Science.gov

Sample records for administration great lakes

  1. Great Minds? Great Lakes!

    ERIC Educational Resources Information Center

    Environmental Protection Agency, Chicago, IL. Great Lakes National Program Office.

    This book contains lesson plans that provide an integrated approach to incorporating Great Lakes environmental issues into elementary subjects. The book is divided into three subject areas: (1) History, which includes the origins of the Great Lakes, Great Lakes people, and shipwrecks; (2) Social Studies, which covers government, acid rain as a…

  2. Great Lakes: Great Gardening.

    ERIC Educational Resources Information Center

    New York Sea Grant Inst., Albany, NY.

    This folder contains 12 fact sheets designed to improve the quality of gardens near the Great Lakes. The titles are: (1) "Your Garden and the Great Lakes"; (2) "Organic Gardening"; (3) "Fruit and Vegetable Gardening"; (4) "Composting Yard Wastes"; (5) "Herbicides and Water Quality"; (6) "Watering"; (7) "Soil Erosion by Water"; (8) "Soil…

  3. Great Lakes

    USGS Publications Warehouse

    Edsall, Thomas A.; Mac, Michael J.; Opler, Paul A.; Puckett Haecker, Catherine E.; Doran, Peter D.

    1998-01-01

    The wild plants and animals and the natural systems that support them in the Great Lakes region are valuable resources of considerable local, regional, and national interest. They are also, in part, transboundary resources that the U.S. shares with its Canadian neighbors to the north. The way these resources are changing over time is inadequately known and is a concern for resource users and for those charged with managing and protecting these unique and valuable resources. This chapter describes the wild plants and animals and the systems that support them in the Great Lakes region; addresses their condition; and points out the gaps in our knowledge about them that, if filled, would aid in their conservation and appropriate use.

  4. Great Minds? Great Lakes!

    ERIC Educational Resources Information Center

    Environmental Protection Agency, Chicago, IL. Great Lakes National Program Office.

    This booklet introduces an environmental curriculum for use in a variety of elementary subjects. The lesson plans provide an integrated approach to incorporating Great Lakes environmental issues into the subjects of history, social studies, and environmental sciences. Each of these sections contains background information, discussion points, and a…

  5. Great Lakes Literacy Principles

    NASA Astrophysics Data System (ADS)

    Fortner, Rosanne W.; Manzo, Lyndsey

    2011-03-01

    Lakes Superior, Huron, Michigan, Ontario, and Erie together form North America's Great Lakes, a region that contains 20% of the world's fresh surface water and is home to roughly one quarter of the U.S. population (Figure 1). Supporting a $4 billion sport fishing industry, plus $16 billion annually in boating, 1.5 million U.S. jobs, and $62 billion in annual wages directly, the Great Lakes form the backbone of a regional economy that is vital to the United States as a whole (see http://www.miseagrant.umich.edu/downloads/economy/11-708-Great-Lakes-Jobs.pdf). Yet the grandeur and importance of this freshwater resource are little understood, not only by people in the rest of the country but also by many in the region itself. To help address this lack of knowledge, the Centers for Ocean Sciences Education Excellence (COSEE) Great Lakes, supported by the U.S. National Science Foundation and the National Oceanic and Atmospheric Administration, developed literacy principles for the Great Lakes to serve as a guide for education of students and the public. These “Great Lakes Literacy Principles” represent an understanding of the Great Lakes' influences on society and society's influences on the Great Lakes.

  6. Great Lakes: Chemical Monitoring

    ERIC Educational Resources Information Center

    Delfino, Joseph J.

    1976-01-01

    The Tenth Great Lakes Regional Meeting of the American Chemical Society met to assess current Chemical Research activity in the Great Lakes Basin, and addressed to the various aspects of the theme, Chemistry of the Great Lakes. Research areas reviewed included watershed studies, atmospheric and aquatic studies, and sediment studies. (BT)

  7. Great Lakes Teacher's Guide.

    ERIC Educational Resources Information Center

    Reid, Ron

    The Great Lakes are one of the world's greatest reservoirs of fresh water, the foundation of Ontario's economic development, a primary force in ecological systems, and a base for pleasure and recreation. They are also a magnificent resource for the teachers of Ontario. Study of the Great Lakes can bring to life the factors that shape the ecology…

  8. The Great Lakes.

    ERIC Educational Resources Information Center

    Seasons, 1987

    1987-01-01

    The Great Lakes are one of the world's greatest reserviors of fresh water, the foundation of Ontario's economic development, a primary force in ecological systems, and a base for pleasure and recreation. These lakes and their relationship with people of Canada and the United States can be useful as a subject for teaching the impact of human…

  9. Great Salt Lake, Utah

    USGS Publications Warehouse

    Stephens, Doyle W.; Gardner, Joe F.

    1999-01-01

    This document is intended as a source of general information and facts about Great Salt Lake, Utah. This U.S. Geological Survey information sheet answers frequently asked questions about Great Salt Lake. Topics include: History, salinity, brine shrimp, brine flies, migratory birds, and recreation. Great Salt Lake, the shrunken remnant of prehistoric Lake Bonneville, has no outlet. Dissolved salts accumulate in the lake by evaporation. Salinity south of the causeway has ranged from 6 percent to 27 percent over a period of 22 years (2 to 7 times saltier than the ocean). The high salinity supports a mineral industry that extracts about 2 million tons of salt from the lake each year. The aquatic ecosystem consists of more than 30 species of organisms. Harvest of its best-known species, the brine shrimp, annually supplies millions of pounds of food for the aquaculture industry worldwide. The lake is used extensively by millions of migratory and nesting birds and is a place of solitude for people. All this occurs in a lake that is located at the bottom of a 35,000-square-mile drainage basin that has a human population of more than 1.5 million.

  10. The Great Salt Lake

    USGS Publications Warehouse

    Hassibe, W.R.; Keck, W.G.

    1991-01-01

    The western part of the conterminous United States is often thought of as being a desert without any large bodies of water. In the desert area of western Utah, however, lies Great Salt Lake, which in 1986 covered approximately 2,300 square miles and contained 30 million acre-feet of water (an acre-foot is the amount of water necessary to cover 1 acre of land with water 1 foot in depth or about 326,000 gallons). To emphasize its size, the Great Salt Lake is the largest lake west of the Mississippi River, larger than the states of Rhode Island and Delaware.

  11. The Great Lakes whitefish

    USGS Publications Warehouse

    Van Oosten, John; Elliot, Charles

    1942-01-01

    In every one of the Great Lakes- Ontario, Erie, Huron, Michigan, and Superior- the most valuable fishes are declining, and there is no evidence that this trend will be reversed. Under existing conditions of a diversity of regulations that vary between states and between the two countries, and with the present methods of fishing, the Great Lakes fisheries are doomed. This chapter deals with the common whitefish, a valuable species which many believe to be the next that will go unless positive action is forthcoming soon.

  12. Great Lakes Energy Institute

    SciTech Connect

    Alexander, J. Iwan

    2012-11-18

    The vision of the Great Lakes Energy Institute is to enable the transition to advanced, sustainable energy generation, storage, distribution and utilization through coordinated research, development, and education. The Institute will place emphasis on translating leading edge research into next generation energy technology. The Institute’s research thrusts focus on coordinated research in decentralized power generation devices (e.g. fuel cells, wind turbines, solar photovoltaic devices), management of electrical power transmission and distribution, energy storage, and energy efficiency.

  13. Not so Great Lakes?

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    In 1965, Frank Sinatra won the Grammy Award for his album, “September of My Years” “Early Bird,” the first commercial communications satellite, was launched; and Dr. Martin Luther King, Jr. was arrested in Selma, Alabama, during demonstrations against voter-registration rules.The year 1965 was also the last time water levels in the U.S. Great Lakes were as low as they are now.

  14. Not so Great Lakes?

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    In 1965, Frank Sinatra won the Grammy Award for his album, "September of My Years;" "Early Bird," the first commercial communications satellite, was launched; and Dr. Martin Luther King, Jr. was arrested in Selma, Alabama, during demonstrations against voter-registration rules.The year 1965 was also the last time water levels in the U.S. Great Lakes were as low as they are now.

  15. Europa's Great Lakes

    NASA Astrophysics Data System (ADS)

    Schmidt, B. E.; Blankenship, D. D.; Patterson, G. W.; Schenk, P. M.

    2012-04-01

    Unique to the surface of Europa, chaos terrain is diagnostic of the properties and dynamics of its icy shell. While models have suggested that partial melt within a thick shell or melt-through of a thin shell may form chaos, neither model has been able to definitively explain all observations of chaos terrain. However, we present a new model that suggests large melt lenses form within the shell and that water-ice interactions above and within these lenses drive the production of chaos. Our analysis of the geomorphology of Conamara Chaos and Thera Macula, was used to infer and test a four-stage lens-collapse chaos formation model: 1) Thermal plumes of warm, pure ice ascend through the shell melting the impure brittle ice above, producing a lake of briny water and surface down draw due to volume reduction. 2) Surface deflection and driving force from the plume below hydraulically seals the water in place. 3) Extension of the brittle ice lid generates fractures from below, allowing brines to enter and fluidize the ice matrix. 4) As the lens and now brash matrix refreeze, thermal expansion creates domes and raises the chaos feature above the background terrain. This new "lense-collapse" model indicates that chaos features form in the presence of a great deal of liquid water, and that large liquid water bodies exist within 3km of Europa's surface comparable in volume to the North American Great Lakes. The detection of shallow subsurface "lakes" implies that the ice shell is recycling rapidly and that Europa may be currently active. In this presentation, we will explore environments on Europa and their analogs on Earth, from collapsing Antarctic ice shelves to to subglacial volcanos in Iceland. I will present these new analyses, and describe how this new perspective informs the debate about Europa's habitability and future exploration.

  16. Michigan: The Great Lakes State

    ERIC Educational Resources Information Center

    McKay, Sandra Lee; La Luzerne-Oi, Sally

    2009-01-01

    Although Michigan is often called the "Wolverine State," its more common nickname is the "Great Lakes State." This name comes from the fact that Michigan is the only state in the United States that borders four of the five Great Lakes. Also referred to as the "Water Wonderland," Michigan has 11,000 additional lakes, 36,000 miles of streams, and…

  17. The Great Lakes Food Web.

    ERIC Educational Resources Information Center

    Baker, Marjane L.

    1997-01-01

    Presents a play for students in grades four to nine that incorporates the scientific names, physical characteristics, feeding habits, interactions, and interdependence of the plants and animals that make up the Great Lakes food web to facilitate the learning of this complex system. Includes a Great Lakes food web chart. (AIM)

  18. Great Lakes' regional climate regimes

    NASA Astrophysics Data System (ADS)

    Kravtsov, Sergey; Sugiyama, Noriyuki; Roebber, Paul

    2016-04-01

    We simulate the seasonal cycle of the Great Lakes' water temperature and lake ice using an idealized coupled lake-atmosphere-ice model. Under identical seasonally varying boundary conditions, this model exhibits more than one seasonally varying equilibrium solutions, which we associate with distinct regional climate regimes. Colder/warmer regimes are characterized by abundant/scarce amounts of wintertime ice and cooler/warmer summer temperatures, respectively. These regimes are also evident in the observations of the Great Lakes' climate variability over recent few decades, and are found to be most pronounced for Lake Superior, the deepest of the Great Lakes, consistent with model predictions. Multiple climate regimes of the Great Lakes also play a crucial role in the accelerated warming of the lakes relative to the surrounding land regions in response to larger-scale global warming. We discuss the physical origin and characteristics of multiple climate regimes over the lakes, as well as their implications for a longer-term regional climate variability.

  19. TOXAPHENE STUDY OF GREAT LAKES TRIBUTARY SEDIMENTS

    EPA Science Inventory

    The Product is the paper "Pulp and Paper Mills as Sources of Toxaphene to Lake Superior and Northern Lake Michigan" published in the Journal of Great Lakes Research, 25(2):383-394 International Association of Great Lakes 1999.

  20. Great Salt Lake sets record

    NASA Astrophysics Data System (ADS)

    Katzoff, Judith A.

    The level of the Great Salt Lake, Utah, broke its 1873 record on May 12, 1986, rising to 1283.7 m above mean sea level, according to the U.S. Geological Survey (USGS). Heavy snowpack remains in the lake's drainage basin, and the lake is likely to continue rising into June. “It could well go up another foot [i.e., ˜0.3 m],” this season, according to Ted Arnow, USGS district chief in Utah.The Utah state legislature convened a special session on May 13 to discuss measures to control the flooding. Last year, the legislature began to consider funding a plan to pump water from the Great Salt Lake to form a large, shallow pond in the desert 48 km to the west. Because the lake's level was predicted to drop this year, however, the lawmakers postponed action on the issue (Eos, September 10, 1985, p. 641). The Rose Park area of Salt Lake City, which lies below the lake's current level, has been diked, but groundwater is backing up into Rose Park and has to be pumped out over the dikes, Arnow said. Also, trains that use the Southern Pacific railroad causeway, which crosses the lake, have had to be temporarily rerouted south of the lake during storms. The causeway has been progressively raised since 1983, but engineers now say that they can raise it no further because the added weight will make it sink into the lake, Arnow said. If the lake rises much higher, the interstate highway that runs by it might also have to shut down temporarily during storms, he added.

  1. Great Salt Lake, Utah, USA

    NASA Technical Reports Server (NTRS)

    1990-01-01

    As seen from space, the Great Salt Lake, Utah, USA (41.5N, 112.5W) appears as two separate bodies of water with a narrow divider in the middle. At the turn of the century, a railroad bridge without culverts, was built across the lake and ever since, the water and salinity levels have been uneqal on either side. Fed by snowmelt from the nearby Wasatch Mountains, the lake in recent years has had record high water levels, threatening to flood the local areas.

  2. 33 CFR 125.08 - Great Lakes.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Great Lakes. 125.08 Section 125... VESSELS § 125.08 Great Lakes. The term Great Lakes as used in the regulations in this subchapter shall include the Great Lakes and their connecting and tributary waters....

  3. Great Lakes management: Ecological factors

    NASA Astrophysics Data System (ADS)

    Sonzogni, W. C.; Robertson, A.; Beeton, A. M.

    1983-11-01

    Although attempts to improve the quality of the Great Lakes generally focus on chemical pollution, other factors are important and should be considered Ecological factors, such as invasion of the lakes by foreign species, habitat changes, overfishing, and random variations in organism populations, are especially influential. Lack of appreciation of the significance of ecological factors stems partly from the inappropriate application of the concept of eutrophication to the Great Lakes. Emphasis on ecological factors is not intended to diminish the seriousness of pollution, but rather to point out that more cost-effective management, as well as more realistic expectations of management efforts by the public, should result from an ecosystem management approach in which ecological factors are carefully considered.

  4. Great Lakes Steel -- PCI facility

    SciTech Connect

    Eichinger, F.T.; Dake, S.H.; Wagner, E.D.; Brown, G.S.

    1997-12-31

    This paper discusses the planning, design, and start-up of the 90 tph PCI facility for National Steel`s Great Lakes Steel Division in River Rouge, MI. This project is owned and operated by Edison Energy Services, and was implemented on a fast-track basis by Raytheon Engineers and Constructors, Babcock Material Handling, and Babcock and Wilcox. This paper presents important process issues, basic design criteria, an the challenges of engineering and building a state-of-the-art PCI facility in two existing plants. Pulverized coal is prepared at the River Rouge Power Plant of Detroit Edison, is pneumatically conveyed 6,000 feet to a storage silo at Great Lakes Steel, and is injected into three blast furnaces.

  5. Monitoring Change in Great Salt Lake

    NASA Astrophysics Data System (ADS)

    Naftz, David; Angeroth, Cory; Freeman, Michael; Rowland, Ryan; Carling, Gregory

    2013-08-01

    Great Salt Lake is the largest hypersaline lake in the Western Hemisphere and the fourth largest terminal lake in the world (Figure 1). The open water and adjacent wetlands of the Great Salt Lake ecosystem support millions of migratory waterfowl and shorebirds from throughout the Western Hemisphere [Aldrich and Paul, 2002]. In addition, the area is of important economic value: Brine shrimp (Artemia franciscana) residing in Great Salt Lake support an aquaculture shrimp cyst industry with annual revenues as high as $60 million.

  6. EPA Research Strengthens Great Lakes Restoration Initiative

    EPA Science Inventory

    As the largest group of freshwater lakes on Earth, the Great Lakes (Lakes Erie, Huron, Michigan, Ontario and Superior) are a source of economic prosperity, recreation and raw materials. Human activity, however, has resulted in pollution and other stressors. The Great Lakes curren...

  7. Insecticides and the Great Lakes

    USGS Publications Warehouse

    Reinert, Robert E.

    1969-01-01

    Cracks in the perfect image of DDT appeared when traces of the insecticide began to show up in a wide variety of organisms throughout the world. As more and more people investigated this problem, it became increasingly evident that terrestrial and aquatic animals were accumulating comparatively high concentrations of DDT from extremely low levels in their environment. It also became apparent that DDT and all of the other chlorinated hydrocarbon insecticides were not species-specific, but were toxic to all forms of animal life including man. In 1965, when the Great Lakes Fishery Laboratory of the U.S. Bureau of Commercial Fisheries began to monitor pesticide residues in fish from the Great Lakes, it was discovered that the fish contained not only DDT, but also dieldrin, another chlorinated hydrocarbon insecticide. Fish from Lake Michigan in particular contained relatively high levels of both of these insecticides; concentrations of DDT were in the parts per million (ppm) range, a factor at least several million times greater than the few parts per trillion found in the water. Two questions presented themselves: first, How did these insecticides get into the water? and second, How did the fish build up such high concentrations in their bodies from such low concentrations in the water?

  8. 75 FR 6354 - NOAA Great Lakes Habitat Restoration Program Project Grants under the Great Lakes Restoration...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-09

    ... of Grant Funds for Fiscal Year 2010, published in the Federal Register (75 FR 3101). That... contained in the Federal Register notice of February 11, 2008 (73 FR 7696), are applicable to this... National Oceanic and Atmospheric Administration RIN 0648-ZC10 NOAA Great Lakes Habitat Restoration...

  9. Great Lakes Education Booklet, 1990-1991.

    ERIC Educational Resources Information Center

    Michigan State Dept. of Natural Resources, Lansing.

    This booklet integrates science, history, and environmental education to help students acquire a basic understanding of the importance of the Great Lakes located in the United States. The packet also contains a Great Lakes Basin resource map and a sand dune poster. These materials introduce students to a brief history of the lakes, the diversity…

  10. Monitoring change in Great Salt Lake

    USGS Publications Warehouse

    Naftz, David L.; Angeroth, Cory E.; Freeman, Michael L.; Rowland, Ryan C.; Carling, Gregory

    2013-01-01

    Despite the ecological and economic importance of Great Salt Lake, only limited water quality monitoring has occurred historically. To change this, new monitoring stations and networks—gauges of lake level height and rate of inflow, moored buoys, and multiple lake-bottom sensors—will provide important information that can be used to make informed decisions regarding future management of the Great Salt Lake ecosystem.

  11. 75 FR 82141 - Stakeholder Meetings Regarding the U.S.-Flag Great Lakes Fleet Revitalization Study

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-29

    ... Maritime Administration Stakeholder Meetings Regarding the U.S.-Flag Great Lakes Fleet Revitalization Study... and comments to inform the Maritime Administration's U.S.-Flag Great Lakes Fleet Revitalization Study... different locations to maximize stakeholder participation. The U.S.-Flag Great Lakes Fleet...

  12. Availability of lake trout reproductive habitat in the Great Lakes

    USGS Publications Warehouse

    Edsall, Thomas A.; Kennedy, Gregory W.

    1995-01-01

    A decades-long program to reestablish self-sustaining stocks of lake trout (Salvelinus namaycush) in the four lower Great Lakes produced excellent fisheries supported by stocked fish. These fish spawned widely and small numbers of their offspring were collected intermittently from Lakes Michigan, Huron, and Ontario, but no self-sustaining stocks were established. Irt this paper we address habitat sufficiency as a factor in the failure of stocked lake trout to established self-sustaining populations in the four lower Great Lakes. We present the previously unpublished results of lake trout spawning habitat surveys conducted at seven sites in the Great Lakes since 1987 and we compare them with the published results of similar surveys conducted at 24 other sites in the four lower lakes since 1981. Our evaluation indicates all but two of these sites can support the production of viable fry from spawnings by the shallow-water strains of lake trout that are stocked in the Great Lakes. However, some of the best spawning, egg, and fry habitat in the lower Great Lakes seems to be at deeper offshore sites that may be unattractive to these shallow-water strains. Thus, we suggest also stocking the lower four lakes with strains from Lake Superior that might more fully exploit the best spawning habitat at these deeper, offshore sites.

  13. Eutrophication of the St. Lawrence Great Lakes

    USGS Publications Warehouse

    Beeton, Alfred M.

    1965-01-01

    Lakes Huron, Michigan, and Superior are classified as oligotrophic lakes on the basis of their biological, chemical, and physical characteristics. Lake Ontario, although rich in nutrients, is morphometrically oligotrophic or mesotrophic because of its large area of deep water. Lake Erie, the most productive of the lakes and the shallowest, is eutrophic. Several changes commonly associated with eutrophication in small lakes have been observed in the Great Lakes. These changes apparently reflect accelerated eutrophication in the Great Lakes due to man's activity. Chemical data compiled from a number of sources, dating as early as 1854, indicate a progressive increase in the concentrations of various major ions and total dissolved solids in all of the lakes except Lake Superior. The plankton has changed somewhat in Lake Michigan and the plankton, benthos, and fish populations of Lake Erie are greatly different today from those of the past. An extensive area of hypolimnetic water of Lake Erie has developed low dissolved oxygen concentrations in late summer within recent years.

  14. Pacific salmonines in the Great Lakes Basin

    USGS Publications Warehouse

    Claramunt, Randall M.; Madenjian, Charles P.; Clapp, David; Taylor, William W.; Lynch, Abigail J.; Leonard, Nancy J.

    2012-01-01

    Pacific salmon (genus Oncorhynchus) are a valuable resource, both within their native range in the North Pacific rim and in the Great Lakes basin. Understanding their value from a biological and economic perspective in the Great Lakes, however, requires an understanding of changes in the ecosystem and of management actions that have been taken to promote system stability, integrity, and sustainable fisheries. Pacific salmonine introductions to the Great Lakes are comprised mainly of Chinook salmon, coho salmon, and steelhead and have accounted for 421, 177, and 247 million fish, respectively, stocked during 1966-2007. Stocking of Pacific salmonines has been effective in substantially reducing exotic prey fish abundances in several of the Great Lakes (e.g., lakes Michigan, Huron, and Ontario). The goal of our evaluation was to highlight differences in management strategies and perspectives across the basin, and to evaluate policies for Pacific salmonine management in the Great Lakes. Currently, a potential conflict exists between Pacific salmonine management and native fish rehabilitation goals because of the desire to sustain recreational fisheries and to develop self-sustaining populations of stocked Pacific salmonines in the Great Lakes. We provide evidence that suggests Pacific salmonines have not only become naturalized to the food webs of the Great Lakes, but that their populations (specifically Chinook salmon) may be fluctuating in concert with specific prey (i.e., alewives) whose populations are changing relative to environmental conditions and ecosystem disturbances. Remaining questions, however, are whether or not “natural” fluctuations in predator and prey provide enough “stability” in the Great Lakes food webs, and even more importantly, would a choice by managers to attempt to reduce the severity of predator-prey oscillations be antagonistic to native fish restoration efforts. We argue that, on each of the Great Lakes, managers are pursuing

  15. Winter Lake Breezes near the Great Salt Lake

    NASA Astrophysics Data System (ADS)

    Crosman, Erik T.; Horel, John D.

    2016-05-01

    Case studies of lake breezes during wintertime cold air pools in Utah's Salt Lake Valley are examined. While summer breezes originating from the Great Salt Lake are typically deeper, of longer duration, and have higher wind speeds than winter breezes, the rate of inland penetration and cross-frontal temperature differences can be higher during the winter. The characteristics of winter breezes and the forcing mechanisms controlling them (e.g., snow cover, background flow, vertical stability profile, clouds, lake temperature, lake sheltering, and drainage pooling) are more complex and variable than those evident in summer. During the afternoon in the Salt Lake Valley, these lake breezes can lead to elevated pollution levels due to the transport of fine particle pollutants from over the Great Salt Lake, decreased vertical mixing depth, and increased vertical stability.

  16. Genetic diversity of Diporeia in the Great Lakes: comparison of Lake Superior to the other Great Lakes

    EPA Science Inventory

    Abundances of Diporeia have dropped drastically in the Great Lakes, except in Lake Superior, where data suggest that population counts actually have risen. Various ecological, environmental, or geographic hypotheses have been proposed to explain the greater abundance of Lake Supe...

  17. Dry Climate Disconnected the Laurentian Great Lakes

    NASA Astrophysics Data System (ADS)

    Lewis, C. F. Michael; King, John W.; Blasco, Stefan M.; Brooks, Gregory R.; Coakley, John P.; Croley, Thomas E.; Dettman, David L.; Edwards, Thomas W. D.; Heil, Clifford W.; Hubeny, J. Bradford; Laird, Kathleen R.; McAndrews, John H.; McCarthy, Francine M. G.; Medioli, Barbara E.; Moore, Theodore C.; Rea, David K.; Smith, Alison J.

    2008-12-01

    Recent studies have produced a new understanding of the hydrological history of North America's Great Lakes, showing that water levels fell several meters below lake basin outlets during an early postglacial dry climate in the Holocene (younger than 10,000 radiocarbon years, or about 11,500 calibrated or calendar years before present (B.P.)). Water levels in the Huron basin, for example, fell more than 20 meters below the basin overflow outlet between about 7900 and 7500 radiocarbon (about 8770-8290 calibrated) years B.P. Outlet rivers, including the Niagara River, presently falling 99 meters from Lake Erie to Lake Ontario (and hence Niagara Falls), ran dry. This newly recognized phase of low lake levels in a dry climate provides a case study for evaluating the sensitivity of the Great Lakes to current and future climate change.

  18. Great Lakes rivermouths: a primer for managers

    USGS Publications Warehouse

    Pebbles, Victoria; Larson, James; Seelbach, Paul; Pebbles, Victoria; Larson, James; Seelbach, Paul

    2013-01-01

    Between the North American Great Lakes and their tributaries are the places where the confluence of river and lake waters creates a distinct ecosystem: the rivermouth ecosystem. Human development has often centered around these rivermouths, in part, because they provide a rich array of ecosystem services. Not surprisingly, centuries of intense human activity have led to substantial pressures on, and alterations to, these ecosystems, often diminishing or degrading their ecological functions and associated ecological services. Many Great Lakes rivermouths are the focus of intense restoration efforts. For example, 36 of the active Great Lakes Areas of Concern (AOCs) are rivermouths or areas that include one or more rivermouths. Historically, research of rivermouth ecosystems has been piecemeal, focused on the Great Lakes proper or on the upper reaches of tributaries, with little direct study of the rivermouth itself. Researchers have been divided among disciplines, agencies and institutions; and they often work independently and use disparate venues to communicate their work. Management has also been fragmented with a focus on smaller, localized, sub-habitat units and socio-political or economic elements, rather than system-level consideration. This Primer presents the case for a more holistic approach to rivermouth science and management that can enable restoration of ecosystem services with multiple benefits to humans and the Great Lakes ecosystem. A conceptual model is presented with supporting text that describes the structures and processes common to all rivermouths, substantiating the case for treating these ecosystems as an identifiable class.1 Ecological services provided by rivermouths and changes in how humans value those services over time are illustrated through case studies of two Great Lakes rivermouths—the St. Louis River and the Maumee River. Specific ecosystem services are identified in italics throughout this Primer and follow definitions described

  19. How the Great Lakes Were Evaluated

    ERIC Educational Resources Information Center

    Sonzogni, William C.

    1975-01-01

    The Great Lakes Basin Commission exhaustively studied the world's largest fresh water ecosystem. The reconnaissance-type investigation provided a broad-scale analysis of resource needs and problems in the United States portion of the Basin. (BT)

  20. Animation: 'Great Lake' on Jupiter's Moon Europa

    NASA Video Gallery

    Data from a NASA planetary mission have provided scientists evidence of what appears to be a body of liquid water, equal in volume to the North American Great Lakes, beneath the icy surface of Jupi...

  1. BIOLOGICAL INDICATOR DEVELOPMENT AND CLASSIFICATION FOR GREAT LAKES COASTAL WETLANDS

    EPA Science Inventory

    Great Lakes coastal wetlands are a valued aquatic resource that provide important ecological functions for the Great Lakes including serving as fish habitat, aquatic food web support, and nutrient and sediment retention from watersheds. Great Lakes resource managers need assessme...

  2. Sanctuaries for lake trout in the Great Lakes

    USGS Publications Warehouse

    Stanley, Jon G.; Eshenroder, Randy L.; Hartman, Wilbur L.

    1987-01-01

    Populations of lake trout, severely depleted in Lake Superior and virtually extirpated from the other Great Lakes because of sea lamprey predation and intense fishing, are now maintained by annual plantings of hatchery-reared fish in Lakes Michigan, Huron, and Ontario and parts of Lake Superior. The extensive coastal areas of the Great Lakes and proximity to large populations resulted in fishing pressure on planted lake trout heavy enough to push annual mortality associated with sport and commercial fisheries well above the critical level needed to reestablish self-sustaining stocks. The interagency, international program for rehabilitating lake trout includes controlling sea lamprey abundance, stocking hatchery-reared lake trout, managing the catch, and establishing sanctuaries where harvest is prohibited. Three lake trout sanctuaries have been established in Lake Michigan: the Fox Island Sanctuary of 121, 500 ha, in the Chippewa-Ottawa Treaty fishing zone in the northern region of the lake; the Milwaukee Reef Sanctuary of 160, 000 ha in midlake, in boundary waters of Michigan and Wisconsin; and Julian's Reef Sanctuary of 6, 500 ha, in Illinois waters. In northern Lake Huron, Drummond Island Sanctuary of 55, 000 ha is two thirds in Indian treaty-ceded waters in Michigan and one third in Ontario waters of Canada. A second sanctuary, Six Fathom Bank-Yankee Reef Sanctuary, in central Lake Huron contains 168, 000 ha. Sanctuary status for the Canadian areas remains to be approved by the Provincial government. In Lake Superior, sanctuaries protect the spawning grounds of Gull Island Shoal (70, 000 ha) and Devils Island Shoal (44, 000 ha) in Wisconsin's Apostle Island area. These seven sanctuaries, established by the several States and agreed upon by the States, Indian tribes, the U.S. Department of the Interior, and the Province of Ontario, contribute toward solving an interjurisdictional fishery problem.

  3. Integrating Climate Change into Great Lakes Protection

    NASA Astrophysics Data System (ADS)

    Hedman, S.

    2012-12-01

    Climate change is now recognized as one of the greatest threats to the Great Lakes. Projected climate change impacts to the Great Lakes include increases in surface water and air temperature; decreases in ice cover; shorter winters, early spring, and longer summers; increased frequency of intense storms; more precipitation falling as rain in the winter; less snowfall; and variations in water levels, among other effects. Changing climate conditions may compromise efforts to protect and restore the Great Lakes ecosystem and may lead to irrevocable impacts on the physical, chemical, and biological integrity of the Great Lakes. Examples of such potential impacts include the transformation of coastal wetlands into terrestrial ecosystems; reduced fisheries; increased beach erosion; change in forest species composition as species migrate northward; potential increase in toxic substance concentrations; potential increases in the frequency and extent of algal blooms; degraded water quality; and a potential increase in invasive species. The Great Lakes Restoration Initiative, signed into law by President Obama in 2010, represents the commitment of the federal government to protect, restore, and maintain the Great Lakes ecosystem. The GLRI Action Plan, issued in February 2010, identifies five focus areas: - Toxic Substances and Areas of Concern - Invasive Species - Nearshore Health and Nonpoint Source Pollution - Habitat and Wildlife Protection and Restoration - Accountability, Education, Monitoring, Evaluation, Communication, and Partnerships The Action Plan recognizes that the projected impacts of climate change on the Great Lakes have implications across all focus areas and encourages incorporation of climate change considerations into GLRI projects and programs as appropriate. Under the GLRI, EPA has funded climate change-related work by states, tribes, federal agencies, academics and NGOs through competitive grants, state and tribal capacity grants, and Interagency

  4. ERTS-1 views the Great Lakes

    NASA Technical Reports Server (NTRS)

    Lyons, W. A.; Pease, S. R.

    1973-01-01

    The meteorological content of ERTS images, particularly mesoscale effects of the Great Lakes and air pollution dispersion is summarized. Summertime lake breeze frontal clouds and various winter lake-effect convection patterns and snow squalls are revealed in great detail. A clear-cut spiral vortex over southern Lake Michigan is related to a record early snow storm in the Chicago area. Marked cloud changes induced by orographic and frictional effects on Lake Michigan's lee shore snow squalls are seen. The most important finding, however, is a clear-cut example of alterations in cumulus convection by anthropogenic condensation and/or ice nuclei from northern Indiana steel mills during a snow squall situation. Jet aircraft condensation trails are also found with surprising frequency.

  5. Energy and water in the Great Lakes.

    SciTech Connect

    Tidwell, Vincent Carroll

    2011-11-01

    The nexus between thermoelectric power production and water use is not uniform across the U.S., but rather differs according to regional physiography, demography, power plant fleet composition, and the transmission network. That is, in some regions water demand for thermoelectric production is relatively small while in other regions it represents the dominate use. The later is the case for the Great Lakes region, which has important implications for the water resources and aquatic ecology of the Great Lakes watershed. This is today, but what about the future? Projected demographic trends, shifting lifestyles, and economic growth coupled with the threat of global climate change and mounting pressure for greater U.S. energy security could have profound effects on the region's energy future. Planning for such an uncertain future is further complicated by the fact that energy and environmental planning and regulatory decisionmaking is largely bifurcated in the region, with environmental and water resource concerns generally taken into account after new energy facilities and technologies have been proposed, or practices are already in place. Based on these confounding needs, the objective of this effort is to develop Great Lakes-specific methods and tools to integrate energy and water resource planning and thereby support the dual goals of smarter energy planning and development, and protection of Great Lakes water resources. Guiding policies for this planning are the Great Lakes and St. Lawrence River Basin Water Resources Compact and the Great Lakes Water Quality Agreement. The desired outcome of integrated energy-water-aquatic resource planning is a more sustainable regional energy mix for the Great Lakes basin ecosystem.

  6. Early Holocene Great Salt Lake, USA

    NASA Astrophysics Data System (ADS)

    Oviatt, Charles G.; Madsen, David B.; Miller, David M.; Thompson, Robert S.; McGeehin, John P.

    2015-07-01

    Shorelines and surficial deposits (including buried forest-floor mats and organic-rich wetland sediments) show that Great Salt Lake did not rise higher than modern lake levels during the earliest Holocene (11.5-10.2 cal ka BP; 10-9 14C ka BP). During that period, finely laminated, organic-rich muds (sapropel) containing brine-shrimp cysts and pellets and interbedded sodium-sulfate salts were deposited on the lake floor. Sapropel deposition was probably caused by stratification of the water column - a freshwater cap possibly was formed by groundwater, which had been stored in upland aquifers during the immediately preceding late-Pleistocene deep-lake cycle (Lake Bonneville), and was actively discharging on the basin floor. A climate characterized by low precipitation and runoff, combined with local areas of groundwater discharge in piedmont settings, could explain the apparent conflict between evidence for a shallow lake (a dry climate) and previously published interpretations for a moist climate in the Great Salt Lake basin of the eastern Great Basin.

  7. Modeling toxaphene behavior in the Great Lakes.

    PubMed

    Xia, Xiaoyan; Hopke, Philip K; Holsen, Thomas M; Crimmins, Bernard S

    2011-01-15

    Chlorinated camphenes, toxaphene, are persistent organic pollutants of concern in the Great Lakes since elevated concentrations are found in various media throughout the system. While concentrations have decreased since their peak values in the 1970s and 80s, recent measurements have shown that the rate of this decline in Lake Superior has decreased significantly. This modeling study focused on toxaphene cycling in the Great Lakes and was performed primarily to determine if elevated water and fish concentrations in Lake Superior can be explained by physical differences among the lakes. Specifically, the coastal zone model for persistent organic pollutants (CoZMo-POP), a fugacity-based multimedia fate model, was used to calculate toxaphene concentrations in the atmosphere, water, soil, sediment, and biota. The performance of the model was evaluated by comparing calculated and reported concentrations in these compartments. In general, simulated and observed concentrations agree within one order of magnitude. Both model results and observed values indicate that toxaphene concentrations have declined in water and biota since the 1980s primarily as the result of decreased atmospheric deposition rates. Overall the model results suggest that the CoZMo-POP2 model does a reasonable job in simulating toxaphene variations in the Great Lakes basin. The results suggest that the recent findings of higher toxaphene concentrations in Lake Superior can be explained by differences in the physical properties of the lake (primarily large volume, large residence time and cold temperatures) compared to the lower lakes and increased recent inputs are not needed to explain the measured values.

  8. The reproductive toxicology of Great Lakes contaminants.

    PubMed Central

    Foster, W G

    1995-01-01

    The Great Lakes basin is characterized as a heavily populated and industrialized region in which a large number of environmental contaminants have been identified. Both the scientific community and the public have voiced concern that contaminants present in the Great Lakes may pose undue risk to human reproduction. Evidence from animal experiments, wildlife studies, and reports of occupational and accidental human exposures indicate that chemical contaminants can adversely affect reproduction. The purpose of this paper is to review the reproductive toxicity of some of the many contaminants known to be present in the Great Lakes. Since the number of chemicals present in the Great Lakes is far too great for each to be adequately reviewed here, discussion will be limited to those contaminants that have been identified in human serum, ovarian follicular fluid, and semen obtained from people residing in the Great Lakes region. It is concluded that a) the data at present is too limited to support the notion that reproduction, in the general population, has been impaired by exposure to chemicals present in the Great Lakes; b) the lack of data in some cases such as for hexachloroethane and 1,2,4-trichlobenzene does provide reason for concern and underscores the need for further research in this area; and c) the potential for a number of the compounds, including polychlorinated biphenyls (PCBs) and 1,1,1-trichloro-2,2-bis(p-chlorophenyl) ethane (DDT), to disrupt endocrine functions suggests that additive or synergistic effects of these compounds may already be causing adverse effects on reproduction in sensitive individuals, which needs to be explored. PMID:8635441

  9. Life in the Great Lakes. Earth Systems - Education Activities for Great Lakes Schools (ES-EAGLS).

    ERIC Educational Resources Information Center

    Sheaffer, Amy L., Ed.

    This activity book is part of a series designed to take a concept or idea from the existing school curriculum and develop it in the context of the Great Lakes using teaching approaches and materials appropriate for students in middle and high school. The theme of this book is life in the Great Lakes. Students learn about shorebird adaptations,…

  10. Great Lakes Environmental Issues. Earth Systems - Education Activities for Great Lakes Schools (ES-EAGLS).

    ERIC Educational Resources Information Center

    Sheaffer, Amy L., Ed.

    This activity book is part of a series designed to take a concept or idea from the existing school curriculum and develop it in the context of the Great Lakes using teaching approaches and materials appropriate for students in middle and high school. The subject of this book is environmental issues in the Great Lakes. Students learn about the…

  11. Great Lakes Shipping. Earth Systems - Education Activities for Great Lakes Schools (ES-EAGLS).

    ERIC Educational Resources Information Center

    Fortner, Rosanne W., Ed.

    This activity book is part of a series designed to take a concept or idea from the existing school curriculum and develop it in the context of the Great Lakes using teaching approaches and materials appropriate for students in middle and high school. The theme of this book is Great Lakes shipping. Students learn about the connections between the…

  12. 46 CFR 42.05-40 - Great Lakes.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Great Lakes. 42.05-40 Section 42.05-40 Shipping COAST... Definition of Terms Used in This Subchapter § 42.05-40 Great Lakes. (a) This term means the Great Lakes of North America. (b) As used in this part, the term solely navigating the Great Lakes includes any...

  13. Natural remediation in the Great Lakes

    USGS Publications Warehouse

    Passino-Reader, Dora R.; Kamrin, Michael A.; Hickey, James P.; Swindoll, C. Michael; Stahl, Ralph G.; Ells, Stephen J.

    2000-01-01

    Overall, the existence of stricter environmental laws during the last 30 years and a reduction in the manufacturing base in the Great Lakes has resulted in improvement in conditions in harbors, rivers, and nearshore waters. Problems remain, such as the inability to dredge certain harbors and remove sediments because of lack of disposal facilities for contaminated sediments. Because of the wide extent of of contaminated sediments in the Great Lakes, much work remains to be done to document the condition of contaminated areas and the degree to which remediation of these areas is occurring from biotic and abiotic natural processes.

  14. The Great Lakes Runoff Intercomparison Project (GRIP)

    NASA Astrophysics Data System (ADS)

    Gronewold, A. D.; Fortin, V.; Fry, L. M.

    2012-12-01

    As a continuation of investments in the development of alternative methods for estimating major components of the Great Lakes water budget through the recently-completed International Joint Commission (IJC) International Upper Great Lakes Study (IUGLS), representatives from a variety of United States and Canadian agencies have formed a bi-national collaboration to assess alternative methods for modeling runoff within the Great Lakes basin. The project is based on assessing and comparing simulated runoff across the watersheds of both Lake Michigan and Lake Ontario, with an emphasis on understanding the different sources of data needed to support these models, and a comparison between both total runoff and estimated runoff at individual gauging stations. Models, or modeling frameworks (and contributing agencies) participating in the project include (but are not limited to) Analysis of Flows in Networks of Channels (or AFINCH, from USGS), the Community Hydrologic Prediction System (or CHPS, from NOAA's National Weather Service), the MESH system (from Environment Canada), the Large Basin Runoff Model (or LBRM, from NOAA's Great Lakes Environmental Research Laboratory) as well as a series of empirical methods for extrapolating historical gauge measurements to ungauged portions of each Lake basin. This presentation will also explore alternative methods for comparing runoff estimates over broad spatial scales, and for understanding potential sources of bias and uncertainty within and between these estimates. For models generating probabilistic estimates (i.e. with an explicit expression of uncertainty) we provide a comparison based on posterior predictive p-values (similar to rank histograms), an approach which, unlike conventional deterministic metrics, provides an indication of the relative importance of uncertainty in large-scale hydrological model assessment and how expressions of that uncertainty propagate into model-based water resources management planning

  15. Inventory of radionuclides for the Great Lakes

    SciTech Connect

    1997-12-31

    This report uses a material balance approach to describe the quantities and composition of reported releases of radionuclides to air and water, and the distribution of these nuclides in atmospheric, aquatic, and biotic compartments of the Great Lakes ecosystem. The primary sources considered are discharges from nuclear fuel cycle facilities in the Great Lakes Basin. Other sources include commercial, industrial, medical, and research institutions. Radionuclide inventories are first presented by source, both natural and anthropogenic, then by geographical and environmental distribution. The concluding section discusses the adequacy of radionuclide monitoring, the need for a reassessment of environmental monitoring of nuclear facilities, radionuclide data reporting, harmonization of monitoring and data reporting, biological transfer factors for lake systems, and radionuclides of concern. A glossary is included.

  16. Global Implications of Great Lakes Wildlife Research.

    ERIC Educational Resources Information Center

    Colborn, Theo

    1991-01-01

    Data on the health of wildlife in the Great Lakes ecosystem are reviewed. Researchers infer from data on eight species that the effects in offspring are the result of exposure to chlorinated chemicals by adults and passed to the offspring via maternal transfer. Policy implications are discussed. (CW)

  17. Temperature Over Time at the Great Lakes.

    ERIC Educational Resources Information Center

    Meyer, Rick; Fortner, Rosanne W.

    1997-01-01

    Presents an activity in which water temperature is investigated in relation to water depth, weather patterns, land use, time of year, and other factors students choose to investigate with data collected from the Internet. Uses the Great Lakes as the setting for this investigation and examines how and why the temperature of a body of water changes…

  18. The Future of Great Lakes Rivermouth Research

    EPA Science Inventory

    The Great Lakes Rivermouth Collaboratory, a group of scientists and stakeholders representing academics, federal and state agencies, and non-governmental organizations (NGOs) are developing a conceptual model that draws upon existing data sources to synthesize the "state of the s...

  19. Great Lakes Environmental Education. Special Report.

    ERIC Educational Resources Information Center

    International Joint Commission, Windsor (Ontario). Great Lakes Regional Office.

    The International Joint Commission report builds on a previous report to the Governments of the United States and Canada that recommended the Great Lakes (GL) States and Provinces incorporate the GL ecosystem as a priority topic in existing school curricula. This report begins by building an argument showing the need for environmental education…

  20. Global Change in the Great Lakes: Scenarios.

    ERIC Educational Resources Information Center

    Garrison, Barbara K., Ed.; Rosser, Arrye R., Ed.

    The Ohio Sea Grant Education Program has produced this series of publications designed to help people understand how global change may affect the Great Lakes region. The possible implications of global change for this region of the world are explained in the hope that policymakers and individuals will be more inclined to make responsible decisions…

  1. Epidemiology of Great Lakes bald eagles.

    PubMed

    Colborn, T

    1991-08-01

    Historical data are provided to support the hypothesis that organochlorine chemicals introduced into the Great Lakes ecosystem following World War II are the cause of reproductive loss among bald eagles (Haliaeetus leucocephalus) in the basin. This is supported with data on concurrent population fluxes of extrabasin North American bald eagle populations and the European white-tailed sea eagle (Haliaeetus albicillus) where the same chemicals were produced and released. Organochlorine chemicals appear as a unique stress on Great Lakes bald eagle populations when compared with stresses on successful populations of bald eagles continentwide. Shoreline birds bear significantly higher concentrations of these persistent toxics than inland birds. Association between contaminated prey and elevated concentrations of PCBs, DDT, and DDE in Great Lakes bald eagles are presented. A fledging ratio is used to support the hypothesis that maternal prezygotic exposure affects the viability of embryos and chicks. The ratio of the mean number of fledglings per successful territory to the mean number of fledglings per active territory, when the numerator is greater than 1.4, provides an index of exposure to contaminants by parental animals and affected offspring. When the ratio is greater than 2, parental exposure to organochlorine chemicals should be considered. The adverse effects of prezygotic exposure to the same contaminants in other animal species dependent upon Great Lakes fish, and extrabasin bald eagle populations dependent upon contaminated fish, provide consistency to the argument. The mechanism of action of the organochlorine chemicals further strengthens the causal argument indicting DDT, DDE, and PCBs. A strong association between DDT/DDE and bald eagle reproductive success is provided. However, the role of PCBs is not ruled out. Only data for total PCB concentrations in bald eagle tissue are available, and until specific PCB congeners are quantified there will be

  2. The Great Lakes Runoff Intercomparison Project Phase 1: Lake Michigan (GRIP-M)

    NASA Astrophysics Data System (ADS)

    Fry, Lauren M.; Gronewold, Andrew D.; Fortin, Vincent; Buan, Steven; Clites, Anne H.; Luukkonen, Carol; Holtschlag, David; Diamond, Laura; Hunter, Timothy; Seglenieks, Frank; Durnford, Dorothy; Dimitrijevic, Milena; Subich, Christopher; Klyszejko, Erika; Kea, Kandace; Restrepo, Pedro

    2014-11-01

    We assembled and applied five models (one of which included three different configurations) to the Lake Michigan basin to improve our understanding of how differences in model skill at simulating total runoff to Lake Michigan relate to model structure, calibration protocol, model complexity, and assimilation (i.e. replacement of simulated discharge with discharge observations into historical simulations), and evaluate historical changes in runoff to Lake Michigan. We found that the performance among these models when simulating total runoff to the lake varied relatively little, despite variability in model structure, spatial representation, input data, and calibration protocol. Relatively simple empirical, assimilative models, including the National Oceanic and Atmospheric Administration (NOAA) Great Lakes Environmental Research Laboratory (GLERL) area ratio-based model (ARM) and the United States Geological Survey (USGS) Analysis of Flows in Networks of CHannels (AFINCH) model, represent efficient and effective approaches to propagating discharge observations into basin-wide (including gaged and ungaged areas) runoff estimates, and may offer an opportunity to improve predictive models for simulating runoff to the Great Lakes. Additionally, the intercomparison revealed that the median of the simulations from non-assimilative models agrees well with assimilative models, suggesting that using a combination of different methodologies may be an appropriate approach for estimating runoff into the Great Lakes. We then applied one assimilative model (ARM) to the Lake Michigan basin and found that there was persistent reduction in the amount of precipitation that becomes runoff following 1998, corresponding to a period of persistent low Lake Michigan water levels. The study was conducted as a first phase of the Great Lakes Runoff Intercomparison Project, a regional binational collaboration that aims to systematically and rigorously assess a variety of models currently used

  3. Microseisms from the Great Salt Lake

    NASA Astrophysics Data System (ADS)

    Goddard, K. J.; Koper, K. D.; Burlacu, V.

    2014-12-01

    Dept. of Geology and Geophysics, University of Utah, Salt Lake City, UT, 84112, USA We performed frequency-dependent polarization and power analysis on continuous ambient seismic energy recorded by broadband seismic stations that were part of the Utah Regional Seismic Network (UU) for the years of 2001-2013. The number of broadband seismometers increased from 10 to 28 in this time period. As expected, at all 28 stations the single and double frequency peaks caused by microseisms were observed in the range of 3-20 s. At four of the stations located around the Great Salt Lake (BGU, HVU, NOQ, and SPU) an additional noise peak was intermittently observed in the period range of 0.8-1.2 s. This noise peak was strongest at SPU, a station located on the tip of a peninsula jutting into the lake from the north, and weakest at NOQ, a station located a few kilometers south of the lake in the Oquirrh Mountains. The noise peaks occur in both daytime and nighttime, and have durations lasting from a couple of hours to multiple days. They occur more frequently in the spring, summer, and fall, and less commonly in the winter. The occurrences of noise peaks in the summer show a day night pattern and seem to reach a peak during the night. The time dependence of this 1-s seismic noise was compared to records of wind speed measured at 1-hr intervals from nearby meteorological stations run by the NWS, and to lake level gage height measurements made by the USGS. Correlations with wind speed and lake level were done for every month of the year in 2013. Results showed that the correlations with wind varied throughout the year from a high of 0.49 in November to a low of 0.20 in the month of January. The correlation with lake level also varied throughout the year and the strongest correlation was found in the month of December with a correlation of 0.43. While these correlation values are statistically significant, neither wind nor lake level can completely explain the seismic observations

  4. Lake Buchannan, Great Dividing Range, Queensland, Australia

    NASA Technical Reports Server (NTRS)

    1991-01-01

    Lake Buchannan, a small but blue and prominent in the center of the view, lies in the Great Dividing of Queensland, Australia (22.0S, 146.0E). The mountain range in this case is a low plateau of no more than 2,000 to 3,000 ft altitude. The interior is dry, mostly in pasture but the coastal zone in contrast, is wet tropical country where bananas and sugarcane are grown.

  5. Hydrogeomorphic classification for Great Lakes coastal wetlands

    USGS Publications Warehouse

    Albert, Dennis A.; Wilcox, Douglas A.; Ingram, Joel W.; Thompson, Todd A.

    2005-01-01

    A hydrogeomorphic classification scheme for Great Lakes coastal wetlands is presented. The classification is hierarchical and first divides the wetlands into three broad hydrogeomorphic systems, lacustrine, riverine, and barrier-protected, each with unique hydrologic flow characteristics and residence time. These systems are further subdivided into finer geomorphic types based on physical features and shoreline processes. Each hydrogeomorphic wetland type has associated plant and animal communities and specific physical attributes related to sediment type, wave energy, water quality, and hydrology.

  6. Beach science in the Great Lakes

    USGS Publications Warehouse

    Nevers, Meredith B.; Byappanahalli, Murulee N.; Edge, Thomas A.; Whitman, Richard L.

    2014-01-01

    Monitoring beach waters for human health has led to an increase and evolution of science in the Great Lakes, which includes microbiology, limnology, hydrology, meteorology, epidemiology, and metagenomics, among others. In recent years, concerns over the accuracy of water quality standards at protecting human health have led to a significant interest in understanding the risk associated with water contact in both freshwater and marine environments. Historically, surface waters have been monitored for fecal indicator bacteria (fecal coliforms, Escherichia coli, enterococci), but shortcomings of the analytical test (lengthy assay) have resulted in a re-focusing of scientific efforts to improve public health protection. Research has led to the discovery of widespread populations of fecal indicator bacteria present in natural habitats such as soils, beach sand, and stranded algae. Microbial source tracking has been used to identify the source of these bacteria and subsequently assess their impact on human health. As a result of many findings, attempts have been made to improve monitoring efficiency and efficacy with the use of empirical predictive models and molecular rapid tests. All along, beach managers have actively incorporated new findings into their monitoring programs. With the abundance of research conducted and information gained over the last 25 years, “Beach Science” has emerged, and the Great Lakes have been a focal point for much of the ground-breaking work. Here, we review the accumulated research on microbiological water quality of Great Lakes beaches and provide a historic context to the collaborative efforts that have advanced this emerging science.

  7. 46 CFR 46.05-20 - Great Lakes voyage.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Great Lakes voyage. 46.05-20 Section 46.05-20 Shipping... VESSELS Definitions Used in This Part § 46.05-20 Great Lakes voyage. A Great Lakes voyage is any voyage from a United States port or place on the Great Lakes to another United States port or place on...

  8. Proposed Great Salt Lake Basin Hydrologic Observatory

    NASA Astrophysics Data System (ADS)

    Johnson, W. P.; Tarboton, D. G.

    2004-12-01

    The dynamic physiography and population growth within the Great Salt Lake Basin provide the opportunity to observe climate and human-induced land-surface changes affecting water availability, water quality, and water use, thereby making the Great Salt Lake Basin a microcosm of contemporary water resource issues and an excellent site to pursue interdisciplinary and integrated hydrologic science. Important societal concerns center on: How do climate variability and human-induced landscape changes affect hydrologic processes, water quality and availability, and aquatic ecosystems over a range of scales? What are the resource, social, and economic consequences of these changes? The steep topography and large climatic gradients of the Great Salt Lake Basin yield hydrologic systems that are dominated by non-linear interactions between snow deposition and snow melt in the mountains, stream flow and groundwater recharge in the mid-elevations, and evaporative losses from the desert floor at lower elevations. Because the Great Salt Lake Basin terminates in a closed basin lake, it is uniquely suited to closing the water, solute, and sediment balances in a way that is rarely possible in a watershed of a size sufficient for coupling to investigations of atmospheric processes. Proposed infrastructure will include representative densely instrumented focus areas that will be nested within a basin-wide network, thereby quantifying fluxes, residence times, pathways, and storage volumes over a range of scales and land uses. The significant and rapid ongoing urbanization presents the opportunity for observations that quantify the interactions among hydrologic processes, human induced changes and social and economic dynamics. One proposed focus area will be a unique, highly instrumented mountain-to-basin transect that will quantify hydrologic processes extending from the mountain ridge top to the Great Salt Lake. The transect will range in elevation from about 1200 m to 3200 m, with a

  9. 46 CFR 188.10-31 - Great Lakes.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Great Lakes. 188.10-31 Section 188.10-31 Shipping COAST... Definition of Terms Used in This Subchapter § 188.10-31 Great Lakes. Under this designation shall be included all vessels navigating the Great Lakes....

  10. 46 CFR 151.03-29 - Great Lakes.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Great Lakes. 151.03-29 Section 151.03-29 Shipping COAST... LIQUID HAZARDOUS MATERIAL CARGOES Definitions § 151.03-29 Great Lakes. A designation for all vessels in Great Lakes service....

  11. 46 CFR 90.10-13 - Great Lakes.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Great Lakes. 90.10-13 Section 90.10-13 Shipping COAST... Definition of Terms Used in This Subchapter § 90.10-13 Great Lakes. Under this designation shall be included all vessels navigating the Great Lakes....

  12. 77 FR 33228 - Great Lakes Pilotage Advisory Committee; Vacancies

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-05

    ... SECURITY Coast Guard Great Lakes Pilotage Advisory Committee; Vacancies AGENCY: Coast Guard, DHS. ACTION: Request for applicants. SUMMARY: The Coast Guard seeks applications for membership on the Great Lakes... of Homeland Security and the Coast Guard on matters relating to Great Lakes pilotage,...

  13. 78 FR 49544 - Great Lakes Pilotage Advisory Committee; Vacancies

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-14

    ... SECURITY Coast Guard Great Lakes Pilotage Advisory Committee; Vacancies AGENCY: Coast Guard, DHS. ACTION: Request for applications. SUMMARY: The Coast Guard seeks applications for membership on the Great Lakes... of Homeland Security and the Coast Guard on matters relating to Great Lakes pilotage,...

  14. 76 FR 62085 - Great Lakes Pilotage Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-06

    ... SECURITY Coast Guard Great Lakes Pilotage Advisory Committee AGENCY: Coast Guard, DHS. ACTION: Committee... the Federal Register of October 4, 2011, a notice announcing a Great Lakes Pilotage Advisory Committee... authority of the Great Lakes Pilotage program. If you have been adversely affected by the one-day delay...

  15. The Great Lakes. An Environmental Atlas and Resource Book.

    ERIC Educational Resources Information Center

    Botts, Lee; Krushelnicki, Bruce

    This atlas was developed jointly by the Canadian and American governments, and is intended to provide an ecosystem approach to the understanding of the Great Lakes Basin. Chapter one provides an introduction to both the natural and cultural aspects of the Great Lakes. Chapter two, "Natural Processes in the Great Lakes," describes such factors as…

  16. CHECKLIST OF DIATOMS FROM THE LAURENTIAN GREAT LAKES

    EPA Science Inventory

    An updated diatom (Bacillariophyta) checklist for the Great Lakes has been completed (J. Great Lakes Res. 1999) and supplants the preliminary checklist (J. Great Lakes Res. 1978). The present list is effectively a 20-year update. The updated list is based upon: 1) the 1978 checkl...

  17. ROV dives under Great Lakes ice

    USGS Publications Warehouse

    Bolsenga, S.J.; Gannon, John E.; Kennedy, Gregory; Norton, D.C.; Herdendorf, Charles E.

    1989-01-01

    Observations of the underside of ice have a wide variety of applications. Severe under-ice roughness can affect ice movements, rough under-ice surfaces can scour the bottom disturbing biota and man-made structures such as pipelines, and the flow rate of rivers is often affected by under-ice roughness. A few reported observations of the underside of an ice cover have been made, usually by cutting a large block of ice and overturning it, by extensive boring, or by remote sensing. Such operations are extremely labor-intensive and, in some cases, prone to inaccuracies. Remotely operated vehicles (ROV) can partially solve these problems. In this note, we describe the use, performance in a hostile environment, and results of a study in which a ROV was deployed under the ice in Lake Erie (North American Great Lakes).

  18. Forecasting Lake-Effect Snow in the Great Lakes Using NASA Satllite Data

    NASA Technical Reports Server (NTRS)

    Cipullo, Michelle; Molthan, Andrew; Shafer, Jackie; Case, Jonathan; Jedlovec, Gary

    2011-01-01

    This slide presentation reviews the forecast of the lake effect snow in the Great Lakes region using models and infrared estimates of Great Lake Surface Temperatures (GLSTs) from the MModerate Resolution Imaging Spectroradiometer (MODIS) instrument on Terra and Aqua satellites, and other satellite data. This study analyzes Lake Erie and Lake Ontario which produce storm total snowfall ranged from 8-18 inches off of Lake Ontario and 10-12 inches off of Lake Erie for the areas downwind.

