Science.gov

Sample records for administration nasa ames

  1. (New) NASA Administrator Sean O'Keefe comes to Ames for employee briefing and tour. Here he welcomes

    NASA Technical Reports Server (NTRS)

    2002-01-01

    (New) NASA Administrator Sean O'Keefe comes to Ames for employee briefing and tour. Here he welcomes JASON kids to NASA while handing out patches and pins. Tom Clausen and Donald James, Ames Education Office in background.

  2. NASA Ames ATM Research

    NASA Technical Reports Server (NTRS)

    Denery, Dallas G.

    2000-01-01

    The NASA Ames research Center, in cooperation with the FAA and the industry, has a series of major research efforts underway that are aimed at : 1) improving the flow of traffic in the national airspace system; and 2) helping to define the future air traffic management system. The purpose of this presentation will be to provide a brief summary of some of these activities.

  3. NASA Ames Research Center Overview

    NASA Technical Reports Server (NTRS)

    Boyd, Jack

    2006-01-01

    A general overview of the NASA Ames Research Center is presented. The topics include: 1) First Century of Flight, 1903-2003; 2) NACA Research Centers; 3) 65 Years of Innovation; 4) Ames Projects; 5) NASA Ames Research Center Today-founded; 6) Astrobiology; 7) SOFIA; 8) To Explore the Universe and Search for Life: Kepler: The Search for Habitable Planets; 9) Crew Exploration Vehicle/Crew Launch Vehicle; 10) Lunar Crater Observation and Sensing Satellite (LCROSS); 11) Thermal Protection Materials and Arc-Jet Facility; 12) Information Science & Technology; 13) Project Columbia Integration and Installation; 14) Air Traffic Management/Air Traffic Control; and 15) New Models-UARC.

  4. Transformation Systems at NASA Ames

    NASA Technical Reports Server (NTRS)

    Buntine, Wray; Fischer, Bernd; Havelund, Klaus; Lowry, Michael; Pressburger, TOm; Roach, Steve; Robinson, Peter; VanBaalen, Jeffrey

    1999-01-01

    In this paper, we describe the experiences of the Automated Software Engineering Group at the NASA Ames Research Center in the development and application of three different transformation systems. The systems span the entire technology range, from deductive synthesis, to logic-based transformation, to almost compiler-like source-to-source transformation. These systems also span a range of NASA applications, including solving solar system geometry problems, generating data analysis software, and analyzing multi-threaded Java code.

  5. NASA Ames Environmental Sustainability Report 2011

    NASA Technical Reports Server (NTRS)

    Clarke, Ann H.

    2011-01-01

    The 2011 Ames Environmental Sustainability Report is the second in a series of reports describing the steps NASA Ames Research Center has taken toward assuring environmental sustainability in NASA Ames programs, projects, and activities. The Report highlights Center contributions toward meeting the Agency-wide goals under the 2011 NASA Strategic Sustainability Performance Program.

  6. NASA-Ames vertical gun

    NASA Technical Reports Server (NTRS)

    Schultz, P. H.

    1984-01-01

    A national facility, the NASA-Ames vertical gun range (AVGR) has an excellent reputation for revealing fundamental aspects of impact cratering that provide important constraints for planetary processes. The current logistics in accessing the AVGR, some of the past and ongoing experimental programs and their relevance, and the future role of this facility in planetary studies are reviewed. Publications resulting from experiments with the gun (1979 to 1984) are listed as well as the researchers and subjects studied.

  7. The IBM PC at NASA Ames

    NASA Technical Reports Server (NTRS)

    Peredo, James P.

    1988-01-01

    Like many large companies, Ames relies very much on its computing power to get work done. And, like many other large companies, finding the IBM PC a reliable tool, Ames uses it for many of the same types of functions as other companies. Presentation and clarification needs demand much of graphics packages. Programming and text editing needs require simpler, more-powerful packages. The storage space needed by NASA's scientists and users for the monumental amounts of data that Ames needs to keep demand the best database packages that are large and easy to use. Availability to the Micom Switching Network combines the powers of the IBM PC with the capabilities of other computers and mainframes and allows users to communicate electronically. These four primary capabilities of the PC are vital to the needs of NASA's users and help to continue and support the vast amounts of work done by the NASA employees.

  8. Terminal Area ATM Research at NASA Ames

    NASA Technical Reports Server (NTRS)

    Tobias, Leonard

    1997-01-01

    The presentation will highlight the following: (1) A brief review of ATC research underway 15 years ago; (2) A summary of Terminal Area ATM Tool Development ongoing at NASA Ames; and (3) A projection of research activities 10-15 years from now.

  9. NASA Ames aerospace systems directorate research

    NASA Technical Reports Server (NTRS)

    Albers, James A.

    1991-01-01

    The Aerospace Systems Directorate is one of four research directorates at the NASA Ames Research Center. The Directorate conducts research and technology development for advanced aircraft and aircraft systems in intelligent computational systems and human-machine systems for aeronautics and space. The Directorate manages research and aircraft technology development projects, and operates and maintains major wind tunnels and flight simulation facilities. The Aerospace Systems Directorate's research and technology as it relates to NASA agency goals and specific strategic thrusts are discussed.

  10. Management process invaded Ames as the Center shifted from NACA to NASA oversight. Ames constructed

    NASA Technical Reports Server (NTRS)

    1968-01-01

    Management process invaded Ames as the Center shifted from NACA to NASA oversight. Ames constructed a review room in its headquarters building where, in the graphical style that prevailed in the 1960's, Ames leadership could review progress against schedule, budget and performance measures. Shown, in October 1965 is Merrill Mead chief of Ames' program and resources office. (for H Julian Allen Retirement album)

  11. Aerothermodynamics research at NASA Ames Research Center

    NASA Technical Reports Server (NTRS)

    Deiwert, George S.

    1987-01-01

    Research activity in the aerothermodynamics branch at the NASA Ames Research Center is reviewed. Advanced concepts and mission studies relating to the next generation aerospace transportation systems are summarized and directions for continued research identified. Theoretical and computational studies directed at determining flow fields and radiative and convective heating loads in real gases are described. Included are Navier-Stokes codes for equilibrium and thermochemical nonequilibrium air. Experimental studies in the 3.5-ft hypersonic wind tunnel, the ballistic ranges, and the electric arc driven shock tube are described. Tested configurations include generic hypersonic aerospace plane configurations, aeroassisted orbital transfer vehicle shapes and Galileo probe models.

  12. Air Traffic Management Research at NASA Ames

    NASA Technical Reports Server (NTRS)

    Davis, Thomas J.

    2012-01-01

    The Aviation Systems Division at the NASA Ames Research Center conducts leading edge research in air traffic management concepts and technologies. This overview will present concepts and simulation results for research in traffic flow management, safe and efficient airport surface operations, super density terminal area operations, separation assurance and system wide modeling and simulation. A brief review of the ongoing air traffic management technology demonstration (ATD-1) will also be presented. A panel discussion, with Mr. Davis serving as a panelist, on air traffic research will follow the briefing.

  13. Theoretical Chemistry At NASA Ames Research Center

    NASA Technical Reports Server (NTRS)

    Langhoff, Stephen

    1996-01-01

    The theoretical work being carried out in the Computational Chemistry Branch at NASA Ames will be overviewed. This overview will be followed by a more in-depth discussion of our theoretical work to determine molecular opacities for the TiO and water molecules and a discussion of our density function theory (DFT) calculations to determine the harmonic frequencies and intensities to the vibrational bands of polycyclic aromatic hydrocarbons (PAHs) to assess their role as carriers to the unidentified infrared (UIR) bands. Finally, a more in-depth discussion of our work in the area of computational molecular nanotechnology will be presented.

  14. Air Traffic Management Research at NASA Ames Research Center

    NASA Technical Reports Server (NTRS)

    Lee, Katharine

    2005-01-01

    Since the late 1980's, NASA Ames researchers have been investigating ways to improve the air transportation system through the development of decision support automation. These software advances, such as the Center-TRACON Automation System (eTAS) have been developed with teams of engineers, software developers, human factors experts, and air traffic controllers; some ASA Ames decision support tools are currently operational in Federal Aviation Administration (FAA) facilities and some are in use by the airlines. These tools have provided air traffic controllers and traffic managers the capabilities to help reduce overall delays and holding, and provide significant cost savings to the airlines as well as more manageable workload levels for air traffic service providers. NASA is continuing to collaborate with the FAA, as well as other government agencies, to plan and develop the next generation of decision support tools that will support anticipated changes in the air transportation system, including a projected increase to three times today's air-traffic levels by 2025. The presentation will review some of NASA Ames' recent achievements in air traffic management research, and discuss future tool developments and concepts currently under consideration.

  15. PSP Testing at NASA Ames Research Center

    NASA Technical Reports Server (NTRS)

    Bell, J. H.; Hand, L. A.; Schairer, E. T.; Mehta, R. D.; George, Michael W. (Technical Monitor)

    1997-01-01

    Pressure sensitive paints (PSPs) are now used routinely for measuring surface pressures on wind tunnel models at transonic and supersonic Mach numbers. The method utilizes a surface coating containing fluorescent or phosphorescent materials, the brightness of which varies with the local air pressure on the surface. The present paper will summarize PSP activities (in progress and planned) at the NASA Ames Research Center. One of the main accomplishments at NASA Ames has been the development of a PSP measurement system that is production testing capable. This system has been integrated successfully into the large-scale wind tunnel facilities at Ames. There are several problems related to PSP testing which are unique to large-scale wind tunnel testing. The hardware is often difficult to set-up and must operate under harsh conditions (e.g. high pressures and low temperatures). The data acquisition and reduction times need to be kept to a minimum so that the overall wind tunnel productivity is not compromised. The pressure sensitive paints needs to be very robust; the paints must readily adhere to different surfaces with varying geometries and remain functional for long running times. The paint must have well understood, and preferably minimal, temperature sensitivity since fine control of the tunnel temperature is not easily achievable in the larger wind tunnels. In an effort to improve the overall accuracy of the PSP technique, we are currently evaluating some referenced pressure sensitive paints which contain a pressure- independent luminophor in addition to the one which is affected by the surface pressure. The two luminophors are chosen so that their emission wavelengths are somewhat different. Then by taking two 'wind-on' images with either two cameras (with different filters) or one camera with a rotating filter system, the need for 'wind-off' images can be eliminated. The ratio of the two wind-on images accounts for nonuniform lighting and model motion problems

  16. NASA Ames UV-LED Poster Overview

    NASA Technical Reports Server (NTRS)

    Jaroux, Belgacem Amar

    2015-01-01

    UV-LED is a small satellite technology demonstration payload being flown on the Saudisat-4 spacecraft that is demonstrating non-contacting charge control of an isolated or floating mass using new solid-state ultra-violet light emitting diodes (UV-LEDs). Integrated to the rest of the spacecraft and launched on a Dnepr in June 19, 2014, the project is a collaboration between the NASA Ames Research Center (ARC), Stanford University, and King Abdulaziz City for Science and Technology (KACST). Beginning with its commissioning in December, 2015, the data collected by UV-LED have validated a novel method of charge control that will improve the performance of drag-free spacecraft allowing for concurrent science collection during charge management operations as well as reduce the mass, power and volume required while increasing lifetime and reliability of a charge management subsystem. UV-LED continues to operate, exploring new concepts in non-contacting charge control and collecting data crucial to understanding the lifetime of ultra-violet light emitting diodes in space. These improvements are crucial to the success of ground breaking missions such as LISA and BBO, and demonstrates the ability of low cost small satellite missions to provide technological advances that far exceed mission costs.

  17. NASA Ames Celebrates Curiosity Rover's Landing on Mars

    NASA Video Gallery

    Nearly 7,000 people came to NASA Ames Research Center, Moffett Field, Calif., to watch the Mars Science Laboratory rover Curiosity land on Mars. A full day's worth of activities and discussions wit...

  18. The Western Aeronautical Test Range of NASA Ames Research Center

    NASA Technical Reports Server (NTRS)

    Moore, A. L.

    1984-01-01

    An overview of the Western Aeronautical Test Range (WATR) of NASA Ames Research Center (ARC) is presented in this paper. The three WATR facilities are discussed, and three WATR elements - mission control centerns, communications systems, real-time processing and display systems, and tracking systems -are reviewed. The relationships within the NASA WATR, with respect to the NASA aeronautics program, are also discussed.

  19. NASA Ames Fluid Mechanics Laboratory research briefs

    NASA Technical Reports Server (NTRS)

    Davis, Sanford (Editor)

    1994-01-01

    The Ames Fluid Mechanics Laboratory research program is presented in a series of research briefs. Nineteen projects covering aeronautical fluid mechanics and related areas are discussed and augmented with the publication and presentation output of the Branch for the period 1990-1993.

  20. The NASA Ames Fatigue Countermeasures Program: The Next Generation

    NASA Technical Reports Server (NTRS)

    Rosekind, Mark R.; Neri, David F.; Miller, Donna L.; Gregory, Kevin B.; Webbon, Lissa L.; Oyung, Ray L.

    1997-01-01

    Twenty-four hour, global aviation operations pose unique challenges to humans. Physiological requirements related to sleep, the internal circadian clock, and human fatigue are critical factors that are known to affect safety, performance, and productivity. Understanding the human operators' physiological capabilities, and limitations, will be important to address these issues as global demand for aviation activities continues to increase. In 1980, in response to a Congressional request, the National Aeronautics and Space Administration (NASA) Ames Research Center initiated a Fatigue/Jet Lag Program to examine the role of fatigue in flight operations. Originally established by Dr. John K. Lauber and Dr. Charles E. Billings, the Program was designed to address three objectives: (1) determine the extent of fatigue, sleep loss, and circadian disruption in flight operations; (2) determine how fatigue affected flight crew performance; and (3) develop strategies to maximize performance and alertness during flight operations.

  1. Photonic processing at NASA Ames Research Center

    NASA Technical Reports Server (NTRS)

    Ochoa, Ellen; Reid, Max

    1990-01-01

    The Photonic Processing group is engaged in applied research on optical processors in support of the Ames vision to lead the development of autonomous intelligent systems. Optical processors, in conjunction with numeric and symbolic processors, are needed to provide the powerful processing capability that is required for many future agency missions. The research program emphasizes application of analog optical processing, where free-space propagation between components allows natural implementations of algorithms requiring a large degree of parallel computation. Special consideration is given in the Ames program to the integration of optical processors into larger, heterogeneous computational systems. Demonstration of the effective integration of optical processors within a broader knowledge-based system is essential to evaluate their potential for dependable operation in an autonomous environment such as space. The Ames Photonics program is currently addressing several areas of interest. One of the efforts is to develop an optical correlator system with two programmable spatial light modulators (SLMs) to perform distortion invariant pattern recognition. Another area of research is optical neural networks, also for use in distortion-invariant pattern recognition.

  2. Quantifying Climate Change Hydrologic Risk at NASA Ames Research Center

    NASA Astrophysics Data System (ADS)

    Mills, W. B.; Bromirski, P. D.; Coats, R. N.; Costa-Cabral, M.; Fong, J.; Loewenstein, M.; Milesi, C.; Miller, N.; Murphy, N.; Roy, S.

    2013-12-01

    In response to 2009 Executive Order 13514 mandating U.S. federal agencies to evaluate infrastructure vulnerabilities due to climate variability and change we provide an analysis of future climate flood risk at NASA Ames Research Center (Ames) along South S.F. Bay. This includes likelihood analysis of large-scale water vapor transport, statistical analysis of intense precipitation, high winds, sea level rise, storm surge, estuary dynamics, saturated overland flooding, and likely impacts to wetlands and habitat loss near Ames. We use the IPCC CMIP5 data from three Atmosphere-Ocean General Circulation Models with Radiative Concentration Pathways of 8.5 Wm-2 and 4.5 Wm-2 and provide an analysis of climate variability and change associated with flooding and impacts at Ames. Intense storms impacting Ames are due to two large-scale processes, sub-tropical atmospheric rivers (AR) and north Pacific Aleutian low-pressure (AL) storm systems, both of which are analyzed here in terms of the Integrated Water Vapor (IWV) exceeding a critical threshold within a search domain and the wind vector transporting the IWV from southerly to westerly to northwesterly for ARs and northwesterly to northerly for ALs and within the Ames impact area during 1970-1999, 2040-2069, and 2070-2099. We also include a statistical model of extreme precipitation at Ames based on large-scale climatic predictors, and characterize changes using CMIP5 projections. Requirements for levee height to protect Ames are projected to increase and continually accelerate throughout this century as sea level rises. We use empirical statistical and analytical methods to determine the likelihood, in each year from present through 2099, of water level surpassing different threshold values in SF Bay near NASA Ames. We study the sensitivity of the water level corresponding to a 1-in-10 and 1-in-100 likelihood of exceedance to changes in the statistical distribution of storm surge height and ENSO height, in addition to

  3. Comparison Between Field Data and NASA Ames Wind Tunnel Data

    SciTech Connect

    Corbus, D.

    2005-11-01

    The objective of this analysis is to compare the measured data from the NASA Ames wind tunnel experiment to those collected in the field at the National Wind Technology Center (NWTC) with the same turbine configuration. The results of this analysis provide insight into what measurements can be made in the field as opposed to wind tunnel testing.

  4. NASA Ames and Future of Space Exploration, Science, and Aeronautics

    NASA Technical Reports Server (NTRS)

    Cohen, Jacob

    2015-01-01

    Pushing the frontiers of aeronautics and space exploration presents multiple challenges. NASA Ames Research Center is at the forefront of tackling these issues, conducting cutting edge research in the fields of air traffic management, entry systems, advanced information technology, intelligent human and robotic systems, astrobiology, aeronautics, space, earth and life sciences and small satellites. Knowledge gained from this research helps ensure the success of NASA's missions, leading us closer to a world that was only imagined as science fiction just decades ago.

  5. Technology transfer in the NASA Ames Advanced Life Support Division

    NASA Technical Reports Server (NTRS)

    Connell, Kathleen; Schlater, Nelson; Bilardo, Vincent; Masson, Paul

    1992-01-01

    This paper summarizes a representative set of technology transfer activities which are currently underway in the Advanced Life Support Division of the Ames Research Center. Five specific NASA-funded research or technology development projects are synopsized that are resulting in transfer of technology in one or more of four main 'arenas:' (1) intra-NASA, (2) intra-Federal, (3) NASA - aerospace industry, and (4) aerospace industry - broader economy. Each project is summarized as a case history, specific issues are identified, and recommendations are formulated based on the lessons learned as a result of each project.

  6. NASA-Ames workload research program

    NASA Technical Reports Server (NTRS)

    Hart, Sandra

    1988-01-01

    Research has been underway for several years to develop valid and reliable measures and predictors of workload as a function of operator state, task requirements, and system resources. Although the initial focus of this research was on aeronautics, the underlying principles and methodologies are equally applicable to space, and provide a set of tools that NASA and its contractors can use to evaluate design alternatives from the perspective of the astronauts. Objectives and approach of the research program are described, as well as the resources used in conducting research and the conceptual framework around which the program evolved. Next, standardized tasks are described, in addition to predictive models and assessment techniques and their application to the space program. Finally, some of the operational applications of these tasks and measures are reviewed.

  7. NASA Ames Sustainability Initiatives: Aeronautics, Space Exploration, and Sustainable Futures

    NASA Technical Reports Server (NTRS)

    Grymes, Rosalind A.

    2015-01-01

    In support of the mission-specific challenges of aeronautics and space exploration, NASA Ames produces a wealth of research and technology advancements with significant relevance to larger issues of planetary sustainability. NASA research on NexGen airspace solutions and its development of autonomous and intelligent technologies will revolutionize both the nation's air transporation systems and have applicability to the low altitude flight economy and to both air and ground transporation, more generally. NASA's understanding of the Earth as a complex of integrated systems contributes to humanity's perception of the sustainability of our home planet. Research at NASA Ames on closed environment life support systems produces directly applicable lessons on energy, water, and resource management in ground-based infrastructure. Moreover, every NASA campus is a 'city'; including an urbanscape and a workplace including scientists, human relations specialists, plumbers, engineers, facility managers, construction trades, transportation managers, software developers, leaders, financial planners, technologists, electricians, students, accountants, and even lawyers. NASA is applying the lessons of our mission-related activities to our urbanscapes and infrastructure, and also anticipates a leadership role in developing future environments for living and working in space.

  8. Computational Fluid Dynamics Program at NASA Ames Research Center

    NASA Technical Reports Server (NTRS)

    Holst, Terry L.

    1989-01-01

    The Computational Fluid Dynamics (CFD) Program at NASA Ames Research Center is reviewed and discussed. The technical elements of the CFD Program are listed and briefly discussed. These elements include algorithm research, research and pilot code development, scientific visualization, advanced surface representation, volume grid generation, and numerical optimization. Next, the discipline of CFD is briefly discussed and related to other areas of research at NASA Ames including experimental fluid dynamics, computer science research, computational chemistry, and numerical aerodynamic simulation. These areas combine with CFD to form a larger area of research, which might collectively be called computational technology. The ultimate goal of computational technology research at NASA Ames is to increase the physical understanding of the world in which we live, solve problems of national importance, and increase the technical capabilities of the aerospace community. Next, the major programs at NASA Ames that either use CFD technology or perform research in CFD are listed and discussed. Briefly, this list includes turbulent/transition physics and modeling, high-speed real gas flows, interdisciplinary research, turbomachinery demonstration computations, complete aircraft aerodynamics, rotorcraft applications, powered lift flows, high alpha flows, multiple body aerodynamics, and incompressible flow applications. Some of the individual problems actively being worked in each of these areas is listed to help define the breadth or extent of CFD involvement in each of these major programs. State-of-the-art examples of various CFD applications are presented to highlight most of these areas. The main emphasis of this portion of the presentation is on examples which will not otherwise be treated at this conference by the individual presentations. Finally, a list of principal current limitations and expected future directions is given.

  9. NASA Ames Arc Jets and Range, Capabilities for Planetary Entry

    NASA Technical Reports Server (NTRS)

    Fretter, Ernest F.

    2005-01-01

    NASA is pursuing innovative technologies and concepts as part of America's Vision for Space Exploration. The rapidly emerging field of nanotechnology has led to new concepts for multipurpose shields to prevent catastrophic loss of vehicles and crew against the triple threats of aeroheating during atmospheric entry, radiation (Solar and galactic cosmic rays) and Micrometorid/Orbital Debris (MMOD) strikes. One proposed concept is the Thermal Radiation Impact Protection System (TRIPS) using carbon nanotubes, hydrogenated carbon nanotubes, and ceramic coatings as a multi-use TPS. The Thermophysics Facilities Branch of the Space Technology Division at NASA Ames Research Center provides testing services for the development and validation of the present and future concepts being developed by NASA and national and International research firms. The Branch operates two key facilities - the Range Complex and the Arc Jets. The Ranges include both the Ames Vertical Gun Range (AVGR) and the Hypervelocity Free Flight (HFF) gas guns best suited for MMOD investigations. Test coupons can be installed in the AVGR or HFF and subjected to particle impacts from glass or metal particles from micron to _ inch (6.35-mm) diameters and at velocities from 5 to 8 kilometers per second. The facility can record high-speed data on film and provide damage assessment for analysis by the Principle Investigator or Ames personnel. Damaged articles can be installed in the Arc Jet facility for further testing to quantify the effects of damage on the heat shield s performance upon entry into atmospheric environments.

  10. Human Robotic Study at Houghton Crater - virtual reality study from NASA Ames (FFC) Future Fight

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Human Robotic Study at Houghton Crater - virtual reality study from NASA Ames (FFC) Future Fight Central simulator tower L-R: Dr Geoffrey Briggs; Jen Jasper (seated); Dr Jan Akins and Mr. Tony Gross, Ames

  11. NASA/Ames Research Center's science and applications aircraft program

    NASA Technical Reports Server (NTRS)

    Hall, G. Warren

    1991-01-01

    NASA-Ames Research Center operates a fleet of seven Science and Applications Aircraft, namely the C-141/Kuiper Airborne Observatory (KAO), DC-8, C-130, Lear Jet, and three ER-2s. These aircraft are used to satisfy two major objectives, each of equal importance. The first is to acquire remote and in-situ scientific data in astronomy, astrophysics, earth sciences, ocean processes, atmospheric physics, meteorology, materials processing and life sciences. The second major objective is to expedite the development of sensors and their attendant algorithms for ultimate use in space and to simulate from an aircraft, the data to be acquired from spaceborne sensors. NASA-Ames Science and Applications Aircraft are recognized as national and international facilities. They have performed and will continue to perform, operational missions from bases in the United States and worldwide. Historically, twice as many investigators have requested flight time than could be accommodated. This situation remains true today and is expected to increase in the years ahead. A major advantage of the existing fleet of aircraft is their ability to cover a large expanse of the earth's ecosystem from the surface to the lower stratosphere over large distances and time aloft. Their large payload capability allows a number of scientists to use multi-investigator sensor suites to permit simultaneous and complementary data gathering. In-flight changes to the sensors or data systems have greatly reduced the time required to optimize the development of new instruments. It is doubtful that spaceborne systems will ever totally replace the need for airborne science aircraft. The operations philosophy and capabilities exist at NASA-Ames Research Center.

  12. A Standard Kinematic Model for Flight Simulation at NASA Ames

    NASA Technical Reports Server (NTRS)

    Mcfarland, R. E.

    1975-01-01

    A standard kinematic model for aircraft simulation exists at NASA-Ames on a variety of computer systems, one of which is used to control the flight simulator for advanced aircraft (FSAA). The derivation of the kinematic model is given and various mathematical relationships are presented as a guide. These include descriptions of standardized simulation subsystems such as the atmospheric turbulence model and the generalized six-degrees-of-freedom trim routine, as well as an introduction to the emulative batch-processing system which enables this facility to optimize its real-time environment.

  13. Planning and scheduling research at NASA Ames Research Center

    NASA Technical Reports Server (NTRS)

    Friedland, Peter

    1990-01-01

    Planning and scheduling is the area of artificial intelligence research that focuses on the determination of a series of operations to achieve some set of (possibly) interacting goals and the placement of those operations in a timeline that allows them to be accomplished given available resources. Work in this area at the NASA Ames Research Center ranging from basic research in constrain-based reasoning and machine learning, to the development of efficient scheduling tools, to the application of such tools to complex agency problems is described.

  14. Unique life sciences research facilities at NASA Ames Research Center

    NASA Technical Reports Server (NTRS)

    Mulenburg, G. M.; Vasques, M.; Caldwell, W. F.; Tucker, J.

    1994-01-01

    The Life Science Division at NASA's Ames Research Center has a suite of specialized facilities that enable scientists to study the effects of gravity on living systems. This paper describes some of these facilities and their use in research. Seven centrifuges, each with its own unique abilities, allow testing of a variety of parameters on test subjects ranging from single cells through hardware to humans. The Vestibular Research Facility allows the study of both centrifugation and linear acceleration on animals and humans. The Biocomputation Center uses computers for 3D reconstruction of physiological systems, and interactive research tools for virtual reality modeling. Psycophysiological, cardiovascular, exercise physiology, and biomechanical studies are conducted in the 12 bed Human Research Facility and samples are analyzed in the certified Central Clinical Laboratory and other laboratories at Ames. Human bedrest, water immersion and lower body negative pressure equipment are also available to study physiological changes associated with weightlessness. These and other weightlessness models are used in specialized laboratories for the study of basic physiological mechanisms, metabolism and cell biology. Visual-motor performance, perception, and adaptation are studied using ground-based models as well as short term weightlessness experiments (parabolic flights). The unique combination of Life Science research facilities, laboratories, and equipment at Ames Research Center are described in detail in relation to their research contributions.

  15. Reduced Crew Operations Research at NASA Ames Research Center

    NASA Technical Reports Server (NTRS)

    Brandt, Summer L.; Lachter, Joel

    2017-01-01

    In 2012, NASA began exploring the feasibility of single pilot reduced crew operations (SPORCO) in the context of scheduled passenger air carrier operations (i.e., Parts 121 and 135). This research was spurred by two trends in aviation research: the trend toward reducing costs and a shortage of pilots. A series of simulations were conducted to develop tools and a concept of operations to support RCO. This slide deck is a summary of the NASA Ames RCO research prepared for an R T team at Airbus. Airbus is considering moving forward with reducing crew during the cruise phase of flight with long-haul flights and is interested in the work we have completed.

  16. Computational Nanotechnology at NASA Ames Research Center, 1996

    NASA Technical Reports Server (NTRS)

    Globus, Al; Bailey, David; Langhoff, Steve; Pohorille, Andrew; Levit, Creon; Chancellor, Marisa K. (Technical Monitor)

    1996-01-01

    Some forms of nanotechnology appear to have enormous potential to improve aerospace and computer systems; computational nanotechnology, the design and simulation of programmable molecular machines, is crucial to progress. NASA Ames Research Center has begun a computational nanotechnology program including in-house work, external research grants, and grants of supercomputer time. Four goals have been established: (1) Simulate a hypothetical programmable molecular machine replicating itself and building other products. (2) Develop molecular manufacturing CAD (computer aided design) software and use it to design molecular manufacturing systems and products of aerospace interest, including computer components. (3) Characterize nanotechnologically accessible materials of aerospace interest. Such materials may have excellent strength and thermal properties. (4) Collaborate with experimentalists. Current in-house activities include: (1) Development of NanoDesign, software to design and simulate a nanotechnology based on functionalized fullerenes. Early work focuses on gears. (2) A design for high density atomically precise memory. (3) Design of nanotechnology systems based on biology. (4) Characterization of diamonoid mechanosynthetic pathways. (5) Studies of the laplacian of the electronic charge density to understand molecular structure and reactivity. (6) Studies of entropic effects during self-assembly. Characterization of properties of matter for clusters up to sizes exhibiting bulk properties. In addition, the NAS (NASA Advanced Supercomputing) supercomputer division sponsored a workshop on computational molecular nanotechnology on March 4-5, 1996 held at NASA Ames Research Center. Finally, collaborations with Bill Goddard at CalTech, Ralph Merkle at Xerox Parc, Don Brenner at NCSU (North Carolina State University), Tom McKendree at Hughes, and Todd Wipke at UCSC are underway.

  17. A Perspective on NASA Ames Air Traffic Management Research

    NASA Technical Reports Server (NTRS)

    Schroeder, Jeffery A.

    2012-01-01

    This paper describes past and present air-traffic-management research at NASA Ames Research Center. The descriptions emerge from the perspective of a technical manager who supervised the majority of this research for the last four years. Past research contributions built a foundation for calculating accurate flight trajectories to enable efficient airspace management in time. That foundation led to two predominant research activities that continue to this day - one in automatically separating aircraft and the other in optimizing traffic flows. Today s national airspace uses many of the applications resulting from research at Ames. These applications include the nationwide deployment of the Traffic Management Advisor, new procedures enabling continuous descent arrivals, cooperation with industry to permit more direct flights to downstream way-points, a surface management system in use by two cargo carriers, and software to evaluate how well flights conform to national traffic management initiatives. The paper concludes with suggestions for prioritized research in the upcoming years. These priorities include: enabling more first-look operational evaluations, improving conflict detection and resolution for climbing or descending aircraft, and focusing additional attention on the underpinning safety critical items such as a reliable datalink.

  18. Computational Fluid Dynamics at NASA Ames Research Center

    NASA Technical Reports Server (NTRS)

    Kutler, Paul

    1994-01-01

    Computational fluid dynamics (CFD) is beginning to play a major role in the aircraft industry of the United States because of the realization that CFD can be a new and effective design tool and thus could provide a company with a competitive advantage. It is also playing a significant role in research institutions, both governmental and academic, as a tool for researching new fluid physics, as well as supplementing and complementing experimental testing. In this presentation, some of the progress made to date in CFD at NASA Ames will be reviewed. The presentation addresses the status of CFD in terms of methods, examples of CFD solutions, and computer technology. In addition, the role CFD will play in supporting the revolutionary goals set forth by the Aeronautical Policy Review Committee established by the Office of Science and Technology Policy is noted. The need for validated CFD tools is also briefly discussed.

  19. Space technology test facilities at the NASA Ames Research Center

    NASA Technical Reports Server (NTRS)

    Gross, Anthony R.; Rodrigues, Annette T.

    1990-01-01

    The major space research and technology test facilities at the NASA Ames Research Center are divided into five categories: General Purpose, Life Support, Computer-Based Simulation, High Energy, and the Space Exploraton Test Facilities. The paper discusses selected facilities within each of the five categories and discusses some of the major programs in which these facilities have been involved. Special attention is given to the 20-G Man-Rated Centrifuge, the Human Research Facility, the Plant Crop Growth Facility, the Numerical Aerodynamic Simulation Facility, the Arc-Jet Complex and Hypersonic Test Facility, the Infrared Detector and Cryogenic Test Facility, and the Mars Wind Tunnel. Each facility is described along with its objectives, test parameter ranges, and major current programs and applications.

  20. The NASA Ames Controlled Environment Research Chamber - Present status

    NASA Technical Reports Server (NTRS)

    Gross, Anthony R.; Korsmeyer, David J.; Harper, Lynn D.; Force, Edwin L.

    1994-01-01

    The Controlled Environment Research Chamber (CERC) at the NASA Ames Research Center was created for early-on investigation of promising new technologies for life support of advanced space exploration missions. The CERC facility is being used to address the advanced technology requirements necessary to implement an integrated working and living environment for a planetary habitat. The CERC, along with a human-powered centrifuge, a planetary terrain simulator, advanced displays, and a virtual reality capability, is able to develop and demonstrate applicable technologies for future planetary exploration. There will be several robotic mechanisms performing exploration taskes external to the habitat that will be controlled through the virtual environment to provide representative workloads for the crew. Finally, there will be a discussion of innovative new multidisciplinary test facilities, and how effective they are to the investigation of the wide range of human and machine problems inherent in exploration missions.

  1. The NASA Ames Controlled Environment Research Chamber: Present status

    NASA Technical Reports Server (NTRS)

    Gross, Anthony R.; Korsmeyer, David J.; Harper, Lynn D.; Force, Edwin L.

    1994-01-01

    The Controlled Environment Research Chamber (CERC) at the NASA Ames Research Center was created for early-on investigation of promising new technologies for life support of advanced space exploration missions. The CERC facility is being used to address the advanced technology requirements necessary to implement an integrated working and living environment for a planetary habitat. The CERC, along with a human-powered centrifuge, a planetary terrain simulator, advanced displays, and a virtual reality, is able to develop and demonstrate applicable technologies for future planetary exploration. There will be several robotic mechanisms performing exploration tasks external to the habitat that will be controlled through the virtual environment to provide representative workloads for the crew. Finally, there will be a discussion of innovative new multidisciplinary test facilities, and how effective they are to the investigation of the wide range of human and machine problems inherent in exploration missions.

  2. NASA Ames Research Center 60 MW Power Supply Modernization

    NASA Technical Reports Server (NTRS)

    Choy, Yuen Ching; Ilinets, Boris V.; Miller, Ted; Nagel, Kirsten (Technical Monitor)

    2001-01-01

    The NASA Ames Research Center 60 MW DC Power Supply was built in 1974 to provide controlled DC power for the Thermophysics Facility Arc Jet Laboratory. The Power Supply has gradually losing reliability due to outdated technology and component life limitation. NASA has decided to upgrade the existing rectifier modules with contemporary high-power electronics and control equipment. NASA plans to complete this project in 2001. This project includes a complete replacement of obsolete thyristor stacks in all six rectifier modules and rectifier bridge control system. High power water-cooled thyristors and freewheeling diodes will be used. The rating of each of the six modules will be 4000 A at 5500 V. The control firing angle signal will be sent from the Facility Control System to six modules via fiberoptic cable. The Power Supply control and monitoring system will include a Master PLC in the Facility building and a Slave PLC in each rectifier module. This system will also monitor each thyristor level in each stack and the auxiliary equipment.

  3. Selected Topics in Overset Technology Development and Applications At NASA Ames Research Center

    NASA Technical Reports Server (NTRS)

    Chan, William M.; Kwak, Dochan (Technical Monitor)

    2002-01-01

    This paper presents a general overview of overset technology development and applications at NASA Ames Research Center. The topics include: 1) Overview of overset activities at NASA Ames; 2) Recent developments in Chimera Grid Tools; 3) A general framework for multiple component dynamics; 4) A general script module for automating liquid rocket sub-systems simulations; and 5) Critical future work.

  4. Briefing to University of Porto on NASA Airborne Science Program and Ames UAVs

    NASA Technical Reports Server (NTRS)

    Fladeland, Matthew

    2015-01-01

    NASA Ames is exploring a partnership with the University of Portugal to jointly develop and test new autonomous vehicle technologies. As part of the discussions I will be briefing the University of Portugal faculty on the NASA Airborne Science Program (ASP) and associated activities at NASA Ames Research Center. The presentation will communicate the requirements that drive the program, the assets available to NASA researchers, and discuss research projects that have used unmanned aircraft systems including MIZOPEX, Surprise Valley, and Florida Keys Coral Reef assessment. Other topics will include the SIERRA and Dragon Eye UAV projects operated at Ames.

  5. Flight Test 4 Preliminary Results: NASA Ames SSI

    NASA Technical Reports Server (NTRS)

    Isaacson, Doug; Gong, Chester; Reardon, Scott; Santiago, Confesor

    2016-01-01

    Realization of the expected proliferation of Unmanned Aircraft System (UAS) operations in the National Airspace System (NAS) depends on the development and validation of performance standards for UAS Detect and Avoid (DAA) Systems. The RTCA Special Committee 228 is charged with leading the development of draft Minimum Operational Performance Standards (MOPS) for UAS DAA Systems. NASA, as a participating member of RTCA SC-228 is committed to supporting the development and validation of draft requirements as well as the safety substantiation and end-to-end assessment of DAA system performance. The Unmanned Aircraft System (UAS) Integration into the National Airspace System (NAS) Project conducted flight test program, referred to as Flight Test 4, at Armstrong Flight Research Center from April -June 2016. Part of the test flights were dedicated to the NASA Ames-developed Detect and Avoid (DAA) System referred to as JADEM (Java Architecture for DAA Extensibility and Modeling). The encounter scenarios, which involved NASA's Ikhana UAS and a manned intruder aircraft, were designed to collect data on DAA system performance in real-world conditions and uncertainties with four different surveillance sensor systems. Flight test 4 has four objectives: (1) validate DAA requirements in stressing cases that drive MOPS requirements, including: high-speed cooperative intruder, low-speed non-cooperative intruder, high vertical closure rate encounter, and Mode CS-only intruder (i.e. without ADS-B), (2) validate TCASDAA alerting and guidance interoperability concept in the presence of realistic sensor, tracking and navigational errors and in multiple-intruder encounters against both cooperative and non-cooperative intruders, (3) validate Well Clear Recovery guidance in the presence of realistic sensor, tracking and navigational errors, and (4) validate DAA alerting and guidance requirements in the presence of realistic sensor, tracking and navigational errors. The results will be

  6. Summary of proceedings of the first meeting of the NASA Ames Simulator Sickness Steering Committee

    NASA Technical Reports Server (NTRS)

    Hettinger, Lawrence J.; Mccauley, Michael E.; Cook, Anthony E.; Voorhees, James W.

    1989-01-01

    A program of research to investigate simulator induced sickness has recently been initiated under the sponsorship of NASA Ames Research Center to coordinate efforts to investigate and eventually eliminate the problem of simulator sickness. As part of this program, a Simulator Sickness Steering Committee has been assembled, comprised of eighteen representatives from the Army, Air Force, Navy, NASA, NATO, academia, and industry. The proceedings of the first meeting of the NASA Ames Simulator Sickness Steering Committee are summarized and discussed.

  7. Recent Developments in Ultra High Temperature Ceramics at NASA Ames

    NASA Technical Reports Server (NTRS)

    Johnson, Sylvia M.; Gasch, Matt; Lawson, John W.; Gusman, Michael I.; Stackpole, Margaret M.

    2009-01-01

    NASA Ames is pursuing a variety of approaches to modify and control the microstructure of UHTCs with the goal of improving fracture toughness, oxidation resistance and controlling thermal conductivity. The overall goal is to produce materials that can perform reliably as sharp leading edges or nose tips in hypersonic reentry vehicles. Processing approaches include the use of preceramic polymers as the SiC source (as opposed to powder techniques), the addition of third phases to control grain growth and oxidation, and the use of processing techniques to produce high purity materials. Both hot pressing and field assisted sintering have been used to make UHTCs. Characterization of the mechanical and thermal properties of these materials is ongoing, as is arcjet testing to evaluate performance under simulated reentry conditions. The preceramic polymer approach has generated a microstructure in which elongated SiC grains grow in the form of an in-situ composite. This microstructure has the advantage of improving fracture toughness while potentially improving oxidation resistance by reducing the amount and interconnectivity of SiC in the material. Addition of third phases, such as Ir, results in a very fine-grained microstructure, even in hot-pressed samples. The results of processing and compositional changes on microstructure and properties are reported, along with selected arcjet results.

  8. 3rd Annual NASA Ames Space Science and Astrobiology Jamboree

    NASA Technical Reports Server (NTRS)

    Dotson, Jessie

    2015-01-01

    The Space Science and Astrobiology Division at NASA Ames Research Center consists of over 50 civil servants and more than 110 contractors, co-­-ops, post-­-docs and associates. Researchers in the division are pursuing investigations in a variety of fields including exoplanets, planetary science, astrobiology and astrophysics. In addition, division personnel support a wide variety of NASA missions including (but not limited to) Kepler, SOFIA, LADEE, JWST, and New Horizons. With such a wide variety of interesting research going on, distributed among three branches in at least 5 different buildings, it can be difficult to stay abreast of what one's fellow researchers are doing. Our goal in organizing this symposium is to facilitate communication and collaboration among the scientists within the division, and to give center management and other ARC researchers and engineers an opportunity to see what scientific research and science mission work is being done in the division. We are also continuing the tradition within the Space Science and Astrobiology Division to honor one senior and one early career scientist with the Pollack Lecture and the Early Career Lecture, respectively. With the Pollack Lecture, our intent is to select a senior researcher who has made significant contributions to any area of research within the space sciences, and we are pleased to honor Dr. William Borucki this year. With the Early Career Lecture, our intent is to select a young researcher within the division who, by their published scientific papers, shows great promise for the future in any area of space science research, and we are pleased to honor Dr. Melinda Kahre this year

  9. NASA Ames Helps Search For and Study of Sutter's Mill Meteorites

    NASA Video Gallery

    Scientists, researchers and volunteers from NASA Ames, the SETI Institute and other organizations are searching for fragments of the Sutter's Mill Meteor that illuminated the sky over the Sierra Ne...

  10. Atmosphere of Freedom: Sixty Years at the NASA Ames Research Center

    NASA Technical Reports Server (NTRS)

    Bugos, Glenn E.; Launius, Roger (Technical Monitor)

    2000-01-01

    Throughout Ames History, four themes prevail: a commitment to hiring the best people; cutting-edge research tools; project management that gets things done faster, better and cheaper; and outstanding research efforts that serve the scientific professions and the nation. More than any other NASA Center, Ames remains shaped by its origins in the NACA (National Advisory Committee for Aeronautics). Not that its missions remain the same. Sure, Ames still houses the world's greatest collection of wind tunnels and simulation facilities, its aerodynamicists remain among the best in the world, and pilots and engineers still come for advice on how to build better aircraft. But that is increasingly part of Ames' past. Ames people have embraced two other missions for its future. First, intelligent systems and information science will help NASA use new tools in supercomputing, networking, telepresence and robotics. Second, astrobiology will explore lore the prospects for life on Earth and beyond. Both new missions leverage Ames long-standing expertise in computation and in the life sciences, as well as its relations with the computing and biotechnology firms working in the Silicon Valley community that has sprung up around the Center. Rather than the NACA missions, it is the NACA culture that still permeates Ames. The Ames way of research management privileges the scientists and engineers working in the laboratories. They work in an atmosphere of freedom, laced with the expectation of integrity and responsibility. Ames researchers are free to define their research goals and define how they contribute to the national good. They are expected to keep their fingers on the pulse of their disciplines, to be ambitious yet frugal in organizing their efforts, and to always test their theories in the laboratory or in the field. Ames' leadership ranks, traditionally, are cultivated within this scientific community. Rather than manage and supervise these researchers, Ames leadership merely

  11. The NASA Ames Closed Environmental Research Chamber: Present Status

    NASA Technical Reports Server (NTRS)

    Gross, Anthony R.; Korsmeyer, David J.; Harper, Lynn D.; Force, Edwin L.

    1994-01-01

    The Closed Environmental Research Chamber (CERC) at the NASA Ames Research Center was created to investigate both components and complete systems for life support of advanced space exploration missions. This facility includes a Main Chamber, an Airlock, a Sample Transfer Lock, a Vacuum System, an Air Recompression System, a dedicated control room and a pit area for housing supporting and environmental control systems. The Main Chamber provides 310 sq ft of internal working/living space on two levels. It is planned that the CERC will be a human-rated facility for habitation simulation under mass balance closure conditions. The internal pressure will be variable over the range of 14.7 psia to 5 psia with accompanying capability for variation in atmosphere composition to maintain the oxygen partial pressure at 160 mm Hg. The CERC will be provided with a core set of primary life support subsystems for temperature and humidity control, C02 removal and trace contaminant control. Interfacing with external life support technology test bds with be provided, along with connection to centralized, microprocessor-based data acquisition and control systems. This paper will discuss the current status of the CERC facility and show how it is being used to address the advanced technology requirements necessary to implement an integrated working and living environment for a planetary habitat. In particular, it will be shown how the CERC, along with a human-powered centrifuge, a planetary terrain simulator and advanced displays and a virtual reality capability will work together to develop and demonstration applicable technologies for future planetary habitats. Artificial intelligence and expert system programming techniques will be used extensively to provide an automated environment for a 4-person crew. There will be several robotic mechanisms performing exploration tasks external to the habitat that will be controlled through the virtual environment to provide representative

  12. Application of CFD in aeronautics at NASA Ames Research Center

    NASA Technical Reports Server (NTRS)

    Maksymiuk, Catherine M.; Enomoto, Francis Y.; Vandalsem, William R.

    1995-01-01

    The role of Computational Fluid Dynamics (CFD) at Ames Research Center has expanded to address a broad range of aeronautical problems, including wind tunnel support, flight test support, design, and analysis. Balancing the requirements of each new problem against the available resources - software, hardware, time, and expertise - is critical to the effective use of CFD. Several case studies of recent applications highlight the depth of CFD capability at Ames, the tradeoffs involved in various approaches, and lessons learned in the use of CFD as an engineering tool.

  13. Autonomy @ Ames

    NASA Technical Reports Server (NTRS)

    Van Dalsem, William; Krishnakumar, Kalmanje Srinivas

    2016-01-01

    This is a powerpoint presentation that highlights autonomy across the 15 NASA technology roadmaps, including specific examples of projects (past and present) at NASA Ames Research Center. The NASA technology roadmaps are located here: http:www.nasa.govofficesocthomeroadmapsindex.html

  14. Cultivating a Grassroots Aerospace Innovation Culture at NASA Ames Research Center

    NASA Technical Reports Server (NTRS)

    D'Souza, Sarah; Sanchez, Hugo; Lewis, Ryan

    2017-01-01

    This paper details the adaptation of specific 'knowledge production' methods to implement a first of its kind, grassroots event that provokes a cultural change in how the NASA Ames civil servant community engages in the creation and selection of innovative ideas. Historically, selection of innovative proposals at NASA Ames Research Center is done at the highest levels of management, isolating the views and perspectives of the larger civil servant community. Additionally, NASA innovation programs are typically open to technical organizations and do not engage non-technical organizations to bring forward innovative processes/business practices. Finally, collaboration on innovative ideas and associated solutions tend to be isolated to organizational silos. In this environment, not all Ames employees feel empowered to innovate and opportunities for employee collaboration are limited. In order to address these issues, the 'innovation contest' method was adapted to create the NASA Ames Innovation Fair, a unique, grassroots innovation opportunity for the civil servant community. The Innovation Fair consisted of a physical event with a virtual component. The physical event provided innovators the opportunity to collaborate and pitch their innovations to the NASA Ames community. The civil servant community then voted for the projects that they viewed as innovative and would contribute to NASA's core mission, making this event a truly grassroots effort. The Innovation Fair website provided a location for additional knowledge sharing, discussion, and voting. On March 3rd, 2016, the 'First Annual NASA Ames Innovation Fair' was held with 49 innovators and more than 300 participants collaborating and/or voting for the best innovations. Based on the voting results, seven projects were awarded seed funding for projects ranging from innovative cost models to innovations in aerospace technology. Surveys of both innovators and Fair participants show the Innovation Fair was successful

  15. The viability of establishing collaborative, reconfigurable research environments for the Human Performance Research Laboratory at NASA Ames

    NASA Technical Reports Server (NTRS)

    Clipson, Colin

    1994-01-01

    This paper will review and summarize research initiatives conducted between 1987 and 1992 at NASA Ames Research Center by a research team from the University of Michigan Architecture Research Laboratory. These research initiatives, funded by a NASA grant NAG2-635, examined the viability of establishing collaborative, reconfigurable research environments for the Human Performance Research Laboratory at NASA Ames in California. Collaborative Research Environments are envisioned as a way of enhancing the work of NASA research teams, optimizing the use of shared resources, and providing superior environments for housing research activities. The Integrated Simulation Project at NASA, Ames Human Performance Research Laboratory is one of the current realizations of this initiative.

  16. Comparison of Heat Flux Gages for High Enthalpy Flows - NASA Ames and IRS

    NASA Technical Reports Server (NTRS)

    Loehle, Stefan; Nawaz, Anuscheh; Herdrich, Georg; Fasoulas, Stefanos; Martinez, Edward; Raiche, George

    2016-01-01

    This article is a companion to a paper on heat flux measurements as initiated under a Space Act Agreement in 2011. The current focus of this collaboration between the Institute of Space Systems (IRS) of the University of Stuttgart and NASA Ames Research Center is the comparison and refinement of diagnostic measurements. A first experimental campaign to test different heat flux gages in the NASA Interaction Heating Facility (IHF) and the Plasmawindkanaele (PWK) at IRS was established. This paper focuses on the results of the measurements conducted at IRS. The tested gages included a at face and hemispherical probe head, a 4" hemispherical slug calorimeter, a null-point calorimeter from Ames and a null-point calorimeter developed for this purpose at IRS. The Ames null-point calorimeter was unfortunately defective upon arrival. The measured heat fluxes agree fairly well with each other. The reason for discrepancies can be attributed to signal-to-noise levels and the probe geometry.

  17. Training for life science experiments in space at the NASA Ames Research Center

    NASA Technical Reports Server (NTRS)

    Rodrigues, Annette T.; Maese, A. Christopher

    1993-01-01

    As this country prepares for exploration to other planets, the need to understand the affects of long duration exposure to microgravity is evident. The National Aeronautics and Space Administration (NASA) Ames Research Center's Space Life Sciences Payloads Office is responsible for a number of non-human life sciences payloads on NASA's Space Shuttle's Spacelab. Included in this responsibility is the training of those individuals who will be conducting the experiments during flight, the astronauts. Preparing a crew to conduct such experiments requires training protocols that build on simple tasks. Once a defined degree of performance proficiency is met for each task, these tasks are combined to increase the complexity of the activities. As tasks are combined into in-flight operations, they are subjected to time constraints and the crew enhances their skills through repetition. The science objectives must be completely understood by the crew and are critical to the overall training program. Completion of the in-flight activities is proof of success. Because the crew is exposed to the background of early research and plans for post-flight analyses, they have a vested interest in the flight activities. The salient features of this training approach is that it allows for flexibility in implementation, consideration of individual differences, and a greater ability to retain experiment information. This training approach offers another effective alternative training tool to existing methodologies.

  18. Evaluating Fatigue in Operational Settings: The NASA Ames Fatigue Countermeasures Program

    NASA Technical Reports Server (NTRS)

    Rosekind, Mark R.; Gregory, Kevin; Miller, Donna; Webbon, Lissa; Oyung, Ray

    1996-01-01

    In response to a 1980 Congressional request, NASA Ames initiated a program to examine fatigue in flight operations. The Program objectives are to examine fatigue, sleep loss, and circadian disruption in flight operations, determine the effects of these factors on flight crew performance, and the development of fatigue countermeasures. The NASA Ames Fatigue Countermeasures Program conducts controlled laboratory experiments, full-mission flight simulations, and field studies. A range of subjective, behavioral, performance, physiological, and environmental measures are used depending on study objectives. The Program has developed substantial expertise in gathering data during actual flight operations and in other work settings. This has required the development of ambulatory and other measures that can be carried throughout the world and used at 41,000 feet in aircraft cockpits. The NASA Ames Fatigue Countermeasures Program has examined fatigue in shorthaul, longhaul, overnight cargo, and helicopter operations. A recent study of planned cockpit rest periods demonstrated the effectiveness of a brief inflight nap to improve pilot performance and alertness. This study involved inflight reaction time/vigilance performance testing and EEG/EOG measures of physiological alertness. The NASA Ames Fatigue Countermeasures Program has applied scientific findings to the development of education and training materials on fatigue countermeasures, input to federal regulatory activities on pilot flight, duty, and rest requirements, and support of National Transportation Safety Board accident investigations. Current activities are examining fatigue in nonaugmented longhaul flights, regional/commuter flight operations, corporate/business aviation, and psychophysiological variables related to performance.

  19. Flight researh at NASA Ames Research Center: A test pilot's perspective

    NASA Technical Reports Server (NTRS)

    Hall, G. Warren

    1987-01-01

    In 1976 NASA elected to assign responsibility for each of the various flight regimes to individual research centers. The NASA Ames Research Center at Moffett Field, California was designated lead center for vertical and short takeoff and landing, V/STOL research. The three most recent flight research airplanes being flown at the center are discussed from the test pilot's perspective: the Quiet Short Haul Research Aircraft; the XV-15 Tilt Rotor Research Aircraft; and the Rotor Systems Research Aircraft.

  20. Shock Tube and Ballistic Range Facilities at NASA Ames Research Center

    NASA Technical Reports Server (NTRS)

    Grinstead, Jay H.; Wilder, Michael C.; Reda, Daniel C.; Cornelison, Charles J.; Cruden, Brett A.; Bogdanoff, David W.

    2010-01-01

    The Electric Arc Shock Tube (EAST) facility and the Hypervelocity Free Flight Aerodynamic Facility (HFFAF) at NASA Ames Research Center are described. These facilities have been in operation since the 1960s and have supported many NASA missions and technology development initiatives. The facilities have world-unique capabilities that enable experimental studies of real-gas aerothermal, gas dynamic, and kinetic phenomena of atmospheric entry.

