in ocean sediments and underneath permafrost regions. Clathrates are stable under high pressures and low temperatures, so in a warming climate, increases in ocean temperatures could lead to dissociation of the clathrates and release methane into the ocean and subsequently the atmosphere, where methane is both an important greenhouse gas and a key species in atmospheric chemistry. Clathrates in the shallower parts of the Arctic Ocean (around 300m depth) are predicted to be particularly important since clathrates at that depth are expected to start outgassing abruptly in the next few decades. We will present the atmospheric impact of such methane emissions using multi-century steady-state simulations with a version of the Community Earth System Model (CESM) that includes atmospheric chemistry. Our simulations include a plausible release from clathrates in the Arctic that increases global methane emissions above present-day conditions by 22%, as well as a scenario with 10 times those clathrate emissions. The CESM model includes a fully interactive physical ocean, to which we added a fast atmospheric chemistry mechanism that represents methane as a fully interactive tracer (with emissions rather than concentration boundary conditions). The results indicate that such Arctic clathrate emissions (1) increase global methane concentrations by an average of 38%, non-uniformly; (2) increase surface ozone concentrations by around 10% globally, and even more in polluted regions; (3) increase methane lifetime by 13%; (4) increase the interannual variability in surface methane, surface ozone, and methane lifetime, and (5) show modest differences in surface temperature and methane lifetime compared to simulations in which the clathrate emissions are distributed uniformly. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  3. Chemistry and Climate in Asia - An Earth System Modeling Project

    NASA Astrophysics Data System (ADS)

    Barth, M. C.; Emmons, L. K.; Massie, S. T.; Pfister, G.; Romero Lankao, P.; Lamarque, J.; Carmichael, G. R.

    2011-12-01

    Asia is one of the most highly populated and economically dynamic regions in the world, with much of the population located in growing mega-cities. It is a region with significant emissions of greenhouse gases, aerosols and other pollutants, which pose high health risks to urban populations. Emissions of these aerosols and gases increased drastically over the last decade due to economic growth and urbanization and are expected to rise further in the near future. As such, the continent plays a role in influencing climate change via its effluent of aerosols and gaseous pollutants. Asia is also susceptible to adverse climate change through interactions between aerosols and clouds, which potentially can have serious implications for freshwater resources. We are developing an integrated inter-disciplinary program to focus on Asia, its climate, air quality, and impact on humans that will include connections with hydrology, ecosystems, extreme weather events, and human health. The primary goal of this project is to create a team to identify key scientific questions and establish networks of specialists to create a plan for future studies to address these questions. A second goal is to establish research facilities and a framework for investigating chemistry and climate over Asia. These facilities include producing high resolution Earth System Model simulations that have been evaluated with meteorological and chemical measurements, producing high-resolution emission inventories, analyzing satellite data, and analyzing the vulnerability of humans to air quality and extreme natural events. In this presentation we will describe in more detail these activities and discuss a future workshop on the impact of chemistry in climate on air quality and human health.

  4. Creating Undergraduate Community Ambassadors of Earth System Science

    NASA Astrophysics Data System (ADS)

    Vierling, L.; Vierling, K.

    2004-12-01

    A major challenge--and responsibility--facing scientists is the effective communication of complex scientific information to lay audiences. While this issue is important regardless of scientific discipline, conveying accurate information about earth system science (ESS) is particularly critical because: 1) ESS lies at the heart of formulating environmental policy from the local to global scale, 2) public interest is high with respect to many ESS topics (e.g. climate change), 3) ESS is inherently complex and uncertain, 4) ESS involves large spatial and temporal scales not routinely dealt with by the lay public, and 5) media reports regarding key ESS topics are often brief and lack the depth necessary to appropriately convey the scientific debate and consensus on a topic. As part of an effort to improve the communication of ESS-related information to non-scientists, we required undergraduate science and engineering students to prepare a detailed paper on some current aspect of ESS and then present this work to community groups. From 1998-2004, 46 students in 5 different ESS-related courses presented information to more than 20 different community groups in South Dakota and Colorado. The majority of students (75%) were apprehensive about the presentations prior to giving them, but after giving the presentations, 95% of the students indicated that they would consider giving similar community presentations in the future. In addition, community groups responded positively to the students; 100% of the community groups indicated that they would be willing to host more students giving these types of presentations. Incorporating this project in our undergraduate ESS classes provides valuable communication experiences to undergraduate science and engineering students and instills in them that knowledge transfer to the community is a worthy professional endeavor, increases the visibility of the college within the community, and represents a necessary and effective transfer of

  5. Projections of leaf area index in earth system models

    DOE PAGES

    Mahowald, Natalie; Lo, Fiona; Zheng, Yun; ...

    2016-03-09

    The area of leaves in the plant canopy, measured as leaf area index (LAI), modulates key land–atmosphere interactions, including the exchange of energy, moisture, carbon dioxide (CO2), and other trace gases and aerosols, and is therefore an essential variable in predicting terrestrial carbon, water, and energy fluxes. Here our goal is to characterize the LAI projections from the latest generation of earth system models (ESMs) for the Representative Concentration Pathway (RCP) 8.5 and RCP4.5 scenarios. On average, the models project increases in LAI in both RCP8.5 and RCP4.5 over most of the globe, but also show decreases in some partsmore » of the tropics. Because of projected increases in variability, there are also more frequent periods of low LAI across broad regions of the tropics. Projections of LAI changes varied greatly among models: some models project very modest changes, while others project large changes, usually increases. Modeled LAI typically increases with modeled warming in the high latitudes, but often decreases with increasing local warming in the tropics. The models with the most skill in simulating current LAI in the tropics relative to satellite observations tend to project smaller increases in LAI in the tropics in the future compared to the average of all the models. Using LAI projections to identify regions that may be vulnerable to climate change presents a slightly different picture than using precipitation projections, suggesting LAI may be an additional useful tool for understanding climate change impacts. Going forward, users of LAI projections from the CMIP5 ESMs evaluated here should be aware that model outputs do not exhibit clear-cut relationships to vegetation carbon and precipitation. Lastly, our findings underscore the need for more attention to LAI projections, in terms of understanding the drivers of projected changes and improvements to model skill.« less

  6. Projections of leaf area index in earth system models

    SciTech Connect

    Mahowald, Natalie; Lo, Fiona; Zheng, Yun; Harrison, Laura; Funk, Chris; Lombardozzi, Danica; Goodale, Christine

    2016-03-09

    The area of leaves in the plant canopy, measured as leaf area index (LAI), modulates key land–atmosphere interactions, including the exchange of energy, moisture, carbon dioxide (CO2), and other trace gases and aerosols, and is therefore an essential variable in predicting terrestrial carbon, water, and energy fluxes. Here our goal is to characterize the LAI projections from the latest generation of earth system models (ESMs) for the Representative Concentration Pathway (RCP) 8.5 and RCP4.5 scenarios. On average, the models project increases in LAI in both RCP8.5 and RCP4.5 over most of the globe, but also show decreases in some parts of the tropics. Because of projected increases in variability, there are also more frequent periods of low LAI across broad regions of the tropics. Projections of LAI changes varied greatly among models: some models project very modest changes, while others project large changes, usually increases. Modeled LAI typically increases with modeled warming in the high latitudes, but often decreases with increasing local warming in the tropics. The models with the most skill in simulating current LAI in the tropics relative to satellite observations tend to project smaller increases in LAI in the tropics in the future compared to the average of all the models. Using LAI projections to identify regions that may be vulnerable to climate change presents a slightly different picture than using precipitation projections, suggesting LAI may be an additional useful tool for understanding climate change impacts. Going forward, users of LAI projections from the CMIP5 ESMs evaluated here should be aware that model outputs do not exhibit clear-cut relationships to vegetation carbon and precipitation. Lastly, our findings underscore the need for more attention to LAI projections, in terms of understanding the drivers of projected changes and improvements to model skill.

