Science.gov

Sample records for administration nasa johnson

  1. NASA Johnson Style (Gangnam Style Parody)

    NASA Video Gallery

    NASA Johnson Style is a volunteer outreach video project created by the students of NASA's Johnson Space Center. It was created as an educational parody of Psy's Gangnam Style. The lyrics and scene...

  2. Networking at NASA. Johnson Space Center

    NASA Technical Reports Server (NTRS)

    Garman, John R.

    1991-01-01

    A series of viewgraphs on computer networks at the Johnson Space Center (JSC) are given. Topics covered include information resource management (IRM) at JSC, the IRM budget by NASA center, networks evolution, networking as a strategic tool, the Information Services Directorate charter, and SSC network requirements, challenges, and status.

  3. NASA Johnson Space Center: Total quality partnership

    NASA Technical Reports Server (NTRS)

    Harlan, Charlie; Boyd, Alfred A.

    1992-01-01

    The development of and benefits realized from a joint NASA, support contractor continuous improvement process at the Johnson Space Center (JSC) is traced. The joint effort described is the Safety, Reliability, and Quality Assurance Directorate relationship with its three support contractors which began in early 1990. The Continuous Improvement effort started in early 1990 with an initiative to document and simplify numerous engineering change evaluation processes. This effort quickly grew in scope and intensity to include process improvement teams, improvement methodologies, awareness, and training. By early 1991, the support contractor had teams in place and functioning, program goals established and a cultural change effort underway. In mid-l991 it became apparent that a major redirection was needed to counter a growing sense of frustration and dissatisfaction from teams and managers. Sources of frustration were isolated to insufficient joint participation on teams, and to a poorly defined vision. Over the next year, the effort was transformed to a truly joint process. The presentation covers the steps taken to define vision, values, goals, and priorities and to form a joint Steering Committee and joint process improvement teams. The most recent assessment against the President's award criteria is presented as a summary of progress. Small, but important improvement results have already demonstrated the value of the joint effort.

  4. NASA Johnson Space Center: Total quality partnership

    NASA Astrophysics Data System (ADS)

    Harlan, Charlie; Boyd, Alfred A.

    The development of and benefits realized from a joint NASA, support contractor continuous improvement process at the Johnson Space Center (JSC) is traced. The joint effort described is the Safety, Reliability, and Quality Assurance Directorate relationship with its three support contractors which began in early 1990. The Continuous Improvement effort started in early 1990 with an initiative to document and simplify numerous engineering change evaluation processes. This effort quickly grew in scope and intensity to include process improvement teams, improvement methodologies, awareness, and training. By early 1991, the support contractor had teams in place and functioning, program goals established and a cultural change effort underway. In mid-l991 it became apparent that a major redirection was needed to counter a growing sense of frustration and dissatisfaction from teams and managers. Sources of frustration were isolated to insufficient joint participation on teams, and to a poorly defined vision. Over the next year, the effort was transformed to a truly joint process. The presentation covers the steps taken to define vision, values, goals, and priorities and to form a joint Steering Committee and joint process improvement teams. The most recent assessment against the President's award criteria is presented as a summary of progress. Small, but important improvement results have already demonstrated the value of the joint effort.

  5. Napoleon Johnson: From NASA to TV to Community College Teaching.

    ERIC Educational Resources Information Center

    Neal, John

    1994-01-01

    Describes the life and career of Napoleon Johnson, who currently teaches journalism at Houston Community College's Central Campus. Describes Johnson's experiences as a technical writer for NASA and as a television news correspondent, highlighting the positive effects of these experiences on his career as a college instructor. (MAB)

  6. Renewable Energy at NASA's Johnson Space Center

    NASA Technical Reports Server (NTRS)

    McDowall, Lindsay

    2014-01-01

    NASA's Johnson Space Center has implemented a great number of renewable energy systems. Renewable energy systems are necessary to research and implement if we humans are expected to continue to grow and thrive on this planet. These systems generate energy using renewable sources - water, wind, sun - things that we will not run out of. Johnson Space Center is helping to pave the way by installing and studying various renewable energy systems. The objective of this report will be to examine the completed renewable energy projects at NASA's Johnson Space Center for a time span of ten years, beginning in 2003 and ending in early 2014. This report will analyze the success of each project based on actual vs. projected savings and actual vs. projected efficiency. Additionally, both positive and negative experiences are documented so that lessons may be learned from past experiences. NASA is incorporating renewable energy wherever it can, including into buildings. According to the 2012 JSC Annual Sustainability Report, there are 321,660 square feet of green building space on JSC's campus. The two projects discussed here are major contributors to that statistic. These buildings were designed to meet various Leadership in Energy and Environmental Design (LEED) Certification criteria. LEED Certified buildings use 30 to 50 percent less energy and water compared to non-LEED buildings. The objectives of this project were to examine data from the renewable energy systems in two of the green buildings onsite - Building 12 and Building 20. In Building 12, data was examined from the solar photovoltaic arrays. In Building 20, data was examined from the solar water heater system. By examining the data from the two buildings, it could be determined if the renewable energy systems are operating efficiently. Objectives In Building 12, the data from the solar photovoltaic arrays shows that the system is continuously collecting energy from the sun, as shown by the graph below. Building 12

  7. NASA Johnson Space Center Biomedical Research Resources

    NASA Technical Reports Server (NTRS)

    Paloski, W. H.

    1999-01-01

    Johnson Space Center (JSC) medical sciences laboratories constitute a national resource for support of medical operations and life sciences research enabling a human presence in space. They play a critical role in evaluating, defining, and mitigation the untoward effect of human adaption to space flight. Over the years they have developed the unique facilities and expertise required to perform: biomedical sample analysis and physiological performance tests supporting medical evaluations of space flight crew members and scientific investigations of the operationally relevant medical, physiological, cellular, and biochemical issues associated with human space flight. A general overview of these laboratories is presented in viewgraph form.

  8. NASA, NOAA administrators nominated

    NASA Astrophysics Data System (ADS)

    Richman, Barbara T.

    President Ronald Reagan recently said he intended to nominate James Montgomery Beggs as NASA Administrator and John V. Byrne as NOAA Administrator. These two positions are key scientific posts that have been vacant since the start of the Reagan administration on January 20. The President also said he intends to nominate Hans Mark as NASA Deputy Administrator. At press time, Reagan had not designated his nominee for the director of the Office of Science and Technology Policy.

  9. NASA Johnson Space Center's Energy and Sustainability Efforts

    NASA Technical Reports Server (NTRS)

    Ewert, Michael K.

    2008-01-01

    This viewgraph presentation reviews the efforts that NASA is making to assure a sustainable environment and energy savings at the Johnson Space Center. Sustainability is defined as development that meets the needs of present generations without compromising the ability of future generations to meet their own needs. The new technologies that are required for sustainable closed loop life support for space exploration have uses on the ground to reduce energy, greenhouse gas emissions, and water use. Some of these uses are reviewed.

  10. NASA Johnson Space Center: Mini AERCam Testing with GSS6560

    NASA Technical Reports Server (NTRS)

    Cryant, Scott P.

    2004-01-01

    This slide presentation reviews the testing of the Miniature Autonomous Extravehicular Robotic Camera (Mini AERCam) with the GPS/SBAS simulation system, GSS6560. There is a listing of several GPS based programs at NASA Johnson, including the testing of Shuttle testing of the GPS system. Including information about Space Integrated GPS/INS (SIGI) testing. There is also information about the standalone ISS SIGI test,and testing of the SIGI for the Crew Return Vehicle. The Mini AERCam is a small, free-flying camera for remote inspections of the ISS, it uses precise relative navigation with differential carrier phase GPS to provide situational awareness to operators. The closed loop orbital testing with and without the use of the GSS6550 system of the Mini AERCam system is reviewed.

  11. Nanotube Activities at NASA-Johnson Space Center

    NASA Technical Reports Server (NTRS)

    Arepalli, Sivaram

    2004-01-01

    Nanotube activities at NASA-Johnson Space Center include production, purification, characterization as well as applications of single wall carbon nanotubes (SWCNTs). A parametric study of the pulsed laser ablation process is recently completed to monitor the effect of production parameters including temperature, buffer gas, flow rate, pressure, and laser fluence. Enhancement of production is achieved by rastering the graphite target and by increasing the target surface temperature with a cw laser. In-situ diagnostics during production included time resolved passive emission and laser induced fluorescence from the plume. The improvement of the purity by a variety of steps in the purification process is monitored by characterization techniques including SEM, TEM, Raman, UV-VIS-NIR and TGA. A recently established NASA-JSC protocol for SWCNT characterization is undergoing revision with feedback from nanotube community. Efforts at JSC over the past five years in composites have centered on structural polymer/nanotube systems. Recent activities broadened this focus to multifunctional materials, supercapacitors, fuel cells, regenerable CO2 absorbers, electromagnetic shielding, radiation dosimetry and thermal management systems of interest for human space flight. Preliminary tests indicate improvement of performance in most of these applications because of the large Surface area as well as high electrical and thermal conductivity exhibited by SWCNTs. Comparison with existing technologies and possible future improvements in the SWCNT materials sill be presented.

  12. Carbon Nanotube Activities at NASA-Johnson Space Center

    NASA Technical Reports Server (NTRS)

    Arepalli, Sivaram

    2006-01-01

    Research activities on carbon nanotubes at NASA-Johnson Space Center include production, purification, characterization and their applications for human space flight. In-situ diagnostics during nanotube production by laser oven process include collection of spatial and temporal data of passive emission and laser induced fluorescence from C2, C3 and Nickel atoms in the plume. Details of the results from the "parametric study" of the pulsed laser ablation process indicate the effect of production parameters including temperature, buffer gas, flow rate, pressure, and laser fluence. Improvement of the purity by a variety of steps in the purification process is monitored by characterization techniques including SEM, TEM, Raman, UV-VIS-NIR and TGA. A recently established NASA-JSC protocol for SWCNT characterization is undergoing revision with feedback from nanotube community. Efforts at JSC over the past five years in composites have centered on structural polymednanotube systems. Recent activities broadened this focus to multifunctional materials, supercapacitors, fuel cells, regenerable CO2 absorbers, electromagnetic shielding, radiation dosimetry and thermal management systems of interest for human space flight. Preliminary tests indicate improvement of performance in most of these applications because of the large surface area as well as high electrical and thermal conductivity exhibited by SWCNTs.

  13. Nanomaterials Work at NASA-Johnson Space Center

    NASA Technical Reports Server (NTRS)

    Arepalli, Sivaram

    2005-01-01

    Nanomaterials activities at NASA-Johnson Space Center focus on single wall carbon nanotube production, characterization and their applications for aerospace. Nanotubes are produced by arc and laser methods and the growth process is monitored by in-situ diagnostics using time resolved passive emission and laser induced fluorescence of the active species. Parametric study of both these processes are conducted to monitor the effect of production parameters including temperature, buffer gas, flow rate, pressure, laser fluence and arc current. Characterization of the nanotube material is performed using the NASA-JSC protocol developed by combining analytical techniques of SEM, TEM, UV-VIS-NIR absorption, Raman, and TGA. Efforts at JSC over the past five years in composites have centered on structural polymernanotube systems. Recent activities broadened this focus to multifunctional materials, supercapacitors, fuel cells, regenerable CO2 absorbers, electromagnetic shielding, radiation dosimetry and thermal management systems of interest for human space flight. Preliminary tests indicate improvement of performance in most of these applications because of the large surface area as well as high conductivity exhibited by SWCNTs.

  14. Climate Change Adaptation Science Activities at NASA Johnson Space Center

    NASA Technical Reports Server (NTRS)

    Stefanov, William L.; Lulla, Kamlesh

    2012-01-01

    The Johnson Space Center (JSC), located in the southeast metropolitan region of Houston, TX is the prime NASA center for human spaceflight operations and astronaut training, but it also houses the unique collection of returned extraterrestrial samples, including lunar samples from the Apollo missions. The Center's location adjacent to Clear Lake and the Clear Creek watershed, an estuary of Galveston Bay, puts it at direct annual risk from hurricanes, but also from a number of other climate-related hazards including drought, floods, sea level rise, heat waves, and high wind events all assigned Threat Levels of 2 or 3 in the most recent NASA Center Disaster/Risk Matrix produced by the Climate Adaptation Science Investigator Working Group. Based on prior CASI workshops at other NASA centers, it is recognized that JSC is highly vulnerable to climate-change related hazards and has a need for adaptation strategies. We will present an overview of prior CASI-related work at JSC, including publication of a climate change and adaptation informational data brochure, and a Resilience and Adaptation to Climate Risks Workshop that was held at JSC in early March 2012. Major outcomes of that workshop that form a basis for work going forward are 1) a realization that JSC is embedded in a regional environmental and social context, and that potential climate change effects and adaptation strategies will not, and should not, be constrained by the Center fence line; 2) a desire to coordinate data collection and adaptation planning activities with interested stakeholders to form a regional climate change adaptation center that could facilitate interaction with CASI; 3) recognition that there is a wide array of basic data (remotely sensed, in situ, GIS/mapping, and historical) available through JSC and other stakeholders, but this data is not yet centrally accessible for planning purposes.

  15. Curation of Antarctic Meteorites at NASA Johnson Space Center

    NASA Technical Reports Server (NTRS)

    McBride, K. M.; Satterwhite, C. E.; Righter, Kevin

    2010-01-01

    The U.S. Antarctic meteorite program began in the 1970 s and has provided more than 18,000 samples in over three decades. The program is based on a three agency agreement between NASA, the National Science Foundation, and the Smithsonian Institution. The collection, stored at the Johnson Space Center and the Smithsonian, is one of the largest collections of meteorites in the world and features samples from the moon and Mars, asteroids, and material from the early solar system. A brief consideration of the collection shows that it contains 92.2% ordinary chondrites, 3.2% carbonaceous chondrites, 3.7% achondrites (1.7% HED), as well as many puzzling ungrouped meteorites. JSC has sent splits of nearly 20,000 meteorite samples to more than 500 scientists around the world since 1977. After the meteorites are collected in Antarctica, they are shipped frozen to JSC in Houston, usually arriving in April following the field season. The Astromaterials Curation Office at JSC is responsible for: - receiving the frozen meteorites. - staging: repackaging and changing the samples field identification numbers with official names. - submitting the names to the Nomenclature Committee of the Meteoritical Society for approval as new meteorites. - initial processing: weighing, measuring, describing and photographing the sample and providing a chip for classification to the Smithsonian Institution staff. - the issuing of two newsletters per year, announcing hundreds of new meteorites. - the handling of requests from the scientific community and the allocation of those requests that are approved. - providing supplies and tools for the field team such as teflon bags and tape, aluminum foil, clean tweezers and tongs. - maintaining the meteorite database with more than 76,000 sample splits. - making petrographic thin and thick sections for the JSC library and scientific investigators. - providing storage and handling of the meteorites in a class 10,000 clean room. Samples that have not been

  16. NASA - Johnson Space Center's New Capabilities for Air Purification

    NASA Technical Reports Server (NTRS)

    Graf, John

    2015-01-01

    NASA has some unique and challenging air purification problems that cannot be adequately met with COTS technology: 1) ammonia removal from air, 2) hydrazine removal from air, 3) CO conversion to CO2 in low temperature, high humidity environments. NASA has sponsored the development of new sorbents and new catalysts. These new sorbents and catalysts work better than COTS technology for our application. If attendees have a need for an effective ammonia sorbent, an effective hydrazine sorbent, or an effective CO conversion catalyst, we should learn to see if NASA sponsored technology development can help.

  17. Development of the CELSS emulator at NASA. Johnson Space Center

    NASA Technical Reports Server (NTRS)

    Cullingford, Hatice S.

    1990-01-01

    The Closed Ecological Life Support System (CELSS) Emulator is under development. It will be used to investigate computer simulations of integrated CELSS operations involving humans, plants, and process machinery. Described here is Version 1.0 of the CELSS Emulator that was initiated in 1988 on the Johnson Space Center (JSC) Multi Purpose Applications Console Test Bed as the simulation framework. The run model of the simulation system now contains a CELSS model called BLSS. The CELSS simulator empowers us to generate model data sets, store libraries of results for further analysis, and also display plots of model variables as a function of time. The progress of the project is presented with sample test runs and simulation display pages.

  18. Processing of Antarctic Meteorites at NASA/Johnson Space Center

    NASA Technical Reports Server (NTRS)

    Satterwhite, C. E.; McBridge, K. M.; Harrington, R. S.; Righter, K.

    2011-01-01

    Since the beginning of the Antarctic Search for Meteorites (ANSMET) program in 1976, over 18,000 meteorites have been processed in the Meteorite Processing Lab at Johnson Space Center in Houston, TX. The first step is to renumber the meteorites from field tag number to generic number and log all the information into the meteorite database. Initial processing involves drying the meteorites in a nitrogen glove box for 24 to 48 hours, photographing, measuring, weighing and writing an exterior description. Next step is to break the meteorite and obtain a good representative sample that will be sent to the Smithsonian institution for classification. Once all the processing is done and the meteorites have been classified, the information is published in the Antarctic meteorite newsletter. The newsletter is published twice yearly and is sent electronically to researchers around the world and is also available on line. Researchers are asked to fill out a request form. The bulk of this paper relates to the researcher's request for meteorite samples.

  19. NASA Johnson Space Center SBIR STTR Program Technology Innovations

    NASA Technical Reports Server (NTRS)

    Krishen, Kumar

    2007-01-01

    The Small Business Innovation Research (SBIR) Program increases opportunities for small businesses to participate in research and development (R&D), increases employment, and improves U.S. competitiveness. Specifically the program stimulates U.S. technological innovation by using small businesses to meet federal R&D needs, increasing private-sector commercialization of innovations derived from federal R&D, and fostering and encouraging the participation of socially disadvantaged businesses. In 2000, the Small Business Technology Transfer (STTR) Program extended and strengthened the SBIR Program, increasing its emphasis on pursuing commercial applications by awarding contracts to small business concerns for cooperative R&D with a nonprofit research institution. Modeled after the SBIR Program, STTR is nevertheless a separately funded activity. Technologies that have resulted from the Johnson Space Center SBIR STTR Program include: a device for regenerating iodinated resin beds; laser-assisted in-situ keratomileusis or LASIK; a miniature physiological monitoring device capable of collecting and analyzing a multitude of real-time signals to transmit medical data from remote locations to medical centers for diagnosis and intervention; a new thermal management system for fibers and fabrics giving rise to new line of garments and thermal-enhancing environments; and a highly electropositive material that attracts and retains electronegative particles in water.

  20. NASA Johnson Space Center Life Sciences Data System

    NASA Technical Reports Server (NTRS)

    Rahman, Hasan; Cardenas, Jeffery

    1994-01-01

    The Life Sciences Project Division (LSPD) at JSC, which manages human life sciences flight experiments for the NASA Life Sciences Division, augmented its Life Sciences Data System (LSDS) in support of the Spacelab Life Sciences-2 (SLS-2) mission, October 1993. The LSDS is a portable ground system supporting Shuttle, Spacelab, and Mir based life sciences experiments. The LSDS supports acquisition, processing, display, and storage of real-time experiment telemetry in a workstation environment. The system may acquire digital or analog data, storing the data in experiment packet format. Data packets from any acquisition source are archived and meta-parameters are derived through the application of mathematical and logical operators. Parameters may be displayed in text and/or graphical form, or output to analog devices. Experiment data packets may be retransmitted through the network interface and database applications may be developed to support virtually any data packet format. The user interface provides menu- and icon-driven program control and the LSDS system can be integrated with other workstations to perform a variety of functions. The generic capabilities, adaptability, and ease of use make the LSDS a cost-effective solution to many experiment data processing requirements. The same system is used for experiment systems functional and integration tests, flight crew training sessions and mission simulations. In addition, the system has provided the infrastructure for the development of the JSC Life Sciences Data Archive System scheduled for completion in December 1994.

  1. Applied human factors research at the NASA Johnson Space Center Human-Computer Interaction Laboratory

    NASA Technical Reports Server (NTRS)

    Rudisill, Marianne; Mckay, Timothy D.

    1990-01-01

    The applied human factors research program performed at the NASA Johnson Space Center's Human-Computer Interaction Laboratory is discussed. Research is conducted to advance knowledge in human interaction with computer systems during space crew tasks. In addition, the Laboratory is directly involved in the specification of the human-computer interface (HCI) for space systems in development (e.g., Space Station Freedom) and is providing guidelines and support for HCI design to current and future space missions.

  2. Artificial recharge for subsidence abatement at the NASA-Johnson Space Center, Phase I

    USGS Publications Warehouse

    Garza, Sergio

    1977-01-01

    Regional decline of aquifer head due to ground-water withdrawal in the Houston area has caused extensive land-surface subsidence. The NASA-Johnson Space Center (NASA-JSC) in southeastern Harris County, Texas, was about 13 to 19 feet above mean sea level in 1974 and sinking at a rate of more than 0.2 foot per year. NASA-JSC officials, concerned about the hurricane flooding hazard, requested the U.S. Geological Survey to study the feasibility of artificially recharging the aquifers for subsidence abatement. Hydrologic digital models were developed for theoretical determinations of quantities of water needed, under various well-array plans, for artificial recharge of the Chicot and Evangeline aquifers in order to halt the local subsidence at NASA-JSC. The programs for the models were developed for analysis of three-dimensional ground-water flow. Total injection rates of between 2,000 and 14,000 gallons per minute under three general well-array plans were determined for a range of residual clay pore pressures of 10 to 70 feet of hydraulic head. The space distributions of the resultant hydraulic heads, illustrated for injection rates of 3,600 and 8 ,400 gallons per minute, indicated that, for the same rate, increasing the number and spread of the injection locations reduces the head gradients within NASA-JSC. (Woodard-USGS)

  3. Contingency Operations Support to NASA Johnson Space Center Medical Operations Division

    NASA Technical Reports Server (NTRS)

    Stepaniak, Philip; Patlach, Bob; Swann, Mark; Adams, Adrien

    2005-01-01

    The Wyle Laboratories Contingency Operations Group provides support to the NASA Johnson Space Center (JSC) Medical Operations Division in the event of a space flight vehicle accident or JSC mishap. Support includes development of Emergency Medical System (EMS) requirements, procedures, training briefings and real-time support of mishap investigations. The Contingency Operations Group is compliant with NASA documentation that provides guidance in these areas and maintains contact with the United States Department of Defense (DOD) to remain current on military plans to support NASA. The contingency group also participates in Space Operations Medical Support Training Courses (SOMSTC) and represents the NASA JSC Medical Operations Division at contingency exercises conducted worldwide by the DOD or NASA. The events of September 11, 2001 have changed how this country prepares and protects itself from possible terrorist attacks on high-profile targets. As a result, JSC is now considered a high-profile target and thus, must prepare for and develop a response to a Weapons of Mass Destruction (WMD) incident. The Wyle Laboratories Contingency Operations Group supports this plan, specifically the medical response, by providing expertise and manpower.

  4. Helmet-mounted display and associated research activities recently conducted by the NASA Johnson Space Center

    NASA Astrophysics Data System (ADS)

    Marmolejo, Jose A.

    1994-06-01

    To enhance manned extravehicular activity (EVA) utilizing an extravehicular mobility unit (EMU)(i.e., a space suit and portable life support backpack), NASA has conducted research into implementing helmet mounted display (HMD) and related technology within its next generation of space suits. The NASA/Johnson Space Center has completed four feasibility development programs for the design and development of an EMU HMD, each resulting in the delivery of a binocular or biocular HMD breadboard unit utilizing conventional optical elements (i.e., glass lenses and beamsplitters) and/or holographic optics. Additional research into combining the use of voice recognition for astronaut 'hands- free' access to information via the HMD has also been conducted. Research conducted since 1983 will be summarized along with current shuttle EMU display enhancements. In addition, recommendations for the design of the next generation of displays for use within the EMU will be presented.

  5. Nasa-wide Standard Administrative Systems

    NASA Technical Reports Server (NTRS)

    Schneck, P.

    1984-01-01

    Factors to be considered in developing agency-wide standard administrative systems for NASA include uniformity of hardware and software; centralization vs. decentralization; risk exposure; and models for software development.

  6. NASA Administrator Flies Dream Chaser Simulator

    NASA Video Gallery

    NASA Administrator Charlie Bolden had the opportunity to fly a simulated landing of the Sierra Nevada Corporation (SNC) Dream Chaser while touring the agency's Dryden Flight Research Center in Cali...

  7. The development and technology transfer of software engineering technology at NASA. Johnson Space Center

    NASA Technical Reports Server (NTRS)

    Pitman, C. L.; Erb, D. M.; Izygon, M. E.; Fridge, E. M., III; Roush, G. B.; Braley, D. M.; Savely, R. T.

    1992-01-01

    The United State's big space projects of the next decades, such as Space Station and the Human Exploration Initiative, will need the development of many millions of lines of mission critical software. NASA-Johnson (JSC) is identifying and developing some of the Computer Aided Software Engineering (CASE) technology that NASA will need to build these future software systems. The goal is to improve the quality and the productivity of large software development projects. New trends are outlined in CASE technology and how the Software Technology Branch (STB) at JSC is endeavoring to provide some of these CASE solutions for NASA is described. Key software technology components include knowledge-based systems, software reusability, user interface technology, reengineering environments, management systems for the software development process, software cost models, repository technology, and open, integrated CASE environment frameworks. The paper presents the status and long-term expectations for CASE products. The STB's Reengineering Application Project (REAP), Advanced Software Development Workstation (ASDW) project, and software development cost model (COSTMODL) project are then discussed. Some of the general difficulties of technology transfer are introduced, and a process developed by STB for CASE technology insertion is described.

  8. NASA Johnson Space Center Usability Testing and Analysis Facility (UTAF) Overview

    NASA Technical Reports Server (NTRS)

    Whitmore, M.

    2004-01-01

    The Usability Testing and Analysis Facility (UTAF) is part of the Space Human Factors Laboratory at the NASA Johnson Space Center in Houston, Texas. The facility provides support to the Office of Biological and Physical Research, the Space Shuttle Program, the International Space Station Program, and other NASA organizations. In addition, there are ongoing collaborative research efforts with external businesses and universities. The UTAF provides human factors analysis, evaluation, and usability testing of crew interfaces for space applications. This includes computer displays and controls, workstation systems, and work environments. The UTAF has a unique mix of capabilities, with a staff experienced in both cognitive human factors and ergonomics. The current areas of focus are: human factors applications in emergency medical care and informatics; control and display technologies for electronic procedures and instructions; voice recognition in noisy environments; crew restraint design for unique microgravity workstations; and refinement of human factors processes. This presentation will provide an overview of ongoing activities, and will address how the projects will evolve to meet new space initiatives.

  9. NASA Johnson Space Center Usability Testing and Analysis Facility (WAF) Overview

    NASA Technical Reports Server (NTRS)

    Whitmore, M.

    2004-01-01

    The Usability Testing and Analysis Facility (UTAF) is part of the Space Human Factors Laboratory at the NASA Johnson Space Center in Houston, Texas. The facility provides support to the Office of Biological and Physical Research, the Space Shuttle Program, the International Space Station Program, and other NASA organizations. In addition, there are ongoing collaborative research efforts with external businesses and universities. The UTAF provides human factors analysis, evaluation, and usability testing of crew interfaces for space applications. This includes computer displays and controls, workstation systems, and work environments. The UTAF has a unique mix of capabilities, with a staff experienced in both cognitive human factors and ergonomics. The current areas of focus are: human factors applications in emergency medical care and informatics; control and display technologies for electronic procedures and instructions; voice recognition in noisy environments; crew restraint design for unique microgravity workstations; and refinement of human factors processes. This presentation will provide an overview of ongoing activities, and will address how the projects will evolve to meet new space initiatives.

  10. NASA Johnson Space Center Usability Testing and Analysis facility (UTAF) Overview

    NASA Technical Reports Server (NTRS)

    Whitmore, Mihriban; Holden, Kritina L.

    2005-01-01

    The Usability Testing and Analysis Facility (UTAF) is part of the Space Human Factors Laboratory at the NASA Johnson Space Center in Houston, Texas. The facility performs research for NASA's HumanSystems Integration Program, under the HumanSystems Research and Technology Division. Specifically, the UTAF provides human factors support for space vehicles, including the International Space Station, the Space Shuttle, and the forthcoming Crew Exploration Vehicle. In addition, there are ongoing collaborative research efforts with external corporations and universities. The UTAF provides human factors analysis, evaluation, and usability testing of crew interfaces for space applications. This includes computer displays and controls, workstation systems, and work environments. The UTAF has a unique mix of capabilities, with a staff experienced in both cognitive human factors and ergonomics. The current areas of focus are: human factors applications in emergency medical care and informatics; control and display technologies for electronic procedures and instructions; voice recognition in noisy environments; crew restraint design for unique microgravity workstations; and refinement of human factors processes and requirements. This presentation will provide an overview of ongoing activities, and will address how the UTAF projects will evolve to meet new space initiatives.

  11. LARGE SCALE REFRIGERATION PLANT FOR GROUND TESTING THE JAMES WEBB TELESCOPE AT NASA JOHNSON SPACE CENTER

    SciTech Connect

    P. Arnold, Lutz Decker, D. Howe, J. Urbin, Jonathan Homan, Carl Reis, J. Creel, V. Ganni, P. Knudsen, A. Sidi-Yekhlef

    2010-04-01

    The James Webb Telescope is the successor to the Hubble Telescope and will be placed in an orbit of 1.5 million km from earth. Before launch in 2014, the telescope will be tested in NASA Johnson Space Center's (JSC) space simulation chamber, Chamber A. The tests will be conducted at deep space conditions. Chamber A's helium cryo-panels are currently cooled down to 20 K by two Linde 3.5 kW helium refrigerators. The new 12.5 kW, 20-K helium coldbox described in this paper is part of the upgrade to the chamber systems for this large test program. The Linde coldbox will provide refrigeration in several operating modes where the temperature of the chamber is being controlled with a high accuracy due to the demanding NASA test requirements. The implementation of two parallel expansion turbine strings and the Ganni cycle—Floating Pressure process results in a highly efficient and flexible process that minimizes the electrical input power. This paper will describe the collaboration and execution of the coldbox project.

  12. Organic Contamination Baseline Study in NASA Johnson Space Center Astromaterials Curation Laboratories

    NASA Technical Reports Server (NTRS)

    Calaway, Michael J.; Allen, Carlton C.; Allton, Judith H.

    2014-01-01

    Future robotic and human spaceflight missions to the Moon, Mars, asteroids, and comets will require curating astromaterial samples with minimal inorganic and organic contamination to preserve the scientific integrity of each sample. 21st century sample return missions will focus on strict protocols for reducing organic contamination that have not been seen since the Apollo manned lunar landing program. To properly curate these materials, the Astromaterials Acquisition and Curation Office under the Astromaterial Research and Exploration Science Directorate at NASA Johnson Space Center houses and protects all extraterrestrial materials brought back to Earth that are controlled by the United States government. During fiscal year 2012, we conducted a year-long project to compile historical documentation and laboratory tests involving organic investigations at these facilities. In addition, we developed a plan to determine the current state of organic cleanliness in curation laboratories housing astromaterials. This was accomplished by focusing on current procedures and protocols for cleaning, sample handling, and storage. While the intention of this report is to give a comprehensive overview of the current state of organic cleanliness in JSC curation laboratories, it also provides a baseline for determining whether our cleaning procedures and sample handling protocols need to be adapted and/or augmented to meet the new requirements for future human spaceflight and robotic sample return missions.

  13. Two X-38 Ship Demonstrators in Development at NASA Johnson Space Flight Center

    NASA Technical Reports Server (NTRS)

    1999-01-01

    This photo shows two X-38 Crew Return Vehicle technology demonstrators under development at NASA's Johnson Space Flight Center, Houston, Texas. The X-38 Crew Return Vehicle (CRV) research project is designed to develop the technology for a prototype emergency crew return vehicle, or lifeboat, for the International Space Station. The project is also intended to develop a crew return vehicle design that could be modified for other uses, such as a joint U.S. and international human spacecraft that could be launched on the French Ariane-5 Booster. The X-38 project is using available technology and off-the-shelf equipment to significantly decrease development costs. Original estimates to develop a capsule-type crew return vehicle were estimated at more than $2 billion. X-38 project officials have estimated that development costs for the X-38 concept will be approximately one quarter of the original estimate. Off-the-shelf technology is not necessarily 'old' technology. Many of the technologies being used in the X-38 project have never before been applied to a human-flight spacecraft. For example, the X-38 flight computer is commercial equipment currently used in aircraft and the flight software operating system is a commercial system already in use in many aerospace applications. The video equipment for the X-38 is existing equipment, some of which has already flown on the space shuttle for previous NASA experiments. The X-38's primary navigational equipment, the Inertial Navigation System/Global Positioning System, is a unit already in use on Navy fighters. The X-38 electromechanical actuators come from previous joint NASA, U.S. Air Force, and U.S. Navy research and development projects. Finally, an existing special coating developed by NASA will be used on the X-38 thermal tiles to make them more durable than those used on the space shuttles. The X-38 itself was an unpiloted lifting body designed at 80 percent of the size of a projected emergency crew return vehicle

  14. NASA RECON: Course Development, Administration, and Evaluation

    NASA Technical Reports Server (NTRS)

    Dominick, W. D.; Roquemore, L.

    1984-01-01

    The R and D activities addressing the development, administration, and evaluation of a set of transportable, college-level courses to educate science and engineering students in the effective use of automated scientific and technical information storage and retrieval systems, and, in particular, in the use of the NASA RECON system, are discussed. The long-range scope and objectives of these contracted activities are overviewed and the progress which has been made toward these objectives during FY 1983-1984 is highlighted. In addition, the results of a survey of 237 colleges and universities addressing course needs are presented.

  15. Example of Occupational Surveillance in a Telemedicine Setting: Application of Epidemiologic Methods at NASA Johnson Space Center

    NASA Technical Reports Server (NTRS)

    Babiak-Vazquez, Adriana; Ruffaner, Lanie M.; Wear, Mary L.; Crucian, Brian; Sams, Clarence; Lee, Lesley R.; Van Baalen, Mary

    2016-01-01

    In 2010, NASA implemented Lifetime Surveillance of Astronaut Health, a formal occupational surveillance program for the U.S. astronaut corps. Because of the nature of the space environment, space medicine presents unique challenges and opportunities for epidemiologists. One such example is the use of telemedicine while crewmembers are in flight, where the primary source of information about crew health is verbal communication between physicians and their crewmembers. Due to restricted medical capabilities, the available health information is primarily crewmember report of signs and symptoms, rather than diagnoses. As epidemiologists at NASA, Johnson Space Center, we have shifted our paradigm from tracking diagnoses based on traditional terrestrial clinical practice to one in which we also incorporate reported symptomology as potential antecedents of disease. In this presentation we describe how characterization of reported signs and symptoms can be used to establish incidence rates for inflight immunologic events. We describe interdisciplinary data sources of information that are used in combination with medical information to analyze the data. We also delineate criteria for symptom classification inclusion. Finally, we present incidence tables and graphs to illustrate the final outcomes. Using signs and symptoms reported via telemedicine, the epidemiologists provide summary evidence regarding incidence of potential inflight medical conditions. These results inform our NASA physicians and scientists, and support evaluation of the occupational health risks associated with spaceflight.

  16. NASA Administrative Data Base Management Systems, 1984

    NASA Technical Reports Server (NTRS)

    Radosevich, J. D. (Editor)

    1984-01-01

    Strategies for converting to a data base management system (DBMS) and the implementation of the software packages necessary are discussed. Experiences with DBMS at various NASA centers are related including Langley's ADABAS/NATURAL and the NEMS subsystem of the NASA metrology informaton system. The value of the integrated workstation with a personal computer is explored.

  17. Thermoelectric applications as related to biomedical engineering for NASA Johnson Space Center

    SciTech Connect

    Kramer, C.D.

    1997-07-01

    This paper presents current NASA biomedical developments and applications using thermoelectrics. Discussion will include future technology enhancements that would be most beneficial to the application of thermoelectric technology. A great deal of thermoelectric applications have focused on electronic cooling. As with all technological developments within NASA, if the application cannot be related to the average consumer, the technology will not be mass-produced and widely available to the public (a key to research and development expenditures and thermoelectric companies). Included are discussions of thermoelectric applications to cool astronauts during launch and reentry. The earth-based applications, or spin-offs, include such innovations as tank and race car driver cooling, to cooling infants with high temperatures, as well as, the prevention of hair loss during chemotherapy. In order to preserve the scientific value of metabolic samples during long-term space missions, cooling is required to enable scientific studies. Results of one such study should provide a better understanding of osteoporosis and may lead to a possible cure for the disease. In the space environment, noise has to be kept to a minimum. In long-term space applications such as the International Space Station, thermoelectric technology provides the acoustic relief and the reliability for food, as well as, scientific refrigeration/freezers. Applications and future needs are discussed as NASA moves closer to a continued space presence in Mir, International Space Station, and Lunar-Mars Exploration.

  18. National Aeronautics and Space Administration (NASA)/American Society for Engineering Education (ASEE) Summer Faculty Fellowship Program, 1989, volume 2

    NASA Technical Reports Server (NTRS)

    Jones, William B., Jr. (Editor); Goldstein, Stanley H. (Editor)

    1989-01-01

    The 1989 Johnson Space Center (JSC) National Aeronautics and Space Administration (NASA)/American Society for Engineering Education (ASEE) Summer Faculty Fellowship Program was conducted by Texas A and M University and JSC. The 10-week program was operated under the auspices of the ASEE. The program at JSC, as well as the programs at other NASA Centers, was funded by the Office of University Affairs, NASA Headquarters, Washington, D.C. The objectives of the program, which began nationally in 1964 and at JSC in 1965, are: (1) to further the professional knowledge of qualified engineering and science faculty members; (2) to stimulate an exchange of ideas between participants and NASA; (3) to enrich and refresh the research and teaching activities of participants' institutions; and (4) to contribute to the research objective of the NASA Centers.