  1. Mechanical design of NASA Ames Research Center vertical motion simulator

    NASA Technical Reports Server (NTRS)

    Engelbert, D. F.; Bakke, A. P.; Chargin, M. K.; Vallotton, W. C.

    1976-01-01

    NASA has designed and is constructing a new flight simulator with large vertical travel. Several aspects of the mechanical design of this Vertical Motion Simulator (VMS) are discussed, including the multiple rack and pinion vertical drive, a pneumatic equilibration system, and the friction-damped rigid link catenaries used as cable supports.

  2. A Survey of Knowledge Management Research & Development at NASA Ames Research Center

    NASA Technical Reports Server (NTRS)

    Keller, Richard M.; Clancy, Daniel (Technical Monitor)

    2002-01-01

    This chapter catalogs knowledge management research and development activities at NASA Ames Research Center as of April 2002. A general categorization scheme for knowledge management systems is first introduced. This categorization scheme divides knowledge management capabilities into five broad categories: knowledge capture, knowledge preservation, knowledge augmentation, knowledge dissemination, and knowledge infrastructure. Each of nearly 30 knowledge management systems developed at Ames is then classified according to this system. Finally, a capsule description of each system is presented along with information on deployment status, funding sources, contact information, and both published and internet-based references.

  3. Consolidated Laser-Induced Fluorescence Diagnostic Systems for the NASA Ames Arc Jet Facilities

    NASA Technical Reports Server (NTRS)

    Grinstead, Jay H.; Wilder, Michael C.; Porter, Barry J.; Brown, Jeffrey D.; Yeung, Dickson; Battazzo, Stephen J.; Brubaker, Timothy R.

    2016-01-01

    The spectroscopic diagnostic technique of two photon absorption laser-induced fluorescence (TALIF) of atomic species for non-intrusive arc jet flow property measurement was first implemented at NASA Ames in the mid-1990s. Use of TALIF expanded at NASA Ames and to NASA Johnson's arc jet facility in the late 2000s. In 2013-2014, NASA combined the agency's large-scale arc jet test capabilities at NASA Ames. Concurrent with that effort, the agency also sponsored a project to establish two comprehensive LIF diagnostic systems for the Aerodynamic Heating Facility (AHF) and Interaction Heating Facility (IHF) arc jets. The scope of the project enabled further engineering development of the existing IHF LIF system as well as the complete reconstruction of the original AHF LIF system. The updated LIF systems are identical in design and capability. They represent the culmination of over 20 years of development experience in transitioning a specialized laboratory research tool into a measurement system for large-scale, high-demand test facilities. This paper documents the overall system design from measurement requirements to implementation. Representative data from the redeveloped AHF and IHF LIF systems are also presented.

  4. Consolidated Laser-Induced Fluorescence Diagnostic Systems for the NASA Ames Arc Jet Facilities

    NASA Technical Reports Server (NTRS)

    Grinstead, Jay; Wilder, Michael C.; Porter, Barry; Brown, Jeff; Yeung, Dickson; Battazzo, Steve; Brubaker, Tim

    2016-01-01

    The spectroscopic diagnostic technique of two photon absorption laser-induced fluorescence (TALIF) of atomic species for non-intrusive arc jet flow property measurement was first implemented at NASA Ames in the mid-1990s. Use of TALIF expanded at NASA Ames and to NASA Johnsons arc jet facility in the late 2000s. In 2013-2014, NASA combined the agency's large-scale arc jet test capabilities at NASA Ames. Concurrent with that effort, the agency also sponsored a project to establish two comprehensive LIF diagnostic systems for the Aerodynamic Heating Facility (AHF) and Interaction Heating Facility (IHF) arc jets. The scope of the project enabled further engineering development of the existing IHF LIF system as well as the complete reconstruction of the original AHF LIF system. The updated LIF systems are identical in design and capability. They represent the culmination of over 20 years of development experience in transitioning a specialized laboratory research tool into a measurement system for large-scale, high-demand test facilities. This paper documents the overall system design from measurement requirements to implementation. Representative data from the redeveloped AHF and IHF LIF systems are also presented.

  5. Flow characterization in the NASA Ames 16-inch Shock Tunnel

    NASA Technical Reports Server (NTRS)

    Cavolowsky, John A.; Loomis, Mark P.; Bogdanoff, David W.; Zambrana, Horacio A.; Newfield, Mark E.; Tam, Tim C.

    1992-01-01

    Flow characteristics of NASA's 16-Inch Shock Tunnel are determined for purposes of providing hypersonic propulsion simulation capability. The key tunnel operating parameters are the incident shock speed and reservoir pressure and enthalpy. Flow characteristics of concern are the nozzle exit pressure, temperature, Mach number, Reynolds number, chemical composition, and flow uniformity. Surface mounted gages (for pressure and heat transfer) and nonintrusive optical flow diagnostics (emission and absorption spectroscopy and holographic interferometry) are used to verify tunnel conditions. Experimental measurements are used to validate computational analysis for predicting facility performance, and CFD is used to interpret the free stream optical diagnostic measurements.

  6. Second Annual NASA Ames Space Science and Astrobiology Jamboree

    NASA Technical Reports Server (NTRS)

    Dotson, Jessie

    2014-01-01

    The Space Science and Astrobiology Division's researchers are pursuing investigations in a variety of fields, including exoplanets, planetary science, astrobiology, and astrophysics. In addition division personnel support a wide variety of NASA missions. With a wide variety of interesting research going on, distributed among the three branches in at least 5 buildings, it can be difficult to stay abreast of what one's fellow researchers are doing. Our goal in organizing this symposium is to facilitate communication and collaboration among the scientist within the division and to give center management and other ARC researchers and Engineers an opportunity to see what scientific missions work is being done in the division.

  7. Ames Infusion Stories for NASA Annual Technology Report

    NASA Technical Reports Server (NTRS)

    Smith, Brandon; Jan, Darrell Leslie; Venkatapathy, Ethiraj

    2015-01-01

    These are short (2-page) high-level summaries of technologies that have been infused - i.e., taken the next level. For example, 3DMAT started off as a Center Innovation Fund (CIF) project and graduated to the Game-changing Program (GCD), where it is being prepared for use in Orion. The Nano Entry System similarly started as CIF and graduated to GCD. The High Tortuosity Carbon Dioxide Conversion Device also started off as CIF and then received an award for further development from the NASA Innovative Advanced Concepts program (NIAC).

  8. Optical information processing at NASA Ames Research Center

    NASA Technical Reports Server (NTRS)

    Reid, Max B.; Bualat, Maria G.; Cho, Young C.; Downie, John D.; Gary, Charles K.; Ma, Paul W.; Ozcan, Meric; Pryor, Anna H.; Spirkovska, Lilly

    1993-01-01

    The combination of analog optical processors with digital electronic systems offers the potential of tera-OPS computational performance, while often requiring less power and weight relative to all-digital systems. NASA is working to develop and demonstrate optical processing techniques for on-board, real time science and mission applications. Current research areas and applications under investigation include optical matrix processing for space structure vibration control and the analysis of Space Shuttle Main Engine plume spectra, optical correlation-based autonomous vision for robotic vehicles, analog computation for robotic path planning, free-space optical interconnections for information transfer within digital electronic computers, and multiplexed arrays of fiber optic interferometric sensors for acoustic and vibration measurements.

  9. Satellite communications provisions on NASA Ames instrumented aircraft platforms for Earth science research/applications

    NASA Technical Reports Server (NTRS)

    Shameson, L.; Brass, J. A.; Hanratty, J. J.; Roberts, A. C.; Wegener, S. S.

    1995-01-01

    Earth science activities at NASA Ames are research in atmospheric and ecosystem science, development of remote sensing and in situ sampling instruments, and their integration into scientific research platform aircraft. The use of satellite communications can greatly extend the capability of these agency research platform aircraft. Current projects and plans involve satellite links on the Perseus UAV and the ER-2 via TDRSS and a proposed experiment on the NASA Advanced Communications Technology Satellite. Provisions for data links on the Perseus research platform, via TDRSS S-band multiple access service, have been developed and are being tested. Test flights at Dryden are planned to demonstrate successful end-to-end data transfer. A Unisys Corp. airborne satcom STARLink system is being integrated into an Ames ER-2 aircraft. This equipment will support multiple data rates up to 43 Mb/s each via the TDRS S Ku-band single access service. The first flight mission for this high-rate link is planned for August 1995. Ames and JPL have proposed an ACTS experiment to use real-time satellite communications to improve wildfire research campaigns. Researchers and fire management teams making use of instrumented aircraft platforms at a prescribed burn site will be able to communicate with experts at Ames, the U.S. Forest Service, and emergency response agencies.

  10. Experimental program for real gas flow code validation at NASA Ames Research Center

    NASA Technical Reports Server (NTRS)

    Deiwert, George S.; Strawa, Anthony W.; Sharma, Surendra P.; Park, Chul

    1989-01-01

    The experimental program for validating real gas hypersonic flow codes at NASA Ames Rsearch Center is described. Ground-based test facilities used include ballistic ranges, shock tubes and shock tunnels, arc jet facilities and heated-air hypersonic wind tunnels. Also included are large-scale computer systems for kinetic theory simulations and benchmark code solutions. Flight tests consist of the Aeroassist Flight Experiment, the Space Shuttle, Project Fire 2, and planetary probes such as Galileo, Pioneer Venus, and PAET.

  11. On-board Science Understanding: NASA Ames' Efforts

    NASA Technical Reports Server (NTRS)

    Roush, Ted L.; Cheeseman, Peter; Gulick, Virginia; Wolf, David; Gazis, Paul; Benedix, Gretchen; Buntine, Wray; Glymour, Clark; Pedersen, Liam; Ruzon, Mark

    1998-01-01

    In the near future NASA intends to explore various regions of our solar system using robotic devices such as rovers, spacecraft, airplanes, and/or balloons. Such platforms will likely carry imaging devices, and a variety of analytical instruments intended to evaluate the chemical and mineralogical nature of the environment(s) that they encounter. Historically, mission operations have involved: (1) return of scientific data from the craft; (2) evaluation of the data by space scientists; (3) recommendations of the scientists regarding future mission activity; (4) commands for achieving these activities being transmitted to the craft; and (5) the activity being undertaken. This cycle is then repeated for the duration of the mission with command opportunities once or perhaps twice per day. In a rapidly changing environment, such as might be encountered by a rover traversing hundreds of meters a day or a spacecraft encountering an asteroid, this historical cycle is not amenable to rapid long range traverses, discovery of novelty, or rapid response to any unexpected situations. In addition to real-time response issues, the nature of imaging and/or spectroscopic devices are such that tremendous data volumes can be acquired, for example during a traverse. However, such data volumes can rapidly exceed on-board memory capabilities prior to the ability to transmit it to Earth. Additionally, the necessary communication band-widths are restrictive enough so that only a small portion of these data can actually be returned to Earth. Such scenarios clearly require the enabling of some crucial decisions to be made on-board by these robotic explorers. These decisions transcend the electromechanical control, health, and navigation issues associated with robotic operations. Instead they focus upon a long term goal of automating scientific discovery based upon data returned by sensors of the robot craft. Such an approach would eventually enable it to understand what is interesting

  12. An Aerodynamic Performance Evaluation of the NASA/Ames Research Center Advanced Concepts Flight Simulator. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Donohue, Paul F.

    1987-01-01

    The results of an aerodynamic performance evaluation of the National Aeronautics and Space Administration (NASA)/Ames Research Center Advanced Concepts Flight Simulator (ACFS), conducted in association with the Navy-NASA Joint Institute of Aeronautics, are presented. The ACFS is a full-mission flight simulator which provides an excellent platform for the critical evaluation of emerging flight systems and aircrew performance. The propulsion and flight dynamics models were evaluated using classical flight test techniques. The aerodynamic performance model of the ACFS was found to realistically represent that of current day, medium range transport aircraft. Recommendations are provided to enhance the capabilities of the ACFS to a level forecast for 1995 transport aircraft. The graphical and tabular results of this study will establish a performance section of the ACFS Operation's Manual.

  13. Recent Progress in Entry Radiation Measurements in the NASA Ames Electric ARC Shock Tube Facility

    NASA Technical Reports Server (NTRS)

    Cruden, Brett A.

    2012-01-01

    The Electric Arc Shock Tube (EAST) at NASA Ames Research Center is NASA's only working shock tube capable of obtaining conditions representative of entry in a multitude of planetary atmospheres. The facility is capable of mapping spectroscopic signatures of a wide range of planetary entries from the Vacuum Ultraviolet through Mid-Wave Infrared (120-5500 nm). This paper summarizes the tests performed in EAST for Earth, Mars and Venus entries since 2008, then focuses on a specific test case for CO2/N2 mixtures. In particular, the paper will focus on providing information for the proper interpretation of the EAST data.

  14. The NASA Ames Hypervelocity Free Flight Aerodynamic Facility: Experimental Simulation of the Atmospheric Break-Up of Meteors

    NASA Technical Reports Server (NTRS)

    Wilder, M. C.; Bogdanoff, D. W.

    2015-01-01

    The Hypervelocity Free Flight Aerodynamic Facility at NASA Ames Research Center provides a potential platform for the experimental simulation of meteor breakup at conditions that closely match full-scale entry condition for select parameters. The poster describes the entry environment simulation capabilities of the Hypervelocity Free Flight Aerodynamic Facility (HFFAF) at NASA Ames Research Center and provides example images of the fragmentation of a hypersonic projectile for which break-up was initiated by mechanical forces (impact with a thin polymer diaphragm).

  15. NASA Ames DEVELOP Interns: Helping the Western United States Manage Natural Resources One Project at a Time

    NASA Technical Reports Server (NTRS)

    Justice, Erin; Newcomer, Michelle

    2010-01-01

    The western half of the United States is made up of a number of diverse ecosystems ranging from arid desert to coastal wetlands and rugged forests. Every summer for the past 7 years students ranging from high school to graduate level gather at NASA Ames Research Center (ARC) as part of the DEVELOP Internship Program. Under the guidance of Jay Skiles [Ames Research Center (ARC) - Ames DEVELOP Manager] and Cindy Schmidt [ARC/San Jose State University Ames DEVELOP Coordinator] they work as a team on projects exploring topics including: invasive species, carbon flux, wetland restoration, air quality monitoring, storm visualizations, and forest fires. The study areas for these projects have been in Washington, Utah, Oregon, Nevada, Hawaii, Alaska and California. Interns combine data from NASA and partner satellites with models and in situ measurements to complete prototype projects demonstrating how NASA data and resources can help communities tackle their Earth Science related problems.

  16. Waste Processing Research and Technology Development at NASA Ames Research Center

    NASA Technical Reports Server (NTRS)

    Fisher, John; Kliss, Mark

    2004-01-01

    The current "store and return" approach for handling waste products generated during low Earth orbit missions will not meet the requirements for future human missions identified in NASA s new Exploration vision. The objective is to develop appropriate reliable waste management systems that minimize maintenance and crew time, while maintaining crew health and safety, as well as providing protection of planetary surfaces. Solid waste management requirements for these missions include waste volume reduction, stabilization and storage, water recovery, and ultimately recovery of carbon dioxide, nutrients and other resources from a fully regenerative food production life support system. This paper identifies the key drivers for waste management technology development within NASA, and provides a roadmap for the developmental sequence and progression of technologies. Recent results of research and technology development activities at NASA Ames Research Center on candidate waste management technologies with emphasis on compaction, lyophilization, and incineration are discussed.

  17. Bayesian Research at the NASA Ames Research Center,Computational Sciences Division

    NASA Technical Reports Server (NTRS)

    Morris, Robin D.

    2003-01-01

    NASA Ames Research Center is one of NASA s oldest centers, having started out as part of the National Advisory Committee on Aeronautics, (NACA). The site, about 40 miles south of San Francisco, still houses many wind tunnels and other aviation related departments. In recent years, with the growing realization that space exploration is heavily dependent on computing and data analysis, its focus has turned more towards Information Technology. The Computational Sciences Division has expanded rapidly as a result. In this article, I will give a brief overview of some of the past and present projects with a Bayesian content. Much more than is described here goes on with the Division. The web pages at http://ic.arc. nasa.gov give more information on these, and the other Division projects.

  18. Consolidated Laser-Induced Fluorescence Diagnostic Systems for the NASA Ames Arc Jet Facilities

    NASA Technical Reports Server (NTRS)

    Grinstead, Jay H.; Wilder, Michael C.; Porter, Barry J.; Brown, Jeffrey D.; Yeung, Dickson; Battazzo, Stephen J.; Brubaker, Timothy R.

    2016-01-01

    The spectroscopic diagnostic technique of two photon absorption laser-induced fluorescence (LIF) of atomic species for non-intrusive arc jet flow property measurement was first implemented at NASA Ames in the mid-1990s. In 2013-2014, NASA combined the agency's large-scale arc jet test capabilities at NASA Ames. Concurrent with that effort, the agency also sponsored a project to establish two comprehensive LIF diagnostic systems for the Aerodynamic Heating Facility (AHF) and Interaction Heating Facility (IHF) arc jets. The scope of the project enabled further engineering development of the existing IHF LIF system as well as the complete reconstruction of the AHF LIF system. The updated LIF systems are identical in design and capability. They represent the culmination of over 20 years of development experience in transitioning a specialized laboratory research tool into a measurement system for large-scale, high-demand test facilities. This paper will document the latest improvements of the LIF system design and demonstrations of the redeveloped AHF and IHF LIF systems.

  19. Yesterday, today and tomorrow: A perspective of CFD at NASA's Ames Research Center

    NASA Technical Reports Server (NTRS)

    Kutler, Paul; Gross, Anthony R.

    1987-01-01

    The opportunity to reflect on the computational fluid dynamics (CFD) progam at the NASA Ames Research Center (its beginning, its present state, and its direction for the future) is afforded. Essential elements of the research program during each period are reviewed, including people, facilities, and research problems. The burgeoning role that CFD is playing in the aerospace business is discussed, as is the necessity for validated CFD tools. The current aeronautical position of this country is assessed, as are revolutionary goals to help maintain its aeronautical supremacy in the world.

  20. Global Biology: An Interdisciplinary Scientific Research Program at NASA Ames Research Center

    NASA Technical Reports Server (NTRS)

    Lawless, James G.; Colin, Lawrence

    1984-01-01

    NASA has initiated new effort in Global Biology, the primary focus of which is to understand biogeochemical cycles. As part of this effort, an interdisciplinary team of scientists has formed at Ames Research Center to investigate the cycling of sulfur in the marine coastal zone and to study the cycling of nitrogen in terrestrial ecosystems. Both studies will use remotely sensed data, coupled with ground-based research, to identify and measure the transfer of major and minor biologically produced gases between these ecosystems and global reservoirs.

  1. Global biology - An interdisciplinary scientific research program at NASA, Ames Research Center

    NASA Technical Reports Server (NTRS)

    Lawless, J. G.; Colin, L.

    1983-01-01

    NASA has initiated new effort in Global Biology, the primary focus of which is to understand biogeochemical cycles. As part of this effort, an interdisciplinary team of scientists has formed at Ames Research Center to investigate the cycling of sulfur in the marine coastal zone and to study the cycling of nitrogen in terrestrial ecosystems. Both studies will use remotely sensed data, coupled with ground-based research, to identify and measure the transfer of major and minor biologically produced gases between these ecosystems and global reservoirs.

  2. Mars atmospheric dynamics as simulated by the NASA AMES General Circulation Model. II - Transient baroclinic eddies

    NASA Astrophysics Data System (ADS)

    Barnes, J. R.; Pollack, J. B.; Haberle, R. M.; Leovy, C. B.; Zurek, R. W.; Lee, H.; Schaeffer, J.

    1993-02-01

    A large set of experiments performed with the NASA Ames Mars General Circulation Model is analyzed to determine the properties, structure, and dynamics of the simulated transient baroclinic eddies. There is strong transient baroclinic eddy activity in the extratropics of the Northern Hemisphere during the northern autumn, winter, and spring seasons. The eddy activity remains strong for very large dust loadings, though it shifts northward. The eastward propagating eddies are characterized by zonal wavenumbers of 1-4 and periods of about 2-10 days. The properties of the GCM baroclinic eddies in the northern extratropics are compared in detail with analogous properties inferred from Viking Lander meteorology observations.

  3. Upper Boundary Extension of the NASA Ames Mars General Circulation Model

    NASA Technical Reports Server (NTRS)

    Brecht, Amanda S.; Hollingsworth, J. L.; Kahre, M. A.; Schaeffer, J. R.

    2012-01-01

    Extending the NASA Ames Mars General Circulation Model (MGCM) upper boundary will expand our understanding of the connection between the lower and upper atmosphere of Mars through the middle atmosphere. The extension's main requirements is incorporation of Non-local thermodynamic equilibrium (NLTE) heating (visible) and cooling (infrared). NLTE occurs when energy is exchanged more rapidly with the radiation field (or other energy sources) rather than collisions with other molecules. Without NLTE above approximately 80km/approximately 60km in Mars' atmosphere the IR/visible heating rates are overestimated. Currently NLTE has been applied successfully into the 1D RT code and is in progress for the 3D application.

  4. Testing of SLA-561V in NASA-Ames' Turbulent Flow Duct with Augmented Radiative Heating

    NASA Technical Reports Server (NTRS)

    Sepka, Steven A.; Kornienko, Robert S.; Radbourne, Chris A.

    2010-01-01

    As part of Mars Science Laboratory s (MSL) heatshield development program, SLA-561 was tested in NASA Ames Turbulent Flow Duct (TFD) Facility. For these tests, the TFD facility was modified to include a ceramic plate located in the wall opposite to the test model. Normally the TFD wall opposite to the test model is water-cooled steel. Installing a noncooled ceramic plate allows the ceramic to absorb convective heating and radiate the energy back to the test model as the plate heats up. This work was an effort to increase the severity of TFD test conditions. Presented here are the results from these tests.

  5. Transverse vorticity measurements in the NASA Ames 80 x 120 wind tunnel boundary layer

    NASA Technical Reports Server (NTRS)

    Foss, John F.; Bhol, D. G.; Bramkamp, F. D.; Klewicki, J. G.

    1994-01-01

    The MSU compact four-wire transverse vorticity probe permits omega(sub z)(t) measurements in a nominally 1 sq mm domain. Note that a conventional coordinate system is used with x and y in the streamwise and normal directions respectively. The purpose of this investigation was to acquire time series data in the same access port at the ceiling of the 80 ft x 120 ft wind tunnel (NASA Ames Research Center) as earlier used by the Wallace group from the University of Maryland and to compare the present results with those of the three-component vorticity probe used in that earlier study.

  6. Parameter identification studies on the NASA/Ames Research Center Advanced Concepts Flight Simulator. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Mckavitt, Thomas P., Jr.

    1990-01-01

    The results of an aircraft parameters identification study conducted on the National Aeronautics and Space Administration/Ames Research Center Advanced Concepts Flight Simulator (ACFS) in conjunction with the Navy-NASA Joint Institute of Aeronautics are given. The ACFS is a commercial airline simulator with a design based on future technology. The simulator is used as a laboratory for human factors research and engineering as applied to the commercial airline industry. Parametric areas examined were engine pressure ratio (EPR), optimum long range cruise Mach number, flap reference speed, and critical take-off speeds. Results were compared with corresponding parameters of the Boeing 757 and 767 aircraft. This comparison identified two areas where improvements can be made: (1) low maximum lift coefficients (on the order of 20-25 percent less than those of a 757); and (2) low optimum cruise Mach numbers. Recommendations were made to those anticipated with the application of future technologies.

  7. Building intelligent systems - Artificial intelligence research at NASA Ames Research Center

    NASA Technical Reports Server (NTRS)

    Friedland, Peter; Lum, Henry

    1987-01-01

    The basic components that make up the goal of building autonomous intelligent systems are discussed, and ongoing work at the NASA Ames Research Center is described. It is noted that a clear progression of systems can be seen through research settings (both within and external to NASA) to Space Station testbeds to systems which actually fly on the Space Station. The starting point for the discussion is a 'truly' autonomous Space Station intelligent system, responsible for a major portion of Space Station control. Attention is given to research in fiscal 1987, including reasoning under uncertainty, machine learning, causal modeling and simulation, knowledge from design through operations, advanced planning work, validation methodologies, and hierarchical control of and distributed cooperation among multiple knowledge-based systems.

  8. Building intelligent systems: Artificial intelligence research at NASA Ames Research Center

    NASA Technical Reports Server (NTRS)

    Friedland, P.; Lum, H.

    1987-01-01

    The basic components that make up the goal of building autonomous intelligent systems are discussed, and ongoing work at the NASA Ames Research Center is described. It is noted that a clear progression of systems can be seen through research settings (both within and external to NASA) to Space Station testbeds to systems which actually fly on the Space Station. The starting point for the discussion is a truly autonomous Space Station intelligent system, responsible for a major portion of Space Station control. Attention is given to research in fiscal 1987, including reasoning under uncertainty, machine learning, causal modeling and simulation, knowledge from design through operations, advanced planning work, validation methodologies, and hierarchical control of and distributed cooperation among multiple knowledge-based systems.

  9. Upper surface blowing noise of the NASA-Ames quiet short-haul research aircraft

    NASA Technical Reports Server (NTRS)

    Bohn, A. J.; Shovlin, M. D.

    1980-01-01

    An experimental study of the propulsive-lift noise of the NASA-Ames quiet short-haul research aircraft (QSRA) is described. Comparisons are made of measured QSRA flyover noise and model propulsive-lift noise data available in references. Developmental tests of trailing-edge treatments were conducted using sawtooth-shaped and porous USB flap trailing-edge extensions. Small scale parametric tests were conducted to determine noise reduction/design relationships. Full-scale static tests were conducted with the QSRA preparatory to the selection of edge treatment designs for flight testing. QSRA flight and published model propulsive-lift noise data have similar characteristics. Noise reductions of 2 to 3 dB were achieved over a wide range of frequency and directivity angles in static tests of the QSRA. These noise reductions are expected to be achieved or surpassed in flight tests planned by NASA in 1980.

  10. Extending the NASA Ames Mars General Circulation Model to Explore Mars’ Middle Atmosphere

    NASA Astrophysics Data System (ADS)

    Brecht, Amanda; Hollingsworth, J.; Kahre, M.; Schaeffer, J.

    2013-10-01

    The NASA Ames Mars General Circulation Model (MGCM) upper boundary has been extended to ~120 km altitude (p ~10-5 mbar). The extension of the MGCM upper boundary initiates the ability to understand the connection between the lower and upper atmosphere of Mars through the middle atmosphere 70 - 120 km). Moreover, it provides the opportunity to support future missions (i.e. the 2013 MAVEN mission). A major factor in this extension is the incorporation of the Non-Local Thermodynamic Equilibrium (NLTE) heating (visible) and cooling (infrared). This modification to the radiative transfer forcing (i.e., RT code) has been significantly tested in a 1D vertical column and now has been ported to the full 3D Mars GCM. Initial results clearly show the effects of NLTE in the upper middle atmosphere. Diagnostic of seasonal mean fields and large-scale wave activity will be shown with insight into circulation patterns in the middle atmosphere. Furthermore, sensitivity tests with the resolution of the pressure and temperature grids, in which the k-coefficients are calculated upon, have been performed in the 1D RT code. Our progress on this research will be presented. Brecht is supported by NASA’s Postdoctoral Program at the Ames Research Center, administered by Oak Ridge Associated Universities through a contract with NASA.

  11. NASA Ames Research Center R and D Services Directorate Biomedical Systems Development

    NASA Technical Reports Server (NTRS)

    Pollitt, J.; Flynn, K.

    1999-01-01

    The Ames Research Center R&D Services Directorate teams with NASA, other government agencies and/or industry investigators for the development, design, fabrication, manufacturing and qualification testing of space-flight and ground-based experiment hardware for biomedical and general aerospace applications. In recent years, biomedical research hardware and software has been developed to support space-flight and ground-based experiment needs including the E 132 Biotelemetry system for the Research Animal Holding Facility (RAHF), E 100 Neurolab neuro-vestibular investigation systems, the Autogenic Feedback Systems, and the Standard Interface Glove Box (SIGB) experiment workstation module. Centrifuges, motion simulators, habitat design, environmental control systems, and other unique experiment modules and fixtures have also been developed. A discussion of engineered systems and capabilities will be provided to promote understanding of possibilities for future system designs in biomedical applications. In addition, an overview of existing engineered products will be shown. Examples of hardware and literature that demonstrate the organization's capabilities will be displayed. The Ames Research Center R&D Services Directorate is available to support the development of new hardware and software systems or adaptation of existing systems to meet the needs of academic, commercial/industrial, and government research requirements. The Ames R&D Services Directorate can provide specialized support for: System concept definition and feasibility Mathematical modeling and simulation of system performance Prototype hardware development Hardware and software design Data acquisition systems Graphical user interface development Motion control design Hardware fabrication and high-fidelity machining Composite materials development and application design Electronic/electrical system design and fabrication System performance verification testing and qualification.

  12. Recent Upgrades to the NASA Ames Mars General Circulation Model: Applications to Mars' Water Cycle

    NASA Astrophysics Data System (ADS)

    Hollingsworth, Jeffery L.; Kahre, M. A.; Haberle, R. M.; Montmessin, F.; Wilson, R. J.; Schaeffer, J.

    2008-09-01

    We report on recent improvements to the NASA Ames Mars general circulation model (GCM), a robust 3D climate-modeling tool that is state-of-the-art in terms of its physics parameterizations and subgrid-scale processes, and which can be applied to investigate physical and dynamical processes of the present (and past) Mars climate system. The most recent version (gcm2.1, v.24) of the Ames Mars GCM utilizes a more generalized radiation code (based on a two-stream approximation with correlated k's); an updated transport scheme (van Leer formulation); a cloud microphysics scheme that assumes a log-normal particle size distribution whose first two moments are treated as atmospheric tracers, and which includes the nucleation, growth and sedimentation of ice crystals. Atmospheric aerosols (e.g., dust and water-ice) can either be radiatively active or inactive. We apply this version of the Ames GCM to investigate key aspects of the present water cycle on Mars. Atmospheric dust is partially interactive in our simulations; namely, the radiation code "sees" a prescribed distribution that follows the MGS thermal emission spectrometer (TES) year-one measurements with a self-consistent vertical depth scale that varies with season. The cloud microphysics code interacts with a transported dust tracer column whose surface source is adjusted to maintain the TES distribution. The model is run from an initially dry state with a better representation of the north residual cap (NRC) which accounts for both surface-ice and bare-soil components. A seasonally repeatable water cycle is obtained within five Mars years. Our sub-grid scale representation of the NRC provides for a more realistic flux of moisture to the atmosphere and a much drier water cycle consistent with recent spacecraft observations (e.g., Mars Express PFS, corrected MGS/TES) compared to models that assume a spatially uniform and homogeneous north residual polar cap.

  13. Recent Advancements in the Infrared Flow Visualization System for the NASA Ames Unitary Plan Wind Tunnels

    NASA Technical Reports Server (NTRS)

    Garbeff, Theodore J., II; Baerny, Jennifer K.

    2017-01-01

    The following details recent efforts undertaken at the NASA Ames Unitary Plan wind tunnels to design and deploy an advanced, production-level infrared (IR) flow visualization data system. Highly sensitive IR cameras, coupled with in-line image processing, have enabled the visualization of wind tunnel model surface flow features as they develop in real-time. Boundary layer transition, shock impingement, junction flow, vortex dynamics, and buffet are routinely observed in both transonic and supersonic flow regimes all without the need of dedicated ramps in test section total temperature. Successful measurements have been performed on wing-body sting mounted test articles, semi-span floor mounted aircraft models, and sting mounted launch vehicle configurations. The unique requirements of imaging in production wind tunnel testing has led to advancements in the deployment of advanced IR cameras in a harsh test environment, robust data acquisition storage and workflow, real-time image processing algorithms, and evaluation of optimal surface treatments. The addition of a multi-camera IR flow visualization data system to the Ames UPWT has demonstrated itself to be a valuable analyses tool in the study of new and old aircraft/launch vehicle aerodynamics and has provided new insight for the evaluation of computational techniques.

  14. The NASA/Ames Mars General Circulation Model: Model Improvements and Comparison with Observations

    NASA Technical Reports Server (NTRS)

    Haberle, R. M.; Hollingsworth, J. L.; Colaprete, A.; Bridger, A. F. C.; McKay, C. P.; Murphy, J. R.; Schaeffer, J.; Freedman, R.; Fonda, Mark (Technical Monitor)

    2003-01-01

    For many years, the NASA/Ames Mars General Circulation Model (GCM) has been built around the UCLA B-grid dynamical core. An attached tracer transport scheme based on the aerosol microphysical model of Toon et al. (1988) provided a tool for studying dust storm transport and feedbacks (Murphy et al., 1995). While we still use a B-grid version of the model, the Ames group is now transitioning to the ARIES/GEOS Goddard C-grid dynamical core (Suarez and Takacs, 1995). The C-grid produces smoother fields when the model top is raised above 50 km, and has a built in transport scheme for an arbitrary number of tracers. All of our transport simulations are now carried out with the C-grid. We have also been updating our physics package. Several years ago we replaced our bulk boundary layer scheme with a level 2 type diffusive scheme, and added a multi-level soil model (Haberle et al., 2000). More recently we replaced our radiation code with a more generalized two-stream code that accounts for aerosol multiple scattering and gaseous absorption. This code gives us much more flexibility in choosing aerosol optical properties and radiatively active gases.

  15. New Diagnostic, Launch and Model Control Techniques in the NASA Ames HFFAF Ballistic Range

    NASA Technical Reports Server (NTRS)

    Bogdanoff, David W.

    2012-01-01

    This report presents new diagnostic, launch and model control techniques used in the NASA Ames HFFAF ballistic range. High speed movies were used to view the sabot separation process and the passage of the model through the model splap paper. Cavities in the rear of the sabot, to catch the muzzle blast of the gun, were used to control sabot finger separation angles and distances. Inserts were installed in the powder chamber to greatly reduce the ullage volume (empty space) in the chamber. This resulted in much more complete and repeatable combustion of the powder and hence, in much more repeatable muzzle velocities. Sheets of paper or cardstock, impacting one half of the model, were used to control the amplitudes of the model pitch oscillations.

  16. An evaluation plan of bus architectures and protocols using the NASA Ames intelligent redundant actuation system

    NASA Technical Reports Server (NTRS)

    Defeo, P.; Chen, M.

    1987-01-01

    Means for evaluating data bus architectures and protocols for highly integrated flight control system applications are needed. Described are the criteria and plans to do this by using the NASA/Ames Intelligent Redundant Actuation System (IRAS) experimental set-up. Candidate bus architectures differ from one another in terms of: topology, access control, message transfer schemes, message characteristics, initialization. data flow control, transmission rates, fault tolerance, and time synchronization. The evaluation criteria are developed relative to these features. A preliminary, analytical evaluation of four candidate busses (MIL-STD-1553B, DATAC, Ethernet, and HSIS) is described. A bus must be exercised in a real-time environment to evaluate its dynamic characteristics. A plan for real-time evaluation of these four busses using a combination of hardware and simulation techniques is presented.

  17. Enthalpy By Energy Balance for Aerodynamic Heating Facility at NASA Ames Research Center Arc Jet Complex

    NASA Technical Reports Server (NTRS)

    Hightower, T. Mark; MacDonald, Christine L.; Martinez, Edward R.; Balboni, John A.; Anderson, Karl F.; Arnold, Jim O. (Technical Monitor)

    2002-01-01

    The NASA Ames Research Center (ARC) Arc Jet Facilities' Aerodynamic Heating Facility (AHF) has been instrumented for the Enthalpy By Energy Balance (EB2) method. Diagnostic EB2 data is routinely taken for all AHF runs. This paper provides an overview of the EB2 method implemented in the AHF. The chief advantage of the AHF implementation over earlier versions is the non-intrusiveness of the instruments used. For example, to measure the change in cooling water temperature, thin film 1000 ohm Resistance Temperature Detectors (RTDs) are used with an Anderson Current Loop (ACL) as the signal conditioner. The ACL with 1000 ohm RTDs allows for very sensitive measurement of the increase in temperature (Delta T) of the cooling water to the arc heater, which is a critical element of the EB2 method. Cooling water flow rates are measured with non-intrusive ultrasonic flow meters.

  18. The NASA Ames integral aircraft passenger seat concept - A human engineering approach

    NASA Technical Reports Server (NTRS)

    Kubokawa, C. C.

    1974-01-01

    A new NASA Ames concept for an aircraft passenger seat has been under research and development since 1968. It includes many human-factor features that will provide protection to the passenger from vibration, jostle, and high impact. It is comfortable and safer than any of the seats presently in use. An in-depth design, fabrication, and impact analysis was conducted in order to design a seat that will maximize passenger protection in high g impacts (20 g horizontal -Gx, 36 g vertical +Gz, 16 g lateral Gy). The method for absorbing impact energy was accomplished with a combination of stretching stainless steel cables, thread breaking of stitches, hydraulic mechanism and the special Temper Form cushions. The restraint system for the seat consisted of a lap belt and shoulder harness inertia reel combination.

  19. The NASA Ames 16-Inch Shock Tunnel Nozzle Simulations and Experimental Comparison

    NASA Technical Reports Server (NTRS)

    TokarcikPolsky, S.; Papadopoulos, P.; Venkatapathy, E.; Delwert, G. S.; Edwards, Thomas A. (Technical Monitor)

    1995-01-01

    The 16-Inch Shock Tunnel at NASA Ames Research Center is a unique test facility used for hypersonic propulsion testing. To provide information necessary to understand the hypersonic testing of the combustor model, computational simulations of the facility nozzle were performed and results are compared with available experimental data, namely static pressure along the nozzle walls and pitot pressure at the exit of the nozzle section. Both quasi-one-dimensional and axisymmetric approaches were used to study the numerous modeling issues involved. The facility nozzle flow was examined for three hypersonic test conditions, and the computational results are presented in detail. The effects of variations in reservoir conditions, boundary layer growth, and parameters of numerical modeling are explored.

  20. Modifications to the NASA Ames Space Station Proximity Operations (PROX OPS) Simulator

    NASA Technical Reports Server (NTRS)

    Brody, Adam

    1988-01-01

    As the United States is approaching an operational space station era, flight simulators are required to investigate human design and performance aspects associated with orbital operations. Among these are proximity operations (PROX OPS), those activities occurring within a 1-km sphere of Space Station including rendezvous, docking, rescue, and repair. The Space Station Proximity Operations Simulator at NASA Ames Research Center was modified to provide the capability for investigations into human performance aspects of proximity operations. Accurate flight equations of motion were installed to provide the appropriate visual scene to test subjects performing simulated missions. Also, the flight control system was enhanced by enabling pilot control over thruster acceleration values. Currently, research is under way to examine human performance in a variety of mission scenarios.

  1. Development and Flight of the NASA-Ames Research Center Payload on Spacelab-J

    NASA Technical Reports Server (NTRS)

    Schmidt, Gregory K.; Ball, Sally M.; Stolarik, Thomas M.; Eodice, Michael T.

    1993-01-01

    Spacelab-J was an international Spacelab mission with numerous innovative Japanese and American materials and life science experiments. Two of the Spacelab-J experiments were designed over a period of more than a decade by a team from NASA-Ames Research Center. The Frog Embryology Experiment investigated and is helping to resolve a century-long quandary on the effects of gravity on amphibian development. The Autogenic Feedback Training Experiment, flown on Spacelab-J as part of a multi-mission investigation, studied the effects of Autogenic Feedback Therapy on limiting the effects of Space Motion Sickness on astronauts. Both experiments employed the use of a wide variety of specially designed hardware to achieve the experiment objectives. This paper reviews the development of both experiments, from the initial announcement of opportunity in 1978, through selection on Spacelab-J and subsequent hardware and science procedures development, culminating in the highly successful Spacelab-J flight in September 1992.

  2. Development and operation of a real-time simulation at the NASA Ames Vertical Motion Simulator

    NASA Technical Reports Server (NTRS)

    Sweeney, Christopher; Sheppard, Shirin; Chetelat, Monique

    1993-01-01

    The Vertical Motion Simulator (VMS) facility at the NASA Ames Research Center combines the largest vertical motion capability in the world with a flexible real-time operating system allowing research to be conducted quickly and effectively. Due to the diverse nature of the aircraft simulated and the large number of simulations conducted annually, the challenge for the simulation engineer is to develop an accurate real-time simulation in a timely, efficient manner. The SimLab facility and the software tools necessary for an operating simulation will be discussed. Subsequent sections will describe the development process through operation of the simulation; this includes acceptance of the model, validation, integration and production phases.

  3. Development of Implicit Methods in CFD NASA Ames Research Center 1970's - 1980's

    NASA Technical Reports Server (NTRS)

    Pulliam, Thomas H.

    2010-01-01

    The focus here is on the early development (mid 1970's-1980's) at NASA Ames Research Center of implicit methods in Computational Fluid Dynamics (CFD). A class of implicit finite difference schemes of the Beam and Warming approximate factorization type will be addressed. The emphasis will be on the Euler equations. A review of material pertinent to the solution of the Euler equations within the framework of implicit methods will be presented. The eigensystem of the equations will be used extensively in developing a framework for various methods applied to the Euler equations. The development and analysis of various aspects of this class of schemes will be given along with the motivations behind many of the choices. Various acceleration and efficiency modifications such as matrix reduction, diagonalization and flux split schemes will be presented.

  4. THE NASA AMES POLYCYCLIC AROMATIC HYDROCARBON INFRARED SPECTROSCOPIC DATABASE: THE COMPUTED SPECTRA

    SciTech Connect

    Bauschlicher, C. W.; Ricca, A.; Boersma, C.; Mattioda, A. L.; Cami, J.; Peeters, E.; Allamandola, L. J.; Sanchez de Armas, F.; Puerta Saborido, G.; Hudgins, D. M.

    2010-08-15

    The astronomical emission features, formerly known as the unidentified infrared bands, are now commonly ascribed to polycyclic aromatic hydrocarbons (PAHs). The laboratory experiments and computational modeling done at the NASA Ames Research Center to create a collection of PAH IR spectra relevant to test and refine the PAH hypothesis have been assembled into a spectroscopic database. This database now contains over 800 PAH spectra spanning 2-2000 {mu}m (5000-5 cm{sup -1}). These data are now available on the World Wide Web at www.astrochem.org/pahdb. This paper presents an overview of the computational spectra in the database and the tools developed to analyze and interpret astronomical spectra using the database. A description of the online and offline user tools available on the Web site is also presented.

  5. Updates on Modeling the Water Cycle with the NASA Ames Mars Global Climate Model

    NASA Technical Reports Server (NTRS)

    Kahre, M. A.; Haberle, R. M.; Hollingsworth, J. L.; Montmessin, F.; Brecht, A. S.; Urata, R.; Klassen, D. R.; Wolff, M. J.

    2017-01-01

    Global Circulation Models (GCMs) have made steady progress in simulating the current Mars water cycle. It is now widely recognized that clouds are a critical component that can significantly affect the nature of the simulated water cycle. Two processes in particular are key to implementing clouds in a GCM: the microphysical processes of formation and dissipation, and their radiative effects on heating/ cooling rates. Together, these processes alter the thermal structure, change the dynamics, and regulate inter-hemispheric transport. We have made considerable progress representing these processes in the NASA Ames GCM, particularly in the presence of radiatively active water ice clouds. We present the current state of our group's water cycle modeling efforts, show results from selected simulations, highlight some of the issues, and discuss avenues for further investigation.­

  6. The NASA Ames PAH IR Spectroscopic Database: A Demo of its Contents and Web Tools

    NASA Astrophysics Data System (ADS)

    Boersma, Christiaan; Sánchez de Armas, F.; Ricca, A.; Cami, J.; Peeters, E.; Mattioda, A. L.; Bauschlicher, C. W., Jr.; Allamandola, L. J.

    2009-01-01

    The features formerly known as the Unidentified Infrared (UIR) Emission Bands are now generally attributed to polycyclic aromatic hydrocarbons (PAHs). Exploitation of these features as astrophysical and astrochemical probes requires the IR properties of PAHs under interstellar conditions. To fulfill this need, we experimentally measured and theoretically computed the 2-2000 µm spectra of many PAHs over the past 18 years at NASA's Ames Research Center. Today's collection comprises about 600 theoretically computed and 60 laboratory measured spectra of PAHs in different forms. The molecules in the collection range in size from C10H8 to C130H28. For most of these, spectra are available for PAHs in their neutral and singly charged (+/-) states. In some cases, IR spectra of multiply charged species were also computed. The database includes pure PAHs; PAHs containing nitrogen (PANHs), oxygen, and silicon; PAHs with side groups; PAHs with extra hydrogens; and PAHs complexed with iron and magnesium. This collection of PAH spectra from 2 - 2000 µm has been assembled into a uniform database, which we will make publicly available on the web in early 2009. A WebGUI interface has been developed that can effectively interrogate the database using a variety of queries, such as formula, molecular name, charge, specific number of atoms, etc. Several molecules can be selected in such a process and one can obtain their 3-D structures, plot and co-add their spectra, adjust parameters such as the bandwidth, download their data and print graphs. The database can also be downloaded as a whole and IDL-routines are provided to interrogate it. This talk will present an overview of the contents and the web-GUI tools of the NASA Ames PAH IR Spectroscopic Database. Hands-on demonstrations will be available at the SOFIA Booth.

  7. Report of the Interagency Optical Network Testbeds Workshop 2, NASA Ames Research Center, September 12-14, 2005

    NASA Technical Reports Server (NTRS)

    2005-01-01

    The Optical Network Testbeds Workshop 2 (ONT2), held on September 12-14, 2005, was cosponsored by the Department of Energy Office of Science (DOE/SC) and the National Aeronautics and Space Administration (NASA), in cooperation with the Joint Engineering Team (JET) of the Federal Networking and Information Technology Research and Development (NITRD) Program's Large Scale Networking (LSN) Coordinating Group. The ONT2 workshop was a follow-on to an August 2004 Workshop on Optical Network Testbeds (ONT1). ONT1 recommended actions by the Federal agencies to assure timely development and implementation of optical networking technologies and infrastructure. Hosted by the NASA Ames Research Center in Mountain View, California, the ONT2 workshop brought together representatives of the U.S. advanced research and education (R&E) networks, regional optical networks (RONs), service providers, international networking organizations, and senior engineering and R&D managers from Federal agencies and national research laboratories. Its purpose was to develop a common vision of the optical network technologies, services, infrastructure, and organizations needed to enable widespread use of optical networks; recommend activities for transitioning the optical networking research community and its current infrastructure to leading-edge optical networks over the next three to five years; and present information enabling commercial network infrastructure providers to plan for and use leading-edge optical network services in that time frame.

  8. Nasa-wide Standard Administrative Systems

    NASA Technical Reports Server (NTRS)

    Schneck, P.

    1984-01-01

    Factors to be considered in developing agency-wide standard administrative systems for NASA include uniformity of hardware and software; centralization vs. decentralization; risk exposure; and models for software development.

  9. NASA Administrator Flies Dream Chaser Simulator

    NASA Video Gallery

    NASA Administrator Charlie Bolden had the opportunity to fly a simulated landing of the Sierra Nevada Corporation (SNC) Dream Chaser while touring the agency's Dryden Flight Research Center in Cali...

  10. Transforming BIM to BEM: Generation of Building Geometry for the NASA Ames Sustainability Base BIM

    SciTech Connect

    O'Donnell, James T.; Maile, Tobias; Rose, Cody; Mrazovic, Natasa; Morrissey, Elmer; Regnier, Cynthia; Parrish, Kristen; Bazjanac, Vladimir

    2013-01-01

    Typical processes of whole Building Energy simulation Model (BEM) generation are subjective, labor intensive, time intensive and error prone. Essentially, these typical processes reproduce already existing data, i.e. building models already created by the architect. Accordingly, Lawrence Berkeley National Laboratory (LBNL) developed a semi-automated process that enables reproducible conversions of Building Information Model (BIM) representations of building geometry into a format required by building energy modeling (BEM) tools. This is a generic process that may be applied to all building energy modeling tools but to date has only been used for EnergyPlus. This report describes and demonstrates each stage in the semi-automated process for building geometry using the recently constructed NASA Ames Sustainability Base throughout. This example uses ArchiCAD (Graphisoft, 2012) as the originating CAD tool and EnergyPlus as the concluding whole building energy simulation tool. It is important to note that the process is also applicable for professionals that use other CAD tools such as Revit (“Revit Architecture,” 2012) and DProfiler (Beck Technology, 2012) and can be extended to provide geometry definitions for BEM tools other than EnergyPlus. Geometry Simplification Tool (GST) was used during the NASA Ames project and was the enabling software that facilitated semi-automated data transformations. GST has now been superseded by Space Boundary Tool (SBT-1) and will be referred to as SBT-1 throughout this report. The benefits of this semi-automated process are fourfold: 1) reduce the amount of time and cost required to develop a whole building energy simulation model, 2) enable rapid generation of design alternatives, 3) improve the accuracy of BEMs and 4) result in significantly better performing buildings with significantly lower energy consumption than those created using the traditional design process, especially if the simulation model was used as a predictive

  11. Fidelity assessment of a UH-60A simulation on the NASA Ames vertical motion simulator

    NASA Technical Reports Server (NTRS)

    Atencio, Adolph, Jr.

    1993-01-01

    Helicopter handling qualities research requires that a ground-based simulation be a high-fidelity representation of the actual helicopter, especially over the frequency range of the investigation. This experiment was performed to assess the current capability to simulate the UH-60A Black Hawk helicopter on the Vertical Motion Simulator (VMS) at NASA Ames, to develop a methodology for assessing the fidelity of a simulation, and to find the causes for lack of fidelity. The approach used was to compare the simulation to the flight vehicle for a series of tasks performed in flight and in the simulator. The results show that subjective handling qualities ratings from flight to simulator overlap, and the mathematical model matches the UH-60A helicopter very well over the range of frequencies critical to handling qualities evaluation. Pilot comments, however, indicate a need for improvement in the perceptual fidelity of the simulation in the areas of motion and visual cuing. The methodology used to make the fidelity assessment proved useful in showing differences in pilot work load and strategy, but additional work is needed to refine objective methods for determining causes of lack of fidelity.

  12. Sources and levels of background noise in the NASA Ames 40- by 80-foot wind tunnel

    NASA Technical Reports Server (NTRS)

    Soderman, Paul T.

    1988-01-01

    Background noise levels are measured in the NASA Ames Research Center 40- by 80-Foot Wind Tunnel following installation of a sound-absorbent lining on the test-section walls. Results show that the fan-drive noise dominated the empty test-section background noise at airspeeds below 120 knots. Above 120 knots, the test-section broadband background noise was dominated by wind-induced dipole noise (except at lower harmonics of fan blade-passage tones) most likely generated at the microphone or microphone support strut. Third-octave band and narrow-band spectra are presented for several fan operating conditions and test-section airspeeds. The background noise levels can be reduced by making improvements to the microphone wind screen or support strut. Empirical equations are presented relating variations of fan noise with fan speed or blade-pitch angle. An empirical expression for typical fan noise spectra is also presented. Fan motor electric power consumption is related to the noise generation. Preliminary measurements of sound absorption by the test-section lining indicate that the 152 mm thick lining will adequately absorb test-section model noise at frequencies above 300 Hz.

  13. Computational fluid dynamics at NASA Ames and the numerical aerodynamic simulation program

    NASA Technical Reports Server (NTRS)

    Peterson, V. L.

    1985-01-01

    Computers are playing an increasingly important role in the field of aerodynamics such as that they now serve as a major complement to wind tunnels in aerospace research and development. Factors pacing advances in computational aerodynamics are identified, including the amount of computational power required to take the next major step in the discipline. The four main areas of computational aerodynamics research at NASA Ames Research Center which are directed toward extending the state of the art are identified and discussed. Example results obtained from approximate forms of the governing equations are presented and discussed, both in the context of levels of computer power required and the degree to which they either further the frontiers of research or apply to programs of practical importance. Finally, the Numerical Aerodynamic Simulation Program--with its 1988 target of achieving a sustained computational rate of 1 billion floating-point operations per second--is discussed in terms of its goals, status, and its projected effect on the future of computational aerodynamics.

  14. Exploring Mars' Middle Atmosphere with the Extended NASA Ames Mars General Circulation Model

    NASA Astrophysics Data System (ADS)

    Brecht, A. S.; Hollingsworth, J. L.; Kahre, M. A.; Schaeffer, J.

    2013-12-01

    The NASA Ames Mars General Circulation Model (Mars GCM) upper boundary has been extended to ~120 km altitude (pT ~ 10-6 mbar). The extension of the Mars GCM upper boundary initiates the ability to understand the connection between the lower and upper atmosphere of Mars through the middle atmosphere. Moreover, it provides the opportunity to support missions (i.e. the 2013 MAVEN mission). A major factor in this extension is the incorporation of the Non-Local Thermodynamic Equilibrium (NLTE) heating (visible) and cooling (infrared). The calculated solar heating rates (LTE heating rates) within the Mars GCM are corrected for NLTE by applying factors from Table 1 in López-Valverde et al. (1998). The CO2 15-μm cooling parameterizations is adapted from Bougher et al. (2006). This modification to the radiative transfer forcing has been significantly tested in a 1D vertical column (i.e. RT code) and now has been ported to the full 3D Mars GCM. Initial results clearly show the effects of NLTE in the upper middle atmosphere. Diagnostic of seasonal mean fields and large-scale wave activity will be shown with insight into circulation patterns in the middle atmosphere. Furthermore, sensitivity tests with the resolution of the pressure and temperature grids, in which the k-coefficients are calculated upon, have been performed in the 1D RT code. Our progress on this research will be presented.

