Science.gov

Sample records for administration nasa goddard

  1. Explore at NASA Goddard Promo

    NASA Video Gallery

    NASA's Goddard Space Flight Center in Greenbelt, Md., will again open its gates to welcome the regional community for a day of fun-filled activities, hands-on demonstrations, entertainment, and foo...

  2. The National Aeronautics and Space Administration (NASA)/Goddard Space Flight Center (GSFC) sounding-rocket program

    NASA Technical Reports Server (NTRS)

    Guidotti, J. G.

    1976-01-01

    An overall introduction to the NASA sounding rocket program as managed by the Goddard Space Flight Center is presented. The various sounding rockets, auxiliary systems (telemetry, guidance, etc.), launch sites, and services which NASA can provide are briefly described.

  3. NASA/Goddard Thermal Technology Overview 2014

    NASA Technical Reports Server (NTRS)

    Butler, Daniel; Swanson, Theodore D.

    2014-01-01

    This presentation summarizes the current plans and efforts at NASA Goddard to develop new thermal control technology for anticipated future missions. It will also address some of the programmatic developments currently underway at NASA, especially with respect to the Technology Development Program at NASA. While funding for basic technology development is still scarce, significant efforts are being made in direct support of flight programs. New technology development continues to be driven by the needs of future missions, and applications of these technologies to current Goddard programs will be addressed. Many of these technologies also have broad applicability to DOD, DOE, and commercial programs. Partnerships have been developed with the Air Force, Navy, and various universities to promote technology development. In addition, technology development activities supported by internal research and development (IRAD) program, the Small Business Innovative Research (SBIR) program, and the NASA Engineering and Safety Center (NESC), are reviewed in this presentation. Specific technologies addressed include; two-phase systems applications and issues on NASA missions, latest developments of electro-hydrodynamically pumped systems, development of high electrical conductivity coatings, and various other research activities. New Technology program underway at NASA, although funding is limited center dot NASA/GSFC's primary mission of science satellite development is healthy and vibrant, although new missions are scarce - now have people on overhead working new missions and proposals center dot Future mission applications promise to be thermally challenging center dot Direct technology funding is still very restricted - Projects are the best source for direct application of technology - SBIR thermal subtopic resurrected in FY 14 - Limited Technology development underway via IRAD, NESC, other sources - Administrator pushing to revive technology and educational programs at NASA

  4. NASA Goddard Space Flight Center

    NASA Technical Reports Server (NTRS)

    Carter, David; Wetzel, Scott

    2000-01-01

    The NASA SLR Operational Center is responsible for: 1) NASA SLR network control, sustaining engineering, and logistics; 2) ILRS mission operations; and 3) ILRS and NASA SLR data operations. NASA SLR network control and sustaining engineering tasks include technical support, daily system performance monitoring, system scheduling, operator training, station status reporting, system relocation, logistics and support of the ILRS Networks and Engineering Working Group. These activities ensure the NASA SLR systems are meeting ILRS and NASA mission support requirements. ILRS mission operations tasks include mission planning, mission analysis, mission coordination, development of mission support plans, and support of the ILRS Missions Working Group. These activities ensure than new mission and campaign requirements are coordinated with the ILRS. Global Normal Points (NP) data, NASA SLR FullRate (FR) data, and satellite predictions are managed as part of data operations. Part of this operation includes supporting the ILRS Data Formats and Procedures Working Group. Global NP data operations consist of receipt, format and data integrity verification, archiving and merging. This activity culminates in the daily electronic transmission of NP files to the CDDIS. Currently of all these functions are automated. However, to ensure the timely and accurate flow of data, regular monitoring and maintenance of the operational software systems, computer systems and computer networking are performed. Tracking statistics between the stations and the data centers are compared periodically to eliminate lost data. Future activities in this area include sub-daily (i.e., hourly) NP data management, more stringent data integrity tests, and automatic station notification of format and data integrity issues.

  5. NASA Goddard Thermal Technology Overview 2016

    NASA Technical Reports Server (NTRS)

    Butler, Dan; Swanson, Ted

    2016-01-01

    This presentation summarizes the current plans and efforts at NASA Goddard to develop new thermal control technology for anticipated future missions. It will also address some of the programmatic developments currently underway at NASA, especially with respect to the NASA Technology Development Program. The effects of the recently enacted FY 16 NASA budget, which includes a sizeable increase, will also be addressed. While funding for basic technology development is still tight, significant efforts are being made in direct support of flight programs. Thermal technology implementation on current flight programs will be reviewed, and the recent push for Cube-sat mission development will also be addressed. Many of these technologies also have broad applicability to DOD, DOE, and commercial programs. Partnerships have been developed with the Air Force, Navy, and various universities to promote technology development. In addition, technology development activities supported by internal research and development (IRAD) program and the Small Business Innovative Research (SBIR) program are reviewed in this presentation. Specific technologies addressed include; two-phase systems applications and issues on NASA missions, latest developments of electro-hydrodynamically pumped systems, Atomic Layer Deposition (ALD), Micro-scale Heat Transfer, and various other research activities.

  6. Hubble 25th Anniversary: NASA Social at Goddard

    NASA Video Gallery

    NASA's Hubble Space Telescope celebrated its 25th anniversary on April 24, 2015. To mark the occasion, NASA's Goddard Space Flight Center in Greenbelt, Maryland -- home of Hubble operations -- host...

  7. The NASA Library and Researchers at Goddard: A Visitor's Perspective

    ERIC Educational Resources Information Center

    Powell, Jill H.

    2014-01-01

    Jill Powell, engineering librarian from Cornell University, visited the library at NASA Goddard in Greenbelt, Maryland in July 2013, interviewing library staff and selected NASA scientists. She studied the library's digital projects, publications, services, and operations. She also interviewed several NASA scientists on information-seeking…

  8. NASA/Goddard Thermal Technology Overview 2012

    NASA Technical Reports Server (NTRS)

    Butler, Dan; Swanson, Ted

    2012-01-01

    New Technology program is underway at NASA NASA/GSFC's primary mission of science satellite development is healthy and vibrant, although new missions are scarce Future mission applications promise to be thermally challenging Direct technology funding is still very restricted

  9. Status of NASA Goddard Space Flight Center's Participation in SNAP

    NASA Technical Reports Server (NTRS)

    Rauscher, Bernard

    2007-01-01

    Dr. Rauscher will present programatic status and high-level/summary information on the technical status of NASA Goddard Space Flight Center's participation in the SuperNova Acceleration Probe (SNAP). Goddard's participation falls into four areas, and status in each of these will be covered. These areas are as follows: (I) focal plane array and packaging, (2) Teledyne HAWAII-4RG sensor chip assembly, (3) communications studies, and (4) integration and test studies.

  10. NASA Goddard Space Flight Center Supply Chain Management Program

    NASA Technical Reports Server (NTRS)

    Kelly, Michael P.

    2011-01-01

    This slide presentation reviews the working of the Supplier Assessment Program at NASA Goddard Space Flight Center. The program supports many GSFC projects to ensure suppliers are aware of and are following the contractual requirements, to provide an independent assessment of the suppliers' processes, and provide suppliers' safety and mission assurance organizations information to make the changes within their organization.

  11. Technology transfer within the NASA Goddard Space Flight Center

    NASA Technical Reports Server (NTRS)

    Plotkin, Henry H.

    1992-01-01

    Viewgraphs on technology transfer within the NASA Goddard Space Flight Center presented to Civil Space Technology Development workshop on technology transfer and effectiveness are provided. Topics covered include: obstacles to technology transfer; technology transfer improvement program at GSFC: communication between technology developers and users; and user feedback to technologists.

  12. Aerospace Battery Activities at NASA/Goddard Space Flight Center

    NASA Technical Reports Server (NTRS)

    Rao, Gopalakrishna M.

    2006-01-01

    Goddard Space Flight Center has "pioneered" rechargeable secondary battery design, test, infusion and in-orbit battery management among NASA installations. Nickel cadmium batteries of various designs and sizes have been infused for LEO, GEO and Libration Point spacecraft. Nickel-Hydrogen batteries have currently been baselined for the majority of our missions. Li-Ion batteries from ABSL, JSB, SaFT and Lithion have been designed and tested for aerospace application.

  13. Ground System Harmonization Efforts at NASA's Goddard Space Flight Center

    NASA Technical Reports Server (NTRS)

    Smith, Dan

    2011-01-01

    This slide presentation reviews the efforts made at Goddard Space Flight Center in harmonizing the ground systems to assist in collaboration in space ventures. The key elements of this effort are: (1) Moving to a Common Framework (2) Use of Consultative Committee for Space Data Systems (CCSDS) Standards (3) Collaboration Across NASA Centers (4) Collaboration Across Industry and other Space Organizations. These efforts are working to bring into harmony the GSFC systems with CCSDS standards to allow for common software, use of Commercial Off the Shelf Software and low risk development and operations and also to work toward harmonization with other NASA centers

  14. Regional-Scale Modeling at NASA Goddard Space Flight Center

    NASA Technical Reports Server (NTRS)

    Tao, W.-K.; Adler, R.; Baker, D.; Braun, S.; Chou, M.-D.; Jasinski, M. F.; Jia, Y.; Kakar, R.; Karyampudi, M.; Lang, S.

    2003-01-01

    Over the past decade, the Goddard Mesoscale Modeling and Dynamics Group has used a popular regional scale model, MM5, to study precipitation processes. Our group is making contributions to the MM5 by incorporating the following physical and numerical packages: improved Goddard cloud processes, a land processes model (Parameterization for Land-Atmosphere-Cloud Exchange - PLACE), efficient but sophisticated radiative processes, conservation of hydrometeor mass (water budget), four-dimensional data assimilation for rainfall, and better computational methods for trace gas transport. At NASA Goddard, the MM5 has been used to study: (1) the impact of initial conditions, assimilation of satellite-derived rainfall, and cumulus parameterizations on rapidly intensifying oceanic cyclones, hurricanes and typhoons, (2) the dynamic and thermodynamic processes associated with the development of narrow cold frontal rainbands, (3) regional climate and water cycles, (4) the impact of vertical transport by clouds and lightning on trace gas distributiodproduction associated with South and North American mesoscale convective systems, (5) the development of a westerly wind burst (WWB) that occurred during the TOGA COARE and the diurnal variation of precipitation in the tropics, (6) a Florida sea breeze convective event and a Mid-US flood event using a sophisticated land surface model, (7) the influence of soil heterogeneity on land surface energy balance in the southwest GCIP region, (8) explicit simulations (with 1.33 to 4 km horizontal resolution) of hurricanes Bob (1991) and Bonnie (1998), (9) a heavy precipitation event over Taiwan, and (10) to make real time forecasts for a major NASA field program. In this paper, the modifications and simulated cases will be described and discussed.

  15. The NASA Goddard Space Flight Center Virtual Science Fair

    NASA Technical Reports Server (NTRS)

    Bolognese, Jeff; Walden, Harvey; Obenschain, Arthur F. (Technical Monitor)

    2001-01-01

    This report describes the development of the NASA Goddard Space Flight Center Virtual Science Fair, including its history and outgrowth from the traditional regional science fairs supported by NASA. The results of the 1999 Virtual Science Fair pilot program, the mechanics of running the 2000 Virtual Science Fair and its results, and comments and suggestions for future Virtual Science Fairs are provided. The appendices to the report contain supporting documentation, including the original proposal for this project, the judging criteria, the user's guide and the judge's guide to the Virtual Science Fair Web site, the Fair publicity brochure and the Fair award designs, judges' and students' responses to survey questions about the Virtual Science Fair, and lists of student entries to both the 1999 and 2000 Fairs.

  16. The NASA Goddard Space Flight Center Virtual Science Fair

    NASA Technical Reports Server (NTRS)

    Bolognese, Jeff; Walden, Harvey; Obenschain, Arthur F. (Technical Monitor)

    2002-01-01

    This report describes the development of the NASA Goddard Space Flight Center Virtual Science Fair, including its history and outgrowth from the traditional regional science fairs supported by NASA. The results of the 1999 Virtual Science Fair pilot program, the mechanics of running the 2000 Virtual Science Fair and its results, and comments and suggestions for future Virtual Science Fairs are provided. The appendices to the report include the original proposal for this project, the judging criteria, the user's guide and the judge's guide to the Virtual Science Fair Web site, the Fair publicity brochure and the Fair award designs, judges' and students' responses to survey questions about the Virtual Science Fair, and lists of student entries to both the 1999 and 2000 Fairs.

  17. TOMS Data Products at the NASA Goddard Earth Sciences DAAC

    NASA Astrophysics Data System (ADS)

    Ahmad, S. P.; Johnson, J. E.; Serafino, G. N.; McPeters, R. D.

    2002-05-01

    mid 2003 (the third mission in NASA's Earth Observing System program), in conjunction with the Solar Radiation and Climate Experiment (SORCE) slated for launch in late 2002. Standard products from TOMS and UARS sensors and ancillary correlative data sets are archived at the Goddard DAAC and are freely available to the public. Data products from future upper atmospheric research missions, e.g., the Ozone Monitoring Instrument (OMI) the Microwave Limb Sounder (MLS) and the High Resolution Dynamics Limb Sounder (HIRDLS) aboard Aura, as well as SORCE will also be archived at the Goddard DAAC. To facilitate the use of multiyear data sets, a number of tools and server-side capabilities for data access, visualization, and analysis have been developed at the Goddard DAAC. For detailed information please visit http://daac.gsfc.nasa.gov/. This presentation will provide highlights of the TOMS data products available from the Goddard DAAC, including several data applications, and the services provided by the DAAC Upper Atmosphere Data Support Team (DST) in support of the users of the data.

  18. Robust, Radiation Tolerant Command and Data Handling and Power System Electronics from NASA Goddard Space Flight Center

    NASA Technical Reports Server (NTRS)

    Nguyen, Hanson C.; Fraction, James; Ortiz-Acosta, Melyane; Dakermanji, George; Kercheval, Bradford P.; Hernandez-Pellerano, Amri; Kim, David S.; Jung, David S.; Meyer, Steven E.; Mallik, Udayan; Rush, Kurt D.; Farid, Faramarz; Olsen, James C.; Sparacino, Pietro A.

    2016-01-01

    The Goddard Modular Smallsat Architecture (GMSA) is developed at NASA Goddard Space Flight Center (GSFC) to address future reliability along with minimizing cost and schedule challenges for NASA Cubesat and Smallsat missions.

  19. Guidance, Navigation and Control Innovations at the NASA Goddard Space Flight Center

    NASA Technical Reports Server (NTRS)

    Ericsson, Aprille Joy

    2002-01-01

    A viewgraph presentation on guidance navigation and control innovations at the NASA Goddard Space Flight Center is presented. The topics include: 1) NASA's vision; 2) NASA's Mission; 3) Earth Science Enterprise (ESE); 4) Guidance, Navigation and Control Division (GN&C); 5) Landsat-7 Earth Observer-1 Co-observing Program; and 6) NASA ESE Vision.

  20. Reliability Practice at NASA Goddard Space Flight Center

    NASA Technical Reports Server (NTRS)

    Pruessner, Paula S.; Li, Ming

    2008-01-01

    This paper describes in brief the Reliability and Maintainability (R&M) Programs performed directly by the reliability branch at Goddard Space Flight Center (GSFC). The mission assurance requirements flow down is explained. GSFC practices for PRA, reliability prediction/fault tree analysis/reliability block diagram, FMEA, part stress and derating analysis, worst case analysis, trend analysis, limit life items are presented. Lessons learned are summarized and recommendations on improvement are identified.

  1. EPA settlement with NASA resolves environmental violations at Goddard Space Flight Center

    EPA Pesticide Factsheets

    PHILADELPHIA (November 10, 2015) -The National Aeronautics and Space Administration has agreed to pay a $50,660 penalty to settle alleged violations of federal environmental regulations at the Goddard Space Flight Center, Wallops Island, Va.,

  2. Fourth NASA Goddard Conference on Mass Storage Systems and Technologies

    NASA Technical Reports Server (NTRS)

    Kobler, Benjamin (Editor); Hariharan, P. C. (Editor)

    1994-01-01

    This report contains copies of all those technical papers received in time for publication just prior to the Fourth Goddard Conference on Mass Storage and Technologies, held March 28-30, 1995, at the University of Maryland, University College Conference Center, in College Park, Maryland. This series of conferences continues to serve as a unique medium for the exchange of information on topics relating to the ingestion and management of substantial amounts of data and the attendant problems involved. This year's discussion topics include new storage technology, stability of recorded media, performance studies, storage system solutions, the National Information infrastructure (Infobahn), the future for storage technology, and lessons learned from various projects. There also will be an update on the IEEE Mass Storage System Reference Model Version 5, on which the final vote was taken in July 1994.

  3. Transcript of proceedings: National Aeronautics and Space Administration, Goddard Space Flight Center, 1972 GSFC Battery Workshop, first day

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The proceedings of the 1972 NASA/Goddard Battery Workshop are reported. Topics discussed include: separators, materials and processing, test and storage experience, and improved energy density systems.

  4. Applications of ANSYS/Multiphysics at NASA/Goddard Space Flight Center

    NASA Technical Reports Server (NTRS)

    Loughlin, Jim

    2007-01-01

    This viewgraph presentation reviews some of the uses that the ANSYS/Multiphysics system is used for at the NASA Goddard Space Flight Center. Some of the uses of the ANSYS system is used for is MEMS Structural Analysis of Micro-mirror Array for the James Web Space Telescope (JWST), Micro-shutter Array for JWST, MEMS FP Tunable Filter, AstroE2 Micro-calorimeter. Various views of these projects are shown in this presentation.

  5. Evolution of the Systems Engineering Education Development (SEED) Program at NASA Goddard Space Flight Center

    NASA Technical Reports Server (NTRS)

    Bagg, Thomas C., III; Brumfield, Mark D.; Jamison, Donald E.; Granata, Raymond L.; Casey, Carolyn A.; Heller, Stuart

    2003-01-01

    The Systems Engineering Education Development (SEED) Program at NASA Goddard Space Flight Center develops systems engineers from existing discipline engineers. The program has evolved significantly since the report to INCOSE in 2003. This paper describes the SEED Program as it is now, outlines the changes over the last year, discusses current status and results, and shows the value of human systems and leadership skills for practicing systems engineers.

  6. From Bonaventure to Goddard: How I Got to NASA and What I Am Doing There

    NASA Technical Reports Server (NTRS)

    Miller, Kevin H.

    2014-01-01

    The presentation, accompanied by slides when appropriate, will describe how a young physics major travelled from the classrooms of Saint Bonaventure, to the graduate research laboratories of the University of Florida in Gainesville, and finally to the government laboratories of NASA at the Goddard Space Flight Center just north of Washington, D.C. The main portion of the presentation concerns NASA missions of interest to the general public and supported in part by research work he does. Such, for example, is the current flagship mission of NASA, the James Webb Space Telescope that is destined to replace very soon the Hubble Space Telescope. In addition to these NASA telescope missions, a mission to an asteroid, coined the OSIRIS REX program, is in process and will be described.

  7. Training Early Career Scientists in Flight Instrument Design Through Experiential Learning: NASA Goddard's Planetary Science Winter School.

    NASA Technical Reports Server (NTRS)

    Bleacher, L. V.; Lakew, B.; Bracken, J.; Brown, T.; Rivera, R.

    2017-01-01

    The NASA Goddard Planetary Science Winter School (PSWS) is a Goddard Space Flight Center-sponsored training program, managed by Goddard's Solar System Exploration Division (SSED), for Goddard-based postdoctoral fellows and early career planetary scientists. Currently in its third year, the PSWS is an experiential training program for scientists interested in participating on future planetary science instrument teams. Inspired by the NASA Planetary Science Summer School, Goddard's PSWS is unique in that participants learn the flight instrument lifecycle by designing a planetary flight instrument under actual consideration by Goddard for proposal and development. They work alongside the instrument Principal Investigator (PI) and engineers in Goddard's Instrument Design Laboratory (IDL; idc.nasa.gov), to develop a science traceability matrix and design the instrument, culminating in a conceptual design and presentation to the PI, the IDL team and Goddard management. By shadowing and working alongside IDL discipline engineers, participants experience firsthand the science and cost constraints, trade-offs, and teamwork that are required for optimal instrument design. Each PSWS is collaboratively designed with representatives from SSED, IDL, and the instrument PI, to ensure value added for all stakeholders. The pilot PSWS was held in early 2015, with a second implementation in early 2016. Feedback from past participants was used to design the 2017 PSWS, which is underway as of the writing of this abstract.

  8. The Scientific Visualization Studio at the NASA/Goddard Space Flight Center

    NASA Astrophysics Data System (ADS)

    White, R. A.; Strong, J. E.; Pape, D. E.; Mitchell, H. G.; McConnell, A.; Cavallo, J. M.; Twiddy, R. L.; Rais, H.

    1993-05-01

    The Scientific Visualization Studio is a part of the Scientific Applications and Visualization Branch of the Space Data and Computing Division at the NASA/Goddard Space Flight Center. It is tasked to provide advanced data visualization support to users of the NASA Center for the Computational Sciences and other NASA funded scientific researchers in both the space and Earth Sciences. Such support includes providing both software and expertise in visualizing large, complex, multidimensional data sets, and in creating videos, films, and other forms of hardcopy of the results. Hardware and software tools include a Cray Y/MP, a Convex C3240, a MasPar MP-1, a family of SGI workstations, video disks and recorders in all the international standards, color printers, photographic and movie transfer tools, and IDL, AVS, and FAST. We demonstrate these capabilities, as applied to various Earth and space science data sets, through a variety of annotated images and a video.

  9. Photonic Component Qualification and Implementation Activities at NASA Goddard Space Flight Center

    NASA Technical Reports Server (NTRS)

    Ott, Melanie N.; Jin, Xiaodan Linda; Chuska, Richard F.; LaRocca, Frank V.; MacMurphy, Shawn L.; Matuszeski, Adam J.; Zellar, Ronald S.; Friedberg, Patricia R.; Malenab, Mary C.

    2006-01-01

    The photonics group in Code 562 at NASA Goddard Space Flight Center supports a variety of space flight programs at NASA including the: International Space Station (ISS), Shuttle Return to Flight Mission, Lunar Reconnaissance Orbiter (LRO), Express Logistics Carrier, and the NASA Electronic Parts and Packaging Program (NEPP). Through research, development, and testing of the photonic systems to support these missions much information has been gathered on practical implementations for space environments. Presented here are the highlights and lessons learned as a result of striving to satisfy the project requirements for high performance and reliable commercial optical fiber components for space flight systems. The approach of how to qualify optical fiber components for harsh environmental conditions, the physics of failure and development lessons learned will be discussed.

  10. Earth Science Microwave Remote Sensing at NASA's Goddard Space Flight Center

    NASA Technical Reports Server (NTRS)

    Kim, Edward; Busalacchi, Antonio J. (Technical Monitor)

    2000-01-01

    The Goddard Space Flight Center (GSFC) was established as NASA's first space flight center in 1959. Its 12,000 personnel are active in the Earth and space sciences, astronomy, space physics, tracking and communications. GSFC's mission is to expand our knowledge of the Earth and its environment, the solar system, and the universe through observations from space. The main Goddard campus is located in Greenbelt, Maryland, USA, just north of Washington, D.C. The Wallops Flight Facility (operational since 1945), located on the Atlantic coast of Virginia was consolidated with the Goddard Space Flight Center in 1982. Wallops is now NASA's principal facility for management and implementation of suborbital research programs, and supports a wide variety of airborne science missions as well. As the lead Center for NASA's Earth Science Enterprise (ESE)--a long-term, coordinated research effort to study the Earth as a global environmental system--GSFC scientists and engineers are involved in a wide range of Earth Science remote sensing activities. Their activities range from basic geoscience research to the development of instruments and technology for space missions, as well as the associated Calibration/Validation (Cal/Val) work. The shear breadth of work in these areas precludes an exhaustive description here. Rather, this article presents selected brief overviews of microwave-related Earth Science applications and the ground-based, airborne, and space instruments that are in service, under development, or otherwise significantly involving GSFC. Likewise, contributing authors are acknowledged for each section, but the results and projects they describe represent the cumulative efforts of many persons at GSFC as well as at collaborating institutions. For further information, readers are encouraged to consult the listed websites and references.

  11. Assimilation of (A) TOVS data at the NASA Goddard Data Assimilation Office

    NASA Technical Reports Server (NTRS)

    Joiner, Joanna; Rokke, Laurie; daSilva, Arlindo; Partyka, Gary; Todling, Ricardo; Einaudi, Franco (Technical Monitor)

    2000-01-01

    At the NASA Goddard Data Assimilation Office (DAO), a 1D variational radiance assimilation system has been developed. This system, called DAOTOVS (Tiros operational vertical sounder (TOVS)), uses (A)TOVS level 1b radiances. It has been implemented within the DAO's semi-operational system as well as within the next generation data assimilation system that uses a finite-volume dynamical core. We will show results from (A)TOVS assimilation, including stratospheric analyses and validation. We will also describe our systematic error correction scheme which is based on collocated radiosondes.

  12. Implementation of NASA Materials and Processes Requirements at the Goddard Space Flight Center

    NASA Technical Reports Server (NTRS)

    Powers, Charles E.

    2009-01-01

    This slide presentation reviews the history and current practices of the Materials Engineering Branch (MEB) at the Goddard Space Flight Center. Included in the presentation is a review of the general Materials and Processes (M&P) requirements in the NASA-STD-6016. The work that the Materials Engineering Branch does to support GSFC Projects is also reviewed. The Materials Engineering Branch capabilities are listed, the expertise that is available to GSFC projects is also listed. Included in the backup slides are forms that the MEB uses to identify the materials in the spacecraft under development.

  13. Supporting Research at NASA's Goddard Space Flight Center Through Focused Education and Outreach Programs

    NASA Astrophysics Data System (ADS)

    Ireton, F.; Closs, J.

    2003-12-01

    NASA research scientists work closely with Science Systems and Applications, Inc. (SSAI) personnel at Goddard Space Flight Center (GSFC) on a large variety of education and public outreach (E/PO) initiatives. This work includes assistance in conceptualizing E/PO plans, then carrying through in the development of materials, publication, cataloging, warehousing, and product distribution. For instance, outreach efforts on the Terra, Aqua, and Aura-still in development-EOS missions, as well as planetary and visualization programs, have been coordinated by SSAI employees. E/PO support includes convening and taking part in sessions at professional meetings and workshops. Also included is the coordination of exhibits at professional meetings such as the AGU, AAAS, AMS and educational meetings such as the National Science Teachers Association. Other E/PO efforts include the development and staffing of booths; arranges for booth space and furnishings; shipping of exhibition materials and products; assembling, stocking, and disassembling of booths. E/PO personnel work with organizations external to NASA such as the Smithsonian museum, Library of Congress, U.S. Geological Survey, and associations or societies such as the AGU, American Chemical Society, and National Science Teachers Association to develop products and programs that enhance NASA mission E/PO efforts or to provide NASA information for use in their programs. At GSFC, E/PO personnel coordinate the efforts of the education and public outreach sub-committees in support of the Space and Earth Sciences Data Analysis (SESDA) contract within the GSFC Earth Sciences Directorate. The committee acts as a forum for improving communication and coordination among related Earth science education projects, and strives to unify the representation of these programs among the science and education communities. To facilitate these goals a Goddard Earth Sciences Directorate Education and Outreach Portal has been developed to provide

  14. Digital Beamforming Synthetic Aperture Radar Developments at NASA Goddard Space Flight Center

    NASA Technical Reports Server (NTRS)

    Rincon, Rafael; Fatoyinbo, Temilola; Osmanoglu, Batuhan; Lee, Seung Kuk; Du Toit, Cornelis F.; Perrine, Martin; Ranson, K. Jon; Sun, Guoqing; Deshpande, Manohar; Beck, Jaclyn; Lu, Daniel; Bollian, Tobias

    2016-01-01

    Advanced Digital Beamforming (DBF) Synthetic Aperture Radar (SAR) technology is an area of research and development pursued at the NASA Goddard Space Flight Center (GSFC). Advanced SAR architectures enhances radar performance and opens a new set of capabilities in radar remote sensing. DBSAR-2 and EcoSAR are two state-of-the-art radar systems recently developed and tested. These new instruments employ multiple input-multiple output (MIMO) architectures characterized by multi-mode operation, software defined waveform generation, digital beamforming, and configurable radar parameters. The instruments have been developed to support several disciplines in Earth and Planetary sciences. This paper describes the radars advanced features and report on the latest SAR processing and calibration efforts.

  15. The Integrated Mission Design Center (IMDC) at NASA Goddard Space Flight Center

    NASA Technical Reports Server (NTRS)

    Karpati, Gabriel; Martin, John; Steiner, Mark; Reinhardt, K.

    2002-01-01

    NASA Goddard has used its Integrated Mission Design Center (IMDC) to perform more than 150 mission concept studies. The IMDC performs rapid development of high-level, end-to-end mission concepts, typically in just 4 days. The approach to the studies varies, depending on whether the proposed mission is near-future using existing technology, mid-future using new technology being actively developed, or far-future using technology which may not yet be clearly defined. The emphasis and level of detail developed during any particular study depends on which timeframe (near-, mid-, or far-future) is involved and the specific needs of the study client. The most effective mission studies are those where mission capabilities required and emerging technology developments can synergistically work together; thus both enhancing mission capabilities and providing impetus for ongoing technology development.

  16. Aura Atmospheric Data Products and Their Availability from NASA Goddard Earth Sciences DAAC

    NASA Technical Reports Server (NTRS)

    Ahmad, S.; Johnson, J.; Gopalan, A.; Smith, P.; Leptoukh, G.; Kempler, S.

    2004-01-01

    NASA's EOS-Aura spacecraft was launched successfully on July 15, 2004. The four instruments onboard the spacecraft are the Microwave Limb Sounder (MLS), the Ozone Monitoring Instrument (OMI), the Tropospheric Emission Spectrometer (TES), and the High Resolution Dynamics Limb Sounder (HBDLS). The Aura instruments are designed to gather earth sciences measurements across the ultraviolet, visible, infra-red, thermal and microwave regions of the electromagnetic spectrum. Aura will provide over 70 distinct standard atmospheric data products for use in ozone layer and surface UV-B monitoring, air quality forecast, and atmospheric chemistry and climate change studies (http://eosaura.gsfc.nasa.gov/). These products include earth-atmosphere radiances and solar spectral irradiances; total column, tropospheric, and profiles of ozone and other trace gases, surface W-B flux; clouds and aerosol characteristics; and temperature, geopotential height, and water vapor profiles. The MLS, OMI, and HIRDLS data products will be archived at the NASA Goddard Earth Sciences (GES) Distributed Active Archive Center (DAAC), while data from TES will be archived at NASA Langley Research Center DAAC. Some of the standard products which have gone through quick preliminary checks are already archived at the GES DAAC (http://daac.nsfc.nasa.gov/) and are available to the Aura science team and data validation team members for data validation; and to the application and visualization software developers, for testing their application modules. Once data are corrected for obvious calibration problems and partially validated using in-situ observations, they would be made available to the broader user community. This presentation will provide details of the whole suite of Aura atmospheric data products, and the time line of the availability of the rest of the preliminary products and of the partially validated provisional products. Software and took available for data access, visualization, and data

  17. NASA Goddards LiDAR, Hyperspectral and Thermal (G-LiHT) Airborne Imager

    NASA Technical Reports Server (NTRS)

    Cook, Bruce D.; Corp, Lawrence A.; Nelson, Ross F.; Middleton, Elizabeth M.; Morton, Douglas C.; McCorkel, Joel T.; Masek, Jeffrey G.; Ranson, Kenneth J.; Ly, Vuong; Montesano, Paul M.

    2013-01-01

    The combination of LiDAR and optical remotely sensed data provides unique information about ecosystem structure and function. Here, we describe the development, validation and application of a new airborne system that integrates commercial off the shelf LiDAR hyperspectral and thermal components in a compact, lightweight and portable system. Goddard's LiDAR, Hyperspectral and Thermal (G-LiHT) airborne imager is a unique system that permits simultaneous measurements of vegetation structure, foliar spectra and surface temperatures at very high spatial resolution (approximately 1 m) on a wide range of airborne platforms. The complementary nature of LiDAR, optical and thermal data provide an analytical framework for the development of new algorithms to map plant species composition, plant functional types, biodiversity, biomass and carbon stocks, and plant growth. In addition, G-LiHT data enhance our ability to validate data from existing satellite missions and support NASA Earth Science research. G-LiHT's data processing and distribution system is designed to give scientists open access to both low- and high-level data products (http://gliht.gsfc.nasa.gov), which will stimulate the community development of synergistic data fusion algorithms. G-LiHT has been used to collect more than 6,500 km2 of data for NASA-sponsored studies across a broad range of ecoregions in the USA and Mexico. In this paper, we document G-LiHT design considerations, physical specifications, instrument performance and calibration and acquisition parameters. In addition, we describe the data processing system and higher-level data products that are freely distributed under NASA's Data and Information policy.

  18. The City University of New York and NASA Goddard Space Fight Center Heliophysics Education Consortium

    NASA Astrophysics Data System (ADS)

    Johnson, L. P.; Marchese, P.; Ng, C.; Austin, S. A.; Frost, J.; Cheung, T. K.; Tremberger, G.; Robbins, I.; Paglione, T.; Damas, C.; Steiner, J. C.; Rudolph, E.

    2010-12-01

    The City University of New York and NASA Goddard Space Fight Center Heliophysics Education Consortium provides undergraduate student research, curriculum enhancement and academic program development, and professional development for faculty in order to support two of NASA’s Heliophysics Science objectives: a) understand the physical processes of the space environment from the Sun to Earth; and b) understand how human society, technological systems and the habitability of Earth are affected by solar variability. Research projects include Electron Density: Interaction between the Solar Wind and the Earth’s Ionosphere/Magnetosphere, Microsatellite-based Monitoring of Ion Density in the Ionosphere, D-Layer Ionosphere & EM pulses from Sun, Solar Weather and Tropical Cyclone Activity, Ratio Plot Analysis of Jupiter’s Stratosphere and Building of VLF Antenna Systems and Monitoring Solar Activity using the Stanford University Solar Weather monitor known as “Super-SID”. Faculty development began with a workshop at the Space Weather Action Center (SWAC) at GSFC. The project is supported by NASA award NNX10AE72G.

  19. New data and capabilities in the NASA Goddard Hurricane Data Portal

    NASA Astrophysics Data System (ADS)

    Liu, Z.; Leptoukh, G.; Ostrenga, D.; Savtchenko, C.; Kempler, S.

    2007-12-01

    This presentation describes new additions to the NASA Goddard Hurricane Data Portal, a dedicated web portal (URL: http://disc.sci.gsfc.nasa.gov/hurricane/) has been designed for viewing and studying Atlantic hurricanes by utilizing various measurements by NASA remote-sensing instruments. The portal consists of the following main components: · Current conditions (in pre-selected regions and updated 3-hourly or daily): the latest maps, animation and profiles from NASA satellites. At present, images or plots created using data from TRMM, AIRS, MODIS, MLS and CloudSat are available. Later, data from OMI and other instruments will be added. A new feature will be added to allow users to easily download/subset data associated with these images. · Current and past hurricane archive: maps, animation and profiles of past hurricanes were created using data from TRMM, AIRS, MODIS, MLS and CloudSat, allowing users to explore past hurricanes and download/subset data if necessary. A new feature has just been released to allow searching past hurricanes. Also users can view imagery via Google Earth. · Science focus: examples/stories describing data usage in hurricane monitoring and research. · Tools: descriptions and links of a number of in-house developed tools for hurricane exploration and event- based data ordering. For example, the GES-DISC Interactive Online Visualization ANd aNalysis Infrastructure (Giovanni, URL: http://giovanni.gsfc.nasa.gov), a series of online visualization and analysis systems, allows users to access data ranging from near-real-time to historical archives and generate customized analysis maps, plots and data on the fly over the Internet. A hurricane instance of Giovanni is under development. However, a prototype that allows investigating Quikscat ocean surface wind, TRMM precipitation and TRMM microwave sea surface temperature is available now (URL: http://disc.gsfc.nasa.gov/hurricane/trmm_quikscat_analysis.shtml). Mirador (URL: http://g0dup05u.ecs.nasa

  20. A Linearized Prognostic Cloud Scheme in NASAs Goddard Earth Observing System Data Assimilation Tools

    NASA Technical Reports Server (NTRS)

    Holdaway, Daniel; Errico, Ronald M.; Gelaro, Ronald; Kim, Jong G.; Mahajan, Rahul

    2015-01-01

    A linearized prognostic cloud scheme has been developed to accompany the linearized convection scheme recently implemented in NASA's Goddard Earth Observing System data assimilation tools. The linearization, developed from the nonlinear cloud scheme, treats cloud variables prognostically so they are subject to linearized advection, diffusion, generation, and evaporation. Four linearized cloud variables are modeled, the ice and water phases of clouds generated by large-scale condensation and, separately, by detraining convection. For each species the scheme models their sources, sublimation, evaporation, and autoconversion. Large-scale, anvil and convective species of precipitation are modeled and evaporated. The cloud scheme exhibits linearity and realistic perturbation growth, except around the generation of clouds through large-scale condensation. Discontinuities and steep gradients are widely used here and severe problems occur in the calculation of cloud fraction. For data assimilation applications this poor behavior is controlled by replacing this part of the scheme with a perturbation model. For observation impacts, where efficiency is less of a concern, a filtering is developed that examines the Jacobian. The replacement scheme is only invoked if Jacobian elements or eigenvalues violate a series of tuned constants. The linearized prognostic cloud scheme is tested by comparing the linear and nonlinear perturbation trajectories for 6-, 12-, and 24-h forecast times. The tangent linear model performs well and perturbations of clouds are well captured for the lead times of interest.

  1. The Impact of Ada and Object-Oriented Design in NASA Goddard's Flight Dynamics Division

    NASA Technical Reports Server (NTRS)

    Waligora, Sharon; Bailey, John; Stark, Mike

    1996-01-01

    This paper presents the highlights and key findings of 10 years of use and study of Ada and object-oriented design in NASA Goddard's Flight Dynamics Division (FDD). In 1985, the Software Engineering Laboratory (SEL) began investigating how the Ada language might apply to FDD software development projects. Although they began cautiously using Ada on only a few pilot projects, they expected that, if the Ada pilots showed promising results, the FDD would fully transition its entire development organization from FORTRAN to Ada within 10 years. However, 10 years later, the FDD still produced 80 percent of its software in FORTRAN and had begun using C and C++, despite positive results on Ada projects. This paper presents the final results of a SEL study to quantify the impact of Ada in the FDD, to determine why Ada has not flourished, and to recommend future directions regarding Ada. Project trends in both languages are examined as are external factors and cultural issues that affected the infusion of this technology. The detailed results of this study were published in a formal study report in March of 1995. This paper supersedes the preliminary results of this study that were presented at the Eighteenth Annual Software Engineering Workshop in 1993.

  2. Goddard DEVELOP Students: Using NASA Remote Sensing Technology to Study the Chesapeake Bay Watershed

    NASA Technical Reports Server (NTRS)

    Moore, Rachel

    2011-01-01

    The DEVELOP National Program is an Earth Science research internship, operating under NASA s Applied Sciences Program. Each spring, summer, and fall, DEVELOP interns form teams to investigate Earth Science related issues. Since the Fall of 2003, Goddard Space Flight Center (GSFC) has been home to one of 10 national DEVELOP teams. In past terms, students completed a variety of projects related to the Applied Sciences Applications of National Priority, such as Public Health, Natural Disasters, Water Resources, and Ecological Forecasting. These projects have focused on areas all over the world, including the United States, Africa, and Asia. Recently, Goddard DEVELOP students have turned their attention to a local environment, the Chesapeake Bay Watershed. The Chesapeake Bay Watershed is a complex and diverse ecosystem, spanning approximately 64,000 square miles. The watershed encompasses parts of six states: Delaware, Maryland, New York, Pennsylvania, Virginia, and West Virginia, as well as the District of Columbia. The Bay itself is the biggest estuary in the United States, with over 100,000 tributaries feeding into it. The ratio of fresh water to salt water varies throughout the Bay, allowing for a variety of habitats. The Bay s wetlands, marshes, forests, reefs, and rivers support more than 3,600 plant and animal species, including birds, mammals, reptiles, amphibians, fish, and crabs. The Bay is also commercially significant. It is ranked third in the nation in fishery catch, and supplies approximately 500 million pounds of seafood annually. In addition to its abundant flora and fauna, the Chesapeake Bay watershed is home to approximately 16.6 million people, who live and work throughout the watershed, and who use its diverse resources for recreational purposes. Over the past several decades, the population throughout the watershed has increased rapidly, resulting in land use changes, and ultimately decreasing the health of the Chesapeake Bay Watershed. Over the

  3. Highlights of Nanosatellite Development Program at NASA-Goddard Space Flight Center

    NASA Technical Reports Server (NTRS)

    Rhee, Michael S.; Zakrzwski, Chuck M.; Thomas, Mike A.; Bauer, Frank H. (Technical Monitor)

    2000-01-01

    Currently the GN&C's Propulsion Branch of the NASA's Goddard Space Flight Center (GSFC) is conducting a broad technology development program for propulsion devices that are ideally suited for nanosatellite missions. The goal of our program is to develop nanosatellite propulsion systems that can be flight qualified in a few years and flown in support of nanosatellite missions. The miniature cold gas thruster technology, the first product from the GSFC's propulsion component technology development program, will be flown on the upcoming ST-5 mission in 2003. The ST-5 mission is designed to validate various nanosatellite technologies in all major subsystem areas. It is a precursor mission to more ambitious nanosatellite missions such as the Magnetospheric Constellation mission. By teaming with the industry and government partners, the GSFC propulsion component technology development program is aimed at pursuing a multitude of nanosatellite propulsion options simultaneously, ranging from miniaturized thrusters based on traditional chemical engines to MEMS based thruster systems. After a conceptual study phase to determine the feasibility and the applicability to nanosatellite missions, flight like prototypes of selected technology are fabricated for testing. The development program will further narrow down the effort to those technologies that are considered "mission-enabling" for future nanosatellite missions. These technologies will be flight qualified to be flown on upcoming nanosatellite missions. This paper will report on the status of our development program and provide details on the following technologies: Low power miniature cold gas thruster Nanosatellite solid rocket motor. Solid propellant gas generator system for cold gas thruster. Low temperature hydrazine blends for miniature hydrazine thruster. MEMS mono propellant thruster using hydrogen peroxide.

  4. Inclusion of Linearized Moist Physics in Nasa's Goddard Earth Observing System Data Assimilation Tools

    NASA Technical Reports Server (NTRS)

    Holdaway, Daniel; Errico, Ronald; Gelaro, Ronaldo; Kim, Jong G.

    2013-01-01

    Inclusion of moist physics in the linearized version of a weather forecast model is beneficial in terms of variational data assimilation. Further, it improves the capability of important tools, such as adjoint-based observation impacts and sensitivity studies. A linearized version of the relaxed Arakawa-Schubert (RAS) convection scheme has been developed and tested in NASA's Goddard Earth Observing System data assimilation tools. A previous study of the RAS scheme showed it to exhibit reasonable linearity and stability. This motivates the development of a linearization of a near-exact version of the RAS scheme. Linearized large-scale condensation is included through simple conversion of supersaturation into precipitation. The linearization of moist physics is validated against the full nonlinear model for 6- and 24-h intervals, relevant to variational data assimilation and observation impacts, respectively. For a small number of profiles, sudden large growth in the perturbation trajectory is encountered. Efficient filtering of these profiles is achieved by diagnosis of steep gradients in a reduced version of the operator of the tangent linear model. With filtering turned on, the inclusion of linearized moist physics increases the correlation between the nonlinear perturbation trajectory and the linear approximation of the perturbation trajectory. A month-long observation impact experiment is performed and the effect of including moist physics on the impacts is discussed. Impacts from moist-sensitive instruments and channels are increased. The effect of including moist physics is examined for adjoint sensitivity studies. A case study examining an intensifying Northern Hemisphere Atlantic storm is presented. The results show a significant sensitivity with respect to moisture.

  5. Advances in Land Data Assimilation at the NASA Goddard Space Flight Center

    NASA Technical Reports Server (NTRS)

    Reichle, Rolf

    2009-01-01

    Research in land surface data assimilation has grown rapidly over the last decade. In this presentation we provide a brief overview of key research contributions by the NASA Goddard Space Flight Center (GSFC). The GSFC contributions to land assimilation primarily include the continued development and application of the Land Information System (US) and the ensemble Kalman filter (EnKF). In particular, we have developed a method to generate perturbation fields that are correlated in space, time, and across variables and that permit the flexible modeling of errors in land surface models and observations, along with an adaptive filtering approach that estimates observation and model error input parameters. A percentile-based scaling method that addresses soil moisture biases in model and observational estimates opened the path to the successful application of land data assimilation to satellite retrievals of surface soil moisture. Assimilation of AMSR-E surface soil moisture retrievals into the NASA Catchment model provided superior surface and root zone assimilation products (when validated against in situ measurements and compared to the model estimates or satellite observations alone). The multi-model capabilities of US were used to investigate the role of subsurface physics in the assimilation of surface soil moisture observations. Results indicate that the potential of surface soil moisture assimilation to improve root zone information is higher when the surface to root zone coupling is stronger. Building on this experience, GSFC leads the development of the Level 4 Surface and Root-Zone Soil Moisture (L4_SM) product for the planned NASA Soil-Moisture-Active-Passive (SMAP) mission. A key milestone was the design and execution of an Observing System Simulation Experiment that quantified the contribution of soil moisture retrievals to land data assimilation products as a function of retrieval and land model skill and yielded an estimate of the error budget for the

  6. SeaWiFS ocean color products and services at the NASA Goddard Distributed Active Archive Center (DAAC)

    NASA Astrophysics Data System (ADS)

    Farr, Rebecca A.; Kartan, Ravi; Li, Angela W.; Simmon, Robert B.

    1997-02-01

    SeaWiFS ocean color data will be archived at the Goddard DAAC in early 1997. The Goddard DAAC has been designated the primary archive for all SeaWiFS data. Almost all authorized SeaWiFS users will access SeaWiFS data via the Goddard DAAC Ocean Color Data and Resources web page. New interfaces and services are being developed by the Goddard DAAC Ocean Color Data Support Team on the Ocean Color website to support the SeaWiFS community following launch: A new SeaWiFS WWW Browser will allow users to browse and order SeaWiFS data via the Web. This Browser will incorporate all necessary elements for SeaWiFS data ordering, including password controls, subsetting, coincident search and visual browse. Users will also find SeaWiFS ancillary data, software routines, SeaWiFS data products specification, an order form for the SeaWIFS Technical Memoranda, as well as direct links to the 'Dear Colleague' letter and other documents and software on the SeaWiFS Project homepage. Other ocean color products available at he Goddard DAAC Ocean Color website include the following: New HDF versions of CZCS data files, including browse images and collection of regridded global composites designed for interdisciplinary study. New CZCS read and visualization software are available. A bibliography of ocean color research papers, several previously rare hardcopy documents, and a periodic ocean color newsletter are also available via the Web. The website also contains a collection of several new educational resources for ocean color educators and students. Being the main source of SeaWiFS data and consolidating ocean color data, documents, software, and points of contact form several other sources all at one convenient location, the Goddard DAAC hopes to become an important nexus for the entire global ocean color community. The Ocean Color Data and Resources webpage can be found at http://daac.gsfc.nasa.gov under 'ocean color'. Contact the Goddard DAAC Ocean Color Data Support Team about

  7. 77 FR 40646 - NASA Advisory Council; Technology and Innovation Committee; Meeting Amendment

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-10

    .... ADDRESSES: NASA Goddard Space Flight Center (GSFC), Building 8, Management Conference Center, 8800 Greenbelt... Efforts. --Overview of Technology Activities at NASA Goddard Space Flight Center. It is imperative that... SPACE ADMINISTRATION NASA Advisory Council; Technology and Innovation Committee; Meeting...

  8. Technical Challenges and Opportunities of Centralizing Space Science Mission Operations (SSMO) at NASA Goddard Space Flight Center

    NASA Technical Reports Server (NTRS)

    Ido, Haisam; Burns, Rich

    2015-01-01

    The NASA Goddard Space Science Mission Operations project (SSMO) is performing a technical cost-benefit analysis for centralizing and consolidating operations of a diverse set of missions into a unified and integrated technical infrastructure. The presentation will focus on the notion of normalizing spacecraft operations processes, workflows, and tools. It will also show the processes of creating a standardized open architecture, creating common security models and implementations, interfaces, services, automations, notifications, alerts, logging, publish, subscribe and middleware capabilities. The presentation will also discuss how to leverage traditional capabilities, along with virtualization, cloud computing services, control groups and containers, and possibly Big Data concepts.

  9. The NASA-Goddard Multi-Scale Modeling Framework - Land Information System: Global Land/atmosphere Interaction with Resolved Convection

    NASA Technical Reports Server (NTRS)

    Mohr, Karen Irene; Tao, Wei-Kuo; Chern, Jiun-Dar; Kumar, Sujay V.; Peters-Lidard, Christa D.

    2013-01-01

    The present generation of general circulation models (GCM) use parameterized cumulus schemes and run at hydrostatic grid resolutions. To improve the representation of cloud-scale moist processes and landeatmosphere interactions, a global, Multi-scale Modeling Framework (MMF) coupled to the Land Information System (LIS) has been developed at NASA-Goddard Space Flight Center. The MMFeLIS has three components, a finite-volume (fv) GCM (Goddard Earth Observing System Ver. 4, GEOS-4), a 2D cloud-resolving model (Goddard Cumulus Ensemble, GCE), and the LIS, representing the large-scale atmospheric circulation, cloud processes, and land surface processes, respectively. The non-hydrostatic GCE model replaces the single-column cumulus parameterization of fvGCM. The model grid is composed of an array of fvGCM gridcells each with a series of embedded GCE models. A horizontal coupling strategy, GCE4fvGCM4Coupler4LIS, offered significant computational efficiency, with the scalability and I/O capabilities of LIS permitting landeatmosphere interactions at cloud-scale. Global simulations of 2007e2008 and comparisons to observations and reanalysis products were conducted. Using two different versions of the same land surface model but the same initial conditions, divergence in regional, synoptic-scale surface pressure patterns emerged within two weeks. The sensitivity of largescale circulations to land surface model physics revealed significant functional value to using a scalable, multi-model land surface modeling system in global weather and climate prediction.

  10. Dreams, Hopes, Realities: NASA's Goddard Space Flight Center, the First Forty Years

    NASA Technical Reports Server (NTRS)

    Wallace, Lane E.

    1999-01-01

    Throughout history, the great achievements of civilizations and cultures have been recorded in lists of dates and events. But to look only at the machinery, discoveries, or milestones is to miss the value of these achievements. Each goal achieved or discovery or made represents a supreme effort on the part of individual people who came and worked together for a purpose greater than themselves. Driven by an innate curiosity of the spirit, we have built civilizations and discovered new worlds, always reaching out beyond what we knew or thought was possible. These efforts may have used ships or machinery, but the achievement was that of the humans who made those machines possible- remarkable people willing to endure discomfort, frustration, fatigue, and the risk of failure in the hope of finding out something new. This is the case with the history of the Goddard Space Flight Center. This publication traces the legacy of successes, risks, disappointments and internationally recognized triumphs of the Center's first 40 years. It is a story of technological achievement and scientific discovery; of reaching back to the dawn of time and opening up a new set of eyes on our own planet Earth. In the end, it is not a story about machinery or discoveries, but a story about ourselves. If we were able to step off our planet, and if we continue to discover new mysteries and better technology, it is because the people who work at Goddard always had a passion for exploration and the dedication to make it happen. The text that follows is a testimony to the challenges people at the Goddard Space Flight Center have faced and overcome over almost half a century. Today, we stand on the threshold of a new and equally challenging era. It will once again test our ingenuity, skills, and flexibility as we find new ways of working with our colleagues in industry, government, and academia. Doing more with less is every bit as ambitious as designing the first science instrument to study the

  11. Using graphics and expert system technologies to support satellite monitoring at the NASA Goddard Space Flight Center

    NASA Technical Reports Server (NTRS)

    Hughes, Peter M.; Shirah, Gregory W.; Luczak, Edward C.