  19. National Aeronautics and Space Administration (NASA)/American Society for Engineering Education (ASEE) Summer Faculty Fellowship Program, 1992, volume 2

    NASA Technical Reports Server (NTRS)

    Bannerot, Richard B. (Editor); Goldstein, Stanley H. (Editor)

    1992-01-01

    The 1992 Johnson Space Center (JSC) National Aeronautics and Space Administration (NASA)/American Society for Engineering Education (ASEE) Summer Faculty Fellowship Program was conducted by the University of Houston and JSC. The program at JSC, as well as the programs at other NASA Centers, was funded by the Office of University Affairs, NASA Headquarters Washington, DC. The objectives of the program, which began nationally in 1964 and at JSC in 1965, are (1) to further the professional knowledge of qualified engineering and science faculty members; (2) to stimulate an exchange of ideas between participants and NASA; (3) to enrich and refresh the research and teaching activities of participants' institutions; and (4) to contribute to the research objective of the NASA Centers. This document contains reports 13 through 24.

  20. National Aeronautics and Space Administration (NASA)/American Society for Engineering Education (ASEE) Summer Faculty Fellowship Program 1988, volume 2

    NASA Technical Reports Server (NTRS)

    Bannerot, Richard B.; Goldstein, Stanley H.

    1989-01-01

    The 1988 Johnson Space Center (JSC) National Aeronautics and Space Administration (NASA)/American Society for Engineering Education (ASEE) Summer Faculty Fellowship Program was conducted by the University of Houston and JCS. The 10-week program was operated under the auspices of the ASEE. The program at JSC, as well as the programs at other NASA Centers, was funded by the Office of University Affairs, NASA Headquarters, Washington, D.C. The objectives of the program, which began in 1965 at JSC and in 1964 nationally, are: (1) to further the professional knowledge of qualified engineering and science faculty members; (2) to stimulate an exchange of ideas between participants and NASA; (3) to enrich and refresh the research and teaching activities of participants' institutions; and (4) to contribute to the research objectives of the NASA Centers.

  1. National Aeronautics and Space Administration (NASA)/American Society for Engineering Education (ASEE) Summer Faculty Fellowship Program 1988, volume 1

    NASA Technical Reports Server (NTRS)

    Bannerot, Richard B. (Editor); Goldstein, Stanley H. (Editor)

    1989-01-01

    The 1988 Johnson Space Center (JSC) National Aeronautics and Space Administration (NASA)/American Society for Engineering Education (ASEE) Summer Faculty Fellowship Program was conducted by the University of Houston and JSC. The 10-week program was operated under the auspices of the ASEE. The program at JSC, as well as the programs at other NASA Centers, was funded by the Office of University Affairs, NASA Headquarters, Washington, D.C. The objectives of the program, which began in 1965 at JSC and in 1964 nationally, are (1) to further the professional knowledge of qualified engineering and science faculty members; (2) to stimulate an exchange of ideas between participants and NASA; (3) to enrich and refresh the research and teaching activities of participants' institutions; and (4) to contribute to the research objectives of the NASA Centers.

  2. National Aeronautics and Space Administration (NASA)/American Society for Engineering Education (ASEE) Summer Faculty Fellowship Program, 1989, volume 1

    NASA Technical Reports Server (NTRS)

    Jones, William B., Jr. (Editor); Goldstein, Stanley H. (Editor)

    1989-01-01

    The 1989 Johnson Space Center (JSC) National Aeronautics and Space Administration (NASA)/American Society for Engineering Education (ASEE) Summer Faculty Fellowship Program was conducted by Texas A and M University and JSC. The 10-week program was operated under the auspices of the ASEE. The program at JSC, as well as the programs at other NASA Centers, was funded by the Office of University Affairs, NASA Headquarters, Washington, D.C. The objectives of the program, which began nationally in 1964 and at JSC in 1965, are: (1) to further the professional knowledge of qualified engineering and science faculty members; (2) to stimulate an exchange of ideas between participants and NASA; (3) to enrich and refresh the research and teaching activities of participants' institutions; and (4) to contribute to the research objective of the NASA Centers.

  3. Surveillance in a Telemedicine Setting: Application of Epidemiologic Methods at NASA Johnson Space Center Adriana

    NASA Technical Reports Server (NTRS)

    Babiak-Vazquez, Adriana; Ruffaner, Lanie; Wear, Mary; Crucian Brian; Sams, Clarence; Lee, Lesley R.; Van Baalen, Mary

    2016-01-01

    Space medicine presents unique challenges and opportunities for epidemiologists, such as the use of telemedicine during spaceflight. Medical capabilities aboard the International Space Station (ISS) are limited due to severe restrictions on power, volume, and mass. Consequently, inflight health information is based heavily on crewmember (CM) self-report of signs and symptoms, rather than formal diagnoses. While CM's are in flight, the primary source of crew health information is verbal communication between physicians and crewmembers. In 2010 NASA implemented the Lifetime Surveillance of Astronaut Health, an occupational surveillance program for the U.S. Astronaut corps. This has shifted the epidemiological paradigm from tracking diagnoses based on traditional terrestrial clinical practice to one that incorporates symptomatology and may gain a more population-based understanding of early detection of disease process.

  4. Space Shuttle Global Positioning System (GPS) testing at NASA Johnson Space Center

    NASA Technical Reports Server (NTRS)

    Pawlowski, J. F.; Quinn, M.

    1982-01-01

    The present investigation is concerned with the significance of the use of the Global Positioning System (GPS) for the Space Shuttle. On the basis of a study regarding the use of the GPS on the Space Shuttle, it was decided that such a system would greatly benefit Space Shuttle navigation. Studies with GPS user equipment were, therefore, conducted to obtain data and information which would provide a base for the formulation and the further refinement of NASA requirements with respect to the type of set the Shuttle would need. Attention is given to orbit determination, satellite numbers, background information concerning the GPS, the currently available GPS sets, the conducted studies, Shuttle sonic boom recording sites, tests performed with the aid of the Kuiper airborne observatory, and questions regarding the test applicability to Shuttle GPS.

  5. National Aeronautics and Space Administration (NASA) Education 1993-2009

    ERIC Educational Resources Information Center

    Ivie, Christine M.

    2009-01-01

    The National Aeronautics and Space Administration was established in 1958 and began operating a formal education program in 1993. The purpose of this study was to analyze the education program from 1993-2009 by examining strategic plan documents produced by the NASA education office and interviewing NASA education officials who served during that…

  6. NASA Johnson Space Center's Planetary Sample Analysis and Mission Science (PSAMS) Laboratory: A National Facility for Planetary Research

    NASA Technical Reports Server (NTRS)

    Draper, D. S.

    2016-01-01

    NASA Johnson Space Center's (JSC's) Astromaterials Research and Exploration Science (ARES) Division, part of the Exploration Integration and Science Directorate, houses a unique combination of laboratories and other assets for conducting cutting edge planetary research. These facilities have been accessed for decades by outside scientists, most at no cost and on an informal basis. ARES has thus provided substantial leverage to many past and ongoing science projects at the national and international level. Here we propose to formalize that support via an ARES/JSC Plane-tary Sample Analysis and Mission Science Laboratory (PSAMS Lab). We maintain three major research capa-bilities: astromaterial sample analysis, planetary process simulation, and robotic-mission analog research. ARES scientists also support planning for eventual human ex-ploration missions, including astronaut geological training. We outline our facility's capabilities and its potential service to the community at large which, taken together with longstanding ARES experience and expertise in curation and in applied mission science, enable multi-disciplinary planetary research possible at no other institution. Comprehensive campaigns incorporating sample data, experimental constraints, and mission science data can be conducted under one roof.

  7. A study of the minority college programs at the NASA Johnson Space Center

    NASA Technical Reports Server (NTRS)

    Tryman, Mfanya Donald

    1987-01-01

    Research programs in science and engineering at predominantly black and white universities which assist in training and furthering the capabilities of minorities in the field, are examined. The Minority Graduate Researcher's Program and the Historically Black College and University Program were the focus of this research. The objectives included investigating the organizational structure and processes of the programs, how they are run, how they differ, defining particular administrative tasks for these programs, the collection of data related to these programs, and recommending ways in which these programs can be improved for greater efficiency and effectiveness through the Equal Opportunity Programs Office.

  8. Quality improvement prototype: Johnson Space Center, National Aeronautics and Space Administration

    NASA Technical Reports Server (NTRS)

    1990-01-01

    The Johnson Space Flight Center was recognized by the Office of Management and Budget as a model for its high standards of quality. Included are an executive summary of the center's activities, an organizational overview, techniques for improving quality, the status of the quality effort and a listing of key personnel.

  9. The Birth of Head Start: Preschool Education Policies in the Kennedy and Johnson Administrations

    ERIC Educational Resources Information Center

    Vinovskis, Maris A.

    2005-01-01

    One of the most popular and enduring legacies of President Lyndon B. Johnson's Great Society programs, Project Head Start continues to support young children of low-income families--close to one million annually--by providing a range of developmental and educational services. Yet as Head Start reaches its fortieth anniversary, debates over the…

  10. The Three Main Rings of the X-38 Vehicle 201 Shown under Construction at NASA Johnson Space Flight C

    NASA Technical Reports Server (NTRS)

    1999-01-01

    This photo shows the X-38 Vehicle 201, intended for spaceflight testing, under construction at NASA Johnson Space Flight Center, Houston, Texas. The X-38 Crew Return Vehicle (CRV) research project is designed to develop the technology for a prototype emergency crew return vehicle, or lifeboat, for the International Space Station. The project is also intended to develop a crew return vehicle design that could be modified for other uses, such as a joint U.S. and international human spacecraft that could be launched on the French Ariane-5 Booster. The X-38 project is using available technology and off-the-shelf equipment to significantly decrease development costs. Original estimates to develop a capsule-type crew return vehicle were estimated at more than $2 billion. X-38 project officials have estimated that development costs for the X-38 concept will be approximately one quarter of the original estimate. Off-the-shelf technology is not necessarily 'old' technology. Many of the technologies being used in the X-38 project have never before been applied to a human-flight spacecraft. For example, the X-38 flight computer is commercial equipment currently used in aircraft and the flight software operating system is a commercial system already in use in many aerospace applications. The video equipment for the X-38 is existing equipment, some of which has already flown on the space shuttle for previous NASA experiments. The X-38's primary navigational equipment, the Inertial Navigation System/Global Positioning System, is a unit already in use on Navy fighters. The X-38 electromechanical actuators come from previous joint NASA, U.S. Air Force, and U.S. Navy research and development projects. Finally, an existing special coating developed by NASA will be used on the X-38 thermal tiles to make them more durable than those used on the space shuttles. The X-38 itself was an unpiloted lifting body designed at 80 percent of the size of a projected emergency crew return vehicle

  11. National Aeronautics and Space Administration (NASA)/American Society for Engineering Education (ASEE) Summer Faculty Fellowship Program, 1992, volume 1

    NASA Technical Reports Server (NTRS)

    Bannerot, Richard B. (Editor); Goldstein, Stanley H. (Editor)

    1992-01-01

    The 1992 Johnson Space Center (JSC) National Aeronautics and Space Administration (NASA)/American Society for Engineering Education (ASEE) Summer Faculty Fellowship Program was conducted by the University of Houston and JSC. The program at JSC, as well as the programs at other NASA Centers, was funded by the Office of University Affairs, Washington, DC. The objectives of the program, which began nationally in 1964 and at JSC in 1965, are (1) to further the professional knowledge of qualified engineering and science faculty members; (2) to stimulate an exchange of ideas between participants and NASA; (3) to enrich and refresh the research and teaching activities of participants' institutions; and (4) to contribute to the research objective of the NASA Centers. This document is a compilation of the final reports 1 through 12.

  12. Ames Fellows Award - Johnson

    NASA Video Gallery

    Dr. Wayne Johnson is a rotorcraft pioneer and visionary. His legacy of rotorcraft research at NASA Ames continues to be of fundamental importance to the U.S. Army and to the international rotorcraf...

  13. Creating the Deep Space Environment for Testing the James Webb Space Telescope (JWST) at NASA Johnson Space Center's Chamber A

    NASA Technical Reports Server (NTRS)

    Homan, Jonathan L.; Cerimele, Mary P.; Montz, Michael E.; Bachtel, Russell; Speed, John; O'Rear, Patrick

    2013-01-01

    Chamber A is the largest thermal vacuum chamber at the Johnson Space Center and is one of the largest space environment chambers in the world. The chamber is 19.8 m (65 ft) in diameter and 36.6 m (120 ft) tall and is equipped with cryogenic liquid nitrogen panels (shrouds) and gaseous helium shrouds to create a simulated space environment. It was originally designed and built in the mid 1960 s to test the Apollo Command and Service Module and several manned tests were conducted on that spacecraft, contributing to the success of the program. The chamber has been used since that time to test spacecraft active thermal control systems, Shuttle DTO, DOD, and ESA hardware in simulated Low Earth Orbit (LEO) conditions. NASA is now moving from LEO towards exploration of locations with environments approaching those of deep space. Therefore, Chamber A has undergone major modifications to enable it to simulate these deeper space environments. Environmental requirements were driven, and modifications were funded by the James Webb Space Telescope program, and this telescope which will orbit Solar/Earth L2, will be the first test article to benefit from the chamber s new capabilities. To accommodate JWST, the Chamber A high vacuum system has been modernized, additional LN2 shrouds have been installed, the liquid nitrogen system has been modified to remove dependency on electrical power and increase its reliability, a new helium shroud/refrigeration system has been installed to create a colder more stable and uniform heat sink, and the controls have been updated to increase the level of automation and improve operator interfaces. Testing of these major modifications was conducted in August of 2012 and this initial test was very successful, with all major systems exceeding their performance requirements. This paper will outline the changes in overall environmental requirements, discuss the technical design data that was used in the decisions leading to the extensive modifications

  14. Creating the Deep Space Environment for Testing the James Webb Space Telescope at NASA Johnson Space Center's Chamber A

    NASA Technical Reports Server (NTRS)

    Homan, Jonathan L.; Cerimele, Mary P.; Montz, Michael E.; Bachtel, Russell; Speed, John; O'Rear, Patrick

    2013-01-01

    Chamber A is the largest thermal vacuum chamber at the Johnson Space Center and is one of the largest space environment chambers in the world. The chamber is 19.8 m (65 ft.) in diameter and 36.6 m (120 ft.) tall and is equipped with cryogenic liquid nitrogen panels (shrouds) and gaseous helium shrouds to create a simulated space environment. It was originally designed and built in the mid 1960 s to test the Apollo Command and Service Module and several manned tests were conducted on that spacecraft, contributing to the success of the program. The chamber has been used since that time to test spacecraft active thermal control systems, Shuttle DTO, DOD, and ESA hardware in simulated Low Earth Orbit (LEO) conditions. NASA is now moving from LEO towards exploration of locations with environments approaching those of deep space. Therefore, Chamber A has undergone major modifications to enable it to simulate these deeper space environments. Environmental requirements were driven, and modifications were funded by the James Webb Space Telescope program, and this telescope, which will orbit Solar/Earth L2, will be the first test article to benefit from the chamber s new capabilities. To accommodate JWST, the Chamber A high vacuum system has been modernized, additional LN2 shrouds have been installed, the liquid nitrogen system has been modified to minimize dependency on electrical power and increase its reliability, a new helium shroud/refrigeration system has been installed to create a colder more stable and uniform heat sink, and the controls have been updated to increase the level of automation and improve operator interfaces. Testing of these major modifications was conducted in August of 2012 and this initial test was very successful, with all major systems exceeding their performance requirements. This paper will outline the changes in overall environmental requirements, discuss the technical design data that was used in the decisions leading to the extensive

  15. National Aeronautics and Space Administration (NASA)/American Society for Engineering Education (ASEE) Summer Faculty Fellowship Program, 1987, volume 2

    NASA Technical Reports Server (NTRS)

    Jones, William B., Jr. (Editor); Goldstein, Stanley H. (Editor)

    1987-01-01

    The 1987 Johnson Space Center (JCS) National Aeronautics and Space Administration (NASA)/American Society for Engineering Education (ASEE) Summer Faculty Fellowship program was conducted by Texas A and M University and JSC. The 10-week program was operated under the auspices of ASEE. The basic objectives of the program are: to further the professional knowledge of qualified engineering and science faculty members; to stimulate an exchange of ideas between participants and NASA; to enrich and refresh the research and teaching activities of participants' institutions; and to contribute to the research objective of the NASA Centers. This document is a compilation of the final reports on the research projects done by the faculty fellows during the summer of 1987.

  16. 78 FR 77501 - NASA Aerospace Safety Advisory Panel; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-23

    ... SPACE ADMINISTRATION NASA Aerospace Safety Advisory Panel; Meeting AGENCY: National Aeronautics and Space Administration (NASA). ACTION: Notice of Meeting. SUMMARY: In accordance with the Federal Advisory...:00 p.m., Local Time. ] ADDRESSES: NASA Johnson Space Center, Room 966, NASA Parkway, Building...

  17. The administration of the NASA space tracking system and the NASA space tracking system in Australia

    NASA Technical Reports Server (NTRS)

    Hollander, N.

    1973-01-01

    The international activities of the NASA space program were studied with emphasis on the development and maintenance of tracking stations in Australia. The history and administration of the tracking organization and the manning policies for the stations are discussed, and factors affecting station operation are appraised. A field study of the Australian tracking network is included.

  18. National Aeronautics and Space Administration (NASA)/American Society of Engineering Education (ASEE) Summer Faculty Fellowship Program - 2000

    NASA Technical Reports Server (NTRS)

    Bannerot, Richard B. (Editor); Sickorez, Donn G. (Editor)

    2003-01-01

    The 2000 Johnson Space Center (JSC) National Aeronautics and Space Administration (NASA)/American Society for Engineering Education (ASEE) Summer Faculty Fellowship Program was conducted by the University of Houston and JSC. The 10-week program was operated under the auspices of the ASEE. The program at JSC, as well as the programs at other NASA Centers, was funded by the Office of University Affairs, NASA Headquarters, Washington, D.C. The objectives of the program, which began in 1965 at JSC and 1964 nationally, are to (1) further the professional knowledge of qualified engineering and science faculty, (2) stimulate an exchange of ideas between participants and NASA, (3) enrich and refresh the research and teaching activities of participants' institutions, and (4) contribute to the research objectives of the NASA Centers. Each faculty fellow spent at least 10 weeks at JSC engaged in a research project commensurate with her/his interests and background, and worked in collabroation with a NASA/JSC colleague. This document is a compilation of the final reports on the research projects done by the faculty fellows during the summer of 2000.

  19. James Johnson on Asteroid Mission Simulation Testing

    NASA Video Gallery

    NASA Public Affairs Officer Brandi Dean talks to James Johnson, the test director for a simulated mission to an asteroid taking place at the Space Vehicle Mockup Facility at the Johnson Space Cente...

  20. 75 FR 18240 - NASA Advisory Council; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-09

    ... SPACE ADMINISTRATION NASA Advisory Council; Meeting AGENCY: National Aeronautics and Space... NASA Advisory Council. DATES: Wednesday, April 28, 2010, 8 a.m.-5 p.m. CDT; Thursday, April 29, 2010, 8 a.m.-3 p.m. CDT ADDRESSES: NASA Johnson Space Center, Gilruth Conference Center, Lonestar Room,...

  1. Johnson Space Center

    NASA Astrophysics Data System (ADS)

    Murdin, P.

    2000-11-01

    The Johnson Space Center (JSC) in Houston is NASA's lead center for the space shuttle and the International Space Station programs and for biomedical research. Areas of study include Earth sciences and solar system exploration, astromaterials and space medicine. About 14 000 people, including 3000 civil servants, work at JSC....

  2. Johnson Space Center Overview

    NASA Technical Reports Server (NTRS)

    Gafka, Tammy; Terrier, Doug; Smith, James

    2011-01-01

    This slide presentation is a review of the work of Johnson Space Center. It includes a section on technology development areas, (i.e., composite structures, non-destructive evaluation, applied nanotechnology, additive manufacturing, and fracture and fatigue analytical methods), a section on structural analysis capabilities within NASA/JSC and a section on Friction stir welding and laser peening.

  3. NASA Administrator Dan Goldin speaks at Apollo 11 anniversary banquet.

    NASA Technical Reports Server (NTRS)

    1999-01-01

    NASA Administrator Daniel S. Goldin addresses the audience at the Apollo 11 anniversary banquet honoring the Apollo team, the people who made the entire lunar landing program possible. The banquet was held in the Apollo/Saturn V Center, part of the KSC Visitor Complex. This is the 30th anniversary of the Apollo 11 launch and moon landing, July 16 and July 20, 1969. Among the guests at the banquet were former Apollo astronauts are Neil A. Armstrong and Edwin 'Buzz' Aldrin who flew on Apollo 11, the launch of the first moon landing; Gene Cernan, who flew on Apollo 10 and 17 and was the last man to walk on the moon; and Walt Cunningham, who flew on Apollo 7.

  4. First Lady Hillary Clinton is greeted by NASA Administrator Goldin

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Upon their arrival at the Skid Strip at Cape Canaveral Air Station, First Lady Hillary Rodham Clinton and her daughter, Chelsea, are greeted by NASA Administrator Daniel S. Goldin and Mrs. Goldin. Mrs. Clinton and Chelsea are here to view the launch of Space Shuttle mission STS-93, scheduled for 12:36 a.m. EDT July 20. Much attention has been generated over the launch due to Commander Eileen M. Collins, the first woman to serve as commander of a Shuttle mission. The primary payload of the five- day mission is the Chandra X-ray Observatory, which will allow scientists from around the world to study some of the most distant, powerful and dynamic objects in the universe. The new telescope is 20 to 50 times more sensitive than any previous X- ray telescope and is expected to unlock the secrets of supernovae, quasars and black holes.

  5. First Lady Hillary Clinton is greeted by NASA Administrator Goldin

    NASA Technical Reports Server (NTRS)

    1999-01-01

    First Lady Hillary Rodham Clinton and her daughter, Chelsea, are greeted by NASA Administrator Daniel S. Goldin upon their arrival at the Skid Strip at Cape Canaveral Air Station. Next to Gold are (from left) Deputy Director for Business Operations Jim Jennings and Mrs. Goldin. Mrs. Clinton and Chelsea are here to view the launch of Space Shuttle mission STS-93, scheduled for 12:36 a.m. EDT July 20. Much attention has been generated over the launch due to Commander Eileen M. Collins, the first woman to serve as commander of a Shuttle mission. The primary payload of the five- day mission is the Chandra X-ray Observatory, which will allow scientists from around the world to study some of the most distant, powerful and dynamic objects in the universe. The new telescope is 20 to 50 times more sensitive than any previous X- ray telescope and is expected to unlock the secrets of supernovae, quasars and black holes.

  6. NASA Administrator Dan Goldin watches the STS-99 launch

    NASA Technical Reports Server (NTRS)

    2000-01-01

    KENNEDY SPACE CENTER, FLA. -- NASA Administrator Dan Goldin (right) joins other spectators at the Banana Creek viewing site in cheering the successful launch of Space Shuttle Endeavour on mission STS-99. The perfect liftoff occurred at 12:43:40 p.m. EST. Known as the Shuttle Radar Topography Mission (SRTM), STS-99 will chart a new course to produce unrivaled 3-D images of the Earth's surface. The result of the SRTM could be close to 1 trillion measurements of the Earth's topography. The mission is expected to last 11days, with Endeavour landing at KSC Tuesday, Feb. 22, at 4:36 p.m. EST. This is the 97th Shuttle flight and 14th for Shuttle Endeavour.

  7. NASA Administrator Dan Goldin speaks at Apollo 11 anniversary banquet.

    NASA Technical Reports Server (NTRS)

    1999-01-01

    NASA Administrator Daniel S. Goldin (right) addresses the audience at the Apollo 11 anniversary banquet honoring the Apollo team, the people who made the entire lunar landing program possible. The banquet was held in the Apollo/Saturn V Center, part of the KSC Visitor Complex, with seating under an unused Saturn V rocket like those that powered the Apollo launches . This is the 30th anniversary of the Apollo 11 launch and moon landing, July 16 and July 20, 1969. Among the guests at the banquet were former Apollo astronauts are Neil A. Armstrong and Edwin 'Buzz' Aldrin who flew on Apollo 11, the launch of the first moon landing; Gene Cernan, who flew on Apollo 10 and 17 and was the last man to walk on the moon; and Walt Cunningham, who flew on Apollo 7.

  8. A Study of Mars Dust Environment Simulation at NASA Johnson Space Center Energy Systems Test Area Resource Conversion Test Facility

    NASA Technical Reports Server (NTRS)

    Chen, Yuan-Liang Albert

    1999-01-01

    The dust environment on Mars is planned to be simulated in a 20 foot thermal-vacuum chamber at the Johnson Space Center, Energy Systems Test Area Resource Conversion Test Facility in Houston, Texas. This vacuum chamber will be used to perform tests and study the interactions between the dust in Martian air and ISPP hardware. This project is to research, theorize, quantify, and document the Mars dust/wind environment needed for the 20 foot simulation chamber. This simulation work is to support the safety, endurance, and cost reduction of the hardware for the future missions. The Martian dust environment conditions is discussed. Two issues of Martian dust, (1) Dust Contamination related hazards, and (2) Dust Charging caused electrical hazards, are of our interest. The different methods of dust particles measurement are given. The design trade off and feasibility were studied. A glass bell jar system is used to evaluate various concepts for the Mars dust/wind environment simulation. It was observed that the external dust source injection is the best method to introduce the dust into the simulation system. The dust concentration of 30 Mg/M3 should be employed for preparing for the worst possible Martian atmosphere condition in the future. Two approaches thermal-panel shroud for the hardware conditioning are discussed. It is suggested the wind tunnel approach be used to study the dust charging characteristics then to be apply to the close-system cyclone approach. For the operation cost reduction purpose, a dehumidified ambient air could be used to replace the expensive CO2 mixture for some tests.

  9. User and Task Analysis of the Flight Surgeon Console at the Mission Control Center of the NASA Johnson Space Center

    NASA Technical Reports Server (NTRS)

    Johnson, Kathy A.; Shek, Molly

    2003-01-01

    Astronauts in a space station are to some extent like patients in an intensive care unit (ICU). Medical support of a mission crew will require acquisition, transmission, distribution, integration, and archiving of significant amounts of data. These data are acquired by disparate systems and will require timely, reliable, and secure distribution to different communities for the execution of various tasks of space missions. The goal of the Comprehensive Medical Information System (CMIS) Project at Johnson Space Center Flight Medical Clinic is to integrate data from all Medical Operations sources, including the reference information sources and the electronic medical records of astronauts. A first step toward the full CMIS implementation is to integrate and organize the reference information sources and the electronic medical record with the Flight Surgeons console. In order to investigate this integration, we need to understand the usability problems of the Flight Surgeon's console in particular and medical information systems in general. One way to achieve this understanding is through the use of user and task analyses whose general purpose is to ensure that only the necessary and sufficient task features that match users capacities will be included in system implementations. The goal of this summer project was to conduct user and task analyses employing cognitive engineering techniques to analyze the task of the Flight Surgeons and Biomedical Engineers (BMEs) while they worked on Console. The techniques employed were user interviews, observations and a questionnaire to collect data for which a hierarchical task analysis and an information resource assessment were performed. They are described in more detail below. Finally, based on our analyses, we make recommendations for improvements to the support structure.

  10. STS-79 NASA administrator Goldin greets crew after landing

    NASA Technical Reports Server (NTRS)

    1996-01-01

    NASA Administrator Daniel Goldin (center, with box) greets STS-79 Commander William F. Readdy following the successful conclusion of Mission STS-79 with an end of mission landing at KSC's Shuttle Landing Facility. Also climbing down from the Crew Transport Vehicle (CTV) are (from left) STS-79 Mission Specialists Carl E. Walz and Jay Apt, and Pilot Terrence W. Wilcutt. To the right of Goldin are KSC Director Jay Honeycutt and Acting Associate Administrator for the Office of Life and Microgravity Sciences and Applications Dr. Arnauld Nicogossian. Goldin is holding a box of m&m candy to give to U.S. astronaut Shannon W. Lucid, who returns to Earth after a record setting six month stay aboard the Russian Space Station Mir. The candy is a gift from President Bill Clinton for Lucid. M&M Mars has been supplying m&m candy to the U.S. space program for more than a decade; the gift candies for Lucid are red, white and blue to commemorate her historic flight.

  11. Accomplishments of the NASA Johnson Space Center portion of the soil moisture project in fiscal year 1981

    NASA Technical Reports Server (NTRS)

    Paris, J. F.; Arya, L. M.; Davidson, S. A.; Hildreth, W. W.; Richter, J. C.; Rosenkranz, W. A.

    1982-01-01

    The NASA/JSC ground scatterometer system was used in a row structure and row direction effects experiment to understand these effects on radar remote sensing of soil moisture. Also, a modification of the scatterometer system was begun and is continuing, to allow cross-polarization experiments to be conducted in fiscal years 1982 and 1983. Preprocessing of the 1978 agricultural soil moisture experiment (ASME) data was completed. Preparations for analysis of the ASME data is fiscal year 1982 were completed. A radar image simulation procedure developed by the University of Kansas is being improved. Profile soil moisture model outputs were compared quantitatively for the same soil and climate conditions. A new model was developed and tested to predict the soil moisture characteristic (water tension versus volumetric soil moisture content) from particle-size distribution and bulk density data. Relationships between surface-zone soil moisture, surface flux, and subsurface moisture conditions are being studied as well as the ways in which measured soil moisture (as obtained from remote sensing) can be used for agricultural applications.

  12. The STS-99 crew poses with NASA Administrator Dan Goldin.

    NASA Technical Reports Server (NTRS)

    2000-01-01

    KENNEDY SPACE CENTER, Fla. -- Members of the STS-99 crew pose with NASA Administrator Dan Goldin underneath Space Shuttle Endeavour on KSC's Shuttle Landing Facility. From left are Commander Kevin Kregel, Mission Specialist Janet Kavandi, Pilot Dominic Gorie, Goldin, and Mission Specialists Gerhard Thiele and Mamoru Mohri. Not in the photo is Mission Specialist Janice Voss. Main gear touchdown was at 6:22:23 p.m. EST Feb. 22 , landing on orbit 181 of the mission. Nose gear touchdown was at 6:22:35 p.m.. EST, and wheel stop at 6:23:25 p.m. EST. The crew returned from the Shuttle Radar Topography Mission after mapping more than 47 million square miles of the Earth's surface. This was the 97th flight in the Space Shuttle program and the 14th for Endeavour, also marking the 50th landing at KSC, the 21st consecutive landing at KSC, and the 28th in the last 29 Shuttle flights.

  13. Analysis of the lettuce data from the variable pressure growth chamber at NASA Johnson Space Center: A three-stage nested design model

    NASA Technical Reports Server (NTRS)

    Lee, Tze-San

    1992-01-01

    A model of three-stage nested experimental design was applied to analyze the lettuce data obtained from the variable pressure growth chamber test bed at NASA-Johnson Space Center. From the results of an application of the analysis of variance and covariance on the data set, it was noted that all of the (uncontrollable) factors, Side, Zone, Height and (controllable) PAR (photosynthetically active radiation), had nonhomogeneous effects on the dry weight of the edible biomass of lettuce per pot. Incidentally, the variations accountable to the (uncontrollable) factorial heterogeneities are merely 9 percent and 17 percent of the total variation for both the first and second crop test, respectively. After adjusting for the PAR as a covariate in the no-intercept model, the accountable variations to all the four factors are 94 percent and 92 percent for the first and the second crop test, respectively. With the use of a no-intercept simple linear regression model, the accountable variations to the factor PAR are 92 percent and 90 percent for the first and the second crop test, respectively. Evidently, the (controllable) factor PAR is the dominating one.

  14. National Aeronautics and Space Administration's (NASA) Automated Information Security Handbook

    NASA Technical Reports Server (NTRS)

    Roback, E.

    1991-01-01

    The NASA Automated Information Security Handbook provides NASA's overall approach to automated information systems security including discussions of such aspects as: program goals and objectives, assignment of responsibilities, risk assessment, foreign national access, contingency planning and disaster recovery, awareness training, procurement, certification, planning, and special considerations for microcomputers.

  15. 75 FR 17437 - NASA Advisory Council; Audit, Finance and Analysis Committee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-06

    ... SPACE ADMINISTRATION NASA Advisory Council; Audit, Finance and Analysis Committee; Meeting AGENCY... Administration announces a meeting of the Audit, Finance and Analysis Committee of the NASA Advisory Council. DATES: Tuesday, April 27, 2010, 9 a.m.-11 a.m. CDT. ADDRESSES: NASA Johnson Space Center,...

  16. National Aeronautics and Space Administration (NASA)/American Society for Engineering Education (ASEE) summer faculty fellowship program, 1986, volume 1

    NASA Technical Reports Server (NTRS)

    Mcinnis, Bayliss (Editor); Goldstein, Stanley (Editor)

    1987-01-01

    The Johnson Space Center (JSC) NASA/ASEE Summer Faculty Fellowship Program was conducted by the University of Houston. The basic objectives of the program are: (1) to further the professional knowledge of qualified engineering and science faculty members; (2) to stimulate an exchange of ideas between participants and NASA; (3) to enrich and refresh the research and teaching objectives of participants' institutions; and (4) to contribute to the research objectives of the NASA Centers. Each faculty fellow spent ten weeks at JSC engaged in a research project commensurate with his interests and background and worked in collaboration with a NASA/JSC colleague. Volume 1 contains sections 1 through 14.

  17. 75 FR 54190 - NASA Advisory Council; Education and Public Outreach Committee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-03

    ... and Social Media. Education Design Team. Action Item Status. Johnson Space Center Presentations. The... From the Federal Register Online via the Government Publishing Office NATIONAL AERONAUTICS AND SPACE ADMINISTRATION NASA Advisory Council; Education and Public Outreach Committee; Meeting...

  18. Commission Fleshes Out Bush Administration's Space Exploration Agenda for NASA

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    2004-06-01

    A commission appointed by President George W. Bush has unanimously endorsed his plan to dramatically re-orient NASA to focus on space exploration and manned and robotic missions to the Moon, Mars, and other destinations. The 16 June report of the President's Commission on Implementation of United States Space Exploration Policy finds that the new space agenda announced by Bush on 14 January will help the U.S. economy, security, and technological leadership, and provide educational opportunities. The report presents a series of recommendations for implementing the plan.

  19. Station Robotics Testing at Johnson Space Center

    NASA Video Gallery

    At the Space Vehicle Mockup Facility at Johnson Space Center, NASA tests the Japanese Experiment Module ORU Transfer Interface, or JOTI. This device would allow astronauts to transfer orbital repla...

  20. NASA today, and a vision for tomorrow. [The NASA Administrator's Speech to the American Geophysical Union on 26 May 1994

    NASA Technical Reports Server (NTRS)

    Goldin, Daniel S.

    1994-01-01

    Under the administration of Dan Goldin's leadership, NASA is reinventing itself. In the process, the agency is also searching for a vision to define its role, both as a US Government agency and as a leading force in humanity's exploration of space. An adaption of Goldin's speech to the American Geophysical Union on 26 May 1994 in which he proposes one possible unifying vision is presented.

  1. Using Remotely Sensed Data for Climate Change Mitigation and Adaptation: A Collaborative Effort Between the Climate Change Adaptation Science Investigators Workgroup (CASI), NASA Johnson Space Center, and Jacobs Technology

    NASA Technical Reports Server (NTRS)

    Jagge, Amy

    2016-01-01

    With ever changing landscapes and environmental conditions due to human induced climate change, adaptability is imperative for the long-term success of facilities and Federal agency missions. To mitigate the effects of climate change, indicators such as above-ground biomass change must be identified to establish a comprehensive monitoring effort. Researching the varying effects of climate change on ecosystems can provide a scientific framework that will help produce informative, strategic and tactical policies for environmental adaptation. As a proactive approach to climate change mitigation, NASA tasked the Climate Change Adaptation Science Investigators Workgroup (CASI) to provide climate change expertise and data to Center facility managers and planners in order to ensure sustainability based on predictive models and current research. Generation of historical datasets that will be used in an agency-wide effort to establish strategies for climate change mitigation and adaptation at NASA facilities is part of the CASI strategy. Using time series of historical remotely sensed data is well-established means of measuring change over time. CASI investigators have acquired multispectral and hyperspectral optical and LiDAR remotely sensed datasets from NASA Earth Observation Satellites (including the International Space Station), airborne sensors, and astronaut photography using hand held digital cameras to create a historical dataset for the Johnson Space Center, as well as the Houston and Galveston area. The raster imagery within each dataset has been georectified, and the multispectral and hyperspectral imagery has been atmospherically corrected. Using ArcGIS for Server, the CASI-Regional Remote Sensing data has been published as an image service, and can be visualized through a basic web mapping application. Future work will include a customized web mapping application created using a JavaScript Application Programming Interface (API), and inclusion of the CASI data

  2. 14 CFR 1221.107 - Establishment of the NASA Administrator's, Deputy Administrator's, and Associate Deputy...

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... × 4 feet; (2) The Administrator's Flag has four stars; (3) The Deputy Administrator's Flag has three stars; and (4) The Associate Deputy Administrator's Flag has two stars. (b) Flags representing...

  3. 14 CFR § 1221.107 - Establishment of the NASA Administrator's, Deputy Administrator's, and Associate Deputy...

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... × 4 feet; (2) The Administrator's Flag has four stars; (3) The Deputy Administrator's Flag has three stars; and (4) The Associate Deputy Administrator's Flag has two stars. (b) Flags representing...

  4. 14 CFR 1221.107 - Establishment of the NASA Administrator's, Deputy Administrator's, and Associate Deputy...

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... × 4 feet; (2) The Administrator's Flag has four stars; (3) The Deputy Administrator's Flag has three stars; and (4) The Associate Deputy Administrator's Flag has two stars. (b) Flags representing...