  15. Flow Property Measurement Using Laser-Induced Fluorescence in the NASA Ames Interaction Heating Facility

    NASA Technical Reports Server (NTRS)

    Grinstead, Jay Henderson; Porter, Barry J.; Carballo, Julio Enrique

    2011-01-01

    The spectroscopic diagnostic technique of two photon absorption laser-induced fluorescence (TALIF) of atomic species has been applied to single-point measurements of velocity and static temperature in the NASA Ames Interaction Heating Facility (IHF) arc jet. Excitation spectra of atomic oxygen and nitrogen were recorded while scanning a tunable dye laser over the absorption feature. Thirty excitation spectra were acquired during 8 arc jet runs at two facility operating conditions; the number of scans per run varied between 2 and 6. Curve fits to the spectra were analyzed to recover their Doppler shifts and widths, from which the flow velocities and static temperatures, respectively, were determined. An increase in the number of independent flow property pairs from each as-measured scan was obtained by extracting multiple lower-resolution scans. The larger population sample size enabled the mean property values and their uncertainties for each run to be characterized with greater confidence. The average plus or minus 2 sigma uncertainties in the mean velocities and temperatures for all 8 runs were plus or minus 1.4% and plus or minus 11%, respectively.

  16. Design outline for a new multiman ATC simulation facility at NASA-Ames Research Center

    NASA Technical Reports Server (NTRS)

    Kreifeldt, J. G.; Gallagher, O.

    1977-01-01

    A new and unique facility for studying human factors aspects in aeronautics is being planned for use in the Man-Vehicle Systems Research Division at the NASA-Ames Research Center. This facility will replace the existing three cockpit-single ground controller station and be expandable to include approximately seven cockpits and two ground controller stations. Unlike the previous system, each cockpit will be mini-computer centered and linked to a main CPU to effect a distributed computation facility. Each simulator will compute its own flight dynamic and flight path predictor. Mechanical flight instruments in each cockpit will be locally supported and CRT cockpit displays of (e.g.) traffic and or RNAV information will be centrally computed and distributed as a means of extending the existing computational and graphical resources. An outline of the total design is presented which addresses the technical design options and research possibilities of this unique man-machine facility and which may also serve as a model for other real time distributed simulation facilities.

  17. Emission Spectroscopy and Radiometric Measurements in the NASA Ames IHF Arc Jet Facility

    NASA Technical Reports Server (NTRS)

    Winter, Michael W.; Raiche, George A.; Prabhu, Dinesh K.

    2012-01-01

    Plasma diagnostic measurement campaigns in the NASA Ames Interaction Heating Facility (IHF) have been conducted over the last several years with a view towards characterizing the flow in the arc jet facility by providing data necessary for modeling and simulation. Optical emission spectroscopy has been used in the plenum and in the free jet of the nozzle. Radiation incident over a probe surface has also been measured using radiometry. Plenum measurements have shown distinct radial profiles of temperature over a range of operating conditions. For cases where large amounts of cold air are added radially to the main arc-heated stream, the temperature profiles are higher by as much as 1500 K than the profiles assumed in flow simulations. Optical measurements perpendicular to the flow direction in the free jet showed significant contributions to the molecule emission through inverse pre-dissociation, thus allowing determination of atom number densities from molecular emission. This has been preliminarily demonstrated with the N2 1st Positive System. Despite the use of older rate coefficients, the resulting atom densities are reasonable and surprisingly close to flow predictions.

  18. Simulation of 3-D Nonequilibrium Seeded Air Flow in the NASA-Ames MHD Channel

    NASA Technical Reports Server (NTRS)

    Gupta, Sumeet; Tannehill, John C.; Mehta, Unmeel B.

    2004-01-01

    The 3-D nonequilibrium seeded air flow in the NASA-Ames experimental MHD channel has been numerically simulated. The channel contains a nozzle section, a center section, and an accelerator section where magnetic and electric fields can be imposed on the flow. In recent tests, velocity increases of up to 40% have been achieved in the accelerator section. The flow in the channel is numerically computed us ing a 3-D parabolized Navier-Stokes (PNS) algorithm that has been developed to efficiently compute MHD flows in the low magnetic Reynolds number regime: The MHD effects are modeled by introducing source terms into the PNS equations which can then be solved in a very efficient manner. The algorithm has been extended in the present study to account for nonequilibrium seeded air flows. The electrical conductivity of the flow is determined using the program of Park. The new algorithm has been used to compute two test cases that match the experimental conditions. In both cases, magnetic and electric fields are applied to the seeded flow. The computed results are in good agreement with the experimental data.

  19. Low-level jets in the NASA Ames Mars general circulation model

    NASA Astrophysics Data System (ADS)

    Joshi, M. M.; Haberle, R. M.; Barnes, J. R.; Murphy, J. R.; Schaeffer, J.

    1997-03-01

    Previous simulations of the Martian atmosphere have shown how topography acts to confine the low-level Hadley cell flow into intense jets on the eastern flanks of Tharsis and Syrtis Major. We now conduct detailed studies of these jets using the NASA Ames Mars general circulation model (MGCM). The structure of the flow is found to be sensitive to local topography as well as large-scale diabatic heating patterns, consistent with terrestrial studies, and MGCM studies carried out with simplified topography. The summer subtropical zonal winds associated with the Hadley circulation also form spatially confined intense jet cores. Diurnal variations in heating affect jet structure in three distinct ways. Global tides interact with the jets, resulting in effects such as the two reinforcing each other at the summer subtropics near midday, leading to high winds and surface stresses at this time. Slope winds act to change the character of the jets during the course of a day, especially at Syrtis Major and the Hellas basin, where slopes are large. Vertical mixing acts to decrease low-level winds during the late afternoon. The sensitivity of the results to atmospheric dust loading is examined. We finally show how a decrease in boundary layer height due to dust loading actually augments mid-afternoon jet strength near the surface. The resulting increase in maximum surface stress indicates that this is a positive feedback to dust lifting.

  20. Multi-Mission Suitability of the NASA Ames Modular Common Bus

    NASA Technical Reports Server (NTRS)

    Tietz, Sascha; Bell, James H.; Hine, Butler

    2009-01-01

    The obvious advantages of small spacecraft - their lower cost structure and the rapid development schedule - have enabled a large number of missions in the past. However, most of these missions have been focused on Earth observation from low Earth orbits. In 2006, the Small Spacecraft Division at the NASA Ames Research Center began the development of the Modular Common Bus, a spacecraft capable of delivering scientifically and technically useful payloads to a variety of destinations within 0.1 AU around the Earth. The core technologies used in the Common Bus design are a composite structure with body-mounted solar cells, an integrated avionics unit, and a high performance bipropellant propulsion system. Due to its modular approach, the Common Bus can be adapted to fit specific mission needs while still using a standardized and qualified set of components. Additionally a number of low cost launch vehicles are supported, resulting in overall mission costs of around $150M including the launch vehicle but excluding the science payloads. This significant reduction in cost and the shorter development time would enable NASA to conduct more frequent exploration missions within its budget and timeframe constraints, compared to the status quo. In this paper the suitability of the Common Spacecraft Bus for four different exploration scenarios is analyzed. These scenarios include a lunar orbiter, a lunar lander, a mission to a Sun-Earth Libration Point, and a rendezvous mission to a Near Earth Object. For each scenario, a preliminary design reference mission is developed and key design parameters for the spacecraft are determined.

  1. PIAA Coronagraph Development at NASA Ames: High Contrast Laboratory Demonstration at 2 l/D

    NASA Astrophysics Data System (ADS)

    Belikov, Ruslan; Pluzhnik, E.; Witteborn, F. C.; Lynch, D. H.; Greene, T. P.; Zell, P. T.; Balasubramanian, K.; Guyon, O.

    2011-01-01

    Coronagraph technology is advancing and promises to directly image and spectrally characterize extrasolar Earth-like planets in the foreseeable future (such as the 2020 decade) with a telescope as small as 1.5m. A small Explorer-sized telescope can also be launched in the 2010 decade capable of seeing debris disks as small as 10s of zodis and potentially a few large planets. The Phase Induced Amplitude Apodization (PIAA) coronagraph makes such aggressive performance possible. We report on the latest results from a testbed at NASA Ames that is focused on developing and testing the PIAA coronagraph. This laboratory facility was built in 2008 and is designed to be flexible, operated in an actively thermally stabilized air environment, and to complement collaborative efforts at NASA JPL's High Contrast Imaging Testbed. For our wavefront control we are using small Micro-Electro-Mechanical-System deformable mirrors (MEMS DMs), which promise to reduce the size of the beam and overall instrument, a consideration that becomes very important for small telescopes. We describe our lab efforts and results, which include: the operation of our new active thermal control system; the demonstration of 5.4x10-8 (at time of this writing) average raw contrast in a dark zone from 2.0 - 5.2 λ/D in monochromatic light with a refractive PIAA system; preliminary results with an innovative low-cost set of reflective PIAA from JPL; preliminary results with a set of next-generation reflective PIAA built by Tinsley and designed to have the best theoretical broadband performance so far; and finally, an innovative design for a chromatically compensated focal plane occulter that promises to enhance broadband performance by matching the wavelength-dependent inner working angle of coronagraphs such as PIAA.

  2. Joint NASA Ames/Langley Experimental Evaluation of Integrated Air/Ground Operations for En Route Free Maneuvering

    NASA Technical Reports Server (NTRS)

    Barhydt, Richard; Kopardekar, Parimal; Battiste, Vernol; Doble, Nathan; Johnson, Walter; Lee, Paul; Prevot, Thomas; Smith, Nancy

    2005-01-01

    In order to meet the anticipated future demand for air travel, the National Aeronautics and Space Administration (NASA) is investigating a new concept of operations known as Distributed Air-Ground Traffic Management (DAG-TM). Under the En Route Free Maneuvering component of DAG-TM, appropriately equipped autonomous aircraft self separate from other autonomous aircraft and from managed aircraft that continue to fly under today s Instrument Flight Rules (IFR). Controllers provide separation services between IFR aircraft and assign traffic flow management constraints to all aircraft. To address concept feasibility issues pertaining to integrated air/ground operations at various traffic levels, NASA Ames and Langley Research Centers conducted a joint human-in-the-loop experiment. Professional airline pilots and air traffic controllers flew a total of 16 scenarios under four conditions: mixed autonomous/managed operations at three traffic levels and a baseline all-managed condition at the lowest traffic level. These scenarios included en route flights and descents to a terminal area meter fix in airspace modeled after the Dallas Ft. Worth area. Pilots of autonomous aircraft met controller assigned meter fix constraints with high success. Separation violations by subject pilots did not appear to vary with traffic level and were mainly attributable to software errors and procedural lapses. Controller workload was lower for mixed flight conditions, even at higher traffic levels. Pilot workload was deemed acceptable under all conditions. Controllers raised several safety concerns, most of which pertained to the occurrence of near-term conflicts between autonomous and managed aircraft. These issues are being addressed through better compatibility between air and ground systems and refinements to air and ground procedures.

  3. Investigation of seismicity and related effects at NASA Ames-Dryden Flight Research Facility, Computer Center, Edwards, California

    NASA Technical Reports Server (NTRS)

    Cousineau, R. D.; Crook, R., Jr.; Leeds, D. J.

    1985-01-01

    This report discusses a geological and seismological investigation of the NASA Ames-Dryden Flight Research Facility site at Edwards, California. Results are presented as seismic design criteria, with design values of the pertinent ground motion parameters, probability of recurrence, and recommended analogous time-history accelerograms with their corresponding spectra. The recommendations apply specifically to the Dryden site and should not be extrapolated to other sites with varying foundation and geologic conditions or different seismic environments.

  4. NASA-Ames three-dimensional potential flow analysis system (POTFAN) equation solver code (SOLN) version 1

    NASA Technical Reports Server (NTRS)

    Davis, J. E.; Bonnett, W. S.; Medan, R. T.

    1976-01-01

    A computer program known as SOLN was developed as an independent segment of the NASA-Ames three-dimensional potential flow analysis systems of linear algebraic equations. Methods used include: LU decomposition, Householder's method, a partitioning scheme, and a block successive relaxation method. Due to the independent modular nature of the program, it may be used by itself and not necessarily in conjunction with other segments of the POTFAN system.

  5. Ames Fellows Award - Mark

    NASA Video Gallery

    Dr. Hans Mark is a leading expert in the fields of aerospace design and national defense policy. From 1969 to 1977, he served as Director of the NASA Ames Research Center. During his tenure, Ames b...

  6. Formation of the Martian Polar Layered Terrains: Quantifying Polar Water Ice and Dust Surface Deposition During Current and Past Orbital Epochs with the NASA Ames GCM

    NASA Astrophysics Data System (ADS)

    Emmett, J. A.; Murphy, J. R.

    2016-09-01

    The NASA Ames GCM will be used to quantify net annual polar deposition rates of water ice and dust on Mars during current and past orbital epochs to investigate the formation history, structure, and stratigraphy of the polar layered terrains.

  7. Experimental Investigations of the NASA Common Research Model in the NASA Langley National Transonic Facility and NASA Ames 11-Ft Transonic Wind Tunnel (Invited)

    NASA Technical Reports Server (NTRS)

    Rivers, S. M.; Dittberner, Ashley

    2011-01-01

    Experimental aerodynamic investigations of the NASA Common Research Model have been conducted in the NASA Langley National Transonic Facility and the NASA Ames 11-ft wind tunnel. Data have been obtained at chord Reynolds numbers of 5 million for five different configurations at both wind tunnels. Force and moment, surface pressure and surface flow visualization data were obtained in both facilities but only the force and moment data are presented herein. Nacelle/pylon, tail effects and tunnel to tunnel variations have been assessed. The data from both wind tunnels show that an addition of a nacelle/pylon gave an increase in drag, decrease in lift and a less nose down pitching moment around the design lift condition of 0.5 and that the tail effects also follow the expected trends. Also, all of the data shown fall within the 2-sigma limits for repeatability. The tunnel to tunnel differences are negligible for lift and pitching moment, while the drag shows a difference of less than ten counts for all of the configurations. These differences in drag may be due to the variation in the sting mounting systems at the two tunnels.

  8. Surface Lander Missions to Mars: Support via Analysis of the NASA Ames Mars General Circulation Model

    NASA Technical Reports Server (NTRS)

    Murphy, James R.; Bridger, Alison F.C.; Haberle, Robert M.

    1997-01-01

    We have characterized the near-surface martian wind environment as calculated with a set of numerical simulations carried out with the NASA Ames Mars General Circulation Model (Mars GCM). These wind environments are intended to offer future spacecraft missions to the martian surface a data base from which to choose those locations which meet the mission's criteria for minimal near surface winds to enable a successful landing. We also became involved in the development and testing of the wind sensor which is currently onboard the Mars-bound Pathfinder lander. We began this effort with a comparison of Mars GCM produced winds with those measured by the Viking landers during their descent through the martian atmosphere and their surface wind measurements during the 3+ martian year lifetime of the mission. Unexpected technical difficulties in implementing the sophisticated Planetary Boundary Layer (PBL) scheme of Haberle et al. (1993) within the Mars GCM precluded our carrying out this investigation with the desired improvement to the model's treatment of the PBL. Thus, our results from this effort are not as conclusive as we had anticipated. As it turns out, similar difficulties have been experienced by other Mars modelling groups in attempting to implement very similar PBL routines into their GCMs (Mars General Circulation Model Intercomparison Workshop, held at Oxford University, United Kingdom, July 22-24, 1996; organized by J. Murphy, J. Hollingsworth, M. Joshi). These problems, which arise due to the nature of the time stepping in each of the models, are near to being resolved at the present. The model discussions which follow herein are based upon results using the existing, less sophisticated PBL routine. We fully anticipate implementing the tools we have developed in the present effort to investigate GCM results with the new PBL scheme implemented, and thereafter producing the technical document detailing results from the analysis tools developed during this

  9. Low-Disturbance Flow Characteristics of the NASA-Ames Laminar Flow Supersonic Wind Tunnel

    NASA Technical Reports Server (NTRS)

    Wolf, Stephen W. D.; Laub, James A.; Davis, Sanford S. (Technical Monitor)

    1994-01-01

    A unique, low-disturbance (quiet) supersonic wind tunnel has been commissioned at the NASA-Ames Fluid Mechanics Laboratory (FML) to support Supersonic Laminar Flow Control (SLFC) research. Known as the Laminar Flow Supersonic Wind Tunnel (LFSWT), this tunnel is designed to operate at potential cruise Mach numbers and unit Reynolds numbers (Re) of the High Speed Civil Transport (HSCT). The need to better understand the receptivity of the transition phenomena on swept (HSCT) wings to attachment-line contamination and cross-flows has provided the impetus for building the LFSWT. Low-disturbance or "quiet" wind tunnels are known to be an essential part of any meaningful boundary layer transition research. In particular, the receptivity of supersonic boundary layers to wind tunnel disturbances can significantly alter the transition phenomena under investigation on a test model. Consequently, considerable effort has gone into the design of the LFSWT to provide quiet flow. The paper describes efforts to quantify the low-disturbance flows in the LFSWT operating at Mach 1.6, as a precursor to transition research on wing models. The research includes: (1) Flow measurements in both the test section and settling chamber of the LFSWT, using a full range of measurement techniques; (2) Study of the state of the test section boundary layer so far by using a single hot-wire mounted above the floor centerline, with and without boundary layer trips fitted at the test section entrance; (3) The effect of flow quality of unsteady supersonic diffuser flow, joint steps and gaps, and wall vibration.

  10. Recent Progress in Planetary Laboratory Astrophysics achieved with NASA Ames' COSmIC Facility

    NASA Astrophysics Data System (ADS)

    Salama, Farid; Sciamma-O'Brien, Ella; Bejaoui, Salma

    2016-10-01

    We describe the characteristics and the capabilities of the laboratory facility, COSmIC, that was developed at NASA Ames to generate, process and analyze interstellar, circumstellar and planetary analogs in the laboratory [1]. COSmIC stands for "Cosmic Simulation Chamber" and is dedicated to the study of neutral and ionized molecules and nanoparticles under the low temperature and high vacuum conditions that are required to simulate various space environments such as planetary atmospheres. COSmIC integrates a variety of state-of-the-art instruments that allow forming, processing and monitoring simulated space conditions for planetary, circumstellar and interstellar materials in the laboratory. The COSmIC experimental setup is composed of a Pulsed Discharge Nozzle (PDN) expansion, that generates a plasma in the stream of a free supersonic jet expansion, coupled to two high-sensitivity, complementary in situ diagnostics: a Cavity Ring Down Spectroscopy (CRDS) and laser induced fluorescence (LIF) systems for photonic detection [2, 3], and a Reflectron Time-Of-Flight Mass Spectrometer (ReTOF-MS) for mass detection [4].Recent results obtained using COSmIC will be highlighted. In particular, the progress that has been achieved in an on-going study investigating the formation and the characterization of laboratory analogs of Titan's aerosols generated from gas-phase molecular precursors [5] will be presented. Plans for future laboratory experiments on planetary molecules and aerosols in the growing field of planetary laboratory astrophysics will also be addressed, as well as the implications of studies underway for astronomical observations.References: [1] Salama F., in Organic Matter in Space, IAU S251, Kwok & Sandford eds, CUP, S251, 4, 357 (2008).[2] Biennier L., Salama, F., Allamandola L., & Scherer J., J. Chem. Phys., 118, 7863 (2003)[3] Tan X, & Salama F., J. Chem. Phys. 122, 84318 (2005)[4] Ricketts C., Contreras C., Walker, R., Salama F., Int. J. Mass Spec, 300

  11. An Overview of the NASA Ames Millimeter-Wave Thermal Launch System

    NASA Technical Reports Server (NTRS)

    Murakami, David

    2012-01-01

    The Millimeter-Wave Thermal Launch System (MTLS) is a beamed-energy propulsion concept being designed at NASA Ames Research Center. This effort is in response to the NASA Office of the Chief Technologist s announcement of the Ride the Light program. Our objective is to produce a design that goes beyond the feasibility analysis level of previous studies and provides a solid foundation for low cost access to space. The MTLS is designed to place a 500 lb payload into Low Earth Orbit (LEO) two times a day. This frequent launch, small payload niche is well suited for the particular advantages and constraints of beamed-energy propulsion, and has the potential to drastically increase access to space by reducing the cost per kilogram of placing payloads into LEO. This paper summarizes the findings of the MTLS study. The chemical rocket engine is in principle a simple device. It acts by releasing the chemical energy stored in propellants such as hydrogen and oxygen through combustion, then converting that thermal energy into kinetic energy by expansion through a nozzle. As such, it is fundamentally limited by the energy released in combustion reactions and the molecular weight of the products of those reactions. The highest performing conventional propellant combination, liquid oxygen and liquid hydrogen, can produce vacuum specific impulses of around 450 seconds. The design space of current launch vehicles (which tend to be large, multi-stage, and expendable) are defined by these limitations. An entirely new approach may be necessary in order to enable future launch vehicles of radically improved capabilities. Beamed-energy propulsion (BEP) is an alternative approach that bypasses the energy limitations of chemical propulsion. Instead of relying on a chemical reaction as the energy source, it is supplied externally via a beam of electromagnetic energy produced on the ground. In the concept examined in the MTLS, this energy is absorbed by a heat exchanger which then

  12. M2-F1 mounted in NASA Ames Research Center 40x80 foot wind tunnel

    NASA Technical Reports Server (NTRS)

    1962-01-01

    After the first attempted ground-tow tests of the M2-F1 in March 1963, the vehicle was taken to the Ames Research Center, Mountain View, CA, for wind-tunnel testing. During these tests, Milt Thompson and others were in the M2-F1 to position the control surfaces for each test. The wingless, lifting body aircraft design was initially conceived as a means of landing an aircraft horizontally after atmospheric reentry. The absence of wings would make the extreme heat of re-entry less damaging to the vehicle. In 1962, Dryden management approved a program to build a lightweight, unpowered lifting body as a prototype to flight test the wingless concept. It would look like a 'flying bathtub,' and was designated the M2-F1, the 'M' referring to 'manned' and 'F' referring to 'flight' version. It featured a plywood shell placed over a tubular steel frame crafted at Dryden. Construction was completed in 1963. The first flight tests of the M2-F1 were over Rogers Dry Lake at the end of a tow rope attached to a hopped-up Pontiac convertible driven at speeds up to about 120 mph. This vehicle needed to be able to tow the M2-F1 on the Rogers Dry Lakebed adjacent to NASA's Flight Research Center (FRC) at a minimum speed of 100 miles per hour. To do that, it had to handle the 400-pound pull of the M2-F1. Walter 'Whitey' Whiteside, who was a retired Air Force maintenance officer working in the FRC's Flight Operations Division, was a dirt-bike rider and hot-rodder. Together with Boyden 'Bud' Bearce in the Procurement and Supply Branch of the FRC, Whitey acquired a Pontiac Catalina convertible with the largest engine available. He took the car to Bill Straup's renowned hot-rod shop near Long Beach for modification. With a special gearbox and racing slicks, the Pontiac could tow the 1,000-pound M2-F1 110 miles per hour in 30 seconds. It proved adequate for the roughly 400 car tows that got the M2-F1 airborne to prove it could fly safely and to train pilots before they were towed behind a C

  13. Atmospheric Rotational Effects on Mars Based on the NASA Ames General Circulation Model: Angular Momentum Approach

    NASA Technical Reports Server (NTRS)

    Sanchez, Braulio V.; Haberle, Robert M.; Schaeffer, James

    2004-01-01

    The objective of the investigation is to determine the motion of the rotational axis of Mars as a result of mass variations in the atmosphere and condensation and sublimation of CO2 ice on the polar caps. A planet experiences this type of motion if it has an atmosphere, which is changing its mass distribution with respect to the solid body of the planet and/or it is asymmetrically changing the amount of ice at the polar caps. The physical principle involved is the conservation of angular momentum, one can get a feeling for it by sitting on a well oiled swivel chair holding a rotating wheel on a horizontal direction and then changing the rotation axis of the wheel to a vertical direction. The person holding the wheel and the chair would begin to rotate in opposite direction to the rotation of the wheel. The motions of Mars atmosphere and the ice caps variations are obtained from a mathematical model developed at the NASA Ames Research Center. The model produces outputs for a time span of one Martian year, which is equivalent to 687 Earth days. The results indicate that Mars axis of rotation moves in a spiral with respect to a reference point on the surface of the planet. It can move as far away as 35.3 cm from the initial location as a result of both mass variations in the atmosphere and asymmetric ice variations at the polar caps. Furthermore the pole performs close to two revolutions around the reference point during a Martian year. This motion is a combination of two motions, one produced by the atmospheric mass variations and another due to the variations in the ice caps. The motion due to the atmospheric variations is a spiral performing about two and a half revolutions around the reference point during which the pole can move as far as 40.9 cm. The motion due to variations in the ice caps is a spiral performing almost three revolutions during which the pole can move as far as 32.8 cm.

  14. Emission Spectroscopic Measurements with an Optical Probe in the NASA Ames IHF Arc Jet Facility

    NASA Technical Reports Server (NTRS)

    Winter, Michael; Prabhu, Dinesh K.; Raiche, George A.; Terrazas-Salinas, Imelda; Hui, Frank C. L.

    2011-01-01

    An optical probe was designed to measure radiation (from inside the arc heater) incident on a test sample immersed in the arc-heated stream. Currently, only crude estimates are available for this incident radiation. Unlike efforts of the past, where the probe line of sight was inclined to the nozzle centerline, the present development focuses on having the probe line of sight coincide with the nozzle centerline. A fiber-coupled spectrometer was used to measure the spectral distribution of incident radiation in the wavelength range of 225 to 900 nm. The radiation heat flux in this wavelength range was determined by integration of measured emission spectral intensity calibrated to incident irradiance from an integrating sphere. Two arc-heater conditions, corresponding to stream bulk enthalpy levels of 12 and 22 MJ/kg, were investigated in the 13-inch diameter nozzle of the Interaction Heating Facility at NASA Ames Research Center. With the probe placed at a distance of 10 inches from the nozzle exit plane, total radiative heat fluxes were measured to be 3.3 and 8.4 W/sq cm for the 12 and 22 MJ/kg conditions, respectively. About 17% of these radiative fluxes were due to bound-bound radiation from atoms and molecules, while the remaining 83% could be attributed to continua (bound-free and/or free-free). A comparison with spectral simulation based on CFD solutions for the arc-heater flow field and with spectroscopic measurements in the plenum region indicates that more than 95% of the measured radiation is generated in the arc region. The total radiative heat flux from the line radiation could increase by a factor of two through contributions from wavelengths outside the measured range, i.e., from the vacuum ultraviolet (wavelengths less than 225 nm) and the infrared (wavelengths greater than 900 nm). An extrapolation of the continuum radiation to these two wavelength regions was not attempted. In the tested configuration, the measured radiative heat flux accounts for

  15. Preliminary Computational Study for Future Tests in the NASA Ames 9 foot' x 7 foot Wind Tunnel

    NASA Technical Reports Server (NTRS)

    Pearl, Jason M.; Carter, Melissa B.; Elmiligui, Alaa A.; WInski, Courtney S.; Nayani, Sudheer N.

    2016-01-01

    The NASA Advanced Air Vehicles Program, Commercial Supersonics Technology Project seeks to advance tools and techniques to make over-land supersonic flight feasible. In this study, preliminary computational results are presented for future tests in the NASA Ames 9 foot x 7 foot supersonic wind tunnel to be conducted in early 2016. Shock-plume interactions and their effect on pressure signature are examined for six model geometries. Near- field pressure signatures are assessed using the CFD code USM3D to model the proposed test geometries in free-air. Additionally, results obtained using the commercial grid generation software Pointwise Reigistered Trademark are compared to results using VGRID, the NASA Langley Research Center in-house mesh generation program.

  16. Construction of a 2- by 2-foot transonic adaptive-wall test section at the NASA Ames Research Center

    NASA Technical Reports Server (NTRS)

    Morgan, Daniel G.; Lee, George

    1986-01-01

    The development of a new production-size, two-dimensional, adaptive-wall test section with ventilated walls at the NASA Ames Research Center is described. The new facility incorporates rapid closed-loop operation, computer/sensor integration, and on-line interference assessment and wall corrections. Air flow through the test section is controlled by a series of plenum compartments and three-way slide vales. A fast-scan laser velocimeter was built to measure velocity boundary conditions for the interference assessment scheme. A 15.2-cm- (6.0-in.-) chord NACA 0012 airfoil model will be used in the first experiments during calibration of the facility.

  17. Calibration and Data Retrieval Algorithms for the NASA Langley/Ames Diode Laser Hygrometer for the NASA Trace-P Mission

    NASA Technical Reports Server (NTRS)

    Podolske, James R.; Sachse, Glen W.; Diskin, Glenn S.; Hipskino, R. Stephen (Technical Monitor)

    2002-01-01

    This paper describes the procedures and algorithms for the laboratory calibration and the field data retrieval of the NASA Langley / Ames Diode Laser Hygrometer as implemented during the NASA Trace-P mission during February to April 2000. The calibration is based on a NIST traceable dewpoint hygrometer using relatively high humidity and short pathlength. Two water lines of widely different strengths are used to increase the dynamic range of the instrument in the course of a flight. The laboratory results are incorporated into a numerical model of the second harmonic spectrum for each of the two spectral window regions using spectroscopic parameters from the HITRAN database and other sources, allowing water vapor retrieval at upper tropospheric and lower stratospheric temperatures and humidity levels. The data retrieval algorithm is simple, numerically stable, and accurate. A comparison with other water vapor instruments on board the NASA DC-8 and ER-2 aircraft is presented.

  18. Ames Lab 101: Technology Transfer

    ScienceCinema

    Covey, Debra

    2016-07-12

    Ames Laboratory Associate Laboratory Director, Sponsored Research Administration, Debra Covey discusses technology transfer. Covey also discusses Ames Laboratory's most successful transfer, lead-free solder.

  19. Acquisition and Analysis of NASA Ames Sunphotometer Measurements during SAGE III Validation Campaigns and other Tropospheric and Stratospheric Research Missions

    NASA Technical Reports Server (NTRS)

    Livingston, John M.

    2004-01-01

    NASA Cooperative Agreement NCC2-1251 provided funding from April 2001 through December 2003 for Mr. John Livingston of SRI International to collaborate with NASA Ames Research Center scientists and engineers in the acquisition and analysis of airborne sunphotometer measurements during various atmospheric field studies. Mr. Livingston participated in instrument calibrations at Mauna Loa Observatory, pre-mission hardware and software preparations, acquisition and analysis of sunphotometer measurements during the missions, and post-mission analysis of data and reporting of scientific findings. The atmospheric field missions included the spring 2001 Intensive of the Asian Pacific Regional Aerosol Characterization Experiment (ACE-Asia), the Asian Dust Above Monterey-2003 (ADAM-2003) experiment, and the winter 2003 Second SAGE III Ozone Loss and Validation Experiment (SOLVE II).

  20. NASA RECON: Course Development, Administration, and Evaluation

    NASA Technical Reports Server (NTRS)

    Dominick, W. D.; Roquemore, L.

    1984-01-01

    The R and D activities addressing the development, administration, and evaluation of a set of transportable, college-level courses to educate science and engineering students in the effective use of automated scientific and technical information storage and retrieval systems, and, in particular, in the use of the NASA RECON system, are discussed. The long-range scope and objectives of these contracted activities are overviewed and the progress which has been made toward these objectives during FY 1983-1984 is highlighted. In addition, the results of a survey of 237 colleges and universities addressing course needs are presented.

  1. Results of the NASA/MSFC FA-23 plume technology test program performed in the NASA/Ames unitary wind tunnels

    NASA Technical Reports Server (NTRS)

    Hendershot, K. C.

    1977-01-01

    A 2.25% scale model of the space shuttle external tank and solid rocket boosters was tested in the NASA/Ames Unitary 11 x 11 foot transonic and 9 x 7 foot supersonic tunnels to obtain base pressure data with firing solid propellant exhaust plumes. Data system difficulties prevented the acquisition of any useful data in the 9 x 7 tunnel. However, 28 successful rocket test firings were made in the 11 x 11 tunnel, providing base pressure data at Mach numbers of 0.5, 0.9, 1.05, 1.2, and 1.3 and at plume pressure ratios ranging from 11 to 89.

  2. Recent Developments in Gun Operating Techniques at the NASA Ames Ballistic Ranges

    NASA Technical Reports Server (NTRS)

    Bogdanoff, D. W.; Miller, R. J.

    1996-01-01

    This paper describes recent developments in gun operating techniques at the Ames ballistic range complex. This range complex has been in operation since the early 1960s. Behavior of sabots during separation and projectile-target impact phenomena have long been observed by means of short-duration flash X-rays: new versions allow operation in the lower-energy ("soft") X-ray range and have been found to be more effective than the earlier designs. The dynamics of sabot separation is investigated in some depth from X-ray photographs of sabots launched in the Ames 1.0 in and 1.5 in guns; the sabot separation dynamics appears to be in reasonably good agreement with standard aerodynamic theory. Certain sabot packages appear to suffer no erosion or plastic deformation on traversing the gun barrel, contrary to what would be expected. Gun erosion data from the Ames 0.5 in, 1.0 in, and 1.5 in guns is examined in detail and can be correlated with a particular non- dimensionalized powder mass parameter. The gun erosion increases very rapidly as this parameter is increased. Representative shapes of eroded gun barrels are given. Guided by a computational fluid dynamics (CFD) code, the operating conditions of the Ames 0.5 in and 1.5 in guns were modified. These changes involved: (1) reduction in the piston mass, powder mass and hydrogen fill pressure and (2) reduction in pump tube volume, while maintaining hydrogen mass. These changes resulted in muzzle velocity increases of 0.5-0.8 km/sec, achieved simultaneously with 30-50 percent reductions in gun erosion.

  3. Performance of the OVERFLOW-MLP and LAURA-MLP CFD Codes on the NASA Ames 512 CPU Origin System

    NASA Technical Reports Server (NTRS)

    Taft, James R.

    2000-01-01

    The shared memory Multi-Level Parallelism (MLP) technique, developed last year at NASA Ames has been very successful in dramatically improving the performance of important NASA CFD codes. This new and very simple parallel programming technique was first inserted into the OVERFLOW production CFD code in FY 1998. The OVERFLOW-MLP code's parallel performance scaled linearly to 256 CPUs on the NASA Ames 256 CPU Origin 2000 system (steger). Overall performance exceeded 20.1 GFLOP/s, or about 4.5x the performance of a dedicated 16 CPU C90 system. All of this was achieved without any major modification to the original vector based code. The OVERFLOW-MLP code is now in production on the inhouse Origin systems as well as being used offsite at commercial aerospace companies. Partially as a result of this work, NASA Ames has purchased a new 512 CPU Origin 2000 system to further test the limits of parallel performance for NASA codes of interest. This paper presents the performance obtained from the latest optimization efforts on this machine for the LAURA-MLP and OVERFLOW-MLP codes. The Langley Aerothermodynamics Upwind Relaxation Algorithm (LAURA) code is a key simulation tool in the development of the next generation shuttle, interplanetary reentry vehicles, and nearly all "X" plane development. This code sustains about 4-5 GFLOP/s on a dedicated 16 CPU C90. At this rate, expected workloads would require over 100 C90 CPU years of computing over the next few calendar years. It is not feasible to expect that this would be affordable or available to the user community. Dramatic performance gains on cheaper systems are needed. This code is expected to be perhaps the largest consumer of NASA Ames compute cycles per run in the coming year.The OVERFLOW CFD code is extensively used in the government and commercial aerospace communities to evaluate new aircraft designs. It is one of the largest consumers of NASA supercomputing cycles and large simulations of highly resolved full

  4. NASA Ames DEVELOP Interns Collaborate with the South Bay Salt Pond Restoration Project to Monitor and Study Restoration Efforts using NASA's Satellites

    NASA Technical Reports Server (NTRS)

    Newcomer, Michelle E.; Kuss, Amber Jean; Nguyen, Andrew; Schmidt, Cynthia L.

    2012-01-01

    In the past, natural tidal marshes in the south bay were segmented by levees and converted into ponds for use in salt production. In an effort to provide habitat for migratory birds and other native plants and animals, as well as to rebuild natural capital, the South Bay Salt Pond Restoration Project (SBSPRP) is focused on restoring a portion of the over 15,000 acres of wetlands in California's South San Francisco Bay. The process of restoration begins when a levee is breached; the bay water and sediment flow into the ponds and eventually restore natural tidal marshes. Since the spring of 2010 the NASA Ames Research Center (ARC) DEVELOP student internship program has collaborated with the South Bay Salt Pond Restoration Project (SBSPRP) to study the effects of these restoration efforts and to provide valuable information to assist in habitat management and ecological forecasting. All of the studies were based on remote sensing techniques -- NASA's area of expertise in the field of Earth Science, and used various analytical techniques such as predictive modeling, flora and fauna classification, and spectral detection, to name a few. Each study was conducted by a team of aspiring scientists as a part of the DEVELOP program at Ames.

  5. Supporting flight data analysis for Space Shuttle Orbiter experiments at NASA Ames Research Center

    NASA Technical Reports Server (NTRS)

    Green, M. J.; Budnick, M. P.; Yang, L.; Chiasson, M. P.

    1983-01-01

    The space shuttle orbiter experiments program is responsible for collecting flight data to extend the research and technology base for future aerospace vehicle design. The infrared imagery of shuttle (IRIS), catalytic surface effects, and tile gap heating experiments sponsored by Ames Research Center are part of this program. The software required to process the flight data which support these experiments is described. In addition, data analysis techniques, developed in support of the IRIS experiment, are discussed. Using the flight data base, the techniques provide information useful in analyzing and correcting problems with the experiment, and in interpreting the IRIS image obtained during the entry of the third shuttle mission.

  6. ELAPSE - NASA AMES LISP AND ADA BENCHMARK SUITE: EFFICIENCY OF LISP AND ADA PROCESSING - A SYSTEM EVALUATION

    NASA Technical Reports Server (NTRS)

    Davis, G. J.

    1994-01-01

    One area of research of the Information Sciences Division at NASA Ames Research Center is devoted to the analysis and enhancement of processors and advanced computer architectures, specifically in support of automation and robotic systems. To compare systems' abilities to efficiently process Lisp and Ada, scientists at Ames Research Center have developed a suite of non-parallel benchmarks called ELAPSE. The benchmark suite was designed to test a single computer's efficiency as well as alternate machine comparisons on Lisp, and/or Ada languages. ELAPSE tests the efficiency with which a machine can execute the various routines in each environment. The sample routines are based on numeric and symbolic manipulations and include two-dimensional fast Fourier transformations, Cholesky decomposition and substitution, Gaussian elimination, high-level data processing, and symbol-list references. Also included is a routine based on a Bayesian classification program sorting data into optimized groups. The ELAPSE benchmarks are available for any computer with a validated Ada compiler and/or Common Lisp system. Of the 18 routines that comprise ELAPSE, provided within this package are 14 developed or translated at Ames. The others are readily available through literature. The benchmark that requires the most memory is CHOLESKY.ADA. Under VAX/VMS, CHOLESKY.ADA requires 760K of main memory. ELAPSE is available on either two 5.25 inch 360K MS-DOS format diskettes (standard distribution) or a 9-track 1600 BPI ASCII CARD IMAGE format magnetic tape. The contents of the diskettes are compressed using the PKWARE archiving tools. The utility to unarchive the files, PKUNZIP.EXE, is included. The ELAPSE benchmarks were written in 1990. VAX and VMS are trademarks of Digital Equipment Corporation. MS-DOS is a registered trademark of Microsoft Corporation.

  7. The Real-Time Wall Interference Correction System of the NASA Ames 12-Foot Pressure Wind Tunnel

    NASA Technical Reports Server (NTRS)

    Ulbrich, Norbert

    1998-01-01

    An improved version of the Wall Signature Method was developed to compute wall interference effects in three-dimensional subsonic wind tunnel testing of aircraft models in real-time. The method may be applied to a full-span or a semispan model. A simplified singularity representation of the aircraft model is used. Fuselage, support system, propulsion simulator, and separation wake volume blockage effects are represented by point sources and sinks. Lifting effects are represented by semi-infinite line doublets. The singularity representation of the test article is combined with the measurement of wind tunnel test reference conditions, wall pressure, lift force, thrust force, pitching moment, rolling moment, and pre-computed solutions of the subsonic potential equation to determine first order wall interference corrections. Second order wall interference corrections for pitching and rolling moment coefficient are also determined. A new procedure is presented that estimates a rolling moment coefficient correction for wings with non-symmetric lift distribution. Experimental data obtained during the calibration of the Ames Bipod model support system and during tests of two semispan models mounted on an image plane in the NASA Ames 12 ft. Pressure Wind Tunnel are used to demonstrate the application of the wall interference correction method.

  8. An analysis of sound absorbing linings for the interior of the NASA Ames 80 x 120-foot wind tunnel

    NASA Technical Reports Server (NTRS)

    Wilby, J. F.; White, P. H.

    1985-01-01

    It is desirable to achieve low frequency sound absorption in the tests section of the NASA Ames 80X120-ft wind tunnel. However, it is difficult to obtain information regarding sound absorption characteristics of potential treatments because of the restrictions placed on the dimensions of the test chambers. In the present case measurements were made in a large enclosure for aircraft ground run-up tests. The normal impedance of the acoustic treatment was measured using two microphones located close to the surface of the treatment. The data showed reasonably good agreement with analytical methods which were then used to design treatments for the wind tunnel test section. A sound-absorbing lining is proposed for the 80X120-ft wind tunnel.

  9. Adjoint Method and Predictive Control for 1-D Flow in NASA Ames 11-Foot Transonic Wind Tunnel

    NASA Technical Reports Server (NTRS)

    Nguyen, Nhan; Ardema, Mark

    2006-01-01

    This paper describes a modeling method and a new optimal control approach to investigate a Mach number control problem for the NASA Ames 11-Foot Transonic Wind Tunnel. The flow in the wind tunnel is modeled by the 1-D unsteady Euler equations whose boundary conditions prescribe a controlling action by a compressor. The boundary control inputs to the compressor are in turn controlled by a drive motor system and an inlet guide vane system whose dynamics are modeled by ordinary differential equations. The resulting Euler equations are thus coupled to the ordinary differential equations via the boundary conditions. Optimality conditions are established by an adjoint method and are used to develop a model predictive linear-quadratic optimal control for regulating the Mach number due to a test model disturbance during a continuous pitch

  10. An Experimental Evaluation of Advanced Rotorcraft Airfoils in the NASA Ames Eleven-foot Transonic Wind Tunnel

    NASA Technical Reports Server (NTRS)

    Flemming, Robert J.

    1984-01-01

    Five full scale rotorcraft airfoils were tested in the NASA Ames Eleven-Foot Transonic Wind Tunnel for full scale Reynolds numbers at Mach numbers from 0.3 to 1.07. The models, which spanned the tunnel from floor to ceiling, included two modern baseline airfoils, the SC1095 and SC1094 R8, which have been previously tested in other facilities. Three advanced transonic airfoils, designated the SSC-A09, SSC-A07, and SSC-B08, were tested to confirm predicted performance and provide confirmation of advanced airfoil design methods. The test showed that the eleven-foot tunnel is suited to two-dimensional airfoil testing. Maximum lift coefficients, drag coefficients, pitching moments, and pressure coefficient distributions are presented. The airfoil analysis codes agreed well with the data, with the Grumman GRUMFOIL code giving the best overall performance correlation.

  11. Supersonic Retropropulsion Experimental Results from the NASA Ames 9- x 7-Foot Supersonic Wind Tunnel

    NASA Technical Reports Server (NTRS)

    Berry, Scott A.; Rhode, Matthew N.; Edquist, Karl T.

    2012-01-01

    Supersonic retropropulsion was experimentally examined in the Ames Research Center 9x7-Foot Supersonic Wind Tunnel at Mach 1.8 and 2.4. The experimental model, previously designed for and tested in the Langley Research Center Unitary Plan Wind Tunnel at Mach 2.4, 3.5 and 4.6, was a 5-in diameter 70-deg sphere-cone forebody with a 9.55-in long cylindrical aftbody. The forebody was designed to accommodate up to four 4:1 area ratio nozzles, one on the model centerline and the other three on the half radius spaced 120-deg apart. Surface pressure and flow visualization were the primary measurements, including high-speed data to investigate the dynamics of the interactions between the bow and nozzle shocks. Three blowing configurations were tested with thrust coefficients up to 10 and angles of attack up to 20-deg. Preliminary results and observations from the test are provided

  12. A New Way of Doing Business: Reusable Launch Vehicle Advanced Thermal Protection Systems Technology Development: NASA Ames and Rockwell International Partnership

    NASA Technical Reports Server (NTRS)

    Carroll, Carol W.; Fleming, Mary; Hogenson, Pete; Green, Michael J.; Rasky, Daniel J. (Technical Monitor)

    1995-01-01

    NASA Ames Research Center and Rockwell International are partners in a Cooperative Agreement (CA) for the development of Thermal Protection Systems (TPS) for the Reusable Launch Vehicle (RLV) Technology Program. This Cooperative Agreement is a 30 month effort focused on transferring NASA innovations to Rockwell and working as partners to advance the state-of-the-art in several TPS areas. The use of a Cooperative Agreement is a new way of doing business for NASA and Industry which eliminates the traditional customer/contractor relationship and replaces it with a NASA/Industry partnership.

  13. NASA Administrative Data Base Management Systems, 1984

    NASA Technical Reports Server (NTRS)

    Radosevich, J. D. (Editor)

    1984-01-01

    Strategies for converting to a data base management system (DBMS) and the implementation of the software packages necessary are discussed. Experiences with DBMS at various NASA centers are related including Langley's ADABAS/NATURAL and the NEMS subsystem of the NASA metrology informaton system. The value of the integrated workstation with a personal computer is explored.

  14. Researcher's guide to the NASA Ames Flight Simulator for Advanced Aircraft (FSAA)

    NASA Technical Reports Server (NTRS)

    Sinacori, J. B.; Stapleford, R. L.; Jewell, W. F.; Lehman, J. M.

    1977-01-01

    Performance, limitations, supporting software, and current checkout and operating procedures are presented for the flight simulator, in terms useful to the researcher who intends to use it. Suggestions to help the researcher prepare the experimental plan are also given. The FSAA's central computer, cockpit, and visual and motion systems are addressed individually but their interaction is considered as well. Data required, available options, user responsibilities, and occupancy procedures are given in a form that facilitates the initial communication required with the NASA operations' group.

  15. An Overview of Current Capabilities and Research Activities in the Airspace Operations Laboratory at NASA Ames Research Center

    NASA Technical Reports Server (NTRS)

    Prevot, Thomas; Smith, Nancy M.; Palmer, Everett; Callantine, Todd; Lee, Paul; Mercer, Joey; Homola, Jeff; Martin, Lynne; Brasil, Connie; Cabrall, Christopher

    2014-01-01

    The Airspace Operations Laboratory at NASA Ames conducts research to provide a better understanding of roles, responsibilities, and requirements for human operators and automation in future air traffic management (ATM) systems. The research encompasses developing, evaluating, and integrating operational concepts and technologies for near-, mid-, and far-term air traffic operations. Current research threads include efficient arrival operations, function allocation in separation assurance and efficient airspace and trajectory management. The AOL has developed powerful air traffic simulation capabilities, most notably the Multi Aircraft Control System (MACS) that is used for many air traffic control simulations at NASA and its partners in government, academia and industry. Several additional NASA technologies have been integrated with the AOL's primary simulation capabilities where appropriate. Using this environment, large and small-scale system-level evaluations can be conducted to help make near-term improvements and transition NASA technologies to the FAA, such as the technologies developed under NASA's Air Traffic Management Demonstration-1 (ATD-1). The AOL's rapid prototyping and flexible simulation capabilities have proven a highly effective environment to progress the initiation of trajectory-based operations and support the mid-term implementation of NextGen. Fundamental questions about accuracy requirements have been investigated as well as realworld problems on how to improve operations in some of the most complex airspaces in the US. This includes using advanced trajectory-based operations and prototype tools for coordinating arrivals to converging runways at Newark airport and coordinating departures and arrivals in the San Francisco and the New York metro areas. Looking beyond NextGen, the AOL has started exploring hybrid human/automation control strategies as well as highly autonomous operations in the air traffic control domain. Initial results

  16. Retrospective of photography at NASA Ames Research Center from 1940 to 1996 (Extended Abstract)

    NASA Astrophysics Data System (ADS)

    Ponseggi, Bernard G.

    1997-05-01

    This paper deals with what is known as photo/optical instrumentation technology and/or technical photography. In 1940 this was called photography, in the late 40's the Civil Service Commission introduced a new classification called photography/technical to differentiate between still photographers and those engaging in recording engineering data. In October of 1958 a historic event took place, Congress transferred all of the duties of NACA to a newly formed agency called NASA, and with it came a call for systems that would keep up with new requirements. There was a need to change the type and style of equipment to keep up with the demands for more accurate information. Existing hardware was modified and new hardware was developed and designed to meet the new requirements of space travel of manned and unmanned orbital vehicles. This family of equipment had to withstand the rigors of space travel such as extremely high `G' forces, temperature changes and `O' gravity, while on earth we needed equipment to document launch of space vehicles as well as wind tunnel testing, rocket sled stands etc.. Some requirements were similar to those of launch vehicles, some were totally different and had other requirements, eventually they were all resolved. As electronic data systems became available NASA experimented with their use in data acquisition. This portion of this session will discuss the changes over the years and their effect on the acquisition of data, those that worked, as well as those that were a disappointment.

  17. Laboratory Simulations Of Titan’s Atmospheric Chemistry With The NASA Ames Titan Haze Simulation Experiment

    NASA Astrophysics Data System (ADS)

    Sciamma-O'Brien, Ella; Contreras, C. S.; Ricketts, C. L.; Salama, F.

    2012-05-01

    Solar UV radiation and electron bombardment from Saturn’s magnetosphere dissociate nitrogen and methane in Titan’s atmosphere, leading to the production of heavier molecules and solid organic aerosols that contribute to the haze layers giving Titan its characteristic orange color. The detection of benzene and toluene, critical precursors of polycyclic aromatic hydrocarbon (PAH), in Titan’s ionosphere, by the Cassini INMS suggests that PAHs might play a role in the production of Titan’s aerosols. The Titan Haze Simulation (THS) experiment has been developed at NASA Ames’ Cosmic Simulation facility (COSmIC) to study the chemical pathways that link the simple molecules resulting from the first steps of the N2-CH4 chemistry (C2H2, C2H4, HCN..) to benzene, and to PAHs and nitrogen-containing PAHs (PANHs) as precursors to the production of solid aerosols. In the THS experiment, Titan’s atmospheric chemistry is simulated by plasma in the stream of a supersonic jet expansion. With this unique design, the gas mixture is cooled to Titan-like temperature ( 150K) before inducing the chemistry by plasma discharge. Different gas mixtures containing the first products of Titan’s N2-CH4 chemistry, but also much heavier molecules like PAHs or PANHs can be injected to study specific chemical reactions. The products of the chemistry are detected and studied using Cavity Ring Down Spectroscopy and Time-Of-Flight Mass Spectrometry. Thin tholin (Titan aerosol analogs) deposits are also produced in the THS experiment and can be analyzed by Gas Chromatography-Mass Spectrometry (GC-MS) and Scanning Electron Microscopy (SEM). We present the results of mass spectrometry studies using different gas mixtures, and discuss their relevance for the study of specific pathways in Titan’s atmospheric chemistry. Acknowledgements: This research is supported by NASA PATM. E.S.O., C.S.C. and C.L.R acknowledge the support of the NASA Postdoctoral Program. The authors acknowledge the

  18. Ames Fellows Award - Johnson

    NASA Video Gallery

    Dr. Wayne Johnson is a rotorcraft pioneer and visionary. His legacy of rotorcraft research at NASA Ames continues to be of fundamental importance to the U.S. Army and to the international rotorcraf...

  19. Wind Erosion Regimes and the Evolution of the Surface of Mars Studied with the NASA Ames Mars General Circulation Model

    NASA Astrophysics Data System (ADS)

    Armstrong, J.; Leovy, C.

    2004-12-01

    A billion year integration of Mars orbital parameters and the NASA Ames Mars General Circulation Model are combined to investigate the long-term erosional history of the surface of Mars. In agreement with findings of Robert Haberle et al., we find that the distribution of potential surface erosion by wind is robust with respect to orbital parameter variations. Potential erosion is strongest: (1) in storm tracks following the edges of the seasonal polar caps, (2) in regions of low surface elevation, (3) in regions of strong cross-equatorial solstice flows at moderate to high obliquity. It follows that maximum long-term erosion rates occur throughout most of the northern plains, in Acidalia and portions of Amazonis and Utopia, and in the Hellas basin. We also investigate the sensitivity of wind erosion to changes in global mean surface pressure and find, as expected, very high sensitivity. For example, if global mean surface pressure were to increase from the current 6 mb to 40 mb, model potential erosion rates increase by more than one order of magnitude. In this regime, potential erosion rates are sufficiently high that several km of easily eroded fine regolith could be removed in a time span of 100 million years. Possible observational consequences of these results will be discussed.

  20. On Laminar to Turbulent Transition of Arc-Jet Flow in the NASA Ames Panel Test Facility

    NASA Technical Reports Server (NTRS)

    Gokcen, Tahir; Alunni, Antonella I.

    2012-01-01

    This paper provides experimental evidence and supporting computational analysis to characterize the laminar to turbulent flow transition in a high enthalpy arc-jet facility at NASA Ames Research Center. The arc-jet test data obtained in the 20 MW Panel Test Facility include measurements of surface pressure and heat flux on a water-cooled calibration plate, and measurements of surface temperature on a reaction-cured glass coated tile plate. Computational fluid dynamics simulations are performed to characterize the arc-jet test environment and estimate its parameters consistent with the facility and calibration measurements. The present analysis comprises simulations of the nonequilibrium flowfield in the facility nozzle, test box, and flowfield over test articles. Both laminar and turbulent simulations are performed, and the computed results are compared with the experimental measurements, including Stanton number dependence on Reynolds number. Comparisons of computed and measured surface heat fluxes (and temperatures), along with the accompanying analysis, confirm that that the boundary layer in the Panel Test Facility flow is transitional at certain archeater conditions.

  1. Performance tests for the NASA Ames Research Center 20 cm x 40 cm oscillating flow wind tunnel

    NASA Technical Reports Server (NTRS)

    Cook, W. J.; Giddings, T. A.

    1984-01-01

    An evaluation is presented of initial tests conducted to assess the performance of the NASA Ames 20 cm x 40 cm oscillating flow wind tunnel. The features of the tunnel are described and two aspects of tunnel operation are discussed. The first is an assessment of the steady mainstream and boundary layer flows and the second deals with oscillating mainstream and boundary layer flows. Experimental results indicate that in steady flow the test section mainstream velocity is uniform in the flow direction and in cross section. The freestream turbulence intensity is about 0.2 percent. With minor exceptions the steady turbulent boundary layer generated on the top wall of the test section exhibits the characteristics of a zero pressure gradient turbulent boundary layer generated on a flat plate. The tunnel was designed to generate sinusoidal oscillating mainstream flows. Experiments confirm that the tunnel produces sinusoidal mainstream velocity variations for the range of frequencies (up to 15 Hz). The results of this study demonstrate that the tunnel essentially produces the flows that it was designed to produce.