  19. 76 FR 1665 - Stakeholder Meetings Regarding the U.S.-Flag Great Lakes Fleet Revitalization Study; Correction

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-11

    ...: On December 29, 2010, at 75 FR 82141, the Maritime Administration (MARAD) published notice of three... Maritime Administration Stakeholder Meetings Regarding the U.S.-Flag Great Lakes Fleet Revitalization Study... Administration's U.S.-Flag Great Lakes Fleet Revitalization Study. MARAD inadvertently listed the incorrect...

  20. Drainage water phosphorus losses in the great lakes basin

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The great lakes are one of the most important fresh water resources on the planet. While forestry is a primary land use throughout much of the great lakes basin, there are portions of the basin, such as much of the land that drains directly to Lake Erie, that are primarily agricultural. The primary ...

  1. The Role of Ecological Research in Great Lakes Water Sustainability

    EPA Science Inventory

    This talk will present some current ecological research in the Great Lakes. It will focus on how research examines aspects of water quality that relate to Basin-Lake and Human-Water interactions in the context of water sustainability issues for the Great Lakes.

  2. Base flow in the Great Lakes Basin

    USGS Publications Warehouse

    Neff, B.P.; Day, S.M.; Piggott, A.R.; Fuller, L.M.

    2005-01-01

    Hydrograph separations were performed using the PART, HYSEP 1, 2, and 3, BFLOW and UKIH methods on 104,293 years of daily streamflow records from 3,936 streamflow-gaging stations in Ontario, Canada and the eight Great Lakes States of Illinois, Indiana, Michigan, Minnesota, New York, Ohio, Pennsylvania, and Wisconsin to estimate base-flow index (BFI) and base flow. BFI ranged an average of 0.24 BFI depending on which hydrograph-separation method was used. BFI data from 959 selected streamflow-gaging stations with a combined 28,784 years of daily streamflow data were used to relate BFI to surficial geology and the proportion of surface water within the gaged watersheds. This relation was then used to derive estimates of BFI throughout the Great Lakes, Ottawa River, and upper St. Lawrence River Basins at a scale of 8-digit hydrologic unit code (HUC) watersheds for the U.S. and tertiary watersheds in Canada. This process was repeated for each of the six hydrograph-separation methods used. When applied to gaged watersheds, model results predicted observed base flow within 0.2 BFI up to 94 percent of the time. Estimates of long-term (length of streamflow record) average annual streamflow in each HUC and tertiary watershed were calculated and used to determine average annual base flow from BFI estimates. Possibilities for future study based on results from this study include long-term trend analysis of base flow and improving the scale at which base-flow estimates can be made.

  3. Perchlorate in the Great Lakes: isotopic composition and origin.

    PubMed

    Poghosyan, Armen; Sturchio, Neil C; Morrison, Candice G; Beloso, Abelardo D; Guan, Yunbin; Eiler, John M; Jackson, W Andrew; Hatzinger, Paul B

    2014-10-01

    Perchlorate is a persistent and mobile contaminant in the environment with both natural and anthropogenic sources. Stable isotope ratios of oxygen (δ(18)O, Δ(17)O) and chlorine (δ(37)Cl) along with the abundance of the radioactive isotope (36)Cl were used to trace perchlorate sources and behavior in the Laurentian Great Lakes. These lakes were selected for study as a likely repository of recent atmospheric perchlorate deposition. Perchlorate concentrations in the Great Lakes range from 0.05 to 0.13 μg per liter. δ(37)Cl values of perchlorate from the Great Lakes range from +3.0‰ (Lake Ontario) to +4.0‰ (Lake Superior), whereas δ(18)O values range from -4.1‰ (Lake Superior) to +4.0‰ (Lake Erie). Great Lakes perchlorate has mass-independent oxygen isotopic variations with positive Δ(17)O values (+1.6‰ to +2.7‰) divided into two distinct groups: Lake Superior (+2.7‰) and the other four lakes (∼+1.7‰). The stable isotopic results indicate that perchlorate in the Great Lakes is dominantly of natural origin, having isotopic composition resembling that measured for indigenous perchlorate from preindustrial groundwaters of the western USA. The (36)Cl/Cl ratio of perchlorate varies widely from 7.4 × 10(-12) (Lake Ontario) to 6.7 × 10(-11) (Lake Superior). These (36)ClO4(-) abundances are consistent with an atmospheric origin of perchlorate in the Great Lakes. The relatively high (36)ClO4(-) abundances in the larger lakes (Lakes Superior and Michigan) could be explained by the presence of (36)Cl-enriched perchlorate deposited during the period of elevated atmospheric (36)Cl activity following thermonuclear bomb tests in the Pacific Ocean.

  4. Perchlorate in the Great Lakes: isotopic composition and origin.

    PubMed

    Poghosyan, Armen; Sturchio, Neil C; Morrison, Candice G; Beloso, Abelardo D; Guan, Yunbin; Eiler, John M; Jackson, W Andrew; Hatzinger, Paul B

    2014-10-01

    Perchlorate is a persistent and mobile contaminant in the environment with both natural and anthropogenic sources. Stable isotope ratios of oxygen (δ(18)O, Δ(17)O) and chlorine (δ(37)Cl) along with the abundance of the radioactive isotope (36)Cl were used to trace perchlorate sources and behavior in the Laurentian Great Lakes. These lakes were selected for study as a likely repository of recent atmospheric perchlorate deposition. Perchlorate concentrations in the Great Lakes range from 0.05 to 0.13 μg per liter. δ(37)Cl values of perchlorate from the Great Lakes range from +3.0‰ (Lake Ontario) to +4.0‰ (Lake Superior), whereas δ(18)O values range from -4.1‰ (Lake Superior) to +4.0‰ (Lake Erie). Great Lakes perchlorate has mass-independent oxygen isotopic variations with positive Δ(17)O values (+1.6‰ to +2.7‰) divided into two distinct groups: Lake Superior (+2.7‰) and the other four lakes (∼+1.7‰). The stable isotopic results indicate that perchlorate in the Great Lakes is dominantly of natural origin, having isotopic composition resembling that measured for indigenous perchlorate from preindustrial groundwaters of the western USA. The (36)Cl/Cl ratio of perchlorate varies widely from 7.4 × 10(-12) (Lake Ontario) to 6.7 × 10(-11) (Lake Superior). These (36)ClO4(-) abundances are consistent with an atmospheric origin of perchlorate in the Great Lakes. The relatively high (36)ClO4(-) abundances in the larger lakes (Lakes Superior and Michigan) could be explained by the presence of (36)Cl-enriched perchlorate deposited during the period of elevated atmospheric (36)Cl activity following thermonuclear bomb tests in the Pacific Ocean. PMID:25171443

  5. Radionuclides in the Great Lakes basin.

    PubMed

    Ahier, B A; Tracy, B L

    1995-12-01

    The Great Lakes basin is of radiologic interest due to the large population within its boundaries that may be exposed to various sources of ionizing radiation. Specific radionuclides of interest in the basin arising from natural and artificial sources include 3H, 14C, 90Sr, 129I, 131I, 137Cs, 222Rn, 226Ra, 235U, 238U, 239Pu, and 241Am. The greatest contribution to total radiation exposure is the natural background radiation that provides an average dose of about 2.6 mSv/year to all basin residents. Global fallout from atmospheric nuclear weapons tests conducted before 1963 has resulted in the largest input of anthropogenic radioactivity into the lakes. Of increasing importance is the radionuclide input from the various components of the nuclear fuel cycle. Although the dose from these activities is currently very low, it is expected to increase if there is continued growth of the nuclear industry. In spite of strict regulations on design and operation of nuclear power facilities, the potential exists for a serious accident as a result of the large inventories of radionuclides contained in the reactor cores; however, these risks are several orders of magnitude less than the risks from other natural and man-made hazards. An area of major priority over the next few decades will be the management of the substantial amounts of radioactive waste generated by nuclear fuel cycle activities. Based on derived risk coefficients, the theoretical incidence of fatal and weighted nonfatal cancers and hereditary defects in the basin's population, attributable to 50 years of exposure to natural background radiation, is conservatively estimated to be of the order of 3.4 x 10(5) cases. The total number of attributable health effects to the year 2050 from fallout radionuclides in the Great Lakes basin is of the order of 5.0 x 10(3). In contrast, estimates of attributable health effects from 50 years of exposure to current nuclear fuel cycle effluent in the basin are of the order of 2

  6. Radionuclides in the Great Lakes basin.

    PubMed Central

    Ahier, B A; Tracy, B L

    1995-01-01

    The Great Lakes basin is of radiologic interest due to the large population within its boundaries that may be exposed to various sources of ionizing radiation. Specific radionuclides of interest in the basin arising from natural and artificial sources include 3H, 14C, 90Sr, 129I, 131I, 137Cs, 222Rn, 226Ra, 235U, 238U, 239Pu, and 241Am. The greatest contribution to total radiation exposure is the natural background radiation that provides an average dose of about 2.6 mSv/year to all basin residents. Global fallout from atmospheric nuclear weapons tests conducted before 1963 has resulted in the largest input of anthropogenic radioactivity into the lakes. Of increasing importance is the radionuclide input from the various components of the nuclear fuel cycle. Although the dose from these activities is currently very low, it is expected to increase if there is continued growth of the nuclear industry. In spite of strict regulations on design and operation of nuclear power facilities, the potential exists for a serious accident as a result of the large inventories of radionuclides contained in the reactor cores; however, these risks are several orders of magnitude less than the risks from other natural and man-made hazards. An area of major priority over the next few decades will be the management of the substantial amounts of radioactive waste generated by nuclear fuel cycle activities. Based on derived risk coefficients, the theoretical incidence of fatal and weighted nonfatal cancers and hereditary defects in the basin's population, attributable to 50 years of exposure to natural background radiation, is conservatively estimated to be of the order of 3.4 x 10(5) cases. The total number of attributable health effects to the year 2050 from fallout radionuclides in the Great Lakes basin is of the order of 5.0 x 10(3). In contrast, estimates of attributable health effects from 50 years of exposure to current nuclear fuel cycle effluent in the basin are of the order of 2

  7. Great Lakes agreement calls for binational science priorities and action

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    2012-09-01

    An amended Great Lakes Water Quality Agreement (GLWQA), signed by officials from Canada and the United States at a 7 September ceremony in Washington, D. C., will facilitate efforts by the two countries to “restore and maintain the chemical, physical, and biological integrity of the Waters of the Great Lakes.” The agreement calls on the countries to cooperate and collaborate; develop programs, practices, and technology necessary to better understand the Great Lakes Basin ecosystem; and eliminate or reduce environmental threats to Great Lakes waters. The amended GLWQA specifically calls for the establishment of “binational priorities for science and action to address current and future threats” to the quality of Great Lakes waters within 18 months. In addition, the agreement calls on the International Joint Commission (IJC) to establish a Great Lakes science advisory board.

  8. Lake trout in the Great Lakes: Basin-wide stock collapse and binational restoration

    USGS Publications Warehouse

    Hansen, Michael J.; Taylor, William W.; Ferreri, C. Paola

    1999-01-01

    The lake trout (Salvelinus namaycush) was important to the human settlement of each of the Great Lakes, and underwent catastrophic collapses in each lake in the nineteenth and twentieth centuries. The timing of lake trout stock collapses were different in each lake, as were the causes of the collapses, and have been the subject of much scientific inquiry and debate. The purpose of this chapter is to summarize and review pertinent information relating historical changes in Great Lakes lake trout stocks, binational efforts to restore those stocks, and progress toward stock restoration. This presentation attempts to generalize patterns across the Great Lakes, rather than to focus within each lake. Lake specific analyses have been used to understand lake specific causes and effects, but there is continuing debate about some of these causes and effects. A basinwide review may suggest mechanisms for observed changes that are not evident by lake specific analysis.

  9. Genetic evaluation of a Great Lakes lake trout hatchery program

    USGS Publications Warehouse

    Page, K.S.; Scribner, K.T.; Bast, D.; Holey, M.E.; Burnham-Curtis, M. K.

    2005-01-01

    Efforts over several decades to restore lake trout Salvelinus namaycush in U.S. waters of the upper Great Lakes have emphasized the stocking of juveniles from each of six hatchery broodstocks. Retention of genetic diversity across all offspring life history stages throughout the hatchery system has been an important component of the restoration hatchery and stocking program. Different stages of the lake trout hatchery program were examined to determine how effective hatchery practices have been in minimizing the loss of genetic diversity in broodstock adults and in progeny stocked. Microsatellite loci were used to estimate allele frequencies, measures of genetic diversity, and relatedness for wild source populations, hatchery broodstocks, and juveniles. We also estimated the effective number of breeders for each broodstock. Hatchery records were used to track destinations of fertilized eggs from all spawning dates to determine whether adult contributions to stocking programs were proportional to reproductive effort. Overall, management goals of maintaining genetic diversity were met across all stages of the hatchery program; however, we identified key areas where changes in mating regimes and in the distribution of fertilized gametes and juveniles could be improved. Estimates of effective breeding population size (Nb) were 9-41% of the total number of adults spawned. Low estimates of Nb were primarily attributed to spawning practices, including the pooling of gametes from multiple males and females and the reuse of males. Nonrandom selection and distribution of fertilized eggs before stocking accentuated declines in effective breeding population size and increased levels of relatedness of juveniles distributed to different rearing facilities and stocking locales. Adoption of guidelines that decrease adult reproductive variance and promote more equitable reproductive contributions of broodstock adults to juveniles would further enhance management goals of

  10. The water balance of the East African Great Lakes

    NASA Astrophysics Data System (ADS)

    Yin, Xungang

    The East African Great Lakes are important indicators of climatic and environmental change in an area where standard meteorological data are scarce. Three large lakes, Lakes Victoria, Tanganyika and Malawi are studied in order to build water balance relations between lake level and over-lake rainfall. By analyzing the satellite observations, the characteristics of the regional and mesoscale circulations are studied through analysis of convective activity and cloudiness over the lakes. Using a regression approach, the relationship between catchment rainfall and cold cloud frequency is found. Assuming the same convective mechanism operates for each lake and its catchment, the over-lake rainfall is calculated using the catchment rainfall, which has long records. Evaporation is estimated for each lake by energy-budget and Penman methods and a sensitivity study is also carried out. The available tributary inflow and lake outflow data of Lake Victoria are expressed by rainfall and lake level terms. For Lake Victoria, the water balance model is reformulated as a lake level model. The model is first used to predict the lake level changes as a validation. Then it is inverted so that the over-lake rainfall can be reconstructed from known lake levels in both modern times and historical times. In modern times, the precision is on the order of 1% for the calculated mean rainfall and a few percent for the calculated annual rainfall.

  11. Embryotoxicity of an extract from Great Lakes lake trout to rainbow trout and lake trout

    SciTech Connect

    Wright, P.J.; Tillitt, D.E.

    1995-12-31

    Aquatic ecosystems such as the Great Lakes are known to be contaminated with chemicals that are toxic to fish. However, the role of these contaminants in reproductive failures of fishes, such as lake trout recruitment, has remained controvertible. It was the objective to evaluate dioxin-like embryotoxicity of a complex mixture of chemicals and predict their potential to cause the lack of recruitment in Great Lakes lake trout. Graded doses of a complex environmental extract were injected into eggs of both rainbow trout and lake trout. The extract was obtained from whole adult lake trout collected from Lake Michigan in 1988. The extract was embryotoxic in rainbow trout, with LD50 values for Arlee strain and Erwin strain of 33 eggEQ and 14 eggEQ respectively. The LOAEL for hemorrhaging, yolk-sac edema, and craniofacial deformities in rainbow trout were 2, 2, and 4 eggEQ, respectively. Subsequent injections of the extract into lake trout eggs were likewise embryotoxic, with an LD50 value of 7 eggEQ. The LOAEL values for the extract in lake trout for hemorrhaging, yolk-sac edema, and craniofacial deformities were 0.1, 1, and 2 eggEQ, respectively. The current levels of contaminants in lake trout eggs are above the threshold for hemorrhaging and yolk-sac edema. The results also support the use of an additive model of toxicity to quantify PCDDs, PCDFs, Non-o-PCBs, and Mono-o-PCBs in relation to early life stage mortality in Lake Michigan lake trout.

  12. History of salmon in the Great Lakes, 1850-1970

    USGS Publications Warehouse

    Parsons, John W.

    1973-01-01

    This history of the salmon in the Great Lakes describes the decline and extinction of the Atlantic salmon (Salmo salar) in Lake Ontario in the 1800's; the failure to establish, by salmon culture, permanent or sizable populations of Atlantic or Pacific salmon in any of the Great Lakes in 1867-1965; and the success of the plantings of coho (Oncorhynchus kisutch) and chinook salmon (O. tshawytsha) in the Great Lakes, in 1966-70 -- particularly in Lake Michigan. Despite plantings of 5 million fry and fingerlings from Lake Ontario stocks in 1866-84, the native Atlantic salmon in Lake Ontario became extinct in the late 1800's primarily because tributaries in which they spawned were blocked by mill dams. Plantings of 13 million chinook salmon and landlocked and anadromous forms of Atlantic salmon in Lake Ontario and the other Great Lakes in 1873-1947 failed completely. The first species to develop a self-sustaining population was the pink salmon (O. gorbuscha), which was planted in Lake Superior in 1956; however, it has not become abundant. A salmon fishery finally was established when 15 million coho salmon and 6 million chinook salmon were planted as smolt in the Great Lakes in 1966-70. In 1970, for example, 576,000 coho salmon (12% of those planted in 1969) were caught by anglers in Lake Michigan. Most weighed 5 to 10 pounds (2.3-4.5 kg). Sport fishing for salmon was fair in Lakes Superior and Huron, and poor in Lakes Erie and Ontario. By 1970, natural reproduction of coho, chinook, pink, and kokanee (O. nerka) salmon had occurred in some tributaries of one or more of the upper three Great Lakes. It is expected, however, that the sport fishery will continue to be supported almost entirely by planted fish.

  13. Lake whitefish diet, condition, and energy density in Lake Champlain and the lower four Great Lakes following dreissenid invasions

    USGS Publications Warehouse

    Herbst, Seth J.; Marsden, J. Ellen; Lantry, Brian F.

    2013-01-01

    Lake Whitefish Coregonus clupeaformis support some of the most valuable commercial freshwater fisheries in North America. Recent growth and condition decreases in Lake Whitefish populations in the Great Lakes have been attributed to the invasion of the dreissenid mussels, zebra mussels Dreissena polymorpha and quagga mussels D. bugensis, and the subsequent collapse of the amphipod, Diporeia, a once-abundant high energy prey source. Since 1993, Lake Champlain has also experienced the invasion and proliferation of zebra mussels, but in contrast to the Great Lakes, Diporeia were not historically abundant. We compared the diet, condition, and energy density of Lake Whitefish from Lake Champlain after the dreissenid mussel invasion to values for those of Lake Whitefish from Lakes Michigan, Huron, Erie, and Ontario. Lake Whitefish were collected using gill nets and bottom trawls, and their diets were quantified seasonally. Condition was estimated using Fulton's condition factor (K) and by determining energy density. In contrast to Lake Whitefish from some of the Great Lakes, those from Lake Champlain Lake Whitefish did not show a dietary shift towards dreissenid mussels, but instead fed primarily on fish eggs in spring, Mysis diluviana in summer, and gastropods and sphaeriids in fall and winter. Along with these dietary differences, the condition and energy density of Lake Whitefish from Lake Champlain were high compared with those of Lake Whitefish from Lakes Michigan, Huron, and Ontario after the dreissenid invasion, and were similar to Lake Whitefish from Lake Erie; fish from Lakes Michigan, Huron, and Ontario consumed dreissenids, whereas fish from Lake Erie did not. Our comparisons of Lake Whitefish populations in Lake Champlain to those in the Great Lakes indicate that diet and condition of Lake Champlain Lake Whitefish were not negatively affected by the dreissenid mussel invasion.

  14. Potential Impacts of Climate Change in the Great Lakes Region

    NASA Astrophysics Data System (ADS)

    Winkler, J. A.

    2011-12-01

    Climate change is projected to have substantial impacts in the Great Lakes region of the United States. One intent of this presentation is to introduce the Great Lakes Integrated Sciences and Assessments Center (GLISA), a recently-funded NOAA RISA center. The goals and unique organizational structure of GLISA will be described along with core activities that support impact and assessment studies in the region. Additionally, observed trends in temperature, precipitation including lake effect snowfall, and lake temperatures and ice cover will be summarized for the Great Lakes region, and vulnerabilities to, and potential impacts of, climate change will be surveyed for critical natural and human systems. These include forest ecosystems, water resources, traditional and specialized agriculture, and tourism/recreation. Impacts and vulnerabilities unique to the Great Lakes region are emphasized.

  15. 77 FR 24729 - Great Lakes Pilotage Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-25

    ... our public dockets in the January 17, 2008, issue of the Federal Register (73 FR 3316). Docket: For... SECURITY Coast Guard Great Lakes Pilotage Advisory Committee AGENCY: Coast Guard, DHS. ACTION: Committee Management; Notice of Federal Advisory Committee Meeting. SUMMARY: The Great Lakes Pilotage...

  16. 78 FR 5474 - Great Lakes Pilotage Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-25

    ... regarding our public dockets in the January 17, 2008, issue of the Federal Register (73 FR 3316). Docket... SECURITY Coast Guard Great Lakes Pilotage Advisory Committee AGENCY: Coast Guard, DHS. ACTION: Committee Management; Notice of Federal Advisory Committee Meeting. SUMMARY: The Great Lakes Pilotage...

  17. 78 FR 38725 - Great Lakes Pilotage Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-27

    ... Register (73 FR 3316). Docket: For access to the docket to read documents or comments related to this... SECURITY Coast Guard Great Lakes Pilotage Advisory Committee AGENCY: Coast Guard, DHS. ACTION: Committee Management; Notice of Federal Advisory Committee Meeting. SUMMARY: The Great Lakes Pilotage...

  18. 78 FR 54264 - Great Lakes Pilotage Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-03

    ..., issue of the Federal Register (73 FR 3316). Docket: For access to the docket to read documents or... SECURITY Coast Guard Great Lakes Pilotage Advisory Committee AGENCY: Coast Guard, DHS. ACTION: Committee management; notice of Federal Advisory Committee meeting. SUMMARY: The Great Lakes Pilotage...

  19. CHECKLIST OF DIATOMS FROM THE LAURENTIAN GREAT LAKES

    EPA Science Inventory

    An updated diatom checklist for the Great Lakes is provided. The present checklist supplants the preliminary checklist published in The Journal for Great Lakes Research in 1978 and effectively represents a 20-year update. A series of procedures were used in this update which incl...

  20. Relative cancer risks of chemical contaminants in the great lakes

    NASA Astrophysics Data System (ADS)

    Bro, Kenneth M.; Sonzogni, William C.; Hanson, Mark E.

    1987-08-01

    Anyone who drinks water or eats fish from the Great Lakes consumes potentially carcinogenic chemicals. In choosing how to respond to such pollution, it is important to put the risks these contaminants pose in perspective. Based on recent measurements of carcinogens in Great Lakes fish and water, calculations of lifetime risks of cancer indicate that consumers of sport fish face cancer risks from Great Lakes contaminants that are several orders of magnitude higher than the risks posed by drinking Great Lakes water. But drinking urban groundwater and breathing urban air may be as hazardous as frequent consumption of sport fish from the Great Lakes. Making such comparisons is difficult because of variation in types and quality of information available and in the methods for estimating risk. Much uncertainty pervades the risk assessment process in such areas as estimating carcinogenic potency and human exposure to contaminants. If risk assessment is to be made more useful, it is important to quantify this uncertainty.

  1. Influence of the African Great Lakes on the regional climate

    NASA Astrophysics Data System (ADS)

    Thiery, Wim; Davin, Edouard; Panitz, Hans-Jürgen; Demuzere, Matthias; Lhermitte, Stef; van Lipzig, Nicole

    2015-04-01

    Although the African Great Lakes are important regulators for the East-African climate, their influence on atmospheric dynamics and the regional hydrological cycle remains poorly understood. We aim to assess this impact by conducting a regional climate model simulation which resolves individual lakes and explicitly computes lake temperatures. The regional climate model COSMO-CLM, coupled to a state-of-the-art lake parameterization scheme and land surface model, is used to dynamically downscale the COSMO-CLM CORDEX-Africa evaluation simulation to 7 km grid spacing for the period 1999-2008. Evaluation of the model reveals good performance compared to both in-situ and satellite observations, especially for spatio-temporal variability of lake surface temperatures and precipitation. Model integrations indicate that the four major African Great Lakes almost double precipitation amounts over their surface relative to a simulation without lakes, but hardly exert any influence on precipitation beyond their shores. The largest lakes also cool their near-surface air, this time with pronounced downwind influence. The lake-induced cooling happens during daytime, when the lakes absorb incoming solar radiation and inhibit upward turbulent heat transport. At night, when this heat is released, the lakes warm the near-surface air. Furthermore, Lake Victoria has profound influence on atmospheric dynamics and stability as it induces cellular motion with over-lake convective inhibition during daytime, and the reversed pattern at night. Overall, this study shows the added value of resolving individual lakes and realistically representing lake surface temperatures for climate studies in this region. Thiery, W., Davin, E., Panitz, H.-J., Demuzere, M., Lhermitte, S., van Lipzig, N.P.M., The impact of the African Great Lakes on the regional climate, J. Climate (in review).

  2. Temporal evolution of (36)Cl abundances in the Great Lakes.

    PubMed

    Poghosyan, Armen; Sturchio, Neil C

    2015-06-01

    The observed (36)Cl isotopic abundance in Great Lakes water decreases from west to east, with the highest (36)Cl/Cl ratio of 1332 × 10(-15) in Lake Superior and the lowest (36)Cl/Cl ratio of 151 × 10(-15) in Lake Erie, whereas the (36)Cl concentration ((36)Cl atoms/L) is lowest in Lake Superior and higher in the other Great Lakes. The (36)Cl concentration in Lake Superior is much higher than expected from normal atmospheric deposition over the basin, consistent with deposition of nuclear bomb-produced (36)Cl during 1952-1964. A conservative mass-balance model constrained by hydrological parameters and available (36)Cl fluence measurements predicts the (36)Cl abundances in the Great Lakes from 1945 to 2015, in excellent agreement with available data for Lakes Superior, Michigan, and Huron, but the model underestimates (36)Cl abundances for Lakes Erie and Ontario. However, assuming that (36)Cl demonstrates non-conservative behavior and is significantly retained in the drainage basins, a model incorporating a delayed input parameter successfully predicts observed (36)Cl concentrations in all of the Great Lakes.

  3. Great Lakes Climate and Water Movement. Earth Systems - Education Activities for Great Lakes Schools (ES-EAGLS).

    ERIC Educational Resources Information Center

    Miller, Heidi, Ed.; Sheaffer, Amy L., Ed.

    This activity book is part of a series designed to take a concept or idea from the existing school curriculum and develop it in the context of the Great Lakes using teaching approaches and materials appropriate for students in middle and high school. The theme of this book is Great Lakes climate and water movement. Students learn about land-sea…

  4. Radionuclide partitioning across great lakes natural interfaces

    NASA Astrophysics Data System (ADS)

    Platford, R. F.; Joshi, S. R.

    1989-11-01

    Several water and surface microlayer samples from Lake St. Clair, the Niagara River, and the North Shore of Lake Ontario collected during 1983 1986 have been assayed for a variety of radionuclides. In addition, the foam accumulating in the pool just below Niagara Falls was also analyzed and found to be the most efficient aqueous phase collector of137Cs,210Pb, and226Ra. The order of radioisotope specific activities from highest to lowest is: Lake Ontario sediment, Niagara River suspended solids, Niagara River foam, surface microlayer water, and subsurface water. Radiological dose rates to the sediments from137Cs,226Ra, and228Th total about 5 mGy/y.

  5. Restoring the Great Lakes: DOI stories of success and partnership in implementing the Great Lakes Restoration Initiative

    USGS Publications Warehouse

    ,; ,; ,; ,; ,

    2013-01-01

    The Great Lakes are a monumentally unique national treasure containing nearly ninety-five percent of the United States' fresh surface water. Formed by receding glaciers, the Great Lakes support a thriving, resilient ecosystem rich with fish, wildlife, and abundant natural resources. The Great Lakes also support an array of commercial uses, including shipping, and provide a source of recreation, drinking water, and other critical services that drive the economy of the region and the Nation. Regrettably, activities such as clear cutting of mature forests, over-harvesting of fish populations, industrial pollution, invasive species, and agricultural runoffs have degraded these treasured lakes over the decades creating long-term impacts to the surrounding watershed. Fortunately, the people who live, work, and recreate in the region recognize the critical importance of a healthy Great Lakes ecosystem, and have come together to support comprehensive restoration. To stimulate and promote the goal of a healthy Great Lakes region, President Obama and Congress created the Great Lakes Restoration Initiative (GLRI) in 2009. This program provides the seed money to clean up legacy pollution, restore habitats, protect wildlife, combat invasive species, and address agricultural runoff in the Great Lakes watershed. At the same time GLRI promotes public outreach, education, accountability, and partnerships.

  6. The importance of ground water in the Great Lakes Region

    USGS Publications Warehouse

    Grannemann, N.G.; Hunt, R.J.; Nicholas, J.R.; Reilly, T.E.; Winter, T.C.

    2000-01-01

    Ground water is a major natural resource in the Great Lakes Region that helps link the Great Lakes and their watershed. This linkage needs to be more fully understood and quantified before society can address some of the important water-resources issues in the Great Lakes. The Great Lakes constitute the largest concentration of unfrozen fresh surface water in the western hemisphere—about 5,440 mi3. Because the quantity of water in the lakes is so large, ground water in the Great Lakes Basin is often overlooked when evaluating the hydrology of the region. Ground water, however, is more important to the hydrology of the Great Lakes and to the health of ecosystems in the watershed than is generally recognized.Although more than 1,000 mi3 of ground water are stored in the basin—a volume of water that is approximately equal to that of Lake Michigan—development of the groundwater resource must be carefully planned. Development of the ground-water resource removes water from storage and alters the paths of ground-water flow. Ground water that normally discharges to streams, lakes, and wetlands can be captured by pumping (the most common form of development), which may deplete or reduce inflows to the Great Lakes.Ground water is important to ecosystems in the Great Lakes Region because it is, in effect, a large, subsurface reservoir from which water is released slowly to provide a reliable minimum level of water flow to streams, lakes, and wetlands. Ground-water discharge to streams generally provides good quality water that, in turn, promotes habitat for aquatic animals and sustains aquatic plants during periods of low precipitation. Because of the slow movement of ground water, the effects of surface activities on ground-water flow and quality can take years to manifest themselves. As a result, issues relative to ground water are often seemingly less dire than issues related to surface water alone.Ground water is a major natural resource in the Great Lakes Region

  7. Flame retardants and legacy chemicals in Great Lakes' water.

    PubMed

    Venier, Marta; Dove, Alice; Romanak, Kevin; Backus, Sean; Hites, Ronald

    2014-08-19

    The Great Lakes have been the focus of extensive environmental research, but recent data on the aquatic concentrations of emerging compounds, such as flame retardants, are scarce. Water samples from 18 stations on the five Great Lakes were collected in 2011 and 2012 using XAD-2 resin adsorption and analyzed for PCBs, organochlorine pesticides, PAHs, polybrominated diphenyl ethers (PBDEs), and emerging flame retardants, including organophosphate flame retardants (OPEs). Total PCB concentrations ranged from 117 ± 18 pg/L in Lake Superior to 623 ± 113 pg/L in Lake Ontario. Among the organochlorine pesticides, the most abundant was dieldrin, with the highest average concentration of 99 ± 26 pg/L in Lake Erie, followed by p,p'-DDD with an average concentration of 37 ± 8 pg/L in Lake Ontario. Total PAH concentrations were higher in Lakes Erie and Ontario than in Lakes Michigan, Huron, and Superior. Total PBDE concentrations were highest in Lake Ontario (227 ± 75 pg/L), and the most abundant congeners were BDE-47, BDE-99, and BDE-209. Total OPE concentrations ranged between 7.3 ± 4.5 ng/L in Lake Huron to 96 ± 43 ng/L in Lake Erie.

  8. Dreissenid mussels from the Great Lakes contain elevated thiaminase activity

    USGS Publications Warehouse

    Tillitt, D.E.; Riley, S.C.; Evans, A.N.; Nichols, S.J.; Zajicek, J.L.; Rinchard, J.; Richter, C.A.; Krueger, C.C.

    2009-01-01

    We examined thiaminase activity in dreissenid mussels collected at different depths and seasons, and from various locations in Lakes Michigan, Ontario, and Huron. Here we present evidence that two dreissenid mussel species (Dreissena bugensis and D. polymorpha) contain thiaminase activity that is 5-100 fold greater than observed in Great Lakes fishes. Thiaminase activity in zebra mussels ranged from 10,600 to 47,900??pmol g- 1??min- 1 and activities in quagga mussels ranged from 19,500 to 223,800??pmol g- 1??min- 1. Activity in the mussels was greatest in spring, less in summer, and least in fall. Additionally, we observed greater thiaminase activity in dreissenid mussels collected at shallow depths compared to mussels collected at deeper depths. Dreissenids constitute a significant and previously unknown pool of thiaminase in the Great Lakes food web compared to other known sources of this thiamine (vitamin B1)-degrading enzyme. Thiaminase in forage fish of the Great Lakes has been causally linked to thiamine deficiency in salmonines. We currently do not know whether linkages exist between thiaminase activities observed in dreissenids and the thiaminase activities in higher trophic levels of the Great Lakes food web. However, the extreme thiaminase activities observed in dreissenids from the Great Lakes may represent a serious unanticipated negative effect of these exotic species on Great Lakes ecosystems.

  9. Distribution of haloacetic acids in the water columns of the Laurentian Great Lakes and Lake Malawi.

    PubMed

    Scott, Brian F; Spencer, Christine; Marvin, Christopher H; MacTavish, David C; Muir, Derek C G

    2002-05-01

    Haloacetic acids (HAAs) are persistent and mildly phytotoxic compounds that have been detected in many aquatic environments, including the waters of the Great Lakes. Sources of HAAs, especially of trifluoroacetic acid (TFA), are not well understood. In this study we assessed the influence of urbanization on the concentrations and profiles of HAAs in the Laurentian Great Lakes and in Lake Malawi, an African Great Lake. Vertical depth profiles for these compounds were taken for each of the Great Lakes with additional profiles taken 2 years later for Lakes Erie and Ontario. The results showed that while TFA was relatively constant throughout the water column, the chloroacetic acids (CAAs) varied with depth. There was a trend of increasing TFA proceeding from Lake Superior to Lake Ontario (18-150 ng/L). Total CAA concentrations were relatively constant throughout the lakes (approximately 500 ng/L) with dichloroacetic acid being the most abundant. No bromoacetic acids were detected. In the Detroit River, a connecting channel between Lakes Huron and Erie, the TFA values were similar to those in Lake Huron, but the CAAs levels were higher than in the upstream lakes and dependent on location, indicating inputs from urban areas along the river. These results were compared to those from Lake Malawi, which has a high population density within the watershed but no heavy industry. CAAs were nondetectable, and TFA concentrations were just at the detection limit (1 ng/L). Total HAA in the water column of Lakes Superior and Huron was compared to annual precipitation inputs at a site situated near both lakes. For Lake Huron, precipitation was a minor contributor to the total HAA inventory of the lake, but for Lake Superior precipitation could be the major contributor to the mass of HAA in this lake. Generally, high HAA levels paralleled the degree of industrial activity in the adjacent waters.

  10. REVIEW OF HISTORICAL AND RECENT MERCURY CONCENTRATIONS IN GREAT LAKES SEDIMENTS

    EPA Science Inventory

    Sediments of the Great Lakes have been impacted by inputs of mercury to the lakes. The first measurements of mercury concentrations in Great Lakes sediments were for samples collected in 1968 for Lake Ontario, 1969 for Lake Huron, 1969-70 for Lake Michigan, 1970 for Lake St. Cl...

  11. Partitioning potential fish yields from the Great Lakes

    USGS Publications Warehouse

    Loftus, D.H.; Olver, C.H.; Brown, Edward H.; Colby, P.J.; Hartman, Wilbur L.; Schupp, D.H.

    1987-01-01

    We proposed and implemented procedures for partitioning future fish yields from the Great Lakes into taxonomic components. These projections are intended as guidelines for Great Lakes resource managers and scientists. Attainment of projected yields depends on restoration of stable fish communities containing some large piscivores that will use prey efficiently, continuation of control of the sea lamprey (Petromyzon marinus), and restoration of high-quality fish habitat. Because Great Lakes fish communities were harmonic before their collapse, we used their historic yield properties as part of the basis for projecting potential yields of rehabilitated communities. This use is qualified, however, because of possible inaccuracies in the wholly commercial yield data, the presence now of greatly expanded sport fisheries that affect yield composition and magnitude, and some possibly irreversible changes since the 1950s in the various fish communities themselves. We predict that total yields from Lakes Superior, Huron, and Ontario will be increased through rehabilitation, while those from Lakes Michigan and Erie will decline. Salmonines and coregonines will dominate future yields from the upper lakes. The Lake Erie fishery will continue to yield mostly rainbow smelt (Osmerus mordax), but the relative importance of percids, especially of walleye (Stizostedion vitreum vitreum) will increase. In Lake Ontario, yields of salmonines will be increased. Managers will have to apply the most rigorous management strictures to major predator species.

  12. Fisheries Education: From the Great Lakes to the Sea.

    ERIC Educational Resources Information Center

    Fortner, Rosanne; Mayer, Victor J.

    1980-01-01

    Described are investigations related to fisheries education developed by the Ohio Sea Grant Education Office as a part of a series of Oceanic Education Activities for Great Lake Schools. The investigations discussed are "Yellow Perch in Lake Erie," which concerns fisheries management, and "It's Everyone's Sea: Or Is It," which focuses on fishing…

  13. Nutrients in the Great Lakes. Teacher's Guide and Student Workbook.

    ERIC Educational Resources Information Center

    Brothers, Chris; And Others

    This teacher guide and student workbook set presents two learning activities, designed for fifth through ninth grade students, that concentrate on nutrients in the Great Lakes. In activity A, students simulate aquatic habitats using lake water and goldfish in glass jars and observe the effects of nutrient loading and nutrient limitation on aquatic…

  14. Cyclopoid and harpacticoid copepods of the Laurentian Great Lakes

    USGS Publications Warehouse

    Hudson, Patrick L.; Reid, Janet W.; Lesko, Lynn T.; Selgeby, James H.

    1998-01-01

    Historical collections of cyclopoid and harpacticoid copepod crustaceans in the Great Lakes have mainly been based on samples taken with plankton nets in deeper waters (>5 m). Of the non-calanoid copepod species known from the Great Lakes, 58 or 64 live primarily on or in the sediments and rarely are collected in plankton samples. Because of their small size, they are rarely retained in the coarse sieves used to concentrate samples of benthic invertebrates. Thus, the abundance and distribution of most species of these two groups of copepods have never been adequately documented in the Great Lakes. We examined the stomach contents of small, bottom-feeding fishes such as slimy sculpin which feed on benthic copepods that live in deep, inaccessible rocky areas of the Great Lakes to collect some of the material. We also collected in shallow nearshore habitats, including wetlands. We present an annotated checklist of cyclopoid and harpacticoid copepods based on published records and our recent collections in the Great Lakes. We have added 14 species of cyclopoid copepods to the Great Lakes record, increasing the total to 30. Because we probably have accounted for most of the cyclopoid species, we provide a key to the identification of this group. We have added 19 species of harpacticoid copepods to the 15 previously known to the Great Lakes, and suspect that additional species remain to be discovered. In individual lakes, there were approximately as many species of cyclopoids as harpacticoids; the total number of species per lake ranged from 35 to 57. The most speciose genera were Bryocamptus (7), Canthocamptus (5), and Moraria (5) in the Harpacticoida, and Diacyclops (6) and Acanthocyclops (5) in the Cyclopoida. The origin of introduced species, our ability to classify copepod habitat, and the ecological significance of copepods are discussed.

  15. Great Lakes Environmentalists Push for Zero Chemical Pollution.

    ERIC Educational Resources Information Center

    Heylin, Michael

    1991-01-01

    Described are the efforts of a coalition of several environmental organizations to influence federal legislation regarding water pollution in the Great Lakes region. Statements from regional legislators are included. (CW)

  16. Draft Mercury Aquatic Wildlife Benchmarks for Great Salt Lake Assessment

    EPA Science Inventory

    This document describes the EPA Region 8's rationale for selecting aquatic wildlife dietary and tissue mercury benchmarks for use in interpreting available data collected from the Great Salt Lake and surrounding wetlands.

  17. The future of salmonid communities in the Laurentian Great Lakes

    USGS Publications Warehouse

    Smith, Stanford H.

    1972-01-01

    The effects of human population growth, industrialization, and the introduction of marine fishes have reduced the suitability of each of the Great Lakes for oligotrophic fish communities. The ultimate consequence has been a reduction of fishery productivity that has ranged from extreme in Lake Ontario to moderate in Lake Superior. If measures are not taken to alleviate the adverse effects of marine invaders and trends in environmental quality, a major reduction in fishery productivity can eventually be expected throughout the Great Lakes.Prospects for the next century will be improved if the lakes can be intensively managed. More stringent control of the sea lamprey (Petromyzon marinus), and subsequent reduction of the alewife (Alosa pseudoharengus), by the reestablishment of populations of large piscivores, should permit the recovery of some of the previous predator and prey species, or the development of populations of new species that are more compatible with a reduced number of lampreys. Even if marine species can be reduced greatly, the full restoration of the former fishery productivity remains uncertain and will require a high degree of coordination among all management and research agencies that have responsibilities on the Great Lakes.Unfavorable trends toward progressive degradation of water quality pose the greatest threat to restoration of the fishery resources of the Great Lakes. Where changes in water quality have been the greatest, oligotrophic species have become scarce or absent, and in the deepwater regions no other species have reoccupied the vacated niches.

  18. Survival of lake trout eggs and fry reared in water from the upper Great Lakes

    USGS Publications Warehouse

    Mac, Michael J.; Edsall, Carol Cotant; Seelye, James G.

    1985-01-01

    As part of continuing studies of the reproductive failure of lake trout (Salvelinus namaycush) in Lake Michigan, we measured the survival of lake trout eggs and fry of different origins and reared in different environments. Eggs and milt were stripped from spawning lake trout collected in the fall of 1980 from southeastern Lake Michigan, northwestern Lake Huron, south central Lake Superior, and from hatchery brood stock. Eggs from all sources were incubated, and the newly hatched fry were reared for 139 days in lake water from each of the three upper Great Lakes and in well water. Survival of eggs to hatching at all sites was lowest for those from Lake Michigan (70% of fertilized eggs) and highest for eggs from Lake Superior (96%). Comparisons of incubation water from the different lakes indicated that hatching success of eggs from all sources was highest in Lake Huron water, and lowest in Lake Michigan water. The most notable finding was the nearly total mortality of fry from eggs of southeastern Lake Michigan lake trout. At all sites, the mean survival of Lake Michigan fry through 139 days after hatching was only 4% compared to near 50% for fry from the other three sources. In a comparison of the rearing sites, little influence of water quality on fry survival was found. Thus, the poor survival was associated with the source of eggs and sperm, not the water in which the fry were reared.

  19. 75 FR 362 - Agency Information Collection Activities; Proposed Collection; Comment Request; Great Lakes...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-05

    ... AGENCY Agency Information Collection Activities; Proposed Collection; Comment Request; Great Lakes... the on-line instructions for submitting comments. Mail: Great Lakes Accountability System, Attn: Rita Cestaric, EPA, Great Lakes National Program Office, 77 W. Jackson St., Chicago, Illinois 60604....

  20. Extent of Pleistocene lakes in the western Great Basin

    USGS Publications Warehouse

    Reheis, Marith C.

    1999-01-01

    During the Pliocene to middle Pleistocene, pluvial lakes in the western Great Basin repeatedly rose to levels much higher than those of the well-documented late Pleistocene pluvial lakes, and some presently isolated basins were connected. Sedimentologic, geomorphic, and chronologic evidence at sites shown on the map indicates that Lakes Lahontan and Columbus-Rennie were as much as 70 m higher in the early-middle Pleistocene than during their late Pleistocene high stands. Lake Lahontan at its 1400-m shoreline level would submerge present-day Reno, Carson City, and Battle Mountain, and would flood other now-dry basins. To the east, Lakes Jonathan (new name), Diamond, Newark, and Hubbs also reached high stands during the early-middle(?) Pleistocene that were 25-40 m above their late Pleistocene shorelines; at these very high levels, the lakes became temporarily or permanently tributary to the Humboldt River and hence to Lake Lahontan. Such a temporary connection could have permitted fish to migrate from the Humboldt River southward into the presently isolated Newark Valley and from Lake Lahontan into Fairview Valley. The timing of drainage integration also provides suggested maximum ages for fish to populate the basins of Lake Diamond and Lake Jonathan. Reconstructing and dating these lake levels also has important implications for paleoclimate, tectonics, and drainage evolution in the western Great Basin. For example, shorelines in several basins form a stair-step sequence downward with time from the highest levels, thought to have formed at about 650 ka, to the lowest, formed during the late Pleistocene. This descending sequence indicates progressive drying of pluvial periods, possibly caused by uplift of the Sierra Nevada and other western ranges relative to the western Great Basin. However, these effects cannot account for the extremely high lake levels during the early middle Pleistocene; rather, these high levels were probably due to a combination of increased

  1. Great Salt Lake and Bonneville Salt Flats, UT, USA

    NASA Technical Reports Server (NTRS)

    1992-01-01

    This is a view of the Great Salt Lake and nearby Bonneville Salt Flats, UT, (41.0N, 112.5W). A railroad causeway divides the lake with a stark straight line changing the water level and chemistry of the lake as a result. Fresh water runoff enters from the south adding to the depth and reducing the salinity. The north half receives little frsh water and is more saline and shallow. The Bonnieville Salt Flats is the lakebed of a onetime larger lake.

  2. Species succession and fishery exploitation in the Great Lakes

    USGS Publications Warehouse

    Smith, Stanford H.

    1968-01-01

    The species composition of fish in the Great Lakes has undergone continual change since the earliest records. Some changes were caused by enrichment of the environment, but others primarily by an intensive and selective fishery for certain species. Major changes related to the fishery were less frequent before the late 1930's than in recent years and involved few species. Lake sturgeon (Acipenser fulvescens) were overexploited knowingly during the late 1800's because they interfered with fishing for preferred species; sturgeon were greatly reduced in all lakes by the early 1900's. Heavy exploitation accompanied sharp declines of lake herring (Leucichthys artedi) in Lake Erie during the 1920's and lake whitefish (Coregonus clupeaformis) in Lake Huron during the 1930's. A rapid succession of fish species in Lakes Huron, Michigan, and Superior that started about 1940 has been caused by selective predation by the sea lamprey (Petromyzon marinus) on native predatory species, and the resultant shifting emphasis of the fishery and species interaction as various species declined. Lake trout (Salvelinus namaycush) and burbot (Lota lota), the deepwater predators, were depleted first; this favored their prey, the chubs (Leucichthys spp.). The seven species of chubs were influenced differently according to differences in size. Fishing emphasis and predation by sea lampreys were selective for the largest species of chubs as lake trout and burbot declined. A single slow-growing chub, the bloater, was favored and increased, but as the large chubs declined the bloater was exploited by a new trawl fishery. The growth rate and size of the bloater increased, making it more vulnerable to conventional gillnet fishery and lamprey predation. This situation in Lakes Michigan and Huron favored the small alewife (Alosa pseudoharengus) which had recently become established in the upper Great Lakes, and the alewife increased rapidly and dominated the fish stocks of the lakes. The successive

  3. Trends in fishery management of the Great Lakes

    USGS Publications Warehouse

    Smith, Stanford H.

    1970-01-01

    Some hope is returning for recovery of the fish stocks of the Great Lakes, which have been outstanding examples of abuse although they are the world's largest and most valuable freshwater fishery resource. The lakes and the fish in them have been under complete jurisdiction of sovereign nations and their subdivisions almost since the settlement of north-central North America, but ironically this control has not prevented their decadence. For the first time in the long history of the Great Lakes fishery, management measures have been taken to meliorate conditions that contributed to earlier difficulties.

  4. Great Lakes rivermouth ecosystems: scientific synthesis and management implications

    USGS Publications Warehouse

    Larson, James H.; Trebitz, Anett S.; Steinman, Alan D.; Wiley, Michael J.; Carlson Mazur, Martha; Pebbles, Victoria; Braun, Heather A.; Seelbach, Paul W.

    2013-01-01

    At the interface of the Great Lakes and their tributary rivers lies the rivermouths, a class of aquatic ecosystem where lake and lotic processes mix and distinct features emerge. Many rivermouths are the focal point of both human interaction with the Great Lakes and human impacts to the lakes; many cities, ports, and beaches are located in rivermouth ecosystems, and these human pressures often degrade key ecological functions that rivermouths provide. Despite their ecological uniqueness and apparent economic importance, there has been relatively little research on these ecosystems as a class relative to studies on upstream rivers or the open-lake waters. Here we present a synthesis of current knowledge about ecosystem structure and function in Great Lakes rivermouths based on studies in both Laurentian rivermouths, coastal wetlands, and marine estuarine systems. A conceptual model is presented that establishes a common semantic framework for discussing the characteristic spatial features of rivermouths. This model then is used to conceptually link ecosystem structure and function to ecological services provided by rivermouths. This synthesis helps identify the critical gaps in understanding rivermouth ecology. Specifically, additional information is needed on how rivermouths collectively influence the Great Lakes ecosystem, how human alterations influence rivermouth functions, and how ecosystem services provided by rivermouths can be managed to benefit the surrounding socioeconomic networks.

  5. Influence of the Laurentian Great Lakes on Regional Climate

    NASA Astrophysics Data System (ADS)

    Notaro, M.; Holman, K.; Zarrin, A.; Fluck, E.; Vavrus, S. J.; Bennington, V.

    2012-12-01

    The influence of the Laurentian Great Lakes on climate is assessed by comparing two decade-long simulations, with the lakes either included or excluded, using the Abdus Salam International Centre for Theoretical Physics Regional Climate Model Version 4. The Great Lakes dampen the variability in near-surface air temperature across the surrounding region, while reducing the amplitude of the diurnal cycle and annual cycle of air temperature. The impacts of the Great Lakes on the regional surface energy budget include an increase (decrease) in turbulent fluxes during the cold (warm) season and an increase in surface downward shortwave radiation flux during summer due to diminished atmospheric moisture and convective cloud amount. Changes in the hydrologic budget due to the presence of the Great Lakes include increases in evaporation and precipitation during October-March and decreases during May-August, along with springtime reductions in snowmelt-related runoff. Circulation responses consist of a regionwide decrease in sea-level pressure in autumn-winter and an increase in summer, with enhanced ascent and descent in the two seasons, respectively. The most pronounced simulated impact of the Great Lakes on synoptic systems traversing the basin is a weakening of cold-season anticyclones.

  6. Federal Great Lakes fishery research objectives, priorities, and projects

    USGS Publications Warehouse

    Tait, Howard D.

    1973-01-01

    Fishery productivity of the Great Lakes has declined drastically since settlement of the area. Premium quality fishes of the Great Lakes such as whitefish, lake trout, and walleyes have been replaced by less desired species. This change is attributed to selective overfishing, pollution, and the extreme instability of fish populations. Sea lamprey predation is still a vexing problem but progress is being made in controlling this parasite. The federal fishery research program with headquarters in Ann Arbor, Michigan, has the objective of providing baseline information, needed in resource use decisions, about the fishes of the Great Lakes. Studies of the habitat requirements of fish are high priority. The program includes fish population assessments, studies of the effects of mercury and other contaminants on fish, thermal effects studies, and general investigation of the impact of engineering projects on Great Lakes fisheries. The work is closely coordinated with state and Canadian agencies through the Great Lakes Fishery Commission. Four small research vessels and four field stations are utilized with a staff of 90 and an annual budget of about $1.5 million.

  7. Functional convergence among pelagic sculpins of Lake Baikal and deepwater ciscoes of the Great Lakes

    USGS Publications Warehouse

    Eshenroder, Randy L.; Sideleva, Valentina G.; Todd, Thomas N.

    1999-01-01

    The vast, well-oxygenated hypolimnia of Lake Baikal and the Great Lakes were both dominated by endemic planktivorous fishes. These dominants, two species of sculpins (Comephorus, Comephoridae) in Lake Baikal and six species of deepwater ciscoes (Coregonus, Salmonidae) in the Great Lakes, although distant taxonomically, have morphologies suggesting a surprising degree of functional convergence. Here it is proposed that the same two buoyancy-regulation strategies observed in Baikal sculpins also arose in the deepwater ciscoes of the Great Lakes. One strategy favors hydrostatic lift (generated by low specific gravity) and is characterized by fatter, larger-bodied fish with smaller paired fins; the second strategy favors hydrodynamic lift (generated by swimming) and is characterized by leaner, smaller-bodied fish with larger paired fins. Both types likely evolved to feed on a single species of ecologically analogous, vertically migrating macrozooplankter: Macrohectopus branickii in Lake Baikal and Mysis relicta in the Great Lakes. It is suggested that Coregonus did not diversify and proliferate in Lake Baikal as they did in the Great Lakes because by the time Coregonus colonized Lake Baikal, pelagic sculpins were already dominant.

  8. 77 FR 9652 - Proposed CERCLA Administrative Cost Recovery Settlement; Lake Linden Superfund Site in Lake...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-17

    ... AGENCY Proposed CERCLA Administrative Cost Recovery Settlement; Lake Linden Superfund Site in Lake Linden... administrative settlement for recovery of past response costs concerning the Lake Linden Superfund Site in Lake..., Chicago, Illinois, C-14J, 60604, (312) 886-6609. Comments should reference the Lake Linden Superfund...

  9. Risks and Benefits of Consumption of Great Lakes Fish

    PubMed Central

    Bhavsar, Satyendra P.; Bowerman, William; Boysen, Eric; Clark, Milton; Diamond, Miriam; Mergler, Donna; Pantazopoulos, Peter; Schantz, Susan; Carpenter, David O.

    2011-01-01

    Background: Beneficial effects of fish consumption on early cognitive development and cardiovascular health have been attributed to the omega-3 fatty acids in fish and fish oils, but toxic chemicals in fish may adversely affect these health outcomes. Risk–benefit assessments of fish consumption have frequently focused on methylmercury and omega-3 fatty acids, not persistent pollutants such as polychlorinated biphenyls, and none have evaluated Great Lakes fish consumption. Objectives: The risks and benefits of fish consumption have been established primarily for marine fish. Here, we examine whether sufficient data are available to evaluate the risks and benefits of eating freshwater fish from the Great Lakes. Methods: We used a scoping review to integrate information from multiple state, provincial, and federal agency sources regarding the contaminants and omega-3 fatty acids in Great Lakes fish and fish consumers, consumption rates and fish consumption advisories, and health effects of contaminants and omega-3 fatty acids. Data synthesis: Great Lakes fish contain persistent contaminants—many of which have documented adverse health effects —that accumulate in humans consuming them. In contrast, data are sparse on omega-3 fatty acids in the fish and their consumers. Moreover, few studies have documented the social and cultural benefits of Great Lakes fish consumption, particularly for subsistence fishers and native communities. At this time, federal and state/provincial governments provide fish consumption advisories based solely on risk. Conclusions: Our knowledge of Great Lakes fish has critical gaps, particularly regarding the benefits of consumption. A risk–benefit analysis requires more information than is currently available on the concentration of omega-3 fatty acids in Great Lakes fish and their absorption by fish eaters in addition to more information on the social, cultural, and health consequences of changes in the amount of fish consumed. PMID

  10. Dechlorane plus, a chlorinated flame retardant, in the Great Lakes.

    PubMed

    Hoh, Eunha; Zhu, Lingyan; Hites, Ronald A

    2006-02-15

    A highly chlorinated flame retardant, Dechlorane Plus (DP), was detected and identified in ambient air, fish, and sediment samples from the Great Lakes region. The identity of this compound was confirmed by comparing its gas chromatographic retention times and mass spectra with those of authentic material. This compound exists as two gas chromatographically separable stereoisomers (syn and anti), the structures of which were characterized by one- and two-dimensional proton nuclear magnetic resonance. DP was detected in most air samples, even at remote sites. The atmospheric DP concentrations were higher at the eastern Great Lakes sites (Sturgeon Point, NY, and Cleveland, OH) than those at the western Great Lakes sites (Eagle Harbor, MI, Chicago, IL, and Sleeping Bear Dunes, MI). Atthe Sturgeon Point site, DP concentrations once reached 490 pg/m3. DP atmospheric concentrations were comparable to those of BDE-209 at the eastern Great Lakes sites. DP was also found in sediment cores from Lakes Michigan and Erie. The peak DP concentrations were comparable to BDE-209 concentrations in the sediment core from Lake Erie butwere about 30 times lower than BDE-209 concentrations in the core from Lake Michigan. In the sediment cores, the DP concentrations peaked around 1975-1980, and the surficial concentrations were 10-80% of peak concentrations. Higher DP concentrations in air samples from Sturgeon Point, NY, and in the sediment core from Lake Erie suggest that DP's manufacturing facility in Niagara Falls, NY, may be a source. DP was also detected in archived fish (walleye) from Lake Erie, suggesting that this compound is, at least partially, bioavailable. PMID:16572773

  11. CO2-Induced Acidification of the Laurentian Great Lakes

    NASA Astrophysics Data System (ADS)

    McKinley, G. A.; Phillips, J.; Bennington, V.; Bootsma, H. A.; Pilcher, D.; Sterner, R.; Urban, N. R.

    2013-12-01

    A number of studies indicate that air-water equilibration is the dominant control on pCO2 in several Great Lakes at annual timescales or longer. Assuming this is the case across all lakes at present and into the future, we show that pH will decline by 0.3-0.4 units through 2100 under a business-as-usual CO2 emission scenario. In a survey of the Great Lakes scientific community, 87% of respondents indicate that CO2-driven acidification is likely. The available pH data do not support these predicted trends, but limited sampling in an environment characterized by significant spatio-temporal variability, as well as significant measurement uncertainty, cast doubt on the ability of the historical pH record to resolve the predicted trends. Evaluation of the current sampling strategy using eddy-resolving numerical models of Lake Superior and Lake Michigan are key evidence that the current monitoring strategy is inadequate. In order to track long-term pH change and assess whether atmospheric CO2 will affect the Great Lakes like the oceans, a new approach to Great Lakes pH monitoring is required. Ecological impacts of CO2 acidification have not been studied for the Great Lakes, but potential effects can be gleaned from the literature. In addition, our qualitative and quantitative survey results suggest that processes such as fish recruitment, dreissenid mussel growth, and nutrient cycling may be sensitive to pH, but there is lack of consensus about the magnitude and overall significance of these effects.

  12. The Dynamics of Laurentian Great Lakes Surface Energy Budgets

    NASA Astrophysics Data System (ADS)

    Spence, C.; Blanken, P.; Lenters, J. D.; Gronewold, A.; Kerkez, B.; Xue, P.; Froelich, N.