  7. Terrestrial nitrogen cycling in Earth system models revisited

    USGS Publications Warehouse

    Stocker, Benjamin D; Prentice, I. Colin; Cornell, Sarah; Davies-Barnard, T; Finzi, Adrien; Franklin, Oskar; Janssens, Ivan; Larmola, Tuula; Manzoni, Stefano; Näsholm, Torgny; Raven, John; Rebel, Karin; Reed, Sasha C.; Vicca, Sara; Wiltshire, Andy; Zaehle, Sönke

    2016-01-01

    Understanding the degree to which nitrogen (N) availability limits land carbon (C) uptake under global environmental change represents an unresolved challenge. First-generation ‘C-only’vegetation models, lacking explicit representations of N cycling,projected a substantial and increasing land C sink under rising atmospheric CO2 concentrations. This prediction was questioned for not taking into account the potentially limiting effect of N availability, which is necessary for plant growth (Hungate et al.,2003). More recent global models include coupled C and N cycles in land ecosystems (C–N models) and are widely assumed to be more realistic. However, inclusion of more processes has not consistently improved their performance in capturing observed responses of the global C cycle (e.g. Wenzel et al., 2014). With the advent of a new generation of global models, including coupled C, N, and phosphorus (P) cycling, model complexity is sure to increase; but model reliability may not, unless greater attention is paid to the correspondence of model process representations ande mpirical evidence. It was in this context that the ‘Nitrogen Cycle Workshop’ at Dartington Hall, Devon, UK was held on 1–5 February 2016. Organized by I. Colin Prentice and Benjamin D. Stocker (Imperial College London, UK), the workshop was funded by the European Research Council,project ‘Earth system Model Bias Reduction and assessing Abrupt Climate change’ (EMBRACE). We gathered empirical ecologists and ecosystem modellers to identify key uncertainties in terrestrial C–N cycling, and to discuss processes that are missing or poorly represented in current models.

  8. The Earth System Grid Center for Enabling Technologies (ESG-CET): Scaling the Earth System Grid to Petascale Data

    SciTech Connect

    Williams, Dean N.

    2007-09-27

    This report, which summarizes work carried out by the ESG-CET during the period April 1, 2007 through September 30, 2007, includes discussion of overall progress, period goals, highlights, collaborations and presentations. To learn more about our project, please visit the Earth System Grid website. In addition, this report will be forwarded to the DOE SciDAC project management, the Office of Biological and Environmental Research (OBER) project management, national and international stakeholders (e.g., the Community Climate System Model (CCSM), the Intergovernmental Panel on Climate Change (IPCC) 5th Assessment Report (AR5), the Climate Science Computational End Station (CCES), etc.), and collaborators. The ESG-CET executive committee consists of David Bernholdt, ORNL; Ian Foster, ANL; Don Middleton, NCAR; and Dean Williams, LLNL. The ESG-CET team is a collective of researchers and scientists with diverse domain knowledge, whose home institutions include seven laboratories (ANL, LANL, LBNL, LLNL, NCAR, ORNL, PMEL) and one university (ISI/USC); all work in close collaboration with the project's stakeholders and domain researchers and scientists. During this semi-annual reporting period, the ESG-CET increased its efforts on completing requirement documents, framework design, and component prototyping. As we strove to complete and expand the overall ESG-CET architectural plans and use-case scenarios to fit our constituency's scope of use, we continued to provide production-level services to the community. These services continued for IPCC AR4, CCES, and CCSM, and were extended to include Cloud Feedback Model Intercomparison Project (CFMIP) data.

  9. Multifunctional astronomical self-organizing system of autonomous navigation and orientation for artificial Earth satellites

    NASA Astrophysics Data System (ADS)

    Kuznetsov, V. I.; Danilova, T. V.

    2017-03-01

    We describe the methods and algorithms of a multifunctional astronomical system of the autonomous navigation and orientation for artificial Earth satellites based on the automatization of the system approach to the design and programming problems of the subject area.

  10. Stable motions around triangular libration points in the real Earth-Moon system

    NASA Astrophysics Data System (ADS)

    Hou, X. Y.; Xin, X.; Scheeres, D. J.; Wang, J.

    2015-12-01

    Stable motions around the triangular libration points (TLP) in the Earth-Moon system perturbed by Sun are described. Two special quasi-periodic orbits around each TLP (called dynamical substitutes in this paper) are given. They were previously described in the planar Sun-Earth-Moon system by Kamel and are numerically obtained in the spatial Sun-Earth-Moon system. Linearized motions around the dynamical substitute are described in a semi-analytical way. The size of the stable region around the substitute is described via a numerical approach, along with the resonance mechanisms that determine the boundary of the stable region. Possible temporary capture from the near Earth objects population is discussed. An observation algorithm to search permanent or temporarily captured objects in this region is given. Some potential applications of the TLPs of the Earth-Moon system in space missions are discussed.

  11. Federal Emergency Management Information System (FEMIS) system administration guide. Version 1.3

    SciTech Connect

    Burford, M.J.; Burnett, R.A.; Downing, T.R.

    1996-12-01

    The Federal Emergency Management Information System (FEMIS) is an emergency management planning and analysis tool that was developed by the (Pacific Northwest National Laboratory) (PNNL) under the direction of the U.S. Army Chemical Biological Defense Command. The FEMIS System Administration Guide defines FEMIS hardware and software requirements and gives instructions for installing the FEMIS software package. 91 This document also contains information on the following: software installation for the FEMIS data servers, communication server, mail server, and the emergency management workstations; distribution media loading and FEMIS installation validation and troubleshooting; and system management of FEMIS users, login, privileges, and usage. The system administration utilities (tools), available in the FEMIS client software, are described for user accounts and site profile. This document also describes the installation and use of system and database administration utilities that will assist in keeping the FEMIS system running in an operational environment.

  12. Understanding Student Cognition about Complex Earth System Processes Related to Climate Change

    NASA Astrophysics Data System (ADS)

    McNeal, K. S.; Libarkin, J.; Ledley, T. S.; Dutta, S.; Templeton, M. C.; Geroux, J.; Blakeney, G. A.

    2011-12-01

    The Earth's climate system includes complex behavior and interconnections with other Earth spheres that present challenges to student learning. To better understand these unique challenges, we have conducted experiments with high-school and introductory level college students to determine how information pertaining to the connections between the Earth's atmospheric system and the other Earth spheres (e.g., hydrosphere and cryosphere) are processed. Specifically, we include psychomotor tests (e.g., eye-tracking) and open-ended questionnaires in this research study, where participants were provided scientific images of the Earth (e.g., global precipitation and ocean and atmospheric currents), eye-tracked, and asked to provide causal or relational explanations about the viewed images. In addition, the students engaged in on-line modules (http://serc.carleton.edu/eslabs/climate/index.html) focused on Earth system science as training activities to address potential cognitive barriers. The developed modules included interactive media, hands-on lessons, links to outside resources, and formative assessment questions to promote a supportive and data-rich learning environment. Student eye movements were tracked during engagement with the materials to determine the role of perception and attention on understanding. Students also completed a conceptual questionnaire pre-post to determine if these on-line curriculum materials assisted in their development of connections between Earth's atmospheric system and the other Earth systems. The pre-post results of students' thinking about climate change concepts, as well as eye-tracking results, will be presented.

  13. A photovoltaic power system and a low-power satellite earth station for Indonesia

    NASA Technical Reports Server (NTRS)

    Delombard, Richard; Everson, Kent

    1985-01-01

    A photovoltaic power system and a low-power, two-way satellite earth station have been installed at Wawotobi, Sulawesi, Indonesia to provide university classroom communications for audio teleconferencing and video graphics. This project is a part of the Agency for International Development's Rural Satellite Program. The purpose of this program is to demonstrate the use of satellite communications for development assistance applications. The purpose of the photovoltaic power system is to demonstrate the suitability of a hybrid photovoltaic/engine-generator power system for a remote satellite earth station. This paper describes the design, installation and initial operation of the photovoltaic power system and the earth station.

  14. A photovoltaic power system and a low-power satellite earth station for Indonesia

    NASA Astrophysics Data System (ADS)

    Delombard, Richard; Everson, Kent

    A photovoltaic power system and a low-power, two-way satellite earth station have been installed at Wawotobi, Sulawesi, Indonesia to provide university classroom communications for audio teleconferencing and video graphics. This project is a part of the Agency for International Development's Rural Satellite Program. The purpose of this program is to demonstrate the use of satellite communications for development assistance applications. The purpose of the photovoltaic power system is to demonstrate the suitability of a hybrid photovoltaic/engine-generator power system for a remote satellite earth station. This paper describes the design, installation and initial operation of the photovoltaic power system and the earth station.