  2. An Experimental Study of the Ground Transportation System (GTS) Model in the NASA Ames 7- by 10-Ft Wind Tunnel

    NASA Technical Reports Server (NTRS)

    Storms, Bruce L.; Ross, James C.; Heineck, James T.; Walker, Stephen M.; Driver, David M.; Zilliac, Gregory G.; Bencze, Daniel P. (Technical Monitor)

    2001-01-01

    The 1/8-scale Ground Transportation System (GTS) model was studied experimentally in the NASA Ames 7- by 10-Ft Wind Tunnel. Designed for validation of computational fluid dynamics (CFD), the GTS model has a simplified geometry with a cab-over-engine design and no tractor-trailer gap. As a further simplification, all measurements of the GTS model were made without wheels. Aerodynamic boattail plates were also tested on the rear of the trailer to provide a simple geometry modification for computation. The experimental measurements include body-axis drag, surface pressures, surface hot-film anemometry, oil-film interferometry, and 3-D particle image velocimetry (PIV). The wind-averaged drag coefficient with and without boattail plates was 0.225 and 0.277, respectively. PIV measurements behind the model reveal a significant reduction in the wake size due to the flow turning provided by the boattail plates. Hot-film measurements on the side of the cab indicate laminar separation with turbulent reattachment within 0.08 trailer width for zero and +/- 10 degrees yaw. Oil film interferometry provided quantitative measurements of skin friction and qualitative oil flow images. A complete set of the experimental data and the surface definition of the model are included on a CD-ROM for further analysis and comparison.

  3. A three-dimensional orthogonal laser velocimeter for the NASA Ames 7- by 10-foot wind tunnel

    NASA Technical Reports Server (NTRS)

    Dunagan, Stephen E.; Cooper, Donald L.

    1995-01-01

    A three-component dual-beam laser-velocimeter system has been designed, fabricated, and implemented in the 7-by 10-Foot Wind Tunnel at NASA Ames Research Center. The instrument utilizes optical access from both sides and the top of the test section, and is configured for uncoupled orthogonal measurements of the three Cartesian coordinates of velocity. Bragg cell optics are used to provide fringe velocity bias. Modular system design provides great flexibility in the location of sending and receiving optics to adapt to specific experimental requirements. Near-focus Schmidt-Cassegrain optic modules may be positioned for collection of forward or backward scattered light over a large solid angle, and may be clustered to further increase collection solid angle. Multimode fiber optics transmit collected light to the photomultiplier tubes for processing. Counters are used to process the photomultiplier signals and transfer the processed data digitally via buffered interface controller to the host MS-DOS computer. Considerable data reduction and graphical display programming permit on-line control of data acquisition and evaluation of the incoming data. This paper describes this system in detail and presents sample data illustrating the system's capability.

  4. Optimizing Facility Configurations and Operating Conditions for Improved Performance in the NASA Ames 24 Inch Shock Tube

    NASA Technical Reports Server (NTRS)

    Bogdanoff, David W.; Cruden, Brett A.

    2016-01-01

    The Ames Electric Arc Shock Tube (EAST) is a shock tube wherein the driver gas can be heated by an electric arc discharge. The electrical energy is stored in a 1.2 MJ capacitor bank. Four inch and 24 inch diameter driven tubes are available. The facility is described and the need for testing in the 24 inch tube to better simulate low density NASA mission profiles is discussed. Three test entries, 53, 53B and 59, are discussed. Tests are done with air or Mars gas (95.7% CO2/2.7% N2/1.6% Ar) at pressures of 0.01 to 0.14 Torr. Velocities spanned 6.3-9.2 km/s, with a nominal center of 7 km/s. Many facility configurations are studied in an effort to improve data quality. Various driver and driven tube configurations and the use of a buffer section between the driver and the driven tube are studied. Diagnostics include test times, time histories of the shock light pulses and tilts of the shock wave off the plane normal to the tube axis. The report will detail the results of the various trials, give the best configuration/operating conditions found to date and provide recommendations for further improvements. Finally, diaphragm performance is discussed.

  5. Development of the NASA-Ames low disturbance supersonic wind tunnel for transition research up to Mach 2.5

    NASA Technical Reports Server (NTRS)

    Wolf, Stephen W. D.; Laub, James A.; King, Lyndell S.; Reda, Daniel C.

    1992-01-01

    A unique, low-disturbance supersonic wind tunnel is being developed at NASA-Ames to support supersonic laminar flow control research at cruise Mach numbers of the High Speed Civil Transport (HSCT). The distinctive aerodynamic features of this new quiet tunnel will be a low-disturbance settling chamber, laminar boundary layers on the nozzle walls and steady supersonic diffuser flow. Furthermore, this new wind tunnel will operate continuously at uniquely low compression ratios (less than unity). This feature allows an existing non-specialist compressor to be used as a major part of the drive system. In this paper, we highlight activities associated with drive system development, the establishment of natural laminar flow on the test section walls, and instrumentation development for transition detection. Experimental results from an 1/8th-scale model of the supersonic wind tunnel are presented and discussed in association with theoretical predictions. Plans are progressing to build the full-scale wind tunnel by the end of 1993.

  6. Merging Intelligent Systems Technologies with CFD Analysis Strategies: Prototype Development at NASA Ames

    NASA Technical Reports Server (NTRS)

    Thompson, David E.; Brooks, Walt F. (Technical Monitor)

    1994-01-01

    A collaborative team of researchers from fields of Computational Fluid Dynamics (CFD), fluid physics, computer architectures, and computer science and knowledge engineering have begun work on a prototype system that addresses several of industry's concerns in using NASA-developed CFD codes as part of the design cycle. A major problem exists in the application of CFD technologies within the aeronautics design cycle due primarily to misunderstandings in the ranges of applicability of the various solver codes or turbulence models. Features that arise during the CFD solution process need to be discriminated and recognized as actual flow features with physical support in the geometry and flow conditions of the problem being solved, or as numerical or non-physical errors arising from mis-application of solver code and its parameters, gridding strategies, or discretization. interpolations. The fundamental concept is to develop an intelligent computational system that can accept the engineer's definition of the problem and construct an optimal CFD solution. To do this requires capturing both the knowledge of how to apply the various CFD tools and how to adapt the application of those tools to flow structures as they evolve during the flow simulation. Embedded within this adaptive system approach is the additional desire to automatically identify and quantify the quality of resolution of the pertinent flow structures, be they genuine or error-induced, and then to adjust the solution strategy accordingly. This paper discusses the status of that prototyping effort.

  7. Report on the 2011 and 2012 NASA Ames Research Center (ARC) / Alaska State Cargo Airship Workshops

    NASA Technical Reports Server (NTRS)

    Hochstettler, Ronald

    2012-01-01

    This presentation will summarize the Cargo Airships for Northern Operations workshop that was held August 24-25, 2011. This workshop co-sponsored by NASA ARC and the Alaska State Department of Transportation was initiated by interest from Alaska Lt. Governor Mead Treadwell for assistance in investigating the potential benefits of proposed cargo airships for the Alaskan economy and societal needs. The workshop provided a brief background on the technology and operational aspects of conventional airships and hybrids followed by presentations on issues affecting cargo airship operations such as weather management, insurance, regulations, crew duty/rest rules, and available support infrastructures. Speakers representing potential cargo airship users from Alaskan State and commercial organizations presented the needs they felt could be met by cargo airship services. Presenters from Canadian private and military interests also detailed applications and missions that cargo airships could provide to remote regions of Canada. Cost drivers of cargo airship operations were also addressed and tools for modeling and analyzing operational factors and costs affecting cargo airship operations were discussed. Four breakout sessions were held which allowed workshop participants to contribute inputs to four topic areas: Business Approaches and Strategies (financing incentives public/private partnerships etc) for Airship Development and Operation, Design, Development, Production Challenges, and Possible Solutions, Regulatory, Certification, Legal, and Insurance Issues, and Operational Issues, Customer Requirements, and Airship Requirements. A follow on to the 2011 cargo airship workshop is being planned for July 31 August 2, 2012. A status update on this second workshop will also be presented.

  8. Analytical study of the effects of wind tunnel turbulence on turbofan rotor noise. [NASA Ames 40 by 80 foot wind tunnel

    NASA Technical Reports Server (NTRS)

    Gliebe, P. R.; Kerschen, E. J.

    1979-01-01

    The influence of tunnel turbulence on turbofan rotor noise was carried out to evaluate the effectiveness of the NASA Ames 40 by 80 foot tunnel in simulating flight levels of fan noise. A previously developed theory for predicting rotor/turbulence interaction noise was refined and extended to include first-order effects of inlet turbulence anisotropy. This theory was then verified by carrying out extensive data/theory comparisons. The resulting model computer program was then employed to carry out a parametric study of the effects of fan size, blade number, and operating line on rotor/turbulence noise for outdoor test stand. NASA Ames wind tunnel, and flight inlet turbulence conditions. A major result of this study is that although wind tunnel rotor/turbulence noise levels are not as low as flight levels they are substantially lower than the outdoor test stand levels and do not mask other sources of fan noise.

  9. National Aeronautics and Space Administration (NASA) Education 1993-2009

    ERIC Educational Resources Information Center

    Ivie, Christine M.

    2009-01-01

    The National Aeronautics and Space Administration was established in 1958 and began operating a formal education program in 1993. The purpose of this study was to analyze the education program from 1993-2009 by examining strategic plan documents produced by the NASA education office and interviewing NASA education officials who served during that…

  10. Current Background Noise Sources and Levels in the NASA Ames 40- by 80-Foot Wind Tunnel: A Status Report

    NASA Technical Reports Server (NTRS)

    Allen, Christopher S.; Jaeger, Stephen; Soderman, Paul; Koga, Dennis (Technical Monitor)

    1999-01-01

    Background noise measurements were made of the acoustic environment in the National Full-Scale Aerodynamics Complex 40- by 80-Foot Wind Tunnel (40x80) at NASA Ames Research Center. The measurements were acquired subsequent to the 40x80 Aeroacoustic Modernization Project, which was undertaken to improve the anechoic characteristics of the 40x80's closed test section as well as reduce the levels of background noise in the facility. The resulting 40x80 anechoic environment was described by Soderman et. al., and the current paper describes the resulting 40x80 background noise, discusses the sources of the noise, and draws comparisons to previous 40x80 background noise levels measurements. At low wind speeds or low frequencies, the 40x80 background noise is dominated by the fan drive system. To obtain the lowest fan drive noise for a given tunnel condition, it is possible in the 40x80 to reduce the fans' rotational speed and adjust the fans' blade pitch, as described by Schmidtz et. al. This idea is not new, but has now been operationally implemented with modifications for increased power at low rotational speeds. At low to mid-frequencies and at higher wind speeds, the dominant noise mechanism was thought to be caused by the surface interface of the previous test section floor acoustic lining. In order to reduce this noise mechanism, the new test section floor lining was designed to resist the pumping of flow in and out of the space between the grating slats required to support heavy equipment. In addition, the lining/flow interface over the entire test section was designed to be smoother and quieter than the previous design. At high wind speeds or high frequencies, the dominant source of background noise in the 40x80 is believed to be caused by the response of the in-flow microphone probes (required by the nature of the closed test section) to the fluctuations in the freestream flow. The resulting background noise levels are also different for probes of various

  11. Piloted Evaluation of Modernized Limited Authority Control Laws in the NASA-Ames Vertical Motion Simulator (VMS)

    NASA Technical Reports Server (NTRS)

    Sahasrabudhe, Vineet; Melkers, Edgar; Faynberg, Alexander; Blanken, Chris L.

    2003-01-01

    The UH-60 BLACK HAWK was designed in the 1970s, when the US Army primarily operated during the day in good visual conditions. Subsequently, the introduction of night-vision goggles increased the BLACK HAWK'S mission effectiveness, but the accident rate also increased. The increased accident rate is strongly tied to increased pilot workload as a result of a degradation in visual cues. Over twenty years of research in helicopter flight control and handling qualities has shown that these degraded handling qualities can be recovered by modifying the response type of the helicopter in low speed flight. Sikorsky Aircraft Corporation initiated a project under the National Rotorcraft Technology Center (NRTC) to develop modern flight control laws while utilizing the existing partial authority Stability Augmentation System (SAS) of the BLACK HAWK. This effort resulted in a set of Modernized Control Laws (MCLAWS) that incorporate rate command and attitude command response types. Sikorsky and the US Army Aeroflightdynamics Directorate (AFDD) conducted a piloted simulation on the NASA-Ames Vertical h4otion Simulator, to assess potential handling qualities and to reduce the risk of subsequent implementation and flight test of these modern control laws on AFDD's EH-60L helicopter. The simulation showed that Attitude Command Attitude Hold control laws in pitch and roll improve handling qualities in the low speed flight regime. These improvements are consistent across a range of mission task elements and for both good and degraded visual environments. The MCLAWS perform better than the baseline UH-60A control laws in the presence of wind and turbulence. Finally, while the improved handling qualities in the pitch and roll axis allow the pilot to pay more attention to the vertical axis and hence altitude performance also improves, it is clear from pilot comments and altitude excursions that the addition of an Altitude Hold function would further reduce workload and improve overall

  12. Early postnatal administration of growth hormone increases tuberoinfundibular dopaminergic neuron numbers in Ames dwarf mice.

    PubMed

    Khodr, Christina E; Clark, Sara; Bokov, Alex F; Richardson, Arlan; Strong, Randy; Hurley, David L; Phelps, Carol J

    2010-07-01

    Hypothalamic tuberoinfundibular dopaminergic (TIDA) neurons secrete dopamine, which inhibits pituitary prolactin (PRL) secretion. PRL has demonstrated neurotrophic effects on TIDA neuron development in PRL-, GH-, and TSH-deficient Ames (df/df) and Snell (dw/dw) dwarf mice. However, both PRL and PRL receptor knockout mice exhibit normal-sized TIDA neuron numbers, implying GH and/or TSH influence TIDA neuron development. The current study investigated the effect of porcine (p) GH on TIDA neuron development in Ames dwarf hypothalamus. Normal (DF/df) and dwarf mice were treated daily with pGH or saline beginning at 3 d of age for a period of 42 d. After treatment, brains were analyzed using catecholamine histofluorescence, tyrosine hydroxylase immunocytochemistry, and bromodeoxyuridine (BrdU) immunocytochemistry to detect BrdU incorporation. DF/df males and df/df treated with pGH experienced increased (P

  13. Nanotechnology at NASA Ames

    NASA Technical Reports Server (NTRS)

    Srivastava, Deepak; Meyyappan, Meyya; Yan, Jerry (Technical Monitor)

    2000-01-01

    Advanced miniaturization, a key thrust area to enable new science and exploration missions, provides ultrasmall sensors, power sources, communication, navigation, and propulsion systems with very low mass, volume, and power consumption. Revolutions in electronics and computing will allow reconfigurable, autonomous, 'thinking' spacecraft. Nanotechnology presents a whole new spectrum of opportunities to build device components and systems for entirely new space architectures: (1) networks of ultrasmall probes on planetary surfaces; (2) micro-rovers that drive, hop, fly, and burrow; and (3) collections of microspacecraft making a variety of measurements.

  14. Report of the Interagency Optical Network Testbeds Workshop 2 September 12-14, 2006 NASA Ames Research Center

    SciTech Connect

    Joe Mambretti Richard desJardins

    2006-05-01

    A new generation of optical networking services and technologies is rapidly changing the world of communications. National and international networks are implementing optical services to supplement traditional packet routed services. On September 12-14, 2005, the Optical Network Testbeds Workshop 2 (ONT2), an invitation-only forum hosted by the NASA Research and Engineering Network (NREN) and co-sponsored by the Department of Energy (DOE), was held at NASA Ames Research Center in Mountain View, California. The aim of ONT2 was to help the Federal Large Scale Networking Coordination Group (LSN) and its Joint Engineering Team (JET) to coordinate testbed and network roadmaps describing agency and partner organization views and activities for moving toward next generation communication services based on leading edge optical networks in the 3-5 year time frame. ONT2 was conceived and organized as a sequel to the first Optical Network Testbeds Workshop (ONT1, August 2004, www.nren.nasa.gov/workshop7). ONT1 resulted in a series of recommendations to LSN. ONT2 was designed to move beyond recommendations to agree on a series of “actionable objectives” that would proactively help federal and partner optical network testbeds and advanced research and education (R&E) networks to begin incorporating technologies and services representing the next generation of advanced optical networks in the next 1-3 years. Participants in ONT2 included representatives from innovative prototype networks (Panel A), basic optical network research testbeds (Panel B), and production R&D networks (Panels C and D), including “JETnets,” selected regional optical networks (RONs), international R&D networks, commercial network technology and service providers (Panel F), and senior engineering and R&D managers from LSN agencies and partner organizations. The overall goal of ONT2 was to identify and coordinate short and medium term activities and milestones for researching, developing, identifying

  15. Summary Report of the NASA Management Study Group: Recommendations to the Administrator, National Aeronautics and Space Administration

    NASA Technical Reports Server (NTRS)

    Phillips, Samuel C.

    1986-01-01

    The NASA Management Study Group (NMSG) was established under the auspices of the National Acedamy of Public Administration at the request of the Administrator of NASA to assess NASA's management practices and to evaluate the effectiveness of the NASA organization. This report summarizes the conclusions and recommendations of the NMSG on the overall management and organization of NASA.

  16. NASA Ames Laminar Flow Supersonic Wind Tunnel (LFSWT) Tests of a 10 deg Cone at Mach 1.6

    NASA Technical Reports Server (NTRS)

    Wolf, Stephen W. D.; Laub, James A.

    1997-01-01

    This work is part of the ongoing qualification of the NASA Ames Laminar Flow Supersonic Wind Tunnel (LFSWT) as a low-disturbance (quiet) facility suitable for transition research. A 10 deg cone was tested over a range of unit Reynolds numbers (Re = 2.8 to 3.8 million per foot (9.2 to 12.5 million per meter)) and angles of incidence (O deg to 10 deg) at Mach 1.6. The location of boundary layer transition along the cone was measured primarily from surface temperature distributions, with oil flow interferometry and Schlieren flow visualization providing confirmation measurements. With the LFSWT in its normal quiet operating mode, no transition was detected on the cone in the test core, over the Reynolds number range tested at zero incidence and yaw. Increasing the pressure disturbance levels in the LFSWT test section by a factor of five caused transition onset on the cone within the test core, at zero incidence and yaw. When operating the LFSWT in its normal quiet mode, transition could only be detected in the test core when high angles of incidence (greater than 5 deg) for cones were set. Transition due to elevated pressure disturbances (Tollmien-Schlichting) and surface trips produced a skin temperature rise of order 4 F (2.2 C). Transition due to cross flows on the leeward side of the cone at incidence produced a smaller initial temperature rise of only order 2.5 F (1.4 C), which indicates a slower transition process. We can conclude that these cone tests add further proof that the LFSWT test core is normally low-disturbance (pressure fluctuations greater than 0.1%), as found by associated direct flow quality measurements discussed in this report. Furthermore, in a quiet test environment, the skin temperature rise is sensitive to the type of dominant instability causing transition. The testing of a cone in the LFSWT provides an excellent experiment for the development of advanced transition detection techniques.

  17. New results from the analyses of the solid phase of the NASA Ames Titan Haze Simulation (THS) experiment

    NASA Astrophysics Data System (ADS)

    Sciamma-O'Brien, Ella; Upton, Kathleen T.; Beauchamp, Jesse L.; Salama, Farid

    2015-11-01

    In Titan’s atmosphere, a complex chemistry occurs at low temperature between N2 and CH4 that leads to the production of heavy organic molecules and subsequently solid aerosols. The Titan Haze Simulation (THS) experiment was developed at the NASA Ames COSmIC facility to study Titan’s atmospheric chemistry at low temperature. In the THS, the chemistry is simulated by plasma in the stream of a supersonic expansion. With this unique design, the gas is cooled to Titan-like temperature (~150K) before inducing the chemistry by plasma, and remains at low temperature in the plasma (~200K). Different N2-CH4-based gas mixtures can be injected in the plasma, with or without the addition of heavier molecules, in order to monitor the evolution of the chemical growth.Following a recent in situ mass spectrometry study of the gas phase that demonstrated that the THS is a unique tool to probe the first and intermediate steps of Titan’s atmospheric chemistry at low temperature (Sciamma-O’Brien et al., Icarus, 243, 325 (2014)), we have performed a complementary study of the solid phase. The findings are consistent with the chemical growth evolution observed in the gas phase. Grains and aggregates form in the gas phase and can be jet deposited onto various substrates for ex situ analyses. Scanning Electron Microscopy images show that more complex mixtures produce larger aggregates, and that different growth mechanisms seem to occur depending on the gas mixture. They also allow the determination of the size distribution of the THS solid grains. A Direct Analysis in Real Time mass spectrometry analysis coupled with Collision Induced Dissociation has detected the presence of aminoacetonitrile, a precursor of glycine, in the THS aerosols. X-ray Absorption Near Edge Structure (XANES) measurements also show the presence of imine and nitrile functional groups, showing evidence of nitrogen chemistry. Infrared and µIR spectra of samples deposited on KBr and Si substrates show the

  18. Model Deformation Measurements of Sonic Boom Models in the NASA Ames 9- by 7-Ft Supersonic Wind Tunnel

    NASA Technical Reports Server (NTRS)

    Schairer, Edward T.; Kushner, Laura K.; Garbeff, Theodore J.; Heineck, James T.

    2015-01-01

    The deformations of two sonic-boom models were measured by stereo photogrammetry during tests in the 9- by 7-Ft Supersonic Wind Tunnel at NASA Ames Research Center. The models were geometrically similar but one was 2.75 times as large as the other. Deformation measurements were made by simultaneously imaging the upper surfaces of the models from two directions by calibrated cameras that were mounted behind windows of the test section. Bending and twist were measured at discrete points using conventional circular targets that had been marked along the leading and trailing edges of the wings and tails. In addition, continuous distributions of bending and twist were measured from ink speckles that had been applied to the upper surfaces of the model. Measurements were made at wind-on (M = 1.6) and wind-off conditions over a range of angles of attack between 2.5 deg. and 5.0 deg. At each condition, model deformation was determined by comparing the wind-off and wind-on coordinates of each measurement point after transforming the coordinates to reference coordinates tied to the model. The necessary transformations were determined by measuring the positions of a set of targets on the rigid center-body of the models whose model-axes coordinates were known. Smoothly varying bending and twist measurements were obtained at all conditions. Bending displacements increased in proportion to the square of the distance to the centerline. Maximum deflection of the wingtip of the larger model was about 5 mm (2% of the semispan) and that of the smaller model was 0.9 mm (1% of the semispan). The change in wing twist due to bending increased in direct proportion to distance from the centerline and reached a (absolute) maximum of about -1? at the highest angle of attack for both models. The measurements easily resolved bending displacements as small as 0.05 mm and bending-induced changes in twist as small as 0.05 deg.

  19. The NASA Ames PAH IR Spectroscopic Database Version 2.00: Updated Content, Web Site, and On(Off)line Tools

    NASA Astrophysics Data System (ADS)

    Boersma, C.; Bauschlicher, C. W., Jr.; Ricca, A.; Mattioda, A. L.; Cami, J.; Peeters, E.; Sánchez de Armas, F.; Puerta Saborido, G.; Hudgins, D. M.; Allamandola, L. J.

    2014-03-01

    A significantly updated version of the NASA Ames PAH IR Spectroscopic Database, the first major revision since its release in 2010, is presented. The current version, version 2.00, contains 700 computational and 75 experimental spectra compared, respectively, with 583 and 60 in the initial release. The spectra span the 2.5-4000 μm (4000-2.5 cm-1) range. New tools are available on the site that allow one to analyze spectra in the database and compare them with imported astronomical spectra as well as a suite of IDL object classes (a collection of programs utilizing IDL's object-oriented programming capabilities) that permit offline analysis called the AmesPAHdbIDLSuite. Most noteworthy among the additions are the extension of the computational spectroscopic database to include a number of significantly larger polycyclic aromatic hydrocarbons (PAHs), the ability to visualize the molecular atomic motions corresponding to each vibrational mode, and a new tool that allows one to perform a non-negative least-squares fit of an imported astronomical spectrum with PAH spectra in the computational database. Finally, a methodology is described in the Appendix, and implemented using the AmesPAHdbIDLSuite, that allows the user to enforce charge balance during the fitting procedure.

  20. THE NASA AMES PAH IR SPECTROSCOPIC DATABASE VERSION 2.00: UPDATED CONTENT, WEB SITE, AND ON(OFF)LINE TOOLS

    SciTech Connect

    Boersma, C.; Mattioda, A. L.; Allamandola, L. J.; Bauschlicher, C. W. Jr.; Ricca, A.; Cami, J.; Peeters, E.; De Armas, F. Sánchez; Saborido, G. Puerta; Hudgins, D. M.

    2014-03-01

    A significantly updated version of the NASA Ames PAH IR Spectroscopic Database, the first major revision since its release in 2010, is presented. The current version, version 2.00, contains 700 computational and 75 experimental spectra compared, respectively, with 583 and 60 in the initial release. The spectra span the 2.5-4000 μm (4000-2.5 cm{sup -1}) range. New tools are available on the site that allow one to analyze spectra in the database and compare them with imported astronomical spectra as well as a suite of IDL object classes (a collection of programs utilizing IDL's object-oriented programming capabilities) that permit offline analysis called the AmesPAHdbIDLSuite. Most noteworthy among the additions are the extension of the computational spectroscopic database to include a number of significantly larger polycyclic aromatic hydrocarbons (PAHs), the ability to visualize the molecular atomic motions corresponding to each vibrational mode, and a new tool that allows one to perform a non-negative least-squares fit of an imported astronomical spectrum with PAH spectra in the computational database. Finally, a methodology is described in the Appendix, and implemented using the AmesPAHdbIDLSuite, that allows the user to enforce charge balance during the fitting procedure.

  1. NASA Deputy Administrator Tours Marshall Space Flight Center

    NASA Technical Reports Server (NTRS)

    1968-01-01

    Pictured from the left, in the Saturn I mockup, are: William Brooksbank, Marshall Space Flight Center (MSFC) Propulsion and Vehicle Engineering Laboratory; Dr. Thomas O. Paine, Deputy Administrator of the National Aeronautics and Space Administration (NASA); Dr. Wernher von Braun, MSFC director; Colonel Clare F. Farley, executive officer of the Office of the Administrator; and Charles J. Donlan, newly appointed deputy associate administrator for Manned Space Flight, technical. The party examined an ordinary man's shoe (held by Paine) outfitted for use in the Saturn I Workshop. The shoe had a unique fastener built into the sole to allow an astronaut to move about the workshop floor and to remain in one position if he desired. Dr. Paine and his party indulged in a two-day tour at the Marshall Space Flight Center getting acquainted with Marshall personnel and programs. It was Paine's first visit to the center since assuming the NASA post on February 1, 1968.

  2. National Aeronautics and Space Administration (NASA) education 1993--2009

    NASA Astrophysics Data System (ADS)

    Ivie, Christine M.

    The National Aeronautics and Space Administration was established in 1958 and began operating a formal education program in 1993. The purpose of this study was to analyze the education program from 1993 -- 2009 by examining strategic plan documents produced by the NASA education office and interviewing NASA education officials who served during that time period. Constant changes in education leadership at NASA resulted in changes in direction in the education program and the documents produced by each administration reflected both small and some significant changes in program direction. The result of the analysis of documents and interview data was the identification of several trends in the NASA education program. This study identified three significant trends in NASA education. First, the approach that NASA took in both its EPO efforts and in the efforts directed by the Office of Education is disjointed and seems to reflect individual preferences in education approaches designed to reach populations that are of interest to the individuals in decision-making positions rather than reflect a systematic approach designed to meet identified goals and outcomes. Second, this disjointed and person-driven approach led to a lack of consistent evaluation data available for review and planning purposes. Third, there was an ongoing assumption made by the education community that NASA education efforts were tied to larger education reports, concerns, needs, initiatives and evidence collected and presented in Science Technology Engineering and Math (STEM) education-related studies over the past twenty years. In fact, there is no evidence that the programs and projects initiated were a response to these identified needs or initiatives. That does not mean that NASA's efforts did not contribute to STEM education initiatives in the United States. This study, however, indicates that contributions to those initiatives occurred as a byproduct of the effort and not because of specific

  3. A Tale of Two Small Business Grants: The Best of Times, the Worst of Times from the NASA Ames Small Business Innovative Research (SBIR) Program

    NASA Technical Reports Server (NTRS)

    Kojiro, Daniel R.; Lee, Geoffrey S.

    2006-01-01

    The purposes of the SBIR Program are to: stimulate technological innovation in the private sector; strengthen the role of Small Business Concerns (SBCs) in meeting Federal research and development needs; increase the commercial application of these research results; and encourage participation of socially and economically disadvantaged persons and women-owned small businesses. The process can be highly rewarding, providing the small business with resources to pursue research and development with a focus on providing NASA with new and advanced capabilities. We present two examples of how the NASA Ames SBIR Program has addressed these purposes, nurturing innovative ideas from small, businesses into commercially viable products that also address analytical needs in space research. These examples, from the Science Instruments for Conducting Solar System Exploration Subtopic, describe the journey from innovative concept to analytical instrument, one successful and one hampered by numerous roadblocks (including some international intrigue}.

  4. 77 FR 52067 - NASA Advisory Council; Commercial Space Committee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-28

    ... SPACE ADMINISTRATION NASA Advisory Council; Commercial Space Committee; Meeting AGENCY: National Aeronautics and Space Administration. ACTION: Notice of meeting. SUMMARY: This Committee reports to the NAC... Agreements --Ames Research Center's Commercial Space Activities and Plans --Dryden Flight Research...

  5. Development of a High Resolution Weather Forecast Model for Mesoamerica Using the NASA Ames Code I Private Cloud Computing Environment

    NASA Technical Reports Server (NTRS)

    Molthan, Andrew; Case, Jonathan; Venner, Jason; Moreno-Madrinan, Max J.; Delgado, Francisco

    2012-01-01

    Two projects at NASA Marshall Space Flight Center have collaborated to develop a high resolution weather forecast model for Mesoamerica: The NASA Short-term Prediction Research and Transition (SPoRT) Center, which integrates unique NASA satellite and weather forecast modeling capabilities into the operational weather forecasting community. NASA's SERVIR Program, which integrates satellite observations, ground-based data, and forecast models to improve disaster response in Central America, the Caribbean, Africa, and the Himalayas.

  6. NASA Administrator Dan Goldin greets 10-year-old VIP.

    NASA Technical Reports Server (NTRS)

    2000-01-01

    NASA Administrator Dan Goldin (left) watches as 10-year-old Jonathan Pierce (right), who is garbed in a protective cooling suit designed by NASA, shakes hands with astronaut Dog Wheelock. Behind Jonathan is his mother, Penny. Jonathan suffers from erythropoietic protoporphyria, a rare condition that makes his body unable to withstand ultraviolet rays. The suit allows him to be outside during the day, which would otherwise be impossible. Jonathan's trip was funded by the Make-A-Wish Foundation and included a visit to Disney World. He and his family were among a dozen VIPs at KSC to view the launch of STS-99.

  7. NASA Administrator Dan Goldin greets 10-year-old VIP.

    NASA Technical Reports Server (NTRS)

    2000-01-01

    NASA Administrator Dan Goldin (left) shares a laugh with VIP 10- year-old Jonathan Pierce (right), who is garbed in a protective cooling suit designed by NASA. Behind Goldin is astronaut Doug Wheelock; behind Jonathan is his mother, Penny. Jonathan suffers from erythropoietic protoporphyria, a rare condition that makes his body unable to withstand ultraviolet rays. The suit allows him to be outside during the day, which would otherwise be impossible. Jonathan's trip was funded by the Make-A-Wish Foundation and included a visit to Disney World. He and his family were among a dozen VIPs at KSC to view the launch of STS- 99.

  8. NASA Administrator Dan Goldin greets 10-year-old VIP.

    NASA Technical Reports Server (NTRS)

    2000-01-01

    NASA Administrator Dan Goldin (left) shares a light moment during his meeting with 10-year-old Jonathan Pierce (right), who is garbed in a protective cooling suit designed by NASA. Behind Goldin is astronaut Doug Wheelock; behind Jonathan is his mother, Penny. Jonathan suffers from erythropoietic protoporphyria, a rare condition that makes his body unable to withstand ultraviolet rays. The suit allows him to be outside during the day, which would otherwise be impossible. Jonathan's trip was funded by the Make-A-Wish Foundation and included a visit to Disney World. He and his family were among a dozen VIPs at KSC to view the launch of STS-99.

  9. NASA Administrator Dan Goldin greets 10-year-old VIP.

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Ten-year-old Jonathan Pierce (second from right), who is garbed in a protective cooling suit, without the helmet, which was designed by NASA, poses with (left to right) NASA Administrator Dan Goldin, Mrs. Goldin, and astronaut Doug Wheelock. Jonathan suffers from erythropoietic protoporphyria, a rare condition that makes his body unable to withstand ultraviolet rays. The suit allows him to be outside during the day, which would otherwise be impossible. Jonathan's trip was funded by the Make-A-Wish Foundation and included a visit to Disney World. He and his family were among a dozen VIPs at KSC to view the launch of STS- 99.

  10. NASA Administrator Dan Goldin greets 10-year-old VIP.

    NASA Technical Reports Server (NTRS)

    2000-01-01

    NASA Administrator Dan Goldin (left) listens intently to 10-year- old Jonathan Pierce (right), who is garbed in a protective cooling suit designed by NASA. Behind Goldin is astronaut Doug Wheelock; behind Jonathan is his mother, Penny. Jonathan suffers from erythropoietic protoporphyria, a rare condition that makes his body unable to withstand ultraviolet rays. The suit allows him to be outside during the day, which would otherwise be impossible. Jonathan's trip was funded by the Make-A-Wish Foundation and included a visit to Disney World. He and his family were among a dozen VIPs at KSC to view the launch of STS- 99.

  11. Joseph Ames

    NASA Technical Reports Server (NTRS)

    1920-01-01

    Dr. Joseph Sweetman Ames at his desk at the NACA headquarters. Dr. Ames was a founding member of NACA (National Advisory Committee for Aeronautics), appointed by President Woodrow Wilson in 1915. Ames took on NACA's most challenging assignments but mostly represented physics. He chaired the Foreign Service Committee of the newly-founded National Research Council, oversaw the NACA's patent cross-licensing plan that allowed manufacturers to share technologies. Ames expected the NACA to encourage engineering education. He pressed universities to train more aerodynamicists, then structured NACA to give young engineers on-the-job training. Ames gave the NACA a focused vision that was research-based and decided that aerodynamics was the most important field of endeavor. He championed the work of theorists like Max Munk. The world class wind tunnels at Langley Aeronautical laboratory reflected his vision as well as the faith Congress put in him. Ames became chairman of the NACA main committee in 1927. Two years later he accepted the Collier Trophy on behalf on the NACA. He kept the NACA alive when Herbert Hoover tried to eliminate it and transfer its duties to industry. Ames accepted a nomination by Air Minister Hermann Goring to the Deutsche Akademie der Luftfartforschung. Ames then considered it an honor, many Americans did, and was surprised to learn about the massive Nazi investment in aeronautical infrastructure, then six times larger than the NACA. Ames urged the funding for a second laboratory and expansion of the NACA facilities to prepare for war. A stroke in May 1936 paralyzed the right side of his body. He immediately resigned as chairman of the NACA executive committee and in October 1937 he resigned from the NACA main committee. On June 8, 1944 the NACA officially dedicated its new laboratory in Sunnyvale California to Joseph S. Ames. Ames died in 1943, having never stepped foot in the new laboratory that bears his name; the Ames Aeronautical Laboratory

  12. The administration of the NASA space tracking system and the NASA space tracking system in Australia

    NASA Technical Reports Server (NTRS)

    Hollander, N.

    1973-01-01

    The international activities of the NASA space program were studied with emphasis on the development and maintenance of tracking stations in Australia. The history and administration of the tracking organization and the manning policies for the stations are discussed, and factors affecting station operation are appraised. A field study of the Australian tracking network is included.

  13. NASA Administrator Dan Goldin talks with STS-78 crew

    NASA Technical Reports Server (NTRS)

    1996-01-01

    NASA Administrator Dan Goldin (left) chats with STS-78 Mission Commander Terence 'Tom' Henricks (center) and KSC Director Jay Honeycutt underneath the orbiter Columbia. Columbia and her seven-member crew touched down on Runway 33 of KSC's Shuttle Landing Facility at 8:36 a.m. EDT, July 7, bringing to a close the longest Shuttle flight to date. STS-78, which also was the 78th Shuttle flight, lasted 16 days, 21 minutes and 47 seconds.

  14. Ames Research Center Publications-1976

    NASA Technical Reports Server (NTRS)

    Sherwood, B.

    1978-01-01

    Bibliography of the publications of Ames Research Center authors and contractors, which appeared in formal NASA publications, journal articles, books, chapters of books, patents, and contractor reports. Covers 1976.

  15. Ames Scientists Develop MSL Instrument

    NASA Video Gallery

    David Blake, a research scientist at NASA Ames, led the development of CheMin, one of ten scientific instruments onboard Curiosity, the Mars Scientific Laboratory. The Powder X-Ray Diffraction tool...

  16. Ames research center publications, 1975

    NASA Technical Reports Server (NTRS)

    Sherwood, B. R. (Compiler)

    1977-01-01

    This bibliography cites 851 documents by Ames Research Center personnel and contractors which appeared in formal NASA publications, journals, books, patents, and contractor reports in 1975, or not included in previous annual bibliographies. An author index is provided.

  17. Results of a long-term study of vapor intrusion at four large buildings at the NASA Ames Research Center.

    PubMed

    Brenner, David

    2010-06-01

    Most of the published empirical data on indoor air concentrations resulting from vapor intrusion of contaminants from underlying groundwater are for residential structures. The National Aeronautics and Space Administration (NASA) Research Park site, located in Moffett Field, CA, and comprised of 213 acres, is being planned for redevelopment as a collaborative research and educational campus with associated facilities. Groundwater contaminated with hydrocarbon and halogenated hydrocarbon volatile organic compounds (VOCs) is the primary environmental medium of concern at the site. Over a 15-month period, approximately 1000 indoor, outdoor ambient, and outdoor ambient background samples were collected from four buildings designated as historical landmarks using Summa canisters and analyzed by the U.S. Environmental Protection Agency TO-15 selective ion mode. Both 24-hr and sequential 8-hr samples were collected. Comparison of daily sampling results relative to daily background results indicates that the measured trichloroethylene (TCE) concentrations were primarily due to the subsurface vapor intrusion pathway, although there is likely some contribution due to infiltration of TCE from the outdoor ambient background concentrations. Analysis of the cis-1,2-dichloroethylene concentrations relative to TCE concentrations with respect to indoor air concentrations and the background air support this hypothesis; however, this indicates that relative contributions of the vapor intrusion and infiltration pathways vary with each building. Indoor TCE concentrations were also compared with indoor benzene and background benzene concentrations. These data indicate significant correlation between background benzene concentrations and the concentration of benzene in the indoor air, indicating benzene was present in the indoor air primarily through infiltration of outdoor air into the indoor space. By comparison, measured TCE indoor air concentrations showed a significantly different

  18. Results of the AFRSI rewaterproofing systems screening test in the NASA/Ames Research Center (ARC) 2 x 2-foot transonic wind tunnel

    NASA Technical Reports Server (NTRS)

    Marroquin, J.; Kingsland, R. B.

    1985-01-01

    An experimental investigation was conducted in the NASA/Ames Research Center 2x2-foot Transonic Wind Tunnel to evaluate two AFRSI rewaterproofing systems and to investigate films as a means of reducing blanket joint distortion. The wind tunnel wall slot configuration influenced on the flow field over the test panel was investigated; primarily using oil flow data, and resulted in a closed slot configuration to provide a satisfactory screening environment flow field for the test. Sixteen AFRSI test panels, configured to represent the test system or film, were subjected to this screening environment (a flow field of separated and reattached flow at a freestream Mach numnber of 0.65 and q = 650 or 900 psf). Each condition was held until damage to the test article was observed or 55 minutes if no damage was incurred. All objectives related to AFRSI rewaterproofing and to the use of films to stiffen the blanket fibers were achieved.

  19. Thermal modeling of the NASA-Ames Research Center Cryogenic Optical Test Facility and a single-arch, fused-natural-quartz mirror

    NASA Technical Reports Server (NTRS)

    Ng, Y. S.; Augason, Gordon C.; Young, Jeffrey A.; Howard, Steven D.; Melugin, Ramsey K.

    1990-01-01

    A thermal model of the dewar and optical system of the Cryogenic Optical Test Facility at NASA-Ames Research Center was developed using the computer codes SINDA and MONTE CARLO. The model was based on the geometry, boundary conditions, and physical properties of the test facility and was developed to investigate heat transfer mechanisms and temperatures in the facility and in test mirrors during cryogenic optical tests. A single-arch, fused-natural-quartz mirror was the first mirror whose thermal loads and temperature distributions were modeled. From the temperature distribution, the thermal gradients in the mirror were obtained. The model predicted that a small gradient should exist for the single arch mirror. This was later verified by the measurement of mirror temperatures. The temperatures, predicted by the model at various locations within the dewar, were in relatively good agreement with the measured temperatures. The model is applicable to both steady-state and transient cooldown operations.

  20. Proposed Use of the NASA Ames Nebula Cloud Computing Platform for Numerical Weather Prediction and the Distribution of High Resolution Satellite Imagery

    NASA Technical Reports Server (NTRS)

    Limaye, Ashutosh S.; Molthan, Andrew L.; Srikishen, Jayanthi

    2010-01-01

    The development of the Nebula Cloud Computing Platform at NASA Ames Research Center provides an open-source solution for the deployment of scalable computing and storage capabilities relevant to the execution of real-time weather forecasts and the distribution of high resolution satellite data to the operational weather community. Two projects at Marshall Space Flight Center may benefit from use of the Nebula system. The NASA Short-term Prediction Research and Transition (SPoRT) Center facilitates the use of unique NASA satellite data and research capabilities in the operational weather community by providing datasets relevant to numerical weather prediction, and satellite data sets useful in weather analysis. SERVIR provides satellite data products for decision support, emphasizing environmental threats such as wildfires, floods, landslides, and other hazards, with interests in numerical weather prediction in support of disaster response. The Weather Research and Forecast (WRF) model Environmental Modeling System (WRF-EMS) has been configured for Nebula cloud computing use via the creation of a disk image and deployment of repeated instances. Given the available infrastructure within Nebula and the "infrastructure as a service" concept, the system appears well-suited for the rapid deployment of additional forecast models over different domains, in response to real-time research applications or disaster response. Future investigations into Nebula capabilities will focus on the development of a web mapping server and load balancing configuration to support the distribution of high resolution satellite data sets to users within the National Weather Service and international partners of SERVIR.

  1. Ocean-atmosphere relationships from synoptic scale to local scale in South San Francisco Bay, with implications to flood risk at NASA Ames Research Center, Silicon Valley

    NASA Astrophysics Data System (ADS)

    Mills, W. B.; Costa-Cabral, M. C.; Bromirski, P. D.; Miller, N. L.; Coats, R. N.; Loewenstein, M.; Roy, S. B.; MacWilliams, M.

    2012-12-01

    This work evaluates the implications to flooding risk at the low-lying NASA Ames Research Center in South San Francisco Bay under historical and projected climate and sea level rise. Atmospheric circulation patterns over the Pacific Ocean, influenced by ENSO and PDO, can result in extended periods of higher mean coastal sea level in California. Simultaneously they originate a larger number of storms that make landfall and have higher mean intensity. These storms generate barometrically-induced high water anomalies, and winds that are sometimes capable of producing large coastal waves. Storm surges that propagate from the coast into the estuary and South Bay, and locally-generated waves, may compromise the discharge capacity of stream channels. These conditions also typically generate high intensity rainfall, and the reduced channel capacity may result in fluvial flooding. Such atmospheric circulation patterns may persist for many months, during which California experiences more precipitation events of longer mean duration and higher intensity, leading to large precipitation totals that saturate soils and may exceed the storage capacity of stormwater retention ponds. Future scenarios of sea level rise, that may surpass a meter in this century according to the projections recently published by the National Research Council for states of CA, OR and WA, and projected atmospheric circulation changes associated with anthropogenic climate change, may amplify these risks. We evaluate the impacts of these changes on NASA's Ames Research Center through four areas of study: (i) wetland accretion and evolution as mean sea level rises, with implications to the Bay's response to the sea level rise and storm surges, (ii) hydrodynamic modeling to simulate the propagation of tidal height and storm surges in the Bay and the influence of local winds on wave height, (iii) evaluation of historical data and future climate projections to identify extreme precipitation events, and (iv

  2. Measurement and Analysis of Atmospheric Spectral Optical Depths with NASA Ames Airborne Sunphotometers During TARFOX and ACE-2

    NASA Technical Reports Server (NTRS)

    Livingston, John M.

    1997-01-01

    In accordance with the scope of work of this contract, the following tasks were undertaken and completed during the course of the contract: (1) Participation in the design and development of the 14-channel Ames Airborne Tracking Sunphotometer (AATS-14), including the development and implementation of Visual Basic software for real-time data processing and display and post-acquisition data reduction and analysis. (2) Operation of the six-channel Ames Airborne Tracking Sunphotometer (AATS-6) aboard the University of Washington C-131A during TARFOX and in-field analysis and presentation of data acquired with the AATS-6. (3) Post-mission analysis of data acquired during TARFOX with the AATS-6 and the AATS-14. (4) Pre-TARFOX calibration of the AATS-6 at Mauna Loa Observatory in May 1996, and post-TARFOX calibration of the AATS-6 and AATS- 14 at Zugspitze, Germany in October 1996, including analyses of all data sets. (5) Analysis of AATS-14 airborne calibration data acquired on 17 November 1996 during a late afternoon Pelican flight over the central California coast. (6) Operational training, instrument preparation, field coordination, and analysis of shipboard measurements of aerosol optical depth with the AATS-6 during ACE-2. (7) Coordination of data acquisition with the AATS-14 aboard the Pelican during ACE-2 and in-field preliminary data analysis and presentation. (8) Calibration of the AATS-6 and AATS-14 in April/May 1997 at Mauna Loa prior to ACE-2, and post-mission calibration of the AATS-6 at Mauna Loa in August 1997.

  3. NASA Administrator Dan Goldin greets 10-year-old VIP.

    NASA Technical Reports Server (NTRS)

    2000-01-01

    NASA Administrator Dan Goldin (center) greets 10-year-old Jonathan Pierce (right), who is garbed in a protective cooling suit designed by NASA. In the background, between them, are Jonathan's mother, Penny; his grandfather, John Janocka; and his sister, Jaimie.. At left is Mrs. Goldin. Jonathan suffers from erythropoietic protoporphyria, a rare condition that makes his body unable to withstand ultraviolet rays. The suit allows him to be outside during the day, which would otherwise be impossible. Jonathan's trip was funded by the Make-A-Wish Foundation and included a visit to Disney World. He and his family were among a dozen VIPs at KSC to view the launch of STS-99.

  4. NASA Administrator Dan Goldin greets 10-year-old VIP.

    NASA Technical Reports Server (NTRS)

    2000-01-01

    NASA Administrator Dan Goldin (center) presents a bag of special gifts to 10-year-old Jonathan Pierce (right), who is garbed in a protective cooling suit designed by NASA. In the background, between them, are Jonathan's mother, Penny; his grandfather, John Janocka; and his sister, Jaimie.. At left is Mrs. Goldin. Jonathan suffers from erythropoietic protoporphyria, a rare condition that makes his body unable to withstand ultraviolet rays. The suit allows him to be outside during the day, which would otherwise be impossible. Jonathan's trip was funded by the Make-A-Wish Foundation and included a visit to Disney World. He and his family were among a dozen VIPs at KSC to view the launch of STS-99.

  5. NASA Administrator Dan Goldin greets 10-year-old VIP.

    NASA Technical Reports Server (NTRS)

    2000-01-01

    NASA Administrator Dan Goldin (center) talks to 10-year-old Jonathan Pierce (right), who is garbed in a protective cooling suit designed by NASA. In the background, between them, are Jonathan's mother, Penny; his grandfather, John Janocka; and his sister, Jaimie. At left is Mrs. Goldin. Jonathan suffers from erythropoietic protoporphyria, a rare condition that makes his body unable to withstand ultraviolet rays. The suit allows him to be outside during the day, which would otherwise be impossible. Jonathan's trip was funded by the Make-A-Wish Foundation and included a visit to Disney World. He and his family were among a dozen VIPs at KSC to view the launch of STS-99.

  6. NASA Administrator Dan Goldin greets 100-year-old VIP.

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Among the VIPs attending the launch of STS-99 is Captain Ralph Charles (left), standing next to NASA Administrator Dan Goldin. Charles hopes to have his wish fulfilled of watching a Shuttle launch in person. The 100-year-old aviator has experienced nearly a century of flight history, from the Wright Brothers to the Space Program. He took flying lessons from one of the first fliers trained by Orville Wright, first repaired then built airplanes, went barnstorming, operated a charter service in the Caribbean, and worked as a test pilot for the Curtiss Wright Airplane Co. Charles is the oldest licensed pilot in the United States, and is still flying.

  7. Aeroacoustic Study of a 26%-Scale Semispan Model of a Boeing 777 Wing in the NASA Ames 40- by 80-Foot Wind Tunnel

    NASA Technical Reports Server (NTRS)

    Horne, W. Clifton; Burnside, Nathan J.; Soderman, Paul T.; Jaeger, Stephen M.; Reinero, Bryan R.; James, Kevin D.; Arledge, Thomas K.

    2004-01-01

    An acoustic and aerodynamic study was made of a 26%-scale unpowered Boeing 777 aircraft semispan model in the NASA Ames 40- by 80-Foot Wind Tunnel for the purpose of identifying and attenuating airframe noise sources. Simulated approach and landing configurations were evaluated at Mach numbers between 0.12 and 0.24. Cruise configurations were evaluated at Mach numbers between 0.24 and 0.33. The research team used two Ames phased-microphone arrays, a large fixed array and a small traversing array, mounted under the wing to locate and compare various noise sources in the wing high-lift system and landing gear. Numerous model modifications and noise alleviation devices were evaluated. Simultaneous with acoustic measurements, aerodynamic forces were recorded to document aircraft conditions and any performance changes caused by the geometric modifications. Numerous airframe noise sources were identified that might be important factors in the approach and landing noise of the full-scale aircraft. Several noise-control devices were applied to each noise source. The devices were chosen to manipulate and control, if possible, the flow around the various tips and through the various gaps of the high-lift system so as to minimize the noise generation. Fences, fairings, tip extensions, cove fillers, vortex generators, hole coverings, and boundary-layer trips were tested. In many cases, the noise-control devices eliminated noise from some sources at specific frequencies. When scaled to full-scale third-octave bands, typical noise reductions ranged from 1 to 10 dB without significant aerodynamic performance loss.

  8. Proposed Use of the NASA Ames Nebula Cloud Computing Platform for Numerical Weather Prediction and the Distribution of High Resolution Satellite Imagery

    NASA Astrophysics Data System (ADS)

    Limaye, A.; Molthan, A.

    2010-12-01

    The development of the Nebula Cloud Computing Platform at NASA Ames Research Center provides an open-source solution for the deployment of scalable computing and storage capabilities relevant to the execution of real-time weather forecasts and the distribution of high resolution satellite data to the operational weather community. Two projects at Marshall Space Flight Center may benefit from use of the Nebula system. The NASA Short-term Prediction Research and Transition (SPoRT) Center facilitates the use of unique NASA satellite data and research capabilities in the operational weather community by providing datasets relevant to numerical weather prediction, and satellite data sets useful in weather analysis. SERVIR provides satellite data products for decision support, emphasizing environmental threats such as wildfires, floods, landslides, and other hazards, with interests in numerical weather prediction in support of disaster response. The Weather Research and Forecast (WRF) model Environmental Modeling System (WRF-EMS) has been configured for Nebula cloud computing use via the creation of a disk image and deployment of repeated instances. Given the available infrastructure within Nebula and the “infrastructure as a service” concept, the system appears well-suited for the rapid deployment of additional forecast models over different domains, in response to real-time research applications or disaster response. Future investigations into Nebula capabilities will focus on the development of a web mapping server and load balancing configuration to support the distribution of high resolution satellite data sets to users within the National Weather Service and international partners of SERVIR.

  9. NASA Administrator Dan Goldin watches the STS-99 launch

    NASA Technical Reports Server (NTRS)

    2000-01-01

    KENNEDY SPACE CENTER, FLA. -- NASA Administrator Dan Goldin (right) joins other spectators at the Banana Creek viewing site in cheering the successful launch of Space Shuttle Endeavour on mission STS-99. The perfect liftoff occurred at 12:43:40 p.m. EST. Known as the Shuttle Radar Topography Mission (SRTM), STS-99 will chart a new course to produce unrivaled 3-D images of the Earth's surface. The result of the SRTM could be close to 1 trillion measurements of the Earth's topography. The mission is expected to last 11days, with Endeavour landing at KSC Tuesday, Feb. 22, at 4:36 p.m. EST. This is the 97th Shuttle flight and 14th for Shuttle Endeavour.

  10. NASA Administrator Dan Goldin greets 100-year-old VIP.

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Astronaut Andy Thomas (left) greets 100-year-old Captain Ralph Charles, one of the VIPs attending the launch of STS-99. Charles also met NASA Administrator Dan Goldin. An aviator who has the distinction of being the oldest licensed pilot in the United States, Charles is still flying. He has experienced nearly a century of flight history, from the Wright Brothers to the Space Program. He took flying lessons from one of the first fliers trained by Orville Wright, first repaired then built airplanes, went barnstorming, operated a charter service in the Caribbean, and worked as a test pilot for the Curtiss Wright Airplane Co. Charles watches all the Shuttle launches from his home in Ohio and his greatest wish is to be able to watch one in person from KSC.