    1994-01-01

    At NASA's Goddard Space Flight Center, fault-isolation expert systems have been developed to support data monitoring and fault detection tasks in satellite control centers. Based on the lessons learned during these efforts in expert system automation, a new domain-specific expert system development tool named the Generic Spacecraft Analysts Assistant (GenSAA), was developed to facilitate the rapid development and reuse of real-time expert systems to serve as fault-isolation assistants for spacecraft analysts. This paper describes GenSAA's capabilities and how it is supporting monitoring functions of current and future NASA missions for a variety of satellite monitoring applications ranging from subsystem health and safety to spacecraft attitude. Finally, this paper addresses efforts to generalize GenSAA's data interface for more widespread usage throughout the space and commercial industry.

  12. Nasa-wide Standard Administrative Systems

    NASA Technical Reports Server (NTRS)

    Schneck, P.

    1984-01-01

    Factors to be considered in developing agency-wide standard administrative systems for NASA include uniformity of hardware and software; centralization vs. decentralization; risk exposure; and models for software development.

  13. NASA Administrator Flies Dream Chaser Simulator

    NASA Video Gallery

    NASA Administrator Charlie Bolden had the opportunity to fly a simulated landing of the Sierra Nevada Corporation (SNC) Dream Chaser while touring the agency's Dryden Flight Research Center in Cali...

  14. NASA's Suborbital Missions Teach Engineering and Technology: Goddard Space Flight Center's Wallops Flight Facility

    NASA Technical Reports Server (NTRS)

    Winterton, Joyce L.

    2016-01-01

    A 50 minute-workshop based on NASA publicly available information will be conducted at the International Technology and Engineering Educator Association annual conference. Attendees will include middle and high school teachers and university teacher educators. Engineering and technology are essential to NASA's suborbital missions including sounding rockets, scientific balloon and airborne science. The attendees will learn how to include NASA information on these missions in their teaching.

  15. Goddard Summer Interns: Danielle Wood

    NASA Video Gallery

    Profile of Goddard intern Danielle Wood. Danielle is interning at Goddard in the Innovative Partnerships Program and at NASA Headquarters in the Office of the Chief Technologist in the summer of 20...

  16. The Third NASA Goddard Conference on Mass Storage Systems and Technologies

    NASA Technical Reports Server (NTRS)

    Kobler, Benjamin (Editor); Hariharan, P. C. (Editor)

    1993-01-01

    This report contains copies of nearly all of the technical papers and viewgraphs presented at the Goddard Conference on Mass Storage Systems and Technologies held in October 1993. The conference served as an informational exchange forum for topics primarily relating to the ingestion and management of massive amounts of data and the attendant problems involved. Discussion topics include the necessary use of computers in the solution of today's infinitely complex problems, the need for greatly increased storage densities in both optical and magnetic recording media, currently popular storage media and magnetic media storage risk factors, data archiving standards including a talk on the current status of the IEEE Storage Systems Reference Model (RM). Additional topics addressed System performance, data storage system concepts, communications technologies, data distribution systems, data compression, and error detection and correction.

  17. Fifth NASA Goddard Conference on Mass Storage Systems and Technologies. Volume 2

    NASA Technical Reports Server (NTRS)

    Kobler, Benjamin (Editor); Hariharan, P. C. (Editor)

    1996-01-01

    This document contains copies of those technical papers received in time for publication prior to the Fifth Goddard Conference on Mass Storage Systems and Technologies held September 17 - 19, 1996, at the University of Maryland, University Conference Center in College Park, Maryland. As one of an ongoing series, this conference continues to serve as a unique medium for the exchange of information on topics relating to the ingestion and management of substantial amounts of data and the attendant problems involved. This year's discussion topics include storage architecture, database management, data distribution, file system performance and modeling, and optical recording technology. There will also be a paper on Application Programming Interfaces (API) for a Physical Volume Repository (PVR) defined in Version 5 of the Institute of Electrical and Electronics Engineers (IEEE) Reference Model (RM). In addition, there are papers on specific archives and storage products.

  18. Fifth NASA Goddard Conference on Mass Storage Systems and Technologies.. Volume 1

    NASA Technical Reports Server (NTRS)

    Kobler, Benjamin (Editor); Hariharan, P. C. (Editor)

    1996-01-01

    This document contains copies of those technical papers received in time for publication prior to the Fifth Goddard Conference on Mass Storage Systems and Technologies. As one of an ongoing series, this conference continues to serve as a unique medium for the exchange of information on topics relating to the ingestion and management of substantial amounts of data and the attendant problems involved. This year's discussion topics include storage architecture, database management, data distribution, file system performance and modeling, and optical recording technology. There will also be a paper on Application Programming Interfaces (API) for a Physical Volume Repository (PVR) defined in Version 5 of the Institute of Electrical and Electronics Engineers (IEEE) Reference Model (RM). In addition, there are papers on specific archives and storage products.

  19. ECMWF MACC-II evaluation of performances with MPLNET Lidar network at NASA Goddard Flight Center

    NASA Astrophysics Data System (ADS)

    Lolli, Simone; Welton, Ellsworth J.; Benedetti, Angela; Lewis, Jasper

    2016-04-01

    Aerosol vertical distribution is a critical parameter for most of the common aerosol forecast models. In this study are evaluated the performances of the MACC-II ECMWF aerosol model in forecasting aerosol extinction profiles and planetary boundary layer height versus the new V3 measured MPLNET Lidar extinction retrievals taken as reference at continuous operational site Goddard Space Flight Center, MD, USA. The model is evaluated at different assimilation stages: no assimilation, MODIS Aerosol Optical Depth (AOD) assimilation and MODIS AOD plus lidar CALIPSO assimilation. The sensitivity study of the model is also investigated respect to the assimilation process..Assessing the model performances it is the first step for future near-real time lidar data assimilation into MACC-II aerosol model forecast.

  20. Future developments in planetary Fourier transform spectroscopy at NASA's Goddard Space Flight Center

    NASA Astrophysics Data System (ADS)

    Brasunas, John C.

    2004-12-01

    Planetary Fourier transform spectroscopy (FTS) has a long history at the Goddard Space Flight Center. Dr. Rudy Hanel developed a series of such instruments for Earth, Mars and the two Voyager spacecraft. More recently as part of the Cassini mission, the CIRS (Composite Infrared Spectrometer) FTS was launched in 1997 for the 2000-2001 Jupiter flyby and the 2004-2008+ Saturn tour. At about 40 kg, CIRS is both too heavy and too light for future planetary missions. It is too heavy for future Discovery and New Frontier missions, where the emphasis is on low-mass, low-power instrumentation. On the other hand, CIRS could be heavier to take full advantage of future Prometheus missions such as JIMO. Here we discuss future development of CIRS-like FTS"s for both Discovery/New Frontier and for Prometheus flight opportunities. We also briefly discuss possible applications in the Moon/Mars exploration initiative.

  1. A Unique Outside Neutron and Gamma Ray Instrumentation Development Test Facility at NASA's Goddard Space Flight Center

    NASA Technical Reports Server (NTRS)

    Bodnarik, J.; Evans, L.; Floyd, S.; Lim, L.; McClanahan, T.; Namkung, M.; Parsons, A.; Schweitzer, J.; Starr, R.; Trombka, J.

    2010-01-01

    An outside neutron and gamma ray instrumentation test facility has been constructed at NASA's Goddard Space Flight Center (GSFC) to evaluate conceptual designs of gamma ray and neutron systems that we intend to propose for future planetary lander and rover missions. We will describe this test facility and its current capabilities for operation of planetary in situ instrumentation, utilizing a l4 MeV pulsed neutron generator as the gamma ray excitation source with gamma ray and neutron detectors, in an open field with the ability to remotely monitor and operate experiments from a safe distance at an on-site building. The advantage of a permanent test facility with the ability to operate a neutron generator outside and the flexibility to modify testing configurations is essential for efficient testing of this type of technology. Until now, there have been no outdoor test facilities for realistically testing neutron and gamma ray instruments planned for solar system exploration

  2. Semantic Web Data Discovery of Earth Science Data at NASA Goddard Earth Sciences Data and Information Services Center (GES DISC)

    NASA Technical Reports Server (NTRS)

    Hegde, Mahabaleshwara; Strub, Richard F.; Lynnes, Christopher S.; Fang, Hongliang; Teng, William

    2008-01-01

    Mirador is a web interface for searching Earth Science data archived at the NASA Goddard Earth Sciences Data and Information Services Center (GES DISC). Mirador provides keyword-based search and guided navigation for providing efficient search and access to Earth Science data. Mirador employs the power of Google's universal search technology for fast metadata keyword searches, augmented by additional capabilities such as event searches (e.g., hurricanes), searches based on location gazetteer, and data services like format converters and data sub-setters. The objective of guided data navigation is to present users with multiple guided navigation in Mirador is an ontology based on the Global Change Master directory (GCMD) Directory Interchange Format (DIF). Current implementation includes the project ontology covering various instruments and model data. Additional capabilities in the pipeline include Earth Science parameter and applications ontologies.

  3. Development of an expert system prototype for determining software functional requirements for command management activities at NASA Goddard

    NASA Technical Reports Server (NTRS)

    Liebowitz, J.

    1986-01-01

    The development of an expert system prototype for software functional requirement determination for NASA Goddard's Command Management System, as part of its process of transforming general requests into specific near-earth satellite commands, is described. The present knowledge base was formulated through interactions with domain experts, and was then linked to the existing Knowledge Engineering Systems (KES) expert system application generator. Steps in the knowledge-base development include problem-oriented attribute hierarchy development, knowledge management approach determination, and knowledge base encoding. The KES Parser and Inspector, in addition to backcasting and analogical mapping, were used to validate the expert system-derived requirements for one of the major functions of a spacecraft, the solar Maximum Mission. Knowledge refinement, evaluation, and implementation procedures of the expert system were then accomplished.

  4. Current and Future Perspectives of Aerosol Research at NASA Goddard Space Flight Center

    NASA Technical Reports Server (NTRS)

    Matsui, Toshihisa; Ichoku, Charles; Randles, Cynthia; Yuan, Tianle; Da Silva, Arlindo M.; Colarco, Peter R.; Kim, Dongchul; Levy, Robert; Sayer, Andrew; Chin, Mian; Giles, David; Holben, Brent; Welton, Ellsworth; Eck, Thomas; Remer, Lorraine

    2014-01-01

    Aerosols are tiny atmospheric particles that are emitted from various natural and anthropogenic sources. They affect climate through direct and indirect interactions with solar and thermal radiation, clouds, and atmospheric circulation (Solomon et al. 2007). The launch of a variety of sophisticated satellite-based observing systems aboard the Terra, Aqua, Aura, SeaWiFS (see appendix for all acronym expansions), CALIPSO, and other satellites in the late 1990s to mid-2000s through the NASA EOS and other U.S. and non-U.S. programs ushered in a golden era in aerosol research. NASA has been a leader in providing global aerosol characterizations through observations from satellites, ground networks, and field campaigns, as well as from global and regional modeling. AeroCenter (http://aerocenter.gsfc.nasa.gov/), which was formed in 2002 to address the many facets of aerosol research in a collaborative manner, is an interdisciplinary union of researchers (200 members) at NASA GSFC and other nearby institutions, including NOAA, several universities, and research laboratories. AeroCenter hosts a web-accessible regular seminar series and an annual meeting to present up-to-date aerosol research, including measurement techniques; remote sensing algorithms; modeling development; field campaigns; and aerosol interactions with radiation, clouds, precipitation, climate, biosphere, atmospheric chemistry, air quality, and human health. The 2013 annual meeting was held at the NASA GSFC Visitor Center on 31 May 2013, which coincided with the seventh anniversary of the passing of Yoram Kaufman, a modern pioneer in satellite-based aerosol science and the founder of AeroCenter. The central theme of this year's meeting was "current and future perspectives" of NASA's aerosol science and satellite missions.

  5. Li-Ion Battery Studies at NASA/Goddard Space Flight Center

    NASA Technical Reports Server (NTRS)

    Lee, Leonine; Rao, Gopalakrishna M.

    2006-01-01

    This viewgraph presentation reviews NASA and GSFC's interest in Lithium Ion Batteries as power suupplies for space usage, the tests, and results on several commercially available batteries. Severl batteries were tested for Geosynchronous orbit, Low Earth Orbit, and Low Lunar Orbit conditions.

  6. Data products of NASA Goddard's LiDAR, hyperspectral, and thermal airborne imager (G-LiHT)

    NASA Astrophysics Data System (ADS)

    Corp, Lawrence A.; Cook, Bruce D.; McCorkel, Joel; Middleton, Elizabeth M.

    2015-06-01

    Scientists in the Biospheric Sciences Laboratory at NASA's Goddard Space Flight Center have undertaken a unique instrument fusion effort for an airborne package that integrates commercial off the shelf LiDAR, Hyperspectral, and Thermal components. G-LiHT is a compact, lightweight and portable system that can be used on a wide range of airborne platforms to support a number of NASA Earth Science research projects and space-based missions. G-LiHT permits simultaneous and complementary measurements of surface reflectance, vegetation structure, and temperature, which provide an analytical framework for the development of new algorithms for mapping plant species composition, plant functional types, biodiversity, biomass, carbon stocks, and plant growth. G-LiHT and its supporting database are designed to give scientists open access to the data that are needed to understand the relationship between ecosystem form and function and to stimulate the advancement of synergistic algorithms. This system will enhance our ability to design new missions and produce data products related to biodiversity and climate change. G-LiHT has been operational since 2011 and has been used to collect data for a number of NASA and USFS sponsored studies, including NASA's Carbon Monitoring System (CMS) and the American ICESat/GLAS Assessment of Carbon (AMIGA-Carb). These acquisitions target a broad diversity of forest communities and ecoregions across the United States and Mexico. Here, we will discuss the components of G-LiHT, their calibration and performance characteristics, operational implementation, and data processing workflows. We will also provide examples of higher level data products that are currently available.

  7. Fiber lasers and amplifiers for science and exploration at NASA Goddard Space Flight Center

    NASA Technical Reports Server (NTRS)

    Krainak, Michael A.; Abshire, James; Allan, Graham R.; Stephen Mark

    2005-01-01

    We discuss present and near-term uses for high-power fiber lasers and amplifiers for NASA- specific applications including planetary topography and atmospheric spectroscopy. Fiber lasers and amplifiers offer numerous advantages for both near-term and future deployment of instruments on exploration and science remote sensing orbiting satellites. Ground-based and airborne systems provide an evolutionary path to space and a means for calibration and verification of space-borne systems. We present experimental progress on both the fiber transmitters and instrument prototypes for ongoing development efforts. These near-infrared instruments are laser sounders and lidars for measuring atmospheric carbon dioxide, oxygen, water vapor and methane and a pseudo-noise (PN) code laser ranging system. The associated fiber transmitters include high-power erbium, ytterbium, neodymium and Raman fiber amplifiers. In addition, we will discuss near-term fiber laser and amplifier requirements and programs for NASA free space optical communications, planetary topography and atmospheric spectroscopy.

  8. High End Computer Network Testbedding at NASA Goddard Space Flight Center

    NASA Technical Reports Server (NTRS)

    Gary, James Patrick

    1998-01-01

    The Earth & Space Data Computing (ESDC) Division, at the Goddard Space Flight Center, is involved in development and demonstrating various high end computer networking capabilities. The ESDC has several high end super computers. These are used to run: (1) computer simulation of the climate systems; (2) to support the Earth and Space Sciences (ESS) project; (3) to support the Grand Challenge (GC) Science, which is aimed at understanding the turbulent convection and dynamos in stars. GC research occurs in many sites throughout the country, and this research is enabled by, in part, the multiple high performance network interconnections. The application drivers for High End Computer Networking use distributed supercomputing to support virtual reality applications, such as TerraVision, (i.e., three dimensional browser of remotely accessed data), and Cave Automatic Virtual Environments (CAVE). Workstations can access and display data from multiple CAVE's with video servers, which allows for group/project collaborations using a combination of video, data, voice and shared white boarding. The ESDC is also developing and demonstrating the high degree of interoperability between satellite and terrestrial-based networks. To this end, the ESDC is conducting research and evaluations of new computer networking protocols and related technologies which improve the interoperability of satellite and terrestrial networks. The ESDC is also involved in the Security Proof of Concept Keystone (SPOCK) program sponsored by National Security Agency (NSA). The SPOCK activity provides a forum for government users and security technology providers to share information on security requirements, emerging technologies and new product developments. Also, the ESDC is involved in the Trans-Pacific Digital Library Experiment, which aims to demonstrate and evaluate the use of high performance satellite communications and advanced data communications protocols to enable interactive digital library data

  9. Improvements in the Scalability of the NASA Goddard Multiscale Modeling Framework for Hurricane Climate Studies

    NASA Technical Reports Server (NTRS)

    Shen, Bo-Wen; Tao, Wei-Kuo; Chern, Jiun-Dar

    2007-01-01

    Improving our understanding of hurricane inter-annual variability and the impact of climate change (e.g., doubling CO2 and/or global warming) on hurricanes brings both scientific and computational challenges to researchers. As hurricane dynamics involves multiscale interactions among synoptic-scale flows, mesoscale vortices, and small-scale cloud motions, an ideal numerical model suitable for hurricane studies should demonstrate its capabilities in simulating these interactions. The newly-developed multiscale modeling framework (MMF, Tao et al., 2007) and the substantial computing power by the NASA Columbia supercomputer show promise in pursuing the related studies, as the MMF inherits the advantages of two NASA state-of-the-art modeling components: the GEOS4/fvGCM and 2D GCEs. This article focuses on the computational issues and proposes a revised methodology to improve the MMF's performance and scalability. It is shown that this prototype implementation enables 12-fold performance improvements with 364 CPUs, thereby making it more feasible to study hurricane climate.

  10. Alternative Approaches to Mission Control Automation at NASA's Goddard Space Flight Center

    NASA Technical Reports Server (NTRS)

    Rackley, Michael; Cooter, Miranda; Davis, George; Mackey, Jennifer

    2001-01-01

    To meet its objective of reducing operations costs without incurring a corresponding increase in risk, NASA is seeking new methods to automate mission operations. This paper examines the state of the art in automating ground operations for space missions. A summary of available technologies and methods for automating mission operations is provided. Responses from interviews with several space mission FOTs (Flight Operations Teams) to assess the degree and success of those technologies and methods implemented are presented. Mission operators that were interviewed approached automation using different tools and methods resulting in varying degrees of success - from nearly completely automated to nearly completely manual. Two key criteria for successful automation are the active participation of the FOT in the planning, designing, testing, and implementation of the system and the relative degree of complexity of the mission.

  11. The Joint NASA/Goddard-University of Maryland Research Program in Charged Particle and High Energy Photon Detector Technology

    NASA Technical Reports Server (NTRS)

    Ipavich, F. M.

    1990-01-01

    The Univ. of Maryland portion investigated the following areas. The Space Physics Group performed studies of data from the AMPTE/CCE spacecraft CHEM experiment and found that the ratio of solar wind to photospheric abundances decreased rather smoothly with the first ionization potential (FIP) of the ion with the low FIP ion being about a factor of two overabundant. Carbon and hydrogen fit this trend particularly well. Several occurrences were analyzed of field aligned beams observed when CCE was upstream of the Earth's bow shock. Also using CHEM data, ring current intensity and composition changes during the main and recovery phases of the great geomagnetic storm that occurred in February 1986 was examined in detail. Still using CHEM data, ring current characteristics were examined in a survey of 20 magnetic storms ranging in size from -50 nT to -312 nT. A study was done of energetic ion anisotropy characteristics in the Earth's magnetosheath region using data from the UMD/MPE experiment on ISEE-1. The properties were analyzed of approx. 30 to 130 keV/e protons and alpha particles upstream of six quasi-parallel interplanetary shocks that passed by the ISEE-3 spacecraft during 1978 to 1979. Work from NASA-Goddard include studies from the High Energy Cosmic Ray Group, Low Energy Cosmic Ray Group, Low Energy Gamma Ray Group, High Energy Astrophysics Theory Group, and the X ray Astronomy Group.

  12. Lidar measurements of the column CO2 mixing ratio made by NASA Goddard's CO2 Sounder during the NASA ASCENDS 2014 Airborne campaign.

    NASA Astrophysics Data System (ADS)

    Ramanathan, A. K.; Mao, J.; Abshire, J. B.; Kawa, S. R.

    2015-12-01

    Remote sensing measurements of CO2 from space can help improve our understanding of the carbon cycle and help constrain the global carbon budget. However, such measurements need to be sufficiently accurate to detect small (1 ppm) changes in the CO2 mixing ratio (XCO2) against a large background (~ 400 ppm). Satellite measurements of XCO2 using passive spectrometers, such as those from the Japanese GOSAT (Greenhouse gas Observing Satellite) and the NASA OCO-2 (Orbiting Carbon Observatory-2) are limited to daytime sunlit portions of the Earth and are susceptible to biases from clouds and aerosols. For this reason, NASA commissioned the formulation study of ASCENDS a space-based lidar mission. NASA Goddard Space Flight Center's CO2 Sounder lidar is one candidate approach for the ASCENDS mission. The NASA GSFC CO2 Sounder measures the CO2 mixing ratio using a pulsed multi-wavelength integrated path differential absorption (IPDA) approach. The CO2 Sounder has flown in the 2011, 2013 and 2014 ASCENDS airborne campaigns over the continental US, and has produced measurements in close agreement with in situ measurements of the CO2 column. In 2014, the CO2 Sounder upgraded its laser with a precision step-locked diode laser source to improve the lidar wavelength position accuracy. It also improved its optical receiver with a low-noise, high efficiency, HgCdTe avalanche photo diode detector. The combination of these two technologies enabled lidar XCO2 measurements with unprecedented accuracy. In this presentation, we show analysis from the ASCENDS 2014 field campaign, exploring: (1) Horizontal XCO2 gradients measured by the lidar, (2) Comparisons of lidar XCO2 measurements against the Parameterized Chemistry Transport Model (PCTM), and (3) Lidar column water vapor measurements using a HDO absorption line that occurs next to the CO2 absorption line. This can reduce the uncertainty in the dry air column used in XCO2 retrievals.

  13. Astronaut Steve Swanson Visits Goddard

    NASA Video Gallery

    On Tuesday, 3 March 2015, a special guest visited NASA Goddard Space Flight Center during his time back on Earth. Steven Swanson, NASA astronaut, intrigued the audience by highlighting his adventur...

  14. Development of a Quasi-monoenergetic 6 MeV Gamma Facility at NASA Goddard Space Flight Center

    NASA Technical Reports Server (NTRS)

    Nowicki, Suzanne F.; Hunter, Stanley D.; Parsons, Ann M.

    2012-01-01

    The 6 MeV Gamma Facility has been developed at NASA Goddard Space Flight Center (GSFC) to allow in-house characterization and testing of a wide range of gamma-ray instruments such as pixelated CdZnTe detectors for planetary science and Compton and pair-production imaging telescopes for astrophysics. The 6 MeV Gamma Facility utilizes a circulating flow of water irradiated by 14 MeV neutrons to produce gamma rays via neutron capture on oxygen (O-16(n,p)N-16 yields O-16* yields O-16 + gamma). The facility provides a low cost, in-house source of 2.742, 6.129 and 7.117 MeV gamma rays, near the lower energy range of most accelerators and well above the 2.614 MeV line from the Th-228 decay chain, the highest energy gamma ray available from a natural radionuclide. The 7.13 s half-life of the N-16 decay allows the water to be irradiated on one side of a large granite block and pumped to the opposite side to decay. Separating the irradiation and decay regions allows for shielding material, the granite block, to be placed between them, thus reducing the low-energy gamma-ray continuum. Comparison between high purity germanium (HPGe) spectra from the facility and a manufactured source, Pu-238/C-13, shows that the low-energy continuum from the facility is reduced by a factor approx. 30 and the gamma-ray rate is approx.100 times higher at 6.129 MeV.

  15. Proceedings of the Annual Precise Time and Time Interval (PTTI) applications and Planning Meeting (9th), Held at NASA Goddard Space Flight Center, November 29 - December 1, 1977

    DTIC Science & Technology

    1978-03-01

    relating the time recovered from the satellite to the masterclock at Wallops Island is given below. Term 1 is known to better thanI 0s using the data logger...34/. .- ’."’" _’ _ . _.., , _ " . • • II I , Best Available Copy NASA Technical Memorandum 78104 ROCEEDINGS CO F THE INTH ANNUAL RECISE TIME AND IME INTERVAL (PTTI...Distribt Itd TM 78104 PROCEEDINGS OF THE NINTH ANNUAL PRECISE TIME AND TIME INTERVAL (PTTI) APPLICATIONS AND PLANNING MEETING Held at NASA Goddard Space

  16. NASA RECON: Course Development, Administration, and Evaluation

    NASA Technical Reports Server (NTRS)

    Dominick, W. D.; Roquemore, L.

    1984-01-01

    The R and D activities addressing the development, administration, and evaluation of a set of transportable, college-level courses to educate science and engineering students in the effective use of automated scientific and technical information storage and retrieval systems, and, in particular, in the use of the NASA RECON system, are discussed. The long-range scope and objectives of these contracted activities are overviewed and the progress which has been made toward these objectives during FY 1983-1984 is highlighted. In addition, the results of a survey of 237 colleges and universities addressing course needs are presented.

  17. 75 FR 14472 - NASA Advisory Council; Science Committee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-25

    ...: NASA Goddard Space Flight Center, Building 1, Room E100E, ] 8800 Greenbelt Road, Greenbelt, Maryland... SPACE ADMINISTRATION NASA Advisory Council; Science Committee; Meeting AGENCY: National Aeronautics and Space Administration. ACTION: Notice of meeting. SUMMARY: The National Aeronautics and...

  18. 77 FR 38091 - NASA Advisory Council; Aeronautics Committee; Meeting.

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-26

    ...: NASA Goddard Space Flight Center (GSFC), Building 34, Room 120B, 8800 Greenbelt Road, Greenbelt, MD... SPACE ADMINISTRATION NASA Advisory Council; Aeronautics Committee; Meeting. AGENCY: National Aeronautics and Space Administration. ACTION: Notice of meeting. SUMMARY: In accordance with the Federal...

  19. Global Precipitation Measurement (GPM) Mission Products and Services at the NASA Goddard Earth Sciences Data and Information Services Center (GES DISC)

    NASA Technical Reports Server (NTRS)

    Liu, Z.; Ostrenga, D.; Vollmer, B.; Kempler, S.; Deshong, B.; Greene, M.

    2015-01-01

    The NASA Goddard Earth Sciences (GES) Data and Information Services Center (DISC) hosts and distributes GPM data within the NASA Earth Observation System Data Information System (EOSDIS). The GES DISC is also home to the data archive for the GPM predecessor, the Tropical Rainfall Measuring Mission (TRMM). Over the past 17 years, the GES DISC has served the scientific as well as other communities with TRMM data and user-friendly services. During the GPM era, the GES DISC will continue to provide user-friendly data services and customer support to users around the world. GPM products currently and to-be available: -Level-1 GPM Microwave Imager (GMI) and partner radiometer products, DPR products -Level-2 Goddard Profiling Algorithm (GPROF) GMI and partner products, DPR products -Level-3 daily and monthly products, DPR products -Integrated Multi-satellitE Retrievals for GPM (IMERG) products (early, late, and final) A dedicated Web portal (including user guides, etc.) has been developed for GPM data (http://disc.sci.gsfc.nasa.gov/gpm). Data services that are currently and to-be available include Google-like Mirador (http://mirador.gsfc.nasa.gov/) for data search and access; data access through various Web services (e.g., OPeNDAP, GDS, WMS, WCS); conversion into various formats (e.g., netCDF, HDF, KML (for Google Earth), ASCII); exploration, visualization, and statistical online analysis through Giovanni (http://giovanni.gsfc.nasa.gov); generation of value-added products; parameter and spatial subsetting; time aggregation; regridding; data version control and provenance; documentation; science support for proper data usage, FAQ, help desk; monitoring services (e.g. Current Conditions) for applications. The United User Interface (UUI) is the next step in the evolution of the GES DISC web site. It attempts to provide seamless access to data, information and services through a single interface without sending the user to different applications or URLs (e.g., search, access

  20. The GOddard SnoW Impurity Module (GOSWIM) for the NASA GEOS-5 Earth System Model: Preliminary Comparisons with Observations in Sapporo, Japan

    NASA Technical Reports Server (NTRS)

    Yasunari, Teppei J.; Lau, K.-M.; Mahanama, Sarith P. P.; Colarco, Peter R.; daSilva, Arlindo M.; Aoki, Teruo; Aoki, Kazuma; Murao, Naoto; Yamagata, Sadamu; Kodama, Yuji

    2014-01-01

    The snow darkening module evaluating dust, black carbon, and organic carbon depositions on mass and albedo has been developed for the NASA Goddard Earth Observing System, Version 5 (GEOS-5) Earth System Model, as the GOddard SnoW Impurity Module (GOSWIM). GOSWIM consists of the snow albedo scheme from a previous study (Yasunari et al. 2011) with updates and a newly developed mass concentration scheme, using aerosol depositions from the chemical transport model (GOCART) in GEOS-5. Compared to observations at Sapporo, the numerical experiments, forced by observation-based meteorology and aerosol depositions from GOES-5, better simulated the seasonal migration of snow depth, albedos, and impurities of dust, BC, and OC in the snow surface. However, the magnitude of the impurities is underestimated, compared to the sporadic snow impurity measurements. Increasing the deposition rates of dust and BC could explain the differences on the snow darkening effect between observation and simulation. Ignoring BC deposition can possibly lead to an extension of snow cover duration in Sapporo for four days. Comparing the off-line GOSWIM and the GEOS-5 global simulations, we found that determining better local precipitation and deposition rates of the aerosols are key factors in generating better GOSWIM snow darkening simulation in NASA GEOS-5.

  1. Global Precipitation Measurement (GPM) Mission Products and Services at the NASA Goddard Earth Sciences Data and Information Services Center (GES DISC)

    NASA Technical Reports Server (NTRS)

    Ostrenga, D.; Liu, Z.; Vollmer, B.; Teng, W.; Kempler, S.

    2014-01-01

    On February 27, 2014, the NASA Global Precipitation Measurement (GPM) mission was launched to provide the next-generation global observations of rain and snow (http:pmm.nasa.govGPM). The GPM mission consists of an international network of satellites in which a GPM Core Observatory satellite carries both active and passive microwave instruments to measure precipitation and serve as a reference standard, to unify precipitation measurements from a constellation of other research and operational satellites. The NASA Goddard Earth Sciences (GES) Data and Information Services Center (DISC) hosts and distributes GPM data within the NASA Earth Observation System Data Information System (EOSDIS). The GES DISC is home to the data archive for the GPM predecessor, the Tropical Rainfall Measuring Mission (TRMM). Over the past 16 years, the GES DISC has served the scientific as well as other communities with TRMM data and user-friendly services. During the GPM era, the GES DISC will continue to provide user-friendly data services and customer support to users around the world. GPM products currently and to-be available include the following:Level-1 GPM Microwave Imager (GMI) and partner radiometer productsLevel-2 Goddard Profiling Algorithm (GPROF) GMI and partner productsLevel-3 daily and monthly productsIntegrated Multi-satellitE Retrievals for GPM (IMERG) products (early, late, and final) A dedicated Web portal (including user guides, etc.) has been developed for GPM data (http:disc.sci.gsfc.nasa.govgpm). Data services that are currently and to-be available include Google-like Mirador (http:mirador.gsfc.nasa.gov) for data search and access; data access through various Web services (e.g., OPeNDAP, GDS, WMS, WCS); conversion into various formats (e.g., netCDF, HDF, KML (for Google Earth), ASCII); exploration, visualization, and statistical online analysis through Giovanni (http:giovanni.gsfc.nasa.gov); generation of value-added products; parameter and spatial subsetting; time

  2. Global Precipitation Measurement (GPM) Mission Products and Services at the NASA Goddard Earth Sciences (GES) Data and Information Services Center (DISC)

    NASA Technical Reports Server (NTRS)

    Liu, Zhong; Ostrenga, D.; Vollmer, B.; Deshong, B.; Greene, M.; Teng, W.; Kempler, S. J.

    2015-01-01

    On February 27, 2014, the NASA Global Precipitation Measurement (GPM) mission was launched to provide the next-generation global observations of rain and snow (http:pmm.nasa.govGPM). The GPM mission consists of an international network of satellites in which a GPM Core Observatory satellite carries both active and passive microwave instruments to measure precipitation and serve as a reference standard, to unify precipitation measurements from a constellation of other research and operational satellites. The NASA Goddard Earth Sciences (GES) Data and Information Services Center (DISC) hosts and distributes GPM data within the NASA Earth Observation System Data Information System (EOSDIS). The GES DISC is home to the data archive for the GPM predecessor, the Tropical Rainfall Measuring Mission (TRMM). Over the past 16 years, the GES DISC has served the scientific as well as other communities with TRMM data and user-friendly services. During the GPM era, the GES DISC will continue to provide user-friendly data services and customer support to users around the world. GPM products currently and to-be available include the following: 1. Level-1 GPM Microwave Imager (GMI) and partner radiometer products. 2. Goddard Profiling Algorithm (GPROF) GMI and partner products. 3. Integrated Multi-satellitE Retrievals for GPM (IMERG) products. (early, late, and final)A dedicated Web portal (including user guides, etc.) has been developed for GPM data (http:disc.sci.gsfc.nasa.govgpm). Data services that are currently and to-be available include Google-like Mirador (http:mirador.gsfc.nasa.gov) for data search and access; data access through various Web services (e.g., OPeNDAP, GDS, WMS, WCS); conversion into various formats (e.g., netCDF, HDF, KML (for Google Earth), ASCII); exploration, visualization, and statistical online analysis through Giovanni (http:giovanni.gsfc.nasa.gov); generation of value-added products; parameter and spatial subsetting; time aggregation; regridding; data

  3. Global Precipitation Measurement (GPM) Mission Products and Services at the NASA Goddard Earth Sciences (GES) Data and Information Services Center (DISC)

    NASA Astrophysics Data System (ADS)

    Ostrenga, D.; Liu, Z.; Vollmer, B.; Teng, W. L.; Kempler, S. J.

    2014-12-01

    On February 27, 2014, the NASA Global Precipitation Measurement (GPM) mission was launched to provide the next-generation global observations of rain and snow (http://pmm.nasa.gov/GPM). The GPM mission consists of an international network of satellites in which a GPM "Core Observatory" satellite carries both active and passive microwave instruments to measure precipitation and serve as a reference standard, to unify precipitation measurements from a constellation of other research and operational satellites. The NASA Goddard Earth Sciences (GES) Data and Information Services Center (DISC) hosts and distributes GPM data within the NASA Earth Observation System Data Information System (EOSDIS). The GES DISC is home to the data archive for the GPM predecessor, the Tropical Rainfall Measuring Mission (TRMM). Over the past 16 years, the GES DISC has served the scientific as well as other communities with TRMM data and user-friendly services. During the GPM era, the GES DISC will continue to provide user-friendly data services and customer support to users around the world. GPM products currently and to-be available include the following: Level-1 GPM Microwave Imager (GMI) and partner radiometer products Goddard Profiling Algorithm (GPROF) GMI and partner products Integrated Multi-satellitE Retrievals for GPM (IMERG) products (early, late, and final) A dedicated Web portal (including user guides, etc.) has been developed for GPM data (http://disc.sci.gsfc.nasa.gov/gpm). Data services that are currently and to-be available include Google-like Mirador (http://mirador.gsfc.nasa.gov/) for data search and access; data access through various Web services (e.g., OPeNDAP, GDS, WMS, WCS); conversion into various formats (e.g., netCDF, HDF, KML (for Google Earth), ASCII); exploration, visualization, and statistical online analysis through Giovanni (http://giovanni.gsfc.nasa.gov); generation of value-added products; parameter and spatial subsetting; time aggregation; regridding

  4. NASA Administrative Data Base Management Systems, 1984

    NASA Technical Reports Server (NTRS)

    Radosevich, J. D. (Editor)

    1984-01-01

    Strategies for converting to a data base management system (DBMS) and the implementation of the software packages necessary are discussed. Experiences with DBMS at various NASA centers are related including Langley's ADABAS/NATURAL and the NEMS subsystem of the NASA metrology informaton system. The value of the integrated workstation with a personal computer is explored.

  5. Application of Digital Object Identifiers to data sets at the NASA Goddard Earth Sciences Data and Information Services Center (GES DISC)

    NASA Astrophysics Data System (ADS)

    Vollmer, B.; Ostrenga, D.; Johnson, J. E.; Savtchenko, A. K.; Shen, S.; Teng, W. L.; Wei, J. C.

    2013-12-01

    Digital Object Identifiers (DOIs) are applied to selected data sets at the NASA Goddard Earth Sciences Data and Information Services Center (GES DISC). The DOI system provides an Internet resolution service for unique and persistent identifiers of digital objects. Products assigned DOIs include data from the NASA MEaSUREs Program, the Earth Observing System (EOS) Aqua Atmospheric Infrared Sounder (AIRS) and EOS Aura High Resolution Dynamics Limb Sounder (HIRDLS). DOIs are acquired and registered through EZID, California Digital Library and DataCite. GES DISC hosts a data set landing page associated with each DOI containing information on and access to the data including a recommended data citation when using the product in research or applications. This work includes participation with the earth science community (e.g., Earth Science Information Partners (ESIP) Federation) and the NASA Earth Science Data and Information System (ESDIS) Project to identify, establish and implement best practices for assigning DOIs and managing supporting information, including metadata, for earth science data sets. Future work includes (1) coordination with NASA mission Science Teams and other data providers on the assignment of DOIs for other GES DISC data holdings, particularly for future missions such as Orbiting Carbon Observatory -2 and -3 (OCO-2, OCO-3) and projects (MEaSUREs 2012), (2) construction of landing pages that are both human and machine readable, and (3) pursuing the linking of data and publications with tools such as the Thomson Reuters Data Citation Index.

  6. 77 FR 38092 - NASA Advisory Council; Information Technology Infrastructure Committee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-26

    .... ADDRESSES: NASA Goddard Space Flight Center (GSFC), Building 28, Room E210, 8800 Greenbelt Road, Greenbelt... SPACE ADMINISTRATION NASA Advisory Council; Information Technology Infrastructure Committee; Meeting AGENCY: National Aeronautics and Space Administration. ACTION: Notice of meeting. SUMMARY: In...

  7. 76 FR 18800 - NASA Advisory Council; Information Technology Infrastructure Committee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-05

    ... picture identification such as a driver's license to enter the NASA Goddard Space Flight Center and must... SPACE ADMINISTRATION NASA Advisory Council; Information Technology Infrastructure Committee; Meeting AGENCY: National Aeronautics and Space Administration. ACTION: Notice of Meeting. SUMMARY: In...

  8. 77 FR 38092 - NASA Advisory Council; Education and Public Outreach Committee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-26

    ...: --NASA Goddard Space Flight Center Education/Public Outreach Presentations --Joint Aeronautics-Education... SPACE ADMINISTRATION NASA Advisory Council; Education and Public Outreach Committee; Meeting AGENCY: National Aeronautics and Space Administration. ACTION: Notice of meeting. SUMMARY: In accordance with...

  9. Goddard Ground System Environment

    NASA Technical Reports Server (NTRS)

    Liu, Ben

    2009-01-01

    This slide presentation reviews the Goddard Mission Services Evolution Center's work in providing the Ground System Infrastructure to allow for standard interfaces, and allow for a mix of heritage and new components. This software has been used by NASA and other Government users. Telemetry and command services are also provided as are mission planning and scheduling systems. Other areas that the presentation covers are work on trending systems, and data management system.

  10. The Development of a Virtual Company to Support the Reengineering of the NASA/Goddard Hubble Space Telescope Control Center System

    NASA Technical Reports Server (NTRS)

    Lehtonen, Ken

    1999-01-01

    This is a report to the Third Annual International Virtual Company Conference, on The Development of a Virtual Company to Support the Reengineering of the NASA/Goddard Hubble Space Telescope (HST) Control Center System. It begins with a HST Science "Commercial": Brief Tour of Our Universe showing various pictures taken from the Hubble Space Telescope. The presentation then reviews the project background and goals. Evolution of the Control Center System ("CCS Inc.") is then reviewed. Topics of Interest to "virtual companies" are reviewed: (1) "How To Choose A Team" (2) "Organizational Model" (3) "The Human Component" (4) "'Virtual Trust' Among Teaming Companies" (5) "Unique Challenges to Working Horizontally" (6) "The Cultural Impact" (7) "Lessons Learned".

  11. An expert system prototype for aiding in the development of software functional requirements for NASA Goddard's command management system: A case study and lessons learned

    NASA Technical Reports Server (NTRS)

    Liebowitz, Jay

    1986-01-01

    At NASA Goddard, the role of the command management system (CMS) is to transform general requests for spacecraft opeerations into detailed operational plans to be uplinked to the spacecraft. The CMS is part of the NASA Data System which entails the downlink of science and engineering data from NASA near-earth satellites to the user, and the uplink of command and control data to the spacecraft. Presently, it takes one to three years, with meetings once or twice a week, to determine functional requirements for CMS software design. As an alternative approach to the present technique of developing CMS software functional requirements, an expert system prototype was developed to aid in this function. Specifically, the knowledge base was formulated through interactions with domain experts, and was then linked to an existing expert system application generator called 'Knowledge Engineering System (Version 1.3).' Knowledge base development focused on four major steps: (1) develop the problem-oriented attribute hierachy; (2) determine the knowledge management approach; (3) encode the knowledge base; and (4) validate, test, certify, and evaluate the knowledge base and the expert system prototype as a whole. Backcasting was accomplished for validating and testing the expert system prototype. Knowledge refinement, evaluation, and implementation procedures of the expert system prototype were then transacted.

  12. National Aeronautics and Space Administration (NASA) Education 1993-2009

    ERIC Educational Resources Information Center

    Ivie, Christine M.

    2009-01-01

    The National Aeronautics and Space Administration was established in 1958 and began operating a formal education program in 1993. The purpose of this study was to analyze the education program from 1993-2009 by examining strategic plan documents produced by the NASA education office and interviewing NASA education officials who served during that…

  13. Lessons learned in the transition to ADA from FORTRAN at NASA/Goddard. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Brophy, Carolyn Elizabeth

    1989-01-01

    A case study was done at Goddard Space Flight Center, in which two dynamics satellite simulators are developed from the same requirements, one in Ada and the other in FORTRAN. The purpose of the research was to find out how well the prescriptive Ada development model worked to develop the Ada simulator. The FORTRAN simulator development, as well as past FORTRAN developments, provided a baseline for comparison. Since this was the first simulator developed here, the prescriptive Ada development model had many similarities to the usual FORTRAN development model. However, it was modified to include longer design and shorter testing phases, which is generally expected with Ada development. One surprising result was that the percentage of time the Ada project spent in the various development activities was very similar to the percentage of time spent in these activities when doing a FORTRAN project. Another surprising finding was the difficulty the Ada team had with unit testing as well as with integration. In retrospect it is realized that adding additional steps to the design phase, such as an abstract data type analysis, and certain guidelines to the implementation phase, such as to use primarily library units and nest sparingly, would have made development much easier.

  14. A study of NASA occupational injuries and property damage at Goddard Space Flight Center, Langley Research Center and Headquarters

    NASA Technical Reports Server (NTRS)

    1976-01-01

    Analysis of NASA's accident/injury/illness and health data was performed. The analysis included: (1) an on-site study of the existing data; (2) evaluation of the findings to develop criteria for the subsequent implementation of safety and health standards; (3) preparation of a graphical loss control assessment; and (4) recommendations to reduce accident rates.

  15. James Webb Space Telescope Integrated Science Instrument Module Thermal Vacuum Thermal Balance Test Campaign at NASA's Goddard Space Flight Center

    NASA Technical Reports Server (NTRS)

    Glazer, Stuart; Comber, Brian (Inventor)

    2016-01-01

    The James Webb Space Telescope is a large infrared telescope with a 6.5-meter primary mirror, designed as a successor to the Hubble Space Telescope when launched in 2018. Three of the four science instruments contained within the Integrated Science Instrument Module (ISIM) are passively cooled to their operational temperature range of 36K to 40K with radiators, and the fourth instrument is actively cooled to its operational temperature of approximately 6K. Thermal-vacuum testing of the flight science instruments at the ISIM element level has taken place in three separate highly challenging and extremely complex thermal tests within a gaseous helium-cooled shroud inside Goddard Space Flight Centers Space Environment Simulator. Special data acquisition software was developed for these tests to monitor over 1700 flight and test sensor measurements, track over 50 gradients, component rates, and temperature limits in real time against defined constraints and limitations, and guide the complex transition from ambient to final cryogenic temperatures and back. This extremely flexible system has proven highly successful in safeguarding the nearly $2B science payload during the 3.5-month-long thermal tests. Heat flow measurement instrumentation, or Q-meters, were also specially developed for these tests. These devices provide thermal boundaries o the flight hardware while measuring instrument heat loads up to 600 mW with an estimated uncertainty of 2 mW in test, enabling accurate thermal model correlation, hardware design validation, and workmanship verification. The high accuracy heat load measurements provided first evidence of a potentially serious hardware design issue that was subsequently corrected. This paper provides an overview of the ISIM-level thermal-vacuum tests and thermal objectives; explains the thermal test configuration and thermal balances; describes special measurement instrumentation and monitoring and control software; presents key test thermal results

  16. Earth Science Data Archive and Access at the NASA/Goddard Space Flight Center Distributed Active Archive Center (DAAC)

    NASA Technical Reports Server (NTRS)

    Leptoukh, Gregory

    1999-01-01

    The Goddard Distributed Active Archive Center (DAAC), as an integral part of the Earth Observing System Data and Information System (EOSDIS), is the official source of data for several important earth remote sensing missions. These include the Sea-viewing Wide-Field-of-view Sensor (SeaWiFS) launched in August 1997, the Tropical Rainfall Measuring Mission (TRMM) launched in November 1997, and the Moderate Resolution Imaging Spectroradiometer (MODIS) scheduled for launch in mid 1999 as part of the EOS AM-1 instrumentation package. The data generated from these missions supports a host of users in the hydrological, land biosphere and oceanographic research and applications communities. The volume and nature of the data present unique challenges to an Earth science data archive and distribution system such as the DAAC. The DAAC system receives, archives and distributes a large number of standard data products on a daily basis, including data files that have been reprocessed with updated calibration data or improved analytical algorithms. A World Wide Web interface is provided allowing interactive data selection and automatic data subscriptions as distribution options. The DAAC also creates customized and value-added data products, which allow additional user flexibility and reduced data volume. Another significant part of our overall mission is to provide ancillary data support services and archive support for worldwide field campaigns designed to validate the results from the various satellite-derived measurements. In addition to direct data services, accompanying documentation, WWW links to related resources, support for EOSDIS data formats, and informed response to inquiries are routinely provided to users. The current GDAAC WWW search and order system is being restructured to provide users with a simplified, hierarchical access to data. Data Browsers have been developed for several data sets to aid users in ordering data. These Browsers allow users to specify

  17. 77 FR 38680 - NASA Advisory Council; Human Exploration and Operations Committee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-28

    ....-2:00 p.m., Local Time. ADDRESSES: NASA Goddard Space Flight Center (GSFC), Building 1, Room E100D... place on Monday, July 23, 2012, from 1:00 p.m. to 3:30 p.m., Local Time at NASA Goddard Space Flight... SPACE ADMINISTRATION NASA Advisory Council; Human Exploration and Operations Committee; Meeting...

  18. Hinners moves to Goddard

    NASA Astrophysics Data System (ADS)

    Richman, Barbara T.

    Noel W. Hinners, president-elect of AGU's Planetology Section and director of the Smithsonian Institution's National Air and Space Museum, has been appointed director of NASA's Goddard Space Flight Center. He succeeds A. Thomas Young, who left Goddard in late March; Leslie Meredith, AGU General Secretary, is serving as acting director until Hinners' appointment becomes effective in mid-June.Looking back at his 3 years as director of the museum, Hinners told Eos that he believed one of his most important accomplishments was to increase the historical and archival programs. His aim was to ensure that the histories of space physics, astronomy, and aeronautics will not be lost. Documentation on the evolution of ideas in these areas was scattered, improperly indexed, or nonexistent, Hinners explained, so he brought to the museum several professional historians to organize the existing information and to glean additional information through oral histories from scientists involved in such events as the International Geophysical Year.

  19. 76 FR 65540 - NASA Advisory Council; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-21

    ... Committee Act, Public Law 92-463, as amended, the National Aeronautics and Space Administration announces that the meeting of the NASA Advisory Council scheduled to be held at NASA Goddard Space Flight Center... SPACE ADMINISTRATION NASA Advisory Council; Meeting AGENCY: National Aeronautics and...

  20. Near-Infrared Single-Photon-Counting Detectors for Laser Instrument Applications at NASA Goddard Space Flight Center

    NASA Technical Reports Server (NTRS)

    Krainak, Michael A.; Xiaoli, Sun; Abshire, James B.

    2005-01-01

    We discuss single-photon-counting detectors requirements for NASA remote sensing and communications systems. We present experimental measurements on several different near-infrared single-photon-counting detectors including InGaAs/InP and InGaAs/InAlAs avalanche photodiodes (APD), an InGaAsP photocathode hybrid photomultiplier (PMT) and an InGaAs photomultiplier. We present the experimental performance of prototype instruments for laser ranging, communication, and trace-gas detection that use these detectors.

  1. Summary Report of the NASA Management Study Group: Recommendations to the Administrator, National Aeronautics and Space Administration

    NASA Technical Reports Server (NTRS)

    Phillips, Samuel C.

    1986-01-01

    The NASA Management Study Group (NMSG) was established under the auspices of the National Acedamy of Public Administration at the request of the Administrator of NASA to assess NASA's management practices and to evaluate the effectiveness of the NASA organization. This report summarizes the conclusions and recommendations of the NMSG on the overall management and organization of NASA.

  2. NASA Deputy Administrator Tours Marshall Space Flight Center

    NASA Technical Reports Server (NTRS)

    1968-01-01

    Pictured from the left, in the Saturn I mockup, are: William Brooksbank, Marshall Space Flight Center (MSFC) Propulsion and Vehicle Engineering Laboratory; Dr. Thomas O. Paine, Deputy Administrator of the National Aeronautics and Space Administration (NASA); Dr. Wernher von Braun, MSFC director; Colonel Clare F. Farley, executive officer of the Office of the Administrator; and Charles J. Donlan, newly appointed deputy associate administrator for Manned Space Flight, technical. The party examined an ordinary man's shoe (held by Paine) outfitted for use in the Saturn I Workshop. The shoe had a unique fastener built into the sole to allow an astronaut to move about the workshop floor and to remain in one position if he desired. Dr. Paine and his party indulged in a two-day tour at the Marshall Space Flight Center getting acquainted with Marshall personnel and programs. It was Paine's first visit to the center since assuming the NASA post on February 1, 1968.

  3. National Aeronautics and Space Administration (NASA) education 1993--2009

    NASA Astrophysics Data System (ADS)

    Ivie, Christine M.