  5. 14 CFR 1221.107 - Establishment of the NASA Administrator's, Deputy Administrator's, and Associate Deputy...

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... × 4 feet; (2) The Administrator's Flag has four stars; (3) The Deputy Administrator's Flag has three stars; and (4) The Associate Deputy Administrator's Flag has two stars. (b) Flags representing...

  6. 14 CFR 1221.107 - Establishment of the NASA Administrator's, Deputy Administrator's, and Associate Deputy...

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... × 4 feet; (2) The Administrator's Flag has four stars; (3) The Deputy Administrator's Flag has three stars; and (4) The Associate Deputy Administrator's Flag has two stars. (b) Flags representing...

  7. (New) NASA Administrator Sean O'Keefe comes to Ames for employee briefing and tour. Here he welcomes

    NASA Technical Reports Server (NTRS)

    2002-01-01

    (New) NASA Administrator Sean O'Keefe comes to Ames for employee briefing and tour. Here he welcomes JASON kids to NASA while handing out patches and pins. Tom Clausen and Donald James, Ames Education Office in background.

  8. NASA Bioreactor

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Biotechnology Refrigerator (BTR) holds fixed tissue culture bags at 4 degrees C to preserve them for return to Earth and postflight analysis. The cultures are used in research with the NASA Bioreactor cell science program. The work is sponsored by NASA's Office of Biological and Physical Research. The bioreactor is managed by the Biotechnology Cell Science Program at NASA's Johnson Space Center (JSC).

  9. National Aeronautics and Space Administration (NASA)/American Society for Engineering Education (ASEE) Summer Faculty Fellowship Program, 1987, volume 1

    NASA Technical Reports Server (NTRS)

    Jones, William B. (Editor); Goldstein, Stanley H. (Editor)

    1987-01-01

    The objective of the NASA/ASEE program were: (1) to further the professional knowledge of qualified engineering and science faculty members; (2) to stimulate an exchange of ideas between participants and NASA; (3) to enrich and refresh the research and teaching activities of participants' institutions; and (4) to contribute to the research objectives of the NASA centers. Each faculty fellow spent 10 weeks at Johnson Space Center engaged in a research project commensurate with his/her interests and background and worked in collaboration with a NASA/JSC colleague. A compilation is presented of the final reports on the research projects done by the fellows during the summer of 1987. This is volume 1 of a 2 volume report.

  10. National Aeronautics and Space Administration (NASA)/American Society for Engineering Education (ASEE) summer faculty fellowship program, 1986, volume 2

    NASA Technical Reports Server (NTRS)

    Mcinnis, Bayliss (Editor); Goldstein, Stanley (Editor)

    1987-01-01

    The Johnson Space Center (JSC) NASA/ASEE Summer Faculty Fellowship Program was conducted by the University of Houston and JSC. The ten week program was operated under the auspices of the American Society for Engineering Education (ASEE). The basic objectives of the program are (1) to further the professional knowledge of qualified engineering and science faculty members; (2) to stimulate an exchange of ideas between participants and NASA; (3) to enrich and refresh the research and teaching activities of participants' institutions; and (4) to contribute to the research objectives of the NASA Centers. Each faculty fellow spent ten weeks at JSC engaged in a research project commensurate with his interests and background and worked in collaboration with a NASA/JSC colleague. The final reports on the research projects are presented. This volume, 2, contains sections 15 through 30.

  11. The NASA (National Aeronautics and Space Administration) Laboratory Telerobotic Manipulator control system architecture

    SciTech Connect

    Rowe, J.C.; Butler, P.L.; Glassell, R.L.; Herndon, J.N.

    1991-01-01

    In support of the National Aeronautics and Space Administration (NASA) goals to increase the utilization of dexterous robotic systems in space, the Oak Ridge National Laboratory (ORNL) has developed the Laboratory Telerobotic Manipulator (LTM) system. It is a dexterous, dual-arm, force reflecting teleoperator system with robotic features for NASA ground-based research. This paper describes the overall control system architecture, including both the hardware and software. The control system is a distributed, modular, and hierarchical design with flexible expansion capabilities for future enhancements of both the hardware and software. 6 refs., 4 figs.

  12. Dubin-Johnson syndrome

    MedlinePlus

    ... page: //medlineplus.gov/ency/article/000242.htm Dubin-Johnson syndrome To use the sharing features on this page, please enable JavaScript. Dubin-Johnson syndrome is a disorder passed down through families ( ...

  13. Update of Ulysses FSAR results using updated NASA (National Aeronautics and Space Administration) probabilities

    SciTech Connect

    Not Available

    1990-05-18

    The mission risk results reported in the Ulysses Final Safety Analysis Report (FSAR) issued on March 14, 1990, were based on initiating accident probabilities the National Aeronautics and Space Administration (NASA) provided to the Department of Energy (DOE) on July 13, 1988. These probabilities were provided in terms of ranges; the geometric mean of these ranges were used in the development and presentation of the results in the FSAR for source terms, radiological consequences and risks. Subsequent to the issuance of the FSAR, DOE received a revised set of probabilities from NASA. These probabilities were presented in terms of distributions for each initiating accident and characterized by a mean and cumulative percentile values. NASA recommended that DOE use the updated probabilities to update the Ulysses FSAR results. Accordingly, at the request of DOE, this letter report has been prepared to evaluate the changes in the Ulysses FSAR results when the updated mean probabilities are used.

  14. Profile of software engineering within the National Aeronautics and Space Administration (NASA)

    NASA Technical Reports Server (NTRS)

    Sinclair, Craig C.; Jeletic, Kellyann F.

    1994-01-01

    This paper presents findings of baselining activities being performed to characterize software practices within the National Aeronautics and Space Administration. It describes how such baseline findings might be used to focus software process improvement activities. Finally, based on the findings to date, it presents specific recommendations in focusing future NASA software process improvement efforts. The findings presented in this paper are based on data gathered and analyzed to date. As such, the quantitative data presented in this paper are preliminary in nature.

  15. Chemical Engineering at NASA

    NASA Technical Reports Server (NTRS)

    Collins, Jacob

    2008-01-01

    This viewgraph presentation is a review of the career paths for chemicals engineer at NASA (specifically NASA Johnson Space Center.) The author uses his personal experience and history as an example of the possible career options.

  16. The impact of the NASA Administrator's Fellowship Program on fellows' career choices

    NASA Astrophysics Data System (ADS)

    Graham, Eva M.

    Maintaining diversity in the technical workforce and in higher education has been identified as one way to increase the outreach, recruitment and retention of students and other faculty from underrepresented, underserved and minority populations, especially in Science, Technology, Engineering and Mathematics (STEM) courses of study and careers. The National Aeronautics and Space Administration (NASA) Administrator's Fellowship Program (NAFP) is a professional development program targeting faculty at Minority Serving Institutions and NASA civil servant employees for a two year work-based professional development experience toward increasing the likelihood of retaining them in STEM careers and supporting the recruitment and retention of minority students in STEM courses of study. This evaluation links the activities of the fellowship program to the impact on fellows' career choices as a result of participation through a series of surveys and interviews. Fellows' personal and professional perceptions of themselves and colleagues' and administrators' beliefs about their professional capabilities as a result of selection and participation were also addressed as they related to career outcomes. The findings indicated that while there was no direct impact on fellows' choice of careers, the exposure, direction and focus offered through travel, mentoring, research and teaching had an impact their perceptions of their own capabilities and, their colleagues' and administrators' beliefs about them as professionals and researchers. The career outcomes reported were an increase in the number publications, promotions, change in career and an increased awareness of the culture of science and engineering.

  17. NASA Administrator, U.S. Secretary of State watch STS-88 launch

    NASA Technical Reports Server (NTRS)

    1998-01-01

    At the Banana Creek Viewing Site, NASA Administrator Daniel Goldin (left), U.S. Secretary of State Madeleine Albright (center) and astronaut Michael Lopez-Alegria watch the launch of STS-88 from Launch Pad 39A at 3:35:34 a.m. EST. STS-88 is the first U.S. mission dedicated to the assembly of the International Space Station (ISS). Lopez-Alegria is part of the STS-92 crew that is assigned to the fourth ISS assembly flight scheduled for launch on Oct. 28, 1999, aboard Discovery.

  18. NASA RECON: Course development, administration, and evaluation. A research and development proposal

    NASA Technical Reports Server (NTRS)

    Dominick, Wayne D. (Editor); Roquemore, Leroy

    1984-01-01

    This proposal addresses the development, administration, and evaluation of a set of transportable, college-level courses to educate science and engineering students in the effective use of automated scientific and technical information storage and retrieval systems, and, in particular, in the use of the NASA RECON system. Chapter 1 presents a brief introduction. Chapter 2 identifies general and specific objectives, i.e., needs analysis, course development, course administration, and course evaluation. Chapter 3 proposes the methodology to be used in successfully accomplishing these objectives. Chapter 4 highlights expected results and product deliverables, and Chapter 5 presents the project evaluation plan to be followed. Chapter 6 is a brief overview of the institutional resources available at the proposing institutions, i.e., at the University of Southwestern Louisiana and at Southern University to support the project. Chapter 7 proposes a budget, time schedule, and management plan. Chapter 8 is a summary of the foregoing.

  19. Suddenly, tomorrow came... A history of the Johnson Space Center

    NASA Technical Reports Server (NTRS)

    Dethloff, Henry C.

    1993-01-01

    This book chronicles the history of the Johnson Space Center into 17 chapters with a forward written by Donald K. Slayton. Photographs and illustrations are provided. This book becomes part of the NASA history series.

  20. NASA Engineering and Technology Advancement Office: A proposal to the administrator

    NASA Technical Reports Server (NTRS)

    Schulze, Norman R.

    1993-01-01

    NASA has continually had problems with cost, schedule, performance, reliability, quality, and safety aspects in programs. Past solutions have not provided the answers needed, and a major change is needed in the way of doing business. A new approach is presented for consideration. These problems are all engineering matters, and therefore, require engineering solutions. Proper engineering tools are needed to fix engineering problems. Headquarters is responsible for providing the management structure to support programs with appropriate engineering tools. A guide to define those tools and an approach for putting them into place is provided. Recommendations include establishing a new Engineering and Technology Advancement Office, requesting a review of this proposal by the Administrator since this subject requires a top level decision. There has been a wide peer review conducted by technical staff at Headquarters, the Field Installations, and others in industry as discussed.

  1. NASA Administrator Dan Goldin greets Neil Armstrong at Apollo 11 anniversary banquet.

    NASA Technical Reports Server (NTRS)

    1999-01-01

    During an anniversary banquet honoring the Apollo team, the people who made the entire lunar landing program possible, former Apollo astronaut Neil A. Armstrong (left) shakes the hand of Judy Goldin (center), wife of NASA Administrator Daniel S. Goldin (right). The banquet was held in the Apollo/Saturn V Center, part of the KSC Visitor Complex. This is the 30th anniversary of the Apollo 11 launch and moon landing, July 16 and July 20, 1969. Among the guests at the banquet were former Apollo astronauts are Neil A. Armstrong and Edwin 'Buzz' Aldrin who flew on Apollo 11, the launch of the first moon landing; Gene Cernan, who flew on Apollo 10 and 17 and was the last man to walk on the moon; and Walt Cunningham, who flew on Apollo 7.

  2. NASA Administrator Goldin talks with STS-93 Commander Collins at the SLF

    NASA Technical Reports Server (NTRS)

    1999-01-01

    At the Shuttle Landing Facility, NASA Administrator Daniel Goldin (foreground) talks with STS-93 Commander Eileen Collins beside the Space Shuttle orbiter Columbia following the successful completion of her mission. Marshall Space Flight Center Director Arthur G. Stephenson (far left) looks on. Landing occurred on runway 33 with main gear touchdown at 11:20:35 p.m. EDT on July 27. The mission's primary objective was to deploy the Chandra X- ray Observatory, which will allow scientists from around the world to study some of the most distant, powerful and dynamic objects in the universe. This was the 95th flight in the Space Shuttle program and the 26th for Columbia. The landing was the 19th consecutive Shuttle landing in Florida and the 12th night landing in Shuttle program history. On this mission, Collins became the first woman to serve as a Shuttle commander.

  3. NASA Johnson Space Center Medical Licensing Opportunities

    NASA Technical Reports Server (NTRS)

    Hernandez-Moya, Sonia

    2009-01-01

    This presentation reviews patented medical items that are available for licensing in the areas of Laboratory Technologies, Medical Devices, Medical Equipment and other technologies that are of interest to the medical community.

  4. NASA. Johnson Space Center primary battery applications

    NASA Technical Reports Server (NTRS)

    Bragg, Bob J.

    1991-01-01

    The role of the Power Branch/EP5 of JSC in primary battery applications is to support those JSC organizations having direct application responsibility with trade studies, battery selection recommendations, and with development, qualification, and provisioning of primary batteries. Battery subsystem management is provided. Payload hazard report preparation is supported, as is the review and comment of such reports for the JSC Payload Safety Panel, who approves the flight safety for all Orbiter payloads. JSC battery users are provided with safety analysis and test support to achieve safety approval. Finally, it is the responsibility of the Power Branch to define and maintain battery safety requirement documentation for JSC.

  5. The NASA Clinic System

    NASA Technical Reports Server (NTRS)

    Scarpa, Philip J.; Williams, Richard

    2009-01-01

    NASA maintains on site occupational health clinics at all Centers and major facilities NASA maintains an on-site clinic that offers comprehensive health care to astronauts at the Johnson Space Center NASA deploys limited health care capability to space and extreme environments Focus is always on preventive health care

  6. 50 CFR 226.213 - Critical habitat for Johnson's seagrass.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 50 Wildlife and Fisheries 10 2012-10-01 2012-10-01 false Critical habitat for Johnson's seagrass... ATMOSPHERIC ADMINISTRATION, DEPARTMENT OF COMMERCE MARINE MAMMALS DESIGNATED CRITICAL HABITAT § 226.213 Critical habitat for Johnson's seagrass. Critical habitat is designated to include substrate and water...

  7. 50 CFR 226.213 - Critical habitat for Johnson's seagrass.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 50 Wildlife and Fisheries 10 2013-10-01 2013-10-01 false Critical habitat for Johnson's seagrass... ATMOSPHERIC ADMINISTRATION, DEPARTMENT OF COMMERCE MARINE MAMMALS DESIGNATED CRITICAL HABITAT § 226.213 Critical habitat for Johnson's seagrass. Critical habitat is designated to include substrate and water...

  8. 50 CFR 226.213 - Critical habitat for Johnson's seagrass.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 50 Wildlife and Fisheries 10 2014-10-01 2014-10-01 false Critical habitat for Johnson's seagrass... ATMOSPHERIC ADMINISTRATION, DEPARTMENT OF COMMERCE MARINE MAMMALS DESIGNATED CRITICAL HABITAT § 226.213 Critical habitat for Johnson's seagrass. Critical habitat is designated to include substrate and water...

  9. 50 CFR 226.213 - Critical habitat for Johnson's seagrass.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 50 Wildlife and Fisheries 7 2010-10-01 2010-10-01 false Critical habitat for Johnson's seagrass... ATMOSPHERIC ADMINISTRATION, DEPARTMENT OF COMMERCE MARINE MAMMALS DESIGNATED CRITICAL HABITAT § 226.213 Critical habitat for Johnson's seagrass. Critical habitat is designated to include substrate and water...

  10. Automation of orbit determination functions for National Aeronautics and Space Administration (NASA)-supported satellite missions

    NASA Technical Reports Server (NTRS)

    Mardirossian, H.; Beri, A. C.; Doll, C. E.

    1990-01-01

    The Flight Dynamics Facility (FDF) at Goddard Space Flight Center (GSFC) provides spacecraft trajectory determination for a wide variety of National Aeronautics and Space Administration (NASA)-supported satellite missions, using the Tracking Data Relay Satellite System (TDRSS) and Ground Spaceflight and Tracking Data Network (GSTDN). To take advantage of computerized decision making processes that can be used in spacecraft navigation, the Orbit Determination Automation System (ODAS) was designed, developed, and implemented as a prototype system to automate orbit determination (OD) and orbit quality assurance (QA) functions performed by orbit operations. Based on a machine-resident generic schedule and predetermined mission-dependent QA criteria, ODAS autonomously activates an interface with the existing trajectory determination system using a batch least-squares differential correction algorithm to perform the basic OD functions. The computational parameters determined during the OD are processed to make computerized decisions regarding QA, and a controlled recovery process is activated when the criteria are not satisfied. The complete cycle is autonomous and continuous. ODAS was extensively tested for performance under conditions resembling actual operational conditions and found to be effective and reliable for extended autonomous OD. Details of the system structure and function are discussed, and test results are presented.

  11. Automation of orbit determination functions for National Aeronautics and Space Administration (NASA)-supported satellite missions

    NASA Technical Reports Server (NTRS)

    Mardirossian, H.; Heuerman, K.; Beri, A.; Samii, M. V.; Doll, C. E.

    1989-01-01

    The Flight Dynamics Facility (FDF) at Goddard Space Flight Center (GSFC) provides spacecraft trajectory determination for a wide variety of National Aeronautics and Space Administration (NASA)-supported satellite missions, using the Tracking Data Relay Satellite System (TDRSS) and Ground Spaceflight and Tracking Data Network (GSTDN). To take advantage of computerized decision making processes that can be used in spacecraft navigation, the Orbit Determination Automation System (ODAS) was designed, developed, and implemented as a prototype system to automate orbit determination (OD) and orbit quality assurance (QA) functions performed by orbit operations. Based on a machine-resident generic schedule and predetermined mission-dependent QA criteria, ODAS autonomously activates an interface with the existing trajectory determination system using a batch least-squares differential correction algorithm to perform the basic OD functions. The computational parameters determined during the OD are processed to make computerized decisions regarding QA, and a controlled recovery process isactivated when the criteria are not satisfied. The complete cycle is autonomous and continuous. ODAS was extensively tested for performance under conditions resembling actual operational conditions and found to be effective and reliable for extended autonomous OD. Details of the system structure and function are discussed, and test results are presented.

  12. NASA Administrator Daniel Goldin greets Mme. Aline Chretien at launch of mission STS-96

    NASA Technical Reports Server (NTRS)

    1999-01-01

    NASA Administrator Daniel Goldin (left) greets Mme. Aline Chretien, wife of the Canadian Prime Minister, at the launch of STS-96. Looking on in the background (between them) is former astronaut Jean-Loup Chretien (no relation), who flew on STS-86. Mme. Chretien attended the launch because one of the STs-96 crew is Mission Specialist Julie Payette, who represents the Canadian Space Agency. Space Shuttle Discovery launched on time at 6:49:42 a.m. EDT to begin a 10-day logistics and resupply mission for the International Space Station. Along with such payloads as a Russian crane, the Strela; a U.S.-built crane; the Spacehab Oceaneering Space System Box (SHOSS), a logistics items carrier; and STARSHINE, a student-involved experiment, Discovery carries about 4,000 pounds of supplies, to be stored aboard the station for use by future crews, including laptop computers, cameras, tools, spare parts, and clothing. The mission includes a space walk to attach the cranes to the outside of the ISS for use in future construction. Landing is expected at the SLF on June 6 about 1:58 a.m. EDT.

  13. STS-87 Payload Specialist Leonid Kadenyuk chats with NASA Administrator Daniel Goldin shortly after

    NASA Technical Reports Server (NTRS)

    1997-01-01

    STS-87 Payload Specialist Leonid Kadenyuk of the National Space Agency of Ukraine (NSAU), at left, chats with NASA Administrator Daniel Goldin shortly after the landing of Columbia at Kennedy Space Center. Looking on is back-up Payload Specialist Yaroslav Pustovyi, also of NSAU. STS-87 concluded its mission with a main gear touchdown at 7:20:04 a.m. EST Dec. 5, at KSC's Shuttle Landing Facility Runway 33, drawing the 15-day, 16-hour and 34- minute-long mission of 6.5 million miles to a close. Also onboard the orbiter were Commander Kevin Kregel; Pilot Steven Lindsey; and Mission Specialists Winston Scott, Kalpana Chawla, Ph.D., and Takao Doi, Ph.D., of the National Space Development Agency of Japan. During the 88th Space Shuttle mission, the crew performed experiments on the United States Microgravity Payload-4 and pollinated plants as part of the Collaborative Ukrainian Experiment. This was the 12th landing for Columbia at KSC and the 41st KSC landing in the history of the Space Shuttle program.

  14. Lyndon Johnson's Press Conferences.

    ERIC Educational Resources Information Center

    Cooper, Stephen

    Because President Lyndon Johnson understood well the publicity value of the American news media, he sought to exploit them. He saw reporters as "torch bearers" for his programs and policies and used the presidential press conference chiefly for promotional purposes. Although he met with reporters often, his press conferences were usually…

  15. Leadership in Space: Selected Speeches of NASA Administrator Michael Griffin, May 2005 - October 2008

    NASA Technical Reports Server (NTRS)

    Griffin, Michael

    2008-01-01

    Speech topics include: Leadership in Space; Space Exploration: Real and Acceptable Reasons; Why Explore Space?; Space Exploration: Filling up the Canvas; Continuing the Voyage: The Spirit of Endeavour; Incorporating Space into Our Economic Sphere of Influence; The Role of Space Exploration in the Global Economy; Partnership in Space Activities; International Space Cooperation; National Strategy and the Civil Space Program; What the Hubble Space Telescope Teaches Us about Ourselves; The Rocket Team; NASA's Direction; Science and NASA; Science Priorities and Program Management; NASA and the Commercial Space Industry; NASA and the Business of Space; American Competitiveness: NASA's Role & Everyone's Responsibility; Space Exploration: A Frontier for American Collaboration; The Next Generation of Engineers; System Engineering and the "Two Cultures" of Engineering; Generalship of Engineering; NASA and Engineering Integrity; The Constellation Architecture; Then and Now: Fifty Years in Space; The Reality of Tomorrow; and Human Space Exploration: The Next 50 Years.

  16. Guidelines for development of NASA (National Aeronautics and Space Administration) computer security training programs

    NASA Technical Reports Server (NTRS)

    Tompkins, F. G.

    1983-01-01

    The report presents guidance for the NASA Computer Security Program Manager and the NASA Center Computer Security Officials as they develop training requirements and implement computer security training programs. NASA audiences are categorized based on the computer security knowledge required to accomplish identified job functions. Training requirements, in terms of training subject areas, are presented for both computer security program management personnel and computer resource providers and users. Sources of computer security training are identified.

  17. NASA/ASEE Summer Faculty Fellowship Program, 1990, volume 2

    NASA Technical Reports Server (NTRS)

    Bannerot, Richard B. (Editor); Goldstein, Stanley H. (Editor)

    1990-01-01

    The 1990 Johnson Space Center (JSC) National Aeronautics and Space Administration (NASA)/American Society for Engineering Education (ASEE) Summer Faculty Fellowship Program was conducted by the University of Houston-University Park and Johnson Space Centers (JSC). A compilation of the final reports on the research projects is presented. The following topics are covered: the Space Shuttle; the Space Station; lunar exploration; mars exploration; spacecraft power supplies; mars rover vehicle; mission planning for the Space Exploration Initiative; instrument calibration standards; a lunar oxygen production plant; optical filters for a hybrid vision system; dynamic structural analysis; lunar bases; pharmacodynamics of scopolamine; planetary spacecraft cost modeling; and others.

  18. International Union, UAW v. Johnson Controls, Inc.

    PubMed

    1991-03-20

    Johnson Controls, a battery manufacturing plant, instituted a policy barring women of child-bearing capacity from jobs involving actual or potential lead exposure exceeding the Occupational Safety and Health Administration (OSHA) standard. Employees affected by this policy sued under Title VII, which forbids sex discrimination in the work place. The Supreme Court held that Title VII, as amended by the Pregnancy Discrimination Act, forbids sex-specific fetal protection policies. Johnson Controls' policy discriminates against women by disregarding evidence of lead's effect on the male reproductive system. Further, Johnson Controls' defense that their policy was justified by an occupational qualification, here safety, fails as well because any qualification must be related to the essential interests of the business. As fetuses are neither customers nor parties whose safety is essential to battery manufacturing, fetal safety cannot justify the discrimination.

  19. Guidelines for health surveillance in the NASA (National Aeronautics and Space Administration) workplace

    NASA Technical Reports Server (NTRS)

    1984-01-01

    The adequacy of biomedical data sheets used by the NASA medical staff for NASA employees and contractors was assessed. Procedures for developing medical histories, conducting medical examinations, and collecting toxicity data were reviewed. Recommendations for employee health maintenance and early detection of work-related abnormalities are given.

  20. 50 CFR 80.25 - Multiyear financing under the Dingell-Johnson Sport Fish Restoration Program.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ...-Johnson Sport Fish Restoration Program. 80.25 Section 80.25 Wildlife and Fisheries UNITED STATES FISH AND... RESTORATION PROGRAM ADMINISTRATIVE REQUIREMENTS, PITTMAN-ROBERTSON WILDLIFE RESTORATION AND DINGELL-JOHNSON SPORT FISH RESTORATION ACTS § 80.25 Multiyear financing under the Dingell-Johnson Sport Fish...

  1. Cost efficient operations: Challenge from NASA administrator and lessons learned from hunting sacred cows

    NASA Technical Reports Server (NTRS)

    Hornstein, Rhoda Shaller; Casasanta, Ralph; Hei, Donald J., Jr.; Hawkins, Frederick J.; Burke, Eugene S., Jr.; Todd, Jacqueline E.; Bell, Jerome A.; Miller, Raymond E.; Willoughby, John K.; Gardner, Jo Anne

    1996-01-01

    The conclusions and recommendations that resulted from NASA's Hunting Sacred Cows Workshop are summarized, where a sacred cow is a belief or assumption that is so well established that it appears to be unreasonably immune to criticism. A link was identified between increased complexity and increased costs, especially in relation to automation and autonomy. An identical link was identified for outsourcing and commercialization. The work of NASA's Cost Less team is reviewed. The following conclusions were stated by the Cost Less team and considered at the workshop: the way Nasa conducts business must change; NASA makes its best contributions to the public areas not addressed by other government organizations; the management tool used for the last 30 years is no longer suitable; the most important work on any program or project is carried out before the development or operations stages; automation should only be used to achieve autonomy if the reasons for automation are well understood, and NASA's most critical resources are its personnel.

  2. Innovation @ NASA

    NASA Technical Reports Server (NTRS)

    Roman, Juan A.

    2014-01-01

    This presentation provides an overview of the activities National Aeronautics and Space Administration (NASA) is doing to encourage innovation across the agency. All information provided is available publicly.

  3. Optical Johnson noise thermometry

    NASA Technical Reports Server (NTRS)

    Shepard, R. L.; Blalock, T. V.; Maxey, L. C.; Roberts, M. J.; Simpson, M. L.

    1989-01-01

    A concept is being explored that an optical analog of the electrical Johnson noise may be used to measure temperature independently of emissivity. The concept is that a laser beam may be modulated on reflection from a hot surface by interaction of the laser photons with the thermally agitated conduction electrons or the lattice phonons, thereby adding noise to the reflected laser beam. If the reflectance noise can be detected and quantified in a background of other noise in the optical and signal processing systems, the reflectance noise may provide a noncontact measurement of the absolute surface temperature and may be independent of the surface's emissivity.

  4. Risk management. National Aeronautics and Space Administration (NASA). Interim rule adopted as final with changes.

    PubMed

    2000-11-22

    This is a final rule amending the NASA FAR Supplement (NFS) to emphasize considerations of risk management, including safety, security (including information technology security), health, export control, and damage to the environment, within the acquisition process. This final rule addresses risk management within the context of acquisition planning, selecting sources, choosing contract type, structuring award fee incentives, administering contracts, and conducting contractor surveillance.

  5. Guidelines for developing NASA (National Aeronautics and Space Administration) ADP security risk management plans

    NASA Technical Reports Server (NTRS)

    Tompkins, F. G.

    1983-01-01

    This report presents guidance to NASA Computer security officials for developing ADP security risk management plans. The six components of the risk management process are identified and discussed. Guidance is presented on how to manage security risks that have been identified during a risk analysis performed at a data processing facility or during the security evaluation of an application system.

  6. Johnson Space Center Research and Technology Report

    NASA Technical Reports Server (NTRS)

    Pido, Kelle; Davis, Henry L. (Technical Monitor)

    1999-01-01

    As the principle center for NASA's Human Exploration and Development of Space (HEDS) Enterprise, the Johnson Space Center (JSC) leads NASA's development of human spacecraft, human support systems, and human spacecraft operations. To implement this mission, JSC has focused on developing the infrastructure and partnerships that enable the technology development for future NASA programs. In our efforts to develop key technologies, we have found that collaborative relationships with private industry and academia strengthen our capabilities, infuse innovative ideas, and provide alternative applications for our development projects. The American public has entrusted NASA with the responsibility for space--technology development, and JSC is committed to the transfer of the technologies that we develop to the private sector for further development and application. It is our belief that commercialization of NASA technologies benefits both American industry and NASA through technology innovation and continued partnering. To this end, we present the 1998-1999 JSC Research and Technology Report. As your guide to the current JSC technologies, this report showcases the projects in work at JSC that may be of interest to U.S. industry, academia, and other government agencies (federal, state, and local). For each project, potential alternative uses and commercial applications are described.

  7. ISS Update: NASA Astronaut Mike Fincke

    NASA Video Gallery

    NASA Public Affairs Officer Rob Navias talks with NASA Astronaut Mike Fincke inside the Mission Control Center at Johnson Space Center. They discuss the current activities taking place aboard the I...

  8. NASA Now: The Future Of Space Travel

    NASA Video Gallery

    NASA astronaut Greg Johnson joins NASA Now to discuss the future of space exploration and the logical progression of sending humans to Mars. He talks about sending astronauts back to the moon and t...

  9. Review of NASA's (National Aeronautics and Space Administration) Numerical Aerodynamic Simulation Program

    NASA Technical Reports Server (NTRS)

    1984-01-01

    NASA has planned a supercomputer for computational fluid dynamics research since the mid-1970's. With the approval of the Numerical Aerodynamic Simulation Program as a FY 1984 new start, Congress requested an assessment of the program's objectives, projected short- and long-term uses, program design, computer architecture, user needs, and handling of proprietary and classified information. Specifically requested was an examination of the merits of proceeding with multiple high speed processor (HSP) systems contrasted with a single high speed processor system. The panel found NASA's objectives and projected uses sound and the projected distribution of users as realistic as possible at this stage. The multiple-HSP, whereby new, more powerful state-of-the-art HSP's would be integrated into a flexible network, was judged to present major advantages over any single HSP system.

  10. Guidelines for contingency planning NASA (National Aeronautics and Space Administration) ADP security risk reduction decision studies

    NASA Technical Reports Server (NTRS)

    Tompkins, F. G.

    1984-01-01

    Guidance is presented to NASA Computer Security Officials for determining the acceptability or unacceptability of ADP security risks based on the technical, operational and economic feasibility of potential safeguards. The risk management process is reviewed as a specialized application of the systems approach to problem solving and information systems analysis and design. Reporting the results of the risk reduction analysis to management is considered. Report formats for the risk reduction study are provided.

  11. NASA Space Human Factors Program

    NASA Technical Reports Server (NTRS)

    1992-01-01

    This booklet briefly and succinctly treats 23 topics of particular interest to the NASA Space Human Factors Program. Most articles are by different authors who are mainly NASA Johnson or NASA Ames personnel. Representative topics covered include mental workload and performance in space, light effects on Circadian rhythms, human sleep, human reasoning, microgravity effects and automation and crew performance.

  12. NASA Bioreactor

    NASA Technical Reports Server (NTRS)

    1998-01-01

    The heart of the bioreactor is the rotating wall vessel, shown without its support equipment. Volume is about 125 mL. The work is sponsored by NASA's Office of Biological and Physical Research. The bioreactor is managed by the Biotechnology Cell Science Program at NASA's Johnson Space Center (JSC). NASA-sponsored bioreactor research has been instrumental in helping scientists to better understand normal and cancerous tissue development. In cooperation with the medical community, the bioreactor design is being used to prepare better models of human colon, prostate, breast and ovarian tumors. Cartilage, bone marrow, heart muscle, skeletal muscle, pancreatic islet cells, liver and kidney are just a few of the normal tissues being cultured in rotating bioreactors by investigators.

  13. NASA Bioreactor

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Astronaut John Blaha replaces an exhausted media bag and filled waste bag with fresh bags to continue a bioreactor experiment aboard space station Mir in 1996. NASA-sponsored bioreactor research has been instrumental in helping scientists to better understand normal and cancerous tissue development. In cooperation with the medical community, the bioreactor design is being used to prepare better models of human colon, prostate, breast and ovarian tumors. Cartilage, bone marrow, heart muscle, skeletal muscle, pancreatic islet cells, liver and kidney are just a few of the normal tissues being cultured in rotating bioreactors by investigators. This image is from a video downlink. The work is sponsored by NASA's Office of Biological and Physical Research. The bioreactor is managed by the Biotechnology Cell Science Program at NASA's Johnson Space Center (JSC).

  14. Genetics Home Reference: Dubin-Johnson syndrome

    MedlinePlus

    ... Genetics Home Health Conditions Dubin-Johnson syndrome Dubin-Johnson syndrome Enable Javascript to view the expand/collapse ... Download PDF Open All Close All Description Dubin-Johnson syndrome is a condition characterized by jaundice, which ...

  15. National Aeronautics and Space Administration (NASA) Environmental Control and Life Support (ECLS) Integrated Roadmap Development

    NASA Technical Reports Server (NTRS)

    Metcalf, Jordan; Peterson, Laurie; Carrasquillo, Robyn; Bagdigian, Robert

    2011-01-01

    At present, NASA has considered a number of future human space exploration mission concepts . Yet, detailed mission requirements and vehicle architectures remain mostly undefined, making technology investment strategies difficult to develop and sustain without a top-level roadmap to serve as a guide. This paper documents a roadmap for development of Environmental Control and Life Support Systems (ECLSS) capabilities required to enhance the long-term operation of the International Space Station (ISS) as well as enable beyond-Low Earth Orbit (LEO) human exploration missions. Three generic mission types were defined to serve as a basis for developing a prioritized list of needed capabilities and technologies. Those are 1) a short duration micro gravity mission; 2) a long duration transit microgravity mission; and 3) a long duration surface exploration mission. To organize the effort, ECLSS was categorized into three major functional groups (atmosphere, water, and solid waste management) with each broken down into sub-functions. The ability of existing state-of-the-art (SOA) technologies to meet the functional needs of each of the three mission types was then assessed by NASA subject matter experts. When SOA capabilities were deemed to fall short of meeting the needs of one or more mission types, those gaps were prioritized in terms of whether or not the corresponding capabilities enable or enhance each of the mission types. The result was a list of enabling and enhancing capabilities needs that can be used to guide future ECLSS development, as well as a list of existing hardware that is ready to go for exploration-class missions. A strategy to fulfill those needs over time was then developed in the form of a roadmap. Through execution of this roadmap, the hardware and technologies intended to meet exploration needs will, in many cases, directly benefit the ISS operational capability, benefit the Multi-Purpose Crew Vehicle (MPCV), and guide long-term technology

  16. The astrophysics program at the National Aeronautics and Space Administration (NASA)

    NASA Technical Reports Server (NTRS)

    Pellerin, C. J.

    1990-01-01

    Three broad themes characterize the goals of the Astrophysics Division at NASA. These are obtaining an understanding of the origin and evolution of the universe, the fundamental laws of physics, and the birth and evolutionary cycle of galaxies, stars, planets and life. These goals are pursued through contemporaneous observations across the electromagnetic spectrum with high sensitivity and resolution. The strategy to accomplish these goals is fourfold: the establishment of long term space based observatories implemented through the Great Observatories program; attainment of crucial bridging and supporting measurements visa missions of intermediate and small scope conducted within the Explorer, Spacelab, and Space Station Attached Payload Programs; enhancement of scientific access to results of space based research activities through an integrated data system; and development and maintenance of the scientific/technical base for space astrophysics programs through the research and analysis and suborbital programs. The near term activities supporting the first two objectives are discussed.

  17. National Aeronautics and Space Administration (NASA) Environmental Control and Life Support (ECLS) Integrated Roadmap Development

    NASA Technical Reports Server (NTRS)

    Metcalf, Jordan; Peterson, Laurie; Carrasquillo, Robyn; Bagdigian, Robert

    2012-01-01

    Although NASA is currently considering a number of future human space exploration mission concepts, detailed mission requirements and vehicle architectures remain mostly undefined, making technology investment strategies difficult to develop and sustain without a top-level roadmap to serve as a guide. This paper documents the process and results of an effort to define a roadmap for Environmental Control and Life Support Systems (ECLSS) capabilities required to enhance the long-term operation of the International Space Station (ISS) as well as enable beyond-Low Earth Orbit (LEO) human exploration missions. Three generic mission types were defined to serve as a basis for developing a prioritized list of needed capabilities and technologies. Those are 1) a short duration micro-gravity mission; 2) a long duration microgravity mission; and 3) a long duration partial gravity (surface) exploration mission. To organize the effort, a functional decomposition of ECLSS was completed starting with the three primary functions: atmosphere, water, and solid waste management. Each was further decomposed into sub-functions to the point that current state-of-the-art (SOA) technologies could be tied to the sub-function. Each technology was then assessed by NASA subject matter experts as to its ability to meet the functional needs of each of the three mission types. When SOA capabilities were deemed to fall short of meeting the needs of one or more mission types, those gaps were prioritized in terms of whether or not the corresponding capabilities enable or enhance each of the mission types. The result was a list of enabling and enhancing capability needs that can be used to guide future ECLSS development, as well as a list of existing hardware that is ready to go for exploration-class missions. A strategy to fulfill those needs over time was then developed in the form of a roadmap. Through execution of this roadmap, the hardware and technologies intended to meet exploration needs

  18. Report from the MPP Working Group to the NASA Associate Administrator for Space Science and Applications

    NASA Technical Reports Server (NTRS)

    Fischer, James R.; Grosch, Chester; Mcanulty, Michael; Odonnell, John; Storey, Owen

    1987-01-01

    NASA's Office of Space Science and Applications (OSSA) gave a select group of scientists the opportunity to test and implement their computational algorithms on the Massively Parallel Processor (MPP) located at Goddard Space Flight Center, beginning in late 1985. One year later, the Working Group presented its report, which addressed the following: algorithms, programming languages, architecture, programming environments, the way theory relates, and performance measured. The findings point to a number of demonstrated computational techniques for which the MPP architecture is ideally suited. For example, besides executing much faster on the MPP than on conventional computers, systolic VLSI simulation (where distances are short), lattice simulation, neural network simulation, and image problems were found to be easier to program on the MPP's architecture than on a CYBER 205 or even a VAX. The report also makes technical recommendations covering all aspects of MPP use, and recommendations concerning the future of the MPP and machines based on similar architectures, expansion of the Working Group, and study of the role of future parallel processors for space station, EOS, and the Great Observatories era.