  11. First Lady Hillary Clinton is greeted by NASA Administrator Goldin

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Upon their arrival at the Skid Strip at Cape Canaveral Air Station, First Lady Hillary Rodham Clinton and her daughter, Chelsea, are greeted by NASA Administrator Daniel S. Goldin and Mrs. Goldin. Mrs. Clinton and Chelsea are here to view the launch of Space Shuttle mission STS-93, scheduled for 12:36 a.m. EDT July 20. Much attention has been generated over the launch due to Commander Eileen M. Collins, the first woman to serve as commander of a Shuttle mission. The primary payload of the five- day mission is the Chandra X-ray Observatory, which will allow scientists from around the world to study some of the most distant, powerful and dynamic objects in the universe. The new telescope is 20 to 50 times more sensitive than any previous X- ray telescope and is expected to unlock the secrets of supernovae, quasars and black holes.

  12. First Lady Hillary Clinton is greeted by NASA Administrator Goldin

    NASA Technical Reports Server (NTRS)

    1999-01-01

    First Lady Hillary Rodham Clinton and her daughter, Chelsea, are greeted by NASA Administrator Daniel S. Goldin upon their arrival at the Skid Strip at Cape Canaveral Air Station. Next to Gold are (from left) Deputy Director for Business Operations Jim Jennings and Mrs. Goldin. Mrs. Clinton and Chelsea are here to view the launch of Space Shuttle mission STS-93, scheduled for 12:36 a.m. EDT July 20. Much attention has been generated over the launch due to Commander Eileen M. Collins, the first woman to serve as commander of a Shuttle mission. The primary payload of the five- day mission is the Chandra X-ray Observatory, which will allow scientists from around the world to study some of the most distant, powerful and dynamic objects in the universe. The new telescope is 20 to 50 times more sensitive than any previous X- ray telescope and is expected to unlock the secrets of supernovae, quasars and black holes.

  13. Aeroacoustic Characterization of the NASA Ames Experimental Aero-Physics Branch 32- by 48-Inch Subsonic Wind Tunnel with a 24-Element Phased Microphone Array

    NASA Technical Reports Server (NTRS)

    Costanza, Bryan T.; Horne, William C.; Schery, S. D.; Babb, Alex T.

    2011-01-01

    The Aero-Physics Branch at NASA Ames Research Center utilizes a 32- by 48-inch subsonic wind tunnel for aerodynamics research. The feasibility of acquiring acoustic measurements with a phased microphone array was recently explored. Acoustic characterization of the wind tunnel was carried out with a floor-mounted 24-element array and two ceiling-mounted speakers. The minimum speaker level for accurate level measurement was evaluated for various tunnel speeds up to a Mach number of 0.15 and streamwise speaker locations. A variety of post-processing procedures, including conventional beamforming and deconvolutional processing such as TIDY, were used. The speaker measurements, with and without flow, were used to compare actual versus simulated in-flow speaker calibrations. Data for wind-off speaker sound and wind-on tunnel background noise were found valuable for predicting sound levels for which the speakers were detectable when the wind was on. Speaker sources were detectable 2 - 10 dB below the peak background noise level with conventional data processing. The effectiveness of background noise cross-spectral matrix subtraction was assessed and found to improve the detectability of test sound sources by approximately 10 dB over a wide frequency range.

  14. The Formation of Solid Particles from their Gas-Phase Molecular Precursors in Cosmic Environments with NASA Ames' COSmIC Facility

    NASA Technical Reports Server (NTRS)

    Salama, Farid

    2014-01-01

    We present and discuss the unique characteristics and capabilities of the laboratory facility, COSmIC, that was developed at NASA Ames to generate, process and analyze interstellar, circumstellar and planetary analogs in the laboratory. COSmIC stands for Cosmic Simulation Chamber and is dedicated to the study of molecules and ions under the low temperature and high vacuum conditions that are required to simulate interstellar, circumstellar and planetary physical environments in space. COSmIC integrates a variety of state-of-the-art instruments that allow forming, processing and monitoring simulated space conditions for planetary, circumstellar and interstellar materials in the laboratory. COSmIC is composed of a Pulsed Discharge Nozzle (PDN) expansion that generates a free jet supersonic expansion coupled to two ultrahigh-sensitivity, complementary in situ diagnostics: a Cavity Ring Down Spectroscopy (CRDS) system for photonic detection and a Reflectron Time-Of-Flight Mass Spectrometer (ReTOF-MS) for mass detection. Recent, unique, laboratory astrophysics results that were obtained using the capabilities of COSmIC will be discussed, in particular the progress that have been achieved in monitoring in the laboratory the formation of solid gains from their gas-phase molecular precursors in environments as varied as stellar/circumstellar outflow and planetary atmospheres. Plans for future, next generation, laboratory experiments on cosmic molecules and grains in the growing field of laboratory astrophysics will also be addressed as well as the implications of these studies for current and upcoming space missions.

  15. STS-79 NASA administrator Goldin greets crew after landing

    NASA Technical Reports Server (NTRS)

    1996-01-01

    NASA Administrator Daniel Goldin (center, with box) greets STS-79 Commander William F. Readdy following the successful conclusion of Mission STS-79 with an end of mission landing at KSC's Shuttle Landing Facility. Also climbing down from the Crew Transport Vehicle (CTV) are (from left) STS-79 Mission Specialists Carl E. Walz and Jay Apt, and Pilot Terrence W. Wilcutt. To the right of Goldin are KSC Director Jay Honeycutt and Acting Associate Administrator for the Office of Life and Microgravity Sciences and Applications Dr. Arnauld Nicogossian. Goldin is holding a box of m&m candy to give to U.S. astronaut Shannon W. Lucid, who returns to Earth after a record setting six month stay aboard the Russian Space Station Mir. The candy is a gift from President Bill Clinton for Lucid. M&M Mars has been supplying m&m candy to the U.S. space program for more than a decade; the gift candies for Lucid are red, white and blue to commemorate her historic flight.

  16. Swearing in of George M. Low as Deputy Administrator of NASA

    NASA Technical Reports Server (NTRS)

    1969-01-01

    Swearing in of George M. Low as Deputy Administrator of NASA. The 43-year-old veteran of NASAs Mercury, Gemini, and Apollo manned flight programs was administered the oath of Office by Dr. Thomas O. Paine, NASA's Administrator. President Nixon nominated Low for the post November 13, 1969, and the Senate confirmed him on November 26, 1969. Low, who joined the National Advisory Committee for Aeronautics (NASAs predecessor agency) in 1949, was the fourth person to hold the Deputy Administrator post at NASA.

  17. Results of heat transfer tests of an 0.0175-scale space shuttle vehicle model 22 OTS in the NASA-Ames 3.5 foot hypersonic wind tunnel (IH3), volume 1

    NASA Technical Reports Server (NTRS)

    Foster, T. F.; Lockman, W. K.

    1975-01-01

    Heat transfer data for the 0.0175-scale space shuttle vehicle 3 are presented. Interference heating effects were investigated by a model build-up technique of orbiter alone, tank alone, second, and first stage configurations. The test program was conducted in the NASA-Ames 3.5-foot hypersonic wind tunnel at Mach 5.3 for nominal free stream Reynolds number per foot values of 1.5, and 5.0 million.

  18. Full-scale S-76 rotor performance and loads at low speeds in the NASA Ames 80- by 120-Foot Wind Tunnel. Vol. 1

    NASA Technical Reports Server (NTRS)

    Shinoda, Patrick M.

    1996-01-01

    A full-scale helicopter rotor test was conducted in the NASA Ames 80- by 120-Foot Wind Tunnel with a four-bladed S-76 rotor system. Rotor performance and loads data were obtained over a wide range of rotor shaft angles-of-attack and thrust conditions at tunnel speeds ranging from 0 to 100 kt. The primary objectives of this test were (1) to acquire forward flight rotor performance and loads data for comparison with analytical results; (2) to acquire S-76 forward flight rotor performance data in the 80- by 120-Foot Wind Tunnel to compare with existing full-scale 40- by 80-Foot Wind Tunnel test data that were acquired in 1977; (3) to evaluate the acoustic capability of the 80- by 120- Foot Wind Tunnel for acquiring blade vortex interaction (BVI) noise in the low speed range and compare BVI noise with in-flight test data; and (4) to evaluate the capability of the 80- by 120-Foot Wind Tunnel test section as a hover facility. The secondary objectives were (1) to evaluate rotor inflow and wake effects (variations in tunnel speed, shaft angle, and thrust condition) on wind tunnel test section wall and floor pressures; (2) to establish the criteria for the definition of flow breakdown (condition where wall corrections are no longer valid) for this size rotor and wind tunnel cross-sectional area; and (3) to evaluate the wide-field shadowgraph technique for visualizing full-scale rotor wakes. This data base of rotor performance and loads can be used for analytical and experimental comparison studies for full-scale, four-bladed, fully articulated rotor systems. Rotor performance and structural loads data are presented in this report.

  19. Investigating the asymmetry of Mars’ South Polar Cap using the NASA Ames Mars General Circulation Model with a CO2 cloud microphysics scheme

    NASA Astrophysics Data System (ADS)

    Dequaire, Julie; Kahre, M. A.; Haberle, R. M.; Hollingsworth, J. L.; NASA Ames Global Climate Modelling Group

    2013-10-01

    One of the most intriguing and least understood climate phenomena on Mars is the existence of a high albedo perennial south polar CO2 ice cap that is offset from the pole in the western hemisphere (SPRC). Colaprete et al. (2005) hypothesize that since the process by which CO2 surface frost accumulates (i.e., precipitation or direct vapor deposition) affects the albedo of the ice, the atmosphere can play a role in the stability and asymmetry of the cap. They show that the basins of Hellas and Argyre force a stationary wave resulting in a colder western hemisphere in which atmospheric CO2 condensation and precipitation is favored. Because precipitated CO2 is brighter than directly deposited CO2, this could maintain the asymmetry of the southern ice cap. We build on their study with a version of the NASA Ames GCM that includes a newly incorporated CO2 cloud microphysics scheme. Simulated results compare well to observed temperatures, pressures and cap recession rates. Observed mesospheric and polar night clouds are well reproduced by the model, and a third unobserved type of cloud is predicted to form close to the surface of the subliming caps. As hypothesized by Colaprete et al. (2005), we find that the zonally asymmetric topography forces a stationary wave in the atmosphere resulting in an asymmetric cloud cover over the south pole during fall and winter and maximizing snowfall over a region encompassing the SPRC. These positive results open to further studies including a mesospheric simulation to refine the horizontal grid around the SPRC as well as the implementation of an ice albedo scheme dependent both on the amount and size of aerosols falling onto the cap during fall and winter (snow, frost and dust), and on surface metamorphism processes due to sintering and incoming solar radiation. The goal of this work is to develop a more complete understanding of the existence of the SPRC and of the Martian CO2 cycle.

  20. The Mars Dust Cycle: Investigating the Effects of Radiatively Active Water Ice Clouds on Surface Stresses and Dust Lifting Potential with the NASA Ames Mars General Circulation Model

    NASA Technical Reports Server (NTRS)

    Kahre, Melinda A.; Hollingsworth, Jeffery

    2012-01-01

    The dust cycle is a critically important component of Mars' current climate system. Dust is present in the atmosphere of Mars year-round but the dust loading varies with season in a generally repeatable manner. Dust has a significant influence on the thermal structure of the atmosphere and thus greatly affects atmospheric circulation. The dust cycle is the most difficult of the three climate cycles (CO2, water, and dust) to model realistically with general circulation models. Until recently, numerical modeling investigations of the dust cycle have typically not included the effects of couplings to the water cycle through cloud formation. In the Martian atmosphere, dust particles likely provide the seed nuclei for heterogeneous nucleation of water ice clouds. As ice coats atmospheric dust grains, the newly formed cloud particles exhibit different physical and radiative characteristics. Thus, the coupling between the dust and water cycles likely affects the distributions of dust, water vapor and water ice, and thus atmospheric heating and cooling and the resulting circulations. We use the NASA Ames Mars GCM to investigate the effects of radiatively active water ice clouds on surface stress and the potential for dust lifting. The model includes a state-of-the-art water ice cloud microphysics package and a radiative transfer scheme that accounts for the radiative effects of CO2 gas, dust, and water ice clouds. We focus on simulations that are radiatively forced by a prescribed dust map, and we compare simulations that do and do not include radiatively active clouds. Preliminary results suggest that the magnitude and spatial patterns of surface stress (and thus dust lifting potential) are substantial influenced by the radiative effects of water ice clouds.

  1. Biological Visualization, Imaging and Simulation(Bio-VIS) at NASA Ames Research Center: Developing New Software and Technology for Astronaut Training and Biology Research in Space

    NASA Technical Reports Server (NTRS)

    Smith, Jeffrey

    2003-01-01

    The Bio- Visualization, Imaging and Simulation (BioVIS) Technology Center at NASA's Ames Research Center is dedicated to developing and applying advanced visualization, computation and simulation technologies to support NASA Space Life Sciences research and the objectives of the Fundamental Biology Program. Research ranges from high resolution 3D cell imaging and structure analysis, virtual environment simulation of fine sensory-motor tasks, computational neuroscience and biophysics to biomedical/clinical applications. Computer simulation research focuses on the development of advanced computational tools for astronaut training and education. Virtual Reality (VR) and Virtual Environment (VE) simulation systems have become important training tools in many fields from flight simulation to, more recently, surgical simulation. The type and quality of training provided by these computer-based tools ranges widely, but the value of real-time VE computer simulation as a method of preparing individuals for real-world tasks is well established. Astronauts routinely use VE systems for various training tasks, including Space Shuttle landings, robot arm manipulations and extravehicular activities (space walks). Currently, there are no VE systems to train astronauts for basic and applied research experiments which are an important part of many missions. The Virtual Glovebox (VGX) is a prototype VE system for real-time physically-based simulation of the Life Sciences Glovebox where astronauts will perform many complex tasks supporting research experiments aboard the International Space Station. The VGX consists of a physical display system utilizing duel LCD projectors and circular polarization to produce a desktop-sized 3D virtual workspace. Physically-based modeling tools (Arachi Inc.) provide real-time collision detection, rigid body dynamics, physical properties and force-based controls for objects. The human-computer interface consists of two magnetic tracking devices

  2. Validating Above-cloud Aerosol Optical Depth Retrieved from MODIS using NASA Ames Airborne Sun-Tracking Photometric and Spectrometric (AATS and 4STAR) Measurements

    NASA Astrophysics Data System (ADS)

    Jethva, H. T.; Torres, O.; Remer, L. A.; Redemann, J.; Dunagan, S. E.; Livingston, J. M.; Shinozuka, Y.; Kacenelenbogen, M. S.; Segal-Rosenhaimer, M.

    2014-12-01

    Absorbing aerosols produced from biomass burning and dust outbreaks are often found to overlay the lower level cloud decks as evident in the satellite images. In contrast to the cloud-free atmosphere, in which aerosols generally tend to cool the atmosphere, the presence of absorbing aerosols above cloud poses greater potential of exerting positive radiative effects (warming) whose magnitude directly depends on the aerosol loading above cloud, optical properties of clouds and aerosols, and cloud fraction. In recent years, development of algorithms that exploit satellite-based passive measurements of ultraviolet (UV), visible, and polarized light as well as lidar-based active measurements constitute a major breakthrough in the field of remote sensing of aerosols. While the unprecedented quantitative information on aerosol loading above cloud is now available from NASA's A-train sensors, a greater question remains ahead: How to validate the satellite retrievals of above-cloud aerosols (ACA)? Direct measurements of ACA such as carried out by the NASA Ames Airborne Tracking Sunphotometer (AATS) and Spectrometer for Sky-Scanning, Sun-Tracking Atmospheric Research (4STAR) can be of immense help in validating ACA retrievals. In this study, we validate the ACA optical depth retrieved using the 'color ratio' (CR) method applied to the MODIS cloudy-sky reflectance by using the airborne AATS and 4STAR measurements. A thorough search of the historic AATS-4STAR database collected during different field campaigns revealed five events where biomass burning, dust, and wildfire-emitted aerosols were found to overlay lower level cloud decks observed during SAFARI-2000, ACE-ASIA 2001, and SEAC4RS-2013, respectively. The co-located satellite-airborne measurements revealed a good agreement (root-mean-square-error<0.1 for Aerosol Optical Depth (AOD) at 500 nm) with most matchups falling within the estimated uncertainties in the MODIS retrievals (-10% to +50%). An extensive validation of

  3. National Aeronautics and Space Administration's (NASA) Automated Information Security Handbook

    NASA Technical Reports Server (NTRS)

    Roback, E.

    1991-01-01

    The NASA Automated Information Security Handbook provides NASA's overall approach to automated information systems security including discussions of such aspects as: program goals and objectives, assignment of responsibilities, risk assessment, foreign national access, contingency planning and disaster recovery, awareness training, procurement, certification, planning, and special considerations for microcomputers.

  4. UHTC Research at NASA Ames

    NASA Technical Reports Server (NTRS)

    Johnson, Sylvia M.

    2011-01-01

    For enhanced aerodynamic performance. Materials for sharp leading edges can be reusable but need different properties because of geometry and very high temperatures. Require materials with significantly higher temperature capabilities, but for short duration. Current shuttle RCC leading edge materials: T approx. 1650 C. Materials for vehicles with sharp leading edges: T>2000 C. >% Figure depicts: High Temperature at Tip and Steep Temperature Gradient. Passive cooling is simplest option to manage the intense heating on sharp leading edges.

  5. Comparison of acoustic data from a 102 mm conic nozzle as measured in the RAE 24-foot wind tunnel and the NASA Ames 40- by 80-foot wind tunnel

    NASA Technical Reports Server (NTRS)

    Atencio, A., Jr.; Mckie, J.

    1982-01-01

    A cooperative program between the Royal Aircraft Establishment (RAE), England, and the NASA Ames Research Center was initiated to compare acoustic measurements made in the RAE 24-foot wind tunnel and in the Ames 40- by 80-foot wind tunnel. The acoustic measurements were made in both facilities using the same 102 mm conical nozzle supplied by the RAE. The nozzle was tested by each organization using its respective jet test rig. The mounting hardware and nozzle exit conditions were matched as closely as possible. The data from each wind tunnel were independently analyzed by the respective organization. The results from these tests show good agreement. In both facilities, interference with acoustic measurement is evident at angles in the forward quadrant.

  6. Investigating the asymmetry of Mars' South Polar Cap using the NASA Ames Mars General Circulation Model with a CO2 cloud microphysics scheme

    NASA Astrophysics Data System (ADS)

    Dequaire, J. M.; Kahre, M. A.; Haberle, R. M.; Hollingsworth, J. L.

    2013-12-01

    One of the most intriguing and least understood climate phenomena on Mars is the existence of a high albedo perennial south polar CO2 ice cap that is offset from the pole in the western hemisphere (SPRC). Colaprete et al. (2005) hypothesize that since the process by which CO2 surface frost accumulates (i.e., precipitation or direct vapor deposition) affects the albedo of the ice, the atmosphere can play a role in the stability and asymmetry of the cap. They show that the basins of Hellas and Argyre force a stationary wave resulting in a colder western hemisphere in which atmospheric CO2 condensation and precipitation is favored. Because precipitated CO2 is brighter than directly deposited CO2, they suggest that this topography driven atmospheric circulation maintains the asymmetry of the southern ice cap. However, Colaprete et al (2005) do not explicitly model the albedo of the south cap to demonstrate the viability of their hypothesis. We build on their study with a version of the NASA Ames GCM that includes a newly incorporated CO2 cloud microphysics scheme. Simulated results compare well to observed temperatures, pressures, cap recession rates and cloud patterns (mesospheric and polar night clouds). Although mesospheric and polar night clouds are thoroughly documented in the literature, the model predicts a third type of cloud to form close to the surface of the subliming ice caps, which has not been observed. As hypothesized by Colaprete et al. (2005), we find that the zonally asymmetric topography forces a stationary wave in the atmosphere resulting in an asymmetric cloud cover over the south pole during fall and winter and enhanced snowfall over a region encompassing the SPRC. These positive results open to further studies including a mesospheric simulation to refine the horizontal grid around the SPRC as well as the implementation of an ice albedo scheme dependent both on the amount and size of aerosols falling onto the cap during fall and winter (snow

  7. Aerospace Safety Advisory Panel report to the NASA acting administrator

    NASA Technical Reports Server (NTRS)

    1986-01-01

    The level of activity of the Aerospace Safety Advisory Panel was increased smewhat during 1985 in concert with the increased mission rate of the National Space Transportation System, the evolutionary changes in management and operation of that program, and the preparation of the Vandenberg Launch Site; the implementation of the Program Definition Phase of the Space Station Program; and the actual flight testing of the X-29 research aircraft. Impending payload STS missions and NASA's overall aircraft operations are reviewed. The safety aspects of the LEASAT salvage mission were assessed. The findings and recommendation of the committee are summerized.

  8. NASA today, and a vision for tomorrow. [The NASA Administrator's Speech to the American Geophysical Union on 26 May 1994

    NASA Technical Reports Server (NTRS)

    Goldin, Daniel S.

    1994-01-01

    Under the administration of Dan Goldin's leadership, NASA is reinventing itself. In the process, the agency is also searching for a vision to define its role, both as a US Government agency and as a leading force in humanity's exploration of space. An adaption of Goldin's speech to the American Geophysical Union on 26 May 1994 in which he proposes one possible unifying vision is presented.

  9. 14 CFR 1221.107 - Establishment of the NASA Administrator's, Deputy Administrator's, and Associate Deputy...

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... × 4 feet; (2) The Administrator's Flag has four stars; (3) The Deputy Administrator's Flag has three stars; and (4) The Associate Deputy Administrator's Flag has two stars. (b) Flags representing...

  10. 14 CFR § 1221.107 - Establishment of the NASA Administrator's, Deputy Administrator's, and Associate Deputy...

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... × 4 feet; (2) The Administrator's Flag has four stars; (3) The Deputy Administrator's Flag has three stars; and (4) The Associate Deputy Administrator's Flag has two stars. (b) Flags representing...

  11. 14 CFR 1221.107 - Establishment of the NASA Administrator's, Deputy Administrator's, and Associate Deputy...

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... × 4 feet; (2) The Administrator's Flag has four stars; (3) The Deputy Administrator's Flag has three stars; and (4) The Associate Deputy Administrator's Flag has two stars. (b) Flags representing...

  12. 14 CFR 1221.107 - Establishment of the NASA Administrator's, Deputy Administrator's, and Associate Deputy...

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... × 4 feet; (2) The Administrator's Flag has four stars; (3) The Deputy Administrator's Flag has three stars; and (4) The Associate Deputy Administrator's Flag has two stars. (b) Flags representing...

  13. 14 CFR 1221.107 - Establishment of the NASA Administrator's, Deputy Administrator's, and Associate Deputy...

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... × 4 feet; (2) The Administrator's Flag has four stars; (3) The Deputy Administrator's Flag has three stars; and (4) The Associate Deputy Administrator's Flag has two stars. (b) Flags representing...

  14. Investigations of the 0.020-scale 88-OTS Integrated Space Shuttle Vehicle Jet-Plume Model in the NASA/Ames Research Center 11 by11-Foot Unitary Plan Wind Tunnel (IA80). Volume 1

    NASA Technical Reports Server (NTRS)

    Nichols, M. E.

    1976-01-01

    The results are documented of jet plume effects wind tunnel test of the 0.020-scale 88-OTS launch configuration space shuttle vehicle model in the 11 x 11 foot leg of the NASA/Ames Research Center Unitary Plan Wind Tunnel. This test involved cold gas main propulsion system (MPS) and solid rocket motor (SRB) plume simulations at Mach numbers from 0.6 to 1.4. Integrated vehicle surface pressure distributions, elevon and rudder hinge moments, and wing and vertical tail root bending and torsional moments due to MPS and SRB plume interactions were determined. Nozzle power conditions were controlled per pretest nozzle calibrations. Model angle of attack was varied from -4 deg to +4 deg; model angle of sideslip was varied from -4 deg to +4 deg. Reynolds number was varied for certain test conditions and configurations, with the nominal freestream total pressure being 14.69 psia. Plotted force and pressure data are presented.

  15. Simulation investigation of the effect of the NASA Ames 80-by 120-foot wind tunnel exhaust flow on light aircraft operating in the Moffett field trafffic pattern

    NASA Technical Reports Server (NTRS)

    Streeter, Barry G.

    1986-01-01

    A preliminary study of the exhaust flow from the Ames Research Center 80 by 120 Foot Wind Tunnel indicated that the flow might pose a hazard to low-flying light aircraft operating in the Moffett Field traffic pattern. A more extensive evaluation of the potential hazard was undertaken using a fixed-base, piloted simulation of a light, twin-engine, general-aviation aircraft. The simulated aircraft was flown through a model of the wind tunnel exhaust by pilots of varying experience levels to develop a data base of aircraft and pilot reactions. It is shown that a light aircraft would be subjected to a severe disturbance which, depending upon entry condition and pilot reaction, could result in a low-altitude stall or cause damage to the aircraft tail structure.

  16. Support of NASA quality requirements by defense contract administration services regions

    NASA Technical Reports Server (NTRS)

    Farrar, Hiram D.

    1966-01-01

    Defense Contract Administration Services Regions (DCASR) quality assurance personnel performing under NASA Letters of Delegation must work closely with the assigned technical representative of the NASA centers. It is realized that technical personnel from the NASA Centers cannot make on-site visits as frequently as they would like to. However, DCASR quality assurance personnel would know the assigned NASA technical representative and should contact him when problems arise. The technical representative is the expert on the hardware and should be consulted on any problem area. It is important that the DCASR quality assurance personnel recommend to the delegating NASA Center any new or improved methods of which they may be aware which would assist in achieving the desired quality and reliability in NASA hardware. NASA expects assignment of competent personnel in the Quality Assurance functional area and is not only buying the individual's technical skill, but also his experience. Suggestions by field personnel can many times up-grade the quality or the hardware.

  17. Ames Research Center Research and Technology 2000

    NASA Technical Reports Server (NTRS)

    2002-01-01

    This report highlights the challenging work accomplished during fiscal year 2000 by Ames research scientists,engineers, and technologists. It discusses research and technologies that enable the Information Age, that expand the frontiers of knowledge for aeronautics and space, and that help to maintain U.S. leadership in aeronautics and space research and technology development. The accomplishments are grouped into four categories based on four of NASA's Strategic Enterprises: Aerospace Technology, Space Science, Biological and Physical Research, and Earth Science. The primary purpose of this report is to communicate knowledge-to inform our stakeholders, customer, and partners, and the people of the United States about the scope and diversity of Ames' mission,the nature of Ames' research and technolog) activities,and the stimulating challenges ahead. The accomplishments cited illustrate the contributions that Ames is willing to improve the quality of life for our citizens and the economic position of the United States in the world marketplace.

  18. Ames Life Science Data Archive: Translational Rodent Research at Ames

    NASA Technical Reports Server (NTRS)

    Wood, Alan E.; French, Alison J.; Ngaotheppitak, Ratana; Leung, Dorothy M.; Vargas, Roxana S.; Maese, Chris; Stewart, Helen

    2014-01-01

    The Life Science Data Archive (LSDA) office at Ames is responsible for collecting, curating, distributing and maintaining information pertaining to animal and plant experiments conducted in low earth orbit aboard various space vehicles from 1965 to present. The LSDA will soon be archiving data and tissues samples collected on the next generation of commercial vehicles; e.g., SpaceX & Cygnus Commercial Cargo Craft. To date over 375 rodent flight experiments with translational application have been archived by the Ames LSDA office. This knowledge base of fundamental research can be used to understand mechanisms that affect higher organisms in microgravity and help define additional research whose results could lead the way to closing gaps identified by the Human Research Program (HRP). This poster will highlight Ames contribution to the existing knowledge base and how the LSDA can be a resource to help answer the questions surrounding human health in long duration space exploration. In addition, it will illustrate how this body of knowledge was utilized to further our understanding of how space flight affects the human system and the ability to develop countermeasures that negate the deleterious effects of space flight. The Ames Life Sciences Data Archive (ALSDA) includes current descriptions of over 700 experiments conducted aboard the Shuttle, International Space Station (ISS), NASA/MIR, Bion/Cosmos, Gemini, Biosatellites, Apollo, Skylab, Russian Foton, and ground bed rest studies. Research areas cover Behavior and Performance, Bone and Calcium Physiology, Cardiovascular Physiology, Cell and Molecular Biology, Chronobiology, Developmental Biology, Endocrinology, Environmental Monitoring, Gastrointestinal Physiology, Hematology, Immunology, Life Support System, Metabolism and Nutrition, Microbiology, Muscle Physiology, Neurophysiology, Pharmacology, Plant Biology, Pulmonary Physiology, Radiation Biology, Renal, Fluid and Electrolyte Physiology, and Toxicology. These

  19. Flight and full-scale wind-tunnel comparison of pressure distributions from an F-18 aircraft at high angles of attack. [Conducted in NASA Ames Research Center's 80 by 120 ft wind tunnel

    NASA Technical Reports Server (NTRS)

    Fisher, David F.; Lanser, Wendy R.

    1994-01-01

    Pressure distributions were obtained at nearly identical fuselage stations and wing chord butt lines in flight on the F-18 HARV at NASA Dryden Flight Research Center and in the NASA Ames Research Center's 80 by 120 ft wind tunnel on a full-scale F/A-18 aircraft. The static pressures were measured at the identical five stations on the forebody, three stations on the left and right leading-edge extensions, and three spanwise stations on the wing. Comparisons of the flight and wind-tunnel pressure distributions were made at alpha = 30 deg, 45 deg, and 60 deg/59 deg. In general, very good agreement was found. Minor differences were noted at the forebody at alpha = 45 deg and 60 deg in the magnitude of the vortex footprints and a Mach number effect was noted at the leading-edge extension at alpha = 30 deg. The inboard leading edge flap data from the wind tunnel at alpha = 59 deg showed a suction peak that did not appear in the flight data. This was the result of a vortex from the corner of the leading edge flap whose path was altered by the lack of an engine simulation in the wind tunnel.

  20. AIM: Ames Imaging Module Spacecraft Camera

    NASA Technical Reports Server (NTRS)

    Thompson, Sarah

    2015-01-01

    The AIM camera is a small, lightweight, low power, low cost imaging system developed at NASA Ames. Though it has imaging capabilities similar to those of $1M plus spacecraft cameras, it does so on a fraction of the mass, power and cost budget.

  1. NASA Associate Administrator for Space Flight Rothenberg addresses guests at ribbon cutting for the

    NASA Technical Reports Server (NTRS)

    2000-01-01

    NASA Associate Administrator for Space Flight Joseph Rothenberg addresses attendees at a ribbon cutting for the new Checkout and Launch Control System (CLCS) at the Hypergolic Maintenance Facility (HMF). The CLCS was declared operational in a ribbon cutting ceremony earlier. The new control room will be used to process the Orbital Maneuvering System pods and Forward Reaction Control System modules at the HMF. This hardware is removed from Space Shuttle orbiters and routinely taken to the HMF for checkout and servicing.

  2. Profile of software engineering within the National Aeronautics and Space Administration (NASA)

    NASA Technical Reports Server (NTRS)

    Sinclair, Craig C.; Jeletic, Kellyann F.

    1994-01-01

    This paper presents findings of baselining activities being performed to characterize software practices within the National Aeronautics and Space Administration. It describes how such baseline findings might be used to focus software process improvement activities. Finally, based on the findings to date, it presents specific recommendations in focusing future NASA software process improvement efforts. The findings presented in this paper are based on data gathered and analyzed to date. As such, the quantitative data presented in this paper are preliminary in nature.

  3. Ames Research Center Publications, July 1971 through December 1973

    NASA Technical Reports Server (NTRS)

    1975-01-01

    A bibliography of the publications of Ames Research Center authors and contractors which appeared as formal NASA publications, journal articles, books, chapters of books, patents, and contractor reports is presented. Years covered are July 1971 through December 1973.

  4. The impact of the NASA Administrator's Fellowship Program on fellows' career choices

    NASA Astrophysics Data System (ADS)

    Graham, Eva M.

    Maintaining diversity in the technical workforce and in higher education has been identified as one way to increase the outreach, recruitment and retention of students and other faculty from underrepresented, underserved and minority populations, especially in Science, Technology, Engineering and Mathematics (STEM) courses of study and careers. The National Aeronautics and Space Administration (NASA) Administrator's Fellowship Program (NAFP) is a professional development program targeting faculty at Minority Serving Institutions and NASA civil servant employees for a two year work-based professional development experience toward increasing the likelihood of retaining them in STEM careers and supporting the recruitment and retention of minority students in STEM courses of study. This evaluation links the activities of the fellowship program to the impact on fellows' career choices as a result of participation through a series of surveys and interviews. Fellows' personal and professional perceptions of themselves and colleagues' and administrators' beliefs about their professional capabilities as a result of selection and participation were also addressed as they related to career outcomes. The findings indicated that while there was no direct impact on fellows' choice of careers, the exposure, direction and focus offered through travel, mentoring, research and teaching had an impact their perceptions of their own capabilities and, their colleagues' and administrators' beliefs about them as professionals and researchers. The career outcomes reported were an increase in the number publications, promotions, change in career and an increased awareness of the culture of science and engineering.

  5. Flight effects on noise by the JT8D engine with inverted primary/fan flow as measured in the NASA-Ames 40 by 80 foot wind tunnel

    NASA Technical Reports Server (NTRS)

    Strout, F. G.

    1978-01-01

    A JT8D-17R engine with inverted primary and fan flows was tested under static conditions as well as in the NASA Ames 40 by 80 Foot Wind Tunnel to determine static and flight noise characteristics, and flow profile of a large scale engine. Test and analysis techniques developed by a previous model and JT8D engine test program were used to determine the in-flight noise. The engine with inverted flow was tested with a conical nozzle and with a plug nozzle, 20 lobe nozzle, and an acoustic shield. Wind tunnel results show that forward velocity causes significant reduction in peak PNL suppression relative to uninverted flow. The loss of EPNL suppression is relatively modest. The in-flight peak PNL suppression of the inverter with conical nozzle was 2.5 PNdb relative to a static value of 5.5 PNdb. The corresponding EPNL suppression was 4.0 EPNdb for flight and 5.0 EPNdb for static operation. The highest in-flight EPNL suppression was 7.5 EPNdb obtained by the inverter with 20 lobe nozzle and acoustic shield. When compared with the JT8D engine with internal mixer, the inverted flow configuration provides more EPNL suppression under both static and flight conditions.

  6. Results of tests to determine the aerodynamic characteristics of two potential aeromaneuvering orbit-to-orbit shuttle (AMOOS) vehicle configurations in the NASA-Ames 3.5 foot hypersonic wind tunnel

    NASA Technical Reports Server (NTRS)

    Ketter, F. C., Jr.

    1974-01-01

    An aerodynamic wind tunnel investigation was conducted in the NASA-Ames Research Center (ARC) 3.5-foot hypersonic facility to provide data for use in obtaining experimental force and static stability characteristics of two potential aeromaneuvering orbit-to-orbit shuttle (AMOOS) vehicle configurations. The experimental data were compared with the aerodynamic characteristics estimated using Newtonian theory, thus establishing the usefulness of these predictions. The candidate AMOOS configurations selected for the wind tunnel tests were the AMOOS 5B and HB configurations. Two flap configurations were tested for each candidate - a forward or compression surface flap and an aft or expansion flap. Photographs and sketches of the two configurations with different control surfaces are shown. It was determined that Newtonian theory generally predicted the aerodynamics of the 5B configuration with acceptable accuracy for all expansion flap deflections and for compression flap deflections less than or equal to 10 degrees. Flow separation upstream of large compression flap deflections was detected from the experimental data.

  7. Rotorcraft In-Flight Simulation Research at NASA Ames Research Center: A Review of the 1980's and plans for the 1990's

    NASA Technical Reports Server (NTRS)

    Aiken, Edwin W.; Hindson, William S.; Lebacqz, J. Victor; Denery, Dallas G.; Eshow, Michelle M.

    1991-01-01

    A new flight research vehicle, the Rotorcraft-Aircrew System Concepts Airborne Laboratory (RASCAL), is being developed by the U.S. Army and NASA at ARC. The requirements for this new facility stem from a perception of rotorcraft system technology requirements for the next decade together with operational experience with the Boeing Vertol CH-47B research helicopter that was operated as an in-flight simulator at ARC during the past 10 years. Accordingly, both the principal design features of the CH-47B variable-stability system and the flight-control and cockpit-display programs that were conducted using this aircraft at ARC are reviewed. Another U.S Army helicopter, a Sikorsky UH-60A Black Hawk, was selected as the baseline vehicle for the RASCAL. The research programs that influence the design of the RASCAL are summarized, and the resultant requirements for the RASCAL research system are described. These research programs include investigations of advanced, integrated control concepts for achieving high levels of agility and maneuverability, and guidance technologies, employing computer/sensor-aiding, designed to assist the pilot during low-altitude flight in conditions of limited visibility. The approach to the development of the new facility is presented and selected plans for the preliminary design of the RASCAL are described.

  8. NASA Administrator, U.S. Secretary of State watch STS-88 launch

    NASA Technical Reports Server (NTRS)

    1998-01-01

    At the Banana Creek Viewing Site, NASA Administrator Daniel Goldin (left), U.S. Secretary of State Madeleine Albright (center) and astronaut Michael Lopez-Alegria watch the launch of STS-88 from Launch Pad 39A at 3:35:34 a.m. EST. STS-88 is the first U.S. mission dedicated to the assembly of the International Space Station (ISS). Lopez-Alegria is part of the STS-92 crew that is assigned to the fourth ISS assembly flight scheduled for launch on Oct. 28, 1999, aboard Discovery.

  9. STS-35 MS Hoffman is greeted by JSC manager Puddy and NASA administrator Lenoir

    NASA Technical Reports Server (NTRS)

    1990-01-01

    NASA Associate Administrator for Space Flight Dr. William B. Lenoir (second left) shakes hands with Mission Specialist (MS) Jeffrey A. Hoffman soon after the seven crewmembers egressed Columbia, Orbiter Vehicle (OV) 102, at Edwards Air Force Base (EAFB), California. Also pictured are JSC Flight Crew Operations Directorate (FCOD) Director Donald R. Puddy (left) and Commander Vance D. Brand. OV-102 landed on EAFB concrete runway 22 at 9:54:09 pm (Pacific Standard Time) ending its nine-day STS-35 Astronomy Laboratory 1 (ASTRO-1) mission.

  10. Results of a jet plume effects test on Rockwell International integrated space shuttle vehicle using a vehicle 5 configuration 0.02-scale model (88-OTS) in the 11 by 11 foot leg of the NASA/Ames Research Center unitary plan wind tunnel (IA19), volume 1

    NASA Technical Reports Server (NTRS)

    Nichols, M. E.

    1975-01-01

    Results are presented of jet plume effects test IA19 using a vehicle 5 configuration integrated space shuttle vehicle 0.02-scale model in the NASA/Ames Research Center 11 x 11-foot leg of the unitary plan wind tunnel. The jet plume power effects on the integrated vehicle static pressure distribution were determined along with elevon, main propulsion system nozzle, and solid rocket booster nozzle effectiveness and elevon hinge moments.

  11. NASA RECON: Course development, administration, and evaluation. A research and development proposal

    NASA Technical Reports Server (NTRS)

    Dominick, Wayne D. (Editor); Roquemore, Leroy

    1984-01-01

    This proposal addresses the development, administration, and evaluation of a set of transportable, college-level courses to educate science and engineering students in the effective use of automated scientific and technical information storage and retrieval systems, and, in particular, in the use of the NASA RECON system. Chapter 1 presents a brief introduction. Chapter 2 identifies general and specific objectives, i.e., needs analysis, course development, course administration, and course evaluation. Chapter 3 proposes the methodology to be used in successfully accomplishing these objectives. Chapter 4 highlights expected results and product deliverables, and Chapter 5 presents the project evaluation plan to be followed. Chapter 6 is a brief overview of the institutional resources available at the proposing institutions, i.e., at the University of Southwestern Louisiana and at Southern University to support the project. Chapter 7 proposes a budget, time schedule, and management plan. Chapter 8 is a summary of the foregoing.

  12. NASA's Single-Pilot Operations Technical Interchange Meeting: Proceedings and Findings

    NASA Technical Reports Server (NTRS)

    Comerford, Doreen; Brandt, Summer L.; Lachter, Joel B.; Wu, Shu-Chieh; Mogford, Richard H.; Battiste, Vernol; Johnson, Walter W.

    2013-01-01

    Researchers at the National Aeronautics and Space Administration (NASA) Ames Research Center and Langley Research Center are jointly investigating issues associated with potential concepts, or configurations, in which a single pilot might operate under conditions that are currently reserved for a minimum of two pilots. As part of early efforts, NASA Ames Research Center hosted a technical interchange meeting in order to gain insight from members of the aviation community regarding single-pilot operations (SPO). The meeting was held on April 10-12, 2012 at NASA Ames Research Center. Professionals in the aviation domain were invited because their areas of expertise were deemed to be directly related to an exploration of SPO. NASA, in selecting prospective participants, attempted to represent various relevant sectors within the aviation domain. Approximately 70 people representing government, academia, and industry attended. A primary focus of this gathering was to consider how tasks and responsibilities might be re-allocated to allow for SPO.

  13. Ames Lab 101: Danny Shechtman Returns to the Ames Laboratory

    SciTech Connect

    Shechtman, Danny

    2012-01-01

    Danny Shechtman, Ames Laboratory Scientist and winner of the Nobel Prize in Chemistry 2011, returned to the Ames Lab on February 14, 2012. During this time, the Nobel Laureate met with the press as well as ISU students.

  14. Ames Lab 101: Danny Shechtman Returns to the Ames Laboratory

    ScienceCinema

    Shechtman, Danny

    2016-07-12

    Danny Shechtman, Ames Laboratory Scientist and winner of the Nobel Prize in Chemistry 2011, returned to the Ames Lab on February 14, 2012. During this time, the Nobel Laureate met with the press as well as ISU students.

  15. Ames Fitness Program

    NASA Technical Reports Server (NTRS)

    Pratt, Randy

    1993-01-01

    The Ames Fitness Program services 5,000 civil servants and contractors working at Ames Research Center. A 3,000 square foot fitness center, equipped with cardiovascular machines, weight training machines, and free weight equipment is on site. Thirty exercise classes are held each week at the Center. A weight loss program is offered, including individual exercise prescriptions, fitness testing, and organized monthly runs. The Fitness Center is staffed by one full-time program coordinator and 15 hours per week of part-time help. Membership is available to all employees at Ames at no charge, and there are no fees for participation in any of the program activities. Prior to using the Center, employees must obtain a physical examination and complete a membership package. Funding for the Ames Fitness Program was in jeopardy in December 1992; however, the employees circulated a petition in support of the program and collected more than 1500 signatures in only three days. Funding has been approved through October 1993.

  16. NASA Administrator Dan Goldin greets Neil Armstrong at Apollo 11 anniversary banquet.

    NASA Technical Reports Server (NTRS)

    1999-01-01

    During an anniversary banquet honoring the Apollo team, the people who made the entire lunar landing program possible, former Apollo astronaut Neil A. Armstrong (left) shakes the hand of Judy Goldin (center), wife of NASA Administrator Daniel S. Goldin (right). The banquet was held in the Apollo/Saturn V Center, part of the KSC Visitor Complex. This is the 30th anniversary of the Apollo 11 launch and moon landing, July 16 and July 20, 1969. Among the guests at the banquet were former Apollo astronauts are Neil A. Armstrong and Edwin 'Buzz' Aldrin who flew on Apollo 11, the launch of the first moon landing; Gene Cernan, who flew on Apollo 10 and 17 and was the last man to walk on the moon; and Walt Cunningham, who flew on Apollo 7.

  17. NASA Engineering and Technology Advancement Office: A proposal to the administrator

    NASA Technical Reports Server (NTRS)

    Schulze, Norman R.

    1993-01-01

    NASA has continually had problems with cost, schedule, performance, reliability, quality, and safety aspects in programs. Past solutions have not provided the answers needed, and a major change is needed in the way of doing business. A new approach is presented for consideration. These problems are all engineering matters, and therefore, require engineering solutions. Proper engineering tools are needed to fix engineering problems. Headquarters is responsible for providing the management structure to support programs with appropriate engineering tools. A guide to define those tools and an approach for putting them into place is provided. Recommendations include establishing a new Engineering and Technology Advancement Office, requesting a review of this proposal by the Administrator since this subject requires a top level decision. There has been a wide peer review conducted by technical staff at Headquarters, the Field Installations, and others in industry as discussed.

  18. National Aeronautics and Space Administration (NASA)/American Society for Engineering Education (ASEE) Summer Faculty Fellowship Program 1988, volume 2

    NASA Technical Reports Server (NTRS)

    Bannerot, Richard B.; Goldstein, Stanley H.

    1989-01-01

    The 1988 Johnson Space Center (JSC) National Aeronautics and Space Administration (NASA)/American Society for Engineering Education (ASEE) Summer Faculty Fellowship Program was conducted by the University of Houston and JCS. The 10-week program was operated under the auspices of the ASEE. The program at JSC, as well as the programs at other NASA Centers, was funded by the Office of University Affairs, NASA Headquarters, Washington, D.C. The objectives of the program, which began in 1965 at JSC and in 1964 nationally, are: (1) to further the professional knowledge of qualified engineering and science faculty members; (2) to stimulate an exchange of ideas between participants and NASA; (3) to enrich and refresh the research and teaching activities of participants' institutions; and (4) to contribute to the research objectives of the NASA Centers.

  19. National Aeronautics and Space Administration (NASA)/American Society for Engineering Education (ASEE) Summer Faculty Fellowship Program, 1992, volume 2

    NASA Technical Reports Server (NTRS)

    Bannerot, Richard B. (Editor); Goldstein, Stanley H. (Editor)

    1992-01-01

    The 1992 Johnson Space Center (JSC) National Aeronautics and Space Administration (NASA)/American Society for Engineering Education (ASEE) Summer Faculty Fellowship Program was conducted by the University of Houston and JSC. The program at JSC, as well as the programs at other NASA Centers, was funded by the Office of University Affairs, NASA Headquarters Washington, DC. The objectives of the program, which began nationally in 1964 and at JSC in 1965, are (1) to further the professional knowledge of qualified engineering and science faculty members; (2) to stimulate an exchange of ideas between participants and NASA; (3) to enrich and refresh the research and teaching activities of participants' institutions; and (4) to contribute to the research objective of the NASA Centers. This document contains reports 13 through 24.

  20. National Aeronautics and Space Administration (NASA)/American Society for Engineering Education (ASEE) Summer Faculty Fellowship Program 1988, volume 1

    NASA Technical Reports Server (NTRS)

    Bannerot, Richard B. (Editor); Goldstein, Stanley H. (Editor)

    1989-01-01

    The 1988 Johnson Space Center (JSC) National Aeronautics and Space Administration (NASA)/American Society for Engineering Education (ASEE) Summer Faculty Fellowship Program was conducted by the University of Houston and JSC. The 10-week program was operated under the auspices of the ASEE. The program at JSC, as well as the programs at other NASA Centers, was funded by the Office of University Affairs, NASA Headquarters, Washington, D.C. The objectives of the program, which began in 1965 at JSC and in 1964 nationally, are (1) to further the professional knowledge of qualified engineering and science faculty members; (2) to stimulate an exchange of ideas between participants and NASA; (3) to enrich and refresh the research and teaching activities of participants' institutions; and (4) to contribute to the research objectives of the NASA Centers.

  1. National Aeronautics and Space Administration (NASA)/American Society for Engineering Education (ASEE) Summer Faculty Fellowship Program, 1989, volume 1

    NASA Technical Reports Server (NTRS)

    Jones, William B., Jr. (Editor); Goldstein, Stanley H. (Editor)

    1989-01-01

    The 1989 Johnson Space Center (JSC) National Aeronautics and Space Administration (NASA)/American Society for Engineering Education (ASEE) Summer Faculty Fellowship Program was conducted by Texas A and M University and JSC. The 10-week program was operated under the auspices of the ASEE. The program at JSC, as well as the programs at other NASA Centers, was funded by the Office of University Affairs, NASA Headquarters, Washington, D.C. The objectives of the program, which began nationally in 1964 and at JSC in 1965, are: (1) to further the professional knowledge of qualified engineering and science faculty members; (2) to stimulate an exchange of ideas between participants and NASA; (3) to enrich and refresh the research and teaching activities of participants' institutions; and (4) to contribute to the research objective of the NASA Centers.

  2. National Aeronautics and Space Administration (NASA)/American Society for Engineering Education (ASEE) Summer Faculty Fellowship Program, 1989, volume 2

    NASA Technical Reports Server (NTRS)

    Jones, William B., Jr. (Editor); Goldstein, Stanley H. (Editor)

    1989-01-01

    The 1989 Johnson Space Center (JSC) National Aeronautics and Space Administration (NASA)/American Society for Engineering Education (ASEE) Summer Faculty Fellowship Program was conducted by Texas A and M University and JSC. The 10-week program was operated under the auspices of the ASEE. The program at JSC, as well as the programs at other NASA Centers, was funded by the Office of University Affairs, NASA Headquarters, Washington, D.C. The objectives of the program, which began nationally in 1964 and at JSC in 1965, are: (1) to further the professional knowledge of qualified engineering and science faculty members; (2) to stimulate an exchange of ideas between participants and NASA; (3) to enrich and refresh the research and teaching activities of participants' institutions; and (4) to contribute to the research objective of the NASA Centers.

  3. National Aeronautics and Space Administration (NASA)/American Society for Engineering Education (ASEE) Summer Faculty Fellowship Program, 1992, volume 1

    NASA Technical Reports Server (NTRS)

    Bannerot, Richard B. (Editor); Goldstein, Stanley H. (Editor)

    1992-01-01

    The 1992 Johnson Space Center (JSC) National Aeronautics and Space Administration (NASA)/American Society for Engineering Education (ASEE) Summer Faculty Fellowship Program was conducted by the University of Houston and JSC. The program at JSC, as well as the programs at other NASA Centers, was funded by the Office of University Affairs, Washington, DC. The objectives of the program, which began nationally in 1964 and at JSC in 1965, are (1) to further the professional knowledge of qualified engineering and science faculty members; (2) to stimulate an exchange of ideas between participants and NASA; (3) to enrich and refresh the research and teaching activities of participants' institutions; and (4) to contribute to the research objective of the NASA Centers. This document is a compilation of the final reports 1 through 12.

  4. Results of an investigation to determine local flow characteristics at the air data probe locations using an 0.030-scale model (45-0) of the space shuttle vehicle orbiter configuration 140A/B (modified) in the NASA Ames Research Center unitary plan wind tunnel (OA161, A, B, C), volume 1

    NASA Technical Reports Server (NTRS)

    Nichols, M. E.

    1976-01-01

    Results are presented of wind tunnel test 0A161 of a 0.030-scale model 45-0 of the configuration 140A/B (modified) space shuttle vehicle orbiter in the NASA Ames Research Center Unitary Plan Wind Tunnel facilities. The purpose of this test was to determine local total and static pressure environments for the air data probe locations and relative effectiveness of alternate flight-test probe configurations. Testing was done in the Mach number range from 0.30 to 3.5. Angle of attack was varied from -8 to 25 degrees while sideslip varied between -8 and 8 degrees.

  5. Results of a M = 5.3 heat transfer test of the integrated vehicle using phase-change paint techniques on the 0.0175-scale model 56-OTS in the NASA/Ames Research Center 3.5-foot hypersonic wind tunnel

    NASA Technical Reports Server (NTRS)

    Marroquin, J.

    1985-01-01

    An experimental investigation was performed in the NASA/Ames Research Center 3.5-foot Hypersonic Wind Tunnel to obtain supersonic heat-distribution data in areas between the orbiter and external tank using phase-change paint techniques. The tests used Novamide SSV Model 56-OTS in the first and second-stage ascent configurations. Data were obtained at a nominal Mach number of 5.3 and a Reynolds number per foot of 5 x 10 to the 6th power with angles of attack of 0 deg, +/- 5 deg, and sideslip angles of 0 deg and +/- 5 deg.

  6. STS-87 Payload Specialist Leonid Kadenyuk chats with NASA Administrator Daniel Goldin shortly after

    NASA Technical Reports Server (NTRS)

    1997-01-01

    STS-87 Payload Specialist Leonid Kadenyuk of the National Space Agency of Ukraine (NSAU), at left, chats with NASA Administrator Daniel Goldin shortly after the landing of Columbia at Kennedy Space Center. Looking on is back-up Payload Specialist Yaroslav Pustovyi, also of NSAU. STS-87 concluded its mission with a main gear touchdown at 7:20:04 a.m. EST Dec. 5, at KSC's Shuttle Landing Facility Runway 33, drawing the 15-day, 16-hour and 34- minute-long mission of 6.5 million miles to a close. Also onboard the orbiter were Commander Kevin Kregel; Pilot Steven Lindsey; and Mission Specialists Winston Scott, Kalpana Chawla, Ph.D., and Takao Doi, Ph.D., of the National Space Development Agency of Japan. During the 88th Space Shuttle mission, the crew performed experiments on the United States Microgravity Payload-4 and pollinated plants as part of the Collaborative Ukrainian Experiment. This was the 12th landing for Columbia at KSC and the 41st KSC landing in the history of the Space Shuttle program.

  7. NASA Administrator Paine and U.S. President Richard Milhous Nixon Await Apollo 11 Splashdown

    NASA Technical Reports Server (NTRS)

    1969-01-01

    Dr. Thomas Paine, NASA administrator (left) and U.S. President Richard Milhous Nixon wait aboard the recovery ship, the U.S.S. Hornet, for splashdown of the Apollo 11 in the Pacific Ocean. Navy para-rescue men recovered the capsule housing the 3-man crew. The crew was taken to safety aboard the U.S.S. Hornet, where they were quartered in a Mobile Quarantine Facility (MQF). The Apollo 11 mission, the first manned lunar mission, launched from the Kennedy Space Center, Florida via the Saturn V launch vehicle on July 16, 1969 and safely returned to Earth on July 24, 1969. The Saturn V vehicle was developed by the Marshall Space Flight Center (MSFC) under the direction of Dr. Wernher von Braun. Aboard were Neil A. Armstrong, commander; Michael Collins, Command Module (CM) pilot; and Edwin E. Aldrin Jr., Lunar Module (LM) pilot. The CM, piloted by Michael Collins remained in a parking orbit around the Moon while the LM, named 'Eagle'', carrying astronauts Neil Armstrong and Edwin Aldrin, landed on the Moon. Armstrong was the first human to ever stand on the lunar surface, followed by Edwin (Buzz) Aldrin. During 2½ hours of surface exploration, the crew collected 47 pounds of lunar surface material for analysis back on Earth. With the success of Apollo 11, the national objective to land men on the Moon and return them safely to Earth had been accomplished.