    The National Aeronautics and Space Administration was established in 1958 and began operating a formal education program in 1993. The purpose of this study was to analyze the education program from 1993 -- 2009 by examining strategic plan documents produced by the NASA education office and interviewing NASA education officials who served during that time period. Constant changes in education leadership at NASA resulted in changes in direction in the education program and the documents produced by each administration reflected both small and some significant changes in program direction. The result of the analysis of documents and interview data was the identification of several trends in the NASA education program. This study identified three significant trends in NASA education. First, the approach that NASA took in both its EPO efforts and in the efforts directed by the Office of Education is disjointed and seems to reflect individual preferences in education approaches designed to reach populations that are of interest to the individuals in decision-making positions rather than reflect a systematic approach designed to meet identified goals and outcomes. Second, this disjointed and person-driven approach led to a lack of consistent evaluation data available for review and planning purposes. Third, there was an ongoing assumption made by the education community that NASA education efforts were tied to larger education reports, concerns, needs, initiatives and evidence collected and presented in Science Technology Engineering and Math (STEM) education-related studies over the past twenty years. In fact, there is no evidence that the programs and projects initiated were a response to these identified needs or initiatives. That does not mean that NASA's efforts did not contribute to STEM education initiatives in the United States. This study, however, indicates that contributions to those initiatives occurred as a byproduct of the effort and not because of specific

  4. Influence of dust and black carbon on the snow albedo in the NASA Goddard Earth Observing System version 5 land surface model

    NASA Astrophysics Data System (ADS)

    Yasunari, Teppei J.; Koster, Randal D.; Lau, K.-M.; Aoki, Teruo; Sud, Yogesh C.; Yamazaki, Takeshi; Motoyoshi, Hiroki; Kodama, Yuji

    2011-01-01

    Present-day land surface models rarely account for the influence of both black carbon and dust in the snow on the snow albedo. Snow impurities increase the absorption of incoming shortwave radiation (particularly in the visible bands), whereby they have major consequences for the evolution of snowmelt and life cycles of snowpack. A new parameterization of these snow impurities was included in the catchment-based land surface model used in the National Aeronautics and Space Administration Goddard Earth Observing System version 5. Validation tests against in situ observed data were performed for the winter of 2003-2004 in Sapporo, Japan, for both the new snow albedo parameterization (which explicitly accounts for snow impurities) and the preexisting baseline albedo parameterization (which does not). Validation tests reveal that daily variations of snow depth and snow surface albedo are more realistically simulated with the new parameterization. Reasonable perturbations in the assigned snow impurity concentrations, as inferred from the observational data, produce significant changes in snowpack depth and radiative flux interactions. These findings illustrate the importance of parameterizing the influence of snow impurities on the snow surface albedo for proper simulation of the life cycle of snow cover.

  5. Influence of Dust and Black Carbon on the Snow Albedo in the NASA Goddard Earth Observing System Version 5 Land Surface Model

    NASA Technical Reports Server (NTRS)

    Yasunari, Teppei J.; Koster, Randal D.; Lau, K. M.; Aoki, Teruo; Sud, Yogesh C.; Yamazaki, Takeshi; Motoyoshi, Hiroki; Kodama, Yuji

    2011-01-01

    Present-day land surface models rarely account for the influence of both black carbon and dust in the snow on the snow albedo. Snow impurities increase the absorption of incoming shortwave radiation (particularly in the visible bands), whereby they have major consequences for the evolution of snowmelt and life cycles of snowpack. A new parameterization of these snow impurities was included in the catchment-based land surface model used in the National Aeronautics and Space Administration Goddard Earth Observing System version 5. Validation tests against in situ observed data were performed for the winter of 2003.2004 in Sapporo, Japan, for both the new snow albedo parameterization (which explicitly accounts for snow impurities) and the preexisting baseline albedo parameterization (which does not). Validation tests reveal that daily variations of snow depth and snow surface albedo are more realistically simulated with the new parameterization. Reasonable perturbations in the assigned snow impurity concentrations, as inferred from the observational data, produce significant changes in snowpack depth and radiative flux interactions. These findings illustrate the importance of parameterizing the influence of snow impurities on the snow surface albedo for proper simulation of the life cycle of snow cover.

  6. NASA Administrator Dan Goldin greets 10-year-old VIP.

    NASA Technical Reports Server (NTRS)

    2000-01-01

    NASA Administrator Dan Goldin (left) watches as 10-year-old Jonathan Pierce (right), who is garbed in a protective cooling suit designed by NASA, shakes hands with astronaut Dog Wheelock. Behind Jonathan is his mother, Penny. Jonathan suffers from erythropoietic protoporphyria, a rare condition that makes his body unable to withstand ultraviolet rays. The suit allows him to be outside during the day, which would otherwise be impossible. Jonathan's trip was funded by the Make-A-Wish Foundation and included a visit to Disney World. He and his family were among a dozen VIPs at KSC to view the launch of STS-99.

  7. NASA Administrator Dan Goldin greets 10-year-old VIP.

    NASA Technical Reports Server (NTRS)

    2000-01-01

    NASA Administrator Dan Goldin (left) shares a laugh with VIP 10- year-old Jonathan Pierce (right), who is garbed in a protective cooling suit designed by NASA. Behind Goldin is astronaut Doug Wheelock; behind Jonathan is his mother, Penny. Jonathan suffers from erythropoietic protoporphyria, a rare condition that makes his body unable to withstand ultraviolet rays. The suit allows him to be outside during the day, which would otherwise be impossible. Jonathan's trip was funded by the Make-A-Wish Foundation and included a visit to Disney World. He and his family were among a dozen VIPs at KSC to view the launch of STS- 99.

  8. NASA Administrator Dan Goldin greets 10-year-old VIP.

    NASA Technical Reports Server (NTRS)

    2000-01-01

    NASA Administrator Dan Goldin (left) shares a light moment during his meeting with 10-year-old Jonathan Pierce (right), who is garbed in a protective cooling suit designed by NASA. Behind Goldin is astronaut Doug Wheelock; behind Jonathan is his mother, Penny. Jonathan suffers from erythropoietic protoporphyria, a rare condition that makes his body unable to withstand ultraviolet rays. The suit allows him to be outside during the day, which would otherwise be impossible. Jonathan's trip was funded by the Make-A-Wish Foundation and included a visit to Disney World. He and his family were among a dozen VIPs at KSC to view the launch of STS-99.

  9. NASA Administrator Dan Goldin greets 10-year-old VIP.

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Ten-year-old Jonathan Pierce (second from right), who is garbed in a protective cooling suit, without the helmet, which was designed by NASA, poses with (left to right) NASA Administrator Dan Goldin, Mrs. Goldin, and astronaut Doug Wheelock. Jonathan suffers from erythropoietic protoporphyria, a rare condition that makes his body unable to withstand ultraviolet rays. The suit allows him to be outside during the day, which would otherwise be impossible. Jonathan's trip was funded by the Make-A-Wish Foundation and included a visit to Disney World. He and his family were among a dozen VIPs at KSC to view the launch of STS- 99.

  10. NASA Administrator Dan Goldin greets 10-year-old VIP.

    NASA Technical Reports Server (NTRS)

    2000-01-01

    NASA Administrator Dan Goldin (left) listens intently to 10-year- old Jonathan Pierce (right), who is garbed in a protective cooling suit designed by NASA. Behind Goldin is astronaut Doug Wheelock; behind Jonathan is his mother, Penny. Jonathan suffers from erythropoietic protoporphyria, a rare condition that makes his body unable to withstand ultraviolet rays. The suit allows him to be outside during the day, which would otherwise be impossible. Jonathan's trip was funded by the Make-A-Wish Foundation and included a visit to Disney World. He and his family were among a dozen VIPs at KSC to view the launch of STS- 99.

  11. Indiana School for the Blind Visits Goddard

    NASA Video Gallery

    This video shows highlights of the Indiana School for the Blind and Visually Impaired, and the Indian Creek Public High School visit to NASA's Goddard Space Flight Center in June 2011. Both blind a...

  12. The administration of the NASA space tracking system and the NASA space tracking system in Australia

    NASA Technical Reports Server (NTRS)

    Hollander, N.

    1973-01-01

    The international activities of the NASA space program were studied with emphasis on the development and maintenance of tracking stations in Australia. The history and administration of the tracking organization and the manning policies for the stations are discussed, and factors affecting station operation are appraised. A field study of the Australian tracking network is included.

  13. NASA Administrator Dan Goldin talks with STS-78 crew

    NASA Technical Reports Server (NTRS)

    1996-01-01

    NASA Administrator Dan Goldin (left) chats with STS-78 Mission Commander Terence 'Tom' Henricks (center) and KSC Director Jay Honeycutt underneath the orbiter Columbia. Columbia and her seven-member crew touched down on Runway 33 of KSC's Shuttle Landing Facility at 8:36 a.m. EDT, July 7, bringing to a close the longest Shuttle flight to date. STS-78, which also was the 78th Shuttle flight, lasted 16 days, 21 minutes and 47 seconds.

  14. 77 FR 38336 - NASA Advisory Council; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-27

    ... Goddard Space Flight Center (GSFC), Building 1, Rooms E100D/E, 8800 Greenbelt Road, Greenbelt, MD 20771... SPACE ADMINISTRATION NASA Advisory Council; Meeting AGENCY: National Aeronautics and Space... Law 92-463, as amended, the National Aeronautics and Space Administration (NASA) announces a...

  15. Development of Two-Moment Cloud Microphysics for Liquid and Ice Within the NASA Goddard Earth Observing System Model (GEOS-5)

    NASA Technical Reports Server (NTRS)

    Barahona, Donifan; Molod, Andrea M.; Bacmeister, Julio; Nenes, Athanasios; Gettelman, Andrew; Morrison, Hugh; Phillips, Vaughan,; Eichmann, Andrew F.

    2013-01-01

    This work presents the development of a two-moment cloud microphysics scheme within the version 5 of the NASA Goddard Earth Observing System (GEOS-5). The scheme includes the implementation of a comprehensive stratiform microphysics module, a new cloud coverage scheme that allows ice supersaturation and a new microphysics module embedded within the moist convection parameterization of GEOS-5. Comprehensive physically-based descriptions of ice nucleation, including homogeneous and heterogeneous freezing, and liquid droplet activation are implemented to describe the formation of cloud particles in stratiform clouds and convective cumulus. The effect of preexisting ice crystals on the formation of cirrus clouds is also accounted for. A new parameterization of the subgrid scale vertical velocity distribution accounting for turbulence and gravity wave motion is developed. The implementation of the new microphysics significantly improves the representation of liquid water and ice in GEOS-5. Evaluation of the model shows agreement of the simulated droplet and ice crystal effective and volumetric radius with satellite retrievals and in situ observations. The simulated global distribution of supersaturation is also in agreement with observations. It was found that when using the new microphysics the fraction of condensate that remains as liquid follows a sigmoidal increase with temperature which differs from the linear increase assumed in most models and is in better agreement with available observations. The performance of the new microphysics in reproducing the observed total cloud fraction, longwave and shortwave cloud forcing, and total precipitation is similar to the operational version of GEOS-5 and in agreement with satellite retrievals. However the new microphysics tends to underestimate the coverage of persistent low level stratocumulus. Sensitivity studies showed that the simulated cloud properties are robust to moderate variation in cloud microphysical parameters

  16. NASA/IEEE MSST 2004 Twelfth NASA Goddard Conference on Mass Storage Systems and Technologies in cooperation with the Twenty-First IEEE Conference on Mass Storage Systems and Technologies

    NASA Technical Reports Server (NTRS)

    Kobler, Ben (Editor); Hariharan, P. C. (Editor)

    2004-01-01

    MSST2004, the Twelfth NASA Goddard / Twenty-first IEEE Conference on Mass Storage Systems and Technologies has as its focus long-term stewardship of globally-distributed storage. The increasing prevalence of e-anything brought about by widespread use of applications based, among others, on the World Wide Web, has contributed to rapid growth of online data holdings. A study released by the School of Information Management and Systems at the University of California, Berkeley, estimates that over 5 exabytes of data was created in 2002. Almost 99 percent of this information originally appeared on magnetic media. The theme for MSST2004 is therefore both timely and appropriate. There have been many discussions about rapid technological obsolescence, incompatible formats and inadequate attention to the permanent preservation of knowledge committed to digital storage. Tutorial sessions at MSST2004 detail some of these concerns, and steps being taken to alleviate them. Over 30 papers deal with topics as diverse as performance, file systems, and stewardship and preservation. A number of short papers, extemporaneous presentations, and works in progress will detail current and relevant research on the MSST2004 theme.

  17. NASA Administrator Dan Goldin greets 10-year-old VIP.

    NASA Technical Reports Server (NTRS)

    2000-01-01

    NASA Administrator Dan Goldin (center) greets 10-year-old Jonathan Pierce (right), who is garbed in a protective cooling suit designed by NASA. In the background, between them, are Jonathan's mother, Penny; his grandfather, John Janocka; and his sister, Jaimie.. At left is Mrs. Goldin. Jonathan suffers from erythropoietic protoporphyria, a rare condition that makes his body unable to withstand ultraviolet rays. The suit allows him to be outside during the day, which would otherwise be impossible. Jonathan's trip was funded by the Make-A-Wish Foundation and included a visit to Disney World. He and his family were among a dozen VIPs at KSC to view the launch of STS-99.

  18. NASA Administrator Dan Goldin greets 10-year-old VIP.

    NASA Technical Reports Server (NTRS)

    2000-01-01

    NASA Administrator Dan Goldin (center) presents a bag of special gifts to 10-year-old Jonathan Pierce (right), who is garbed in a protective cooling suit designed by NASA. In the background, between them, are Jonathan's mother, Penny; his grandfather, John Janocka; and his sister, Jaimie.. At left is Mrs. Goldin. Jonathan suffers from erythropoietic protoporphyria, a rare condition that makes his body unable to withstand ultraviolet rays. The suit allows him to be outside during the day, which would otherwise be impossible. Jonathan's trip was funded by the Make-A-Wish Foundation and included a visit to Disney World. He and his family were among a dozen VIPs at KSC to view the launch of STS-99.

  19. NASA Administrator Dan Goldin greets 10-year-old VIP.

    NASA Technical Reports Server (NTRS)

    2000-01-01

    NASA Administrator Dan Goldin (center) talks to 10-year-old Jonathan Pierce (right), who is garbed in a protective cooling suit designed by NASA. In the background, between them, are Jonathan's mother, Penny; his grandfather, John Janocka; and his sister, Jaimie. At left is Mrs. Goldin. Jonathan suffers from erythropoietic protoporphyria, a rare condition that makes his body unable to withstand ultraviolet rays. The suit allows him to be outside during the day, which would otherwise be impossible. Jonathan's trip was funded by the Make-A-Wish Foundation and included a visit to Disney World. He and his family were among a dozen VIPs at KSC to view the launch of STS-99.

  20. NASA Administrator Dan Goldin greets 100-year-old VIP.

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Among the VIPs attending the launch of STS-99 is Captain Ralph Charles (left), standing next to NASA Administrator Dan Goldin. Charles hopes to have his wish fulfilled of watching a Shuttle launch in person. The 100-year-old aviator has experienced nearly a century of flight history, from the Wright Brothers to the Space Program. He took flying lessons from one of the first fliers trained by Orville Wright, first repaired then built airplanes, went barnstorming, operated a charter service in the Caribbean, and worked as a test pilot for the Curtiss Wright Airplane Co. Charles is the oldest licensed pilot in the United States, and is still flying.

  1. Intersatellite communications optoelectronics research at the Goddard Space Flight Center

    NASA Technical Reports Server (NTRS)

    Krainak, Michael A.

    1992-01-01

    A review is presented of current optoelectronics research and development at the NASA Goddard Space Flight Center for high-power, high-bandwidth laser transmitters; high-bandwidth, high-sensitivity optical receivers; pointing, acquisition, and tracking components; and experimental and theoretical system modeling at the NASA Goddard Space Flight Center. Program hardware and space flight opportunities are presented.

  2. NASA Administrator Dan Goldin watches the STS-99 launch

    NASA Technical Reports Server (NTRS)

    2000-01-01

    KENNEDY SPACE CENTER, FLA. -- NASA Administrator Dan Goldin (right) joins other spectators at the Banana Creek viewing site in cheering the successful launch of Space Shuttle Endeavour on mission STS-99. The perfect liftoff occurred at 12:43:40 p.m. EST. Known as the Shuttle Radar Topography Mission (SRTM), STS-99 will chart a new course to produce unrivaled 3-D images of the Earth's surface. The result of the SRTM could be close to 1 trillion measurements of the Earth's topography. The mission is expected to last 11days, with Endeavour landing at KSC Tuesday, Feb. 22, at 4:36 p.m. EST. This is the 97th Shuttle flight and 14th for Shuttle Endeavour.

  3. NASA Administrator Dan Goldin greets 100-year-old VIP.

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Astronaut Andy Thomas (left) greets 100-year-old Captain Ralph Charles, one of the VIPs attending the launch of STS-99. Charles also met NASA Administrator Dan Goldin. An aviator who has the distinction of being the oldest licensed pilot in the United States, Charles is still flying. He has experienced nearly a century of flight history, from the Wright Brothers to the Space Program. He took flying lessons from one of the first fliers trained by Orville Wright, first repaired then built airplanes, went barnstorming, operated a charter service in the Caribbean, and worked as a test pilot for the Curtiss Wright Airplane Co. Charles watches all the Shuttle launches from his home in Ohio and his greatest wish is to be able to watch one in person from KSC.

  4. First Lady Hillary Clinton is greeted by NASA Administrator Goldin

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Upon their arrival at the Skid Strip at Cape Canaveral Air Station, First Lady Hillary Rodham Clinton and her daughter, Chelsea, are greeted by NASA Administrator Daniel S. Goldin and Mrs. Goldin. Mrs. Clinton and Chelsea are here to view the launch of Space Shuttle mission STS-93, scheduled for 12:36 a.m. EDT July 20. Much attention has been generated over the launch due to Commander Eileen M. Collins, the first woman to serve as commander of a Shuttle mission. The primary payload of the five- day mission is the Chandra X-ray Observatory, which will allow scientists from around the world to study some of the most distant, powerful and dynamic objects in the universe. The new telescope is 20 to 50 times more sensitive than any previous X- ray telescope and is expected to unlock the secrets of supernovae, quasars and black holes.

  5. First Lady Hillary Clinton is greeted by NASA Administrator Goldin

    NASA Technical Reports Server (NTRS)

    1999-01-01

    First Lady Hillary Rodham Clinton and her daughter, Chelsea, are greeted by NASA Administrator Daniel S. Goldin upon their arrival at the Skid Strip at Cape Canaveral Air Station. Next to Gold are (from left) Deputy Director for Business Operations Jim Jennings and Mrs. Goldin. Mrs. Clinton and Chelsea are here to view the launch of Space Shuttle mission STS-93, scheduled for 12:36 a.m. EDT July 20. Much attention has been generated over the launch due to Commander Eileen M. Collins, the first woman to serve as commander of a Shuttle mission. The primary payload of the five- day mission is the Chandra X-ray Observatory, which will allow scientists from around the world to study some of the most distant, powerful and dynamic objects in the universe. The new telescope is 20 to 50 times more sensitive than any previous X- ray telescope and is expected to unlock the secrets of supernovae, quasars and black holes.

  6. 77 FR 38093 - NASA Advisory Council; Science Committee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-26

    ...: NASA Goddard Space Flight Center (GSFC), Building 1, Room E100E, 8800 Greenbelt Road, Greenbelt, MD... SPACE ADMINISTRATION NASA Advisory Council; Science Committee; Meeting AGENCY: National Aeronautics and Space Administration. ACTION: Notice of meeting. SUMMARY: In accordance with the Federal...

  7. STS-79 NASA administrator Goldin greets crew after landing

    NASA Technical Reports Server (NTRS)

    1996-01-01

    NASA Administrator Daniel Goldin (center, with box) greets STS-79 Commander William F. Readdy following the successful conclusion of Mission STS-79 with an end of mission landing at KSC's Shuttle Landing Facility. Also climbing down from the Crew Transport Vehicle (CTV) are (from left) STS-79 Mission Specialists Carl E. Walz and Jay Apt, and Pilot Terrence W. Wilcutt. To the right of Goldin are KSC Director Jay Honeycutt and Acting Associate Administrator for the Office of Life and Microgravity Sciences and Applications Dr. Arnauld Nicogossian. Goldin is holding a box of m&m candy to give to U.S. astronaut Shannon W. Lucid, who returns to Earth after a record setting six month stay aboard the Russian Space Station Mir. The candy is a gift from President Bill Clinton for Lucid. M&M Mars has been supplying m&m candy to the U.S. space program for more than a decade; the gift candies for Lucid are red, white and blue to commemorate her historic flight.

  8. Swearing in of George M. Low as Deputy Administrator of NASA

    NASA Technical Reports Server (NTRS)

    1969-01-01

    Swearing in of George M. Low as Deputy Administrator of NASA. The 43-year-old veteran of NASAs Mercury, Gemini, and Apollo manned flight programs was administered the oath of Office by Dr. Thomas O. Paine, NASA's Administrator. President Nixon nominated Low for the post November 13, 1969, and the Senate confirmed him on November 26, 1969. Low, who joined the National Advisory Committee for Aeronautics (NASAs predecessor agency) in 1949, was the fourth person to hold the Deputy Administrator post at NASA.

  9. A Goddard Multi-Scale Modeling System with Unified Physics

    NASA Technical Reports Server (NTRS)

    Tao, Wei-Kuo

    2008-01-01

    A multi-scale modeling system with unified physics has been developed at NASA Goddard Space Flight Center (GSFC). The system consists of an MMF, the coupled NASA Goddard finite-volume GCM (fvGCM) and Goddard Cumulus Ensemble model (GCE, a CRM); the state-of-the-art Weather Research and Forecasting model (WRF) and the stand alone GCE. These models can share the same microphysical schemes, radiation (including explicitly calculated cloud optical properties), and surface models that have been developed, improved and tested for different environments. The following is presented in this report: (1) a brief review of the GCE model and its applications on the impact of aerosols on deep precipitation processes, (2) the Goddard MMF and the major difference between two existing MMFs (CSU MMF and Goddard MMF), and preliminary results (the comparison with traditional GCMs), and (3) a discussion on the Goddard WRF version (its developments and applications).

  10. Goddard Welcomes SISTER

    NASA Video Gallery

    The Goddard Space Flight Center in Greenbelt, Md., hosted a weeklong summer institute, SISTER, for the purpose of increasing the awareness of and providing opportunities for middle school girls to ...

  11. The 1993 Goddard Conference on Space Applications of Artificial Intelligence

    NASA Technical Reports Server (NTRS)

    Hostetter, Carl F. (Editor)

    1993-01-01

    This publication comprises the papers presented at the 1993 Goddard Conference on Space Applications of Artificial Intelligence held at the NASA/Goddard Space Flight Center, Greenbelt, MD on May 10-13, 1993. The purpose of this annual conference is to provide a forum in which current research and development directed at space applications of artificial intelligence can be presented and discussed.

  12. National Aeronautics and Space Administration's (NASA) Automated Information Security Handbook

    NASA Technical Reports Server (NTRS)

    Roback, E.

    1991-01-01

    The NASA Automated Information Security Handbook provides NASA's overall approach to automated information systems security including discussions of such aspects as: program goals and objectives, assignment of responsibilities, risk assessment, foreign national access, contingency planning and disaster recovery, awareness training, procurement, certification, planning, and special considerations for microcomputers.

  13. Multi-Sensor Distributive On-Line Processing, Visualization, and Analysis Infrastructure for an Agricultural Information System at the NASA Goddard Earth Sciences DAAC

    NASA Technical Reports Server (NTRS)

    Teng, William; Berrick, Steve; Leptuokh, Gregory; Liu, Zhong; Rui, Hualan; Pham, Long; Shen, Suhung; Zhu, Tong

    2004-01-01

    The Goddard Space Flight Center Earth Sciences Data and Information Services Center (GES DISC) Distributed Active Center (DAAC) is developing an Agricultural Information System (AIS), evolved from an existing TRMM On-line Visualization and Analysis System precipitation and other satellite data products and services. AIS outputs will be ,integrated into existing operational decision support system for global crop monitoring, such as that of the U.N. World Food Program. The ability to use the raw data stored in the GES DAAC archives is highly dependent on having a detailed understanding of the data's internal structure and physical implementation. To gain this understanding is a time-consuming process and not a productive investment of the user's time. This is an especially difficult challenge when users need to deal with multi-sensor data that usually are of different structures and resolutions. The AIS has taken a major step towards meeting this challenge by incorporating an underlying infrastructure, called the GES-DISC Interactive Online Visualization and Analysis Infrastructure or "Giovanni," that integrates various components to support web interfaces that ,allow users to perform interactive analysis on-line without downloading any data. Several instances of the Giovanni-based interface have been or are being created to serve users of TRMM precipitation, MODIS aerosol, and SeaWiFS ocean color data, as well as agricultural applications users. Giovanni-based interfaces are simple to use but powerful. The user selects geophysical ,parameters, area of interest, and time period; and the system generates an output ,on screen in a matter of seconds.

  14. ISS Update: NBL Orion Flight Lead Tim Goddard

    NASA Video Gallery

    NASA Public Affairs Officer Brandi Dean talks with Tim Goddard, Neutral Buoyancy Laboratory (NBL) Orion Flight Lead, about how the NBL is used to train rescue and recovery personnel for future Orio...

  15. Dr. Goddard Transports Rocket

    NASA Technical Reports Server (NTRS)

    1974-01-01

    Dr. Robert H. Goddard tows his rocket to the launching tower behind a Model A Ford truck, 15 miles northwest of Roswell, New Mexico. 1930- 1932. Dr. Goddard has been recognized as the 'Father of American Rocketry' and as one of three pioneers in the theoretical exploration of space. Robert Hutchings Goddard was born in Worcester, Massachusetts, on October 15, 1882. He was a theoretical scientist as well as a practical engineer. His dream was the conquest of the upper atmosphere and ultimately space through the use of rocket propulsion. Dr. Goddard, who died in 1945, was probably as responsible for the dawning of the Space Age as the Wright Brothers were for the begining of the Air Age. Yet his work attracted little serious attention during his lifetime. When the United States began to prepare for the conquest of space in the 1950's, American rocket scientists began to recognize the debt owed to the New England professor. They discovered that it was virtually impossible to construct a rocket or launch a satellite without acknowledging the work of Dr. Goddard. This great legacy was covered by more than 200 patents, many of which were issued after his death.

  16. 77 FR 38678 - NASA Advisory Council; Technology and Innovation Committee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-28

    ...: Tuesday, July 24, 2012, 8:00 a.m. to 2:50 p.m., Local Time. ADDRESSES: NASA Goddard Space Flight Center... SPACE ADMINISTRATION NASA Advisory Council; Technology and Innovation Committee; Meeting AGENCY: National Aeronautics and Space Administration. ACTION: Notice of meeting. SUMMARY: In accordance with...

  17. Project Planet Earth: A Joint Project Between the NASA/Goddard Space Flight Center and the Girl Scouts of Central Maryland

    NASA Technical Reports Server (NTRS)

    Mattoo, Shana; Remer, Lorraine; Anderson, Terry; Johnson, Courtrina; Lau, William K. M. (Technical Monitor)

    2001-01-01

    Scientists of the NASA/GSFC and the staff of the Girl Scouts of Central Maryland (GSCM) have teamed up to introduce more girls and young women to earth system science. The girls now have the opportunity to earn the specially designed Planet Earth Council Patch. The Patch program includes a set of requirements tailored to the specific age level of the girl and the resource material to help the girl complete the requirements. At completion of the requirements the girl is awarded a patch to sew onto the back of her sash or vest. Girls do hands-on physical experiments, practice taking data, visit science centers and perform skits in order to complete the requirements. In addition to the Patch program, Project Planet Earth continues to encourage strong collaboration between the Girl Scouts of Maryland and NASA/GSFC. Girls volunteer at the GSFC visitor center during community events and in turn scientists are called on as keynote speakers and consultants for the Council. A special science interest group is forming for the teenage Girl Scouts of the Council that will network with scientists and help these young women pursue their interests, find internships and make career decisions.

  18. Multi-Sensor Distributive On-line Processing, Visualization, and Analysis Infrastructure for an Agricultural Information System at the NASA Goddard Earth Sciences DAAC

    NASA Astrophysics Data System (ADS)

    Teng, W.; Berrick, S.; Leptoukh, G.; Liu, Z.; Rui, H.; Pham, L.; Shen, S.; Zhu, T.

    2004-12-01

    The Goddard Space Flight Center Earth Sciences Data and Information Services Center (GES DISC) Distributed Active Archive Center (DAAC) is developing an Agricultural Information System (AIS), evolved from an existing TRMM Online Visualization and Analysis System (TOVAS), which will operationally provide precipitation and other satellite data products and services. AIS outputs will be integrated into existing operational decision support systems for global crop monitoring, such as that of the U.N. World Food Program. The ability to use the raw data stored in the GES DAAC archives is highly dependent on having a detailed understanding of the data's internal structure and physical implementation. To gain this understanding is a time-consuming process and not a productive investment of the user's time. This is an especially difficult challenge when users need to deal with multi-sensor data that usually are of different structures and resolutions. The AIS has taken a major step towards meeting this challenge by incorporating an underlying infrastructure, called the GES-DISC Interactive Online Visualization and Analysis Infrastructure or "Giovanni," that integrates various components to support web interfaces that allow users to perform interactive analysis on-line without downloading any data. Several instances of the Giovanni-based interface have been or are being created to serve users of TRMM precipitation, MODIS aerosol, and SeaWiFS ocean color data, as well as agricultural applications users. Giovanni-based interfaces are simple to use but powerful. The user selects geophysical parameters, area of interest, and time period; and the system generates an output on screen in a matter of seconds. The currently available output options are (1) area plot - averaged or accumulated over any available data period for any rectangular area; (2) time plot - time series averaged over any rectangular area; (3) Hovmoller plots - longitude-time and latitude-time plots; (4) ASCII

  19. Current Research Developments at NASA Goddard Space Flight Center on the Neutron Star Interior Composition ExploreR (NICER) X-ray Concentrators

    NASA Astrophysics Data System (ADS)

    Balsamo, Erin; Okajima, T.; Gendreau, K.; Arzoumanian, Z.; Jalota, L.; Soong, Y.; Serlemitsos, P. J.

    2013-04-01

    NICER is a proposed NASA Explorer Mission of Opportunity and will study the extreme gravitational, electromagnetic, and nuclear physics of neutron stars. Observations will be performed by an X-ray timing and spectroscopy instrument on board the International Space Station (ISS) with launch scheduled for late 2016. NICER consists of grazing incident optics coupled with silicon drift detectors that will provide high throughput photon collection with relatively low background. The optical system consists of 56 X-ray optics, each of which comprise of 24 individual concentrators made from thin aluminum shells with epoxy replicated gold surface. These specialized concentrators focus incident X-rays allowing for small detectors thus increasing the signal to noise while minimizing mass and fabrication cost. The concentrators have three distinct design differences from traditional thin foil epoxy replicated imaging optics. Firstly, the concentrators use only a single reflection and therefore have degraded imaging resolution for extended sources. They also have a full shell structure to further improve the effective area to mass ratio and a curved axial profile to improve resolution and hence concentration at a short focal length. NICER is the second project using these style concentrators, the first of which was the X-ray Advanced Concepts Testbed (XACT) sounding rocket payload (expected to launch in December 2013). The fabrication of the NICER optics began in spring 2012 and were tested using a collimated X-ray beam in summer 2012. In the following months, the concentrators’ fabrication method has been improved and adapted from the method used with XACT. X-ray measurements have been made to characterize the concentrators by calculating half power diameters, off-axis performance, and effective area measurements. These have been compared to ray tracing and theoretical calculations. Here we report the performance to date with comparisons to the theoretical calculations as

  20. Aerospace Safety Advisory Panel report to the NASA acting administrator

    NASA Technical Reports Server (NTRS)

    1986-01-01

    The level of activity of the Aerospace Safety Advisory Panel was increased smewhat during 1985 in concert with the increased mission rate of the National Space Transportation System, the evolutionary changes in management and operation of that program, and the preparation of the Vandenberg Launch Site; the implementation of the Program Definition Phase of the Space Station Program; and the actual flight testing of the X-29 research aircraft. Impending payload STS missions and NASA's overall aircraft operations are reviewed. The safety aspects of the LEASAT salvage mission were assessed. The findings and recommendation of the committee are summerized.

  1. NASA today, and a vision for tomorrow. [The NASA Administrator's Speech to the American Geophysical Union on 26 May 1994

    NASA Technical Reports Server (NTRS)

    Goldin, Daniel S.

    1994-01-01

    Under the administration of Dan Goldin's leadership, NASA is reinventing itself. In the process, the agency is also searching for a vision to define its role, both as a US Government agency and as a leading force in humanity's exploration of space. An adaption of Goldin's speech to the American Geophysical Union on 26 May 1994 in which he proposes one possible unifying vision is presented.

  2. 14 CFR 1221.107 - Establishment of the NASA Administrator's, Deputy Administrator's, and Associate Deputy...

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... × 4 feet; (2) The Administrator's Flag has four stars; (3) The Deputy Administrator's Flag has three stars; and (4) The Associate Deputy Administrator's Flag has two stars. (b) Flags representing...

  3. 14 CFR § 1221.107 - Establishment of the NASA Administrator's, Deputy Administrator's, and Associate Deputy...

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... × 4 feet; (2) The Administrator's Flag has four stars; (3) The Deputy Administrator's Flag has three stars; and (4) The Associate Deputy Administrator's Flag has two stars. (b) Flags representing...

  4. 14 CFR 1221.107 - Establishment of the NASA Administrator's, Deputy Administrator's, and Associate Deputy...

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... × 4 feet; (2) The Administrator's Flag has four stars; (3) The Deputy Administrator's Flag has three stars; and (4) The Associate Deputy Administrator's Flag has two stars. (b) Flags representing...

  5. 14 CFR 1221.107 - Establishment of the NASA Administrator's, Deputy Administrator's, and Associate Deputy...

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... × 4 feet; (2) The Administrator's Flag has four stars; (3) The Deputy Administrator's Flag has three stars; and (4) The Associate Deputy Administrator's Flag has two stars. (b) Flags representing...

  6. 14 CFR 1221.107 - Establishment of the NASA Administrator's, Deputy Administrator's, and Associate Deputy...

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... × 4 feet; (2) The Administrator's Flag has four stars; (3) The Deputy Administrator's Flag has three stars; and (4) The Associate Deputy Administrator's Flag has two stars. (b) Flags representing...

  7. (New) NASA Administrator Sean O'Keefe comes to Ames for employee briefing and tour. Here he welcomes

    NASA Technical Reports Server (NTRS)

    2002-01-01

    (New) NASA Administrator Sean O'Keefe comes to Ames for employee briefing and tour. Here he welcomes JASON kids to NASA while handing out patches and pins. Tom Clausen and Donald James, Ames Education Office in background.

  8. 76 FR 64111 - NASA Advisory Council; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-17

    ..., 2011, 8 a.m.--12 p.m., Local Time. ADDRESSES: NASA Goddard Space Flight Center (GSFC), Building 1... picture ] identification such as a driver's license to enter into the NASA Goddard Space Flight Center.... citizens desiring to attend the NASA Advisory Council Meeting at the Goddard Space Flight Center...

  9. Interface control document between the NASA Goddard Space Flight Center (GSFC) and Department of Interior EROS Data Center (EDC) for LANDSAT-D. Thematic mapper high resolution 241 mm film

    NASA Technical Reports Server (NTRS)

    1982-01-01

    The 241 mm photographic product produced by the Goddard Space Flight Center Data Management System for LANDSAT-D is described. Film type and format, image dimensions, frame ID, gray scale, resolution patterns, registration marks, etc. are addressed.

  10. Goddard Robotic Telescope

    SciTech Connect

    Sakamoto, Takanori; Donato, Davide; Gehrels, Neil; Okajima, Takashi; Ukwatta, Tilan N.

    2009-05-25

    We are constructing the 14'' fully automated optical robotic telescope, Goddard Robotic Telescope (GRT), at the Goddard Geophysical and Astronomical Observatory. The aims of our robotic telescope are 1) to follow-up the Swift/Fermi Gamma-Ray Bursts (GRBs) and 2) to perform the coordinated optical observations of the Fermi/Large Area Telescope (LAT) Active Galactic Nuclei (AGN). Our telescope system consists of the 14'' Celestron Optical Telescope Assembly (OTA), the Astro-Physics 1200GTO mount, the Apogee U47 CCD camera, the JMI's electronic focuser, and the Finger Lake Instrumentation's color filter wheel with U, B, V, R and I filters. With the focal reducer, 20'x20' field of view has been achieved. The observatory dome is the Astro Haven's 7 ft clam-shell dome. We started the scientific observations on mid-November 2008. While not observing our primary targets (GRBs and AGNs), we are planning to open our telescope time to the public for having a wider use of our telescope in both a different research field and an educational purpose.

  11. NASA Goddard Space Flight Center Cooperative Enterprise

    NASA Technical Reports Server (NTRS)

    Fredley, Joseph E.; Lysak, Daniel B.

    2004-01-01

    The viability of a Capillary Heat Pump (CHP) concept using a Loop Heat Pipe evaporator and an eductor in a closed loop to reject heat at a higher temperature than it is acquired at with the goal of reducing spacecraft radiator area is examined. Eductor inefficiency resulting from the mixing of high velocity motive flow with low velocity suction flow may preclude spacecraft radiator area savings. The utility of a CHP for thermal management may be limited to those missions where system mass is of secondary concern compared to system reliability, or where a heat pump is required to accommodate relatively high thermal rejection temperatures. Shearography techniques for nondestructive inspection and evaluation were examined for two unique applications. Shearography is shown to give good results in evaluating the quality of bonds holding lead tiles to the SWIFT spacecraft BAT gamma ray mask. Also, a novel technique was developed allowing specular objects to be inspected using shearography to evaluate bonding between the skin and core of a specular surface honeycomb structure. Large-scale bond failures are readily identified.

  12. NASA Dual Precipitation Radar Arrives at Goddard

    NASA Video Gallery

    The Dual-frequency Precipitation Radar (DPR) built by the Japan Aerospace Exploration Agency (JAXA) for the Global Precipitation Measurement (GPM) mission's Core Observatory arrived on Friday, Marc...

  13. Goddard Visiting Scientist Program

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Under this Indefinite Delivery Indefinite Quantity (IDIQ) contract, USRA was expected to provide short term (from I day up to I year) personnel as required to provide a Visiting Scientists Program to support the Earth Sciences Directorate (Code 900) at the Goddard Space Flight Center. The Contractor was to have a pool, or have access to a pool, of scientific talent, both domestic and international, at all levels (graduate student to senior scientist), that would support the technical requirements of the following laboratories and divisions within Code 900: 1) Global Change Data Center (902); 2) Laboratory for Atmospheres (Code 910); 3) Laboratory for Terrestrial Physics (Code 920); 4) Space Data and Computing Division (Code 930); 5) Laboratory for Hydrospheric Processes (Code 970). The research activities described below for each organization within Code 900 were intended to comprise the general scope of effort covered under the Visiting Scientist Program.

  14. Support of NASA quality requirements by defense contract administration services regions

    NASA Technical Reports Server (NTRS)

    Farrar, Hiram D.

    1966-01-01

    Defense Contract Administration Services Regions (DCASR) quality assurance personnel performing under NASA Letters of Delegation must work closely with the assigned technical representative of the NASA centers. It is realized that technical personnel from the NASA Centers cannot make on-site visits as frequently as they would like to. However, DCASR quality assurance personnel would know the assigned NASA technical representative and should contact him when problems arise. The technical representative is the expert on the hardware and should be consulted on any problem area. It is important that the DCASR quality assurance personnel recommend to the delegating NASA Center any new or improved methods of which they may be aware which would assist in achieving the desired quality and reliability in NASA hardware. NASA expects assignment of competent personnel in the Quality Assurance functional area and is not only buying the individual's technical skill, but also his experience. Suggestions by field personnel can many times up-grade the quality or the hardware.

  15. A Goddard Multi-Scale Modeling System with Unified Physics

    NASA Technical Reports Server (NTRS)

    Tao, Wei-Kuo

    2010-01-01

    A multi-scale modeling system with unified physics has been developed at NASA Goddard Space Flight Center (GSFC). The system consists of an MMF, the coupled NASA Goddard finite-volume GCM (fvGCM) and Goddard Cumulus Ensemble model (GCE, a CRM); the state-of-the-art Weather Research and Forecasting model (WRF) and the stand alone GCE. These models can share the same microphysical schemes, radiation (including explicitly calculated cloud optical properties), and surface models that have been developed, improved and tested for different environments. In this talk, I will present: (1) A brief review on GCE model and its applications on the impact of the aerosol on deep precipitation processes, (2) The Goddard MMF and the major difference between two existing MMFs (CSU MMF and Goddard MMF), and preliminary results (the comparison with traditional GCMs), and (3) A discussion on the Goddard WRF version (its developments and applications). We are also performing the inline tracer calculation to comprehend the ph ysical processes (i.e., boundary layer and each quadrant in the boundary layer) related to the development and structure of hurricanes and mesoscale convective systems.

  16. A Goddard Multi-Scale Modeling System with Unified Physics

    NASA Technical Reports Server (NTRS)

    Tao, Wei-Kuo

    2010-01-01

    A multi-scale modeling system with unified physics has been developed at NASA Goddard Space Flight Center (GSFC). The system consists of an MMF, the coupled NASA Goddard finite-volume GCM (fvGCM) and Goddard Cumulus Ensemble model (GCE, a CRM); the state-of-the-art Weather Research and Forecasting model (WRF) and the stand alone GCE. These models can share the same microphysical schemes, radiation (including explicitly calculated cloud optical properties), and surface models that have been developed, improved and tested for different environments. In this talk, I will present: (1) A brief review on GCE model and its applications on the impact of the aerosol on deep precipitation processes, (2) The Goddard MMF and the major difference between two existing MMFs (CSU MMF and Goddard MMF), and preliminary results (the comparison with traditional GCMs), and (3) A discussion on the Goddard WRF version (its developments and applications). We are also performing the inline tracer calculation to comprehend the physical processes (i.e., boundary layer and each quadrant in the boundary layer) related to the development and structure of hurricanes and mesoscale convective systems. In addition, high - resolution (spatial. 2km, and temporal, I minute) visualization showing the model results will be presented.

  17. Goddard Space Flight Center: 1994 Maryland/GSFC Earth and Environmental Science Teacher Ambassador Program

    NASA Technical Reports Server (NTRS)

    Latham, James

    1995-01-01

    The Maryland/Goddard Space Flight Center (GSFC) Earth and Environmental Science Teacher Ambassador Program was designed to enhance classroom instruction in the Earth and environmental science programs in the secondary schools of the state of Maryland. In October 1992, more than 100 school system administrators from the 24 local Maryland school systems, the Maryland State Department of Education, and the University of Maryland met with NASA GSFC scientists and education officers to propose a cooperative state-wide secondary school science teaching enhancement initiative.

  18. Report from the MPP Working Group to the NASA Associate Administrator for Space Science and Applications

    NASA Technical Reports Server (NTRS)

    Fischer, James R.; Grosch, Chester; Mcanulty, Michael; Odonnell, John; Storey, Owen

    1987-01-01

    NASA's Office of Space Science and Applications (OSSA) gave a select group of scientists the opportunity to test and implement their computational algorithms on the Massively Parallel Processor (MPP) located at Goddard Space Flight Center, beginning in late 1985. One year later, the Working Group presented its report, which addressed the following: algorithms, programming languages, architecture, programming environments, the way theory relates, and performance measured. The findings point to a number of demonstrated computational techniques for which the MPP architecture is ideally suited. For example, besides executing much faster on the MPP than on conventional computers, systolic VLSI simulation (where distances are short), lattice simulation, neural network simulation, and image problems were found to be easier to program on the MPP's architecture than on a CYBER 205 or even a VAX. The report also makes technical recommendations covering all aspects of MPP use, and recommendations concerning the future of the MPP and machines based on similar architectures, expansion of the Working Group, and study of the role of future parallel processors for space station, EOS, and the Great Observatories era.

  19. [Activities of Goddard Earth Sciences and Technology Center, Maryland University

    NASA Technical Reports Server (NTRS)

    2003-01-01

    The Goddard Space Flight Center (GSFC) is recognized as a world leader in the application of remote sensing and modeling aimed at improving knowledge of the Earth system. The Goddard Earth Sciences Directorate plays a central role in NASA's Earth Observing System and the U.S. Global Change Research Program. Goddard Earth Sciences and Technology (GEST) is organized as a cooperative agreement with the GSFC to promote excellence in the Earth sciences, and is a consortium of universities and corporations (University of Maryland Baltimore County, Howard University, Hampton University, Caelum Research Corporation and Northrop Grumman Corporation). The aim of this new program is to attract and introduce promising students in their first or second year of graduate studies to Oceanography and Earth system science career options through hands-on instrumentation research experiences on coastal processes at NASA's Wallops Flight Facility on the Eastern Shore of Virginia.

  20. NASA Associate Administrator for Space Flight Rothenberg addresses guests at ribbon cutting for the

    NASA Technical Reports Server (NTRS)

    2000-01-01

    NASA Associate Administrator for Space Flight Joseph Rothenberg addresses attendees at a ribbon cutting for the new Checkout and Launch Control System (CLCS) at the Hypergolic Maintenance Facility (HMF). The CLCS was declared operational in a ribbon cutting ceremony earlier. The new control room will be used to process the Orbital Maneuvering System pods and Forward Reaction Control System modules at the HMF. This hardware is removed from Space Shuttle orbiters and routinely taken to the HMF for checkout and servicing.

  1. Profile of software engineering within the National Aeronautics and Space Administration (NASA)

    NASA Technical Reports Server (NTRS)

    Sinclair, Craig C.; Jeletic, Kellyann F.

    1994-01-01

    This paper presents findings of baselining activities being performed to characterize software practices within the National Aeronautics and Space Administration. It describes how such baseline findings might be used to focus software process improvement activities. Finally, based on the findings to date, it presents specific recommendations in focusing future NASA software process improvement efforts. The findings presented in this paper are based on data gathered and analyzed to date. As such, the quantitative data presented in this paper are preliminary in nature.

  2. Goddard Virtual Tour: Part 1

    NASA Video Gallery

    Goddard Chief Scientist Jim Garvin takes us on a tour of the life of a spacecraft, from the idea to the collection of data in orbit. Each segment looks at a different phase of the spacecraft and it...

  3. Goddard Summer Interns: Alejandro Arambula

    NASA Video Gallery

    Alejandro Arambula is an aerospace engineering student at M.I.T. and a 2011 summer intern in Goddard's Propulsion Lab. This summer he is working with his mentor Khary Parker in building a test asse...

  4. The 1994 Goddard Conference on Space Applications of Artificial Intelligence

    NASA Technical Reports Server (NTRS)

    Hostetter, Carl F. (Editor)

    1994-01-01

    This publication comprises the papers presented at the 1994 Goddard Conference on Space Applications of Artificial Intelligence held at the NASA/GSFC, Greenbelt, Maryland, on 10-12 May 1994. The purpose of this annual conference is to provide a forum in which current research and development directed at space applications of artificial intelligence can be presented and discussed.

  5. NASA science committee appointments

    NASA Astrophysics Data System (ADS)

    Zielinski, Sarah

    2006-10-01

    NASA Administrator Michael Griffin has made three new appointments to the NASA Advisory Council's (NAC' Science Committee, NASA announced on 22 September. Edward David, president of EED, Inc., and science advisor to the President from 1970 to 1973, will serve as the committee-s chair. Also appointed to the committee were Owen Garriott, a retired scientist astronaut, and Alan Stern, executive director of the Space Science and Engineering Division of the Southwest Research Institute (San Antonio, Tex.). David, Garriott, and Stern-who are among nine new members of the full advisory committee that were announced on 22 September-will replace three members of the Science Committee who resigned in August: Science Committee Chair Charles Kennel (Scripps Institution of Oceanography), Wesley Huntress (Carnegie Institution of Washington), and Eugene Levy (Rice University). The NAC's next public meeting will be held on 12 October at Goddard Space Flight Center in Greenbelt, Md.

  6. The impact of the NASA Administrator's Fellowship Program on fellows' career choices

    NASA Astrophysics Data System (ADS)

    Graham, Eva M.

    Maintaining diversity in the technical workforce and in higher education has been identified as one way to increase the outreach, recruitment and retention of students and other faculty from underrepresented, underserved and minority populations, especially in Science, Technology, Engineering and Mathematics (STEM) courses of study and careers. The National Aeronautics and Space Administration (NASA) Administrator's Fellowship Program (NAFP) is a professional development program targeting faculty at Minority Serving Institutions and NASA civil servant employees for a two year work-based professional development experience toward increasing the likelihood of retaining them in STEM careers and supporting the recruitment and retention of minority students in STEM courses of study. This evaluation links the activities of the fellowship program to the impact on fellows' career choices as a result of participation through a series of surveys and interviews. Fellows' personal and professional perceptions of themselves and colleagues' and administrators' beliefs about their professional capabilities as a result of selection and participation were also addressed as they related to career outcomes. The findings indicated that while there was no direct impact on fellows' choice of careers, the exposure, direction and focus offered through travel, mentoring, research and teaching had an impact their perceptions of their own capabilities and, their colleagues' and administrators' beliefs about them as professionals and researchers. The career outcomes reported were an increase in the number publications, promotions, change in career and an increased awareness of the culture of science and engineering.

  7. The 1988 Goddard Conference on Space Applications of Artificial Intelligence

    NASA Technical Reports Server (NTRS)

    Rash, James (Editor); Hughes, Peter (Editor)

    1988-01-01

    This publication comprises the papers presented at the 1988 Goddard Conference on Space Applications of Artificial Intelligence held at the NASA/Goddard Space Flight Center, Greenbelt, Maryland on May 24, 1988. The purpose of this annual conference is to provide a forum in which current research and development directed at space applications of artificial intelligence can be presented and discussed. The papers in these proceedings fall into the following areas: mission operations support, planning and scheduling; fault isolation/diagnosis; image processing and machine vision; data management; modeling and simulation; and development tools/methodologies.

  8. The Goddard Earth Sciences and Technology Center (GEST Center)

    NASA Technical Reports Server (NTRS)

    2002-01-01

    The following is a technical report of the progress made under Cooperative Agreement NCC5494, the Goddard Earth Sciences and Technology Center (GEST). The period covered by this report is October 1, 2001 through December 31, 2001. GEST is a consortium of scientists and engineers, led by the University of Maryland, Baltimore County (UMBC), to conduct scientific research in Earth and information sciences and related technologies in collaboration with the NASA Goddard Space Flight Center (GSFC). GEST was established through a cooperative agreement signed May 11, 2000, following a competitive procurement process initiated by GSFC.

  9. Marshall Team Recreates Goddard Rocket

    NASA Technical Reports Server (NTRS)

    2003-01-01

    In honor of the Centernial of Flight celebration and commissioned by the American Institute of Aeronautics and Astronautics (AIAA), a team of engineers from Marshall Space Flight Center (MSFC) built a replica of the first liquid-fueled rocket. The original rocket, designed and built by rocket engineering pioneer Robert H. Goddard in 1926, opened the door to modern rocketry. Goddard's rocket reached an altitude of 41 feet while its flight lasted only 2.5 seconds. The Marshall design team's plan was to stay as close as possible to an authentic reconstruction of Goddard's rocket. The same propellants were used - liquid oxygen and gasoline - as available during Goddard's initial testing and firing. The team also tried to construct the replica using the original materials and design to the greatest extent possible. By purposely using less advanced techniques and materials than many that are available today, the team encountered numerous technical challenges in testing the functional hardware. There were no original blueprints or drawings, only photographs and notes. However, this faithful adherence to historical accuracy has also allowed the team to experience many of the same challenges Goddard faced 77 years ago, and more fully appreciate the genius of this extraordinary man. The replica will undergo ground tests at MSFC this summer.