  19. Johnson Space Center 2012 Highlights

    NASA Video Gallery

    The year has seen many highlights at NASA’s Johnson Space Center, Houston in the realm of human spaceflight exploration, international and commercial partnerships, and research and technology dev...

  20. Classical Foundations: Leah Rochel Johnson

    ERIC Educational Resources Information Center

    Lum, Lydia

    2005-01-01

    This article discusses the accomplishments of Leah Rochel Johnson, Assistant Professor of Classics and Ancient Mediterranean Studies and History, Pennsylvania State University. It provides insight into her values and beliefs and testimony from those who work most closely with her.

  1. NASA Bioreactor

    NASA Technical Reports Server (NTRS)

    1996-01-01

    Close-up view of the interior of a NASA Bioreactor shows the plastic plumbing and valves (cylinders at center) to control fluid flow. A fresh nutrient bag is installed at top; a flattened waste bag behind it will fill as the nutrients are consumed during the course of operation. The drive chain and gears for the rotating wall vessel are visible at bottom center center. The NASA Bioreactor provides a low turbulence culture environment which promotes the formation of large, three-dimensional cell clusters. The Bioreactor is rotated to provide gentle mixing of fresh and spent nutrient without inducing shear forces that would damage the cells. Due to their high level of cellular organization and specialization, samples constructed in the bioreactor more closely resemble the original tumor or tissue found in the body. The work is sponsored by NASA's Office of Biological and Physical Research. The bioreactor is managed by the Biotechnology Cell Science Program at NASA's Johnson Space Center (JSC). NASA-sponsored bioreactor research has been instrumental in helping scientists to better understand normal and cancerous tissue development. In cooperation with the medical community, the bioreactor design is being used to prepare better models of human colon, prostate, breast and ovarian tumors. Cartilage, bone marrow, heart muscle, skeletal muscle, pancreatic islet cells, liver and kidney are just a few of the normal tissues being cultured in rotating bioreactors by investigators.

  2. NASA Bioreactor

    NASA Technical Reports Server (NTRS)

    1996-01-01

    Interior view of the gas supply for the NASA Bioreactor. The NASA Bioreactor provides a low turbulence culture environment which promotes the formation of large, three-dimensional cell clusters. The Bioreactor is rotated to provide gentle mixing of fresh and spent nutrient without inducing shear forces that would damage the cells. Due to their high level of cellular organization and specialization, samples constructed in the bioreactor more closely resemble the original tumor or tissue found in the body. The work is sponsored by NASA's Office of Biological and Physical Research. The bioreactor is managed by the Biotechnology Cell Science Program at NASA's Johnson Space Center (JSC). NASA-sponsored bioreactor research has been instrumental in helping scientists to better understand normal and cancerous tissue development. In cooperation with the medical community, the bioreactor design is being used to prepare better models of human colon, prostate, breast and ovarian tumors. Cartilage, bone marrow, heart muscle, skeletal muscle, pancreatic islet cells, liver and kidney are just a few of the normal tissues being cultured in rotating bioreactors by investigators.

  3. NASA Bioreactor

    NASA Technical Reports Server (NTRS)

    1996-01-01

    Biotechnology Refrigerator that preserves samples for use in (or after culturing in) the NASA Bioreactor. The unit is shown extracted from a middeck locker shell. The NASA Bioreactor provides a low turbulence culture environment which promotes the formation of large, three-dimensional cell clusters. The Bioreactor is rotated to provide gentle mixing of fresh and spent nutrient without inducing shear forces that would damage the cells. Due to their high level of cellular organization and specialization, samples constructed in the bioreactor more closely resemble the original tumor or tissue found in the body. The work is sponsored by NASA's Office of Biological and Physical Research. The bioreactor is managed by the Biotechnology Cell Science Program at NASA's Johnson Space Center (JSC). NASA-sponsored bioreactor research has been instrumental in helping scientists to better understand normal and cancerous tissue development. In cooperation with the medical community, the bioreactor design is being used to prepare better models of human colon, prostate, breast and ovarian tumors. Cartilage, bone marrow, heart muscle, skeletal muscle, pancreatic islet cells, liver and kidney are just a few of the normal tissues being cultured in rotating bioreactors by investigators.

  4. NASA Bioreactor

    NASA Technical Reports Server (NTRS)

    1996-01-01

    Exterior view of the NASA Bioreactor Engineering Development Unit flown on Mir. The rotating wall vessel is behind the window on the face of the large module. Control electronics are in the module at left; gas supply and cooling fans are in the module at back. The NASA Bioreactor provides a low turbulence culture environment which promotes the formation of large, three-dimensional cell clusters. The Bioreactor is rotated to provide gentle mixing of fresh and spent nutrient without inducing shear forces that would damage the cells. Due to their high level of cellular organization and specialization, samples constructed in the bioreactor more closely resemble the original tumor or tissue found in the body. The work is sponsored by NASA's Office of Biological and Physical Research. The bioreactor is managed by the Biotechnology Cell Science Program at NASA's Johnson Space Center (JSC). NASA-sponsored bioreactor research has been instrumental in helping scientists to better understand normal and cancerous tissue development. In cooperation with the medical community, the bioreactor design is being used to prepare better models of human colon, prostate, breast and ovarian tumors. Cartilage, bone marrow, heart muscle, skeletal muscle, pancreatic islet cells, liver and kidney are just a few of the normal tissues being cultured in rotating bioreactors by investigators.

  5. NASA Bioreactor

    NASA Technical Reports Server (NTRS)

    1996-01-01

    Electronics control module for the NASA Bioreactor. The NASA Bioreactor provides a low turbulence culture environment which promotes the formation of large, three-dimensional cell clusters. The Bioreactor is rotated to provide gentle mixing of fresh and spent nutrient without inducing shear forces that would damage the cells. Due to their high level of cellular organization and specialization, samples constructed in the bioreactor more closely resemble the original tumor or tissue found in the body. The work is sponsored by NASA's Office of Biological and Physical Research. The bioreactor is managed by the Biotechnology Cell Science Program at NASA's Johnson Space Center (JSC). NASA-sponsored bioreactor research has been instrumental in helping scientists to better understand normal and cancerous tissue development. In cooperation with the medical community, the bioreactor design is being used to prepare better models of human colon, prostate, breast and ovarian tumors. Cartilage, bone marrow, heart muscle, skeletal muscle, pancreatic islet cells, liver and kidney are just a few of the normal tissues being cultured in rotating bioreactors by investigators.

  6. NASA Bioreactor

    NASA Technical Reports Server (NTRS)

    1996-01-01

    Interior of a Biotechnology Refrigerator that preserves samples for use in (or after culturing in) the NASA Bioreactor. The unit is shown extracted from a middeck locker shell. The NASA Bioreactor provides a low turbulence culture environment which promotes the formation of large, three-dimensional cell clusters. The Bioreactor is rotated to provide gentle mixing of fresh and spent nutrient without inducing shear forces that would damage the cells. Due to their high level of cellular organization and specialization, samples constructed in the bioreactor more closely resemble the original tumor or tissue found in the body. The work is sponsored by NASA's Office of Biological and Physical Research. The bioreactor is managed by the Biotechnology Cell Science Program at NASA's Johnson Space Center (JSC). NASA-sponsored bioreactor research has been instrumental in helping scientists to better understand normal and cancerous tissue development. In cooperation with the medical community, the bioreactor design is being used to prepare better models of human colon, prostate, breast and ovarian tumors. Cartilage, bone marrow, heart muscle, skeletal muscle, pancreatic islet cells, liver and kidney are just a few of the normal tissues being cultured in rotating bioreactors by investigators.

  7. NASA Bioreactor

    NASA Technical Reports Server (NTRS)

    1996-01-01

    Biotechnology Refrigerator that preserves samples for use in (or after culturing in) the NASA Bioreactor. The unit is shown extracted from a middeck locker shell and with thermal blankets partially removed. The NASA Bioreactor provides a low turbulence culture environment which promotes the formation of large, three-dimensional cell clusters. The Bioreactor is rotated to provide gentle mixing of fresh and spent nutrient without inducing shear forces that would damage the cells. Due to their high level of cellular organization and specialization, samples constructed in the bioreactor more closely resemble the original tumor or tissue found in the body. The work is sponsored by NASA's Office of Biological and Physical Research. The bioreactor is managed by the Biotechnology Cell Science Program at NASA's Johnson Space Center (JSC). NASA-sponsored bioreactor research has been instrumental in helping scientists to better understand normal and cancerous tissue development. In cooperation with the medical community, the bioreactor design is being used to prepare better models of human colon, prostate, breast and ovarian tumors. Cartilage, bone marrow, heart muscle, skeletal muscle, pancreatic islet cells, liver and kidney are just a few of the normal tissues being cultured in rotating bioreactors by investigators.

  8. NASA Bioreactor

    NASA Technical Reports Server (NTRS)

    1996-01-01

    Laptop computer sits atop the Experiment Control Computer for a NASA Bioreactor. The flight crew can change operating conditions in the Bioreactor by using the graphical interface on the laptop. The NASA Bioreactor provides a low turbulence culture environment which promotes the formation of large, three-dimensional cell clusters. The Bioreactor is rotated to provide gentle mixing of fresh and spent nutrient without inducing shear forces that would damage the cells. Due to their high level of cellular organization and specialization, samples constructed in the bioreactor more closely resemble the original tumor or tissue found in the body. The work is sponsored by NASA's Office of Biological and Physical Research. The bioreactor is managed by the Biotechnology Cell Science Program at NASA's Johnson Space Center (JSC). NASA-sponsored bioreactor research has been instrumental in helping scientists to better understand normal and cancerous tissue development. In cooperation with the medical community, the bioreactor design is being used to prepare better models of human colon, prostate, breast and ovarian tumors. Cartilage, bone marrow, heart muscle, skeletal muscle, pancreatic islet cells, liver and kidney are just a few of the normal tissues being cultured in rotating bioreactors by investigators.

  9. NASA Bioreactor

    NASA Technical Reports Server (NTRS)

    1996-01-01

    Close-up view of the interior of a NASA Bioreactor shows the plastic plumbing and valves (cylinders at right center) to control fluid flow. The rotating wall vessel is at top center. The NASA Bioreactor provides a low turbulence culture environment which promotes the formation of large, three-dimensional cell clusters. The Bioreactor is rotated to provide gentle mixing of fresh and spent nutrient without inducing shear forces that would damage the cells. Due to their high level of cellular organization and specialization, samples constructed in the bioreactor more closely resemble the original tumor or tissue found in the body. The work is sponsored by NASA's Office of Biological and Physical Research. The bioreactor is managed by the Biotechnology Cell Science Program at NASA's Johnson Space Center (JSC). NASA-sponsored bioreactor research has been instrumental in helping scientists to better understand normal and cancerous tissue development. In cooperation with the medical community, the bioreactor design is being used to prepare better models of human colon, prostate, breast and ovarian tumors. Cartilage, bone marrow, heart muscle, skeletal muscle, pancreatic islet cells, liver and kidney are just a few of the normal tissues being cultured in rotating bioreactors by investigators.

  10. NASA's Software Bank (CLIPS)

    NASA Technical Reports Server (NTRS)

    1991-01-01

    C Language Integrated Production System (CLIPS) is a NASA Johnson Space Center developed software shell for developing expert systems, is used by researchers at Ohio State University to determine solid waste disposal sites to assist in historic preservation. The program has various other applications and has even been included in a widely-used textbook.

  11. NASA and Me

    NASA Technical Reports Server (NTRS)

    Wong, Douglas T.

    2010-01-01

    Topics in this student project report include: biography, NASA history and structure, overview of Johnson Space Center facilities and major projects, and an overview of the Usability Testing and Analysis Facility (UTAF). The UTAF section slides include space habitat evaluations with mockups, crew space vehicle evaluations, and human factors research.

  12. NASA fills key positions

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    NASA Administrator Sean O'Keefe has named Shannon Lucid, a NASA astronaut and veteran of five Space Shuttle flights, to serve as the agency's chief scientist. Lucid replaces Kathie Olsen, whom President Bush has said he intends to nominate as associate administrator for science in the White Office of Science and Technology Policy.President Bush also has announced his intention to nominate former NASA astronaut and Assistant Deputy Administrator Major General Charles F. Bolden as NASA Deputy Administrator.

  13. Johnson Space Center Research and Technology 1997 Annual Report

    NASA Technical Reports Server (NTRS)

    1998-01-01

    This report highlights key projects and technologies at Johnson Space Center for 1997. The report focuses on the commercial potential of the projects and technologies and is arranged by CorpTech Major Products Groups. Emerging technologies in these major disciplines we summarized: solar system sciences, life sciences, technology transfer, computer sciences, space technology, and human support technology. Them NASA advances have a range of potential commercial applications, from a school internet manager for networks to a liquid metal mirror for optical measurements.

  14. NASA space life sciences research and education support program

    NASA Technical Reports Server (NTRS)

    Jones, Terri K.

    1995-01-01

    USRA's Division of Space Life Sciences (DSLS) was established in 1983 as the Division of Space Biomedicine to facilitate participation of the university community in biomedical research programs at the NASA Johnson Space Center (JSC). The DSLS is currently housed in the Center for Advanced Space Studies (CASS), sharing quarters with the Division of Educational Programs and the Lunar and Planetary Institute. The DSLS provides visiting scientists for the Johnson Space Center; organizes conferences, workshops, meetings, and seminars; and, through subcontracts with outside institutions, supports NASA-related research at more than 25 such entities. The DSLS has considerable experience providing visiting scientists, experts, and consultants to work in concert with NASA Life Sciences researchers to define research missions and goals and to perform a wide variety of research administration and program management tasks. The basic objectives of this contract have been to stimulate, encourage, and assist research and education in the NASA life sciences. Scientists and experts from a number of academic and research institutions in this country and abroad have been recruited to support NASA's need to find a solution to human physiological problems associated with living and working in space and on extraterrestrial bodies in the solar system.

  15. National Aeronautics and Space Administration (NASA)/American Society for Engineering Education (ASEE) Summer Faculty Fellowship Program: 1996. Volume 2

    NASA Technical Reports Server (NTRS)

    Bannerot, Richard B. (Editor); Sickorez, Donn G. (Editor)

    1997-01-01

    The objectives of the program, which began nationally in 1964 and at JSC in 1965 are to (1) further the professional knowledge qualified engineering and science faculty members, (2) stimulate an exchange of ideas between participants and NASA, (3) and refresh the research and teaching activities of participants' institutions, and (4) contribute to the research objectives of NASA centers. Each faculty fellow spent at least 10 weeks at JSC engaged in a research project in collaboration with a NASA JSC colleague.

  16. NASA Now: Human Research on the ISS

    NASA Video Gallery

    Liz Warren, NASA Johnson Space Center operations lead for the International Space Station Medical Project, discusses why exercise and nutrition are important to maintaining good health on Earth and...

  17. NASA Tests Transfer Device for Space Station

    NASA Video Gallery

    Inside the Space Vehicle Mockup Facility at Johnson Space Center in Houston, NASA tests the Japanese Experiment Module ORU Transfer Interface, or JOTI. This device would allow astronauts to transfe...

  18. NASA Desert RATS 2011 Education Pilot Project and Classroom Activities

    NASA Technical Reports Server (NTRS)

    Gruener, J. E.; McGlone, M.; Allen, J.; Tobola, K.; Graff, P.

    2012-01-01

    The National Aeronautics and Space Administration's (NASA's) Desert Research and Technology Studies (Desert RATS) is a multi-year series of tests of hardware and operations carried out annually in the high desert of Arizona, as an analog to future exploration activities beyond low Earth orbit [1]. For the past several years, these tests have occurred in the San Francisco Volcanic Field, north of Flagstaff. For the 2011 Desert RATS season, the Exploration Systems Mission Directorate (ESMD) at NASA headquarters provided support to develop an education pilot project that would include student activities to parallel the Desert RATS mission planning and exploration activities in the classroom, and educator training sessions. The development of the pilot project was a joint effort between the NASA Johnson Space Center (JSC) Astromaterials Research and Exploration Science (ARES) Directorate and the Aerospace Education Services Project (AESP), managed at Penn State University.

  19. 77 FR 67029 - NASA Advisory Council Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-11-08

    ... SPACE ADMINISTRATION NASA Advisory Council Meeting AGENCY: National Aeronautics and Space Administration... amended, the National Aeronautics and Space Administration announces a meeting of the NASA Advisory... are local time. ADDRESSES: NASA Marshall Space Flight Center, Building 4200, Room P- 110,...

  20. NASA Vision

    NASA Technical Reports Server (NTRS)

    Fenton, Mary (Editor); Wood, Jennifer (Editor)

    2003-01-01

    This newsletter contains several articles, primarily on International Space Station (ISS) crewmembers and their activities, as well as the activities of NASA administrators. Other subjects covered in the articles include the investigation of the Space Shuttle Columbia accident, activities at NASA centers, Mars exploration, a collision avoidance test on a unmanned aerial vehicle (UAV). The ISS articles cover landing in a Soyuz capsule, photography from the ISS, and the Expedition Seven crew.

  1. National Aeronautics and Space Administration (NASA)/American Society for Engineering Education (ASEE) Summer Faculty Fellowship Program, 1998. Volume 1

    NASA Technical Reports Server (NTRS)

    Bannerot, Richard B. (Editor); Sickorez, Donn G. (Editor)

    1999-01-01

    JSC NASA/ASEE Summer Faculty Fellowship Program was conducted by the University of Houston and JSC, under ASEE. The objectives of the program are to further the professional knowledge of qualified engineering and science members; stimulate an exchange of ideas between participants and NASA; enrich and refresh the research and teaching activities of participants; and contribute to the research objectives of the NASA Centers. Each faculty fellow spent at least 10 weeks at JSC engaged in a research project commensurate with his/her interests and background and worked in collaboration with a NASA/JSC colleague. This document is a compilation of the final reports on the fellows' research projects performed during the summer of 1998. Volume 1, current volume, contains the first reports, and volume 2 contains the remaining reports.

  2. National Aeronautics and Space Administration (NASA)/American Society for Engineering Education (ASEE) Summer Faculty Fellowship Program, 1994, volume 1

    NASA Technical Reports Server (NTRS)

    Bannerot, Richard; Sickorez, Donn G.

    1995-01-01

    The JSC NASA/ASEE Summer Faculty Fellowship Program was conducted by Texas A&M University and JSC. The objectives of the program, which began nationally in 1964 and at JSC in 1965 are to: (1) further the professional knowledge of qualified engineering and science faculty members, (2) stimulate an exchange of ideas between participants and NASA, (3) enrich and refresh the research and teaching activities of participants' institutions, and (4) contribute to the research objectives of the NASA centers. Each faculty fellow spent at least 10 weeks at JSC engaged in a research project in collaboration with a NASA JSC colleague. This document is a compilation of the final reports on the research projects completed by the faculty fellows during the summer of 1994.

  3. National Aeronautics and Space Administration (NASA)/American Society for Engineering Education (ASEE) Summer Faculty Fellowship Program, 1993, volume 1

    NASA Technical Reports Server (NTRS)

    Hyman, William A. (Editor); Goldstein, Stanley H. (Editor)

    1993-01-01

    The JSC NASA/ASEE Summer Faculty Fellowship Program was conducted by Texas A&M University and JSC. The objectives of the program, which began nationally in 1964 and at JSC in 1965, are as follows: (1) to further the professional knowledge of qualified engineering and science faculty members; (2) to stimulate an exchange of ideas between participants and NASA; (3) to enrich and refresh the research and teaching activities of participants' institutions; and (4) to contribute to the research objectives of the NASA centers. Each faculty fellow spent at least 10 weeks at JSC engaged in a research project in collaboration with a NASA/JSC colleague. This document is a compilation of the final reports on the research projects completed by the faculty fellows during the summer of 1993.

  4. National Aeronautics and Space Administration (NASA)/American Society for Engineering Education (ASEE) Summer Faculty Fellowship Program, 1993, volume 2

    NASA Technical Reports Server (NTRS)

    Hyman, William A. (Editor); Goldstein, Stanley H. (Editor)

    1993-01-01

    The JSC NASA/ASEE Summer Faculty Fellowship Program was conducted by Texas A&M University and JSC. The objectives of the program, which began nationally in 1964 and at JSC in 1965, are (1) to further the professional knowledge of qualified engineering and science faculty members; (2) to stimulate an exchange of ideas between participants and NASA; (3) to enrich and refresh the research and teaching activities of participant's institutions; and (4) to contribute to the research objectives of the NASA centers. Each faculty fellow spent at least 10 weeks at JSC engaged in a research project in collaboration with a NASA/JSC colleague. A compilation of the final reports on the research projects completed by the faculty fellows during the summer of 1993 is presented.

  5. National Aeronautics and Space Administration (NASA) /American Society for Engineering Education (ASEE) Summer Faculty Fellowship Program. Volume 1

    NASA Technical Reports Server (NTRS)

    Bannerot, Richard B. (Editor); Sickorez, Donn G. (Editor)

    1997-01-01

    The 1996 JSC NASA/ASEE Summer Faculty Fellowship Program was conducted by the University of Houston and JSC. The objectives of the program, which began nationally in 1964 and at JSC in 1965 are to (1) further the professional knowledge qualified engineering and science faculty members, (2) stimulate an exchange of ideas between participants and NASA, (3) refresh the research and teaching activities of participants' institutions, and (4) contribute to the research objectives of the NASA centers. Each faculty fellow spent at least 10 weeks at JSC engaged in a research project in collaboration with a NASA JSC colleague. This document is a compilation of the final reports on the research projects completed by the faculty fellows during the summer of 1996.

  6. Code of conduct for the International Space Station Crew. National Aeronautics and Space Administration (NASA). Interim final rule.

    PubMed

    2000-12-21

    NASA is issuing new regulations entitled "International Space Station Crew," to implement certain provisions of the International Space Station (ISS) Intergovernmental Agreement (IGA) regarding ISS crewmembers' observance of an ISS Code of Conduct.

  7. Space Shuttle main engine. NASA has not evaluated the alternate fuel turbopump costs and benefits. Report to the Administrator of the National Aeronautics and Space Administration

    NASA Astrophysics Data System (ADS)

    1993-10-01

    NASA's plans to develop an alternate high pressure fuel turbopump for the Space Shuttle's main engines were assessed by the General Accounting Office as a part of the evaluation of the Space Shuttle Safety and Obsolescence Upgrade program. The objective was to determine whether NASA has adequately analyzed cost, performance, and benefits that are expected to result from this program in comparison to other alternatives before resuming development of the alternate pump, which was suspended in 1992. The alternate fuel pump is one of five improvements being developed or planned to significantly enhance safety margins of the engines.

  8. Building 1100--NASA

    NASA Technical Reports Server (NTRS)

    1996-01-01

    Building 1100 is the NASA administrative building. Services located in this building include two banks, a post office, barber shop, cafeteria, snack bar, travel agency, dry cleaners, the NASA Exchange retail store and medical facilities for employees.

  9. Johnson Noise Thermometry System Requirements

    SciTech Connect

    Britton Jr, Charles L; Roberts, Michael; Ezell, N Dianne Bull; Qualls, A L; Holcomb, David Eugene

    2013-01-01

    This document is intended to capture the requirements for the architecture of the developmental electronics for the ORNL-lead drift-free Johnson Noise Thermometry (JNT) project conducted under the Instrumentation, Controls, and Human-Machine Interface (ICHMI) research pathway of the U.S. Department of Energy (DOE) Advanced Small Modular Reactor (SMR) Research and Development (R&D) program. The requirements include not only the performance of the system but also the allowable measurement environment of the probe and the allowable physical environment of the associated electronics. A more extensive project background including the project rationale is available in the initial project report [1].

  10. History of the Animal Care Program at Johnson Space Center

    NASA Technical Reports Server (NTRS)

    Khan-Mayberry, Noreen; Bassett, Stephanie

    2010-01-01

    NASA has a rich history of scientific research that has been conducted throughout our numerous manned spaceflight programs. This scientific research has included animal test subjects participating in various spaceflight missions, including most recently, Space Shuttle mission STS-131. The Animal Care Program at Johnson Space Center (JSC) in Houston, Texas is multi-faceted and unique in scope compared to other centers within the agency. The animal care program at JSC has evolved from strictly research to include a Longhorn facility and the Houston Zoo's Attwater Prairie Chicken refuge, which is used to help repopulate this endangered species. JSC is home to more than 300 species of animals including home of hundreds of white-tailed deer that roam freely throughout the center which pose unique issues in regards to population control and safety of NASA workers, visitors and tourists. We will give a broad overview of our day to day operations, animal research, community outreach and protection of animals at NASA Johnson Space Center.

  11. [NASA Johnson Space Center Co-Op Student Experience Report

    NASA Technical Reports Server (NTRS)

    Judge, David

    2011-01-01

    My primary task on my first tour at JSC was to assist my mentor, Sheikh Ahsan, with a research study he is conducting on aluminum wire. While assisting my mentor with the aluminum wire study, I've also had an opportunity to complete work for other projects including the In-Situ Resource Utilization (ISRU) Project and an Electrolysis Project for Innovation Day at JSC.

  12. NASA Johnson Space Center: White Sands Test Facility

    NASA Technical Reports Server (NTRS)

    Aggarwal, Pravin; Kowalski, Robert R.

    2011-01-01

    This slide presentation reviews the testing facilities and laboratories available at the White Sands Test Facility (WSTF). The mission of WSTF is to provide the expertise and infrastructure to test and evaluate spacecraft materials, components and propulsion systems that enable the safe exploration and use of space. There are nine rocket test stands in two major test areas, six altitude test stands, three ambient test stands,

  13. National Aeronautics and Space Administration (NASA)/American Society for Engineering Education (ASEE) Summer Faculty Fellowship Program: 1995. Volume 1

    NASA Technical Reports Server (NTRS)

    Hyman, William A. (Editor); Sickorez, Donn G. (Editor)

    1996-01-01

    The objectives of the JSC NASA/ASEE Summer Faculty Fellowship Program, which began nationally in 1964 and at JSC in 1965, are (1) to further the professional knowledge of qualified engineering and science faculty members; (2) to stimulate an exchange of ideas between participants and NASA; (3) to enrich and refresh the research and teaching activities of the participants' institutions; and (4) to contribute to the research objectives of the NASA centers. Each faculty fellow spent at least 10 weeks at JSC engaged in a research project in collaboration with a NASA/JSC colleague. In addition to the faculty participants, the 1995 program included five students. This document is a compilation of the first fifteen of twenty-seven final reports on the research projects completed by the faculty fellows and visiting students during the summer of 1995. The reports of two of the students are integral with that of the respective fellow. Three students wrote separate reports included in Volume 2.

  14. National Aeronautics and Space Administration (NASA)/American Society for Engineering Education (ASEE) Summer Faculty Fellowship Program: 1995.. Volume 2

    NASA Technical Reports Server (NTRS)

    Hyman, William A. (Editor); Sickorez, Donn G. (Editor)

    1996-01-01

    The JSC NASA/ASEE Summer Faculty Fellowship Program was conducted at JSC, including the White Sands Test Facility, by Texas A&M University and JSC. The objectives of the program, which began nationally in 1964 and at JSC in 1965, are (1) to further the professional knowledge of qualified engineering and science faculty members; (2) to stimulate an exchange of ideas between participants and NASA; (3) to enrich and refresh the research and teaching activities of the participants' institutions; and (4) to contribute to the research objectives of the NASA centers. Each faculty fellow spent at least 10 weeks at JSC engaged in a research project in collaboration with a NASA/JSC colleague. In addition to the faculty participants, the 1995 program included five students. This document is a compilation of the final reports on the research projects completed by the faculty fellows and visiting students during the summer of 1995. The reports of two of the students are integral with that of the respective fellow. Three students wrote separate reports.

  15. Affirmative action as organization development at the Johnson Space Center

    NASA Technical Reports Server (NTRS)

    Tryman, Mfanya Donald L.

    1987-01-01

    The role of affirmative actions is investigated as an interventionist Organization Development (OD) strategy for insuring equal opportunities at the NASA/Johnson Space Center. In doing so, an eclectic and holistic model is developed for the recruiting and hiring of minorities and females over the next five years. The strategy, approach, and assumptions for the model are quite different than those for JSC's five year plan. The study concludes that Organization development utilizing affirmative action is a valid means to bring about organizational change and renewal processes, and that an eclectic model of affirmative action is most suitable and rational in obtaining this end.

  16. Taxonomy, Ontology and Semantics at Johnson Space Center

    NASA Technical Reports Server (NTRS)

    Berndt, Sarah Ann

    2011-01-01

    At NASA Johnson Space Center (JSC), the Chief Knowledge Officer has been developing the JSC Taxonomy to capitalize on the accomplishments of yesterday while maintaining the flexibility needed for the evolving information environment of today. A clear vision and scope for the semantic system is integral to its success. The vision for the JSC Taxonomy is to connect information stovepipes to present a unified view for information and knowledge across the Center, across organizations, and across decades. Semantic search at JSC means seemless integration of disparate information sets into a single interface. Ever increasing use, interest, and organizational participation mark successful integration and provide the framework for future application.

  17. Johnson Space Center Research and Technology 1993 Annual Report

    NASA Technical Reports Server (NTRS)

    1993-01-01

    Johnson Space Center research and technology accomplishments during fiscal year 1993 are described and principle researchers and technologists are identified as contacts for further information. Each of the four sections gives a summary of overall progress in a major discipline, followed by detailed, illustrated descriptions of significant tasks. The four disciplines are Life Sciences, Human Support Technology, Solar Systems Sciences, and Space Systems Technology. The report is intended for technical and management audiences throughout the NASA and worldwide aerospace community. An index lists project titles, funding codes, and principal investigators.

  18. NASA Standard Measures Overview

    NASA Technical Reports Server (NTRS)

    Meck, Janice V.

    2008-01-01

    Due to the limited in-flight resources available for human physiological research in the foreseeable future, NASA has increased its reliance on head-down bed rest. NASA has created the Bed Rest Project at the Johnson Space Center, which is implemented on the 6th floor of the Children's Hospital at UTMB. It has been conducted for three years. The overall objective of the Project is to use bed rest to develop and evaluate countermeasures for the ill effects of space flight before flight resources are requested for refinement and final testing.

  19. Zeoponic Plant Growth Substrate Development at the Johnson Space Center and Possible Use at a Martian Outpost

    NASA Technical Reports Server (NTRS)

    Gruener, John E.; Ming, Douglas W.

    2000-01-01

    The National Aeronautics and Space Administration (NASA) Johnson Space Center (JSC) is developing a substrate, termed zeoponics, that will slowly release all of the essential nutrients into solution for plant growth experiments in advanced life support system testbeds. This substrate is also potentially useful in the near future on the Space Shuttle and International Space Station and could eventually be used at an outpost on Mars. Chemical analyses of the Martian soil by the Viking and Mars Pathfinder missions have indicated that several of the elements required for plant growth are available in the soil. It may be possible to use the martian soil as the bulk substrate for growing food crops, while using smaller amounts of zeoponic substrate as an amendment to rectify any nutrient deficiencies.

  20. NASA Bioreactor

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Biotechnology Specimen Temperature Controller (BSTC) will cultivate cells until their turn in the bioreactor; it can also be used in culturing experiments that do not require the bioreactor. The BSTC comprises four incubation/refrigeration chambers individually set at 4 to 50 deg. C (near-freezing to above body temperature). Each chamber holds three rugged tissue chamber modules (12 total), clear Teflon bags holding 30 ml of growth media, all positioned by a metal frame. Every 7 to 21 days (depending on growth rates), an astronaut uses a shrouded syringe and the bags' needleless injection ports to transfer a few cells to a fresh media bag, and to introduce a fixative so that the cells may be studied after flight. The design also lets the crew sample the media to measure glucose, gas, and pH levels, and to inspect cells with a microscope. The controller is monitored by the flight crew through a 23-cm (9-inch) color computer display on the face of the BSTC. This view shows the BTSC with the front panel open. The work is sponsored by NASA's Office of Biological and Physical Research. The bioreactor is managed by the Biotechnology Cell Science Program at NASA's Johnson Space Center (JSC). NASA-sponsored bioreactor research has been instrumental in helping scientists to better understand normal and cancerous tissue development. In cooperation with the medical community, the bioreactor design is being used to prepare better models of human colon, prostate, breast and ovarian tumors. Cartilage, bone marrow, heart muscle, skeletal muscle, pancreatic islet cells, liver and kidney are just a few of the normal tissues being cultured in rotating bioreactors by investigators.

  1. NASA Bioreactor

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Bioreactor Demonstration System (BDS) comprises an electronics module, a gas supply module, and the incubator module housing the rotating wall vessel and its support systems. Nutrient media are pumped through an oxygenator and the culture vessel. The shell rotates at 0.5 rpm while the irner filter typically rotates at 11.5 rpm to produce a gentle flow that ensures removal of waste products as fresh media are infused. Periodically, some spent media are pumped into a waste bag and replaced by fresh media. When the waste bag is filled, an astronaut drains the waste bag and refills the supply bag through ports on the face of the incubator. Pinch valves and a perfusion pump ensure that no media are exposed to moving parts. An Experiment Control Computer controls the Bioreactor, records conditions, and alerts the crew when problems occur. The crew operates the system through a laptop computer displaying graphics designed for easy crew training and operation. The work is sponsored by NASA's Office of Biological and Physical Research. The bioreactor is managed by the Biotechnology Cell Science Program at NASA's Johnson Space Center (JSC). NASA-sponsored bioreactor research has been instrumental in helping scientists to better understand normal and cancerous tissue development. In cooperation with the medical community, the bioreactor design is being used to prepare better models of human colon, prostate, breast and ovarian tumors. Cartilage, bone marrow, heart muscle, skeletal muscle, pancreatic islet cells, liver and kidney are just a few of the normal tissues being cultured in rotating bioreactors by investigators. See No. 0101824 for a version with labels, and No. 0103180 for an operational schematic.

  2. NASA Bioreactor

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Bioreactor Demonstration System (BDS) comprises an electronics module, a gas supply module, and the incubator module housing the rotating wall vessel and its support systems. Nutrient media are pumped through an oxygenator and the culture vessel. The shell rotates at 0.5 rpm while the irner filter typically rotates at 11.5 rpm to produce a gentle flow that ensures removal of waste products as fresh media are infused. Periodically, some spent media are pumped into a waste bag and replaced by fresh media. When the waste bag is filled, an astronaut drains the waste bag and refills the supply bag through ports on the face of the incubator. Pinch valves and a perfusion pump ensure that no media are exposed to moving parts. An Experiment Control Computer controls the Bioreactor, records conditions, and alerts the crew when problems occur. The crew operates the system through a laptop computer displaying graphics designed for easy crew training and operation. The work is sponsored by NASA's Office of Biological and Physical Research. The bioreactor is managed by the Biotechnology Cell Science Program at NASA's Johnson Space Center (JSC). NASA-sponsored bioreactor research has been instrumental in helping scientists to better understand normal and cancerous tissue development. In cooperation with the medical community, the bioreactor design is being used to prepare better models of human colon, prostate, breast and ovarian tumors. Cartilage, bone marrow, heart muscle, skeletal muscle, pancreatic islet cells, liver and kidney are just a few of the normal tissues being cultured in rotating bioreactors by investigators. See No. 0101816 for a version without labels, and No. 0103180 for an operational schematic.

  3. NASA Bioreactor

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Bioreactor Demonstration System (BDS) comprises an electronics module, a gas supply module, and the incubator module housing the rotating wall vessel and its support systems. Nutrient media are pumped through an oxygenator and the culture vessel. The shell rotates at 0.5 rpm while the irner filter typically rotates at 11.5 rpm to produce a gentle flow that ensures removal of waste products as fresh media are infused. Periodically, some spent media are pumped into a waste bag and replaced by fresh media. When the waste bag is filled, an astronaut drains the waste bag and refills the supply bag through ports on the face of the incubator. Pinch valves and a perfusion pump ensure that no media are exposed to moving parts. An Experiment Control Computer controls the Bioreactor, records conditions, and alerts the crew when problems occur. The crew operates the system through a laptop computer displaying graphics designed for easy crew training and operation. The work is sponsored by NASA's Office of Biological and Physical Research. The bioreactor is managed by the Biotechnology Cell Science Program at NASA's Johnson Space Center (JSC). NASA-sponsored bioreactor research has been instrumental in helping scientists to better understand normal and cancerous tissue development. In cooperation with the medical community, the bioreactor design is being used to prepare better models of human colon, prostate, breast and ovarian tumors. Cartilage, bone marrow, heart muscle, skeletal muscle, pancreatic islet cells, liver and kidney are just a few of the normal tissues being cultured in rotating bioreactors by investigators. See No. 0101823 for a version without labels, and No. 0103180 for an operational schematic.