  8. Precourt presents a flag, flown on Mir to NASA Administrator Goldin

    NASA Technical Reports Server (NTRS)

    1998-01-01

    STS-91 Mission Commander Charles J. Precourt (at microphone) presents an American flag, a special tool, and an optical disc to NASA Administrator Dan Goldin following Discovery's landing at KSC's Shuttle Landing Facility, as Phase I Shuttle/Mir Program Manager Frank Culbertson and the other members of the STS-91 flight crew look on. This landing not only concluded the STS-91 mission, but Phase I of the joint U.S.-Russian International Space Station Program as well. The flag rode aboard Mir from the beginning of the Phase I program and was brought back to Earth by the STS-91 crew. Discovery's main gear touchdown on Runway 15 was at 2:00:00 p.m. EDT on June 12, 1998, on orbit 155 of the mission. The wheels stopped at 2:01:00 p.m. EDT, for a total mission-elapsed time of 9 days, 19 hours, 55 minutes and 1 second. The 91st Shuttle mission was the 44th KSC landing in the history of the Space Shuttle program and the 15th consecutive landing at KSC. Besides Commander Precourt, the STS-91 flight crew also included Pilot Dominic L. Gorie and Mission Specialists Wendy B. Lawrence, Franklin R. Chang-Diaz, Janet Lynn Kavandi and Valery Victorovitch Ryumin of the Russian Space Agency. Astronaut Andrew S. W. Thomas also returned to Earth from Mir as an STS-91 crew member after 141 days in space.

  9. NASA Administrator Daniel Goldin greets Mme. Aline Chretien at launch of mission STS-96

    NASA Technical Reports Server (NTRS)

    1999-01-01

    NASA Administrator Daniel Goldin (left) greets Mme. Aline Chretien, wife of the Canadian Prime Minister, at the launch of STS-96. Looking on in the background (between them) is former astronaut Jean-Loup Chretien (no relation), who flew on STS-86. Mme. Chretien attended the launch because one of the STs-96 crew is Mission Specialist Julie Payette, who represents the Canadian Space Agency. Space Shuttle Discovery launched on time at 6:49:42 a.m. EDT to begin a 10-day logistics and resupply mission for the International Space Station. Along with such payloads as a Russian crane, the Strela; a U.S.-built crane; the Spacehab Oceaneering Space System Box (SHOSS), a logistics items carrier; and STARSHINE, a student-involved experiment, Discovery carries about 4,000 pounds of supplies, to be stored aboard the station for use by future crews, including laptop computers, cameras, tools, spare parts, and clothing. The mission includes a space walk to attach the cranes to the outside of the ISS for use in future construction. Landing is expected at the SLF on June 6 about 1:58 a.m. EDT.

  10. Routine environmental audit of Ames Laboratory, Ames, Iowa

    SciTech Connect

    1994-09-01

    This document contains the findings identified during the routine environmental audit of Ames Laboratory, Ames, Iowa, conducted September 12--23, 1994. The audit included a review of all Ames Laboratory operations and facilities supporting DOE-sponsored activities. The audit`s objective is to advise the Secretary of Energy, through the Assistant Secretary for Environment, Safety and Health, as to the adequacy of the environmental protection programs established at Ames Laboratory to ensure the protection of the environment, and compliance with Federal, state, and DOE requirements.

  11. Leadership in Space: Selected Speeches of NASA Administrator Michael Griffin, May 2005 - October 2008

    NASA Technical Reports Server (NTRS)

    Griffin, Michael

    2008-01-01

    Speech topics include: Leadership in Space; Space Exploration: Real and Acceptable Reasons; Why Explore Space?; Space Exploration: Filling up the Canvas; Continuing the Voyage: The Spirit of Endeavour; Incorporating Space into Our Economic Sphere of Influence; The Role of Space Exploration in the Global Economy; Partnership in Space Activities; International Space Cooperation; National Strategy and the Civil Space Program; What the Hubble Space Telescope Teaches Us about Ourselves; The Rocket Team; NASA's Direction; Science and NASA; Science Priorities and Program Management; NASA and the Commercial Space Industry; NASA and the Business of Space; American Competitiveness: NASA's Role & Everyone's Responsibility; Space Exploration: A Frontier for American Collaboration; The Next Generation of Engineers; System Engineering and the "Two Cultures" of Engineering; Generalship of Engineering; NASA and Engineering Integrity; The Constellation Architecture; Then and Now: Fifty Years in Space; The Reality of Tomorrow; and Human Space Exploration: The Next 50 Years.

  12. Guidelines for development of NASA (National Aeronautics and Space Administration) computer security training programs

    NASA Technical Reports Server (NTRS)

    Tompkins, F. G.

    1983-01-01

    The report presents guidance for the NASA Computer Security Program Manager and the NASA Center Computer Security Officials as they develop training requirements and implement computer security training programs. NASA audiences are categorized based on the computer security knowledge required to accomplish identified job functions. Training requirements, in terms of training subject areas, are presented for both computer security program management personnel and computer resource providers and users. Sources of computer security training are identified.

  13. National Aeronautics and Space Administration (NASA)/American Society of Engineering Education (ASEE) Summer Faculty Fellowship Program - 2000

    NASA Technical Reports Server (NTRS)

    Bannerot, Richard B. (Editor); Sickorez, Donn G. (Editor)

    2003-01-01

    The 2000 Johnson Space Center (JSC) National Aeronautics and Space Administration (NASA)/American Society for Engineering Education (ASEE) Summer Faculty Fellowship Program was conducted by the University of Houston and JSC. The 10-week program was operated under the auspices of the ASEE. The program at JSC, as well as the programs at other NASA Centers, was funded by the Office of University Affairs, NASA Headquarters, Washington, D.C. The objectives of the program, which began in 1965 at JSC and 1964 nationally, are to (1) further the professional knowledge of qualified engineering and science faculty, (2) stimulate an exchange of ideas between participants and NASA, (3) enrich and refresh the research and teaching activities of participants' institutions, and (4) contribute to the research objectives of the NASA Centers. Each faculty fellow spent at least 10 weeks at JSC engaged in a research project commensurate with her/his interests and background, and worked in collabroation with a NASA/JSC colleague. This document is a compilation of the final reports on the research projects done by the faculty fellows during the summer of 2000.

  14. The Ames Vertical Gun Range

    NASA Technical Reports Server (NTRS)

    Karcz, J. S.; Bowling, D.; Cornelison, C.; Parrish, A.; Perez, A.; Raiche, G.; Wiens, J.-P.

    2016-01-01

    The Ames Vertical Gun Range (AVGR) is a national facility for conducting laboratory- scale investigations of high-speed impact processes. It provides a set of light-gas, powder, and compressed gas guns capable of accelerating projectiles to speeds up to 7 km s(exp -1). The AVGR has a unique capability to vary the angle between the projectile-launch and gravity vectors between 0 and 90 deg. The target resides in a large chamber (diameter approximately 2.5 m) that can be held at vacuum or filled with an experiment-specific atmosphere. The chamber provides a number of viewing ports and feed-throughs for data, power, and fluids. Impacts are observed via high-speed digital cameras along with investigation-specific instrumentation, such as spectrometers. Use of the range is available via grant proposals through any Planetary Science Research Program element of the NASA Research Opportunities in Space and Earth Sciences (ROSES) calls. Exploratory experiments (one to two days) are additionally possible in order to develop a new proposal.

  15. Guidelines for health surveillance in the NASA (National Aeronautics and Space Administration) workplace

    NASA Technical Reports Server (NTRS)

    1984-01-01

    The adequacy of biomedical data sheets used by the NASA medical staff for NASA employees and contractors was assessed. Procedures for developing medical histories, conducting medical examinations, and collecting toxicity data were reviewed. Recommendations for employee health maintenance and early detection of work-related abnormalities are given.

  16. 'Fluid Dynamics,' mixed media by Tina York depicts fluid dynamics studies at the Ames Research

    NASA Technical Reports Server (NTRS)

    2001-01-01

    'Fluid Dynamics,' mixed media by Tina York depicts fluid dynamics studies at the Ames Research Center. The purpose of such studies is to learn more about what happens to an object when it encounters the friction of atmospheric resistence (such as a plane encountering resistance as it speeds through the air). used in Ames 60 year history by Glenn Bugos NASA SP-4314

  17. National Aeronautics and Space Administration (NASA)/American Society for Engineering Education (ASEE) Summer Faculty Fellowship Program, 1987, volume 2

    NASA Technical Reports Server (NTRS)

    Jones, William B., Jr. (Editor); Goldstein, Stanley H. (Editor)

    1987-01-01

    The 1987 Johnson Space Center (JCS) National Aeronautics and Space Administration (NASA)/American Society for Engineering Education (ASEE) Summer Faculty Fellowship program was conducted by Texas A and M University and JSC. The 10-week program was operated under the auspices of ASEE. The basic objectives of the program are: to further the professional knowledge of qualified engineering and science faculty members; to stimulate an exchange of ideas between participants and NASA; to enrich and refresh the research and teaching activities of participants' institutions; and to contribute to the research objective of the NASA Centers. This document is a compilation of the final reports on the research projects done by the faculty fellows during the summer of 1987.

  18. Ames Lab 101: Rare Earths

    ScienceCinema

    Gschneidner, Karl

    2016-07-12

    "Mr. Rare Earth," Ames Laboratory scientist Karl Gschneidner Jr., explains the importance of rare-earth materials in many of the technologies we use today -- ranging from computers to hybrid cars to wind turbines. Gschneidner is a world renowned rare-earths expert at the U.S. Department of Energy's Ames Laboratory.

  19. Ames Lab 101: Lanthanum Decanting

    ScienceCinema

    Riedemann, Trevor

    2016-07-12

    Ames Laboratory scientist Trevor Riedemann explains the process that allows Ames Laboratory to produce some of the purest lanthanum in the world. This and other high-purity rare-earth elements are used to create alloys used in various research projects and play a crucial role in the Planck satellite mission.

  20. Ames Lab 101: Rare Earths

    SciTech Connect

    Gschneidner, Karl

    2010-01-01

    "Mr. Rare Earth," Ames Laboratory scientist Karl Gschneidner Jr., explains the importance of rare-earth materials in many of the technologies we use today -- ranging from computers to hybrid cars to wind turbines. Gschneidner is a world renowned rare-earths expert at the U.S. Department of Energy's Ames Laboratory.

  1. Ames Research Center publications: A continuing bibliography, 1980

    NASA Technical Reports Server (NTRS)

    1981-01-01

    This bibliography lists formal NASA publications, journal articles, books, chapters of books, patents, contractor reports, and computer programs that were issued by Ames Research Center and indexed by Scientific and Technical Aerospace Reports, Limited Scientific and Technical Aerospace Reports, International Aerospace Abstracts, and Computer Program Abstracts in 1980. Citations are arranged by directorate, type of publication, and NASA accession numbers. Subject, personal author, corporate source, contract number, and report/accession number indexes are provided.

  2. Ames Research Center publications: A continuing bibliography, 1978

    NASA Technical Reports Server (NTRS)

    1980-01-01

    This bibliography lists formal NASA publications, journal articles, books, chapters of books, patents and contractor reports issued by Ames Research Center which were indexed by Scientific and Technical Aerospace Abstracts, Limited Scientific and Technical Aerospace Abstracts, and International Aerospace Abstracts in 1978. Citations are arranged by directorate, type of publication and NASA accession numbers. Subject, personal author, corporate source, contract number, and report/accession number indexes are provided.

  3. The 1979 Ames Research Center Publications: A continuing bibliography

    NASA Technical Reports Server (NTRS)

    1979-01-01

    This bibliography lists formal NASA publications, journal articles, books, chapters of books, patents, and contractor reports issued by Ames Research Center which were indexed by Scientific and Technical Aerospace Reports, Limited Scientific and Technical Aerospace Reports, and International Aerospace Abstracts in 1979. Citations are arranged by directorate, type of publication, and NASA accession numbers. Subject, Personal Author, Corporate Source, Contract Number, and Report/Accession Number Indexes are provided.

  4. Future Directions in Rotorcraft Technology at Ames Research Center

    DTIC Science & Technology

    2000-05-01

    being pursued within the Army/NASA Rotorcraft Division. High Lift Airfoils and the Stall Free Rotor Unlike fixed wing aircraft, helicopter rotors have...pitch angle control inputs, a revolutionary new concept will become a reality - the Stall- Free Rotor. The implications for rotorcraft, beyond the...Rotorcraft Algorithm Development and Integrated Control Laws ( RADICL ) program, the U.S. Army, Sikorsky, ZF Luftfahrttechnik, and NASA Ames Research Center

  5. Ames Hybrid Combustion Facility

    NASA Technical Reports Server (NTRS)

    Zilliac, Greg; Karabeyoglu, Mustafa A.; Cantwell, Brian; Hunt, Rusty; DeZilwa, Shane; Shoffstall, Mike; Soderman, Paul T.; Bencze, Daniel P. (Technical Monitor)

    2003-01-01

    The report summarizes the design, fabrication, safety features, environmental impact, and operation of the Ames Hybrid-Fuel Combustion Facility (HCF). The facility is used in conducting research into the scalability and combustion processes of advanced paraffin-based hybrid fuels for the purpose of assessing their applicability to practical rocket systems. The facility was designed to deliver gaseous oxygen at rates between 0.5 and 16.0 kg/sec to a combustion chamber operating at pressures ranging from 300 to 900. The required run times were of the order of 10 to 20 sec. The facility proved to be robust and reliable and has been used to generate a database of regression-rate measurements of paraffin at oxygen mass flux levels comparable to those of moderate-sized hybrid rocket motors.

  6. Cost efficient operations: Challenge from NASA administrator and lessons learned from hunting sacred cows

    NASA Technical Reports Server (NTRS)

    Hornstein, Rhoda Shaller; Casasanta, Ralph; Hei, Donald J., Jr.; Hawkins, Frederick J.; Burke, Eugene S., Jr.; Todd, Jacqueline E.; Bell, Jerome A.; Miller, Raymond E.; Willoughby, John K.; Gardner, Jo Anne

    1996-01-01

    The conclusions and recommendations that resulted from NASA's Hunting Sacred Cows Workshop are summarized, where a sacred cow is a belief or assumption that is so well established that it appears to be unreasonably immune to criticism. A link was identified between increased complexity and increased costs, especially in relation to automation and autonomy. An identical link was identified for outsourcing and commercialization. The work of NASA's Cost Less team is reviewed. The following conclusions were stated by the Cost Less team and considered at the workshop: the way Nasa conducts business must change; NASA makes its best contributions to the public areas not addressed by other government organizations; the management tool used for the last 30 years is no longer suitable; the most important work on any program or project is carried out before the development or operations stages; automation should only be used to achieve autonomy if the reasons for automation are well understood, and NASA's most critical resources are its personnel.

  7. Guidelines for developing NASA (National Aeronautics and Space Administration) ADP security risk management plans

    NASA Technical Reports Server (NTRS)

    Tompkins, F. G.

    1983-01-01

    This report presents guidance to NASA Computer security officials for developing ADP security risk management plans. The six components of the risk management process are identified and discussed. Guidance is presented on how to manage security risks that have been identified during a risk analysis performed at a data processing facility or during the security evaluation of an application system.

  8. Risk management. National Aeronautics and Space Administration (NASA). Interim rule adopted as final with changes.

    PubMed

    2000-11-22

    This is a final rule amending the NASA FAR Supplement (NFS) to emphasize considerations of risk management, including safety, security (including information technology security), health, export control, and damage to the environment, within the acquisition process. This final rule addresses risk management within the context of acquisition planning, selecting sources, choosing contract type, structuring award fee incentives, administering contracts, and conducting contractor surveillance.

  9. NASA Space Human Factors Program

    NASA Technical Reports Server (NTRS)

    1992-01-01

    This booklet briefly and succinctly treats 23 topics of particular interest to the NASA Space Human Factors Program. Most articles are by different authors who are mainly NASA Johnson or NASA Ames personnel. Representative topics covered include mental workload and performance in space, light effects on Circadian rhythms, human sleep, human reasoning, microgravity effects and automation and crew performance.

  10. Review of NASA's (National Aeronautics and Space Administration) Numerical Aerodynamic Simulation Program

    NASA Technical Reports Server (NTRS)

    1984-01-01

    NASA has planned a supercomputer for computational fluid dynamics research since the mid-1970's. With the approval of the Numerical Aerodynamic Simulation Program as a FY 1984 new start, Congress requested an assessment of the program's objectives, projected short- and long-term uses, program design, computer architecture, user needs, and handling of proprietary and classified information. Specifically requested was an examination of the merits of proceeding with multiple high speed processor (HSP) systems contrasted with a single high speed processor system. The panel found NASA's objectives and projected uses sound and the projected distribution of users as realistic as possible at this stage. The multiple-HSP, whereby new, more powerful state-of-the-art HSP's would be integrated into a flexible network, was judged to present major advantages over any single HSP system.

  11. Innovation @ NASA

    NASA Technical Reports Server (NTRS)

    Roman, Juan A.

    2014-01-01

    This presentation provides an overview of the activities National Aeronautics and Space Administration (NASA) is doing to encourage innovation across the agency. All information provided is available publicly.

  12. Guidelines for contingency planning NASA (National Aeronautics and Space Administration) ADP security risk reduction decision studies

    NASA Technical Reports Server (NTRS)

    Tompkins, F. G.

    1984-01-01

    Guidance is presented to NASA Computer Security Officials for determining the acceptability or unacceptability of ADP security risks based on the technical, operational and economic feasibility of potential safeguards. The risk management process is reviewed as a specialized application of the systems approach to problem solving and information systems analysis and design. Reporting the results of the risk reduction analysis to management is considered. Report formats for the risk reduction study are provided.

  13. Ames Optimized TCA Configuration

    NASA Technical Reports Server (NTRS)

    Cliff, Susan E.; Reuther, James J.; Hicks, Raymond M.

    1999-01-01

    Configuration design at Ames was carried out with the SYN87-SB (single block) Euler code using a 193 x 49 x 65 C-H grid. The Euler solver is coupled to the constrained (NPSOL) and the unconstrained (QNMDIF) optimization packages. Since the single block grid is able to model only wing-body configurations, the nacelle/diverter effects were included in the optimization process by SYN87's option to superimpose the nacelle/diverter interference pressures on the wing. These interference pressures were calculated using the AIRPLANE code. AIRPLANE is an Euler solver that uses a unstructured tetrahedral mesh and is capable of computations about arbitrary complete configurations. In addition, the buoyancy effects of the nacelle/diverters were also included in the design process by imposing the pressure field obtained during the design process onto the triangulated surfaces of the nacelle/diverter mesh generated by AIRPLANE. The interference pressures and nacelle buoyancy effects are added to the final forces after each flow field calculation. Full details of the (recently enhanced) ghost nacelle capability are given in a related talk. The pseudo nacelle corrections were greatly improved during this design cycle. During the Ref H and Cycle 1 design activities, the nacelles were only translated and pitched. In the cycle 2 design effort the nacelles can translate vertically, and pitch to accommodate the changes in the lower surface geometry. The diverter heights (between their leading and trailing edges) were modified during design as the shape of the lower wing changed, with the drag of the diverter changing accordingly. Both adjoint and finite difference gradients were used during optimization. The adjoint-based gradients were found to give good direction in the design space for configurations near the starting point, but as the design approached a minimum, the finite difference gradients were found to be more accurate. Use of finite difference gradients was limited by the

  14. National Aeronautics and Space Administration (NASA) Environmental Control and Life Support (ECLS) Integrated Roadmap Development

    NASA Technical Reports Server (NTRS)

    Metcalf, Jordan; Peterson, Laurie; Carrasquillo, Robyn; Bagdigian, Robert

    2011-01-01

    At present, NASA has considered a number of future human space exploration mission concepts . Yet, detailed mission requirements and vehicle architectures remain mostly undefined, making technology investment strategies difficult to develop and sustain without a top-level roadmap to serve as a guide. This paper documents a roadmap for development of Environmental Control and Life Support Systems (ECLSS) capabilities required to enhance the long-term operation of the International Space Station (ISS) as well as enable beyond-Low Earth Orbit (LEO) human exploration missions. Three generic mission types were defined to serve as a basis for developing a prioritized list of needed capabilities and technologies. Those are 1) a short duration micro gravity mission; 2) a long duration transit microgravity mission; and 3) a long duration surface exploration mission. To organize the effort, ECLSS was categorized into three major functional groups (atmosphere, water, and solid waste management) with each broken down into sub-functions. The ability of existing state-of-the-art (SOA) technologies to meet the functional needs of each of the three mission types was then assessed by NASA subject matter experts. When SOA capabilities were deemed to fall short of meeting the needs of one or more mission types, those gaps were prioritized in terms of whether or not the corresponding capabilities enable or enhance each of the mission types. The result was a list of enabling and enhancing capabilities needs that can be used to guide future ECLSS development, as well as a list of existing hardware that is ready to go for exploration-class missions. A strategy to fulfill those needs over time was then developed in the form of a roadmap. Through execution of this roadmap, the hardware and technologies intended to meet exploration needs will, in many cases, directly benefit the ISS operational capability, benefit the Multi-Purpose Crew Vehicle (MPCV), and guide long-term technology

  15. Leveraging object-oriented development at Ames

    NASA Technical Reports Server (NTRS)

    Wenneson, Greg; Connell, John

    1994-01-01

    This paper presents lessons learned by the Software Engineering Process Group (SEPG) from results of supporting two projects at NASA Ames using an Object Oriented Rapid Prototyping (OORP) approach supported by a full featured visual development environment. Supplemental lessons learned from a large project in progress and a requirements definition are also incorporated. The paper demonstrates how productivity gains can be made by leveraging the developer with a rich development environment, correct and early requirements definition using rapid prototyping, and earlier and better effort estimation and software sizing through object-oriented methods and metrics. Although the individual elements of OO methods, RP approach and OO metrics had been used on other separate projects, the reported projects were the first integrated usage supported by a rich development environment. Overall the approach used was twice as productive (measured by hours per OO Unit) as a C++ development.

  16. Future Directions in Rotorcraft Technology at Ames Research Center

    NASA Technical Reports Server (NTRS)

    Aiken, Edwin W.; Ormiston, Robert A; Young, Larry A.

    2000-01-01

    Members of the NASA and Army rotorcraft research community at Ames Research Center have developed a vision for 'Vertical Flight 2025'. This paper describes the development of that vision and the steps being taken to implement it. In an effort to realize the vision, consistent with both NASA and Army Aviation strategic plans, two specific technology development projects have been identified: (1) one focused on a personal transportation system capable of vertical flight (the 'Roto-Mobile') and (2) the other on small autonomous rotorcraft (which is inclusive of vehicles which range in grams of gross weight for 'MicroRotorcraft' to thousands of kilograms for rotorcraft uninhabited aerial vehicles). The paper provides a status report on these projects as well as a summary of other revolutionary research thrusts being planned and executed at Ames Research Center.

  17. Environmental Survey preliminary report, Ames Laboratory, Ames, Iowa

    SciTech Connect

    Not Available

    1989-03-01

    This report presents the preliminary findings of the first phase of the environmental Survey of the United States Department of Energy's (DOE) Ames Laboratory, conducted April 18 through 22, 1988. The Survey is being conducted by an interdisciplinary team of environmental specialists, led and managed by the Office of Environment, Safety and Health's Office of Environmental Audit. Individual team members are being supplied by private contractors. The objective of the Survey is to identify environmental problems and areas of environmental risk associated with the Ames Laboratory. The Survey covers all environmental media and all areas of environmental regulation. It is being performed in accordance with the DOE Environmental Survey Manual. This phase of the Survey involves the review of existing site environmental data, observations of the operations carried on at the Ames Laboratory, and interviews with site personnel. The Survey team developed a Sampling and Analysis (S A) Plan to assist in further assessing certain of the environmental problems identified during its on-site activities. The S A plan is being developed by the Idaho National Engineering Laboratory. When S A is completed, the results will be incorporated into the Ames Laboratory Environmental Survey findings for inclusion in the Environmental Survey Summary Report. 60 refs., 13 figs., 20 tabs.

  18. National Aeronautics and Space Administration (NASA) Environmental Control and Life Support (ECLS) Integrated Roadmap Development

    NASA Technical Reports Server (NTRS)

    Metcalf, Jordan; Peterson, Laurie; Carrasquillo, Robyn; Bagdigian, Robert

    2012-01-01

    Although NASA is currently considering a number of future human space exploration mission concepts, detailed mission requirements and vehicle architectures remain mostly undefined, making technology investment strategies difficult to develop and sustain without a top-level roadmap to serve as a guide. This paper documents the process and results of an effort to define a roadmap for Environmental Control and Life Support Systems (ECLSS) capabilities required to enhance the long-term operation of the International Space Station (ISS) as well as enable beyond-Low Earth Orbit (LEO) human exploration missions. Three generic mission types were defined to serve as a basis for developing a prioritized list of needed capabilities and technologies. Those are 1) a short duration micro-gravity mission; 2) a long duration microgravity mission; and 3) a long duration partial gravity (surface) exploration mission. To organize the effort, a functional decomposition of ECLSS was completed starting with the three primary functions: atmosphere, water, and solid waste management. Each was further decomposed into sub-functions to the point that current state-of-the-art (SOA) technologies could be tied to the sub-function. Each technology was then assessed by NASA subject matter experts as to its ability to meet the functional needs of each of the three mission types. When SOA capabilities were deemed to fall short of meeting the needs of one or more mission types, those gaps were prioritized in terms of whether or not the corresponding capabilities enable or enhance each of the mission types. The result was a list of enabling and enhancing capability needs that can be used to guide future ECLSS development, as well as a list of existing hardware that is ready to go for exploration-class missions. A strategy to fulfill those needs over time was then developed in the form of a roadmap. Through execution of this roadmap, the hardware and technologies intended to meet exploration needs

  19. Report from the MPP Working Group to the NASA Associate Administrator for Space Science and Applications

    NASA Technical Reports Server (NTRS)

    Fischer, James R.; Grosch, Chester; Mcanulty, Michael; Odonnell, John; Storey, Owen

    1987-01-01

    NASA's Office of Space Science and Applications (OSSA) gave a select group of scientists the opportunity to test and implement their computational algorithms on the Massively Parallel Processor (MPP) located at Goddard Space Flight Center, beginning in late 1985. One year later, the Working Group presented its report, which addressed the following: algorithms, programming languages, architecture, programming environments, the way theory relates, and performance measured. The findings point to a number of demonstrated computational techniques for which the MPP architecture is ideally suited. For example, besides executing much faster on the MPP than on conventional computers, systolic VLSI simulation (where distances are short), lattice simulation, neural network simulation, and image problems were found to be easier to program on the MPP's architecture than on a CYBER 205 or even a VAX. The report also makes technical recommendations covering all aspects of MPP use, and recommendations concerning the future of the MPP and machines based on similar architectures, expansion of the Working Group, and study of the role of future parallel processors for space station, EOS, and the Great Observatories era.

  20. Ames Research Center cryogenics program

    NASA Technical Reports Server (NTRS)

    Kittel, Peter

    1987-01-01

    Viewgraphs describe the Ames Research Center's cryogenics program. Diagrams are given of a fluid management system, a centrifugal pump, a flow meter, a liquid helium test facility, an extra-vehicular activity coupler concept, a dewar support with passive orbital disconnect, a pulse tube refrigerator, a dilution refrigerator, and an adiabatic demagnetization cooler.

  1. Some innovations and accomplishments of Ames Research Center since its inception

    NASA Technical Reports Server (NTRS)

    1987-01-01

    The innovations and accomplishments of Ames Research Center from 1940 through 1966 are summarized and illustrated. It should be noted that a number of accomplishments were begun at the NASA Dryden Flight Research Facility before that facility became part of the Ames Research Center. Such accomplishments include the first supersonic flight, the first hypersonic flight, the lunar landing research vehicle, and the first digital fly-by-wire aircraft.

  2. NASA ATP Force Measurement Technology Capability Strategic Plan

    NASA Technical Reports Server (NTRS)

    Rhew, Ray D.

    2008-01-01

    The Aeronautics Test Program (ATP) within the National Aeronautics and Space Administration (NASA) Aeronautics Research Mission Directorate (ARMD) initiated a strategic planning effort to re-vitalize the force measurement capability within NASA. The team responsible for developing the plan included members from three NASA Centers (Langley, Ames and Glenn) as well as members from the Air Force s Arnold Engineering and Development Center (AEDC). After visiting and discussing force measurement needs and current capabilities at each participating facility as well as selected force measurement companies, a strategic plan was developed to guide future NASA investments. This paper will provide the details of the strategic plan and include asset management, organization and technology research and development investment priorities as well as efforts to date.

  3. The Ames Project (1942-1946)

    SciTech Connect

    2012-06-14

    The Ames Laboratory was officially founded on May 17, 1947, following development of a process to purify uranium metal for the historic Manhattan Project. From 1942 to 1946, Ames Lab scientists produced over two-million pounds of uranium metal. A U.S. Department of Energy national research laboratory, the Ames Laboratory creates materials and energy solutions. Iowa State University operates Ames Laboratory under contract with the DOE.

  4. AMED: The Allied and Complementary Medicine Database.

    PubMed

    Vardell, Emily

    2016-01-01

    AMED: The Allied and Complementary Medicine Database is a resource from the Health Care Information Service of the British Library. AMED offers access to complementary and alternative medicine topics, such as acupuncture, chiropractic, herbalism, homeopathy, hospice care, hypnosis, palliative care, physiotherapy, podiatry, and rehabilitation. This column features a sample search to demonstrate the type of information available within AMED. AMED is available through the EBSCOhost and OVID platforms.

  5. The Ames Project (1942-1946)

    ScienceCinema

    None

    2016-07-12

    The Ames Laboratory was officially founded on May 17, 1947, following development of a process to purify uranium metal for the historic Manhattan Project. From 1942 to 1946, Ames Lab scientists produced over two-million pounds of uranium metal. A U.S. Department of Energy national research laboratory, the Ames Laboratory creates materials and energy solutions. Iowa State University operates Ames Laboratory under contract with the DOE.

  6. The National Aeronautics and Space Administration (NASA)/Goddard Space Flight Center (GSFC) sounding-rocket program

    NASA Technical Reports Server (NTRS)

    Guidotti, J. G.

    1976-01-01

    An overall introduction to the NASA sounding rocket program as managed by the Goddard Space Flight Center is presented. The various sounding rockets, auxiliary systems (telemetry, guidance, etc.), launch sites, and services which NASA can provide are briefly described.

  7. Static and wind tunnel near-field/far-field jet noise measurements from model scale single-flow base line and suppressor nozzles. Summary report. [conducted in the Boeing large anechoic test chamber and the NASA-Ames 40by 80-foot wind tunnel

    NASA Technical Reports Server (NTRS)

    Jaeck, C. L.

    1977-01-01

    A test program was conducted in the Boeing large anechoic test chamber and the NASA-Ames 40- by 80-foot wind tunnel to study the near- and far-field jet noise characteristics of six baseline and suppressor nozzles. Static and wind-on noise source locations were determined. A technique for extrapolating near field jet noise measurements into the far field was established. It was determined if flight effects measured in the near field are the same as those in the far field. The flight effects on the jet noise levels of the baseline and suppressor nozzles were determined. Test models included a 15.24-cm round convergent nozzle, an annular nozzle with and without ejector, a 20-lobe nozzle with and without ejector, and a 57-tube nozzle with lined ejector. The static free-field test in the anechoic chamber covered nozzle pressure ratios from 1.44 to 2.25 and jet velocities from 412 to 594 m/s at a total temperature of 844 K. The wind tunnel flight effects test repeated these nozzle test conditions with ambient velocities of 0 to 92 m/s.

  8. NASA and Public-Private Partnerships

    NASA Technical Reports Server (NTRS)

    Martin, Gary L.

    2010-01-01

    This slide presentation reviews ways to build public-private partnerships with NASA, and the many efforts that Ames Research Center is engaged in in building partnerships with private businesses, not profit organizations and universities.

  9. National Aeronautics and Space Administration (NASA)/American Society for Engineering Education (ASEE) Summer Faculty Fellowship Program: 1996. Volume 2

    NASA Technical Reports Server (NTRS)

    Bannerot, Richard B. (Editor); Sickorez, Donn G. (Editor)

    1997-01-01

    The objectives of the program, which began nationally in 1964 and at JSC in 1965 are to (1) further the professional knowledge qualified engineering and science faculty members, (2) stimulate an exchange of ideas between participants and NASA, (3) and refresh the research and teaching activities of participants' institutions, and (4) contribute to the research objectives of NASA centers. Each faculty fellow spent at least 10 weeks at JSC engaged in a research project in collaboration with a NASA JSC colleague.

  10. National Aeronautics and Space Administration (NASA)/American Society for Engineering Education (ASEE) summer faculty fellowship program, 1986, volume 1

    NASA Technical Reports Server (NTRS)

    Mcinnis, Bayliss (Editor); Goldstein, Stanley (Editor)

    1987-01-01

    The Johnson Space Center (JSC) NASA/ASEE Summer Faculty Fellowship Program was conducted by the University of Houston. The basic objectives of the program are: (1) to further the professional knowledge of qualified engineering and science faculty members; (2) to stimulate an exchange of ideas between participants and NASA; (3) to enrich and refresh the research and teaching objectives of participants' institutions; and (4) to contribute to the research objectives of the NASA Centers. Each faculty fellow spent ten weeks at JSC engaged in a research project commensurate with his interests and background and worked in collaboration with a NASA/JSC colleague. Volume 1 contains sections 1 through 14.

  11. Incubation of NASA technology

    NASA Astrophysics Data System (ADS)

    Olson, Richard

    1996-03-01

    Traditionally, government agencies have sought to transfer technology by licensing to large corporations. An alternative route to commercialization is through the entrepreneurial process: using government technology to assist new businesses in the environment of a business incubator. The NASA Ames Technology Commercialization Center, in Sunnyvale, California, is a business incubator used to commercialize NASA technology. In operation almost two years, it has helped twenty new, high technology ventures. Ice Management Systems is one of these. The Center is funded by NASA and operated by IC2, a think-tank associated with the University of Texas at Austin.

  12. Ames Research Center publications, 1977

    NASA Technical Reports Server (NTRS)

    1979-01-01

    This bibliography lists 786 formal NASA publications, journal articles, books, chapters of books, patents, and contractor reports which appeared during 1977 or which were not included in previous annual bibliographies. Citations are arranged by directorate, type of publication, and author. Each NASA report is identified by a technical report and accession number to facilitate ordering. An author index is provided.

  13. Final environmental impact statement for Ames Research Center

    NASA Technical Reports Server (NTRS)

    1971-01-01

    The NASA-Ames Research Center is described. together with the nature of its activities, from which it can be seen that the center is basically not a major pollution source. Geographical, and climatic characteristics of the site are described. inasmuch as they influence both the choice of disposal methods and the environmental effects of the pollutants. The known or probable pollution sources at the center are described. Where the intensities of these sources might exceed the recommended guidelines, the corrective actions that have been taken are described.

  14. The NASA Sharp Flight Experiment

    NASA Technical Reports Server (NTRS)

    Rasky, Daniel J.; Salute, Joan; Kolodziej, Paul; Bull, Jeffrey

    1998-01-01

    The Slender Hypersonic Aerothermodynamic Research Program (SHARP) was initiated by NASA Ames, and executed in partnership with Sandia National Laboratory and the US Air Force, to demonstrate sharp, passive leading edge designs for hypersonic vehicles, incorporating new ultra-high temperature ceramics (UHTC's). These new ceramic composites have been undergoing development, characterization and ground testing at NASA Ames for the last nine years. This paper will describe the background, flight objectives, design and pertinent flight results of SHARP, and some of the potential implications for future hypersonic vehicle designs.

  15. Ames, pesticides, and cancer revisited.

    PubMed

    Richter, Elihu D; Chlamtac, Noga

    2002-01-01

    The case for continuing use of existing levels of pesticides in agriculture, espoused by Bruce Ames, is refuted. Ames' contentions that naturally occurring carcinogens are far more widespread than man-made ones, that pesticides prevent cancer by providing fruits and vegetables at lower costs to the poor, and that animal data on high risks with high doses cannot predict low risks from low doses in humans do not address key issues: 1) fruits and vegetables contain mixtures of carcinogens and anti-carcinogens, and selection effects from human exposures to these mixtures go back more than a million years; 2) exposures from bioconcentrations of biopersistent organochlorines in the food chain create particular risks for meat-eaters, who have higher cancer risks than vegetarians; 3) even low doses from ingestion of produce containing pesticide residues can cause tissue injury, which could itself promote cancer; 4) epidemiologic data show rises in cancer incidences in older people in many countries, major differences in cancer risks between countries, and converging trends in risks for populations migrating to certain countries; 5) studies of pesticide-exposed workers consistently show increased rates of cancers and birth defects and cancers in their offspring; 6) epidemiologic studies based on large databases tend to underestimate risks from environmental causes because of exposure misclassification; 7) exposures to many organochlorines may have pervasive effects on endocrine function; 8) crop yields can be increased with less use of pesticides. Studies demonstrating the latter need replication, and should be supported as part of a coherent government agenda to develop alternative farming methods.

  16. Space Shuttle main engine. NASA has not evaluated the alternate fuel turbopump costs and benefits. Report to the Administrator of the National Aeronautics and Space Administration

    NASA Astrophysics Data System (ADS)

    1993-10-01

    NASA's plans to develop an alternate high pressure fuel turbopump for the Space Shuttle's main engines were assessed by the General Accounting Office as a part of the evaluation of the Space Shuttle Safety and Obsolescence Upgrade program. The objective was to determine whether NASA has adequately analyzed cost, performance, and benefits that are expected to result from this program in comparison to other alternatives before resuming development of the alternate pump, which was suspended in 1992. The alternate fuel pump is one of five improvements being developed or planned to significantly enhance safety margins of the engines.

  17. Tiger Team Assessment of the Ames Laboratory

    SciTech Connect

    Not Available

    1992-03-01

    This report documents the Tiger Assessment of the Ames Laboratory (Ames), located in Ames, Iowa. Ames is operated for the US Department of Energy (DOE) by Iowa State University. The assessment was conducted from February 10 to March 5, 1992, under the auspices of the Office of Special Projects, Office of the Assistant Secretary of Environment, Safety and Health, Headquarters, DOE. The assessment was comprehensive, encompassing Environment, Safety, and Health (ES H) disciplines; management practices; and contractor and DOE self-assessments. Compliance with applicable Federal, State of Iowa, and local regulations; applicable DOE Orders; best management practices; and internal requirements at Ames Laboratory were assessed. In addition, an evaluation of the adequacy and effectiveness of DOE and the site contractor's management of ES H/quality assurance program was conducted.

  18. National Aeronautics and Space Administration (NASA)/American Society for Engineering Education (ASEE) Summer Faculty Fellowship Program, 1993, volume 1

    NASA Technical Reports Server (NTRS)

    Hyman, William A. (Editor); Goldstein, Stanley H. (Editor)

    1993-01-01

    The JSC NASA/ASEE Summer Faculty Fellowship Program was conducted by Texas A&M University and JSC. The objectives of the program, which began nationally in 1964 and at JSC in 1965, are as follows: (1) to further the professional knowledge of qualified engineering and science faculty members; (2) to stimulate an exchange of ideas between participants and NASA; (3) to enrich and refresh the research and teaching activities of participants' institutions; and (4) to contribute to the research objectives of the NASA centers. Each faculty fellow spent at least 10 weeks at JSC engaged in a research project in collaboration with a NASA/JSC colleague. This document is a compilation of the final reports on the research projects completed by the faculty fellows during the summer of 1993.

  19. National Aeronautics and Space Administration (NASA)/American Society for Engineering Education (ASEE) Summer Faculty Fellowship Program, 1998. Volume 1

    NASA Technical Reports Server (NTRS)

    Bannerot, Richard B. (Editor); Sickorez, Donn G. (Editor)

    1999-01-01

    JSC NASA/ASEE Summer Faculty Fellowship Program was conducted by the University of Houston and JSC, under ASEE. The objectives of the program are to further the professional knowledge of qualified engineering and science members; stimulate an exchange of ideas between participants and NASA; enrich and refresh the research and teaching activities of participants; and contribute to the research objectives of the NASA Centers. Each faculty fellow spent at least 10 weeks at JSC engaged in a research project commensurate with his/her interests and background and worked in collaboration with a NASA/JSC colleague. This document is a compilation of the final reports on the fellows' research projects performed during the summer of 1998. Volume 1, current volume, contains the first reports, and volume 2 contains the remaining reports.

  20. Code of conduct for the International Space Station Crew. National Aeronautics and Space Administration (NASA). Interim final rule.

    PubMed

    2000-12-21

    NASA is issuing new regulations entitled "International Space Station Crew," to implement certain provisions of the International Space Station (ISS) Intergovernmental Agreement (IGA) regarding ISS crewmembers' observance of an ISS Code of Conduct.

  1. National Aeronautics and Space Administration (NASA)/American Society for Engineering Education (ASEE) Summer Faculty Fellowship Program, 1993, volume 2

    NASA Technical Reports Server (NTRS)

    Hyman, William A. (Editor); Goldstein, Stanley H. (Editor)

    1993-01-01

    The JSC NASA/ASEE Summer Faculty Fellowship Program was conducted by Texas A&M University and JSC. The objectives of the program, which began nationally in 1964 and at JSC in 1965, are (1) to further the professional knowledge of qualified engineering and science faculty members; (2) to stimulate an exchange of ideas between participants and NASA; (3) to enrich and refresh the research and teaching activities of participant's institutions; and (4) to contribute to the research objectives of the NASA centers. Each faculty fellow spent at least 10 weeks at JSC engaged in a research project in collaboration with a NASA/JSC colleague. A compilation of the final reports on the research projects completed by the faculty fellows during the summer of 1993 is presented.

  2. National Aeronautics and Space Administration (NASA)/American Society for Engineering Education (ASEE) Summer Faculty Fellowship Program, 1994, volume 1

    NASA Technical Reports Server (NTRS)

    Bannerot, Richard; Sickorez, Donn G.

    1995-01-01

    The JSC NASA/ASEE Summer Faculty Fellowship Program was conducted by Texas A&M University and JSC. The objectives of the program, which began nationally in 1964 and at JSC in 1965 are to: (1) further the professional knowledge of qualified engineering and science faculty members, (2) stimulate an exchange of ideas between participants and NASA, (3) enrich and refresh the research and teaching activities of participants' institutions, and (4) contribute to the research objectives of the NASA centers. Each faculty fellow spent at least 10 weeks at JSC engaged in a research project in collaboration with a NASA JSC colleague. This document is a compilation of the final reports on the research projects completed by the faculty fellows during the summer of 1994.

  3. National Aeronautics and Space Administration (NASA) /American Society for Engineering Education (ASEE) Summer Faculty Fellowship Program. Volume 1

    NASA Technical Reports Server (NTRS)

    Bannerot, Richard B. (Editor); Sickorez, Donn G. (Editor)

    1997-01-01

    The 1996 JSC NASA/ASEE Summer Faculty Fellowship Program was conducted by the University of Houston and JSC. The objectives of the program, which began nationally in 1964 and at JSC in 1965 are to (1) further the professional knowledge qualified engineering and science faculty members, (2) stimulate an exchange of ideas between participants and NASA, (3) refresh the research and teaching activities of participants' institutions, and (4) contribute to the research objectives of the NASA centers. Each faculty fellow spent at least 10 weeks at JSC engaged in a research project in collaboration with a NASA JSC colleague. This document is a compilation of the final reports on the research projects completed by the faculty fellows during the summer of 1996.

  4. National Aeronautics and Space Administration (NASA)/American Society for Engineering Education (ASEE) summer faculty fellowship program, 1986, volume 2

    NASA Technical Reports Server (NTRS)

    Mcinnis, Bayliss (Editor); Goldstein, Stanley (Editor)

    1987-01-01

    The Johnson Space Center (JSC) NASA/ASEE Summer Faculty Fellowship Program was conducted by the University of Houston and JSC. The ten week program was operated under the auspices of the American Society for Engineering Education (ASEE). The basic objectives of the program are (1) to further the professional knowledge of qualified engineering and science faculty members; (2) to stimulate an exchange of ideas between participants and NASA; (3) to enrich and refresh the research and teaching activities of participants' institutions; and (4) to contribute to the research objectives of the NASA Centers. Each faculty fellow spent ten weeks at JSC engaged in a research project commensurate with his interests and background and worked in collaboration with a NASA/JSC colleague. The final reports on the research projects are presented. This volume, 2, contains sections 15 through 30.

  5. National Aeronautics and Space Administration (NASA)/American Society for Engineering Education (ASEE) Summer Faculty Fellowship Program, 1987, volume 1

    NASA Technical Reports Server (NTRS)

    Jones, William B. (Editor); Goldstein, Stanley H. (Editor)

    1987-01-01

    The objective of the NASA/ASEE program were: (1) to further the professional knowledge of qualified engineering and science faculty members; (2) to stimulate an exchange of ideas between participants and NASA; (3) to enrich and refresh the research and teaching activities of participants' institutions; and (4) to contribute to the research objectives of the NASA centers. Each faculty fellow spent 10 weeks at Johnson Space Center engaged in a research project commensurate with his/her interests and background and worked in collaboration with a NASA/JSC colleague. A compilation is presented of the final reports on the research projects done by the fellows during the summer of 1987. This is volume 1 of a 2 volume report.

  6. Automatic speech recognition research at NASA-Ames Research Center

    NASA Technical Reports Server (NTRS)

    Coler, Clayton R.; Plummer, Robert P.; Huff, Edward M.; Hitchcock, Myron H.

    1977-01-01

    A trainable acoustic pattern recognizer manufactured by Scope Electronics is presented. The voice command system VCS encodes speech by sampling 16 bandpass filters with center frequencies in the range from 200 to 5000 Hz. Variations in speaking rate are compensated for by a compression algorithm that subdivides each utterance into eight subintervals in such a way that the amount of spectral change within each subinterval is the same. The recorded filter values within each subinterval are then reduced to a 15-bit representation, giving a 120-bit encoding for each utterance. The VCS incorporates a simple recognition algorithm that utilizes five training samples of each word in a vocabulary of up to 24 words. The recognition rate of approximately 85 percent correct for untrained speakers and 94 percent correct for trained speakers was not considered adequate for flight systems use. Therefore, the built-in recognition algorithm was disabled, and the VCS was modified to transmit 120-bit encodings to an external computer for recognition.

  7. NASA Ames Summer High School Apprenticeship Research Program

    NASA Technical Reports Server (NTRS)

    Powell, P.

    1985-01-01

    The Summer High School Apprenticeship Research Program (SHARP) is described. This program is designed to provide engineering experience for gifted female and minority high school students. The students from this work study program which features trips, lectures, written reports, and job experience describe their individual work with their mentors.

  8. NASA-Ames Summer High School Apprenticeship Research Program (SHARP)

    NASA Technical Reports Server (NTRS)

    Powell, P.

    1983-01-01

    The function of SHARP is to recognize high school juniors who have demonstrated unusually high promise for sucess in mathemtics and science. Twenty academically talented students who will be seniors in high school in September were chosen to participate in SHARP 83. Mentors were selected to provide students with first-hand experiences in a research and development environment in order that each student might try out his or her tentative professional career choice. Some special features of SHARP included field trips to private industries doing similar and related research, special lectures on topics of research here at ARC, individual and group counseling sessions, written research papers and oral reports, and primarily the opportunity to be exposed to the present frontiers in space exploration and research. The long-range goal of SHARP is to contribute to the future recruitment of needed scientists and engineers. This final report is summary of all the phases of the planning and implemenation of the 1983 Summer High School Apprenticeship Research Program (SHARP).

  9. Computational fluid dynamics at NASA Ames Research Center

    NASA Technical Reports Server (NTRS)

    Kutler, Paul

    1989-01-01

    Computational fluid dynamics (CFD) has made great strides in the detailed simulation of complex fluid flows, including the fluid physics of flows heretofore not understood. It is now being routinely applied to some rather complicated problems, and starting to impact the design cycle of aerospace flight vehicles and their components. In addition, it is being used to complement, and is being complemented by, experimental studies. In the present paper, some major elements of contemporary CFD research, such as code validation, turbulence physics, and hypersonic flows are discussed, along with a review of the principal pacing items that currently govern CFD. Several examples of pioneering CFD research are presented to illustrate the current state of the art. Finally, prospects for the future development and application of CFD are suggested.

  10. NASA Ames Develops Woven Thermal Protection System (TPS)

    NASA Video Gallery

    The Woven Thermal Protection System (WTPS) project explores an innovative way to design, develop and manufacture a family of ablative TPS materials using weaving technology and testing them in the ...

  11. NASA Ames Summer High School Apprenticeship Research Program

    DTIC Science & Technology

    1988-09-01

    existence began as many as 5,000 years ago, but the first major breakthrough stemmed from the devel- opment of the arithmetic machine in 1642 by Blaise ... Pascal . The machine contained eight wheels having the numbers zero through nine printed on them. These wheels were attached in such a way that dialing

  12. NASA Vision

    NASA Technical Reports Server (NTRS)

    Fenton, Mary (Editor); Wood, Jennifer (Editor)

    2003-01-01

    This newsletter contains several articles, primarily on International Space Station (ISS) crewmembers and their activities, as well as the activities of NASA administrators. Other subjects covered in the articles include the investigation of the Space Shuttle Columbia accident, activities at NASA centers, Mars exploration, a collision avoidance test on a unmanned aerial vehicle (UAV). The ISS articles cover landing in a Soyuz capsule, photography from the ISS, and the Expedition Seven crew.

  13. The NASA SIERRA UAV: A new unmanned aircraft for earth science investigations

    NASA Astrophysics Data System (ADS)

    Fladeland, M. M.; Berthold, R.; Monforton, L.; Kolyer, R.; Lobitz, B.; Sumich, M.

    2008-12-01

    The Science Instrumentation Evaluation Remote Research Aircraft (SIERRA) Unmanned Aircraft System (UAS) makes use of a medium class, medium duration system designed by the Naval Research Laboratory (NRL) to test new instruments and support NASA airborne science experiments. The National Aeronautics and Space Administration (NASA) Airborne Science Program (ASP), within the Science Missions Directorate, directed the NASA Ames Research Center to test a prototype to evaluate the utility to earth science experiments. This paper describes the aircraft system architecture, capabilities, and provides an overview of existing payloads and mission concepts that support earth science investigations in the areas of carbon cycling, boundary layer studies, and air/sea interaction in support of NASA satellite missions.

  14. The Ames Power Monitoring System

    NASA Technical Reports Server (NTRS)

    Osetinsky, Leonid; Wang, David

    2003-01-01

    The Ames Power Monitoring System (APMS) is a centralized system of power meters, computer hardware, and specialpurpose software that collects and stores electrical power data by various facilities at Ames Research Center (ARC). This system is needed because of the large and varying nature of the overall ARC power demand, which has been observed to range from 20 to 200 MW. Large portions of peak demand can be attributed to only three wind tunnels (60, 180, and 100 MW, respectively). The APMS helps ARC avoid or minimize costly demand charges by enabling wind-tunnel operators, test engineers, and the power manager to monitor total demand for center in real time. These persons receive the information they need to manage and schedule energy-intensive research in advance and to adjust loads in real time to ensure that the overall maximum allowable demand is not exceeded. The APMS (see figure) includes a server computer running the Windows NT operating system and can, in principle, include an unlimited number of power meters and client computers. As configured at the time of reporting the information for this article, the APMS includes more than 40 power meters monitoring all the major research facilities, plus 15 Windows-based client personal computers that display real-time and historical data to users via graphical user interfaces (GUIs). The power meters and client computers communicate with the server using Transmission Control Protocol/Internet Protocol (TCP/IP) on Ethernet networks, variously, through dedicated fiber-optic cables or through the pre-existing ARC local-area network (ARCLAN). The APMS has enabled ARC to achieve significant savings ($1.2 million in 2001) in the cost of power and electric energy by helping personnel to maintain total demand below monthly allowable levels, to manage the overall power factor to avoid low power factor penalties, and to use historical system data to identify opportunities for additional energy savings. The APMS also

  15. Consolidating NASA's Arc Jets

    NASA Technical Reports Server (NTRS)

    Balboni, John A.; Gokcen, Tahir; Hui, Frank C. L.; Graube, Peter; Morrissey, Patricia; Lewis, Ronald

    2015-01-01

    The paper describes the consolidation of NASA's high powered arc-jet testing at a single location. The existing plasma arc-jet wind tunnels located at the Johnson Space Center were relocated to Ames Research Center while maintaining NASA's technical capability to ground-test thermal protection system materials under simulated atmospheric entry convective heating. The testing conditions at JSC were reproduced and successfully demonstrated at ARC through close collaboration between the two centers. New equipment was installed at Ames to provide test gases of pure nitrogen mixed with pure oxygen, and for future nitrogen-carbon dioxide mixtures. A new control system was custom designed, installed and tested. Tests demonstrated the capability of the 10 MW constricted-segmented arc heater at Ames meets the requirements of the major customer, NASA's Orion program. Solutions from an advanced computational fluid dynamics code were used to aid in characterizing the properties of the plasma stream and the surface environment on the calorimeters in the supersonic flow stream produced by the arc heater.

  16. Flight Research at Ames: Fifty-Seven Years of Development and Validation of Aeronautical Technology

    NASA Technical Reports Server (NTRS)

    Borchers, Paul F.; Franklin, James A.; Fletcher, Jay W.

    1998-01-01

    This NASA special publication presents a general overview of the flight research that has been conducted at Ames Research Center over the last 57 years. Icing research, transonic model testing, aerodynamics, variable stability aircraft, boundary layer control, short takeoff and landing (STOL), vertical/ short takeoff and landing (V/STOL) and rotorcraft research are among the major topics of interest discussed. Flying qualities, stability and control, performance evaluations, gunsight tracking and guidance and control displays research are also presented. An epilogue is included which presents the significant contributions that came about as a result of research and development conducted at Ames.