  10. NASA Administrator, U.S. Secretary of State watch STS-88 launch

    NASA Technical Reports Server (NTRS)

    1998-01-01

    At the Banana Creek Viewing Site, NASA Administrator Daniel Goldin (left), U.S. Secretary of State Madeleine Albright (center) and astronaut Michael Lopez-Alegria watch the launch of STS-88 from Launch Pad 39A at 3:35:34 a.m. EST. STS-88 is the first U.S. mission dedicated to the assembly of the International Space Station (ISS). Lopez-Alegria is part of the STS-92 crew that is assigned to the fourth ISS assembly flight scheduled for launch on Oct. 28, 1999, aboard Discovery.

  11. STS-35 MS Hoffman is greeted by JSC manager Puddy and NASA administrator Lenoir

    NASA Technical Reports Server (NTRS)

    1990-01-01

    NASA Associate Administrator for Space Flight Dr. William B. Lenoir (second left) shakes hands with Mission Specialist (MS) Jeffrey A. Hoffman soon after the seven crewmembers egressed Columbia, Orbiter Vehicle (OV) 102, at Edwards Air Force Base (EAFB), California. Also pictured are JSC Flight Crew Operations Directorate (FCOD) Director Donald R. Puddy (left) and Commander Vance D. Brand. OV-102 landed on EAFB concrete runway 22 at 9:54:09 pm (Pacific Standard Time) ending its nine-day STS-35 Astronomy Laboratory 1 (ASTRO-1) mission.

  12. NASA | Raymonda Azrelyant Yeh Women@NASA 2015

    NASA Video Gallery

    Raymonda Azrelyant Yeh - Senior Accountant for NASA Goddard Space Flight Center The Women@NASA project is the perfect opportunity to celebrate women from across the agency who contribute to NASA’...

  13. NASA RECON: Course development, administration, and evaluation. A research and development proposal

    NASA Technical Reports Server (NTRS)

    Dominick, Wayne D. (Editor); Roquemore, Leroy

    1984-01-01

    This proposal addresses the development, administration, and evaluation of a set of transportable, college-level courses to educate science and engineering students in the effective use of automated scientific and technical information storage and retrieval systems, and, in particular, in the use of the NASA RECON system. Chapter 1 presents a brief introduction. Chapter 2 identifies general and specific objectives, i.e., needs analysis, course development, course administration, and course evaluation. Chapter 3 proposes the methodology to be used in successfully accomplishing these objectives. Chapter 4 highlights expected results and product deliverables, and Chapter 5 presents the project evaluation plan to be followed. Chapter 6 is a brief overview of the institutional resources available at the proposing institutions, i.e., at the University of Southwestern Louisiana and at Southern University to support the project. Chapter 7 proposes a budget, time schedule, and management plan. Chapter 8 is a summary of the foregoing.

  14. Science at the Goddard Space Flight Center

    NASA Technical Reports Server (NTRS)

    White, Nicholas E.

    2012-01-01

    The Sciences and Exploration Directorate of the NASA Goddard Space Flight Center (GSFC) is the largest Earth and space science research organization in the world. Its scientists advance understanding of the Earth and its life-sustaining environment, the Sun, the solar system, and the wider universe beyond. Researchers in the Sciences and Exploration Directorate work with engineers, computer programmers, technologists, and other team members to develop the cutting-edge technology needed for space-based research. Instruments are also deployed on aircraft, balloons, and Earth's surface. I will give an overview of the current research activities and programs at GSFC including the James Web Space Telescope (JWST), future Earth Observing programs, experiments that are exploring our solar system and studying the interaction of the Sun with the Earth's magnetosphere.

  15. NASA Now: Got Math?

    NASA Video Gallery

    In this NASA Now program, Jim Garvin, Ph.D, chief scientist at NASA’s Goddard Space Flight Center in Greenbelt, Md., explains how mathematics is a vital tool not only in everything happening at N...

  16. NASA Sounding Rockets and Hi-C

    NASA Video Gallery

    The Sounding Rockets Program Office (SRPO), located at NASA Goddard Space Flight Center's Wallops Flight Facility, provides suborbital launch vehicles, payload development, and field operations sup...

  17. NASA Administrator Dan Goldin greets Neil Armstrong at Apollo 11 anniversary banquet.

    NASA Technical Reports Server (NTRS)

    1999-01-01

    During an anniversary banquet honoring the Apollo team, the people who made the entire lunar landing program possible, former Apollo astronaut Neil A. Armstrong (left) shakes the hand of Judy Goldin (center), wife of NASA Administrator Daniel S. Goldin (right). The banquet was held in the Apollo/Saturn V Center, part of the KSC Visitor Complex. This is the 30th anniversary of the Apollo 11 launch and moon landing, July 16 and July 20, 1969. Among the guests at the banquet were former Apollo astronauts are Neil A. Armstrong and Edwin 'Buzz' Aldrin who flew on Apollo 11, the launch of the first moon landing; Gene Cernan, who flew on Apollo 10 and 17 and was the last man to walk on the moon; and Walt Cunningham, who flew on Apollo 7.

  18. NASA Engineering and Technology Advancement Office: A proposal to the administrator

    NASA Technical Reports Server (NTRS)

    Schulze, Norman R.

    1993-01-01

    NASA has continually had problems with cost, schedule, performance, reliability, quality, and safety aspects in programs. Past solutions have not provided the answers needed, and a major change is needed in the way of doing business. A new approach is presented for consideration. These problems are all engineering matters, and therefore, require engineering solutions. Proper engineering tools are needed to fix engineering problems. Headquarters is responsible for providing the management structure to support programs with appropriate engineering tools. A guide to define those tools and an approach for putting them into place is provided. Recommendations include establishing a new Engineering and Technology Advancement Office, requesting a review of this proposal by the Administrator since this subject requires a top level decision. There has been a wide peer review conducted by technical staff at Headquarters, the Field Installations, and others in industry as discussed.

  19. 77 FR 38678 - NASA Advisory Council; Commercial Space Committee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-28

    .... ] ADDRESSES: NASA Goddard Space Flight Center (GSFC), Building 1, Room E100B, 8800 Greenbelt Road, Greenbelt...: --Goddard Space Flight Center's Commercial Space Activities and Plans --Acquisition Process Lessons--Learned... place on Tuesday, July 24, 2012, 10:00 a.m.-1:00 p.m., Local Time at NASA Goddard Space Flight...

  20. National Aeronautics and Space Administration (NASA)/American Society for Engineering Education (ASEE) Summer Faculty Fellowship Program 1988, volume 2

    NASA Technical Reports Server (NTRS)

    Bannerot, Richard B.; Goldstein, Stanley H.

    1989-01-01

    The 1988 Johnson Space Center (JSC) National Aeronautics and Space Administration (NASA)/American Society for Engineering Education (ASEE) Summer Faculty Fellowship Program was conducted by the University of Houston and JCS. The 10-week program was operated under the auspices of the ASEE. The program at JSC, as well as the programs at other NASA Centers, was funded by the Office of University Affairs, NASA Headquarters, Washington, D.C. The objectives of the program, which began in 1965 at JSC and in 1964 nationally, are: (1) to further the professional knowledge of qualified engineering and science faculty members; (2) to stimulate an exchange of ideas between participants and NASA; (3) to enrich and refresh the research and teaching activities of participants' institutions; and (4) to contribute to the research objectives of the NASA Centers.

  1. National Aeronautics and Space Administration (NASA)/American Society for Engineering Education (ASEE) Summer Faculty Fellowship Program, 1992, volume 2

    NASA Technical Reports Server (NTRS)

    Bannerot, Richard B. (Editor); Goldstein, Stanley H. (Editor)

    1992-01-01

    The 1992 Johnson Space Center (JSC) National Aeronautics and Space Administration (NASA)/American Society for Engineering Education (ASEE) Summer Faculty Fellowship Program was conducted by the University of Houston and JSC. The program at JSC, as well as the programs at other NASA Centers, was funded by the Office of University Affairs, NASA Headquarters Washington, DC. The objectives of the program, which began nationally in 1964 and at JSC in 1965, are (1) to further the professional knowledge of qualified engineering and science faculty members; (2) to stimulate an exchange of ideas between participants and NASA; (3) to enrich and refresh the research and teaching activities of participants' institutions; and (4) to contribute to the research objective of the NASA Centers. This document contains reports 13 through 24.

  2. National Aeronautics and Space Administration (NASA)/American Society for Engineering Education (ASEE) Summer Faculty Fellowship Program 1988, volume 1

    NASA Technical Reports Server (NTRS)

    Bannerot, Richard B. (Editor); Goldstein, Stanley H. (Editor)

    1989-01-01

    The 1988 Johnson Space Center (JSC) National Aeronautics and Space Administration (NASA)/American Society for Engineering Education (ASEE) Summer Faculty Fellowship Program was conducted by the University of Houston and JSC. The 10-week program was operated under the auspices of the ASEE. The program at JSC, as well as the programs at other NASA Centers, was funded by the Office of University Affairs, NASA Headquarters, Washington, D.C. The objectives of the program, which began in 1965 at JSC and in 1964 nationally, are (1) to further the professional knowledge of qualified engineering and science faculty members; (2) to stimulate an exchange of ideas between participants and NASA; (3) to enrich and refresh the research and teaching activities of participants' institutions; and (4) to contribute to the research objectives of the NASA Centers.

  3. National Aeronautics and Space Administration (NASA)/American Society for Engineering Education (ASEE) Summer Faculty Fellowship Program, 1989, volume 1

    NASA Technical Reports Server (NTRS)

    Jones, William B., Jr. (Editor); Goldstein, Stanley H. (Editor)

    1989-01-01

    The 1989 Johnson Space Center (JSC) National Aeronautics and Space Administration (NASA)/American Society for Engineering Education (ASEE) Summer Faculty Fellowship Program was conducted by Texas A and M University and JSC. The 10-week program was operated under the auspices of the ASEE. The program at JSC, as well as the programs at other NASA Centers, was funded by the Office of University Affairs, NASA Headquarters, Washington, D.C. The objectives of the program, which began nationally in 1964 and at JSC in 1965, are: (1) to further the professional knowledge of qualified engineering and science faculty members; (2) to stimulate an exchange of ideas between participants and NASA; (3) to enrich and refresh the research and teaching activities of participants' institutions; and (4) to contribute to the research objective of the NASA Centers.

  4. National Aeronautics and Space Administration (NASA)/American Society for Engineering Education (ASEE) Summer Faculty Fellowship Program, 1989, volume 2

    NASA Technical Reports Server (NTRS)

    Jones, William B., Jr. (Editor); Goldstein, Stanley H. (Editor)

    1989-01-01

    The 1989 Johnson Space Center (JSC) National Aeronautics and Space Administration (NASA)/American Society for Engineering Education (ASEE) Summer Faculty Fellowship Program was conducted by Texas A and M University and JSC. The 10-week program was operated under the auspices of the ASEE. The program at JSC, as well as the programs at other NASA Centers, was funded by the Office of University Affairs, NASA Headquarters, Washington, D.C. The objectives of the program, which began nationally in 1964 and at JSC in 1965, are: (1) to further the professional knowledge of qualified engineering and science faculty members; (2) to stimulate an exchange of ideas between participants and NASA; (3) to enrich and refresh the research and teaching activities of participants' institutions; and (4) to contribute to the research objective of the NASA Centers.

  5. 78 FR 36276 - NASA Advisory Council; Science Committee; Astrophysics Subcommittee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-17

    ..., 2013, 9:00 a.m. to 4:00 p.m., Local Time. ADDRESSES: NASA Goddard Space Flight Center, Building 1... badge to enter into the NASA Goddard Space Flight Center and must state that they are attending the NASA... visitors to this meeting will report to the Goddard Space Flight Center (GSFC) Main Gate where they will...

  6. The 1995 Goddard Conference on Space Applications of Artificial Intelligence and Emerging Information Technologies

    NASA Technical Reports Server (NTRS)

    Hostetter, Carl F. (Editor)

    1995-01-01

    This publication comprises the papers presented at the 1995 Goddard Conference on Space Applications of Artificial Intelligence and Emerging Information Technologies held at the NASA/Goddard Space Flight Center, Greenbelt, Maryland, on May 9-11, 1995. The purpose of this annual conference is to provide a forum in which current research and development directed at space applications of artificial intelligence can be presented and discussed.

  7. Educator Uses of Data-Enhanced Investigations for Climate Change Education (DICCE), An Online System for Accessing a Vast Portal of NASA Earth System Data Known As the Goddard Interactive Online Visualization and Analysis Infrastructure (GIOVANNI)

    NASA Astrophysics Data System (ADS)

    Zalles, D. R.; Acker, J. G.

    2015-12-01

    Data-enhanced Investigations for Climate Change Education (DICCE) has made it easier and more technologically feasible for secondary and post-secondary instructors and students to study climate change and related Earth system phenomena using data products from the Goddard Interactive Online Visualization and Analysis Infrastructure (GIOVANNI), a powerful portal of Earth observation data that provides access to numerous data products on Earth system phenomena representing the land biosphere, physical land, ocean biosphere, physical ocean, physical atmosphere, atmospheric gases, and energy and radiation system. These data products are derived from remote-sensing instruments on satellites, ground stations, and data assimilation models. Instructors and students can query the GIOVANNI data archive, then save the results as map images, time series plots, vertical profiles of the atmosphere, and data tables. Any part of the world can be selected for analysis. The project has also produced a tool for instructors to author and adapt standards-based lesson plans, student data investigation activities, and presentations around visualizations they make available to their students via DICCE-G. Supports are provided to students and teachers about how to interpret trends in data products of their choice at the regional level and a schema has been developed to help them understand how those data products fit into current scientific thinking about the certainties and uncertainties of climate change. The presentation will (1) describe the features of DICCE, (2) examples of curricula developed to make use of DICCE in classrooms, (3) how these curricula align to Next Generation Science Standards, and (4) how they align to science education research literature about how to make school science more engaging. Recently-analyzed teacher and student outcomes from DICCE use will also be reported.

  8. National Aeronautics and Space Administration (NASA)/American Society for Engineering Education (ASEE) Summer Faculty Fellowship Program, 1992, volume 1

    NASA Technical Reports Server (NTRS)

    Bannerot, Richard B. (Editor); Goldstein, Stanley H. (Editor)

    1992-01-01

    The 1992 Johnson Space Center (JSC) National Aeronautics and Space Administration (NASA)/American Society for Engineering Education (ASEE) Summer Faculty Fellowship Program was conducted by the University of Houston and JSC. The program at JSC, as well as the programs at other NASA Centers, was funded by the Office of University Affairs, Washington, DC. The objectives of the program, which began nationally in 1964 and at JSC in 1965, are (1) to further the professional knowledge of qualified engineering and science faculty members; (2) to stimulate an exchange of ideas between participants and NASA; (3) to enrich and refresh the research and teaching activities of participants' institutions; and (4) to contribute to the research objective of the NASA Centers. This document is a compilation of the final reports 1 through 12.

  9. STS-87 Payload Specialist Leonid Kadenyuk chats with NASA Administrator Daniel Goldin shortly after

    NASA Technical Reports Server (NTRS)

    1997-01-01

    STS-87 Payload Specialist Leonid Kadenyuk of the National Space Agency of Ukraine (NSAU), at left, chats with NASA Administrator Daniel Goldin shortly after the landing of Columbia at Kennedy Space Center. Looking on is back-up Payload Specialist Yaroslav Pustovyi, also of NSAU. STS-87 concluded its mission with a main gear touchdown at 7:20:04 a.m. EST Dec. 5, at KSC's Shuttle Landing Facility Runway 33, drawing the 15-day, 16-hour and 34- minute-long mission of 6.5 million miles to a close. Also onboard the orbiter were Commander Kevin Kregel; Pilot Steven Lindsey; and Mission Specialists Winston Scott, Kalpana Chawla, Ph.D., and Takao Doi, Ph.D., of the National Space Development Agency of Japan. During the 88th Space Shuttle mission, the crew performed experiments on the United States Microgravity Payload-4 and pollinated plants as part of the Collaborative Ukrainian Experiment. This was the 12th landing for Columbia at KSC and the 41st KSC landing in the history of the Space Shuttle program.

  10. NASA Administrator Paine and U.S. President Richard Milhous Nixon Await Apollo 11 Splashdown

    NASA Technical Reports Server (NTRS)

    1969-01-01

    Dr. Thomas Paine, NASA administrator (left) and U.S. President Richard Milhous Nixon wait aboard the recovery ship, the U.S.S. Hornet, for splashdown of the Apollo 11 in the Pacific Ocean. Navy para-rescue men recovered the capsule housing the 3-man crew. The crew was taken to safety aboard the U.S.S. Hornet, where they were quartered in a Mobile Quarantine Facility (MQF). The Apollo 11 mission, the first manned lunar mission, launched from the Kennedy Space Center, Florida via the Saturn V launch vehicle on July 16, 1969 and safely returned to Earth on July 24, 1969. The Saturn V vehicle was developed by the Marshall Space Flight Center (MSFC) under the direction of Dr. Wernher von Braun. Aboard were Neil A. Armstrong, commander; Michael Collins, Command Module (CM) pilot; and Edwin E. Aldrin Jr., Lunar Module (LM) pilot. The CM, piloted by Michael Collins remained in a parking orbit around the Moon while the LM, named 'Eagle'', carrying astronauts Neil Armstrong and Edwin Aldrin, landed on the Moon. Armstrong was the first human to ever stand on the lunar surface, followed by Edwin (Buzz) Aldrin. During 2½ hours of surface exploration, the crew collected 47 pounds of lunar surface material for analysis back on Earth. With the success of Apollo 11, the national objective to land men on the Moon and return them safely to Earth had been accomplished.

  11. Precourt presents a flag, flown on Mir to NASA Administrator Goldin

    NASA Technical Reports Server (NTRS)

    1998-01-01

    STS-91 Mission Commander Charles J. Precourt (at microphone) presents an American flag, a special tool, and an optical disc to NASA Administrator Dan Goldin following Discovery's landing at KSC's Shuttle Landing Facility, as Phase I Shuttle/Mir Program Manager Frank Culbertson and the other members of the STS-91 flight crew look on. This landing not only concluded the STS-91 mission, but Phase I of the joint U.S.-Russian International Space Station Program as well. The flag rode aboard Mir from the beginning of the Phase I program and was brought back to Earth by the STS-91 crew. Discovery's main gear touchdown on Runway 15 was at 2:00:00 p.m. EDT on June 12, 1998, on orbit 155 of the mission. The wheels stopped at 2:01:00 p.m. EDT, for a total mission-elapsed time of 9 days, 19 hours, 55 minutes and 1 second. The 91st Shuttle mission was the 44th KSC landing in the history of the Space Shuttle program and the 15th consecutive landing at KSC. Besides Commander Precourt, the STS-91 flight crew also included Pilot Dominic L. Gorie and Mission Specialists Wendy B. Lawrence, Franklin R. Chang-Diaz, Janet Lynn Kavandi and Valery Victorovitch Ryumin of the Russian Space Agency. Astronaut Andrew S. W. Thomas also returned to Earth from Mir as an STS-91 crew member after 141 days in space.

  12. NASA Administrator Daniel Goldin greets Mme. Aline Chretien at launch of mission STS-96

    NASA Technical Reports Server (NTRS)

    1999-01-01

    NASA Administrator Daniel Goldin (left) greets Mme. Aline Chretien, wife of the Canadian Prime Minister, at the launch of STS-96. Looking on in the background (between them) is former astronaut Jean-Loup Chretien (no relation), who flew on STS-86. Mme. Chretien attended the launch because one of the STs-96 crew is Mission Specialist Julie Payette, who represents the Canadian Space Agency. Space Shuttle Discovery launched on time at 6:49:42 a.m. EDT to begin a 10-day logistics and resupply mission for the International Space Station. Along with such payloads as a Russian crane, the Strela; a U.S.-built crane; the Spacehab Oceaneering Space System Box (SHOSS), a logistics items carrier; and STARSHINE, a student-involved experiment, Discovery carries about 4,000 pounds of supplies, to be stored aboard the station for use by future crews, including laptop computers, cameras, tools, spare parts, and clothing. The mission includes a space walk to attach the cranes to the outside of the ISS for use in future construction. Landing is expected at the SLF on June 6 about 1:58 a.m. EDT.

  13. Dr. Robert H. Goddard and His Rocket

    NASA Technical Reports Server (NTRS)

    2004-01-01

    Goddard rocket with four rocket motors. This rocket attained an altitude of 200 feet in a flight, November 1936, at Roswell, New Mexico. From 1930 to 1941, Dr. Goddard made substantial progress in the development of progressively larger rockets which attained altitudes of 2400 meters, and refined his equipment for guidance and control, his techniques of welding, and his insulation, pumps, and other associated equipment. In many respects, Dr. Goddard laid the essential foundations of practical rocket technology

  14. Leadership in Space: Selected Speeches of NASA Administrator Michael Griffin, May 2005 - October 2008

    NASA Technical Reports Server (NTRS)

    Griffin, Michael

    2008-01-01

    Speech topics include: Leadership in Space; Space Exploration: Real and Acceptable Reasons; Why Explore Space?; Space Exploration: Filling up the Canvas; Continuing the Voyage: The Spirit of Endeavour; Incorporating Space into Our Economic Sphere of Influence; The Role of Space Exploration in the Global Economy; Partnership in Space Activities; International Space Cooperation; National Strategy and the Civil Space Program; What the Hubble Space Telescope Teaches Us about Ourselves; The Rocket Team; NASA's Direction; Science and NASA; Science Priorities and Program Management; NASA and the Commercial Space Industry; NASA and the Business of Space; American Competitiveness: NASA's Role & Everyone's Responsibility; Space Exploration: A Frontier for American Collaboration; The Next Generation of Engineers; System Engineering and the "Two Cultures" of Engineering; Generalship of Engineering; NASA and Engineering Integrity; The Constellation Architecture; Then and Now: Fifty Years in Space; The Reality of Tomorrow; and Human Space Exploration: The Next 50 Years.

  15. NASA SSA for Robotic Missions

    NASA Technical Reports Server (NTRS)

    Newman, Lauri K.

    2009-01-01

    This viewgraph presentation reviews NASA's Space Situational Awareness (SSA) activities as preparation for robotic missions and Goddard's role in this work. The presentation includes the preparations that Goddard Space Flight Center (GSFC) has made to provide consolidated space systems protection indluding consolidating GSFC support for Orbit Debris analysis, conjunction assessment and collision avoidance, commercial and foreign support, and protection of GSFC managed missions.

  16. Guidelines for development of NASA (National Aeronautics and Space Administration) computer security training programs

    NASA Technical Reports Server (NTRS)

    Tompkins, F. G.

    1983-01-01

    The report presents guidance for the NASA Computer Security Program Manager and the NASA Center Computer Security Officials as they develop training requirements and implement computer security training programs. NASA audiences are categorized based on the computer security knowledge required to accomplish identified job functions. Training requirements, in terms of training subject areas, are presented for both computer security program management personnel and computer resource providers and users. Sources of computer security training are identified.

  17. National Aeronautics and Space Administration (NASA)/American Society of Engineering Education (ASEE) Summer Faculty Fellowship Program - 2000

    NASA Technical Reports Server (NTRS)

    Bannerot, Richard B. (Editor); Sickorez, Donn G. (Editor)

    2003-01-01

    The 2000 Johnson Space Center (JSC) National Aeronautics and Space Administration (NASA)/American Society for Engineering Education (ASEE) Summer Faculty Fellowship Program was conducted by the University of Houston and JSC. The 10-week program was operated under the auspices of the ASEE. The program at JSC, as well as the programs at other NASA Centers, was funded by the Office of University Affairs, NASA Headquarters, Washington, D.C. The objectives of the program, which began in 1965 at JSC and 1964 nationally, are to (1) further the professional knowledge of qualified engineering and science faculty, (2) stimulate an exchange of ideas between participants and NASA, (3) enrich and refresh the research and teaching activities of participants' institutions, and (4) contribute to the research objectives of the NASA Centers. Each faculty fellow spent at least 10 weeks at JSC engaged in a research project commensurate with her/his interests and background, and worked in collabroation with a NASA/JSC colleague. This document is a compilation of the final reports on the research projects done by the faculty fellows during the summer of 2000.

  18. Goddard Geophysical and Astronomical Observatory

    NASA Technical Reports Server (NTRS)

    Figueroa, Ricardo

    2013-01-01

    This report summarizes the technical parameters and the technical staff of the VLBI system at the fundamental station GGAO. It also gives an overview about the VLBI activities during the report year. The Goddard Geophysical and Astronomical Observatory (GGAO) consists of a 5-meter radio telescope for VLBI, a new 12-meter radio telescope for VLBI2010 development, a 1-meter reference antenna for microwave holography development, an SLR site that includes MOBLAS-7, the NGSLR development system, and a 48" telescope for developmental two-color Satellite Laser Ranging, a GPS timing and development lab, a DORIS system, meteorological sensors, and a hydrogen maser. In addition, we are a fiducial IGS site with several IGS/IGSX receivers. GGAO is located on the east coast of the United States in Maryland. It is approximately 15 miles NNE of Washington, D.C. in Greenbelt, Maryland.

  19. Goddard's Astrophysics Science Division Annual Report 2011

    NASA Technical Reports Server (NTRS)

    Centrella, Joan; Reddy, Francis; Tyler, Pat

    2012-01-01

    The Astrophysics Science Division(ASD) at Goddard Space Flight Center(GSFC)is one of the largest and most diverse astrophysical organizations in the world, with activities spanning a broad range of topics in theory, observation, and mission and technology development. Scientific research is carried out over the entire electromagnetic spectrum from gamma rays to radiowavelengths as well as particle physics and gravitational radiation. Members of ASD also provide the scientific operations for three orbiting astrophysics missions WMAP, RXTE, and Swift, as well as the Science Support Center for the Fermi Gamma-ray Space Telescope. A number of key technologies for future missions are also under development in the Division, including X-ray mirrors, space-based interferometry, high contract imaging techniques to serch for exoplanets, and new detectors operating at gamma-ray, X-ray, ultraviolet, infrared, and radio wavelengths. The overriding goals of ASD are to carry out cutting-edge scientific research, and provide Project Scientist support for spaceflight missions, implement the goals of the NASA Strategic Plan, serve and suppport the astronomical community, and enable future missions by conceiving new conepts and inventing new technologies.

  20. Goddard's Astrophysics Science Division Annual Report 2013

    NASA Technical Reports Server (NTRS)

    Weaver, Kimberly A. (Editor); Reddy, Francis J. (Editor); Tyler, Patricia A. (Editor)

    2014-01-01

    The Astrophysics Science Division (ASD) at Goddard Space Flight Center (GSFC) is one of the largest and most diverse astrophysical organizations in the world, with activities spanning a broad range of topics in theory, observation, and mission and technology development. Scientific research is carried out over the entire electromagnetic spectrum from gamma rays to radio wavelengths as well as particle physics and gravitational radiation. Members of ASD also provide the scientific operations for two orbiting astrophysics missions Fermi Gamma-ray Space Telescope and Swift as well as the Science Support Center for Fermi. A number of key technologies for future missions are also under development in the Division, including X-ray mirrors, space-based interferometry, high contrast imaging techniques to search for exoplanets, and new detectors operating at gamma-ray, X-ray, ultraviolet, infrared, and radio wavelengths. The overriding goals of ASD are to carry out cutting-edge scientific research, provide Project Scientist support for spaceflight missions, implement the goals of the NASA Strategic Plan, serve and support the astronomical community, and enable future missions by conceiving new concepts and inventing new technologies.

  1. The Goddard High Resolution Spectrograph Scientific Support Contract

    NASA Technical Reports Server (NTRS)

    1997-01-01

    In 1988, Computer Sciences Corporation (CSC) was selected as the Goddard High Resolution Spectrograph (GHRS) Scientific Support Contractor (SSC). This was to have been a few months before the launch of NASA's first Great Observatory, the Hubble Space Telescope (HST). As one of five scientific instruments on HST, the GHRS was designed to obtain spectra in the 1050-3300 A ultraviolet wavelength region with a resolving power, lambda/Delta(lambda) , of up to 100,000 and relative photometric accuracy to 1%. It was built by Ball AeroSpace Systems Group under the guidance of the GHRS Investigation Definition Team (IDT), comprised of 16 scientists from the US and Canada. After launch, the IDT was to perform the initial instrument calibration and execute a broad scientific program during a five-year Guaranteed Time Observation (GTO) period. After a year's delay, the launch of HST occurred in April 1990, and CSC participated in the in-orbit calibration and first four years of GTO observations with the IDT. The HST primary mirror suffered from spherical aberration, which reduced the spatial and spectral resolution of Large Science Aperture (LSA) observations and decreased the throughput of the Small Science Aperture (SSA) by a factor of two. Periodic problems with the Side 1 carrousel electronics and anomalies with the low-voltage power supply finally resulted in a suspension of the use of Side 1 less than two years after launch. At the outset, the GHRS SSC task involved work in four areas: 1) to manage and operate the GHRS Data Analysis Facility (DAF); 2) to support the second Servicing Mission Observatory Verification (SMOV) program, as well as perform system engineering analysis of the GHRS as nesessary; 3) to assist the GHRS IDT with their scientific research programs, particularly the GSFC members of the team, and 4) to provide administrative and logistic support for GHRS public information and educational activities.

  2. Guidelines for health surveillance in the NASA (National Aeronautics and Space Administration) workplace

    NASA Technical Reports Server (NTRS)

    1984-01-01

    The adequacy of biomedical data sheets used by the NASA medical staff for NASA employees and contractors was assessed. Procedures for developing medical histories, conducting medical examinations, and collecting toxicity data were reviewed. Recommendations for employee health maintenance and early detection of work-related abnormalities are given.

  3. National Aeronautics and Space Administration (NASA)/American Society for Engineering Education (ASEE) Summer Faculty Fellowship Program, 1987, volume 2

    NASA Technical Reports Server (NTRS)

    Jones, William B., Jr. (Editor); Goldstein, Stanley H. (Editor)

    1987-01-01

    The 1987 Johnson Space Center (JCS) National Aeronautics and Space Administration (NASA)/American Society for Engineering Education (ASEE) Summer Faculty Fellowship program was conducted by Texas A and M University and JSC. The 10-week program was operated under the auspices of ASEE. The basic objectives of the program are: to further the professional knowledge of qualified engineering and science faculty members; to stimulate an exchange of ideas between participants and NASA; to enrich and refresh the research and teaching activities of participants' institutions; and to contribute to the research objective of the NASA Centers. This document is a compilation of the final reports on the research projects done by the faculty fellows during the summer of 1987.

  4. Goddard Earth Sciences and Technology Center (GEST)

    NASA Technical Reports Server (NTRS)

    2002-01-01

    This document summarizes the activities of the Goddard Earth Sciences and Technology Center (GEST), a consortium of scientists and engineers led by the University of Maryland, Baltimore County (UMBC), during the contract reporting period. Topics covered include: new programs, eligibility and selection criteria, Goddard Coastal Research Graduate Fellowship Program and staffing changes.

  5. 76 FR 64386 - NASA Advisory Council; Information Technology Infrastructure Committee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-18

    ...: 1-877-906-3018, 5343670. ADDRESSES: NASA Goddard Space Flight Center, 8800 Greenbelt Road, Building...'s license to enter into the NASA Goddard Space Flight Center, and must state that they are attending... the Goddard Space Flight Center (GSFC) must provide their full name, company affiliation...

  6. Software process improvement in the NASA software engineering laboratory

    NASA Technical Reports Server (NTRS)

    Mcgarry, Frank; Pajerski, Rose; Page, Gerald; Waligora, Sharon; Basili, Victor; Zelkowitz, Marvin

    1994-01-01

    The Software Engineering Laboratory (SEL) was established in 1976 for the purpose of studying and measuring software processes with the intent of identifying improvements that could be applied to the production of ground support software within the Flight Dynamics Division (FDD) at the National Aeronautics and Space Administration (NASA)/Goddard Space Flight Center (GSFC). The SEL has three member organizations: NASA/GSFC, the University of Maryland, and Computer Sciences Corporation (CSC). The concept of process improvement within the SEL focuses on the continual understanding of both process and product as well as goal-driven experimentation and analysis of process change within a production environment.

  7. Cost efficient operations: Challenge from NASA administrator and lessons learned from hunting sacred cows

    NASA Technical Reports Server (NTRS)

    Hornstein, Rhoda Shaller; Casasanta, Ralph; Hei, Donald J., Jr.; Hawkins, Frederick J.; Burke, Eugene S., Jr.; Todd, Jacqueline E.; Bell, Jerome A.; Miller, Raymond E.; Willoughby, John K.; Gardner, Jo Anne

    1996-01-01

    The conclusions and recommendations that resulted from NASA's Hunting Sacred Cows Workshop are summarized, where a sacred cow is a belief or assumption that is so well established that it appears to be unreasonably immune to criticism. A link was identified between increased complexity and increased costs, especially in relation to automation and autonomy. An identical link was identified for outsourcing and commercialization. The work of NASA's Cost Less team is reviewed. The following conclusions were stated by the Cost Less team and considered at the workshop: the way Nasa conducts business must change; NASA makes its best contributions to the public areas not addressed by other government organizations; the management tool used for the last 30 years is no longer suitable; the most important work on any program or project is carried out before the development or operations stages; automation should only be used to achieve autonomy if the reasons for automation are well understood, and NASA's most critical resources are its personnel.

  8. Dr. Robert H. Goddard and His Rockets

    NASA Technical Reports Server (NTRS)

    1926-01-01

    Dr. Robert H. Goddard and liquid oxygen-gasoline rocket in the frame from which it was fired on March 16, 1926, at Auburn, Mass. It flew for only 2.5 seconds, climbed 41 feet, and landed 184 feet away in a cabbage patch. From 1930 to 1941, Dr. Goddard made substantial progress in the development of progressively larger rockets, which attained altitudes of 2400 meters, and refined his equipment for guidance and control, his techniques of welding, and his insulation, pumps, and other associated equipment. In many respects, Dr. Goddard laid the essential foundations of practical rocket technology

  9. A Lifeline Home: Goddard's Final Shuttle Mission

    NASA Video Gallery

    Controllers at Goddard's Network Integration Center share their thoughts as the 30-year-old Shuttle Program comes to an end with the final flight of STS-135, which concluded with a textbook landing...

  10. The 2003 Goddard Rocket Replica Project

    NASA Technical Reports Server (NTRS)

    Farr, Rebecca A.

    2003-01-01

    A group of volunteers from Marshall Space Flight Center using information and records available,construct a working, flying replica of Robert Goddard's 1926 liquid rocket as well as accurate static display version. Document the effort for posterity.

  11. Goddard trajectory determination subsystem: Mathematical specifications

    NASA Technical Reports Server (NTRS)

    Wagner, W. E. (Editor); Velez, C. E. (Editor)

    1972-01-01

    The mathematical specifications of the Goddard trajectory determination subsystem of the flight dynamics system are presented. These specifications include the mathematical description of the coordinate systems, dynamic and measurement model, numerical integration techniques, and statistical estimation concepts.

  12. Guidelines for developing NASA (National Aeronautics and Space Administration) ADP security risk management plans

    NASA Technical Reports Server (NTRS)

    Tompkins, F. G.

    1983-01-01

    This report presents guidance to NASA Computer security officials for developing ADP security risk management plans. The six components of the risk management process are identified and discussed. Guidance is presented on how to manage security risks that have been identified during a risk analysis performed at a data processing facility or during the security evaluation of an application system.

  13. Risk management. National Aeronautics and Space Administration (NASA). Interim rule adopted as final with changes.

    PubMed

    2000-11-22

    This is a final rule amending the NASA FAR Supplement (NFS) to emphasize considerations of risk management, including safety, security (including information technology security), health, export control, and damage to the environment, within the acquisition process. This final rule addresses risk management within the context of acquisition planning, selecting sources, choosing contract type, structuring award fee incentives, administering contracts, and conducting contractor surveillance.

  14. Review of NASA's (National Aeronautics and Space Administration) Numerical Aerodynamic Simulation Program

    NASA Technical Reports Server (NTRS)

    1984-01-01

    NASA has planned a supercomputer for computational fluid dynamics research since the mid-1970's. With the approval of the Numerical Aerodynamic Simulation Program as a FY 1984 new start, Congress requested an assessment of the program's objectives, projected short- and long-term uses, program design, computer architecture, user needs, and handling of proprietary and classified information. Specifically requested was an examination of the merits of proceeding with multiple high speed processor (HSP) systems contrasted with a single high speed processor system. The panel found NASA's objectives and projected uses sound and the projected distribution of users as realistic as possible at this stage. The multiple-HSP, whereby new, more powerful state-of-the-art HSP's would be integrated into a flexible network, was judged to present major advantages over any single HSP system.

  15. Innovation @ NASA

    NASA Technical Reports Server (NTRS)

    Roman, Juan A.

    2014-01-01

    This presentation provides an overview of the activities National Aeronautics and Space Administration (NASA) is doing to encourage innovation across the agency. All information provided is available publicly.

  16. Guidelines for contingency planning NASA (National Aeronautics and Space Administration) ADP security risk reduction decision studies

    NASA Technical Reports Server (NTRS)

    Tompkins, F. G.

    1984-01-01

    Guidance is presented to NASA Computer Security Officials for determining the acceptability or unacceptability of ADP security risks based on the technical, operational and economic feasibility of potential safeguards. The risk management process is reviewed as a specialized application of the systems approach to problem solving and information systems analysis and design. Reporting the results of the risk reduction analysis to management is considered. Report formats for the risk reduction study are provided.

  17. Webb Telescope Backplane Arrives at NASA Goddard Space Flight Center

    NASA Video Gallery

    Webb Telescope's Backplane arrived at Joint Base Andrews on Monday, August 24, 2015 aboard a U.S. Air Force C-5 cargo plane. The Backplane, inside the Space Telescope Transporter for Air Road and S...

  18. Marshall Team Fires Recreated Goddard Rocket

    NASA Technical Reports Server (NTRS)

    2003-01-01

    In honor of the Centernial of Flight Celebration and commissioned by the American Institute of Aeronautics and Astronautics (AIAA), a team of engineers from Marshall Space Flight Center (MSFC) built a replica of the first liquid-fueled rocket. The original rocket, designed and built by rocket engineering pioneer Robert H. Goddard in 1926, opened the door to modern rocketry. Goddard's rocket reached an altitude of 41 feet while its flight lasted only 2.5 seconds. The Marshall design team's plan was to stay as close as possible to an authentic reconstruction of Goddard's rocket. The same propellants were used - liquid oxygen and gasoline - as available during Goddard's initial testing and firing. The team also tried to construct the replica using the original materials and design to the greatest extent possible. By purposely using less advanced techniques and materials than many that are available today, the team encountered numerous technical challenges in testing the functional hardware. There were no original blueprints or drawings, only photographs and notes. However, this faithful adherence to historical accuracy has allowed the team to experience many of the same challenges Goddard faced 77 years ago, and more fully appreciate the genius of this extraordinary man. In this photo, the replica is shown firing in the A-frame launch stand in near-flight configuration at MSFC's Test Area 116 during the American Institute of Aeronautics and Astronautics 39th Joint Propulsion Conference on July 23, 2003.

  19. Goddard Space Flight Center's Partnership with Florida International University

    NASA Astrophysics Data System (ADS)

    Rishe, N. D.; Graham, S. C.; Gutierrez, M. E.

    2004-12-01

    NASA's Goddard Space Flight Center (GSFC) has been collaborating with Florida International University's High Performance Database Research Center (FIU HPDRC) for nearly ten years. Much of this collaboration was funded through a NASA Institutional Research Award (IRA). That award involved research in the Internet dissemination of geospatial data, and in recruiting and training student researchers. FIU's TerraFly web service presently serves more than 10,000 unique users per day by providing an easy-to-use mechanism for exploring geospatial data and imagery. IRA-supported students have received 47 Bachelor's degrees, 20 Master's degrees, and 2 Doctoral degrees at FIU. FIU leveraged IRA funding into over \\$19 million in other funding and donations for their research and training activities and has published nearly 150 scientific papers acknowledging the NASA IRA award. GSFC has worked closely with FIU HPDRC in the development of their geospatial data storage and dissemination research. TerraFly presents many NASA datasets such as the nationwide mosaic of LandSat 5, the PRISM precipitation model, the TRMM accumulated rainfall worldwide; as well as USGS aerial photography nationwide at 30cm to 1m resolutions, demographic data, Ikonos satellite imagery, and many more. Our presentation will discuss the lessons learned during the collaboration between GSFC and FIU as well as our current research projects.

  20. National Aeronautics and Space Administration (NASA) Environmental Control and Life Support (ECLS) Integrated Roadmap Development

    NASA Technical Reports Server (NTRS)

    Metcalf, Jordan; Peterson, Laurie; Carrasquillo, Robyn; Bagdigian, Robert

    2011-01-01

    At present, NASA has considered a number of future human space exploration mission concepts . Yet, detailed mission requirements and vehicle architectures remain mostly undefined, making technology investment strategies difficult to develop and sustain without a top-level roadmap to serve as a guide. This paper documents a roadmap for development of Environmental Control and Life Support Systems (ECLSS) capabilities required to enhance the long-term operation of the International Space Station (ISS) as well as enable beyond-Low Earth Orbit (LEO) human exploration missions. Three generic mission types were defined to serve as a basis for developing a prioritized list of needed capabilities and technologies. Those are 1) a short duration micro gravity mission; 2) a long duration transit microgravity mission; and 3) a long duration surface exploration mission. To organize the effort, ECLSS was categorized into three major functional groups (atmosphere, water, and solid waste management) with each broken down into sub-functions. The ability of existing state-of-the-art (SOA) technologies to meet the functional needs of each of the three mission types was then assessed by NASA subject matter experts. When SOA capabilities were deemed to fall short of meeting the needs of one or more mission types, those gaps were prioritized in terms of whether or not the corresponding capabilities enable or enhance each of the mission types. The result was a list of enabling and enhancing capabilities needs that can be used to guide future ECLSS development, as well as a list of existing hardware that is ready to go for exploration-class missions. A strategy to fulfill those needs over time was then developed in the form of a roadmap. Through execution of this roadmap, the hardware and technologies intended to meet exploration needs will, in many cases, directly benefit the ISS operational capability, benefit the Multi-Purpose Crew Vehicle (MPCV), and guide long-term technology

  1. NASA Animation Shows Hurricane Otto Over 5 Days

    NASA Video Gallery

    A 5-day movie of NOAA's GOES-East satellite infrared and visible imagery of Hurricane Otto was created by the NASA/NOAA GOES Project at NASA's Goddard Space Flight Center in Greenbelt, Maryland. Th...

  2. National Aeronautics and Space Administration (NASA) Environmental Control and Life Support (ECLS) Integrated Roadmap Development

    NASA Technical Reports Server (NTRS)

    Metcalf, Jordan; Peterson, Laurie; Carrasquillo, Robyn; Bagdigian, Robert

    2012-01-01

    Although NASA is currently considering a number of future human space exploration mission concepts, detailed mission requirements and vehicle architectures remain mostly undefined, making technology investment strategies difficult to develop and sustain without a top-level roadmap to serve as a guide. This paper documents the process and results of an effort to define a roadmap for Environmental Control and Life Support Systems (ECLSS) capabilities required to enhance the long-term operation of the International Space Station (ISS) as well as enable beyond-Low Earth Orbit (LEO) human exploration missions. Three generic mission types were defined to serve as a basis for developing a prioritized list of needed capabilities and technologies. Those are 1) a short duration micro-gravity mission; 2) a long duration microgravity mission; and 3) a long duration partial gravity (surface) exploration mission. To organize the effort, a functional decomposition of ECLSS was completed starting with the three primary functions: atmosphere, water, and solid waste management. Each was further decomposed into sub-functions to the point that current state-of-the-art (SOA) technologies could be tied to the sub-function. Each technology was then assessed by NASA subject matter experts as to its ability to meet the functional needs of each of the three mission types. When SOA capabilities were deemed to fall short of meeting the needs of one or more mission types, those gaps were prioritized in terms of whether or not the corresponding capabilities enable or enhance each of the mission types. The result was a list of enabling and enhancing capability needs that can be used to guide future ECLSS development, as well as a list of existing hardware that is ready to go for exploration-class missions. A strategy to fulfill those needs over time was then developed in the form of a roadmap. Through execution of this roadmap, the hardware and technologies intended to meet exploration needs

  3. NASA-GSFC Orbital Debris Research Priorities

    NASA Technical Reports Server (NTRS)

    Hull, Scott M.

    2014-01-01

    While quite a lot is known about the orbital debris environment and how to limit its growth, more remains to be learned. The curent priorities for research and development, from the NASA Goddard Space Flight Center perspective, will be discussed.

  4. Goddard Space Flight Center solar array missions, requirements and directions

    NASA Technical Reports Server (NTRS)

    Gaddy, Edward; Day, John

    1994-01-01

    The Goddard Space Flight Center (GSFC) develops and operates a wide variety of spacecraft for conducting NASA's communications, space science, and earth science missions. Some are 'in house' spacecraft for which the GSFC builds the spacecraft and performs all solar array design, analysis, integration, and test. Others are 'out of house' spacecraft for which an aerospace contractor builds the spacecraft and develops the solar array under direction from GSFC. The experience of developing flight solar arrays for numerous GSFC 'in house' and 'out of house' spacecraft has resulted in an understanding of solar array requirements for many different applications. This presentation will review those solar array requirements that are common to most GSFC spacecraft. Solar array technologies will be discussed that are currently under development and that could be useful to future GSFC spacecraft.

  5. Goddard's Astrophysics Science Divsion Annual Report 2014

    NASA Technical Reports Server (NTRS)

    Weaver, Kimberly (Editor); Reddy, Francis (Editor); Tyler, Pat (Editor)

    2015-01-01

    The Astrophysics Science Division (ASD, Code 660) is one of the world's largest and most diverse astronomical organizations. Space flight missions are conceived, built and launched to observe the entire range of the electromagnetic spectrum, from gamma rays to centimeter waves. In addition, experiments are flown to gather data on high-energy cosmic rays, and plans are being made to detect gravitational radiation from space-borne missions. To enable these missions, we have vigorous programs of instrument and detector development. Division scientists also carry out preparatory theoretical work and subsequent data analysis and modeling. In addition to space flight missions, we have a vibrant suborbital program with numerous sounding rocket and balloon payloads in development or operation. The ASD is organized into five labs: the Astroparticle Physics Lab, the X-ray Astrophysics Lab, the Gravitational Astrophysics Lab, the Observational Cosmology Lab, and the Exoplanets and Stellar Astrophysics Lab. The High Energy Astrophysics Science Archive Research Center (HEASARC) is an Office at the Division level. Approximately 400 scientists and engineers work in ASD. Of these, 80 are civil servant scientists, while the rest are resident university-based scientists, contractors, postdoctoral fellows, graduate students, and administrative staff. We currently operate the Swift Explorer mission and the Fermi Gamma-ray Space Telescope. In addition, we provide data archiving and operational support for the XMM mission (jointly with ESA) and the Suzaku mission (with JAXA). We are also a partner with Caltech on the NuSTAR mission. The Hubble Space Telescope Project is headquartered at Goddard, and ASD provides Project Scientists to oversee operations at the Space Telescope Science Institute. Projects in development include the Neutron Interior Composition Explorer (NICER) mission, an X-ray timing experiment for the International Space Station; the Transiting Exoplanet Sky Survey (TESS

  6. TRMM Data from the Goddard Earth Sciences (GES) DISC DAAC: Tropical Rainfall Measuring Mission (TRMM)

    NASA Technical Reports Server (NTRS)

    2003-01-01

    Tropical rainfall affects the lives and economies of a majority of the Earth's population. Tropical rain systems, such as hurricanes, typhoons, and monsoons, are crucial to sustaining the livelihoods of those living in the tropics. Excess rainfall can cause floods and great property and crop damage, whereas too little rainfall can cause drought and crop failure. The latent heat release during the process of precipitation is a major source of energy that drives the atmospheric circulation. This latent heat can intensify weather systems, affecting weather thousands of kilometers away, thus making tropical rainfall an important indicator of atmospheric circulation and short-term climate change. The Tropical Rainfall Measuring Mission (TRMM), jointly sponsored by the National Aeronautics and Space Administration (NASA) of the United States and the National Space Development Agency (NASDA) of Japan, provides visible, infrared, and microwave observations of tropical and subtropical rain systems. The satellite observations are complemented by ground radar and rain gauge measurements to validate satellite rain estimation techniques. Goddard Space Flight Center's involvement includes the observatory, four instruments, integration and testing of the observatory, data processing and distribution, and satellite operations. TRMM has a design lifetime of three years. It is currently in its fifth year of operation. Data generated from TRMM and archived at the GES DAAC are useful not only for hydrologists, atmospheric scientists, and climatologists, but also for the health community studying infectious diseases, the ocean research community, and the agricultural community.

  7. The Rocket Experiments of Robert H. Goddard, 1911 to 1930.

    ERIC Educational Resources Information Center

    Page, Brian R.

    1991-01-01

    Recounts the contributions of Robert Goddard from the years of 1911 to 1930 to the development of the physics of rocketry. Discusses the results of Goddard's series of rocket experiments endorsed by the Smithsonian Institute, and Goddard's claims to priority in the development of rocket theory. (MDH)

  8. Thermal Technology Development Activities at the Goddard Space Flight Center - 2001

    NASA Technical Reports Server (NTRS)

    Butler, Dan

    2002-01-01

    This presentation provides an overview of thermal technology development activities carried out at NASA's Goddard Space Flight Center during 2001. Specific topics covered include: two-phase systems (heat pipes, capillary pumped loops, vapor compression systems and phase change materials), variable emittance systems, advanced coatings, high conductivity materials and electrohydrodynamic (EHD) thermal coatings. The application of these activities to specific space missions is also discussed.

  9. Down and up with PERT at Goddard. [computer graphics applications for Program Evaluation and Review Technique

    NASA Technical Reports Server (NTRS)

    Zerega, J. E.

    1976-01-01

    During the 1960s NASA Goddard Space Flight Center (GSFC) used the Program Evaluation and Review Technique (PERT) as its principal schedule planning and control tool in flight projects. After a temporary replacement of PERT by other techniques, PERT has been reinstituted on all but one of GSFC's flight projects. PERT has been combined with a computer graphics program which makes it possible to produce PERT drawings in only a few hours' time.

  10. Satellite Servicing in Mission Design Studies at the NASA GSFC

    NASA Technical Reports Server (NTRS)

    Leete, Stephen J.

    2003-01-01

    Several NASA missions in various stages of development have undergone one-week studies in the National Aeronautics and Space Administration (NASA) Goddard Space Flight Center (GSFC) Integrated Mission Design Center (IMDC), mostly in preparation for proposals. The possible role of satellite servicing has been investigated for several of these missions, applying the lessons learned from Hubble Space Telescope (HST) servicing, taking into account the current state of the art, projecting into the future, and implementing NASA long-range plans, and is presented here. The general benefits and costs of injecting satellite servicing are detailed, including components such as mission timeline, mass, fuel, spacecraft design, risk abatement, life extension, and improved performance. The approach taken in addressing satellite servicing during IMDC studies is presented.

  11. Optoelectronics research for communication programs at the Goddard Space Flight Center

    NASA Technical Reports Server (NTRS)

    Krainak, Michael A.