    2015-12-01

    The Laurentian Great Lakes constitute the largest freshwater surface in the world and are a valuable North American natural and socio-economic resource. In response to calls for improved monitoring and research on the energy and water budgets of the lakes, there has been a growing ensemble of in situ measurements - including offshore eddy flux towers, buoy-based sensors, and vessel-based platforms -deployed through an ongoing, bi-national collaboration known as the Great Lakes Evaporation Network (GLEN). The objective of GLEN is to reduce uncertainty in Great Lakes seasonal and 6-month water level forecasts, as well as climate change projections of the surface energy balance and water level fluctuations. Although It remains challenging to quantify and scale energy budgets and fluxes over such large water bodies, this presentation will report on recent successes in three areas: First, in estimating evaporation rates over each of the Great Lakes; Second, defining evaporation variability among the lakes, especially in winter and; Third, explaining the interaction between ice cover, water temperature, and evaporation across a variety of temporal and spatial scales. Research gaps remain, particularly those related to spatial variability and scaling of turbulent fluxes, so the presentation will also describe how this will be addressed with enhanced instrument and platform arrays.

  13. Patterns of organochlorine contamination in lake trout from Wisconsin waters of the Great Lakes

    USGS Publications Warehouse

    Miller, Michael A.; Madenjian, Charles P.; Masnado, Robert G.

    1992-01-01

    To investigate spatial and temporal patterns of organochlorine contamination in lake trout from Wisconsin waters of the Great Lakes, we examined laboratory contaminant analysis data of muscle tissue samples from Lake Michigan (n=317) and Lake Superior (n=53) fish. Concentrations of polychlorinated biphenyls (PCBs), chlordane, and dieldrin, reported as mg/kg wet weight in 620 mm to 640 mm mean length Lake Michigan lake trout, decreased over time. Mean total PCB concentration declined exponentially from 9.7 in 1975 to 1.9 in 1990. Total chlordane concentration declined 63 percent from 0.48 in 1983 to 0.18 in 1990, and dieldrin declined 52 percent during this same period, from 0.21 to 0.10. The bioaccumulation rate of PCBs is significantly lower for lake trout inhabiting Lake Michigan's midlake reef complex, compared to lake trout from the nearshore waters of western Lake Michigan. Organochlorine compound concentrations were greater in Lake Michigan lake trout than Lake Superior fish. Lake Superior lean lake trout and siscowet exhibited similar rates of PCB bioaccumulation despite major differneces in muscle tissue lipid content between the two subspecies. The lack of a significant difference in the PCB bioaccumulation rates of lean trout and siscowet suggests that lipid content may not be an important factor influencing PCB bioaccumulation in lake trout, within the range of lipid concentrations observed. Relative concentrations of the various organochlorine contaminants found in lake trout were highly correlated, suggesting similar mass balance processes for these compounds. Evidence presented revealing spatial and temporal patterns of organochlorine contamination may be of value in reestablishing self-sustaining populations of lake trout in Lake Michigan.

  14. Geochemical evolution of Great Salt Lake, Utah, USA

    USGS Publications Warehouse

    Jones, B.F.; Naftz, D.L.; Spencer, R.J.; Oviatt, Charles G.

    2009-01-01

    The Great Salt Lake (GSL) of Utah, USA, is the largest saline lake in North America, and its brines are some of the most concentrated anywhere in the world. The lake occupies a closed basin system whose chemistry reflects solute inputs from the weathering of a diverse suite of rocks in its drainage basin. GSL is the remnant of a much larger lacustrine body, Lake Bonneville, and it has a long history of carbonate deposition. Inflow to the lake is from three major rivers that drain mountain ranges to the east and empty into the southern arm of the lake, from precipitation directly on the lake, and from minor groundwater inflow. Outflow is by evaporation. The greatest solute inputs are from calcium bicarbonate river waters mixed with sodium chloride-type springs and groundwaters. Prior to 1930 the lake concentration inversely tracked lake volume, which reflected climatic variation in the drainage, but since then salt precipitation and re-solution, primarily halite and mirabilite, have periodically modified lake-brine chemistry through density stratification and compositional differentiation. In addition, construction of a railway causeway has restricted circulation, nearly isolating the northern from the southern part of the lake, leading to halite precipitation in the north. These and other conditions have created brine differentiation, mixing, and fractional precipitation of salts as major factors in solute evolution. Pore fluids and diagenetic reactions have been identified as important sources and especially sinks for CaCO3, Mg, and K in the lake, depending on the concentration gradient and clays. ?? U.S. Geological Survey 2008.

  15. Portion of the Great Lakes area as seen from Skylab

    NASA Technical Reports Server (NTRS)

    1974-01-01

    An oblique view of a portion of the Great Lakes (43.0N, 70.0W) area as seen from the Skylab space station in Earth orbit. lake Erie is in the foreground; and Lake Ontario is in the background. The Niagara Falls area is in the center of the photograph. Portions of Pennsylvania, New York, and Ontario, Canada are visible, but under nearly complete snow cover. Major structural features, drainage patterns, road systems and the cities of Buffalo and Toronto are easily distinguished and actually enhanced by the snow. At the time this picture was taken, these two Great Lakes had no observable ice, although cloud formations partially mask the southern shores of the two bodies of water.

  16. Thiamine concentrations in lake whitefish eggs from the upper Great Lakes are related to maternal diet

    USGS Publications Warehouse

    Riley, S.C.; Rinchard, J.; Ebener, M.P.; Tillitt, D.E.; Munkittrick, K.R.; Parrott, J.L.; Allen, J.D.

    2011-01-01

    Thiamine deficiency is responsible for reproductive impairment in several species of salmonines in the Great lakes, and is thought to be caused by the consumption of prey containing thiaminase, a thiamine-degrading enzyme. Because thiaminase levels are extremely high in dreissenid mussels, fish that prey on them may be susceptible to thiamine deficiency. We determined thiamine concentrations in lake whitefish Coregonus clupeaformis eggs from the upper Laurentian Great Lakes to assess the potential for thiamine deficiency and to determine if thiamine concentrations in lake whitefish eggs were related to maternal diet. Mean thiamine concentrations in lake whitefish eggs were highest in Lake Huron, intermediate in Lake Superior, and lowest in Lake Michigan. Some fish had thiamine concentrations below putative thresholds for lethal and sublethal effects in salmonines, suggesting that some larval lake whitefish may currently be at risk of at least sublethal effects of low thiamine concentrations, although thiamine thresholds are unknown for lake whitefish. Egg thiamine concentrations in lake whitefish eggs were statistically significantly related to isotopic carbon signatures, suggesting that egg thiamine levels were related to maternal diet, but low egg thiamine concentrations did not appear to be associated with a diet of dreissenids. Egg thiamine concentrations were not statistically significantly related to multifunction oxidase induction, suggesting that lower egg thiamine concentrations in lake whitefish were not related to contaminant exposure.

  17. 33 CFR 334.820 - Lake Michigan; naval restricted area, U.S. Naval Training Center, Great Lakes, Ill.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... area, U.S. Naval Training Center, Great Lakes, Ill. 334.820 Section 334.820 Navigation and Navigable... REGULATIONS § 334.820 Lake Michigan; naval restricted area, U.S. Naval Training Center, Great Lakes, Ill. (a) The area. An area extending in a north and south direction from the Great Lakes, Illinois,...

  18. Great Lakes fish consumption and reproductive outcomes

    SciTech Connect

    Dar, E.

    1989-01-01

    This epidemiological investigation determined prenatal exposure to polychlorinated biphenyls (PCBs), through contaminated fish consumption, and ascertained reproductive outcomes. Green Bay, Wisconsin was chosen as the study site because it was known for its environmental contamination of PCBs. These chemicals are environmentally stable and persistent, and tend to bioaccumulate up the food chain, with highest levels found in predatory sport fish from Lake Michigan. The Green Bay area provided a population with potential PCB exposure from sport fish consumption. Accidental poisoning incidents showed detrimental reproductive effects of high dose PCB exposures. A Michigan study found significant effects on birth weight and gestational age when mothers consumed two sport fish meals per month. This study population was drawn from women during their first prenatal visit at two Green Bay clinics during a one year period. 1,112 participants completed a self-administered questionnaire. Maternal and cord blood samples were obtained for selected PCB serum analyses. Reproductive outcome measures were abstracted from hospital labor reports. Study results indicated that maternal consumption was correlated to maternal PCB serum levels. Regression techniques estimated significant exposure coefficients for subsets of two birth size parameters. Birth length was positively associated with PCB exposure in shorter mothers. Significant associations of PCB exposure and birth weight percentiles were estimated for two income groups in the urban residence/weight gain less than 34 pounds subset.

  19. An operational all-weather Great Lakes ice information system

    NASA Technical Reports Server (NTRS)

    Gedney, R. T.

    1975-01-01

    A description is given of the NASA developed all-weather ice information system for the Great Lakes winter navigation program. The system utilizes an X-band side looking airborne radar (SLAR) for determining type, location, and areal distribution of the ice cover in the Great Lakes and an airborne, S band, down looking short pulse radar for obtaining ice thickness. Digitized SLAR data are relayed in real time via the NOAA-GOES satellite in geosynchronous orbit. The SLAR images along with hand drawn interpretative ice charts for various Great Lakes winter shipping areas are broadcast to facsimile recorders aboard vessles is the area via the MARAD marine VHF-FM radio network. These data assist such vessels in navigating both through and around the ice.

  20. Reaching Regional and Local Learners via a Great Lakes MOOC

    NASA Astrophysics Data System (ADS)

    Mooney, M. E.; Ackerman, S. A.

    2015-12-01

    The Cooperative Institute of Meteorological Satellite Studies (CIMSS) took a regional approach to climate change education in a 4-week MOOC (Massive Open On-line Course) on the Changing Weather and Climate in the Great Lakes Region launched in February 2015. Featuring a different season each week, this Great Lakes MOOC includes lectures about seasonal weather conditions, observed changes, and societal impacts of regional climate change, as well as actions with co-benefits to slow future climate change. To better connect with learners, CIMSS facilitated 21 discussion groups at public libraries around Wisconsin each week. Participants discussed climate change impacts in their communities as well as strategies to mitigate climate change. Not surprisingly, initial survey results show library participants were more committed, engaged, climate literate, and community minded. This session will share lessons learned and survey results from the Great Lakes MOOC which remains open and accessible on Coursera through February 2016 at https://www.coursera.org/course/greatlakesclimate.

  1. Consumptive Water Use in the Great Lakes Basin

    USGS Publications Warehouse

    Shaffer, Kimberly H.

    2008-01-01

    Great Lakes state agencies and organizations view understanding consumptive water use as a critical component in water-resource management. To assist them in developing a better understanding of the factors involved in consumptive use, the U.S. Geological Survey (USGS) has completed an inventory of consumptive-use coefficients for the Great Lakes Basin. This fact sheet highlights findings and data from a comprehensive report resulting from that inventory. This fact sheet includes information on water-use categories used to compile and organize consumptive-use coefficients, summary statistics for consumptive-use coefficients by category, and estimated water withdrawals and consumptive-use amounts for the Great Lakes States for 2000.

  2. Predicting Great Lakes fish yields: tools and constraints

    USGS Publications Warehouse

    Lewis, C.A.; Schupp, D.H.; Taylor, W.W.; Collins, J.J.; Hatch, Richard W.

    1987-01-01

    Prediction of yield is a critical component of fisheries management. The development of sound yield prediction methodology and the application of the results of yield prediction are central to the evolution of strategies to achieve stated goals for Great Lakes fisheries and to the measurement of progress toward those goals. Despite general availability of species yield models, yield prediction for many Great Lakes fisheries has been poor due to the instability of the fish communities and the inadequacy of available data. A host of biological, institutional, and societal factors constrain both the development of sound predictions and their application to management. Improved predictive capability requires increased stability of Great Lakes fisheries through rehabilitation of well-integrated communities, improvement of data collection, data standardization and information-sharing mechanisms, and further development of the methodology for yield prediction. Most important is the creation of a better-informed public that will in turn establish the political will to do what is required.

  3. Volatile selenium flux from the great Salt Lake, Utah

    USGS Publications Warehouse

    Diaz, X.; Johnson, W.P.; Oliver, W.A.; Naftz, D.L.

    2009-01-01

    The removal mechanisms that govern Se concentrations in the Great Salt Lake are unknown despite this terminal lake being an avian habitat of hemispheric importance. However, the volatilization flux of Se from the Great Salt Lake has not been previously measured due to challenges of analysis in this hypersaline environment This paper presents results from recent field studies examining the spatial distribution of dissolved volatile Se (areally and with depth) in the south arm (main body) of the Great Salt Lake. The analyses involved collection of dissolved volatile Se in a cryofocusing trap system via sparging with helium. The cryotrapped volatile Se was digested with nitric acid and analyzed by inductively coupled plasma mass spectrometry (ICP-MS). Results show concentrations of dissolved volatile Se that increase with depth in the shallow brine, suggesting that phytoplankton in the open waters and bioherms in shallow sites (<4 m in depth) may be responsible for volatile Se production. Volatile Se flux to the atmosphere was determined using mass transport models corrected to simulate the highly saline environment of the south arm of the Great Salt Lake. The estimated annual flux of volatile Se was 1455 kg/year within a range from 560 to 3780 kg Se/year for the 95% confidence interval and from 970 to 2180 kg Se/year within the 68% confidence interval. ?? 2009 American Chemical Society.

  4. 46 CFR 380.11 - Designation of American Great Lakes Vessels.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 8 2010-10-01 2010-10-01 false Designation of American Great Lakes Vessels. 380.11... Application for Designation of Vessels as American Great Lakes Vessels § 380.11 Designation of American Great Lakes Vessels. The Secretary shall designate a vessel as an American Great Lakes vessel if— (a)...

  5. Contaminant trends in lake trout (Salvelinus namaycush) of the upper Great Lakes

    USGS Publications Warehouse

    DeVault, David S.; Willford, Wayne A.; Hesselberg, Robert J.

    1985-01-01

    Contaminant body burdens in lake trout from the Upper Great Lakes have been monitored since 1970 on Lake Michigan and since 1977 and 1978 on Lakes Superior and Huron by USEPA, Great Lakes National Program Office and USFWS, Great Lakes Fishery Laboratory. Analysis of the Lake Michigan data shows that mean PCB concentrations declined from a maximum of 22.91 mg/kg in 1974 to 5.63 in 1982. Mean total DDT concentrations declined from 19.19 mg/kg in 1970 to 2.74 mg/kg in 1982. The decline in both contaminants closely followed first order loss kinetics. If the current decline continues, PCB concentrations will decline to the USFDA tolerance of 2.0 mg/kg in 1988. Mean total DDT concentrations will fall to the IJC objective of 1.0 mg/kg by 1991. Mean dieldrin concentrations increased significantly from 0.20 mg/kg in 1971 to 0.58 mg/kg in 1979 before declining to 0.21 mg/kg in 1982. The decline from 1979-1982 followed first order loss kinetics. As this decline is not reflected in other species (bloater chubs, smelt) it will require additional years of monitoring to determine if the decline in dieldrin concentrations between 1979 and 1982 truly represents a declining trend. Contaminants in lake trout from Lake Superior and Lake Huron generally declined over the study period. The only statistically significant trend other than in Lake Michigan was for total DDT which declined significantly in Lake Superior lake trout. Large data variance and the short time frame covered (1977-1982) interfered with detection of trends on Lakes Superior and Huron.

  6. An appraisal of management pathologies in the Great Lakes.

    PubMed

    McLaughlin, Chris; Krantzberg, Gail

    2012-02-01

    Recent research has produced broad application of the health concept to regional ecosystems, including the Great Lakes. The attention is warranted, as new and recurring stresses on the health of the Great Lakes undermine our understanding and hinder our ability to manage and restore critical ecological functions. There is widespread agreement that the Great Lakes are presently exhibiting symptoms of extreme stress and potentially irreversible and catastrophic damage. Historical command and control management has resulted simultaneously in environmental benefits to people and a loss of resilience in Great Lakes ecosystems. Surprising system responses often prompt further control, and the continued decline in resilience has been called the pathology of natural resource management. The pathology is also suggested to affect human systems of organization such as management authorities. We use published criteria of institutional pathologies and illustrate their occurrence in the Great Lakes with evidence of non-existent program evaluation, program incompatibility, lack of coordination among programs, authorities that establish and then abandon public participatory initiatives, and inappropriate choice of policy mechanisms or inadequate level of support for an appropriate mechanism (either of which creates disincentives for stakeholders). Learning is an element of resilience, as managed systems are inherently dynamic and our understanding is therefore always incomplete. Policy mechanisms that mimic learning techniques to improve understanding are therefore central to avoiding pathologies in management. But learning (individually or institutionally) can be threatening and very difficult, and its proper conduct necessarily involves a continuous process of feedback, interpretation, and reformulation. Double-loop learning processes that institutionalize learning in policy are recommended, as these will be required to overcome pathologies in management and maintain resilience

  7. Total organochlorine content of fish from the Great Lakes

    SciTech Connect

    Newsome, W.H.; Andrews, P.; Conacher, H.B.; Rao, R.R.; Chatt, A. )

    1993-07-01

    Residues of polychlorinated biphenyls (PCBs) and organochlorine pesticides were determined in several species of commercial fish from the Great Lakes and compared to the total organic chlorine determined by neutron activation analysis. The mean organochlorine contents ranged from 44 to 138 ppm (lipid basis) and were 5 to 72 times higher than the contents of PCBs and organochlorine pesticides. Marine fish also contained a large proportion of unidentified organic chlorine. The unknown material in the Great Lakes fish was found to chromatograph with the high molecular weight lipid fraction by gel permeation chromatography.

  8. Quantitative interpretation of Great Lakes remote sensing data

    NASA Technical Reports Server (NTRS)

    Shook, D. F.; Salzman, J.; Svehla, R. A.; Gedney, R. T.

    1980-01-01

    The paper discusses the quantitative interpretation of Great Lakes remote sensing water quality data. Remote sensing using color information must take into account (1) the existence of many different organic and inorganic species throughout the Great Lakes, (2) the occurrence of a mixture of species in most locations, and (3) spatial variations in types and concentration of species. The radiative transfer model provides a potential method for an orderly analysis of remote sensing data and a physical basis for developing quantitative algorithms. Predictions and field measurements of volume reflectances are presented which show the advantage of using a radiative transfer model. Spectral absorptance and backscattering coefficients for two inorganic sediments are reported.

  9. Implications of thiamine deficiency in Great Lakes salmonines

    USGS Publications Warehouse

    Brown, S.B.; Fitzsimons, J.D.; Honeyfield, D.C.; Tillitt, D.E.

    2005-01-01

    Our recent experimental work and ecoepizootiological assessments provide mechanistic data supporting a plausible hypothesis for an association between a prey base comprised of a large biomass of nonnative alewives Alosa pseudoharengus and the recruitment difficulties currently experienced by Great Lakes salmonines. We hypothesize that the thiamine deficiency induced by alewives, a species harboring high thiaminase activity, represents an ongoing cause of fry and adult mortality in salmonines. Overall ramifications of the thiamine deficiency on recruitment have not been firmly established but may represent a substantial bottleneck for natural recruitment in feral salmonine populations in the Great Lakes. ?? Copyright by the American Fisheries Society 2005.

  10. Compilation of watershed models for tributaries to the Great Lakes, United States, as of 2010, and identification of watersheds for future modeling for the Great Lakes Restoration Initiative

    USGS Publications Warehouse

    Coon, William F.; Murphy, Elizabeth A.; Soong, David T.; Sharpe, Jennifer B.

    2011-01-01

    As part of the Great Lakes Restoration Initiative (GLRI) during 2009–10, the U.S. Geological Survey (USGS) compiled a list of existing watershed models that had been created for tributaries within the United States that drain to the Great Lakes. Established Federal programs that are overseen by the National Oceanic and Atmospheric Administration (NOAA) and the U.S. Army Corps of Engineers (USACE) are responsible for most of the existing watershed models for specific tributaries. The NOAA Great Lakes Environmental Research Laboratory (GLERL) uses the Large Basin Runoff Model to provide data for the management of water levels in the Great Lakes by estimating United States and Canadian inflows to the Great Lakes from 121 large watersheds. GLERL also simulates streamflows in 34 U.S. watersheds by a grid-based model, the Distributed Large Basin Runoff Model. The NOAA National Weather Service uses the Sacramento Soil Moisture Accounting model to predict flows at river forecast sites. The USACE created or funded the creation of models for at least 30 tributaries to the Great Lakes to better understand sediment erosion, transport, and aggradation processes that affect Federal navigation channels and harbors. Many of the USACE hydrologic models have been coupled with hydrodynamic and sediment-transport models that simulate the processes in the stream and harbor near the mouth of the modeled tributary. Some models either have been applied or have the capability of being applied across the entire Great Lakes Basin; they are (1) the SPAtially Referenced Regressions On Watershed attributes (SPARROW) model, which was developed by the USGS; (2) the High Impact Targeting (HIT) and Digital Watershed models, which were developed by the Institute of Water Research at Michigan State University; (3) the Long-Term Hydrologic Impact Assessment (L–THIA) model, which was developed by researchers at Purdue University; and (4) the Water Erosion Prediction Project (WEPP) model, which was

  11. Compilation of watershed models for tributaries to the Great Lakes, United States, as of 2010, and identification of watersheds for future modeling for the Great Lakes Restoration Initiative

    USGS Publications Warehouse

    Coon, William F.; Murphy, Elizabeth A.; Soong, David T.; Sharpe, Jennifer B.

    2011-01-01

    As part of the Great Lakes Restoration Initiative (GLRI) during 2009–10, the U.S. Geological Survey (USGS) compiled a list of existing watershed models that had been created for tributaries within the United States that drain to the Great Lakes. Established Federal programs that are overseen by the National Oceanic and Atmospheric Administration (NOAA) and the U.S. Army Corps of Engineers (USACE) are responsible for most of the existing watershed models for specific tributaries. The NOAA Great Lakes Environmental Research Laboratory (GLERL) uses the Large Basin Runoff Model to provide data for the management of water levels in the Great Lakes by estimating United States and Canadian inflows to the Great Lakes from 121 large watersheds. GLERL also simulates streamflows in 34 U.S. watersheds by a grid-based model, the Distributed Large Basin Runoff Model. The NOAA National Weather Service uses the Sacramento Soil Moisture Accounting model to predict flows at river forecast sites. The USACE created or funded the creation of models for at least 30 tributaries to the Great Lakes to better understand sediment erosion, transport, and aggradation processes that affect Federal navigation channels and harbors. Many of the USACE hydrologic models have been coupled with hydrodynamic and sediment-transport models that simulate the processes in the stream and harbor near the mouth of the modeled tributary. Some models either have been applied or have the capability of being applied across the entire Great Lakes Basin; they are (1) the SPAtially Referenced Regressions On Watershed attributes (SPARROW) model, which was developed by the USGS; (2) the High Impact Targeting (HIT) and Digital Watershed models, which were developed by the Institute of Water Research at Michigan State University; (3) the Long-Term Hydrologic Impact Assessment (L–THIA) model, which was developed by researchers at Purdue University; and (4) the Water Erosion Prediction Project (WEPP) model, which was

  12. Projecting Future Water Levels of the Laurentian Great Lakes

    NASA Astrophysics Data System (ADS)

    Bennington, V.; Notaro, M.; Holman, K.

    2013-12-01

    The Laurentian Great Lakes are the largest freshwater system on Earth, containing 84% of North America's freshwater. The lakes are a valuable economic and recreational resource, valued at over 62 billion in annual wages and supporting a 7 billion fishery. Shipping, recreation, and coastal property values are significantly impacted by water level variability, with large economic consequences. Great Lakes water levels fluctuate both seasonally and long-term, responding to natural and anthropogenic climate changes. Due to the integrated nature of water levels, a prolonged small change in any one of the net basin supply components: over-lake precipitation, watershed runoff, or evaporation from the lake surface, may result in important trends in water levels. We utilize the Abdus Salam International Centre for Theoretical Physics's Regional Climate Model Version 4.5.6 to dynamically downscale three global global climate models that represent a spread of potential future climate change for the region to determine whether the climate models suggest a robust response of the Laurentian Great Lakes to anthropogenic climate change. The Model for Interdisciplinary Research on Climate Version 5 (MIROC5), the National Centre for Meteorological Research Earth system model (CNRM-CM5), and the Community Climate System Model Version 4 (CCSM4) project different regional temperature increases and precipitation change over the next century and are used as lateral boundary conditions. We simulate the historical (1980-2000) and late-century periods (2080-2100). Upon model evaluation we will present dynamically downscaled projections of net basin supply changes for each of the Laurentian Great Lakes.

  13. Status of coregonine fishes in the Laurentian Great Lakes

    USGS Publications Warehouse

    Fleischer, Guy W.

    1992-01-01

    The post-glacial coregonine assemblage in the Great Lakes included several species of the genera Prosopium and Coregonus. Overfishing, habitat degradation, and competition with various exotic fish species severely reduced coregonine abundance and altered their distribution by the mid to latter part of the 20th century. Most of the original Coregonus species, some which were endemic to the Great Lakes, are now extinct or are extremely rare. The prevailing coregonines are mostly benthic and deep-water species, contrasted to the original assemblage dominated by pelagic, nearshore species. Lake whitefish (Coregonus clupeaformis) populations have recovered and now support record fisheries in Lakes Superior, Michigan, and Huron. Bloaters (C. hoyi) have recovered to dominate the planktivorous fish community in Lake Michigan and are rapidly increasing in Lake Huron. The recent resurgence in some coregonine populations are linked to declines in exotic fish populations and favorable climatic changes. The reduced diversity of the coregonines may explain the dominance of the remaining species. The stability of this simplified coregonine community is uncertain but the existing coregonines have demonstrated resiliency.

  14. Reconstructing paleo lake levels from relict shorelines along the Upper Great Lakes

    USGS Publications Warehouse

    Baedke, Steve J.; Thompson, Todd A.; Johnston, John W.; Wilcox, Douglas A.

    2004-01-01

    Shorelines of the upper Great Lakes include many embayments that contain strandplains of beach ridges. These former shoreline positions of the lakes can be used to determine changes in the elevation of the lakes through time, and they also provide information on the warping of the ground surface that is occurring in the Great Lakes after the weight of glacial ice was removed. Relative lake-level hydrographs can be created by coring the beach ridges to determine the elevation of basal foreshore (swash zone) deposits in each ridge and by obtaining radiocarbon dates of basal wetland sediments between ridges to generate an age model for the ridges. Because the relative-level hydrographs are the combination of lake-level change and vertical ground movement (isostatic rebound), the rebound must be removed to produce a graph that shows only the physical limits and timing of past lake-level fluctuations referenced to a common outlet. More than 500 vibracores of beach-ridge sediments were collected at five sites along Lake Michigan and four sites along Lake Superior. The cores showed a sequence of dune deposits overlying foreshore deposits that, in turn, overlie upper shoreface deposits. The base of the foreshore deposits is coarser and more poorly sorted than an overlying and underlying sediment and represents the plunge-point sediments at the base of the swash zone. The plunge-point deposits are a close approximation of the elevation of the lake when the beach ridge formed. More than 150 radiocarbon ages of basal wetland sediments were collected to produce age models for the sites. Currently, age models exist for all Lake Michigan sites and one Lake Superior site. By combining the elevation data with the age models, six relative lake-level hydrographs were created for the upper Great Lakes. An iterative approach was used to remove rebound from the five Lake Michigan relative hydrographs and merge the graphs into a single hydrograph. The resultant hydrograph shows long

  15. Use of egg traps to investigate lake trout spawning in the Great Lakes

    USGS Publications Warehouse

    Schreiner, Donald R.; Bronte, Charles R.; Payne, N. Robert; Fitzsimons, John D.; Casselman, John M.

    1995-01-01

    Disk-shaped traps were used to examine egg deposition by lake trout (Salvelinus namaycush) at 29 sites in the Great Lakes. The main objectives were to; first, evaluate the disk trap as a device for sampling lake trout eggs in the Great Lakes, and second, summarize what has been learned about lake trout spawning through the use of disk traps. Of the 5,085 traps set, 60% were classified as functional when retrieved. Evidence of lake trout egg deposition was documented in each of the lakes studied at 14 of 29 sites. A total of 1,147 eggs were trapped. The percentage of traps functioning and catch per effort were compared among sites based on depth, timing of egg deposition, distance from shore, size of reef, and type of reef (artificial or natural). Most eggs were caught on small, shallow, protected reefs that were close to shore. Use of disk traps on large, shallow, unprotected offshore reefs or along unprotected shorelines was generally unsuccessful due to the effects of heavy wind and wave action. Making multiple lifts at short intervals, and retrieval before and re-deployment after storms are recommended for use in exposed areas. On large reefs, preliminary surveys to identify preferred lake trout spawning habitat may be required to deploy disk traps most effectively. Egg deposition by hatchery-reared fish was widespread throughout the Great Lakes, and the use of artificial structures by these fish was extensive.

  16. Evidence for early hunters beneath the Great Lakes

    PubMed Central

    O'Shea, John M.; Meadows, Guy A.

    2009-01-01

    Scholars have hypothesized that the poorly understood and rarely encountered archaeological sites from the terminal Paleoindian and Archaic periods associated with the Lake Stanley low water stage (10,000–7,500 BP) are lost beneath the modern Great Lakes. Acoustic and video survey on the Alpena-Amberley ridge, a feature that would have been a dry land corridor crossing the Lake Huron basin during this time period, reveals the presence of a series of stone features that match, in form and location, structures used for caribou hunting in both prehistoric and ethnographic times. These results present evidence for early hunters on the Alpena-Amberley corridor, and raise the possibility that intact settlements and ancient landscapes are preserved beneath Lake Huron. PMID:19506245

  17. WATER QUALITY AND BIOLOGICAL CONDITIONS OF GREAT LAKES COASTAL WETLANDS, WITH AN EMPHASIS ON LAKE SUPERIOR

    EPA Science Inventory

    This presentation will focus on MED's past and ongoing research in Lake Superior wetlands, and will include data on habitat, water quality, and biological condition of these systems. Comparisons of the condition of Lake Superior wetlands relative to those found around the Great ...

  18. Forecasting Lake-Effect Precipitation in the Great Lakes Region Using NASA Enhanced-Satellite Data

    NASA Technical Reports Server (NTRS)

    Cipullo, Michelle; Molthan, Andrew; Shafer, Jackie; Case, Jonathan; Jedlovec, Gary

    2011-01-01

    Lake-effect precipitation is common in the Great Lakes region, particularly during the late fall and winter. The synoptic processes of lake-effect precipitation are well understood by operational forecasters, but individual forecast events still present a challenge. Locally run, high resolution models can assist the forecaster in identifying the onset and duration of precipitation, but model results are sensitive to initial conditions, particularly the assumed surface temperature of the Great Lakes. The NASA Short-term Prediction Research and Transition (SPoRT) Center has created a Great Lakes Surface Temperature (GLST) composite, which uses infrared estimates of water temperatures obtained from the MODIS instrument aboard the Aqua and Terra satellites, other coarser resolution infrared data when MODIS is not available, and ice cover maps produced by the NOAA Great Lakes Environmental Research Lab (GLERL). This product has been implemented into the Weather Research and Forecast (WRF) model Environmental Modeling System (WRF-EMS), used within forecast offices to run local, high resolution forecasts. The sensitivity of the model forecast to the GLST product was analyzed with a case study of the Lake Effect Storm Echinacea, which produced 10 to 12 inches of snowfall downwind of Lake Erie, and 8 to 18 inches downwind of Lake Ontario from 27-29 January 2010. This research compares a forecast using the default Great Lakes surface temperatures from the Real Time Global sea surface temperature (RTG SST), in the WRF-EMS model to the enhanced NASA SPoRT GLST product to study forecast impacts. Results from this case study show that the SPoRT GLST contained less ice cover over Lake Erie and generally cooler water temperatures over Lakes Erie and Ontario. Latent and sensible heat fluxes over Lake Ontario were decreased in the GLST product. The GLST product decreased the quantitative precipitation forecast (QPF), which can be correlated to the decrease in temperatures and heat

  19. First record of Daphnia lumholtzi Sars in the Great Lakes

    USGS Publications Warehouse

    Muzinic, Christopher J.

    2000-01-01

    Adults of the cladoceran Daphnia lumholtzi, native to Australia, Africa, and parts of Asia, were first collected in August 1999 in Lake Erie. Individuals were collected near East Harbor State Park, Lakeside, Ohio from vertical plankton net tows. The average number of D. lumholtzi that were found (0.03/L) indicate that D. lumholtzi is beginning to establish itself in Lake Erie. The morphology of this Daphnia differs greatly from native species because of its elongated head and tail spine. This sighting is important because it acknowledges yet another exotic invader into the Great Lakes basin and it also shows that this, normally, warm water species continues to expand its range northward.

  20. The role of the atmosphere in great lakes contamination

    NASA Astrophysics Data System (ADS)

    Mackay, D.; Bentzen, E.

    Certain implications are discussed of the data in a recent report of atmospheric deposition rates to the Great Lakes by Hoff et al. (Atmospheric Environment 30, 3505-3527, 1996). An analysis of the data suggests that for many persistent, volatile organic chemicals concentrations in water are close to a state of long term (several years, within a factor of approximately five) equilibrium with the atmosphere, but are in a constant state of short-term seasonal adjustment. Under these near-equilibrium conditions the actual magnitude of air to water loadings become relatively unimportant as determinants of lake ecosystem contamination, and the significance of land-based loadings is reduced. Success in decontaminating or restoring the Great Lakes is becoming increasingly dependent on atmospheric concentrations and thus on the processes which determine these concentrations.

  1. GREAT LAKES BASIN LAND-COVER DATA: ISSUES AND OPPORTUNITIES

    EPA Science Inventory

    The US Environmental Protection Agency (EPA) is developing a consistent land-cover (LC) data set for the entire 480,000 km2 Great Lakes Basin (GLB). The acquisition of consistent LC data has proven difficult both within the US and across GLB political boundaries due to disparate...

  2. Allocating Great Lakes forage bases in response to multiple demand

    USGS Publications Warehouse

    Brown, Edward H.; Busiahn, Thomas R.; Jones, Michael L.; Argyle, Ray L.; Taylor, William W.; Ferreri, C. Paola

    1999-01-01

    Forage base allocation, which has become an important issue because of major changes in the fish communities and fisheries of the Great Lakes since the 1950s is examined and documented in this chapter. Management initiatives that were used to address the issue, and supporting research and development that provided new or improved methods of field sampling and analysis are also highlighted.

  3. Near shore-wetland fish movements in the Great Lakes

    EPA Science Inventory

    Linkages of Great Lakes coastal wetlands and near shore habitats are under-explored, yet 90 species of fish are known to utilize wetlands for spawning and/or nursery habitat. The duration and frequency of wetland use for pelagic species with mobile adult stages is also poorly un...

  4. Early Detection Monitoring for Vulnerable Great Lakes Coastal Ecosystems

    EPA Science Inventory

    Great Lakes harbors/embayments are vulnerable to introduction of aquatic invasive species. Monitoring is needed to inform on new introductions, as well as to track success of prevention programs intended to limit spread. We have completed a pilot field case study in the Duluth-...

  5. Cross-Sector Collaboration: The Great Lakes Environmental Finance Center.

    ERIC Educational Resources Information Center

    Austrian, Ziona; Iannone, Donald

    1997-01-01

    The Great Lakes Environmental Finance Center is one of six university-based environmental finance centers established by the federal government. Its primary mission is to help state and local government and private-sector organizations devise effective financing strategies for environmental improvement projects. Cross-sector collaboration and…

  6. Repeated Measures of Students' Marine and Great Lakes Awareness.

    ERIC Educational Resources Information Center

    Fortner, Rosanne; Mayer, Victor J.

    1991-01-01

    Describes a longitudinal statewide study of Ohio fifth and ninth graders' knowledge about and attitude toward the oceans and Great Lakes. Results indicate a knowledge score increase except for humanities items. Among science items, earth science topics showed the greatest deficiencies, and oceanic attitudes declined over the period. (15…

  7. Great Lakes rivermouth ecosystems: scientific synthesis and management implications

    EPA Science Inventory

    Rivermouth ecosystems contribute to both the ecological dynamics and the human social networks that surround and depend on the Laurentian Great Lakes. However, understanding and management of these systems would be enhanced by viewing them with a new, holistic focus. Here, focu...

  8. A LANDSCAPE ECOLOGY ANALYSIS OF THE GREAT LAKES BASIN

    EPA Science Inventory

    The U.S. Environmental Protection Agency (EPA) and Natural Resources Canada: Canada Centre for Remote Sensing (CCRS) are conducting a cooperative research landscape ecological study of the Great Lakes Basin. The analyses will include the areas located along the border of the Unit...

  9. A REGIONAL ECOLOGICAL ANALYSIS OF THE GREAT LAKES BASIN

    EPA Science Inventory

    The U.S. Environmental Protection Agency (EPA) and Natural Resources Canada: Canada Centre for Remote Sensing (CCRS) are conducting a cooperative research landscape ecological study of the Great Lakes Basin. The analyses will include the areas located along the border of the Unit...

  10. Conceptual Model for Selenium Cycling in the Great Salt Lake

    NASA Astrophysics Data System (ADS)

    Johnson, W. P.; Conover, M. R.; Wurtsbaugh, W. A.; Adams, J.

    2006-12-01

    The conceptual model for Selenium cycling in the Great Salt Lake was developed to guide investigations in support of determining an open water selenium standard for the Great Salt Lake. The motivation to determine this particular selenium standard derives from public concern for a plan to allow disposal of reverse osmosis (RO) concentrate in the GSL, which would contain elevated concentrations of major and trace elements, including selenium. The development of an open water standard for selenium requires a working knowledge of the biological significance of existing selenium concentrations in the Great Salt Lake, as well as a working understanding of the likely changes of these concentrations over time given existing and proposed loads to the system. This working knowledge" is being represented in a conceptual model that accounts for selenium in various stocks" in the system (e.g. water, sediment, biota) and the flow" of selenium between stocks (e.g., precipitation and settling, volatilization, bioconcentration). It illustrates the critical pathway of selenium in the Great Salt Lake from water, to microorganisms, to brine shrimp and brine flies, to birds, and to their eggs. It also addresses the complexity of the GSL system: a) Spatially diverse, being comprised by four distinct bays and two layers, with major differences in salinity among their waters. b) Temporally dynamic, due to seasonal and inter-annual variations in runoff. The conceptual model is presently descriptive, but will serve as the basis for a semi-quantitative model that will be fed by data accumulated during subsequent investigations.

  11. Volatile Selenium Flux in the Great Salt Lake

    NASA Astrophysics Data System (ADS)

    Diaz, X.; Johnson, W. P.

    2006-12-01

    Volatilization of selenium has been proven to be the major source of selenium vapor from oceans and estuaries and it may be the major mechanism of permanent selenium removal from the Great Salt Lake (other than brine shrimp harvest). However, the volatilization flux of selenium from the Great Salt Lake has not been previously measured due to challenges of analysis in this hyper-saline environment. This work presents results from recent field studies examining the spatial distribution of volatile selenium (geographical and with depth) in the South Arm (main body) of the Great Salt Lake. The analyses involved collection of volatile selenium in a cryo-focusing trap system via sparging with helium. The cryo-trapped volatile selenium was digested with nitric acid and analyzed by ICP-MS. The results show concentrations of volatile selenium that are much greater than values reported for marine estuaries and oceans. Volatile selenium flux to the atmosphere was determined using mass transport equations corrected to simulate the highly saline environment of the South Arm of the Great Salt Lake.

  12. Area contingency plan: Eastern Great Lakes. (COTP Buffalo)

    SciTech Connect

    1994-06-30

    The Area Contingency Plan, mandated under the Oil Pollution Act, was developed by the Eastern Great Lakes Area Committee, which is chaired by the Coast Guard and consists of local, state, federal, and private members. The plan prepares in advance for an oil or hazardous substance spill in the COTP Buffalo Coastal Zone.

  13. 75 FR 8728 - Great Lakes Pilotage Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-25

    ... (``Great Lakes Pilotage Ratemaking Methodology,'' 74 FR 35838), in accordance with requirements of 46 U.S.C... August 26, 2009 (74 FR 43148) and will be accepted until the position is filled. Procedural The meeting... Guard Marine Safety Unit Cleveland, 1055 E. 9th Street, Cleveland, OH 44114, in the main conference...

  14. Great Lakes nearshore-offshore: Distinct water quality regions

    EPA Science Inventory

    We compared water quality of nearshore regions in the Laurentian Great Lakes to water quality in offshore regions. Sample sites for the nearshore region were from the US EPA National Coastal Condition Assessment and based on a criteria or sample-frame of within the 30-m depth co...

  15. LESSONS LEARNED FROM MODELLING PCBS IN THE GREAT LAKES

    EPA Science Inventory

    Implementation of the Great Lakes Water Quality Agreement depends in part on knowing which chemicals under what conditions have impacted different fish species, either independently or in concert with non-chemical stressors. Dr. Phillip Cook of MED presented an overview of his re...

  16. Changes in depth occupied by Great Lakes lake whitefish populations and the influence of survey design

    USGS Publications Warehouse

    Rennie, Michael D.; Weidel, Brian C.; Claramunt, Randy; Dunlob, Erin S.

    2015-01-01

    Understanding fish habitat use is important in determining conditions that ultimately affect fish energetics, growth and reproduction. Great Lakes lake whitefish (Coregonus clupeaformis) have demonstrated dramatic changes in growth and life history traits since the appearance of dreissenid mussels in the Great Lakes, but the role of habitat occupancy in driving these changes is poorly understood. To better understand temporal changes in lake whitefish depth of capture (Dw), we compiled a database of fishery-independent surveys representing multiple populations across all five Laurentian Great Lakes. By demonstrating the importance of survey design in estimating Dw, we describe a novel method for detecting survey-based bias in Dw and removing potentially biased data. Using unbiased Dw estimates, we show clear differences in the pattern and timing of changes in lake whitefish Dw between our reference sites (Lake Superior) and those that have experienced significant benthic food web changes (lakes Michigan, Huron, Erie and Ontario). Lake whitefish Dw in Lake Superior tended to gradually shift to shallower waters, but changed rapidly in other locations coincident with dreissenid establishment and declines in Diporeia densities. Almost all lake whitefish populations that were exposed to dreissenids demonstrated deeper Dw following benthic food web change, though a subset of these populations subsequently shifted to more shallow depths. In some cases in lakes Huron and Ontario, shifts towards more shallow Dw are occurring well after documented Diporeia collapse, suggesting the role of other drivers such as habitat availability or reliance on alternative prey sources.

  17. 33 CFR 334.820 - Lake Michigan; naval restricted area, U.S. Naval Training Center, Great Lakes, Ill.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 3 2011-07-01 2011-07-01 false Lake Michigan; naval restricted area, U.S. Naval Training Center, Great Lakes, Ill. 334.820 Section 334.820 Navigation and Navigable... REGULATIONS § 334.820 Lake Michigan; naval restricted area, U.S. Naval Training Center, Great Lakes, Ill....

  18. Spatial and Temporal Patterns of Mercury Accumulation in Lacustrine Sediments Across the Laurentian Great Lakes Region

    EPA Science Inventory

    Data from 103 sediment cores from the Great Lakes and inland lakes of the Great Lakes airshed were compiled to examine and provide a synthesis of patterns of historical and recent changes in mercury (Hg) deposition. Limited data from the lower Laurentian Great Lakes shows a lega...

  19. Long-Term Variability of Satellite Lake Surface Water Temperatures in the Great Lakes

    NASA Astrophysics Data System (ADS)

    Gierach, M. M.; Matsumoto, K.; Holt, B.; McKinney, P. J.; Tokos, K.

    2014-12-01

    The Great Lakes are the largest group of freshwater lakes on Earth that approximately 37 million people depend upon for fresh drinking water, food, flood and drought mitigation, and natural resources that support industry, jobs, shipping and tourism. Recent reports have stated (e.g., the National Climate Assessment) that climate change can impact and exacerbate a range of risks to the Great Lakes, including changes in the range and distribution of certain fish species, increased invasive species and harmful algal blooms, declining beach health, and lengthened commercial navigation season. In this study, we will examine the impact of climate change on the Laurentian Great Lakes through investigation of long-term lake surface water temperatures (LSWT). We will use the ATSR Reprocessing for Climate: Lake Surface Water Temperature & Ice Cover (ARC-Lake) product over the period 1995-2012 to investigate individual and interlake variability. Specifically, we will quantify the seasonal amplitude of LSWTs, the first and last appearances of the 4°C isotherm (i.e., an important identifier of the seasonal evolution of the lakes denoting winter and summer stratification), and interpret these quantities in the context of global interannual climate variability such as ENSO.

  20. Perchlorate in The Great Lakes: Distribution, Isotopic Composition and Origin

    NASA Astrophysics Data System (ADS)

    Poghosyan, A.; Sturchio, N. C.; Jackson, W. A.; Guan, Y.; Eiler, J. M.; Hatzinger, P. B.

    2013-12-01

    Concentrations, stable chlorine and oxygen isotopic compositions, and 36Cl abundances of perchlorate were investigated in the five Laurentian Great Lakes. Samples were collected during monitoring cruises in 2007 and 2008 of the U.S. EPA's RV Lake Guardian and in 2010 at the water supply intake of Marquette, MI on the southern shore of Lake Superior. Concentrations of perchlorate were measured by IC/MS/MS at 24 locations, including one or two depth profiles in each lake. Mean concentrations (μg/L) are: Superior, 0.06 × 0.01; Michigan, 0.10 × 0.01; Huron, 0.11 × 0.01; Erie, 0.08 × 0.01, and Ontario, 0.09 × 0.01. Concentration vs. depth is nearly constant in each lake, indicating well-mixed conditions. Perchlorate was extracted from near-surface water by passing 15,000 to 80,000 L of water through 1-L cartridges containing Purolite A530E bifunctional anion-exchange resin. In the laboratory, perchlorate was eluted from the resin, purified, and precipitated as a >99% pure crystalline phase. Milligram amounts were recovered from each lake. Chlorine and oxygen isotopic analyses were performed at Caltech using the Cameca 7f-GEO SIMS instrument, following validation of the SIMS method with analyses of USGS-37 and USGS-38 isotopic reference materials. Results indicate a relatively narrow range in δ37Cl values (+2.9 to +3.9 ‰) and a wider range in δ18O values (-4.0 to +4.1 ‰), with a general geographic trend of increasing δ18O from west to east. Oxygen-17 was measured at UIC using dual-inlet IRMS of O2 produced by decomposition of KClO4. Great Lakes perchlorate has mass-independent oxygen isotopic variations with positive Δ17O values (+1.6 ‰ to +2.7 ‰) divided into two distinct groups: Lake Superior (+2.7 ‰) and the other four lakes (~ +1.7 ‰). The isotopic data indicate that perchlorate is dominantly of natural origin, having stable isotopic compositions resembling those of perchlorate from pre-industrial groundwaters in the western USA. The 36Cl

  1. Geochemistry of Great Salt Lake, Utah I: Hydrochemistry since 1850

    USGS Publications Warehouse

    Spencer, R.J.; Eugster, H.P.; Jones, B.F.; Rettig, S.L.

    1985-01-01

    The hydrochemistry of Great Salt Lake, Utah, has been defined for the historic period, 1850 through 1982, from published data combined with new observations. The water balance depends largely on river inflow, atmospheric precipitation onto the lake surface and evaporation. Input of the major solutes can best be accounted for by mixing dilute calcium-bicarbonate type river waters with NaCl-dominated hydrothermal springs. Prior to 1930, lake concentrations fluctuated inversely with lake volume in response to small climatic variations. Since then, salt precipitation and dissolution have significantly modified lake brine compositions and have led to density stratification and the formation of brine pockets of differing composition. Brine mixing has become an important component of brine evolution. We have used calculated evaporation curves with mineral precipitation and dissolution to clarify these processes. Pore fluids represent important storage for solutes. Solute profiles can be modeled by simple one-dimensional diffusion calculations. Short-term historic variations in lake composition affect shallow pore fluids in the upper 2 metres of sediment. ?? 1985.

  2. The Great Lakes fisheries: A review of the report of the International Board of Inquiry for the Great Lakes Fisheries

    USGS Publications Warehouse

    Van Oosten, John

    1942-01-01

    In August, 1942, the International Board of Inquiry for the Great Lakes Fisheries submitted its report to the governments of the United States and States and Canada. The report, which culminated a two-year investigation, recommended a common or joint agency of control for the fisheries through an international treaty.

  3. Saline lakes of the glaciated Northern Great Plains

    USGS Publications Warehouse

    Mushet, David M.

    2011-01-01

    Unless you have flown over the region or seen aerial photographs, it is hard to grasp the scale of the millions of lakes and wetlands that dot the prairie landscape of the glaciated Northern Great Plains (Figure 1). This region of abundant aquatic habitats within a grassland matrix provides for the needs of a wide diversity of wildlife species and has appropriately been deemed the "duck factory of North America." While the sheer number of lakes and wetlands within this area of the Northern Great Plains can be truly awe-inspiring, their diversity in terms of the chemical composition of their water adds an equally important component supporting biotic diversity and productivity. Water within these lakes and wetlands can range from extremely fresh with salinities approaching that of rainwater to hypersaline with salinity ten times greater than that of seawater. Additionally, while variation in salinity among these water bodies can be great, the ionic composition of lakes and wetlands with similar salinities can vary markedly, influencing the overall spatial and temporal diversity of the region's biota.

  4. Genetic assessment of strain-specific sources of lake trout recruitment in the Great Lakes

    USGS Publications Warehouse

    Page, Kevin S.; Scribner, Kim T.; Bennett, Kristine R.; Garzel, Laura M.; Burnham-Curtis, Mary K.

    2003-01-01

    Populations of wild lake trout Salvelinus namaycush have been extirpated from nearly all their historical habitats across the Great Lakes. Efforts to restore self-sustaining lake trout populations in U.S. waters have emphasized the stocking of coded-wire-tagged juveniles from six hatchery strains (Seneca Lake, Lewis Lake, Green Lake, Apostle Islands, Isle Royale, and Marquette) into vacant habitats. Strain-specific stocking success has historically been based on estimates of the survival and catch rates of coded-wire-tagged adults returning to spawning sites. However, traditional marking methods and estimates of relative strain abundance provide no means of assessing strain fitness (i.e., the realized contributions to natural recruitment) except by assuming that young-of-the-year production is proportional to adult spawner abundance. We used microsatellite genetic data collected from six hatchery strains with likelihood-based individual assignment tests (IA) and mixed-stock analysis (MSA) to identify the strain composition of young of the year recruited each year. We show that strain classifications based on IA and MSA were concordant and that the accuracy of both methods varied based on strain composition. Analyses of young-of-the-year lake trout samples from Little Traverse Bay (Lake Michigan) and Six Fathom Bank (Lake Huron) revealed that strain contributions differed significantly from estimates of the strain composition of adults returning to spawning reefs. The Seneca Lake strain contributed the majority of juveniles produced on Six Fathom Bank and more young of the year than expected within Little Traverse Bay. Microsatellite markers provided a method for accurately classifying the lake trout hatchery strains used for restoration efforts in the Great Lakes and for assessment of strain-specific reproductive success.

  5. Characterization and comparison of phytoplankton in selected lakes of five Great Lakes area national parks

    USGS Publications Warehouse

    Nevers, Meredith Becker; Whitman, Richard L.

    2004-01-01

    Phytoplankton species have been widely used as indicators of lake conditions, and they may be useful for detecting changes in overall lake condition. In an attempt to inventory and monitor its natural resources, the National Park Service wants to establish a monitoring program for aquatic resources in the Great Lakes Cluster National Parks. This study sought to establish baseline information on the phytoplankton and water chemistry of selected lakes in five national parks in a preliminary effort toward establishing a long-term monitoring program. Phytoplankton and water chemistry samples were collected from ten lakes in five national parks over a two-year period. A total of 176 taxa were identified during the study. Northern lakes generally had higher Shannon-Wiener diversity and clustered together in similarity. Lakes exhibited a south to north gradient of many water chemistry variables, with northern lakes having lower hardness, sulfate, turbidity, and temperature and higher dissolved oxygen. Chloride and sulfate concentrations were the variables that best explained variation among phytoplankton in the ten lakes. A monitoring plan will have to incorporate the differences among lakes, but by coordinating the effort, comparisons within and among parks and other regions will prove useful for determining environmental change.

  6. Changes in the dreissenid community in the lower Great Lakes with emphasis on southern Lake Ontario

    USGS Publications Warehouse

    Mills, Edward L.; Chrisman, Jana R.; Baldwin, Brad; Owens, Randall W.; O'Gorman, Robert; Howell, Todd; Roseman, Edward F.; Raths, Melinda K.

    1999-01-01

    A field study was conducted in the lower Great Lakes to assess changes in spatial distribution and population structure of dreissenid mussel populations. More specifically, the westward range expansion of quagga mussel into western Lake Erie and toward Lake Huron was investigated and the shell size, density, and biomass of zebra and quagga mussel with depth in southern Lake Ontario in 1992 and 1995 were compared. In Lake Erie, quagga mussel dominated the dreissenid community in the eastern basin and zebra mussel dominated in the western basin. In southern Lake Ontario, an east to west gradient was observed with the quagga mussel dominant at western sites and zebra mussel dominant at eastern locations. Mean shell size of quagga mussel was generally larger than that of zebra mussel except in western Lake Erie and one site in eastern Lake Erie. Although mean shell size and our index of numbers and biomass of both dreissenid species increased sharply in southern Lake Ontario between 1992 and 1995, the increase in density and biomass was much greater for quagga mussels over the 3-year period. In 1995, zebra mussels were most abundant at 15 to 25 m whereas the highest numbers and biomass of quagga mussel were at 35 to 45 m. The quagga mussel is now the most abundant dreissenid in areas of southern Lake Ontario where the zebra mussel was once the most abundant dreissenid; this trend parallels that observed for dreissenid populations in the Dneiper River basin in the Ukraine.

  7. Dynamic Heights in the Great Lakes using OPUS Projects

    NASA Astrophysics Data System (ADS)

    Roman, D. R.; Li, X.

    2015-12-01

    The U.S. will be implementing new geometric and vertical reference frames in 2022 to replace the North American Datum of 1983 (NAD 83) and the North American Vertical Datum of 1988 (NAVD 88), respectively. Less emphasized is the fact that a new dynamic height datum will also be defined about the same time to replace the International Great Lakes Datum of 1985 (IGLD 85). IGLD 85 was defined concurrent with NAVD 88 and used the same geopotential values. This paper focuses on the use of an existing tool for determining geometric coordinates and a developing geopotential model as a means of determining dynamic heights. The Online Positioning User Service (OPUS) Projects (OP) is an online tool available from the National Geodetic Survey (NGS) for use in developing geometric coordinates from simultaneous observations at multiple sites during multiple occupations. With observations performed at the water level gauges throughout the Great Lakes, the geometric coordinates of the mean water level surface can be determined. NGS has also developed the xGEOID15B model from satellite, airborne and surface gravity data. Using the input geometric coordinates determined through OP, the geopotential values for the water surface at the water level stations around the Great Lakes were determined using the xGEOID15B model. Comparisons were made between water level sites for each Lake as well as to existing IGLD 85 heights. A principal advantage to this approach is the ability to generate new water level control stations using OP, while maintaining the consistency between orthometric and dynamic heights by using the same gravity field model. Such a process may provide a means for determining dynamic heights for a future Great Lakes Datum.

  8. HISTORICAL SNOW AMOUNTS IN THE LAKE EFFECT REGION OF LAKE SUPERIOR: EVIDENCE OF CLIMATE CHANGE IN THE GREAT LAKES

    EPA Science Inventory

    Recent studies (Levitus et al., .2000) suggest a warming of the world ocean over the past 50 years. This could be occurring in the Great Lakes also but thermal measurements are lacking. Historical trends in natural phenomena, such as the duration of ice cover on lakes, provide in...

  9. Simulation of Heavy Lake-Effect Snowstorms across the Great Lakes Basin by RegCM4

    NASA Astrophysics Data System (ADS)

    Notaro, M.; Zarrin, A.; Vavrus, S. J.; Bennington, V.

    2013-12-01

    A historical simulation (1976-2002) of the Abdus Salam International Centre for Theoretical Physics Regional Climate Model Version 4 (ICTP RegCM4), coupled to a one-dimensional lake model, is validated against observed lake ice cover and snowfall across the Great Lakes Basin. The model reproduces the broad temporal and spatial features of both variables in terms of spatial distribution, seasonal cycle, and interannual variability, including climatological characteristics of lake-effect snowfall, although the simulated ice cover is overly extensive largely due to the absence of lake circulations. A definition is introduced for identifying heavy lake-effect snowstorms in regional climate model output for all grid cells in the Great Lakes Basin, using criteria based on location, wind direction, lake ice cover, and snowfall. Simulated heavy lake-effect snowstorms occur most frequently downwind of the Great Lakes, particularly to the east of Lake Ontario and to the east and south of Lake Superior, and are most frequent in December-January. The mechanism for these events is attributed to an anticyclone over the central United States and related cold air outbreak for areas downwind of Lakes Ontario and Erie, in contrast to a nearby cyclone over the Great Lakes Basin and associated cold front for areas downwind of Lakes Superior, Huron, and Michigan. Projections of mid- and late-21st century lake-effect snowstorms in the Great Lakes Basin will be summarized, based on dynamically downscaled CMIP5 (Coupled Model Intercomparison Project Phase Five) simulations.

  10. The Younger Dryas phase of Great Salt Lake, Utah, USA

    USGS Publications Warehouse

    Oviatt, Charles G.; Miller, D.M.; McGeehin, J.P.; Zachary, C.; Mahan, S.

    2005-01-01

    Field investigations at the Public Shooting Grounds (a wildlife-management area on the northeastern shore of Great Salt Lake) and radiocarbon dating show that the Great Salt Lake rose to the Gilbert shoreline sometime between 12.9 and 11.2 cal ka. We interpret a ripple-laminated sand unit exposed at the Public Shooting Grounds, and dated to this time interval, as the nearshore sediments of Great Salt Lake deposited during the formation of the Gilbert shoreline. The ripple-laminated sand is overlain by channel-fill deposits that overlap in age (11.9-11.2 cal ka) with the sand, and by wetland deposits (11.1 to 10.5 cal ka). Consistent accelerator mass spectrometry radiocarbon ages were obtained from samples of plant fragments, including those of emergent aquatic plants, but mollusk shells from spring and marsh deposits yielded anomalously old ages, probably because of a variable radiocarbon reservoir effect. The Bonneville basin was effectively wet during at least part of the Younger Dryas global-cooling interval, however, conflicting results from some Great Basin locations and proxy records indicate that the regional effects of Younger Dryas cooling are still not well understood. ?? 2005 Elsevier B.V. All rights reserved.

  11. The Great Lakes Runoff Intercomparison Project (GRIP): Phase II, Lake Ontario

    NASA Astrophysics Data System (ADS)

    Gronewold, A.; Tolson, B.; Gaborit, E.; Fortin, V.; Fry, L. M.; Hunter, T.

    2015-12-01

    The Great Lakes runoff intercomparison project (GRIP) was established to assess a suite of models used primarily for simulating and forecasting flows from all of the major tributaries within the Great Lakes basin. These models are somewhat unique, in part because they were developed to overcome challenges of assimilating data across an international border, and in part because they are often an integral component of regional water budget models that also include simulations of over-lake precipitation and over-lake evaporation (both of which are, on annual time scales, of the same magnitude as runoff). Here, we present the next step in the evolution of GRIP (following GRIP-M, the first phase of the project that focused on Lake Michigan) with a comparison between different hydrological models (including GR4J and the NOAA large basin runoff model) and different regional precipitation data sources across the Lake Ontario basin. Results of our analysis provide insights that underscore the importance of the spatial and temporal resolution of a model domain and its forcings, along with their connections to model skill and selected objective criteria. Perhaps more importantly, our results are expected to assist in the advancement of regional hydrological models not only for improved forecasts of the Great Lakes water cycle, but in other large international freshwater basins as well.