  17. National Aeronautics and Space Administration (NASA)/American Society for Engineering Education (ASEE) Summer Faculty Fellowship Program: 1995.. Volume 2

    NASA Technical Reports Server (NTRS)

    Hyman, William A. (Editor); Sickorez, Donn G. (Editor)

    1996-01-01

    The JSC NASA/ASEE Summer Faculty Fellowship Program was conducted at JSC, including the White Sands Test Facility, by Texas A&M University and JSC. The objectives of the program, which began nationally in 1964 and at JSC in 1965, are (1) to further the professional knowledge of qualified engineering and science faculty members; (2) to stimulate an exchange of ideas between participants and NASA; (3) to enrich and refresh the research and teaching activities of the participants' institutions; and (4) to contribute to the research objectives of the NASA centers. Each faculty fellow spent at least 10 weeks at JSC engaged in a research project in collaboration with a NASA/JSC colleague. In addition to the faculty participants, the 1995 program included five students. This document is a compilation of the final reports on the research projects completed by the faculty fellows and visiting students during the summer of 1995. The reports of two of the students are integral with that of the respective fellow. Three students wrote separate reports.

  18. National Aeronautics and Space Administration (NASA)/American Society for Engineering Education (ASEE) Summer Faculty Fellowship Program: 1995. Volume 1

    NASA Technical Reports Server (NTRS)

    Hyman, William A. (Editor); Sickorez, Donn G. (Editor)

    1996-01-01

    The objectives of the JSC NASA/ASEE Summer Faculty Fellowship Program, which began nationally in 1964 and at JSC in 1965, are (1) to further the professional knowledge of qualified engineering and science faculty members; (2) to stimulate an exchange of ideas between participants and NASA; (3) to enrich and refresh the research and teaching activities of the participants' institutions; and (4) to contribute to the research objectives of the NASA centers. Each faculty fellow spent at least 10 weeks at JSC engaged in a research project in collaboration with a NASA/JSC colleague. In addition to the faculty participants, the 1995 program included five students. This document is a compilation of the first fifteen of twenty-seven final reports on the research projects completed by the faculty fellows and visiting students during the summer of 1995. The reports of two of the students are integral with that of the respective fellow. Three students wrote separate reports included in Volume 2.

  19. Building 1100--NASA

    NASA Technical Reports Server (NTRS)

    1996-01-01

    Building 1100 is the NASA administrative building. Services located in this building include two banks, a post office, barber shop, cafeteria, snack bar, travel agency, dry cleaners, the NASA Exchange retail store and medical facilities for employees.

  20. Ames Lab 101: Next Generation Power Lines

    SciTech Connect

    Russell, Alan

    2010-01-01

    Ames Laboratory scientist Alan Russell discusses the need to develop new power lines that are stronger and more conductive as a way to address the problem of the nation's aging and inadequate power grid.

  1. Ames Lab 101: osgBullet

    SciTech Connect

    McCorkle, Doug

    2010-01-01

    Ames Laboratory scientist Doug McCorkle explains osgBullet, a 3-D virtual simulation software, and how it helps engineers design complex products and systems in a realistic, real-time virtual environment.

  2. Ames Lab 101: osgBullet

    ScienceCinema

    McCorkle, Doug

    2016-07-12

    Ames Laboratory scientist Doug McCorkle explains osgBullet, a 3-D virtual simulation software, and how it helps engineers design complex products and systems in a realistic, real-time virtual environment.

  3. Ames Lab 101: Next Generation Power Lines

    ScienceCinema

    Russell, Alan

    2016-07-12

    Ames Laboratory scientist Alan Russell discusses the need to develop new power lines that are stronger and more conductive as a way to address the problem of the nation's aging and inadequate power grid.

  4. Ames Lab 101: Reinventing the Power Cable

    SciTech Connect

    Russell, Alan

    2013-09-27

    Ames Laboratory researchers are working to develop new electrical power cables that are stronger and lighter than the cables currently used in the nation's power grid. Nano Tube animation by Iain Goodyear

  5. Ames Lab 101: Reinventing the Power Cable

    ScienceCinema

    Russell, Alan

    2016-07-12

    Ames Laboratory researchers are working to develop new electrical power cables that are stronger and lighter than the cables currently used in the nation's power grid. Nano Tube animation by Iain Goodyear

  6. Ames Lab Named an Industry Safety Leader

    ScienceCinema

    Wessels, Tom

    2016-07-12

    The U.S. Department of Energy's Ames Laboratory has been named a 2010 Industry Leader Award winner by the National Safety Council. The Ames Laboratory was one of only 81 companies/organizations to receive the award for their safety performance and the only DOE national laboratory on the list. The award represents the top 5 percent of members that have qualified for the National Safety Council 2010 Occupational Excellence Achievement Award, based on 2009 calendar year data.

  7. Study of optical techniques for the Ames unitary wind tunnels. Part 3: Angle of attack

    NASA Technical Reports Server (NTRS)

    Lee, George

    1992-01-01

    A review of optical sensors that are capable of accurate angle of attack measurements in wind tunnels was conducted. These include sensors being used or being developed at NASA Ames and Langley Research Centers, Boeing Airplane Company, McDonald Aircraft Company, Arnold Engineering Development Center, National Aerospace Laboratory of the Netherlands, National Research Council of Canada, and the Royal Aircraft Establishment of England. Some commercial sensors that may be applicable to accurate angle measurements were also reviewed. It was found that the optical sensor systems were based on interferometers, polarized light detector, linear or area photodiode cameras, position sensing photodetectors, and laser scanners. Several of the optical sensors can meet the requirements of the Ames Unitary Plan Wind Tunnel. Two of these, the Boeing interferometer and the Complere lateral effect photodiode sensors are being developed for the Ames Unitary Plan Wind Tunnel.

  8. National Aeronautics and Space Administration (NASA)/american Society for Engineering Education (ASEE) Summer Faculty Fellowship Program, 1991, Volume 2

    NASA Technical Reports Server (NTRS)

    Hyman, William A. (Editor); Goldstein, Stanley H. (Editor)

    1991-01-01

    The objectives of the program are: (1) to further the professional knowledge of qualified engineering and science faculty members; (2) to stimulate an exchange of ideas between participants and NASA; (3) to enrich and refresh the research and teaching activities of participant's institutions; and (4) to contribute to the research objectives of the NASA Centers. A compilation of the final reports on the research projects done by the faculty fellows during the summer of 1991 are presented. Some of the topics covered include: collision avoidance for rover vehicles, bioinstrumentation, neural nets, total quality management of flexible space structures, project scheduling, nondestructive tests, orthostatic intolerance to bedrest, hypersonic reentry simulation, measuring human energy expenditure, tribological models, trace element movement in Anarctic ice, gastrointestinal function, and computer assisted instruction.

  9. Why Earth Matters to NASA: A Conversation with Harrison Ford

    NASA Video Gallery

    Actor Harrison Ford was on location at NASA's Ames Research Center, Mountain View, Calif., last November to film a segment of Showtime's "Years of Living Dangerously" documentary on climate change....

  10. NASA/ARC proposed training in intelligent control

    NASA Technical Reports Server (NTRS)

    Berenji, Hamid R.

    1990-01-01

    Viewgraphs on NASA Ames Research Center proposed training in intelligent control was presented. Topics covered include: fuzzy logic control; neural networks in control; artificial intelligence in control; hybrid approaches; hands on experience; and fuzzy controllers.

  11. Implementation and testing of a Neighborhood Office Center (NOC) and integration of the NOC with an administrative correspondence management information system. [for NASA

    NASA Technical Reports Server (NTRS)

    1977-01-01

    The application of telecommunications and telecomputing was investigated as a means of reducing NASA's consumption of natural resources and the proliferation of paper copies of correspondence. The feasibility, operational advantages, and limitations of decentralized (remote) neighborhood offices (NOC) linked through an electronic network are demonstrated. These offices are joined to a management information system for correspondence tracking, and to an administrative office center service based on the use of magnetic medium word processing typewriters which handle the daily typing load. In connection with an augmented teleconference network, a uniform means is provided for creating, storing, and retrieving administrative documents, records, and data, while simultaneously permitting users of the system to track their status. Information will be transferred without using paper - merely through digital electronic communication and display, as a step toward the establishment of an agency-wide electronic mail system.

  12. National Aeronautics and Space Administration (NASA) Environmental Control and Life Support (ECLS) Capability Roadmap Development for Exploration

    NASA Technical Reports Server (NTRS)

    Bagdigian, Robert M.; Carrasquillo, Robyn L.; Metcalf, Jordan; Peterson, Laurie

    2012-01-01

    NASA is considering a number of future human space exploration mission concepts. Although detailed requirements and vehicle architectures remain mostly undefined, near-term technology investment decisions need to be guided by the anticipated capabilities needed to enable or enhance the mission concepts. This paper describes a roadmap that NASA has formulated to guide the development of Environmental Control and Life Support Systems (ECLSS) capabilities required to enhance the long-term operation of the International Space Station (ISS) and enable beyond-Low Earth Orbit (LEO) human exploration missions. Three generic mission types were defined to serve as a basis for developing a prioritized list of needed capabilities and technologies. Those are 1) a short duration micro gravity mission; 2) a long duration transit microgravity mission; and 3) a long duration surface exploration mission. To organize the effort, ECLSS was categorized into three major functional groups (atmosphere, water, and solid waste management) with each broken down into sub-functions. The ability of existing, flight-proven state-of-the-art (SOA) technologies to meet the functional needs of each of the three mission types was then assessed. When SOA capabilities fell short of meeting the needs, those "gaps" were prioritized in terms of whether or not the corresponding capabilities enable or enhance each of the mission types. The resulting list of enabling and enhancing capability gaps can be used to guide future ECLSS development. A strategy to fulfill those needs over time was then developed in the form of a roadmap. Through execution of this roadmap, the hardware and technologies needed to enable and enhance exploration may be developed in a manner that synergistically benefits the ISS operational capability, supports Multi-Purpose Crew Vehicle (MPCV) development, and sustains long-term technology investments for longer duration missions. This paper summarizes NASA s ECLSS capability roadmap

  13. Complete NASA Dryden Staff of 1985, in front of building 4800

    NASA Technical Reports Server (NTRS)

    1985-01-01

    In 1985 the NASA Ames-Dryden Flight Research Facility employees and contractors gathered around the base of the X-1E for a picture. The X-1E is mounted in front of building 4800, the main building at Dryden. On Wednesday, October 1, 1958, the NACA yellow-backed winged symbol (see E-33718) that represented the National Advisory Committee for Aeronautics for 43-years, was removed from the front of the main building at the NASA High Speed Flight Station, making room for a new insignia belonging to the National Aeronautics and Space Administration. This NASA Insignia was created by retiree James J. Modarelli, former Chief of Technical Publication of Lewis Research Center; designed by the Army Institute of Heraldry; and approved by the Commission of Fine Arts and the NASA Administrator. This official insignia of the NASA is a dark blue disc with white stars. The white hand-cut letters 'NASA' are in the center of the disc and are encircled by a white diagonal orbit. A solid red 'V' shape appears behind and in front of the letters and extends beyond the disc. The 'V' is patterned after an actual wing design being tested by NACA researchers during the late 1950s. This insignia was used from 1958 to 1975 and was affectionately known at the 'meatball,' returning to NASA Insignia status in 1992. In the photo above the NASA Logotype appearing on the front of the main building replaced the NASA Insignia. The NASA Logotype was developed under the Federal Design Improvement Program initiated by the President in 1972, with the preferred color being red. It was approved by the Commission of Fine Arts and the NASA Administrator in October 1975. It symbolized NASA's role in aeronautics and space from 1975 to 1992 and has since been retired. In the logotype, the letters 'NASA' are reduced with the strokes being of one width; the elimination of cross strokes in the two 'A' letters imparts a quality of uniqueness and contemporary character. This familiar logo was known as 'The Worm'. On

  14. Design, development and evaluation of Stanford/Ames EVA prehensors

    NASA Technical Reports Server (NTRS)

    Leifer, Larry J.; Aldrich, J.; Leblanc, M.; Sabelman, E.; Schwandt, D.

    1988-01-01

    Space Station operations and maintenance are expected to make unprecedented demands on astronaut EVA. With Space Station expected to operate with an 8 to 10 psi atmosphere (4 psi for Shuttle operations), the effectivness of pressurized gloves is called into doubt at the same time that EVA activity levels are to be increased. To address the need for more frequent and complex EVA missions and also to extend the dexterity, duration, and safety of EVA astronauts, NASA Ames and Stanford University have an ongoing cooperative agreement to explore and compare alternatives. This is the final Stanford/Ames report on manually powered Prehensors, each of which consists of a shroud forming a pressure enclosure around the astronaut's hand, and a linkage system to transfer the motions and forces of the hand to mechanical digits attached to the shroud. All prehensors are intended for attachment to a standard wrist coupling, as found on the AX-5 hard suit prototype, so that realistic tests can be performed under normal and reduced gravity as simulated by water flotation.

  15. Fifteen Years of Laboratory Astrophysics at Ames

    NASA Technical Reports Server (NTRS)

    Allamandola, L. J.; Sandford, S. A.; Salama, F.; Hudgins, D. M.; Bernstein, M.; Goorvitch, David (Technical Monitor)

    1998-01-01

    Tremendous strides have been made in our understanding of interstellar material over the past fifteen years thanks to significant, parallel developments in two closely related areas: observational astronomy and laboratory astrophysics. Fifteen years ago the composition of interstellar dust was largely guessed at, the concept of ices in dense molecular clouds ignored, and the notion of large, abundant, gas phase, carbon-rich molecules widespread throughout the interstellar medium (ISM) considered impossible. Today the composition of dust in the diffuse ISM is reasonably well constrained to cold refractory materials comprised of amorphous and crystalline silicates mixed with an amorphous carbonaceous material containing aromatic structural units and short, branched aliphatic chains. In the dense ISM, these cold dust particles are coated with mixed-molecular ices whose compositions are very well known. Lastly, the signature of carbon-rich polycyclic aromatic hydrocarbons (PAHs), shockingly large molecules by early interstellar chemistry standards, is widespread throughout the ISM. This great progress has only been made possible by the close collaboration of laboratory experimentalists with observers and theoreticians, all with the goal of applying their skills to astrophysical problems of direct interest to NASA programs. Such highly interdisciplinary collaborations ensure fundamental, in depth coverage of the wide-ranging challenges posed by astrophysics. These challenges include designing astrophysically focused experiments and data analysis, tightly coupled with astrophysical searches spanning 2 orders of magnitude in wavelength, and detailed theoretical modeling. The impact of our laboratory has been particularly effective as there is constant cross-talk and feedback between quantum theorists; theoretical astrophysicists and chemists; experimental physicists; organic, physical and petroleum chemists; and infrared and UV/Vis astronomers. In this paper, two examples

  16. Ames Research Center C-130

    NASA Technical Reports Server (NTRS)

    Koozer, Mark A.

    1991-01-01

    The C130 Earth Resources Aircraft provides a platform for a variety of sensors that collect data in support of terrestrial and atmospheric projects sponsored by NASA in coordination with Federal, state, university, and industry investigators. This data is applied to research in the areas of forestry, agriculture, land use and land cover analysis, hydrology, geology, photogrammetry, oceanography, meteorology, and other earth science disciplines. The C130 is a platform aircraft flying up to 25,000 feet above sea level at speeds between 150 and 330 knots True Air Speed. The aircraft is capable of precise flight line navigation by means of an optical borescope from which line guidance is provided to the pilots.

  17. The National Aeronautics and Space Administration (NASA) Tracking and Data Relay Satellite System (TDRSS) program Economic and programmatic, considerations

    NASA Technical Reports Server (NTRS)

    Aller, R. O.

    1985-01-01

    The Tracking and Data Relay Satellite System (TDRSS) represents the principal element of a new space-based tracking and communication network which will support NASA spaceflight missions in low earth orbit. In its complete configuration, the TDRSS network will include a space segment consisting of three highly specialized communication satellites in geosynchronous orbit, a ground segment consisting of an earth terminal, and associated data handling and control facilities. The TDRSS network has the objective to provide communication and data relay services between the earth-orbiting spacecraft and their ground-based mission control and data handling centers. The first TDRSS spacecraft has been now in service for two years. The present paper is concerned with the TDRSS experience from the perspective of the various programmatic and economic considerations which relate to the program.

  18. The National Aeronautics and Space Administration (NASA) Tracking and Data Relay Satellite System (TDRSS) program Economic and programmatic, considerations

    NASA Astrophysics Data System (ADS)

    Aller, R. O.

    1985-10-01

    The Tracking and Data Relay Satellite System (TDRSS) represents the principal element of a new space-based tracking and communication network which will support NASA spaceflight missions in low earth orbit. In its complete configuration, the TDRSS network will include a space segment consisting of three highly specialized communication satellites in geosynchronous orbit, a ground segment consisting of an earth terminal, and associated data handling and control facilities. The TDRSS network has the objective to provide communication and data relay services between the earth-orbiting spacecraft and their ground-based mission control and data handling centers. The first TDRSS spacecraft has been now in service for two years. The present paper is concerned with the TDRSS experience from the perspective of the various programmatic and economic considerations which relate to the program.

  19. Origins and development of NASA's exobiology program, 1958-1976

    NASA Astrophysics Data System (ADS)

    Dick, Steven J.

    2009-07-01

    Following NASA's founding in 1958, the American space agency was quick to embrace exobiology as an important goal. In July 1959 NASA's first administrator, T. Keith Glennan, appointed a Bioscience Advisory Committee, which reported in January 1960 that NASA should not only be involved in space medicine, but also should undertake the search for extraterrestrial life. In the spring of 1960 NASA set up an Office of Life Sciences. By August it had authorized the Jet Propulsion Laboratory (JPL) to study the type of spacecraft needed to land on Mars and search for life. In order to study chemical evolution, the conditions under which life might survive, and a variety of related issues, NASA's first life sciences lab was set up at its Ames Research Center in California in 1960. In 1962 the Space Science Board of the National Academy of Sciences set the search for extraterrestrial life as "the prime goal of space biology". The search for life beyond Earth in many ways became a driver of the American space program, and these early events were the essential underpinnings that led to the landings of two Viking spacecraft on Mars in 1976. Despite the failure to find life unambiguously, research in exobiology continued and was transformed two decades later as astrobiology.

  20. History at NASA

    NASA Technical Reports Server (NTRS)

    1986-01-01

    The efforts of the National Aeronautics and Space Administration to capture and record the events of the past are described, particularly the research accomplishments of NASA's agency-wide history program. A concise guide to the historical research resources available at NASA Headquarters in Washington, D.C., at NASA facilities around the country, and through the federal records systems is given.

  1. PMARC - PANEL METHOD AMES RESEARCH CENTER

    NASA Technical Reports Server (NTRS)

    Ashby, D. L.

    1994-01-01

    Panel methods are moderate cost tools for solving a wide range of engineering problems. PMARC (Panel Method Ames Research Center) is a potential flow panel code that numerically predicts flow fields around complex three-dimensional geometries. PMARC's predecessor was a panel code named VSAERO which was developed for NASA by Analytical Methods, Inc. PMARC is a new program with many additional subroutines and a well-documented code suitable for powered-lift aerodynamic predictions. The program's open architecture facilitates modifications or additions of new features. Another improvement is the adjustable size code which allows for an optimum match between the computer hardware available to the user and the size of the problem being solved. PMARC can be resized (the maximum number of panels can be changed) in a matter of minutes. Several other state-of-the-art PMARC features include internal flow modeling for ducts and wind tunnel test sections, simple jet plume modeling essential for the analysis and design of powered-lift aircraft, and a time-stepping wake model which allows the study of both steady and unsteady motions. PMARC is a low-order panel method, which means the singularities are distributed with constant strength over each panel. In many cases low-order methods can provide nearly the same accuracy as higher order methods (where the singularities are allowed to vary linearly or quadratically over each panel). Low-order methods have the advantage of a shorter computation time and do not require exact matching between panels. The flow problem is solved by assuming that the body is at rest in a moving flow field. The body is modeled as a closed surface which divides space into two regions -- one region contains the flow field of interest and the other contains a fictitious flow. External flow problems, such as a wing in a uniform stream, have the external region as the flow field of interest and the internal flow as the fictitious flow. This arrangement is

  2. PMARC - PANEL METHOD AMES RESEARCH CENTER

    NASA Technical Reports Server (NTRS)

    Ashby, D. L.

    1994-01-01

    Panel methods are moderate cost tools for solving a wide range of engineering problems. PMARC (Panel Method Ames Research Center) is a potential flow panel code that numerically predicts flow fields around complex three-dimensional geometries. PMARC's predecessor was a panel code named VSAERO which was developed for NASA by Analytical Methods, Inc. PMARC is a new program with many additional subroutines and a well-documented code suitable for powered-lift aerodynamic predictions. The program's open architecture facilitates modifications or additions of new features. Another improvement is the adjustable size code which allows for an optimum match between the computer hardware available to the user and the size of the problem being solved. PMARC can be resized (the maximum number of panels can be changed) in a matter of minutes. Several other state-of-the-art PMARC features include internal flow modeling for ducts and wind tunnel test sections, simple jet plume modeling essential for the analysis and design of powered-lift aircraft, and a time-stepping wake model which allows the study of both steady and unsteady motions. PMARC is a low-order panel method, which means the singularities are distributed with constant strength over each panel. In many cases low-order methods can provide nearly the same accuracy as higher order methods (where the singularities are allowed to vary linearly or quadratically over each panel). Low-order methods have the advantage of a shorter computation time and do not require exact matching between panels. The flow problem is solved by assuming that the body is at rest in a moving flow field. The body is modeled as a closed surface which divides space into two regions -- one region contains the flow field of interest and the other contains a fictitious flow. External flow problems, such as a wing in a uniform stream, have the external region as the flow field of interest and the internal flow as the fictitious flow. This arrangement is

  3. The Ames 12-Foot Pressure Tunnel: Tunnel Empty Flow Calibration Results and Discussion

    NASA Technical Reports Server (NTRS)

    Zell, Peter T.; Banducci, David E. (Technical Monitor)

    1996-01-01

    An empty test section flow calibration of the refurbished NASA Ames 12-Foot Pressure Tunnel was recently completed. Distributions of total pressure, dynamic pressure, Mach number, flow angularity temperature, and turbulence are presented along with results obtained prior to facility demolition. Axial static pressure distributions along tunnel centerline are also compared. Test section model support geometric configurations will be presented along with a discussion of the issues involved with different model mounting schemes.

  4. Research and technology activities at Ames Research Center's Biomedical Research Division

    NASA Technical Reports Server (NTRS)

    Martello, N.

    1985-01-01

    Various research and technology activities at Ames Research Center's Biomedical Research Division are described. Contributions to the Space Administration's goals in the life sciences include descriptions of research in operational medicine, cardiovascular deconditioning, motion sickness, bone alterations, muscle atrophy, fluid and electrolyte changes, radiation effects and protection, behavior and performance, gravitational biology, and life sciences flight experiments.

  5. Proceedings of the NASA Laboratory Astrophysics Workshop

    NASA Technical Reports Server (NTRS)

    Salama, Farid (Editor)

    2002-01-01

    This document is the proceedings of the NASA Laboratory Astrophysics Workshop, convened May 1-3, 2002 at NASA's Ames Research Center. Sponsored by the NASA Office of Space Science (OSS), this programmatic workshop is held periodically by NASA to discuss the current state of knowledge in the interdisciplinary field of laboratory astrophysics and to identify the science priorities (needs) in support of NASA's space missions. An important goal of the Workshop is to provide input to OSS in the form of a white paper for incorporation in its strategic planning. This report comprises a record of the complete proceedings of the Workshop and the Laboratory Astrophysics White Paper drafted at the Workshop.

  6. Ames Lab 101: C6: Virtual Engineering

    SciTech Connect

    2010-01-01

    Ames Laboratory scientist Doug McCorkle explains the importance of virtual engineering and talks about the C6. The C6 is a three-dimensional, fully-immersive synthetic environment residing in the center atrium of Iowa State University's Howe Hall.

  7. Ames Lab 101: Ultrafast Magnetic Switching

    SciTech Connect

    Jigang Wang

    2013-04-08

    Ames Laboratory physicists have found a new way to switch magnetism that is at least 1000 times faster than currently used in magnetic memory technologies. Magnetic switching is used to encode information in hard drives, magnetic random access memory and other computing devices. The discovery potentially opens the door to terahertz and faster memory speeds.

  8. Ames Lab 101: Single Crystal Growth

    SciTech Connect

    Schlagel, Deborah

    2013-09-27

    Ames Laboratory scientist Deborah Schlagel talks about the Lab's research in growing single crystals of various metals and alloys. The single crystal samples are vital to researchers' understanding of the characteristics of a materials and what gives these materials their particular properties.

  9. Ames Lab 101: Rare-Earth Recycling

    ScienceCinema

    Ryan Ott

    2016-07-12

    Recycling keeps paper, plastics, and even jeans out of landfills. Could recycling rare-earth magnets do the same? Perhaps, if the recycling process can be improved. Scientists at the U.S. Department of Energy's Ames Laboratory are working to more effectively remove the neodymium, a rare earth, from the mix of other materials in a magnet.

  10. Ames Lab 101: Rare-Earth Recycling

    SciTech Connect

    Ryan Ott

    2012-09-05

    Recycling keeps paper, plastics, and even jeans out of landfills. Could recycling rare-earth magnets do the same? Perhaps, if the recycling process can be improved. Scientists at the U.S. Department of Energy's Ames Laboratory are working to more effectively remove the neodymium, a rare earth, from the mix of other materials in a magnet.

  11. Ames Research Center Publications: A Continuing Bibliography

    NASA Technical Reports Server (NTRS)

    1981-01-01

    The Ames Research Center Publications: A Continuing Bibliography contains the research output of the Center indexed during 1981 in Scientific and Technical Aerospace Reports (STAR), Limited Scientific and Technical Aerospace Reports (LSTAR), International Aerospace Abstracts (IAA), and Computer Program Abstracts (CPA). This bibliography is published annually in an attempt to effect greater awareness and distribution of the Center's research output.

  12. Ames Lab 101: Single Crystal Growth

    ScienceCinema

    Schlagel, Deborah

    2016-07-12

    Ames Laboratory scientist Deborah Schlagel talks about the Lab's research in growing single crystals of various metals and alloys. The single crystal samples are vital to researchers' understanding of the characteristics of a materials and what gives these materials their particular properties.

  13. A Classroom Modification of the Ames Test.

    ERIC Educational Resources Information Center

    Yavornitzky, Joseph; Trzeciak, Victor

    1979-01-01

    A modification of the Ames test for detecting carcinogens and mutagens using a strain of bacteria is described. A suggestion is given for checking the correctness of procedures by using particular hair dyes which have been shown to be mutogenic. (Author/SA)

  14. Ames Lab 101: Ultrafast Magnetic Switching

    ScienceCinema

    Jigang Wang

    2016-07-12

    Ames Laboratory physicists have found a new way to switch magnetism that is at least 1000 times faster than currently used in magnetic memory technologies. Magnetic switching is used to encode information in hard drives, magnetic random access memory and other computing devices. The discovery potentially opens the door to terahertz and faster memory speeds.

  15. Ames Lab 101: C6: Virtual Engineering

    ScienceCinema

    None

    2016-07-12

    Ames Laboratory scientist Doug McCorkle explains the importance of virtual engineering and talks about the C6. The C6 is a three-dimensional, fully-immersive synthetic environment residing in the center atrium of Iowa State University's Howe Hall.

  16. AME seminar program in the United States: genesis, goals, and cost-benefit reflections.

    PubMed

    Bradfield, J Y; Harris, J L

    1977-04-01

    The practicing physician's requirement for continuing postgraduate medical education is generally accepted and has generated a number of postgraduate education programs. In 1960, the FAA inaugurated a seminar program to serve the special educational needs of its approximately 7,500 designated Aviation Medical Examiners. These doctors, the majority of whom are civilian physicians representing almost every specialty, are charged with issuing or withholding the pilot's medical license to fly. Under the administration of coauthor Harris, the AME Seminar Program undergoes modification and change as improvements are suggested by accrued experience. Evaluation of data acquired from a variety of sources indicates that the AME does, in fact, need refresher training in civil aviation medicine. In helping fulfill that need, the AME Seminar Program is working effectively.

  17. NASA Performance Report

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Introduction NASA's mission is to advance and communicate scientific knowledge and understanding of Earth, the solar system, and the universe; to advance human exploration, use, and development of space; and to research, develop, verify, and transfer advanced aeronautics, space, and related technologies. In support of this mission, NASA has a strategic architecture that consists of four Enterprises supported by four Crosscutting Processes. The Strategic Enterprises are NASA's primary mission areas to include Earth Science, Space Science, Human Exploration and Development of Space, and Aerospace Technology. NASA's Crosscutting Processes are Manage Strategically, Provide Aerospace Products and Capabilities, Generate Knowledge and Communicate Knowledge. The implementation of NASA programs, science, and technology research occurs primarily at our Centers. NASA consists of a Headquarters, nine Centers, and the Jet Propulsion Laboratory, as well as several ancillary installations and offices in the United States and abroad. The nine Centers are as follows: (1) Ames Research Center, (2) Dryden Flight Research Center (DFRC), (3) Glenn Research Center (GRC), (4) Goddard Space Flight Center (GSFC), (5) Johnson Space Center, (6) Kennedy Space Center (KSC), (7) Langley Research Center (LaRC), (8) Marshall Space Flight Center (MSFC), and (9) Stennis Space Center (SSC).

  18. NASA KingAir #801 during takeoff

    NASA Technical Reports Server (NTRS)

    1999-01-01

    NASA KingAir N801NA during takeoff. The Beechcraft Beech 200 Super KingAir aircraft N7NA, known as NASA 7, has been a support aircraft for many years, flying 'shuttle' missions to Ames Research Center. It once flew from the Jet Propulsion Laboratory and back each day but now (2001) flies between the Dryden Flight Research Center and Ames. Dryden assumed the mission and aircraft in September 1996. A second Beechcraft Beech 200 Super King Air, N701NA, redesignated N801NA, transferred to Dryden on 3 Oct. 1997 and is used for research missions but substitutes for NASA 7 on shuttle missions when NASA 7 is not available.

  19. NASA Pocket Statistics

    NASA Technical Reports Server (NTRS)

    1995-01-01

    NASA Pocket Statistics is published for the use of NASA managers and their staff. Included herein is Administrative and Organizational information, summaries of Space Flight Activity including the NASA Major Launch Record, and NASA Procurement, Financial, and Manpower data. The NASA Major Launch Record includes all launches of Scout class and larger vehicles. Vehicle and spacecraft development flights are also included in the Major Launch Record. Shuttle missions are counted as one launch and one payload, where free flying payloads are not involved. Satellites deployed from the cargo bay of the Shuttle and placed in a separate orbit or trajectory are counted as an additional payload.

  20. NASA develops new digital flight control system

    NASA Technical Reports Server (NTRS)

    Mewhinney, Michael

    1994-01-01

    This news release reports on the development and testing of a new integrated flight and propulsion automated control system that aerospace engineers at NASA's Ames Research Center have been working on. The system is being tested in the V/STOL (Vertical/Short Takeoff and Landing) Systems Research Aircraft (VSRA).

  1. Fundamental research in artificial intelligence at NASA

    NASA Technical Reports Server (NTRS)

    Friedland, Peter

    1990-01-01

    This paper describes basic research at NASA in the field of artificial intelligence. The work is conducted at the Ames Research Center and the Jet Propulsion Laboratory, primarily under the auspices of the NASA-wide Artificial Intelligence Program in the Office of Aeronautics, Exploration and Technology. The research is aimed at solving long-term NASA problems in missions operations, spacecraft autonomy, preservation of corporate knowledge about NASA missions and vehicles, and management/analysis of scientific and engineering data. From a scientific point of view, the research is broken into the categories of: planning and scheduling; machine learning; and design of and reasoning about large-scale physical systems.

  2. How NASA's Technology Can Help the Automotive Industry

    NASA Technical Reports Server (NTRS)

    Fong, Terrence W.; Worden, Simon Peter

    2015-01-01

    Presentation describes how automobile companies developing self-driving cars and NASA face similar challenges which can be solved using similar technologies. To provide context, the presentation also describes how NASA Ames is working with automobile companies, such as Nissan, to research and development relevant technologies.

  3. Robust Mosaicking of Stereo Digital Elevation Models from the Ames Stereo Pipeline

    NASA Technical Reports Server (NTRS)

    Kim, Tae Min; Moratto, Zachary M.; Nefian, Ara Victor

    2010-01-01

    Robust estimation method is proposed to combine multiple observations and create consistent, accurate, dense Digital Elevation Models (DEMs) from lunar orbital imagery. The NASA Ames Intelligent Robotics Group (IRG) aims to produce higher-quality terrain reconstructions of the Moon from Apollo Metric Camera (AMC) data than is currently possible. In particular, IRG makes use of a stereo vision process, the Ames Stereo Pipeline (ASP), to automatically generate DEMs from consecutive AMC image pairs. However, the DEMs currently produced by the ASP often contain errors and inconsistencies due to image noise, shadows, etc. The proposed method addresses this problem by making use of multiple observations and by considering their goodness of fit to improve both the accuracy and robustness of the estimate. The stepwise regression method is applied to estimate the relaxed weight of each observation.

  4. Microbiology and potential applications of aerobic methane oxidation coupled to denitrification (AME-D) process: A review.

    PubMed

    Zhu, Jing; Wang, Qian; Yuan, Mengdong; Tan, Giin-Yu Amy; Sun, Faqian; Wang, Cheng; Wu, Weixiang; Lee, Po-Heng

    2016-03-01

    Aerobic methane oxidation coupled to denitrification (AME-D) is an important link between the global methane and nitrogen cycles. This mini-review updates discoveries regarding aerobic methanotrophs and denitrifiers, as a prelude to spotlight the microbial mechanism and the potential applications of AME-D. Until recently, AME-D was thought to be accomplished by a microbial consortium where denitrifying bacteria utilize carbon intermediates, which are excreted by aerobic methanotrophs, as energy and carbon sources. Potential carbon intermediates include methanol, citrate and acetate. This mini-review presents microbial thermodynamic estimations and postulates that methanol is the ideal electron donor for denitrification, and may serve as a trophic link between methanotrophic bacteria and denitrifiers. More excitingly, new discoveries have revealed that AME-D is not only confined to the conventional synergism between methanotrophic bacteria and denitrifiers. Specifically, an obligate aerobic methanotrophic bacterium, Methylomonas denitrificans FJG1, has been demonstrated to couple partial denitrification with methane oxidation, under hypoxia conditions, releasing nitrous oxide as a terminal product. This finding not only substantially advances the understanding of AME-D mechanism, but also implies an important but unknown role of aerobic methanotrophs in global climate change through their influence on both the methane and nitrogen cycles in ecosystems. Hence, further investigation on AME-D microbiology and mechanism is essential to better understand global climate issues and to develop niche biotechnological solutions. This mini-review also presents traditional microbial techniques, such as pure cultivation and stable isotope probing, and powerful microbial techniques, such as (meta-) genomics and (meta-) transcriptomics, for deciphering linked methane oxidation and denitrification. Although AME-D has immense potential for nitrogen removal from wastewater, drinking

  5. 75 FR 13598 - NASA Advisory Council; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-22

    ... SPACE ADMINISTRATION NASA Advisory Council; Meeting AGENCY: National Aeronautics and Space... Information Technology Infrastructure Committee of the NASA Advisory Council. DATES: Thursday, April 15, 2010...; 2939943. ADDRESSES: NASA Headquarters, 300 E Street, SW., Washington, DC, Room 2O43 FOR...

  6. Computational Modeling of the Ames 11-Ft Transonic Wind Tunnel in Conjunction with IofNEWT

    NASA Technical Reports Server (NTRS)

    Djomehri, M. Jahed; Buning, Pieter G.; Erickson, Larry L.; George, Michael W. (Technical Monitor)

    1995-01-01

    Technical advances in Computational Fluid Dynamics have now made it possible to simulate complex three-dimensional internal flows about models of various size placed in a Transonic Wind Tunnel. TWT wall interference effects have been a source of error in predicting flight data from actual wind tunnel measured data. An advantage of such internal CFD calculations is to directly compare numerical results with the actual tunnel data for code assessment and tunnel flow analysis. A CFD capability has recently been devised for flow analysis of the NASA/Ames 11-Ft TWT facility. The primary objectives of this work are to provide a CFD tool to study the NASA/Ames 11-Ft TWT flow characteristics, to understand the slotted wall interference effects, and to validate CFD codes. A secondary objective is to integrate the internal flowfield calculations with the Pressure Sensitive Paint data, a surface pressure distribution capability in Ames' production wind tunnels. The effort has been part of the Ames IofNEWT, Integration of Numerical and Experimental Wind Tunnels project, which is aimed at providing further analytical tools for industrial application. We used the NASA/Ames OVERFLOW code to solve the thin-layer Navier-Stokes equations. Viscosity effects near the model are captured by Baldwin-Lomax or Baldwin-Barth turbulence models. The solver was modified to model the flow behavior in the vicinity of the tunnel longitudinal slotted walls. A suitable porous type wall boundary condition was coded to account for the cross-flow through the test section. Viscous flow equations were solved in generalized coordinates with a three-factor implicit central difference scheme in conjunction with the Chimera grid procedure. The internal flow field about the model and the tunnel walls were descretized by the Chimera overset grid system. This approach allows the application of efficient grid generation codes about individual components of the configuration; separate minor grids were developed

  7. NASA Facts, Voyager.

    ERIC Educational Resources Information Center

    National Aeronautics and Space Administration, Washington, DC. Educational Programs Div.

    This document is one of a series of publications of the National Aeronautics and Space Administration (NASA) on facts about the exploration of Jupiter and Saturn. This NASA mission consists of two unmanned Voyager spacecrafts launched in August and September of 1977, and due to arrive at Jupiter in 1979. An account of the scientific equipment…

  8. 76 FR 67482 - NASA Advisory Council; Charter Renewal

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-01

    ... SPACE ADMINISTRATION NASA Advisory Council; Charter Renewal AGENCY: National Aeronautics and Space Administration (NASA). ACTION: Notice of renewal and amendment of the charter of the NASA Advisory Council... NASA Administrator has determined that renewal and amendment of the charter of the NASA...

  9. National Aeronautics and Space Administration (NASA) Earth Science Research for Energy Management. Part 1; Overview of Energy Issues and an Assessment of the Potential for Application of NASA Earth Science Research

    NASA Technical Reports Server (NTRS)

    Zell, E.; Engel-Cox, J.

    2005-01-01

    Effective management of energy resources is critical for the U.S. economy, the environment, and, more broadly, for sustainable development and alleviating poverty worldwide. The scope of energy management is broad, ranging from energy production and end use to emissions monitoring and mitigation and long-term planning. Given the extensive NASA Earth science research on energy and related weather and climate-related parameters, and rapidly advancing energy technologies and applications, there is great potential for increased application of NASA Earth science research to selected energy management issues and decision support tools. The NASA Energy Management Program Element is already involved in a number of projects applying NASA Earth science research to energy management issues, with a focus on solar and wind renewable energy and developing interests in energy modeling, short-term load forecasting, energy efficient building design, and biomass production.

  10. Neurolab: Final Report for the Ames Research Center Payload

    NASA Technical Reports Server (NTRS)

    Maese, A. Christopher (Editor); Ostrach, Louis H. (Editor); Dalton, Bonnie P. (Technical Monitor)

    2002-01-01

    Neurolab, the final Spacelab mission, launched on STS-90 on April 17, 1998, was dedicated to studying the nervous system. NASA cooperated with domestic and international partners to conduct the mission. ARC's (Ames Research Center's) Payload included 15 experiments designed to study the adaptation and development of the nervous system in microgravity. The payload had the largest number of Principal and Co-Investigators, largest complement of habitats and experiment unique equipment flown to date, and most diverse distribution of live specimens ever undertaken by ARC, including rodents, toadfish, swordtail fish, water snails, hornweed and crickets To facilitate tissue sharing and optimization of science objectives, investigators were grouped into four science discipline teams: Neuronal Plasticity, Mammalian Development, Aquatic, and Neurobiology. Several payload development challenges were experienced and required an extraordinary effort, by all involved, to meet the launch schedule. With respect to hardware and the total amount of recovered science, Neurolab was regarded as an overall success. However, a high mortality rate in one rodent group and several hardware anomalies occurred inflight that warranted postflight investigations. Hardware, science, and operations lessons were learned that should be taken into consideration by payload teams developing payloads for future Shuttle missions and the International Space Station.

  11. 14 CFR 1212.700 - NASA employees.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 5 2011-01-01 2010-01-01 true NASA employees. 1212.700 Section 1212.700 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION PRIVACY ACT-NASA REGULATIONS NASA Authority and Responsibilities § 1212.700 NASA employees. (a) Each NASA employee is responsible for...

  12. 14 CFR 1212.700 - NASA employees.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 5 2013-01-01 2013-01-01 false NASA employees. 1212.700 Section 1212.700 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION PRIVACY ACT-NASA REGULATIONS NASA Authority and Responsibilities § 1212.700 NASA employees. (a) Each NASA employee is responsible for...

  13. 14 CFR 1212.700 - NASA employees.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 5 2012-01-01 2012-01-01 false NASA employees. 1212.700 Section 1212.700 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION PRIVACY ACT-NASA REGULATIONS NASA Authority and Responsibilities § 1212.700 NASA employees. (a) Each NASA employee is responsible for...

  14. 14 CFR 1212.700 - NASA employees.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 5 2010-01-01 2010-01-01 false NASA employees. 1212.700 Section 1212.700 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION PRIVACY ACT-NASA REGULATIONS NASA Authority and Responsibilities § 1212.700 NASA employees. (a) Each NASA employee is responsible for...

  15. 77 FR 13153 - Information Collection; NASA Contractor Financial Management Reports

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-05

    ... SPACE ADMINISTRATION Information Collection; NASA Contractor Financial Management Reports AGENCY: National Aeronautics and Space Administration (NASA). ACTION: Notice of information collection. SUMMARY... collection instrument(s) and instructions should be directed to Ms. Frances Teel, NASA Clearance...

  16. NASA Quest.

    ERIC Educational Resources Information Center

    Ashby, Susanne

    2000-01-01

    Introduces NASA Quest as part of NASA's Learning Technologies Project, which connects students to the people of NASA through the various pages at the website where students can glimpse the various types of work performed at different NASA facilities and talk to NASA workers about the type of work they do. (ASK)

  17. Study of optical techniques for the Ames unitary wind tunnels. Part 4: Model deformation

    NASA Technical Reports Server (NTRS)

    Lee, George

    1992-01-01

    A survey of systems capable of model deformation measurements was conducted. The survey included stereo-cameras, scanners, and digitizers. Moire, holographic, and heterodyne interferometry techniques were also looked at. Stereo-cameras with passive or active targets are currently being deployed for model deformation measurements at NASA Ames and LaRC, Boeing, and ONERA. Scanners and digitizers are widely used in robotics, motion analysis, medicine, etc., and some of the scanner and digitizers can meet the model deformation requirements. Commercial stereo-cameras, scanners, and digitizers are being improved in accuracy, reliability, and ease of operation. A number of new systems are coming onto the market.

  18. Feasibility study of transit photon correlation anemometer for Ames Research Center unitary wind tunnel plan

    NASA Technical Reports Server (NTRS)

    Mayo, W. T., Jr.; Smart, A. E.

    1979-01-01

    A laser transit anemometer measured a two-dimensional vector velocity, using the transit time of scattering particles between two focused and parallel laser beams. The objectives were: (1) the determination of the concentration levels and light scattering efficiencies of naturally occurring, submicron particles in the NASA/Ames unitary wind tunnel and (2) the evaluation based on these measured data of a laser transit anemometer with digital correlation processing for nonintrusive velocity measurement in this facility. The evaluation criteria were the speeds at which point velocity measurements could be realized with this technique (as determined from computer simulations) for given accuracy requirements.

  19. NASA Pocket Statistics

    NASA Technical Reports Server (NTRS)

    1994-01-01

    Pocket Statistics is published for the use of NASA managers and their staff. Included herein is Administrative and Organizational information, summaries of Space Flight Activity including the NASA Major Launch Record, and NASA Procurement, Financial, and Manpower data. The NASA Major Launch Record includes all launches of Scout class and larger vehicles. Vehicle and spacecraft development flights are also included in the Major Launch Record. Shuttle missions are counted as one launch and one payload, where free flying payloads are not involved. Satellites deployed from the cargo bay of the Shuttle and placed in a separate orbit or trajectory are counted as an additional payload.

  20. AI at Ames: Artificial Intelligence research and application at NASA Ames Research Center, Moffett Field, California, February 1985

    NASA Technical Reports Server (NTRS)

    Andrews, Alison E. (Editor)

    1985-01-01

    Charts are given that illustrate function versus domain for artificial intelligence (AI) applications and interests and research area versus project number for AI research. A list is given of project titles with associated project numbers and page numbers. Also, project descriptions, including title, participants, and status are given.

  1. Women at work in NASA

    NASA Technical Reports Server (NTRS)

    Jenkins, H. G.

    1980-01-01

    Photographs and brief descriptions summarize the diversity of the female work force at NASA. Jobs are classified as: (1) technical support positions; (2) clerical and nonprofessional administrative; (3) professional administrative; and (4) professional scientific and engineering.

  2. Joseph Ames's "Typographical Antiquities" and the Antiquarian Tradition

    ERIC Educational Resources Information Center

    Shiner, Elaine

    2013-01-01

    One of the most famous historical documents of English printing is Joseph Ames's "Typographical Antiquities," published in London in 1749. Although Ames referred to his work as a history of printing, the bulk of it is a list of the first printers in England and their works through 1600, with very full bibliographical descriptions for…

  3. Ames Lab 101: 3D Metals Printer

    SciTech Connect

    Ott, Ryan

    2014-02-13

    To meet one of the biggest energy challenges of the 21st century - finding alternatives to rare-earth elements and other critical materials - scientists will need new and advanced tools. The Critical Materials Institute at the U.S. Department of Energy's Ames Laboratory has a new one: a 3D printer for metals research. 3D printing technology, which has captured the imagination of both industry and consumers, enables ideas to move quickly from the initial design phase to final form using materials including polymers, ceramics, paper and even food. But the Critical Materials Institute (CMI) will apply the advantages of the 3D printing process in a unique way: for materials discovery.

  4. Ames Lab 101: 3D Metals Printer

    ScienceCinema

    Ott, Ryan

    2016-07-12

    To meet one of the biggest energy challenges of the 21st century - finding alternatives to rare-earth elements and other critical materials - scientists will need new and advanced tools. The Critical Materials Institute at the U.S. Department of Energy's Ames Laboratory has a new one: a 3D printer for metals research. 3D printing technology, which has captured the imagination of both industry and consumers, enables ideas to move quickly from the initial design phase to final form using materials including polymers, ceramics, paper and even food. But the Critical Materials Institute (CMI) will apply the advantages of the 3D printing process in a unique way: for materials discovery.

  5. Data Mining at NASA: From Theory to Applications

    NASA Technical Reports Server (NTRS)

    Srivastava, Ashok N.

    2009-01-01

    This slide presentation demonstrates the data mining/machine learning capabilities of NASA Ames and Intelligent Data Understanding (IDU) group. This will encompass the work done recently in the group by various group members. The IDU group develops novel algorithms to detect, classify, and predict events in large data streams for scientific and engineering systems. This presentation for Knowledge Discovery and Data Mining 2009 is to demonstrate the data mining/machine learning capabilities of NASA Ames and IDU group. This will encompass the work done re cently in the group by various group members.

  6. 78 FR 11235 - Information Collection Notice/NASA Great Moonbuggy Race

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-15

    ... SPACE ADMINISTRATION Information Collection Notice/NASA Great Moonbuggy Race AGENCY: National Aeronautics and Space Administration (NASA). ACTION: NASA Information Collection Notice; Correction. Federal... comment on a proposed information collection; the NASA Great Moonbuggy Race, as required by the...

  7. 77 FR 66082 - NASA Advisory Council; Human Exploration and Operations Committee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-11-01

    ... SPACE ADMINISTRATION NASA Advisory Council; Human Exploration and Operations Committee; Meeting AGENCY... Administration (NASA) announces a meeting of the ] Human Exploration and Operations Committee of the NASA..., Human Exploration and Operations Mission Directorate, NASA Headquarters, 300 E Street SW.,...

  8. 76 FR 64122 - NASA Advisory Committee; Renewal of NASA's International Space Station Advisory Committee Charter

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-17

    ... SPACE ADMINISTRATION NASA Advisory Committee; Renewal of NASA's International Space Station Advisory Committee Charter AGENCY: National Aeronautics and Space Administration (NASA). ACTION: Notice of renewal... imposed on NASA by law. The renewed Charter is for a one-year period ending September 30, 2012. It...

  9. Ames Research Center FY 2000 Implementation Plan: Leading Technology into the New Millennium

    NASA Technical Reports Server (NTRS)

    2000-01-01

    This document presents the implementation plan for Ames Research Center (ARC) within the overall framework of the NASA Strategic Plan. It describes how ARC intends to implement its Center of Excellence responsibilities, Agency assigned missions, Agency and Enterprise lead programs, and other roles in support of NASA's vision and mission. All Federal agencies are required by the 1993 Government Performance and Results Act to implement a long-term strategic planning process that includes measurable outcomes and strict accountability. At NASA, this planning process is shaped by the Space Act of 1958, annual appropriations, and other external mandates, as well as by customer requirements. The resulting Strategic Plan sets the overall architecture for what we do, identifies who our customers are, and directs where we are going and why. The Strategic Plan is the basis upon which decisions regarding program implementation and resource deployment are made. Whereas the strategic planning process examines the long-term direction of the organization and identifies a specific set of goals, the implementation planning process examines the detailed performance of the organization and allocates resources toward meeting these goals. It is the purpose of this implementation document to provide the connection between the NASA Strategic Plan and the specific programs and support functions that ARC employees perform. This connection flows from the NASA Strategic Plan, through the various Strategic Enterprise plans to the ARC Center of Excellence, primary missions, Lead Center programs, program support responsibilities, and ultimately, to the role of the individual ARC employee.

  10. NASA and General Aviation. NASA SP-485.

    ERIC Educational Resources Information Center

    Ethell, Jeffrey L.

    A detailed examination of the nature and function of general aviation and a discussion of how the National Aeronautics and Space Administration (NASA) helps keep it on the cutting edge of technology are offered in this publication. The intricacies of aerodynamics, energy, and safety as well as the achievements in aeronautical experimentation are…

  11. Reaching for the APEX at Ames

    NASA Technical Reports Server (NTRS)

    Kohut, Matthew

    2008-01-01

    The multidimensional design of the APEX program is the result of an extensive research and development effort dating back nearly a decade. "In the late 1990s and early 2000, we were pretty successful at getting new research and technology projects here at the center," Johnson says, "and we had a lack of critical mass of project managers. We were taking people who were primarily researchers and putting them in the position of managing projects." Smith and Johnson held a series of workshops across the center during 2000 and 2001 to gather feedback about how to address this issue. When they briefed the center's senior management on their findings, one of the top recommendations was to establish a project manager development program at Ames. At that point, they cast a wide net for ideas and information. "We did centerwide needs assessment, we did focus groups, we did surveys," Smith says. "We came up with a proposal for what a program would look like, tying in what we knew about the Academy of Program1 Project Leadership (now the Academy for Program/Project and Engineering Leadership, or APPEL), what we've seen at other centers, what other centers have tried. We were always checking to make sure our program mapped to APPEL. We also looked at the PMI [Project Management Institute] model, INCOSE [International Council on Systems Engineering], CMMI [Capability Maturity Model Integration], you name it." "We had a lot of conversations with the Jet Propulsion Lab and Goddard," Johnson adds. "We saw those centers as models for what Ames was aspiring to be in terms of a center for managing space flight missions." Their research confirmed what they already knew-that strong practitioner involvement would be critical to their program design process. 'XPEX is for the practitioner by the practitioner," Smith says. "They have to be a part of designing it. Otherwise there's no way we could design a program that meets their needs." At the same time that they worked at the grassroots

  12. NASA International Environmental Partnerships

    NASA Technical Reports Server (NTRS)

    Lewis, Pattie; Valek, Susan

    2010-01-01

    For nearly five decades, the National Aeronautics and Space Administration (NASA) has been preeminent in space exploration. NASA has landed Americans on the moon, robotic rovers on Mars, and led cooperative scientific endeavors among nations aboard the International Space Station. But as Earth's population increases, the environment is subject to increasing challenges and requires more efficient use of resources. International partnerships give NASA the opportunity to share its scientific and engineering expertise. They also enable NASA to stay aware of continually changing international environmental regulations and global markets for materials that NASA uses to accomplish its mission. Through international partnerships, NASA and this nation have taken the opportunity to look globally for solutions to challenges we face here on Earth. Working with other nations provides NASA with collaborative opportunities with the global science/engineering community to explore ways in which to protect our natural resources, conserve energy, reduce the use of hazardous materials in space and earthly applications, and reduce greenhouse gases that potentially affect all of Earth's inhabitants. NASA is working with an ever-expanding list of international partners including the European Union, the European Space Agency and, especially, the nation of Portugal. Our common goal is to foster a sustainable future in which partners continue to explore the universe while protecting our home planet's resources for future generations. This brochure highlights past, current, and future initiatives in several important areas of international collaboration that can bring environmental, economic, and other benefits to NASA and the wider international space community.

  13. 77 FR 34093 - NASA Advisory Council; Science Committee; Heliophysics Subcommittee; Meeting.

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-08

    ... SPACE ADMINISTRATION NASA Advisory Council; Science Committee; Heliophysics Subcommittee; Meeting. AGENCY: National Aeronautics and Space Administration. ACTION: Notice of meeting. SUMMARY: In accordance... Space Administration (NASA) announces a meeting of the Heliophysics Subcommittee of the NASA...

  14. 77 FR 62536 - Meeting of Astrophysics Subcommittee of the NASA Advisory Council Science Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-15

    ... SPACE ADMINISTRATION Meeting of Astrophysics Subcommittee of the NASA Advisory Council Science Committee AGENCY: National Aeronautics and Space Administration. ACTION: Notice of meeting. SUMMARY: In accordance... Space Administration (NASA) announces a meeting of the Astrophysics Subcommittee of the NASA...

  15. 76 FR 66998 - NASA Advisory Council; Science Committee; Astrophysics Subcommittee; Meeting.

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-28

    ... SPACE ADMINISTRATION NASA Advisory Council; Science Committee; Astrophysics Subcommittee; Meeting. AGENCY: National Aeronautics and Space Administration. ACTION: Notice of meeting. SUMMARY: In accordance... Space Administration (NASA) announces a meeting of the Astrophysics Subcommittee of the NASA...