    1991-01-01

    Current optoelectronics research and development of high-power, high-bandwidth laser transmitters, high-bandwidth, high-sensitivity optical receivers, pointing, acquisition and tracking components, and experimental and theoretical system modeling at the NASA Goddard Space Flight Center is reviewed. Program hardware and space flight milestones are presented. It is believed that these experiments will pave the way for intersatellite optical communications links for both the NASA Advanced Tracking and Data Relay Satellite System and commercial users in the 21st century.

  12. National Aeronautics and Space Administration (NASA)/American Society for Engineering Education (ASEE) Summer Faculty Fellowship Program: 1996. Volume 2

    NASA Technical Reports Server (NTRS)

    Bannerot, Richard B. (Editor); Sickorez, Donn G. (Editor)

    1997-01-01

    The objectives of the program, which began nationally in 1964 and at JSC in 1965 are to (1) further the professional knowledge qualified engineering and science faculty members, (2) stimulate an exchange of ideas between participants and NASA, (3) and refresh the research and teaching activities of participants' institutions, and (4) contribute to the research objectives of NASA centers. Each faculty fellow spent at least 10 weeks at JSC engaged in a research project in collaboration with a NASA JSC colleague.

  13. National Aeronautics and Space Administration (NASA)/American Society for Engineering Education (ASEE) summer faculty fellowship program, 1986, volume 1

    NASA Technical Reports Server (NTRS)

    Mcinnis, Bayliss (Editor); Goldstein, Stanley (Editor)

    1987-01-01

    The Johnson Space Center (JSC) NASA/ASEE Summer Faculty Fellowship Program was conducted by the University of Houston. The basic objectives of the program are: (1) to further the professional knowledge of qualified engineering and science faculty members; (2) to stimulate an exchange of ideas between participants and NASA; (3) to enrich and refresh the research and teaching objectives of participants' institutions; and (4) to contribute to the research objectives of the NASA Centers. Each faculty fellow spent ten weeks at JSC engaged in a research project commensurate with his interests and background and worked in collaboration with a NASA/JSC colleague. Volume 1 contains sections 1 through 14.

  14. Remembering Robert Goddard's vision 100 years later

    NASA Astrophysics Data System (ADS)

    Stern, David P.

    “Life, liberty, and the pursuit of happiness” —such are the goals of most of us.Yet a few always exist who feel called by a higher purpose. Society often owes them a great deal.Robert Hutchins Goddard, whose work made spaceflight possible, found his vision 100 years ago this October as a youth of 17. His family was staying on the farm of a relative, when he was asked to trim the branches of a cherry tree behind the barn.

  15. Advancing NASA's Satellite Control Capabilities: More than Just Better Technology

    NASA Technical Reports Server (NTRS)

    Smith, Danford

    2008-01-01

    This viewgraph presentation reviews the work of the Goddard Mission Services Evolution Center (GMSEC) in the development of the NASA's satellite control capabilities. The purpose of the presentation is to provide a quick overview of NASA's Goddard Space Flight Center and our approach to coordinating the ground system resources and development activities across many different missions. NASA Goddard's work in developing and managing the current and future space exploration missions is highlighted. The GMSEC, was established to to coordinate ground and flight data systems development and services, to create a new standard ground system for many missions and to reflect the reality that business reengineering and mindset were just as important.

  16. A Goddard Multi-Scale Modeling System with Unified Physics

    NASA Technical Reports Server (NTRS)

    Tao, W.K.; Anderson, D.; Atlas, R.; Chern, J.; Houser, P.; Hou, A.; Lang, S.; Lau, W.; Peters-Lidard, C.; Kakar, R.; Kumar, S.; Lapenta, W.; Li, X.; Matsui, T.; Rienecker, M.; Shen, B.W.; Shi, J.J.; Simpson, J.; Zeng, X.

    2008-01-01

    Numerical cloud resolving models (CRMs), which are based the non-hydrostatic equations of motion, have been extensively applied to cloud-scale and mesoscale processes during the past four decades. Recent GEWEX Cloud System Study (GCSS) model comparison projects have indicated that CRMs agree with observations in simulating various types of clouds and cloud systems from different geographic locations. Cloud resolving models now provide statistical information useful for developing more realistic physically based parameterizations for climate models and numerical weather prediction models. It is also expected that Numerical Weather Prediction (NWP) and regional scale model can be run in grid size similar to cloud resolving model through nesting technique. Current and future NASA satellite programs can provide cloud, precipitation, aerosol and other data at very fine spatial and temporal scales. It requires a coupled global circulation model (GCM) and cloud-scale model (termed a szrper-parameterization or multi-scale modeling -framework, MMF) to use these satellite data to improve the understanding of the physical processes that are responsible for the variation in global and regional climate and hydrological systems. The use of a GCM will enable global coverage, and the use of a CRM will allow for better and more sophisticated physical parameterization. NASA satellite and field campaign can provide initial conditions as well as validation through utilizing the Earth Satellite simulators. At Goddard, we have developed a multi-scale modeling system with unified physics. The modeling system consists a coupled GCM-CRM (or MMF); a state-of-the-art weather research forecast model (WRF) and a cloud-resolving model (Goddard Cumulus Ensemble model). In these models, the same microphysical schemes (2ICE, several 3ICE), radiation (including explicitly calculated cloud optical properties), and surface models are applied. In addition, a comprehensive unified Earth Satellite

  17. Color/magnitude calibration for National Aeronautics and Space Administration (NASA) standard Fixed-Head Star Trackers (FHST)

    NASA Technical Reports Server (NTRS)

    Landis, J.; Leid, Terry; Garber, A.; Lee, M.

    1994-01-01

    This paper characterizes and analyzes the spectral response of Ball Aerospace fixed-head star trackers, (FHST's) currently in use on some three-axis stabilized spacecraft. The FHST output is a function of the frequency and intensity of the incident light and the position of the star image in the field of view. The FHST's on board the Extreme Ultraviolet Explorer (EUVE) have had occasional problems identifying stars with a high B-V value. These problems are characterized by inaccurate intensity counts observed by the tracker. The inaccuracies are due to errors in the observed star magnitude values. These errors are unique to each individual FHST. For this reason, data were also collected and analyzed from the Upper Atmosphere Research Satellite (UARS). As a consequence of this work, the Goddard Space Flight Center (GSFC) Flight Dynamics Division (FDD) hopes to improve the attitude accuracy on these missions and to adopt better star selection procedures for catalogs.

  18. Dr. Goddard and a 1918 version of 'Bazooka'

    NASA Technical Reports Server (NTRS)

    2004-01-01

    Dr. Robert H. Goddard loading a 1918 version of the Bazooka of World War II. From 1930 to 1941, Dr. Goddard made substantial progress in the development of progressively larger rockets, which attained altitudes of 2400 meters, and refined his equipment for guidance and control, his techniques of welding, and his insulation, pumps, and other associated equipment. In many respects, Dr. Goddard laid the essential foundations of practical rocket technology

  19. I/O Parallelization for the Goddard Earth Observing System Data Assimilation System (GEOS DAS)

    NASA Technical Reports Server (NTRS)

    Lucchesi, R.; Sawyer, W.; Takacs, L. L.; Lyster, P.; Zero, J.

    1999-01-01

    The National Aeronautics and Space Administration (NASA) Data Assimilation Office (DAO) at the Goddard Space Flight Center (GSFC) has developed the GEOS DAS, a data assimilation system that provides production support for NASA missions and will support NASA's Earth Observing System (EOS) in the coming years. The DAO's support of the EOS project along with the requirement of producing long-term reanalysis datasets with an unvarying system levy a large I/O burden on the future system. The DAO has been involved in prototyping parallel implementations of the GEOS DAS for a number of years and is now converting the production version from shared-memory parallelism to distributed-memory parallelism using the portable Message-Passing Interface (MPI). If the MPI-based GEOS DAS is to meet these production requirements, we must make I/O from the parallel system efficient. We have designed a scheme that allows efficient I/O processing while retaining portability, reducing the need for post-processing, and producing data formats that are required by our users, both internal and external. The first phase of the GEOS DAS Parallel I/O System (GPIOS) will expand upon the common method of gathering global data to a Single PE for output. Instead of using a PE also tasked with primary computation, a number of PEs will be dedicated to I/O and its related tasks. This allows the data transformations and formatting required prior to output to take place asynchronously with respect to the GEOS DAS assimilation cycle, improving performance and generating output data sets in a format convenient for our users. I/O PEs can be added as needed to handle larger data volumes or to meet user file specifications. We will show I/O performance results from a prototype MPI GCM integrated with GPIOS. Phase two of GPIOS development will examine ways of integrating new software technologies to further improve performance and build scalability into the system. The maturing of MPI-IO implementations and

  20. Overview of NASA Cryocooler Programs

    NASA Technical Reports Server (NTRS)

    Boyle, R. F.; Ross, R. G., Jr.; Krebs, Carolyn A. (Technical Monitor)

    2001-01-01

    Mechanical cryocoolers represent a significant enabling technology for NASA's Earth and Space Science Enterprises, as well as augmenting existing capabilities in space exploration. An over-view is presented of on-going efforts at the Goddard Space Flight Center and the Jet Propulsion Laboratory in support of current flight projects, near-term flight instruments, and long-term technology development.

  1. Stray Light Suppression in the Goddard IRAM 2-Millimeter Observer (GISMO)

    NASA Technical Reports Server (NTRS)

    Sharp, E. H.; Benford, D. J.; Fixsen, D. J.; Moseley, S. H.; Staguhn, J. G.; Wollack, E. J.

    2012-01-01

    The Goddard-IRAM Superconducting 2 Millimeter Observer (GISMO) is an 8xl6 Transition Edge Sensor (TES) array of bolometers built as a pathfinder for TES detector development efforts at NASA Goddard Space Flight Center. GISMO has been used annually at the Institut de Radioastronomie Millimetrique (IRAM) 30 meter telescope since 2007 under engineering time and was opened in the spring of 2012 to the general astronomical community. The spring deployment provided an opportunity to modify elements of the room temperature optics before moving the instrument to its new permanent position in the telescope receiver cabin. This allowed for the possibility to extend the cryostat, introduce improved cold baffling and thus further optimize the stray light performance for final astronomical use of the instrument, which has been completed and validated. We will demonstrate and discuss several of the methods used to quantify and limit the influence of stray light in the GISMO camera.

  2. Research and Technology, 1987, Goddard Space Flight Center

    NASA Technical Reports Server (NTRS)

    Guerny, Gene (Editor); Moe, Karen (Editor); Paddack, Steven (Editor); Soffen, Gerald (Editor); Sullivan, Walter (Editor); Ballard, Jan (Editor)

    1987-01-01

    Research at Goddard Space Flight Center during 1987 is summarized. Topics addressed include space and earth sciences, technology, flight projects and mission definition studies, and institutional technology.

  3. Robert H. Goddard and His Liquid-Gasoline Rocket

    NASA Technical Reports Server (NTRS)

    1926-01-01

    Dr. Goddard's 1926 rocket configuration. Dr. Goddard's liquid oxygen-gasoline rocket was fired on March 16, 1926, at Auburn, Massachusetts. It flew for only 2.5 seconds, climbed 41 feet, and landed 184 feet away in a cabbage patch. From 1930 to 1941, Dr. Goddard made substantial progress in the development of progressively larger rockets, which attained altitudes of 2400 meters, and refined his equipment for guidance and control, his techniques of welding, and his insulation, pumps, and other associated equipment. In many respects, Dr. Goddard laid the essential foundations of practical rocket technology

  4. NASA Now: Earth Science Week: Exploring Energy

    NASA Video Gallery

    During this installment of NASA Now, you’ll see some of the ways NASA studies Earth. You’ll meet Eric Brown de Colstoun, a physical scientist at NASA’s Goddard Space Flight Center in Greenbel...

  5. Space Shuttle main engine. NASA has not evaluated the alternate fuel turbopump costs and benefits. Report to the Administrator of the National Aeronautics and Space Administration

    NASA Astrophysics Data System (ADS)

    1993-10-01

    NASA's plans to develop an alternate high pressure fuel turbopump for the Space Shuttle's main engines were assessed by the General Accounting Office as a part of the evaluation of the Space Shuttle Safety and Obsolescence Upgrade program. The objective was to determine whether NASA has adequately analyzed cost, performance, and benefits that are expected to result from this program in comparison to other alternatives before resuming development of the alternate pump, which was suspended in 1992. The alternate fuel pump is one of five improvements being developed or planned to significantly enhance safety margins of the engines.

  6. National Aeronautics and Space Administration (NASA)/American Society for Engineering Education (ASEE) Summer Faculty Fellowship Program, 1993, volume 1

    NASA Technical Reports Server (NTRS)

    Hyman, William A. (Editor); Goldstein, Stanley H. (Editor)

    1993-01-01

    The JSC NASA/ASEE Summer Faculty Fellowship Program was conducted by Texas A&M University and JSC. The objectives of the program, which began nationally in 1964 and at JSC in 1965, are as follows: (1) to further the professional knowledge of qualified engineering and science faculty members; (2) to stimulate an exchange of ideas between participants and NASA; (3) to enrich and refresh the research and teaching activities of participants' institutions; and (4) to contribute to the research objectives of the NASA centers. Each faculty fellow spent at least 10 weeks at JSC engaged in a research project in collaboration with a NASA/JSC colleague. This document is a compilation of the final reports on the research projects completed by the faculty fellows during the summer of 1993.

  7. National Aeronautics and Space Administration (NASA)/American Society for Engineering Education (ASEE) Summer Faculty Fellowship Program, 1998. Volume 1

    NASA Technical Reports Server (NTRS)

    Bannerot, Richard B. (Editor); Sickorez, Donn G. (Editor)

    1999-01-01

    JSC NASA/ASEE Summer Faculty Fellowship Program was conducted by the University of Houston and JSC, under ASEE. The objectives of the program are to further the professional knowledge of qualified engineering and science members; stimulate an exchange of ideas between participants and NASA; enrich and refresh the research and teaching activities of participants; and contribute to the research objectives of the NASA Centers. Each faculty fellow spent at least 10 weeks at JSC engaged in a research project commensurate with his/her interests and background and worked in collaboration with a NASA/JSC colleague. This document is a compilation of the final reports on the fellows' research projects performed during the summer of 1998. Volume 1, current volume, contains the first reports, and volume 2 contains the remaining reports.

  8. Code of conduct for the International Space Station Crew. National Aeronautics and Space Administration (NASA). Interim final rule.

    PubMed

    2000-12-21

    NASA is issuing new regulations entitled "International Space Station Crew," to implement certain provisions of the International Space Station (ISS) Intergovernmental Agreement (IGA) regarding ISS crewmembers' observance of an ISS Code of Conduct.

  9. National Aeronautics and Space Administration (NASA)/American Society for Engineering Education (ASEE) Summer Faculty Fellowship Program, 1993, volume 2

    NASA Technical Reports Server (NTRS)

    Hyman, William A. (Editor); Goldstein, Stanley H. (Editor)

    1993-01-01

    The JSC NASA/ASEE Summer Faculty Fellowship Program was conducted by Texas A&M University and JSC. The objectives of the program, which began nationally in 1964 and at JSC in 1965, are (1) to further the professional knowledge of qualified engineering and science faculty members; (2) to stimulate an exchange of ideas between participants and NASA; (3) to enrich and refresh the research and teaching activities of participant's institutions; and (4) to contribute to the research objectives of the NASA centers. Each faculty fellow spent at least 10 weeks at JSC engaged in a research project in collaboration with a NASA/JSC colleague. A compilation of the final reports on the research projects completed by the faculty fellows during the summer of 1993 is presented.

  10. National Aeronautics and Space Administration (NASA)/American Society for Engineering Education (ASEE) Summer Faculty Fellowship Program, 1994, volume 1

    NASA Technical Reports Server (NTRS)

    Bannerot, Richard; Sickorez, Donn G.

    1995-01-01

    The JSC NASA/ASEE Summer Faculty Fellowship Program was conducted by Texas A&M University and JSC. The objectives of the program, which began nationally in 1964 and at JSC in 1965 are to: (1) further the professional knowledge of qualified engineering and science faculty members, (2) stimulate an exchange of ideas between participants and NASA, (3) enrich and refresh the research and teaching activities of participants' institutions, and (4) contribute to the research objectives of the NASA centers. Each faculty fellow spent at least 10 weeks at JSC engaged in a research project in collaboration with a NASA JSC colleague. This document is a compilation of the final reports on the research projects completed by the faculty fellows during the summer of 1994.

  11. National Aeronautics and Space Administration (NASA) /American Society for Engineering Education (ASEE) Summer Faculty Fellowship Program. Volume 1

    NASA Technical Reports Server (NTRS)

    Bannerot, Richard B. (Editor); Sickorez, Donn G. (Editor)

    1997-01-01

    The 1996 JSC NASA/ASEE Summer Faculty Fellowship Program was conducted by the University of Houston and JSC. The objectives of the program, which began nationally in 1964 and at JSC in 1965 are to (1) further the professional knowledge qualified engineering and science faculty members, (2) stimulate an exchange of ideas between participants and NASA, (3) refresh the research and teaching activities of participants' institutions, and (4) contribute to the research objectives of the NASA centers. Each faculty fellow spent at least 10 weeks at JSC engaged in a research project in collaboration with a NASA JSC colleague. This document is a compilation of the final reports on the research projects completed by the faculty fellows during the summer of 1996.

  12. National Aeronautics and Space Administration (NASA)/American Society for Engineering Education (ASEE) summer faculty fellowship program, 1986, volume 2

    NASA Technical Reports Server (NTRS)

    Mcinnis, Bayliss (Editor); Goldstein, Stanley (Editor)

    1987-01-01

    The Johnson Space Center (JSC) NASA/ASEE Summer Faculty Fellowship Program was conducted by the University of Houston and JSC. The ten week program was operated under the auspices of the American Society for Engineering Education (ASEE). The basic objectives of the program are (1) to further the professional knowledge of qualified engineering and science faculty members; (2) to stimulate an exchange of ideas between participants and NASA; (3) to enrich and refresh the research and teaching activities of participants' institutions; and (4) to contribute to the research objectives of the NASA Centers. Each faculty fellow spent ten weeks at JSC engaged in a research project commensurate with his interests and background and worked in collaboration with a NASA/JSC colleague. The final reports on the research projects are presented. This volume, 2, contains sections 15 through 30.

  13. National Aeronautics and Space Administration (NASA)/American Society for Engineering Education (ASEE) Summer Faculty Fellowship Program, 1987, volume 1

    NASA Technical Reports Server (NTRS)

    Jones, William B. (Editor); Goldstein, Stanley H. (Editor)

    1987-01-01

    The objective of the NASA/ASEE program were: (1) to further the professional knowledge of qualified engineering and science faculty members; (2) to stimulate an exchange of ideas between participants and NASA; (3) to enrich and refresh the research and teaching activities of participants' institutions; and (4) to contribute to the research objectives of the NASA centers. Each faculty fellow spent 10 weeks at Johnson Space Center engaged in a research project commensurate with his/her interests and background and worked in collaboration with a NASA/JSC colleague. A compilation is presented of the final reports on the research projects done by the fellows during the summer of 1987. This is volume 1 of a 2 volume report.

  14. Goddard Space Flight Center Spacecraft Magnetic Test Facility Restoration Project

    NASA Technical Reports Server (NTRS)

    Vernier, Robert; Bonalksy, Todd; Slavin, James

    2004-01-01

    The Goddard Space Flight Center Spacecraft Magnetic Test Facility (SMTF) was constructed in the 1960's for the purpose of simulating geomagnetic and interplanetary magnetic field environments. The facility includes a three axis Braunbek coil system consisting of 12 loops, 4 loops on each of the three orthogonal axes; a remote earth field sensing magnetometer and servo control building; and a remote power control and instrumentation building. The inner coils are 42-foot in diameter and a 10-foot by 10-foot opening through the outer coils accommodates spacecraft access to the test volume. The physical size and precision of the facility are matched by only two other such facilities in the world. The facility was used extensively from the late 1960's until the early 1990's when the requirement for spacecraft level testing diminished. New NASA missions planned under the Living with a Star, Solar Terrestrial Probes, Explorer, and New Millennium Programs include precision, high-resolution magnetometers to obtain magnetic field data that is critical to fulfilling their scientific mission. It is highly likely that future Lunar and Martian exploration missions will also use precision magnetometers to conduct geophysical magnetic surveys. To ensure the success of these missions ground testing using a magnetic test facility such as the GSFC SMTF will be required. This paper describes the history of the facility, the future mission requirements that have renewed the need for spacecraft level magnetic testing, and the plans for restoring the facility to be capable of performing to its original design specifications.

  15. An improved gravity model for Mars: Goddard Mars Model 1

    NASA Technical Reports Server (NTRS)

    Smith, D. E.; Lerch, F. J.; Nerem, R. S.; Zuber, M. T.; Patel, G. B.; Fricke, S. K.; Lemoine, F. G.

    1993-01-01

    Doppler tracking data of three orbiting spacecraft have been reanalyzed to develop a new gravitational field model for the planet Mars, Goddard Mars Model 1 (GMM-1). This model employs nearly all available data, consisting of approximately 1100 days of S band tracking data collected by NASA's Deep Space Network from the Mariner 9 and Viking 1 and Viking 2 spacecraft, in seven different orbits, between 1971 and 1979. GMM-1 is complete to spherical harmonic degree and order 50, which corresponds to a half-wavelength spatial resolution of 200-300 km where the data permit. GMM-1 represents satellite orbits with considerably better accuracy than previous Mars gravity models and shows greater resolution of identifiable geological structures. The notable improvement in GMM-1 over previous models is a consequence of several factors: improved computational capabilities, the use of otpimum weighting and least squares collocation solution techniques which stabilized the behavior of the solution at high degree and order, and the use of longer satellite arcs than employed in previous solutions that were made possible by improved force and measurement models. The inclusion of X band tracking data from the 379-km altitude, nnear-polar orbiting Mars Observer spacecraft should provide a significant improvement over GMM-1, particularly at high latitudes where current data poorly resolve the gravitational signature of the planet.

  16. NASA/GSFC Onboard Autonomy For The Swift Mission

    NASA Technical Reports Server (NTRS)

    Ong, John

    2005-01-01

    This viewgraph presentation reviews the work that NASA Goddard Space Flight Center is currently doing and has been involved in in developing onboard autonomy and automation. Emphasis is given to the work being done for the Swift observatory

  17. Use NASA GES DISC Data in ArcGIS

    NASA Technical Reports Server (NTRS)

    Yang, Wenli; Pham, Long B.; Kempler, Steve

    2015-01-01

    This presentation describes GIS relevant data at NASA Goddard Earth Sciences Data and Information Services Center (GES DISC), GES DISC Services and Support for GIS Users, and use cases of GES DISC data in ArcGIS.

  18. NASA Now Minute: Real World Applications of Mathematics

    NASA Video Gallery

    In this NASA Now program, Jim Garvin, Ph.D, chief scientist at NASA’sGoddard Space Flight Center in Greenbelt, Md., explains how mathematicsis a vital tool not only in everything happening at N...

  19. Test flights of the NASA ultra-long duration balloon

    NASA Astrophysics Data System (ADS)

    Cathey, H. M.

    2004-01-01

    The National Aeronautics and Space Administration (NASA) Ultra-Long Duration Balloon development project is attempting to extend the potential flight durations for large scientific balloon payloads. The culmination of each of the development steps has been the fabrication and test flight of progressively larger balloons. This new super-pressure balloon is a pumpkin balloon design. This paper concentrates on the super-pressure balloon development test flights that have been, and are currently being planned by the NASA Balloon Program Office at Goddard Space Flight Center's Wallops Flight Facility. Descriptions of two test flights from early 2001 are presented along with lessons learned. Results are also presented of a July 2002 test flight of a full-scale 610,500 m 3 balloon with a 2800 kg suspended load that incorporated the lessons learned.

  20. NASA Vision

    NASA Technical Reports Server (NTRS)

    Fenton, Mary (Editor); Wood, Jennifer (Editor)

    2003-01-01

    This newsletter contains several articles, primarily on International Space Station (ISS) crewmembers and their activities, as well as the activities of NASA administrators. Other subjects covered in the articles include the investigation of the Space Shuttle Columbia accident, activities at NASA centers, Mars exploration, a collision avoidance test on a unmanned aerial vehicle (UAV). The ISS articles cover landing in a Soyuz capsule, photography from the ISS, and the Expedition Seven crew.

  1. An Overview of the NASA Sounding Rocket and Balloon Programs

    NASA Technical Reports Server (NTRS)

    Eberspeaker, Philip J.; Smith, Ira S.

    2003-01-01

    The U.S. National Aeronautics and Space Administration (NASA) Sounding Rockets and Balloon Programs conduct a total of 50 to 60 missions per year in support of the NASA scientific community. These missions support investigations sponsored by NASA's Offices of Space Science, Life and Microgravity Sciences & Applications, and Earth Science. The Goddard Space Flight Center has management and implementation responsibility for these programs. The NASA Sounding Rockets Program provides the science community with payload development support, environmental testing, launch vehicles, and launch operations from fixed and mobile launch ranges. Sounding rockets continue to provide a cost-effective way to make in situ observations from 50 to 1500 km in the near-earth environment and to uniquely cover the altitude regime between 50 km and 130 km above the Earth's surface. New technology efforts include GPS payload event triggering, tailored trajectories, new vehicle configuration development to expand current capabilities, and the feasibility assessment of an ultra high altitude sounding rocket vehicle. The NASA Balloon Program continues to make advancements and developments in its capabilities for support of the scientific ballooning community. The Long Duration Balloon (LDB) is capable of providing flight durations in excess of two weeks and has had many successful flights since its development. The NASA Balloon Program is currently engaged in the development of the Ultra Long Duration Balloon (ULDB), which will be capable of providing flight times up to 100-days. Additional development efforts are focusing on ultra high altitude balloons, station keeping techniques and planetary balloon technologies.

  2. Progress on Space Borne Laser Risk Reduction at Goddard Space Flight Center

    NASA Technical Reports Server (NTRS)

    Heaps, William S.; Novo-Gradac, Anne-Marie

    2004-01-01

    At the direction of NASA Headquarters NASA Goddard Space Flight Center (GSFC) and NASA Langley Research Center (LaRC) undertook in 2002 a program in fundamental research on laser manufacturing technologies aimed at improving the performance and lifetime of lasers sent into space for remote sensing applications. The work at GSFC has concentrated on three areas: 1) development of high power 1 micron lasers, 2) lifetime and reliability testing for 808 nm pump diodes, and 3) efficient conversion of 1 micron radiation to wavelengths needed for various remote sensing tasks. After almost 2 years of development interesting results in all three areas are beginning to emerge. Some of these results will be described along with discussion of future directions.

  3. NASA Innovation Builds Better Nanotubes

    NASA Technical Reports Server (NTRS)

    2008-01-01

    Nanotailor Inc., based in Austin, Texas, licensed Goddard Space Flight Center's unique single-walled carbon nanotube (SWCNT) fabrication process with plans to make high-quality, low-cost SWCNTs available commercially. Carbon nanotubes are being used in a wide variety of applications, and NASA's improved production method will increase their applicability in medicine, microelectronics, advanced materials, and molecular containment. Nanotailor built and tested a prototype based on Goddard's process, and is using this technique to lower the cost and improve the integrity of nanotubes, offering a better product for use in biomaterials, advanced materials, space exploration, highway and building construction, and many other applications.

  4. NASA HUNCH Hardware

    NASA Technical Reports Server (NTRS)

    Hall, Nancy R.; Wagner, James; Phelps, Amanda

    2014-01-01

    What is NASA HUNCH? High School Students United with NASA to Create Hardware-HUNCH is an instructional partnership between NASA and educational institutions. This partnership benefits both NASA and students. NASA receives cost-effective hardware and soft goods, while students receive real-world hands-on experiences. The 2014-2015 was the 12th year of the HUNCH Program. NASA Glenn Research Center joined the program that already included the NASA Johnson Space Flight Center, Marshall Space Flight Center, Langley Research Center and Goddard Space Flight Center. The program included 76 schools in 24 states and NASA Glenn worked with the following five schools in the HUNCH Build to Print Hardware Program: Medina Career Center, Medina, OH; Cattaraugus Allegheny-BOCES, Olean, NY; Orleans Niagara-BOCES, Medina, NY; Apollo Career Center, Lima, OH; Romeo Engineering and Tech Center, Washington, MI. The schools built various parts of an International Space Station (ISS) middeck stowage locker and learned about manufacturing process and how best to build these components to NASA specifications. For the 2015-2016 school year the schools will be part of a larger group of schools building flight hardware consisting of 20 ISS middeck stowage lockers for the ISS Program. The HUNCH Program consists of: Build to Print Hardware; Build to Print Soft Goods; Design and Prototyping; Culinary Challenge; Implementation: Web Page and Video Production.

  5. National Aeronautics and Space Administration (NASA)/American Society for Engineering Education (ASEE) Summer Faculty Fellowship Program: 1995.. Volume 2

    NASA Technical Reports Server (NTRS)

    Hyman, William A. (Editor); Sickorez, Donn G. (Editor)

    1996-01-01

    The JSC NASA/ASEE Summer Faculty Fellowship Program was conducted at JSC, including the White Sands Test Facility, by Texas A&M University and JSC. The objectives of the program, which began nationally in 1964 and at JSC in 1965, are (1) to further the professional knowledge of qualified engineering and science faculty members; (2) to stimulate an exchange of ideas between participants and NASA; (3) to enrich and refresh the research and teaching activities of the participants' institutions; and (4) to contribute to the research objectives of the NASA centers. Each faculty fellow spent at least 10 weeks at JSC engaged in a research project in collaboration with a NASA/JSC colleague. In addition to the faculty participants, the 1995 program included five students. This document is a compilation of the final reports on the research projects completed by the faculty fellows and visiting students during the summer of 1995. The reports of two of the students are integral with that of the respective fellow. Three students wrote separate reports.

  6. National Aeronautics and Space Administration (NASA)/American Society for Engineering Education (ASEE) Summer Faculty Fellowship Program: 1995. Volume 1

    NASA Technical Reports Server (NTRS)

    Hyman, William A. (Editor); Sickorez, Donn G. (Editor)

    1996-01-01

    The objectives of the JSC NASA/ASEE Summer Faculty Fellowship Program, which began nationally in 1964 and at JSC in 1965, are (1) to further the professional knowledge of qualified engineering and science faculty members; (2) to stimulate an exchange of ideas between participants and NASA; (3) to enrich and refresh the research and teaching activities of the participants' institutions; and (4) to contribute to the research objectives of the NASA centers. Each faculty fellow spent at least 10 weeks at JSC engaged in a research project in collaboration with a NASA/JSC colleague. In addition to the faculty participants, the 1995 program included five students. This document is a compilation of the first fifteen of twenty-seven final reports on the research projects completed by the faculty fellows and visiting students during the summer of 1995. The reports of two of the students are integral with that of the respective fellow. Three students wrote separate reports included in Volume 2.

  7. Regional Scale/Regional Climate Model Development and Its Applications at Goddard

    NASA Technical Reports Server (NTRS)

    Tao, W.-K.; Lau, W.; Qian, J.; Jia, Y.; Wetzel, P.; Chou, M.-D.; Wang, Y.; Lynn, B.

    2000-01-01

    A Regional Land-Atmosphere Climate Simulation System (RELACS) is being developed and implemented at NASA Goddard Space Flight Center. One of the major goals of RELACS is to use a regional scale model (Penn State/NCAR MM5) with improved physical processes and in particular land-related processes, to understand the role of the land surface and its interaction with convection and radiation as well as the water/energy cycles in the Indo-China/South China Sea (SCS)/China, N. America and S. America region.

  8. The NASA GEOS-5 Aerosol Forecasting System

    NASA Technical Reports Server (NTRS)

    Colarco, Peter; daSilva, Arlindo; Darmenov, Anton

    2011-01-01

    The NASA Goddard Earth Observing System modeling and data assimilation environment (GEOS-5) is maintained by the Global Modeling and Assimilation Office (GMAO) at the NASA Goddard Space Flight Center. Near-realtime meteorological forecasts are produced to support NASA satellite and field missions. We have implemented in this environment an aerosol module based on the Goddard Chemistry, Aerosol, Radiation, and Transport (GOCART) model. This modeling system has previously been evaluated in the context of hindcasts based on assimilated meteorology. Here we focus on the development and evaluation of the near-realtime forecasting system. We present a description of recent efforts to implement near-realtime biomass burning emissions derived from the Moderate Resolution Imaging Spectroradiometer (MODIS) fire radiative power products. We as well present a developing capability for improvement of aerosol forecasts by assimilation of aerosol information from MODIS.

  9. Building 1100--NASA

    NASA Technical Reports Server (NTRS)

    1996-01-01

    Building 1100 is the NASA administrative building. Services located in this building include two banks, a post office, barber shop, cafeteria, snack bar, travel agency, dry cleaners, the NASA Exchange retail store and medical facilities for employees.

  10. GLOW: The Goddard Lidar Observatory for Winds

    NASA Technical Reports Server (NTRS)

    Gentry, Bruce M.; Chen, Huailin; Li, Steven X.; Einaudi, Franco (Technical Monitor)

    2000-01-01

    GLOW (Goddard Lidar Observatory for Winds) is a mobile Doppler lidar system which uses direct detection Doppler lidar techniques to measure wind profiles from the surface into the lower stratosphere. The system is contained in a modified van to allow deployment in field operations. The lidar system uses a Nd:YAG laser transmitter to measure winds using either aerosol backscatter at 1064 nm or molecular backscatter at 355 nm. The receiver telescope is a 45 cm Dall-Kirkham which is fiber coupled to separate Doppler receivers, one optimized for the aerosol backscatter wind measurement and another optimized for the molecular backscatter wind measurement. The receivers are implementations of the 'double edge' technique and use high spectral resolution Fabry-Perot etalons to measure the Doppler shift. A 45 cm aperture azimuth-over-elevation scanner is mounted on the roof of the van to allow full sky access and a variety of scanning options. GLOW is intended to be used as a deployable field system for studying atmospheric dynamics and transport and can also serve as a testbed to evaluate candidate technologies developed for use in future spaceborne systems. In addition, it can be used for calibration/validation activities following launch of spaceborne wind lidar systems. A description of the mobile system is presented along with the examples of lidar wind profiles obtained with the system.

  11. GLOW- The Goddard Lidar Observatory for Winds

    NASA Technical Reports Server (NTRS)

    Gentry, Bruce M.; Chen, Huailin; Li, Steven X.

    2000-01-01

    GLOW (Goddard Lidar Observatory for Winds) is a mobile Doppler lidar system which uses direct detection Doppler lidar techniques to measure wind profiles from the surface into the lower stratosphere. The system is contained in a modified van to allow deployment in field operations. The lidar system uses a Nd:YAG laser transmitter to measure winds using either aerosol backscatter at 1064 nm or molecular backscatter at 355 nm. The receiver telescope is a 45 cm Dall-Kirkham which is fiber coupled to separate Doppler receivers, one optimized for the aerosol backscatter wind measurement and another optimized for the molecular backscatter wind measurement. The receivers are implementations of the 'double edge' technique and use high spectral resolution Fabry-Perot etalons to measure the Doppler shift. A 45 cm aperture azimuth-over-elevation scanner is mounted on the roof of the van to allow full sky access and a variety of scanning options. GLOW is intended to be used as a deployable field system for studying atmospheric dynamics and transport and can also serve as a testbed to evaluate candidate technologies developed for use in future spaceborne systems. In addition, it can be used for calibration/validation activities following launch of spaceborne wind lidar systems. A description of the mobile system is presented along with the examples of lidar wind profiles obtained with the system.

  12. National Aeronautics and Space Administration (NASA)/american Society for Engineering Education (ASEE) Summer Faculty Fellowship Program, 1991, Volume 2

    NASA Technical Reports Server (NTRS)

    Hyman, William A. (Editor); Goldstein, Stanley H. (Editor)

    1991-01-01

    The objectives of the program are: (1) to further the professional knowledge of qualified engineering and science faculty members; (2) to stimulate an exchange of ideas between participants and NASA; (3) to enrich and refresh the research and teaching activities of participant's institutions; and (4) to contribute to the research objectives of the NASA Centers. A compilation of the final reports on the research projects done by the faculty fellows during the summer of 1991 are presented. Some of the topics covered include: collision avoidance for rover vehicles, bioinstrumentation, neural nets, total quality management of flexible space structures, project scheduling, nondestructive tests, orthostatic intolerance to bedrest, hypersonic reentry simulation, measuring human energy expenditure, tribological models, trace element movement in Anarctic ice, gastrointestinal function, and computer assisted instruction.

  13. Science and Observation Recommendations for Future NASA Carbon Cycle Research

    NASA Technical Reports Server (NTRS)

    McClain, Charles R.; Collatz, G. J.; Kawa, S. R.; Gregg, W. W.; Gervin, J. C.; Abshire, J. B.; Andrews, A. E.; Behrenfeld, M. J.; Demaio, L. D.; Knox, R. G.

    2002-01-01

    Between October 2000 and June 2001, an Agency-wide planning, effort was organized by elements of NASA Goddard Space Flight Center (GSFC) to define future research and technology development activities. This planning effort was conducted at the request of the Associate Administrator of the Office of Earth Science (Code Y), Dr. Ghassem Asrar, at NASA Headquarters (HQ). The primary points of contact were Dr. Mary Cleave, Deputy Associate Administrator for Advanced Planning at NASA HQ (Headquarters) and Dr. Charles McClain of the Office of Global Carbon Studies (Code 970.2) at GSFC. During this period, GSFC hosted three workshops to define the science requirements and objectives, the observational and modeling requirements to meet the science objectives, the technology development requirements, and a cost plan for both the science program and new flight projects that will be needed for new observations beyond the present or currently planned. The plan definition process was very intensive as HQ required the final presentation package by mid-June 2001. This deadline was met and the recommendations were ultimately refined and folded into a broader program plan, which also included climate modeling, aerosol observations, and science computing technology development, for contributing to the President's Climate Change Research Initiative. This technical memorandum outlines the process and recommendations made for cross-cutting carbon cycle research as presented in June. A separate NASA document outlines the budget profiles or cost analyses conducted as part of the planning effort.

  14. Goddard Space Flight Center Spacecraft Magnetic Test Facility Restoration Project

    NASA Technical Reports Server (NTRS)

    Vernier, Robert; Bonalksy, Todd; Slavin, James

    2004-01-01

    The Goddard Space Flight Center Spacecraft Magnetic Test Facility (SMTF) was constructed in the 1960's for the purpose of simulating geomagnetic and interplanetary magnetic field environments. The facility includes a three axis Braunbek coil system consisting of 12 loops, 4 loops on each of the three orthogonal axes; a remote Earth field sensing magnetometer and servo controller; and a remote power control and instrumentation building. The inner coils of the Braunbek system are 42-foot in diameter with a 10-foot by 10-foot opening through the outer coils to accommodate spacecraft access into the test volume. The physical size and precision of the facility are matched by only two other such facilities in the world. The facility was used extensively from the late 1960's until the early 1990's when the requirement for spacecraft level testing diminished. New NASA missions planned under the Living with a Star, Solar Terrestrial Probes, Explorer, and New Millennium Programs include precision, high-resolution magnetometers to obtain magnetic field data that is critical to fulfilling their scientific mission. It is highly likely that future Lunar and Martian exploration missions will also use precision magnetometers to conduct geophysical magnetic surveys. To ensure the success of these missions, ground-testing using a magnetic test facility such as the GSFC SMTF will be required. This paper describes the history of the facility, the future mission requirements that have renewed the need for spacecraft level magnetic testing, and the plans for restoring the facility to be capable of performing to its original design specifications.

  15. Goddard Space Flight Center Spacecraft Magnetic Test Facility Restoration Project

    NASA Technical Reports Server (NTRS)

    Vernier, Robert; Bonalosky, Todd; Slavin, James

    2004-01-01

    The Goddard Space Flight Center Spacecraft Magnetic Test Facility (SMTF) was constructed in the 1960's for the purpose of simulating geomagnetic and interplanetary magnetic field environments. The facility includes a three axis Braunbek coil system consisting of 12 loops, 4 loops on each of the three orthogonal axes; a remote Earth field sensing magnetometer and servo controller; and a remote power control and instrumentation building. The inner coils of the Braunbek system are 42-foot in diameter with a 10-foot by 10-foot opening through the outer coils to accommodate spacecraft access into the test volume. The physical size and precision of the facility are matched by only two other such facilities in the world. The facility was used extensively from the late 1960's until the early 1990's when the requirement for spacecraft level testing diminished. New NASA missions planned under the Living with a Star, Solar Terrestrial Probes, Explorer, and New Millennium Programs include precision, high-resolution magnetometers to obtain magnetic field data that is critical to fulfilling their scientific mission. It is highly likely that future Lunar and Martian exploration missions will also use precision magnetometers to conduct geophysical magnetic surveys. To ensure the success of these missions, ground testing using a magnetic test facility such as the GSFC SMTF will be required. This paper describes the history of the facility, the future mission requirements that have renewed the need for spacecraft level magnetic testing, and the plans for restoring the facility to be capable of performing to its original design specifications.

  16. Implementation and testing of a Neighborhood Office Center (NOC) and integration of the NOC with an administrative correspondence management information system. [for NASA

    NASA Technical Reports Server (NTRS)

    1977-01-01

    The application of telecommunications and telecomputing was investigated as a means of reducing NASA's consumption of natural resources and the proliferation of paper copies of correspondence. The feasibility, operational advantages, and limitations of decentralized (remote) neighborhood offices (NOC) linked through an electronic network are demonstrated. These offices are joined to a management information system for correspondence tracking, and to an administrative office center service based on the use of magnetic medium word processing typewriters which handle the daily typing load. In connection with an augmented teleconference network, a uniform means is provided for creating, storing, and retrieving administrative documents, records, and data, while simultaneously permitting users of the system to track their status. Information will be transferred without using paper - merely through digital electronic communication and display, as a step toward the establishment of an agency-wide electronic mail system.

  17. The Goddard Space Flight Center preferred parts list, revision A

    NASA Technical Reports Server (NTRS)

    Tyson, N. E. (Editor)

    1982-01-01

    A listing is presented of preferred electronic parts, part upgrading procedures, part derating guidelines, and part screening procedures to be used in the selection, procurement, and application of parts for Goddard Space Flight Center space systems and ground support equipment.

  18. National Aeronautics and Space Administration (NASA) Environmental Control and Life Support (ECLS) Capability Roadmap Development for Exploration

    NASA Technical Reports Server (NTRS)

    Bagdigian, Robert M.; Carrasquillo, Robyn L.; Metcalf, Jordan; Peterson, Laurie

    2012-01-01

    NASA is considering a number of future human space exploration mission concepts. Although detailed requirements and vehicle architectures remain mostly undefined, near-term technology investment decisions need to be guided by the anticipated capabilities needed to enable or enhance the mission concepts. This paper describes a roadmap that NASA has formulated to guide the development of Environmental Control and Life Support Systems (ECLSS) capabilities required to enhance the long-term operation of the International Space Station (ISS) and enable beyond-Low Earth Orbit (LEO) human exploration missions. Three generic mission types were defined to serve as a basis for developing a prioritized list of needed capabilities and technologies. Those are 1) a short duration micro gravity mission; 2) a long duration transit microgravity mission; and 3) a long duration surface exploration mission. To organize the effort, ECLSS was categorized into three major functional groups (atmosphere, water, and solid waste management) with each broken down into sub-functions. The ability of existing, flight-proven state-of-the-art (SOA) technologies to meet the functional needs of each of the three mission types was then assessed. When SOA capabilities fell short of meeting the needs, those "gaps" were prioritized in terms of whether or not the corresponding capabilities enable or enhance each of the mission types. The resulting list of enabling and enhancing capability gaps can be used to guide future ECLSS development. A strategy to fulfill those needs over time was then developed in the form of a roadmap. Through execution of this roadmap, the hardware and technologies needed to enable and enhance exploration may be developed in a manner that synergistically benefits the ISS operational capability, supports Multi-Purpose Crew Vehicle (MPCV) development, and sustains long-term technology investments for longer duration missions. This paper summarizes NASA s ECLSS capability roadmap

  19. The National Aeronautics and Space Administration (NASA) Tracking and Data Relay Satellite System (TDRSS) program Economic and programmatic, considerations

    NASA Technical Reports Server (NTRS)

    Aller, R. O.

    1985-01-01

    The Tracking and Data Relay Satellite System (TDRSS) represents the principal element of a new space-based tracking and communication network which will support NASA spaceflight missions in low earth orbit. In its complete configuration, the TDRSS network will include a space segment consisting of three highly specialized communication satellites in geosynchronous orbit, a ground segment consisting of an earth terminal, and associated data handling and control facilities. The TDRSS network has the objective to provide communication and data relay services between the earth-orbiting spacecraft and their ground-based mission control and data handling centers. The first TDRSS spacecraft has been now in service for two years. The present paper is concerned with the TDRSS experience from the perspective of the various programmatic and economic considerations which relate to the program.

  20. The National Aeronautics and Space Administration (NASA) Tracking and Data Relay Satellite System (TDRSS) program Economic and programmatic, considerations

    NASA Astrophysics Data System (ADS)

    Aller, R. O.

    1985-10-01

    The Tracking and Data Relay Satellite System (TDRSS) represents the principal element of a new space-based tracking and communication network which will support NASA spaceflight missions in low earth orbit. In its complete configuration, the TDRSS network will include a space segment consisting of three highly specialized communication satellites in geosynchronous orbit, a ground segment consisting of an earth terminal, and associated data handling and control facilities. The TDRSS network has the objective to provide communication and data relay services between the earth-orbiting spacecraft and their ground-based mission control and data handling centers. The first TDRSS spacecraft has been now in service for two years. The present paper is concerned with the TDRSS experience from the perspective of the various programmatic and economic considerations which relate to the program.

  1. History at NASA

    NASA Technical Reports Server (NTRS)

    1986-01-01

    The efforts of the National Aeronautics and Space Administration to capture and record the events of the past are described, particularly the research accomplishments of NASA's agency-wide history program. A concise guide to the historical research resources available at NASA Headquarters in Washington, D.C., at NASA facilities around the country, and through the federal records systems is given.

  2. NASA Performance Report

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Introduction NASA's mission is to advance and communicate scientific knowledge and understanding of Earth, the solar system, and the universe; to advance human exploration, use, and development of space; and to research, develop, verify, and transfer advanced aeronautics, space, and related technologies. In support of this mission, NASA has a strategic architecture that consists of four Enterprises supported by four Crosscutting Processes. The Strategic Enterprises are NASA's primary mission areas to include Earth Science, Space Science, Human Exploration and Development of Space, and Aerospace Technology. NASA's Crosscutting Processes are Manage Strategically, Provide Aerospace Products and Capabilities, Generate Knowledge and Communicate Knowledge. The implementation of NASA programs, science, and technology research occurs primarily at our Centers. NASA consists of a Headquarters, nine Centers, and the Jet Propulsion Laboratory, as well as several ancillary installations and offices in the United States and abroad. The nine Centers are as follows: (1) Ames Research Center, (2) Dryden Flight Research Center (DFRC), (3) Glenn Research Center (GRC), (4) Goddard Space Flight Center (GSFC), (5) Johnson Space Center, (6) Kennedy Space Center (KSC), (7) Langley Research Center (LaRC), (8) Marshall Space Flight Center (MSFC), and (9) Stennis Space Center (SSC).

  3. The NASA Robotic Conjunction Assessment Process: Overview and Operational Experiences

    NASA Technical Reports Server (NTRS)

    Newman, Lauri Kraft

    2008-01-01

    Orbital debris poses a significant threat to spacecraft health and safety. Recent events such as China's anti-satellite test and the Breeze-M rocket explosion have led to an even greater awareness and concern in the satellite community. Therefore, the National Aeronautics and Space Administration (NASA) has established requirements that routine conjunction assessment screening shall be performed for all maneuverable spacecraft having perigees less than 2000 km or within 200 km of geosynchronous altitude. NASA s Goddard Space Flight Center (GSFC) has developed an operational collision risk assessment process to protect NASA s high-value unmanned (robotic) assets that has been in use since January 2005. This paper provides an overview of the NASA robotic conjunction assessment process, including descriptions of the new tools developed to analyze close approach data and of the risk mitigation strategies employed. In addition, statistical data describing the number of conjunctions experienced are presented. A debris avoidance maneuver performed by Aura in June of 2008 is described in detail to illustrate the process.

  4. Status on Mechanical Testing at NASA GSFC

    NASA Technical Reports Server (NTRS)

    Kaufman, Daniel

    2003-01-01

    This viewgraph presentation provides an overview of current mechanical testing performed on spacecraft materials and instruments at NASA Goddard Space Flight Center. Specific mechanical testing procedures discussed include: force measurements limiting for sine, random vibration and acoustic tests, base driven model surveys, hydraulic shakers, new sine burst method and non contact sensors.

  5. NASA PTTI programs: Present and future

    NASA Technical Reports Server (NTRS)

    Wardrip, S. C.; Hocking, W. M.

    1981-01-01

    Current and future Precise Time and Time Interval (PTTI) programs at the Goddard Space Flight Center (GSFC) and the evolution of frequency and time requirements over past years within the various NASA satellite tracking networks are described. A brief history of the network development is also given.

  6. A strategy planner for NASA robotics applications

    NASA Technical Reports Server (NTRS)

    Brodd, S. S.

    1985-01-01

    Automatic strategy or task planning is an important element of robotics systems. A strategy planner under development at Goddard Space Flight Center automatically produces robot plans for assembly, disassembly, or repair of NASA spacecraft from computer aided design descriptions of the individual parts of the spacecraft.

  7. The Capitol College Space Operations Institute: A Partnership with NASA

    NASA Astrophysics Data System (ADS)

    Gibbs, M. G.; Walters, A.; Dolan, K.

    2011-09-01

    This article describes and provides an update on the Capitol College Space Operations Institute (SOI) partnership with NASA Goddard Space Flight Center and the real-world learning experiences provided to college students. The partnership with NASA works to directly encourage and support students to enter careers in the science, technology, engineering, and math (STEM) disciplines and advance the cause of improving science literacy.

  8. NASA Earth Science Update with Information Science Technology

    NASA Technical Reports Server (NTRS)

    Halem, Milton

    2000-01-01

    This viewgraph presentation gives an overview of NASA earth science updates with information science technology. Details are given on NASA/Earth Science Enterprise (ESE)/Goddard Space Flight Center strategic plans, ESE missions and flight programs, roles of information science, ESE goals related to the Minority University-Space Interdisciplinary Network, and future plans.

  9. NASA's Involvement in Engineering at Tribal Colleges and Universities

    NASA Astrophysics Data System (ADS)

    Butterworth, B.; Nall, J.; Zuray, M.; Proctor, M.

    2005-12-01

    NASA's Goddard Space Flight Center is working with a consortium of Tribal Colleges and Universities (TCU's) in cooperation with several other Federal Agencies toward establishing engineering degree programs at the TCU's. The program under development between Goddard and Salish Kootenai College envisions a student instrument component in which students will participate in hands-on engineering/instrument development currently underway through summer internships with academic year follow up. Program components of the overall collaboration include course preparation, interim on-site instruction, distance learning instruction, class projects, student mentoring and short, class-project based internships at Goddard's Applied Engineering and Technology Division.

  10. Geographic information systems at the Goddard Space Flight Center

    NASA Technical Reports Server (NTRS)

    Goldberg, M.

    1982-01-01

    The basic functions of a Geographic Information System (GIS) and the different ways that a GIS may be implemented are described. It surveys that GIS software packages that are currently in operation at the Goddard Space Flight Center and discusses the types of applications for which they are best suited. Future plans for in-house GIS research and development are outlined.