  15. Runtime Tracing of The Community Earth System Model: Feasibility and Benefits

    SciTech Connect

    Wang, Dali; Domke, Jens

    2011-01-01

    Community Earth System Models (CESM) is one of US's leading earth system modeling systems, which has over decades of development history and embraced by large, active user communities. In this paper, we first review the history of CESM software development and layout the general objectives of performance analysis. Then we present an offline global community land model simulation within the CESM framework to demonstrate the procedure of runtime tracing of CESM using the Vampir toolset. Finally, we explain the benefits of runtime tracing to the general earth system modeling community. We hope those considerations can also be beneficial to many other modeling research programs involving legacy high-performance computing applications.

  16. Earth System Modeling -- Director`s initiative. LDRD Program final report

    SciTech Connect

    MacCracken, M.; Penner, J.

    1996-06-01

    The objective of the Earth System Modeling Director`s Initiative is to develop and test a framework for interactively coupling subsystem models that represent the physical, chemical, and biological processes which determine the state of the atmosphere, ocean, land surface and vegetation. Most studies of the potential for human perturbations of the climate system made previously have treated only limited components of the Earth system. The purpose of this project was to demonstrate the capability of coupling all relevant components in a flexible framework that will permit a wide variety of tests to be conducted to assure realistic interactions. A representation of the Earth system is shown and its important interactions.

  17. Laws, Place, History and the Interpretation of Earth Surface Systems

    NASA Astrophysics Data System (ADS)

    Phillips, Jonathan

    2016-04-01

    The state of an Earth surface system (ESS is determined by three sets of factors: Laws, place, and history. Laws (L = L1, L2, . . . , Ln) are the n general principles, relationships, and representations applicable to any such system at any time. Place factors (P = P1, P2, . . . , Pm) are the m relevant properties or characteristics of the local or regional environment - e.g., climate, tectonic setting, geology, traits of the local biota, etc. History factors (H = H1 , H2, . . . , Hq) include the previous evolutionary pathway of the ESS, its stage of development, past disturbance, and in some contexts initial conditions. Geoscience investigation may be focused on laws (e.g., theoretical deductions, process modeling, laboratory experiments), place (e.g., regional geology or geography, soil-landscape studies), or history (e.g., paleoenvironmental studies, environmental history, historical geology or geography). Ultimately, however, all three sets of factors are necessary to fully understand and explain ESS. Beyond providing a useful checklist (analogous to the factorial models often used in pedology and ecology), the LPH framework gives us analytical traction to some difficult research problems. For example, studies of the avulsions of three southeast Texas rivers showed substantial differences in avulsion regimes and resulting alluvial morphology, despite the proximity and superficial similarity of the systems. Avulsion dynamics are governed by the same laws in all three cases [L(A) = L(B) = L(C)], and the three rivers, once part of a single system at lower sea-levels, have undergone the same sea-level, climate, and tectonic histories, as well as the same general types of anthropic impacts [H(A) ≈ H(B) ≈ H(C)]. Though the regional-scale environmental controls are similar, local details such as the location of the modern main channel relative to Pleistocene meander channels differ, and thus these place factors explain the differences between the rivers. The LPH

  18. Pulmonary administration of aerosolised fentanyl: pharmacokinetic analysis of systemic delivery

    PubMed Central

    Mather, Laurence E; Woodhouse, Annie; Ward, M Elizabeth; Farr, Stephen J; Rubsamen, Reid A; Eltherington, Lorne G

    1998-01-01

    Aims Pulmonary drug delivery is a promising noninvasive method of systemic administration. Our aim was to determine whether a novel breath-actuated, microprocessor-controlled metered dose oral inhaler (SmartMist™, Aradigm Corporation) could deliver fentanyl in a way suitable for control of severe pain. Methods Aersolised pulmonary fentanyl base 100–300 μg was administered to healthy volunteers using SmartMist™ and the resultant plasma concentration-time data were compared with those from the same doses administered by intravenous (i.v.) injection in the same subjects. Results Plasma concentrations from SmartMist™ were similar to those from i.v. injection. Time-averaged bioavailability based upon nominal doses averaged 100%, and was >50% within 5 min of delivery. Fentanyl systemic pharmacokinetics were similar to those previously reported with no trends to dose-dependence from either route. Side-effects (e.g. sedation, lightheadedness) were the same from both routes. Conclusions Fentanyl delivery using SmartMist™ can provide analgetically relevant plasma drug concentrations. This, combined with its ease of noninvasive use and transportability, suggests a strong potential for field and domicilliary use, and for patient controlled analgesia without the need for i.v. cannulae. PMID:9690947

  19. Searching for Earth-like planets in this solar system and beyond

    NASA Astrophysics Data System (ADS)

    Stofan, E. R.

    2014-12-01

    Earth sits in a narrow habitable zone, and its future habitability depends on the actions of those who inhabit the planet today. Earth's complex climate reflects interactions between its interior, surface, oceans, biosphere, atmosphere and its star - our sun. Studying the climates of other planets around our sun - Mars, Venus and Titan - can help us better understand the processes that control climate here on Earth. These three bodies provide compelling targets for future study as we explore beyond our solar system to find Earth-like worlds around other stars.

  20. Near Earth Asteroids: A Classification System According to Their Shapes

    NASA Astrophysics Data System (ADS)

    Acevedo, R. D.; Rocca, M.; Rabassa, J.; Ponce, J. F.; Stinco, S.

    2012-09-01

    A new way to classify Near Earth Asteroids (NEAs) according to their shapes is proposed. This classification is based on the asteroid roundness and sphericity in the same way that it is used in geological sciences to describe clasts in mechanical sedimentary rocks.

  1. Simple System to Measure the Earth's Magnetic Field

    ERIC Educational Resources Information Center

    Akoglu, R.; Halilsoy, M.; Mazharimousavi, S. Habib

    2010-01-01

    Our aim in this proposal is to use Faraday's law of induction as a simple lecture demonstration to measure the Earths magnetic field (B). This will also enable the students to learn about how electric power is generated from rotational motion. Obviously the idea is not original, yet it may be attractive in the sense that no sophisticated devices…

  2. Biological and Earth Systems Science: A Program for the Future.

    ERIC Educational Resources Information Center

    Fortner, Rosanne; And Others

    1992-01-01

    Describes a school district's refocusing of lesson plans in the natural sciences to teach students about the structure and function of the earth--a focus all but abandoned in many school programs. Details of the curriculum; the resources used; leadership initiatives; and obstacles to implementation are discussed. (PR)

  3. Earth Tide Algorithms for the OMNIS Computer Program System.

    DTIC Science & Technology

    1986-04-01

    This report presents five computer algorithms that jointly specify the gravitational action by which the tidal redistributions of the Earth’s masses...routine is a simplified version of the fourth and is provided for use during computer program verification. All computer algorithms express the tidal

  4. Supporting Crewed Missions using LiAISON Navigation in the Earth-Moon System

    NASA Astrophysics Data System (ADS)

    Leonard, Jason M.

    Crewed navigation in certain regions of the Earth-Moon system provides a unique challenge due to the unstable dynamics and observation geometry relative to standard Earth-based tracking systems. The focus of this thesis is to advance the understanding of navigation precision in the Earth-Moon system, analyzing the observability of navigation data types frequently used to navigate spacecraft, and to provide a better understanding of the influence of a crewed vehicle disturbance model for future manned missions in the Earth-Moon system. In this research, a baseline for navigation performance of a spacecraft in a Lagrange point orbit in the Earth-Moon system is analyzed. Using operational ARTEMIS tracking data, an overlap analysis of the reconstructed ARTEMIS trajectory states is conducted. This analysis provides insight into the navigation precision of a spacecraft traversing a Lissajous orbit about the Earth-Moon L1 point. While the ARTEMIS analysis provides insight into the navigation precision using ground based tracking methods, an examination of the benefits of introducing Linked Autonomous Interplanetary Satellite Orbit Navigation (LiAISON) is investigated. This examination provides insight into the benefits and disadvantages of LiAISON range and range-rate measurements for trajectories in the Earth-Moon system. In addition to the characterization of navigation precision for spacecraft in the Earth-Moon system, an analysis of the uncertainty propagation for noisy crewed vehicles and quiet robotic spacecraft is given. Insight is provided on the characteristics of uncertainty propagation and how it is correlated to the instability of the Lagrange point orbit. A crewed vehicle disturbance model is provided based on either Gaussian or Poisson assumptions. The natural tendency for the uncertainty distribution in a Lagrange point orbit is to align with the unstable manifold after a certain period of propagation. This behavior is influenced directly by the unstable

  5. Planning the future of JPL's management and administrative support systems around an integrated database

    NASA Technical Reports Server (NTRS)

    Ebersole, M. M.