  16. Ames life science telescience testbed evaluation

    NASA Technical Reports Server (NTRS)

    Haines, Richard F.; Johnson, Vicki; Vogelsong, Kristofer H.; Froloff, Walt

    1989-01-01

    Eight surrogate spaceflight mission specialists participated in a real-time evaluation of remote coaching using the Ames Life Science Telescience Testbed facility. This facility consisted of three remotely located nodes: (1) a prototype Space Station glovebox; (2) a ground control station; and (3) a principal investigator's (PI) work area. The major objective of this project was to evaluate the effectiveness of telescience techniques and hardware to support three realistic remote coaching science procedures: plant seed germinator charging, plant sample acquisition and preservation, and remote plant observation with ground coaching. Each scenario was performed by a subject acting as flight mission specialist, interacting with a payload operations manager and a principal investigator expert. All three groups were physically isolated from each other yet linked by duplex audio and color video communication channels and networked computer workstations. Workload ratings were made by the flight and ground crewpersons immediately after completing their assigned tasks. Time to complete each scientific procedural step was recorded automatically. Two expert observers also made performance ratings and various error assessments. The results are presented and discussed.

  17. Ames collaborative study of cosmic ray neutrons

    NASA Technical Reports Server (NTRS)

    Hewitt, J. E.; Hughes, L.; Mccaslin, J. B.; Stephens, L. D.; Rindi, A.; Smith, A. R.; Thomas, R. H.; Griffith, R. V.; Welles, C. G.; Baum, J. W.

    1976-01-01

    The results of a collaborative study to define both the neutron flux and the spectrum more precisely and to develop a dosimetry package that can be flown quickly to altitude for solar flare events are described. Instrumentation and analysis techniques were used which were developed to measure accelerator-produced radiation. The instruments were flown in the Ames Research Center high altitude aircraft. Neutron instrumentation consisted of Bonner spheres with both active and passive detector elements, threshold detectors of both prompt-counter and activation-element types, a liquid scintillation spectrometer based on pulse-shape discrimination, and a moderated BF3 counter neutron monitor. In addition, charged particles were measured with a Reuter-Stokes ionization chamber system and dose equivalent with another instrument. Preliminary results from the first series of flights at 12.5 km (41,000 ft) are presented, including estimates of total neutron flux intensity and spectral shape and of the variation of intensity with altitude and geomagnetic latitude.

  18. NASA overhauls grant process

    NASA Astrophysics Data System (ADS)

    Simarski, Lynn Teo

    A university recently received a NASA grant so quickly that the recipients, used to a long wait for money even after a grant had been approved, assumed a mistake had been made. Such a story has been making the rounds since NASA began to refurbish the procedure by which it issues grants, speeding up and streamlining the process in response to suggestions from space scientists.One way NASA has measured success so far is how quickly it has cleared the decks of pending grants. The agency reduced the backlog from 572 grants on September 11 to zero by the end of the month, according to Don Bush, NASA's deputy assistant administrator for procurement. But that's just the beginning of changes Bush expects to be completed by March or April next year. The new procedures are first being tested out at headquarters, which issues over half of the agency's space science grants. NASA centers will also adopt the procedures after full approval.

  19. The NASA astrobiology program.

    PubMed

    Morrison, D

    2001-01-01

    The new discipline of astrobiology addresses fundamental questions about life in the universe: "Where did we come from?" "Are we alone in the universe?" "What is our future beyond the Earth?" Developing capabilities in biotechnology, informatics, and space exploration provide new tools to address these old questions. The U.S. National Aeronautics and Space Administration (NASA) has encouraged this new discipline by organizing workshops and technical meetings, establishing a NASA Astrobiology Institute, providing research funds to individual investigators, ensuring that astrobiology goals are incorporated in NASA flight missions, and initiating a program of public outreach and education. Much of the initial effort by NASA and the research community was focused on determining the technical content of astrobiology. This paper discusses the initial answer to the question "What is astrobiology?" as described in the NASA Astrobiology Roadmap.

  20. 14 CFR 1221.111 - Use of the NASA Logotype.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 5 2011-01-01 2010-01-01 true Use of the NASA Logotype. 1221.111 Section 1221.111 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION THE NASA SEAL AND OTHER DEVICES, AND THE CONGRESSIONAL SPACE MEDAL OF HONOR NASA Seal, NASA Insignia, NASA Logotype, NASA...

  1. 14 CFR 1221.109 - Use of the NASA Seal.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 5 2010-01-01 2010-01-01 false Use of the NASA Seal. 1221.109 Section 1221.109 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION THE NASA SEAL AND OTHER DEVICES, AND THE CONGRESSIONAL SPACE MEDAL OF HONOR NASA Seal, NASA Insignia, NASA Logotype, NASA...

  2. 14 CFR 1221.113 - Use of the NASA Flags.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 5 2010-01-01 2010-01-01 false Use of the NASA Flags. 1221.113 Section 1221.113 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION THE NASA SEAL AND OTHER DEVICES, AND THE CONGRESSIONAL SPACE MEDAL OF HONOR NASA Seal, NASA Insignia, NASA Logotype, NASA...

  3. 14 CFR 1221.109 - Use of the NASA Seal.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 5 2012-01-01 2012-01-01 false Use of the NASA Seal. 1221.109 Section 1221.109 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION THE NASA SEAL AND OTHER DEVICES, AND THE CONGRESSIONAL SPACE MEDAL OF HONOR NASA Seal, NASA Insignia, NASA Logotype, NASA...

  4. 14 CFR 1221.110 - Use of the NASA Insignia.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 5 2011-01-01 2010-01-01 true Use of the NASA Insignia. 1221.110 Section 1221.110 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION THE NASA SEAL AND OTHER DEVICES, AND THE CONGRESSIONAL SPACE MEDAL OF HONOR NASA Seal, NASA Insignia, NASA Logotype, NASA...

  5. 14 CFR 1221.109 - Use of the NASA Seal.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 5 2011-01-01 2010-01-01 true Use of the NASA Seal. 1221.109 Section 1221.109 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION THE NASA SEAL AND OTHER DEVICES, AND THE CONGRESSIONAL SPACE MEDAL OF HONOR NASA Seal, NASA Insignia, NASA Logotype, NASA...

  6. 14 CFR 1221.113 - Use of the NASA Flags.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 5 2012-01-01 2012-01-01 false Use of the NASA Flags. 1221.113 Section 1221.113 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION THE NASA SEAL AND OTHER DEVICES, AND THE CONGRESSIONAL SPACE MEDAL OF HONOR NASA Seal, NASA Insignia, NASA Logotype, NASA...

  7. 14 CFR 1221.110 - Use of the NASA Insignia.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 5 2013-01-01 2013-01-01 false Use of the NASA Insignia. 1221.110 Section 1221.110 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION THE NASA SEAL AND OTHER DEVICES, AND THE CONGRESSIONAL SPACE MEDAL OF HONOR NASA Seal, NASA Insignia, NASA Logotype, NASA...

  8. 14 CFR 1221.111 - Use of the NASA Logotype.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 5 2010-01-01 2010-01-01 false Use of the NASA Logotype. 1221.111 Section 1221.111 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION THE NASA SEAL AND OTHER DEVICES, AND THE CONGRESSIONAL SPACE MEDAL OF HONOR NASA Seal, NASA Insignia, NASA Logotype, NASA...

  9. 14 CFR 1221.113 - Use of the NASA Flags.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 5 2013-01-01 2013-01-01 false Use of the NASA Flags. 1221.113 Section 1221.113 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION THE NASA SEAL AND OTHER DEVICES, AND THE CONGRESSIONAL SPACE MEDAL OF HONOR NASA Seal, NASA Insignia, NASA Logotype, NASA...

  10. 14 CFR 1221.110 - Use of the NASA Insignia.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 5 2012-01-01 2012-01-01 false Use of the NASA Insignia. 1221.110 Section 1221.110 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION THE NASA SEAL AND OTHER DEVICES, AND THE CONGRESSIONAL SPACE MEDAL OF HONOR NASA Seal, NASA Insignia, NASA Logotype, NASA...

  11. 14 CFR 1221.110 - Use of the NASA Insignia.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 5 2010-01-01 2010-01-01 false Use of the NASA Insignia. 1221.110 Section 1221.110 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION THE NASA SEAL AND OTHER DEVICES, AND THE CONGRESSIONAL SPACE MEDAL OF HONOR NASA Seal, NASA Insignia, NASA Logotype, NASA...

  12. 14 CFR 1221.109 - Use of the NASA Seal.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 5 2013-01-01 2013-01-01 false Use of the NASA Seal. 1221.109 Section 1221.109 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION THE NASA SEAL AND OTHER DEVICES, AND THE CONGRESSIONAL SPACE MEDAL OF HONOR NASA Seal, NASA Insignia, NASA Logotype, NASA...

  13. 14 CFR 1221.111 - Use of the NASA Logotype.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 5 2012-01-01 2012-01-01 false Use of the NASA Logotype. 1221.111 Section 1221.111 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION THE NASA SEAL AND OTHER DEVICES, AND THE CONGRESSIONAL SPACE MEDAL OF HONOR NASA Seal, NASA Insignia, NASA Logotype, NASA...

  14. 14 CFR 1221.111 - Use of the NASA Logotype.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 5 2013-01-01 2013-01-01 false Use of the NASA Logotype. 1221.111 Section 1221.111 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION THE NASA SEAL AND OTHER DEVICES, AND THE CONGRESSIONAL SPACE MEDAL OF HONOR NASA Seal, NASA Insignia, NASA Logotype, NASA...

  15. 14 CFR 1221.113 - Use of the NASA Flags.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 5 2011-01-01 2010-01-01 true Use of the NASA Flags. 1221.113 Section 1221.113 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION THE NASA SEAL AND OTHER DEVICES, AND THE CONGRESSIONAL SPACE MEDAL OF HONOR NASA Seal, NASA Insignia, NASA Logotype, NASA...

  16. NASA Explorer School

    NASA Technical Reports Server (NTRS)

    2007-01-01

    The NASA Explorer School-East Oktibbeha County School District team recently celebrated the start of its three-year partnership with NASA during a two-part kickoff event Nov. 7 and 8. Pictured from left are, Oktibbeha County School District Superintendent Dr. Walter Conley; NES Team Administrator James Covington; Stennis Space Center Deputy Director Gene Goldman; Sharon Bonner; NES Team Lead Yolanda Magee; Andrea Temple; Carolyn Rice; and special guest astronaut Roger Crouch.

  17. Ames Lab 101: Real-Time 3D Imaging

    SciTech Connect

    Zhang, Song

    2010-01-01

    Ames Laboratory scientist Song Zhang explains his real-time 3-D imaging technology. The technique can be used to create high-resolution, real-time, precise, 3-D images for use in healthcare, security, and entertainment applications.

  18. Ames Lab 101: Real-Time 3D Imaging

    ScienceCinema

    Zhang, Song

    2016-07-12

    Ames Laboratory scientist Song Zhang explains his real-time 3-D imaging technology. The technique can be used to create high-resolution, real-time, precise, 3-D images for use in healthcare, security, and entertainment applications.

  19. Site environmental report for Ames Laboratory, calendar year 1989

    SciTech Connect

    Mathison, L.K.

    1990-05-01

    This report contains brief information concerning the environment and environmental monitoring at Ames Laboratory. Discharges of liquid wastes, radioactive effluents and soil contamination are described. 7 refs., 4 figs., 1 tab. (CBS)

  20. 2. David Ames, Photographer, October 1982 VIEW EAST SHOWING WEST ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. David Ames, Photographer, October 1982 VIEW EAST SHOWING WEST (FRONT) ELEVATION - Jacob Dingee House, 105 East Seventh Street (moved to 500 Block North Market Street), Wilmington, New Castle County, DE

  1. 76 FR 65540 - NASA Advisory Council; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-21

    ... Committee Act, Public Law 92-463, as amended, the National Aeronautics and Space Administration announces that the meeting of the NASA Advisory Council scheduled to be held at NASA Goddard Space Flight Center... SPACE ADMINISTRATION NASA Advisory Council; Meeting AGENCY: National Aeronautics and...

  2. 78 FR 54680 - NASA Federal Advisory Committees

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-05

    ... SPACE ADMINISTRATION NASA Federal Advisory Committees AGENCY: National Aeronautics and Space Administration. ACTION: Annual Invitation for Public Nominations by U.S. Citizens for Service on NASA Federal Advisory Committees. SUMMARY: NASA announces its annual invitation for public nominations for service...

  3. NASA's Solar System Exploration Research Virtual Institute (SSERVI)

    NASA Astrophysics Data System (ADS)

    Pendleton, Yvonne J.

    2015-11-01

    NASA's Solar System Exploration Research Virtual Institute (SSERVI) represents a close collaboration between science, technology and exploration, and was created to enable a deeper understanding of the Moon and other airless bodies. SSERVI is supported jointly by NASA’s Science Mission Directorate and Human Exploration and Operations Mission Directorate. The institute currently focuses on the scientific aspects of exploration as they pertain to the Moon, Near Earth Asteroids (NEAs) and the moons of Mars, but the institute goals may expand, depending on NASA's needs, in the future. The 9 initial teams, selected in late 2013 and funded from 2014-2019, have expertise across the broad spectrum of lunar, NEA, and Martian moon sciences. Their research includes various aspects of the surface, interior, exosphere, near-space environments, and dynamics of these bodies.NASA anticipates a small number of additional teams to be selected within the next two years, with a Cooperative Agreement Notice (CAN) likely to be released in 2016. Calls for proposals are issued every 2-3 years to allow overlap between generations of institute teams, but the intent for each team is to provide a stable base of funding for a five year period. SSERVI's mission includes acting as a bridge between several groups, joining together researchers from: 1) scientific and exploration communities, 2) multiple disciplines across a wide range of planetary sciences, and 3) domestic and international communities and partnerships.The SSERVI central office is located at NASA Ames Research Center in Mountain View, CA. The administrative staff at the central office forms the organizational hub for the domestic and international teams and enables the virtual collaborative environment. Interactions with geographically dispersed teams across the U.S., and global partners, occur easily and frequently in a collaborative virtual environment. This poster will provide an overview of the 9 current US teams and

  4. NASA Pocket Statistics: 1997 Edition

    NASA Technical Reports Server (NTRS)

    1997-01-01

    POCKET STATISTICS is published by the NATIONAL AERONAUTICS AND SPACE ADMINISTRATION (NASA). Included in each edition is Administrative and Organizational information, summaries of Space Flight Activity including the NASA Major Launch Record, Aeronautics and Space Transportation and NASA Procurement, Financial and Workforce data. The NASA Major Launch Record includes all launches of Scout class and larger vehicles. Vehicle and spacecraft development flights are also included in the Major Launch Record. Shuttle missions are counted as one launch and one payload, where free flying payloads are not involved. All Satellites deployed from the cargo bay of the Shuttle and placed in a separate orbit or trajectory are counted as an additional payload.

  5. Ames Laboratory integrated safety management self-assessment report

    SciTech Connect

    1997-10-01

    The implementation of Integrated Safety Management (ISM) at Ames Laboratory began with the signing of the ISM Implementation Charter on February 24, 1997 (see Appendix A). The first step toward implementation of ISM at Ames Laboratory is the performance of a Self-Assessment (SA). In preparation for the SA, a workshop on ISM was provided to the Laboratory`s Environment, Safety, and Health (ES&H) Coordinators, Safety Review Committee members, and the Environment, Safety, Health and Assurance (ESH&A) staff. In addition, a briefing was given to the Laboratory`s Executive Council and Program Directors. Next, an SA Team was organized. The Team was composed of four Ames Laboratory and four Department of Energy-Chicago Operations Office (DOE-CH) staff members. The purpose of this SA was to determine the current status of ES&H management within Ames Laboratory, as well as to identify areas which need to be improved during ISM implementation. The SA was conducted by reviewing documents, interviewing Ames Laboratory management and staff, and performing walkthroughs of Laboratory areas. At the conclusion of this SA, Ames Laboratory management was briefed on the strengths, weaknesses, and the areas of improvement which will assist in the implementation of ISM.

  6. The Ames MER Microscopic Imager Toolkit

    NASA Technical Reports Server (NTRS)

    Sargent, Randy; Deans, Matthew; Kunz, Clayton; Sims, Michael; Herkenhoff, Ken

    2005-01-01

    The Mars Exploration Rovers, Spirit and Opportunity, have spent several successful months on Mars, returning gigabytes of images and spectral data to scientists on Earth. One of the instruments on the MER rovers, the Athena Microscopic Imager (MI), is a fixed focus, megapixel camera providing a plus or minus mm depth of field and a 3lx31mm field of view at a working distance of 63 mm from the lens to the object being imaged. In order to maximize the science return from this instrument, we developed the Ames MI Toolkit and supported its use during the primary mission. The MI Toolkit is a set of programs that operate on collections of MI images, with the goal of making the data more understandable to the scientists on the ground. Because of the limited depth of field of the camera, and the often highly variable topography of the terrain being imaged, MI images of a given rock are often taken as a stack, with the Instrument Deployment Device (IDD) moving along a computed normal vector, pausing every few millimeters for the MI to acquire an image. The MI Toolkit provides image registration and focal section merging, which combine these images to form a single, maximally in-focus image, while compensating for changes in lighting as well as parallax due to the motion of the camera. The MI Toolkit also provides a 3-D reconstruction of the surface being imaged using stereo and can embed 2-D MI images as texture maps into 3-D meshes produced by other imagers on board the rover to provide context. The 2-D images and 3-D meshes output from the Toolkit are easily viewed by scientists using other mission tools, such as Viz or the MI Browser. This paper describes the MI Toolkit in detail, as well as our experience using it with scientists at JPL during the primary MER mission.

  7. The Ames MER microscopic imager toolkit

    USGS Publications Warehouse

    Sargent, R.; Deans, Matthew; Kunz, C.; Sims, M.; Herkenhoff, K.

    2005-01-01

    12The Mars Exploration Rovers, Spirit and Opportunity, have spent several successful months on Mars, returning gigabytes of images and spectral data to scientists on Earth. One of the instruments on the MER rovers, the Athena Microscopic Imager (MI), is a fixed focus, megapixel camera providing a ??3mm depth of field and a 31??31mm field of view at a working distance of 63 mm from the lens to the object being imaged. In order to maximize the science return from this instrument, we developed the Ames MI Toolkit and supported its use during the primary mission. The MI Toolkit is a set of programs that operate on collections of MI images, with the goal of making the data more understandable to the scientists on the ground. Because of the limited depth of field of the camera, and the often highly variable topography of the terrain being imaged, MI images of a given rock are often taken as a stack, with the Instrument Deployment Device (IDD) moving along a computed normal vector, pausing every few millimeters for the MI to acquire an image. The MI Toolkit provides image registration and focal section merging, which combine these images to form a single, maximally in-focus image, while compensating for changes in lighting as well as parallax due to the motion of the camera. The MI Toolkit also provides a 3-D reconstruction of the surface being imaged using stereo and can embed 2-D MI images as texture maps into 3-D meshes produced by other imagers on board the rover to provide context. The 2-D images and 3-D meshes output from the Toolkit are easily viewed by scientists using other mission tools, such as Viz or the MI Browser.This paper describes the MI Toolkit in detail, as well as our experience using it with scientists at JPL during the primary MER mission. ?? 2005 IEEE.

  8. NASA/NBS (National Aeronautics and Space Administration/National Bureau of Standards) standard reference model for telerobot control system architecture (NASREM)

    NASA Technical Reports Server (NTRS)

    Albus, James S.; Mccain, Harry G.; Lumia, Ronald

    1989-01-01

    The document describes the NASA Standard Reference Model (NASREM) Architecture for the Space Station Telerobot Control System. It defines the functional requirements and high level specifications of the control system for the NASA space Station document for the functional specification, and a guideline for the development of the control system architecture, of the 10C Flight Telerobot Servicer. The NASREM telerobot control system architecture defines a set of standard modules and interfaces which facilitates software design, development, validation, and test, and make possible the integration of telerobotics software from a wide variety of sources. Standard interfaces also provide the software hooks necessary to incrementally upgrade future Flight Telerobot Systems as new capabilities develop in computer science, robotics, and autonomous system control.

  9. NASA Agency Overview Briefing

    NASA Technical Reports Server (NTRS)

    2006-01-01

    The briefing opened with Dean Acosta (NASA Press Secretary) introducing Michael Griffin (NASA Administrator) and Bill Gerstenmaier (Associate Administrator for Space Operations). Bill Griffin stated that they would resume the Shuttle Fight to Return process, that the vehicle was remarkably clean and if the weather was good, the Shuttle would be ready to launch as scheduled. Bill Gerstenmaier stated that the preparations and processing of the vehicle went extremely well and they are looking forward to increasing the crew size to three. Then the floor was open to questions from the press.

  10. Annual report to the NASA Administrator by the Aerospace Safety Advisory Panel. Part 2: Space shuttle program. Section 1: Observations and conclusions

    NASA Technical Reports Server (NTRS)

    1975-01-01

    The NASA and contractor management systems, including policies, practices, and procedures for the development of critical systems, subsystems and integration of the program elements, were investigated. The technical development status of critical systems, subsystems, and interfaces is presented. Space shuttle elements were qualified as to potential risks and hazards. The elements included the orbiter, external tanks, main engine, solid rocket boosters, and the ground support facilities.

  11. Enabling UAS Research at the NASA EAV Laboratory

    NASA Technical Reports Server (NTRS)

    Ippolito, Corey A.

    2015-01-01

    The Exploration Aerial Vehicles (EAV) Laboratory at NASA Ames Research Center leads research into intelligent autonomy and advanced control systems, bridging the gap between simulation and full-scale technology through flight test experimentation on unmanned sub-scale test vehicles.

  12. The NASA - Arc 10/20 micron camera

    NASA Technical Reports Server (NTRS)

    Roellig, T. L.; Cooper, R.; Deutsch, L. K.; Mccreight, C.; Mckelvey, M.; Pendleton, Y. J.; Witteborn, F. C.; Yuen, L.; Mcmahon, T.; Werner, M. W.

    1994-01-01

    A new infrared camera (AIR Camera) has been developed at NASA - Ames Research Center for observations from ground-based telescopes. The heart of the camera is a Hughes 58 x 62 pixel Arsenic-doped Silicon detector array that has the spectral sensitivity range to allow observations in both the 10 and 20 micron atmospheric windows.

  13. Facilitating NASA Earth Science Data Processing Using Nebula Cloud Computing

    NASA Technical Reports Server (NTRS)

    Pham, Long; Chen, Aijun; Kempler, Steven; Lynnes, Christopher; Theobald, Michael; Asghar, Esfandiari; Campino, Jane; Vollmer, Bruce

    2011-01-01

    Cloud Computing has been implemented in several commercial arenas. The NASA Nebula Cloud Computing platform is an Infrastructure as a Service (IaaS) built in 2008 at NASA Ames Research Center and 2010 at GSFC. Nebula is an open source Cloud platform intended to: a) Make NASA realize significant cost savings through efficient resource utilization, reduced energy consumption, and reduced labor costs. b) Provide an easier way for NASA scientists and researchers to efficiently explore and share large and complex data sets. c) Allow customers to provision, manage, and decommission computing capabilities on an as-needed bases

  14. Comparison of the NASA Common Research Model European Transonic Wind Tunnel Test Data to NASA Test Data

    NASA Technical Reports Server (NTRS)

    Rivers, Melissa B.; Quest, Jurgen; Rudnik, Ralf

    2015-01-01

    Experimental aerodynamic investigations of the NASA Common Research Model have been conducted in the NASA Langley National Transonic Facility, the NASA Ames 11-ft wind tunnel, and the European Transonic Wind Tunnel. In the NASA Ames 11-ft wind tunnel, data have been obtained at only a chord Reynolds number of 5 million for a wing/body/tail = 0 degree incidence configuration. Data have been obtained at chord Reynolds numbers of 5, 19.8 and 30 million for the same configuration in the National Transonic Facility and in the European Transonic Facility. Force and moment, surface pressure, wing bending and twist, and surface flow visualization data were obtained in all three facilities but only the force and moment, surface pressure and wing bending and twist data are presented herein.

  15. Comparison of the NASA Common Research Model European Transonic Wind Tunnel Test Data to NASA Test Data

    NASA Technical Reports Server (NTRS)

    Rivers, Melissa; Quest, Juergen; Rudnik, Ralf

    2015-01-01

    Experimental aerodynamic investigations of the NASA Common Research Model have been conducted in the NASA Langley National Transonic Facility, the NASA Ames 11-ft wind tunnel, and the European Transonic Wind Tunnel. In the NASA Ames 11-ft wind tunnel, data have been obtained at only a chord Reynolds number of 5 million for a wing/body/tail = 0 degree incidence configuration. Data have been obtained at chord Reynolds numbers of 5, 19.8 and 30 million for the same configuration in the National Transonic Facility and in the European Transonic Facility. Force and moment, surface pressure, wing bending and twist, and surface flow visualization data were obtained in all three facilities but only the force and moment and surface pressure data are presented herein.

  16. The NASA/Army Autonomous Rotorcraft Project

    NASA Technical Reports Server (NTRS)

    Whalley, M.; Freed, M.; Takahashi, M.; Christian, D.; Patterson-Hine, A.; Schulein, G.; Harris, R.

    2002-01-01

    An overview of the NASA Ames Research Center Autonomous Rotorcraft Project (ARP) is presented. The project brings together several technologies to address NASA and US Army autonomous vehicle needs, including a reactive planner for mission planning and execution, control system design incorporating a detailed understanding of the platform dynamics, and health monitoring and diagnostics. A candidate reconnaissance and surveillance mission is described. The autonomous agent architecture and its application to the candidate mission are presented. Details of the vehicle hardware and software development are provided.

  17. NASA's Use of Human Behavior Models for Concept Development and Evaluation

    NASA Technical Reports Server (NTRS)

    Gore, Brian F.

    2012-01-01

    Overview of NASA's use of computational approaches and methods to support research goals, of human performance models, with a focus on examples of the methods used in Code TH and TI at NASA Ames, followed by an in depth review of MIDAS' current FAA work.

  18. NASA Conference on Aircraft Operating Problems: A Compilation of the Papers Presented

    NASA Technical Reports Server (NTRS)

    1965-01-01

    This compilation includes papers presented at the NASA Conference on Aircraft Operating Problems held at the Langley Research Center on May 10 - 12, 1965. Contributions were made by representatives of the Ames Research Center, the Flight Research Center, end the Langley Research Center of NASA, as well as by representatives of the Federal Aviation Agency.

  19. NASA Kicks Off Summer of Innovation

    NASA Video Gallery

    NASA Administrator Charlie Bolden, astronaut Leland Melvin and others joined students at NASA's Jet Propulsion Laboratory in California to kick off the Summer of Innovation, an initiative to engage...

  20. This Week @ NASA May 3, 2013

    NASA Video Gallery

    Deputy Administrator Lori Garver tours two NASA facilities, The Expedition 36/37 crew train at the Gagarin Cosmonaut Training Center in Star City, NASA's newest scientific rover named GROVER, and m...

  1. This Week @ NASA - 11/5/10

    NASA Video Gallery

    The Postponement of Mission STS-133 tops the billboard on This Week @ NASA. Also, EPOXI meets a Comet, NASA and LEGO build a future together, Administrator Bolden heralds ten years of ISS, KSC Twee...

  2. Processing Earth Observing images with Ames Stereo Pipeline

    NASA Astrophysics Data System (ADS)

    Beyer, R. A.; Moratto, Z. M.; Alexandrov, O.; Fong, T.; Shean, D. E.; Smith, B. E.

    2013-12-01

    ICESat with its GLAS instrument provided valuable elevation measurements of glaciers. The loss of this spacecraft caused a demand for alternative elevation sources. In response to that, we have improved our Ames Stereo Pipeline (ASP) software (version 2.1+) to ingest satellite imagery from Earth satellite sources in addition to its support of planetary missions. This enables the open source community a free method to generate digital elevation models (DEM) from Digital Globe stereo imagery and alternatively other cameras using RPC camera models. Here we present details of the software. ASP is a collection of utilities written in C++ and Python that implement stereogrammetry. It contains utilities to manipulate DEMs, project imagery, create KML image quad-trees, and perform simplistic 3D rendering. However its primary application is the creation of DEMs. This is achieved by matching every pixel between the images of a stereo observation via a hierarchical coarse-to-fine template matching method. Matched pixels between images represent a single feature that is triangulated using each image's camera model. The collection of triangulated features represents a point cloud that is then grid resampled to create a DEM. In order for ASP to match pixels/features between images, it requires a search range defined in pixel units. Total processing time is proportional to the area of the first image being matched multiplied by the area of the search range. An incorrect search range for ASP causes repeated false positive matches at each level of the image pyramid and causes excessive processing times with no valid DEM output. Therefore our system contains automatic methods for deducing what the correct search range should be. In addition, we provide options for reducing the overall search range by applying affine epipolar rectification, homography transform, or by map projecting against a prior existing low resolution DEM. Depending on the size of the images, parallax, and image

  3. Results of the NASP Ames Integrated Mixing Hypersonic Engine (AIMHYE) Scramjet Test Program

    NASA Technical Reports Server (NTRS)

    Cavolowsky, John A.; Loomis, Mark P.; Deiwert, George S.

    1995-01-01

    This paper describes the test techniques and results from the National Aerospace Plane Government Work Package 53, the Ames Integrated Mixing Hypersonic Engine (AIMHYE) Scramjet Test program conducted in the NASA Ames 16-Inch Combustion Driven Shock Tunnel. This was a series of near full-scale scramjet combustor tests with the objective to obtain high speed combustor and nozzle data from an engine with injector configurations similar to the NASP E21 and E22a designs. The experimental test approach was to use a large combustor model (80-100% throat height) designed and fabricated for testing in the semi-free jet mode. The conditions tested were similar to the "blue book" conditions at Mach 12, 14, and 16. GWP 53 validated use of large, long test time impulse facilities, specifically the Ames 16-Inch Shock Tunnel, for high Mach number scramjet propulsion testing an integrated test rig (inlet, combustor, and nozzle). Discussion of key features of the test program will include: effects of the 2-D combustor inlet pressure profile; performance of large injectors' fueling system that included nozzlettes, base injection, and film cooling; and heat transfer measurements to the combustor. Significant instrumentation development and application efforts include the following: combustor force balance application for measurement of combustor drag for comparison with integrated point measurements of skin friction; nozzle metric strip for measuring thrust with comparison to integrated pressure measurements; and nonintrusive optical fiber-based diode laser absorption measurements of combustion products for determination of combustor performance. Direct measurements will be reported for specific test article configurations and compared with CFD solutions.

  4. Growth hormone alters the glutathione S-transferase and mitochondrial thioredoxin systems in long-living Ames dwarf mice.

    PubMed

    Rojanathammanee, Lalida; Rakoczy, Sharlene; Brown-Borg, Holly M

    2014-10-01

    Ames dwarf mice are deficient in growth hormone (GH), prolactin, and thyroid-stimulating hormone and live significantly longer than their wild-type (WT) siblings. The lack of GH is associated with stress resistance and increased longevity. However, the mechanism underlying GH's actions on cellular stress defense have yet to be elucidated. In this study, WT or Ames dwarf mice were treated with saline or GH (WT saline, Dwarf saline, and Dwarf GH) two times daily for 7 days. The body and liver weights of Ames dwarf mice were significantly increased after 7 days of GH administration. Mitochondrial protein levels of the glutathione S-transferase (GST) isozymes, K1 and M4 (GSTK1 and GSTM4), were significantly higher in dwarf mice (Dwarf saline) when compared with WT mice (WT saline). GH administration downregulated the expression of GSTK1 proteins in dwarf mice. We further investigated GST activity from liver lysates using different substrates. Substrate-specific GST activity (bromosulfophthalein, dichloronitrobenzene, and 4-hydrox-ynonenal) was significantly reduced in GH-treated dwarf mice. In addition, GH treatment attenuated the activity of thioredoxin and glutaredoxin in liver mitochondria of Ames mice. Importantly, GH treatment suppressed Trx2 and TrxR2 mRNA expression. These data indicate that GH has a role in stress resistance by altering the functional capacity of the GST system through the regulation of specific GST family members in long-living Ames dwarf mice. It also affects the regulation of thioredoxin and glutaredoxin, factors that regulate posttranslational modification of proteins and redox balance, thereby further influencing stress resistance.

  5. Growth Hormone Alters the Glutathione S-Transferase and Mitochondrial Thioredoxin Systems in Long-Living Ames Dwarf Mice

    PubMed Central

    Rojanathammanee, Lalida; Rakoczy, Sharlene

    2014-01-01

    Ames dwarf mice are deficient in growth hormone (GH), prolactin, and thyroid-stimulating hormone and live significantly longer than their wild-type (WT) siblings. The lack of GH is associated with stress resistance and increased longevity. However, the mechanism underlying GH’s actions on cellular stress defense have yet to be elucidated. In this study, WT or Ames dwarf mice were treated with saline or GH (WT saline, Dwarf saline, and Dwarf GH) two times daily for 7 days. The body and liver weights of Ames dwarf mice were significantly increased after 7 days of GH administration. Mitochondrial protein levels of the glutathione S-transferase (GST) isozymes, K1 and M4 (GSTK1 and GSTM4), were significantly higher in dwarf mice (Dwarf saline) when compared with WT mice (WT saline). GH administration downregulated the expression of GSTK1 proteins in dwarf mice. We further investigated GST activity from liver lysates using different substrates. Substrate-specific GST activity (bromosulfophthalein, dichloronitrobenzene, and 4-hydrox-ynonenal) was significantly reduced in GH-treated dwarf mice. In addition, GH treatment attenuated the activity of thioredoxin and glutaredoxin in liver mitochondria of Ames mice. Importantly, GH treatment suppressed Trx2 and TrxR2 mRNA expression. These data indicate that GH has a role in stress resistance by altering the functional capacity of the GST system through the regulation of specific GST family members in long-living Ames dwarf mice. It also affects the regulation of thioredoxin and glutaredoxin, factors that regulate posttranslational modification of proteins and redox balance, thereby further influencing stress resistance. PMID:24285747

  6. Paine Appointed Administrator

    NASA Technical Reports Server (NTRS)

    1969-01-01

    President Richard M. Nixon announcing the appointment of Dr. Thomas O. Paine as Administrator for the National Aeronautics and Space Administration. The ceremony was held at the White House. Paine had been serving as acting administrator. From left to right: President Richard M. Nixon NASA Administrator Dr. Thomas O. Paine Vice President Spiro T. Agnew

  7. Summary Report for National Aeronautics Space Administration (NASA) and Centro Para Prevencao da Poluicao (C3P) 2011 International Workshop on Environment and Alternative Energy

    NASA Technical Reports Server (NTRS)

    Greene, Brian

    2011-01-01

    The C3P &. NASA International Workshop on Environment and Alternative Energy was held on November 15-18, 2011 at the European Space Agency (ESA)'s Research and Technology Centre (ESTEC) in Noordwijk, The Netherlands. The theme of the workshop was "Global Collaboration in Environmental and Alternative Energy Strategies". The workshop was held at ESTEC's conference center. More than 110 individuals from eleven countries attended the workshop. For the first time since the inception of NASA-C3P workshops, a full day was dedicated to a student session. Fifteen students from around the globe gave oral presentations along with poster displays relating to the latest technologies in environmental and alternative energy strategies. Judges from NASA, C3P and ESA awarded plaques to the top three students. In addition to the students, thirty eight U.S. and international subject matter experts presented on the following general environmental-related topics: (1) Hazardous materials management and substitution in support of space operations (2) Emerging renewable and alternative energy technologies (3) Sustainable development and redevelopment (4) Remediation technologies and strategies The workshop also included a panel discussion on the topic of the challenges of operating installations across borders. Throughout the workshop, attendees heard about the scope of environmental and energy challenges that industry and governments face. They heard about technologies for increasing energy efficiency and increasing use of renewable energy. They learned about ways companies and government agencies are using materials, processes, goods and services in a manner more respectful with the environment and in compliance with health and safety rules. The concept of partnerships and their inherent benefits was evidenced throughout the workshop. Partnering is a key aspect of sustainability because sustainable development is complicated. Through formal presentations and side discussions, attendees

  8. NASA's Software Safety Standard

    NASA Technical Reports Server (NTRS)

    Ramsay, Christopher M.

    2005-01-01

    NASA (National Aeronautics and Space Administration) relies more and more on software to control, monitor, and verify its safety critical systems, facilities and operations. Since the 1960's there has hardly been a spacecraft (manned or unmanned) launched that did not have a computer on board that provided vital command and control services. Despite this growing dependence on software control and monitoring, there has been no consistent application of software safety practices and methodology to NASA's projects with safety critical software. Led by the NASA Headquarters Office of Safety and Mission Assurance, the NASA Software Safety Standard (STD-18l9.13B) has recently undergone a significant update in an attempt to provide that consistency. This paper will discuss the key features of the new NASA Software Safety Standard. It will start with a brief history of the use and development of software in safety critical applications at NASA. It will then give a brief overview of the NASA Software Working Group and the approach it took to revise the software engineering process across the Agency.

  9. Report to the administrator by the NASA Aerospace Safety Advisory Panel on the Skylab program. Volume 1: Summary report. [systems management evaluation and design analysis

    NASA Technical Reports Server (NTRS)

    1973-01-01

    Contractor and NASA technical management for the development and manufacture of the Skylab modules is reviewed with emphasis on the following management controls: configuration and interface management; vendor control; and quality control of workmanship. A review of the modified two-stage Saturn V launch vehicle which focused on modifications to accommodate the Skylab payload; resolution of prior flight anomalies; and changes in personnel and management systems is presented along with an evaluation of the possible age-life and storage problems for the Saturn 1-B launch vehicle. The NASA program management's visibility and control of contractor operations, systems engineering and integration, the review process for the evaluation of design and flight hardware, and the planning process for mission operations are investigated. It is concluded that the technical management system for development and fabrication of the modules, spacecraft, and launch vehicles, the process of design and hardware acceptance reviews, and the risk assessment activities are satisfactory. It is indicated that checkout activity, integrated testing, and preparations for and execution of mission operation require management attention.

  10. The NASA Technical Report Server

    NASA Astrophysics Data System (ADS)

    Nelson, M. L.; Gottlich, G. L.; Bianco, D. J.; Paulson, S. S.; Binkley, R. L.; Kellogg, Y. D.; Beaumont, C. J.; Schmunk, R. B.; Kurtz, M. J.; Accomazzi, A.; Syed, O.

    The National Aeronautics and Space Act of 1958 established the National Aeronautics and Space Administration (NASA) and charged it to "provide for the widest practicable and appropriate dissemination of information concerning...its activities and the results thereof". The search for innovative methods to distribute NASA's information led a grass-roots team to create the NASA Technical Report Server (NTRS), which uses the World Wide Web and other popular Internet-based information systems .

  11. This is NASA.

    ERIC Educational Resources Information Center

    National Aeronautics and Space Administration, Washington, DC.

    The mission of the National Aeronautics and Space Administration (NASA) is space exploration and research in space and aeronautics for peaceful purposes and for the benefit of all mankind. The organization and programs which have been established to carry out this mission are described. Full color illustrations for the book were selected from the…

  12. NASA Facts, Space Shuttle.

    ERIC Educational Resources Information Center

    National Aeronautics and Space Administration, Washington, DC. Educational Programs Div.

    This newsletter from the National Aeronautics and Space Administration (NASA) contains a description of the purposes and potentials of the Space Shuttle craft. The illustrated document explains some of the uses for which the shuttle is designed; how the shuttle will be launched from earth, carry out its mission, and land again on earth; and what a…

  13. NASA Network

    NASA Technical Reports Server (NTRS)

    Carter, David; Wetzel, Scott

    2000-01-01

    The NASA Network includes nine NASA operated and partner operated stations covering North America, the west coast of South America, the Pacific, and Western Australia . A new station is presently being setup in South Africa and discussions are underway to add another station in Argentina. NASA SLR operations are supported by Honeywell Technical Solutions, Inc (HTSI), formally AlliedSignal Technical Services, The University of Texas, the University of Hawaii and Universidad Nacional de San Agustin.

  14. 1998 NASA-ASEE-Stanford Summer Faculty Fellowship Program

    NASA Technical Reports Server (NTRS)

    1998-01-01

    This report presents the essential features and highlights of the 1998 Summer Faculty Fellowship Program at Ames Research Center and Dryden Flight Research Center in a comprehensive and concise form. Summary reports describing the fellows' technical accomplishments are enclosed in the attached technical report. The proposal for the 1999 NASA-ASEE-Stanford Summer Faculty Fellowship Program is being submitted under separate cover. Of the 31 participating fellows, 27 were at Ames and 4 were at Dryden. The Program's central feature is the active participation by each fellow in one of the key technical activities currently under way at either the NASA Ames Research Center or the NASA Dryden Flight Research Center. The research topic is carefully chosen in advance to satisfy the criteria of: (1) importance to NASA, (2) high technical level, and (3) a good match to the interests, ability, and experience of the fellow, with the implied possibility of NASA-supported follow-on work at the fellow's home institution. Other features of the Summer Faculty Fellowship Program include participation by the fellows in workshops and seminars at Stanford, the Ames Research Center, and other off-site locations. These enrichment programs take place either directly or remotely, via the Stanford Center for Professional Development, and also involve specific interactions between fellows and Stanford faculty on technical and other academic subjects. A few, brief remarks are in order to summarize the fellows' opinions of the summer program. It is noteworthy that 90% of the fellows gave the NASA-Ames/Dryden- Stanford program an "excellent" rating and the remaining 10%, "good." Also, 100% would recommend the program to their colleagues as an effective means of furthering their professional development as teachers and researchers. Last, but not least, 87% of the fellows stated that a continuing research relationship with their NASA colleagues' organization probably would be maintained. Therefore

  15. NASA Facts, The Viking Mission.

    ERIC Educational Resources Information Center

    National Aeronautics and Space Administration, Washington, DC. Educational Programs Div.

    Presented is one of a series of publications of National Aeronautics and Space Administration (NASA) facts about the exploration of Mars. The Viking mission to Mars, consisting of two unmanned NASA spacecraft launched in August and September, 1975, is described. A description of the spacecraft and their paths is given. A diagram identifying the…

  16. The future of NASA's missions

    NASA Astrophysics Data System (ADS)

    A'Hearn, Michael F.

    2017-04-01

    Can the recent Discovery mission selections be used as tea leaves to understand the future directions of NASA? In an age of many programmes being used to advance administrative and programmatic goals, Discovery appears to be driven almost entirely by science and by NASA's goal of cheaper missions.

  17. NASA Solve

    NASA Video Gallery

    NASA Solve lists opportunities available to the general public to contribute to solving tough problems related to NASA’s mission through challenges, prize competitions, and crowdsourcing activities...

  18. NASA Carbon Monitoring System Program

    NASA Astrophysics Data System (ADS)

    Kaye, J. A.; Doorn, B.; Jucks, K. W.; Wickland, D. E.; Bontempi, P. S.; "Nasa CMS Pilot Product; Scoping Study Teams"

    2010-12-01

    NASA has recently begun a focused program to provide products on the amount and distribution of carbon reservoirs and fluxes in the global environment informed by the increasing global observational capability for these quantities developed by NASA and its interagency and international partners. This program, known as a Carbon Monitoring System (CMS), serves as a user-responsive, product-oriented overlay onto the existing observational, modeling, and research programs sponsored by NASA's Earth Science Division (ESD). Initial emphasis is on two pilot products - one on terrestrial biomass and one on integrated emission/uptake ("flux"), as well as a "scoping study" that will enable longer-term planning built around the increasing global observational capability NASA expects to be launching in the next few years (e.g., Landsat Data Continuity Mission in 2012, reflight of Orbiting Carbon Observatory in 2013, decadal survey missions including ICESat-II in 2015 and DESDynI in 2017). Initial efforts on the pilot products are based largely at three NASA centers (Ames, Goddard, Jet Propulsion Laboratory), but will draw on the broader expertise of the research community through workshops (e.g., one held in Boulder in July, 2010) as well as a planned solicitation for a Science Definition Team to provide broader guidance into the development, evaluation, and future evolution of the pilot products. The NASA CMS activity, with its emphasis on utilization of NASA remote-sensing data, will complement related efforts of other Federal agencies; coordination with other agencies will be carried out through the US Global Change Research Program. In this talk, steps taken to initiate this activity in FY2010 and plans for its evolution into the future will be presented.

  19. 78 FR 77501 - NASA Aerospace Safety Advisory Panel; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-23

    ... SPACE ADMINISTRATION NASA Aerospace Safety Advisory Panel; Meeting AGENCY: National Aeronautics and Space Administration (NASA). ACTION: Notice of Meeting. SUMMARY: In accordance with the Federal Advisory...:00 p.m., Local Time. ] ADDRESSES: NASA Johnson Space Center, Room 966, NASA Parkway, Building...

  20. 75 FR 2892 - NASA Advisory Council; Science Committee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-19

    ... SPACE ADMINISTRATION NASA Advisory Council; Science Committee; Meeting AGENCY: National Aeronautics and... Administration (NASA) announces a meeting of the Science Committee of the NASA Advisory Council (NAC). This... Standard Time. ADDRESSES: NASA Headquarters, 300 E Street, SW., Room 3H46 (Tuesday, February 16, 2010)...

  1. Supersonic Retropropulsion CFD Validation with Ames Unitary Plan Wind Tunnel Test Data

    NASA Technical Reports Server (NTRS)

    Schauerhamer, Daniel G.; Zarchi, Kerry A.; Kleb, William L.; Edquist, Karl T.

    2013-01-01

    A validation study of Computational Fluid Dynamics (CFD) for Supersonic Retropropulsion (SRP) was conducted using three Navier-Stokes flow solvers (DPLR, FUN3D, and OVERFLOW). The study compared results from the CFD codes to each other and also to wind tunnel test data obtained in the NASA Ames Research Center 90 70 Unitary PlanWind Tunnel. Comparisons include surface pressure coefficient as well as unsteady plume effects, and cover a range of Mach numbers, levels of thrust, and angles of orientation. The comparisons show promising capability of CFD to simulate SRP, and best agreement with the tunnel data exists for the steadier cases of the 1-nozzle and high thrust 3-nozzle configurations.

  2. Ames test results on shot-tank residues

    SciTech Connect

    Bloom, G.H.

    1990-09-21

    In August 1987, a routine Ames test on soot from the Lawrence Livermore National Laboratory (LLNL) 4-in. gun showed that the soot was mutagenic to Salmonella bacteria. Subsequent liquid chromatography on the soot showed that, out of hundreds of ultravoilet-absorbing compounds found in the residue, only three or four were mutagenic. When a sample large enough to weigh was collected, it was found that No environmentally identified complex mixture has ever been reported with as much Ames/Salmonella activity per gram as the gun residues.'' Since then, Ames tests of hundreds of samples have verified that the residues from our gun tanks may be hazardous to health. The actual degree of the hazard and the identity of the offending chemicals are still unknown. 2 refs.

  3. 75 FR 14472 - NASA Advisory Council; Science Committee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-25

    ...: NASA Goddard Space Flight Center, Building 1, Room E100E, ] 8800 Greenbelt Road, Greenbelt, Maryland... SPACE ADMINISTRATION NASA Advisory Council; Science Committee; Meeting AGENCY: National Aeronautics and Space Administration. ACTION: Notice of meeting. SUMMARY: The National Aeronautics and...

  4. 77 FR 38091 - NASA Advisory Council; Aeronautics Committee; Meeting.

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-26

    ...: NASA Goddard Space Flight Center (GSFC), Building 34, Room 120B, 8800 Greenbelt Road, Greenbelt, MD... SPACE ADMINISTRATION NASA Advisory Council; Aeronautics Committee; Meeting. AGENCY: National Aeronautics and Space Administration. ACTION: Notice of meeting. SUMMARY: In accordance with the Federal...

  5. 77 FR 2765 - NASA International Space Station Advisory Committee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-19

    ... SPACE ADMINISTRATION NASA International Space Station Advisory Committee; Meeting AGENCY: National Aeronautics and Space Administration (NASA). ACTION: Notice of meeting. SUMMARY: In accordance with the Federal Advisory Committee Act, Public Law 92-463, as amended, the National Aeronautics and...

  6. 77 FR 41203 - NASA International Space Station Advisory Committee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-12

    ... SPACE ADMINISTRATION NASA International Space Station Advisory Committee; Meeting AGENCY: National Aeronautics and Space Administration (NASA). ACTION: Notice of meeting. SUMMARY: In accordance with the Federal Advisory Committee Act, Public Law 92-463, as amended, the National Aeronautics and...

  7. 78 FR 49296 - NASA International Space Station Advisory Committee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-13

    ... SPACE ADMINISTRATION NASA International Space Station Advisory Committee; Meeting AGENCY: National Aeronautics and Space Administration (NASA). ACTION: Notice of meeting. SUMMARY: In accordance with the Federal Advisory Committee Act, Public Law 92-463, as amended, the National Aeronautics and...

  8. 78 FR 77502 - NASA International Space Station Advisory Committee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-23

    ... SPACE ADMINISTRATION NASA International Space Station Advisory Committee; Meeting AGENCY: National Aeronautics and Space Administration (NASA). ACTION: Notice of Meeting. SUMMARY: In accordance with the Federal Advisory Committee Act, Public Law 92-463, as amended, the National Aeronautics and...

  9. 77 FR 66082 - NASA International Space Station Advisory Committee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-11-01

    ... SPACE ADMINISTRATION NASA International Space Station Advisory Committee; Meeting AGENCY: National Aeronautics and Space Administration (NASA). ACTION: Notice of Meeting. SUMMARY: In accordance with the Federal Advisory Committee Act, Public Law 92-463, as amended, the National Aeronautics and...

  10. Dynamic Teachers Re-NEW with NASA.

    ERIC Educational Resources Information Center

    Ashby, Susanne

    2001-01-01

    Discusses the National Aeronautics and Space Administration's (NASA) Implementation Plan for Education which provides support to inservice teacher educators in the areas of technology and science. (ASK)

  11. Study of optical techniques for the Ames unitary wind tunnels. Part 2: Light sheet and vapor screen

    NASA Technical Reports Server (NTRS)

    Lee, George

    1992-01-01

    Light sheet and vapor screen methods have been studied with particular emphasis on those systems that have been used in large transonic and supersonic wind tunnels. The various fluids and solids used as tracers or light scatters and the methods for tracing generation have been studied. Light sources from high intensity lamps and various lasers have been surveyed. Light sheet generation and projection methods were considered. Detectors and location of detectors were briefly studied. A vapor screen system and a technique for location injection of tracers for the NASA Ames 9 by 7 foot Supersonic Wind Tunnel were proposed.

  12. A study of the noise radiation from four helicopter rotor blades. [tests in Ames 40 by 20 foot wind tunnel

    NASA Technical Reports Server (NTRS)

    Lee, A.; Mosher, M.

    1978-01-01

    Acoustic measurements were taken of a modern helicopter rotor with four blade tip shapes in the NASA Ames 40-by-80-Foot Wind Tunnel. The four tip shapes are: rectangular, swept, trapezoidal, and swept tapered in platform. Acoustic effects due to tip shape changes were studied based on the dBA level, peak noise pressure, and subjective rating. The swept tapered blade was found to be the quietest above an advancing tip Mach number of about 0.9, and the swept blade was the quietest at low speed. The measured high speed impulsive noise was compared with theoretical predictions based on thickness effects; good agreement was found.

  13. 14 CFR 1221.106 - Establishment of the NASA Flag.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 5 2013-01-01 2013-01-01 false Establishment of the NASA Flag. 1221.106 Section 1221.106 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION THE NASA SEAL AND OTHER DEVICES, AND THE CONGRESSIONAL SPACE MEDAL OF HONOR NASA Seal, NASA Insignia, NASA Logotype,...

  14. 14 CFR 1221.102 - Establishment of the NASA Seal.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 5 2011-01-01 2010-01-01 true Establishment of the NASA Seal. 1221.102 Section 1221.102 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION THE NASA SEAL AND OTHER DEVICES, AND THE CONGRESSIONAL SPACE MEDAL OF HONOR NASA Seal, NASA Insignia, NASA Logotype,...

  15. 14 CFR 1221.104 - Establishment of the NASA Logotype.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 5 2010-01-01 2010-01-01 false Establishment of the NASA Logotype. 1221.104 Section 1221.104 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION THE NASA SEAL AND OTHER DEVICES, AND THE CONGRESSIONAL SPACE MEDAL OF HONOR NASA Seal, NASA Insignia, NASA...

  16. 14 CFR 1221.106 - Establishment of the NASA Flag.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 5 2010-01-01 2010-01-01 false Establishment of the NASA Flag. 1221.106 Section 1221.106 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION THE NASA SEAL AND OTHER DEVICES, AND THE CONGRESSIONAL SPACE MEDAL OF HONOR NASA Seal, NASA Insignia, NASA Logotype,...

  17. 14 CFR 1215.112 - User/NASA contractual arrangement.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 5 2012-01-01 2012-01-01 false User/NASA contractual arrangement. 1215.112... User/NASA contractual arrangement. (a) The NASA Administrator reserves the right to waive any portion of the reimbursement due to NASA under the provisions of the reimbursement policy. (b) When NASA...

  18. 14 CFR 1221.106 - Establishment of the NASA Flag.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 5 2012-01-01 2012-01-01 false Establishment of the NASA Flag. 1221.106 Section 1221.106 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION THE NASA SEAL AND OTHER DEVICES, AND THE CONGRESSIONAL SPACE MEDAL OF HONOR NASA Seal, NASA Insignia, NASA Logotype,...

  19. 14 CFR § 1212.700 - NASA employees.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 5 2014-01-01 2014-01-01 false NASA employees. § 1212.700 Section § 1212.700 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION PRIVACY ACT-NASA REGULATIONS NASA Authority and Responsibilities § 1212.700 NASA employees. (a) Each NASA employee is...

  20. 14 CFR 1221.104 - Establishment of the NASA Logotype.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 5 2012-01-01 2012-01-01 false Establishment of the NASA Logotype. 1221.104 Section 1221.104 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION THE NASA SEAL AND OTHER DEVICES, AND THE CONGRESSIONAL SPACE MEDAL OF HONOR NASA Seal, NASA Insignia, NASA...