  11. Research and Technology Report. Goddard Space Flight Center

    NASA Technical Reports Server (NTRS)

    Soffen, Gerald (Editor); Truszkowski, Walter (Editor); Ottenstein, Howard (Editor); Frost, Kenneth (Editor); Maran, Stephen (Editor); Walter, Lou (Editor); Brown, Mitch (Editor)

    1996-01-01

    This issue of Goddard Space Flight Center's annual report highlights the importance of mission operations and data systems covering mission planning and operations; TDRSS, positioning systems, and orbit determination; ground system and networks, hardware and software; data processing and analysis; and World Wide Web use. The report also includes flight projects, space sciences, Earth system science, and engineering and materials.

  12. Carrier account utilization at the Goddard Space Flight Center

    NASA Technical Reports Server (NTRS)

    Mathis, W. E.; Langmead, J. T.

    1972-01-01

    The system in use at Goddard Space Flight Center for the utilization of the Common Use Service Carrier Account and the R&D Inventory Carrier Account technique for budgeting, accounting, financial control, and management reporting, both for the individual functional area and on a Center-wide basis, is documented.

  13. Exploring NASA and ESA Atmospheric Data Using GIOVANNI, the Online Visualization and Analysis Tool

    NASA Technical Reports Server (NTRS)

    Leptoukh, Gregory

    2007-01-01

    Giovanni, the NASA Goddard online visualization and analysis tool (http://giovanni.gsfc.nasa.gov) allows users explore various atmospheric phenomena without learning remote sensing data formats and downloading voluminous data. Using NASA MODIS (Terra and Aqua) and ESA MERIS (ENVISAT) aerosol data as an example, we demonstrate Giovanni usage for online multi-sensor remote sensing data comparison and analysis.

  14. Performance of the Goddard Multiscale Modeling Framework with Goddard Ice Microphysical Schemes

    NASA Technical Reports Server (NTRS)

    Chern, Jiun-Dar; Tao, Wei-Kuo; Lang, Stephen E.; Matsui, Toshihisa; Li, J.-L.; Mohr, Karen I.; Skofronick-Jackson, Gail M.; Peters-Lidard, Christa D.

    2016-01-01

    The multiscale modeling framework (MMF), which replaces traditional cloud parameterizations with cloud-resolving models (CRMs) within a host atmospheric general circulation model (GCM), has become a new approach for climate modeling. The embedded CRMs make it possible to apply CRM-based cloud microphysics directly within a GCM. However, most such schemes have never been tested in a global environment for long-term climate simulation. The benefits of using an MMF to evaluate rigorously and improve microphysics schemes are here demonstrated. Four one-moment microphysical schemes are implemented into the Goddard MMF and their results validated against three CloudSat/CALIPSO cloud ice products and other satellite data. The new four-class (cloud ice, snow, graupel, and frozen drops/hail) ice scheme produces a better overall spatial distribution of cloud ice amount, total cloud fractions, net radiation, and total cloud radiative forcing than earlier three-class ice schemes, with biases within the observational uncertainties. Sensitivity experiments are conducted to examine the impact of recently upgraded microphysical processes on global hydrometeor distributions. Five processes dominate the global distributions of cloud ice and snow amount in long-term simulations: (1) allowing for ice supersaturation in the saturation adjustment, (2) three additional correction terms in the depositional growth of cloud ice to snow, (3) accounting for cloud ice fall speeds, (4) limiting cloud ice particle size, and (5) new size-mapping schemes for snow and graupel. Despite the cloud microphysics improvements, systematic errors associated with subgrid processes, cyclic lateral boundaries in the embedded CRMs, and momentum transport remain and will require future improvement.

  15. Performance of the Goddard multiscale modeling framework with Goddard ice microphysical schemes

    NASA Astrophysics Data System (ADS)

    Chern, Jiun-Dar; Tao, Wei-Kuo; Lang, Stephen E.; Matsui, Toshihisa; Li, J.-L. F.; Mohr, Karen I.; Skofronick-Jackson, Gail M.; Peters-Lidard, Christa D.

    2016-03-01

    The multiscale modeling framework (MMF), which replaces traditional cloud parameterizations with cloud-resolving models (CRMs) within a host atmospheric general circulation model (GCM), has become a new approach for climate modeling. The embedded CRMs make it possible to apply CRM-based cloud microphysics directly within a GCM. However, most such schemes have never been tested in a global environment for long-term climate simulation. The benefits of using an MMF to evaluate rigorously and improve microphysics schemes are here demonstrated. Four one-moment microphysical schemes are implemented into the Goddard MMF and their results validated against three CloudSat/CALIPSO cloud ice products and other satellite data. The new four-class (cloud ice, snow, graupel, and frozen drops/hail) ice scheme produces a better overall spatial distribution of cloud ice amount, total cloud fractions, net radiation, and total cloud radiative forcing than earlier three-class ice schemes, with biases within the observational uncertainties. Sensitivity experiments are conducted to examine the impact of recently upgraded microphysical processes on global hydrometeor distributions. Five processes dominate the global distributions of cloud ice and snow amount in long-term simulations: (1) allowing for ice supersaturation in the saturation adjustment, (2) three additional correction terms in the depositional growth of cloud ice to snow, (3) accounting for cloud ice fall speeds, (4) limiting cloud ice particle size, and (5) new size-mapping schemes for snow and graupel. Despite the cloud microphysics improvements, systematic errors associated with subgrid processes, cyclic lateral boundaries in the embedded CRMs, and momentum transport remain and will require future improvement.

  16. Performance of the Goddard Multiscale Modeling Framework with Goddard Ice Microphysical Schemes

    NASA Astrophysics Data System (ADS)

    Chern, J. D.; Tao, W. K.; Lang, S. E.; Matsui, T.; Li, J. L. F.; Mohr, K. I.

    2015-12-01

    The multiscale modeling framework (MMF), which replaces traditional cloud parameterizations with cloud-resolving models (CRMs) within a host atmospheric general circulation model (GCM), has become a new approach for climate modeling. The embedded CRMs make it possible to apply CRM-based cloud microphysics directly within a GCM. However, most such schemes have never been tested in a global environment for long-term climate simulation. The benefits of using an MMF to evaluate rigorously and improve microphysics schemes are here demonstrated. Four one-moment microphysical schemes are implemented into the Goddard MMF and their results validated against three CloudSat/CALIPSO cloud ice products, CloudSat/CALIPSO cloud fractions, and other satellite data. The new four-class (cloud ice, snow, graupel, and frozen drops/hail) ice scheme produces a better overall spatial distribution of cloud ice amount and total cloud radiative forcing than earlier three-class ice schemes, with biases within the observational uncertainties. Sensitivity experiments are conducted to examine the impact of recently upgraded microphysical processes on global hydrometeor distributions. Five processes dominate the global distributions of cloud ice and snow amount in long-term simulations: (1) allowing for ice supersaturation in the saturation adjustment, (2) three additional correction terms in the depositional growth of cloud ice to snow, (3) accounting for cloud ice fall speeds, (4) limiting cloud ice particle size, and (5) new size-mapping schemes for snow/graupel as functions of temperature and mixing ratio. Despite the cloud microphysics improvements, systematic errors associated with sub-grid processes and cyclic lateral boundaries in the embedded CRMs remain and will require future improvement.

  17. The 2003 Goddard Rocket Replica Project: A Reconstruction of the World's First Functional Liquid Rocket System

    NASA Technical Reports Server (NTRS)

    Farr, R. A.; Elam, S. K.; Hicks, G. D.; Sanders, T. M.; London, J. R.; Mayne, A. W.; Christensen, D. L.

    2003-01-01

    As a part of NASA s 2003 Centennial of Flight celebration, engineers and technicians at Marshall Space Flight Center (MSFC), Huntsville, Alabama, in cooperation with the Alabama-Mississippi AIAA Section, have reconstructed historically accurate, functional replicas of Dr. Robert H. Goddard s 1926 first liquid- fuel rocket. The purposes of this project were to clearly understand, recreate, and document the mechanisms and workings of the 1926 rocket for exhibit and educational use, creating a vital resource for researchers studying the evolution of liquid rocketry for years to come. The MSFC team s reverse engineering activity has created detailed engineering-quality drawings and specifications describing the original rocket and how it was built, tested, and operated. Static hot-fire tests, as well as flight demonstrations, have further defined and quantified the actual performance and engineering actual performance and engineering challenges of this major segment in early aerospace history.

  18. Global climate changes as forecast by Goddard Institute for Space Studies three-dimensional model

    NASA Technical Reports Server (NTRS)

    Hansen, J.; Fung, I.; Lacis, A.; Rind, D.; Lebedeff, S.; Ruedy, R.; Russell, G.

    1988-01-01

    The global climate effects of time-dependent atmospheric trace gas and aerosol variations are simulated by NASA-Goddard's three-dimensional climate model II, which possesses 8 x 10-deg horizontal resolution, for the cases of a 100-year control run and three different atmospheric composition scenarios in which trace gas growth is respectively a continuation of current exponential trends, a reduced linear growth, and a rapid curtailment of emissions due to which net climate forcing no longer increases after the year 2000. The experiments begin in 1958, run to the present, and encompass measured or estimated changes in CO2, CH4, N2O, chlorofluorocarbons, and stratospheric aerosols. It is shown that the greenhouse warming effect may be clearly identifiable in the 1990s.

  19. Technical report series on global modeling and data assimilation. Volume 4: Documentation of the Goddard Earth Observing System (GEOS) data assimilation system, version 1

    NASA Technical Reports Server (NTRS)

    Suarez, Max J. (Editor); Pfaendtner, James; Bloom, Stephen; Lamich, David; Seablom, Michael; Sienkiewicz, Meta; Stobie, James; Dasilva, Arlindo

    1995-01-01

    This report describes the analysis component of the Goddard Earth Observing System, Data Assimilation System, Version 1 (GEOS-1 DAS). The general features of the data assimilation system are outlined, followed by a thorough description of the statistical interpolation algorithm, including specification of error covariances and quality control of observations. We conclude with a discussion of the current status of development of the GEOS data assimilation system. The main components of GEOS-1 DAS are an atmospheric general circulation model and an Optimal Interpolation algorithm. The system is cycled using the Incremental Analysis Update (IAU) technique in which analysis increments are introduced as time independent forcing terms in a forecast model integration. The system is capable of producing dynamically balanced states without the explicit use of initialization, as well as a time-continuous representation of non- observables such as precipitation and radiational fluxes. This version of the data assimilation system was used in the five-year reanalysis project completed in April 1994 by Goddard's Data Assimilation Office (DAO) Data from this reanalysis are available from the Goddard Distributed Active Center (DAAC), which is part of NASA's Earth Observing System Data and Information System (EOSDIS). For information on how to obtain these data sets, contact the Goddard DAAC at (301) 286-3209, EMAIL daac@gsfc.nasa.gov.

  20. NASA Pocket Statistics

    NASA Technical Reports Server (NTRS)

    1995-01-01

    NASA Pocket Statistics is published for the use of NASA managers and their staff. Included herein is Administrative and Organizational information, summaries of Space Flight Activity including the NASA Major Launch Record, and NASA Procurement, Financial, and Manpower data. The NASA Major Launch Record includes all launches of Scout class and larger vehicles. Vehicle and spacecraft development flights are also included in the Major Launch Record. Shuttle missions are counted as one launch and one payload, where free flying payloads are not involved. Satellites deployed from the cargo bay of the Shuttle and placed in a separate orbit or trajectory are counted as an additional payload.

  1. The NASA/Baltimore Applications Project (BAP). Computer aided dispatch and communications system for the Baltimore Fire Department: A case study of urban technology application

    NASA Technical Reports Server (NTRS)

    Levine, A. L.

    1981-01-01

    An engineer and a computer expert from Goddard Space Flight Center were assigned to provide technical assistance in the design and installation of a computer assisted system for dispatching and communicating with fire department personnel and equipment in Baltimore City. Primary contributions were in decision making and management processes. The project is analyzed from four perspectives: (1) fire service; (2) technology transfer; (3) public administration; and (5) innovation. The city benefitted substantially from the approach and competence of the NASA personnel. Given the proper conditions, there are distinct advantages in having a nearby Federal laboratory provide assistance to a city on a continuing basis, as is done in the Baltimore Applications Project.

  2. 75 FR 13598 - NASA Advisory Council; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-22

    ... SPACE ADMINISTRATION NASA Advisory Council; Meeting AGENCY: National Aeronautics and Space... Information Technology Infrastructure Committee of the NASA Advisory Council. DATES: Thursday, April 15, 2010...; 2939943. ADDRESSES: NASA Headquarters, 300 E Street, SW., Washington, DC, Room 2O43 FOR...

  3. Research and technology, 1990: Goddard Space Flight Center

    NASA Technical Reports Server (NTRS)

    1990-01-01

    Goddard celebrates 1990 as a banner year in space based astronomy. From above the Earth's obscuring atmosphere, four major orbiting observatories examined the heavens at wavelengths that spanned the electromagnetic spectrum. In the infrared and microwave, the Cosmic Background Explorer (COBE), measured the spectrum and angular distribution of the cosmic background radiation to extraordinary precision. In the optical and UV, the Hubble Space Telescope has returned spectacular high resolution images and spectra of a wealth of astronomical objects. The Goddard High Resolution Spectrograph has resolved dozens of UV spectral lines which are as yet unidentified because they have never before been seen in any astronomical spectrum. In x rays, the Roentgen Satellite has begun returning equally spectacular images of high energy objects within our own and other galaxies.

  4. Technical report series on global modeling and data assimilation. Volume 1: Documentation of the Goddard Earth Observing System (GEOS) General Circulation Model, version 1

    NASA Technical Reports Server (NTRS)

    Suarez, Max J. (Editor); Takacs, Lawrence L.; Molod, Andrea; Wang, Tina

    1994-01-01

    This technical report documents Version 1 of the Goddard Earth Observing System (GEOS) General Circulation Model (GCM). The GEOS-1 GCM is being used by NASA's Data Assimilation Office (DAO) to produce multiyear data sets for climate research. This report provides a documentation of the model components used in the GEOS-1 GCM, a complete description of model diagnostics available, and a User's Guide to facilitate GEOS-1 GCM experiments.

  5. The Goddard High Resolution Spectrograph: Instrument, goals, and science results

    NASA Technical Reports Server (NTRS)

    Brandt, J. C.; Heap, S. R.; Beaver, E. A.; Boggess, A.; Carpenter, K. G.; Ebbets, D. C.; Hutchings, J. B.; Jura, M.; Leckrone, D. S.; Linsky, J. L.

    1994-01-01

    The Goddard High Resolution Spectrograph (GHRS), currently in Earth orbit on the Hubble Space Telescope (HST), operates in the wavelength range 1150-3200 A with spectral resolutions (lambda/delta lambda) of approximately 2 x 10(exp 3), 2 x 10(exp 4), and 1 x 10(exp 3). The instrument and its development from inception, its current status, the approach to operations, representative results in the major areas of the scientific goals, and prospects for the future are described.

  6. Satellite laser ranging work at the Goddard Space Flight Center

    NASA Technical Reports Server (NTRS)

    Mcgunigal, T. E.; Carrion, W. J.; Caudill, L. O.; Grant, C. R.; Johnson, T. S.; Premo, D. A.; Spadin, P. L.; Winston, G. C.

    1975-01-01

    The paper describes the satellite laser ranging system at the Goddard Space Flight Center, its range and accuracy capabilities, and planned improvements for future systems. Major subsystems are described, including the laser, optical/mechanical, receiver, computer/software, timing, and laser data preprocessing subsystems. Operational considerations are examined, with attention given the mobile station layout, manpower requirements, and transportability. System performance is considered, with emphasis on system accuracy (calibration, stability, clock synchronization, atmospheric propagation correction) and range capability.

  7. The 1990 Goddard Conference on Space Applications of Artificial Intelligence

    NASA Technical Reports Server (NTRS)

    Rash, James L. (Editor)

    1990-01-01

    The papers presented at the 1990 Goddard Conference on Space Applications of Artificial Intelligence are given. The purpose of this annual conference is to provide a forum in which current research and development directed at space applications of artificial intelligence can be presented and discussed. The proceedings fall into the following areas: Planning and Scheduling, Fault Monitoring/Diagnosis, Image Processing and Machine Vision, Robotics/Intelligent Control, Development Methodologies, Information Management, and Knowledge Acquisition.

  8. The 1977 Goddard Space Flight Center Battery Workshop

    NASA Technical Reports Server (NTRS)

    1977-01-01

    The papers presented were derived from transcripts taken at the Tenth Annual Battery Workshop held at the Goddard Space Flight Center, November 15-17, 1977. The Workshop was attended by manufacturers, users, and government representatives interested in the latest results of testing, analysis, and development of the sealed nickel cadmium cell system. The purpose of the Workshop was to share flight and test experience, stimulate discussion on problem areas, and to review the latest technology improvements.

  9. NASA Facts, Voyager.

    ERIC Educational Resources Information Center

    National Aeronautics and Space Administration, Washington, DC. Educational Programs Div.

    This document is one of a series of publications of the National Aeronautics and Space Administration (NASA) on facts about the exploration of Jupiter and Saturn. This NASA mission consists of two unmanned Voyager spacecrafts launched in August and September of 1977, and due to arrive at Jupiter in 1979. An account of the scientific equipment…

  10. RFI Risk Reduction Activities Using New Goddard Digital Radiometry Capabilities

    NASA Technical Reports Server (NTRS)

    Bradley, Damon; Kim, Ed; Young, Peter; Miles, Lynn; Wong, Mark; Morris, Joel

    2012-01-01

    The Goddard Radio-Frequency Explorer (GREX) is the latest fast-sampling radiometer digital back-end processor that will be used for radiometry and radio-frequency interference (RFI) surveying at Goddard Space Flight Center. The system is compact and deployable, with a mass of about 40 kilograms. It is intended to be flown on aircraft. GREX is compatible with almost any aircraft, including P-3, twin otter, C-23, C-130, G3, and G5 types. At a minimum, the system can function as a clone of the Soil Moisture Active Passive (SMAP) ground-based development unit [1], or can be a completely independent system that is interfaced to any radiometer, provided that frequency shifting to GREX's intermediate frequency is performed prior to sampling. If the radiometer RF is less than 200MHz, then the band can be sampled and acquired directly by the system. A key feature of GREX is its ability to simultaneously sample two polarization channels simultaneously at up to 400MSPS, 14-bit resolution each. The sampled signals can be recorded continuously to a 23 TB solid-state RAID storage array. Data captures can be analyzed offline using the supercomputing facilities at Goddard Space Flight Center. In addition, various Field Programmable Gate Array (FPGA) - amenable radiometer signal processing and RFI detection algorithms can be implemented directly on the GREX system because it includes a high-capacity Xilinx Virtex-5 FPGA prototyping system that is user customizable.

  11. 76 FR 67482 - NASA Advisory Council; Charter Renewal

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-01

    ... SPACE ADMINISTRATION NASA Advisory Council; Charter Renewal AGENCY: National Aeronautics and Space Administration (NASA). ACTION: Notice of renewal and amendment of the charter of the NASA Advisory Council... NASA Administrator has determined that renewal and amendment of the charter of the NASA...

  12. Web Services Implementations at Land Process and Goddard Earth Sciences Distributed Active Archive Centers

    NASA Astrophysics Data System (ADS)

    Cole, M.; Bambacus, M.; Lynnes, C.; Sauer, B.; Falke, S.; Yang, W.

    2007-12-01

    NASA's vast array of scientific data within its Distributed Active Archive Centers (DAACs) is especially valuable to both traditional research scientists as well as the emerging market of Earth Science Information Partners. For example, the air quality science and management communities are increasingly using satellite derived observations in their analyses and decision making. The Air Quality Cluster in the Federation of Earth Science Information Partners (ESIP) uses web infrastructures of interoperability, or Service Oriented Architecture (SOA), to extend data exploration, use, and analysis and provides a user environment for DAAC products. In an effort to continually offer these NASA data to the broadest research community audience, and reusing emerging technologies, both NASA's Goddard Earth Science (GES) and Land Process (LP) DAACs have engaged in a web services pilot project. Through these projects both GES and LP have exposed data through the Open Geospatial Consortiums (OGC) Web Services standards. Reusing several different existing applications and implementation techniques, GES and LP successfully exposed a variety data, through distributed systems to be ingested into multiple end-user systems. The results of this project will enable researchers world wide to access some of NASA's GES & LP DAAC data through OGC protocols. This functionality encourages inter-disciplinary research while increasing data use through advanced technologies. This paper will concentrate on the implementation and use of OGC Web Services, specifically Web Map and Web Coverage Services (WMS, WCS) at GES and LP DAACs, and the value of these services within scientific applications, including integration with the DataFed air quality web infrastructure and in the development of data analysis web applications.

  13. National Aeronautics and Space Administration (NASA) Earth Science Research for Energy Management. Part 1; Overview of Energy Issues and an Assessment of the Potential for Application of NASA Earth Science Research

    NASA Technical Reports Server (NTRS)

    Zell, E.; Engel-Cox, J.

    2005-01-01

    Effective management of energy resources is critical for the U.S. economy, the environment, and, more broadly, for sustainable development and alleviating poverty worldwide. The scope of energy management is broad, ranging from energy production and end use to emissions monitoring and mitigation and long-term planning. Given the extensive NASA Earth science research on energy and related weather and climate-related parameters, and rapidly advancing energy technologies and applications, there is great potential for increased application of NASA Earth science research to selected energy management issues and decision support tools. The NASA Energy Management Program Element is already involved in a number of projects applying NASA Earth science research to energy management issues, with a focus on solar and wind renewable energy and developing interests in energy modeling, short-term load forecasting, energy efficient building design, and biomass production.

  14. NASA's Science Data Segment for the NPOESS Preparatory Project

    NASA Astrophysics Data System (ADS)

    Schwaller, M. R.

    2006-12-01

    NASA's Science Data Segment (SDS) is a key component of the NPOESS Preparatory Project (NPP), which is scheduled for launch in September 2009. The instrumentation on NPP will provide land, ocean, atmospheric, ozone, and sounder data for the meteorological and climate communities. NPP also provides risk-reduction for the National Polar-orbiting Operational Environmental Satellite System (NPOESS), which is now in development as the U.S. Government's low-Earth orbiting satellite system for monitoring global weather and The NPP SDS supports the NPP mission as a research and validation tool to ensure the quality and performance of NPP products for climate studies. The SDS evaluates key NPP/NPOESS Environmental Data Records (EDRs) in the following discipline areas: oceans, land, ozone, atmospheric sounding, and atmospheric composition. The SDS assesses EDR quality, and tests the suitability of EDRs for climate research. EDRs will be provided to NASA's SDS by the National Oceanic and Atmospheric Administration (NOAA), the agency responsible for NPP operations. As a result of NASA's analysis, the SDS may make recommendations to NOAA for EDR improvements. SDS implementation calls for a distributed architecture with 9 major elements. Four elements, principally related to data management, are located within NASA's Goddard Space Flight Center (GSFC). Five science investigator-led elements devoted to EDR evaluations are distributed among GSFC, NASA's Jet Propulsion Laboratory, and the University of Wisconsin, Madison. These SDS Product Evaluation And Test System Elements (PEATES) work both independently and in close coordination with the NPP Science Team to conduct EDR evaluation and improvement.

  15. 14 CFR 1212.700 - NASA employees.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 5 2011-01-01 2010-01-01 true NASA employees. 1212.700 Section 1212.700 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION PRIVACY ACT-NASA REGULATIONS NASA Authority and Responsibilities § 1212.700 NASA employees. (a) Each NASA employee is responsible for...

  16. 14 CFR 1212.700 - NASA employees.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 5 2013-01-01 2013-01-01 false NASA employees. 1212.700 Section 1212.700 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION PRIVACY ACT-NASA REGULATIONS NASA Authority and Responsibilities § 1212.700 NASA employees. (a) Each NASA employee is responsible for...

  17. 14 CFR 1212.700 - NASA employees.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 5 2012-01-01 2012-01-01 false NASA employees. 1212.700 Section 1212.700 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION PRIVACY ACT-NASA REGULATIONS NASA Authority and Responsibilities § 1212.700 NASA employees. (a) Each NASA employee is responsible for...

  18. 14 CFR 1212.700 - NASA employees.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 5 2010-01-01 2010-01-01 false NASA employees. 1212.700 Section 1212.700 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION PRIVACY ACT-NASA REGULATIONS NASA Authority and Responsibilities § 1212.700 NASA employees. (a) Each NASA employee is responsible for...

  19. 77 FR 13153 - Information Collection; NASA Contractor Financial Management Reports

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-05

    ... SPACE ADMINISTRATION Information Collection; NASA Contractor Financial Management Reports AGENCY: National Aeronautics and Space Administration (NASA). ACTION: Notice of information collection. SUMMARY... collection instrument(s) and instructions should be directed to Ms. Frances Teel, NASA Clearance...

  20. Production and quality assurance automation in the Goddard Space Flight Center Flight Dynamics Facility

    NASA Technical Reports Server (NTRS)

    Chapman, K. B.; Cox, C. M.; Thomas, C. W.; Cuevas, O. O.; Beckman, R. M.

    1994-01-01

    The Flight Dynamics Facility (FDF) at the NASA Goddard Space Flight Center (GSFC) generates numerous products for NASA-supported spacecraft, including the Tracking and Data Relay Satellites (TDRS's), the Hubble Space Telescope (HST), the Extreme Ultraviolet Explorer (EUVE), and the space shuttle. These products include orbit determination data, acquisition data, event scheduling data, and attitude data. In most cases, product generation involves repetitive execution of many programs. The increasing number of missions supported by the FDF has necessitated the use of automated systems to schedule, execute, and quality assure these products. This automation allows the delivery of accurate products in a timely and cost-efficient manner. To be effective, these systems must automate as many repetitive operations as possible and must be flexible enough to meet changing support requirements. The FDF Orbit Determination Task (ODT) has implemented several systems that automate product generation and quality assurance (QA). These systems include the Orbit Production Automation System (OPAS), the New Enhanced Operations Log (NEOLOG), and the Quality Assurance Automation Software (QA Tool). Implementation of these systems has resulted in a significant reduction in required manpower, elimination of shift work and most weekend support, and improved support quality, while incurring minimal development cost. This paper will present an overview of the concepts used and experiences gained from the implementation of these automation systems.

  1. Incorporating Parallel Computing into the Goddard Earth Observing System Data Assimilation System (GEOS DAS)

    NASA Technical Reports Server (NTRS)

    Larson, Jay W.

    1998-01-01

    Atmospheric data assimilation is a method of combining actual observations with model forecasts to produce a more accurate description of the earth system than the observations or forecast alone can provide. The output of data assimilation, sometimes called the analysis, are regular, gridded datasets of observed and unobserved variables. Analysis plays a key role in numerical weather prediction and is becoming increasingly important for climate research. These applications, and the need for timely validation of scientific enhancements to the data assimilation system pose computational demands that are best met by distributed parallel software. The mission of the NASA Data Assimilation Office (DAO) is to provide datasets for climate research and to support NASA satellite and aircraft missions. The system used to create these datasets is the Goddard Earth Observing System Data Assimilation System (GEOS DAS). The core components of the the GEOS DAS are: the GEOS General Circulation Model (GCM), the Physical-space Statistical Analysis System (PSAS), the Observer, the on-line Quality Control (QC) system, the Coupler (which feeds analysis increments back to the GCM), and an I/O package for processing the large amounts of data the system produces (which will be described in another presentation in this session). The discussion will center on the following issues: the computational complexity for the whole GEOS DAS, assessment of the performance of the individual elements of GEOS DAS, and parallelization strategy for some of the components of the system.

  2. NASA Quest.

    ERIC Educational Resources Information Center

    Ashby, Susanne

    2000-01-01

    Introduces NASA Quest as part of NASA's Learning Technologies Project, which connects students to the people of NASA through the various pages at the website where students can glimpse the various types of work performed at different NASA facilities and talk to NASA workers about the type of work they do. (ASK)

  3. NASA Pocket Statistics

    NASA Technical Reports Server (NTRS)

    1994-01-01

    Pocket Statistics is published for the use of NASA managers and their staff. Included herein is Administrative and Organizational information, summaries of Space Flight Activity including the NASA Major Launch Record, and NASA Procurement, Financial, and Manpower data. The NASA Major Launch Record includes all launches of Scout class and larger vehicles. Vehicle and spacecraft development flights are also included in the Major Launch Record. Shuttle missions are counted as one launch and one payload, where free flying payloads are not involved. Satellites deployed from the cargo bay of the Shuttle and placed in a separate orbit or trajectory are counted as an additional payload.

  4. Automated Test for NASA CFS

    NASA Technical Reports Server (NTRS)

    McComas, David C.; Strege, Susanne L.; Carpenter, Paul B. Hartman, Randy

    2015-01-01

    The core Flight System (cFS) is a flight software (FSW) product line developed by the Flight Software Systems Branch (FSSB) at NASA's Goddard Space Flight Center (GSFC). The cFS uses compile-time configuration parameters to implement variable requirements to enable portability across embedded computing platforms and to implement different end-user functional needs. The verification and validation of these requirements is proving to be a significant challenge. This paper describes the challenges facing the cFS and the results of a pilot effort to apply EXB Solution's testing approach to the cFS applications.

  5. Women at work in NASA

    NASA Technical Reports Server (NTRS)

    Jenkins, H. G.

    1980-01-01

    Photographs and brief descriptions summarize the diversity of the female work force at NASA. Jobs are classified as: (1) technical support positions; (2) clerical and nonprofessional administrative; (3) professional administrative; and (4) professional scientific and engineering.

  6. Technical publications of the NASA Wallops Flight Facility, 1980 through 1983

    NASA Technical Reports Server (NTRS)

    Foster, J. N.

    1984-01-01

    This bibliography lists the publications sponsored by the NASA Wallops Flight Center/NASA Goddard Space Flight Center, Wallops Flight Facility during the period 1980 through 1983. The compilation contains citations listed by type of publication; i.e., NASA formal report, NASA contractor report, journal article, or presentation; by contract/grant number; and by accession number. Oceanography, astrophysics, artificial satellites, fluid mechanics, and sea ice are among the topics covered.

  7. Chemical network problems solved on NASA/Goddard's massively parallel processor computer

    NASA Technical Reports Server (NTRS)

    Cho, Seog Y.; Carmichael, Gregory R.

    1987-01-01

    The single instruction stream, multiple data stream Massively Parallel Processor (MPP) unit consists of 16,384 bit serial arithmetic processors configured as a 128 x 128 array whose speed can exceed that of current supercomputers (Cyber 205). The applicability of the MPP for solving reaction network problems is presented and discussed, including the mapping of the calculation to the architecture, and CPU timing comparisons.

  8. High-Efficiency High-Resolution Global Model Developments at the NASA Goddard Data Assimilation Office

    NASA Technical Reports Server (NTRS)

    Lin, Shian-Jiann; Atlas, Robert (Technical Monitor)

    2002-01-01

    The Data Assimilation Office (DAO) has been developing a new generation of ultra-high resolution General Circulation Model (GCM) that is suitable for 4-D data assimilation, numerical weather predictions, and climate simulations. These three applications have conflicting requirements. For 4-D data assimilation and weather predictions, it is highly desirable to run the model at the highest possible spatial resolution (e.g., 55 km or finer) so as to be able to resolve and predict socially and economically important weather phenomena such as tropical cyclones, hurricanes, and severe winter storms. For climate change applications, the model simulations need to be carried out for decades, if not centuries. To reduce uncertainty in climate change assessments, the next generation model would also need to be run at a fine enough spatial resolution that can at least marginally simulate the effects of intense tropical cyclones. Scientific problems (e.g., parameterization of subgrid scale moist processes) aside, all three areas of application require the model's computational performance to be dramatically improved as compared to the previous generation. In this talk, I will present the current and future developments of the "finite-volume dynamical core" at the Data Assimilation Office. This dynamical core applies modem monotonicity preserving algorithms and is genuinely conservative by construction, not by an ad hoc fixer. The "discretization" of the conservation laws is purely local, which is clearly advantageous for resolving sharp gradient flow features. In addition, the local nature of the finite-volume discretization also has a significant advantage on distributed memory parallel computers. Together with a unique vertically Lagrangian control volume discretization that essentially reduces the dimension of the computational problem from three to two, the finite-volume dynamical core is very efficient, particularly at high resolutions. I will also present the computational design of the dynamical core using a hybrid distributed-shared memory programming paradigm that is portable to virtually any of today's high-end parallel super-computing clusters.

  9. Significant accomplishments in science and technology, Goddard Space Flight Center, 1974. [proceedings - NASA programs

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Topics covered are: (1) earth resources (climatology, oceanography, soils, strip mines), and (2) astronomy (magnetic fields and atmospheres of the planets and the sun; galactic and interstellar gas; cosmic and X-ray radiation). Photographs of satellite observations are included.

  10. The 1971 NASA/Goddard-Aerospace Industry Battery Workshop, volume 2

    NASA Technical Reports Server (NTRS)

    1971-01-01

    The proceedings of the final two sessions the conference on nickel-cadmium batteries are reported. The major subject areas covered in these two sessions include: (1) materials and pre-charge, and (2) thermal problems experienced with nickel-cadmium batteries.

  11. High-Efficiency High-Resolution Global Model Developments at the NASA Goddard Data Assimilation Office

    NASA Technical Reports Server (NTRS)

    Lin, Shian-Jiann; Atlas, Robert (Technical Monitor)

    2002-01-01

    The Data Assimilation Office (DAO) has been developing a new generation of ultra-high resolution General Circulation Model (GCM) that is suitable for 4-D data assimilation, numerical weather predictions, and climate simulations. These three applications have conflicting requirements. For 4-D data assimilation and weather predictions, it is highly desirable to run the model at the highest possible spatial resolution (e.g., 55 kin or finer) so as to be able to resolve and predict socially and economically important weather phenomena such as tropical cyclones, hurricanes, and severe winter storms. For climate change applications, the model simulations need to be carried out for decades, if not centuries. To reduce uncertainty in climate change assessments, the next generation model would also need to be run at a fine enough spatial resolution that can at least marginally simulate the effects of intense tropical cyclones. Scientific problems (e.g., parameterization of subgrid scale moist processes) aside, all three areas of application require the model's computational performance to be dramatically improved as compared to the previous generation. In this talk, I will present the current and future developments of the "finite-volume dynamical core" at the Data Assimilation Office. This dynamical core applies modem monotonicity preserving algorithms and is genuinely conservative by construction, not by an ad hoc fixer. The "discretization" of the conservation laws is purely local, which is clearly advantageous for resolving sharp gradient flow features. In addition, the local nature of the finite-volume discretization also has a significant advantage on distributed memory parallel computers. Together with a unique vertically Lagrangian control volume discretization that essentially reduces the dimension of the computational problem from three to two, the finite-volume dynamical core is very efficient, particularly at high resolutions. I will also present the computational design of the dynamical core using a hybrid distributed- shared memory programming paradigm that is portable to virtually any of today's high-end parallel super-computing clusters.

  12. New Developments in FPGA: SEUs and Fail-Safe Strategies from the NASA Goddard Perspective

    NASA Technical Reports Server (NTRS)

    Berg, Melanie D.; Label, Kenneth A.; Pellish, Jonathan

    2016-01-01

    It has been shown that, when exposed to radiation environments, each Field Programmable Gate Array (FPGA) device has unique error signatures. Subsequently, fail-safe and mitigation strategies will differ per FPGA type. In this session several design approaches for safe systems will be presented. It will also explore the benefits and limitations of several mitigation techniques. The intention of the presentation is to provide information regarding FPGA types, their susceptibilities, and proven fail-safe strategies; so that users can select appropriate mitigation and perform the required trade for system insertion. The presentation will describe three types of FPGA devices and their susceptibilities in radiation environments.

  13. New Developments in FPGA: SEUs and Fail-Safe Strategies from the NASA Goddard Perspective

    NASA Technical Reports Server (NTRS)

    Berg, Melanie D.; LaBel, Kenneth; Pellish, Jonathan

    2015-01-01

    It has been shown that, when exposed to radiation environments, each Field Programmable Gate Array (FPGA) device has unique error signatures. Subsequently, fail-safe and mitigation strategies will differ per FPGA type. In this session several design approaches for safe systems will be presented. It will also explore the benefits and limitations of several mitigation techniques. The intention of the presentation is to provide information regarding FPGA types, their susceptibilities, and proven fail-safe strategies; so that users can select appropriate mitigation and perform the required trade for system insertion. The presentation will describe three types of FPGA devices and their susceptibilities in radiation environments.

  14. NASA Goddard Space Flight Center Robotic Processing System Program Automation Systems, volume 2

    NASA Technical Reports Server (NTRS)

    Dobbs, M. E.

    1991-01-01

    Topics related to robot operated materials processing in space (RoMPS) are presented in view graph form. Some of the areas covered include: (1) mission requirements; (2) automation management system; (3) Space Transportation System (STS) Hitchhicker Payload; (4) Spacecraft Command Language (SCL) scripts; (5) SCL software components; (6) RoMPS EasyLab Command & Variable summary for rack stations and annealer module; (7) support electronics assembly; (8) SCL uplink packet definition; (9) SC-4 EasyLab System Memory Map; (10) Servo Axis Control Logic Suppliers; and (11) annealing oven control subsystem.

  15. Description of Data Archiving Associated With the NASA Goddard Grant NAGS-9590

    NASA Technical Reports Server (NTRS)

    Simmons, K. E.

    2002-01-01

    Data restoration and archiving activities for this project have resulted in the restoration of 100% of the original Mariner 9 raw data set as well as many of the secondary analysis data sets. These data sets have been submitted to the Planetary Data System (PDS) Atmospheric Node, along with their PDS labels and descriptive metadata. In addition, a useful visualization and analysis tool has also been developed which allows the user to compare these Mariner 1971 Ultraviolet spectral data with several choices of related data sets: Mariner 9 images, USGS geologic data, MGS MOLA topography, Viking images (Viking MDIM) and thermal inertia data (MGS TES).

  16. Extremely High Vacuum Chamber for Low Outgassing Processing at NASA Goddard

    NASA Technical Reports Server (NTRS)

    Webb, Andrew; Gelman, Joseph

    2008-01-01

    The levels of vacuum that proceed past the high vacuum range into the ultra high and then the extremely high vacuum range become more difficult to achieve each decade that a system progresses through. This paper will explore the difficulties and cover some of the design principles used in achieving vacuum levels in the low 10-12 torr pressure range. This system was entirely built with commercially-available off the shelf (COTS) components. This chamber was designed in 1998 to provide a very low outgassing environment for the processing and sealing of charge-coupled devices (CCD's) for some of the Hubble Space Telescope replacement optics.

  17. Nickel-Hydrogen Cell Testing Experience, NASA/Goddard Space Flight Center

    NASA Technical Reports Server (NTRS)

    Rao, Gopalakrishna M.

    1999-01-01

    The objectives of the project were to test the Nickel-Hydrogen Cell to: (1) verify the Aerospace Cell Flight Worthiness, (2) Elucidate the Aerospace Cell Thermal Behavior, (3) Develop the Aerospace Battery Assembly Design(s) and In-orbit Battery Management plan(s) and (4) Understand the Aerospace Cell Failure Mechanism. The tests included the LEO and GEO Life cycle tests, Calorimetric Analysis, Destructive Physical analysis, and special tests. Charts show the Mission Profile Cycling Data, Stress Cycling Data. The test data complies with the mission requirements, validating the flight worthiness of batteries. The nominal stress and mission profile cycling performance test shows the charge voltage as high as 1.60V and recharge ratio greater than 1.05. It is apparent that the electrochemical signatures alone do not provide conclusive proof for Nickel precharge. The researchers recommend a gas and positive plate analyses for further confirmation.

  18. New Developments in FPGA Devices: SEUs and Fail-Safe Strategies from the NASA Goddard Perspective

    NASA Technical Reports Server (NTRS)

    Berg, Melanie; LaBel, Kenneth; Pellish, Jonathan

    2016-01-01

    It has been shown that, when exposed to radiation environments, each Field Programmable Gate Array (FPGA) device has unique error signatures. Subsequently, fail-safe and mitigation strategies will differ per FPGA type. In this session several design approaches for safe systems will be presented. It will also explore the benefits and limitations of several mitigation techniques. The intention of the presentation is to provide information regarding FPGA types, their susceptibilities, and proven fail-safe strategies; so that users can select appropriate mitigation and perform the required trade for system insertion. The presentation will describe three types of FPGA devices and their susceptibilities in radiation environments.

  19. NASA Goddard Space Flight Center, on Behalf of the Fermi Large Area Telescope Collaboration

    NASA Technical Reports Server (NTRS)

    Thompson, David J.

    2010-01-01

    Because high-energy gamma rays can be produced by processes that also produce neutrinos, the gamma-ray survey of the sky by the Fermi (Gamma-ray Space Telescope offers a view of potential targets for neutrino observations. Gamma-ray bursts. Active Galactic Nuclei, and supernova remnants are all sites where hadronic, neutrino-producing interactions are plausible. Pulsars, pulsar wind nebulae, and binary sources are all phenomena that reveal leptonic particle acceleration through their gamma-ray emission. While important to gamma-ray astrophysics, such sources are of less interest to neutrino studies. This talk will present a broad overview of the constantly changing sky seen with the Large Area Telescope (LAT)on the Fermi spacecraft.

  20. The 1971 NASA/Goddard-Aerospace Industry Battery Workshop, volume 1

    NASA Technical Reports Server (NTRS)

    1971-01-01

    The proceedings are reported for the first two sessions of the conference on nickel-cadmium batteries. These two sessions were mainly devoted to discussions of: (1) separators and seals, and (2) cell performance and specification experience.

  1. Lithium Ion Testing at NSWC Crane in Support of NASA Goddard Space Flight Center

    NASA Technical Reports Server (NTRS)

    Brown, Harry; Jung, David; Lee, Leonine

    2010-01-01

    This viewgraph presentation reviews Lithium Ion Cell testing at the Naval Surface Warfare Center in Crane, India. The contents include: 1) Quallion 15 Ahr Lithium-Ion Cells, LEO Life Cycle Test; 2) Lithion 50 Ahr Lithium-Ion Cells, LEO Life Cycle Test; 3) ABSL 5 Ahr Lithium-Ion Battery, LRO-LLO Life Cycle Test, SDO-GEO Life Cycle Test; and 4) A123 40 Ahr Lithium-Ion Battery, GPM Life Cycle Test, MMS Life Cycle Test.

  2. NASA Goddard Space Flight Center Tin Whisker (and Other Metal Whisker) Homepage

    NASA Technical Reports Server (NTRS)

    Brusse, Jay; Sampson, Mike; Leidecker, Henning; Kadesch, Jong

    2004-01-01

    This website provides information about tin whiskers and related research. The independent research performed during the past 50+ years is so vast that it is impractical to cover all aspects of tin whiskers in this one resource. Therefore, the absence of information in this website about a particular aspect of tin whiskers should NOT be construed as evidence of absence.

  3. The 1988 Goddard Space Flight Center Battery Workshop

    NASA Technical Reports Server (NTRS)

    Yi, Thomas Y. (Editor)

    1993-01-01

    This document contains the proceedings of the 21st annual Battery Workshop held at Goddard Space Flight Center, Greenbelt, Maryland on November 1-3, 1988. The Workshop attendees included manufacturers, users, and government representatives interested in the latest developments in battery technology as they relate to high reliability operations and aerospace use. The subjects covered included battery testing methodologies and criteria, life testing of nickel-cadmium cells, testing and operation of nickel-hydrogen batteries in low earth orbit, and nickel-hydrogen technology issues and concerns.

  4. The 1991 research and technology report, Goddard Space Flight Center

    NASA Technical Reports Server (NTRS)

    Soffen, Gerald (Editor); Ottenstein, Howard (Editor); Montgomery, Harry (Editor); Truszkowski, Walter (Editor); Frost, Kenneth (Editor); Sullivan, Walter (Editor); Boyle, Charles (Editor)

    1991-01-01

    The 1991 Research and Technology Report for Goddard Space Flight Center is presented. Research covered areas such as (1) earth sciences including upper atmosphere, lower atmosphere, oceans, hydrology, and global studies; (2) space sciences including solar studies, planetary studies, Astro-1, gamma ray investigations, and astrophysics; (3) flight projects; (4) engineering including robotics, mechanical engineering, electronics, imaging and optics, thermal and cryogenic studies, and balloons; and (5) ground systems, networks, and communications including data and networks, TDRSS, mission planning and scheduling, and software development and test.

  5. The 1987 Goddard Space Flight Center Battery Workshop

    NASA Technical Reports Server (NTRS)

    Morrow, George (Editor); Yi, Thomas Y. (Editor)

    1993-01-01

    This document contains the proceedings of the 20th annual Battery Workshop held at Goddard Space Flight Center, Greenbelt, Maryland on November 4-5, 1987. The workshop attendees included manufacturers, users, and government representatives interested in the latest developments in battery technology as they relate to high reliability operations and aerospace use. The subjects covered included lithium cell technology and safety improvements, nickel-cadmium electrode technology along with associated modifications, flight experience and life testing of nickel-cadmium cells, and nickel-hydrogen applications and technology.

  6. Robert Goddard Young, DC, ND: Searching for a better way

    PubMed Central

    Brown, Douglas M.

    2009-01-01

    This biographical study tracks the life of Robert Goddard Young; a member of the Canadian Memorial Chiropractic College’s (CMCC) Class of 1950. The paper begins with an overview of Robert Young’s origins, his childhood and early training, moves to his tour of duty in World War II, followed by his education at CMCC, before converging on the core of this matter; Robert Young’s professional career, which spanned over half a century. Now in his twilight years, the paper ends with a discussion on the substance of Dr. Young’s largely-forgotten contributions. PMID:19714235

  7. R and T report: Goddard Space Flight Center

    NASA Technical Reports Server (NTRS)

    Soffen, Gerald A. (Editor)

    1993-01-01

    The 1993 Research and Technology Report for Goddard Space Flight Center is presented. Research covered areas such as (1) flight projects; (2) space sciences including cosmology, high energy, stars and galaxies, and the solar system; (3) earth sciences including process modeling, hydrology/cryology, atmospheres, biosphere, and solid earth; (4) networks, planning, and information systems including support for mission operations, data distribution, advanced software and systems engineering, and planning/scheduling; and (5) engineering and materials including spacecraft systems, material and testing, optics and photonics and robotics.

  8. 78 FR 11235 - Information Collection Notice/NASA Great Moonbuggy Race

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-15

    ... SPACE ADMINISTRATION Information Collection Notice/NASA Great Moonbuggy Race AGENCY: National Aeronautics and Space Administration (NASA). ACTION: NASA Information Collection Notice; Correction. Federal... comment on a proposed information collection; the NASA Great Moonbuggy Race, as required by the...

  9. 77 FR 66082 - NASA Advisory Council; Human Exploration and Operations Committee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-11-01

    ... SPACE ADMINISTRATION NASA Advisory Council; Human Exploration and Operations Committee; Meeting AGENCY... Administration (NASA) announces a meeting of the ] Human Exploration and Operations Committee of the NASA..., Human Exploration and Operations Mission Directorate, NASA Headquarters, 300 E Street SW.,...

  10. 76 FR 64122 - NASA Advisory Committee; Renewal of NASA's International Space Station Advisory Committee Charter

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-17

    ... SPACE ADMINISTRATION NASA Advisory Committee; Renewal of NASA's International Space Station Advisory Committee Charter AGENCY: National Aeronautics and Space Administration (NASA). ACTION: Notice of renewal... imposed on NASA by law. The renewed Charter is for a one-year period ending September 30, 2012. It...

  11. Microphysics, Radiation and Surface Processes in the Goddard Cumulus Ensemble (GCE) Model

    NASA Technical Reports Server (NTRS)

    Tao, Wei-Kuo; Starr, David (Technical Monitor)

    2002-01-01

    One of the most promising methods to test the representation of cloud processes used in climate models is to use observations together with Cloud Resolving Models (CRMs). The CRMs use more sophisticated and realistic representations of cloud microphysical processes, and they can reasonably well resolve the time evolution, structure, and life cycles of clouds and cloud systems (size about 2-200 km). The CRMs also allow explicit interaction between out-going longwave (cooling) and in-coming solar (heating) radiation with clouds. Observations can provide the initial conditions and validation for CRM results. The Goddard Cumulus Ensemble (GCE) Model, a CRM, has been developed and improved at NASA/Goddard Space Flight Center over the past two decades. The GCE model has been used to understand the following: 1) water and energy cycles and their roles in the tropical climate system; 2) the vertical redistribution of ozone and trace constituents by individual clouds and well organized convective systems over various spatial scales; 3) the relationship between the vertical distribution of latent heating (phase change of water) and the large-scale (pre-storm) environment; 4) the validity of assumptions used in the representation of cloud processes in climate and global circulation models; and 5) the representation of cloud microphysical processes and their interaction with radiative forcing over tropical and midlatitude regions. Four-dimensional cloud and latent heating fields simulated from the GCE model have been provided to the TRMM Science Data and Information System (TSDIS) to develop and improve algorithms for retrieving rainfall and latent heating rates for TRMM and the NASA Earth Observing System (EOS). More than 90 referred papers using the GCE model have been published in the last two decades. Also, more than 10 national and international universities are currently using the GCE model for research and teaching. In this talk, five specific major GCE improvements: (1

  12. Linking and Combining Distributed Operations Facilities using NASA's "GMSEC" Systems Architectures

    NASA Technical Reports Server (NTRS)

    Smith, Danford; Grubb, Thomas; Esper, Jaime

    2008-01-01

    NASA's Goddard Mission Services Evolution Center (GMSEC) ground system architecture has been in development since late 2001, has successfully supported eight orbiting satellites and is being applied to many of NASA's future missions. GMSEC can be considered an event-driven service-oriented architecture built around a publish/subscribe message bus middleware. This paper briefly discusses the GMSEC technical approaches which have led to significant cost savings and risk reduction for NASA missions operated at the Goddard Space Flight Center (GSFC). The paper then focuses on the development and operational impacts of extending the architecture across multiple mission operations facilities.

  13. The Optical Fiber Array Bundle Assemblies for the NASA Lunar Reconnaissance Orbiter

    NASA Technical Reports Server (NTRS)

    Ott, Melanie N.; Switzer, Rob; Thomes, William Joe; Chuska, Richard; LaRocca, Frank; MacMurphy, Shawn

    2008-01-01

    The United States, National Aeronautics and Space Administration (NASA) Goddard Space Flight Center (GSFC), Fiber Optics Team in the Electrical Engineering Division of the Applied Engineering and Technology Directorate, designed, developed and integrated the space flight optical fiber array hardware assemblies for the Lunar Reconnaissance Orbiter (LRO). The two new assemblies that were designed and manufactured at NASA GSFC for the LRO exist in configurations that are unique in the world for the application of ranging and lidar. These assemblies were developed in coordination with Diamond Switzerland, and the NASA GSFC Mechanical Systems Division. The assemblies represent a strategic enhancement for NASA's Laser Ranging and Laser Radar (LIDAR) instrument hardware by allowing light to be moved to alternative locations that were not feasible in past space flight implementations. An account will be described of the journey and the lessons learned from design to integration for the Lunar Orbiter Laser Altimeter and the Laser Ranging Application on the LRO. The LRO is scheduled to launch end of 2008.

  14. NASA-GSFC ionospheric corrections to satellite tracking data

    NASA Technical Reports Server (NTRS)

    Schmid, P. E.; Bent, R. B.; Llewellyn, S. K.; Nesterczuk, G.; Rangaswamy, S.

    1971-01-01

    An overview is presented of the development, verification, and recent implementation of the NASA-GSFC ionospheric model for satellite tracking data corrections. This model was incorporated into the Goddard Trajectory Determination System which is providing continuous trajectory computation support for the lunar orbiting Radio Astronomy Explorer-B launched on 10 June 1973.