  4. NASA Bioreactor

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Bioreactor Demonstration System (BDS) comprises an electronics module, a gas supply module, and the incubator module housing the rotating wall vessel and its support systems. Nutrient media are pumped through an oxygenator and the culture vessel. The shell rotates at 0.5 rpm while the irner filter typically rotates at 11.5 rpm to produce a gentle flow that ensures removal of waste products as fresh media are infused. Periodically, some spent media are pumped into a waste bag and replaced by fresh media. When the waste bag is filled, an astronaut drains the waste bag and refills the supply bag through ports on the face of the incubator. Pinch valves and a perfusion pump ensure that no media are exposed to moving parts. An Experiment Control Computer controls the Bioreactor, records conditions, and alerts the crew when problems occur. The crew operates the system through a laptop computer displaying graphics designed for easy crew training and operation. The work is sponsored by NASA's Office of Biological and Physical Research. The bioreactor is managed by the Biotechnology Cell Science Program at NASA's Johnson Space Center (JSC). NASA-sponsored bioreactor research has been instrumental in helping scientists to better understand normal and cancerous tissue development. In cooperation with the medical community, the bioreactor design is being used to prepare better models of human colon, prostate, breast and ovarian tumors. Cartilage, bone marrow, heart muscle, skeletal muscle, pancreatic islet cells, liver and kidney are just a few of the normal tissues being cultured in rotating bioreactors by investigators. See No. 0101825 for a version with major elements labeled, and No. 0103180 for an operational schematic. 0101816

  5. NASA Bioreactor

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Biotechnology Specimen Temperature Controller (BSTC) will cultivate cells until their turn in the bioreactor; it can also be used in culturing experiments that do not require the bioreactor. The BSTC comprises four incubation/refrigeration chambers individually set at 4 to 50 degreesC (near-freezing to above body temperature). Each chamber holds three rugged tissue chamber modules (12 total), clear Teflon bags holding 30 ml of growth media, all positioned by a metal frame. Every 7 to 21 days (depending on growth rates), an astronaut uses a shrouded syringe and the bags' needleless injection ports to transfer a few cells to a fresh media bag, and to introduce a fixative so that the cells may be studied after flight. The design also lets the crew sample the media to measure glucose, gas, and pH levels, and to inspect cells with a microscope. The controller is monitored by the flight crew through a 23-cm (9-inch) color computer display on the face of the BSTC. This view shows the BTSC with the front panel open. The work is sponsored by NASA's Office of Biological and Physical Research. The bioreactor is managed by the Biotechnology Cell Science Program at NASA's Johnson Space Center (JSC). NASA-sponsored bioreactor research has been instrumental in helping scientists to better understand normal and cancerous tissue development. In cooperation with the medical community, the bioreactor design is being used to prepare better models of human colon, prostate, breast and ovarian tumors. Cartilage, bone marrow, heart muscle, skeletal muscle, pancreatic islet cells, liver and kidney are just a few of the normal tissues being cultured in rotating bioreactors by investigators.

  6. 50 CFR 80.51 - What activities are eligible for funding under the Dingell-Johnson Sport Fish Restoration Act?

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... under the Dingell-Johnson Sport Fish Restoration Act? 80.51 Section 80.51 Wildlife and Fisheries UNITED... SPORT FISH RESTORATION PROGRAM ADMINISTRATIVE REQUIREMENTS, PITTMAN-ROBERTSON WILDLIFE RESTORATION AND DINGELL-JOHNSON SPORT FISH RESTORATION ACTS Eligible Activities § 80.51 What activities are eligible...

  7. National Aeronautics and Space Administration (NASA)/american Society for Engineering Education (ASEE) Summer Faculty Fellowship Program, 1991, Volume 2

    NASA Technical Reports Server (NTRS)

    Hyman, William A. (Editor); Goldstein, Stanley H. (Editor)

    1991-01-01

    The objectives of the program are: (1) to further the professional knowledge of qualified engineering and science faculty members; (2) to stimulate an exchange of ideas between participants and NASA; (3) to enrich and refresh the research and teaching activities of participant's institutions; and (4) to contribute to the research objectives of the NASA Centers. A compilation of the final reports on the research projects done by the faculty fellows during the summer of 1991 are presented. Some of the topics covered include: collision avoidance for rover vehicles, bioinstrumentation, neural nets, total quality management of flexible space structures, project scheduling, nondestructive tests, orthostatic intolerance to bedrest, hypersonic reentry simulation, measuring human energy expenditure, tribological models, trace element movement in Anarctic ice, gastrointestinal function, and computer assisted instruction.

  8. 77 FR 53920 - NASA Federal Advisory Committees

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-04

    ... SPACE ADMINISTRATION NASA Federal Advisory Committees AGENCY: National Aeronautics and Space... amended, the National Aeronautics and Space Administration, and in accordance with the Memorandum for the... NASA's Federal advisory committees. NASA's Federal advisory committees have member vacancies from...

  9. The Impeachment of Andrew Johnson. Web Lesson.

    ERIC Educational Resources Information Center

    Constitutional Rights Foundation, Los Angeles, CA.

    This lesson presents the historical background of Abraham Lincoln's selection of Andrew Johnson as his running mate in the election of 1864. The lesson considers the climate in the U.S. Congress after President Lincoln's assassination. The details of the impeachment and trial of President Andrew Johnson are given. The lesson presents three…

  10. Magic Johnson and children's conceptions of AIDS.

    PubMed

    Quadagno, D; Eberstein, I W; Foster, K; Sittig, J E; Sly, D F; Kistner, J A

    1997-08-01

    Longitudinal data for a heterogeneous sample of 609 elementary school children are used to assess the long-term effects of Magic Johnson's announcement on children's HIV and AIDS conceptions. Four hypotheses are tested concerning these relationships, and background variables measured prior to Johnson's announcement are controlled. Findings suggest that Johnson's announcement increased children's HIV and AIDS knowledge and reduced their prejudice toward a hypothetical child with AIDS. No relationship is evident between the announcement and perceived vulnerability to HIV and AIDS. Males are more likely to be aware of Johnson's announcement, but its effects are more pronounced among blacks. Findings from the present research affirm the potential for celebrities like Johnson in HIV and AIDS education campaigns directed toward children.

  11. Implementation and testing of a Neighborhood Office Center (NOC) and integration of the NOC with an administrative correspondence management information system. [for NASA

    NASA Technical Reports Server (NTRS)

    1977-01-01

    The application of telecommunications and telecomputing was investigated as a means of reducing NASA's consumption of natural resources and the proliferation of paper copies of correspondence. The feasibility, operational advantages, and limitations of decentralized (remote) neighborhood offices (NOC) linked through an electronic network are demonstrated. These offices are joined to a management information system for correspondence tracking, and to an administrative office center service based on the use of magnetic medium word processing typewriters which handle the daily typing load. In connection with an augmented teleconference network, a uniform means is provided for creating, storing, and retrieving administrative documents, records, and data, while simultaneously permitting users of the system to track their status. Information will be transferred without using paper - merely through digital electronic communication and display, as a step toward the establishment of an agency-wide electronic mail system.

  12. History at NASA

    NASA Technical Reports Server (NTRS)

    1986-01-01

    The efforts of the National Aeronautics and Space Administration to capture and record the events of the past are described, particularly the research accomplishments of NASA's agency-wide history program. A concise guide to the historical research resources available at NASA Headquarters in Washington, D.C., at NASA facilities around the country, and through the federal records systems is given.

  13. National Aeronautics and Space Administration (NASA) Environmental Control and Life Support (ECLS) Capability Roadmap Development for Exploration

    NASA Technical Reports Server (NTRS)

    Bagdigian, Robert M.; Carrasquillo, Robyn L.; Metcalf, Jordan; Peterson, Laurie

    2012-01-01

    NASA is considering a number of future human space exploration mission concepts. Although detailed requirements and vehicle architectures remain mostly undefined, near-term technology investment decisions need to be guided by the anticipated capabilities needed to enable or enhance the mission concepts. This paper describes a roadmap that NASA has formulated to guide the development of Environmental Control and Life Support Systems (ECLSS) capabilities required to enhance the long-term operation of the International Space Station (ISS) and enable beyond-Low Earth Orbit (LEO) human exploration missions. Three generic mission types were defined to serve as a basis for developing a prioritized list of needed capabilities and technologies. Those are 1) a short duration micro gravity mission; 2) a long duration transit microgravity mission; and 3) a long duration surface exploration mission. To organize the effort, ECLSS was categorized into three major functional groups (atmosphere, water, and solid waste management) with each broken down into sub-functions. The ability of existing, flight-proven state-of-the-art (SOA) technologies to meet the functional needs of each of the three mission types was then assessed. When SOA capabilities fell short of meeting the needs, those "gaps" were prioritized in terms of whether or not the corresponding capabilities enable or enhance each of the mission types. The resulting list of enabling and enhancing capability gaps can be used to guide future ECLSS development. A strategy to fulfill those needs over time was then developed in the form of a roadmap. Through execution of this roadmap, the hardware and technologies needed to enable and enhance exploration may be developed in a manner that synergistically benefits the ISS operational capability, supports Multi-Purpose Crew Vehicle (MPCV) development, and sustains long-term technology investments for longer duration missions. This paper summarizes NASA s ECLSS capability roadmap

  14. History and Evolution of the Johnson Criteria.

    SciTech Connect

    Sjaardema, Tracy A.; Smith, Collin S.; Birch, Gabriel Carisle

    2015-07-01

    The Johnson Criteria metric calculates probability of detection of an object imaged by an optical system, and was created in 1958 by John Johnson. As understanding of target detection has improved, detection models have evolved to better model additional factors such as weather, scene content, and object placement. The initial Johnson Criteria, while sufficient for technology and understanding at the time, does not accurately reflect current research into target acquisition and technology. Even though current research shows a dependence on human factors, there appears to be a lack of testing and modeling of human variability.

  15. The National Aeronautics and Space Administration (NASA) Tracking and Data Relay Satellite System (TDRSS) program Economic and programmatic, considerations

    NASA Technical Reports Server (NTRS)

    Aller, R. O.

    1985-01-01

    The Tracking and Data Relay Satellite System (TDRSS) represents the principal element of a new space-based tracking and communication network which will support NASA spaceflight missions in low earth orbit. In its complete configuration, the TDRSS network will include a space segment consisting of three highly specialized communication satellites in geosynchronous orbit, a ground segment consisting of an earth terminal, and associated data handling and control facilities. The TDRSS network has the objective to provide communication and data relay services between the earth-orbiting spacecraft and their ground-based mission control and data handling centers. The first TDRSS spacecraft has been now in service for two years. The present paper is concerned with the TDRSS experience from the perspective of the various programmatic and economic considerations which relate to the program.

  16. The National Aeronautics and Space Administration (NASA) Tracking and Data Relay Satellite System (TDRSS) program Economic and programmatic, considerations

    NASA Astrophysics Data System (ADS)

    Aller, R. O.

    1985-10-01

    The Tracking and Data Relay Satellite System (TDRSS) represents the principal element of a new space-based tracking and communication network which will support NASA spaceflight missions in low earth orbit. In its complete configuration, the TDRSS network will include a space segment consisting of three highly specialized communication satellites in geosynchronous orbit, a ground segment consisting of an earth terminal, and associated data handling and control facilities. The TDRSS network has the objective to provide communication and data relay services between the earth-orbiting spacecraft and their ground-based mission control and data handling centers. The first TDRSS spacecraft has been now in service for two years. The present paper is concerned with the TDRSS experience from the perspective of the various programmatic and economic considerations which relate to the program.

  17. Classical and modern control strategies for the deployment, reconfiguration, and station-keeping of the National Aeronautics and Space Administration (NASA) Benchmark Tetrahedron Constellation

    NASA Astrophysics Data System (ADS)

    Capo-Lugo, Pedro A.

    Formation flying consists of multiple spacecraft orbiting in a required configuration about a planet or through Space. The National Aeronautics and Space Administration (NASA) Benchmark Tetrahedron Constellation is one of the proposed constellations to be launched in the year 2009 and provides the motivation for this investigation. The problem that will be researched here consists of three stages. The first stage contains the deployment of the satellites; the second stage is the reconfiguration process to transfer the satellites through different specific sizes of the NASA benchmark problem; and, the third stage is the station-keeping procedure for the tetrahedron constellation. Every stage contains different control schemes and transfer procedures to obtain/maintain the proposed tetrahedron constellation. In the first stage, the deployment procedure will depend on a combination of two techniques in which impulsive maneuvers and a digital controller are used to deploy the satellites and to maintain the tetrahedron constellation at the following apogee point. The second stage that corresponds to the reconfiguration procedure shows a different control scheme in which the intelligent control systems are implemented to perform this procedure. In this research work, intelligent systems will eliminate the use of complex mathematical models and will reduce the computational time to perform different maneuvers. Finally, the station-keeping process, which is the third stage of this research problem, will be implemented with a two-level hierarchical control scheme to maintain the separation distance constraints of the NASA Benchmark Tetrahedron Constellation. For this station-keeping procedure, the system of equations defining the dynamics of a pair of satellites is transformed to take in account the perturbation due to the oblateness of the Earth and the disturbances due to solar pressure. The control procedures used in this research will be transformed from a continuous

  18. Patronage power: Rural electrification, river development, and Lyndon Johnson (1937--1939)

    NASA Astrophysics Data System (ADS)

    Dusek, Paul-Michael Mays

    -stepped or rewrote local laws when necessary to aid development. Finally, Johnson heavily influenced decisions pertaining to personnel during his expansion of territory and consolidation of control. Ambition and opportunism created numerous occasions for patronage, publicity, and unbridled expansion. Within the LCRA, Johnson shifted focus from dam construction to development of rural electric cooperatives. Johnson's promotional efforts made the congressman the target of various groups seeking support for river development within their respective communities. At times, Johnson used heavy-handed tactics to achieve desired results. Finally, Johnson and his operators continued to marginalize members of the Karnes cooperative until personally ordered to stop by the National Director of the Rural Electrification Administration. Johnson's involvement in determining the location of a cooperative headquarters in Karnes County to cultivate the support of local political players demonstrates how ambition, expansion of name-recognition, and the cultivation of political power at the local level to build a state-wide machine define Johnson's early involvement in rural electrification and multipurpose river development in late 1930s Central Texas. Therefore, this thesis builds upon traditional interpretations of Johnson's participation in rural electrification and properly places his involvement into a more complete context. This thesis also breaks up the neat compartmentalization that previously occurred to create a more comprehensive outlook. (Abstract shortened by UMI.).

  19. Brood Year 2004: Johnson Creek Chinook Salmon Supplementation Report, June 2004 through March 2006.

    SciTech Connect

    Gebhards, John S.; Hill, Robert; Daniel, Mitch

    2009-02-19

    The Nez Perce Tribe, through funding provided by the Bonneville Power Administration, has implemented a small scale chinook salmon supplementation program on Johnson Creek, a tributary in the South Fork of the Salmon River, Idaho. The Johnson Creek Artificial Propagation Enhancement project was established to enhance the number of threatened Snake River spring/summer chinook salmon (Oncorhynchus tshawytscha) returning to Johnson Creek to spawn through artificial propagation. This was the sixth season of adult chinook broodstock collection in Johnson Creek following collections in 1998, 2000, 2001, 2002, and 2003. Weir installation was completed on June 21, 2004 with the first chinook captured on June 22, 2004 and the last fish captured on September 6, 2004. The weir was removed on September 18, 2004. A total of 338 adult chinook, including jacks, were captured during the season. Of these, 211 were of natural origin, 111 were hatchery origin Johnson Creek supplementation fish, and 16 were adipose fin clipped fish from other hatchery operations and therefore strays into Johnson Creek. Over the course of the run, 57 natural origin Johnson Creek adult chinook were retained for broodstock, transported to the South Fork Salmon River adult holding and spawning facility and held until spawned. The remaining natural origin Johnson Creek fish along with all the Johnson Creek supplementation fish were released upstream of the weir to spawn naturally. Twenty-seven Johnson Creek females were artificially spawned with 25 Johnson Creek males. Four females were diagnosed with high bacterial kidney disease levels resulting in their eggs being culled. The 27 females produced 116,598 green eggs, 16,531 green eggs were culled, with an average eye-up rate of 90.6% resulting in 90,647 eyed eggs. Juvenile fish were reared indoors at the McCall Fish Hatchery until November 2005 and then transferred to the outdoor rearing facilities during the Visual Implant Elastomer tagging operation

  20. Johnson Creek Artificial Propagation and Enhancement Project Operations and Maintenance Program; Brood Year 1998: Johnson Creek Chinook Salmon Supplementation, Biennial Report 1998-2000.

    SciTech Connect

    Daniel, Mitch; Gebhards, John

    2003-05-01

    The Nez Perce Tribe, through funding provided by the Bonneville Power Administration, has implemented a small scale chinook salmon supplementation program on Johnson Creek, a tributary in the South Fork of the Salmon River, Idaho. The Johnson Creek Artificial Propagation Enhancement project was established to enhance the number of threatened Snake River summer chinook salmon (Oncorhynchus tshawytscha) returning to Johnson Creek through artificial propagation. Adult chinook salmon collection and spawning began in 1998. A total of 114 fish were collected from Johnson Creek and 54 fish (20 males and 34 females) were retained for Broodstock. All broodstock were transported to Lower Snake River Compensation Plan's South Fork Salmon River adult holding and spawning facility, operated by the Idaho Department of Fish and Game. The remaining 60 fish were released to spawn naturally. An estimated 155,870 eggs from Johnson Creek chinook spawned at the South Fork Salmon River facility were transported to the McCall Fish Hatchery for rearing. Average fecundity for Johnson Creek females was 4,871. Approximately 20,500 eggs from females with high levels of Bacterial Kidney Disease were culled. This, combined with green-egg to eyed-egg survival of 62%, resulted in about 84,000 eyed eggs produced in 1998. Resulting juveniles were reared indoors at the McCall Fish Hatchery in 1999. All of these fish were marked with Coded Wire Tags and Visual Implant Elastomer tags and 8,043 were also PIT tagged. A total of 78,950 smolts were transported from the McCall Fish Hatchery and released directly into Johnson Creek on March 27, 28, 29, and 30, 2000.

  1. NASA Performance Report

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Introduction NASA's mission is to advance and communicate scientific knowledge and understanding of Earth, the solar system, and the universe; to advance human exploration, use, and development of space; and to research, develop, verify, and transfer advanced aeronautics, space, and related technologies. In support of this mission, NASA has a strategic architecture that consists of four Enterprises supported by four Crosscutting Processes. The Strategic Enterprises are NASA's primary mission areas to include Earth Science, Space Science, Human Exploration and Development of Space, and Aerospace Technology. NASA's Crosscutting Processes are Manage Strategically, Provide Aerospace Products and Capabilities, Generate Knowledge and Communicate Knowledge. The implementation of NASA programs, science, and technology research occurs primarily at our Centers. NASA consists of a Headquarters, nine Centers, and the Jet Propulsion Laboratory, as well as several ancillary installations and offices in the United States and abroad. The nine Centers are as follows: (1) Ames Research Center, (2) Dryden Flight Research Center (DFRC), (3) Glenn Research Center (GRC), (4) Goddard Space Flight Center (GSFC), (5) Johnson Space Center, (6) Kennedy Space Center (KSC), (7) Langley Research Center (LaRC), (8) Marshall Space Flight Center (MSFC), and (9) Stennis Space Center (SSC).

  2. NASA Pocket Statistics

    NASA Technical Reports Server (NTRS)

    1995-01-01

    NASA Pocket Statistics is published for the use of NASA managers and their staff. Included herein is Administrative and Organizational information, summaries of Space Flight Activity including the NASA Major Launch Record, and NASA Procurement, Financial, and Manpower data. The NASA Major Launch Record includes all launches of Scout class and larger vehicles. Vehicle and spacecraft development flights are also included in the Major Launch Record. Shuttle missions are counted as one launch and one payload, where free flying payloads are not involved. Satellites deployed from the cargo bay of the Shuttle and placed in a separate orbit or trajectory are counted as an additional payload.

  3. Hydrology of the Johnson Creek Basin, Oregon

    USGS Publications Warehouse

    Lee, Karl K.; Snyder, Daniel T.

    2009-01-01

    The Johnson Creek basin is an important resource in the Portland, Oregon, metropolitan area. Johnson Creek forms a wildlife and recreational corridor through densely populated areas of the cities of Milwaukie, Portland, and Gresham, and rural and agricultural areas of Multnomah and Clackamas Counties. The basin has changed as a result of agricultural and urban development, stream channelization, and construction of roads, drains, and other features characteristic of human occupation. Flooding of Johnson Creek is a concern for the public and for water management officials. The interaction of the groundwater and surface-water systems in the Johnson Creek basin also is important. The occurrence of flooding from high groundwater discharge and from a rising water table prompted this study. As the Portland metropolitan area continues to grow, human-induced effects on streams in the Johnson Creek basin will continue. This report provides information on the groundwater and surface-water systems over a range of hydrologic conditions, as well as the interaction these of systems, and will aid in management of water resources in the area. High and low flows of Crystal Springs Creek, a tributary to Johnson Creek, were explained by streamflow and groundwater levels collected for this study, and results from previous studies. High flows of Crystal Springs Creek began in summer 1996, and did not diminish until 2000. Low streamflow of Crystal Springs Creek occurred in 2005. Flow of Crystal Springs Creek related to water-level fluctuations in a nearby well, enabling prediction of streamflow based on groundwater level. Holgate Lake is an ephemeral lake in Southeast Portland that has inundated residential areas several times since the 1940s. The water-surface elevation of the lake closely tracked the elevation of the water table in a nearby well, indicating that the occurrence of the lake is an expression of the water table. Antecedent conditions of the groundwater level and autumn

  4. Study of Lyndon B. Johnson Space Center utility systems

    NASA Technical Reports Server (NTRS)

    Redding, T. E.; Huber, W. C.

    1977-01-01

    The results of an engineering study of potential energy saving utility system modifications for the NASA Lyndon B. Johnson Space Center are presented. The objective of the study was to define and analyze utility options that would provide facility energy savings in addition to the approximately 25 percent already achieved through an energy loads reduction program. A systems engineering approach was used to determine total system energy and cost savings resulting from each of the ten major options investigated. The results reported include detailed cost analyses and cost comparisons of various options. Cost are projected to the year 2000. Also included are a brief description of a mathematical model used for the analysis and the rationale used for a site survey to select buildings suitable for analysis.

  5. Curating NASA's Past, Present, and Future Extraterrestrial Sample Collections

    NASA Technical Reports Server (NTRS)

    McCubbin, F. M.; Allton, J. H.; Evans, C. A.; Fries, M. D.; Nakamura-Messenger, K.; Righter, K.; Zeigler, R. A.; Zolensky, M.; Stansbery, E. K.

    2016-01-01

    The Astromaterials Acquisition and Curation Office (henceforth referred to herein as NASA Curation Office) at NASA Johnson Space Center (JSC) is responsible for curating all of NASA's extraterrestrial samples. Under the governing document, NASA Policy Directive (NPD) 7100.10E "Curation of Extraterrestrial Materials", JSC is charged with "...curation of all extra-terrestrial material under NASA control, including future NASA missions." The Directive goes on to define Curation as including "...documentation, preservation, preparation, and distribution of samples for research, education, and public outreach." Here we describe some of the past, present, and future activities of the NASA Curation Office.

  6. Johnson Space Center's Risk and Reliability Analysis Group 2008 Annual Report

    NASA Technical Reports Server (NTRS)

    Valentine, Mark; Boyer, Roger; Cross, Bob; Hamlin, Teri; Roelant, Henk; Stewart, Mike; Bigler, Mark; Winter, Scott; Reistle, Bruce; Heydorn,Dick

    2009-01-01

    The Johnson Space Center (JSC) Safety & Mission Assurance (S&MA) Directorate s Risk and Reliability Analysis Group provides both mathematical and engineering analysis expertise in the areas of Probabilistic Risk Assessment (PRA), Reliability and Maintainability (R&M) analysis, and data collection and analysis. The fundamental goal of this group is to provide National Aeronautics and Space Administration (NASA) decisionmakers with the necessary information to make informed decisions when evaluating personnel, flight hardware, and public safety concerns associated with current operating systems as well as with any future systems. The Analysis Group includes a staff of statistical and reliability experts with valuable backgrounds in the statistical, reliability, and engineering fields. This group includes JSC S&MA Analysis Branch personnel as well as S&MA support services contractors, such as Science Applications International Corporation (SAIC) and SoHaR. The Analysis Group s experience base includes nuclear power (both commercial and navy), manufacturing, Department of Defense, chemical, and shipping industries, as well as significant aerospace experience specifically in the Shuttle, International Space Station (ISS), and Constellation Programs. The Analysis Group partners with project and program offices, other NASA centers, NASA contractors, and universities to provide additional resources or information to the group when performing various analysis tasks. The JSC S&MA Analysis Group is recognized as a leader in risk and reliability analysis within the NASA community. Therefore, the Analysis Group is in high demand to help the Space Shuttle Program (SSP) continue to fly safely, assist in designing the next generation spacecraft for the Constellation Program (CxP), and promote advanced analytical techniques. The Analysis Section s tasks include teaching classes and instituting personnel qualification processes to enhance the professional abilities of our analysts

  7. Learning Without Boundaries: A NASA - National Guard Bureau Distance Learning Partnership

    NASA Technical Reports Server (NTRS)

    Anderson, Susan H.; Chilelli, Christopher J.; Picard, Stephan

    2003-01-01

    With a variety of high-quality live interactive educational programs originating at the Johnson Space Center in Houston, Texas and other space and research centers, the US space agency NASA (National Aeronautics and Space Administration) has a proud track record of connecting with students throughout the world and stimulating their creativity and collaborative skills by teaching them underlying scientific and technological underpinnings of space exploration. However, NASA desires to expand its outreach capability for this type of interactive instruction. In early 2002, NASA and the National Guard Bureau -- using the Guard's nationwide system of state-ofthe-art classrooms and high bandwidth network -- began a collaboration to extend the reach of NASA content and educational programs to more of America's young people. Already, hundreds of elementary, middle, and high school students have visited Guard e-Learning facilities and participated in interactive NASA learning events. Topics have included experimental flight, satellite imagery-interpretation, and Mars exploration. Through this partnership, NASA and the National Guard are enabling local school systems throughout the United States (and, increasingly, the world) to use the excitement of space flight to encourage their students to become passionate about the possibility of one day serving as scientists, mathematicians, technologists, and engineers. At the 54th International Astronautical Conference MAJ Stephan Picard, the guiding visionary behind the Guard's partnership with NASA, and Chris Chilelli, an educator and senior instructional designer at NASA, will share with attendees background on NASA's educational products and the National Guard's distributed learning network; will discuss the unique opportunity this partnership already has provided students and teachers throughout the United States; will offer insights into the formation by government entities of e-Learning partnerships with one another; and will

  8. 75 FR 13598 - NASA Advisory Council; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-22

    ... SPACE ADMINISTRATION NASA Advisory Council; Meeting AGENCY: National Aeronautics and Space... Information Technology Infrastructure Committee of the NASA Advisory Council. DATES: Thursday, April 15, 2010...; 2939943. ADDRESSES: NASA Headquarters, 300 E Street, SW., Washington, DC, Room 2O43 FOR...

  9. The 1990 Johnson Space Center bibliography of scientific and technical papers

    NASA Technical Reports Server (NTRS)

    1991-01-01

    Abstracts are presented of scientific and technical papers written and/or presented by L. B. Johnson Space Center (JSC) authors, including civil servants, contractors, and grantees, during the calendar year of 1990. Citations include conference and symposium presentations, papers published in proceedings or other collective works, seminars, and workshop results, NASA formal report series (including contractually required final reports), and articles published in professional journals.

  10. NASA Bioreactor Demonstration System

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Leland W. K. Chung (left), Director, Molecular Urology Therapeutics Program at the Winship Cancer Institute at Emory University, is principal investigator for the NASA bioreactor demonstration system (BDS-05). With him is Dr. Jun Shu, an assistant professor of Orthopedics Surgery from Kuming Medical University China. The NASA Bioreactor provides a low turbulence culture environment which promotes the formation of large, three-dimensional cell clusters. Due to their high level of cellular organization and specialization, samples constructed in the bioreactor more closely resemble the original tumor or tissue found in the body. The Bioreactor is rotated to provide gentle mixing of fresh and spent nutrient without inducing shear forces that would damage the cells. The work is sponsored by NASA's Office of Biological and Physical Research. The bioreactor is managed by the Biotechnology Cell Science Program at NASA's Johnson Space Center (JSC). NASA-sponsored bioreactor research has been instrumental in helping scientists to better understand normal and cancerous tissue development. In cooperation with the medical community, the bioreactor design is being used to prepare better models of human colon, prostate, breast and ovarian tumors. Cartilage, bone marrow, heart muscle, skeletal muscle, pancreatic islet cells, liver and kidney are just a few of the normal tissues being cultured in rotating bioreactors by investigators. Credit: Emory University.

  11. NASA Facts, Voyager.

    ERIC Educational Resources Information Center

    National Aeronautics and Space Administration, Washington, DC. Educational Programs Div.

    This document is one of a series of publications of the National Aeronautics and Space Administration (NASA) on facts about the exploration of Jupiter and Saturn. This NASA mission consists of two unmanned Voyager spacecrafts launched in August and September of 1977, and due to arrive at Jupiter in 1979. An account of the scientific equipment…

  12. The Federal Role in Adolescent Literacy from Johnson through Obama: A Policy Regimes Analysis

    ERIC Educational Resources Information Center

    Hauptli, Meghan V.; Cohen-Vogel, Lora

    2013-01-01

    This article examines the federal role in adolescent literacy from its roots in Lyndon B. Johnson's administration with the Economic Opportunity Act (1964) through the Reading for Understanding grants of 2010. The authors consider the extent to which the recent attention to and changes in the federal approach to adolescent literacy can be…

  13. NASA Hydrogen Peroxide Propellant Hazards Technical Manual

    NASA Technical Reports Server (NTRS)

    Baker, David L.; Greene, Ben; Frazier, Wayne

    2005-01-01

    The Fire, Explosion, Compatibility and Safety Hazards of Hydrogen Peroxide NASA technical manual was developed at the NASA Johnson Space Center White Sands Test Facility. NASA Technical Memorandum TM-2004-213151 covers topics concerning high concentration hydrogen peroxide including fire and explosion hazards, material and fluid reactivity, materials selection information, personnel and environmental hazards, physical and chemical properties, analytical spectroscopy, specifications, analytical methods, and material compatibility data. A summary of hydrogen peroxide-related accidents, incidents, dose calls, mishaps and lessons learned is included. The manual draws from art extensive literature base and includes recent applicable regulatory compliance documentation. The manual may be obtained by United States government agencies from NASA Johnson Space Center and used as a reference source for hazards and safe handling of hydrogen peroxide.

  14. NASA Pathways Internship: Spring 2016

    NASA Technical Reports Server (NTRS)

    Alvarez, Oscar, III

    2016-01-01

    I was selected to contribute to the Data Systems and Handling Branch under the Avionics Flight Systems Division at the Lyndon B. Johnson Space Center in Houston, Texas. There I used my knowledge from school, as well as my job experience from the military, to help me comprehend my assigned project and contribute to it. With help from my mentors, supervisors, colleagues, and an excellent NASA work environment, I was able to learn, as well as accomplish, a lot towards my project. Not only did I understand more about embedded systems, microcontrollers, and low-level programming, I also was given the opportunity to explore the NASA community.

  15. NASA Goes to School

    ERIC Educational Resources Information Center

    Pinelli, Thomas E.

    1975-01-01

    The Educational Programs Division of NASA (National Aeronautics and Space Administration) produces a variety of educational programs and resources: professional educational conferences, teacher services, development of instructional resources, audiovisual media, and career guidance materials. (MW)

  16. 76 FR 67482 - NASA Advisory Council; Charter Renewal

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-01

    ... SPACE ADMINISTRATION NASA Advisory Council; Charter Renewal AGENCY: National Aeronautics and Space Administration (NASA). ACTION: Notice of renewal and amendment of the charter of the NASA Advisory Council... NASA Administrator has determined that renewal and amendment of the charter of the NASA...

  17. Solving the Housing Equation: Michael P. Johnson

    ERIC Educational Resources Information Center

    Roach, Ronald

    2005-01-01

    Dr. Michael P. Johnson, an associate professor of management science and urban affairs at the H. John Heinz III School of Public Policy and Management at Carnegie Mellon University in Pittsburgh, is taking management science tools and innovative information technology applications to the housing field. Concerned that organizations that develop and…

  18. Stevens - johnson syndrome induced by sodium valproate.

    PubMed

    Kumar, P N Suresh; Kumar, S Kishore

    2004-07-01

    A case of Stevens-Johnson syndrome (SJS) following treatment with sodium valproate is presented. A 55-year-old male suffering from manic episode was treated with sodium valproate in addition to haloperidol and trihexiphenidyl. After two weeks he developed cutaneous manifestations of SJS. He was treated with systemic steroids, antihistamines and topical calamine lotion and recovered after a few weeks.

  19. Telerobotic activities at Johnson Space Center

    NASA Technical Reports Server (NTRS)

    Price, Charles R.

    1989-01-01

    The Johnson Space Center telerobotic efforts span three major thrusts: (1) sustaining and expanding the capability of the Shuttle manipulator; (2) developing and integrating the multiple telerobotic system of the Space Station; and (3) fostering and applying research in all areas of telerobotics technology within the government, private, and academic sectors.

  20. Speaking Personally--With Larry Johnson

    ERIC Educational Resources Information Center

    American Journal of Distance Education, 2011

    2011-01-01

    Larry Johnson has been the CEO of the New Media Consortium (NMC) for nearly a decade, and he has worked in higher education for more than twenty-five years. Before joining NMC, he served in roles that include faculty member, dean, provost, and president. In this interview, he talks about the position of NMC in distance education and the challenges…

  1. JOHNSON-MATTHEY DIFFUSER CHARACTERIZATION TESTING

    SciTech Connect

    Foster, P; James Klein, J; Henry Sessions, H; Gregg Morgan, G

    2007-08-02

    A diffuser/permeator commercially fabricated by Johnson-Matthey was purchased for characterization testing at the Savannah River National Laboratory (SRNL). A test system was fabricated to not only feed and bleed flows and pressures, but also permeate pressure for flows up to 20 SLPM.

  2. Charles Johnson's "Middle Passage" as Historiographic Metafiction.

    ERIC Educational Resources Information Center

    Thaden, Barbara Z.

    1997-01-01

    Suggests that what makes Charles Johnson's "Middle Passage" significant and eminently teachable is that it is an accessible example of "historiographic metafiction"--bestselling postmodern novels set in the past. Notes that students find the novel "easy" and enjoyable and that teaching the novel with some of its intertexts, such as H. Melville's…

  3. 14 CFR 1212.700 - NASA employees.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 5 2011-01-01 2010-01-01 true NASA employees. 1212.700 Section 1212.700 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION PRIVACY ACT-NASA REGULATIONS NASA Authority and Responsibilities § 1212.700 NASA employees. (a) Each NASA employee is responsible for...

  4. 14 CFR 1212.700 - NASA employees.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 5 2012-01-01 2012-01-01 false NASA employees. 1212.700 Section 1212.700 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION PRIVACY ACT-NASA REGULATIONS NASA Authority and Responsibilities § 1212.700 NASA employees. (a) Each NASA employee is responsible for...

  5. 14 CFR 1212.700 - NASA employees.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 5 2013-01-01 2013-01-01 false NASA employees. 1212.700 Section 1212.700 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION PRIVACY ACT-NASA REGULATIONS NASA Authority and Responsibilities § 1212.700 NASA employees. (a) Each NASA employee is responsible for...

  6. 14 CFR 1212.700 - NASA employees.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 5 2010-01-01 2010-01-01 false NASA employees. 1212.700 Section 1212.700 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION PRIVACY ACT-NASA REGULATIONS NASA Authority and Responsibilities § 1212.700 NASA employees. (a) Each NASA employee is responsible for...

  7. NASA Astronaut Selection 2009: Behavioral Overview

    NASA Technical Reports Server (NTRS)

    Holland, A.; Sipes, W.; Bevan, G.; Schmidt, L.; Slack, K.; Moomaw, R.; Vanderark, S.

    2011-01-01

    Behavioral Health and Performance (BHP) is an operational group under medical sciences at NASA/Johnson Space Center. Astronaut applicant screening and assessment is one function of this group, along with psychological training, inflight behavioral support and family services. Direct BHP assessment spans 6-7 months of a 17-month overall selection process.

  8. NASA Quest.

    ERIC Educational Resources Information Center

    Ashby, Susanne

    2000-01-01

    Introduces NASA Quest as part of NASA's Learning Technologies Project, which connects students to the people of NASA through the various pages at the website where students can glimpse the various types of work performed at different NASA facilities and talk to NASA workers about the type of work they do. (ASK)

  9. 77 FR 13153 - Information Collection; NASA Contractor Financial Management Reports

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-05

    ... SPACE ADMINISTRATION Information Collection; NASA Contractor Financial Management Reports AGENCY: National Aeronautics and Space Administration (NASA). ACTION: Notice of information collection. SUMMARY... . SUPPLEMENTARY INFORMATION: I. Abstract The NASA Contractor Financial Management Reporting System is the...

  10. NASA Pocket Statistics

    NASA Technical Reports Server (NTRS)

    1994-01-01

    Pocket Statistics is published for the use of NASA managers and their staff. Included herein is Administrative and Organizational information, summaries of Space Flight Activity including the NASA Major Launch Record, and NASA Procurement, Financial, and Manpower data. The NASA Major Launch Record includes all launches of Scout class and larger vehicles. Vehicle and spacecraft development flights are also included in the Major Launch Record. Shuttle missions are counted as one launch and one payload, where free flying payloads are not involved. Satellites deployed from the cargo bay of the Shuttle and placed in a separate orbit or trajectory are counted as an additional payload.

  11. Johnson Space Center's Regenerative Life Support Systems Test Bed

    NASA Astrophysics Data System (ADS)

    Barta, D. J.; Henninger, D. L.