  12. Lake-level variability and water availability in the Great Lakes

    USGS Publications Warehouse

    Wilcox, Douglas A.; Thompson, Todd A.; Booth, Robert K.; Nicholas, J.R.

    2007-01-01

    In this report, we present recorded and reconstructed (pre-historical) changes in water levels in the Great Lakes, relate them to climate changes of the past, and highlight major water-availability implications for storage, coastal ecosystems, and human activities. 'Water availability,' as conceptualized herein, includes a recognition that water must be available for human and natural uses, but the balancing of how much should be set aside for which use is not discussed. The Great Lakes Basin covers a large area of North America. The lakes capture and store great volumes of water that are critical in maintaining human activities and natural ecosystems. Water enters the lakes mostly in the form of precipitation and streamflow. Although flow through the connecting channels is a primary output from the lakes, evaporation is also a major output. Water levels in the lakes vary naturally on timescales that range from hours to millennia; storage of water in the lakes changes at the seasonal to millennial scales in response to lake-level changes. Short-term changes result from storm surges and seiches and do not affect storage. Seasonal changes are driven by differences in net basin supply during the year related to snowmelt, precipitation, and evaporation. Annual to millennial changes are driven by subtle to major climatic changes affecting both precipitation (and resulting streamflow) and evaporation. Rebounding of the Earth's surface in response to loss of the weight of melted glaciers has differentially affected water levels. Rebound rates have not been uniform across the basin, causing the hydrologic outlet of each lake to rise in elevation more rapidly than some parts of the coastlines. The result is a long-term change in lake level with respect to shoreline features that differs from site to site. The reconstructed water-level history of Lake Michigan-Huron over the past 4,700 years shows three major high phases from 2,300 to 3,300, 1,100 to 2,000, and 0 to 800

  13. Hydrogeomorphic and Anthropogenic Influences on Water Quality, Habitat, and Fish of Great Lakes Coastal Wetlands

    EPA Science Inventory

    Great Lakes coastal wetlands represent a dynamic interface between coastal watersheds and the open lake. Compared to the adjacent lakes, these wetlands have generally warmer water, reduced wave energy, shallow bathymetry, higher productivity, and structurally complex vegetated h...

  14. Concentrations of trace elements in Great Lakes fishes

    USGS Publications Warehouse

    Lucas, Henry F.; Edgington, David N.; Colby, Peter J.

    1970-01-01

    The concentration of 15 trace elements was determined by activation analysis of samples of whole fish and fish livers from three of the Great Lakes: Michigan, Superior, and Erie. The average concentrations of 7 elements in 19 whole fish from 3 species were as follows: uranium, 3 ppb (parts per billion); thorium, 6 ppb; cobalt, 28 ppb; cadmium, 94 ppb; arsenic, 16 ppb; chromium, 1 ppm; and copper, 1.3 ppm. The average concentrations of 8 elements in 40 liver samples from 10 species of fish were as follows: uranium, ~ 2 ppb; thorium, a?? 2 ppb; cobalt, 40 ppb; copper, 9 ppm; zinc, 30 ppm; bromine, 0.4 ppm; arsenic, 30 ppb; and cadmium, 0.4 ppm. Other elements observed in most of the samples were: antimony, 5-100 ppb; gold, 2-5 ppb; lanthanum, 1-20 ppb; rhenium, 0.5-5 ppb; rubidium, 0.06-4 ppm; and selenium, 0.1-2 ppb. Trace element concentrations varied with species and lake. Uranium and thorium varied with species, but not for the same species from different lakes. The levels of copper, cobalt, zinc, and bromine varied little between species and lakes. The concentration of cadmium, arsenic, and chromium varied between species and with species between lakes.

  15. Wind energy resource atlas. Volume 3. Great Lakes Region

    SciTech Connect

    Paton, D.L.; Bass, A.; Smith, D.G.; Elliott, D.L.; Barchet, W.R.; George, R.L.

    1981-02-01

    The Great Lakes Region atlas assimilates six collections of wind resource data, one for the region and one for each of the five states that compose the Great Lakes region: Illinois, Indiana, Michigan, Ohio, Wisconsin. At the state level, features of the climate, topography, and wind resource are discussed in greater detail than in the regional discussion and the data locations on which the assessment is based are mapped. Variations over several time scales in the wind resource at selected stations in each state are shown on graphs of monthly average and interannual wind speed and power, and of hourly average wind speed for each season. Other graphs present speed, direction, and duration frequencies of the wind at these locations.

  16. Growth and potential yield of perch (Perca spp.) in selected areas of Lake Baikal and the Laurentian Great Lakes

    USGS Publications Warehouse

    O'Gorman, Robert; Bronte, Charles R.; Hatcher, Charles O.; Pronin, Nikolai M.; Sokolnikov, Yury

    1998-01-01

    We compared growth, mortality, and potential yield of Eurasian perch (Perca fluviatilis) from Chivirkui Bay in Lake Baikal with that of yellow perch (P. flavescens) from three areas of the Laurentian Great Lakes --Chequamegon Bay in Lake Superior, northeastern Lake Ontario, and southwestern Lake Erie. Graded mesh gill nets were fished in August to sample perch in lakes Baikal (1993), Ontario (1985-93), and Erie (1994). Bottom trawls were fished in July-August to sample perch in Lake Superior (1973-93). Adult yellow perch from the Laurentian Great Lakes were heavier at most lengths than adult Eurasian perch from Lake Baikal. The increase in body weight per unit increase in length was greatest in Lake Erie. Total annual mortality of perch was low in Lake Baikal (0.31), intermediate in lakes Superior (0.41) and Ontario (0.54), and high in Lake Erie (0.66). Annual fishing mortality (u) for perch in Lake Baikal was 60%-70% lower than that for perch in the Great Lakes. At ages 1-3, perch in Lake Erie were longer than those in lakes Baikal, Superior, and Ontario but at ages 4-9 perch in Lake Baikal were longer than those in the other lakes. Although Eurasian perch in Lake Baikal were longer at age 4 and older, growth in length, as measured by the Brody growth coefficient, K, was lower there than in the other lakes and was similar to that in Lake Superior; yellow perch in Lake Erie grew the fastest. Yield-per-recruit was lowest in Lake Erie and highest in Lake Superior. Potential yield was influenced by growth rates and fishing mortality.

  17. Great Lakes all-weather ice information system

    NASA Technical Reports Server (NTRS)

    Schertler, R. J.; Mueller, R. A.; Jirberg, R. J.; Cooper, D. W.; Heighway, J. E.; Holmes, A. D.; Gedney, R. T.; Mark, H.

    1975-01-01

    A system is described which utilizes an X-band Side-Looking-Airborne-Radar (SLAR) for determining type, location, and aerial distribution of the ice cover in the Great Lakes and an airborne, S-band, short pulse radar for obtaining ice thickness. The SLAR system is currently mounted aboard a U.S. Coast Guard C-130B aircraft. Digitized SLAR data are relayed in real-time via the NOAA-GOES-1 satellite in geosynchronous orbit to the U.S. Coast Guard Ice Center in Cleveland, Ohio. SLAR images along with hand-drawn interpretative ice charts for various winter shipping areas in the Great Lakes are broadcast to facsimile recorders aboard Great Lakes vessels. The operational aspects of this ice information system are being demonstrated by NASA, U.S. Coast Guard, and NOAA/National Weather Service. Results from the 1974-75 winter season demonstrated the ability of this system to provide all-weather ice information to shippers in a timely manner.

  18. Dermal exposure to environmental contaminants in the Great Lakes.

    PubMed Central

    Moody, R P; Chu, I

    1995-01-01

    This paper reviews the literature to determine the importance of the dermal route of exposure for swimmers and bathers using Great Lakes waters and summarizes the chemical water contaminants of concern in the Great Lakes along with relevant dermal absorption data. We detail in vivo and in vitro methods of quantifying the degree of dermal absorption and discuss a preference for infinite dose data as opposed to finite dose data. The basic mechanisms of the dermal absorption process, routes of chemical entry, and the environmental and physiological factors affecting this process are also reviewed, and we discuss the concepts of surface slick exposure to lipophilic compounds and the adsorption of contaminants to water sediment. After presenting mathematical constructs for calculating the degree of exposure, we present in vitro data concerning skin absorption of polyaromatic hydrocarbons adsorbed to Great Lakes water sediment to show that in a worst-case scenario exposure via the dermal route can be equally important to the oral route. We have concluded that prolonged exposure of the skin, especially under conditions that may enhance dermal absorption (e.g., sunburn) may result in toxicologically significant amounts of certain water contaminants being absorbed. It is recommended that swimming should be confined to public beaches, people should refrain from swimming if they are sunburned, and skin should be washed with soap as soon as possible following exposure. Future studies should be conducted to investigate the importance of the dermal exposure route to swimmers and bathers. PMID:8635434

  19. Meeting future information needs for Great Lakes fisheries management

    USGS Publications Warehouse

    Christie, W.J.; Collins, John J.; Eck, Gary W.; Goddard, Chris I.; Hoenig, John M.; Holey, Mark; Jacobson, Lawrence D.; MacCallum, Wayne; Nepszy, Stephen J.; O'Gorman, Robert; Selgeby, James

    1987-01-01

    Description of information needs for management of Great Lakes fisheries is complicated by recent changes in biology and management of the Great Lakes, development of new analytical methodologies, and a transition in management from a traditional unispecies approach to a multispecies/community approach. A number of general problems with the collection and management of data and information for fisheries management need to be addressed (i.e. spatial resolution, reliability, computerization and accessibility of data, design of sampling programs, standardization and coordination among agencies, and the need for periodic review of procedures). Problems with existing data collection programs include size selectivity and temporal trends in the efficiency of fishing gear, inadequate creel survey programs, bias in age estimation, lack of detailed sea lamprey (Petromyzon marinus) wounding data, and data requirements for analytical techniques that are underutilized by managers of Great Lakes fisheries. The transition to multispecies and community approaches to fisheries management will require policy decisions by the management agencies, adequate funding, and a commitment to develop programs for collection of appropriate data on a long-term basis.

  20. Great Lakes historical commercial fisheries and climate change

    SciTech Connect

    Weaver, M.J.; Magnuson, J.J.; McLain, A.S.

    1995-06-01

    To identify potential climatic forces in the Great Lakes fish community, we related patterns in the historical fisheries to changes in temperature, water level, and ice cover. The Great Lakes commercial fisheries record is one of the longest biological records, extending back to 1914, or as early as 1867 for some species. We analyzed historical changes in fish community structure based on commercial catches for each of the five Great Lakes. Our approach has been to choose climatic factors which affect fish spawning, growth and survival rates, based on the life history and behaviors of the fishes, to locate shifts in the long-term mean of these climatic factors, and to relate these shifts to changes in the fisheries using time series analyses. Analyses were for single species, thermal guilds, and communities. These climatic shifts may partially explain the dynamics in the composition of the fisheries, such as the timing of changes in dominance or the decline of a thermal guild. The synchrony of a climatic shift with another event, such as an increase in winter temperature with the invasion of an exotic fish, provided evidence that the event may have been facilitated by the climatic shift.

  1. 46 CFR 30.01-7 - Ocean or unlimited coastwise vessels on inland and Great Lakes Routes-TB/OC.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 1 2010-10-01 2010-10-01 false Ocean or unlimited coastwise vessels on inland and Great... VESSELS GENERAL PROVISIONS Administration § 30.01-7 Ocean or unlimited coastwise vessels on inland and Great Lakes Routes—TB/OC. (a) Vessels inspected and certificated for ocean or unlimited coastwise...

  2. 46 CFR 30.01-7 - Ocean or unlimited coastwise vessels on inland and Great Lakes Routes-TB/OC.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 1 2011-10-01 2011-10-01 false Ocean or unlimited coastwise vessels on inland and Great... VESSELS GENERAL PROVISIONS Administration § 30.01-7 Ocean or unlimited coastwise vessels on inland and Great Lakes Routes—TB/OC. (a) Vessels inspected and certificated for ocean or unlimited coastwise...

  3. 46 CFR 30.01-7 - Ocean or unlimited coastwise vessels on inland and Great Lakes Routes-TB/OC.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 1 2012-10-01 2012-10-01 false Ocean or unlimited coastwise vessels on inland and Great... VESSELS GENERAL PROVISIONS Administration § 30.01-7 Ocean or unlimited coastwise vessels on inland and Great Lakes Routes—TB/OC. (a) Vessels inspected and certificated for ocean or unlimited coastwise...

  4. 46 CFR 30.01-7 - Ocean or unlimited coastwise vessels on inland and Great Lakes Routes-TB/OC.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 1 2014-10-01 2014-10-01 false Ocean or unlimited coastwise vessels on inland and Great... VESSELS GENERAL PROVISIONS Administration § 30.01-7 Ocean or unlimited coastwise vessels on inland and Great Lakes Routes—TB/OC. (a) Vessels inspected and certificated for ocean or unlimited coastwise...

  5. Profiles of Great Lakes critical pollutants: a sentinel analysis of human blood and urine. The Great Lakes Consortium.

    PubMed Central

    Anderson, H A; Falk, C; Hanrahan, L; Olson, J; Burse, V W; Needham, L; Paschal, D; Patterson, D; Hill, R H

    1998-01-01

    To determine the contaminants that should be studied further in the subsequent population-based study, a profile of Great Lakes (GL) sport fish contaminant residues were studied in human blood and urine specimens from 32 sport fish consumers from three Great Lakes: Lake Michigan (n = 10), Lake Huron (n = 11), and Lake Erie (n = 11). Serum was analyzed for 8 polychlorinated dioxin congeners, 10 polychlorinated furan congeners, 4 coplanar and 32 other polychlorinated biphenyl (PCB) congeners, and 11 persistent chlorinated pesticides. Whole blood was analyzed for mercury and lead. Urine samples were analyzed for 10 nonpersistent pesticides (or their metabolites) and 5 metals. One individual was excluded from statistical analysis because of an unusual exposure to selected analytes. Overall, the sample (n = 31) consumed, on average, 49 GL sport fish meals per year for a mean of 33 years. On average, the general population in the GL basin consume 6 meals of GL sport fish per year. The mean tissue levels of most persistent, bioaccumulative compounds also found in GL sport fish ranged from less than a twofold increase to that of PCB 126, which was eight times the selected background levels found in the general population. The overall mean total toxic equivalent for dioxins, furans, and coplanar PCBs were greater than selected background levels in the general population (dioxins, 1.8 times; furans, 2.4 times; and coplanar PCBs, 9.6 times). The nonpersistent pesticides and most metals were not identified in unusual concentrations. A contaminant pattern among lake subgroups was evident. Lake Erie sport fish consumers had consistently lower contaminant concentrations than consumers of sport fish from Lake Michigan and Huron. These interlake differences are consistent with contaminant patterns seen in sport fish tissue from the respective lakes; GL sport fish consumption was the most likely explanation for observed contaminant levels among this sample. Frequent consumers of

  6. Educators' Guide to Great Lakes Materials: Books, Films, Maps and Pamphlets for Classroom Use.

    ERIC Educational Resources Information Center

    Johnson, Pam

    This annotated bibliography presents Great Lakes information for grades six through nine classroom use. It is meant to facilitate and encourage Great Lakes study, particularly of Lakes Michigan and Superior. Material is presented on history, science, lake management, environmental concerns, and recreational use. Included are both fiction and…

  7. Early observations on an emerging Great Lakes invader Hemimysis anomala in Lake Ontario

    USGS Publications Warehouse

    Walsh, Maureen G.; Lantry, Brian F.; Boscarino, Brent; Bowen, Kelly; Gerlofsma, Jocelyn; Schaner, Ted; Back, Richard; Questel, Jennifer; Smythe, A. Garry; Cap, Roberta; Goehle, Michael; Young, Bryan; Chalupnicki, Marc A.; Johnson, James H.; McKenna, James E.

    2010-01-01

    Hemimysis anomala, a Ponto-Caspian littoral mysid, is an emerging Great Lakes invader that was discovered in Lakes Michigan and Ontario in 2006. Similar to the native mysid Mysis diluviana, Hemimysis exhibits a diel vertical migration pattern but generally inhabits shallower and warmer waters than M. diluviana. Because basic information on the distribution, habitat use, and biology of Hemimysis in the Great Lakes is scarce, the potential for food web disruption by Hemimysis cannot easily be predicted. Preliminary observations indicate widespread invasion of Hemimysis in Lake Ontario. In this study, we confirm the presence of Hemimysis at sites spanning the northern and southern shores of Lake Ontario and the presence of the individuals during winter months. In one horizontal tow in November 2007, over 26,000 individuals were collected with a length range of 4.4 to 9.0. mm and an average caloric density of 611. cal/g wet weight. The most effective methods for sampling Hemimysis were horizontal tows with either a zooplankton net in the water column or a benthic sled near the lake bottom. Although more quantitative data on the life history and distribution of this species is necessary, our preliminary observations support the prediction that the potential for Hemimysis to impact the nearshore food web in Lake Ontario appears high.

  8. REDUCING EXPOSURE UNCERTAINTY FOR ASSESSMENT OF DIOXIN TOXICITY RISKS TO LAKE TROUT POPULATIONS IN THE GREAT LAKES

    EPA Science Inventory

    During the 20th century, declines of lake trout (Salvelinus namaycush) populations to virtual extinction in all the Great Lakes except Lake Superior were followed by failure of stocked lake trout to achieve recruitment through natural reproduction. Stresses such as excessive harv...

  9. Contaminant trends in lake trout and walleye from the Laurentian Great Lakes

    USGS Publications Warehouse

    DeVault, David S.; Hesselberg, Robert J.; Rodgers, Paul W.; Feist, Timothy J.

    1996-01-01

    Trends in PCBs, DDT, and other contaminants have been monitored in Great Lakes lake trout and walleye since the 1970s using composite samples of whole fish. Dramatic declines have been observed in concentrations of PCB, ΣDDT, dieldrin, and oxychlordane, with declines initially following first order loss kinetics. Mean PCB concentrations in Lake Michigan lake trout increased from 13 μg/g in 1972 to 23 μg/g in 1974, then declined to 2.6 μg/g by 1986. Between 1986 and 1992 there was little change in concentration, with 3.5 μg/g observed in 1992. ΣDDT in Lake Michigan trout followed a similar trend, decreasing from 19.2 μg/g in 1970 to 1.1 μg/g in 1986, and 1.2 μg/g in 1992. Similar trends were observed for PCBs and ΣDDT in lake trout from Lakes Superior, Huron and Ontario. Concentrations of both PCB and ΣDDT in Lake Erie walleye declined between 1977 and 1982, after which concentrations were relatively constant through 1990. When originally implemented it was assumed that trends in the mean contaminant concentrations in open-lake fish would serve as cost effective surrogates to trends in the water column. While water column data are still extremely limited it appears that for PCBs in lakes Michigan and Superior, trends in lake trout do reasonably mimic those in the water column over the long term. Hypotheses to explain the trends in contaminant concentrations are briefly reviewed. The original first order loss kinetics used to describe the initial decline do not explain the more recent leveling off of contaminant concentrations. Recent theories have examined the possibilities of multiple contaminant pools. We suggest another hypothesis, that changes in the food web may have resulted in increased bioaccumulation. However, a preliminary exploration of this hypothesis using a change point analysis was inconclusive.

  10. Physicochemical Characterization of Lake Spray Aerosol Generated from Great Lakes Water Samples

    NASA Astrophysics Data System (ADS)

    Ault, A. P.; Axson, J. L.; May, N.; Pratt, K.

    2014-12-01

    Wave breaking across bodies of water releases particles into the air which can impact climate and human health. Similar to sea spray aerosols formed through marine wave breaking, freshwater lakes generate lake spray aerosol (LSA). LSA can impact climate directly through scattering/absorption and indirectly through cloud nucleation. In addition, these LSA are suggested to impact human health through inhalation of these particles during algal bloom periods characterized by toxic cyanobacteria. Few studies have been conducted to assess the physical and chemical properties of freshwater LSA. Herein, we discuss constructing a LSA generation system and preliminary physical and chemical characterization of aerosol generated from water samples collected at various sites across Lake Erie, Lake Huron, Lake Superior, and Lake Michigan. Information on aerosol size distributions, number concentrations, and chemical composition will be discussed as a function of lake water blue-green algae concentration, dissolved organic carbon concentration, temperature, conductivity, and dissolved oxygen concentration. These studies represent a first step towards evaluating the potential for LSA to impact climate and health in the Great Lakes region.

  11. Lake whitefish and Diporeia spp. in the Great lakes: an overview

    USGS Publications Warehouse

    Nalepa, Thomas F.; Mohr, Lloyd C.; Henderson, Bryan A.; Madenjian, Charles P.; Schneeberger, Philip J.

    2005-01-01

    Because of growing concern in the Great Lakes over declines in abundance and growth of lake whitefish (Coregonus clupeaformis) and declines in abundance of the benthic amphipod Diporeia spp., a workshop was held to examine past and current trends, to explore trophic links, and to discuss the latest research results and needs. The workshop was divided into sessions on the status of populations in each of the lakes, bioenergetics and trophic dynamics, and exploitation and management. Abundance, growth, and condition of whitefish populations in Lakes Superior and Erie are stable and within the range of historical means, but these variables are declining in Lakes Michigan and Ontario and parts of Lake Huron. The loss of Diporeia spp., a major food item of whitefish, has been a factor in observed declines, particularly in Lake Ontario, but density-dependent factors also likely played a role in Lakes Michigan and Huron. The loss of Diporeia spp. is temporally linked to the introduction and proliferation of dreissenid mussels, but a direct cause for the negative response of Diporeia spp. has not been established. Given changes in whitefish populations, age-structured models need to be re-evaluated. Other whitefish research needs to include a better understanding of what environmental conditions lead to strong year-classes, improved aging techniques, and better information on individual population (stock) structure. Further collaborations between assessment biologists and researchers studying the lower food web would enhance an understanding of links between trophic levels.

  12. The role of the Bureau of Sport Fisheries and Wildlife in the Great Lakes

    USGS Publications Warehouse

    Hester, F. Eugene

    1973-01-01

    Ecological blunders of man, such as timber exploitation, draining of wetlands, construction of canals and dams, and pollution have been mainly responsible for serious environmental degradation and catastrophic losses of fish and wildlife values in the Great Lakes Basin. Consequently, the major emphasis of the Bureau of Sport Fisheries and Wildlife must be on the protection and enhancement of the Great Lakes habitat -- primarily as a single large ecosystem, rather than as a number of political units separated by ecologically meaningless boundaries. By authority of Congress, the Bureau has long been concerned in the Great Lakes region with such diverse activities as establishing refuges for migratory waterfowl, conducting fishery research, evaluating the effects of federally sponsored water resource development projects on fish and wildlife, rearing and stocking of game fish, and assisting the states in fish and wildlife management by giving technical advice and financial assistance. Thus, the Bureau shares a strong common interest with other federal administrative units, as well as with state, interstate, and international agencies, in protecting, enhancing, and ensuring the wise use of fish and wildlife in the Great Lakes Basin.

  13. Microbial mat mineralization in Great Salt Lake (Utah, USA)

    NASA Astrophysics Data System (ADS)

    PACE, Aurélie; Bouton, Anthony; Bourillot, Raphaël; Vennin, Emmanuelle; Visscher, Pieter; Dupraz, Christophe; Thomazo, Christophe; Serge, Galaup; Sophie, Leleu; Anna, Kwasniewski; Léa, Pigot; Michel, Franceschi

    2015-04-01

    Great Salt Lake is located in the Basin and Range province of Utah (USA). Its average surface is 4480 Km2 and its maximum depth is of about 15m. It is a partly rainfed endorheic hypersaline lake (average salinity: 140g/L). Due to the high salinity, little or no grazing organisms are present, favoring the development of microbialites that cover the margin of the lake. This work aims to understand the products and processes of mineralization in recent and modern microbialites on the western margin of Antelope Island. The distribution of microbialites and their morphology has been studied along lakeshore to center transects, showing a contrasting spatial distribution in bay versus headland. Fossil microbialites show a great diversity of macro- and microfabrics, some microbialites being essentially built by microbial-mediated carbonate precipitation, while other show the predominance of trapping and binding processes. The nature and composition of the microbial carbonates have been determined through polarizing, cathodoluminescence, reflected fluorescence microscopy, X-Ray diffractometry and isotope geochemistry (δ 18O and δ13C) in order to investigate the preservation of environmental signals in microbialites. Petrophysics analysis such as permeability and porosimetry, have been done to observe the structure of the microbialite. Microprobe and silver foils method have been used respectively to characterize oxygen production and sulfate reduction in living microbial mats. Mineralization zones seem to coincide with sulfate reduction hotspots. This mineralization results in mixed clotted-laminated fabric at the macro- and microscale. Several analysis such as Cryo-SEM, environmental SEM and raman spectroscopy three phases of mineralization allowed us to distinguish three type of minerals inside the mat: (1) a Mg and Si-rich clay developing on the organic matrix; (2) an intracellular Al-rich clay. (3) aragonite clots replacing the organic matrixes and embedding bacteria

  14. Taking Teachers from the River to the Coast: a COSEE Great Lakes and Lake Superior NERR Collaboration

    EPA Science Inventory

    The Center for Ocean Sciences Education Excellence (COSEE) Great Lakes Shipboard and Shoreline Science Workshop provides 15 formal and informal educators of G5-10 an opportunity to spend a week aboard the US EPA’s 180’ R/V Lake Guardian working side-by-side with Great Lakes scien...

  15. 46 CFR 42.03-15 - The Great Lakes of North America.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false The Great Lakes of North America. 42.03-15 Section 42.03... VOYAGES BY SEA Application § 42.03-15 The Great Lakes of North America. (a) The term “Great Lakes of North... application to voyages on the Great Lakes or portions thereof unless specifically provided otherwise in...

  16. Selenium mass balance in the Great Salt Lake, Utah

    USGS Publications Warehouse

    Diaz, X.; Johnson, W.P.; Naftz, D.L.

    2009-01-01

    A mass balance for Se in the south arm of the Great Salt Lake was developed for September 2006 to August 2007 of monitoring for Se loads and removal flows. The combined removal flows (sedimentation and volatilization) totaled to a geometric mean value of 2079??kg Se/yr, with the estimated low value being 1255??kg Se/yr, and an estimated high value of 3143??kg Se/yr at the 68% confidence level. The total (particulates + dissolved) loads (via runoff) were about 1560??kg Se/yr, for which the error is expected to be ?? 15% for the measured loads. Comparison of volatilization to sedimentation flux demonstrates that volatilization rather than sedimentation is likely the major mechanism of selenium removal from the Great Salt Lake. The measured loss flows balance (within the range of uncertainties), and possibly surpass, the measured annual loads. Concentration histories were modeled using a simple mass balance, which indicated that no significant change in Se concentration was expected during the period of study. Surprisingly, the measured total Se concentration increased during the period of the study, indicating that the removal processes operate at their low estimated rates, and/or there are unmeasured selenium loads entering the lake. The selenium concentration trajectories were compared to those of other trace metals to assess the significance of selenium concentration trends. ?? 2008 Elsevier B.V.

  17. A review of differentiation in Great Lakes ciscoes

    USGS Publications Warehouse

    Todd, Thomas N.; Smith, Gerald R.

    1992-01-01

    Seven species of ciscoes (Coregonus, subgenus Leucichthys) were found in the Great Lakes as recently as the early 1950's. Variation within and among species of Great Lakes ciscoes indicates that much of the divergence occurred within lakes. Following postglacial colonization by perhaps two or three species, population differentiation began with homing and reproduction at different localities and times. Physiological interaction between temperature (depth) and maturation time, as well as behavioral tendencies to home to spawning grounds and mate with related individuals, are the basis of premating reproductive separation. Phenotypic differences between populations indicate that ecological character displacement has been an important mechanism in the divergence. Introgression has obscured morphological species boundaries at the same time as intralacustrine speciation has created local subgroups, providing an unresolvable conflict between species definitions based on morphological and other characters and definitions dominated by inferred reproductive isolation. Species should be considered as the smallest diagnosable units within a phylogenetic framework, in which diagnoses are strictly by derived characters. Ecological and seasonal species could be recognized by application of a trinomial, equivalent to the subspecies trinomial.

  18. Progress in understanding the importance of coastal wetland nursery habitat to Great Lakes fisheries support

    EPA Science Inventory

    Great Lakes coastal wetlands provide important habitat for Great Lakes fishes of all life stages. A literature review of ichthyoplankton surveys conducted in Great Lakes coastal wetlands found at least 82 species reported to be captured during the larval stage. Twenty of those sp...

  19. 46 CFR 195.07-5 - Ocean, coastwise, or Great Lakes service.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Ocean, coastwise, or Great Lakes service. 195.07-5 Section 195.07-5 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) OCEANOGRAPHIC RESEARCH... Ocean, coastwise, or Great Lakes service. (a) Vessels in ocean, coastwise, or Great Lakes service...

  20. 46 CFR 96.07-5 - Ocean, coastwise, or Great Lakes service.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 4 2012-10-01 2012-10-01 false Ocean, coastwise, or Great Lakes service. 96.07-5 Section 96.07-5 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CARGO AND MISCELLANEOUS... Ocean, coastwise, or Great Lakes service. (a) Vessels in ocean, coastwise, or Great Lakes...

  1. 46 CFR 77.07-5 - Ocean, coastwise, or Great Lakes service.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 3 2011-10-01 2011-10-01 false Ocean, coastwise, or Great Lakes service. 77.07-5... CONTROL AND MISCELLANEOUS SYSTEMS AND EQUIPMENT Anchors, Chains, and Hawsers § 77.07-5 Ocean, coastwise, or Great Lakes service. (a) Vessels in ocean, coastwise, or Great Lakes service shall be fitted...

  2. 46 CFR 195.07-5 - Ocean, coastwise, or Great Lakes service.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 7 2012-10-01 2012-10-01 false Ocean, coastwise, or Great Lakes service. 195.07-5 Section 195.07-5 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) OCEANOGRAPHIC RESEARCH... Ocean, coastwise, or Great Lakes service. (a) Vessels in ocean, coastwise, or Great Lakes service...

  3. 46 CFR 96.07-5 - Ocean, coastwise, or Great Lakes service.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 4 2011-10-01 2011-10-01 false Ocean, coastwise, or Great Lakes service. 96.07-5 Section 96.07-5 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CARGO AND MISCELLANEOUS... Ocean, coastwise, or Great Lakes service. (a) Vessels in ocean, coastwise, or Great Lakes...

  4. 46 CFR 77.07-5 - Ocean, coastwise, or Great Lakes service.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 3 2013-10-01 2013-10-01 false Ocean, coastwise, or Great Lakes service. 77.07-5... CONTROL AND MISCELLANEOUS SYSTEMS AND EQUIPMENT Anchors, Chains, and Hawsers § 77.07-5 Ocean, coastwise, or Great Lakes service. (a) Vessels in ocean, coastwise, or Great Lakes service shall be fitted...

  5. 46 CFR 77.07-5 - Ocean, coastwise, or Great Lakes service.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 3 2012-10-01 2012-10-01 false Ocean, coastwise, or Great Lakes service. 77.07-5... CONTROL AND MISCELLANEOUS SYSTEMS AND EQUIPMENT Anchors, Chains, and Hawsers § 77.07-5 Ocean, coastwise, or Great Lakes service. (a) Vessels in ocean, coastwise, or Great Lakes service shall be fitted...

  6. 46 CFR 96.07-5 - Ocean, coastwise, or Great Lakes service.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 4 2014-10-01 2014-10-01 false Ocean, coastwise, or Great Lakes service. 96.07-5 Section 96.07-5 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CARGO AND MISCELLANEOUS... Ocean, coastwise, or Great Lakes service. (a) Vessels in ocean, coastwise, or Great Lakes...

  7. 46 CFR 195.07-5 - Ocean, coastwise, or Great Lakes service.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 7 2014-10-01 2014-10-01 false Ocean, coastwise, or Great Lakes service. 195.07-5 Section 195.07-5 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) OCEANOGRAPHIC RESEARCH... Ocean, coastwise, or Great Lakes service. (a) Vessels in ocean, coastwise, or Great Lakes service...

  8. 46 CFR 195.07-5 - Ocean, coastwise, or Great Lakes service.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 7 2013-10-01 2013-10-01 false Ocean, coastwise, or Great Lakes service. 195.07-5 Section 195.07-5 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) OCEANOGRAPHIC RESEARCH... Ocean, coastwise, or Great Lakes service. (a) Vessels in ocean, coastwise, or Great Lakes service...

  9. 46 CFR 77.07-5 - Ocean, coastwise, or Great Lakes service.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 3 2010-10-01 2010-10-01 false Ocean, coastwise, or Great Lakes service. 77.07-5... CONTROL AND MISCELLANEOUS SYSTEMS AND EQUIPMENT Anchors, Chains, and Hawsers § 77.07-5 Ocean, coastwise, or Great Lakes service. (a) Vessels in ocean, coastwise, or Great Lakes service shall be fitted...

  10. 46 CFR 77.07-5 - Ocean, coastwise, or Great Lakes service.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 3 2014-10-01 2014-10-01 false Ocean, coastwise, or Great Lakes service. 77.07-5... CONTROL AND MISCELLANEOUS SYSTEMS AND EQUIPMENT Anchors, Chains, and Hawsers § 77.07-5 Ocean, coastwise, or Great Lakes service. (a) Vessels in ocean, coastwise, or Great Lakes service shall be fitted...

  11. 46 CFR 96.07-5 - Ocean, coastwise, or Great Lakes service.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Ocean, coastwise, or Great Lakes service. 96.07-5 Section 96.07-5 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CARGO AND MISCELLANEOUS... Ocean, coastwise, or Great Lakes service. (a) Vessels in ocean, coastwise, or Great Lakes...

  12. 46 CFR 195.07-5 - Ocean, coastwise, or Great Lakes service.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 7 2011-10-01 2011-10-01 false Ocean, coastwise, or Great Lakes service. 195.07-5 Section 195.07-5 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) OCEANOGRAPHIC RESEARCH... Ocean, coastwise, or Great Lakes service. (a) Vessels in ocean, coastwise, or Great Lakes service...

  13. 46 CFR 96.07-5 - Ocean, coastwise, or Great Lakes service.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 4 2013-10-01 2013-10-01 false Ocean, coastwise, or Great Lakes service. 96.07-5 Section 96.07-5 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CARGO AND MISCELLANEOUS... Ocean, coastwise, or Great Lakes service. (a) Vessels in ocean, coastwise, or Great Lakes...

  14. 78 FR 70941 - Notification of a Public Teleconference of the Great Lakes Advisory Board

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-27

    ... AGENCY Notification of a Public Teleconference of the Great Lakes Advisory Board AGENCY: Environmental... public teleconference of the Great Lakes Advisory Board (GLAB). The purpose of the teleconference is to conclude discussions that will inform the development of a draft Great Lakes Restoration Initiative FY...

  15. 46 CFR 117.206 - Survival craft-vessels operating on Great Lakes routes.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Survival craft-vessels operating on Great Lakes routes...—vessels operating on Great Lakes routes. (a) Except as allowed by paragraph (b) of this section, each vessel certificated to operate on a Great Lakes route must be provided with the survival craft...

  16. 78 FR 42944 - Notification of a Public Meeting of the Great Lakes Advisory Board

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-18

    ... AGENCY Notification of a Public Meeting of the Great Lakes Advisory Board AGENCY: Environmental... public meeting and teleconference of the Great Lakes Advisory Board (GLAB). The meeting will be held on... Cestaric, Designated Federal Officer (DFO) for the Great Lakes Advisory Board by telephone at (312)...

  17. 46 CFR 180.206 - Survival craft-vessels operating on Great Lakes routes.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Survival craft-vessels operating on Great Lakes routes... Craft § 180.206 Survival craft—vessels operating on Great Lakes routes. (a) Except as allowed by paragraph (b) of this section, each vessel certificated to operate on a Great Lakes route must be...

  18. 46 CFR 11.430 - Endorsements for the Great Lakes and inland waters.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 1 2010-10-01 2010-10-01 false Endorsements for the Great Lakes and inland waters. 11... Endorsements for the Great Lakes and inland waters. Any license or MMC endorsement issued for service on the Great Lakes and inland waters is valid on all of the inland waters of the United States as defined...

  19. 78 FR 32645 - Notification of a Public Teleconference of the Great Lakes Advisory Board

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-31

    ... AGENCY Notification of a Public Teleconference of the Great Lakes Advisory Board AGENCY: Environmental... public teleconference of the Great Lakes Advisory Board (GLAB). The purpose of the teleconference is to continue discussions that will inform the development of a draft Great Lakes Restoration Initiative FY...

  20. 46 CFR 46.10-40 - Nonsubmergence subdivision load line (Great Lakes).

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Nonsubmergence subdivision load line (Great Lakes). 46.10-40 Section 46.10-40 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) LOAD LINES... (Great Lakes). (a) Passenger vessels on the Great Lakes of 150 gross tons or over shall not submerge...

  1. 78 FR 59018 - Notification of a Public Teleconference of the Great Lakes Advisory Board

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-25

    ... AGENCY Notification of a Public Teleconference of the Great Lakes Advisory Board AGENCY: Environmental... federal Great Lakes Restoration Initiative (GLRI) Task Force agencies, announces a public teleconference of the Great Lakes Advisory Board (GLAB). The purpose of the teleconference is for the GLAB...

  2. A Great Lakes Atmospheric Mercury Monitoring network: Evaluation and design

    NASA Astrophysics Data System (ADS)

    Risch, Martin R.; Kenski, Donna M.; Gay, David A.

    2014-03-01

    As many as 51 mercury (Hg) wet-deposition-monitoring sites from 4 networks were operated in 8 USA states and Ontario, Canada in the North American Great Lakes Region from 1996 to 2010. By 2013, 20 of those sites were no longer in operation and approximately half the geographic area of the Region was represented by a single Hg-monitoring site. In response, a Great Lakes Atmospheric Mercury Monitoring (GLAMM) network is needed as a framework for regional collaboration in Hg-deposition monitoring. The purpose of the GLAMM network is to detect changes in regional atmospheric Hg deposition related to changes in Hg emissions. An optimized design for the network was determined to be a minimum of 21 sites in a representative and approximately uniform geographic distribution. A majority of the active and historic Hg-monitoring sites in the Great Lakes Region are part of the National Atmospheric Deposition Program (NADP) Mercury Deposition Network (MDN) in North America and the GLAMM network is planned to be part of the MDN. To determine an optimized network design, active and historic Hg-monitoring sites in the Great Lakes Region were evaluated with a rating system of 21 factors that included characteristics of the monitoring locations and interpretations of Hg data. Monitoring sites were rated according to the number of Hg emissions sources and annual Hg emissions in a geographic polygon centered on each site. Hg-monitoring data from the sites were analyzed for long-term averages in weekly Hg concentrations in precipitation and weekly Hg-wet deposition, and on significant temporal trends in Hg concentrations and Hg deposition. A cluster analysis method was used to group sites with similar variability in their Hg data in order to identify sites that were unique for explaining Hg data variability in the Region. The network design included locations in protected natural areas, urban areas, Great Lakes watersheds, and in proximity to areas with a high density of annual Hg

  3. A Great Lakes atmospheric mercury monitoring network: evaluation and design

    USGS Publications Warehouse

    Risch, Martin R.; Kenski, Donna M.; ,; David, A.

    2014-01-01

    As many as 51 mercury (Hg) wet-deposition-monitoring sites from 4 networks were operated in 8 USA states and Ontario, Canada in the North American Great Lakes Region from 1996 to 2010. By 2013, 20 of those sites were no longer in operation and approximately half the geographic area of the Region was represented by a single Hg-monitoring site. In response, a Great Lakes Atmospheric Mercury Monitoring (GLAMM) network is needed as a framework for regional collaboration in Hg-deposition monitoring. The purpose of the GLAMM network is to detect changes in regional atmospheric Hg deposition related to changes in Hg emissions. An optimized design for the network was determined to be a minimum of 21 sites in a representative and approximately uniform geographic distribution. A majority of the active and historic Hg-monitoring sites in the Great Lakes Region are part of the National Atmospheric Deposition Program (NADP) Mercury Deposition Network (MDN) in North America and the GLAMM network is planned to be part of the MDN. To determine an optimized network design, active and historic Hg-monitoring sites in the Great Lakes Region were evaluated with a rating system of 21 factors that included characteristics of the monitoring locations and interpretations of Hg data. Monitoring sites were rated according to the number of Hg emissions sources and annual Hg emissions in a geographic polygon centered on each site. Hg-monitoring data from the sites were analyzed for long-term averages in weekly Hg concentrations in precipitation and weekly Hg-wet deposition, and on significant temporal trends in Hg concentrations and Hg deposition. A cluster analysis method was used to group sites with similar variability in their Hg data in order to identify sites that were unique for explaining Hg data variability in the Region. The network design included locations in protected natural areas, urban areas, Great Lakes watersheds, and in proximity to areas with a high density of annual Hg

  4. The Effect of Lake Temperatures and Emissions on Ozone Exposure in the Western Great Lakes Region

    SciTech Connect

    Fast, Jerome D. ); Heilman, Warren E.

    2003-09-01

    A meteorological-chemical model with a 12-km horizontal grid spacing was used to simulate the evolution of ozone over the western Great Lakes region during a 30-day period in the summer of 1999. High ozone production rates were produced over the surface of the lakes as a result of stable atmospheric conditions that trapped ozone precursors within a shallow layer during the day. Simulations with lake temperatures derived from either satellite measurements or climatological values produced ozone mixing ratios over the lakes and around the lake shores that differed by as much as 50 ppb while differences over land were usually 10 ppb or less. Through another series of sensitivity studies that varied ozone precursor emissions, it was shown that a reduction of 50% NOx or VOC would lower the 60 ppb ozone exposure by up to 50 h per month in the remote forest regions over the northern Great Lakes. The implications of these results on future climate change and air quality in the region is discussed.

  5. Earliest Cucurbita from the Great Lakes, Northern USA

    NASA Astrophysics Data System (ADS)

    Monaghan, G. William; Lovis, William A.; Egan-Bruhy, Kathryn C.

    2006-03-01

    Directly dated Cucurbita from archaeological sites near Lake Huron expand the range and human usage of adventive, cultivated wild gourds or squash into the Great Lakes region, USA, by 4000 14C yr BP. The data also show that domesticated C. pepo squash was cultivated there by 3000 14C yr BP. Although milder Hypsithermal climate may have been a contributing factor, squash and gourds expanded northward during the mid-Holocene mainly by human agency and may be the first human-introduced adventive plant in temperate North America. Even after 3000 14C yr BP, when domesticated squash generally replaced wild varieties at northern sites, squash stands were probably informally managed rather than intensively cultivated.

  6. Environmental contaminants and the reproductive success of lake trout in the Great Lakes: an epidemiological approach

    USGS Publications Warehouse

    Mac, Michael J.; Edsall, Carol C.

    1991-01-01

    Epidemiological criteria were used to examine the influence of environmental contamination on reproductive success of lake trout (Salvelinus namaycush) in the Laurentian Great Lakes. Most of the information was obtained from lake trout eggs collected in southeastern Lake Michigan and reared in the laboratory. Two separate end points that measure reproductive success - egg hatchability and fry survival - were used in the evaluation. Strong evidence for maternally derived polychlorinated biphenyls causing reduced egg hatchability were observed for the time order, strength of association, and coherence criteria. Equally strong evidence for organic environmental contaminants, also of maternal origin, causing a swim-up fry mortality syndrome were presented for the strength of association, specificity, replication, and coherence criteria. The epidemiological approach for demonstrating cause-and-effect relations was useful because of the difficulty in demonstrating definite proof of causality between specific environmental contaminants and reproductive dysfunction in feral fish.

  7. Fish consumption and advisory awareness in the Great Lakes Basin.

    PubMed

    Imm, Pamela; Knobeloch, Lynda; Anderson, Henry A

    2005-10-01

    More than 61 million adults live in the eight U.S. states bordering the Great Lakes. Between June 2001 and June 2002, a population-based, random-digit-dial telephone survey of adults residing in Great Lakes (GL) states was conducted to assess consumption of commercial and sport-caught fish and awareness of state-issued consumption advisories for GL fish. On the basis of the weighted survey data, approximately 84% of the adults living in these states included fish in their diets. Seven percent (an estimated 4.2 million adults) consumed fish caught from the Great Lakes. The percentage of residents who had consumed sport-caught fish (from any water source) varied regionally and was highest among those who lived in Minnesota (44%) and Wisconsin (39%). Consumption of GL sport fish was highest among residents of Michigan (16%) and Ohio (12%). Among residents who had eaten GL fish, awareness of consumption advisories varied by gender and race and was lowest among women (30%) and black residents (15%). However, 70% of those who consumed GL sport-caught fish twice a month or more (an estimated 509,000 adults across all eight states) were aware of the advisories. Findings from this survey indicate that exposure to persistent contaminants found in GL fish is likely limited to a relatively small subpopulation of avid sport-fish consumers. Results also underscore the public health importance of advisories for commercial fish because an estimated 2.9 million adults living in these states consume more than 104 fish meals per year and may be at risk of exceeding the reference doses for methylmercury, polychlorinated biphenyls, and other bioaccumulative contaminants.

  8. Air pollution and environmental justice in the Great Lakes region

    NASA Astrophysics Data System (ADS)

    Comer, Bryan

    While it is true that air quality has steadily improved in the Great Lakes region, air pollution remains at unhealthy concentrations in many areas. Research suggests that vulnerable and susceptible groups in society -- e.g., minorities, the poor, children, and poorly educated -- are often disproportionately impacted by exposure to environmental hazards, including air pollution. This dissertation explores the relationship between exposure to ambient air pollution (interpolated concentrations of fine particulate matter, PM2.5) and sociodemographic factors (race, housing value, housing status, education, age, and population density) at the Census block-group level in the Great Lakes region of the United States. A relatively novel approach to quantitative environmental justice analysis, geographically weighted regression (GWR), is compared with a simplified approach: ordinary least squares (OLS) regression. While OLS creates one global model to describe the relationship between air pollution exposure and sociodemographic factors, GWR creates many local models (one at each Census block group) that account for local variations in this relationship by allowing the value of regression coefficients to vary over space, overcoming OLS's assumption of homogeneity and spatial independence. Results suggest that GWR can elucidate patterns of potential environmental injustices that OLS models may miss. In fact, GWR results show that the relationship between exposure to ambient air pollution and sociodemographic characteristics is non-stationary and can vary geographically and temporally throughout the Great Lakes region. This suggests that regulators may need to address environmental justice issues at the neighborhood level, while understanding that the severity of environmental injustices can change throughout the year.

  9. Biomarkers for Great Lakes priority contaminants: halogenated aromatic hydrocarbons.

    PubMed Central

    Feeley, M M

    1995-01-01

    One of the major goals of the Great Lakes Action Plan is to actively accumulate and assess toxicological information on persistent toxic substances found in the Great Lakes basin. As part of Health Canada's commitment to this plan, a review of biomarkers for the environmental contaminants polychlorinated biphenyls (PCBs) and polychlorinated dibenzodioxins/dibenzofurans (PCDDs/PCDFs) was conducted. In general, while food consumption was identified as the major source of human exposure to both contaminant groups, certain commodities, such as fish, milk and dairy products, and meat, were found to predominate. Due to the ubiquitous nature of these environmental contaminants and their propensity to bioaccumulate, all humans will have detectable body burdens, which in certain cases can be positively associated with the consumption of particular foods (i.e., PCBs and freshwater fish from the Great Lakes). When dealing with environmental exposure only, relating specific effect biomarkers to contaminant exposure or tissue levels was difficult, due in part to the complex nature of the exposure and the nonspecific nature of the effect. For PCBs, the most likely biomarkers of effect included some form of alteration in lipid metabolism (serum triglyceride/cholesterol levels) and elevation of hepatic-related enzymes, aspartate aminotransferase (AST) and gamma-glutamyltransferase (GGT). Cross-species extrapolation also indicates the potential for neurotoxicologic effects to occur in humans. For PCDDs/PCDFs, dermatologic lesions (chloracne) and indications of hepatic enzyme induction have been documented, but primarily due to occupational or high acute accidental exposures. Recent evidence suggests that neonates may represent a potential at-risk population due to relatively high exposure to PCDDs/PCDFs, as with PCBs, during breast feeding as compared to standard adult dietary intake. Future areas of potential benefit for biomarker development include immunologic and endocrine

  10. The Life of the Lakes: The Great Lakes Fishery. [Multimedia Package].

    ERIC Educational Resources Information Center

    Michigan Sea Grant Extension, East Lansing.

    This multimedia package includes a 55-minute videocassettes, a guide, and six posters and was designed to provide teaching outlines/plans for a two-week thematic unit on Great Lakes fisheries for middle school or high school youth. The guide can be used in both formal school settings and nonformal school settings such as youth organizations and…

  11. The Great Lakes Water Quality Agreement with an emphasis on annex 4 nutrients -and Lake Erie

    EPA Science Inventory

    Presented will be an overview of the Great Lakes Water Quality Act of 2012 including a general description of the Annexes and the new Binational Governance. The talk will focus on the Annex 4 Nutrients Subcommittee and the Objectives and Targets Task Team efforts that have been ...

  12. Factors affecting the evolution of coastal wetlands of the Laurential Great Lakes: an overview

    USGS Publications Warehouse

    Mayer, T.; Edsall, T.; Munawar, M.

    2004-01-01

    Coastal wetlands play a pivotal role in the Great Lakes ecosystem. As buffer zones between the land and open waters of the Great Lakes, they perform a variety of essential functions providing both direct and indirect anthropogenic benefits. Geology, morphology and climate are the dominant variables that influence Laurentian Great Lakes wetland development. However, anthropogenic factors are the major contributors to alteration of natural wetland processes. This paper provides an overview of natural and anthropogenic factors important in Great Lakes coastal wetland development and provides statistical information describing the Great Lakes Basin. A brief description of wetlands classification and research issues is also presented.

  13. Microwave properties of ice from The Great Lakes

    NASA Technical Reports Server (NTRS)

    Vickers, R. S.

    1975-01-01

    The increasing use of radar systems as remote sensors of ice thickness has revealed a lack of basic data on the microwave properties of fresh-water ice. A program, in which the complex dielectric constant was measured for a series of ice samples taken from the Great Lakes, is described. The measurements were taken at temperatures of -5, -10, and -15 C. It is noted that the ice has considerable internal layered structure, and the effects of the layering are examined. Values of 3.0 to 3.2 are reported for the real part of the dielectric constant, with an error bar of + or - 0.01.

  14. Thiamine status in adult salmonines in the Great Lakes

    USGS Publications Warehouse

    Brown, S.B.; Honeyfield, D.C.; Hnath, J.G.; Wolgamood, M.; Marcquenski, S.V.; Fitzsimons, J.D.; Tillitt, D.E.

    2005-01-01

    In 1996 and again in 1999, hatchery personnel noted that some Lake Michigan coho salmon Oncorhynchus kisutch from fall spawning runs on the Platte River weir exhibited abnormal wiggling behavior that was similar to the behavior exhibited by thiamine-deficient Atlantic salmon Salmo salar, from the Baltic Sea. Samples of eggs or gonads, muscle, and liver from salmon and lake trout Salvelinus namaycush exhibiting abnormal behaviors were collected to determine the extent to which the behaviors were related to a thiamine deficiency. We compared these values with those found in normally behaving fish that produced offspring with high embryonic survival. In all adult fish exhibiting abnormal behavior, tissue residues of thiamine were among the lowest observed in the Great Lakes. Where embryonic survival was assessed, abnormal adult behavior was also associated with very high levels of offspring mortality due to early mortality syndrome. While the overall ecological significance remains to be determined, it appears that adult fish also exhibit neurological dysfunction and mortality associated with thiamine deficiency. ?? Copyright by the American Fisheries Society 2005.

  15. Great Salt Lake Microbial Communities: The Foundation of a Terminal Lake Ecosystem

    NASA Astrophysics Data System (ADS)

    Baxter, B. K.; Acord, M.; Riddle, M. R.; Avery, B.

    2006-12-01

    Great Salt Lake (GSL) is a natural hypersaline ecosystem and a terminal lake of substantial size. The dramatic fluctuation in water levels and salinity creates an ecological backdrop selective for organisms with a high degree of adaptability. At the macro level, the biodiversity of the GSL ecosystem is simple, due to the limitations of an extreme saline environment: Birds eat the two invertebrates of the lake, and the invertebrates eat phytoplankton. However, analysis of the microbial level reveals an enormous diversity of species interacting with one another and the ecosystem as a whole. Our cultivation, biochemical tests, microscopy and DNA sequencing yielded data on dozens of isolates. These data demonstrate novel species, and possibly genera, living in the lake. In addition, we have discovered viruses (bacteriophage) that prey on the microorganisms. Preliminary data on bacteria dwelling in the gut of the brine shrimp, Artemia franciscana, link these prokaryotic organisms to the food chain for the first time. All of these results taken together open the door for the discussion of the significance of the microbial level of terminal lake ecosystem, particularly in light of lake water contamination and bioremediation possibilities.

  16. Lake trout restoration in the Great Lakes: stock-size criteria for natural reproduction

    USGS Publications Warehouse

    Selgeby, James H.; Bronte, Charles R.; Brown, Edward H.; Hansen, Michael J.; Holey, Mark E.; VanAmberg, Jan P.; Muth, Kenneth M.; Makauskas, Daniel B.; Mckee, Patrick; Anderson, David M.; Ferreri, C. Paola; Schram, Stephen T.

    1995-01-01

    We examined the question of whether the lake trout restoration program in the Great Lakes has developed brood stocks of adequate size to sustain natural reproduction. Stock size criteria were developed from areas of the Great Lakes where natural reproduction has been successful (defined as detection of age-1 or older recruits by assessment fishing). We contrasted them with stocks in areas with no natural reproduction. Based on the relative abundance of spawners measured in the fall and the presence or absence of natural reproduction in 24 areas of the Great Lakes, we found three distinct sets of lake trout populations. In seven areas of successful natural reproduction, the catch-per-unit-effort (CPE) of spawners ranged from 17 to 135 fish/305 m of gillnet. Stock sizes in these areas were used as a gauge against which stocks in other areas were contrasted. We conclude that stock densities of 17-135 fish/305 m of gill net are adequate for natural reproduction, provided that all other requirements are met. No natural reproduction has been detected in seven other areas, where CPEs of spawners ranged from only 3 to 5 fish/305 m. We conclude that spawning stocks of only 3-5 fish/305 m of net are inadequate to develop measurable natural reproduction. Natural reproduction has also not been detected in ten areas where CPEs of spawners ranged from 43 to 195 fish/305 m of net. We conclude that spawning stocks in these ten areas were adequate to sustain natural reproduction, but that some factor other than parental stock size prevented recruitment of wild lake trout.

  17. Developing Multi-Lake Regulation Plans for the Great Lakes through Multi-Scenario Optimization

    NASA Astrophysics Data System (ADS)

    Razavi, S.; Tolson, B.; Asadzadeh, M.

    2011-12-01

    Water levels in the Great Lakes- St. Lawrence freshwater system (Lakes Superior, Michigan, Huron, Erie, and Ontario as well as the St. Lawrence River) impact a variety of stakeholder groups such as hydropower producers, the shipping industry, shoreline property owners and recreational boaters. Although the system is currently managed by control structures at two locations (Lake Superior and Lake Ontario outflows are controlled), there is concern that future extreme climates will generate water supply sequences to the system that will substantially increase the frequency and persistence of extreme water levels imposing millions of dollars of losses to Canadian and American economies. This work partially summarizes a study under The International Upper Great Lakes Study (International Joint Commission) to provide an exploratory conceptual analysis of how and to what extent new control structures in the system could be used to minimize the risks posed by extreme water levels outside of the historic range. In this study, two new hypothetical control structures were investigated to regulate Lake Michigan-Huron and Lake Erie outflows. Multiple regulation plans were developed to operate the hypothetical structures in the St. Clair and/or Niagara rivers in combination with the two existing control structures in the St. Marys and St. Lawrence Rivers. The regulation plans were defined by multi-lake rule curves whose parameters were determined through a simulation-optimization procedure. As there is a high level of uncertainty in future climate, multiple water supply sequences, each 70 years long, representing different future climate scenarios were considered. A multi-scenario based optimization formulation was developed aiming to keep the water levels within the historical range and to minimize and evenly distribute extreme water levels across the system. The dynamically dimensioned search (DDS) algorithm was applied to optimize the multi-scenario based formulation. As the

  18. Ecotoxicology of organochlorine chemicals in birds of the Great Lakes

    USGS Publications Warehouse

    Tillitt, Donald E.; Giesy, John P.

    2013-01-01

    Silent Spring was fulfilled in the United States with passage of environmental legislation such as the Clean Water Act, the Federal Insecticide, Fungicide, and Rodenticide Act, and the Toxic Substance Control Act in the 1970s. Carson's writings, television interviews, and testimony before Congress alerted a nation and the world to the unintended effects of persistent, bioaccumulative chemicals on populations of fish, wildlife, and possibly humans. Her writings in the popular press brought attention to scientific findings that declines in populations of a variety of birds were directly linked to the widespread use of dichlorodiphenyltrichloroethane (DDT) in agriculture, public health, and horticulture. By the 1970s, DDT and other persistent organic pollutants (POPs) were being banned or phased out, and the intent of these regulatory acts became apparent in a number of locations across the United States, including the Great Lakes. Concentrations of DDT and its major product of transformation, dichlorodiphenylchloroethane (DDE), were decreasing in top predators, such as bald eagles (Haliaeetus leucocephalus), osprey (Pandion haliaetus), colonial waterbirds, and other fish-eating wildlife. Eggshell thinning and the associated mortality of bird embryos caused by DDE had decreased in the Great Lakes and elsewhere by the early 1980s.

  19. US-Canada Great Lakes Regional Specimen Bank Feasibility Study.

    PubMed

    Kerry, A; Edmonds, C J; Landon, L; Yonker, T L

    1993-11-01

    A study to examine the feasibility of establishing a Regional Specimen Bank in the Great Lakes area of the United States and Canada has recently been initiated by the Michigan Audubon Society. There are several existing formal and informal specimen banking facilities active in the region but their combined adequacy has not been evaluated. This feasibility study will establish the need and use of a regional bank and the institution(s) necessary to satisfy this need will be recommended. The study will address the scope required to meet present and future needs including the types of specimens to be represented in the bank, geographic coverage and protocols for collection, shipping, processing, analysis and storage. A management policy of the bank will be developed encompassing business operation, costs, governing structure and personnel requirements. The legal requirements of the bank will be determined with regards to the acquisition of samples, transport across national boundaries, access to specimens and information, and liability during operation. An effective information dissemination network will be recommended that is compatible with national and international partners, will facilitate technology and information transfer and support the quality and status of the bank. Determination of secure, long-term funding sources will be one of the key elements to ensuring a safe repository. This feasibility study is funded by the Great Lakes Protection Fund.