    1983-01-01

    JPL's management and administrative support systems have been developed piece meal and without consistency in design approach over the past twenty years. These systems are now proving to be inadequate to support effective management of tasks and administration of the Laboratory. New approaches are needed. Modern database management technology has the potential for providing the foundation for more effective administrative tools for JPL managers and administrators. Plans for upgrading JPL's management and administrative systems over a six year period evolving around the development of an integrated management and administrative data base are discussed.

  6. NASA Earth Resources Survey Symposium. Volume 1-B: Geology, Information Systems and Services

    NASA Technical Reports Server (NTRS)

    1975-01-01

    A symposium was conducted on the practical applications of earth resources survey technology including utilization and results of data from programs involving LANDSAT, the Skylab earth resources experiment package, and aircraft. Topics discussed include geological structure, landform surveys, energy and extractive resources, and information systems and services.

  7. Measuring the Earth System in a Time of Global Environmental Change with Image Spectroscopy

    NASA Technical Reports Server (NTRS)

    Green, Robert O.

    2005-01-01

    Measuring the Earth system in a time of global environmental change. Imaging Spectroscopy enables remote measurement. Remote Measurement determination of the properties of the Earth's surface and atmosphere through the physics, chemistry and biology of the interaction of electromagnetic energy with matter.

  8. Systems and Methods for Providing Energy to Support Missions in Near Earth Space

    NASA Technical Reports Server (NTRS)

    Fork, Richard (Inventor)

    2015-01-01

    A system has a plurality of spacecraft in orbit around the earth for collecting energy from the Sun in space, using stimulated emission to configure that energy as well defined states of the optical field and delivering that energy efficiently throughout the region of space surrounding Earth.

  9. Using the Global Positioning System for Earth Orbiter and Deep Space Tracking

    NASA Technical Reports Server (NTRS)

    Lichten, Stephen M.

    1994-01-01

    The Global Positioning System (GPS) can play a major role in supporting orbit and trajectory determination for spacecraft in a wide range of applications, including low-Earth, high-Earth, and even deep space (interplanetary) tracking. This paper summarizes recent results demonstrating these unique and far-ranging applications of GPS.

  10. Human impact on the planet: an earth system science perspective and ethical considerations

    USGS Publications Warehouse

    Williams, Richard S.

    2002-01-01

    The modern Earth Narrative, the scientific story of the 4.5 billion-year natural and human history of the Earth, has emerged from the solid foundation of two factual concepts: Deep (or Geologic) Time and Biological Evolution. spread acceptance of the Earth Narrative is critically important as we begin the third millennium, because it provides a clear understanding of the growing impact of human population growth and associated activities on the Earth System, especially the negative impact on Earth?s biosphere. It is important for humans to realize that we are but one of 4,500 species of mammals that exist on Earth and that we are but one species in the estimated 30 to 100 million species that form the complex biosphere. We also need to recognize that all species exist within the physical limits imposed by the geosphere. We are totally dependent on the biosphere for food, oxygen, and other necessities of life. mans are one of the latest results of biological evolution operating over a long period of Geologic Time. We find ourselves on Earth, after 4.5 billion years of Earth history by chance, not by design. Humans have become so successful at modifying their environment that many of the natural limitations on the expansion of populations of our fellow animals have been overcome by technological and cultural innovations. According to Peter Raven, ?Humans, at a current population of 6 billion [expected to nearly double by 2050], are consuming or wasting about 50 percent of the total net biological productivity on land and 50 percent of the available supply of freshwater. The overwhelming and expanding human presence leaves less and less room in the environment for other biota.? st century will be a pivotal time in the fate of Earth?s biosphere. Whereas human modification of the geosphere will slowly recover over time, human changes to the biosphere are a far more consequential matter? extinction of a species is forever! Will humans effectively use our new knowledge of

  11. Physical Limits of Solar Energy Conversion in the Earth System.

    PubMed

    Kleidon, Axel; Miller, Lee; Gans, Fabian

    2016-01-01

    Solar energy provides by far the greatest potential for energy generation among all forms of renewable energy. Yet, just as for any form of energy conversion, it is subject to physical limits. Here we review the physical limits that determine how much energy can potentially be generated out of sunlight using a combination of thermodynamics and observed climatic variables. We first explain how the first and second law of thermodynamics constrain energy conversions and thereby the generation of renewable energy, and how this applies to the conversions of solar radiation within the Earth system. These limits are applied to the conversion of direct and diffuse solar radiation - which relates to concentrated solar power (CSP) and photovoltaic (PV) technologies as well as biomass production or any other photochemical conversion - as well as solar radiative heating, which generates atmospheric motion and thus relates to wind power technologies. When these conversion limits are applied to observed data sets of solar radiation at the land surface, it is estimated that direct concentrated solar power has a potential on land of up to 11.6 PW (1 PW=10(15) W), whereas photovoltaic power has a potential of up to 16.3 PW. Both biomass and wind power operate at much lower efficiencies, so their potentials of about 0.3 and 0.1 PW are much lower. These estimates are considerably lower than the incoming flux of solar radiation of 175 PW. When compared to a 2012 primary energy demand of 17 TW, the most direct uses of solar radiation, e.g., by CSP or PV, have thus by far the greatest potential to yield renewable energy requiring the least space to satisfy the human energy demand. Further conversions into solar-based fuels would be reduced by further losses which would lower these potentials. The substantially greater potential of solar-based renewable energy compared to other forms of renewable energy simply reflects much fewer and lower unavoidable conversion losses when solar

  12. Earth support systems: Threatened? why? what can we do?

    NASA Astrophysics Data System (ADS)

    Reitan, Paul H.; Reitan, Eric H.

    2001-12-01

    The most important concept to emerge in the 20th century was the recognition that sustainability is threatened. A sustainable society is one that functions and lives in such harmony with earth systems that future generations will be able to function with equal or greater ease and the quality of life will in no way be diminished. Evidence of threats to sustainability is found in: global energy use; global climate change; availability of sufficient safe water; degradation of soil on agricultural lands; food production for a global population of 9,000 million by 2050; accelerated extinction rates and loss of biodiversity; human under- and over-nourishment; and the spread of diseases. Ignorance borne of alienation from nature deprives us of sensitivity to the threats human activities cause. Alienation may be traced to the agricultural revolution, but has become widespread and even inescapable for many with massive control of energy and the industrial revolution, dependence on machines, and urbanization. With the control of enough energy to dominate nature and the achievement of a high, but transient, level of wealth, a world view extolling growth—led by the highly industrialized nations, but now being emulated in the developing countries—has committed the world to an unsustainable path. Because of this, world societies must work to find practical “sustainability” world views to help guide our future choices. Wise choices will depend upon good scientific understanding and must be based upon a deep respect for the non-human world and a concern for the future. The environmental meaning of different world views, whether founded in the world religions or in nonreligious philosophy, share a common concern to promote an equitable, harmonious, and sustainable relationship between humanity and nature. The similarities in pragmatic meaning in relation to nature of, e.g., Christian stewardship and Deep Ecology, illustrate this. Our attention must not be directed towards

  13. Fire in the Earth System: A deep time perspective

    NASA Astrophysics Data System (ADS)

    Scott, Andrew C.; Glasspool, Ian J.; Bond, William J.; Collinson, Margaret E.