    1996-01-01

    The Regenerative Life Support Systems (RLSS) Test Bed at NASA's Johnson Space Center is an atmospherically closed, controlled environment facility for human testing of regenerative life support systems using higher plants in conjunction with physicochemical life support systems. The facility supports NASA's Advanced Life Support (ALS) Program. The facility is comprised of two large scale plant growth chambers, each with approximately 11 m^2 growing area. The root zone in each chamber is configurable for hydroponic or solid media plant culture systems. One of the two chambers, the Variable Pressure Growth Chamber (VPGC), is capable of operating at lower atmospheric pressures to evaluate a range of environments that may be used in a planetary surface habitat; the other chamber, the Ambient Pressure Growth Chamber (APGC) operates at ambient atmospheric pressure. The air lock of the VPGC is currently being outfitted for short duration (1 to 15 day) human habitation at ambient pressures. Testing with and without human subjects will focus on 1) integration of biological and physicochemical air and water revitalization systems; 2) effect of atmospheric pressure on system performance; 3) planetary resource utilization for ALS systems, in which solid substrates (simulated planetary soils or manufactured soils) are used in selected crop growth studies; 4) environmental microbiology and toxicology; 5) monitoring and control strategies; and 6) plant growth systems design. Included are descriptions of the overall design of the test facility, including discussions of the atmospheric conditioning, thermal control, lighting, and nutrient delivery systems.

  12. Johnson Space Center's Regenerative Life Support Systems Test Bed

    NASA Technical Reports Server (NTRS)

    Barta, D. J.; Henninger, D. L.

    1996-01-01

    The Regenerative Life Support Systems (RLSS) Test Bed at NASA's Johnson Space Center is an atmospherically closed, controlled environment facility for human testing of regenerative life support systems using higher plants in conjunction with physicochemical life support systems. The facility supports NASA's Advanced Life Support (ALS) Program. The facility is comprised of two large scale plant growth chambers, each with approximately 11 m2 growing area. The root zone in each chamber is configurable for hydroponic or solid media plant culture systems. One of the two chambers, the Variable Pressure Growth Chamber (VPGC), is capable of operating at lower atmospheric pressures to evaluate a range of environments that may be used in a planetary surface habitat; the other chamber, the Ambient Pressure Growth Chamber (APGC) operates at ambient atmospheric pressure. The air lock of the VPGC is currently being outfitted for short duration (1 to 15 day) human habitation at ambient pressures. Testing with and without human subjects will focus on 1) integration of biological and physicochemical air and water revitalization systems; 2) effect of atmospheric pressure on system performance; 3) planetary resource utilization for ALS systems, in which solid substrates (simulated planetary soils or manufactured soils) are used in selected crop growth studies; 4) environmental microbiology and toxicology; 5) monitoring and control strategies; and 6) plant growth systems design. Included are descriptions of the overall design of the test facility, including discussions of the atmospheric conditioning, thermal control, lighting, and nutrient delivery systems.

  13. Johnson Space Center's Regenerative Life Support Systems Test Bed.

    PubMed

    Barta, D J; Henninger, D L

    1996-01-01

    The Regenerative Life Support Systems (RLSS) Test Bed at NASA's Johnson Space Center is an atmospherically closed, controlled environment facility for human testing of regenerative life support systems using higher plants in conjunction with physicochemical life support systems. The facility supports NASA's Advanced Life Support (ALS) Program. The facility is comprised of two large scale plant growth chambers, each with approximately 11 m2 growing area. The root zone in each chamber is configurable for hydroponic or solid media plant culture systems. One of the two chambers, the Variable Pressure Growth Chamber (VPGC), is capable of operating at lower atmospheric pressures to evaluate a range of environments that may be used in a planetary surface habitat; the other chamber, the Ambient Pressure Growth Chamber (APGC) operates at ambient atmospheric pressure. The air lock of the VPGC is currently being outfitted for short duration (1 to 15 day) human habitation at ambient pressures. Testing with and without human subjects will focus on 1) integration of biological and physicochemical air and water revitalization systems; 2) effect of atmospheric pressure on system performance; 3) planetary resource utilization for ALS systems, in which solid substrates (simulated planetary soils or manufactured soils) are used in selected crop growth studies; 4) environmental microbiology and toxicology; 5) monitoring and control strategies; and 6) plant growth systems design. Included are descriptions of the overall design of the test facility, including discussions of the atmospheric conditioning, thermal control, lighting, and nutrient delivery systems.

  14. NASA Mir program: Mission operations concept

    NASA Technical Reports Server (NTRS)

    Cardenas, Jeffrey A.

    1996-01-01

    The joint NASA/Russian Space Agency mission program is discussed, considering the lessons learned. The initial Shuttle Mir science program and the NASA Mir program are described. The NASA Mir program is organized into ten distinct working groups which are co-chaired by representatives from the two cooperating nations. The NASA component is managed from the Johnson Space Center (TX). The support provided by NASA for long-duration missions and Mir expeditions is described. The scope of the scientific research carried out within the framework of the joint program is considered. The NASA Mir training approach is discussed and the mission operations are reviewed with emphasis on the Mir 21/NASA 2 mission.

  15. National Aeronautics and Space Administration (NASA) Earth Science Research for Energy Management. Part 1; Overview of Energy Issues and an Assessment of the Potential for Application of NASA Earth Science Research

    NASA Technical Reports Server (NTRS)

    Zell, E.; Engel-Cox, J.

    2005-01-01

    Effective management of energy resources is critical for the U.S. economy, the environment, and, more broadly, for sustainable development and alleviating poverty worldwide. The scope of energy management is broad, ranging from energy production and end use to emissions monitoring and mitigation and long-term planning. Given the extensive NASA Earth science research on energy and related weather and climate-related parameters, and rapidly advancing energy technologies and applications, there is great potential for increased application of NASA Earth science research to selected energy management issues and decision support tools. The NASA Energy Management Program Element is already involved in a number of projects applying NASA Earth science research to energy management issues, with a focus on solar and wind renewable energy and developing interests in energy modeling, short-term load forecasting, energy efficient building design, and biomass production.

  16. NASA Bioreactor Schematic

    NASA Technical Reports Server (NTRS)

    2001-01-01

    The schematic depicts the major elements and flow patterns inside the NASA Bioreactor system. Waste and fresh medium are contained in plastic bags placed side-by-side so the waste bag fills as the fresh medium bag is depleted. The compliance vessel contains a bladder to accommodate pressure transients that might damage the system. A peristolic pump moves fluid by squeezing the plastic tubing, thus avoiding potential contamination. The work is sponsored by NASA's Office of Biological and Physical Research. The bioreactor is managed by the Biotechnology Cell Science Program at NASA's Johnson Space Center (JSC). NASA-sponsored bioreactor research has been instrumental in helping scientists to better understand normal and cancerous tissue development. In cooperation with the medical community, the bioreactor design is being used to prepare better models of human colon, prostate, breast and ovarian tumors. Cartilage, bone marrow, heart muscle, skeletal muscle, pancreatic islet cells, liver and kidney are just a few of the normal tissues being cultured in rotating bioreactors by investigators.

  17. Women at work in NASA

    NASA Technical Reports Server (NTRS)

    Jenkins, H. G.

    1980-01-01

    Photographs and brief descriptions summarize the diversity of the female work force at NASA. Jobs are classified as: (1) technical support positions; (2) clerical and nonprofessional administrative; (3) professional administrative; and (4) professional scientific and engineering.

  18. Stevens-Johnson Syndrome Patient Received Combination Chemotherapy Gemcitabine, Cisplatin, and 5-FU for Biliary Tract Cancer

    PubMed Central

    Aznab, Mozaffar; Khazaei, Mansour

    2016-01-01

    Stevens-Johnson syndrome has been an acute, usually self-limiting disease of the skin and mucous membranes. This case report has presented an evidence of the development Stevens - Johnson syndrome associated with combination chemotherapy administration of 5FU, gemcitabin and cisplatin in a patient with biliary tract cancer. Our case was a 54-year-old woman patient, a case of biliary tract cancer who has developed more severe symptoms of Stevens-Johnson syndrome. Diagnosis has confirmed by skin biopsy of an affected area .The patient has improved with supportive care, and during 25 day occurred recovery. Although Stevens-Johnson syndrome has been a rare toxicity, physicians should pay a special attention to the monitoring of biliary tract cancer patients on combination chemotherapy with 5FU, cisplatin and gemcitabin.

  19. An open letter to Magic Johnson.

    PubMed

    Pazin, G J

    1992-01-01

    The last installment in this series dealt with post-test counseling of a person whose HIV test was negative. The plan was to provide counseling for an HIV-infected person in this installment. NBA basketball star Magic Johnson's surprise announcement on November 7, 1991, of his infection with HIV has provided an unexpected opportunity to counsel a well-known person through an "open letter."

  20. Unique strategies for technical information management at Johnson Space Center

    NASA Technical Reports Server (NTRS)

    Krishen, Vijay

    1994-01-01

    In addition to the current NASA manned programs, the maturation of Space Station and the introduction of the Space Exploration programs are anticipated to add substantially to the number and variety of data and documentation at NASA Johnson Space Center (JSC). This growth in the next decade has been estimated at five to ten fold compared to the current numbers. There will be an increased requirement for the tracking and currency of space program data and documents with National pressures to realize economic benefits from the research and technological developments of space programs. From a global perspective the demand for NASA's technical data and documentation is anticipated to increase at local, national, and international levels. The primary users will be government, industry, and academia. In our present national strategy, NASA's research and technology will assume a great role in the revitalization of the economy and gaining international competitiveness. Thus, greater demand will be placed on NASA's data and documentation resources. In this paper the strategies and procedures developed by DDMS, Inc., to accommodate the present and future information utilization needs are presented. The DDMS, Inc., strategies and procedures rely on understanding user requirements, library management issues, and technological applications for acquiring, searching, storing, and retrieving specific information accurately and quickly. The proposed approach responds to changing customer requirements and product deliveries. The unique features of the proposed strategy include: (1) To establish customer driven data and documentation management through an innovative and unique methods to identify needs and requirements. (2) To implement a structured process which responds to user needs, aimed at minimizing costs and maximizing services, resulting in increased productivity. (3) To provide a process of standardization of services and procedures. This standardization is the central

  1. ISS Update: How Canada and NASA Work Together to Support the Station

    NASA Video Gallery

    NASA Public Affairs Officer Kelly Humphries interviews Tim Braithwaite, Canadian Space Agency (CSA) Liaison Office Manager. The CSA Liaison Office is a small office at the Johnson Space Center (JSC...

  2. The Johnson Space Center management information systems: User's guide to JSCMIS

    NASA Technical Reports Server (NTRS)

    Bishop, Peter C.; Erickson, Lloyd

    1990-01-01

    The Johnson Space Center Management Information System (JSCMIS) is an interface to computer data bases at the NASA Johnson Space Center which allows an authorized user to browse and retrieve information from a variety of sources with minimum effort. The User's Guide to JSCMIS is the supplement to the JSCMIS Research Report which details the objectives, the architecture, and implementation of the interface. It is a tutorial on how to use the interface and a reference for details about it. The guide is structured like an extended JSCMIS session, describing all of the interface features and how to use them. It also contains an appendix with each of the standard FORMATs currently included in the interface. Users may review them to decide which FORMAT most suits their needs.

  3. NASA and General Aviation. NASA SP-485.

    ERIC Educational Resources Information Center

    Ethell, Jeffrey L.

    A detailed examination of the nature and function of general aviation and a discussion of how the National Aeronautics and Space Administration (NASA) helps keep it on the cutting edge of technology are offered in this publication. The intricacies of aerodynamics, energy, and safety as well as the achievements in aeronautical experimentation are…

  4. Tissue grown in NASA Bioreactor

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Cells from kidneys lose some of their special features in conventional culture but form spheres replete with specialized cell microvilli (hair) and synthesize hormones that may be clinically useful. Ground-based research studies have demonstrated that both normal and neoplastic cells and tissues recreate many of the characteristics in the NASA bioreactor that they display in vivo. Proximal kidney tubule cells that normally have rich apically oriented microvilli with intercellular clefts in the kidney do not form any of these structures in conventional two-dimensional monolayer culture. However, when normal proximal renal tubule cells are cultured in three-dimensions in the bioreactor, both the microvilli and the intercellular clefts form. This is important because, when the morphology is recreated, the function is more likely also to be rejuvenated. The work is sponsored by NASA's Office of Biological and Physical Research. The bioreactor is managed by the Biotechnology Cell Science Program at NASA's Johnson Space Center (JSC).

  5. NASA International Environmental Partnerships

    NASA Technical Reports Server (NTRS)

    Lewis, Pattie; Valek, Susan

    2010-01-01

    For nearly five decades, the National Aeronautics and Space Administration (NASA) has been preeminent in space exploration. NASA has landed Americans on the moon, robotic rovers on Mars, and led cooperative scientific endeavors among nations aboard the International Space Station. But as Earth's population increases, the environment is subject to increasing challenges and requires more efficient use of resources. International partnerships give NASA the opportunity to share its scientific and engineering expertise. They also enable NASA to stay aware of continually changing international environmental regulations and global markets for materials that NASA uses to accomplish its mission. Through international partnerships, NASA and this nation have taken the opportunity to look globally for solutions to challenges we face here on Earth. Working with other nations provides NASA with collaborative opportunities with the global science/engineering community to explore ways in which to protect our natural resources, conserve energy, reduce the use of hazardous materials in space and earthly applications, and reduce greenhouse gases that potentially affect all of Earth's inhabitants. NASA is working with an ever-expanding list of international partners including the European Union, the European Space Agency and, especially, the nation of Portugal. Our common goal is to foster a sustainable future in which partners continue to explore the universe while protecting our home planet's resources for future generations. This brochure highlights past, current, and future initiatives in several important areas of international collaboration that can bring environmental, economic, and other benefits to NASA and the wider international space community.

  6. NASA Bioreactor tissue culture

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Dr. Lisa E. Freed of the Massachusetts Institute of Technology and her colleagues have reported that initially disc-like specimens tend to become spherical in space, demonstrating that tissues can grow and differentiate into distinct structures in microgravity. The Mir Increment 3 (Sept. 16, 1996 - Jan. 22, 1997) samples were smaller, more spherical, and mechanically weaker than Earth-grown control samples. These results demonstrate the feasibility of microgravity tissue engineering and may have implications for long human space voyages and for treating musculoskeletal disorders on earth. The work is sponsored by NASA's Office of Biological and Physical Research. The bioreactor is managed by the Biotechnology Cell Science Program at NASA's Johnson Space Center (JSC). NASA-sponsored bioreactor research has been instrumental in helping scientists to better understand normal and cancerous tissue development. In cooperation with the medical community, the bioreactor design is being used to prepare better models of human colon, prostate, breast and ovarian tumors. Cartilage, bone marrow, heart muscle, skeletal muscle, pancreatic islet cells, liver and kidney are just a few of the normal tissues being cultured in rotating bioreactors by investigators.

  7. The NASA astrobiology program.

    PubMed

    Morrison, D

    2001-01-01

    The new discipline of astrobiology addresses fundamental questions about life in the universe: "Where did we come from?" "Are we alone in the universe?" "What is our future beyond the Earth?" Developing capabilities in biotechnology, informatics, and space exploration provide new tools to address these old questions. The U.S. National Aeronautics and Space Administration (NASA) has encouraged this new discipline by organizing workshops and technical meetings, establishing a NASA Astrobiology Institute, providing research funds to individual investigators, ensuring that astrobiology goals are incorporated in NASA flight missions, and initiating a program of public outreach and education. Much of the initial effort by NASA and the research community was focused on determining the technical content of astrobiology. This paper discusses the initial answer to the question "What is astrobiology?" as described in the NASA Astrobiology Roadmap.

  8. Attrition of NASA scientists

    NASA Astrophysics Data System (ADS)

    During the past 3 1/2 years the number of physical scientists employed by the National Aeronautics and Space Administration (NASA) has dropped by more than 15%. The number of mathematics personnel also dropped by about 13%. NASA says these figures represent a trend to increase the agency's emphasis on its primary activity—aerospace engineering—that began with the completion of the Apollo missions.For the same period the number of NASA personnel falling into the categories of aero-space engineering and electronic engineering increased slightly—by 1.2% and 3.1%, respectively. The decrease in both total NASA personnel and total scientific work force was about the same; NASA's scientific work force declined about 2.8%, compared with a total agency work force decrease of 2.9% .

  9. The NASA astrobiology program

    NASA Technical Reports Server (NTRS)

    Morrison, D.

    2001-01-01

    The new discipline of astrobiology addresses fundamental questions about life in the universe: "Where did we come from?" "Are we alone in the universe?" "What is our future beyond the Earth?" Developing capabilities in biotechnology, informatics, and space exploration provide new tools to address these old questions. The U.S. National Aeronautics and Space Administration (NASA) has encouraged this new discipline by organizing workshops and technical meetings, establishing a NASA Astrobiology Institute, providing research funds to individual investigators, ensuring that astrobiology goals are incorporated in NASA flight missions, and initiating a program of public outreach and education. Much of the initial effort by NASA and the research community was focused on determining the technical content of astrobiology. This paper discusses the initial answer to the question "What is astrobiology?" as described in the NASA Astrobiology Roadmap.

  10. 14 CFR 1221.110 - Use of the NASA Insignia.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 5 2011-01-01 2010-01-01 true Use of the NASA Insignia. 1221.110 Section 1221.110 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION THE NASA SEAL AND OTHER DEVICES, AND THE CONGRESSIONAL SPACE MEDAL OF HONOR NASA Seal, NASA Insignia, NASA Logotype, NASA...

  11. 14 CFR 1221.111 - Use of the NASA Logotype.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 5 2013-01-01 2013-01-01 false Use of the NASA Logotype. 1221.111 Section 1221.111 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION THE NASA SEAL AND OTHER DEVICES, AND THE CONGRESSIONAL SPACE MEDAL OF HONOR NASA Seal, NASA Insignia, NASA Logotype, NASA...

  12. 14 CFR 1221.109 - Use of the NASA Seal.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 5 2011-01-01 2010-01-01 true Use of the NASA Seal. 1221.109 Section 1221.109 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION THE NASA SEAL AND OTHER DEVICES, AND THE CONGRESSIONAL SPACE MEDAL OF HONOR NASA Seal, NASA Insignia, NASA Logotype, NASA...

  13. 14 CFR 1221.109 - Use of the NASA Seal.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 5 2010-01-01 2010-01-01 false Use of the NASA Seal. 1221.109 Section 1221.109 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION THE NASA SEAL AND OTHER DEVICES, AND THE CONGRESSIONAL SPACE MEDAL OF HONOR NASA Seal, NASA Insignia, NASA Logotype, NASA...

  14. 14 CFR 1221.110 - Use of the NASA Insignia.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 5 2010-01-01 2010-01-01 false Use of the NASA Insignia. 1221.110 Section 1221.110 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION THE NASA SEAL AND OTHER DEVICES, AND THE CONGRESSIONAL SPACE MEDAL OF HONOR NASA Seal, NASA Insignia, NASA Logotype, NASA...

  15. 14 CFR 1221.113 - Use of the NASA Flags.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 5 2012-01-01 2012-01-01 false Use of the NASA Flags. 1221.113 Section 1221.113 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION THE NASA SEAL AND OTHER DEVICES, AND THE CONGRESSIONAL SPACE MEDAL OF HONOR NASA Seal, NASA Insignia, NASA Logotype, NASA...

  16. 14 CFR 1221.109 - Use of the NASA Seal.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 5 2012-01-01 2012-01-01 false Use of the NASA Seal. 1221.109 Section 1221.109 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION THE NASA SEAL AND OTHER DEVICES, AND THE CONGRESSIONAL SPACE MEDAL OF HONOR NASA Seal, NASA Insignia, NASA Logotype, NASA...

  17. 14 CFR 1221.110 - Use of the NASA Insignia.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 5 2012-01-01 2012-01-01 false Use of the NASA Insignia. 1221.110 Section 1221.110 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION THE NASA SEAL AND OTHER DEVICES, AND THE CONGRESSIONAL SPACE MEDAL OF HONOR NASA Seal, NASA Insignia, NASA Logotype, NASA...

  18. 14 CFR 1221.110 - Use of the NASA Insignia.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 5 2013-01-01 2013-01-01 false Use of the NASA Insignia. 1221.110 Section 1221.110 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION THE NASA SEAL AND OTHER DEVICES, AND THE CONGRESSIONAL SPACE MEDAL OF HONOR NASA Seal, NASA Insignia, NASA Logotype, NASA...

  19. 14 CFR 1221.109 - Use of the NASA Seal.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 5 2013-01-01 2013-01-01 false Use of the NASA Seal. 1221.109 Section 1221.109 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION THE NASA SEAL AND OTHER DEVICES, AND THE CONGRESSIONAL SPACE MEDAL OF HONOR NASA Seal, NASA Insignia, NASA Logotype, NASA...

  20. 14 CFR 1221.111 - Use of the NASA Logotype.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 5 2010-01-01 2010-01-01 false Use of the NASA Logotype. 1221.111 Section 1221.111 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION THE NASA SEAL AND OTHER DEVICES, AND THE CONGRESSIONAL SPACE MEDAL OF HONOR NASA Seal, NASA Insignia, NASA Logotype, NASA...

  1. 14 CFR 1221.113 - Use of the NASA Flags.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 5 2013-01-01 2013-01-01 false Use of the NASA Flags. 1221.113 Section 1221.113 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION THE NASA SEAL AND OTHER DEVICES, AND THE CONGRESSIONAL SPACE MEDAL OF HONOR NASA Seal, NASA Insignia, NASA Logotype, NASA...

  2. 14 CFR 1221.113 - Use of the NASA Flags.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 5 2010-01-01 2010-01-01 false Use of the NASA Flags. 1221.113 Section 1221.113 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION THE NASA SEAL AND OTHER DEVICES, AND THE CONGRESSIONAL SPACE MEDAL OF HONOR NASA Seal, NASA Insignia, NASA Logotype, NASA...

  3. 14 CFR 1221.111 - Use of the NASA Logotype.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 5 2012-01-01 2012-01-01 false Use of the NASA Logotype. 1221.111 Section 1221.111 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION THE NASA SEAL AND OTHER DEVICES, AND THE CONGRESSIONAL SPACE MEDAL OF HONOR NASA Seal, NASA Insignia, NASA Logotype, NASA...

  4. 14 CFR 1221.113 - Use of the NASA Flags.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 5 2011-01-01 2010-01-01 true Use of the NASA Flags. 1221.113 Section 1221.113 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION THE NASA SEAL AND OTHER DEVICES, AND THE CONGRESSIONAL SPACE MEDAL OF HONOR NASA Seal, NASA Insignia, NASA Logotype, NASA...

  5. 14 CFR 1221.111 - Use of the NASA Logotype.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 5 2011-01-01 2010-01-01 true Use of the NASA Logotype. 1221.111 Section 1221.111 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION THE NASA SEAL AND OTHER DEVICES, AND THE CONGRESSIONAL SPACE MEDAL OF HONOR NASA Seal, NASA Insignia, NASA Logotype, NASA...

  6. The Hayabusa Curation Facility at Johnson Space Center

    NASA Technical Reports Server (NTRS)

    Zolensky, M.; Bastien, R.; McCann, B.; Frank, D.; Gonzalez, C.; Rodriguez, M.

    2013-01-01

    The Japan Aerospace Exploration Agency (JAXA) Hayabusa spacecraft made contact with the asteroid 25143 Itokawa and collected regolith dust from Muses Sea region of smooth terrain [1]. The spacecraft returned to Earth with more than 10,000 grains ranging in size from just over 300 µm to less than 10 µm [2, 3]. These grains represent the only collection of material returned from an asteroid by a spacecraft. As part of the joint agreement between JAXA and NASA for the mission, 10% of the Hayabusa grains are being transferred to NASA for parallel curation and allocation. In order to properly receive process and curate these samples, a new curation facility was established at Johnson Space Center (JSC). Since the Hayabusa samples within the JAXA curation facility have been stored free from exposure to terrestrial atmosphere and contamination [4], one of the goals of the new NASA curation facility was to continue this treatment. An existing lab space at JSC was transformed into a 120 sq.ft. ISO class 4 (equivalent to the original class 10 standard) clean room. Hayabusa samples are stored, observed, processed, and packaged for allocation inside a stainless steel glove box under dry N2. Construction of the clean laboratory was completed in 2012. Currently, 25 Itokawa particles are lodged in NASA's Hayabusa Lab. Special care has been taken during lab construction to remove or contain materials that may contribute contaminant particles in the same size range as the Hayabusa grains. Several witness plates of various materials are installed around the clean lab and within the glove box to permit characterization of local contaminants at regular intervals by SEM and mass spectrometry, and particle counts of the lab environment are frequently acquired. Of particular interest is anodized aluminum, which contains copious sub-mm grains of a multitude of different materials embedded in its upper surface. Unfortunately the use of anodized aluminum was necessary in the construction

  7. NASA replanning efforts continue

    NASA Astrophysics Data System (ADS)

    Katzoff, Judith A.

    A task force of the National Aeronautics and Space Administration (NASA) is producing new launch schedules for NASA's three remaining space shuttle orbiters, possibly supplemented by expendable launch vehicles. In the wake of the explosion of the space shuttle Challenger on January 28, 1986, the task force is assuming a delay of 12-18 months before resumption of shuttle flights.NASA's Headquarters Replanning Task Force, which meets daily, is separate from the agency's Data and Design Analysis Task Force, which collects and analyzes information about the accident for the use of the investigative commission appointed by President Ronald Reagan.

  8. NASA guest investigators

    NASA Astrophysics Data System (ADS)

    The National Aeronautics and Space Administration (NASA) is now seeking guest investigators to participate in the International Sun-Earth Explorer (ISEE) and International Cometary Explorer (ICE) programs. The ISEE/ICE project is a joint NASA/European Space Agency (ESA) venture. A budget of approximately $500,000 to support the ISEE/ICE Guest Investigator Program is expected for fiscal year 1985, and a similar amount is expected for FY 1986.Although NASA welcomes proposals at any time, proposals must be received by mid-October in order to be considered in the initial selection. Those arriving after mid-November may be held for another selection period.

  9. Johnson Space Center's regenerative life support systems test bed

    NASA Technical Reports Server (NTRS)

    Henninger, Donald L.; Tri, Terry O.; Barta, Daniel J.; Stahl, Randal S.

    1991-01-01

    The Regenerative Life Support System (RLSS) Test Bed at NASA's Johnson Space Center is an atmospherically closed, controlled environment facility for the evaluation of regenerative life support systems using higher plants in conjunction with physicochemical life support systems. When completed, the facility will be comprised of two large scale plant growth chambers, each with approximately 10 m(exp 2) growing area. One of the two chambers, the Variable Pressure Growth Chamber (VPGC), will be capable of operating at lower atmospheric pressures to evaluate a range of environments that may be used in Lunar or Martian habitats; the other chamber, the Ambient Pressure Growth Chamber (APGC) will operate at ambient atmospheric pressure. The root zone in each chamber will be configurable for hydroponic or solid state media systems. Research will focus on: (1) in situ resource utilization for CELSS systems, in which simulated lunar soils will be used in selected crop growth studies; (2) integration of biological and physicochemical air and water revitalization systems; (3) effect of atmospheric pressure on system performance; and (4) monitoring and control strategies.

  10. NASA Overview

    NASA Technical Reports Server (NTRS)

    Sheffner, Edwin J.

    2007-01-01

    The Earth Science Division supports research projects that exploit the observations and measurements acquired by NASA Earth Observing missions and Applied Sciences projects that extend NASA research to the broader user community and address societal needs.

  11. 77 FR 38336 - NASA Advisory Council; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-27

    ... SPACE ADMINISTRATION NASA Advisory Council; Meeting AGENCY: National Aeronautics and Space... Law 92-463, as amended, the National Aeronautics and Space Administration (NASA) announces a meeting of the NASA Advisory Council (NAC). DATES: Wednesday, July 25, 2012, 12 p.m.-4:30 p.m.;...

  12. 78 FR 54680 - NASA Federal Advisory Committees

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-05

    ... SPACE ADMINISTRATION NASA Federal Advisory Committees AGENCY: National Aeronautics and Space Administration. ACTION: Annual Invitation for Public Nominations by U.S. Citizens for Service on NASA Federal Advisory Committees. SUMMARY: NASA announces its annual invitation for public nominations for service...

  13. Understanding the Heliospheric Environment for NASA's Spacefleet

    NASA Astrophysics Data System (ADS)

    St. Cyr, O. C.; Thompson, B. J.; Rowland, D. E.; Hesse, M.

    Presently the U S National Aeronautics and Space Administration has more than 50 active robotic science satellites seven active communications satellites and the manned International Space Station With this investment NASA has a responsibility to protect its space assets throughout the solar system For humans this function is performed by the Space Radiation Analysis Group at Johnson Space Center in Houston Texas But for robotic explorers this function is performed only on an ad hoc basis Space environmental awareness is missing for much of the existing fleet beyond Earth-orbit and it is required for anomaly resolution and good stewardship of our national assets Engineers require this information to make a complete assessment of the root cause of operational anomalies Threats to space assets arise from many sources on a wide range of timescales direct effects of radiation and energetic particles on robotic and human explorers indirect and delayed effects on the heliosphere e g MHD shocks on planetary magnetospheres e g transient radiation belts and on atmospheres e g aerobraking and long term solar cycle predictions Because environmental assessment throughout the heliosphere is not yet operational it requires interpretation of data heterogeneous in form and quality groundbased and spacebased as well as interaction with sophisticated numerical models A conceptual study of environmental conditions was done on an ad hoc basis for a failure at Mars in 2004 Here we will describe recent efforts and discuss near-term plans at

  14. NASA Pocket Statistics: 1997 Edition

    NASA Technical Reports Server (NTRS)

    1997-01-01

    POCKET STATISTICS is published by the NATIONAL AERONAUTICS AND SPACE ADMINISTRATION (NASA). Included in each edition is Administrative and Organizational information, summaries of Space Flight Activity including the NASA Major Launch Record, Aeronautics and Space Transportation and NASA Procurement, Financial and Workforce data. The NASA Major Launch Record includes all launches of Scout class and larger vehicles. Vehicle and spacecraft development flights are also included in the Major Launch Record. Shuttle missions are counted as one launch and one payload, where free flying payloads are not involved. All Satellites deployed from the cargo bay of the Shuttle and placed in a separate orbit or trajectory are counted as an additional payload.

  15. NASA space shuttle lightweight seat

    NASA Technical Reports Server (NTRS)

    Hansen, Chris; Jermstad, Wayne; Lewis, James; Colangelo, Todd

    1996-01-01

    The Space Shuttle Lightweight Seat-Mission Specialist (LWS-MS) is a crew seat for the mission specialists who fly aboard the Space Shuttle. The LWS-MS is a lightweight replacement for the mission specialist seats currently flown on the Shuttle. Using state-of-the-art analysis techniques, a team of NASA and Lockheed engineers from the Johnson Space Center (JSC) designed a seat that met the most stringent requirements demanded of the new seats by the Shuttle program, and reduced the weight of the seats by 52%.

  16. NASA Kicks Off Summer of Innovation

    NASA Video Gallery

    NASA Administrator Charlie Bolden, astronaut Leland Melvin and others joined students at NASA's Jet Propulsion Laboratory in California to kick off the Summer of Innovation, an initiative to engage...

  17. This Week @ NASA May 3, 2013

    NASA Video Gallery

    Deputy Administrator Lori Garver tours two NASA facilities, The Expedition 36/37 crew train at the Gagarin Cosmonaut Training Center in Star City, NASA's newest scientific rover named GROVER, and m...

  18. This Week @ NASA - 11/5/10

    NASA Video Gallery

    The Postponement of Mission STS-133 tops the billboard on This Week @ NASA. Also, EPOXI meets a Comet, NASA and LEGO build a future together, Administrator Bolden heralds ten years of ISS, KSC Twee...

  19. Johnson Creek Artificial Propagation and Enhancement Project Operations and Maintenance Program; Brood Year 2000: Johnson Creek Chinook Salmon Supplementation, Biennial Report 2000-2002.

    SciTech Connect

    Daniel, Mitch; Gebhards, John; Hill, Robert

    2003-05-01

    The Nez Perce Tribe, through funding provided by the Bonneville Power Administration, has implemented a small scale chinook salmon supplementation program on Johnson Creek, a tributary in the South Fork of the Salmon River, Idaho. The Johnson Creek Artificial Propagation Enhancement project was established to enhance the number of threatened Snake River summer chinook salmon (Oncorhynchus tshawytscha) returning to Johnson Creek through artificial propagation. Adult chinook salmon trapping, broodstock selection, and spawning was first implemented in 1998, did not occur in 1999, and was resumed in 2000. A total of 152 salmon were trapped in Johnson Creek in 2000, of which 73 (25 males, 16 females, and 32 jacks) fish were transported to Idaho Fish and Game=s South Fork Salmon River adult holding and spawning facility for artificial propagation purposes. The remaining 79 (29 males, 16 females, and 24 jacks) fish were released above the weir to spawn naturally. A total of 65,060 green eggs were taken from 16 female salmon and transported to the McCall Fish Hatchery for incubation and rearing. Egg counts indicated an average eye-up rate of 86.0% for 55,971 eyed eggs. Average fecundity for Johnson Creek females was 4,066 eggs per female. Juvenile fish were reared indoors at the McCall Fish Hatchery through November 2001. These fish were transferred to outdoor rearing facilities in December 2001 where they remained until release in March 2002. All of these fish were marked with Coded Wire Tags and Visual Implant Elastomer tags. In addition 9,987 were also PIT tagged. Hand counts provided by marking crews were used to amend the number of juvenile salmon released from the original egg count. A total of 57,392 smolts were released into a temporary acclimation channel in Johnson Creek on March 18, 19, 20, 2002. These fish were held in this facility until a fish screen was removed on March 22, 2002 and the fish were allowed to emigrate.

  20. Stardust Curation at Johnson Space Center: Photo Documentation and Sample Processing of Submicron Dust Samples from Comet Wild 2 for Meteoritics Science Community

    NASA Astrophysics Data System (ADS)

    Nakamura-Messenger, K.; Zolensky, M. E.; Bastien, R.; See, T. H.; Warren, J. L.; Bevill, T. J.; Cardenas, F.; Vidonic, L. F.; Hörz, F.; McNamara, K. M.; Allen, C. C.; Westphal, A. J.; Snead, C.; Ishii, H. A.; Brownlee, D.

    2007-03-01

    The Stardust curation team at NASA Johnson Space Center plays a major role in the photo documentation and sample preparations of comet 81P/Wild 2 precious samples. Cool facts will be shown in our poster; we also invite you to visit our website at http://c

  1. Curating NASA's Future Extraterrestrial Sample Collections: How Do We Achieve Maximum Proficiency?

    NASA Technical Reports Server (NTRS)

    McCubbin, Francis; Evans, Cynthia; Zeigler, Ryan; Allton, Judith; Fries, Marc; Righter, Kevin; Zolensky, Michael

    2016-01-01

    The Astromaterials Acquisition and Curation Office (henceforth referred to herein as NASA Curation Office) at NASA Johnson Space Center (JSC) is responsible for curating all of NASA's extraterrestrial samples. Under the governing document, NASA Policy Directive (NPD) 7100.10E "Curation of Extraterrestrial Materials", JSC is charged with "The curation of all extraterrestrial material under NASA control, including future NASA missions." The Directive goes on to define Curation as including "... documentation, preservation, preparation, and distribution of samples for research, education, and public outreach." Here we describe some of the ongoing efforts to ensure that the future activities of the NASA Curation Office are working towards a state of maximum proficiency.

  2. The Trick Simulation Toolkit: A NASA/Open source Framework for Running Time Based Physics Models

    NASA Technical Reports Server (NTRS)

    Penn, John M.; Lin, Alexander S.

    2016-01-01

    This paper describes the design and use at of the Trick Simulation Toolkit, a simulation development environment for creating high fidelity training and engineering simulations at the NASA Johnson Space Center and many other NASA facilities. It describes Trick's design goals and how the development environment attempts to achieve those goals. It describes how Trick is used in some of the many training and engineering simulations at NASA. Finally it describes the Trick NASA/Open source project on Github.

  3. 50 CFR 80.51 - What activities are eligible for funding under the Dingell-Johnson Sport Fish Restoration Act?

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... under the Dingell-Johnson Sport Fish Restoration Act? 80.51 Section 80.51 Wildlife and Fisheries UNITED STATES FISH AND WILDLIFE SERVICE, DEPARTMENT OF THE INTERIOR (CONTINUED) FINANCIAL ASSISTANCE-WILDLIFE SPORT FISH RESTORATION PROGRAM ADMINISTRATIVE REQUIREMENTS, PITTMAN-ROBERTSON WILDLIFE RESTORATION...

  4. Non-linearity in Johnson noise thermometry

    NASA Astrophysics Data System (ADS)

    White, D. R.

    2012-12-01

    This paper discusses the effects of non-linearity, some of the mechanisms responsible for non-linearity, and methods for measuring non-linearity in Johnson noise thermometry. Mechanisms considered include quantum tunnelling, bipolar junction transistor and junction field-effect transistor amplifiers, feedback, clipping, output-stage crossover, quantization and dither. It is found that even- and odd-order effects behave differently in correlator-based noise thermometers, with the dominant even-order effects contributing as intermodulation products whereas the dominant odd-order contributions are third-order and at the same frequencies as the parent signals. Possible test methods include the use of discrete tones, changes in spectral shape, and direct measurement using reference noise powers. For correlators operated at constant noise power, direct measurement of non-linearity using reference noise powers enables corrections to be made with negligible additional uncertainty and measurement time.

  5. Emergency Operations Center at Johnson Space Center

    NASA Technical Reports Server (NTRS)

    Caylor, Gary C.