  20. Great Lakes Biomass State and Regional Partnership (GLBSRP)

    SciTech Connect

    Kuzel, Frederic

    2009-09-01

    The Council of Great Lakes Governors administered the Great Lakes Biomass State and Regional Partnership (GLBSRP) under contract with the U. S. Department of Energy (DOE). This Partnership grew out of the existing Regional Biomass Energy Program which the Council had administered since 1983. The GLBSRP includes the States of Illinois, Indiana, Iowa, Michigan, Minnesota, Ohio and Wisconsin. The GLBSRP's overall goal is to facilitate the increased production and use of bioenergy and biobased products throughout the region. The GLBSRP has traditionally addressed its goals and objectives through a three-pronged approach: providing grants to the States; undertaking region-wide education, outreach and technology transfer projects; and, providing in-house management, support and information dissemination. At the direction of US Department of Energy, the primary emphasis of the GLBSRP in recent years has been education and outreach. Therefore, most activities have centered on developing educational materials, hosting workshops and conferences, and providing technical assistance. This report summarizes a selection of activities that were accomplished under this cooperative agreement.

  1. Introduction to the Proceedings of the 1994 International Conference on Restoration of Lake Trout in the Laurentian Great Lakes

    USGS Publications Warehouse

    Selgeby, James H.

    1995-01-01

    Lake trout (Salvelinus namaycush) restoration in the Great Lakes began in the 1950s when stocking of artificially propagated lake trout was coupled with the first attempts at sea lamprey (Petromyzon marinus) control. A major milestone in the restoration process was recorded when a selective sea lamprey larvicide was identified in 1958 (Applegate et al. 1958) and then applied broad scale in Lake Superior in 1958-60 (Applegate et al. 1961). Other milestones include the expansion of the sea lamprey control programs into Lakes Michigan and Huron in 1960 (sustained usage in Lake Huron began in 1966, Smith and Tibbles 1980), Lake Ontario in 1971-72 (Elrod et al. 1995), and Lake Erie in 1986 (Cornelius et al. 1995). Following the collapse of lake trout in the Great Lakes and the implementation of massive stocking of hatchery-reared fish and effective sea lamprey control, the first documented evidence of nearshore natural reproduction of lake trout was in Lake Superior in 1965 (Dryer and King 1968), in Lake Michigan in 1980 (Jude et al. 1981), in Lake Huron in 1981-82 (Nester and Poe 1984), and in Lake Ontario in 1986 (Marsden et al. 1988).

  2. PROFILES OF GREAT LAKES CRITICAL POLLUTANTS: A SENTINEL ANALYSIS OF HUMAN BLOOD AND URINE

    EPA Science Inventory

    To determine the contaminants that should be studied further in the subsequent population-based study, a profile of Great Lakes (GL) sport fish contaminant residues were studied in human blood and urine specimens from 32 sport fish consumers from three Great Lakes: Lake Michigan ...

  3. Appreciating Your Great Lakes. A Guide for Developing Educational Projects. 4-H Marine Education Series - 2.

    ERIC Educational Resources Information Center

    Pennisi, Christine; Goettel, Robin, Ed.

    The Great Lakes are the largest series of fresh water bodies in the world. They are used for a wide variety of purposes by the 37 million citizens of the United States and Canada who live near the lakes and share this resource. This guide is intended to guide youth in acquiring training and field experience related to the Great Lakes in areas such…

  4. Dreissenid mussels are not a "dead end" in Great Lakes food webs

    USGS Publications Warehouse

    Madenijan, Charles P.; Pothoven, Steven A.; Schneeberger, Philip J.; Ebener, Mark P.; Mohr, Lloyd C.; Nalepa, Thomas F.; Bence, James R.

    2010-01-01

    Dreissenid mussels have been regarded as a “dead end” in Great Lakes food webs because the degree of predation on dreissenid mussels, on a lakewide basis, is believed to be low. Waterfowl predation on dreissenid mussels in the Great Lakes has primarily been confined to bays, and therefore its effects on the dreissenid mussel population have been localized rather than operating on a lakewide level. Based on results from a previous study, annual consumption of dreissenid mussels by the round goby (Neogobius melanostomus) population in central Lake Erie averaged only 6 kilotonnes (kt; 1 kt = one thousand metric tons) during 1995–2002. In contrast, our coupling of lake whitefish (Coregonus clupeaformis) population models with a lake whitefish bioenergetics model revealed that lake whitefish populations in Lakes Michigan and Huron consumed 109 and 820 kt, respectively, of dreissenid mussels each year. Our results indicated that lake whitefish can be an important predator on dreissenid mussels in the Great Lakes, and that dreissenid mussels do not represent a “dead end” in Great Lakes food webs. The Lake Michigan dreissenid mussel population has been estimated to be growing more than three times faster than the Lake Huron dreissenid mussel population during the 2000s. One plausible explanation for the higher population growth rate in Lake Michigan would be the substantially higher predation rate by lake whitefish on dreissenid mussels in Lake Huron.

  5. Bathythermal habitat use by strains of Great Lakes- and Finger Lakes-origin lake trout in Lake Huron after a change in prey fish abundance and composition

    USGS Publications Warehouse

    Bergstedt, Roger A.; Argyle, Ray L.; Krueger, Charles C.; Taylor, William W.

    2012-01-01

    A study conducted in Lake Huron during October 1998–June 2001 found that strains of Great Lakes-origin (GLO) lake trout Salvelinus namaycush occupied significantly higher temperatures than did Finger Lakes-origin (FLO; New York) lake trout based on data from archival (or data storage) telemetry tags that recorded only temperature. During 2002 and 2003, we implanted archival tags that recorded depth as well as temperature in GLO and FLO lake trout in Lake Huron. Data subsequently recorded by those tags spanned 2002–2005. Based on those data, we examined whether temperatures and depths occupied by GLO and FLO lake trout differed during 2002–2005. Temperatures occupied during those years were also compared with occupied temperatures reported for 1998–2001, before a substantial decline in prey fish biomass. Temperatures occupied by GLO lake trout were again significantly higher than those occupied by FLO lake trout. This result supports the conclusion of the previous study. The GLO lake trout also occupied significantly shallower depths than FLO lake trout. In 2002–2005, both GLO and FLO lake trout occupied significantly lower temperatures than they did in 1998–2001. Aside from the sharp decline in prey fish biomass between study periods, the formerly abundant pelagic alewife Alosa pseudoharengus virtually disappeared and the demersal round goby Neogobius melanostomus invaded the lake and became locally abundant. The lower temperatures occupied by lake trout in Lake Huron during 2002–2005 may be attributable to changes in the composition of the prey fish community, food scarcity (i.e., a retreat to cooler water could increase conversion efficiency), or both.

  6. DIEL OXYGEN-INDUCED MOVEMENT OF FISH ASSEMBLAGES IN A GREAT LAKES COASTAL WETLAND

    EPA Science Inventory

    To determine the importance of dissolved oxygen conditions in influencing daily ovement patterns of fishes in Great Lakes coastal wetlands, we sampled migrating fish assemblages from habitats with varying diurnal dissolved oxygen patterns in a Lake Superior coastal wetland during...

  7. Impacts of Tributaries on Optical Properties and Singlet Oxygen Concentrations in the Great Lakes

    EPA Science Inventory

    The Great Lakes have over 100 tributaries that contribute natural organic matter and othernatural photosensitizers to nearshore sites on the lakes. Absorption of sunlight by thesesensitizers results in indirect (sensitized) photoreactions of the widespread chemical andbiological ...

  8. Limitations to lake trout (Salvelinus namaycush) rehabilitation in the Great Lakes imposed by biotic interactions occurring at early life stages

    USGS Publications Warehouse

    Jones, Michael L.; Eck, Gary W.; Evans, David O.; Fabrizio, Mary C.; Hoff, Michael H.; Hudson, Patrick L.; Janssen, John; Jude, David; O'Gorman, Robert; Savino, Jacqueline F.

    1995-01-01

    We examine evidence that biotic factors, particularly predation, may be limiting early survival of wild lake trout (Salvelinus namaycush) juveniles in many areas of the Great Lakes. The Great Lakes contain numerous potential predators of lake trout eggs and fry, some of which are recent invaders, and most of which were probably absent when lake trout most recently re-invaded the Great Lakes after the last ice age. Simple quantitative models of predation suggest that plausible assumptions about prey densities, predator feeding rates, and duration of exposure of predator to prey can lead to very high estimates of predation mortality, in some instances approaching 100%. Indirect evidence from inter-Great Lake comparisons and inland lake examples also suggest that biotic factors may impede successful lake trout colonization. Our synthesis of the evidence leads to recommendations for research to better define field feeding rates of lake trout egg and fry predators and comparative studies of densities of potential egg and fry predators on lake trout spawning reefs. Management options should be designed to provide useful information as well as achieve short-term goals. From a management standpoint we recommend that: newly constructed lake trout reefs should be placed well away from concentrations of potential predators; offshore spawning reefs should be stocked; salmonine stocking, nutrient abatement, and commercial harvest of alewives should all be considered as options to enhance survival of young lake trout; hatchery lake trout should not be stocked at sites where wild lake trout are showing signs of recovery; and exotic species expansions or introductions must be curtailed to maintain or improve on our recent successes in lake trout rehabilitation.

  9. Conservation and management of fisheries and aquatic communities in Great Lakes connecting channels

    USGS Publications Warehouse

    Roseman, Edward F.; Thompson, Patricia A.; Farrell, John M.; Mandrak, Nicholas E.; Stepien, Carol A.

    2014-01-01

    The North American Laurentian Great Lakes are linked by a unique series of riverine and lacustrine waters known as the Great Lakes connecting channels that are as integral to the basin's ecology and economies as the lakes themselves. The St. Marys River (SMR) is the northernmost channel and flows from Lake Superior to Lake Huron. Waters from the upper Great Lakes (Lakes Superior, Michigan, and Huron) empty from Lake Huron via the St. Clair–Detroit River system (SCDRS, also known as the Huron–Erie Corridor) into Lake Erie. The SCDRS is composed of the St. Clair River, Lake St. Clair, and the Detroit River. The Niagara River (NR) serves as the outflow from Lake Erie into Lake Ontario. The NR above Niagara Falls is bisected by Grand Island and contains several other islands and man-made embayments whereas the NR below the falls is more linear. The outflow from Lake Ontario, representing the natural outlet of all the Great Lakes, is the St. Lawrence River (SLR) which empties into the Gulf of St. Lawrence in the northwest Atlantic Ocean.

  10. Satellite microwave observations of the Utah Great Salt Lake Desert

    NASA Technical Reports Server (NTRS)

    Ulaby, F. T.; Dellwig, L. F.; Schmugge, T. J.

    1975-01-01

    Microwave data acquired over the Great Salt Lake Desert by sensors aboard Skylab and Nimbus 5 indicate that microwave emission and backscatter were strongly influenced by contributions from subsurface layers of sediment saturated with brine. This phenomenon was observed by Skylab's S-194 radiometer operating at 1.4 GHz, S-193 RADSCAT (Radiometer-Scatterometer) operating at 13.9 GHz and the Nimbus 5 ESMR (Electrically Scanning Microwave Radiometer) operating at 19.35 GHz. The availability of ESMR data over an 18 month period allowed an investigation of temporal variations. Aircraft 1.4 GHz radiometer data acquired two days after one of the Skylab passes confirm the satellites observations. Data from the ESMR revealed similar responses over the Bolivian deserts, which have geologic features similar to those of the Utah desert.

  11. Understanding beach health throughout the Great Lakes -- continuing research

    USGS Publications Warehouse

    ,

    2012-01-01

    The overall mission of U.S. Geological Survey (USGS) Beach Health Initiative is to provide science-based information and methods that will allow beach managers to more accurately make beach closure and advisory decisions, understand the sources and physical processes affecting beach contaminants, and understand how science-based information can be used to mitigate and restore beaches and protect the public. The USGS, in collaboration with many Federal, State, and local agencies and universities, has conducted research on beach-health issues in the Great Lakes Region for more than a decade. The work consists of four science elements that align with the initiative's mission: real-time assessments of water quality; coastal processes; pathogens and source tracking; and data analysis, interpretation, and communication. The ongoing or completed research for each of these elements is described in this fact sheet.

  12. Glial cell biology in the Great Lakes region.

    PubMed

    Feinstein, Douglas L; Skoff, Robert P

    2016-01-01

    We report on the tenth bi-annual Great Lakes Glial meeting, held in Traverse City, Michigan, USA, September 27-29 2015. The GLG meeting is a small conference that focuses on current research in glial cell biology. The array of functions that glial cells (astrocytes, microglia, oligodendrocytes, Schwann cells) play in health and disease is constantly increasing. Despite this diversity, GLG meetings bring together scientists with common interests, leading to a better understanding of these cells. This year's meeting included two keynote speakers who presented talks on the regulation of CNS myelination and the consequences of stress on Schwann cell biology. Twenty-two other talks were presented along with two poster sessions. Sessions covered recent findings in the areas of microglial and astrocyte activation; age-dependent changes to glial cells, Schwann cell development and pathology, and the role of stem cells in glioma and neural regeneration.

  13. Glial cell biology in the Great Lakes region.

    PubMed

    Feinstein, Douglas L; Skoff, Robert P

    2016-01-01

    We report on the tenth bi-annual Great Lakes Glial meeting, held in Traverse City, Michigan, USA, September 27-29 2015. The GLG meeting is a small conference that focuses on current research in glial cell biology. The array of functions that glial cells (astrocytes, microglia, oligodendrocytes, Schwann cells) play in health and disease is constantly increasing. Despite this diversity, GLG meetings bring together scientists with common interests, leading to a better understanding of these cells. This year's meeting included two keynote speakers who presented talks on the regulation of CNS myelination and the consequences of stress on Schwann cell biology. Twenty-two other talks were presented along with two poster sessions. Sessions covered recent findings in the areas of microglial and astrocyte activation; age-dependent changes to glial cells, Schwann cell development and pathology, and the role of stem cells in glioma and neural regeneration. PMID:27029404

  14. The dry deposition of mercury into the Great Salt Lake

    NASA Astrophysics Data System (ADS)

    Lisonbee, Joel R.

    The Great Salt Lake (GSL) in the western United States has been identified as the most mercury laden body of water in the United States with a median water mercury concentration of 42 nanograms per liter. When Hg enters an aquatic ecosystem, it can be converted to the toxic organic mercury compound, methylmercury. Methylmercury bioaccumulates up the food chain and has been the cause of consumption advisories for game fish in many lakes and rivers in the historically pristine Intermountain West. In 2005, the Utah Department of Health and the Fish and Wildlife Service placed a similar consumption advisory on waterfowl on the GSL. The primary goal of this study is to identify the pathway of greatest influx of Hg pollution to the GSL to give insight toward the source and an eventual solution to the Hg pollution problem. Speciated atmospheric mercury measurements were collected at a field site on the eastern shore of the GSL for a 1-year period beginning on July 1, 2009. These atmospheric mercury concentrations, along with turbulence measurements, were used as input to a resistance-in-series dry deposition model (based on Wesley and Hicks 1977). The dry deposition flux of mercury was determined from the modeled dry deposition velocity and the measured concentrations. This dry deposition flux was compared to the wet deposition flux measured by the National Deposition Network and the riverine influx measured by the USGS. It was found that in the 1 year from July 1, 2009 through June 30, 2010, 10.7 nanograms per square meter of Hg was deposited into the GSL by dry deposition from the atmosphere. Dry deposition makes up 60% of the total Hg influx from all measured pathways. The flux from the dry deposition of the global background pool of Hg (1.5 +/- 0.2 nanograms per square meter) dominated the dry deposition flux, making up 82.5+/-8.5% of the dry deposition flux and 50% of the total Hg influx to the GSL. Lake sediment cores from the GSL suggest a much larger annual flux

  15. GREAT LAKES BEACH CLOSURES: USING SATELLITE IMAGES TO IDENTIFY AREAS AT RISK

    EPA Science Inventory

    Are people getting sick from swimming at Great Lakes beaches? Some are. According to the Centers for Disease Control and Prevention, swimmers are experiencing an increase in bacterial borne illnesses from swimming at many popular Great Lakes beaches. The beaches in the Great Lak...

  16. 46 CFR 30.10-33 - Great Lakes-TB/L.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 1 2011-10-01 2011-10-01 false Great Lakes-TB/L. 30.10-33 Section 30.10-33 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS GENERAL PROVISIONS Definitions § 30.10-33 Great Lakes—TB/L. Under this designation shall be included all tank vessels navigating the Great Lakes....

  17. 46 CFR 30.10-33 - Great Lakes-TB/L.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 1 2014-10-01 2014-10-01 false Great Lakes-TB/L. 30.10-33 Section 30.10-33 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS GENERAL PROVISIONS Definitions § 30.10-33 Great Lakes—TB/L. Under this designation shall be included all tank vessels navigating the Great Lakes....

  18. 46 CFR 30.10-33 - Great Lakes-TB/L.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 1 2013-10-01 2013-10-01 false Great Lakes-TB/L. 30.10-33 Section 30.10-33 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS GENERAL PROVISIONS Definitions § 30.10-33 Great Lakes—TB/L. Under this designation shall be included all tank vessels navigating the Great Lakes....

  19. 46 CFR 30.10-33 - Great Lakes-TB/L.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 1 2012-10-01 2012-10-01 false Great Lakes-TB/L. 30.10-33 Section 30.10-33 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS GENERAL PROVISIONS Definitions § 30.10-33 Great Lakes—TB/L. Under this designation shall be included all tank vessels navigating the Great Lakes....

  20. 78 FR 21937 - Proposed Agency Information Collection Request: Comment Request; Great Lakes Accountability...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-12

    ... AGENCY Proposed Agency Information Collection Request: Comment Request; Great Lakes Accountability System... Protection Agency is planning to submit an information collection request (ICR), ``Great Lakes Accountability...- 2009-0932 online using www.regulations.gov (our preferred method) or by mail to: Great...

  1. 46 CFR 11.430 - Endorsements for the Great Lakes and inland waters.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... Great Lakes and inland waters is valid on all of the inland waters of the United States as defined in... waters of the United States, excluding the Great Lakes. Licenses and MMC endorsements with either a Great... line as defined in 33 CFR part 80, the applicant must complete an examination on the COLREGS or...

  2. 46 CFR 30.10-33 - Great Lakes-TB/L.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 1 2010-10-01 2010-10-01 false Great Lakes-TB/L. 30.10-33 Section 30.10-33 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS GENERAL PROVISIONS Definitions § 30.10-33 Great Lakes—TB/L. Under this designation shall be included all tank vessels navigating the Great Lakes....

  3. A field guide to valuable underwater aquatic plants of the Great Lakes

    USGS Publications Warehouse

    Schloesser, Donald W.

    1986-01-01

    The purpose of this field guide is to aid in the identification of common underwater plants in the Great Lakes. These plants are found mostly in shallow, nearshore waters along sheltered bays, peninsulas, and the four connecting rivers of the Great Lakes, including the St. Lawrence River (Figure 1). Connecting rivers are especially favorable for aquatic plants because they are shallow, have a consistent flow of water, and are protected from heavy wave action typical of other Great Lakes shorelines.

  4. Toxicity to Daphnia pulex and QSAR predictions for polycyclic hydrocarbons representative of Great Lakes contaminants

    USGS Publications Warehouse

    Passino-Reader, D.R.; Hickey, J.P.; Ogilvie, L.M.

    1997-01-01

    The objectives of this study were (1) to determine the toxicity of several types of polycyclic hydrocarbons characteristic of Great Lakes samples to Daphnia pulex, a Great Lakes zooplankter, (2) to investigate the influence of different structural characteristics on toxicity, and (3) to determine the linear solvation energy relationship (LSER) parameters and model that describe these compounds. These results will be related to comparative toxicity of other Great Lakes environmental compounds and to their application in site specific risk assessment.

  5. Energy density of bloaters in the upper Great Lakes

    USGS Publications Warehouse

    Pothoven, Steven A.; Bunnell, David B.; Madenjian, Charles P.; Gorman, Owen T.; Roseman, Edward F.

    2012-01-01

    We evaluated the energy density of bloaters Coregonus hoyi as a function of fish size across Lakes Michigan, Huron, and Superior in 2008–2009 and assessed how differences in energy density are related to factors such as biomass density of bloaters and availability of prey. Additional objectives were to compare energy density between sexes and to compare energy densities of bloaters in Lake Michigan between two time periods (1998–2001 and 2008–2009). For the cross-lake comparisons in 2008, energy density increased with fish total length (TL) only in Lake Michigan. Mean energy density adjusted for fish size was 8% higher in bloaters from Lake Superior than in bloaters from Lake Huron. Relative to fish in these two lakes, small (175 mm TL) bloaters had higher energy density. In 2009, energy density increased with bloater size, and mean energy density adjusted for fish size was about 9% higher in Lake Michigan than in Lake Huron (Lake Superior was not sampled during 2009). Energy density of bloaters in Lake Huron was generally the lowest among lakes, reflecting the relatively low densities of opossum shrimp Mysis diluviana and the relatively high biomass of bloaters reported for that lake. Other factors, such as energy content of prey, growing season, or ontogenetic differences in energy use strategies, may also influence cross-lake variation in energy density. Mean energy density adjusted for length was 7% higher for female bloaters than for male bloaters in Lakes Michigan and Huron. In Lake Superior, energy density did not differ between males and females. Finally, energy density of bloaters in Lake Michigan was similar between the periods 2008–2009 and 1998–2001, possibly due to a low population abundance of bloaters, which could offset food availability changes linked to the loss of prey such as the amphipods Diporeia spp.

  6. 33 CFR 334.830 - Lake Michigan; small-arms range adjacent to U.S. Naval Training Center, Great Lakes, Ill.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... adjacent to U.S. Naval Training Center, Great Lakes, Ill. 334.830 Section 334.830 Navigation and Navigable... REGULATIONS § 334.830 Lake Michigan; small-arms range adjacent to U.S. Naval Training Center, Great Lakes, Ill... section shall be enforced by the Commander, U.S. Naval Training Center, Great Lakes, Illinois, and...

  7. Highest pluvial-lake shorelines and Pleistocene climate of the western Great Basin

    USGS Publications Warehouse

    Reheis, M.

    1999-01-01

    Shoreline altitudes of several pluvial lakes in the western Great Basin of North America record successively smaller lakes from the early to the late Pleistocene. This decrease in lake size indicates a long-term drying trend in the regional climate that is not seen in global marine oxygen-isotope records. At +70 m above its late Pleistocene shoreline, Lake Lahontan in the early middle Pleistocene submerged some basins previously thought to have been isolated. Other basins known to contain records of older pluvial lakes that exceeded late Pleistocene levels include Columbus-Fish Lake (Lake Columbus-Rennie), Kobeh-Diamond (Lakes Jonathan and Diamond), Newark, Long (Lake Hubbs), and Clover. Very high stands of some of these lakes probably triggered overflows of previously internally drained basins, adding to the size of Lake Lahontan. Simple calculations based on differences in lake area suggest that the highest levels of these pluvial lakes required a regional increase in effective moisture by a factor of 1.2 to 3 relative to late Pleistocene pluvial amounts (assuming that effective moisture is directly proportional to the hydrologic index, or lake area/tributary basin area). These previously unknown lake levels reflect significant changes in climate, tectonics, and (or) drainage-basin configurations, and could have facilitated migration of aquatic species in the Great Basin.

  8. Biological Effects–Based Tools for Monitoring Impacted Surface Waters in the Great Lakes: A Multiagency Program in Support of the Great Lakes Restoration Initiative

    EPA Science Inventory

    There is increasing demand for the implementation of effects-based monitoring and surveillance (EBMS) approaches in the Great Lakes Basin to complement traditional chemical monitoring. Herein, we describe an ongoing multiagency effort to develop and implement EBMS tools, particul...

  9. Halogenated flame retardants in the Great Lakes environment.

    PubMed

    Venier, Marta; Salamova, Amina; Hites, Ronald A

    2015-07-21

    Flame retardants are widely used industrial chemicals that are added to polymers, such as polyurethane foam, to prevent them from rapidly burning if exposed to a small flame or a smoldering cigarette. Flame retardants, especially brominated flame retardants, are added to many polymeric products at percent levels and are present in most upholstered furniture and mattresses. Most of these chemicals are so-called "additive" flame retardants and are not chemically bound to the polymer; thus, they migrate from the polymeric materials into the environment and into people. As a result, some of these chemicals have become widespread pollutants, which is a concern given their possible adverse health effects. Perhaps because of their environmental ubiquity, the most heavily used group of brominated flame retardants, the polybrominated diphenyl ethers (PBDEs), was withdrawn from production and use during the 2004-2013 period. This led to an increasing demand for other flame retardants, including other brominated aromatics and organophosphate esters. Although little is known about the use or production volumes of these newer flame retardants, it is evident that some of these chemicals are also becoming pervasive in the environment and in humans. In this Account, we describe our research on the occurrence of halogenated and organophosphate flame retardants in the environment, with a specific focus on the Great Lakes region. This Account starts with a short introduction to the first generation of brominated flame retardants, the polybrominated biphenyls, and then presents our measurements of their replacement, the PBDEs. We summarize our data on PBDE levels in babies, bald eagles, and in air. Once these compounds came off the market, we began to measure several of the newer flame retardants in air collected on the shores of the Great Lakes once every 12 days. These new measurements focus on a tetrabrominated benzoate, a tetrabrominated phthalate, a hexabrominated diphenoxyethane

  10. Halogenated flame retardants in the Great Lakes environment.

    PubMed

    Venier, Marta; Salamova, Amina; Hites, Ronald A

    2015-07-21

    Flame retardants are widely used industrial chemicals that are added to polymers, such as polyurethane foam, to prevent them from rapidly burning if exposed to a small flame or a smoldering cigarette. Flame retardants, especially brominated flame retardants, are added to many polymeric products at percent levels and are present in most upholstered furniture and mattresses. Most of these chemicals are so-called "additive" flame retardants and are not chemically bound to the polymer; thus, they migrate from the polymeric materials into the environment and into people. As a result, some of these chemicals have become widespread pollutants, which is a concern given their possible adverse health effects. Perhaps because of their environmental ubiquity, the most heavily used group of brominated flame retardants, the polybrominated diphenyl ethers (PBDEs), was withdrawn from production and use during the 2004-2013 period. This led to an increasing demand for other flame retardants, including other brominated aromatics and organophosphate esters. Although little is known about the use or production volumes of these newer flame retardants, it is evident that some of these chemicals are also becoming pervasive in the environment and in humans. In this Account, we describe our research on the occurrence of halogenated and organophosphate flame retardants in the environment, with a specific focus on the Great Lakes region. This Account starts with a short introduction to the first generation of brominated flame retardants, the polybrominated biphenyls, and then presents our measurements of their replacement, the PBDEs. We summarize our data on PBDE levels in babies, bald eagles, and in air. Once these compounds came off the market, we began to measure several of the newer flame retardants in air collected on the shores of the Great Lakes once every 12 days. These new measurements focus on a tetrabrominated benzoate, a tetrabrominated phthalate, a hexabrominated diphenoxyethane

  11. Isotopic Fractionation of Mercury in Great Lakes Precipitation

    NASA Astrophysics Data System (ADS)

    Gratz, L. E.; Keeler, G. J.; Blum, J. D.; Sherman, L. S.

    2009-12-01

    Mercury (Hg) is a hazardous bioaccumulative neurotoxin, and atmospheric deposition is a primary way in which mercury enters terrestrial and aquatic ecosystems. However, the chemical processes and transport regimes that mercury undergoes from emission to deposition are not well understood. Thus the use of mercury isotopes to characterize the biogeochemical cycling of mercury is a rapidly growing area of study. Precipitation samples were collected in Chicago, IL, Holland, MI, and Dexter, MI from April 2007 - October 2007 to begin examining the isotopic fractionation of atmospheric mercury in the Great Lakes region. Results show that mass-dependent fractionation relative to NIST-3133 (MDF - δ202Hg) ranged from -0.8‰ to 0.2‰ (±0.2‰) in precipitation samples, while mass-independent fractionation (MIF - Δ199Hg) varied from 0.1‰ to 0.6‰ (±0.1‰). Although clear urban-rural differences were not observed, this may be due to the weekly collection of precipitation samples rather than collection of individual events, making it difficult to truly characterize the meteorology and source influences associated with each sample and suggesting that event-based collection is necessary during future sampling campaigns. Additionally, total vapor phase mercury samples were collected in Dexter, MI in 2009 to examine isotopic fractionation of mercury in ambient air. In ambient samples δ202Hg ranged from 0.3‰ to 0.5‰ (±0.1‰), however Δ199Hg was not significant. Because mercury in precipitation is predominantly Hg2+, while ambient vapor phase mercury is primarily Hg0, these results may suggest the occurrence of MIF during the oxidation of Hg0 to Hg2+ prior to deposition. Furthermore, although it has not been previously reported or predicted, MIF of 200Hg was also detected. Δ200Hg ranged from 0.0‰ to 0.2‰ in precipitation and from -0.1‰ to 0.0‰ in ambient samples. This work resulted in methodological developments in the collection and processing of

  12. Caddisflies (Insecta: Trichoptera) of fringing wetlands of the Laurentian Great Lakes

    USGS Publications Warehouse

    Armitage, Brian J.; Hudson, Patrick L.; Wilcox, Douglas A.

    2001-01-01

    Fringing wetlands of the Laurentian Great Lakes are subject to natural processes, such as water-level fluctuation and wave-induced erosion, and to human alterations. In order to evaluate the quality of these wetlands over space and time, biological communities are often examined. This paper reports on the use of adult caddisflies to evaluate fringing wetlands of Lake Huron, Lake Michigan, and Lake Superior.

  13. Compsopogon cf. coeruleus, a benthic red alga (Rhodophyta) new to the Laurentian Great Lakes

    USGS Publications Warehouse

    Manny, Bruce A.; Edsall, Thomas A.; Wujek, Daniel E.

    1991-01-01

    We found Compsopogon cf. coeruleus for the first time in the Laurentian Great Lakes, growing on limestone rocks at a depth of 21 m on Six Fathom Bank in central Lake Huron. It is the first freshwater red alga to be found in the Great Lakes and the only red alga ever found on an offshore reef in the Great Lakes. However, because this alga usually inhabits water 10–28 °C and has not survived freezing winter temperatures elsewhere, it may not be a permanent member of the flora.

  14. Geographic setting influences Great Lakes beach microbiological water quality

    USGS Publications Warehouse

    Haack, Sheridan K.; Fogarty, Lisa R.; Stelzer, Erin A.; Fuller, Lori M.; Brennan, Angela K.; Isaacs, Natasha M.; Johnson, Heather E.

    2013-01-01

    Understanding of factors that influence Escherichia coli (EC) and enterococci (ENT) concentrations, pathogen occurrence, and microbial sources at Great Lakes beaches comes largely from individual beach studies. Using 12 representative beaches, we tested enrichment cultures from 273 beach water and 22 tributary samples for EC, ENT, and genes indicating the bacterial pathogens Shiga-toxin producing E. coli (STEC), Shigella spp., Salmonella spp, Campylobacter jejuni/coli, and methicillin-resistant Staphylococcus aureus, and 108–145 samples for Bacteroides human, ruminant, and gull source-marker genes. EC/ENT temporal patterns, general Bacteroides concentration, and pathogen types and occurrence were regionally consistent (up to 40 km), but beach catchment variables (drains/creeks, impervious surface, urban land cover) influenced exceedances of EC/ENT standards and detections of Salmonella and STEC. Pathogen detections were more numerous when the EC/ENT Beach Action Value (but not when the Geometric Mean and Statistical Threshold Value) was exceeded. EC, ENT, and pathogens were not necessarily influenced by the same variables. Multiple Bacteroides sources, varying by date, occurred at every beach. Study of multiple beaches in different geographic settings provided new insights on the contrasting influences of regional and local variables, and a broader-scale perspective, on significance of EC/ENT exceedances, bacterial sources, and pathogen occurrence.

  15. Geographic setting influences Great Lakes beach microbiological water quality.

    PubMed

    Haack, Sheridan K; Fogarty, Lisa R; Stelzer, Erin A; Fuller, Lori M; Brennan, Angela K; Isaacs, Natasha M; Johnson, Heather E

    2013-01-01

    Understanding of factors that influence Escherichia coli (EC) and enterococci (ENT) concentrations, pathogen occurrence, and microbial sources at Great Lakes beaches comes largely from individual beach studies. Using 12 representative beaches, we tested enrichment cultures from 273 beach water and 22 tributary samples for EC, ENT, and genes indicating the bacterial pathogens Shiga-toxin producing E. coli (STEC), Shigella spp. , Salmonella spp , Campylobacter jejuni/coli , and methicillin-resistant Staphylococcus aureus , and 108-145 samples for Bacteroides human, ruminant, and gull source-marker genes. EC/ENT temporal patterns, general Bacteroides concentration, and pathogen types and occurrence were regionally consistent (up to 40 km), but beach catchment variables (drains/creeks, impervious surface, urban land cover) influenced exceedances of EC/ENT standards and detections of Salmonella and STEC. Pathogen detections were more numerous when the EC/ENT Beach Action Value (but not when the Geometric Mean and Statistical Threshold Value) was exceeded. EC, ENT, and pathogens were not necessarily influenced by the same variables. Multiple Bacteroides sources, varying by date, occurred at every beach. Study of multiple beaches in different geographic settings provided new insights on the contrasting influences of regional and local variables, and a broader-scale perspective, on significance of EC/ENT exceedances, bacterial sources, and pathogen occurrence.

  16. Coastal processes influencing water quality at Great Lakes beaches

    USGS Publications Warehouse

    ,

    2013-01-01

    In a series of studies along the Great Lakes, U.S. Geological Survey scientists are examining the physical processes that influence concentrations of fecal indicator bacteria and related pathogens at recreational beaches. These studies aim to estimate human health risk, improve management strategies, and understand the fate and transport of microbes in the nearshore area. It was determined that embayed beaches act as traps, accumulating Escherichia coli (E. coli) and other bacteria in the basin and even in beach sand. Further, shear stress and wave run-up could resuspend accumulated bacteria, leading to water-contamination events. These findings are being used to target beach design and circulation projects. In previous research, it was determined that E. coli followed a diurnal pattern, with concentrations decreasing throughout the day, largely owing to solar inactivation, but rebounding overnight. Studies at a Chicago beach identified the impact of wave-induced mass transport on this phenomenon, a finding that will extend our understanding of bacterial fate in the natural environment. In another series of studies, scientists examined the impact of river outfalls on bacteria concentrations, using mechanistic and empirical modeling. Through these studies, the models can indicate range and extent of impact, given E. coli concentration in the source water. These findings have been extended to extended lengths of coastlines and have been applied in beach management using empirical predictive modeling. Together, these studies are helping scientists identify and eliminate threats to human and coastal health.

  17. Genetic population structure of muskellunge in the Great Lakes

    USGS Publications Warehouse

    Kapuscinski, Kevin L.; Sloss, Brian L.; Farrell, John M.

    2013-01-01

    We quantified genetic relationships among Muskellunge Esox masquinongy from 15 locations in the Great Lakes to determine the extent and distribution of measurable population structure and to identify appropriate spatial scales for fishery management and genetic conservation. We hypothesized that Muskellunge from each area represented genetically distinct populations, which would be evident from analyses of genotype data. A total of 691 Muskellunge were sampled (n = 10–127/site) and genetic data were collected at 13 microsatellite loci. Results from a suite of analyses (including pairwise genetic differentiation, Bayesian admixture prediction, analysis of molecular variance, and tests of isolation by distance) indicated the presence of nine distinct genetic groups, including two that were approximately 50 km apart. Geographic proximity and low habitat complexity seemed to facilitate genetic similarity among areas, whereas Muskellunge from areas of greater habitat heterogeneity exhibited high differentiation. Muskellunge from most areas contained private alleles, and mean within-area genetic variation was similar to that reported for other freshwater fishes. Management programs aimed at conserving the broader diversity and long-term sustainability of Muskellunge could benefit by considering the genetically distinct groups as independent fisheries, and individual spawning and nursery habitats could subsequently be protected to conserve the evolutionary potential of Muskellunge.

  18. Toxaphene congeners in the Canadian Great Lakes basin: temporal and spatial food web dynamics.

    PubMed

    Whittle, D M; Kiriluk, R M; Carswell, A A; Keir, M J; MacEachen, D C

    2000-01-01

    Samples of a top predator fish species, lake trout (Salvelinus namaycush) and predominant forage species including smelt (Osmerus mordax), alewife (Alosa pseudoharengus), slimy sculpin (Cottus cognatus), deepwater sculpin (Myoxocephalus quadricornis) and lake herring (Coregonus artedii) were, collected from throughout 4 of the 5 Great Lakes (Superior, Huron, Erie and Ontario) (Fig. 1). Lake trout were also collected from three isolated lake systems (Lakes Nipigon, Simcoe and Opeongo), all located within the basin. All the samples were analysed for body burdens of total toxaphene and 22 toxaphene congeners. In addition, from each of the Great Lakes sites samples of major invertebrate dietary items, which included Mysis relicta, Diporeia hoyi and plankton, were similarly analysed. Whole lake trout samples, archived at -80 degrees C, were reanalysed to determine historical trends of toxaphene congeners plus carbon and nitrogen stable isotope signatures. The Lake Superior food web consistently had the highest levels of total toxaphene of all the Great Lakes monitored. The primary source of toxaphene to Lake Superior has been identified as atmospheric transport and deposition from sites in the southern US, Mexico and Central America (Hoff, R.M., Strachan, W.M.J., Sweet, C.W., Chan, C.H., Shackelton, M., Bidleman, T.F., Brice, K.A., Burnison, D.A., Cussion, S., Gatz, D.F., Harlin, K., Schroeder, W.H., 1996. Atmospheric deposition of toxic chemicals to the Great Lakes: A review of data through 1994. Atmospheric Environ. 30, 3505-3527). Of the offsystem lakes surveyed. Lake Nipigon, situated due north of Lake Superior and with a Lake Basin area of about 6% of Lake Superior (Hendendorf, C.E., 1982. J. Great Lakes Res. 8(3), 379-412) had total toxaphene levels in lake trout equivalent to about 50% of those found in lake trout from Lake Superior. Temporal trend toxaphene congener analysis was conducted on archived whole fish samples collected over the period 1980 through to

  19. Potential Impacts of Climate Change on Water Resources in the Great Lakes Region

    NASA Astrophysics Data System (ADS)

    Wuebbles, D. J.; Hayhoe, K.; Cherkauer, K.

    2008-12-01

    Climate-driven changes in temperature and precipitation are projected to affect many aspects of water resources. Here, we provide examples of several case studies demonstrating the potential effects of climate change on soil moisture, river and stream flow, and lake levels in the Great Lakes and the Midwest. Using the Variable Infiltration Capacity (VIC) large-scale hydrology model and the NOAA/GLERL Great Lakes basin model driven by gridded historical meteorology and statistically downscaled future global climate model projections, simulations of future changes under IPCC emissions scenarios were conducted. Runoff and baseflow are routed to produce streamflow and inputs to the Great Lakes, which are analyzed to identify potential future trends in streamflow characteristics and lake inputs. Additionally, the VIC model with lake and wetland algorithm was also run to study trends in lake ice phenology for Minnesota, Wisconsin and Michigan. In general, we find that warming has been reducing the duration of ice cover on regional lakes in the last 50 years, and based on the future projections many lakes, especially in the southern parts of these states will be essentially ice-free by the end of the century. Under lower emissions over most of this century, competing effects suggest no net changes in Great Lake levels. Under higher emissions, however, the effects of greater temperature increases are projected to begin to dominate over the longer term, leading to lake level decreases of one to three feet before the end of the century.

  20. Genetic diversity of wild and hatchery lake trout populations: Relevance for management and restoration in the Great Lakes

    USGS Publications Warehouse

    Page, K.S.; Scribner, K.T.; Burnham-Curtis, M.

    2004-01-01

    The biological diversity of lake trout Salvelinus namaycush in the upper Great Lakes was historically high, consisting of many recognizable morphological types and discrete spawning populations. During the 1950s and 1960s, lake trout populations were extirpated from much of the Great Lakes primarily as a result of overfishing and predation by the parasitic sea lamprey Petromyzon marinus. Investigations of how genetic diversity is partitioned among remnant wild lake trout populations and hatchery broodstocks have been advocated to guide lake trout management and conservation planning. Using microsatellite genetic markers, we estimated measures of genetic diversity and the apportionment of genetic variance among 6 hatchery broodstocks and 10 wild populations representing three morphotypes (lean, humper, and siscowet). Analyses revealed that different hatchery broodstocks and wild populations contributed disproportionally to the total levels of genetic diversity. The genetic affinities of hatchery lake trout reflected the lake basins of origin of the wild source populations. The variance in allele frequency over all sampled extant wild populations was apportioned primarily on the basis of morphotype (??MT = 0.029) and secondarily among geographically dispersed populations within each morphotype (??ST = 0.024). The findings suggest that the genetic divergence reflected in recognized morphotypes and the associated ecological and physiological specialization occurred prior to the partitioning of large proglacial lakes into the Great Lakes or as a consequence of higher contemporary levels of gene flow within than among morphotypes. Information on the relative contributions of different broodstocks to total gene diversity within the regional hatchery program can be used to prioritize the broodstocks to be retained and to guide future stocking strategies. The findings highlight the importance of ecological and phenotypic diversity in Great Lakes fish communities and

  1. 40 CFR 132.6 - Application of part 132 requirements in Great Lakes States and Tribes.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... PROTECTION AGENCY (CONTINUED) WATER PROGRAMS WATER QUALITY GUIDANCE FOR THE GREAT LAKES SYSTEM § 132.6... of Procedure 5 in Appendix F of this Part shall apply to discharges within the Great Lakes System in... System in the State of Illinois. (c) Effective September 5, 2000, the requirements of Paragraphs C.1...

  2. 40 CFR Appendix E to Part 132 - Great Lakes Water Quality Initiative Antidegradation Policy

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... (CONTINUED) WATER PROGRAMS WATER QUALITY GUIDANCE FOR THE GREAT LAKES SYSTEM Pt. 132, App. E Appendix E to... shall adopt an antidegradation standard applicable to all waters of the Great Lakes System and identify the methods for implementing such a standard. Consistent with 40 CFR 131.12, an...

  3. 47 CFR 80.308 - Watch required by the Great Lakes Radio Agreement.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 5 2010-10-01 2010-10-01 false Watch required by the Great Lakes Radio... SPECIAL RADIO SERVICES STATIONS IN THE MARITIME SERVICES Safety Watch Requirements and Procedures Ship Station Safety Watches § 80.308 Watch required by the Great Lakes Radio Agreement. (a) Each ship of...

  4. 47 CFR 80.161 - Operator requirements of the Great Lakes Radio Agreement.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 5 2010-10-01 2010-10-01 false Operator requirements of the Great Lakes Radio... SPECIAL RADIO SERVICES STATIONS IN THE MARITIME SERVICES Operator Requirements Ship Station Operator Requirements § 80.161 Operator requirements of the Great Lakes Radio Agreement. Each ship subject to the...

  5. Mapping ecosystem services in a Great Lakes estuary supports local decision-making

    EPA Science Inventory

    Estuaries of the Laurentian Great Lakes provide a concentrated supply of ecosystem goods and services from which humans benefit. As long-term centers of human activity, most estuaries of the Great Lakes and have a legacy of chemical contamination, degraded habitats, and non-point...

  6. WETLAND MORPHOLOGIC AND BIOGEOGRAPHIC INFLUENCES ON ALGAL RESPONSES TO NUTRIENT LOADING IN GREAT LAKES COASTAL WETLANDS

    EPA Science Inventory

    We are testing the influence of wetland morphology (protected vs. riverine) and biogeography (upper vs. lower Great Lakes) on algal responses to nutrients in Great Lakes Coastal wetlands. Principal components analysis using nutrient-specific GIS data was used to select sites wit...

  7. 77 FR 38803 - Request for Nominations to the Great Lakes Advisory Board (GLAB)

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-29

    ... an effort to obtain nominations of diverse candidates, the agency encourages nominations of women and men of all racial and ethnic groups. All nominations will be fully considered, but applicants need to... Great Lakes issues; Leadership experience in Great Lakes organizations, businesses and...

  8. Citizens' Guide to Biomonitoring in the Great Lakes and St. Lawrence River.

    ERIC Educational Resources Information Center

    Great Lakes United, Buffalo, NY.

    The purpose of this report is to present the issues surrounding biomonitoring of wastewaters discharged into the Great Lakes Basin. Biomonitoring is the process of using organisms to monitor the toxicity of a substance. The report reflects an interest in seeing zero discharge of toxic pollutants in the Great Lakes region. The report is organized…

  9. Eighteen Years of the Great Lakes Regional Counseling Psychology Conference: Revisiting the Need for Regional Conferences

    ERIC Educational Resources Information Center

    Delgado-Romero, Edward A.; Bowman, Sharon L.; Gerstein, Lawrence H.

    2006-01-01

    The Great Lakes Regional Conference on Counseling Psychology is the only conference to continuously fulfill the 1987 mandate issued by Division 17 for regional counseling conferences. The rationale for regional conferences is reviewed, and the 18-year history of the Great Lakes Regional Conference is examined. The authors conclude by noting the…

  10. VARIABILITY, PATTERN, AND SENSITIVITY OF ECOLOGICAL INDICAORS FOR NEARSHORE REGIONS OF THE GREAT LAKES

    EPA Science Inventory

    Associated with the Great Lakes Environmental Indicators (GLEI) project of the EaGLe program, we are evaluating a suite of indicators of ecological condition for the nearshore region of U.S. shorelines of the Great Lakes. The evaluation includes sampling conducted at limited fix...

  11. 47 CFR 80.308 - Watch required by the Great Lakes Radio Agreement.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 5 2014-10-01 2014-10-01 false Watch required by the Great Lakes Radio... SPECIAL RADIO SERVICES STATIONS IN THE MARITIME SERVICES Safety Watch Requirements and Procedures Ship Station Safety Watches § 80.308 Watch required by the Great Lakes Radio Agreement. (a) Each ship of...

  12. 47 CFR 80.161 - Operator requirements of the Great Lakes Radio Agreement.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 5 2014-10-01 2014-10-01 false Operator requirements of the Great Lakes Radio... SPECIAL RADIO SERVICES STATIONS IN THE MARITIME SERVICES Operator Requirements Ship Station Operator Requirements § 80.161 Operator requirements of the Great Lakes Radio Agreement. Each ship subject to the...

  13. 76 FR 50713 - 2012 Rates for Pilotage on the Great Lakes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-16

    ....Haviland@uscg.mil , or fax 202-372-1909. SUPPLEMENTARY INFORMATION: Correction In proposed rule FR Doc... SECURITY Coast Guard 46 CFR Part 401 RIN 1625-AB70 2012 Rates for Pilotage on the Great Lakes AGENCY: Coast... pilotage on the Great Lakes. This correction provides four rows that were missing from Table 36 in...

  14. The Impact of Television on Public Environmental Knowledge Concerning the Great Lakes.

    ERIC Educational Resources Information Center

    Brothers, Christine C.

    The purpose of this study was to collect baseline information about public knowledge of and opinions toward the Great Lakes and to measure the impact of a television news program in educating adults about the Great Lakes. Survey questionnaires containing multiple-choice knowledge items and Likert scale opinion statements were completed by 570…

  15. The Great Lake Erie: A Reference Text for Educators and Communicators.

    ERIC Educational Resources Information Center

    Fortner, Rosanne W., Ed.; Mayer, Victor J., Ed.

    This volume of 16 chapters by 15 contributing authors was conceived as a means of drawing together a body of basic information about the Great Lakes that is up to date, based on sound research, and interpreted by experts in the scientific, historical, environmental and political value of the Great Lakes to North America and the world. Chapters…

  16. 77 FR 58204 - International Joint Commission Invites Public Comment on Upper Great Lakes Report via...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-19

    ... International Joint Commission Invites Public Comment on Upper Great Lakes Report via Teleconference and Extends Public Comment Period The International Joint Commission (IJC) announced that it is holding a teleconference to invite public comment on the final report of its International Upper Great Lakes Study...

  17. Status of the amphipod Diporeia ssp. in coastal waters of the Laurentian Great Lakes

    EPA Science Inventory

    Diporeia has historically been the dominant benthic macroinvertebrate in deeper waters of the Laurentian Great Lakes, and its abundance has been proposed as an indicator of ecological condition. In 2010, the USEPA incorporated the Great Lakes into the National Coastal Condition A...

  18. 47 CFR 80.308 - Watch required by the Great Lakes Radio Agreement.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 5 2013-10-01 2013-10-01 false Watch required by the Great Lakes Radio... SPECIAL RADIO SERVICES STATIONS IN THE MARITIME SERVICES Safety Watch Requirements and Procedures Ship Station Safety Watches § 80.308 Watch required by the Great Lakes Radio Agreement. (a) Each ship of...

  19. 47 CFR 80.308 - Watch required by the Great Lakes Radio Agreement.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 5 2012-10-01 2012-10-01 false Watch required by the Great Lakes Radio... SPECIAL RADIO SERVICES STATIONS IN THE MARITIME SERVICES Safety Watch Requirements and Procedures Ship Station Safety Watches § 80.308 Watch required by the Great Lakes Radio Agreement. (a) Each ship of...

  20. 47 CFR 80.308 - Watch required by the Great Lakes Radio Agreement.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 5 2011-10-01 2011-10-01 false Watch required by the Great Lakes Radio... SPECIAL RADIO SERVICES STATIONS IN THE MARITIME SERVICES Safety Watch Requirements and Procedures Ship Station Safety Watches § 80.308 Watch required by the Great Lakes Radio Agreement. (a) Each ship of...

  1. 47 CFR 80.161 - Operator requirements of the Great Lakes Radio Agreement.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 5 2012-10-01 2012-10-01 false Operator requirements of the Great Lakes Radio... SPECIAL RADIO SERVICES STATIONS IN THE MARITIME SERVICES Operator Requirements Ship Station Operator Requirements § 80.161 Operator requirements of the Great Lakes Radio Agreement. Each ship subject to the...

  2. 47 CFR 80.161 - Operator requirements of the Great Lakes Radio Agreement.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 5 2011-10-01 2011-10-01 false Operator requirements of the Great Lakes Radio... SPECIAL RADIO SERVICES STATIONS IN THE MARITIME SERVICES Operator Requirements Ship Station Operator Requirements § 80.161 Operator requirements of the Great Lakes Radio Agreement. Each ship subject to the...

  3. 47 CFR 80.161 - Operator requirements of the Great Lakes Radio Agreement.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 5 2013-10-01 2013-10-01 false Operator requirements of the Great Lakes Radio... SPECIAL RADIO SERVICES STATIONS IN THE MARITIME SERVICES Operator Requirements Ship Station Operator Requirements § 80.161 Operator requirements of the Great Lakes Radio Agreement. Each ship subject to the...

  4. The use of ERTS-1 imagery in air pollution and mesometeorological studies around the Great Lakes

    NASA Technical Reports Server (NTRS)

    Lyons, W. A.; Northouse, R. A.

    1974-01-01

    ERTS-1 images continue to be highly useful in studies of: (1) long range transport of air pollutants over the Great Lakes; (2) the mesoscale atmospheric dynamics associated with episodic levels of photochemical smog along the western shore of Lake Michigan; and (3) inadvertant weather modification by large industrial complexes. Also unusual wave patterns in fogs and low stratus over the Great Lakes are being detected for the first time due to the satellites high resolution.

  5. Coastal groundwater/surface-water interactions: a Great Lakes case study

    USGS Publications Warehouse

    Neff, Brian P.; Haack, Sheridan K.; Rosenberry, Donald O.; Savino, Jacqueline F.; Lundstrom, Scott C.

    2006-01-01

    Key similarities exist between marine and Great Lakes coastal environments. Water and nutrient fluxes across lakebeds in the Great Lakes are influenced by seiche and wind set-up and set-down, analogous to tidal influence in marine settings. Groundwater/surface-water interactions also commonly involve a saline-fresh water interface, although in the Great-Lakes cases, it is groundwater that is commonly saline and surface water that is fresh. Evapotranspiration also affects nearshore hydrology in both settings. Interactions between groundwater and surface water have recently been identified as an important component of ecological processes in the Great Lakes. Water withdrawals and the reversal of the groundwater/surface water seepage gradient are also common to many coastal areas around the Great Lakes. As compared to surface water, regional groundwater that discharges to western Lake Erie from Michigan is highly mineralized. Studies conducted by the U.S. Geological Survey at Erie State Game Area in southeastern Michigan, describe groundwater flow dynamics and chemistry, shallow lake-water chemistry, and fish and invertebrate communities. Results presented here provide an overview of recent progress of ongoing interdisciplinary studies of Great Lakes nearshore systems and describe a conceptual model that identifies relations among geologic, hydrologic, chemical, and biological processes in the coastal habitats of Lake Erie. This conceptual model is based on analysis of hydraulic head in piezometers at the study site and chemical analysis of deep and shallow coastal groundwater.

  6. Turbidity as a factor in the decline of Great Lakes fishes with special reference to Lake Erie

    USGS Publications Warehouse

    Van Oosten, John

    1948-01-01

    All of the evidence indicates, then, that soil erosion on farms and the turbidity of the water were not major factors, if operative at all, in the decline of Great Lakes fishes and that they did not make Lake Erie unsuitable for fish life.

  7. Watershed and Lake Influences on the Energetic Base of Coastal Wetland Food Webs across the Great Lakes Basin

    EPA Science Inventory

    This manuscript examines the responses of Great Lakes coastal wetland food webs to nutrient enrichment and identifies three classes of systems whose food webs respond differently. Or is that differentially? Anyway, coastal wetlands with relatively long hydraulic residence times ...

  8. Phylogenetic and ecological characteristics associated with thiaminase activity in Laurentian Great Lakes fishes

    USGS Publications Warehouse

    Riley, S.C.; Evans, A.N.

    2008-01-01

    Thiamine deficiency complex (TDC) causes mortality and sublethal effects in Great Lakes salmonines and results from low concentrations of egg thiamine that are thought to be caused by thiaminolytic enzymes (i.e., thiaminase) present in the diet. This complex has the potential to undermine efforts to restore lake trout Salvelinus namaycush and severely restrict salmonid production in the Great Lakes. Although thiaminase has been found in a variety of Great Lakes fishes, the ultimate source of thiaminase in Great Lakes fishes is currently unknown. We used logistic regression analysis to investigate relationships between thiaminase activity and phylogenetic or ecological characteristics of 39 Great Lakes fish species. The taxonomically more ancestral species were more likely to show thiaminase activity than the more derived species. Species that feed at lower trophic levels and occupy benthic habitats also appeared to be more likely to show thiaminase activity; these variables were correlated with taxonomy, which was the most important predictor of thiaminase activity. Further analyses of the relationship between quantitative measures of thiaminase activity and ecological characteristics of Great Lakes fish species would provide greater insight into potential sources and pathways of thiaminase in Great Lakes food webs. ?? Copyright by the American Fisheries Society 2008.

  9. Recent desiccation of Western Great Basin Saline Lakes: Lessons from Lake Abert, Oregon, U.S.A.

    PubMed

    Moore, Johnnie N

    2016-06-01

    Although extremely important to migrating waterfowl and shorebirds, and highly threatened globally, most saline lakes are poorly monitored. Lake Abert in the western Great Basin, USA, is an example of this neglect. Designated a critical habitat under the Western Hemisphere Shorebird Reserve Network, the lake is at near record historic low levels and ultra-high salinities that have resulted in ecosystem collapse. Determination of the direct human effects and broader climate controls on Lake Abert illustrates the broader problem of saline lake desiccation and suggests future solutions for restoration of key habitat values. A 65-year time series of lake area was constructed from Landsat images and transformed to lake volume and salinity. "Natural" (without upstream withdrawals) conditions were calculated from climate and stream flow data, and compared to measured volume and salinity. Under natural conditions the lake would have higher volume and lower salinities because annual water withdrawals account for one-third of mean lake volume. Without withdrawals, the lake would have maintained annual mean salinities mostly within the optimal range of brine shrimp and alkali fly growth. Even during the last two years of major drought, the lake would have maintained salinities well below measured values. Change in climate alone would not produce the recent low lake volumes and high salinities that have destroyed the brine shrimp and alkali fly populations and depleted shorebird use at Lake Abert. Large scale withdrawal of water for direct human use has drastically increased the imbalance between natural runoff and evaporation during periods of drought in saline lakes worldwide but could be offset by establishing an "environmental water budget" to lay a foundation for the conservation of saline lake habitats under continued threats from development and climate change. PMID:26950628

  10. Recent desiccation of Western Great Basin Saline Lakes: Lessons from Lake Abert, Oregon, U.S.A.

    PubMed

    Moore, Johnnie N

    2016-06-01

    Although extremely important to migrating waterfowl and shorebirds, and highly threatened globally, most saline lakes are poorly monitored. Lake Abert in the western Great Basin, USA, is an example of this neglect. Designated a critical habitat under the Western Hemisphere Shorebird Reserve Network, the lake is at near record historic low levels and ultra-high salinities that have resulted in ecosystem collapse. Determination of the direct human effects and broader climate controls on Lake Abert illustrates the broader problem of saline lake desiccation and suggests future solutions for restoration of key habitat values. A 65-year time series of lake area was constructed from Landsat images and transformed to lake volume and salinity. "Natural" (without upstream withdrawals) conditions were calculated from climate and stream flow data, and compared to measured volume and salinity. Under natural conditions the lake would have higher volume and lower salinities because annual water withdrawals account for one-third of mean lake volume. Without withdrawals, the lake would have maintained annual mean salinities mostly within the optimal range of brine shrimp and alkali fly growth. Even during the last two years of major drought, the lake would have maintained salinities well below measured values. Change in climate alone would not produce the recent low lake volumes and high salinities that have destroyed the brine shrimp and alkali fly populations and depleted shorebird use at Lake Abert. Large scale withdrawal of water for direct human use has drastically increased the imbalance between natural runoff and evaporation during periods of drought in saline lakes worldwide but could be offset by establishing an "environmental water budget" to lay a foundation for the conservation of saline lake habitats under continued threats from development and climate change.

  11. The Oligochaeta (Annelida, Clitellata) of the St. Lawrence Great Lakes region: An update

    USGS Publications Warehouse

    Spencer, Douglas R.; Hudson, Patrick L.

    2003-01-01

    An updated oligochaete species list for the Great Lakes region is provided. The list was developed through the reexamination of the taxa reported in a previous report in 1980, addition of new taxa or records collected from the region since 1980, and an update of taxonomy commensurate with systematic and nomenclatural changes over the intervening years since the last review. The authors found 74 papers mentioning Great Lakes oligochaete species. The majority of these papers were published in the 1980s. The literature review and additional collections resulted in 15 species being added to the previous list. Nine taxa were removed from the previous list due to misidentification, synonymies, level of identification, or inability to confirm the identity. Based on this review, 101 species of Oligochaeta are now known from the St. Lawrence Great Lakes watershed. Of these, 95 species are known from the St. Lawrence Great Lakes proper, with an additional 6 species recorded from the inland waters of the watershed. The greatest diversity of oligochaete species was found in the inland waters of the region (81) followed by Lake Huron (72), Lake Ontario (65), Lake Erie (64), Lake Superior (63), Lake Michigan (62), St. Marys River (60), Niagara River (49), Saginaw Bay (44), St. Clair River (37), Lake St. Clair (36), St. Lawrence River (27), and the Detroit River (21). Three species are suspected of being introduced, Branchiura sowerbyi, Gianius aquaedulcisand Ripistes parasita, and two are believed to be endemic, Thalassodrilus hallae andTeneridrilus flexus.

  12. Undiscovered oil and gas resources underlying the U.S. portions of the Great Lakes, 2005

    USGS Publications Warehouse

    Coleman, James L.; Swezey, Christopher S.; Ryder, Robert T.; Charpentier, Ronald R.