  15. An Overview of the NASA Sounding Rockets and Balloon Programs

    NASA Technical Reports Server (NTRS)

    Flowers, Bobby J.; Needleman, Harvey C.

    1999-01-01

    The U.S. National Aeronautics and Space Administration (NASA) Sounding Rockets and Balloon Programs conduct a combined total of approximately fifty to sixty missions per year in support of the NASA scientific community. These missions are provided in support of investigations sponsored by NASA'S Offices of Space Science, Life and Microgravity Sciences & Applications, and Earth Science. The Goddard Space Flight Center has management and implementation responsibility for these programs. The NASA Sounding Rockets Program has continued to su,pport the science community by integrating their experiments into the sounding rocket payload and providing the rocket vehicle and launch operations necessary to provide the altitude/time required obtain the science objectives. The sounding rockets continue to provide a cost-effective way to make in situ observations from 50 to 1500 km in the near-earth environment and to uniquely cover the altitude regime between 50 km and 130 km above the Earth's surface, which is physically inaccessible to either balloons or satellites. A new architecture for providing this support has been introduced this year with the establishment of the NASA Sounding Rockets Contract. The Program has continued to introduce improvements into their operations and ground and flight systems. An overview of the NASA Sounding Rockets Program with special emphasis on the new support contract will be presented. The NASA Balloon Program continues to make advancements and developments in its capabilities for support of the scientific ballooning community. Long duration balloon (LDB) is a prominent aspect of the program with two campaigns scheduled for this calendar year. Two flights are scheduled in the Northern Hemisphere from Fairbanks, Alaska, in June and two flights are scheduled from McMurdo, Antarctica, in the Southern Hemisphere in December. The comprehensive balloon research and development (R&D) effort has continued with advances being made across the

  16. Satellite Instructional Television Experiment (SITE): Reports from the NASA resident representative in India. [ATS 6

    NASA Technical Reports Server (NTRS)

    Galloway, H. L., Jr.

    1976-01-01

    Reports submitted by the NASA project representative for the Satellite Instructional Television Experiment (SITE) at Ahmedabad, India are presented. These reports deal with the coordination of all SITE related matters between the ATS 6 Project at Goddard Space Flight Center, NASA Headquarters, and the SITE Program in India.

  17. The 1982 ASEE-NASA Faculty Fellowship program (Aeronautics and Research)

    NASA Technical Reports Server (NTRS)

    Fan, D. N.; Hodge, J. R.; Emadi, F. P.

    1982-01-01

    The NASA/ASEE Summer Faculty Fellowship Program (Aeronautics and Research) conducted at the NASA Goddard Space Flight Center during the summer of 1982 is described. Abstracts of the Final Reports submitted by the Fellows detailing the results of their research are also presented.

  18. NASA and General Aviation. NASA SP-485.

    ERIC Educational Resources Information Center

    Ethell, Jeffrey L.

    A detailed examination of the nature and function of general aviation and a discussion of how the National Aeronautics and Space Administration (NASA) helps keep it on the cutting edge of technology are offered in this publication. The intricacies of aerodynamics, energy, and safety as well as the achievements in aeronautical experimentation are…

  19. NASA International Environmental Partnerships

    NASA Technical Reports Server (NTRS)

    Lewis, Pattie; Valek, Susan

    2010-01-01

    For nearly five decades, the National Aeronautics and Space Administration (NASA) has been preeminent in space exploration. NASA has landed Americans on the moon, robotic rovers on Mars, and led cooperative scientific endeavors among nations aboard the International Space Station. But as Earth's population increases, the environment is subject to increasing challenges and requires more efficient use of resources. International partnerships give NASA the opportunity to share its scientific and engineering expertise. They also enable NASA to stay aware of continually changing international environmental regulations and global markets for materials that NASA uses to accomplish its mission. Through international partnerships, NASA and this nation have taken the opportunity to look globally for solutions to challenges we face here on Earth. Working with other nations provides NASA with collaborative opportunities with the global science/engineering community to explore ways in which to protect our natural resources, conserve energy, reduce the use of hazardous materials in space and earthly applications, and reduce greenhouse gases that potentially affect all of Earth's inhabitants. NASA is working with an ever-expanding list of international partners including the European Union, the European Space Agency and, especially, the nation of Portugal. Our common goal is to foster a sustainable future in which partners continue to explore the universe while protecting our home planet's resources for future generations. This brochure highlights past, current, and future initiatives in several important areas of international collaboration that can bring environmental, economic, and other benefits to NASA and the wider international space community.

  20. NASA/State Education Cooperation

    NASA Technical Reports Server (NTRS)

    1990-01-01

    NASA is cooperating with state departments of education in a number of special education programs. An example is Maryland Summer Centers for Gifted and Talented Students sponsored by the Maryland State Department of Education. Some 2,600 students participated in the 1990 program. One of the 12 centers is the Center for Space Science and Technology at Goddard Space Flight Center, which provides instruction to students of the 9-12 grade level. This center is operated by a three organization partnership that includes the Maryland State Department of Education, the University of Maryland and Goddard Space Flight Center, which hosts the instructional program and provides volunteer scientists and engineers as instructors. Typical two-week space intern program includes panel discussions, lectures, tours, field trips and hands-on activity focusing on various space science topics. Senior high students benefit from a one-to-one mentor relationship with a volunteer scientist or engineer. Another example was the Paducah (Kentucky) NASA Community Involvement Project, a joint educational effort of Langley and Lewis Research Centers, Marshall Space Flight Center, the Kentucky Department of Education, the City of Paducah and Paducah Independent Schools. It was a 16 day exposition/symposium featuring seminars on space subjects.

  1. 77 FR 34093 - NASA Advisory Council; Science Committee; Heliophysics Subcommittee; Meeting.

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-08

    ... SPACE ADMINISTRATION NASA Advisory Council; Science Committee; Heliophysics Subcommittee; Meeting. AGENCY: National Aeronautics and Space Administration. ACTION: Notice of meeting. SUMMARY: In accordance... Space Administration (NASA) announces a meeting of the Heliophysics Subcommittee of the NASA...

  2. 77 FR 62536 - Meeting of Astrophysics Subcommittee of the NASA Advisory Council Science Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-15

    ... SPACE ADMINISTRATION Meeting of Astrophysics Subcommittee of the NASA Advisory Council Science Committee AGENCY: National Aeronautics and Space Administration. ACTION: Notice of meeting. SUMMARY: In accordance... Space Administration (NASA) announces a meeting of the Astrophysics Subcommittee of the NASA...

  3. 76 FR 66998 - NASA Advisory Council; Science Committee; Astrophysics Subcommittee; Meeting.

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-28

    ... SPACE ADMINISTRATION NASA Advisory Council; Science Committee; Astrophysics Subcommittee; Meeting. AGENCY: National Aeronautics and Space Administration. ACTION: Notice of meeting. SUMMARY: In accordance... Space Administration (NASA) announces a meeting of the Astrophysics Subcommittee of the NASA...

  4. NASA Planetary Visualization Tool

    NASA Astrophysics Data System (ADS)

    Hogan, P.; Kim, R.

    2004-12-01

    NASA World Wind allows one to zoom from satellite altitude into any place on Earth, leveraging the combination of high resolution LandSat imagery and SRTM elevation data to experience Earth in visually rich 3D, just as if they were really there. NASA World Wind combines LandSat 7 imagery with Shuttle Radar Topography Mission (SRTM) elevation data, for a dramatic view of the Earth at eye level. Users can literally fly across the world's terrain from any location in any direction. Particular focus was put into the ease of usability so people of all ages can enjoy World Wind. All one needs to control World Wind is a two button mouse. Additional guides and features can be accessed though a simplified menu. Navigation is automated with single clicks of a mouse as well as the ability to type in any location and automatically zoom to it. NASA World Wind was designed to run on recent PC hardware with the same technology used by today's 3D video games. NASA World Wind delivers the NASA Blue Marble, spectacular true-color imagery of the entire Earth at 1-kilometer-per-pixel. Using NASA World Wind, you can continue to zoom past Blue Marble resolution to seamlessly experience the extremely detailed mosaic of LandSat 7 data at an impressive 15-meters-per-pixel resolution. NASA World Wind also delivers other color bands such as the infrared spectrum. The NASA Scientific Visualization Studio at Goddard Space Flight Center (GSFC) has produced a set of visually intense animations that demonstrate a variety of subjects such as hurricane dynamics and seasonal changes across the globe. NASA World Wind takes these animations and plays them directly on the world. The NASA Moderate Resolution Imaging Spectroradiometer (MODIS) produces a set of time relevant planetary imagery that's updated every day. MODIS catalogs fires, floods, dust, smoke, storms and volcanic activity. NASA World Wind produces an easily customized view of this information and marks them directly on the globe. When one

  5. NASA overhauls grant process

    NASA Astrophysics Data System (ADS)

    Simarski, Lynn Teo

    A university recently received a NASA grant so quickly that the recipients, used to a long wait for money even after a grant had been approved, assumed a mistake had been made. Such a story has been making the rounds since NASA began to refurbish the procedure by which it issues grants, speeding up and streamlining the process in response to suggestions from space scientists.One way NASA has measured success so far is how quickly it has cleared the decks of pending grants. The agency reduced the backlog from 572 grants on September 11 to zero by the end of the month, according to Don Bush, NASA's deputy assistant administrator for procurement. But that's just the beginning of changes Bush expects to be completed by March or April next year. The new procedures are first being tested out at headquarters, which issues over half of the agency's space science grants. NASA centers will also adopt the procedures after full approval.

  6. The NASA astrobiology program.

    PubMed

    Morrison, D

    2001-01-01

    The new discipline of astrobiology addresses fundamental questions about life in the universe: "Where did we come from?" "Are we alone in the universe?" "What is our future beyond the Earth?" Developing capabilities in biotechnology, informatics, and space exploration provide new tools to address these old questions. The U.S. National Aeronautics and Space Administration (NASA) has encouraged this new discipline by organizing workshops and technical meetings, establishing a NASA Astrobiology Institute, providing research funds to individual investigators, ensuring that astrobiology goals are incorporated in NASA flight missions, and initiating a program of public outreach and education. Much of the initial effort by NASA and the research community was focused on determining the technical content of astrobiology. This paper discusses the initial answer to the question "What is astrobiology?" as described in the NASA Astrobiology Roadmap.

  7. 14 CFR 1221.111 - Use of the NASA Logotype.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 5 2011-01-01 2010-01-01 true Use of the NASA Logotype. 1221.111 Section 1221.111 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION THE NASA SEAL AND OTHER DEVICES, AND THE CONGRESSIONAL SPACE MEDAL OF HONOR NASA Seal, NASA Insignia, NASA Logotype, NASA...

  8. 14 CFR 1221.109 - Use of the NASA Seal.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 5 2010-01-01 2010-01-01 false Use of the NASA Seal. 1221.109 Section 1221.109 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION THE NASA SEAL AND OTHER DEVICES, AND THE CONGRESSIONAL SPACE MEDAL OF HONOR NASA Seal, NASA Insignia, NASA Logotype, NASA...

  9. 14 CFR 1221.113 - Use of the NASA Flags.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 5 2010-01-01 2010-01-01 false Use of the NASA Flags. 1221.113 Section 1221.113 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION THE NASA SEAL AND OTHER DEVICES, AND THE CONGRESSIONAL SPACE MEDAL OF HONOR NASA Seal, NASA Insignia, NASA Logotype, NASA...

  10. 14 CFR 1221.109 - Use of the NASA Seal.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 5 2012-01-01 2012-01-01 false Use of the NASA Seal. 1221.109 Section 1221.109 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION THE NASA SEAL AND OTHER DEVICES, AND THE CONGRESSIONAL SPACE MEDAL OF HONOR NASA Seal, NASA Insignia, NASA Logotype, NASA...

  11. 14 CFR 1221.110 - Use of the NASA Insignia.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 5 2011-01-01 2010-01-01 true Use of the NASA Insignia. 1221.110 Section 1221.110 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION THE NASA SEAL AND OTHER DEVICES, AND THE CONGRESSIONAL SPACE MEDAL OF HONOR NASA Seal, NASA Insignia, NASA Logotype, NASA...

  12. 14 CFR 1221.109 - Use of the NASA Seal.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 5 2011-01-01 2010-01-01 true Use of the NASA Seal. 1221.109 Section 1221.109 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION THE NASA SEAL AND OTHER DEVICES, AND THE CONGRESSIONAL SPACE MEDAL OF HONOR NASA Seal, NASA Insignia, NASA Logotype, NASA...

  13. 14 CFR 1221.113 - Use of the NASA Flags.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 5 2012-01-01 2012-01-01 false Use of the NASA Flags. 1221.113 Section 1221.113 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION THE NASA SEAL AND OTHER DEVICES, AND THE CONGRESSIONAL SPACE MEDAL OF HONOR NASA Seal, NASA Insignia, NASA Logotype, NASA...

  14. 14 CFR 1221.110 - Use of the NASA Insignia.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 5 2013-01-01 2013-01-01 false Use of the NASA Insignia. 1221.110 Section 1221.110 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION THE NASA SEAL AND OTHER DEVICES, AND THE CONGRESSIONAL SPACE MEDAL OF HONOR NASA Seal, NASA Insignia, NASA Logotype, NASA...

  15. 14 CFR 1221.111 - Use of the NASA Logotype.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 5 2010-01-01 2010-01-01 false Use of the NASA Logotype. 1221.111 Section 1221.111 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION THE NASA SEAL AND OTHER DEVICES, AND THE CONGRESSIONAL SPACE MEDAL OF HONOR NASA Seal, NASA Insignia, NASA Logotype, NASA...

  16. 14 CFR 1221.113 - Use of the NASA Flags.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 5 2013-01-01 2013-01-01 false Use of the NASA Flags. 1221.113 Section 1221.113 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION THE NASA SEAL AND OTHER DEVICES, AND THE CONGRESSIONAL SPACE MEDAL OF HONOR NASA Seal, NASA Insignia, NASA Logotype, NASA...

  17. 14 CFR 1221.110 - Use of the NASA Insignia.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 5 2012-01-01 2012-01-01 false Use of the NASA Insignia. 1221.110 Section 1221.110 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION THE NASA SEAL AND OTHER DEVICES, AND THE CONGRESSIONAL SPACE MEDAL OF HONOR NASA Seal, NASA Insignia, NASA Logotype, NASA...

  18. 14 CFR 1221.110 - Use of the NASA Insignia.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 5 2010-01-01 2010-01-01 false Use of the NASA Insignia. 1221.110 Section 1221.110 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION THE NASA SEAL AND OTHER DEVICES, AND THE CONGRESSIONAL SPACE MEDAL OF HONOR NASA Seal, NASA Insignia, NASA Logotype, NASA...

  19. 14 CFR 1221.109 - Use of the NASA Seal.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 5 2013-01-01 2013-01-01 false Use of the NASA Seal. 1221.109 Section 1221.109 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION THE NASA SEAL AND OTHER DEVICES, AND THE CONGRESSIONAL SPACE MEDAL OF HONOR NASA Seal, NASA Insignia, NASA Logotype, NASA...

  20. 14 CFR 1221.111 - Use of the NASA Logotype.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 5 2012-01-01 2012-01-01 false Use of the NASA Logotype. 1221.111 Section 1221.111 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION THE NASA SEAL AND OTHER DEVICES, AND THE CONGRESSIONAL SPACE MEDAL OF HONOR NASA Seal, NASA Insignia, NASA Logotype, NASA...

  1. 14 CFR 1221.111 - Use of the NASA Logotype.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 5 2013-01-01 2013-01-01 false Use of the NASA Logotype. 1221.111 Section 1221.111 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION THE NASA SEAL AND OTHER DEVICES, AND THE CONGRESSIONAL SPACE MEDAL OF HONOR NASA Seal, NASA Insignia, NASA Logotype, NASA...

  2. 14 CFR 1221.113 - Use of the NASA Flags.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 5 2011-01-01 2010-01-01 true Use of the NASA Flags. 1221.113 Section 1221.113 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION THE NASA SEAL AND OTHER DEVICES, AND THE CONGRESSIONAL SPACE MEDAL OF HONOR NASA Seal, NASA Insignia, NASA Logotype, NASA...

  3. NASA Explorer School

    NASA Technical Reports Server (NTRS)

    2007-01-01

    The NASA Explorer School-East Oktibbeha County School District team recently celebrated the start of its three-year partnership with NASA during a two-part kickoff event Nov. 7 and 8. Pictured from left are, Oktibbeha County School District Superintendent Dr. Walter Conley; NES Team Administrator James Covington; Stennis Space Center Deputy Director Gene Goldman; Sharon Bonner; NES Team Lead Yolanda Magee; Andrea Temple; Carolyn Rice; and special guest astronaut Roger Crouch.

  4. Satellite laser ranging work at the Goddard Space Flight Center

    NASA Technical Reports Server (NTRS)

    Mcgunigal, T. E.; Carrion, W. J.; Caudill, L. O.; Grant, C. R.; Johnson, T. S.; Premo, D. A.; Spadin, P. L.; Winston, G. C.

    1975-01-01

    The pulsed-laser satellite ranging systems presently being operated by the Goddard Space Flight Center are described along with their range and accuracy capabilities. The major subsystems are outlined, operation of the fixed system and the two mobile systems is discussed, and the performance of all three systems is evaluated. It is noted that these systems have an accuracy of better than 10 cm on a carefully surveyed range as well as in regular satellite ranging operations and are capable of ranging to all currently launched retroreflector-equipped satellites with the exception of Timation III. Future improvements discussed include a third mobile system which will be able to range distant satellites, such as Timation III, with an accuracy of better than 5 cm and the use of a frequency-doubled Nd:YAG laser in place of the ruby lasers now being employed.

  5. An evaluation of the Goddard Space Flight Center Library

    NASA Technical Reports Server (NTRS)

    Herner, S.; Lancaster, F. W.; Wright, N.; Ockerman, L.; Shearer, B.; Greenspan, S.; Mccartney, J.; Vellucci, M.

    1979-01-01

    The character and degree of coincidence between the current and future missions, programs, and projects of the Goddard Space Flight Center and the current and future collection, services, and facilities of its library were determined from structured interviews and discussions with various classes of facility personnel. In addition to the tabulation and interpretation of the data from the structured interview survey, five types of statistical analyses were performed to corroborate (or contradict) the survey results and to produce useful information not readily attainable through survey material. Conclusions reached regarding compatability between needs and holdings, services and buildings, library hours of operation, methods of early detection and anticipation of changing holdings requirements, and the impact of near future programs are presented along with a list of statistics needing collection, organization, and interpretation on a continuing or longitudinal basis.

  6. Goddard Conference on Mass Storage Systems and Technologies, Volume 1

    NASA Technical Reports Server (NTRS)

    Kobler, Ben (Editor); Hariharan, P. C. (Editor)

    1993-01-01

    Copies of nearly all of the technical papers and viewgraphs presented at the Goddard Conference on Mass Storage Systems and Technologies held in Sep. 1992 are included. The conference served as an informational exchange forum for topics primarily relating to the ingestion and management of massive amounts of data and the attendant problems (data ingestion rates now approach the order of terabytes per day). Discussion topics include the IEEE Mass Storage System Reference Model, data archiving standards, high-performance storage devices, magnetic and magneto-optic storage systems, magnetic and optical recording technologies, high-performance helical scan recording systems, and low end helical scan tape drives. Additional topics addressed the evolution of the identifiable unit for processing purposes as data ingestion rates increase dramatically, and the present state of the art in mass storage technology.

  7. KDD Services at the Goddard Earth Sciences Distributed Active Archive Center

    NASA Technical Reports Server (NTRS)

    Lynnes, Christopher; Mack, Robert; Wharton, Stephen W. (Technical Monitor)

    2000-01-01

    NASA's Goddard Earth Sciences Distributed Active Archive Center (GES DAAC) processes, stores and distributes earth science data from a variety of remote sensing satellites. End users of the data range from instrument scientists to global change and climate researchers to federal agencies and foreign governments. Many of these users apply data mining techniques to large volumes of data (up to 1 TB) received from the GES DAAC. However, rapid advances in processing power are enabling increases in data processing that are outpacing tape drive performance and network capacity. As a result, the proportion of data that can be distributed to users continues to decrease. As mitigation, we are migrating more data mining and mining preparation activities into the data center in order to reduce the data volume that needs to be distributed and to offer the users a more useful and manageable product. This migration of activities faces a number of technical and human-factor challenges. As data reduction and mining algorithms are normally quite specific to the user's research needs, the user's algorithm must be integrated virtually unchanged into the archive environment. Also, the archive itself is busy with everyday data archive and distribution activities and cannot be dedicated to, or even impacted by, the mining activities. Therefore, we schedule KDD 'campaigns' (similar to reprocessing campaigns), during which we schedule a wholesale retrieval of specific data products, offering users the opportunity to extract information from the data being retrieved during the campaign.

  8. Graphics Processing Unit (GPU) Acceleration of the Goddard Earth Observing System Atmospheric Model

    NASA Technical Reports Server (NTRS)

    Putnam, Williama

    2011-01-01

    The Goddard Earth Observing System 5 (GEOS-5) is the atmospheric model used by the Global Modeling and Assimilation Office (GMAO) for a variety of applications, from long-term climate prediction at relatively coarse resolution, to data assimilation and numerical weather prediction, to very high-resolution cloud-resolving simulations. GEOS-5 is being ported to a graphics processing unit (GPU) cluster at the NASA Center for Climate Simulation (NCCS). By utilizing GPU co-processor technology, we expect to increase the throughput of GEOS-5 by at least an order of magnitude, and accelerate the process of scientific exploration across all scales of global modeling, including: The large-scale, high-end application of non-hydrostatic, global, cloud-resolving modeling at 10- to I-kilometer (km) global resolutions Intermediate-resolution seasonal climate and weather prediction at 50- to 25-km on small clusters of GPUs Long-range, coarse-resolution climate modeling, enabled on a small box of GPUs for the individual researcher After being ported to the GPU cluster, the primary physics components and the dynamical core of GEOS-5 have demonstrated a potential speedup of 15-40 times over conventional processor cores. Performance improvements of this magnitude reduce the required scalability of 1-km, global, cloud-resolving models from an unfathomable 6 million cores to an attainable 200,000 GPU-enabled cores.

  9. An improved gravity model for Mars: Goddard Mars Model-1 (GMM-1)

    NASA Technical Reports Server (NTRS)

    Smith, D. E.; Lerch, F. J.; Nerem, R. S.; Zuber, M. T.; Patel, G. B.; Fricke, S. K.; Lemoine, F. G.

    1993-01-01

    Doppler tracking data of three orbiting spacecraft have been reanalyzed to develop a new gravitational field model for the planet Mars, GMM-1 (Goddard Mars Model-1). This model employs nearly all available data, consisting of approximately 1100 days of S-bank tracking data collected by NASA's Deep Space Network from the Mariner 9, and Viking 1 and Viking 2 spacecraft, in seven different orbits, between 1971 and 1979. GMM-1 is complete to spherical harmonic degree and order 50, which corresponds to a half-wavelength spatial resolution of 200-300 km where the data permit. GMM-1 represents satellite orbits with considerably better accuracy than previous Mars gravity models and shows greater resolution of identifiable geological structures. The notable improvement in GMM-1 over previous models is a consequence of several factors: improved computational capabilities, the use of optimum weighting and least-squares collocation solution techniques which stabilized the behavior of the solution at high degree and order, and the use of longer satellite arcs than employed in previous solutions that were made possible by improved force and measurement models. The inclusion of X-band tracking data from the 379-km altitude, near-polar orbiting Mars Observer spacecraft should provide a significant improvement over GMM-1, particularly at high latitudes where current data poorly resolves the gravitational signature of the planet.

  10. Evolving the Reuse Process at the Flight Dynamics Division (FDD) Goddard Space Flight Center

    NASA Technical Reports Server (NTRS)

    Condon, S.; Seaman, C.; Basili, Victor; Kraft, S.; Kontio, J.; Kim, Y.

    1996-01-01

    This paper presents the interim results from the Software Engineering Laboratory's (SEL) Reuse Study. The team conducting this study has, over the past few months, been studying the Generalized Support Software (GSS) domain asset library and architecture, and the various processes associated with it. In particular, we have characterized the process used to configure GSS-based attitude ground support systems (AGSS) to support satellite missions at NASA's Goddard Space Flight Center. To do this, we built detailed models of the tasks involved, the people who perform these tasks, and the interdependencies and information flows among these people. These models were based on information gleaned from numerous interviews with people involved in this process at various levels. We also analyzed effort data in order to determine the cost savings in moving from actual development of AGSSs to support each mission (which was necessary before GSS was available) to configuring AGSS software from the domain asset library. While characterizing the GSS process, we became aware of several interesting factors which affect the successful continued use of GSS. Many of these issues fall under the subject of evolving technologies, which were not available at the inception of GSS, but are now. Some of these technologies could be incorporated into the GSS process, thus making the whole asset library more usable. Other technologies are being considered as an alternative to the GSS process altogether. In this paper, we outline some of issues we will be considering in our continued study of GSS and the impact of evolving technologies.

  11. NASA, other agencies, give high priority to detection of global trends in ozone

    SciTech Connect

    Not Available

    1987-08-01

    During the fall of 1986, the National Aeronautics and Space Administration (NASA) Upper Atmosphere Programs Office in conjunction with the World meteorological Organization (WMO) and the United Nations Environment Program (UNEP), launched a major activity to review the subject of ozone trend detection and report the findings by the end of 1987. The Ozone Trends Panel composed of eminent scientists in atmospheric science and related fields from federal agencies, research institutions, private industry, and universities was selected and met in mid-December 1986 at NASA Goddard Space Flight Center to begin their work. Because ozone depletion is a global problem and not limited by national boundaries, other scientific organizations and international agencies also expressed interest in the project and were approached to cosponsor this activity. Both the Federal Aviation Administration (FAA) and the National Oceanic and Atmospheric Administration (NOAA) joined as U.S. cosponsors. Preliminary analysis of Nimbus 7 satellite Solar Backscatter Ultraviolet (SBUV) data indicated that the both the total column and vertical distribution of ozone have changed significantly, of the order of several percent since 1979. A decrease was reported in the total column content as well as in the vertical distribution in the middle and upper stratosphere. Further analysis of the data indicates that most of the change has occurred since 1981. Examination of the ground-based Dobson data also seems to indicate that ozone has decreased globally since 1979.

  12. Did the Germans learn from Goddard? An examination of whether the rocketry of R.H. Goddard influenced German Pre-World-War II missile development

    NASA Astrophysics Data System (ADS)

    Winter, Frank H.

    2016-10-01

    Ever since a few months before the death of American rocket pioneer Dr. Robert H. Goddard, on 10 August 1945, it has been widely claimed he was the true source of the development of the infamous V-2 rocket of World War II - the world's first large-scale liquid-propellant rocket. It is thus alleged the German developers of the V-2 had "stolen" ideas from Goddard to create the V-2 that was also the forerunner of the world's first space launch vehicles. The question of the validity of this claim thus becomes far more significant than first appears and is the subject of this article. But we must first briefly examine other popular conceptions, or rather, misconceptions, about Goddard in our own Space Age. This helps establish a "bigger picture" that identifies some of the problems in overall misinterpretations of Goddard that also applies to his supposed role in the development of the V-2.1

  13. Simple Mapping Tools from the Goddard DAAC Earth Sciences MODIS Data Support

    NASA Astrophysics Data System (ADS)

    Savtchenko, A. K.

    2001-05-01

    In this poster we present two IDL-based tools designed to map MODIS swath data. While many MODIS data users will rely on gridded global products, there still exist a considerable interest in the high resolution swath data that eventually can be mapped. The application of the mapped data may be sought in variety of regional studies, ranging from environmental resource management, to operational tracking of forest fires or iceberg formation. At Level 1 and 2, MODIS swath data is georeferenced, i.e. data fields have corresponding geolocation (latitude, longitude) fields. However, mapping the data can be a substantial challenge for users who are more interested in the final mapped physical parameter, rather than in the raw data. Our experience with users shows that many would prefer to have simple mapping tools that don't require complicated installations, compilations and libraries and large manuals to read, that are platform independent, and can yield fast and reliable results without taking up all of the computer resources. MODIS Data Support Team at NASA Goddard DAAC distributes two very simple IDL-based mapping tools that attempt to meet those criteria: GEOVIEW and SIMAP. The latter is intended to run from a command line and thus can be included in shell or perl scripts if needed, while the former spawns a simple interactive session. They are both available with documentation for free download from http://daac.gsfc.nasa.gov/CAMPAIGN_DOCS/MODIS/software.html. SIMAP allows for stitching of multiple granules in one map. It takes all needed information (including channel/parameter/regional subsetting) from a batch file. Thus, lengthy jobs producing arbitrary amounts of image and binary files of maps are easy to perform. Examples output from the tools are also presented. These are mapped images of various MODIS swath data produced on requests from different science groups. In the light of the same examples, discussed are problems that users may encounter when mapping

  14. 78 FR 54680 - NASA Federal Advisory Committees

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-05

    ... SPACE ADMINISTRATION NASA Federal Advisory Committees AGENCY: National Aeronautics and Space Administration. ACTION: Annual Invitation for Public Nominations by U.S. Citizens for Service on NASA Federal Advisory Committees. SUMMARY: NASA announces its annual invitation for public nominations for service...

  15. Anatomy of TRMM Science Data Support at the Goddard DAAC

    NASA Astrophysics Data System (ADS)

    Teng, W.; Serafino, G.; Chiu, L.; Rui, H.; Bonk, J.; Hrubiak, P.; Yang, R.; Ahmad, S.; Liu, Z.; Zhang, B.; Pollack, N.; Vicente, G.; Sharma, A.; Lu, L.

    2001-12-01

    Successful science data support for Earth observing satellite missions and their data systems requires a large, well-coordinated set of activities that spans more than the lifetime of the missions. The Distributed Active Archive Center (DAAC) at the GSFC Earth Sciences Data and Information Services Center has been providing such science data support for numerous satellite missions since 1993 (e.g., TOMS, SeaWiFS, TRMM, MODIS). These cradle-to-grave data support activities include user surveys, profiling, and requirements gathering; data ingest, validation, and archive; documentation and informational Web sites; search and order and visualization; read software and other tools; user support; value-added or customized products and services; and outreach. Support activities for MODIS and other Earth Observing System (EOS) data sets also include science software integration and testing (SSI&T support) and troubleshooting user problems related to data production systems. The goal is to enable users to fully realize the scientific, educational, and application potential of DAAC data. The DAAC's Hydrology Data Support Team has been helping users of Tropical Rainfall Measuring Mission (TRMM) data in achieving this goal since before the launch of TRMM on November 28, 1997. TRMM is a joint mission of the National Aeronautics and Space Administration (NASA) and the National Space Development Agency (NASDA) of Japan to monitor and study tropical and subtropical rainfall systems. TRMM data and information are accessible via http://daac.gsfc.nasa.gov/CAMPAIGN_DOCS/hydrology/hd_main.html. This paper summarizes the main components-the anatomy-of TRMM science data support provided by the DAAC, which include (1) pre-launch preparation; (2) first public data release of TRMM standard products, via the TRMM Web Search and Order System; (3) support for two major reprocessings; (4) support for five field validation experiments; (5) a suite of derived subsets; (6) a collection of

  16. NASA Pocket Statistics: 1997 Edition

    NASA Technical Reports Server (NTRS)

    1997-01-01

    POCKET STATISTICS is published by the NATIONAL AERONAUTICS AND SPACE ADMINISTRATION (NASA). Included in each edition is Administrative and Organizational information, summaries of Space Flight Activity including the NASA Major Launch Record, Aeronautics and Space Transportation and NASA Procurement, Financial and Workforce data. The NASA Major Launch Record includes all launches of Scout class and larger vehicles. Vehicle and spacecraft development flights are also included in the Major Launch Record. Shuttle missions are counted as one launch and one payload, where free flying payloads are not involved. All Satellites deployed from the cargo bay of the Shuttle and placed in a separate orbit or trajectory are counted as an additional payload.

  17. NASA/NBS (National Aeronautics and Space Administration/National Bureau of Standards) standard reference model for telerobot control system architecture (NASREM)

    NASA Technical Reports Server (NTRS)

    Albus, James S.; Mccain, Harry G.; Lumia, Ronald

    1989-01-01

    The document describes the NASA Standard Reference Model (NASREM) Architecture for the Space Station Telerobot Control System. It defines the functional requirements and high level specifications of the control system for the NASA space Station document for the functional specification, and a guideline for the development of the control system architecture, of the 10C Flight Telerobot Servicer. The NASREM telerobot control system architecture defines a set of standard modules and interfaces which facilitates software design, development, validation, and test, and make possible the integration of telerobotics software from a wide variety of sources. Standard interfaces also provide the software hooks necessary to incrementally upgrade future Flight Telerobot Systems as new capabilities develop in computer science, robotics, and autonomous system control.

  18. NASA Agency Overview Briefing

    NASA Technical Reports Server (NTRS)

    2006-01-01

    The briefing opened with Dean Acosta (NASA Press Secretary) introducing Michael Griffin (NASA Administrator) and Bill Gerstenmaier (Associate Administrator for Space Operations). Bill Griffin stated that they would resume the Shuttle Fight to Return process, that the vehicle was remarkably clean and if the weather was good, the Shuttle would be ready to launch as scheduled. Bill Gerstenmaier stated that the preparations and processing of the vehicle went extremely well and they are looking forward to increasing the crew size to three. Then the floor was open to questions from the press.

  19. Annual report to the NASA Administrator by the Aerospace Safety Advisory Panel. Part 2: Space shuttle program. Section 1: Observations and conclusions

    NASA Technical Reports Server (NTRS)

    1975-01-01

    The NASA and contractor management systems, including policies, practices, and procedures for the development of critical systems, subsystems and integration of the program elements, were investigated. The technical development status of critical systems, subsystems, and interfaces is presented. Space shuttle elements were qualified as to potential risks and hazards. The elements included the orbiter, external tanks, main engine, solid rocket boosters, and the ground support facilities.

  20. Effects of Cloud on Goddard Lidar Observatory for Wind (GLOW) Performance and Analysis of Associated Errors

    NASA Astrophysics Data System (ADS)

    Bacha, Tulu

    The Goddard Lidar Observatory for Wind (GLOW), a mobile direct detection Doppler LIDAR based on molecular backscattering for measurement of wind in the troposphere and lower stratosphere region of atmosphere is operated and its errors characterized. It was operated at Howard University Beltsville Center for Climate Observation System (BCCOS) side by side with other operating instruments: the NASA/Langely Research Center Validation Lidar (VALIDAR), Leosphere WLS70, and other standard wind sensing instruments. The performance of Goddard Lidar Observatory for Wind (GLOW) is presented for various optical thicknesses of cloud conditions. It was also compared to VALIDAR under various conditions. These conditions include clear and cloudy sky regions. The performance degradation due to the presence of cirrus clouds is quantified by comparing the wind speed error to cloud thickness. The cloud thickness is quantified in terms of aerosol backscatter ratio (ASR) and cloud optical depth (COD). ASR and COD are determined from Howard University Raman Lidar (HURL) operating at the same station as GLOW. The wind speed error of GLOW was correlated with COD and aerosol backscatter ratio (ASR) which are determined from HURL data. The correlation related in a weak linear relationship. Finally, the wind speed measurements of GLOW were corrected using the quantitative relation from the correlation relations. Using ASR reduced the GLOW wind error from 19% to 8% in a thin cirrus cloud and from 58% to 28% in a relatively thick cloud. After correcting for cloud induced error, the remaining error is due to shot noise and atmospheric variability. Shot-noise error is the statistical random error of backscattered photons detected by photon multiplier tube (PMT) can only be minimized by averaging large number of data recorded. The atmospheric backscatter measured by GLOW along its line-of-sight direction is also used to analyze error due to atmospheric variability within the volume of measurement

  1. The Goddard Cumulus Ensemble Model (GCE): Improvements and Applications for Studying Precipitation Processes

    NASA Technical Reports Server (NTRS)

    Tao, Wei-Kuo; Lang, Stephen E.; Zeng, Xiping; Li, Xiaowen; Matsui, Toshi; Mohr, Karen; Posselt, Derek; Chern, Jiundar; Peters-Lidard, Christa; Norris, Peter M.; Kang, In-Sik; Choi, Ildae; Hou, Arthur; Lau, K.-M.; Yang, Young-Min

    2014-01-01

    Convection is the primary transport process in the Earth's atmosphere. About two-thirds of the Earth's rainfall and severe floods derive from convection. In addition, two-thirds of the global rain falls in the tropics, while the associated latent heat release accounts for three-fourths of the total heat energy for the Earth's atmosphere. Cloud-resolving models (CRMs) have been used to improve our understanding of cloud and precipitation processes and phenomena from micro-scale to cloud-scale and mesoscale as well as their interactions with radiation and surface processes. CRMs use sophisticated and realistic representations of cloud microphysical processes and can reasonably well resolve the time evolution, structure, and life cycles of clouds and cloud systems. CRMs also allow for explicit interaction between clouds, outgoing longwave (cooling) and incoming solar (heating) radiation, and ocean and land surface processes. Observations are required to initialize CRMs and to validate their results. The Goddard Cumulus Ensemble model (GCE) has been developed and improved at NASA/Goddard Space Flight Center over the past three decades. It is amulti-dimensional non-hydrostatic CRM that can simulate clouds and cloud systems in different environments. Early improvements and testing were presented in Tao and Simpson (1993) and Tao et al. (2003a). A review on the application of the GCE to the understanding of precipitation processes can be found in Simpson and Tao (1993) and Tao (2003). In this paper, recent model improvements (microphysics, radiation and land surface processes) are described along with their impact and performance on cloud and precipitation events in different geographic locations via comparisons with observations. In addition, recent advanced applications of the GCE are presented that include understanding the physical processes responsible for diurnal variation, examining the impact of aerosols (cloud condensation nuclei or CCN and ice nuclei or IN) on

  2. NASA Kicks Off Summer of Innovation

    NASA Video Gallery

    NASA Administrator Charlie Bolden, astronaut Leland Melvin and others joined students at NASA's Jet Propulsion Laboratory in California to kick off the Summer of Innovation, an initiative to engage...

  3. This Week @ NASA May 3, 2013

    NASA Video Gallery

    Deputy Administrator Lori Garver tours two NASA facilities, The Expedition 36/37 crew train at the Gagarin Cosmonaut Training Center in Star City, NASA's newest scientific rover named GROVER, and m...

  4. This Week @ NASA - 11/5/10

    NASA Video Gallery

    The Postponement of Mission STS-133 tops the billboard on This Week @ NASA. Also, EPOXI meets a Comet, NASA and LEGO build a future together, Administrator Bolden heralds ten years of ISS, KSC Twee...

  5. NASA Carbon Monitoring System Program

    NASA Astrophysics Data System (ADS)

    Kaye, J. A.; Doorn, B.; Jucks, K. W.; Wickland, D. E.; Bontempi, P. S.; "Nasa CMS Pilot Product; Scoping Study Teams"

    2010-12-01

    NASA has recently begun a focused program to provide products on the amount and distribution of carbon reservoirs and fluxes in the global environment informed by the increasing global observational capability for these quantities developed by NASA and its interagency and international partners. This program, known as a Carbon Monitoring System (CMS), serves as a user-responsive, product-oriented overlay onto the existing observational, modeling, and research programs sponsored by NASA's Earth Science Division (ESD). Initial emphasis is on two pilot products - one on terrestrial biomass and one on integrated emission/uptake ("flux"), as well as a "scoping study" that will enable longer-term planning built around the increasing global observational capability NASA expects to be launching in the next few years (e.g., Landsat Data Continuity Mission in 2012, reflight of Orbiting Carbon Observatory in 2013, decadal survey missions including ICESat-II in 2015 and DESDynI in 2017). Initial efforts on the pilot products are based largely at three NASA centers (Ames, Goddard, Jet Propulsion Laboratory), but will draw on the broader expertise of the research community through workshops (e.g., one held in Boulder in July, 2010) as well as a planned solicitation for a Science Definition Team to provide broader guidance into the development, evaluation, and future evolution of the pilot products. The NASA CMS activity, with its emphasis on utilization of NASA remote-sensing data, will complement related efforts of other Federal agencies; coordination with other agencies will be carried out through the US Global Change Research Program. In this talk, steps taken to initiate this activity in FY2010 and plans for its evolution into the future will be presented.

  6. Paine Appointed Administrator

    NASA Technical Reports Server (NTRS)

    1969-01-01

    President Richard M. Nixon announcing the appointment of Dr. Thomas O. Paine as Administrator for the National Aeronautics and Space Administration. The ceremony was held at the White House. Paine had been serving as acting administrator. From left to right: President Richard M. Nixon NASA Administrator Dr. Thomas O. Paine Vice President Spiro T. Agnew

  7. Summary Report for National Aeronautics Space Administration (NASA) and Centro Para Prevencao da Poluicao (C3P) 2011 International Workshop on Environment and Alternative Energy

    NASA Technical Reports Server (NTRS)

    Greene, Brian

    2011-01-01

    The C3P &. NASA International Workshop on Environment and Alternative Energy was held on November 15-18, 2011 at the European Space Agency (ESA)'s Research and Technology Centre (ESTEC) in Noordwijk, The Netherlands. The theme of the workshop was "Global Collaboration in Environmental and Alternative Energy Strategies". The workshop was held at ESTEC's conference center. More than 110 individuals from eleven countries attended the workshop. For the first time since the inception of NASA-C3P workshops, a full day was dedicated to a student session. Fifteen students from around the globe gave oral presentations along with poster displays relating to the latest technologies in environmental and alternative energy strategies. Judges from NASA, C3P and ESA awarded plaques to the top three students. In addition to the students, thirty eight U.S. and international subject matter experts presented on the following general environmental-related topics: (1) Hazardous materials management and substitution in support of space operations (2) Emerging renewable and alternative energy technologies (3) Sustainable development and redevelopment (4) Remediation technologies and strategies The workshop also included a panel discussion on the topic of the challenges of operating installations across borders. Throughout the workshop, attendees heard about the scope of environmental and energy challenges that industry and governments face. They heard about technologies for increasing energy efficiency and increasing use of renewable energy. They learned about ways companies and government agencies are using materials, processes, goods and services in a manner more respectful with the environment and in compliance with health and safety rules. The concept of partnerships and their inherent benefits was evidenced throughout the workshop. Partnering is a key aspect of sustainability because sustainable development is complicated. Through formal presentations and side discussions, attendees

  8. Ocean Color Data at the Goddard Earth Sciences (GES) DAAC: CZCS, SeaWiFS, OCTS, MODIS-Terra, MODIS-Aqua

    NASA Technical Reports Server (NTRS)

    2002-01-01

    The Goddard Earth Sciences Distributed Active Archive Center (DAAC) is the designated archive for all of the ocean color data produced by NASA satellite missions. The DAAC is a long-term, high volume, secure repository for many different kinds of environmental data. With respect to ocean color, the Goddard DAAC holds all the data obtained during the eight-year mission of the Coastal Zone Color Scanner (CZCS). The DAAC is currently receiving data from the Sea-viewing Wide Field-of-view Sensor (SeaWiFS), and the MODIS-Terra instrument. The DAAC recently received reformatted data from the Ocean Color and Temperature Scanner (OCTS) and will also archive MODIS-Aqua Ocean products. In addition to its archive and distribution services, the Goddard DAAC strives to improve data access, ease-of-use, and data applicability for a broad spectrum of customers. The DAAC's data support teams practice dual roles, both insuring the integrity of the DAAC data archive and serving the user community with answers to user inquiries, online and print documentation, and customized data services.

  9. Goddard Space Flight Center's Structural Dynamics Data Acquisition System

    NASA Technical Reports Server (NTRS)

    McLeod, Christopher

    2004-01-01

    Turnkey Commercial Off The Shelf (COTS) data acquisition systems typically perform well and meet most of the objectives of the manufacturer. The problem is that they seldom meet most of the objectives of the end user. The analysis software, if any, is unlikely to be tailored to the end users specific application; and there is seldom the chance of incorporating preferred algorithms to solve unique problems. Purchasing a customized system allows the end user to get a system tailored to the actual application, but the cost can be prohibitive. Once the system has been accepted, future changes come with a cost and response time that's often not workable. When it came time to replace the primary digital data acquisition system used in the Goddard Space Flight Center's Structural Dynamics Test Section, the decision was made to use a combination of COTS hardware and in-house developed software. The COTS hardware used is the DataMAX II Instrumentation Recorder built by R.C. Electronics Inc. and a desktop Pentium 4 computer system. The in-house software was developed using MATLAF3 from The Mathworks. This paper will describe the design and development of the new data acquisition and analysis system.

  10. Orbital Anomalies in Goddard Spacecraft for Calendar Year 1994

    NASA Technical Reports Server (NTRS)

    Thomas, Walter B.

    1996-01-01

    This report summarizes and updates the annual on-orbit performance between January I and December 31, 1994, for spacecraft built by or managed by the Goddard Space Flight Center (GSFC). During 1994, GSFC had 27 active orbiting satellites and I Shuttle-launched and retrieved 'free flyer.' There were 310 reported anomalies among 21 satellites and one GSFC instrument (TOMS). GOES-8 accounted for 66 anomalies, and SAMPES reported 155 'anomalies'. Of the 155 anomalies reported for all but SAMPEX, only 4 affected the spacecraft missions 'substantially' or greater, that is, presented a loss of more than 33% of the total missions. The most frequent subsystem anomalies were Instrument/Payload(44), Timing Command and Control(40), and Attitude Control Systems(33). Of the non-SAMPEX anomalies, 29% had no effect on the missions and 28% caused subsystem or instrument degradation and, for another 28%, no anomaly effect on the mission could be determined. Fifty-three percent of non-SAMPEX anomalies could not be classified according to 'type'; the other most common types were 'systemic'(35), 'random'(19), and 'normal or expected operation'(15). Forty percent of the anomalies were not classified according to failure category; the remaining most frequent occurrences were 'design problems'(50) and 'other known problems'(35).

  11. Goddard Space Flight Center's Structural Dynamics Data Acquisition System

    NASA Technical Reports Server (NTRS)

    McLeod, Christopher

    2004-01-01

    Turnkey Commercial Off The Shelf (COTS) data acquisition systems typically perform well and meet most of the objectives of the manufacturer. The problem is that they seldom meet most of the objectives of the end user. The analysis software, if any, is unlikely to be tailored to the end users specific application; and there is seldom the chance of incorporating preferred algorithms to solve unique problems. Purchasing a customized system allows the end user to get a system tailored to the actual application, but the cost can be prohibitive. Once the system has been accepted, future changes come with a cost and response time that's often not workable. When it came time to replace the primary digital data acquisition system used in the Goddard Space Flight Center's Structural Dynamics Test Section, the decision was made to use a combination of COTS hardware and in-house developed software. The COTS hardware used is the DataMAX II Instrumentation Recorder built by R.C. Electronics Inc. and a desktop Pentium 4 computer system. The in-house software was developed using MATLAB from The MathWorks. This paper will describe the design and development of the new data acquisition and analysis system.

  12. Goddard High Resolution Spectrograph SV/GTO Project

    NASA Technical Reports Server (NTRS)

    Ebbets, Dennis

    1999-01-01

    Contract number NAS5-30433, known at Ball Aerospace as the GHRS SV/GTO project, supported our participation in the post-launch activities of the Goddard High Resolution Spectrograph aboard the Hubble Space Telescope. The period of performance was December 1988 through December 1998. The contract supported the involvement of Dr Dennis Ebbets in the work of the GHRS Investigation Definition Team, and several of the Ball people in the documentation and publication of results. Three main categories of tasks were covered by this contract; in-orbit calibration of the GHRS, guaranteed time observations, and education and public outreach. The nature and accomplishments of these tasks are described in the report. This summary makes many references to publications in the scientific and technical literature. Appendix A is extracted from a complete bibliography, and lists those papers that are directly related to work performed under this GHRS contract. The tasks related to the in-orbit calibration of the GHRS were by far the largest responsibility during the first six years of the project. During this period Dr. Ebbets was responsible for the definition of calibration requirements, design of experiments, preparation of observing proposals, tracking their implementation and execution, and coordinating the analysis and publication of the results. Prior to the launch of HST in 1990 the observing proposals were developed in cooperation with the scientists on the GHRS DDT, engineers at Ball Aerospace, the operations staff at the STScI, and project coordinators at GSFC.

  13. NASA's Software Safety Standard

    NASA Technical Reports Server (NTRS)

    Ramsay, Christopher M.

    2005-01-01

    NASA (National Aeronautics and Space Administration) relies more and more on software to control, monitor, and verify its safety critical systems, facilities and operations. Since the 1960's there has hardly been a spacecraft (manned or unmanned) launched that did not have a computer on board that provided vital command and control services. Despite this growing dependence on software control and monitoring, there has been no consistent application of software safety practices and methodology to NASA's projects with safety critical software. Led by the NASA Headquarters Office of Safety and Mission Assurance, the NASA Software Safety Standard (STD-18l9.13B) has recently undergone a significant update in an attempt to provide that consistency. This paper will discuss the key features of the new NASA Software Safety Standard. It will start with a brief history of the use and development of software in safety critical applications at NASA. It will then give a brief overview of the NASA Software Working Group and the approach it took to revise the software engineering process across the Agency.

  14. Report to the administrator by the NASA Aerospace Safety Advisory Panel on the Skylab program. Volume 1: Summary report. [systems management evaluation and design analysis

    NASA Technical Reports Server (NTRS)

    1973-01-01

    Contractor and NASA technical management for the development and manufacture of the Skylab modules is reviewed with emphasis on the following management controls: configuration and interface management; vendor control; and quality control of workmanship. A review of the modified two-stage Saturn V launch vehicle which focused on modifications to accommodate the Skylab payload; resolution of prior flight anomalies; and changes in personnel and management systems is presented along with an evaluation of the possible age-life and storage problems for the Saturn 1-B launch vehicle. The NASA program management's visibility and control of contractor operations, systems engineering and integration, the review process for the evaluation of design and flight hardware, and the planning process for mission operations are investigated. It is concluded that the technical management system for development and fabrication of the modules, spacecraft, and launch vehicles, the process of design and hardware acceptance reviews, and the risk assessment activities are satisfactory. It is indicated that checkout activity, integrated testing, and preparations for and execution of mission operation require management attention.

  15. The NASA Technical Report Server

    NASA Astrophysics Data System (ADS)

    Nelson, M. L.; Gottlich, G. L.; Bianco, D. J.; Paulson, S. S.; Binkley, R. L.; Kellogg, Y. D.; Beaumont, C. J.; Schmunk, R. B.; Kurtz, M. J.; Accomazzi, A.; Syed, O.

    The National Aeronautics and Space Act of 1958 established the National Aeronautics and Space Administration (NASA) and charged it to "provide for the widest practicable and appropriate dissemination of information concerning...its activities and the results thereof". The search for innovative methods to distribute NASA's information led a grass-roots team to create the NASA Technical Report Server (NTRS), which uses the World Wide Web and other popular Internet-based information systems .

  16. This is NASA.

    ERIC Educational Resources Information Center

    National Aeronautics and Space Administration, Washington, DC.

    The mission of the National Aeronautics and Space Administration (NASA) is space exploration and research in space and aeronautics for peaceful purposes and for the benefit of all mankind. The organization and programs which have been established to carry out this mission are described. Full color illustrations for the book were selected from the…

  17. NASA Facts, Space Shuttle.

    ERIC Educational Resources Information Center

    National Aeronautics and Space Administration, Washington, DC. Educational Programs Div.