    2010-05-01

    Although the earliest evidence of fire, determined from the presence of fossil charcoal, is late Silurian, it is not until the end of the Devonian that there is evidence of a widespread rise of fire events. This increase appears after the rise of forests in the mid-late Devonian and has been linked to a rise in atmospheric oxygen concentration. From that time onward there is extensive evidence of fire as a major Earth System process. With the occurrence of widespread fires comes the development of several important feedback mechanisms. In the short term, fires may be considered "reverse photosynthesis", as they release CO2 into the atmosphere. However, the production of charcoal, that remains inert on burial, acts as a long-term carbon sink. This charcoal (carbon) burial leads to a reduction of atmospheric CO2 but an increase in O2. Experiments have shown that widespread fires require between 13-15% atmospheric O2 to burn and spread. In addition, increasing atmospheric O2 concentration promotes hotter fires and the combustion of higher moisture content plant matter. More intense fires burning a greater range of vegetation provides further feedback: frequent and intense fires typically lead to extensive post-fire erosion, which in turn causes the rapid burial of more plant material, which again in turn leads to further carbon drawdown. In general, fires occur during drier periods, when potential fuel builds up, but during periods of elevated O2 concentration, such as in the Permian and mid-late Cretaceous, may occur more frequently than at the present day. Ferns, conifers and angiosperms radiated and diversified during periods of high fire activity and there may be a linkage. Both ferns and weedy angiosperms favour disturbed habitats, while early conifers appear to be adapted to drier environments and many of the earliest are preserved as charcoalified remains. Of particular significance is the interlinkage between increased fire activity and evolution of the

  14. Versioning for CMIP6 in the Earth System Grid Federation

    NASA Astrophysics Data System (ADS)

    Weigel, Tobias; Kindermann, Stephan; Lautenschlager, Michael

    2015-04-01

    The Earth System Grid Federation (ESGF) has been used as the e-infrastructure to provide access to CMIP5 data and is expected to serve CMIP6 data as well. 2015 marks the year of continued planning and preparation where new concepts can still be implemented for the operational phase of CMIP6. A particular concern within ESGF operations is the versioning and automated replication of data. From CMIP5 experience we know that the pathway between initial submission of modelling data to the ESGF data space and quality-controlled long-term archival of the final products is long and far from linear. Data may be retracted, amended and updated, and metadata may accumulate at different stages. It is unrealistic to assume that a simple and straightforward process can be used as a role model to build ESGF services around the different stages data will pass through during the active phase of CMIP6. Nonetheless, at the technical level ESGF requires some form of automated control and management. At the same time, the accountability of data products must be made transparent to guard against misinterpretation, increase user experience and promote open and reproducible science. To address the challenges, first some essential versioning policies must be agreed upon and enforced through technical means and organizational processes. The volatile readiness state of CMIP data cannot be changed as it is given by the users; however its management can be improved. A promising approach is to embed persistent identifiers in all CMIP6 data objects and register them so they can be globally resolved by any user and used as reference points within ESGF management processes. A specific conceptual interpretation and management of such identifiers can ensure that they remain valid and useful even if the data objects change or become unavailable. For this, identifiers must be assigned to individual versions and aggregations, connected with each other and integrated in the existing ESGF publication

  15. Incorporating Parallel Computing into the Goddard Earth Observing System Data Assimilation System (GEOS DAS)

    NASA Technical Reports Server (NTRS)

    Larson, Jay W.

    1998-01-01

    Atmospheric data assimilation is a method of combining actual observations with model forecasts to produce a more accurate description of the earth system than the observations or forecast alone can provide. The output of data assimilation, sometimes called the analysis, are regular, gridded datasets of observed and unobserved variables. Analysis plays a key role in numerical weather prediction and is becoming increasingly important for climate research. These applications, and the need for timely validation of scientific enhancements to the data assimilation system pose computational demands that are best met by distributed parallel software. The mission of the NASA Data Assimilation Office (DAO) is to provide datasets for climate research and to support NASA satellite and aircraft missions. The system used to create these datasets is the Goddard Earth Observing System Data Assimilation System (GEOS DAS). The core components of the the GEOS DAS are: the GEOS General Circulation Model (GCM), the Physical-space Statistical Analysis System (PSAS), the Observer, the on-line Quality Control (QC) system, the Coupler (which feeds analysis increments back to the GCM), and an I/O package for processing the large amounts of data the system produces (which will be described in another presentation in this session). The discussion will center on the following issues: the computational complexity for the whole GEOS DAS, assessment of the performance of the individual elements of GEOS DAS, and parallelization strategy for some of the components of the system.

  16. Life Support and Habitation Systems: Crew Support and Protection for Human Exploration Missions Beyond Low Earth Orbit

    NASA Technical Reports Server (NTRS)

    Barta, Daniel J.; McQuillan, Jeffrey

    2010-01-01

    Life Support and Habitation Systems (LSHS) is one of 10 Foundational Domains as part of the National Aeronautics and Space Administration s proposed Enabling Technology Development and Demonstration (ETDD) Program. LSHS will develop and mature technologies to sustain life on long duration human missions beyond Low Earth Orbit that are reliable, have minimal logistics supply and increase self-sufficiency. For long duration exploration missions, further closure of life support systems is paramount, including focus on key technologies for atmosphere revitalization, water recovery, waste management, thermal control and crew accommodation that recover additional consumable mass, reduce requirements for power, volume, heat rejection, crew involvement, and which have increased reliability and capability. Other areas of focus include technologies for radiation protection, environmental monitoring and fire protection. Beyond LEO, return to Earth will be constrained. The potability of recycled water and purity of regenerated air must be measured and certified aboard the spacecraft. Missions must be able to recover from fire events through early detection, use of non-toxic suppression agents, and operation of recovery systems that protect on-board Environmental Control and Life Support (ECLS) hardware. Without the protection of the Earth s geomagnetic field, missions beyond LEO must have improved radiation shielding and dosimetry, as well as warning systems to protect the crew against solar particle events. This paper will describe plans for the new LSHS Foundational Domain and mission factors that will shape its technology development portfolio.

  17. Precise orbit determination for NASA's earth observing system using GPS (Global Positioning System)

    NASA Technical Reports Server (NTRS)

    Williams, B. G.

    1988-01-01

    An application of a precision orbit determination technique for NASA's Earth Observing System (EOS) using the Global Positioning System (GPS) is described. This technique allows the geometric information from measurements of GPS carrier phase and P-code pseudo-range to be exploited while minimizing requirements for precision dynamical modeling. The method combines geometric and dynamic information to determine the spacecraft trajectory; the weight on the dynamic information is controlled by adjusting fictitious spacecraft accelerations in three dimensions which are treated as first order exponentially time correlated stochastic processes. By varying the time correlation and uncertainty of the stochastic accelerations, the technique can range from purely geometric to purely dynamic. Performance estimates for this technique as applied to the orbit geometry planned for the EOS platforms indicate that decimeter accuracies for EOS orbit position may be obtainable. The sensitivity of the predicted orbit uncertainties to model errors for station locations, nongravitational platform accelerations, and Earth gravity is also presented.

  18. Non-equilibrium thermodynamics, maximum entropy production and Earth-system evolution.

    PubMed

    Kleidon, Axel

    2010-01-13

    The present-day atmosphere is in a unique state far from thermodynamic equilibrium. This uniqueness is for instance reflected in the high concentration of molecular oxygen and the low relative humidity in the atmosphere. Given that the concentration of atmospheric oxygen has likely increased throughout Earth-system history, we can ask whether this trend can be generalized to a trend of Earth-system evolution that is directed away from thermodynamic equilibrium, why we would expect such a trend to take place and what it would imply for Earth-system evolution as a whole. The justification for such a trend could be found in the proposed general principle of maximum entropy production (MEP), which states that non-equilibrium thermodynamic systems maintain steady states at which entropy production is maximized. Here, I justify and demonstrate this application of MEP to the Earth at the planetary scale. I first describe the non-equilibrium thermodynamic nature of Earth-system processes and distinguish processes that drive the system's state away from equilibrium from those that are directed towards equilibrium. I formulate the interactions among these processes from a thermodynamic perspective and then connect them to a holistic view of the planetary thermodynamic state of the Earth system. In conclusion, non-equilibrium thermodynamics and MEP have the potential to provide a simple and holistic theory of Earth-system functioning. This theory can be used to derive overall evolutionary trends of the Earth's past, identify the role that life plays in driving thermodynamic states far from equilibrium, identify habitability in other planetary environments and evaluate human impacts on Earth-system functioning.

  19. Using Gravity Assists in the Earth-moon System as a Gateway to the Solar System

    NASA Technical Reports Server (NTRS)

    McElrath, Tim; Lantoine, Gregory; Landau, Damon; Grebow, Dan; Strange, Nathan; Wilson, Roby; Sims, Jon

    2012-01-01

    For spacecraft departing the Earth - Moon system, lunar flybys can significantly increase the hype rbolic escape energy (C3, in km 2 /sec 2 ) for a modest increase in flight time. Within 2 months, lunar flybys can produce a C3 of 2. Over 4 - 6 months, lunar flybys alone can increase the C3 to 4.5, or they can provide for additional periapsis burns to increase the C3 from 2 -3 to 10 or more, suitable for planetary missions. A lunar flyby departure can be followed by additional ? -V (such as that efficiently provided by a low thrust system, eg. Solar Electric Propulsion (SEP)) to raise the Earth - relative velocity (at a ratio of more than 2:1) before a subsequent Earth flyby, which redirects that velocity to a more di stant target, all within not much more than a year. This paper describes the applicability of lunar flybys for different flight times and propulsi on systems, and illustrates this with instances of past usage and future possibilities. Examples discussed i nclude ISEE - 3, Nozomi, STEREO, 2018 Mars studies (which showed an 8% payload increase), and missions to Near Earth Objects (NEOs). In addition, the options for the achieving the initial lunar flyby are systematically discussed, with a view towards their p ractical use with in a compact launch period. In particular, we show that launches to geosynchronous transfer orbit (GTO) as a secondary payload provide a feasible means of obtaining a lunar flyby for an acceptable cost, even for SEP systems that cannot ea sily deliver large ? - Vs at periapsis. Taken together, these results comprise a myriad of options for increasing the mission performance, by the efficient use of lunar flybys within an acceptable extension of the flight time.