    1997-01-01

    In June 1966, at the start of the Gulf Coast hurricane season, the Johnson Space Center (JSC) celebrated the opening of its new 4,000-square foot, state-of-the-art Emergency Operations Center (EOC). The new EOC has been upgraded and enhanced to support a wide spectrum of emergencies affecting JSC and neighboring communities. One of the main features of the EOC is its premier computerized dispatch center. The new system unites many of JSC's critical emergency functions into one integrated network. It automatically monitors fire alarms, security entrances, and external cameras. It contains the JSC inventory of hazardous materials, by building and room, and can call up Material Safety Data Sheets for most of the generic hazardous materials used on-site. The EOC is available for community use during area emergencies such as hurricanes and is a welcome addition to the Clear Lake/Galveston Bay Area communities' emergency response resources.

  6. NASA budget in Congress

    NASA Astrophysics Data System (ADS)

    Richman, Barbara T.

    The House of Representatives has authorized $161.7 million more than President Ronald Reagan proposed for the fiscal 1984 National Aeronautics and Space Administration (NASA) budget. The House NASA authorization bill (H.R. 2065) passed by voice vote on April 26. Five days earlier, the Senate Commerce, Science, and Technology Committee marked up S. 1096, the Senate's NASA authorization bill, and recommended $171.6 million more than the Reagan proposal. The Senate is expected to vote on the bill in mid May, after which time a conference committee will iron out the differences between the House and Senate versions.President Reagan requested a total NASA budget of $7.1065 billion: $5.7085 billion for research and development, $150.5 million for construction of facilities, and $1.2475 billion for research and program management (Eos, February 15, 1983, p. 65).

  7. NASA JSC neural network survey results

    NASA Technical Reports Server (NTRS)

    Greenwood, Dan

    1987-01-01

    A survey of Artificial Neural Systems in support of NASA's (Johnson Space Center) Automatic Perception for Mission Planning and Flight Control Research Program was conducted. Several of the world's leading researchers contributed papers containing their most recent results on artificial neural systems. These papers were broken into categories and descriptive accounts of the results make up a large part of this report. Also included is material on sources of information on artificial neural systems such as books, technical reports, software tools, etc.

  8. NASA's Software Safety Standard

    NASA Technical Reports Server (NTRS)

    Ramsay, Christopher M.

    2005-01-01

    NASA (National Aeronautics and Space Administration) relies more and more on software to control, monitor, and verify its safety critical systems, facilities and operations. Since the 1960's there has hardly been a spacecraft (manned or unmanned) launched that did not have a computer on board that provided vital command and control services. Despite this growing dependence on software control and monitoring, there has been no consistent application of software safety practices and methodology to NASA's projects with safety critical software. Led by the NASA Headquarters Office of Safety and Mission Assurance, the NASA Software Safety Standard (STD-18l9.13B) has recently undergone a significant update in an attempt to provide that consistency. This paper will discuss the key features of the new NASA Software Safety Standard. It will start with a brief history of the use and development of software in safety critical applications at NASA. It will then give a brief overview of the NASA Software Working Group and the approach it took to revise the software engineering process across the Agency.

  9. NASA/NBS (National Aeronautics and Space Administration/National Bureau of Standards) standard reference model for telerobot control system architecture (NASREM)

    NASA Technical Reports Server (NTRS)

    Albus, James S.; Mccain, Harry G.; Lumia, Ronald

    1989-01-01

    The document describes the NASA Standard Reference Model (NASREM) Architecture for the Space Station Telerobot Control System. It defines the functional requirements and high level specifications of the control system for the NASA space Station document for the functional specification, and a guideline for the development of the control system architecture, of the 10C Flight Telerobot Servicer. The NASREM telerobot control system architecture defines a set of standard modules and interfaces which facilitates software design, development, validation, and test, and make possible the integration of telerobotics software from a wide variety of sources. Standard interfaces also provide the software hooks necessary to incrementally upgrade future Flight Telerobot Systems as new capabilities develop in computer science, robotics, and autonomous system control.

  10. Making Simultaneous Inferences Using Johnson-Neyman Technique.

    ERIC Educational Resources Information Center

    Chou, Tungshan; Wang, Lih-Shing

    P. O. Johnson and J. Neyman (1936) proposed a general linear hypothesis testing procedure for testing the null hypothesis of no treatment difference in the presence of some covariates. This is generally known as the Johnson-Neyman (JN) technique. The need for the hypothesis testing step (often omitted) as originally presented and the…

  11. Sir William Johnson and the Indians of New York.

    ERIC Educational Resources Information Center

    Hamilton, Milton W.

    In order to make the vast literature about the history of Indian and white relations in New York readily accessible to teachers, students, and general readers, this booklet brings together the main points of the relationship between the Indians and Sir William Johnson. Johnson is a key figure in the Indian story of New York state during the 1770s.…

  12. Survey, applications, and prospects of Johnson noise thermometry

    SciTech Connect

    Blalock, T.V.; Shepard, R.L.

    1981-01-01

    Significant progress in the field of Johnson noise thermometry has occurred since the 1971 survey of Kamper. This paper will review the foundation work of Johnson noise thermometry, survey the basic methods which do not utilize quantum devices for noise thermometry for industrial temperatures, and present some applications of noise thermometry in temperature scale metrology and process temperature instrumentation. 35 references.

  13. Annual report to the NASA Administrator by the Aerospace Safety Advisory Panel. Part 2: Space shuttle program. Section 1: Observations and conclusions

    NASA Technical Reports Server (NTRS)

    1975-01-01

    The NASA and contractor management systems, including policies, practices, and procedures for the development of critical systems, subsystems and integration of the program elements, were investigated. The technical development status of critical systems, subsystems, and interfaces is presented. Space shuttle elements were qualified as to potential risks and hazards. The elements included the orbiter, external tanks, main engine, solid rocket boosters, and the ground support facilities.

  14. The NASA Technical Report Server

    NASA Astrophysics Data System (ADS)

    Nelson, M. L.; Gottlich, G. L.; Bianco, D. J.; Paulson, S. S.; Binkley, R. L.; Kellogg, Y. D.; Beaumont, C. J.; Schmunk, R. B.; Kurtz, M. J.; Accomazzi, A.; Syed, O.

    The National Aeronautics and Space Act of 1958 established the National Aeronautics and Space Administration (NASA) and charged it to "provide for the widest practicable and appropriate dissemination of information concerning...its activities and the results thereof". The search for innovative methods to distribute NASA's information led a grass-roots team to create the NASA Technical Report Server (NTRS), which uses the World Wide Web and other popular Internet-based information systems .

  15. NASA Network

    NASA Technical Reports Server (NTRS)

    Carter, David; Wetzel, Scott

    2000-01-01

    The NASA Network includes nine NASA operated and partner operated stations covering North America, the west coast of South America, the Pacific, and Western Australia . A new station is presently being setup in South Africa and discussions are underway to add another station in Argentina. NASA SLR operations are supported by Honeywell Technical Solutions, Inc (HTSI), formally AlliedSignal Technical Services, The University of Texas, the University of Hawaii and Universidad Nacional de San Agustin.

  16. NASA Facts, Space Shuttle.

    ERIC Educational Resources Information Center

    National Aeronautics and Space Administration, Washington, DC. Educational Programs Div.

    This newsletter from the National Aeronautics and Space Administration (NASA) contains a description of the purposes and potentials of the Space Shuttle craft. The illustrated document explains some of the uses for which the shuttle is designed; how the shuttle will be launched from earth, carry out its mission, and land again on earth; and what a…

  17. What's Up at NASA?

    ERIC Educational Resources Information Center

    Clapp, Betty

    1988-01-01

    The National Aeronautics and Space Administration's (NASA) five-year plan to help elementary school teachers meet mathematics and science curriculum needs includes increasing the availability of instructional materials, providing greater access to teacher resource centers and workshops, and offering new sources of information for teachers and…

  18. This is NASA.

    ERIC Educational Resources Information Center

    National Aeronautics and Space Administration, Washington, DC.

    The mission of the National Aeronautics and Space Administration (NASA) is space exploration and research in space and aeronautics for peaceful purposes and for the benefit of all mankind. The organization and programs which have been established to carry out this mission are described. Full color illustrations for the book were selected from the…

  19. NASA Solve

    NASA Video Gallery

    NASA Solve lists opportunities available to the general public to contribute to solving tough problems related to NASA’s mission through challenges, prize competitions, and crowdsourcing activities...

  20. The Johnson Space Center Management Information Systems (JSCMIS). 1: Requirements Definition and Design Specifications for Versions 2.1 and 2.1.1. 2: Documented Test Scenario Environments. 3: Security Design and Specifications

    NASA Technical Reports Server (NTRS)

    1986-01-01

    The Johnson Space Center Management Information System (JSCMIS) is an interface to computer data bases at NASA Johnson which allows an authorized user to browse and retrieve information from a variety of sources with minimum effort. This issue gives requirements definition and design specifications for versions 2.1 and 2.1.1, along with documented test scenario environments, and security object design and specifications.

  1. NASA Facts, The Viking Mission.

    ERIC Educational Resources Information Center

    National Aeronautics and Space Administration, Washington, DC. Educational Programs Div.

    Presented is one of a series of publications of National Aeronautics and Space Administration (NASA) facts about the exploration of Mars. The Viking mission to Mars, consisting of two unmanned NASA spacecraft launched in August and September, 1975, is described. A description of the spacecraft and their paths is given. A diagram identifying the…

  2. NASA Orbiter Extended Nose Landing Gear

    NASA Technical Reports Server (NTRS)

    King, Steven R.; Jensen, Scott A.; Hansen, Christopher P.

    1999-01-01

    This paper discusses the design, development, test, and evaluation of a prototype Extended Nose Landing Gear (ENLG) for NASA's Space Shuttle orbiters. The ENLG is a proposed orbiter modification developed in-house at NASA's Johnson Space Center (JSC) by a joint government/industry team. It increases the orbiter's nose landing gear (NLG) length, thereby changing the vehicle's angle of attack during rollout, which lowers the aerodynamic forces on the vehicle. This, in combination with a dynamic elevon change, will lower the loads on the orbiter's main landing gear (MLG). The extension is accomplished by adding a telescoping section to the current NLG strut that will be pneumatically extended during NLG deployment.

  3. 75 FR 2892 - NASA Advisory Council; Science Committee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-19

    ... SPACE ADMINISTRATION NASA Advisory Council; Science Committee; Meeting AGENCY: National Aeronautics and... Administration (NASA) announces a meeting of the Science Committee of the NASA Advisory Council (NAC). This... Standard Time. ADDRESSES: NASA Headquarters, 300 E Street, SW., Room 3H46 (Tuesday, February 16, 2010)...

  4. 75 FR 14472 - NASA Advisory Council; Science Committee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-25

    ... SPACE ADMINISTRATION NASA Advisory Council; Science Committee; Meeting AGENCY: National Aeronautics and... Administration (NASA) announces a meeting of the Science Committee of the NASA Advisory Council (NAC). This...: NASA Goddard Space Flight Center, Building 1, Room E100E, ] 8800 Greenbelt Road, Greenbelt,...

  5. Summary Report for National Aeronautics Space Administration (NASA) and Centro Para Prevencao da Poluicao (C3P) 2011 International Workshop on Environment and Alternative Energy

    NASA Technical Reports Server (NTRS)

    Greene, Brian

    2011-01-01

    The C3P &. NASA International Workshop on Environment and Alternative Energy was held on November 15-18, 2011 at the European Space Agency (ESA)'s Research and Technology Centre (ESTEC) in Noordwijk, The Netherlands. The theme of the workshop was "Global Collaboration in Environmental and Alternative Energy Strategies". The workshop was held at ESTEC's conference center. More than 110 individuals from eleven countries attended the workshop. For the first time since the inception of NASA-C3P workshops, a full day was dedicated to a student session. Fifteen students from around the globe gave oral presentations along with poster displays relating to the latest technologies in environmental and alternative energy strategies. Judges from NASA, C3P and ESA awarded plaques to the top three students. In addition to the students, thirty eight U.S. and international subject matter experts presented on the following general environmental-related topics: (1) Hazardous materials management and substitution in support of space operations (2) Emerging renewable and alternative energy technologies (3) Sustainable development and redevelopment (4) Remediation technologies and strategies The workshop also included a panel discussion on the topic of the challenges of operating installations across borders. Throughout the workshop, attendees heard about the scope of environmental and energy challenges that industry and governments face. They heard about technologies for increasing energy efficiency and increasing use of renewable energy. They learned about ways companies and government agencies are using materials, processes, goods and services in a manner more respectful with the environment and in compliance with health and safety rules. The concept of partnerships and their inherent benefits was evidenced throughout the workshop. Partnering is a key aspect of sustainability because sustainable development is complicated. Through formal presentations and side discussions, attendees

  6. 14 CFR 1215.112 - User/NASA contractual arrangement.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 5 2012-01-01 2012-01-01 false User/NASA contractual arrangement. 1215.112... User/NASA contractual arrangement. (a) The NASA Administrator reserves the right to waive any portion of the reimbursement due to NASA under the provisions of the reimbursement policy. (b) When NASA...

  7. 14 CFR 1221.103 - Establishment of the NASA Insignia.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 5 2013-01-01 2013-01-01 false Establishment of the NASA Insignia. 1221.103 Section 1221.103 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION THE NASA SEAL AND OTHER DEVICES, AND THE CONGRESSIONAL SPACE MEDAL OF HONOR NASA Seal, NASA Insignia, NASA...

  8. 14 CFR 1221.106 - Establishment of the NASA Flag.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 5 2013-01-01 2013-01-01 false Establishment of the NASA Flag. 1221.106 Section 1221.106 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION THE NASA SEAL AND OTHER DEVICES, AND THE CONGRESSIONAL SPACE MEDAL OF HONOR NASA Seal, NASA Insignia, NASA Logotype,...

  9. 14 CFR § 1212.700 - NASA employees.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 5 2014-01-01 2014-01-01 false NASA employees. § 1212.700 Section § 1212.700 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION PRIVACY ACT-NASA REGULATIONS NASA Authority and Responsibilities § 1212.700 NASA employees. (a) Each NASA employee is...

  10. 14 CFR 1221.106 - Establishment of the NASA Flag.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 5 2011-01-01 2010-01-01 true Establishment of the NASA Flag. 1221.106 Section 1221.106 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION THE NASA SEAL AND OTHER DEVICES, AND THE CONGRESSIONAL SPACE MEDAL OF HONOR NASA Seal, NASA Insignia, NASA Logotype,...

  11. 14 CFR 1221.102 - Establishment of the NASA Seal.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 5 2011-01-01 2010-01-01 true Establishment of the NASA Seal. 1221.102 Section 1221.102 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION THE NASA SEAL AND OTHER DEVICES, AND THE CONGRESSIONAL SPACE MEDAL OF HONOR NASA Seal, NASA Insignia, NASA Logotype,...

  12. 14 CFR 1221.102 - Establishment of the NASA Seal.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 5 2010-01-01 2010-01-01 false Establishment of the NASA Seal. 1221.102 Section 1221.102 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION THE NASA SEAL AND OTHER DEVICES, AND THE CONGRESSIONAL SPACE MEDAL OF HONOR NASA Seal, NASA Insignia, NASA Logotype,...

  13. 14 CFR 1221.102 - Establishment of the NASA Seal.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 5 2013-01-01 2013-01-01 false Establishment of the NASA Seal. 1221.102 Section 1221.102 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION THE NASA SEAL AND OTHER DEVICES, AND THE CONGRESSIONAL SPACE MEDAL OF HONOR NASA Seal, NASA Insignia, NASA Logotype,...

  14. 14 CFR 1221.103 - Establishment of the NASA Insignia.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 5 2010-01-01 2010-01-01 false Establishment of the NASA Insignia. 1221.103 Section 1221.103 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION THE NASA SEAL AND OTHER DEVICES, AND THE CONGRESSIONAL SPACE MEDAL OF HONOR NASA Seal, NASA Insignia, NASA...

  15. 14 CFR § 1212.703 - NASA Chief Information Officer.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 5 2014-01-01 2014-01-01 false NASA Chief Information Officer. § 1212.703 Section § 1212.703 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION PRIVACY ACT-NASA REGULATIONS NASA Authority and Responsibilities § 1212.703 NASA Chief Information Officer. (a) The NASA...

  16. 14 CFR 1221.106 - Establishment of the NASA Flag.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 5 2010-01-01 2010-01-01 false Establishment of the NASA Flag. 1221.106 Section 1221.106 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION THE NASA SEAL AND OTHER DEVICES, AND THE CONGRESSIONAL SPACE MEDAL OF HONOR NASA Seal, NASA Insignia, NASA Logotype,...

  17. 14 CFR 1215.112 - User/NASA contractual arrangement.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 5 2011-01-01 2010-01-01 true User/NASA contractual arrangement. 1215.112... User/NASA contractual arrangement. (a) The NASA Administrator reserves the right to waive any portion of the reimbursement due to NASA under the provisions of the reimbursement policy. (b) When NASA...

  18. 14 CFR 1221.103 - Establishment of the NASA Insignia.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 5 2012-01-01 2012-01-01 false Establishment of the NASA Insignia. 1221.103 Section 1221.103 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION THE NASA SEAL AND OTHER DEVICES, AND THE CONGRESSIONAL SPACE MEDAL OF HONOR NASA Seal, NASA Insignia, NASA...

  19. 14 CFR 1221.106 - Establishment of the NASA Flag.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 5 2012-01-01 2012-01-01 false Establishment of the NASA Flag. 1221.106 Section 1221.106 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION THE NASA SEAL AND OTHER DEVICES, AND THE CONGRESSIONAL SPACE MEDAL OF HONOR NASA Seal, NASA Insignia, NASA Logotype,...

  20. 14 CFR 1212.703 - NASA Chief Information Officer.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 5 2013-01-01 2013-01-01 false NASA Chief Information Officer. 1212.703 Section 1212.703 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION PRIVACY ACT-NASA REGULATIONS NASA Authority and Responsibilities § 1212.703 NASA Chief Information Officer. (a) The NASA...

  1. 14 CFR 1221.104 - Establishment of the NASA Logotype.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 5 2013-01-01 2013-01-01 false Establishment of the NASA Logotype. 1221.104 Section 1221.104 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION THE NASA SEAL AND OTHER DEVICES, AND THE CONGRESSIONAL SPACE MEDAL OF HONOR NASA Seal, NASA Insignia, NASA...

  2. 14 CFR 1221.104 - Establishment of the NASA Logotype.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 5 2012-01-01 2012-01-01 false Establishment of the NASA Logotype. 1221.104 Section 1221.104 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION THE NASA SEAL AND OTHER DEVICES, AND THE CONGRESSIONAL SPACE MEDAL OF HONOR NASA Seal, NASA Insignia, NASA...

  3. 14 CFR 1221.104 - Establishment of the NASA Logotype.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 5 2011-01-01 2010-01-01 true Establishment of the NASA Logotype. 1221.104 Section 1221.104 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION THE NASA SEAL AND OTHER DEVICES, AND THE CONGRESSIONAL SPACE MEDAL OF HONOR NASA Seal, NASA Insignia, NASA Logotype,...

  4. 14 CFR 1221.102 - Establishment of the NASA Seal.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 5 2012-01-01 2012-01-01 false Establishment of the NASA Seal. 1221.102 Section 1221.102 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION THE NASA SEAL AND OTHER DEVICES, AND THE CONGRESSIONAL SPACE MEDAL OF HONOR NASA Seal, NASA Insignia, NASA Logotype,...

  5. 14 CFR 1221.103 - Establishment of the NASA Insignia.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 5 2011-01-01 2010-01-01 true Establishment of the NASA Insignia. 1221.103 Section 1221.103 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION THE NASA SEAL AND OTHER DEVICES, AND THE CONGRESSIONAL SPACE MEDAL OF HONOR NASA Seal, NASA Insignia, NASA Logotype,...

  6. 14 CFR 1215.112 - User/NASA contractual arrangement.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 5 2010-01-01 2010-01-01 false User/NASA contractual arrangement. 1215.112... User/NASA contractual arrangement. (a) The NASA Administrator reserves the right to waive any portion of the reimbursement due to NASA under the provisions of the reimbursement policy. (b) When NASA...

  7. 14 CFR 1221.104 - Establishment of the NASA Logotype.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 5 2010-01-01 2010-01-01 false Establishment of the NASA Logotype. 1221.104 Section 1221.104 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION THE NASA SEAL AND OTHER DEVICES, AND THE CONGRESSIONAL SPACE MEDAL OF HONOR NASA Seal, NASA Insignia, NASA...

  8. 77 FR 66082 - NASA International Space Station Advisory Committee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-11-01

    ... SPACE ADMINISTRATION NASA International Space Station Advisory Committee; Meeting AGENCY: National Aeronautics and Space Administration (NASA). ACTION: Notice of Meeting. SUMMARY: In accordance with the Federal Advisory Committee Act, Public Law 92-463, as amended, the National Aeronautics and...

  9. 78 FR 49296 - NASA International Space Station Advisory Committee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-13

    ... SPACE ADMINISTRATION NASA International Space Station Advisory Committee; Meeting AGENCY: National Aeronautics and Space Administration (NASA). ACTION: Notice of meeting. SUMMARY: In accordance with the Federal Advisory Committee Act, Public Law 92-463, as amended, the National Aeronautics and...

  10. 78 FR 77502 - NASA International Space Station Advisory Committee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-23

    ... SPACE ADMINISTRATION NASA International Space Station Advisory Committee; Meeting AGENCY: National Aeronautics and Space Administration (NASA). ACTION: Notice of Meeting. SUMMARY: In accordance with the Federal Advisory Committee Act, Public Law 92-463, as amended, the National Aeronautics and...

  11. 77 FR 2765 - NASA International Space Station Advisory Committee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-19

    ... SPACE ADMINISTRATION NASA International Space Station Advisory Committee; Meeting AGENCY: National Aeronautics and Space Administration (NASA). ACTION: Notice of meeting. SUMMARY: In accordance with the Federal Advisory Committee Act, Public Law 92-463, as amended, the National Aeronautics and...

  12. 77 FR 41203 - NASA International Space Station Advisory Committee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-12

    ... SPACE ADMINISTRATION NASA International Space Station Advisory Committee; Meeting AGENCY: National Aeronautics and Space Administration (NASA). ACTION: Notice of meeting. SUMMARY: In accordance with the Federal Advisory Committee Act, Public Law 92-463, as amended, the National Aeronautics and...

  13. 75 FR 51852 - NASA International Space Station Advisory Committee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-23

    ... SPACE ADMINISTRATION NASA International Space Station Advisory Committee; Meeting AGENCY: National Aeronautics and Space Administration (NASA). ACTION: Notice of meeting. SUMMARY: In accordance with the Federal Advisory Committee Act, Public Law 92-463, as amended, the National Aeronautics and...

  14. Dynamic Teachers Re-NEW with NASA.

    ERIC Educational Resources Information Center

    Ashby, Susanne

    2001-01-01

    Discusses the National Aeronautics and Space Administration's (NASA) Implementation Plan for Education which provides support to inservice teacher educators in the areas of technology and science. (ASK)

  15. 14 CFR 1221.108 - Establishment of the NASA Unified Visual Communications System.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 5 2013-01-01 2013-01-01 false Establishment of the NASA Unified Visual... ADMINISTRATION THE NASA SEAL AND OTHER DEVICES, AND THE CONGRESSIONAL SPACE MEDAL OF HONOR NASA Seal, NASA Insignia, NASA Logotype, NASA Program Identifiers, NASA Flags, and the Agency's Unified...

  16. 14 CFR 1221.108 - Establishment of the NASA Unified Visual Communications System.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 5 2010-01-01 2010-01-01 false Establishment of the NASA Unified Visual... ADMINISTRATION THE NASA SEAL AND OTHER DEVICES, AND THE CONGRESSIONAL SPACE MEDAL OF HONOR NASA Seal, NASA Insignia, NASA Logotype, NASA Program Identifiers, NASA Flags, and the Agency's Unified...

  17. 14 CFR 1221.108 - Establishment of the NASA Unified Visual Communications System.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 5 2012-01-01 2012-01-01 false Establishment of the NASA Unified Visual... ADMINISTRATION THE NASA SEAL AND OTHER DEVICES, AND THE CONGRESSIONAL SPACE MEDAL OF HONOR NASA Seal, NASA Insignia, NASA Logotype, NASA Program Identifiers, NASA Flags, and the Agency's Unified...

  18. 14 CFR § 1221.108 - Establishment of the NASA Unified Visual Communications System.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 5 2014-01-01 2014-01-01 false Establishment of the NASA Unified Visual... ADMINISTRATION THE NASA SEAL AND OTHER DEVICES, AND THE CONGRESSIONAL SPACE MEDAL OF HONOR NASA Seal, NASA Insignia, NASA Logotype, NASA Program Identifiers, NASA Flags, and the Agency's Unified...

  19. Report to the administrator by the NASA Aerospace Safety Advisory Panel on the Skylab program. Volume 1: Summary report. [systems management evaluation and design analysis

    NASA Technical Reports Server (NTRS)

    1973-01-01

    Contractor and NASA technical management for the development and manufacture of the Skylab modules is reviewed with emphasis on the following management controls: configuration and interface management; vendor control; and quality control of workmanship. A review of the modified two-stage Saturn V launch vehicle which focused on modifications to accommodate the Skylab payload; resolution of prior flight anomalies; and changes in personnel and management systems is presented along with an evaluation of the possible age-life and storage problems for the Saturn 1-B launch vehicle. The NASA program management's visibility and control of contractor operations, systems engineering and integration, the review process for the evaluation of design and flight hardware, and the planning process for mission operations are investigated. It is concluded that the technical management system for development and fabrication of the modules, spacecraft, and launch vehicles, the process of design and hardware acceptance reviews, and the risk assessment activities are satisfactory. It is indicated that checkout activity, integrated testing, and preparations for and execution of mission operation require management attention.

  20. 77 FR 9705 - NASA Advisory Council; Technology and Innovation Committee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-17

    ... From the Federal Register Online via the Government Publishing Office NATIONAL AERONAUTICS AND SPACE ADMINISTRATION NASA Advisory Council; Technology and Innovation Committee; Meeting AGENCY... Administration (NASA) announces a meeting of the Technology and Innovation Committee of the NASA Advisory...

  1. 76 FR 40753 - NASA Advisory Council; Technology and Innovation Committee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-11

    ... From the Federal Register Online via the Government Publishing Office NATIONAL AERONAUTICS AND SPACE ADMINISTRATION NASA Advisory Council; Technology and Innovation Committee; Meeting AGENCY... Administration (NASA) announces a meeting of the Technology and Innovation Committee of the NASA Advisory...

  2. 78 FR 21421 - NASA Advisory Council; Science Committee; Planetary Protection Subcommittee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-10

    ... SPACE ADMINISTRATION NASA Advisory Council; Science Committee; Planetary Protection Subcommittee... and Space Administration (NASA) announces a meeting of the Planetary Protection Subcommittee of the NASA Advisory Council (NAC). This Subcommittee reports to the Science Committee of the NAC. The...

  3. 78 FR 11235 - Information Collection Notice/NASA Great Moonbuggy Race

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-15

    ... SPACE ADMINISTRATION Information Collection Notice/NASA Great Moonbuggy Race AGENCY: National Aeronautics and Space Administration (NASA). ACTION: NASA Information Collection Notice; Correction. Federal Register Citation of Previous Announcement: 76 FR 23339, Document Number 2013-01648, Notice Number...

  4. 75 FR 51116 - NASA Advisory Council; Science Committee; Astrophysics Subcommittee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-18

    ... SPACE ADMINISTRATION NASA Advisory Council; Science Committee; Astrophysics Subcommittee; Meeting AGENCY... Administration (NASA) announces a meeting of the Astrophysics Subcommittee of the NASA Advisory Council (NAC... the meeting includes the following topics: --Astrophysics Division Update --2010 Astronomy...

  5. 75 FR 33837 - NASA Advisory Council; Science Committee; Astrophysics Subcommittee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-15

    ... SPACE ADMINISTRATION NASA Advisory Council; Science Committee; Astrophysics Subcommittee; Meeting AGENCY... and Space Administration (NASA) announces a meeting of the Astrophysics Subcommittee of the NASA... of the room. The agenda for the meeting includes the following topics: --Astrophysics Division...

  6. 76 FR 59172 - NASA Advisory Council; Science Committee; Astrophysics Subcommittee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-23

    ... SPACE ADMINISTRATION NASA Advisory Council; Science Committee; Astrophysics Subcommittee; Meeting AGENCY... Administration (NASA) announces a meeting of the Astrophysics Subcommittee of the NASA Advisory Council (NAC... password APS@October20201. The agenda for the meeting includes the following topics:...

  7. 76 FR 35481 - NASA Advisory Council; Science Committee; Astrophysics Subcommittee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-17

    ... SPACE ADMINISTRATION NASA Advisory Council; Science Committee; Astrophysics Subcommittee; Meeting AGENCY... Administration (NASA) announces a meeting of the Astrophysics Subcommittee of the NASA Advisory Council (NAC... meeting includes the following topics: --Astrophysics Division Update. --Research and Analysis...

  8. 78 FR 20356 - NASA Advisory Council; Science Committee; Astrophysics Subcommittee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-04

    ... SPACE ADMINISTRATION NASA Advisory Council; Science Committee; Astrophysics Subcommittee; Meeting AGENCY... Administration (NASA) announces a meeting of the Astrophysics Subcommittee of the NASA Advisory Council (NAC... following topics: --Astrophysics Division Update --Report from Astrophysics Roadmap Team --James Webb...

  9. 75 FR 13597 - NASA Advisory Council; Science Committee; Astrophysics Subcommittee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-22

    ... SPACE ADMINISTRATION NASA Advisory Council; Science Committee; Astrophysics Subcommittee; Meeting AGENCY... and Space Administration (NASA) announces a meeting of the Astrophysics Subcommittee of the NASA... following topics: --Astrophysics Division Update. --Kepler Data Release Policy. It is imperative that...

  10. 77 FR 38090 - NASA Advisory Council; Science Committee; Astrophysics Subcommittee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-26

    ... SPACE ADMINISTRATION NASA Advisory Council; Science Committee; Astrophysics Subcommittee; Meeting AGENCY... Administration (NASA) announces a meeting of the Astrophysics Subcommittee (APS) of the NASA Advisory Council... the following topics: --Astrophysics Division Update --James Webb Space Telescope Update...

  11. 76 FR 66998 - NASA Advisory Council; Science Committee; Astrophysics Subcommittee; Meeting.

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-28

    ... SPACE ADMINISTRATION NASA Advisory Council; Science Committee; Astrophysics Subcommittee; Meeting... Space Administration (NASA) announces a meeting of the Astrophysics Subcommittee of the NASA Advisory... following topic: --Astrophysics Division Update --Results from Acting Astrophysics Division...

  12. 76 FR 14106 - NASA Advisory Council; Science Committee; Astrophysics Subcommittee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-15

    ... SPACE ADMINISTRATION NASA Advisory Council; Science Committee; Astrophysics Subcommittee; Meeting AGENCY... Administration (NASA) announces a meeting of the Astrophysics Subcommittee of the NASA Advisory Council (NAC... meeting includes the following topic: --Astrophysics Division Update. It is imperative that the meeting...

  13. 75 FR 74089 - NASA Advisory Council; Science Committee; Astrophysics Subcommittee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-30

    ... SPACE ADMINISTRATION NASA Advisory Council; Science Committee; Astrophysics Subcommittee; Meeting AGENCY... Administration (NASA) announces a meeting of the Astrophysics Subcommittee of the NASA Advisory Council (NAC... meeting includes the following topics: --Astrophysics Division Update --James Webb Space Telescope...

  14. 76 FR 5405 - NASA Advisory Council; Science Committee; Astrophysics Subcommittee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-31

    ... SPACE ADMINISTRATION NASA Advisory Council; Science Committee; Astrophysics Subcommittee; Meeting AGENCY... Administration (NASA) announces a meeting of the Astrophysics Subcommittee of the NASA Advisory Council (NAC... meeting includes the following topics: --Astrophysics Division Update --Update from the James Webb...

  15. 75 FR 2893 - NASA Advisory Council; Science Committee; Astrophysics Subcommittee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-19

    ... SPACE ADMINISTRATION NASA Advisory Council; Science Committee; Astrophysics Subcommittee; Meeting AGENCY... and Space Administration (NASA) announces a meeting of the Astrophysics Subcommittee of the NASA... the room. The agenda for the meeting includes the following topics: --Astrophysics Division...

  16. 77 FR 4370 - NASA Advisory Council; Science Committee; Astrophysics Subcommittee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-27

    ... SPACE ADMINISTRATION NASA Advisory Council; Science Committee; Astrophysics Subcommittee; Meeting AGENCY... Administration (NASA) announces a meeting of the Astrophysics Subcommittee of the NASA Advisory Council (NAC... meeting includes the following topics: --Astrophysics Division Update --Update on Balloons Return...

  17. 77 FR 62536 - Meeting of Astrophysics Subcommittee of the NASA Advisory Council Science Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-15

    ... SPACE ADMINISTRATION Meeting of Astrophysics Subcommittee of the NASA Advisory Council Science Committee... Space Administration (NASA) announces a meeting of the Astrophysics Subcommittee of the NASA Advisory... topics: --Astrophysics Division Update --Proposed Data Centers Study --Strategic Implementation for...

  18. [Systemic lupus erythematosus presenting as Stevens-Johnson syndrome].

    PubMed

    Bellakhal, S; Ben Kaab, B; Teyeb, Z; Souissi, A; Derbel, F; Douggui, M-H

    2015-09-01

    Stevens-Johnson syndrome and toxic epidermal necrolysis are life-threatening dermatological conditions. Their most common cause is medication. However, in a small proportion of patients these dermatological conditions could be the first presentation of systemic lupus erythematosus. We now describe a 34-year-old patient who presented with manifestations of Stevens-Johnson as a first feature of systemic lupus erythematosus. Systemic lupus erythematosus reveled by Stevens-Johnson syndrome has been infrequently reviewed in the previous literature. This diagnosis should be considered when cutaneous adverse drug reactions occur without clear drug causality.

  19. [Bronchiolitis obliterans associated with Stevens-Johnson syndrome].

    PubMed

    Fielli, Mariano; Ceccato, Adrián; González, Alejandra; Villaverde, Marcelo

    2015-01-01

    Stevens-Johnson syndrome is a severe disease which is characterized by fever and mucocutaneous lesions. It has also been described as a small airway compromise in the form of bronchiolitis obliterans. We report a 22-year-old male patient with Stevens-Johnson syndrome due to antibiotic and antiepileptic drug treatment for brain abscess. After the improvement of mucocutaneous lesions, he went to the emergency department because of coughing and progressive shortness of breath. Pulmonary function test revealed a very severe irreversible obstructive defect and a computed tomography scan showed a mosaic attenuation pattern. We discuss this case of bronchiolitis obliterans associated with Stevens-Johnson because of its low incidence.

  20. Evolution of the Behavioral Sciences Branch of the Space Medicine and Health Care Systems Office at the Johnson Space Center.

    PubMed

    Fiedler, Edna R; Carpenter, Frank E

    2005-06-01

    This paper presents a brief history of psychology and psychiatry roles in psychological selection and how these roles have evolved into the Behavioral Sciences Branch at the Johnson Space Center USC), Houston, TX. Since the initial selection of the Mercury Seven, the first United States astronauts, psychologists and psychiatrists have been involved in astronaut selection activities. Initially very involved in psychological selection of astronauts, the role of behavioral health specialists waned during the Gemini and Apollo years. With the onset of the NASA/Mir/International Space Station Program, the introduction of payload and mission specialists, and international collaboration, the evolving need for behavioral health expertise became apparent. Medical and psychological selection processes were revisited and the Johnson Space Center developed a separate operational unit focused on behavioral health and performance. This work unit eventually became the Behavioral Sciences branch of the Space Medicine and Health Care Systems Office. Research was allocated across groups at JSC, other NASA space centers, and the National Space Biomedical Research Institute, and was funded by NASA Headquarters. The current NASA focus on human space exploration to the Moon and beyond re-emphasizes the importance of the human-centered approach. PMID:15943192

  1. Evolution of the Behavioral Sciences Branch of the Space Medicine and Health Care Systems Office at the Johnson Space Center.

    PubMed

    Fiedler, Edna R; Carpenter, Frank E

    2005-06-01

    This paper presents a brief history of psychology and psychiatry roles in psychological selection and how these roles have evolved into the Behavioral Sciences Branch at the Johnson Space Center USC), Houston, TX. Since the initial selection of the Mercury Seven, the first United States astronauts, psychologists and psychiatrists have been involved in astronaut selection activities. Initially very involved in psychological selection of astronauts, the role of behavioral health specialists waned during the Gemini and Apollo years. With the onset of the NASA/Mir/International Space Station Program, the introduction of payload and mission specialists, and international collaboration, the evolving need for behavioral health expertise became apparent. Medical and psychological selection processes were revisited and the Johnson Space Center developed a separate operational unit focused on behavioral health and performance. This work unit eventually became the Behavioral Sciences branch of the Space Medicine and Health Care Systems Office. Research was allocated across groups at JSC, other NASA space centers, and the National Space Biomedical Research Institute, and was funded by NASA Headquarters. The current NASA focus on human space exploration to the Moon and beyond re-emphasizes the importance of the human-centered approach.

  2. 77 FR 9997 - NASA Advisory Council; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-21

    ... SPACE ADMINISTRATION NASA Advisory Council; Meeting AGENCY: National Aeronautics and Space... NASA Advisory Council (NAC). DATES: Thursday, March 8, 2012, 8 a.m.-5 p.m., local time and Friday, March 9, 2012, 8 a.m.-12 p.m., local time. ADDRESSES: NASA Headquarters, 300 E Street SW., Room...

  3. 75 FR 4588 - NASA Advisory Council; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-28

    ... SPACE ADMINISTRATION NASA Advisory Council; Meeting AGENCY: National Aeronautics and Space... newly formed Information Technology Infrastructure Committee of the NASA Advisory Council. This will be...-877-613-3958; 2939943. ADDRESSES: NASA Headquarters, 300 E Street, SW., Washington, DC, Room 2N35...