    This newsletter from the National Aeronautics and Space Administration (NASA) contains a description of the purposes and potentials of the Space Shuttle craft. The illustrated document explains some of the uses for which the shuttle is designed; how the shuttle will be launched from earth, carry out its mission, and land again on earth; and what a…

  18. The 30th AAS Goddard Memorial Symposium. World space programs and fiscal reality: Synopsis

    NASA Technical Reports Server (NTRS)

    1992-01-01

    A full proceedings of the symposium will be issued later in the year. This synopsis consists of summations of three sessions by appointed rapporteurs. International figures in space and in politics spoke at the sessions. Themes of international cooperation and fiscal reality pervaded the conference. International speakers from Canada, the European Space Agency, Russia, Japan and China and other countries addressed the topic of the symposium. American representation included Senator Barbara Mikulski, former NASA administrator James Beggs and other speakers.

  19. NASA Network

    NASA Technical Reports Server (NTRS)

    Carter, David; Wetzel, Scott

    2000-01-01

    The NASA Network includes nine NASA operated and partner operated stations covering North America, the west coast of South America, the Pacific, and Western Australia . A new station is presently being setup in South Africa and discussions are underway to add another station in Argentina. NASA SLR operations are supported by Honeywell Technical Solutions, Inc (HTSI), formally AlliedSignal Technical Services, The University of Texas, the University of Hawaii and Universidad Nacional de San Agustin.

  20. High-resolution NU-WRF simulations of a deep convective-precipitation system during MC3E: Further improvements and comparisons between Goddard microphysics schemes and observations

    NASA Astrophysics Data System (ADS)

    Tao, Wei-Kuo; Wu, Di; Lang, Stephen; Chern, Jiun-Dar; Peters-Lidard, Christa; Fridlind, Ann; Matsui, Toshihisa

    2016-02-01

    The Goddard microphysics was recently improved by adding a fourth ice class (frozen drops/hail). This new 4ICE scheme was developed and tested in the Goddard Cumulus Ensemble (GCE) model for an intense continental squall line and a moderate, less organized continental case. Simulated peak radar reflectivity profiles were improved in intensity and shape for both cases, as were the overall reflectivity probability distributions versus observations. In this study, the new Goddard 4ICE scheme is implemented into the regional-scale NASA Unified-Weather Research and Forecasting (NU-WRF) model, modified and evaluated for the same intense squall line, which occurred during the Midlatitude Continental Convective Clouds Experiment (MC3E). NU-WRF simulated radar reflectivities, total rainfall, propagation, and convective system structures using the 4ICE scheme modified herein agree as well as or significantly better with observations than the original 4ICE and two previous 3ICE (graupel or hail) versions of the Goddard microphysics. With the modified 4ICE, the bin microphysics-based rain evaporation correction improves propagation and in conjunction with eliminating the unrealistic dry collection of ice/snow by hail can replicate the erect, narrow, and intense convective cores. Revisions to the ice supersaturation, ice number concentration formula, and snow size mapping, including a new snow breakup effect, allow the modified 4ICE to produce a stronger, better organized system, more snow, and mimic the strong aggregation signature in the radar distributions. NU-WRF original 4ICE simulated radar reflectivity distributions are consistent with and generally superior to those using the GCE due to the less restrictive domain and lateral boundaries.

  1. High-Resolution NU-WRF Simulations of a Deep Convective-Precipitation System During MC3E. Part 1; Comparisons Between Goddard Microphysics Schemes and Observations

    NASA Technical Reports Server (NTRS)

    Tao, Wei-Kuo; Wu, Di; Lang, Stephen; Chern, Jiundar; Peters-Lidard, Christa; Fridlind, Ann; Matsui, Toshihisa

    2015-01-01

    The Goddard microphysics scheme was recently improved by adding a 4th ice class (frozen dropshail). This new 4ICE scheme was implemented and tested in the Goddard Cumulus Ensemble model (GCE) for an intense continental squall line and a moderate,less-organized continental case. Simulated peak radar reflectivity profiles were improved both in intensity and shape for both cases as were the overall reflectivity probability distributions versus observations. In this study, the new Goddard 4ICE scheme is implemented into the regional-scale NASA Unified - Weather Research and Forecasting model (NU-WRF) and tested on an intense mesoscale convective system that occurred during the Midlatitude Continental Convective Clouds Experiment (MC3E). The NU42WRF simulated radar reflectivities, rainfall intensities, and vertical and horizontal structure using the new 4ICE scheme agree as well as or significantly better with observations than when using previous versions of the Goddard 3ICE (graupel or hail) schemes. In the 4ICE scheme, the bin microphysics-based rain evaporation correction produces more erect convective cores, while modification of the unrealistic collection of ice by dry hail produces narrow and intense cores, allowing more slow-falling snow to be transported rearward. Together with a revised snow size mapping, the 4ICE scheme produces a more horizontally stratified trailing stratiform region with a broad, more coherent light rain area. In addition, the NU-WRF 4ICE simulated radar reflectivity distributions are consistent with and generally superior to those using the GCE due to the less restrictive open lateral boundaries

  2. NASA Facts, The Viking Mission.

    ERIC Educational Resources Information Center

    National Aeronautics and Space Administration, Washington, DC. Educational Programs Div.

    Presented is one of a series of publications of National Aeronautics and Space Administration (NASA) facts about the exploration of Mars. The Viking mission to Mars, consisting of two unmanned NASA spacecraft launched in August and September, 1975, is described. A description of the spacecraft and their paths is given. A diagram identifying the…

  3. The future of NASA's missions

    NASA Astrophysics Data System (ADS)

    A'Hearn, Michael F.

    2017-04-01

    Can the recent Discovery mission selections be used as tea leaves to understand the future directions of NASA? In an age of many programmes being used to advance administrative and programmatic goals, Discovery appears to be driven almost entirely by science and by NASA's goal of cheaper missions.

  4. NASA Solve

    NASA Video Gallery

    NASA Solve lists opportunities available to the general public to contribute to solving tough problems related to NASA’s mission through challenges, prize competitions, and crowdsourcing activities...

  5. Goddard Earth Science Data and Information Center (GES DISC)

    NASA Technical Reports Server (NTRS)

    Kempler, Steve

    2016-01-01

    The GES DIS is one of 12 NASA Earth science data centers. The GES DISC vision is to enable researchers and educators maximize knowledge of the Earth by engaging in understanding their goals, and by leading the advancement of remote sensing information services in response to satisfying their goals. This presentation will describe the GES DISC approach, successes, challenges, and best practices.

  6. Actions Needed to Ensure Scientific and Technical Information is Adequately Reviewed at Goddard Space Flight Center, Johnson Space Center, Langley Research Center, and Marshall Space Flight Center

    NASA Technical Reports Server (NTRS)

    2008-01-01

    This audit was initiated in response to a hotline complaint regarding the review, approval, and release of scientific and technical information (STI) at Johnson Space Center. The complainant alleged that Johnson personnel conducting export control reviews of STI were not fully qualified to conduct those reviews and that the reviews often did not occur until after the STI had been publicly released. NASA guidance requires that STI, defined as the results of basic and applied scientific, technical, and related engineering research and development, undergo certain reviews prior to being released outside of NASA or to audiences that include foreign nationals. The process includes technical, national security, export control, copyright, and trade secret (e.g., proprietary data) reviews. The review process was designed to preclude the inappropriate dissemination of sensitive information while ensuring that NASA complies with a requirement of the National Aeronautics and Space Act of 1958 (the Space Act)1 to provide for the widest practicable and appropriate dissemination of information resulting from NASA research activities. We focused our audit on evaluating the STI review process: specifically, determining whether the roles and responsibilities for the review, approval, and release of STI were adequately defined and documented in NASA and Center-level guidance and whether that guidance was effectively implemented at Goddard Space Flight Center, Johnson Space Center, Langley Research Center, and Marshall Space Flight Center. Johnson was included in the review because it was the source of the initial complaint, and Goddard, Langley, and Marshall were included because those Centers consistently produce significant amounts of STI.

  7. 78 FR 77501 - NASA Aerospace Safety Advisory Panel; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-23

    ... SPACE ADMINISTRATION NASA Aerospace Safety Advisory Panel; Meeting AGENCY: National Aeronautics and Space Administration (NASA). ACTION: Notice of Meeting. SUMMARY: In accordance with the Federal Advisory...:00 p.m., Local Time. ] ADDRESSES: NASA Johnson Space Center, Room 966, NASA Parkway, Building...

  8. 75 FR 2892 - NASA Advisory Council; Science Committee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-19

    ... SPACE ADMINISTRATION NASA Advisory Council; Science Committee; Meeting AGENCY: National Aeronautics and... Administration (NASA) announces a meeting of the Science Committee of the NASA Advisory Council (NAC). This... Standard Time. ADDRESSES: NASA Headquarters, 300 E Street, SW., Room 3H46 (Tuesday, February 16, 2010)...

  9. 77 FR 2765 - NASA International Space Station Advisory Committee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-19

    ... SPACE ADMINISTRATION NASA International Space Station Advisory Committee; Meeting AGENCY: National Aeronautics and Space Administration (NASA). ACTION: Notice of meeting. SUMMARY: In accordance with the Federal Advisory Committee Act, Public Law 92-463, as amended, the National Aeronautics and...

  10. 77 FR 41203 - NASA International Space Station Advisory Committee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-12

    ... SPACE ADMINISTRATION NASA International Space Station Advisory Committee; Meeting AGENCY: National Aeronautics and Space Administration (NASA). ACTION: Notice of meeting. SUMMARY: In accordance with the Federal Advisory Committee Act, Public Law 92-463, as amended, the National Aeronautics and...

  11. 78 FR 49296 - NASA International Space Station Advisory Committee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-13

    ... SPACE ADMINISTRATION NASA International Space Station Advisory Committee; Meeting AGENCY: National Aeronautics and Space Administration (NASA). ACTION: Notice of meeting. SUMMARY: In accordance with the Federal Advisory Committee Act, Public Law 92-463, as amended, the National Aeronautics and...

  12. 78 FR 77502 - NASA International Space Station Advisory Committee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-23

    ... SPACE ADMINISTRATION NASA International Space Station Advisory Committee; Meeting AGENCY: National Aeronautics and Space Administration (NASA). ACTION: Notice of Meeting. SUMMARY: In accordance with the Federal Advisory Committee Act, Public Law 92-463, as amended, the National Aeronautics and...

  13. 77 FR 66082 - NASA International Space Station Advisory Committee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-11-01

    ... SPACE ADMINISTRATION NASA International Space Station Advisory Committee; Meeting AGENCY: National Aeronautics and Space Administration (NASA). ACTION: Notice of Meeting. SUMMARY: In accordance with the Federal Advisory Committee Act, Public Law 92-463, as amended, the National Aeronautics and...

  14. Dynamic Teachers Re-NEW with NASA.

    ERIC Educational Resources Information Center

    Ashby, Susanne

    2001-01-01

    Discusses the National Aeronautics and Space Administration's (NASA) Implementation Plan for Education which provides support to inservice teacher educators in the areas of technology and science. (ASK)

  15. Value-added Data Services at the Goddard Earth Sciences Data and Information Services Center

    NASA Technical Reports Server (NTRS)

    Leptoukh, Gregory G.; Alcott, Gary T.; Kempler, Steven J.; Lynnes, Christopher S.; Vollmer, Bruce E.

    2004-01-01

    The NASA Goddard Earth Sciences Data and Information Services Center (GES DISC), in addition to serving the Earth Science community as one of the major Distributed Active Archives Centers (DAACs), provides much more than just data. Among the value-added services available to general users are subsetting data spatially and/or by parameter, online analysis (to avoid downloading unnecessarily all the data), and assistance in obtaining data from other centers. Services available to data producers and high-volume users include consulting on building new products with standard formats and metadata and construction of data management systems. A particularly useful service is data processing at the DISC (i.e., close to the input data) with the users algorithm. This can take a number of different forms: as a configuration-managed algorithm within the main processing stream; as a stand-alone program next to the on-line data storage; as build-it-yourself code within the Near-Archive Data Mining (NADM) system; or as an on-the-fly analysis with simple algorithms embedded into the web-based tools. Partnerships between the GES DISC and scientists, both producers and users, allow the scientists to concentrate on science, while the GES DISC handles the data management, e.g., formats, integration, and data processing. The existing data management infrastructure at the GES DISC supports a wide spectrum of options: from simple data support to sophisticated on-line analysis tools, producing economies of scale and rapid time-to-deploy. At the same time, such partnerships allow the GES DISC to serve the user community more efficiently and to better prioritize on-line holdings. Several examples of successful partnerships are described in the presentation.

  16. AIRS Data Mining Service at the Goddard Earth Sciences (GES) DISC DAAC

    NASA Astrophysics Data System (ADS)

    Vicente, G. A.; Qin, J.; Pham, L.; Lynnes, C.; Eng, E.; Li, J.

    2004-05-01

    The Atmospheric Infrared Sounder (AIRS) is a high-resolution infrared (IR) sounder with 2378 spectral channels flying on the EOS Aqua platform with two operational microwave sounders, the Advanced Microwave Sounding Unit (AMSU) and the Humidity Sounder for Brazil (HSB). Measurements from the three instruments are analyzed jointly to filter out the effects of clouds from the IR data in order to derive clear-column air-temperature profiles and surface temperatures with high vertical resolution and accuracy. Together, these three instruments constitute an advanced operational sounding data system that have contributed to improve global modeling efforts and numerical weather prediction; enhance studies of the global energy and water cycles, the effects of greenhouse gases, and atmosphere-surface interactions; and facilitate monitoring of climate variations and trends. The NASA Goddard Earth Sciences Data and Information Services Center/Distributed Active Archive Center (GES DISC DAAC) provides long-term archive and distribution services for AIRS/AMSU/HSB data products as well science support to assist users in understanding, accessing and using the AIRS data products. However, the high data volume generated by the AIRS/AMSU/HSB instruments and the complexity of its data format (Hierarchical Data Format, HDF) are barriers to AIRS data use. Although many researchers are interested in only a fraction of the data they receive or request, they are forced to run their algorithms on a much larger data set to extract the information of interest. In order to address this problem, the GES DAAC is expanding its data mining system to accept AIRS user's algorithms by providing online tools for spectral channels and value added product sub-settings, as well as spatial, temporal and user defined profile sub-settings. This presentation will show details of the AIRS components of the GES DAAC data mining system including technical description, input data and returning products

  17. Digital communication technology development for space applications at Goddard Space Flight Center

    NASA Astrophysics Data System (ADS)

    Fong, Wai; Yeh, Pen-Shu; Sank, Victor; Fisher, David; Hoy, Scott; Ekelman, Ernie

    2005-08-01

    At NASA's Goddard Space Flight Center (GSFC), space qualified integrated circuits for several key elements in space communication systems have been in development to increase data return in bandwidth constrained channels for future missions. Particularly in the area of digital communication, the development includes data compression, channel coding and modulation. In on-board data compression area, development focuses on a high-speed compression scheme that serves both push-broom and frame sensors. The compression ratio can be easily adjusted for different applications from lossless to visually lossless. The algorithm conforms to the Consultative Committee on Space Data Systems (CCSDS) new compression recommendation to be released 2005. The radiation-tolerant (RT) hardware will afford 20 Msamples/sec processing on sensor data. For bandwidth efficient channel coding, newly developed low density paritycheck codes (LDPCC) will double channel utilization as compared to previously used concatenated convolutional/Reed- Solomon (CC/RS) coding scheme. An RT implementation of the encoder is expected to work up to 1 Gbps serving both low-rate and high-rate missions. In modulation, a versatile multi-function base-band modulator allows missions the flexibility to choose from 2 bits/symbol/Hertz quadrature phase shift keying (QPSK)-type schemes, to 2.0, 2.25, 2.5, and 2.75 bits/symbol/Hertz 8 phase shift keying trellis-coded modulation (8-PSK TCM) schemes--all CCSDS recommendations. Along with 8PSK, 16-quadrature amplitude modulation (16-QAM), 16-ampliture phase shift keying (16-APSK), all modulations are implemented in a single RT chip with expected throughput of over 300 Mbps. This paper describes the development of these three technology areas and gives an update on their availability for space missions.

  18. 14 CFR 1221.106 - Establishment of the NASA Flag.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 5 2013-01-01 2013-01-01 false Establishment of the NASA Flag. 1221.106 Section 1221.106 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION THE NASA SEAL AND OTHER DEVICES, AND THE CONGRESSIONAL SPACE MEDAL OF HONOR NASA Seal, NASA Insignia, NASA Logotype,...

  19. 14 CFR 1221.102 - Establishment of the NASA Seal.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 5 2011-01-01 2010-01-01 true Establishment of the NASA Seal. 1221.102 Section 1221.102 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION THE NASA SEAL AND OTHER DEVICES, AND THE CONGRESSIONAL SPACE MEDAL OF HONOR NASA Seal, NASA Insignia, NASA Logotype,...

  20. 14 CFR 1221.104 - Establishment of the NASA Logotype.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 5 2010-01-01 2010-01-01 false Establishment of the NASA Logotype. 1221.104 Section 1221.104 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION THE NASA SEAL AND OTHER DEVICES, AND THE CONGRESSIONAL SPACE MEDAL OF HONOR NASA Seal, NASA Insignia, NASA...

  1. 14 CFR 1221.106 - Establishment of the NASA Flag.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 5 2010-01-01 2010-01-01 false Establishment of the NASA Flag. 1221.106 Section 1221.106 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION THE NASA SEAL AND OTHER DEVICES, AND THE CONGRESSIONAL SPACE MEDAL OF HONOR NASA Seal, NASA Insignia, NASA Logotype,...

  2. 14 CFR 1215.112 - User/NASA contractual arrangement.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 5 2012-01-01 2012-01-01 false User/NASA contractual arrangement. 1215.112... User/NASA contractual arrangement. (a) The NASA Administrator reserves the right to waive any portion of the reimbursement due to NASA under the provisions of the reimbursement policy. (b) When NASA...

  3. 14 CFR 1221.106 - Establishment of the NASA Flag.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 5 2012-01-01 2012-01-01 false Establishment of the NASA Flag. 1221.106 Section 1221.106 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION THE NASA SEAL AND OTHER DEVICES, AND THE CONGRESSIONAL SPACE MEDAL OF HONOR NASA Seal, NASA Insignia, NASA Logotype,...

  4. 14 CFR § 1212.700 - NASA employees.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 5 2014-01-01 2014-01-01 false NASA employees. § 1212.700 Section § 1212.700 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION PRIVACY ACT-NASA REGULATIONS NASA Authority and Responsibilities § 1212.700 NASA employees. (a) Each NASA employee is...

  5. 14 CFR 1221.104 - Establishment of the NASA Logotype.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 5 2012-01-01 2012-01-01 false Establishment of the NASA Logotype. 1221.104 Section 1221.104 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION THE NASA SEAL AND OTHER DEVICES, AND THE CONGRESSIONAL SPACE MEDAL OF HONOR NASA Seal, NASA Insignia, NASA...

  6. 14 CFR 1221.104 - Establishment of the NASA Logotype.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 5 2011-01-01 2010-01-01 true Establishment of the NASA Logotype. 1221.104 Section 1221.104 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION THE NASA SEAL AND OTHER DEVICES, AND THE CONGRESSIONAL SPACE MEDAL OF HONOR NASA Seal, NASA Insignia, NASA Logotype,...

  7. 14 CFR 1221.103 - Establishment of the NASA Insignia.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 5 2011-01-01 2010-01-01 true Establishment of the NASA Insignia. 1221.103 Section 1221.103 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION THE NASA SEAL AND OTHER DEVICES, AND THE CONGRESSIONAL SPACE MEDAL OF HONOR NASA Seal, NASA Insignia, NASA Logotype,...

  8. 14 CFR 1221.103 - Establishment of the NASA Insignia.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 5 2013-01-01 2013-01-01 false Establishment of the NASA Insignia. 1221.103 Section 1221.103 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION THE NASA SEAL AND OTHER DEVICES, AND THE CONGRESSIONAL SPACE MEDAL OF HONOR NASA Seal, NASA Insignia, NASA...

  9. 14 CFR 1221.102 - Establishment of the NASA Seal.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 5 2010-01-01 2010-01-01 false Establishment of the NASA Seal. 1221.102 Section 1221.102 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION THE NASA SEAL AND OTHER DEVICES, AND THE CONGRESSIONAL SPACE MEDAL OF HONOR NASA Seal, NASA Insignia, NASA Logotype,...

  10. 14 CFR 1215.112 - User/NASA contractual arrangement.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 5 2011-01-01 2010-01-01 true User/NASA contractual arrangement. 1215.112... User/NASA contractual arrangement. (a) The NASA Administrator reserves the right to waive any portion of the reimbursement due to NASA under the provisions of the reimbursement policy. (b) When NASA...

  11. 14 CFR 1221.103 - Establishment of the NASA Insignia.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 5 2012-01-01 2012-01-01 false Establishment of the NASA Insignia. 1221.103 Section 1221.103 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION THE NASA SEAL AND OTHER DEVICES, AND THE CONGRESSIONAL SPACE MEDAL OF HONOR NASA Seal, NASA Insignia, NASA...

  12. 14 CFR 1221.102 - Establishment of the NASA Seal.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 5 2013-01-01 2013-01-01 false Establishment of the NASA Seal. 1221.102 Section 1221.102 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION THE NASA SEAL AND OTHER DEVICES, AND THE CONGRESSIONAL SPACE MEDAL OF HONOR NASA Seal, NASA Insignia, NASA Logotype,...

  13. 14 CFR 1221.106 - Establishment of the NASA Flag.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 5 2011-01-01 2010-01-01 true Establishment of the NASA Flag. 1221.106 Section 1221.106 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION THE NASA SEAL AND OTHER DEVICES, AND THE CONGRESSIONAL SPACE MEDAL OF HONOR NASA Seal, NASA Insignia, NASA Logotype,...

  14. 14 CFR 1212.703 - NASA Chief Information Officer.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 5 2013-01-01 2013-01-01 false NASA Chief Information Officer. 1212.703 Section 1212.703 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION PRIVACY ACT-NASA REGULATIONS NASA Authority and Responsibilities § 1212.703 NASA Chief Information Officer. (a) The NASA...

  15. 14 CFR 1215.112 - User/NASA contractual arrangement.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 5 2010-01-01 2010-01-01 false User/NASA contractual arrangement. 1215.112... User/NASA contractual arrangement. (a) The NASA Administrator reserves the right to waive any portion of the reimbursement due to NASA under the provisions of the reimbursement policy. (b) When NASA...

  16. 14 CFR § 1212.703 - NASA Chief Information Officer.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 5 2014-01-01 2014-01-01 false NASA Chief Information Officer. § 1212.703 Section § 1212.703 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION PRIVACY ACT-NASA REGULATIONS NASA Authority and Responsibilities § 1212.703 NASA Chief Information Officer. (a) The NASA...

  17. 14 CFR 1221.102 - Establishment of the NASA Seal.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 5 2012-01-01 2012-01-01 false Establishment of the NASA Seal. 1221.102 Section 1221.102 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION THE NASA SEAL AND OTHER DEVICES, AND THE CONGRESSIONAL SPACE MEDAL OF HONOR NASA Seal, NASA Insignia, NASA Logotype,...

  18. 14 CFR 1221.104 - Establishment of the NASA Logotype.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 5 2013-01-01 2013-01-01 false Establishment of the NASA Logotype. 1221.104 Section 1221.104 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION THE NASA SEAL AND OTHER DEVICES, AND THE CONGRESSIONAL SPACE MEDAL OF HONOR NASA Seal, NASA Insignia, NASA...

  19. NASA Thermal Control Technologies for Robotic Spacecraft

    NASA Technical Reports Server (NTRS)

    Swanson, Theodore D.; Birur, Gajanana C.

    2003-01-01

    Technology development is inevitably a dynamic process in search of an elusive goal. It is never truly clear whether the need for a particular technology drives its development, or the existence of a new capability initiates new applications. Technology development for the thermal control of spacecraft presents an excellent example of this situation. Nevertheless, it is imperative to have a basic plan to help guide and focus such an effort. Although this plan will be a living document that changes with time to reflect technological developments, perceived needs, perceived opportunities, and the ever-changing funding environment, it is still a very useful tool. This presentation summarizes the current efforts at NASA/Goddard and NASA/JPL to develop new thermal control technology for future robotic NASA missions.

  20. NASA Vision

    NASA Technical Reports Server (NTRS)

    Prior, Edwin J.

    2003-01-01

    The political, economic, and enivronmental conditions of the twenty-first century demand new goals for NASA. These goals include the imaging of habitable extrasolar planets, expanded commercialization of low earth orbit, clean and rapid air transportation, environment protection, and distance learning. The presentation recommends strategies for pursuing these goals, and summarizes activities at NASA Langley Research Center (LaRC).

  1. 14 CFR 1221.108 - Establishment of the NASA Unified Visual Communications System.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 5 2013-01-01 2013-01-01 false Establishment of the NASA Unified Visual... ADMINISTRATION THE NASA SEAL AND OTHER DEVICES, AND THE CONGRESSIONAL SPACE MEDAL OF HONOR NASA Seal, NASA Insignia, NASA Logotype, NASA Program Identifiers, NASA Flags, and the Agency's Unified...

  2. 14 CFR 1221.108 - Establishment of the NASA Unified Visual Communications System.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 5 2012-01-01 2012-01-01 false Establishment of the NASA Unified Visual... ADMINISTRATION THE NASA SEAL AND OTHER DEVICES, AND THE CONGRESSIONAL SPACE MEDAL OF HONOR NASA Seal, NASA Insignia, NASA Logotype, NASA Program Identifiers, NASA Flags, and the Agency's Unified...

  3. 14 CFR § 1221.108 - Establishment of the NASA Unified Visual Communications System.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 5 2014-01-01 2014-01-01 false Establishment of the NASA Unified Visual... ADMINISTRATION THE NASA SEAL AND OTHER DEVICES, AND THE CONGRESSIONAL SPACE MEDAL OF HONOR NASA Seal, NASA Insignia, NASA Logotype, NASA Program Identifiers, NASA Flags, and the Agency's Unified...

  4. 76 FR 69292 - NASA Advisory Council Science Committee Planetary Science Subcommittee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-08

    ... SPACE ADMINISTRATION NASA Advisory Council Science Committee Planetary Science Subcommittee; Meeting... Aeronautics and Space Administration (NASA) announces that the meeting of the Planetary Science Subcommittee... FURTHER INFORMATION CONTACT: Ms. Marian Norris, Science Mission Directorate, NASA Headquarters,...

  5. 77 FR 38679 - NASA Advisory Council; Audit, Finance and Analysis Committee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-28

    ... SPACE ADMINISTRATION NASA Advisory Council; Audit, Finance and Analysis Committee; Meeting AGENCY... Administration (NASA) announces a meeting of the Audit, Finance and Analysis Committee of the NASA Advisory... following topics: General Financial Management Financial Statement Audit Unfunded Environmental...

  6. 76 FR 5405 - NASA Advisory Council; Science Committee; Astrophysics Subcommittee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-31

    ... SPACE ADMINISTRATION NASA Advisory Council; Science Committee; Astrophysics Subcommittee; Meeting AGENCY... Administration (NASA) announces a meeting of the Astrophysics Subcommittee of the NASA Advisory Council (NAC... meeting includes the following topics: --Astrophysics Division Update --Update from the James Webb...

  7. 75 FR 13597 - NASA Advisory Council; Science Committee; Astrophysics Subcommittee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-22

    ... SPACE ADMINISTRATION NASA Advisory Council; Science Committee; Astrophysics Subcommittee; Meeting AGENCY... and Space Administration (NASA) announces a meeting of the Astrophysics Subcommittee of the NASA... following topics: --Astrophysics Division Update. --Kepler Data Release Policy. It is imperative that...

  8. 76 FR 14106 - NASA Advisory Council; Science Committee; Astrophysics Subcommittee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-15

    ... SPACE ADMINISTRATION NASA Advisory Council; Science Committee; Astrophysics Subcommittee; Meeting AGENCY... Administration (NASA) announces a meeting of the Astrophysics Subcommittee of the NASA Advisory Council (NAC... meeting includes the following topic: --Astrophysics Division Update. It is imperative that the meeting...

  9. 78 FR 21421 - NASA Advisory Council; Science Committee; Planetary Protection Subcommittee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-10

    ... SPACE ADMINISTRATION NASA Advisory Council; Science Committee; Planetary Protection Subcommittee... and Space Administration (NASA) announces a meeting of the Planetary Protection Subcommittee of the NASA Advisory Council (NAC). This Subcommittee reports to the Science Committee of the NAC. The...

  10. 76 FR 40753 - NASA Advisory Council; Technology and Innovation Committee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-11

    ... From the Federal Register Online via the Government Publishing Office NATIONAL AERONAUTICS AND SPACE ADMINISTRATION NASA Advisory Council; Technology and Innovation Committee; Meeting AGENCY... Administration (NASA) announces a meeting of the Technology and Innovation Committee of the NASA Advisory...

  11. Space Weather Services at Goddard Space Flight Center

    NASA Technical Reports Server (NTRS)

    Hesse, M.; Pulkkinen, A.; Zheng, Y.; Maddox, M.; Kuznetsova, M.; Taktakishvil, A.; Rastaetter, L.

    2010-01-01

    The Space Weather Laboratory (SWL) forms a focal point at GSFC for the generation of space weather tools and information. This information is based on data from space mission and ground observatories, as well as on forefront model calculations conducted at the Community Coordinated Modeling Center (CCMC). CCMC works with the research community to bring to bear the power of communitydeveloped space science models on space weather problems. Data from primarily from NASA missions but also from NOAA and other partner agencies are combined with model results into a fully configurable space weather information display by means of the iSWA system. This information and iSWA form the basis for and SWL-provided service to NASA's robotic mission fleet, which includes forecasts, regular updates, and warnings. This service benefits from a strong partnership with NASA's Space Radiation Analysis Group, and with the US Air Force Weather Agency. In this presentation, we provide a summary of space weather capabilities and services and we present an outlook into the future.

  12. The Goddard Space Flight Center (GSFC) robotics technology testbed

    NASA Technical Reports Server (NTRS)

    Schnurr, Rick; Obrien, Maureen; Cofer, Sue

    1989-01-01

    Much of the technology planned for use in NASA's Flight Telerobotic Servicer (FTS) and the Demonstration Test Flight (DTF) is relatively new and untested. To provide the answers needed to design safe, reliable, and fully functional robotics for flight, NASA/GSFC is developing a robotics technology testbed for research of issues such as zero-g robot control, dual arm teleoperation, simulations, and hierarchical control using a high level programming language. The testbed will be used to investigate these high risk technologies required for the FTS and DTF projects. The robotics technology testbed is centered around the dual arm teleoperation of a pair of 7 degree-of-freedom (DOF) manipulators, each with their own 6-DOF mini-master hand controllers. Several levels of safety are implemented using the control processor, a separate watchdog computer, and other low level features. High speed input/output ports allow the control processor to interface to a simulation workstation: all or part of the testbed hardware can be used in real time dynamic simulation of the testbed operations, allowing a quick and safe means for testing new control strategies. The NASA/National Bureau of Standards Standard Reference Model for Telerobot Control System Architecture (NASREM) hierarchical control scheme, is being used as the reference standard for system design. All software developed for the testbed, excluding some of simulation workstation software, is being developed in Ada. The testbed is being developed in phases. The first phase, which is nearing completion, and highlights future developments is described.

  13. Payload test philosophy. [implications of STS development at Goddard Space Flight Center

    NASA Technical Reports Server (NTRS)

    Arman, A.

    1979-01-01

    The implications of STS development for payload testing at the Goddard Space Flight Center are reviewed. The biggest impact of STS may be that instead of testing the entire payload, most of the testing may have to be limited to the subsystem or subassembly level. Particular consideration is given to the Goddard protoflight concept in which the test is geared to the design qualification levels, the test durations being those that are expected during the actual launch sequence.

  14. The Generalized Support Software (GSS) Domain Engineering Process: An Object-Oriented Implementation and Reuse Success at Goddard Space Flight Center

    NASA Technical Reports Server (NTRS)

    Condon, Steven; Hendrick, Robert; Stark, Michael E.; Steger, Warren

    1997-01-01

    The Flight Dynamics Division (FDD) of NASA's Goddard Space Flight Center (GSFC) recently embarked on a far-reaching revision of its process for developing and maintaining satellite support software. The new process relies on an object-oriented software development method supported by a domain specific library of generalized components. This Generalized Support Software (GSS) Domain Engineering Process is currently in use at the NASA GSFC Software Engineering Laboratory (SEL). The key facets of the GSS process are (1) an architecture for rapid deployment of FDD applications, (2) a reuse asset library for FDD classes, and (3) a paradigm shift from developing software to configuring software for mission support. This paper describes the GSS architecture and process, results of fielding the first applications, lessons learned, and future directions

  15. VLBI2010 in NASA's Space Geodesy Project

    NASA Technical Reports Server (NTRS)

    Ma, Chopo

    2012-01-01

    In the summer of 20 11 NASA approved the proposal for the Space Geodesy Project (SGP). A major element is developing at the Goddard Geophysical and Astronomical Observatory a prototype of the next generation of integrated stations with co-located VLBI, SLR, GNSS and DORIS instruments as well as a system for monitoring the vector ties. VLBI2010 is a key component of the integrated station. The objectives ofSGP, the role of VLBI20 lOin the context of SGP, near term plans and possible future scenarios will be discussed.

  16. Agent Technology from a NASA Perspective

    NASA Technical Reports Server (NTRS)

    Truszkowski, Walt; Hallock, Harold; Kurien, James

    1999-01-01

    NASA's drive toward realizing higher levels of autonomy, in both its ground and space systems, is supporting an active and growing interest in agent technology. This paper will address the expanding research in this exciting technology area. As examples of current work, the Lights-Out Ground Operations System (LOGOS), under prototyping at the Goddard Space Flight Center (GSFC), and the spacecraft-oriented Remote Agent project under development at the Ames Research Center (ARC) and the Jet Propulsion Laboratory (JPL) will be presented.

  17. Gravitational model improvement at the Goddard Space Flight Center

    NASA Technical Reports Server (NTRS)

    Marsh, J. G.; Lerch, F. J.; Putney, B. H.; Felsentreger, T. L.; Sanchez, B. V.; Smith, D. E.; Klosko, S. M.; Pavlis, E. C.; Robbins, J. W.; Williamson, R. G.

    1989-01-01

    Major new computations of terrestrial gravitational field models were performed by the Geodynamics Branch of Goddard Space Flight Center (GSFC). This development has incorporated the present state of the art results in satellite geodesy and have relied upon a more consistent set of reference constants than was heretofore utilized in GSFC's GEM models. The solutions are complete in spherical harmonic coefficients out to degree 50 for the gravity field parameters. These models include adjustment for a subset of 66 ocean tidal coefficients for the long wavelength components of 12 major ocean tides. This tidal adjustment was made in the presence of 550 other fixed ocean tidal terms representing 32 major and minor ocean tides and the Wahr frequency dependent solid earth tidal model. In addition 5-day averaged values for Earth rotation and polar motion were derived for the time period of 1980 onward. Two types of models were computed. These are satellite only models relying exclusively on tracking data and combination models which have incorporated satellite altimetry and surface gravity data. The satellite observational data base consists of over 1100 orbital arcs of data on 31 satellites. A large percentage of these observations were provided by third generation laser stations (less than 5 cm). A calibration of the model accuracy of the GEM-T2 satellite only solution indicated that it was a significant improvement over previous models based solely upon tracking data. The rms geoid error for this field is 110 cm to degree and order 36. This is a major advancement over GEM-T1 whose errors were estimated to be 160 cm. An error propagation using the covariances of the GEM-T2 model for the TOPEX radial orbit component indicates that the rms radial errors are expected to be 12 cm. The combination solution, PGS-3337, is a preliminary effort leading to the development of GEM-T3. PGS-3337 has incorporated global sets of surface gravity data and the Seasat altimetry to produce a

  18. NASA Education Implementation Plan 2015-2017

    ERIC Educational Resources Information Center

    National Aeronautics and Space Administration, 2015

    2015-01-01

    The NASA Education Implementation Plan (NEIP) provides an understanding of the role of NASA in advancing the nation's STEM education and workforce pipeline. The document outlines the roles and responsibilities that NASA Education has in approaching and achieving the agency's and administration's strategic goals in STEM Education. The specific…

  19. 77 FR 9997 - NASA Advisory Council; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-21

    ... SPACE ADMINISTRATION NASA Advisory Council; Meeting AGENCY: National Aeronautics and Space... NASA Advisory Council (NAC). DATES: Thursday, March 8, 2012, 8 a.m.-5 p.m., local time and Friday, March 9, 2012, 8 a.m.-12 p.m., local time. ADDRESSES: NASA Headquarters, 300 E Street SW., Room...

  20. 78 FR 20357 - NASA Advisory Council; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-04

    ... SPACE ADMINISTRATION NASA Advisory Council; Meeting AGENCY: National Aeronautics and Space... NASA Advisory Council (NAC). DATES: Wednesday, April 24, 2013, 9:00 a.m.-5:00 p.m., and Thursday, April 25, 2013, 9:00 a.m.-5:00 p.m., Local Time ADDRESSES: NASA Headquarters, 300 E Street SW., Room...

  1. 75 FR 5629 - NASA Advisory Council; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-03

    ... SPACE ADMINISTRATION NASA Advisory Council; Meeting AGENCY: National Aeronautics and Space... NASA Advisory Council. DATES: Thursday, February 18, 2010, 9 a.m.-5 p.m. EST; Friday, February 19, 2010, 9 a.m.-1 p.m., EST. ADDRESSES: NASA Headquarters, 300 E Street, SW., Washington, DC 20456, James...

  2. 75 FR 18240 - NASA Advisory Council; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-09

    ... SPACE ADMINISTRATION NASA Advisory Council; Meeting AGENCY: National Aeronautics and Space... NASA Advisory Council. DATES: Wednesday, April 28, 2010, 8 a.m.-5 p.m. CDT; Thursday, April 29, 2010, 8 a.m.-3 p.m. CDT ADDRESSES: NASA Johnson Space Center, Gilruth Conference Center, Lonestar Room,...

  3. 75 FR 4588 - NASA Advisory Council; meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-28

    ... SPACE ADMINISTRATION NASA Advisory Council; meeting AGENCY: National Aeronautics and Space... the Aeronautics Committee of the NASA Advisory Council. The meeting will be held for the purpose of....m. to 3 p.m. ADDRESSES: NASA Headquarters, 300 E Street, SW., Washington, DC, Room 6B42. FOR...

  4. 75 FR 39973 - NASA Advisory Council; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-13

    ... SPACE ADMINISTRATION NASA Advisory Council; Meeting AGENCY: National Aeronautics and Space... NASA Advisory Council. DATES: Thursday, August 5, 2010, 8 a.m.-5 p.m. (local time) Friday, August 6, 2010, 8 a.m.-12 a.m. (local time). ADDRESSES: NASA Jet Propulsion Laboratory, Von Karman...

  5. 78 FR 72719 - NASA Advisory Council; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-03

    ... SPACE ADMINISTRATION NASA Advisory Council; Meeting AGENCY: National Aeronautics and Space... NASA Advisory Council (NAC). DATES: Wednesday, December 11, 2013, 1:00 p.m.-5:15 p.m., Local Time; and Thursday, December 12, 2013, 9:00 a.m.-4:00 p.m., Local Time. ADDRESSES: NASA Kennedy Space...

  6. 76 FR 41825 - NASA Advisory Council; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-15

    ... SPACE ADMINISTRATION NASA Advisory Council; Meeting AGENCY: National Aeronautics and Space... NASA Advisory Council (NAC). The agenda topics for the meeting will include: DATES: Thursday, August 4, 2011, 8 a.m.-5 p.m., and Friday, August 5, 2011, 8 a.m.-12 p.m., Local Time. ADDRESSES: NASA...

  7. 78 FR 41804 - NASA Advisory Council; Meeting.

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-11

    ... SPACE ADMINISTRATION NASA Advisory Council; Meeting. AGENCY: National Aeronautics and Space... NASA Advisory Council (NAC). DATES: Wednesday, July 31, 2013, 1:00 p.m.-5:00 p.m., Local Time; and Thursday, August 1, 2013, 9:00 a.m.-5:00 p.m., Local Time ADDRESSES: NASA Headquarters, Room 9H40,...

  8. 76 FR 4133 - NASA Advisory Council; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-24

    ... SPACE ADMINISTRATION NASA Advisory Council; Meeting AGENCY: National Aeronautics and Space... NASA Advisory Council. DATES: Thursday, February 10, 2011, 8 a.m.-5 p.m., Local Time. Friday, February 11, 2011, 8 a.m.-12 p.m., Local Time. ADDRESSES: NASA Headquarters, 300 E Street, SW., Room...

  9. 75 FR 4588 - NASA Advisory Council; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-28

    ... SPACE ADMINISTRATION NASA Advisory Council; Meeting AGENCY: National Aeronautics and Space... newly formed Information Technology Infrastructure Committee of the NASA Advisory Council. This will be...-877-613-3958; 2939943. ADDRESSES: NASA Headquarters, 300 E Street, SW., Washington, DC, Room 2N35...

  10. NASA Airborne Science Program: NASA Stratospheric Platforms

    NASA Technical Reports Server (NTRS)

    Curry, Robert E.

    2010-01-01

    The National Aeronautics and Space Administration conducts a wide variety of remote sensing projects using several unique aircraft platforms. These vehicles have been selected and modified to provide capabilities that are particularly important for geophysical research, in particular, routine access to very high altitudes, long range, long endurance, precise trajectory control, and the payload capacity to operate multiple, diverse instruments concurrently. While the NASA program has been in operation for over 30 years, new aircraft and technological advances that will expand the capabilities for airborne observation are continually being assessed and implemented. This presentation will review the current state of NASA's science platforms, recent improvements and new missions concepts as well as provide a survey of emerging technologies unmanned aerial vehicles for long duration observations (Global Hawk and Predator). Applications of information technology that allow more efficient use of flight time and the ability to rapidly reconfigure systems for different mission objectives are addressed.

  11. NASA Water Resources Program

    NASA Technical Reports Server (NTRS)

    Toll, David L.

    2011-01-01

    projects under five functional themes. I) Streamflow and Flood Forecasting 2) Water Supply and Irrigation (includes evapotranspiration) 3) Drought 4) Water Quality 5) Climate and Water Resources. To maximize this activity NASA Water Resources Program works closely with other government agencies (e.g., the National Oceanic and Atmospheric Administration (NOAA); the U.S. Department of Agriculture (USDA); the U.S. Geological Survey (USGS); the Environmental Protection Agency (EPA), USAID, the Air Force Weather Agency (AFWA)), universities, non-profit national and international organizations, and the private sector. The NASA Water Resources program currently is funding 21 active projects under the functional themes (http://wmp.gsfc.nasa.gov & http://science.nasa.gov/earth-science/applied-sciences/).

  12. The work request system of a NASA Q1 package

    NASA Technical Reports Server (NTRS)

    1979-01-01

    A computer package is described which can be used to track any type of work that is controlled on the basis of work requests and purchase orders/contracts. Run on any NASA Ql, using floppy disks only, the system can handle about 1,200 requests per year, and provides performance and summary reports for management. The milestones tracked at Goddard are described as well as directions for installing the system. Sample reports and operator instructions are included.

  13. Development, Validation, and Application of OSSEs at NASA/GMAO

    NASA Technical Reports Server (NTRS)

    Errico, Ronald; Prive, Nikki

    2015-01-01

    During the past several years, NASA Goddard's Global Modeling and Assimilation Office (GMAO) has been developing a framework for conducting Observing System Simulation Experiments (OSSEs). The motivation and design of that framework will be described and a sample of validation results presented. Fundamentals issues will be highlighted, particularly the critical importance of appropriately simulating system errors. Some problems that have just arisen in the newest experimental system will also be mentioned.

  14. Swamp Works: A New Approach to Develop Space Mining and Resource Extraction Technologies at the National Aeronautics Space Administration (NASA) Kennedy Space Center (KSC)

    NASA Technical Reports Server (NTRS)

    Mueller, R. P.; Sibille, L.; Leucht, K.; Smith, J. D.; Townsend, I. I.; Nick, A. J.; Schuler, J. M.

    2015-01-01

    The first steps for In Situ Resource Utilization (ISRU) on target bodies such as the Moon, Mars and Near Earth Asteroids (NEA), and even comets, involve the same sequence of steps as in the terrestrial mining of resources. First exploration including prospecting must occur, and then the resource must be acquired through excavation methods if it is of value. Subsequently a load, haul and dump sequence of events occurs, followed by processing of the resource in an ISRU plant, to produce useful commodities. While these technologies and related supporting operations are mature in terrestrial applications, they will be different in space since the environment and indigenous materials are different than on Earth. In addition, the equipment must be highly automated, since for the majority of the production cycle time, there will be no humans present to assist or intervene. This space mining equipment must withstand a harsh environment which includes vacuum, radical temperature swing cycles, highly abrasive lofted dust, electrostatic effects, van der Waals forces effects, galactic cosmic radiation, solar particle events, high thermal gradients when spanning sunlight terminators, steep slopes into craters / lava tubes and cryogenic temperatures as low as 40 K in permanently shadowed regions. In addition the equipment must be tele-operated from Earth or a local base where the crew is sheltered. If the tele-operation occurs from Earth then significant communications latency effects mandate the use of autonomous control systems in the mining equipment. While this is an extremely challenging engineering design scenario, it is also an opportunity, since the technologies developed in this endeavor could be used in the next generations of terrestrial mining equipment, in order to mine deeper, safer, more economical and with a higher degree of flexibility. New space technologies could precipitate new mining solutions here on Earth. The NASA KSC Swamp Works is an innovation

  15. Test flights of the NASA ultra long duration balloon

    NASA Astrophysics Data System (ADS)

    Cathey, H.

    The NASA Ultra Long Duration Balloon development project is attempting to extend the potential flight durations for large scientific balloon payloads. The culmination of each of the development steps has been the fabrication and test flight of progressively larger balloons. This new super-pressure balloon is a pumpkin balloon design. This paper concentrates on the super-pressure balloon development test flights that have been, and are currently being planned by the National Aeronautics and Space Administration (NASA) Balloon Program Office at Goddard Space Flight Center's Wallops Flight Facility. Two Ultra Long Duration balloon test flights took place from Australia in early 2001. The results from these flights, as well as the challenges presented, will be discussed. With these lessons learned and incorporating both material and design improvements, a test flight of a full-scale 610,500m3 balloon with a 2,800 kg suspended load will be completed in Spring of 2002 from Ft. Sumner, New Mexico. This balloon, the largest single celled super- pressure balloon ever flown, has been sized to satisfy the requirements for the planned ULDB CREAM mission in late 2003. A description of the balloon design, including the modifications made as a result of the lessons learned from the two Australia flights, will be presented. The results, highlighting balloon performance, from the Spring 2002 test flight will be presented. This will include information related to the balloon preparation, flight operations, and flight performance. A review of the radiative environmental influences on the balloon related to this flight will be presented. A second test flight of a full-scale Ultra Long Duration Balloon is scheduled for December of 2002. This flight is expected to be one orbit or approximately 15 days. The plans for this Southern Hemisphere, Australia launched, global flight will also be presented.

  16. Integrating Gridded NASA Hydrological Data into CUAHSI HIS

    NASA Technical Reports Server (NTRS)

    Rui, Hualan; Teng, William; Vollmer, Bruce; Mocko, David M.; Beaudoing, Hiroko K.; Whiteaker, Tim; Valentine, David; Maidment, David; Hooper, Richard

    2011-01-01

    The amount of hydrological data available from NASA remote sensing and modeling systems is vast and ever-increasing;but, one challenge persists:increasing the usefulness of these data for, and thus their use by, end user communities. The Hydrology Data and Information Services Center (HDISC), part of the Goddard Earth Sciences DISC, has continually worked to better understand the hydrological data needs of different end users, to thus better able to bridge the gap between NASA data and end user communities. One effective strategy is integrating the data in to end user community tools and environments. There is an ongoing collaborative effort between NASA HDISC, NASA Hydrological Sciences Branch, and CUAHSI to integrate NASA gridded hydrology data in to the CUAHSI Hydrologic Information System (HIS).

  17. NASA Shared Services Center breaks ground

    NASA Technical Reports Server (NTRS)

    2006-01-01

    NASA officials and elected leaders were on hand for the groundbreaking ceremony of the NASA Shared Services Center Feb. 24, 2006, on the grounds of Stennis Space Center. The NSSC provides agency centralized administrative processing, human resources, procurement and financial services. From left, Louisiana Economic Development Secretary Mike Olivier, Stennis Space Center Director Rick Gilbrech, Computer Sciences Corp. President Michael Laphen, NASA Deputy Administrator Shana Dale, Rep. Gene Taylor, Sen. Trent Lott, Mississippi Gov. Haley Barbour, NASA Administrator Mike Griffin and Shared Services Center Executive Director Arbuthnot use golden shovels to break ground at the site.

  18. NASA's Internal Space Weather Working Group

    NASA Technical Reports Server (NTRS)

    St. Cyr, O. C.; Guhathakurta, M.; Bell, H.; Niemeyer, L.; Allen, J.

    2011-01-01

    Measurements from many of NASA's scientific spacecraft are used routinely by space weather forecasters, both in the U.S. and internationally. ACE, SOHO (an ESA/NASA collaboration), STEREO, and SDO provide images and in situ measurements that are assimilated into models and cited in alerts and warnings. A number of years ago, the Space Weather laboratory was established at NASA-Goddard, along with the Community Coordinated Modeling Center. Within that organization, a space weather service center has begun issuing alerts for NASA's operational users. NASA's operational user community includes flight operations for human and robotic explorers; atmospheric drag concerns for low-Earth orbit; interplanetary navigation and communication; and the fleet of unmanned aerial vehicles, high altitude aircraft, and launch vehicles. Over the past three years we have identified internal stakeholders within NASA and formed a Working Group to better coordinate their expertise and their needs. In this presentation we will describe this activity and some of the challenges in forming a diverse working group.

  19. NASA science communications strategy

    NASA Technical Reports Server (NTRS)

    1995-01-01

    In 1994, the Clinton Administration issued a report, 'Science in the National Interest', which identified new national science goals. Two of the five goals are related to science communications: produce the finest scientists and engineers for the 21st century, and raise scientific and technological literacy of all Americans. In addition to the guidance and goals set forth by the Administration, NASA has been mandated by Congress under the 1958 Space Act to 'provide for the widest practicable and appropriate dissemination concerning its activities and the results thereof'. In addition to addressing eight Goals and Plans which resulted from a January 1994 meeting between NASA and members of the broader scientific, education, and communications community on the Public Communication of NASA's Science, the Science Communications Working Group (SCWG) took a comprehensive look at the way the Agency communicates its science to ensure that any changes the Agency made were long-term improvements. The SCWG developed a Science Communications Strategy for NASA and a plan to implement the Strategy. This report outlines a strategy from which effective science communications programs can be developed and implemented across the agency. Guiding principles and strategic themes for the strategy are provided, with numerous recommendations for improvement discussed within the respective themes of leadership, coordination, integration, participation, leveraging, and evaluation.

  20. Research Funding Set for NSF, NASA, EPA.

    ERIC Educational Resources Information Center

    Chemical and Engineering News, 1982

    1982-01-01

    Funds (1983) for National Science Foundation (NSF), National Aeronautics and Space Administration (NASA), and Environmental Protection Agency (EPA) research programs include $1,092,200,000 (NSF), $5.5 billion (NASA), and $119 million (EPA). NSF's science education activities were raised to $30 million in spite of the Administration's plan to phase…