  20. Using Gravity Assists in the Earth-moon System as a Gateway to the Solar System

    NASA Technical Reports Server (NTRS)

    McElrath, Timothy P.; Lantoine, Gregory; Landau, Damon; Grebow, Dan; Strange, Nathan; Wilson, Roby; Sims, Jon

    2012-01-01

    For spacecraft departing the Earth - Moon system, lunar flybys can significantly increase the hyperbolic escape energy (C3, in km (exp 2) /sec (exp 2) ) for a modest increase in flight time. Within approx 2 months, lunar flybys can produce a C3 of approx 2. Over 4 - 6 months, lunar flybys alone can increase the C3 to approx 4.5, or they can provide for additional periapsis burns to increase the C3 from approx 2 -3 to 10 or more, suitable for planetary missions. A lunar flyby departure can be followed by additional delta -V (such as that efficiently provided by a low thrust system, eg. Solar Electric Propulsion (SEP)) to raise the Earth - relative velocity (at a ratio of more than 2:1) before a subsequent Earth flyby, which redirects that velocity to a more distant target, all within not more than a year. This paper describes the applicability of lunar flybys for different flight times and propulsion systems, and illustrates this with instances of past usage and future possibilities. Examples discussed include ISEE-3, Nozomi, STEREO, 2018 Mars studies (which showed an 8% payload increase), and missions to Near Earth Objects (NEOs). In addition, the options for the achieving the initial lunar flyby are systematically discussed, with a view towards their practical use within a compact launch period. In particular, we show that launches to geosynchronous transfer orbit (GTO) as a secondary payload provide a feasible means of obtaining a lunar flyby for an acceptable cost, even for SEP systems that cannot easily deliver large delta-Vs at periapsis. Taken together, these results comprise a myriad of options for increasing the mission performance, by the efficient use of lunar flybys within an acceptable extension of the flight time.

  1. Photovoltaic power system for satellite Earth stations in remote areas: Project status and design description

    NASA Technical Reports Server (NTRS)

    Delombard, R.

    1984-01-01

    A photovoltaic power system which will be installed at a remote location in Indonesia to provide power for a satellite Earth station and a classroom for video and audio teleconferences are described. The Earth station may also provide telephone service to a nearby village. The use of satellite communications for development assistance applications and the suitability of a hybrid photovoltaic engine generator power system for remote satellite Earth stations are demonstrated. The Indonesian rural satellite project is discussed and the photovoltaic power system is described.

  2. Evaluating key parameters for the initiation of a Neoproterozoic Snowball Earth with a single Earth System Model of intermediate complexity

    NASA Astrophysics Data System (ADS)

    Spiegl, T. C.; Paeth, H.; Frimmel, H. E.

    2015-04-01

    Even after more than two decades of intense research the main drivers for a potential Neoproterozoic Snowball Earth continue to be discussed controversially. In this study we present results from 37 sensitivity experiments that were performed with the Planet Simulator (PlaSim), an Earth System Model of intermediate complexity. In contrast to previous studies, in which only a limited number of potential climate-controlling parameters were assessed with different climate models, we tested our presumed key parameters within one single model. This approach makes it easier to compare the influence of the various parameters on extreme climate change as postulated for the Neoproterozoic Era. Furthermore we compare the results obtained to most recent high complexity state-of-the-art approaches. This comparison helps to estimate, which internal model interactions and physics are crucial for a Snowball Earth simulation and hence should be included into a model that is capable of realistically simulating a Neoproterozoic climate. To this effect we carried out simulations that involved reduced solar irradiation, land-sea distributions, atmospheric CO2 concentrations, relief of the land surface and length of day. In addition, we focus on different land surface albedo values, which were most likely exceptionally low and similar to the Martian albedo, and obliquity changes between 23.5° and 80°. Our findings suggest that changes in land surface albedo are a strong climate driver that can compensate a much lower Neoproterozoic total solar irradiance if it is combined with shifts in obliquity or atmospheric CO2 levels. We also obtained a critical threshold for increased obliquities beyond which a Snowball Earth situation turns into an extreme greenhouse climate with almost absent cryosphere, and furthermore, obliquity values that lead to a tropical ice age with sea ice spreading from the equator to high latitudes.

  3. Systemic administration of lithium improves distracted bone regeneration in rats.

    PubMed

    Wang, Xuemei; Zhu, Songsong; Jiang, Xiaowen; Li, Yunfeng; Song, Donghui; Hu, Jing

    2015-06-01

    Lithium, popular in psychology field, has been recognized as an activator component of the canonical Wnt signaling pathway. The effect of lithium on osteogenesis or on the human fracture risk has been widely reported. However, little is known on its role in distraction osteogenesis to date. In this study, the effect of systematic administrated lithium on distraction osteogenesis in a rat model was investigated. The osteotomy was performed on the right tibia in 40 adult male Sprague-Dawley rats. Then they were randomly assigned into two equal groups (n = 20/group), which underwent Lithium or saline treatment through gastric gavage until the day they were killed. One week after the osteotomy, the tibias were distracted for 14 days (rate 0.6 mm/day). Following 8 weeks consolidation period, the distracted tibias in both groups were harvested and examined by X-ray plain radiography, histology, dual-energy X-ray absorptiometry, Micro-CT, and biomechanical tests. The results showed that lithium group possessed higher bone mineral density, more mature new bone tissue, and better regenerated bone mass continuity in the distraction gaps without any local or systemic adverse effects was encountered. This study suggested lithium could increase bony callus ossification volume and accelerate distracted tissue mineralization to facilitate bone regeneration in distraction gap.

  4. Salary Administration in the Political System vs. Management Systems of Higher Education.

    ERIC Educational Resources Information Center

    Gunn, Bruce

    This paper argues that the high output demands of the information age necessitate that higher education salary administration be shifted from political systems, where subjective evaluation makes patronage a criterion of success, to management systems which employ objective analysis to allocate remuneration according to productivity. The paper…

  5. Synchronization of Terrestrial Processes with Frequencies of the Earth-Moon System

    NASA Astrophysics Data System (ADS)

    Sidorenkov, N. S.

    It is established that the frequencies of the quasi-biennial oscillation (QBO) of atmospheric winds and the Chandler wobble (CW) of the Earth's poles are synchronized with each other and with the fundamental frequencies of the Earth-Moon-Sun system. The QBO and CW frequencies are resonance combinations of the frequencies of the Earth-Moon system's yearly rotation around the Sun, precessions of the lunar orbit, and the motion of its perigee. The QBO and CW frequencies are in a ratio of 1:2. The synchronizations between Mul'tanovskii's natural synoptic periods and tidal oscillations of the Earth's daily rotation rate, as well as between variations in climatic characteristics and long-time fluctuations of the Earth's rotation rate are described.

  6. Response of limbic neurotensin systems to methamphetamine self-administration.

    PubMed

    Hanson, G R; Hoonakker, A J; Alburges, M E; McFadden, L M; Robson, C M; Frankel, P S

    2012-02-17

    Methamphetamine (METH) abuse is personally and socially devastating. Although effects of METH on dopamine (DA) systems likely contribute to its highly addictive nature, no medications are approved to treat METH dependence. Thus, we and others have studied the METH-induced responses of neurotensin (NT) systems. NT is associated with inhibitory feedback action on DA projections, and NT levels are elevated in both the nucleus accumbens and dorsal striatum after noncontingent treatment with high doses of METH. In the present study, we used a METH self-administration (SA) model (linked to lever pressing) to demonstrate that substitution of an NT agonist for METH, while not significantly affecting motor activity, dramatically reduced lever pressing but was not self-administered per se. We also found that nucleus accumbens NT levels were elevated via a D1 mechanism after five sessions in rats self-administering METH (SAM), with a lesser effect in corresponding yoked rats. Extended (15 daily sessions) exposure to METH SA manifested similar NT responses; however, more detailed analyses revealed (i) 15 days of METH SA significantly elevated NT levels in the nucleus accumbens shell and dorsal striatum, but not the nucleus accumbens core, with a lesser effect in the corresponding yoked METH rats; (ii) the elevation of NT in both the nucleus accumbens shell and dorsal striatum significantly correlated with the total amount of METH received in the self-administering, but not the corresponding yoked METH rats; and (iii) an NT agonist blocked, but an NT antagonist did not alter, lever-pressing behavior on day 15 in SAM rats. After 5 days in SAM animals, NT levels were also elevated in the ventral tegmental area, but not frontal cortex of rats self-administering METH.