    2006-01-01

    The U.S. Geological Survey (USGS) completed an assessment of the undiscovered oil and gas potential of the U.S. portions of the Appalachian Basin and the Michigan Basin in 2002 and 2004, respectively. Following the assessments of these two basins, oil and gas allocations were assigned to the U.S. portions of the Great Lakes - Lake Superior (Michigan, Minnesota, and Wisconsin), Lake Michigan (Illinois, Indiana, Michigan, and Wisconsin), Lake Huron (Michigan), Lake Erie (Michigan, New York, Ohio, and Pennsylvania), and Lake Ontario (New York). Allocations for Lake St. Clair (Michigan) were included with those of Lake Erie. The allocations are based on the geologic elements of each total petroleum system defined in the region and the projected extent of those elements from onshore beneath each of the lakes. These geologic elements include the hydrocarbon source rocks, reservoir rocks, and traps. By using this geologic framework, the USGS defined 8 total petroleum systems and 21 assessment units within the Great Lakes and estimated the quantity of undiscovered technically recoverable oil and gas resources within 16 of the 21 assessment units in the Great Lakes.

  13. Do toxic substances pose a threat to rehabilitation of lake trout in the Great Lakes? A review of the literature

    USGS Publications Warehouse

    Zint, Michaela T.; Taylor, William W.; Carl, Leon; Edsall, Carol C.; Heinrich, John; Sippel, Al; Lavis, Dennis; Schaner, Ted

    1995-01-01

    Toxic substances have been suspected of being one of the causes of Great Lakes lake trout reproductive failure. Because toxic substances are present in the Great Lakes basin, managers should be aware of the role of contaminants in preventing lake trout rehabilitation. This paper summarizes studies which have sought to establish a relation between toxic substances and lake trout mortality or morbidity, and offers recommendations for future research and management. The review suggests that exposure to toxic substances has the possibility of affecting the species' rehabilitation. A variety of toxic substances, specifically organochlorine compounds, concentrated in lake trout eggs, fry, and the environment, have affected the hatching success of lake trout in the laboratory, but the strength of the relation between toxic substances and lake trout mortality and morbidity in the field remains unclear. In order to clarify this relation, more information is needed on lake trout physiology, biochemistry, behavior, and genetics. An interdisciplinary workshop should be convened to evaluate existing evidence by epidemiological methods, to set priorities for further research, and to develop management strategies.

  14. Nitrogen deposition to lakes in national parks of the western Great Lakes region: Isotopic signatures, watershed retention, and algal shifts

    NASA Astrophysics Data System (ADS)

    Hobbs, William O.; Lafrancois, Brenda Moraska; Stottlemyer, Robert; Toczydlowski, David; Engstrom, Daniel R.; Edlund, Mark B.; Almendinger, James E.; Strock, Kristin E.; VanderMeulen, David; Elias, Joan E.; Saros, Jasmine E.

    2016-03-01

    Atmospheric deposition is a primary source of reactive nitrogen (Nr) to undisturbed watersheds of the Great Lakes region of the U.S., raising concerns over whether enhanced delivery over recent decades has affected lake ecosystems. The National Atmospheric Deposition Program (NADP) has been measuring Nr deposition in this region for over 35 years. Here we explore the relationships among NADP-measured Nr deposition, nitrogen stable isotopes (δ15N) in lake sediments, and the response of algal communities in 28 lakes situated in national parks of the western Great Lakes region of the U.S. We find that 36% of the lakes preserve a sediment δ15N record that is statistically correlated with some form of Nr deposition (total dissolved inorganic N, nitrate, or ammonium). Furthermore, measured long-term (since 1982) nitrogen biogeochemistry and inferred critical nitrogen loads suggest that watershed nitrogen retention and climate strongly affect whether sediment δ15N is related to Nr deposition in lake sediment records. Measurements of algal change over the last ~ 150 years suggest that Nr deposition, in-lake nutrient cycling, and watershed inputs are important factors affecting diatom community composition, in addition to direct climatic effects on lake physical limnology. The findings suggest that bulk sediment δ15N does reflect Nr deposition in some instances. In addition, this study highlights the interactive effects of Nr deposition and climate variability.

  15. Factors of ecologic succession in oligotrophic fish communities of the Laurentian Great Lakes

    USGS Publications Warehouse

    Smith, Stanford H.

    1972-01-01

    Oligotrophic fish communities of the Great Lakes have undergone successive disruptions since the mid-1800s. Major contributing factors have been intensive selective fisheries, extreme modification of the drainage, invasion of marine species, and progressive physical–chemical changes of the lake environments. Lake Ontario was the first to be affected as its basin was settled and industrialized earliest, and it was the first to be connected by canals to the mid-Atlantic where the alewife (Alosa pseudoharengus) and sea lamprey (Petromyzon marinus) which ultimately became established in the Great Lakes were abundant. Oligotrophic fish communities were successively disrupted in Lakes Erie, Huron, Michigan, and Superior as the affects of population growth, industrialization, and marine invaders spread upward in the Laurentian drainage.The degree and sequence of response of families offish and species within families differed for each factor, but the sequence of change among families and species has been the same in response to each factor as it affected various lakes at different times. The ultimate result of the disruption of fish communities has been a reduction of productivity of oligotrophic species that ranges from extreme in Lake Ontario to moderate in Lake Superior, and which has reached a state of instability and rapid change in the upper three Great Lakes by the rnid-1900s similar to the situation in Lake Ontario in the mid-1800s. Since oligotrophic species (primarily salmonines, coregonines, and deepwater cottids) are the only kinds of fish that fully occupied the entire volume of the deepwater Great Lakes (Ontario, Huron, Michigan, and Superior), the fish biomass of these lakes has been reduced as various species declined or disappeared. In Lake Erie, which is shallow, and in the shallow bays of the deep lakes, oligotrophic species were replaced by mesotrophic species, primarily percids, which have successively increased and declined. All oligotrophic

  16. Mechanisms driving recruitment variability in fish: comparisons between the Laurentian Great Lakes and marine systems

    USGS Publications Warehouse

    Pritt, Jeremy J.; Roseman, Edward F.; O'Brien, Timothy P.

    2014-01-01

    In his seminal work, Hjort (in Fluctuations in the great fisheries of Northern Europe. Conseil Parmanent International Pour L'Exploration De La Mar. Rapports et Proces-Verbaux, 20: 1–228, 1914) observed that fish population levels fluctuated widely, year-class strength was set early in life, and egg production by adults could not alone explain variability in year-class strength. These observations laid the foundation for hypotheses on mechanisms driving recruitment variability in marine systems. More recently, researchers have sought to explain year-class strength of important fish in the Laurentian Great Lakes and some of the hypotheses developed for marine fisheries have been transferred to Great Lakes fish. We conducted a literature review to determine the applicability of marine recruitment hypotheses to Great Lakes fish. We found that temperature, interspecific interactions, and spawner effects (abundance, age, and condition of adults) were the most important factors in explaining recruitment variability in Great Lakes fish, whereas relatively fewer studies identified bottom-up trophodynamic factors or hydrodynamic factors as important. Next, we compared recruitment between Great Lakes and Baltic Sea fish populations and found no statistical difference in factors driving recruitment between the two systems, indicating that recruitment hypotheses may often be transferable between Great Lakes and marine systems. Many recruitment hypotheses developed for marine fish have yet to be applied to Great Lakes fish. We suggest that future research on recruitment in the Great Lakes should focus on forecasting the effects of climate change and invasive species. Further, because the Great Lakes are smaller and more enclosed than marine systems, and have abundant fishery-independent data, they are excellent candidates for future hypothesis testing on recruitment in fish.

  17. Herring gull eggs indicate stabilizing Great Lakes PCB concentrations

    SciTech Connect

    Stow, C.

    1995-12-31

    The author evaluated the fit of 3 alternative models to herring gull (Larus argentatus) egg PCB concentration data from 1978--1992 to examine whether PCB levels were decreasing or had ceased to decline. The best fit models indicate that, following initial declines, no discernible PCB decreases are occurring in 4 of the 5 lakes. Only Lake Erie indicates a continued PCB decline, though the Erie data may be too noisy to differentiate model fits. These results are consistent with previous analyses indicating stable PCB concentrations in Lake Michigan fishes and suggest that further improvements may be too slow to be of practical importance from a management perspective.

  18. 33 CFR 157.27 - Discharges: Tank vessels carrying oil exclusively on rivers, lakes, bays, sounds, and the Great...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... oil exclusively on rivers, lakes, bays, sounds, and the Great Lakes, and seagoing tank vessels of less... HOMELAND SECURITY (CONTINUED) POLLUTION RULES FOR THE PROTECTION OF THE MARINE ENVIRONMENT RELATING TO TANK... on rivers, lakes, bays, sounds, and the Great Lakes, and seagoing tank vessels of less than 150...

  19. 33 CFR 157.27 - Discharges: Tank vessels carrying oil exclusively on rivers, lakes, bays, sounds, and the Great...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... oil exclusively on rivers, lakes, bays, sounds, and the Great Lakes, and seagoing tank vessels of less... HOMELAND SECURITY (CONTINUED) POLLUTION RULES FOR THE PROTECTION OF THE MARINE ENVIRONMENT RELATING TO TANK... on rivers, lakes, bays, sounds, and the Great Lakes, and seagoing tank vessels of less than 150...

  20. 33 CFR 157.27 - Discharges: Tank vessels carrying oil exclusively on rivers, lakes, bays, sounds, and the Great...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... oil exclusively on rivers, lakes, bays, sounds, and the Great Lakes, and seagoing tank vessels of less... HOMELAND SECURITY (CONTINUED) POLLUTION RULES FOR THE PROTECTION OF THE MARINE ENVIRONMENT RELATING TO TANK... on rivers, lakes, bays, sounds, and the Great Lakes, and seagoing tank vessels of less than 150...

  1. 33 CFR 157.27 - Discharges: Tank vessels carrying oil exclusively on rivers, lakes, bays, sounds, and the Great...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... oil exclusively on rivers, lakes, bays, sounds, and the Great Lakes, and seagoing tank vessels of less... HOMELAND SECURITY (CONTINUED) POLLUTION RULES FOR THE PROTECTION OF THE MARINE ENVIRONMENT RELATING TO TANK... on rivers, lakes, bays, sounds, and the Great Lakes, and seagoing tank vessels of less than 150...

  2. 33 CFR 157.27 - Discharges: Tank vessels carrying oil exclusively on rivers, lakes, bays, sounds, and the Great...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... oil exclusively on rivers, lakes, bays, sounds, and the Great Lakes, and seagoing tank vessels of less... HOMELAND SECURITY (CONTINUED) POLLUTION RULES FOR THE PROTECTION OF THE MARINE ENVIRONMENT RELATING TO TANK... on rivers, lakes, bays, sounds, and the Great Lakes, and seagoing tank vessels of less than 150...

  3. Concentration and distribution of contaminants in lake trout and walleye from the Laurentian Great Lakes (2008-2012).

    PubMed

    McGoldrick, Daryl J; Murphy, Elizabeth W

    2016-10-01

    Biomonitoring programs for persistent, bioaccumulative, and/or toxic chemicals of concern in fish tissues have been operated by the governments of Canada and the United States in the Great Lakes since the 1970's. The objectives of these programs are to assess concentrations of harmful chemicals in whole body top predator fish as an indicator of ecosystem health and to infer potential harm to fish and fish consuming wildlife in the Great Lakes Basin. Chemicals of interest are selected based upon national and binational commitments, risk assessment, and regulation, and include a wide range of compounds. This review summarizes all available data generated by Environment Canada and the United States Environmental Protection Agency for chemicals measured in whole body homogenates of Lake Trout (Salvelinus namaycush) and Walleye (Sander vitreus) for the time period spanning 2008 to 2012 from each of the five Great Lakes. The summary shows that concentrations of legacy compounds, such as, POPs listed in the Stockholm Convention and mercury continue to dominate the chemical burden of Great Lakes fish. This assessment, and others like it, can guide the creation of environmental quality targets where they are lacking, optimize chemical lists for monitoring, and prioritize chemicals of concern under agreements such as the Great Lakes Water Quality Agreement and the Stockholm Convention.

  4. Association between winter precipitation and water level fluctuations in the Great Lakes and atmospheric circulation patterns

    SciTech Connect

    Rodionov, S.N.

    1994-11-01

    Atmospheric precipitation in the Great Lakes basin, as a major mediating variable between atmospheric circulation and lake levels, is analyzed relative to both. The effect of cumulative winter precipitation on lake levels varies from lake to lake and depends on both the state of the lake level itself and air temperature. For periods with a quasi-stable temperature regime, the correlation coefficient between winter precipitation and changes in lake levels from November to spring months reaches 0.8. An analysis of composite maps of mean winter 700-mb heights and sea level pressure for the years with well-above and well-below normal precipitation in the lower Great Lakes basin (Lakes Michigan-Huron, St. Clair, Erie, and Ontario) has shown that changes in precipitation are associated with the wave train structure in the lower and midtroposphere that is similar to the Pacific/North American (PNA) teleconnection pattern. During the positive phase of the PNA-like pattern, when the upper-atmospheric ridge/trough system is amplified, cyclones passing over the Great Lakes basin are frequently of Alberta (Canada) origin and carry relatively small amounts of precipitation. As a result, lake levels tend to decline. On the contrary, during the negative phase of the pattern when the atmospheric circulation is more zonal, the main storm track is oriented from the southwest to the northeast and cyclones bring enough precipitation to induce a rise in lake levels. The effect of the position of the upper-atmospheric trough over the east coast of North America on the precipitation regime in the Great Lakes basin is also demonstrated. 42 refs., 11 figs., 4 tabs.

  5. Remote sensing of Great Lakes water quality: Case studies of Saginaw Bay, Lake Huron and western Lake Erie

    NASA Astrophysics Data System (ADS)

    Budd, Judith Wells

    Zebra mussels (Dreissena polymorpha) have initiated ecosystem-level water quality changes in the Great Lakes. Increased water clarity, as well as decreased chlorophyll abundances, have fundamentally altered the optical characteristics of shallow coastal basins and bays. The occurrence of major blooms of blue-green algae (predominantly Microcystis) in western Lake Erie and Saginaw Bay have also affected water clarity. Whereas in situ water quality studies rely on point data from shipboard sampling, laboratory experiments and enclosures, the scale and magnitude of Dreissena and Microcystis effects on surface water quality suggest an additional research application that involves satellite remote sensing. My thesis is that remote sensing technology will facilitate timely and cost-effective analyses of Dreissena and Microcystis effects on water quality. Advanced Very High Resolution Radiometer (AVHRR) images estimate sea surface temperatures and reflectances in Saginaw Bay and western Lake Erie. The thermal bands document surface water mass movements over zebra mussel beds, whereas red and near-infrared channels estimate total suspended solids and Secchi disk depth. The thermal study traces thermal bar formation and movement offshore and the seasonal development of the warm coastal nearshore zone (Chapter 2). AVHRR reflectance imagery of Saginaw Bay from 1987 to 1993 documents the historical impact of Dreissena filtering on water quality variables (Chapter 3). A mixed general linear model describes seasonal and interannual changes in water quality before and after zebra mussels were established in Saginaw Bay. Imagery of extensive surface blooms of the toxic blue-green algae Microcystis in western Lake Erie illustrates AVHRR's ability to resolve spatial patterns (Chapter 4). Mean reflectances in the Maumee Bay region doubled from 2.0 percent in early August to 4.5 percent during mid-September, when the bloom was at its peak. Estimates of bloom spatial extent ranged from

  6. Biomagnification of persistent organic contaminants in Great Slave Lake food webs

    SciTech Connect

    Evans, M.S.; Muir, D.; Lockhart, L.

    1994-12-31

    Great Slave Lake is a large, subarctic lake which receives the majority of its water from the Slave, Peace, and Athabasca Rivers watershed. Increased development in the southern region of the watershed may provide a significant source of organic contaminants to the lake in addition to contaminants entering the lake via direct atmospheric deposition. Here the authors report the results of a study comparing organic contaminant concentrations in lake trout, burbot, and whitefish collected near the Slave River outflow and in a region of Great Slave Lake which is believed to be minimally affected by the Slave River. They also use stable isotope analyses to infer spatial differences in fish feeding habits between the two regions of the lake and to investigate how food habits may affect organic contaminant biomagnification. Finally, the authors compare their Great Slave Lake data with studies conducted from other regions of the Arctic and subarctic. This allows them to infer how the Slave River inflow may affect organic contaminant concentrations and biomagnification in the Great Slave Lake ecosystem.

  7. Classification of sea lamprey (Petromyzon marinus) attack marks on Great Lakes lake trout (Salvelinus namaycush)

    USGS Publications Warehouse

    King, Everett Louis

    1980-01-01

    Criteria for the classification of marks inflicted by sea lamprey (Petromyzon marinus) into nine categories were developed from laboratory studies in an attempt to refine the classification system used in field assessment work. These criteria were based on characteristics of the attachment site that could be identified under field conditions by unaided visual means and by touching the attachment site. Healing of these marks was somewhat variable and was influenced by the size of lamprey, duration of attachment, severity of the wound at lamprey detachment, season and water temperature, and by other less obvious factors. Even under laboratory conditions staging of some wounds was difficult, especially at low water temperatures. If these criteria are to be used effectively and with precision in the field, close examination of individual fish may be required. If the feeding and density of specific year-classes of sea lampreys are to be accurately assessed on an annual basis, close attention to the wound size (as it reflects the size of the lamprey's oral disc) and character of wounds on fish will be required as well as consideration of the season of the year in which they are observed.Key words: sea lamprey, attack marks, lake trout, Great Lakes

  8. Winter 1994 Weather and Ice Conditions for the Laurentian Great Lakes.

    NASA Astrophysics Data System (ADS)

    Assel, Raymond A.; Janowiak, John E.; Young, Sharolyn; Boyce, Daron

    1996-01-01

    The Laurentian Great Lakes developed their most extensive ice cover in over a decade during winter 1994 [December-February 1993/94 (DJF 94)]. Extensive midlake ice formation started the second half of January, about 2 weeks earlier than normal. Seasonal maximal ice extent occurred in early February, again about 2 weeks earlier than normal. Winter 1994 maximum (normal) ice coverages on the Great Lakes are Lake Superior 96% (75%), Lake Michigan 78% (45%), Lake Huron 95% (68%), Lake Erie 97% (90%), and Lake Ontario 67% (24%). Relative to the prior 31 winters (1963-93), the extent of seasonal maximal ice cover for winter 1994 for the Great Lakes taken as a unit is exceeded by only one other winter (1979); however, other winters for individual Great Lakes had similar maximal ice covers.Anomalously strong anticyclonic circulation over the central North Pacific (extending to the North Pole) and an abnormally strong polar vortex centered over northern Hudson Bay combined to produce a circulation pattern that brought frequent air masses of Arctic and polar origin to the eastern third of North America. New records were set for minimum temperatures on 19 January 1994 at many locations in the Great Lakes region. A winter severity index consisting of the average November-February air temperatures averaged over four sites on the perimeter of the Great Lakes (Duluth, Minnesota; Sault Ste. Marie, Michigan; Detroit, Michigan; and Buffalo, New York) indicates that winter 1994 was the 21st coldest since 1779. The unseasonably cold air temperatures produced much-above-normal ice cover over the Great Lakes and created problems for lake shipping. Numerous fatalities and injuries were attributed to the winter weather, which included several ice and snow storms. The much-below-normal air temperatures resulted in enhanced lake-effect snowfall along downwind lake shores, particularly during early to midwinter, prior to extensive ice formation in deeper lake areas. The low air temperatures

  9. Spatial and Temporal Characterization of the Stable Isotopic Composition of the Great Lakes

    NASA Astrophysics Data System (ADS)

    St. Amour, N. A.; Longstaffe, F. J.; MacDonald, R. A.; Crowe, A. S.

    2012-12-01

    The Great Lakes of North America are a valuable resource for the region's growing population, which depends on them for drinking water, hydroelectric power, shipping, recreation and other services. Even small shifts in the water balance of this large-scale chain-of-lakes system causes significant stress for the economy, environment and society. The Great Lakes also have a substantial impact on the region's climate through lake-effect precipitation and enhanced humidity, which is superimposed on the large-scale processes involving three main air masses (i.e., Pacific, Arctic, Tropical), which generate a characteristic temperature, humidity and atmospheric/precipitation isotopic gradient across the region. The potential consequences of climate change for the Great Lakes are a serious concern, given the lake level fluctuations known to have occurred throughout the Holocene. To understand this hydrological system better, we have collected a total of 2719 surface water samples, and some at depth of 2 m from bottom, intermittently during spring, summer and fall seasons from 2004 to 2011 across the Great Lakes, including connecting channels. The distribution of water isotopes along the Great Lakes chain produces a mixing line, defined as δ2H = 8.0(±0.2)δ18O + 3.1(±1.6) ‰. Several hydrological processes affect the variability of the lake-water isotope signatures in each of the Great Lakes, which are modified under their own characteristic climatic setting before exiting downstream. These processes include the amount and isotopic composition of precipitation, surface runoff and river inputs, groundwater seepage, surface water evaporative enrichment, and the proportion and isotopic composition of upstream water contributions. The Great Lakes mixing line provides a baseline against which spatial and temporal variability in lake water isotopic composition can be evaluated. Isotopic shifts parallel to the mixing line denote connectedness or degree of mixing along the

  10. Program and abstracts of the 28th conference on Great Lakes research

    SciTech Connect

    Not Available

    1985-01-01

    Abstracts of papers presented at the 28th Conference on Great Lakes Research and the annual meeting of the International Association for Great Lakes Research covered two symposia. The first was a comparison of Great Lakes and Baltic ecosystems, which provided an opportunity for international exchanges of information and insights. The second featured pollution problems in the Green Bay estuary environment that is of particular value to Wisconsin and Michigan. There are 41 separate abstracts selected for the Energy Data Base (EDB). Four of those were also selected for Energy Research Abstracts (ERA), six for Energy Abstracts for Policy Analysis (EAPA), and two for INS.

  11. Ecological monitoring for assessing the state of the nearshore and open waters of the Great Lakes

    USGS Publications Warehouse

    Neilson, Melanie A.; Painter, D. Scott; Warren, Glenn; Hites, Ronald A.; Basu, Ilora; Weseloh, D.V. Chip; Whittle, D. Michael; Christie, Gavin; Barbiero, Richard; Tuchman, Marc; Johannsson, Ora E.; Nalepa, Thomas F.; Edsall, Thomas A.; Fleischer, Guy; Bronte, Charles; Smith, Stephen B.; Baumann, Paul C.

    2003-01-01

    The Great Lakes Water Quality Agreement stipulates that the Governments of Canada and the United States are responsible for restoring and maintaining the chemical, physical and biological integrity of the waters of the Great Lakes Basin Ecosystem. Due to varying mandates and areas of expertise, monitoring to assess progress towards this objective is conducted by a multitude of Canadian and U.S. federal and provincial/state agencies, in cooperation with academia and regional authorities. This paper highlights selected long-term monitoring programs and discusses a number of documented ecological changes that indicate the present state of the open and nearshore waters of the Great Lakes.

  12. Recent mass invasion of the North American Great Lakes by Ponto-Caspian species.

    PubMed

    Ricciardi; MacIsaac

    2000-02-01

    The North American Great Lakes have been invaded and dramatically altered by more than 145 alien species. Many invasions have occurred during the past few decades because of the release of Eurasian ballast water from transoceanic ships. Current regulations require ships to exchange foreign ballast with highly saline water before entering the Great Lakes; this procedure should prevent colonization by strictly freshwater species, but species with broad salinity tolerance might survive transport in exchanged water. A recent series of invasions by euryhaline organisms from the Black and Caspian Seas region signals a new phase in the transformation of the Great Lakes - one that supports the concept of an 'invasional meltdown'.

  13. Paleoecology of a Northern Michigan Lake and the relationship among climate, vegetation, and Great Lakes water levels

    USGS Publications Warehouse

    Booth, R.K.; Jackson, S.T.; Thompson, T.A.

    2002-01-01

    We reconstructed Holocene water-level and vegetation dynamics based on pollen and plant macrofossils from a coastal lake in Upper Michigan. Our primary objective was to test the hypothesis that major fluctuations in Great Lakes water levels resulted in part from climatic changes. We also used our data to provide temporal constraints to the mid-Holocene dry period in Upper Michigan. From 9600 to 8600 cal yr B.P. a shallow, lacustrine environment characterized the Mud Lake basin. A Sphagnum-dominated wetland occupied the basin during the mid-Holocene dry period (???8600 to 6600 cal yr B.P.). The basin flooded at 6600 cal yr B.P. as a result of rising water levels associated with the onset of the Nipissing I phase of ancestral Lake Superior. This flooding event occured contemporaneously with a well-documented regional expansion of Tsuga. Betula pollen increased during the Nipissing II phase (4500 cal yr B.P.). Macrofossil evidence from Mud Lake suggests that Betula alleghaniensis expansion was primarily responsible for the rising Betula pollen percentages. Major regional and local vegetational changes were associated with all the major Holocene highstands of the western Great Lakes (Nipissing I, Nipissing II, and Algoma). Traditional interpretations of Great Lakes water-level history should be revised to include a major role of climate. ?? 2002 University of Washington.

  14. Climate change projections for lake whitefish (Coregonus clupeaformis) recruitment in the 1836 Treaty Waters of the Upper Great Lakes

    USGS Publications Warehouse

    Lynch, Abigail J.; Taylor, William W.; Beard, T. Douglas; Lofgren, Brent M.

    2015-01-01

    Lake whitefish (Coregonus clupeaformis) is an ecologically, culturally, and economically important species in the Laurentian Great Lakes. Lake whitefish have been a staple food source for thousands of years and, since 1980, have supported the most economically valuable (annual catch value ≈ US$16.6 million) and productive (annual harvest ≈ 7 million kg) commercial fishery in the upper Great Lakes (Lakes Huron, Michigan, and Superior). Climate changes, specifically changes in temperature, wind, and ice cover, are expected to impact the ecology, production dynamics, and value of this fishery, because the success of recruitment to the fishery has been linked with these climatic factors. We used linear regression to determine the relationship between fall and spring air temperature indices, fall wind speed, winter ice cover, and lake whitefish recruitment in 13 management units located in the 1836 Treaty Waters of the Upper Great Lakes ceded by the Ottawa and Chippewa nations, a culturally and commercially important region for the lake whitefish fishery. In eight of 13 management units evaluated, models with climate variables explained significantly more variation in recruitment than models with only the stock-recruitment relationship, using corrected Akaike’s Information Criterion comparisons (ΔAICc > 3). Isolating the climate-recruitment relationship and projecting recruitment with the Coupled Hydrosphere-Atmosphere Research Model (CHARM) indicated the potential for increased lake whitefish recruitment in the majority of the 1836 Treaty Waters management units, given projected changes in climate. These results can inform adaptive management strategies by providing anticipated implications of climate on lake whitefish recruitment.

  15. Polybrominated diphenyl ethers (PBDEs): turning the corner in Great Lakes trout 1980-2009.

    PubMed

    Crimmins, Bernard S; Pagano, James J; Xia, Xiaoyan; Hopke, Philip K; Milligan, Michael S; Holsen, Thomas M

    2012-09-18

    Lake trout and walleye composites were collected between 2004 and 2009 as part of the Great Lakes Fish Monitoring and Surveillance Program (GLFMSP) and analyzed for polybrominated diphenyl ethers (PBDEs). Yearly mean total PBDE concentrations (sum of congeners BDE-47, BDE-99, BDE-100, BDE-153, BDE-154) ranged from 44-192, 28-113, 50-107, 37-111, and 11-22 ng/g wet wt. for Lakes Michigan, Huron, Ontario, and Superior lake trout, and Lake Erie walleye, respectively. A 1980-2009 temporal record of PBDE concentrations in the Great Lakes' top predator fish (lake trout and walleye) was assembled by integrating previous GLFMSP data (1980-2003) with current results (2004-2009). Temporal profiles show obvious breakpoints between periods of PBDE accumulation and decline in trout for Lakes Huron, Michigan and Ontario with a significant (p < 0.0001 and r = 0.55, 0.72, and 0.51, respectively) decrease in concentration after 2000-2001. A similar transition was observed in Lake Superior for the nearshore site accompanied by a less significant decreasing trend (p = 0.016, r = 0.33), suggesting concentrations are declining very slowly or have leveled off. In contrast, Lake Erie walleye concentrations began leveling off in the late 1990s and no statistically significant trend (increasing or decreasing) has been observed in recent years. A decrease in the BDE-47/BDE-153 ratio was also recently observed, suggesting a transition to more highly brominated PBDEs is occurring in Great Lakes trout. This study provides region-wide evidence that PBDE concentrations are generally declining in Great Lakes trout, although there are clear exceptions to this trend. Results from this study reflect the positive impact of the 2004 PentaBDE ban on macro-scale aquatic freshwater ecosystems.

  16. Binational ecological risk assessment of bigheaded carps (Hypophthalmichthys spp.) for the Great Lakes Basin.

    USGS Publications Warehouse

    Cudmore, B.; Mandrak, N.E.; Dettmers, J.; Chapman, D.C.; Kolar, C.S.

    2012-01-01

    Bigheaded carps (Bighead and Silver carps) are considered a potential threat to the Great Lakes basin. A binational ecological risk assessment was conducted to provide scientifically defensible advice for managers and decision-makers in Canada and the United States. This risk assessment looked at the likelihood of arrival, survival, establishment, and spread of bigheaded carps to obtain an overall probability of introduction. Arrival routes assessed were physical connections and human-mediated releases. The risk assessment ranked physical connections (specifically the Chicago Area Waterway System) as the most likely route for arrival into the Great Lakes basin. Results of the risk assessment show that there is enough food and habitat for bigheaded carp survival in the Great Lakes, especially in Lake Erie and productive embayments in the other lakes. Analyses of tributaries around the Canadian Great Lakes and the American waters of Lake Erie indicate that there are many suitable tributaries for bigheaded carp spawning. Should bigheaded carps establish in the Great Lakes, their spread would not likely be limited and several ecological consequences can be expected to occur. These consequences include competition for planktonic food leading to reduced growth rates, recruitment and abundance of planktivores. Subsequently this would lead to reduced stocks of piscivores and abundance of fishes with pelagic, early life stages. Overall risk is highest for lakes Michigan, Huron, and Erie, followed by Lake Ontario then Lake Superior. To avoid the trajectory of the invasion process and prevent or minimize anticipated consequences, it is important to continue to focus efforts on reducing the probability of introduction of these species at either the arrival, survival, establishment, or spread stage (depending on location).

  17. Biology and status of the shortnose cisco Coregonus reighardi Koelz in the Laurentian Great Lakes

    USGS Publications Warehouse

    Webb, Shane A.; Todd, Thomas N.

    1995-01-01

    The shortnose cisco, Coregonus reighardi, a member of the endemic species assemblage of Coregoninae in the Laurentian Great Lakes, was commercially important until overfishing and competition pressures from induced planktivores extirpated the species in Lakes Michigan and Ontario. Spawning shortnose ciscoes have been collected from Lake Huron and Georgian Bay of Lake Huron since 1956, however, no individuals have been collected from these habitats since 1985. Shortnose ciscoes were not collected during surveys of the cisco fishery of Georgian Bay during the summer of 1992 and spring of 1993. The lack of captures in the last eight years coupled with captures of only lone individuals in the last 16 years suggests the species may be extinct in all of the Laurentian system. The life history traits examined for Lake Huron shortnose ciscoes were similar to the conditions recorded for Lake Michigan and Ontario shortnose ciscoes, although Lake Huron fish were smaller.

  18. 46 CFR 11.431 - Tonnage requirements for Great Lakes and inland endorsements for vessels of over 1600 gross tons.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 1 2010-10-01 2010-10-01 false Tonnage requirements for Great Lakes and inland... Requirements for Deck Officers § 11.431 Tonnage requirements for Great Lakes and inland endorsements for vessels of over 1600 gross tons. (a) All required experience for Great Lakes and inland...

  19. 78 FR 26768 - Great Lakes Hydro America, LLC; Notice of Intent To File License Application, Filing of Pre...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-08

    ... Energy Regulatory Commission Great Lakes Hydro America, LLC; Notice of Intent To File License Application...-filing Process. b. Project No.: 2520-072. c. Dated Filed: March 1, 2013. d. Submitted By: Great Lakes... designating Great Lakes Hydro America, LLC as the Commission's non-federal representative for carrying...

  20. 77 FR 38043 - Great Lakes Hydro America, LLC; Notice of Application Accepted for Filing and Soliciting Comments...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-26

    ... Energy Regulatory Commission Great Lakes Hydro America, LLC; Notice of Application Accepted for Filing.... Applicant: Great Lakes Hydro America, LLC. e. Name of Project: Penobscot Mills. f. Location: North Twin.... h. Applicant Contact: Kevin Bernier, Manager, Licensing and Compliance, ] Great Lakes Hydro...

  1. 46 CFR 11.437 - Requirements for mate of Great Lakes and inland self-propelled vessels of unlimited tonnage.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 1 2014-10-01 2014-10-01 false Requirements for mate of Great Lakes and inland self... Requirements for National Deck Officer Endorsements § 11.437 Requirements for mate of Great Lakes and inland... for an endorsement as mate of Great Lakes and inland self-propelled vessels of unlimited tonnage...

  2. New insight into the spawning behavior of lake trout, Salvelinus namaycush, from a recovering population in the Laurentian Great Lakes

    USGS Publications Warehouse

    Binder, Thomas R.; Thompson, Henry T.; Muir, Andrew M.; Riley, Stephen C.; Marsden, J. Ellen; Bronte, Charles R.; Krueger, Charles C.

    2014-01-01

    Spawning behavior of lake trout, Salvelinus namaycush, is poorly understood, relative to stream-dwelling salmonines. Underwater video records of spawning in a recovering population from the Drummond Island Refuge (Lake Huron) represent the first reported direct observations of lake trout spawning in the Laurentian Great Lakes. These observations provide new insight into lake trout spawning behavior and expand the current conceptual model. Lake trout spawning consisted of at least four distinct behaviors: hovering, traveling, sinking, and gamete release. Hovering is a new courtship behavior that has not been previously described. The apparent concentration of hovering near the margin of the spawning grounds suggests that courtship and mate selection might be isolated from the spawning act (i.e., traveling, sinking, and gamete release). Moreover, we interpret jockeying for position displayed by males during traveling as a unique form of male-male competition that likely evolved in concert with the switch from redd-building to itinerant spawning in lake trout. Unlike previous models, which suggested that intra-sexual competition and mate selection do not occur in lake trout, our model includes both and is therefore consistent with evolutionary theory, given that the sex ratio on spawning grounds is skewed heavily towards males. The model presented in this paper is intended as a working hypothesis, and further revision may become necessary as we gain a more complete understanding of lake trout spawning behavior.

  3. SPATIAL AND TEMPORAL PATTERNS IN MERCURY CONTAMINATION IN SEDIMENTS OF THE LAURENTIAL GREAT LAKES

    EPA Science Inventory

    Data from recent sediment surveys have been collated and mapped in order to determine the spatial distribution of mercury in sediments across the entire Great Lakes basin. Information from historical surveys has also been collated in order to evaluate temporal trends. Lake Huron ...

  4. CONNECTING WATERSHED CHARACTERISTICS TO NUTRIENT REGIME FROM HEADWATERS TO RECEIVING WATERS IN THE LAURENTIAL GREAT LAKES

    EPA Science Inventory

    We are evaluating the influence of position along the tributary-coastal wetland-lake continuum on the expression of watershed characteristics in the water quality of Great Lakes (GL) coastal ecosystems as part of an EPA study focused on determining stressor-response relationships...

  5. 77 FR 19309 - Benton Lake National Wildlife Refuge Complex, Great Falls, MT; Comprehensive Conservation Plan...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-30

    ... the Federal Register August 18, 2008 (73, FR 48237). During scoping and throughout the process, we... Fish and Wildlife Service Benton Lake National Wildlife Refuge Complex, Great Falls, MT; Comprehensive... Lake National Wildlife Refuge Complex for public review and comment. The Draft CCP/EA describes...

  6. Caged Fish Studies to Detect and Monitor Contaminants of Emerging Concern in the Great Lakes

    EPA Science Inventory

    Effects-based monitoring studies were conducted in the St. Louis Harbor, Lake Superior, in support of the Great Lakes Restoration Initiative (GLRI). The overall goal of the research was to develop and validate methods using caged fish exposures to detect and monitor contaminants...

  7. Atmospheric deposition of PBDEs to the Great Lakes featuring a Monte Carlo analysis of errors.

    PubMed

    Venier, Marta; Hites, Ronald A

    2008-12-15

    The first estimates of atmospheric deposition of polychlorinated diphenyl ethers (PBDEs) into the Great Lakes are presented. Precipitation samples were collected monthly from 2005 to 2006 at five sites located in the Great Lakes region. Volume weighted mean concentrations of total PBDEs in precipitation ranged from 94 +/- 19 ng L(-1) at the urban site of Chicago to 0.65 +/- 0.14 ng L(-1) for the rural site of Sturgeon Point Using gas and particle phase concentrations previously obtained in our laboratory and concentrations in precipitation measured in this study, the total annual net mass transfer rates to each lake and their relative errors were calculated using Monte Carlo analysis. The highest net mass transfer rates for BDE-47, and total PBDEs were measured for Lake Michigan (150 +/- 40 and 310 +/- 79 kg y(-1), respectively) while the highest net mass transfer rate for BDE-209 was measured for Lake Erie (79 +/- 56 kg y(-1)). We found good agreement between atmospheric and sediment net mass transfer rates for Lake Superior, but we found a significant imbalance of BDE-209 for the other two lakes and of BDE-47 for Lake Michigan. These findings suggest that Chicago might be a preferential source of BDE-47 to Lake Michigan and that Cleveland might be a preferential source of BDE-209 to Lake Erie.

  8. Decadal oscillation of lakes and aquifers in the upper Great Lakes region of North America: Hydroclimatic implications

    NASA Astrophysics Data System (ADS)

    Watras, C. J.; Read, J. S.; Holman, K. D.; Liu, Z.; Song, Y.-Y.; Watras, A. J.; Morgan, S.; Stanley, E. H.

    2014-01-01

    We report a unique hydrologic time series which indicates that water levels in lakes and aquifers across the upper Great Lakes region of North America have been dominated by a climatically driven, near-decadal oscillation for at least 70 years. The historical oscillation (~13 years) is remarkably consistent among small seepage lakes, groundwater tables, and the two largest Laurentian Great Lakes despite substantial differences in hydrology. Hydrologic analyses indicate that the oscillation has been governed primarily by changes in the net atmospheric flux of water (P - E) and stage-dependent outflow. The oscillation is hypothetically connected to large-scale atmospheric circulation patterns originating in the midlatitude North Pacific that support the flux of moisture into the region from the Gulf of Mexico. Recent data indicate an apparent change in the historical oscillation characterized by an ~12 years downward trend beginning in 1998. Record low water levels region wide may mark the onset of a new hydroclimatic regime.

  9. Monitoring Agricultural Cropping Patterns in the Great Lakes Basin Using MODIS-NDVI Time Series Data

    EPA Science Inventory

    This research examined changes in agricultural cropping patterns across the Great Lakes Basin (GLB) using the Moderate Resolution Imaging Spectroradiometer (MODIS) Normalized Difference Vegetation Index (NDVI) data. Specific research objectives were to characterize the distribut...

  10. Environmental monitoring in the 21st century: a story of WWTPs, CECs, and Great Lakes AOCs

    EPA Science Inventory

    Throughout much of the 20th century, environmental monitoring of contaminants in fresh water ecosystems, like the Great Lakes, focused on measuring concentrations of persistent, bioaccumulative, and toxic chemicals whose biological hazards were well established. However, in recen...

  11. Patterns in Habitat and Fish Assemblages within Great Lakes Coastal Wetlands and Implications for Sampling Design

    EPA Science Inventory

    Discerning fish - habitat associations at a variety of spatial scales is relevant to evaluating stressor responses and assessment protocols in Great Lakes coastal wetlands. NMDS ordination of electrofishing catch-per-effort data identified an overriding influence of geography an...

  12. Land-use proxies for aquatic species invasions in the Laurentian Great Lakes

    EPA Science Inventory

    Aquatic invasive species adversely impact ecosystems, human health, and the economy of the Laurentian Great Lakes region. Targeted preventative and eradication efforts in response to early detection of invasive species can be both cost advantageous and effective. But where should...

  13. Pathway-based monitoring of biological effects at Great Lakes sites (Presntation)

    EPA Science Inventory

    The Great Lakes region suffers from degradation of water and environmental quality due to release of chemicals of emerging concern. Critical issues remain in delisting Areas of Concern (AOC) including determining sources of chemicals causing fish health impacts, relating health ...

  14. BIODIVERSITY PATTERNS OF THE GREAT LAKES: THE NATIVE-NONINDIGENOUS SPECIES RICHNESS RELATIONSHIP AND COMMUNITY EVENNESS

    EPA Science Inventory

    This PhD student is using fish data collected by EPA-MED along with data on other taxa collected by GLEI to examine questions relating to general biodiversity patterns in Great Lakes coastal wetlands.

  15. Organic contaminants in Great Lakes tributaries: Identification of watersheds and chemicals of greatest concern

    EPA Science Inventory

    Trace organic contaminant concentrations in some Great Lakes tributaries indicate potential for adverse effects on aquatic organisms. Chemicals used in agriculture, industry, and households enter surface waters via variety of sources, including urban and agricultural runoff, sewa...

  16. AN ALTERNATIVE FUTURES ANALYSIS OF FARMINGTON BAY WETLANDS IN THE GREAT SALT LAKE

    EPA Science Inventory

    An Alternative Futures Analysis (AFA) was conducted to evaluate tradeoffs between landscape design scenarios and ecological services for Farmington Bay, Great Salt Lake (GSL), wetlands. Model scenarios included plan trend and conservation "futures" scenarios projected to 2030. ...

  17. Alternative Futures Analysis Of Farmington Bay Wetlands In The Great Salt Lake Ecosystem

    EPA Science Inventory

    An Alternative Futures Analysis (AFA) was conducted to evaluate tradeoffs between landscape design scenarios and ecological services for Farmington Bay, Great Salt Lake (GSL), wetlands. Model scenarios included both plan trend and conservation "futures" projected to 2030. Scena...

  18. EVALUATING PERTUBATIONS AND DEVELOPING RESTORATION STRATEGIES FOR INLAND WETLANDS IN THE GREAT LAKES BASIN

    EPA Science Inventory

    Wetland coverage and type distributions vary systematically by ecoregion across the Great Lakes Basin. Land use and subsequent changes in wetland type distributions also vary among ecoregions. Incidence of wetland disturbance varies significantly within ecoregions but tends to i...

  19. Analysis of fish movements between Great Lakes coastal wetlands and near shore habitat via otolith microchemistry

    EPA Science Inventory

    Great Lakes coastal wetlands are unique habitats with physical connections with near shore environments. This facilitates the exchange of energy between habitats in a principle known as habitat coupling. Coupling can be facilitated by movements of consumers; however, wetland us...

  20. Linkages between benthic macroinvertebrate assemblages and landscape stressors in the US Great Lakes

    EPA Science Inventory

    We used multiple linear regression analysis to investigate relationships between benthic macroinvertebrate assemblages in the nearshore region of the Laurentian Great Lakes and landscape characteristics in adjacent watersheds. Benthic invertebrate data were obtained from the 201...

  1. Predicting submerged aquatic vegetation occurence (SAV) in a Great Lakes estuary

    EPA Science Inventory

    SAV provides the biophysical basis for several ecosystem services in Great Lakes estuaries including rearing and adult habitat for commercially and recreationally important fishes, foraging habit for waterfowl, and nutrient retention. Understanding sources of variation in SAV in ...

  2. Remediation, restoration, revitalization (R2R2R): How Great Lakes communities benefit from AOC delisting

    EPA Science Inventory

    Throughout the Great Lakes, remediation and restoration activities in areas of concern (AOC) are providing economic and social benefits (“revitalization”) to coastal communities. However, there is a general lack of documentation and evaluation of benefits that have co...

  3. REMOTE DETENTION OF INVASIVE AND OPPORTUNISTIC PLANT SPECIES IN GREAT LAKES COASTAL WETLANDS

    EPA Science Inventory

    Invasive and opportunistic plant species have been associated with wetland disturbance. Increases in the abundance of plant species such as common reed (Phragmites australis) in coastal Great Lakes wetlands are hypothesized to occur with shifts toward drier hydrologic regimes, fr...

  4. REMOTE DETECTION OF INVASSIVE AND OPPORTUNISTIC PLANT SPECIES IN GREAT LAKES COASTAL WETLANDS

    EPA Science Inventory

    Invasive and opportunistic plant species have been associated with wetland disturbance. Increases in the abundance of plant species such as common reed (Phragmites australis) in coastal Great Lakes wetlands are hypothesized to occur with shifts toward drier hydrologic regimes, fr...

  5. Systems approach to detect and evaluate contaminants of emerging concern in the Great Lakes

    EPA Science Inventory

    The release of chemicals of emerging concern threatens near shore health in the Great Lakes, particularly in regions already suffering from degradation of water and environmental quality due to past and present anthropogenic activities. Critical issues remain in delisting Areas ...

  6. 77 FR 32089 - Establishment of the Great Lakes Advisory Board (GLAB)

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-31

    ..., agricultural groups, citizen groups, environmental justice groups, foundations, academia and state, local and... From the Federal Register Online via the Government Publishing Office ENVIRONMENTAL PROTECTION AGENCY Establishment of the Great Lakes Advisory Board (GLAB) AGENCY: Environmental Protection...

  7. Classification and Accuracy Assessment for Coarse Resolution Mapping within the Great Lakes Basin, USA

    EPA Science Inventory

    This study applied a phenology-based land-cover classification approach across the Laurentian Great Lakes Basin (GLB) using time-series data consisting of 23 Moderate Resolution Imaging Spectroradiometer (MODIS) Normalized Difference Vegetation Index (NDVI) composite images (250 ...

  8. The Great Lakes Water Balance: Data availability and annotated bibliography of selected references

    USGS Publications Warehouse

    Neff, Brian P.; Killian, Jason R.

    2003-01-01

    Water balance calculations for the Great Lakes have been made for several decades and are a key component of Great Lakes water management. Despite the importance of the water balance, little has been done to inventory and describe the data available for use in water balance calculations. This report provides a catalog and brief description of major datasets that are used to calculate the Great Lakes water balance. Several additional datasets are identified that could be used to calculate parts of the water balance but currently are not being used. Individual offices and web pages that are useful for attaining these datasets are included. Four specific data gaps are also identified. An annotated bibliography of important publications dealing with the Great Lakes water balance is included. The findings of this investigation permit resource managers and scientists to access data more easily, assess shortcomings of current datasets, and identify which data are not currently being utilized in water balance calculations.

  9. Phase 2 development of Great Lakes algorithms for Nimbus-7 coastal zone color scanner

    NASA Technical Reports Server (NTRS)

    Tanis, Fred J.

    1984-01-01

    A series of experiments have been conducted in the Great Lakes designed to evaluate the application of the NIMBUS-7 Coastal Zone Color Scanner (CZCS). Atmospheric and water optical models were used to relate surface and subsurface measurements to satellite measured radiances. Absorption and scattering measurements were reduced to obtain a preliminary optical model for the Great Lakes. Algorithms were developed for geometric correction, correction for Rayleigh and aerosol path radiance, and prediction of chlorophyll-a pigment and suspended mineral concentrations. The atmospheric algorithm developed compared favorably with existing algorithms and was the only algorithm found to adequately predict the radiance variations in the 670 nm band. The atmospheric correction algorithm developed was designed to extract needed algorithm parameters from the CZCS radiance values. The Gordon/NOAA ocean algorithms could not be demonstrated to work for Great Lakes waters. Predicted values of chlorophyll-a concentration compared favorably with expected and measured data for several areas of the Great Lakes.

  10. USING REMORE SENSING AND LANDSCAPE ECOLOGY TO ASSESS THE CONDITION OF GREAT LAKES WETLANDS

    EPA Science Inventory

    Geospatial modeling approaches are being used to locate and assess the condition of natural resources (particularly wetland ecosystems) in the Great Lakes Basin. These assessments involve measuring landscape characteristics at multiple scales, primarily focusing

    on surface...

  11. Human health research and policy development: experience in the Great Lakes region.

    PubMed

    Ashizawa, Annette E; Hicks, Heraline E; De Rosa, Christopher T

    2005-01-01

    As a direct outgrowth of industrial and agricultural activities, the quality of the Great Lakes ecosystem has declined significantly because of toxic substances in the water, eutrophication, overfishing, and invasive species that have been introduced into the waterways. Although measures have been adopted to restore the health of the ecosystem, contamination of Great Lakes sport fish continues arising from conditions that still prevail, but on a more limited scale. As a consequence, the Great Lakes states have issued guidelines for the public in the form of health advisories for fish consumption to encourage practices that will minimize exposure to contaminants found in Great Lakes sport fish. Scientific research has strongly influenced many policy decisions, including the development of laws, rules, and guidelines applicable to public health not only in regard to fish advisories but also other issues impacting human health. This paper proposes to outline how policy has been influenced by scientific findings and the far-reaching effect that these decisions have had on the health status of the public in the Great Lakes area and its potential for influencing the nation as a whole and our global neighbors. Within the Great Lakes basin, polychlorinated biphenyls (PCB) and mercury are the subject of the greatest number of fish advisories. Great Lakes-based researchers have studied populations residing in the Great Lakes basin to determine their level of awareness concerning fish consumption health advisories. They found that almost 50% of the residents who consumed Great Lakes sport fish were aware of sport fish consumption advisories. Of those with awareness, almost 60% were males and only about 40% were females. The researchers attributed the greater awareness among males to the health advisory materials that males receive with their fishing licenses and to their contact with fishing-related groups. The lower level of awareness among women regarding fish consumption

  12. MODEL VERSION CONTROL FOR GREAT LAKES MODELS ON UNIX SYSTEMS

    EPA Science Inventory

    Scientific results of the Lake Michigan Mass Balance Project were provided where atrazine was measured and modeled. The presentation also provided the model version control system which has been used for models at Grosse Ile for approximately a decade and contains various version...

  13. HYDROGEOMORPHIC INFLUENCES ON MACROPHYTES AS HABITAT IN GREAT LAKES WETLANDS

    EPA Science Inventory

    We used rapid survey techniques to map saubmergerd, floating and emergent vegetation in 10 coastal wetlands of Lake Superior. Density and structure of plant beds in "bay," "main channel," and "side channel" areas was evaluated from cover indices and presence/dominance by growth f...

  14. Evaluation of ERTS data for certain oceanographic uses. [upwelling, water circulation, and pollution in Great Lakes

    NASA Technical Reports Server (NTRS)

    Strong, A. E. (Principal Investigator)

    1973-01-01

    The author has identified the following significant results. Upwelling along the eastern shore of Lake Michigan was occurring during the 3 and 21 August 1973 visits by ERTS-1. The NOAA-2 VHRR thermal-IR data are being digitized for comparison. Early indications are that these upwellings induced a calcium carbonate precipitate to form in the surface waters. It is most pronounced in the MSS-4 channel. On the lake bottom this jell-like sediment is known as marl and adds to the eutrophication of the lake. This phenomenon may help to explain the varve-like nature of bottom cores that have been observed in the Great Lakes.

  15. Proceedings of Workshop on Priority Great Lakes Environmental Research Initiatives (Great Lakes Environmental Research Laboratory, Ann Arbor, Michigan, October 10-11, 1974).

    ERIC Educational Resources Information Center

    Pinsak, Arthur P., Ed.

    This publication contains the proceedings of a workshop held in Ann Arbor, Michigan to identify the priority Great Lakes environmental research initiatives. The five major objectives of the workshop include the determination of research initiatives, opportunities for university research communities to discuss and recommend future research…

  16. Michigan basin regional ground water flow discharge to three Great Lakes

    USGS Publications Warehouse

    Hoaglund, J. R.; Huffman, G.C.; Grannemann, N.G.

    2002-01-01

    Ground water discharge to the Great Lakes around the Lower Peninsula of Michigan is primarily from recharge in riparian basins and proximal upland areas that are especially important to the northern half of the Lake Michigan shoreline. A steady-state finite-difference model was developed to simulate ground water flow in four regional aquifers in Michigan's Lower Peninsula: the Glaciofluvial, Saginaw, Parma-Bayport, and Marshall aquifers interlayered with the Till/"red beds," Saginaw, and Michigan confining units, respectively. The model domain was laterally bound by a continuous specified-head boundary, formed from lakes Michigan, Huron, St. Clair, and Erie, with the St. Clair and Detroit River connecting channels. The model was developed to quantify regional ground water flow in the aquifer systems using independently determined recharge estimates. According to the flow model, local stream stages and discharges account for 95% of the overall model water budget; only 5% enters the lakes directly from the ground water system. Direct ground water discharge to the Great Lakes' shorelines was calculated at 36 m3/sec, accounting for 5% of the overall model water budget. Lowland areas contribute far less ground water discharge to the Great Lakes than upland areas. The model indicates that Saginaw Bay receives only ???1.13 m3/sec ground water; the southern half of the Lake Michigan shoreline receives only ???2.83 m3/sec. In contrast, the northern half of the Lake Michigan shoreline receives more than 17 m3/sec from upland areas.

  17. Artificial propagation of coregonines in the management of the Laurentian Great Lakes

    USGS Publications Warehouse

    Todd, Thomas N.

    1986-01-01

    Numerous stresses caused wide fluctuations in the abundance of Great Lakes coregonine fishes during the last century. State, Provincial, and Federal agencies attempted to bolster these fisheries by stocking more than 32 billion fry of lake whitefish (Coregonus clupeaformis) and 6 billion fry of lake herring (C. artedii) over a period of about 90 years (1870-1960). Propagation efforts were unsuccessful in arresting the decline of these fishes, perhaps because the stocking densities were too low. It appears that stocking densities must exceed 41% of the natural hatch to produce measurable success in a planting program that augments natural reproduction. Stocking of any of the Great Lakes with lake whitefish at these levels would require several billion fry per lake annually. Such a program is too large to be practical and intensified protection of the remaining stocks would be more cost effective. A species such as the shortnose cisco (C. reighardi) which has only a small number of extant individuals, and can therefore be significantly augmented with fewer stocked fish, may be a much better candidate for propagation than is the lake whitefish. Propagation of coregonines in the Great Lakes should be considered only in localities that have little or no natural recruitment and then only for rehabilitation, and only if accompanied by adequate assessment of the performance of the stocked fish.

  18. Michigan basin regional ground water flow discharge to three Great Lakes.

    PubMed

    Hoaglund, John Robert; Huffman, Gary Cecil; Grannemann, Norman Guy

    2002-01-01

    Ground water discharge to the Great Lakes around the Lower Peninsula of Michigan is primarily from recharge in riparian basins and proximal upland areas that are especially important to the northern half of the Lake Michigan shoreline. A steady-state finite-difference model was developed to simulate ground water flow in four regional aquifers in Michigan's Lower Peninsula: the Glaciofluvial, Saginaw, Parma-Bayport, and Marshall aquifers interlayered with the Till/"red beds," Saginaw, and Michigan confining units, respectively. The model domain was laterally bound by a continuous specified-head boundary, formed from lakes Michigan, Huron, St. Clair, and Erie, with the St. Clair and Detroit River connecting channels. The model was developed to quantify regional ground water flow in the aquifer systems using independently determined recharge estimates. According to the flow model, local stream stages and discharges account for 95% of the overall model water budget; only 50% enters the lakes directly from the ground water system. Direct ground water discharge to the Great Lakes' shorelines was calculated at 36 m3/sec, accounting for 5% of the overall model water budget. Lowland areas contribute far less ground water discharge to the Great Lakes than upland areas. The model indicates that Saginaw Bay receives only approximately 1.13 m3/sec ground water; the southern half of the Lake Michigan shoreline receives only approximately 2.83 m3/sec. In contrast, the northern half of the Lake Michigan shoreline receives more than 17 m3/sec from upland areas.

  19. Assessment of suitable habitat for Phragmites australis (common reed) in the Great Lakes coastal zone

    USGS Publications Warehouse

    Carlson Mazur, Martha L.; Kowalski, Kurt P.; Galbraith, David

    2014-01-01

    In the Laurentian Great Lakes, the invasive form of Phragmites australis (common reed) poses a threat to highly productive coastal wetlands and shorelines by forming impenetrable stands that outcompete native plants. Large, dominant stands can derail efforts to restore wetland ecosystems degraded by other stressors. To be proactive, landscape-level management of Phragmites requires information on the current spatial distribution of the species and a characterization of areas suitable for future colonization. Using a recent basin-scale map of this invasive plant’s distribution in the U.S. coastal zone of the Great Lakes, environmental data (e.g., soils, nutrients, disturbance, climate, topography), and climate predictions, we performed analyses of current and predicted suitable coastal habitat using boosted regression trees, a type of species distribution modeling. We also investigated differential influences of environmental variables in the upper lakes (Lakes Superior, Michigan, and Huron) and lower lakes (Lakes St. Clair, Erie, and Ontario). Basin-wide results showed that the coastal areas most vulnerable to Phragmites expansion were in close proximity to developed lands and had minimal topographic relief, poorly drained soils, and dense road networks. Elevated nutrients and proximity to agriculture also influenced the distribution of Phragmites. Climate predictions indicated an increase in suitable habitat in coastal Lakes Huron and Michigan in particular. The results of this study, combined with a publicly available online decision support tool, will enable resource managers and restoration practitioners to target and prioritize Phragmites control efforts in the Great Lakes coastal zone.

  20. Distribution and dispersal of the zebra mussel (Dreissena polymorpha) in the Great Lakes region

    USGS Publications Warehouse

    Griffiths, Ronald W.; Schloesser, Donald W.; Leach, Joseph H.; Kovalak, William P.

    1991-01-01

    Dreissena polymorpha (Pallas), a small mussel common throughout most of Europe, was discovered in June of 1988 in the southern part of Lake St. Clair. Length–frequency analyses of populations from the Great Lakes and review of historical benthic studies suggest that the mussel was introduced into Lake St. Clair in late 1986, probably as a result of the discharge of ballast water from an ocean-crossing vessel. Following the 1990 reproductive season, Dreissenapopulations ranged from the head of the St. Clair River, through Lake St. Clair, the Detroit River, Lake Erie, the Welland Canal, and the Niagara River to the western basin and southern shoreline of Lake Ontario. Isolated populations were found in the St. Lawrence River and in harbours in Lakes Huron, Michigan, and Superior. The rapid dispersal of this organism has resulted from its high fecundity, pelagic larval stage, bysso-pelagic drifting ability of juveniles, and human activities associated with commercial shipping, fishing, and boating (research and pleasure). Virtually any waterbody that can be reached by boaters and fisherman within a few days travel of the lower Great Lakes, particularly Lake Erie, seems to be at risk of being invaded by this nuisance species.

  1. Food habits of diving ducks in the Great Lakes after the zebra mussel invasion

    USGS Publications Warehouse

    Custer, Christine M.; Custer, T.W.