  7. An Interplanetary Rapid Transit System Between Earth and Mars

    NASA Astrophysics Data System (ADS)

    Nock, Kerry; Duke, Michael; King, Robert; Jacobs, Mark; Johnson, Lee; McRonald, Angus; Penzo, Paul; Rauwolf, Jerry; Wyszkowski, Chris

    2003-01-01

    A revolutionary interplanetary rapid transit concept for transporting scientists and explorers between Earth and Mars is presented by Global Aerospace Corporation under funding from the NASA Institute for Advanced Concepts (NIAC) with support from the Colorado School of Mines (CSM), Science Applications International Corporation (SAIC), and others. We describe an innovative architecture that uses highly autonomous, solar-powered, xenon ion-propelled spaceships, dubbed Astrotels; small Taxis for trips between Astrotels and planetary Spaceports; Shuttles that transport crews to and from orbital space stations and planetary surfaces; and low-thrust cargo freighters that deliver hardware, fuels and consumables to Astrotels and Spaceports. Astrotels can orbit the Sun in cyclic orbits between Earth and Mars and Taxis fly hyperbolic planetary trajectories between Astrotel and Spaceport rendezvous. Together these vehicles transport replacement crews of 10 people on frequent, short trips between Earth and Mars. Two crews work on Mars with alternating periods of duty, each spending about 4 years there with crew transfers occurring about every two years. We also discuss the production of rocket fuels using materials mined from the surfaces of the Moon, Mars and the Martian satellites: the use of aerocapture to slow Taxis at the planets; and finally the life-cycle cost estimation.

  8. The Characteristics of Earth System Thinking of Science Gifted Students in relation to Climate Changes

    NASA Astrophysics Data System (ADS)

    Chung, Duk Ho; Cho, Kyu Seong; Hong, Deok Pyo; Park, Kyeong Jin

    2016-04-01

    This study aimed to investigate the perception of earth system thinking of science gifted students in future problem solving (FPS) in relation to climate changes. In order to this study, the research problem associated with climate changes was developed through a literature review. The thirty seven science gifted students participated in lessons. The ideas in problem solving process of science gifted students were analyzed using the semantic network analysis method. The results are as follows. In the problem solving processes, science gifted students are ''changes of the sunlight by water layer'', ''changes of the Earth''s temperature'', ''changes of the air pressure'', '' change of the wind and weather''were represented in order. On other hand, regard to earth system thinking for climate changes, while science gifted students were used sub components related to atmospheres frequently, they were used sub components related to biosphere, geosphere, and hydrosphere a little. But, the analytical results of the structural relationship between the sub components related to earth system, they were recognised that biosphere, geosphere, and hydrosphere used very important in network structures. In conclusion, science gifted students were understood well that components of the earth system are influencing each other. Keywords : Science gifted students, Future problem solving, Climate change, Earth system thinking

  9. Tidal Friction in the Earth-Moon System and Laplace Planes: Darwin Redux

    NASA Technical Reports Server (NTRS)

    Rubincam, David P.

    2015-01-01

    The dynamical evolution of the Earth-Moon system due to tidal friction is treated here. George H. Darwin used Laplace planes (also called proper planes) in his study of tidal evolution. The Laplace plane approach is adapted here to the formalisms of W.M. Kaula and P. Goldreich. Like Darwin, the approach assumes a three-body problem: Earth, Moon, and Sun, where the Moon and Sun are point-masses. The tidal potential is written in terms of the Laplace plane angles. The resulting secular equations of motion can be easily integrated numerically assuming the Moon is in a circular orbit about the Earth and the Earth is in a circular orbit about the Sun. For Earth-Moon distances greater than 10 Earth radii, the Earth's approximate tidal response can be characterized with a single parameter, which is a ratio: a Love number times the sine of a lag angle divided by another such product. For low parameter values it can be shown that Darwin's low-viscosity molten Earth, M. Ross's and G. Schubert's model of an Earth near melting, and Goldreich's equal tidal lag angles must all give similar histories. For higher parameter values, as perhaps has been the case at times with the ocean tides, the Earth's obliquity may have decreased slightly instead of increased once the Moon's orbit evolved further than 50 Earth radii from the Earth, with possible implications for climate. This is contrast to the other tidal friction models mentioned, which have the obliquity always increasing with time. As for the Moon, its orbit is presently tilted to its Laplace plane by 5.2deg. The equations do not allow the Moon to evolve out of its Laplace plane by tidal friction alone, so that if it was originally in its Laplace plane, the tilt arose with the addition of other mechanisms, such as resonance passages.

  10. Tidal friction in the Earth-Moon system and Laplace planes: Darwin redux

    NASA Astrophysics Data System (ADS)

    Rubincam, David Parry

    2016-03-01

    The dynamical evolution of the Earth-Moon system due to tidal friction is treated here. George H. Darwin used Laplace planes (also called proper planes) in his study of tidal evolution. The Laplace plane approach is adapted here to the formalisms of W.M. Kaula and P. Goldreich. Like Darwin, the approach assumes a three-body problem: Earth, Moon, and Sun, where the Moon and Sun are point-masses. The tidal potential is written in terms of the Laplace plane angles. The resulting secular equations of motion can be easily integrated numerically assuming the Moon is in a circular orbit about the Earth and the Earth is in a circular orbit about the Sun. For Earth-Moon distances greater than ∼10 Earth radii, the Earth's approximate tidal response can be characterized with a single parameter, which is a ratio: a Love number times the sine of a lag angle divided by another such product. For low parameter values it can be shown that Darwin's low-viscosity molten Earth, M. Ross's and G. Schubert's model of an Earth near melting, and Goldreich's equal tidal lag angles must all give similar histories. For higher parameter values, as perhaps has been the case at times with the ocean tides, the Earth's obliquity may have decreased slightly instead of increased once the Moon's orbit evolved further than 50 Earth radii from the Earth, with possible implications for climate. This is contrast to the other tidal friction models mentioned, which have the obliquity always increasing with time. As for the Moon, its orbit is presently tilted to its Laplace plane by 5.2°. The equations do not allow the Moon to evolve out of its Laplace plane by tidal friction alone, so that if it was originally in its Laplace plane, the tilt arose with the addition of other mechanisms, such as resonance passages.

  11. College and University Earth System Science Education for the 21st Century (ESSE 21)

    NASA Astrophysics Data System (ADS)

    Johnson, D. R.; Ruzek, M.; Schweizer, D.