    1996-01-01

    Zebra mussels (Dreissena polymorpha) invaded the Great Lakes in the mid-1980s and quickly reached high densities. The objective of this study was to determine current consumption of zebra mussels by waterfowl in the Great Lakes region. Feeding Lesser Scaups (Aythya affinis), Greater Scaups (A. marila), Canvasbacks (A. valisineria), Redheads (A. americana), Buffleheads (Bucephala albeola) and Common Goldeneyes (B. clangula) were collected in western Lake Erie and in Lake St. Clair between fall and spring, 1992-1993 to determine food habits. All 10 Redheads, 97% of Lesser Scaups, 83% of Goldeneyes, 60% of Buffleheads and 9% of Canvasbacks contained one or more zebra mussels in their upper gastrointestinal tracts. The aggregate percent of zebra mussels in the diet of Lesser Scaups was higher in Lake Erie (98.6%) than in Lake St. Clair (54.4%). Zebra mussels (aggregate percent) dominated the diet of Common Goldeneyes (79.2%) but not in Buffleheads (23.5%), Redheads (21%) or Canvasbacks (9%). Lesser Scaups from Lake Erie fed on larger zebra mussels ( = 10.7 i?? 0.66 mm SE) than did Lesser Scaups from Lake St. Clair ( = 4.4 i?? 0.22 mm). Lesser Scaups, Buffleheads and Common Goldeneyes from Lake Erie consumed zebra mussels of similar size.

  2. New data on mitochondrial diversity and origin of Hemimysis anomala in the Laurentian Great Lakes

    USGS Publications Warehouse

    Questel, Jennifer M.; Walsh, Maureen G.; Smith, Randall J.; Welsh, Amy B.

    2012-01-01

    The most recent Ponto-Caspian species to invade the Laurentian Great Lakes is the crustacean Hemimysis anomala, first reported in 2006. A previous study described three haplotype groups (A, B, C) of H. anomala in native and invaded areas within Europe, but only one haplotype (A1) in a sample from Lake Michigan. Our study expands these results to additional populations in the Great Lakes basin, and evaluates relationships among North American and European populations. A 549-bp fragment of themitochondrial cytochrome oxidase I (COI) gene was analyzed from populations of H. anomala in Lakes Ontario, Erie, Huron, and the St. Lawrence River.Two different haplotypes, A1 and B1,were observed in the sampled populations of H. anomala and in a previous analysis from H. anomala in Oneida Lake (New York). Our results, in contrast with a previous study, detect an additional haplotype in North America.

  3. Factors affecting feeding behavior and survival of juvenile lake trout in the Great Lakes

    USGS Publications Warehouse

    Savino, Jacqueline F.; Henry, Mary G.; Kincaid, Harold L.

    1993-01-01

    We explored the importance of experience with feeding on live prey, of cataracts, of strain, and of maternally transferred contaminants for the feeding rate and predator avoidance behavior of young lake trout Salvelinus namaycush. Hatchery-reared and feral juvenile lake trout were tested separately as predators on lake trout fry in tanks with artificial cobble reefs. Feral fish captured more prey per day and more prey per strike than did hatchery lake trout. The predatory performance of hatchery and feral fish did not improve significantly with experience. Feeding rates did not differ between lake trout with unilateral cataracts and normal-eyed fish, but significantly diminished for lake trout with bilateral cataracts. Neither strain nor contaminant background affected the ability of fry to feed or to avoid predators. Of the factors studied, previous experience with live food under natural conditions (i.e., the experience of feral fish) was the most important factor affecting feeding behavior of young lake trout.

  4. The influence of changing climate on the ecology and management of selected Laurentian Great Lakes fisheries.

    PubMed

    Lynch, A J; Taylor, W W; Smith, K D

    2010-11-01

    The Laurentian Great Lakes Basin provides an ecological system to evaluate the potential effect of climate change on dynamics of fish populations and the management of their fisheries. This review describes the physical and biological mechanisms by which fish populations will be affected by changes in timing and duration of ice cover, precipitation events and temperature regimes associated with projected climate change in the Great Lakes Basin with a principal focus on the fish communities in shallower regions of the basin. Lake whitefish Coregonus clupeaformis, walleye Sander vitreus and smallmouth bass Micropterus dolomieu were examined to assess the potential effects of climate change on guilds of Great Lakes cold, cool and warm-water fishes, respectively. Overall, the projections for these fishes are for the increased thermally suitable habitat within the lakes, though in different regions than they currently inhabit. Colder-water fishes will seek refuge further north and deeper in the water column and warmer-water fishes will fill the vacated habitat space in the warmer regions of the lakes. While these projections can be modified by a number of other habitat elements (e.g. anoxia, ice cover, dispersal ability and trophic productivity), it is clear that climate-change drivers will challenge the nature, flexibility and public perception of current fisheries management programmes. Fisheries agencies should develop decision support tools to provide a systematic method for incorporating ecological responses to climate change and moderating public interests to ensure a sustainable future for Great Lakes fishes and fisheries.

  5. Rodent neurotoxicity bioassays for screening contaminated Great Lakes fish

    SciTech Connect

    Beattie, M.K.; Hoffman, R.; Gerstenberger, S.; Dellinger, J.A.

    1996-03-01

    Standard laboratory rat neurotoxicity protocols were used to study the consequences resulting from the consumption of walleye (Stizostedion vitreum), whitefish (Coregonus clupeaformis), and lake trout (Salvelinus namaycush) from Lake Superior (LS) and the consumption of carp (Cyprinus carpio) from Little Lake Butte des Morte (LLBM) near Oshkosh, Wisconsin, USA. Two 90-d subchronic studies are described, including a 45-d exposure to fish diets using male Sprague-Dawley hooded rats, and a 90-d exposure to fish diets using female rats of the same species. Behavioral alterations were tested using a battery of behavioral tests. In addition, pharmacologic challenges using apomorphine and D-amphetamine were administered to the rats to reveal latent neurotoxic effects. Cumulative fish consumption data were recorded daily, weight gain recorded weekly, and behavior data collected prior to exposure, and on days 7, 14, 55 {+-} 2, 85 {+-} 2. Motor activity data were collected on days 30 {+-} 2, 60 {+-} 2, and 90 {+-} 2 of the feeding protocols. Brain tissue from rodents fed these fish were subsequently analyzed for either mercury (Hg) or polychlorinated biphenyls (PCB). Mercury concentrations were increased in the brains of the walleye-fed rats, and PCB concentrations ranged from 0.5 nl/L to 10 nl/L in the brains of rats fed carp from LLBM, a Lake Michigan tributary. Adult male rats fed LLBM carp for 45 d exhibited the greatest behavior responses to the dopaminergic agonist apomorphine on the accelerating rotarod, although these differences were not significant. The 90-d exposure of LS walleye or Hg-spiked LS walleye resulted in behavior alterations on tactile startle response and second footsplay. D-Amphetamine challenge caused changes in tactile startle response, second footsplay, and accelerating rotarod performance after consuming walleye diets. Rats fed LLBM carp had altered behavioral responses to apomorphine on the accelerating rotarod.

  6. Species succession and sustainability of the Great Lakes fish community

    USGS Publications Warehouse

    Eshenroder, Randy L.; Burnham-Curtis, Mary K.; Taylor, William W.; Ferreri, C. Paola

    1999-01-01

    This article concentrates on the sustainability of the offshore pelagic and deepwater fish communities that were historically dominated by lake trout (Salvelinus namaycush). The causes of alteration in these fish communities (i.e., overfishing, introductions, and cultural eutrophication) were identified by Loftus and Regier (1972). Here we look at the ecology of these altered communities in relation to sustainability and discuss the need for restoration.

  7. Forging the Link: Using a Conservative Mixing Framework to Characterize Connections between Rivers and Great Lakes in River-lake Transition Zones

    EPA Science Inventory

    River-to-Great Lake transition zones are hydrologically, biogeochemically and biologically dynamic areas that regulate nutrient and energy fluxes between rivers and Great Lakes. Our goal is to characterize the biogeochemical properties of the river-lake transition zones and under...

  8. Salt Migration to the Northwest Body of Great Salt Lake, Utah.

    PubMed

    Adams, T C

    1964-03-01

    Interchange of saline lake water between the northwest body of Great Salt Lake, Utah, comprising about one-third of the lake area, and the main body of the lake, has been severely restricted by the completion of a railroad embankment across the lake in 1959. The northwest body has a relatively small volume of inflow and a somewhat greater rate of evaporation than the main body. As a result, there has been a net flow of saline water northward and accompanying deposition of a thick layer of salt over the bottom and shore of the northwest body. A unique set of hydrologic and physical-chemical influences are in action, and further important effects on the entire lake are expected. PMID:17733066

  9. Acute toxicities to larval rainbow trout of representative compounds detected in Great Lakes fish

    USGS Publications Warehouse

    Edsall, Carol Cotant

    1991-01-01

    In recent years the National Fisheries Research Center-Great Lakes has ranked the potential hazard to fish and invertebrates of various chemical compounds detected in two Great Lakes fishes-- lake trout, Salvelinus namaycush, and walleye, Stizostedion vitreum vitreum (Hesselberg and Seelye 1982). This hazard assessment has included the identification of the potential sources of the compounds, determination of the occurrence and abundance of the compounds in Great Lakes fish, and the determination of acute toxicities of representative compounds of 19 chemical classes (Passino and Smith 1987a). In further studies Smith et al. (1988) focused on 6 of the 19 classes of compounds using the zooplankter Daphnia pulex as the test organism. They ranked the six classes as follows (in decreasing order of toxicity): polycyclic aromatic hydrocarbons (PAHs), alkyl halides, nitrogen-containing compounds, cyclic alkanes, heterocyclic nitrogen compounds, and silicon-containing compounds.

  10. New Task Force Aimed at Improving Coordination of Great Lakes Restoration

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    2004-06-01

    The Great Lakes Interagency Task Force, established on 18 May by an executive order signed by President George W. Bush, is tasked with better coordinating federal, state, and international efforts in restoration and environmental protection for the lakes, as well as better coordination of federally-funded scientific research associated with the Great Lakes system. There are currently 148 federal and 51 state programs that fund environmental restoration activities in the Great Lakes Basin, according to the U.S. General Accounting office. In an April 2003 report, however, the GAO found that there are several disparate regional strategies in use for this purpose, and that ``these strategies are not coordinated in a way that ensures effective use of limited resources.''

  11. Pluvial lakes in the Great Basin of the western United States: a view from the outcrop

    USGS Publications Warehouse

    Reheis, Marith C.; Adams, Kenneth D.; Oviatt, Charles G.; Bacon, Steven N.

    2014-01-01

    Paleo-lakes in the western United States provide geomorphic and hydrologic records of climate and drainage-basin change at multiple time scales extending back to the Miocene. Recent reviews and studies of paleo-lake records have focused on interpretations of proxies in lake sediment cores from the northern and central parts of the Great Basin. In this review, emphasis is placed on equally important studies of lake history during the past ∼30 years that were derived from outcrop exposures and geomorphology, in some cases combined with cores. Outcrop and core records have different strengths and weaknesses that must be recognized and exploited in the interpretation of paleohydrology and paleoclimate. Outcrops and landforms can yield direct evidence of lake level, facies changes that record details of lake-level fluctuations, and geologic events such as catastrophic floods, drainage-basin changes, and isostatic rebound. Cores can potentially yield continuous records when sampled in stable parts of lake basins and can provide proxies for changes in lake level, water temperature and chemistry, and ecological conditions in the surrounding landscape. However, proxies such as stable isotopes may be influenced by several competing factors the relative effects of which may be difficult to assess, and interpretations may be confounded by geologic events within the drainage basin that were unrecorded or not recognized in a core. The best evidence for documenting absolute lake-level changes lies within the shore, nearshore, and deltaic sediments that were deposited across piedmonts and at the mouths of streams as lake level rose and fell. We review the different shorezone environments and resulting deposits used in such reconstructions and discuss potential estimation errors. Lake-level studies based on deposits and landforms have provided paleohydrologic records ranging from general changes during the past million years to centennial-scale details of fluctuations during the

  12. Source Attribution for Mercury Deposition to the Great Lakes Region in the Context of Global Change

    NASA Astrophysics Data System (ADS)

    Zhang, H.; Fisher, J. A.; Wu, S.; Kumar, A.

    2015-12-01

    Mercury contamination in the Great Lakes region has important implications for human and wildlife health therein. Atmospheric deposition serves as an important pathway for mercury entering into the lakes and mercury originating from sources outside North America also contributes to part of the total mercury deposited to the Great Lakes. Understanding the source apportionment of mercury deposition to the Great Lakes region is critical for policy making. We investigate the present day source attribution of mercury deposition to the Great Lakes region as well as the perturbations driven by various factors in the context of global change (such as the changes in biomass burning emissions, anthropogenic emissions and land use/land cover) using the GEOS-Chem global model. We will quantify the relative contribution of different emission sources (e.g., anthropogenic vs natural) and different regions (e.g., domestic vs intercontinental-transport) to mercury deposition in the Great Lakes region. In addition, we will conduct sensitivity tests to evaluate the model's sensitivity to processes such as atmospheric redox reactions and how it affects the source attribution.

  13. Analysis of the variability of ice phenology on Great Bear Lake and Great Slave Lake, 2002-2009, from AMSR-E measurements

    NASA Astrophysics Data System (ADS)

    Kang, K.; Duguay, C. R.; Howell, S.

    2009-12-01

    Lake ice cover is a significant component of the Canadian terrestrial cryosphere. It is both a sensitive indicator of climate conditions and it plays a significant role in the energy and water balance of northern regions. Knowledge about the temporal and spatial variability of ice phenology (ice-on/ice-off dates and ice duration) is critical for improving our understanding of surface-atmosphere interactions at high latitudes within the context of a changing climate. Remote sensing in the most viable tool for obtaining frequent observations of ice cover conditions over large lakes and across large areas of the North. Obtaining ice phenological parameters with optical satellite sensors such as MODIS and AVHRR is difficult, especially during the freeze-up period due to polar darkness and extensive cloud cover. However, passive microwave satellite remote sensing can provide regular and weather-independent information on ice phenology over large northern lakes such Great Bear Lake (GBL) and Great Slave Lake (GSL), Northwest Territories, Canada. In this paper, the temporal evolution of brightness temperature at 18.7, 23.5, and 36.5 GHz from AMSR-E passive microwave measurements is analyzed to determine freeze-onset/melt-onset, ice-on/ice-off, and ice cover duration on GBL and GSL. In order to examine the interannual variability in ice cover on the two lakes, the polarization difference and horizontal polarized brightness temperature at various frequencies are explored to derive ice phenological parameters for ice seasons 2002-2003 to 2008-2009. Preliminary results show a difference of approximately two to four weeks in ice-on/ice-off dates between cold and warm winters. Passive microwave is shown to be an effective means for monitoring lake ice phenology and could, in part, replace the lost ground-based observational ice network for GBL and GSL.

  14. Genetic effects of habitat restoration in the Laurentian Great Lakes: an assessment of lake sturgeon origin and genetic diversity

    USGS Publications Warehouse

    Jamie Marie Marranca,; Amy Welsh,; Roseman, Edward F.

    2015-01-01

    Lake sturgeon (Acipenser fulvescens) have experienced significant habitat loss, resulting in reduced population sizes. Three artificial reefs were built in the Huron-Erie corridor in the Great Lakes to replace lost spawning habitat. Genetic data were collected to determine the source and numbers of adult lake sturgeon spawning on the reefs and to determine if the founder effect resulted in reduced genetic diversity. DNA was extracted from larval tail clips and 12 microsatellite loci were amplified. Larval genotypes were then compared to 22 previously studied spawning lake sturgeon populations in the Great Lakes to determine the source of the parental population. The effective number of breeders (Nb) was calculated for each reef cohort. The larval genotypes were then compared to the source population to determine if there were any losses in genetic diversity that are indicative of the founder effect. The St. Clair and Detroit River adult populations were found to be the source parental population for the larvae collected on all three artificial reefs. There were large numbers of contributing adults relative to the number of sampled larvae. There was no significant difference between levels of genetic diversity in the source population and larval samples from the artificial reefs; however, there is some evidence for a genetic bottleneck in the reef populations likely due to the founder effect. Habitat restoration in the Huron-Erie corridor is likely resulting in increased habitat for the large lake sturgeon population in the system and in maintenance of the population's genetic diversity.

  15. Systematically variable planktonic carbon metabolism along a land-to-lake gradient in a Great Lakes coastal zone

    PubMed Central

    Weinke, Anthony D.; Kendall, Scott T.; Kroll, Daniel J.; Strickler, Eric A.; Weinert, Maggie E.; Holcomb, Thomas M.; Defore, Angela A.; Dila, Deborah K.; Snider, Michael J.; Gereaux, Leon C.; Biddanda, Bopaiah A.

    2014-01-01

    During the summers of 2002–2013, we measured rates of carbon metabolism in surface waters of six sites across a land-to-lake gradient from the upstream end of drowned river-mouth Muskegon Lake (ML) (freshwater estuary) to 19 km offshore in Lake Michigan (LM) (a Great Lake). Despite considerable inter-year variability, the average rates of gross production (GP), respiration (R) and net production (NP) across ML (604 ± 58, 222 ± 22 and 381 ± 52 µg C L−1 day−1, respectively) decreased steeply in the furthest offshore LM site (22 ± 3, 55 ± 17 and −33 ± 15 µg C L−1day−1, respectively). Along this land-to-lake gradient, GP decreased by 96 ± 1%, whereas R only decreased by 75 ± 9%, variably influencing the carbon balance along this coastal zone. All ML sites were consistently net autotrophic (mean GP:R = 2.7), while the furthest offshore LM site was net heterotrophic (mean GP:R = 0.4). Our study suggests that pelagic waters of this Great Lakes coastal estuary are net carbon sinks that transition into net carbon sources offshore. Reactive and dynamic estuarine coastal zones everywhere may contribute similarly to regional and global carbon cycles. PMID:25954055

  16. Surficial substrates and bathymetry of five historical lake trout spawning reefs in near-shore waters of the Great Lakes

    USGS Publications Warehouse

    Edsall, Thomas A.; Brown, Charles L.; Kennedy, Gregory W.; French, John R. P.

    1992-01-01

    The reestablishment of self-sustaining stocks of lake trout (Salvelinus namaycush) in the lower four Great Lakes has been substantially impeded because planted fish do not produce enough progeny that survive and reproduce. The causes for this failure are unknown, but many historical spawning sites of lake trout have been degraded by human activities and can no longer produce viable swim-up fry. In this study, we used side-scan sonar and an underwater video camera to survey, map, and evaluate the sustainability of one reef in each of the five Great Lakes for lake trout spawning and fry production. At four of the reef sites, we found good-to-excellent substrate for spawning and fry production by the shallow-water strains of lake trout that are now being planted. These substrates were in water 6-22 m deep and were composed largely of rounded or angular rubble and cobble. Interstitial spaces in these substrates were 20 cm or deeper and would protect naturally spawned eggs and fry from predators, ice scour, and buffeting by waves and currents. Subsequent studies of egg survival by other researchers confirmed our evaluation that the best substrates at two of these sites still have the potential to produce viable swim-up fry.

  17. Changing abundance of Hexagenia mayfly nymphs in western Lake Erie of the Laurentian Great Lakes: Impediments to assessment of lake recovery?

    USGS Publications Warehouse

    Schloesser, D.W.; Nalepa, T.F.

    2001-01-01

    After an absence of 40 years, mayfly nymphs of the genus Hexagenia were found in sediments of western Lake Erie of the Laurentian Great Lakes in 1993 and, by 1997, were abundant enough to meet a mayfly-density management goal (ca. 350 nymphs m—2) based on pollution-abatement programs. We sampled nymphs in western Lake Erie and Lake St. Clair, located upstream of western Lake Erie, to determine the importance of seasonal abundance and life-history characteristics of nymphs (e.g., emergence and recruitment) on density estimates relative to the mayfly-density management goal. Two types of density patterns were observed: (1) densities were relatively high in spring and gradually decreased through late summer (observed in Lake Erie and Lake St. Clair in 1997 and Lake St. Clair in 1999) and (2) densities were relatively high in spring, gradually decreased to mid summer, abruptly decreased in mid summer, and then increased between summer and late fall (Lake Erie and Lake St. Clair in 1998 and Lake Erie in 1999). Length-frequency distributions of nymphs and observations of adults indicate that the primary cause for the two density patterns was attributed to failed (first pattern) and successful (second pattern) reproduction and emergence of nymphs into adults in mid summer. Gradual declines in densities were attributed to mortality of nymphs. Our results indicate that caution should be used when evaluating progress of pollution-abatement programs based on mayfly densities because recruitment success is variable both between and within years. Additionally, the interpretation of progress toward management goals, relative to the restoration of Hexagenia populations in the Great Lakes and possibly other water bodies throughout the world, is influenced by the number of years in which consequtive collections are made.

  18. Atmospheric transformation of multispectral remote sensor data. [Great Lakes

    NASA Technical Reports Server (NTRS)

    Turner, R. E. (Principal Investigator)

    1977-01-01

    The author has identified the following significant results. The effects of earth's atmosphere were accounted for, and a simple algorithm, based upon a radiative transfer model, was developed to determine the radiance at earth's surface free of atmospheric effects. Acutal multispectral remote sensor data for Lake Erie and associated optical thickness data were used to demonstrate the effectiveness of the atmospheric transformation algorithm. The basic transformation was general in nature and could be applied to the large scale processing of multispectral aircraft or satellite remote sensor data.

  19. Paenibacillus thiaminolyticus is not the cause of thiamine deficiency impeding lake trout (Salvelinus namaycush) recruitment in the Great Lakes

    USGS Publications Warehouse

    Richter, Catherine A.; Evans, Allison N.; Wright-Osment, Maureen K.; Zajicek, James L.; Heppell, Scott A.; Riley, Stephen C.; Krueger, Charles C.; Tillitt, Donald E.

    2012-01-01

    Thiamine (vitamin B1) deficiency is a global concern affecting wildlife, livestock, and humans. In Great Lakes salmonines, thiamine deficiency causes embryo mortality and is an impediment to restoration of native lake trout (Salvelinus namaycush) stocks. Thiamine deficiency in fish may result from a diet of prey with high levels of thiaminase I. The discoveries that the bacterial species Paenibacillus thiaminolyticus produces thiaminase I, is found in viscera of thiaminase-containing prey fish, and causes mortality when fed to lake trout in the laboratory provided circumstantial evidence implicating P. thiaminolyticus. This study quantified the contribution of P. thiaminolyticus to the total thiaminase I activity in multiple trophic levels of Great Lakes food webs. Unexpectedly, no relationship between thiaminase activity and either the amount of P. thiaminolyticus thiaminase I protein or the abundance of P. thiaminolyticus cells was found. These results demonstrate that P. thiaminolyticus is not the primary source of thiaminase activity affecting Great Lakes salmonines and calls into question the long-standing assumption that P. thiaminolyticus is the source of thiaminase in other wild and domestic animals.

  20. Phylogenies of microcystin-producing cyanobacteria in the lower Laurentian Great Lakes suggest extensive genetic connectivity.

    PubMed

    Davis, Timothy W; Watson, Susan B; Rozmarynowycz, Mark J; Ciborowski, Jan J H; McKay, Robert Michael; Bullerjahn, George S

    2014-01-01

    Lake St. Clair is the smallest lake in the Laurentian Great Lakes system. MODIS satellite imagery suggests that high algal biomass events have occurred annually along the southern shore during late summer. In this study, we evaluated these events and tested the hypothesis that summer bloom material derived from Lake St. Clair may enter Lake Erie via the Detroit River and represent an overlooked source of potentially toxic Microcystis biomass to the western basin of Lake Erie. We conducted a seasonally and spatially resolved study carried out in the summer of 2013. Our goals were to: 1) track the development of the 2013 summer south-east shore bloom 2) conduct a spatial survey to characterize the extent of toxicity, taxonomic diversity of the total phytoplankton population and the phylogenetic diversity of potential MC-producing cyanobacteria (Microcystis, Planktothrix and Anabaena) during a high biomass event, and 3) compare the strains of potential MC-producers in Lake St. Clair with strains from Lake Erie and Lake Ontario. Our results demonstrated a clear predominance of cyanobacteria during a late August bloom event, primarily dominated by Microcystis, which we traced along the Lake St. Clair coastline downstream to the Detroit River's outflow at Lake Erie. Microcystin levels exceeded the Province of Ontario Drinking Water Quality Standard (1.5 µg L(-1)) for safe drinking water at most sites, reaching up to five times this level in some areas. Microcystis was the predominant microcystin producer, and all toxic Microcystis strains found in Lake St. Clair were genetically similar to toxic Microcystis strains found in lakes Erie and Ontario. These findings suggest extensive genetic connectivity among the three systems.

  1. Phylogenies of Microcystin-Producing Cyanobacteria in the Lower Laurentian Great Lakes Suggest Extensive Genetic Connectivity

    PubMed Central

    Davis, Timothy W.; Watson, Susan B.; Rozmarynowycz, Mark J.; Ciborowski, Jan J. H.; McKay, Robert Michael; Bullerjahn, George S.

    2014-01-01

    Lake St. Clair is the smallest lake in the Laurentian Great Lakes system. MODIS satellite imagery suggests that high algal biomass events have occurred annually along the southern shore during late summer. In this study, we evaluated these events and tested the hypothesis that summer bloom material derived from Lake St. Clair may enter Lake Erie via the Detroit River and represent an overlooked source of potentially toxic Microcystis biomass to the western basin of Lake Erie. We conducted a seasonally and spatially resolved study carried out in the summer of 2013. Our goals were to: 1) track the development of the 2013 summer south-east shore bloom 2) conduct a spatial survey to characterize the extent of toxicity, taxonomic diversity of the total phytoplankton population and the phylogenetic diversity of potential MC-producing cyanobacteria (Microcystis, Planktothrix and Anabaena) during a high biomass event, and 3) compare the strains of potential MC-producers in Lake St. Clair with strains from Lake Erie and Lake Ontario. Our results demonstrated a clear predominance of cyanobacteria during a late August bloom event, primarily dominated by Microcystis, which we traced along the Lake St. Clair coastline downstream to the Detroit River's outflow at Lake Erie. Microcystin levels exceeded the Province of Ontario Drinking Water Quality Standard (1.5 µg L−1) for safe drinking water at most sites, reaching up to five times this level in some areas. Microcystis was the predominant microcystin producer, and all toxic Microcystis strains found in Lake St. Clair were genetically similar to toxic Microcystis strains found in lakes Erie and Ontario. These findings suggest extensive genetic connectivity among the three systems. PMID:25207941

  2. U.S. Federal fishery research on the Great Lakes through 1956

    USGS Publications Warehouse

    Hile, Ralph

    1957-01-01

    The major purpose of this publication is to present an annotated bibliography of papers resulting from Federal investigations on the Great Lakes fish and fisheries since the formal initiation of a continuing research program by the Fish and Wildlife Service. It is believed that this purpose can be served best by prefacing that bibliography with a brief account of the origins of Great Lakes Fishery Investigations, of the circumstances that have guided their course. The present article is a revision and expansion of the author's earlier publication: 25 years of Federal Fishery Research on the Great Lakes (Special Scientific Report-Fisheries No. 85, 1952). Two circumstances made a revision desirable at this time. First, publications since 1952 have added greatly to the literature based on Federal studies on the Great Lakes. Second, the Great Lakes Fishery Commission, established by treaty with Canada, was organized in Ottowa in April 1956 and held its first annual meeting in Ann Arbor in November 1956. The entry of the Commission on the scene marks the start of an era of further expansion and heightens in past activities.

  3. Community health profile of Windsor, Ontario, Canada: anatomy of a Great Lakes area of concern.

    PubMed Central

    Gilbertson, M; Brophy, J

    2001-01-01

    The rates of mortality, morbidity as hospitalizations, and congenital anomalies in the Windsor Area of Concern ranked among the highest of the 17 Areas of Concern on the Canadian side of the Great Lakes for selected end points that might be related to pollution in this relatively highly industrialized city. Mortality and morbidity rates from all causes were higher than in the rest of the province. Anomalously high rates of diseases included various cancers; endocrine, nutritional, metabolic, and immunity disorders; diseases of the blood and blood-forming organs, nervous system and sense organs, circulatory and respiratory systems, digestive system, genitourinary system, skin and subcutaneous tissue, musculoskeletal system and connective tissues; congenital anomalies, and infant mortality. Of particular concern was the early onset of the elevated rates of many of these diseases and conditions. Comparison of these incident rates with those in Hamilton, another industrial municipality in southern Ontario, suggested that in addition to a variety of local sources of industrial pollution from automobile manufacturing and use, transboundary air and water pollution from Detroit, Michigan, should be investigated as potentially important causes of these health outcomes in the Windsor Area of Concern. Some of the institutional and political trends of the past decade may need to be reversed before effective remedial programs are implemented for cleaning up contaminated sediments and for containment of leaking hazardous waste sites. This pilot project would seem to be a useful preliminary method of integrating human health concerns and of priority setting for the administration of the Great Lakes Water Quality Agreement and the Canada-United States Air Quality Agreement. PMID:11744501

  4. Life history differences between fat and lean morphs of lake charr (Salvelinus namaycush) in Great Slave Lake, Northwest Territories, Canada

    USGS Publications Warehouse

    Hansen, Michael J.; Nate, Nancy A.; Chavarie, Louise; Muir, Andrew M.; Zimmerman, Mara S.; Krueger, Charles C.

    2016-01-01

    Life history characteristics (size, age, plumpness, buoyancy, survival, growth, and maturity) were compared between fat and lean morphs of lake charr Salvelinus namaycush in Great Slave Lake, Canada, to determine if differences may reflect effects of resource polymorphism. Lake charr were sampled using graded-mesh gill nets set in three depth strata. Of 236 lake charr captured, 122 were a fat morph and 114 were a lean morph. Males and females did not differ from each other in any attributes for either fat or lean morphs. The fat morph averaged 15 mm longer, 481 g heavier, and 4.7 years older than the lean morph. The fat morph averaged 26% heavier and 48% more buoyant at length than the lean morph. Survival of the fat morph was 1.7% higher than that of the lean morph. The fat morph grew at a slower annual rate to a shorter asymptotic length than the lean morph. Fat and lean morphs matured at similar lengths and ages. We concluded that the connection between resource polymorphism and life histories in lean versus fat lake charr suggests that morph-specific restoration objectives may be needed in lakes where lake charr diversity is considered to be a restoration goal.

  5. Resident fishes display elevated organic pollutants in salmon spawning streams of the great lakes.

    PubMed

    Janetski, David J; Chaloner, Dominic T; Moerke, Ashley H; Rediske, Richard R; O'Keefe, James P; Lamberti, Gary A

    2012-08-01

    Pacific salmon (Oncorhynchus spp.) can transport bioaccumulated organic pollutants to stream ecosystems where they spawn and die. We quantified PCBs, DDE, and PBDEs in resident fishes from 13 Great Lakes tributaries to assess biotransport of pollutants associated with introduced Pacific salmon. Resident fishes sampled from salmon spawning reaches had higher mean pollutant concentrations than those from upstream reaches lacking salmon (93.5 and 4.1 μg x kg(-1) [PCB], 24.0 and 3.1 μg x kg(-1) [DDE], 8.5 and 1.0 μg x kg(-1) [PBDE], respectively), but differences varied substantially among lake basins. In Lake Michigan tributaries, PCB concentrations in resident fishes from salmon reaches were over four times higher than those from salmon reaches in Lake Huron and over 30 times higher than those from Lake Superior. Moreover, resident fish pollutant concentrations were better explained by pollutant inputs from salmon (μg x m(-2); R(2) = 0.76 [PCB], 0.64 [DDE], 0.64 [PBDE]) than by land development/agriculture, watershed area, resident fish species, body length, or lipid content. These results suggest that pollutant dispersal to stream ecosystems via biotransport is an often overlooked consequence of salmon stocking and historical food web contamination in the Great Lakes. Our findings have implications for Great Lakes management, including dam removal and wildlife conservation.

  6. Great Salt Lake, and precursors, Utah: The last 30,000 years

    USGS Publications Warehouse

    Spencer, R.J.; Baedecker, M.J.; Eugster, H.P.; Forester, R.M.; Goldhaber, M.B.; Jones, B.F.; Kelts, K.; McKenzie, J.; Madsen, D.B.; Rettig, S.L.; Rubin, M.; Bowser, C.J.

    1984-01-01

    Sediment cores up to 6.5 m in length from the South Arm of Great Salt Lake, Utah, have been correlated. Radiocarbon ages and volcanic tephra layers indicate a record of greater than 30,000 years. A variety of approaches have been employed to collect data used in stratigraphic correlation and lake elevation interpretation; these include acoustic stratigraphy, sedimentologic analyses, mineralogy, geochemistry (major element, C, O and S isotopes, and organics), paleontology and pollen. The results indicate that prior to 32,000 year B.P. an ephemeral saline lake-playa system was present in the basin. The perennial lake, which has occupied the basin since this time, rose in a series of three major steps; the freshest water conditions and presumably highest altitude was reached at about 17,000 year B.P. The lake remained fresh for a brief period, followed by a rapid increase in salinity and sharp lowering in elevation to levels below that of the present Great Salt Lake. The lake remained at low elevations, and divided at times into a north and south Basin, until about 8,000 year B.P. Since that time, with the exception of two short rises to about 1290 m, the lake level has remained near the present elevation of 1280 m. ?? 1984 Springer-Verlag.

  7. Historically and currently used Dechloranes in the sediments of the Great Lakes.

    PubMed

    Yang, Ruiqiang; Wei, Hua; Guo, Jiehong; McLeod, Colin; Li, An; Sturchio, Neil C

    2011-06-15

    Dechlorane (mirex), Dechlorane Plus (DP), Dechlorane 602 (Dec602), Dechlorane 603 (Dec603), Dechlorane 604 (Dec604), and Chlordecone (Kepone) were analyzed in 16 sediment cores collected in 2007 from the Great Lakes of North America. Results show that Lake Ontario sediments have accumulated mirex, DP, Dec602 and Dec604 in amounts 1 to 2 orders of magnitude higher than other Great Lakes. The chemical inventory decreases log-linearly with increasing latitude (N) and longitude (W) of the sampling locations, but Lake Ontario sites are outliers in the regression against latitude. The regression analyses suggest differences among the analytes with regard to source impact and long-range transport behavior. Temporal trends of input differ among lakes. Most sites in Lake Superior are still receiving increasing fluxes of DP and Dec602, while these have been declining in Lake Ontario from the peak around 1990. The relative abundance of the two DP isomers, represented by f(syn), increases with increasing distance from the potential discharge source in Niagara Falls, NY, suggesting the anti-DP isomer is more vulnerable to degradation during long-range atmospheric transport. Kepone was not detected in the sediments of Lakes Ontario, Erie, and Michigan. PMID:21615082

  8. Analysis of bacterial communities associated with the benthic amphipod Diporeia in the Laurentian Great Lakes Basin.

    PubMed

    Winters, Andrew D; Marsh, Terence L; Brenden, Travis O; Faisal, Mohamed

    2015-01-01

    Bacterial communities play important roles in the biological functioning of crustaceans, yet little is known about their diversity, structure, and dynamics. This study was conducted to investigate the bacterial communities associated with the benthic amphipod Diporeia, an important component in the Great Lakes foodweb that has been declining over the past 3 decades. In this study, the combination of 16S rRNA gene sequencing and terminal restriction fragment length polymorphism revealed a total of 175 and 138 terminal restriction fragments (T-RFs) in Diporeia samples following treatment with the endonucleases HhaI and MspI, respectively. Relatively abundant and prevalent T-RFs were affiliated with the genera Flavobacterium and Pseudomonas and the class Betaproteobacteria. T-RFs affiliated with the order Rickettsiales were also detected. A significant difference in T-RF presence and abundance (P = 0.035) was detected among profiles generated for Diporeia collected from 4 sites in Lake Michigan. Comparison of profiles generated for Diporeia samples collected in 2 years from lakes Superior and Michigan showed a significant change in diversity for Lake Superior Diporeia but not Lake Michigan Diporeia. Profiles from one Lake Michigan site contained multiple unique T-RFs compared with other Lake Michigan Diporeia profiles, most notably one that represents the genus Methylotenera. This study generated the most extensive list of bacteria associated with Diporeia and sheds useful insights on the microbiome of Great Lakes Diporeia that may help to reveal potential causes of the decline of Diporeia populations.

  9. Remote Sensing as a Tool to Track Algal Blooms in the Great Salt Lake, Utah, USA

    NASA Astrophysics Data System (ADS)

    Bradt, S. R.; Wurtsbaugh, W. A.; Naftz, D.; Moore, T.; Haney, J.

    2006-12-01

    The Great Salt Lake is a large hypersaline, terminal water body in northern Utah, USA. The lake has both a significant economic importance to the local community as a source of brine shrimp and mineral resources, as well as, an ecological importance to large numbers of migratory waterfowl. Due to nutrient input from sewage treatment plants, sections of the Great Salt Lake are subjected to highly eutrophic conditions. One of the main tributaries, Farmington Bay, experiences massive blooms of cyanobacteria which can reach concentrations in excess of 300 mg l-1 in the bay. Effects of these blooms can be observed stretching into the rest of the lake. The detrimental outcomes of the blooms include unsightly scums, foul odor and the danger of cyanobacterial toxins. While the blooms have an obvious effect on Farmington Bay, it is quite possible that the cyanobacteria impact a much wider area of the lake as currents move eutrophic water masses. Of particular interest is the reaction of brine shrimp to the plumes of cyanobacteria-rich water leaving Farmington Bay. We are employing remote sensing as a tool to map the distribution of algae throughout the lake and produce lake-wide maps of water quality on a regular basis. On-lake reflectance measurements have been coupled with MODIS satellite imagery to produce a time series of maps illustrating changes in algal distribution. The successes and shortcomings of our remote sensing technique will be a central topic of this presentation.

  10. Potential impacts of water diversion on fishery resources in the Great Lakes

    USGS Publications Warehouse

    Manny, Bruce A.

    1984-01-01

    Uses of Great Lakes water within the Great Lakes basin are steadily increasing, and critical water shortages elsewhere may add to the demands for diversions of water out of the basin in the near future. The impacts of such diversions on fish in the Great Lakes must be considered in the context of in-basin uses of the water, because in-basin uses already adversely affect the fishery resources. Temporary in-basin water withdrawals from Lake Michigan by industry in 1980 equaled 260% of the total volume of water between the shoreline and the 10-meter depth - the littoral waters most heavily used by fish as spawning and nursery grounds. Nearly 100% of the fish removed by these water withdrawals were killed. Enough young alewives (Alosa pseudoharengus) and rainbow smelt (Osmerus mordax) in Lake Michigan and young yellow perch (Perca flavescens) in western Lake Erie have been removed at water intakes in recent years to reduce the productivity and biomass of adult fish stocks. Out-of-basin diversions of water at Chicago and at the Welland Canal, channel modifications in the St. Clair River, and in-basin consumptive water withdrawals have lowered the annual mean water level of Lakes Michigan and Huron by about 27 cm and that of Lake Erie by about 10 cm, dewatering wetlands that historically served as spawning and nursery habitat for many valuable fish species. The dollar value of fish lost to water diversions and withdrawals has not yet been estimated, but water withdrawals alone have already reduced the annual economic impact of the Great Lakes fisheries, which has been estimated to be 1.16 billion dollars.

  11. LINKING HISTORICAL ORGANOCHLORINE EXPOSURES IN THE GREAT LAKES CAUSALLY TO MAJOR FISH POPULATION CHANGES

    EPA Science Inventory

    The Great Lakes of North America are large aquatic ecosystems that have been greatly impacted by human activities in the 20th century. Introduction of non-native species, both advertently and inadvertently; reduction in populations through commercial fishing; habitat alternation...

  12. LANDSCAPE-SCALE ECOLOGICAL FACTORS AND THEIR ROLE IN PLANT OPPORTUNISM OF GREAT LAKES COASTAL WETLANDS

    EPA Science Inventory

    Coastal wetlands of the Laurentian Great Lakes (USA and Canada) are among the most biologically diverse ecosystems of the world. However, since the 1970s the presence of opportunistic plant species such as common reed (Phragmites australis [Cav.] Steudel) have increased in Great ...

  13. Investigating the Great Lakes Environment, Unit One: The Sea Lamprey Story.

    ERIC Educational Resources Information Center

    Lin, Leslie; And Others

    Presented are 11 middle school activities dealing with the sea lamprey and its impact upon the Great Lakes. Included are background information, lesson outlines, references, masters for student worksheets, a wall map, game boards, and two filmstrip-tape units. Using these materials students can learn ecological concepts and some Great Lakes…

  14. Across Hydrological Interfaces from Coastal Watersheds to the Open Lake: Finding Landscape Signals in the Great Lakes Coastal Zone

    EPA Science Inventory

    Over the past decade, our group has been working to bring coastal ecosystems into integrated basin-lakewide monitoring and assessment strategies for the Great Lakes. We have conducted a wide range of research on coastal tributaries, coastal wetlands, semi-enclosed embayments an...

  15. Shallow Water Offshore Wind Optimization for the Great Lakes (DE-FOA-0000415) Final Report: A Conceptual Design for Wind Energy in the Great Lakes

    SciTech Connect

    Wissemann, Chris; White, Stanley M

    2014-02-28

    The primary objective of the project was to develop a innovative Gravity Base Foundation (GBF) concepts, including fabrication yards, launching systems and installation equipment, for a 500MW utility scale project in the Great Lakes (Lake Erie). The goal was to lower the LCOE by 25%. The project was the first to investigate an offshore wind project in the Great Lakes and it has furthered the body of knowledge for foundations and installation methods within Lake Erie. The project collected historical geotechnical information for Lake Erie and also used recently obtained data from the LEEDCo Icebreaker Project (FOA DE-EE0005989) geotechnical program to develop the conceptual designs. Using these data-sets, the project developed design wind and wave conditions from actual buoy data in order to develop a concept that would de-risk a project using a GBF. These wind and wave conditions were then utilized to create reference designs for various foundations specific to installation in Lake Erie. A project partner on the project (Weeks Marine) provided input for construction and costing the GBF fabrication and installation. By having a marine contractor with experience with large marine projects as part of the team provides credibility to the LCOE developed by NREL. NREL then utilized the design and construction costing information as part of the LCOE model. The report summarizes the findings of the project. • Developed a cost model and “baseline” LCOE • Documented Site Conditions within Lake Erie • Developed Fabrication, Installation and Foundations Innovative Concept Designs • Evaluated LCOE Impact of Innovations • Developed Assembly line “Rail System” for GBF Construction and Staging • Developed Transit-Inspired Foundation Designs which incorporated: Semi-Floating Transit with Supplemental Pontoons Barge mounted Winch System • Developed GBF with “Penetration Skirt” • Developed Integrated GBF with Turbine Tower • Developed Turbine, Plant

  16. Thiamine status of rainbow smelt (Osmerus mordax) eggs in the Great Lakes, USA

    USGS Publications Warehouse

    Chalupnicki, Marc A.; Ketola, H. George; Zehfus, Micheal H.; Crosswait, Jonathan R.; Rinchard, Jacques

    2012-01-01

    During spring 2006–2009, eggs were collected for analysis of total thiamine from gravid rainbow smelt (Osmerus mordax) captured in each of the Great Lakes and two other waters as references for comparison. Mean standard length (mm ± standard error) of gravid females significantly differed between sample waters, with the Atlantic Ocean population being the longest (189 ± 12.3 mm) and Lake Michigan population the shortest (122 ± 0.3 mm). Mean thiamine concentrations (nmol/g ± standard error) for single-year samples for Lake Huron, Lake Michigan, and Little Clear Pond (New York) were 9.9 ± 0.8, 3.9 ± 0.7, and 8.1 ± 2.3 nmol/g, respectively. Thiamine concentrations for multiple-year samples ranged from 1.1 to 15.6 for Lake Ontario, from 2.6 to 3.3 for Lake Erie, from 5.0 to 9.9 for Lake Superior, and from 10.9 to 13.3 for the Atlantic Ocean (Fore River). Although highly variable within populations and across years, thiamine concentrations in most spawning adults appeared to be adequate in all the waters for the years sampled except for 2006 and 2009 in Lake Ontario and 2009 in Lake Erie.

  17. LINKING GREAT WATERSHEDS WITH LAKE MICHIGAN: THE LAKE MICHIGAN MASS BALANCE STUDY

    EPA Science Inventory

    An overview of the Lake Michigan Mass Balance Study -- which is focusing on atrazine, PCBs, nutrients, suspended solids, trans-nonachlor, and mercury. The relative contribution of contaminants to Lake Michigan will be examined for all major watersheds in the basin. - - - Further ...

  18. Great Lakes water quality scenario models: Operational feasibility -Lake Michigan Mass Balance models

    EPA Science Inventory

    An overview of the Lake Michigan Mass Balance models were provided (eutrophication/nutrients, atrazine, mercury, and PCBs) with emphasis on the PCB model post-audit and forecast for Lake Trout. Provided were modeling construct, model description, and primary results. An assessm...

  19. Changes in lake levels, salinity and the biological community of Great Salt Lake (Utah, USA), 1847-1987

    USGS Publications Warehouse

    Stephens, D.W.

    1990-01-01

    Great Salt Lake is the fourth largest terminal lake in the world, with an area of about 6000 square kilometers at its historic high elevation. Since its historic low elevation of 1277.52 meters in 1963, the lake has risen to a new historic high elevation of 1283.77 meters in 1986-1987, a net increase of about 6.25 meters. About 60 percent of this increase, 3.72 meters, has occurred since 1982 in response to greater than average precipitation and less than average evaporation. Variations in salinity have resulted in changes in the composition of the aquatic biological community which consists of bacteria, protozoa, brine shrimp and brine flies. These changes were particularly evident following the completion of a causeway in 1959 which divided the lake. Subsequent salinities in the north part of the lake have ranged from 16 to 29 percent and in the south part from 6 to 28 percent. Accompanying the rise in lake elevation from 1982 to 1987 have been large decreases in salinity of both parts of the lake. This has resulted in changes in the biota from obligate halophiles, such as Dunaliella salina and D. viridis, to opportunistic forms such as a blue-green alga (Nodularia spumigena). The distribution and abundance of brine shrimp (Artemia salina) in the lake also have followed closely the salinity. In 1986, when the salinity of the south part of the lake was about 6 percent, a population of brackish-water killifish (Lucania parva) was observed along the shore near inflow from a spring. ?? 1990 Kluwer Academic Publishers.

  20. Perfluorinated compounds in fish from U.S. urban rivers and the Great Lakes.

    PubMed

    Stahl, Leanne L; Snyder, Blaine D; Olsen, Anthony R; Kincaid, Thomas M; Wathen, John B; McCarty, Harry B

    2014-11-15

    Perfluorinated compounds (PFCs) have recently received scientific and regulatory attention due to their broad environmental distribution, persistence, bioaccumulative potential, and toxicity. Studies suggest that fish consumption may be a source of human exposure to perfluorooctane sulfonate (PFOS) or long-chain perfluorocarboxylic acids. Most PFC fish tissue literature focuses on marine fish and waters outside of the United States (U.S.). To broaden assessments in U.S. fish, a characterization of PFCs in freshwater fish was initiated on a national scale using an unequal probability design during the U.S. Environmental Protection Agency's (EPA's) 2008-2009 National Rivers and Streams Assessment (NRSA) and the Great Lakes Human Health Fish Tissue Study component of the 2010 EPA National Coastal Condition Assessment (NCCA/GL). Fish were collected from randomly selected locations--164 urban river sites and 157 nearshore Great Lake sites. The probability design allowed extrapolation to the sampled population of 17,059 km in urban rivers and a nearshore area of 11,091 km(2) in the Great Lakes. Fillets were analyzed for 13 PFCs using high-performance liquid chromatography tandem mass spectrometry. Results showed that PFOS dominated in frequency of occurrence, followed by three other longer-chain PFCs (perfluorodecanoic acid, perfluoroundecanoic acid, and perfluorododecanoic acid). Maximum PFOS concentrations were 127 and 80 ng/g in urban river samples and Great Lakes samples, respectively. The range of NRSA PFOS detections was similar to literature accounts from targeted riverine fish sampling. NCCA/GL PFOS levels were lower than those reported by other Great Lakes researchers, but generally higher than values in targeted inland lake studies. The probability design allowed development of cumulative distribution functions (CDFs) to quantify PFOS concentrations versus the sampled population, and the application of fish consumption advisory guidance to the CDFs resulted in

  1. Postglacial Development and Geological Structure of the Great Lake Ladoga

    NASA Astrophysics Data System (ADS)

    Amantov, Aleksey; Amantova, Marina

    2014-05-01

    Lake Ladoga is one of the key intriguing regions for constraining the glacial rebound model. It is located close to the margin of expansion of the last glaciation. The majority of data of its post-glacial development, rebound and drainage are disputable in spite of huge amount of data collected by different researchers. The modern basin is located on the slope of the Baltic shield sloping under the Neoproterozoic-Paleozoic cover of the Russian platform, and in spatial links with the shape of Riphean (Mesoproterozoic) basin. Because of this position and contrast topography, several papers report on strong neotectonics with differentiated movements and unclear role of the isostatic rebound. We want to highlight the following points: 1. Lake Ladoga basin is clearly a product of Cenozoic erosion, with the dominant role in glacial time. Different resistance of Mesoproterozoic formations causes the contrast relief. We consider the deepest northwestern part as the world largest glacial cirque. 2. Sub-Upper Vendian peneplain (base of the "proper" sedimentary cover) and other major Upper Vendian-Cambrian reference horizons show gentle tilt across the area of distribution, as seen in shallow seismic profiling. They continue offshore in the same way, showing clear absence of noticable neotectonic movements that could change the overall rebound pattern. 3. Modeling, which includes sediment redistribution, shows it's potentially significant role in landscape changes. Widespread thick Ice Lake sediments should be deposited north of the highland of Karelic peninsula, and their later erosion contributed to minor additional uplift. 4. Water level fluctuations are well known for the Ladoga post-glacial history. In hydroisostatic response Ladoga appeared as a circle with the center of additional uplift (or subsidence) migrating southwards. This caused deviations of pure glacial isobases. 5. Peat autocompaction / compaction changed topography over time, especially in oldest sedge

  2. Functional values of Great Lakes coastal wetlands: What we know and what we can be working towards

    EPA Science Inventory

    Water quality improvement, shoreline protection, carbon sequestration, and lake productivity subsidy are among the functional values commonly attributed to Great Lakes coastal wetlands (GLCWs). There is much less information concerning these than there is concerning habitat and f...

  3. Hydrologic characteristics of the Great Salt Lake, Utah, 1847-1986

    USGS Publications Warehouse

    Arnow, Ted; Stephens, Doyle W.

    1990-01-01

    The Great Salt Lake in Utah is a large body of water bordered on the west by barren desert and on the east by a major metropolitan area. It is the fourth largest terminal lake in the world, covering about 2,300 square miles in 1986. Since its historic low elevation of 4,191.35 feet in 1963, the lake rose to a new historic high elevation of 4,211.85 feet in 1986. Most of this increase (12.2 feet) occurred after 1982. The rise has caused $285 million of damage to lakeside industries, transportation, farming, and wildlife. Accompanying the rapid rise in lake level has been a decrease in salinity--from 28 percent in 1963 to about 6 percent in 1986. This has resulted in changes in the biota of the lake from obligate halophiles to opportunistic forms, such as blue-green algae and, most recently, a brackish-water fish.

  4. Climatic changes near the Great Lakes inferred from 141 year ice records

    USGS Publications Warehouse

    Assel, Raymond A.; Robertson, Dale M.

    1992-01-01

    Freeze-up and break-up dates and duration of ice cover for lakes and rivers represent an integration of weather conditions prior to the specified event(s). Changes in mean ice conditions may be used as quantitative indicators of climatic changes if long homogenous ice records are accompanied by sufficiently homogenous air temperature records to calibrate the changes in mean ice cover in terms of climatic variables. Historical ice records dating back to 1855 are available for Lake Mendota, WI (located on the southwestern side of Lake Michigan) and back to 1851 for Grand Traverse Bay, MI (located on the northeastern side of Lake Michigan). Changes in the mean ice cover of these two systems were used to describe changes in fall, winter, and spring air temperatures in the area near the Great Lakes during the past 141 years. 

  5. Parallel life history evolution in mouthbrooding cichlids from the African Great Lakes

    PubMed Central

    Duponchelle, Fabrice; Paradis, Emmanuel; Ribbink, Anthony J.; Turner, George F.

    2008-01-01

    The existence of ancient deep-water lakes provides an opportunity to study the independent adaptation of aquatic organisms to pelagic, benthic, and rocky shore habitats. With improving resolution of their phylogenetic relationships, the many cichlid fish species endemic to the African Great Lakes Malawi, Tanganyika, and Victoria provide a significant resource for the comparative study of such evolutionary processes. Here, we show that cichlid lineages colonizing rocky shores and pelagic habitats in the different lakes have independently evolved larger eggs and lower fecundities than benthic lineages, suggesting parallel adaptive life-history evolution. By contrast, other pelagic teleost fishes in both marine and freshwater habitats, including African lakes, typically produce large numbers of very small eggs. Our results also suggest that decreased fecundity and increased egg size not only occurred independently in each lake but occurred independently in the colonization of rocky and pelagic habitats. PMID:18824688

  6. Climate change and waterborne disease risk in the Great Lakes region of the U.S.

    PubMed

    Patz, Jonathan A; Vavrus, Stephen J; Uejio, Christopher K; McLellan, Sandra L

    2008-11-01

    Extremes of the hydrologic cycle will accompany global warming, causing precipitation intensity to increase, particularly in middle and high latitudes. During the twentieth century, the frequency of major storms has already increased, and the total precipitation increase over this time period has primarily come from the greater number of heavy events. The Great Lakes region is projected to experience a rise these extreme precipitation events. For southern Wisconsin, the precipitation rate of the 10 wettest days was simulated using a suite of seven global climate models from the UN Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment Report. For each ranking, the precipitation rate of these very heavy events increases in the future. Overall, the models project that extreme precipitation events will become 10% to 40% stronger in southern Wisconsin, resulting in greater potential for flooding, and for the waterborne diseases that often accompany high discharge into Lake Michigan. Using 6.4 cm (2.5 in) of daily precipitation as the threshold for initiating combined sewer overflow into Lake Michigan, the frequency of these events is expected to rise by 50% to 120% by the end of this century. The combination of future thermal and hydrologic changes may affect the usability of recreational beaches. Chicago beach closures are dependent on the magnitude of recent precipitation (within the past 24 hours), lake temperature, and lake stage. Projected increases in heavy rainfall, warmer lake waters, and lowered lake levels would all be expected to contribute to beach contamination in the future. The Great Lakes serve as a drinking water source for more than 40 million people. Ongoing studies and past events illustrate a strong connection between rain events and the amount of pollutants entering the Great Lakes. Extreme precipitation under global warming projections may overwhelm the combined sewer systems and lead to overflow events that can threaten both human

  7. Techniques for restoration of disturbed coastal wetlands of the Great Lakes

    USGS Publications Warehouse

    Wilcox, Douglas A.; Whillans, Thomas H.

    1999-01-01

    A long history of human-induced degradation of Great Lakes wetlands has made restoration a necessity, but the practice of wetland restoration is relatively new, especially in large lake systems. Therefore, we compiled tested methods and developed additional potential methods based on scientific understanding of Great Lakes wetland ecosytems to providc an overview of approaches for restoration. We addressed this challenge by focusing on four general fields of science: hydrology, sedimentology, chemistry, and biology. Hydrologic remediation methods include restoring hydrologic connections between diked and hydrologically altered wetlands and the lakes, restoring water tables lowered by ditching, and restoring natural variation in lake levels of regulated lakes Superior and Ontario. Sedimentological remediation methods include management of sediment input from uplands, removal or proper management of dams on tributary rivers, and restoration of protective barrier beaches and sand spits. Chemical remediation methods include reducing or eliminating inputs of contaminants from point and non-pont sources, natural sediment remediation by biodegradation and chemical degradation, and active sediment remediation by removal or byin situ treatment Biological remediation methods include control of non-target organisms, enhancing populations of target organisms, and enhancing habitat for target organisms. Some of these method were used in three major restoration projects (Metzger Marsh on Lake Erie and Cootes Paradise and Oshawa Second Marsh on Lake Ontario), which are described as case studies to show practical applications of wetland restoration in the Great Lakes. Successful restoration techniques that do not require continued manipulation must be founded in the basic tenets of ecology and should mimic natural processes. Success is demonstrated by the sustainability, productivity, nutrient-retention ability, invasibility, and biotic interactions within a restored wetland.

  8. Morphometric variation among spawning cisco aggregations in the Laurentian Great Lakes: are historic forms still present?

    USGS Publications Warehouse

    Yule, Daniel L.; Moore, Seth A.; Ebener, Mark P.; Claramunt, Randall M.; Pratt, Thomas C.; Salawater, Lorrie L.; Connerton, Michael J.

    2013-01-01

    Cisco (Coregonus artedi Leseur, formerly lake herring Leucichthys artedi Leseur) populations in each of the Laurentian Great Lakes collapsed between the late 1920s and early 1960s following a multitude of stressors, and never recovered in Lakes Michigan, Erie and Ontario. Prior to their collapse, Koelz (1929) studied Leucichthys spp. in the Great Lakes basin and provided a description of their diversity. Three cisco morphotypes were described; a ‘slim terete’morphotype (L. artedi artedi), a ‘deep compressed’ morphotype (L. artedi albus), and a deep-bodied form resembling tullibee in western Canadian lakes (L. artedi manitoulinus). Based on body measurements of 159 individuals (Koelz 1929), we used discriminant function analysis (DFA) to discriminate historic morphotypes. Shapes of historic morphotypes were found to vary significantly (Pillai’s trace = 1.16, P < 0.0001). The final DFA model used nine body measurements and correctly classified 90% of the historic cisco. Important discriminating measurements included body depth, eye diameter, and dorsal fin base and height. Between October-November of 2007-2011, we sampled cisco from 16 Great Lakes sites collecting digital photographs of over 1, 700 individuals. We applied the DFA model to their body measurements and classified each individual to a morphotype. Contemporary cisco from Lakes Superior, Ontario and Michigan were predominantly classified as artedi, while the most common classifications from northern Lake Huron were albus and manitoulinus. Finding historic morphotypes is encouraging because it suggests that the morphological variation present prior to their collapse still exists. We conclude that contemporary cisco having shapes matching the missing historic morphotypes in the lower lakes warrant special consideration as potential donor populations in reestablishment efforts.

  9. Pharmaceuticals and personal care products found in the Great Lakes above concentrations of environmental concern.

    PubMed

    Blair, Benjamin D; Crago, Jordan P; Hedman, Curtis J; Klaper, Rebecca D

    2013-11-01

    The monitoring of pharmaceuticals and personal care products (PPCPs) has focused on the distribution in rivers and small lakes, but data regarding their occurrence and effects in large lake systems, such as the Great Lakes, are sparse. Wastewater treatment processes have not been optimized to remove influent PPCPs and are a major source of PPCPs in the environment. Furthermore, PPCPs are not currently regulated in wastewater effluent. In this experiment we evaluated the concentration, and corresponding risk, of PPCPs from a wastewater effluent source at varying distances in Lake Michigan. Fifty-four PPCPs and hormones were assessed on six different dates over a two-year period from surface water and sediment samples up to 3.2 km from a wastewater treatment plant and at two sites within a harbor. Thirty-two PPCPs were detected in Lake Michigan and 30 were detected in the sediment, with numerous PPCPs being detected up to 3.2 km away from the shoreline. The most frequently detected PPCPs in Lake Michigan were metformin, caffeine, sulfamethoxazole, and triclosan. To determine the ecological risk, the maximum measured environmental concentrations were compared to the predicted no-effect concentration and 14 PPCPs were found to be of medium or high ecological risk. The environmental risk of PPCPs in large lake systems, such as the Great Lakes, has been questioned due to high dilution; however, the concentrations found in this study, and their corresponding risk quotient, indicate a significant threat by PPCPs to the health of the Great Lakes, particularly near shore organisms.

  10. DNA barcoding as a tool for Great Lakes biological assessment

    EPA Science Inventory

    Enumerating organisms found in water samples in support of biodiversity and biological condition assessment is a mainstay of aquatic ecology, yet can require considerable resources and expertise. DNA-based identification of mixed-organism samples offers the potential to greatly ...

  11. Implications of hydrologic variability on the succession of plants in Great Lakes wetlands

    USGS Publications Warehouse

    Wilcox, Douglas A.

    2004-01-01

    Primary succession of plant communities directed toward a climax is not a typical occurrence in wetlands because these ecological systems are inherently dependent on hydrology, and temporal hydrologic variability often causes reversals or setbacks in succession. Wetlands of the Great Lakes provide good examples for demonstrating the implications of hydrology in driving successional processes and for illustrating potential misinterpretations of apparent successional sequences. Most Great Lakes coastal wetlands follow cyclic patterns in which emergent communities are reduced in area or eliminated by high lake levels and then regenerated from the seed bank during low lake levels. Thus, succession never proceeds for long. Wetlands also develop in ridge and swale terrains in many large embayments of the Great Lakes. These formations contain sequences of wetlands of similar origin but different age that can be several thousand years old, with older wetlands always further from the lake. Analyses of plant communities across a sequence of wetlands at the south end of Lake Michigan showed an apparent successional pattern from submersed to floating to emergent plants as water depth decreased with wetland age. However, paleoecological analyses showed that the observed vegetation changes were driven largely by disturbances associated with increased human settlement in the area. Climate-induced hydrologic changes were also shown to have greater effects on plant-community change than autogenic processes. Other terms, such as zonation, maturation, fluctuations, continuum concept, functional guilds, centrifugal organization, pulse stability, and hump-back models provide additional means of describing organization and changes in vegetation; some of them overlap with succession in describing vegetation processes in Great Lakes wetlands, but each must be used in the proper context with regard to short- and long-term hydrologic variability.

  12. Sensitivity of fish density estimates to standard analytical procedures applied to Great Lakes hydroacoustic data

    USGS Publications Warehouse

    Kocovsky, Patrick M.; Rudstam, Lars G.; Yule, Daniel L.; Warner, David M.; Schaner, Ted; Pientka, Bernie; Deller, John W.; Waterfield, Holly A.; Witzel, Larry D.; Sullivan, Patrick J.

    2013-01-01

    Standardized methods of data collection and analysis ensure quality and facilitate comparisons among systems. We evaluated the importance of three recommendations from the Standard Operating Procedure for hydroacoustics in the Laurentian Great Lakes (GLSOP) on density estimates of target species: noise subtraction; setting volume backscattering strength (Sv) thresholds from user-defined minimum target strength (TS) of interest (TS-based Sv threshold); and calculations of an index for multiple targets (Nv index) to identify and remove biased TS values. Eliminating noise had the predictable effect of decreasing density estimates in most lakes. Using the TS-based Sv threshold decreased fish densities in the middle and lower layers in the deepest lakes with abundant invertebrates (e.g., Mysis diluviana). Correcting for biased in situ TS increased measured density up to 86% in the shallower lakes, which had the highest fish densities. The current recommendations by the GLSOP significantly influence acoustic density estimates, but the degree of importance is lake dependent. Applying GLSOP recommendations, whether in the Laurentian Great Lakes or elsewhere, will improve our ability to compare results among lakes. We recommend further development of standards, including minimum TS and analytical cell size, for reducing the effect of biased in situ TS on density estimates.

  13. Spatial Distribution and Air-Water Exchange of Organic Flame Retardants in the Lower Great Lakes.

    PubMed

    McDonough, Carrie A; Puggioni, Gavino; Helm, Paul A; Muir, Derek; Lohmann, Rainer

    2016-09-01

    Organic flame retardants (OFRs) such as polybrominated diphenyl ethers (PBDEs) and novel halogenated flame retardants (NHFRs) are ubiquitous, persistent, and bioaccumulative contaminants that have been used in consumer goods to slow combustion. In this study, polyethylene passive samplers (PEs) were deployed throughout the lower Great Lakes (Lake Erie and Lake Ontario) to measure OFRs in air and water, calculate air-water exchange fluxes, and investigate spatial trends. Dissolved Σ12BDE was greatest in Lake Ontario near Toronto (18 pg/L), whereas gaseous Σ12BDE was greatest on the southern shoreline of Lake Erie (11 pg/m(3)). NHFRs were generally below detection limits. Air-water exchange was dominated by absorption of BDEs 47 and 99, ranging from -964 pg/m(2)/day to -30 pg/m(2)/day. Σ12BDE in air and water was significantly correlated with surrounding population density, suggesting that phased-out PBDEs continued to be emitted from population centers along the Great Lakes shoreline in 2012. Correlation with dissolved Σ12BDE was strongest when considering population within 25 km while correlation with gaseous Σ12BDE was strongest when using population within 3 km to the south of each site. Bayesian kriging was used to predict dissolved Σ12BDE over the lakes, illustrating the utility of relatively highly spatially resolved measurements in identifying potential hot spots for future study.

  14. Spatial Distribution and Air-Water Exchange of Organic Flame Retardants in the Lower Great Lakes.

    PubMed

    McDonough, Carrie A; Puggioni, Gavino; Helm, Paul A; Muir, Derek; Lohmann, Rainer

    2016-09-01

    Organic flame retardants (OFRs) such as polybrominated diphenyl ethers (PBDEs) and novel halogenated flame retardants (NHFRs) are ubiquitous, persistent, and bioaccumulative contaminants that have been used in consumer goods to slow combustion. In this study, polyethylene passive samplers (PEs) were deployed throughout the lower Great Lakes (Lake Erie and Lake Ontario) to measure OFRs in air and water, calculate air-water exchange fluxes, and investigate spatial trends. Dissolved Σ12BDE was greatest in Lake Ontario near Toronto (18 pg/L), whereas gaseous Σ12BDE was greatest on the southern shoreline of Lake Erie (11 pg/m(3)). NHFRs were generally below detection limits. Air-water exchange was dominated by absorption of BDEs 47 and 99, ranging from -964 pg/m(2)/day to -30 pg/m(2)/day. Σ12BDE in air and water was significantly correlated with surrounding population density, suggesting that phased-out PBDEs continued to be emitted from population centers along the Great Lakes shoreline in 2012. Correlation with dissolved Σ12BDE was strongest when considering population within 25 km while correlation with gaseous Σ12BDE was strongest when using population within 3 km to the south of each site. Bayesian kriging was used to predict dissolved Σ12BDE over the lakes, illustrating the utility of relatively highly spatially resolved measurements in identifying potential hot spots for future study. PMID:27458653

  15. Evidence for upper Great Lakes waters in the Erie Basin until 10. 5 ka

    SciTech Connect

    Tinkler, K.J. . Dept. of Geology) Lewis, C.F.M. ); Anderson, T.W. ); Cameron, G.D.M.

    1992-01-01

    Modern recession at Niagara Falls suggests that Erie basin flow alone produces a narrower gorge with recession reduced by an order of magnitude. Gorge interpretations relate dimensions to stages of Great Lakes evolution. A published date of 9.8 ka, for upper river shells at Whirlpool State Park favors an interpretation implying 3.5 kilometers of gorge were cut in the period 12.5 ka to 10.5 ka at a rate of 1.75 m/a, a value consistent with the pre-twentieth century rate of 1.37--1.52 m/a. Erie basin discharge alone would be insufficient to excavate the length of gorge seen. Stratigraphic studies of offshore sediments in lake Erie north-east of Long Point based on seismic profiles and core samples show evidence of lake level change. Following decline of the post-Whittlesey (< 13 ka) southwestward-draining proglacial lakes in the Erie basin and the establishment of Lake Iroquois at about 12.5 ka water levels fell to a control on the Niagara Peninsula. Glacial meltwater continued to pass through the Erie basin until 10.5 ka. Negative shifts in delta O-18 suggest increased meltwater flow through the Erie basin and increased lake level between 11 ka and 10.5 ka. An erosional unconformity, lag sediments, and a distinct former shoreface suggest that lake level subsequently fell in the Long Point area of eastern Lake Erie to about 30m below present by about 10.5 ka when meltwater runoff from the upper Great Lakes by-passed Erie basin. Both the lake cores and the gorge recession are consistent with a computational model of flow out to the Erie basin. According to the model great Lakes outflow, augmented by inflow from Lake Agassiz between 11 to 10.5 ka, would yield shorelines at the height attributed to Lake Tonawanda (180--182m), the immediate source of the Niagara River.

  16. State of the Middle Great Lakes: results of the 1983 water quality survey of Lakes Erie, Huron, and Michigan

    SciTech Connect

    Lesht, B.M.; Rockwell, D.C.

    1985-08-01

    Results and program objewaatertives are discussed in the context of past and proposed lake surveillance activities. Surveillance methods are briefly explained. Data are evaluated and compared relative to spatial, temporal and seasonal variability within and between the three lakes sampled and in relation to water-quality assessment issues. Survey results and historical data on water-quality parameters are compared with the results of numerical simulations using two different types of model - nutrient-based eutrophication models and multisegment, mass-balance models. The authors conclude, on the basis of the 1983 surveillance program results, that water-quality conditions of the three lakes have, in general, improved since the last intensive survey in the 1970s. Recommendations are made that open-lake water-quality surveillance be conducted on an annual basis; that estimates of nutrient loading to the lakes be refined; that the role of the benthic nepheloid layer and of particle removal in general on the cycling of nutrients in the Great Lakes be studied; that refinement of water-quality modeling efforts be continued; and that research activities and methodology be incorporated into the surveillance program. Finally, raw data collected during the 1983 program are presented in tabular form and on microfiche in appendices at the end of the report. Cruise data are included on microfiche. 53 refs., 54 figs., 43 tabs.

  17. The Right Scale for the Question Asked: A Challenge for Great Lakes Hydrology and Restoration Forecasts

    NASA Astrophysics Data System (ADS)

    Hunt, R.; Walker, J. F.; Christiansen, D.

    2012-12-01

    Water is a primary metric for viewing Great Lakes health and restoration. Our ability to characterize and forecast hydrologic conditions continues to improve, but challenges remain. One notable issue is the scale of the Great Lakes system. Because of its size, constructing a tractable model that encompasses the entire watershed requires extensive simplification. Questions that require higher spatial and temporal resolution, however, often cannot be well-simulated using the coarse resolution of Great Lakes watershed-scale tools. In work conducted for the Great Lake Restoration Initiative, a regional Precipitation-Runoff Modeling System (PRMS) model has been constructed for the entire Lake Michigan watershed. The model was parameterized using Hydrologic Response Units of about 207 square kilometers, and 148 stream gages ranging in HUC 8-12 scales. This representation of the system is useful for annual and perhaps seasonal/monthly characterizations of water fluxes to Lake Michigan. Likewise, this scale of forecast can be useful for certain predictions, such as lake stage forecasts where Lake Michigan is the basinwide receptor - a receptor that is a natural integrator of large space and time. Many questions need a more refined characterization of the dynamics and processes operating within the system. For these, such a coarse representation of space and time is not appropriate. Many Great Lakes issues, such as localized Areas of Concern (AOCs) and Harmful Algal Blooms (HABs), are not well represented by basinwide averages. For example, annual flows are not useful for assessing the resilience of a sand-capping restoration activity to future climate variability. In this work, a spatially detailed PRMS model has been refined from the regional PRMS model to construct more representative forecasts for these types of questions. The sub-basin model needs to answer the smaller scale question, but must also be consistent with the conceptualization and parameterization of the

  18. Great Salt Lake, Utah: chemical and physical variations of the brine, 1963-1966

    USGS Publications Warehouse

    Hahl, D.C.; Handy, A.H.

    1969-01-01

    Great Salt Lake is a shallow, closed-basin lake in northern Utah. Its surface area and concentration of dissolved solids vary in response to both annual and long-term climatic changes. The lake gains water mainly as streamflow from mountains to the east and loses water through evaporation. In 1965, at a lake-surface altitude of 4,194 feet, the surface area was about 1,000 square miles, and the maximum measured depth was 27 feet. Studies to define the variations in chemical and physical characteristics of the brine began in 1963, and detailed sampling of the lake at 29 sites was made in October 1965 and May 1966. Data resulting from concurrent sampling of the 29 sites indicated that four types of brine coexist in the lake. The concentration of dissolved solids in the Great Salt Lake brine has always varied from place to place and with depth. Inflow, evaporation, currents, wind, and density differences resulted in brine stratification in the deep parts and brine concentration in the shallow, isolated parts of the lake. Completion of a railroad causeway by the Southern Pacific Co. in 1957 divided the lake into two parts and altered the movement of brine. The northwestern part of the lake was essentially cut off from direct fresh-water inflow by the causeway, and as a result it was saturated and well mixed from 1963 to 1966. During the main evaporation season (June-October), a layer of salt crust was precipitated on the lakebed north of the causeway. Near Rozel Point the salt crust contained 99.6 percent sodium chloride. The southern two-thirds of the lake receives over 90 percent of the surface inflow and since 1957 has rarely reached saturation. The southern part of the lake is not well mixed, and three types of brine have been identified by their location, concentrations of specific ions, and concentrations of dissolved solids. These brines are located (1) in a zone from the surface to a depth of 16 feet, (2) in a zone below 16 feet south of the causeway, and (3) in

  19. Development of Great Lakes algorithms for the Nimbus-G coastal zone color scanner

    NASA Technical Reports Server (NTRS)

    Tanis, F. J.; Lyzenga, D. R.

    1981-01-01

    A series of experiments in the Great Lakes designed to evaluate the application of the Nimbus G satellite Coastal Zone Color Scanner (CZCS) were conducted. Absorption and scattering measurement data were reduced to obtain a preliminary optical model for the Great Lakes. Available optical models were used in turn to calculate subsurface reflectances for expected concentrations of chlorophyll-a pigment and suspended minerals. Multiple nonlinear regression techniques were used to derive CZCS water quality prediction equations from Great Lakes simulation data. An existing atmospheric model was combined with a water model to provide the necessary simulation data for evaluation of the preliminary CZCS algorithms. A CZCS scanner model was developed which accounts for image distorting scanner and satellite motions. This model was used in turn to generate mapping polynomials that define the transformation from the original image to one configured in a polyconic projection. Four computer programs (FORTRAN IV) for image transformation are presented.

  20. Evolution and origin of sympatric shallow-water morphotypes of Lake Trout, Salvelinus namaycush, in Canada's Great Bear Lake

    PubMed Central

    Harris, L N; Chavarie, L; Bajno, R; Howland, K L; Wiley, S H; Tonn, W M; Taylor, E B

    2015-01-01

    Range expansion in north-temperate fishes subsequent to the retreat of the Wisconsinan glaciers has resulted in the rapid colonization of previously unexploited, heterogeneous habitats and, in many situations, secondary contact among conspecific lineages that were once previously isolated. Such ecological opportunity coupled with reduced competition likely promoted morphological and genetic differentiation within and among post-glacial fish populations. Discrete morphological forms existing in sympatry, for example, have now been described in many species, yet few studies have directly assessed the association between morphological and genetic variation. Morphotypes of Lake Trout, Salvelinus namaycush, are found in several large-lake systems including Great Bear Lake (GBL), Northwest Territories, Canada, where several shallow-water forms are known. Here, we assess microsatellite and mitochondrial DNA variation among four morphotypes of Lake Trout from the five distinct arms of GBL, and also from locations outside of this system to evaluate several hypotheses concerning the evolution of morphological variation in this species. Our data indicate that morphotypes of Lake Trout from GBL are genetically differentiated from one another, yet the morphotypes are still genetically more similar to one another compared with populations from outside of this system. Furthermore, our data suggest that Lake Trout colonized GBL following dispersal from a single glacial refugium (the Mississippian) and support an intra-lake model of divergence. Overall, our study provides insights into the origins of morphological and genetic variation in post-glacial populations of fishes and provides benchmarks important for monitoring Lake Trout biodiversity in a region thought to be disproportionately susceptible to impacts from climate change. PMID:25204304

  1. A slab model of the Great Salt Lake for regional climate simulation

    NASA Astrophysics Data System (ADS)

    Strong, C.; Kochanski, A. K.; Crosman, E. T.

    2014-09-01

    A slab lake model was developed for the Great Salt Lake (GSL) and coupled to a regional climate model to enable better evaluation of regional effects of projected climate change. The GSL is hypersaline with an area of approximately 4400 km2, and its notable shallowness (the deeper sections average 6.5-9 m at current lake levels) renders it highly sensitive to climate change. A time-independent (constant) effective mixing depth of approximately 5 m was determined for the GSL by numerically optimizing model-observation agreement, and improvement gained using a time-dependent effective mixing depth assumption was smaller than the uncertainty in the satellite-based observations. The slab model with constant effective mixing depth accounted for more than 97% of the variance in satellite-based observations of GSL surface temperature for years 2001 through 2003. Using a lake surface temperature climatology in place of the lake model resulted in annual mean near-surface air temperature differences that were small (˜10-2 K) away from the lake, but differences in annual precipitation downstream reached 3 cm (4.5%) mainly because of enhanced turbulent heat fluxes off the lake during spring. When subjected to a range of pseudo global warming scenarios, the annual mean lake surface temperature increased by 0.8°C per degree of air temperature increase.

  2. Temporal trends of polychlorinated biphenyls and organochlorine pesticides in Great Lakes fish, 1999-2009.

    PubMed

    Chang, Fengchih; Pagano, James J; Crimmins, Bernard S; Milligan, Michael S; Xia, Xiaoyan; Hopke, Philip K; Holsen, Thomas M

    2012-11-15

    Temporal trend analysis of the latest Great Lake Fish Monitoring and Surveillance Program (GLFMSP) data showed statistically significant decreases in persistent bioaccumulative and toxic (PBT) contaminant (polychlorinated biphenyls (PCBs), dichloro-diphenyl-trichlorethane and its metabolites (DDTs), dieldrin, cis-chlordane, oxychlordane, cis-nonachlor) concentrations in Lakes Huron, Ontario, and Michigan lake trout over the period of 1999 to 2009. In contrast, for most contaminants, no statistically significant concentration trends were found in top predator fish in Lakes Superior and Erie during the same period. For Lakes Huron, Ontario, and Michigan 5.0 ± 2.6% average annual concentration decreases were found for PCBs, DDTs, dieldrin, and other organochlorine pesticides (OCs) decreased at a faster rate, ranging from 10 ± 4.3% to 20 ± 7.1% per year. For these three lakes, with the exception of PCBs, these current decreases are greater than were shown by an earlier trend analysis that estimated an annual contaminant decrease of about 2-5% for the period of 1980 to 2003. For Lakes Superior and Erie, the finding of no statistically significant trend is in agreement with previously reported results for these lakes.

  3. Investigations into the effects of PCB congeners on reproduction in lake trout from the Great Lakes

    USGS Publications Warehouse

    Mac, Michael J.; Schwartz, T.R.

    1992-01-01

    Eggs of feral lake trout collected in Lake Michigan were reared under laboratory conditions and monitored for egg hatchability, physical abnormalities, and survival of fry. Subsamples of eggs were also analyzed for PCB congeners. A negative correlation was found between egg hatchability and total PCBs but expressing PCB dose as dioxin equivalents did not produce as strong a correlation. No other measure of reproductive success correlated significantly with PCB concentration in the egg.

  4. The rationale for a ban on detergent phosphate in the Great Lakes Basin.

    PubMed

    Alexander, G R

    Immediate reduction of phosphorus loadings to the Great Lakes is essential to slow accelerated eutrophication. The Great Lakes National Program Office of the US Environmental Protection Agency now advocates adoption of bans on detergent phosphates as the most practical and feasible means of immediately reducing the phosphorus loadings to the Great Lakes. This change in policy from previous reliance on removal by sewage treatment has been adopted for the following reasons: (1) Bans on phosphates will reduce capital and operating costs of treatment and, were adopted, have met with consumer acceptance. (2) In practice, treatment plants have not met design expectations for phosphate removal. (3) Neither nitrilotriacetic acid nor other substitutes for phosphates have proved to be a public health problem. (4) Reduction of phosphorus loadings to treatment plants avoids increasing levels of chlorides and total dissolved solids in effluents. (5) Water quality has improved in small lakes with phosphorus reduction. In summary, detergent phosphate bans alone will not reduce phosphorus loadings to the Great Lakes sufficiently for the long term but the Environmental Protection Agency has concluded that such action is necessary in addition to continued efforts to control non-point sources. PMID:249680

  5. Aflatoxin B1 induced hepatic neoplasia in Great Lakes coho salmon

    SciTech Connect

    Black, J.J.; Maccubbin, A.E.; Myers, H.K.; Zeigel, R.F.

    1988-11-01

    There is considerable interest in the development of fish models for carcinogen bioassays and the study of chemically induced cancer in wild fish species. Among salmonid species, rainbow trout have mainly been used for carcinogenesis research, in part due to the role played by this species in the discovery of the carcinogenic action of aflatoxin B1 (AFB1). Recently, apparatus and methodology for microinjection of salmonid fish embryos with chemical carcinogens has been described. Because eggs produced by Pacific salmon are relatively much larger than those of rainbow trout, they would provide an attractive subject for embryo microinjection. The Great Lakes are annually stocked with large numbers of coho salmon. It has been recommended to use coho salmon as an indicator for monitoring ecosystem health in the Great Lakes, because stockings throughout health in the Great Lakes, because stockings throughout the Great Lakes are from a common genetic strain and in the lake environment they have a defined food source and life cycle. These considerations led the authors to test coho salmon for their sensitivity to the potent hepatocarcinogen, AFB1. The present report describes in preliminary form, the results of these experiments.

  6. Contaminant effects on Great Lakes' fish-eating birds: a population perspective

    USGS Publications Warehouse

    Heinz, G.H.; Kendall, Ronald J.; Dickerson, Richard L.; Giesy, John P.; Suk, William P.

    1998-01-01

    Preventing environmental contaminants from reducing wildlife populations is the greatest concern in wildlife toxicology. In the Great Lakes, environmental contaminants have a history of reducing populations of many species of fish-eating birds. Endocrine effects may have contributed to declines in fish-eating bird populations, but the overriding harm was caused by DDE-induced eggshell thinning. Toxic effects may still be occurring today, but apparently they are not of a sufficient magnitude to depress populations of most fish-eating birds. Once DDE levels in the Great Lakes declined, eggshells of birds began to get thicker and reproductive success improved. Populations of double-crested cormorants (Phalacrocorax auritus) and ring-billed gulls (Larus delawarensis) have increased dramatically since the bans on DDT and other organochlorine pesticides. Bald eagles (Haliaeetus leucocephalus) are still not reproducing at a normal rate along the shores of the Great Lakes, but success is much improved compared to earlier records when eggshell thinning was worse. Other species, such as herring gulls (Larus argentatus) and black-crowned night-herons (Nycticorax nycticorax), seem to be having improved reproductive success, but data on Great Lakes'-wide population changes are incomplete. Reproductive success of common terns (Sterna hirundo), Caspian terns (Sterna caspia), and Forster's terns (Sterna forsteri) seems to have improved in recent years, but, again, data on population changes are not very complete, and these birds face many habitat related problems as well as contaminant problems. Although contaminants are still producing toxic effects, and these effects may include endocrine disfunction, fish-eating birds in the Great Lakes seem to be largely weathering these effects, at least as far as populations are concerned. A lack of obvious contaminant effects on populations of fish-eating birds in the Great Lakes, however, should not be equated with a lack of any harm to

  7. Mercury in the Air, Water and Biota at the Great Salt Lake (Utah, USA)

    NASA Astrophysics Data System (ADS)

    Peterson, C.; Gustin, M. S.

    2008-12-01

    The Great Salt Lake, Utah (USA), is the fourth largest terminal lake on Earth and a stop-over location for 35 million birds on the Pacific Flyway. Recently, the Utah Department of Health and Utah Division of Wildlife Resources issued tissue mercury (Hg) consumption advisories for several species of birds that consume the lake's brine shrimp. Sources of Hg to the lake are the watershed and the atmosphere, and we hypothesized that the chemistry of the air above the Great Salt Lake would facilitate atmospheric deposition of Hg to the water. Because little information was available on Hg at the Great Salt Lake, and to begin to test this hypothesis, we measured atmospheric elemental (Hg0) and reactive gaseous mercury (RGM) concentrations as well as Hg concentrations in water and brine shrimp five times over a year. Surrogate surfaces and a dry deposition model were applied to estimate the amount of Hg that could be input to the lake surface. We found that atmospheric Hg0 and RGM concentrations were comparable to global ambient background values and those measured in rural areas (respectively). Both Hg0 and RGM exhibited regular diel variability, and no consistent seasonal periods of depleted or elevated values were observed. Based on these findings, local factors are thought to be important in generating elevated RGM concentrations that could be deposited to the lake. Model estimated deposition velocities for RGM to the lake ranged from 0.9 to 3.0 cm sec-1, with an estimated 19 kg of Hg deposited annually. Total Hg and methyl Hg concentrations in surface waters of the lake were consistent throughout the year (3.8 ± 0.8 ng L- 1 and 0.93 ± 0.59 ng L-1, respectively) and not significantly elevated relative to natural waters; however, the percent methyl Hg to total Hg was high (25 to 50%). Brine shrimp Hg concentrations were 384 ppb and had a statistically significant increase from early summer to fall. Based on modeled dry deposition and estimated wet deposition, the

  8. Collaborations, research, and adaptive management to address nonnative Phragmites australis in the Great Lakes Basin

    USGS Publications Warehouse

    Kowalski, Kurt P.

    2016-06-30

    Phragmites australis, also known as common reed, is a native North American wetland grass that has grown in North America for thousands of years. More recently, a nonnative, invasive variety of Phragmites from Eurasia is rapidly invading wetlands across the continental United States and other parts of North America, where it negatively impacts humans and the environment. U.S. Geological Survey scientists, funded by the Great Lakes Restoration Initiative, are leading innovative efforts to improve management of nonnative Phragmites in the Great Lakes Basin.

  9. State-of-the-art techniques for inventory of Great Lakes aquatic habitats and resources

    USGS Publications Warehouse

    Edsall, Thomas A.; Brock, R.H.; Bukata, R.P.; Dawson, J.J.; Horvath, F.J.; Busch, W.-Dieter N.; Sly, Peter G.

    1992-01-01

    This section of the Classification and Inventory of Great Lakes Aquatic Habitat report was prepared as a series of individually authored contributions that describe, in various levels of detail, state-of-the-art techniques that can be used alone or in combination to inventory aquatic habitats and resources in the Laurentian Great Lakes system. No attempt was made to review and evaluate techniques that are used routinely in limnological and fisheries surveys and inventories because it was felt that users of this document would be familiar with them.

  10. Twenty five years of Federal fishery research on the Great Lakes

    USGS Publications Warehouse

    Hile, Ralph

    1952-01-01

    The major purpose of this publication is to present an annotated bibliography of papers resulting from Federal investigations on the Great Lakes fish and fisheries since the formal initiation of a continuing research program by the Fish and Wildlife Service. It is believed that this purpose can be served best by prefacing that bibliography with a brief account of the origins of Great Lakes Fishery Investigations, of the circumstances that have guided their course, and of the scientists who have participated in the several studies.

  11. Evaluation of potential impacts on Great Lakes water resources based on climate scenarios of two GCMs

    USGS Publications Warehouse

    Lofgren, B.M.; Quinn, F.H.; Clites, A.H.; Assel, R.A.; Eberhardt, A.J.; Luukkonen, C.L.

    2002-01-01

    The results of general circulation model predictions of the effects of climate change from the Canadian Centre for Climate Modeling and Analysis (model CGCM1) and the United Kingdom Meteorological Office's Hadley Centre (model HadCM2) have been used to derive potential impacts on the water resources of the Great Lakes basin. These impacts can influence the levels of the Great Lakes and the volumes of channel flow among them, thus affecting their value for interests such as riparians, shippers, recreational boaters, and natural ecosystems. On one hand, a hydrological modeling suite using input data from the CGCM1 predicts large drops in lake levels, up to a maximum of 1.38 m on Lakes Michigan and Huron by 2090. This is due to a combination of a decrease in precipitation and an increase in air temperature that leads to an increase in evaporation. On the other hand, using input from HadCM2, rises in lake levels are predicted, up to a maximum of 0.35 m on Lakes Michigan and Huron by 2090, due to increased precipitation and a reduced increase in air temperature. An interest satisfaction model shows sharp decreases in the satisfaction of the interests of commercial navigation, recreational boating, riparians, and hydropower due to lake level decreases. Most interest satisfaction scores are also reduced by lake level increases. Drastic reductions in ice cover also result from the temperature increases such that under the CGCM1 predictions, most of Lake Erie has 96% of its winters ice-free by 2090. Assessment is also made of impacts on the groundwater-dependent region of Lansing, Michigan.

  12. Ooid formation in the Great Salt Lake, Utah: Insights from clumped isotope paleothermometry

    NASA Astrophysics Data System (ADS)

    Anderson, R. P.; Bird, J. T.; Meneske, M.; Stefurak, E. J.; Berelson, W.; Petryshyn, V. A.; Shapiro, R. S.; Sessions, A. L.; Tripati, A.; Corsetti, F. A.

    2013-12-01

    Ooids (coated grains formed in agitated environments) are a relatively common constituent of the sedimentary record through time, but details of their formation remain enigmatic. Although not as abundant today as at other times in the past, ooids are known from several key carbonate environments, including the Bahamas, Persian Gulf, Shark Bay, and the Great Salt Lake. We collected ooids from the Great Salt Lake in association with the International GeoBiology Summer Course in 2012 and 2013 from the north shore of Antelope Island and Spiral Jetty in order to investigate their origin. Petrographic investigation reveals the ooids are composed of aragonite, and display an alternating radial, concentric, and radial-concentric fabric. The delicate nature of the radial fabric is suggestive, but not conclusive, that they form currently (agitation would abrade the fabric). The nuclei are typically rod shaped micritic peloids (up to 80%) or siliciclastic mineral grains. The Great Salt Lake surface water temperature undergoes a predictable annual cycle, with summer months approaching 25 degrees C or more, and winter months dipping to 5 degrees C or less, depending on the region of the lake. Clumped isotope temperatures allow us to constrain ooid formation to the warm months. A contrast between the isotopic composition of the waters for Antelope Island (~0 per mill), likely affected by spring runoff, and the ooids of the same location (~4.5 per mill) further suggest ooid formation took place after the spring runoff, constraining ooid formation to between mid-June and October. We calculated the summer and winter carbonate saturation state of the lake, and while the lake is supersaturated throughout the year, it is significantly more saturated during the summer months. Our results give new insight into ooid formation in the Great Salt Lake, and suggest that the ooids form predominantly during the warm months following the spring runoff.

  13. DECLINE AND EXTINCTION OF LAKE TROUT IN THE GREAT LAKES: CAN BIOLOGICAL INDICATORS HELP DIAGNOSE CAUSES, IDENTIFY REMEDIAL ACTIONS, AND PREDICT FUTURE CONDITIONS?

    EPA Science Inventory

    The lake trout, Salvelinus namaycush, is the predominant top predator native fish species of the Great Lakes. Lake trout are valued for commercial and recreational use in addition to their ecological importance. In the last half of the 20th century, population declines lead to vi...

  14. Eurytemora carolleeae in the Laurentian Great Lakes revealed by phylogenetic and morphological analysis

    USGS Publications Warehouse

    Vasquez, Adrian A.; Hudson, Patrick L.; Fujimoto, Masanori; Keeler, Kevin M.; Armenio, Patricia M.; Ram, Jeffrey L.

    2016-01-01

    In the Laurentian Great Lakes, specimens of Eurytemora have been reported asEurytemora affinis since its invasion in the late 1950s. During an intensive collection of aquatic invertebrates for morphological and molecular identification in Western Lake Erie in 2012-2013, several specimens of Eurytemora were collected. Analysis of these specimens identified them as the recently described species Eurytemora carolleeaeAlekseev and Souissi 2011. This result led us to assess E. carolleeae’s identifying features, geographic distribution and historical presence in the Laurentian Great Lakes in view of its recent description in 2011. Cytochrome oxidase I (COI) DNA sequences ofEurytemora specimens were identified as closer (2 - 4% different) to recently describedE. carolleeae than to most E. affinis sequences (14% different). Eurytemora from other areas of the Great Lakes and from North American rivers as far west as South Dakota (Missouri River) and east to Delaware (Christina River) also keyed to E. carolleeae. Morphological analysis of archival specimens from 1962 and from all the Great Lakes was identified as E. carolleeae. Additionally, Eurytemora drawings in previous publications were reassessed to determine if the species was E. carolleeae and are reported here. Additional morphological characters that may distinguish North AmericanE. carolleeae from other taxa are also described. We conclude that E. carolleeae is the correct name for the species of Eurytemora that has inhabited the Great Lakes since its invasion, as established by both morphological and COI sequence comparisons to reference keys and sequence databases in present and archival specimens.

  15. Perceptions of collaboration: A comparison of educators and scientists for COSEE Great Lakes

    NASA Astrophysics Data System (ADS)

    Kim, Chankook

    The Great Lakes region of North America, holding 20% of the world's fresh water and home to ¼ of the U.S. population, can provide its 13 million K-12 learners with a relevant context for science learning, unique opportunities for exploring local environmental issues, and connections to global issues. By linking Great Lakes research scientists with educators, students, and the public, the COSEE (Centers for Ocean Sciences Education Excellence) Great Lakes pursues its goal of enhancing science and environmental literacy of both adults and students. This doctoral research had a three-fold purpose in the COSEE Great Lakes context. First, this study aimed to characterize the population of Great Lakes scientists and K-12 teachers in the Great Lakes region targeted as potential audiences for activities of COSEE Great Lakes. Second, this study aimed to identify factors that may affect educational collaboration between teachers and scientists. Third, this study was conducted as a part of an ongoing process of evaluating overall COSEE program outcomes related to increasing educational collaborations. This dissertation consists of three research reports on professional development and interprofessional collaboration of K-12 teachers and scientists. The first report in Chapter 2 investigates primary and secondary teachers' views of collaboration with scientists and incorporates the findings of teacher surveys into discussions about professional development programs for educators. From 180 schools randomly selected in the eight Great Lakes States, 194 primary and secondary educators responded to a mailed survey. Through the survey responses, the educators reported that while they have positive attitudes toward their collaboration with scientists, their professional preparation has not equipped them with enough understanding of the process of science and the professions of scientists. Regression analysis shows that five predictor variables account for a majority of the variance

  16. Polymethylene-interrupted fatty acids: Biomarkers for native and exotic mussels in the Laurentian Great Lakes

    USGS Publications Warehouse

    Mezek, Tadej; Sverko, Ed; Ruddy, Martina D.; Zaruk, Donna; Capretta, Alfredo; Hebert, Craig E.; Fisk, Aaron T.; McGoldrick, Daryl J.; Newton, Teresa J.; Sutton, Trent M.; Koops, Marten A.; Muir, Andrew M.; Johnson, Timothy B.; Ebener, Mark P.; Arts, Michael T.

    2011-01-01

    Freshwater organisms synthesize a wide variety of fatty acids (FAs); however, the ability to synthesize and/or subsequently modify a particular FA is not universal, making it possible to use certain FAs as biomarkers. Herein we document the occurrence of unusual FAs (polymethylene-interrupted fatty acids; PMI-FAs) in select freshwater organisms in the Laurentian Great Lakes. We did not detect PMI-FAs in: (a) natural seston from Lake Erie and Hamilton Harbor (Lake Ontario), (b) various species of laboratory-cultured algae including a green alga (Scenedesmus obliquus), two cyanobacteria (Aphanizomenon flos-aquae and Synechococystis sp.), two diatoms (Asterionella formosa, Diatoma elongatum) and a chrysophyte (Dinobryon cylindricum) or, (c) zooplankton (Daphnia spp., calanoid or cyclopoid copepods) from Lake Ontario, suggesting that PMI-FAs are not substantively incorporated into consumers at the phytoplankton–zooplankton interface. However, these unusual FAs comprised 4-6% of total fatty acids (on a dry tissue weight basis) of native fat mucket (Lampsilis siliquoidea) and plain pocketbook (L. cardium) mussels and in invasive zebra (Dreissena polymorpha) and quagga (D. bugensis) mussels. We were able to clearly partition Great Lakes' mussels into three separate groups (zebra, quagga, and native mussels) based solely on their PMI-FA profiles. We also provide evidence for the trophic transfer of PMI-FAs from mussels to various fishes in Lakes Ontario and Michigan, further underlining the potential usefulness of PMI-FAs for tracking the dietary contribution of mollusks in food web and contaminant-fate studies.

  17. Nutrient inputs to the Laurentian Great Lakes by source and watershed estimated using SPARROW watershed models

    USGS Publications Warehouse

    Robertson, Dale M.; Saad, David A.

    2011-01-01

    Nutrient input to the Laurentian Great Lakes continues to cause problems with eutrophication. To reduce the extent and severity of these problems, target nutrient loads were established and Total Maximum Daily Loads are being developed for many tributaries. Without detailed loading information it is difficult to determine if the targets are being met and how to prioritize rehabilitation efforts. To help address these issues, SPAtially Referenced Regressions On Watershed attributes (SPARROW) models were developed for estimating loads and sources of phosphorus (P) and nitrogen (N) from the United States (U.S.) portion of the Great Lakes, Upper Mississippi, Ohio, and Red River Basins. Results indicated that recent U.S. loadings to Lakes Michigan and Ontario are similar to those in the 1980s, whereas loadings to Lakes Superior, Huron, and Erie decreased. Highest loads were from tributaries with the largest watersheds, whereas highest yields were from areas with intense agriculture and large point sources of nutrients. Tributaries were ranked based on their relative loads and yields to each lake. Input from agricultural areas was a significant source of nutrients, contributing ∼33-44% of the P and ∼33-58% of the N, except for areas around Superior with little agriculture. Point sources were also significant, contributing ∼14-44% of the P and 13-34% of the N. Watersheds around Lake Erie contributed nutrients at the highest rate (similar to intensively farmed areas in the Midwest) because they have the largest nutrient inputs and highest delivery ratio.

  18. Mercury levels in Great Lakes herring gull eggs, 1972--1992

    SciTech Connect

    Weseloh, D.V.; Koster, M.D.; Ryckman, D.P.; Struger, J.

    1995-12-31

    Since 1971, the herring gull (Larus argentatus) has been used as a sentinel species for monitoring the levels of persistent contaminants in the Great Lakes ecosystem. In this study, 21 herring gull colonies in the Great Lakes and connecting channels were sampled for years 1972--1976, 1981--1983, 1985 and 1992. For each year, 10 eggs (usually) were collected from each colony site and analyzed for total mercury (ppm, wet weight). Results indicated that eggs from Lake Ontario displayed the highest mercury levels, mean = 0.28 (s.d. = 0.08) to 0.73 (0.23). Lake Erie typically displayed the lowest egg mercury levels, 0.18 (0.08) to 0.24 (0.11). Overall, mercury levels ranged from 0.12 (0.02) in 1985 to 0.88 (0.23) in 1982 for Channel-Shelter Island (Lake Huron) and Pigeon Island (Lake Ontario), respectively. Generally, all colony sites showed peak mercury levels in 1982. A significant decline in egg mercury levels was observed in six colony sites between 1972 and 1992 and in three colony sites between 1981 and 1992. The mean herring gull egg mercury levels observed in the early and mid 1970s and in 1982 for some colony sites were within the range found which potentially reduces hatchability in other fish-eating bird species.

  19. Decadal oscillation of lakes and aquifers in the upper Great Lakes region of North America: hydroclimatic implications

    USGS Publications Warehouse

    Watras, C.J.; Read, J.S.; Holman, K.D.; Liu, Z.; Song, Y.-Y.; Watras, A.J.; Morgan, S.; Stanley, E.H.

    2014-01-01

    We report a unique hydrologic time-series which indicates that water levels in lakes and aquifers across the upper Great Lakes region of North America have been dominated by a climatically-driven, near-decadal oscillation for at least 70 years. The historical oscillation (~13y) is remarkably consistent among small seepage lakes, groundwater tables and the two largest Laurentian Great Lakes despite substantial differences in hydrology. Hydrologic analyses indicate that the oscillation has been governed primarily by changes in the net atmospheric flux of water (P-E) and stage-dependent outflow. The oscillation is hypothetically connected to large-scale atmospheric circulation patterns originating in the mid-latitude North Pacific that support the flux of moisture into the region from the Gulf of Mexico. Recent data indicate an apparent change in the historical oscillation characterized by a ~12y downward trend beginning in 1998. Record low water levels region-wide may mark the onset of a new hydroclimatic regime.

  20. Textural variation within Great Salt Lake algal mounds: Chapter 8.5 in Stromatolites

    USGS Publications Warehouse

    1976-01-01

    This chapter discusses textural variation within the Great Salt Lake algal mounds. Great Salt Lake algal mounds contain: (1) a framework of non-skeletal, algally induced aragonite precipitates; (2) internal sediment; and (3) inorganic cement. These three elements create a variety of laminated, poorly laminated, and unlaminated internal textures. Interior framework precipitates bear little resemblance to the present living film of the mound surface. Internal texture of the mounds is believed to be largely relict and to have resulted from precipitation by algae different than those presently living at the surface. The most probable cause of local extinction of the algal flora is change in brine salinity. Precipitated blue-green algal structures in ancient rocks may indicate other than normal marine salinity and near shore sedimentation. Extreme variation of internal texture reflects extreme environmental variability typical of closed basin lakes. Recognition of mounds similar to those in the Great Salt Lake can be a first step toward recognition of ancient hyper-saline lake deposits, if such an interpretation is substantiated by consideration of the entire depositional milieu of precipitated algal mounds.

  1. Depositional history and neotectonics in Great Salt Lake, Utah, from high-resolution seismic stratigraphy

    USGS Publications Warehouse

    Colman, Steven M.; Kelts, K.R.; Dinter, D.A.

    2002-01-01

    High-resolution seismic-reflection data from Great Salt Lake show that the basinal sediment sequence is cut by numerous faults with N-S and NE-SW orientations. This faulting shows evidence of varied timing and relative offsets, but includes at least three events totaling about 12 m following the Bonneville phase of the lake (since about 13.5 ka). Several faults displace the uppermost sediments and the lake floor. Bioherm structures are present above some faults, which suggests that the faults served as conduits for sublacustrine discharge of fresh water. A shallow, fault-controlled ridge between Carrington Island and Promontory Point, underlain by a well-cemented pavement, separates the main lake into two basins. The pavement appears to be early Holocene in age and younger sediments lap onto it. Onlap-offlap relationships, reflection truncations, and morphology of the lake floor indicate a low lake, well below the present level, during the early Holocene, during which most of the basin was probably a playa. This low stand is represented by irregular reflections in seismic profiles from the deepest part of the basin. Other prominent reflectors in the profiles are correlated with lithologic changes in sediment cores related to the end of the Bonneville stage of the lake, a thick mirabilite layer in the northern basin, and the Mazama tephra. Reflections below those penetrated by sediment cores document earlier lacustrine cycles. ?? 2002 Elsevier Science B.V. All rights reserved.

  2. Chemical whitings and chlorophyll distributions in the Great Lakes as viewed by Landsat

    NASA Technical Reports Server (NTRS)

    Strong, A. E.

    1978-01-01

    A chemical precipitation of calcium carbonate, or whiting, was first observed by satellite in Lake Michigan during August 1973. Since that initial observation similar events have been noted in Lakes Michigan, Erie, and Ontario with imagery from Landsat, Skylab, and NOAA satellites. By the use of Landsat multispectral data together with NOAA thermal infrared data, it has been observed that whitings occur several meters below the lake surface in relatively warm water. They are most vividly displayed during and after periods of upwelling. As the epilimnetic waters become supersaturated with Ca(+2) ions during summer, a triggering mechanism (presumably biological or physical) initiates the whiting, which may continue for several months. The effects on the biota of the euphotic zone when this milky cloud is present in the upper layers are poorly understood. However, Great Lakes circulation studies are taking advantage of these natural dye tracers.

  3. Tides and lake-level variations in the great Patagonian lakes: Observations, modelling and geophysical implications.

    NASA Astrophysics Data System (ADS)

    Marderwald, Eric; Richter, Andreas; Horwath, Martin; Hormaechea, Jose Luis; Groh, Andreas

    2016-04-01

    In Patagonia, the glacial-isostatic adjustment (GIA) to past ice-mass changes (Ivins & James 2004; Klemann et al. 2007) is of particular interest in the context of the determination of the complex regional rheology related to plate subduction in a triple-junction constellation. To further complicate the situation, GIA is overlaid with load deformation not only due to present ice mass changes but also due to water-level changes in the lakes surrounding the icefields and the ocean surrounding Patagonia. These elastic deformations affect the determination of glacial-isostatic uplift rates from GPS observations (Dietrich et al. 2010; Lange et al. 2014). Observations of lake tides and their comparison with the theoretical tidal signal have been used previously to validate predictions of ocean tidal loading and have revealed regional deviations from conventional global elastic earth models (Richter et al. 2009). In this work we investigate the tides and lake-level variations in Lago Argentino, Lago Viedma, Lago San Martín/O'Higgins and Lago Buenos Aires/General Carrera. This allows us to test, among other things, the validity of tidal loading models. We present pressure tide-gauge records from two sites in Lago Argentino extending over 2.5 years (Richter et al. 2015). These observations are complemented by lake-level records provided by the Argentine National Hydrometeorological Network. Based on these lake-level time series the principal processes affecting the lake level are identified and quantified. Lake-level changes reflecting variations in lake volume are dominated by a seasonal cycle exceeding 1 m in amplitude. Lake-volume changes occur in addition with a daily period in response to melt water influx from surrounding glaciers. In Lago Argentino sporadic lake-volume jumps are caused by bursting of the ice dam of Perito Moreno glacier. Water movements in these lakes are dominated by surface seiches reaching 20 cm in amplitude. A harmonic tidal analysis of the lake

  4. Nourishment of perched sand dunes and the issue of erosion control in the Great Lakes

    NASA Astrophysics Data System (ADS)

    Marsh, William M.

    1990-09-01

    Although limited in coverage, perched sand dunes situated on high coastal bluffs are considered the most prized of Great Lakes dunes. Grand Sable Dunes on Lake Superior and Sleeping Bear Dunes on Lake Michigan are featured attractions of national lakeshores under National Park Service management. The source of sand for perched dunes is the high bluff along their lakeward edge. As onshore wind crosses the bluff, flow is accelerated upslope, resulting in greatly elevated levels of wind stress over the slope brow. On barren, sandy bluffs, wind erosion is concentrated in the brow zone, and for the Grand Sable Bluff, it averaged 1 m3/yr per linear meter along the highest sections for the period 1973 1983. This mechanism accounts for about 6,500 m3 of sand nourishment to the dunefield annually and clearly has been the predominant mechanism for the long-term development of the dunefield. However, wind erosion and dune nourishment are possible only where the bluff is denuded of plant cover by mass movements and related processes induced by wave erosion. In the Great Lakes, wave erosion and bluff retreat vary with lake levels; the nourishment of perched dunes is favored by high levels. Lake levels have been relatively high for the past 50 years, and shore erosion has become a major environmental issue leading property owners and politicians to support lake-level regulation. Trimming high water levels could reduce geomorphic activity on high bluffs and affect dune nourishment rates. Locally, nourishment also may be influenced by sediment accumulation associated with harbor protection facilities and by planting programs aimed at stabilizing dunes.

  5. Age and paleoclimatic significance of the Stansbury shoreline of Lake Bonneville, Northeastern Great Basin

    USGS Publications Warehouse

    Oviatt, Charles G.; Currey, D.R.; Miller, D.M.

    1990-01-01

    The Stansbury shoreline, one of the conspicuous late Pleistocene shorelines of Lake Bonneville, consists of tufa-cemented gravel and barrier beaches within a vertical zone of about 45 m, the lower limit of which is 70 m above the modern average level of Great Salt Lake. Stratigraphic evidence at a number of localities, including new evidence from Crater Island on the west side of the Great Salt Lake Desert, shows that the Stansbury shoreline formed during the transgressive phase of late Pleistocene Lake bonneville (sometime between about 22,000 and 20,000 yr B.P.). Tufa-cemented gravel and barrier beaches were deposited in the Stansbury shorezone during one or more fluctuations in water level with a maximum total amplitude of 45 m. We refer to the fluctuations as the Stansbury oscillation. The Stansbury oscillation cannot have been caused by basin-hypsometric factors, such as stabilization of lake level at an external overflow threshold or by expansion into an interior subbasin, or by changes in drainage basin size. Therefore, changes in climate must have caused the lake level to reverse its general rise, to drop about 45 m in altitude (reducing its surface area by about 18%, 5000 km2), and later to resume its rise. If the sizes of Great Basin lakes are controlled by the mean position of storm tracks and the jetstream, which as recently postulated may be controlled by the size of the continental ice sheets, the Stansbury oscillation may have been caused by a shift in the jetstream during a major interstade of the Laurentide ice sheet. ?? 1990.

  6. Trends of brominated diphenyl ethers in fresh and archived Great Lakes fish (1979-2005)

    USGS Publications Warehouse

    Batterman, Stuart; Chernyak, Sergei; Gwynn, Erica; Cantonwine, David; Jia, Chunrong; Begnoche, Linda J.; Hickey, James P.

    2007-01-01

    While few environmental measurements of brominated diphenyl ethers (BDEs) were completed prior to the mid-1990s, analysis of appropriately archived samples might enable the determination of contaminant trends back to the introduction of these chemicals. In this paper, we first investigate the stability of BDEs in archived frozen and extracted fish samples, and then characterize trends of these chemicals in rainbow smelt (Osmerus mordax) and lake trout (Salvelinus namaycush) in each of the Great Lakes between 1979 and 2005. We focus on the four most common congeners (BDE-47, 100, 99 and 153) and use a change-point analysis to detect shifts in trends. Analyses of archived fish samples yielded precise BDE concentration measurements with only small losses (0.8% per year in frozen fish tissues, 2.2% per year in refrigerated extracts). Trends in fish from all Great Lakes showed large increases in BDE concentrations that started in the early to mid-1980s with fairly consistent doubling times (generally 2–4 years except in Lake Erie smelt where levels increased very slowly), though concentrations and trends show differences by congener, fish species and lake. The most recent data show that accumulation rates are slowing, and concentrations of penta- and hexa-congeners in trout from Lakes Ontario and Michigan and smelt from Lake Ontario started to decrease in the mid-1990s. Trends in smelt and trout are evolving somewhat differently, and trout concentrations in the five lakes are now ranked as Michigan > Superior = Ontario > Huron = Erie, and smelt concentrations as Michigan > Ontario > Huron > Superior > Erie. The analysis of properly archived samples permits the reconstruction of historical trends, congener distributions, biomagnification and other information that can aid the understanding and management of these contaminants.

  7. Cancer in wild freshwater fish populations with emphasis on the Great Lakes

    SciTech Connect

    Baumann, P.C.

    1984-01-01

    Papillomas in white sucker, gonadal tumors in carp x goldfish hybrids, and thyroid hyperplasia in coho salmon seem to be widespread in occurrence throughout the Great Lakes. In all cases, however, tumor incidence increases near areas contaminated by industrial effluents such as polychlorinated biphenyls, and polynuclear aromatic hydrocarbons (PAHs). Liver tumors in bullhead occur frequently at a site with large amounts of PAH in the sediment, and liver tumors in sauger and walleye occur in a lake which has been a dump site for copper mine wastes. Therefore, tumor incidence in certain species of fish may be a sensitive indicator of the level of carcinogenic compounds in the environment. The Great Lakes apparently contain a number of localized areas in which carcinogenic contaminants are now affecting the health of resident fish species. 15 references.

  8. International position statement and evaluation guidelines for artificial reefs in the Great Lakes

    USGS Publications Warehouse

    Gannon, John E.

    1990-01-01

    The purpose of this position statement is to guide the evaluation of artificial reef proposals in the Great Lakes so that any reefs built will enhance the fisheries and recreational uses of the lakes without adversely affecting natural resources or impeding other beneficial uses. This position statement sets minimum recommended standards for evaluating artifical reef proposals and lists the factors that should be considered in planning artificial reefs. Other relevant lists are summarized. The Great Lakes jurisdictions are encouraged to incorporate the elements of this position statement, as a minimum, into their own policy. In lieu of official policy development the jurisdictions and agencies are encouraged to use the position statement and accompanying guidelines when reviewing artificial reef proposals.

  9. Tides and lake-level variations in the great Patagonian lakes: Observations, modelling and geophysical implications.

    NASA Astrophysics Data System (ADS)

    Marderwald, Eric; Richter, Andreas; Horwath, Martin; Hormaechea, Jose Luis; Groh, Andreas

    2016-04-01

    In Patagonia, the glacial-isostatic adjustment (GIA) to past ice-mass changes (Ivins & James 2004; Klemann et al. 2007) is of particular interest in the context of the determination of the complex regional rheology related to plate subduction in a triple-junction constellation. To further complicate the situation, GIA is overlaid with load deformation not only due to present ice mass changes but also due to water-level changes in the lakes surrounding the icefields and the ocean surrounding Patagonia. These elastic deformations affect the determination of glacial-isostatic uplift rates from GPS observations (Dietrich et al. 2010; Lange et al. 2014). Observations of lake tides and their comparison with the theoretical tidal signal have been used previously to validate predictions of ocean tidal loading and have revealed regional deviations from conventional global elastic earth models (Richter et al. 2009). In this work we investigate the tides and lake-level variations in Lago Argentino, Lago Viedma, Lago San Martín/O'Higgins and Lago Buenos Aires/General Carrera. This allows us to test, among other things, the validity of tidal loading models. We present pressure tide-gauge records from two sites in Lago Argentino extending over 2.5 years (Richter et al. 2015). These observations are complemented by lake-level records provided by the Argentine National Hydrometeorological Network. Based on these lake-level time series the principal processes affecting the lake level are identified and quantified. Lake-level changes reflecting variations in lake volume are dominated by a seasonal cycle exceeding 1 m in amplitude. Lake-volume changes occur in addition with a daily period in response to melt water influx from surrounding glaciers. In Lago Argentino sporadic lake-volume jumps are caused by bursting of the ice dam of Perito Moreno glacier. Water movements in these lakes are dominated by surface seiches reaching 20 cm in amplitude. A harmonic tidal analysis of the lake

  10. Application of LANDSAT to the Surveillance of Lake Eutrophication in the Great Lakes Basin. Final Report.

    ERIC Educational Resources Information Center

    Rogers, Robert H.

    This document reviews the process by which the cost benefits of using LANDSAT on an operational basis in the surveillance of lake eutrophication was established. The program identified the information needs of users conducting on-going water quality programs, transformed these needs into remote sensing requirements, produced LANDSAT maps and data…

  11. Mapping Cropland and Major Crop Types Across the Great Lakes Basin Using MODIS-NDVI Data

    EPA Science Inventory

    This research evaluated the potential for using the MODIS Normalized Difference Vegetation Index (NDVI) 16-day composite (MOD13Q) 250-m time-series data to develop a cropland mapping capability throughout the 480 000 km2 Great Lakes Basin (GLB). Cropland mapping was conducted usi...

  12. Assessing the Accuracy of MODIS-NDVI Derived Land-Cover Across the Great Lakes Basin

    EPA Science Inventory

    This research describes the accuracy assessment process for a land-cover dataset developed for the Great Lakes Basin (GLB). This land-cover dataset was developed from the 2007 MODIS Normalized Difference Vegetation Index (NDVI) 16-day composite (MOD13Q) 250 m time-series data. Tr...

  13. Historical changes in the major fish resources of the Great Lakes

    USGS Publications Warehouse

    Hartman, Wilbur L.; Evans, Marlene S.

    1988-01-01

    My purpose here is to review historic changes in the major fish resources of the five Great Lakes, and to identify the cause or causes for those changes. In some instances it will be clear that intensive fishing was the primary cause of change; in other instances it will be nearly as clear that predation by the sea lamprey played a significant if not dominant role in change; and in still others it will be clear (or at least circumstantial) that exotic species other than the sea lamprey have been implicated. The exotics that have invaded or been accidentally or purposefully released into the Great Lakes system have not only adversely affected indigenous fishes, but some have developed into new and valuable resources. However, when it comes to degradation of water quality and of critical habitat, the linkages to changes in fish populations are neither clear-cut nor quantifiable — their impacts were generally far more subtle and difficult to detect, but not necessarily of less importance. Inasmuch as a comprehensive review of all changes in fishery resources, water quality, and habitat conditions in the Great Lakes would be encyclopedic, I confine discussion here to prime examples related to the most historically important fish resources. One of the values of the approach used in this manuscript is the collation in a single-source document of the conclusions reached by many scientists on reasons for changes in the fish resources across the Great Lakes basin.

  14. A Review of Selected Ecosystem Services Supplied by Coastal Wetlands of the Laurentian Great Lakes

    EPA Science Inventory

    Significant ecosystem services derive from the coastal wetlands of the Laurentian Great Lakes even though they have undergone substantial declines since European settlement. Basin-wide, two-thirds of the original coastal wetlands have been lost, and the remaining 126,000 ha of US...

  15. EXTRACELLULAR ENZYME ACTIIVTY AS A SURROGATE FOR NUTRIENTS AND NUTRIENT HISTORY IN GREAT LAKES WETLANDS

    EPA Science Inventory

    Great Lakes ecosystems are generally thought to be P-limited, but N-limitation may be more common than previously suspected. N-limitation should be most obvious in freshwater coastal wetlands, where the anaerobic oxidation of organic carbon may be limited by nitrate availability...

  16. 76 FR 79167 - Notice for the Great Lakes and Mississippi River Interbasin Study (GLMRIS)

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-21

    ... Department of the Army Corps of Engineers Notice for the Great Lakes and Mississippi River Interbasin Study... of GLMRIS. In a December 8, 2010 notice of intent, Federal Register Notice (75 FR 76447), USACE.... GLMRIS is a feasibility study of the range of options and technologies that could be applied to...

  17. Mapping ecosystem service indicators in a Great Lakes estuarine Area of Concern

    EPA Science Inventory

    Estuaries provide multiple ecosystem services from which humans benefit. Currently, thirty-six Great Lakes estuaries in the United States and Canada are designated as Areas of Concern (AOCs) due to a legacy of chemical contamination, degraded habitat, and non-point-source polluti...

  18. Beach-goer behavior during a retrospectively detected algal bloom at a Great Lakes beach

    EPA Science Inventory

    Algal blooms occur among nutrient rich, warm surface waters and may adversely impact recreational beaches. During July – September 2003, a prospective study of beachgoers was conducted on weekends at a public beach on a Great Lake in the United States. We measured each beac...

  19. 77 FR 47582 - Great Lakes Pilotage Rates-2013 Annual Review and Adjust; Correction

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-09

    ..., 2012 (77 FR 45539) proposing rate adjustments for pilotage services on the Great Lakes. The charge rate... of proposed rulemaking published in the Federal Register on August 1, 2012 (77 FR 45539) is corrected...-9826. SUPPLEMENTARY INFORMATION: The NPRM published August 1, 2012 (77 FR 45539) contains an...

  20. Shipping on the Great Lakes. Student Guide and Teacher Guide. OEAGLS Investigation 21.

    ERIC Educational Resources Information Center

    Schlarb, Keith N.; Mayer, Victor J.

    Presented in this unit are three activities designed to illustrate the importance of the Great Lakes in transporting cargo. Students first determine the movement of various materials shipped from selected ports. They then compute from map measurements the distances and relative costs of transporting different cargoes via water, rail and truck.…