    2002-12-01

    The NASA/USRA Cooperative University-based Program in Earth System Science Education (ESSE), initiated over a decade ago through NASA support, has led in the creation of a nationwide collaborative effort to bring Earth system science into the undergraduate classroom. Forty-five ESSE institutions now offer over 120 Earth system courses each year, reaching thousands of students annually with interdisciplinary content. Through the course offerings by faculty from different disciplines and the organizational infrastructure of colleges and universities emphasizing cross disciplinary curricula, programs, degrees and departments, the ESSE Program has led in systemic change in the offering of a holistic view of Earth system science in the classroom. Building on this successful experience and collaborative infrastructure within and among colleges, universities and NASA partners, an expanded program called ESSE 21 is being supported by NASA to extend the legacy established during the last decade. Through its expanded focus including partnerships with under represented colleges and universities, the Program seeks to further develop broadly based educational resources, including shared courses, electronic learning materials and degree programs that will extend Earth system science concepts in both undergraduate and graduate classrooms and laboratories. These resources emphasizing fundamentals of Earth system science advance the nation's broader agenda for improving science, technology, engineering and mathematics competency. Overall the thrust within the classrooms of colleges and universities is critical to extending and solidifying courses of study in Earth system and global change science. ESSE 21 solicits proposals from undergraduate institutions to create or adopt undergraduate and graduate level Earth system science content in courses, curricula and degree programs. The goal for all is to effect systemic change through developing Earth system science learning materials

  12. GEO objects spatial density and collision probability in the Earth-centered Earth-fixed (ECEF) coordinate system

    NASA Astrophysics Data System (ADS)

    Dongfang, Wang; Baojun, Pang; Weike, Xiao; Keke, Peng

    2016-01-01

    The geostationary (GEO) ring is a valuable orbital region contaminated with an alarming number of space debris. Due to its particular orbital characters, the GEO objects spatial distribution is very susceptible to local longitude regions. Therefore the local longitude distribution of these objects in the Earth-centered Earth-fixed (ECEF) coordinate system is much more stable and useful in practical applications than it is in the J2000 inertial coordinate system. In previous studies of space debris environment models, the spatial density is calculated in the J2000 coordinate system, which makes it impossible to identify the spatial distribution in different local longitude regions. For GEO objects, this may bring potent inaccuracy. In order to describe the GEO objects spatial distribution in different local longitude regions, this paper introduced a new method which can provide the spatial density distribution in the ECEF coordinate system. Based on 2014/12/10 two line element (TLE) data provided by the US Space Surveillance Network, the spatial density of cataloged GEO objects are given in the ECEF coordinate system. Combined with the previous studies of "Cube" collision probability evaluation, the GEO region collision probability in the ECEF coordinate system is also given here. The examination reveals that GEO space debris distribution is not uniform by longitude; it is relatively centered about the geopotential wells. The method given in this paper is also suitable for smaller debris in the GEO region. Currently the longitudinal-dependent analysis is not represented in GEO debris models such as ORDEM or MASTER. Based our method the further version of space debris environment engineering model (SDEEM) developed by China will present a longitudinal independent GEO space debris environment description in the ECEF coordinate system.

  13. NASA's Earth Observing System Data and Information System - Many Mechanisms for On-Going Evolution

    NASA Astrophysics Data System (ADS)

    Ramapriyan, H. K.

    2012-12-01

    NASA's Earth Observing System Data and Information System has been serving a broad user community since August 1994. As a long-lived multi-mission system serving multiple scientific disciplines and a diverse user community, EOSDIS has been evolving continuously. It has had and continues to have many forms of community input to help with this evolution. Early in its history, it had inputs from the EOSDIS Advisory Panel, benefited from the reviews by various external committees and evolved into the present distributed architecture with discipline-based Distributed Active Archive Centers (DAACs), Science Investigator-led Processing Systems and a cross-DAAC search and data access capability. EOSDIS evolution has been helped by advances in computer technology, moving from an initially planned supercomputing environment to SGI workstations to Linux Clusters for computation and from near-line archives of robotic silos with tape cassettes to RAID-disk-based on-line archives for storage. The network capacities have increased steadily over the years making delivery of data on media almost obsolete. The advances in information systems technologies have been having an even greater impact on the evolution of EOSDIS. In the early days, the advent of the World Wide Web came as a game-changer in the operation of EOSDIS. The metadata model developed for the EOSDIS Core System for representing metadata from EOS standard data products has had an influence on the Federal Geographic Data Committee's metadata content standard and the ISO metadata standards. The influence works both ways. As ISO 19115 metadata standard has developed in recent years, EOSDIS is reviewing its metadata to ensure compliance with the standard. Improvements have been made in the cross-DAAC search and access of data using the centralized metadata clearing house (EOS Clearing House - ECHO) and the client Reverb. Given the diversity of the Earth science disciplines served by the DAACs, the DAACs have developed a

  14. Data Preservation -Progress in NASA's Earth Observing System Data and Information System (EOSDIS)

    NASA Astrophysics Data System (ADS)

    Ramapriyan, H. K.

    2013-12-01

    NASA's Earth Observing System Data and Information System (EOSDIS) has been operational since August 1994, processing, archiving and distributing data from a variety of Earth science missions. The data sources include instruments on-board satellites and aircraft and field campaigns. In addition, EOSDIS manages socio-economic data. The satellite missions whose data are managed by EOSDIS range from the Nimbus series of the 1960s and 1970s to the EOS series launched during 1997 through 2004 to the Suomi National Polar Partnership (SNPP) launched in October 2011. Data from future satellite missions such as the Decadal Survey missions will also be archived and distributed by EOSDIS. NASA is not legislatively mandated to preserve data permanently as are other agencies such as USGS, NOAA and NARA. However, NASA must preserve all the data and associated content beyond the lives of NASA's missions to meet NASA's near-term objective of supporting active scientific research. Also, NASA must ensure that the data and associated content are preserved for transition to permanent archival agencies. The term preservation implies ensuring long-term protection of bits, readability, understandability, usability and reproducibility of results. To ensure preservation of bits, EOSDIS makes sure that data are backed-up adequately. Periodically, the risk of data loss is assessed and corrective action is taken as needed. Data are copied to more modern media on a routine basis to ensure readability. For some of the oldest data within EOSDIS, we have had to go through special data rescue efforts. Data from very old media have been restored and film data have been scanned and digitized. For example, restored data from the Nimbus missions are available for ftp access at the Goddard Earth Sciences Data and Information Services Center (GES DISC). The Earth Science Data and Information System Project, which is responsible for EOSDIS, has been active within the Data Stewardship and Preservation

  15. Earth Observatory Satellite system definition study. Report 7: EOS system definition report

    NASA Technical Reports Server (NTRS)

    1974-01-01

    The Earth Observatory Satellite (EOS) study is summarized to show the modular design of a general purpose spacecraft, a mission peculiar segment which performs the EOS-A mission, an Operations Control Center, a Data Processing Facility, and a design for Low Cost Readout Stations. The study verified the practicality and feasibility of the modularized spacecraft with the capability of supporting many missions in the Earth Observation spectrum. The various subjects considered in the summary are: (1) orbit/launch vehicle tradeoff studies and recommendations, (2) instrument constraints and interfaces, (3) design/cost tradeoff and recommendations, (4) low cost management approach and recommendations, (5) baseline system description and specifications, and (6) space shuttle utilization and interfaces.

  16. Tropospheric Emission Spectrometer (TES) for the Earth Observing System (EOS) CHEM Satellite

    NASA Technical Reports Server (NTRS)

    Beer, R.; Glavich, T.; Rider, D.

    2000-01-01

    The Tropospheric Emission Spectrometer (TES) is an imaging infrared Fourier transform spectrometer scheduled to be launched into polar sun-synchronous orbit on the Earth Observing System (EOS) CHEM satellite in December 2002.

  17. Earth Observatory Satellite system definition study. Report no. 7: EOS system definition report

    NASA Technical Reports Server (NTRS)

    1974-01-01

    The design concept and operational aspects of the Earth Observatory Satellite (EOS) are presented. A table of the planned EOS missions is included to show the purpose of the mission, the instruments involved, and the launch date. The subjects considered in the analysis of the EOS development are: (1) system requirements, (2) design/cost trade methodology, (3) observatory design alternatives, (4) the data management system, (5) the design evaluation and preferred approach, (6) program cost compilation, (7) follow-on mission accommodation, and (8) space shuttle interfaces and utilization. Illustrations and block diagrams of the spacecraft configurations are provided.

  18. Acquisition/expulsion system for earth orbital propulsion system study. Volume 2: Cryogenic design

    NASA Technical Reports Server (NTRS)

    1973-01-01

    Detailed designs were made for three earth orbital propulsion systems; (1) the space shuttle (integrated) OMS/RCS, (2) the space shuttle (dedicated) OMS (LO2), and (3) the space tug. The preferred designs from the integrated OMS/RCS were used as the basis for the flight test article design. A plan was prepared that outlines the steps, cost, and schedule required to complete the development of the prototype DSL tank and feedline (LH2 and LO2) systems. Ground testing of a subscale model using LH2 verified the expulsion characteristics of the preferred DSL designs.

  19. Taming Big Data Variety in the Earth Observing System Data and Information System

    NASA Technical Reports Server (NTRS)

    Lynnes, Christopher; Walter, Jeff

    2015-01-01

    Although the volume of the remote sensing data managed by the Earth Observing System Data and Information System is formidable, an oft-overlooked challenge is the variety of data. The diversity in satellite instruments, science disciplines and user communities drives cost as much or more as the data volume. Several strategies are