  4. 75 FR 39973 - NASA Advisory Council; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-13

    ... SPACE ADMINISTRATION NASA Advisory Council; Meeting AGENCY: National Aeronautics and Space... NASA Advisory Council. DATES: Thursday, August 5, 2010, 8 a.m.-5 p.m. (local time) Friday, August 6, 2010, 8 a.m.-12 a.m. (local time). ADDRESSES: NASA Jet Propulsion Laboratory, Von Karman...

  5. 78 FR 20357 - NASA Advisory Council; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-04

    ... SPACE ADMINISTRATION NASA Advisory Council; Meeting AGENCY: National Aeronautics and Space... NASA Advisory Council (NAC). DATES: Wednesday, April 24, 2013, 9:00 a.m.-5:00 p.m., and Thursday, April 25, 2013, 9:00 a.m.-5:00 p.m., Local Time ADDRESSES: NASA Headquarters, 300 E Street SW., Room...

  6. 76 FR 65540 - NASA Advisory Council; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-21

    ... From the Federal Register Online via the Government Publishing Office NATIONAL AERONAUTICS AND SPACE ADMINISTRATION NASA Advisory Council; Meeting AGENCY: National Aeronautics and Space... that the meeting of the NASA Advisory Council scheduled to be held at NASA Goddard Space Flight...

  7. 76 FR 41825 - NASA Advisory Council; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-15

    ... SPACE ADMINISTRATION NASA Advisory Council; Meeting AGENCY: National Aeronautics and Space... NASA Advisory Council (NAC). The agenda topics for the meeting will include: DATES: Thursday, August 4, 2011, 8 a.m.-5 p.m., and Friday, August 5, 2011, 8 a.m.-12 p.m., Local Time. ADDRESSES: NASA...

  8. 75 FR 4588 - NASA Advisory Council; meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-28

    ... SPACE ADMINISTRATION NASA Advisory Council; meeting AGENCY: National Aeronautics and Space... the Aeronautics Committee of the NASA Advisory Council. The meeting will be held for the purpose of....m. to 3 p.m. ADDRESSES: NASA Headquarters, 300 E Street, SW., Washington, DC, Room 6B42. FOR...

  9. 78 FR 72719 - NASA Advisory Council; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-03

    ... SPACE ADMINISTRATION NASA Advisory Council; Meeting AGENCY: National Aeronautics and Space... NASA Advisory Council (NAC). DATES: Wednesday, December 11, 2013, 1:00 p.m.-5:15 p.m., Local Time; and Thursday, December 12, 2013, 9:00 a.m.-4:00 p.m., Local Time. ADDRESSES: NASA Kennedy Space...

  10. 75 FR 5629 - NASA Advisory Council; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-03

    ... SPACE ADMINISTRATION NASA Advisory Council; Meeting AGENCY: National Aeronautics and Space... NASA Advisory Council. DATES: Thursday, February 18, 2010, 9 a.m.-5 p.m. EST; Friday, February 19, 2010, 9 a.m.-1 p.m., EST. ADDRESSES: NASA Headquarters, 300 E Street, SW., Washington, DC 20456, James...

  11. 76 FR 4133 - NASA Advisory Council; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-24

    ... SPACE ADMINISTRATION NASA Advisory Council; Meeting AGENCY: National Aeronautics and Space... NASA Advisory Council. DATES: Thursday, February 10, 2011, 8 a.m.-5 p.m., Local Time. Friday, February 11, 2011, 8 a.m.-12 p.m., Local Time. ADDRESSES: NASA Headquarters, 300 E Street, SW., Room...

  12. 78 FR 41804 - NASA Advisory Council; Meeting.

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-11

    ... SPACE ADMINISTRATION NASA Advisory Council; Meeting. AGENCY: National Aeronautics and Space... NASA Advisory Council (NAC). DATES: Wednesday, July 31, 2013, 1:00 p.m.-5:00 p.m., Local Time; and Thursday, August 1, 2013, 9:00 a.m.-5:00 p.m., Local Time ADDRESSES: NASA Headquarters, Room 9H40,...

  13. NASA Education Implementation Plan 2015-2017

    ERIC Educational Resources Information Center

    National Aeronautics and Space Administration, 2015

    2015-01-01

    The NASA Education Implementation Plan (NEIP) provides an understanding of the role of NASA in advancing the nation's STEM education and workforce pipeline. The document outlines the roles and responsibilities that NASA Education has in approaching and achieving the agency's and administration's strategic goals in STEM Education. The specific…

  14. NASA Science Budget Choices Criticized

    NASA Astrophysics Data System (ADS)

    Zielinski, Sarah

    2006-03-01

    NASA's decision to focus its science efforts on large missions at the expense of smaller missions and research is misguided and will have a long-term negative impact on attracting and retaining scientists and engineers to NASA-related science, several scientists testified at a 2 March hearing. Witnesses at the hearing before the U.S. House of Representatives Science Committee included NASA Associate Administrator for the Science Mission Directorate Mary Cleave and members or chairs of four U.S. National Academy of Sciences (NAS) decadal surveys of various aspects of NASA science. The witnesses discussed cuts and delays to NASA projects proposed in the agency's Fiscal Year 2007 budget request. NASA's science budget would grow by 1.5 percent in FY2007, and then by just one percent per year in 2008-2011 (see Eos 87(9), 2006).

  15. Les Johnson Views Interstellar Sail Material

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Engineers at Marshall Space Flight Center's (MSFC) Interstellar Propulsion Research department are proposing different solutions to combustion propellants for future space travel. One alternative being tested is the solar sail. The idea is, once deployed, the sail will allow solar winds to propel a spacecraft away from Earth and towards its destination. This would allow a spacecraft to travel indefinitely without the need to refuel during its ong journey. Thin reflective sails could be propelled through space by sunlight, microwave beams, or laser beams, just as the wind pushes sailboats on Earth. The sail will be the largest spacecraft ever built, sparning 440 yards, twice the diameter of the Louisiana Super Dome. Construction materials are being tested in a simulated space environment, where they are exposed to harsh conditions to test their performance and durability in extremely hot and cold temperatures. A leading candidate for the construction material is a carbon fiber material whose density is less than 1/10 ounce per square yard, the equivalent of flattening one raisin to the point that it covers a square yard. In space, the material would unfurl like a fan when it is deployed from an expendable rocket. This photo shows Les Johnson, manager of MSFC's Interstellar Propulsion Research Center holding the rigid, lightweight carbon fiber. An artist's concept of the sail is on the right. Mankind's first venture outside of our solar system is proposed for launch in a 2010 timeframe. An interstellar probe, powered by the fastest spacecraft ever flown, will zoom toward the stars at 58 miles per second. It will cover the distance from New York to Los Angeles in less than a minute and will travel over 23 billion miles beyond the edge of the solar system.

  16. Dr. von Braun Escorts President Kennedy and Vice President Johnson

    NASA Technical Reports Server (NTRS)

    1962-01-01

    Marshall Space Flight Center Director Dr. Wernher von Braun explains a detail from a Saturn IB mockup and engine to President John F. Kennedy, Vice President Lyndon Johnson and other guests, September 11, 1962.

  17. NASA Water Resources Program

    NASA Technical Reports Server (NTRS)

    Toll, David L.

    2011-01-01

    projects under five functional themes. I) Streamflow and Flood Forecasting 2) Water Supply and Irrigation (includes evapotranspiration) 3) Drought 4) Water Quality 5) Climate and Water Resources. To maximize this activity NASA Water Resources Program works closely with other government agencies (e.g., the National Oceanic and Atmospheric Administration (NOAA); the U.S. Department of Agriculture (USDA); the U.S. Geological Survey (USGS); the Environmental Protection Agency (EPA), USAID, the Air Force Weather Agency (AFWA)), universities, non-profit national and international organizations, and the private sector. The NASA Water Resources program currently is funding 21 active projects under the functional themes (http://wmp.gsfc.nasa.gov & http://science.nasa.gov/earth-science/applied-sciences/).

  18. NASA Airborne Science Program: NASA Stratospheric Platforms

    NASA Technical Reports Server (NTRS)

    Curry, Robert E.

    2010-01-01

    The National Aeronautics and Space Administration conducts a wide variety of remote sensing projects using several unique aircraft platforms. These vehicles have been selected and modified to provide capabilities that are particularly important for geophysical research, in particular, routine access to very high altitudes, long range, long endurance, precise trajectory control, and the payload capacity to operate multiple, diverse instruments concurrently. While the NASA program has been in operation for over 30 years, new aircraft and technological advances that will expand the capabilities for airborne observation are continually being assessed and implemented. This presentation will review the current state of NASA's science platforms, recent improvements and new missions concepts as well as provide a survey of emerging technologies unmanned aerial vehicles for long duration observations (Global Hawk and Predator). Applications of information technology that allow more efficient use of flight time and the ability to rapidly reconfigure systems for different mission objectives are addressed.

  19. 76 FR 64111 - NASA Advisory Council; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-17

    ... From the Federal Register Online via the Government Publishing Office NATIONAL AERONAUTICS AND SPACE ADMINISTRATION NASA Advisory Council; Meeting AGENCY: National Aeronautics and Space... Law 92-463, as amended, the National Aeronautics and Space Administration announces a meeting of...

  20. 75 FR 4875 - NASA Advisory Council; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-29

    ... Social Media Opportunities and Challenges. Associate Administrator for Education Briefing. Discussion of... From the Federal Register Online via the Government Publishing Office NATIONAL AERONAUTICS AND SPACE ADMINISTRATION NASA Advisory Council; Meeting AGENCY: National Aeronautics and...

  1. NASA science committee appointments

    NASA Astrophysics Data System (ADS)

    Zielinski, Sarah

    2006-10-01

    NASA Administrator Michael Griffin has made three new appointments to the NASA Advisory Council's (NAC' Science Committee, NASA announced on 22 September. Edward David, president of EED, Inc., and science advisor to the President from 1970 to 1973, will serve as the committee-s chair. Also appointed to the committee were Owen Garriott, a retired scientist astronaut, and Alan Stern, executive director of the Space Science and Engineering Division of the Southwest Research Institute (San Antonio, Tex.). David, Garriott, and Stern-who are among nine new members of the full advisory committee that were announced on 22 September-will replace three members of the Science Committee who resigned in August: Science Committee Chair Charles Kennel (Scripps Institution of Oceanography), Wesley Huntress (Carnegie Institution of Washington), and Eugene Levy (Rice University). The NAC's next public meeting will be held on 12 October at Goddard Space Flight Center in Greenbelt, Md.

  2. Developing a Strategic Plan for NASA JSC's Technology Investments

    NASA Technical Reports Server (NTRS)

    Stecklein, Jonette M.

    2012-01-01

    Human space exploration has always been heavily influenced by goals to achieve a specific mission on a specific schedule. This approach drove rapid technology development, the rapidity of which adds risks as well as provides a major driver for costs. The National Aeronautics and Space Administration (NASA) is now approaching the extension of human presence throughout the solar system by balancing a proactive yet less schedule-driven development of technology with opportunistic scheduling of missions as the needed technologies are realized. This approach should provide cost effective, low risk technology development that will enable efficient and effective manned spaceflight missions. As a first step, the NASA Human Spaceflight Architecture Team (HAT) has identified a suite of critical technologies needed to support future manned missions across a range of destinations, including in cislunar space, near earth asteroid visits, lunar exploration, Mars space, and Mars exploration. The challenge now is to develop a strategy and plan for technology development that efficiently enables these missions over a reasonable time period, without increasing technology development costs unnecessarily due to schedule pressure, and subsequently mitigating development and mission risks. NASA fs Johnson Space Center (JSC), as the nation's primary center for human exploration, is addressing this challenge through an innovative approach allocating Internal Research and Development funding to projects that have been prioritized using four focus criteria, with appropriate importance weighting. These four focus criteria are the Human Space Flight Technology Needs, JSC Core Technology Competencies, Commercialization Potential, and Partnership Potential. The inherent coupling in these focus criteria have been captured in a database and have provided an initial prioritization for allocation of technology development research funding. This paper will describe this process and this database

  3. Research and technology of the Lyndon Johnson Space Center

    NASA Technical Reports Server (NTRS)

    1989-01-01

    Johnson Space Center accomplishments in new and advanced concepts during 1988 are highlighted. This year, reports are grouped in sections Space System Technology, Solar System Sciences, Space Transportation Technology, and Medical Sciences. Summary sections describing the role of Johnson Space Center in each program are followed by descriptions of significant tasks. Descriptions are suitable for external consumption, free of technical jargon, and illustrated to increase ease of comprehension.

  4. Johnson Space Center Research and Technology Annual Report 1998-1999

    NASA Technical Reports Server (NTRS)

    Abbey, George W. S.

    2004-01-01

    As the principle center for NASA's Human Exploration and Development of Space (HEDS) Enterprise, the Johnson Space Center (JSC) leads NASA development of human spacecraft, human support systems, and human spacecraft operations. An important element in implementing this mission, JSC has focused on developing the infrastructure and partnerships that enable the technology development for future NASA programs. In our efforts to develop key technologies, we have found that collaborative relationships with private industry and academia strengthen our capabilities, infuse innovative ideas, and provide alternative applications for our development projects. The American public has entrusted NASA with the responsibility for space technology development, and JSC is committed to the transfer of the technologies that we develop to the private sector for further development and application. It is our belief that commercialization of NASA technologies benefits both American industry and NASA through technology innovation and continued partnering. To this end, we present the 1998-1999 JSC Research and Technology Report. As your guide to the current JSC technologies, this report showcases the projects in work at JSC that may be of interest to U.S. industry, academia, and other government agencies (federal, state, and local). For each project, potential alternative uses and commercial applications are described. To aid in your search, projects are arranged according to the Major Product Groups used by CorpTech to classify and index types of industry. Some projects fall into multiple categories and are placed under the predominant category, for example, an artificial intelligence project is listed under the Computer Software category, while its function is to automate a process (Automation category).

  5. Johnson Space Center research and technology

    NASA Technical Reports Server (NTRS)

    1992-01-01

    The accomplishments of JSC during FY 1991 are presented. The report serves to communicate within and outside of NASA significant R&T JSC activities and identifies principle researchers and technologists as contacts for further information. The topics are covered in five sections: life sciences, human support technology, solar system sciences, space systems technology, and space transportation technology. Each of these sections is comprised of a summary followed by detailed descriptions of significant tasks. A listing of project descriptions, along with funding code and principle investigators, is provided in the index.

  6. NASA Shared Services Center breaks ground

    NASA Technical Reports Server (NTRS)

    2006-01-01

    NASA officials and elected leaders were on hand for the groundbreaking ceremony of the NASA Shared Services Center Feb. 24, 2006, on the grounds of Stennis Space Center. The NSSC provides agency centralized administrative processing, human resources, procurement and financial services. From left, Louisiana Economic Development Secretary Mike Olivier, Stennis Space Center Director Rick Gilbrech, Computer Sciences Corp. President Michael Laphen, NASA Deputy Administrator Shana Dale, Rep. Gene Taylor, Sen. Trent Lott, Mississippi Gov. Haley Barbour, NASA Administrator Mike Griffin and Shared Services Center Executive Director Arbuthnot use golden shovels to break ground at the site.

  7. Statement of Aaron Cohen, Director, Research and Engineering, Johnson Space Center and Chairman, Space Station Advanced Technology Advisory Committee, National Aeronautics and Space Administration, before the Subcommittee on Science, Technology, and Space, Committee on Commerce, Science, and Transportation, United States Senate

    NASA Technical Reports Server (NTRS)

    Cohen, A.

    1985-01-01

    The activities of NASA's Space Station Advanced Technology Advisory Committee is discussed. Advanced Technology Advisory Committee (ATAC) activities over the last year are reviewed in preparation of the report to Congress on the potential for advancing automation and robotics technology for the space station and for the U.S. economy.

  8. NASA science communications strategy

    NASA Technical Reports Server (NTRS)

    1995-01-01

    In 1994, the Clinton Administration issued a report, 'Science in the National Interest', which identified new national science goals. Two of the five goals are related to science communications: produce the finest scientists and engineers for the 21st century, and raise scientific and technological literacy of all Americans. In addition to the guidance and goals set forth by the Administration, NASA has been mandated by Congress under the 1958 Space Act to 'provide for the widest practicable and appropriate dissemination concerning its activities and the results thereof'. In addition to addressing eight Goals and Plans which resulted from a January 1994 meeting between NASA and members of the broader scientific, education, and communications community on the Public Communication of NASA's Science, the Science Communications Working Group (SCWG) took a comprehensive look at the way the Agency communicates its science to ensure that any changes the Agency made were long-term improvements. The SCWG developed a Science Communications Strategy for NASA and a plan to implement the Strategy. This report outlines a strategy from which effective science communications programs can be developed and implemented across the agency. Guiding principles and strategic themes for the strategy are provided, with numerous recommendations for improvement discussed within the respective themes of leadership, coordination, integration, participation, leveraging, and evaluation.

  9. NASA Vision. Volume 1, No. 5

    NASA Technical Reports Server (NTRS)

    Fenton, Mary (Editor); Wood, Jennifer (Editor)

    2003-01-01

    Contents include the following: Administrator O'Keefe addresses NASA's return to flight. New independent engineering and safety center. Around the centers. NASA and your library: local libraries making room for space. Robonaut: the next generation. Inspiring the next generation ... of Hispanics. NASA and teachers focus on parks. GSFC director gives keynote address. Agency honor awards. Summer interns join the NASA team. Catching a comet's tail in Earth's atmosphere.

  10. Nondestructive Methods and Special Test Instrumentation Supporting NASA Composite Overwrapped Pressure Vessel Assessments

    NASA Technical Reports Server (NTRS)

    Saulsberry, Regor; Greene, Nathanael; Cameron, Ken; Madaras, Eric; Grimes-Ledesma, Lorie; Thesken, John; Phoenix, Leigh; Murthy, Pappu; Revilock, Duane

    2007-01-01

    Many aging composite overwrapped pressure vessels (COPVs), being used by the National Aeronautics and Space Administration (NASA) are currently under evaluation to better quantify their reliability and clarify their likelihood of failure due to stress rupture and age-dependent issues. As a result, some test and analysis programs have been successfully accomplished and other related programs are still in progress at the NASA Johnson Space Center (JSC) White Sands Test Facility (WSTF) and other NASA centers, with assistance from the commercial sector. To support this effort, a group of Nondestructive Evaluation (NDE) experts was assembled to provide NDE competence for pretest evaluation of test articles and for application of NDE technology to real-time testing. Techniques were required to provide assurance that the test article had adequate structural integrity and manufacturing consistency to be considered acceptable for testing and these techniques were successfully applied. Destructive testing is also being accomplished to better understand the physical and chemical property changes associated with progression toward "stress rupture" (SR) failure, and it is being associated with NDE response, so it can potentially be used to help with life prediction. Destructive work also includes the evaluation of residual stresses during dissection of the overwrap, laboratory evaluation of specimens extracted from the overwrap to evaluate physical property changes, and quantitative microscopy to inform the theoretical micromechanics.

  11. Human Systems Integration (HSI) Case Studies from the NASA Constellation Program

    NASA Technical Reports Server (NTRS)

    Baggerman, Susan; Berdich, Debbie; Whitmore, Mihriban

    2009-01-01

    The National Aeronautics and Space Administration (NASA) Constellation Program is responsible for planning and implementing those programs necessary to send human explorers back to the moon, onward to Mars and other destinations in the solar system, and to support missions to the International Space Station. The Constellation Program has the technical management responsibility for all Constellation Projects, including both human rated and non-human rated vehicles such as the Crew Exploration Vehicle, EVA Systems, the Lunar Lander, Lunar Surface Systems, and the Ares I and Ares V rockets. With NASA s new Vision for Space Exploration to send humans beyond Earth orbit, it is critical to consider the human as a system that demands early and continuous user involvement, inclusion in trade offs and analyses, and an iterative "prototype/test/ redesign" process. Personnel at the NASA Johnson Space Center are involved in the Constellation Program at both the Program and Project levels as human system integrators. They ensure that the human is considered as a system, equal to hardware and software vehicle systems. Systems to deliver and support extended human habitation on the moon are extremely complex and unique, presenting new opportunities to employ Human Systems Integration, or HSI practices in the Constellation Program. The purpose of the paper is to show examples of where human systems integration work is successfully employed in the Constellation Program and related Projects, such as in the areas of habitation and early requirements and design concepts.

  12. NASA Accountability Report

    NASA Technical Reports Server (NTRS)

    1997-01-01

    NASA is piloting fiscal year (FY) 1997 Accountability Reports, which streamline and upgrade reporting to Congress and the public. The document presents statements by the NASA administrator, and the Chief Financial Officer, followed by an overview of NASA's organizational structure and the planning and budgeting process. The performance of NASA in four strategic enterprises is reviewed: (1) Space Science, (2) Mission to Planet Earth, (3) Human Exploration and Development of Space, and (4) Aeronautics and Space Transportation Technology. Those areas which support the strategic enterprises are also reviewed in a section called Crosscutting Processes. For each of the four enterprises, there is discussion about the long term goals, the short term objectives and the accomplishments during FY 1997. The Crosscutting Processes section reviews issues and accomplishments relating to human resources, procurement, information technology, physical resources, financial management, small and disadvantaged businesses, and policy and plans. Following the discussion about the individual areas is Management's Discussion and Analysis, about NASA's financial statements. This is followed by a report by an independent commercial auditor and the financial statements.

  13. NASA head sworn in

    NASA Astrophysics Data System (ADS)

    James C. Fletcher was sworn in on May 12, 1986, as administrator of the National Aeronautics and Space Administration (NASA). At a news conference after he was sworn in, Fletcher said that NASA would deal with both its technical problems and its procedural problems before the shuttle will fly again. According to press accounts, he stressed that funds should be made available to replace the Challenger orbiter, which was lost in an explosion on January 28.Fletcher, who had also headed the agency from 1971 to 1977, succeeds James M. Beggs, who was indicted in December 1985 for conspiring to defraud the federal government while serving as a senior executive at the General Dynamics Corporation.

  14. Research Funding Set for NSF, NASA, EPA.

    ERIC Educational Resources Information Center

    Chemical and Engineering News, 1982

    1982-01-01

    Funds (1983) for National Science Foundation (NSF), National Aeronautics and Space Administration (NASA), and Environmental Protection Agency (EPA) research programs include $1,092,200,000 (NSF), $5.5 billion (NASA), and $119 million (EPA). NSF's science education activities were raised to $30 million in spite of the Administration's plan to phase…

  15. Norine G. Johnson (1935-2011).

    PubMed

    Cantor, Dorothy W; Goodheart, Carol D

    2012-04-01

    On November 19, 2011, Norine G. Johnson, the ninth woman to serve as president of the American Psychological Association (APA), lost a valiant battle with cancer. Norine's curiosity about her grandmother's strength led to much of her later work on the development of strength and resiliency in adolescent girls and in women. She received her doctorate in 1972, with a minor in child development, and she became one of the first to be considered a pediatric psychologist, a newly emerging specialty. Norine became involved in organized psychology as her children got older. When she learned there had not been a woman president of the Massachusetts Psychological Association (MPA) for almost 50 years, she was appalled. An ardent feminist, who had served on MPA's Board of Directors, she could not let the situation remain that way. She ran for president and won, serving from 1981 to 1983, and then mentored many women colleagues into the role. MPA sent her to the Council of the APA as one of their representatives, and she immediately ran for a seat on the Finance Committee, later serving as chair of the committee. During her tenure on the Finance Committee, she helped create financial policy that changed APA from an organization whose assets were threatened and shrinking to a financially solid association. Norine considered Division 35 (Psychology of Women) to be her home in APA, a place filled with warmth, collegiality, and shared values. She and Judith Worell spearheaded the extremely important and successful 1993 National Conference on Education and Training in Feminist Practice. Norine was elected to the APA Board of Directors in 1997, where she served with distinction, continuing to focus on the financial well-being of the Association. Not surprisingly, she went from that role to being elected APA president. Her focus as president was on the changes in the health care delivery system in the United States. She was a staunch champion of the biopsychosocial model of health

  16. Actions Needed to Ensure Scientific and Technical Information is Adequately Reviewed at Goddard Space Flight Center, Johnson Space Center, Langley Research Center, and Marshall Space Flight Center

    NASA Technical Reports Server (NTRS)

    2008-01-01

    This audit was initiated in response to a hotline complaint regarding the review, approval, and release of scientific and technical information (STI) at Johnson Space Center. The complainant alleged that Johnson personnel conducting export control reviews of STI were not fully qualified to conduct those reviews and that the reviews often did not occur until after the STI had been publicly released. NASA guidance requires that STI, defined as the results of basic and applied scientific, technical, and related engineering research and development, undergo certain reviews prior to being released outside of NASA or to audiences that include foreign nationals. The process includes technical, national security, export control, copyright, and trade secret (e.g., proprietary data) reviews. The review process was designed to preclude the inappropriate dissemination of sensitive information while ensuring that NASA complies with a requirement of the National Aeronautics and Space Act of 1958 (the Space Act)1 to provide for the widest practicable and appropriate dissemination of information resulting from NASA research activities. We focused our audit on evaluating the STI review process: specifically, determining whether the roles and responsibilities for the review, approval, and release of STI were adequately defined and documented in NASA and Center-level guidance and whether that guidance was effectively implemented at Goddard Space Flight Center, Johnson Space Center, Langley Research Center, and Marshall Space Flight Center. Johnson was included in the review because it was the source of the initial complaint, and Goddard, Langley, and Marshall were included because those Centers consistently produce significant amounts of STI.

  17. Prostate tumor grown in NASA Bioreactor

    NASA Technical Reports Server (NTRS)

    2001-01-01

    This prostate cancer construct was grown during NASA-sponsored bioreactor studies on Earth. Cells are attached to a biodegradable plastic lattice that gives them a head start in growth. Prostate tumor cells are to be grown in a NASA-sponsored Bioreactor experiment aboard the STS-107 Research-1 mission in 2002. Dr. Leland Chung of the University of Virginia is the principal investigator. The NASA Bioreactor provides a low turbulence culture environment which promotes the formation of large, three-dimensional cell clusters. Due to their high level of cellular organization and specialization, samples constructed in the bioreactor more closely resemble the original tumor or tissue found in the body. The Bioreactor is rotated to provide gentle mixing of fresh and spent nutrient without inducing shear forces that would damage the cells. The work is sponsored by NASA's Office of Biological and Physical Research. The bioreactor is managed by the Biotechnology Cell Science Program at NASA's Johnson Space Center (JSC). NASA-sponsored bioreactor research has been instrumental in helping scientists to better understand normal and cancerous tissue development. In cooperation with the medical community, the bioreactor design is being used to prepare better models of human colon, prostate, breast and ovarian tumors. Cartilage, bone marrow, heart muscle, skeletal muscle, pancreatic islet cells, liver and kidney are just a few of the normal tissues being cultured in rotating bioreactors by investigators. Credit: NASA and the University of Virginia.

  18. 75 FR 4110 - NASA Advisory Council; Technology and Innovation Committee; Meeting.

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-26

    ... SPACE ADMINISTRATION NASA Advisory Council; Technology and Innovation Committee; Meeting. AGENCY... Administration (NASA) announce a meeting of the newly formed Technology and Innovation Committee of the NASA... purpose of reviewing NASA's technology program and exploring the culture of innovation within NASA...

  19. Combination of Steven-Johnson syndrome and neuroleptic malignant syndrome following carbamazepine therapy: a rare occurrence

    PubMed Central

    Sharma, Bhawna; Sannegowda, Raghavendra Bakki; Gandhi, Pankaj; Dubey, Parul; Panagariya, Ashok

    2013-01-01

    Stevens–Johnson syndrome (SJS) is a severe, episodic, acute mucocutaneous reaction that is most often elicited by drugs and occasionally by infections. The drugs commonly implicated as the cause of SJS are anticonvulsants, sulfonamides, non-steroidal anti-inflammatory drugs and antibiotics. Carbamazepine (CBZ) has been commonly implicated in SJS. Neuroleptic malignant syndrome (NMS) is a rare, life-threatening but potentially treatable condition. Among the neuroleptics, haloperidol (parenteral) is implicated as a most common drug for NMS. Though rare, association of NMS with CBZ and association of NMS with toxic epidermal necrolysis (TEN) in a single patient after administration of neuroleptics has been reported in the literature before. However, a combination of NMS and SJS in a single patient after administration of CBZ has not been reported so far. We present a patient with seizure who developed SJS and NMS following administration of CBZ. PMID:23761563

  20. 77 FR 55863 - NASA Advisory Council; Science Committee; Earth Science Subcommittee; Applied Sciences Advisory...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-11

    ... SPACE ADMINISTRATION NASA Advisory Council; Science Committee; Earth Science Subcommittee; Applied Sciences Advisory Group Meeting AGENCY: National Aeronautics and Space Administration. ACTION: Notice of... Aeronautics and Space Administration (NASA) announces a meeting of the Applied Science Advisory Group....

  1. 75 FR 60484 - NASA Advisory Council; Science Committee; Earth Science Subcommittee; Applied Sciences Advisory...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-30

    ... SPACE ADMINISTRATION NASA Advisory Council; Science Committee; Earth Science Subcommittee; Applied Sciences Advisory Group Meeting AGENCY: National Aeronautics and Space Administration. ACTION: Notice of..., the National Aeronautics and Space Administration (NASA) announces a meeting of the Applied...

  2. 78 FR 20696 - NASA Advisory Council; Human Exploration and Operations Committee; Research Subcommittee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-05

    ... SPACE ADMINISTRATION NASA Advisory Council; Human Exploration and Operations Committee; Research Subcommittee; Meeting AGENCY: National Aeronautics and Space Administration. ACTION: Notice of meeting. SUMMARY... Aeronautics and Space Administration (NASA) announces a meeting of the Research Subcommittee of the...

  3. 78 FR 64253 - NASA Advisory Council; Science Committee; Planetary Protection Subcommittee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-28

    ... SPACE ADMINISTRATION NASA Advisory Council; Science Committee; Planetary Protection Subcommittee; Meeting AGENCY: National Aeronautics and Space Administration. ACTION: Notice of meeting. SUMMARY: In... and Space Administration (NASA) announces a meeting of the Planetary Protection Subcommittee of...

  4. Swamp Works: A New Approach to Develop Space Mining and Resource Extraction Technologies at the National Aeronautics Space Administration (NASA) Kennedy Space Center (KSC)

    NASA Technical Reports Server (NTRS)

    Mueller, R. P.; Sibille, L.; Leucht, K.; Smith, J. D.; Townsend, I. I.; Nick, A. J.; Schuler, J. M.

    2015-01-01

    The first steps for In Situ Resource Utilization (ISRU) on target bodies such as the Moon, Mars and Near Earth Asteroids (NEA), and even comets, involve the same sequence of steps as in the terrestrial mining of resources. First exploration including prospecting must occur, and then the resource must be acquired through excavation methods if it is of value. Subsequently a load, haul and dump sequence of events occurs, followed by processing of the resource in an ISRU plant, to produce useful commodities. While these technologies and related supporting operations are mature in terrestrial applications, they will be different in space since the environment and indigenous materials are different than on Earth. In addition, the equipment must be highly automated, since for the majority of the production cycle time, there will be no humans present to assist or intervene. This space mining equipment must withstand a harsh environment which includes vacuum, radical temperature swing cycles, highly abrasive lofted dust, electrostatic effects, van der Waals forces effects, galactic cosmic radiation, solar particle events, high thermal gradients when spanning sunlight terminators, steep slopes into craters / lava tubes and cryogenic temperatures as low as 40 K in permanently shadowed regions. In addition the equipment must be tele-operated from Earth or a local base where the crew is sheltered. If the tele-operation occurs from Earth then significant communications latency effects mandate the use of autonomous control systems in the mining equipment. While this is an extremely challenging engineering design scenario, it is also an opportunity, since the technologies developed in this endeavor could be used in the next generations of terrestrial mining equipment, in order to mine deeper, safer, more economical and with a higher degree of flexibility. New space technologies could precipitate new mining solutions here on Earth. The NASA KSC Swamp Works is an innovation

  5. NASA spinoffs to public service

    NASA Technical Reports Server (NTRS)

    Ault, L. A.; Cleland, J. G.

    1989-01-01

    The National Aeronautics and Space Administration (NASA) Technology Utilization (TU) Division of the Office of Commercial Programs has been quite successful in directing the transfer to technology into the public sector. NASA developments of particular interest have been those in the areas of aerodynamics and aviation transport, safety, sensors, electronics and computing, and satellites and remote sensing. NASA technology has helped law enforcement, firefighting, public transportation, education, search and rescue, and practically every other sector of activity serving the U.S. public. NASA works closely with public service agencies and associations, especially those serving local needs of citizens, to expedite technology transfer benefits. A number of examples exist to demonstrate the technology transfer method and opportunities of NASA spinoffs to public service.

  6. NASA information resources management handbook

    NASA Technical Reports Server (NTRS)

    1992-01-01

    This National Aeronautics and Space Administration (NASA) Handbook (NHB) implements recent changes to Federal laws and regulations involving the acquisition, management, and use of Federal Information Processing (FIP) resources. This document defines NASA's Information Resources Management (IRM) practices and procedures and is applicable to all NASA personnel. The dynamic nature of the IRM environment requires that the controlling management practices and procedures for an Agency at the leading edge of technology, such as NASA, must be periodically updated to reflect the changes in this environment. This revision has been undertaken to accommodate changes in the technology and the impact of new laws and regulations dealing with IRM. The contents of this document will be subject to a complete review annually to determine its continued applicability to the acquisition, management, and use of FIP resources by NASA. Updates to this document will be accomplished by page changes. This revision cancels NHB 2410.1D, dated April 1985.

  7. 14 CFR § 1221.109 - Use of the NASA Seal.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 5 2014-01-01 2014-01-01 false Use of the NASA Seal. § 1221.109 Section § 1221.109 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION THE NASA SEAL AND OTHER DEVICES, AND THE CONGRESSIONAL SPACE MEDAL OF HONOR NASA Seal, NASA Insignia, NASA Logotype, NASA...

  8. NASA's Plan for SDLS Testing

    NASA Technical Reports Server (NTRS)

    Bailey, Brandon

    2015-01-01

    The Space Data Link Security (SDLS) Protocol is a Consultative Committee for Space Data Systems (CCSDS) standard which extends the known Data Link protocols to secure data being sent over a space link by providing confidentiality and integrity services. This plan outlines the approach by National Aeronautics Space Administration (NASA) in performing testing of the SDLS protocol using a prototype based on an existing NASA missions simulator.

  9. 14 CFR 1221.105 - Establishment of NASA Program Identifiers.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 5 2011-01-01 2010-01-01 true Establishment of NASA Program Identifiers. 1221.105 Section 1221.105 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION THE NASA SEAL AND OTHER DEVICES, AND THE CONGRESSIONAL SPACE MEDAL OF HONOR NASA Seal, NASA Insignia,...

  10. 14 CFR 1221.105 - Establishment of NASA Program Identifiers.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 5 2012-01-01 2012-01-01 false Establishment of NASA Program Identifiers. 1221.105 Section 1221.105 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION THE NASA SEAL AND OTHER DEVICES, AND THE CONGRESSIONAL SPACE MEDAL OF HONOR NASA Seal, NASA Insignia,...

  11. 14 CFR 1221.105 - Establishment of NASA Program Identifiers.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 5 2013-01-01 2013-01-01 false Establishment of NASA Program Identifiers. 1221.105 Section 1221.105 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION THE NASA SEAL AND OTHER DEVICES, AND THE CONGRESSIONAL SPACE MEDAL OF HONOR NASA Seal, NASA Insignia,...

  12. 14 CFR 1221.105 - Establishment of NASA Program Identifiers.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 5 2010-01-01 2010-01-01 false Establishment of NASA Program Identifiers. 1221.105 Section 1221.105 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION THE NASA SEAL AND OTHER DEVICES, AND THE CONGRESSIONAL SPACE MEDAL OF HONOR NASA Seal, NASA Insignia,...

  13. 76 FR 64122 - NASA Advisory Committee; Renewal of NASA's International Space Station Advisory Committee Charter

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-17

    ... From the Federal Register Online via the Government Publishing Office NATIONAL AERONAUTICS AND... Committee Charter AGENCY: National Aeronautics and Space Administration (NASA). ACTION: Notice of renewal... the National ] Aeronautics and Space Administration has determined that a renewal of the...

  14. Neo-Taylorism in Educational Administration?

    ERIC Educational Resources Information Center

    Gronn, Peter C.

    1982-01-01

    Reviews eight recent observational studies of school administrators and criticizes the studies' use of "time and motion" assumptions drawn from Frederick Winslow Taylor's ideas. Outlines an alternate approach based on "thick" description of administrators' work, including their talk, as exemplified in James Boswell's biography of Samuel Johnson.…

  15. NASA Space Launch System Operations Outlook

    NASA Technical Reports Server (NTRS)

    Hefner, William Keith; Matisak, Brian P.; McElyea, Mark; Kunz, Jennifer; Weber, Philip; Cummings, Nicholas; Parsons, Jeremy

    2014-01-01

    The National Aeronautics and Space Administration's (NASA) Space Launch System (SLS) Program, managed at the Marshall Space Flight Center (MSFC), is working with the Ground Systems Development and Operations (GSDO) Program, based at the Kennedy Space Center (KSC), to deliver a new safe, affordable, and sustainable capability for human and scientific exploration beyond Earth's orbit (BEO). Larger than the Saturn V Moon rocket, SLS will provide 10 percent more thrust at liftoff in its initial 70 metric ton (t) configuration and 20 percent more in its evolved 130-t configuration. The primary mission of the SLS rocket will be to launch astronauts to deep space destinations in the Orion Multi- Purpose Crew Vehicle (MPCV), also in development and managed by the Johnson Space Center. Several high-priority science missions also may benefit from the increased payload volume and reduced trip times offered by this powerful, versatile rocket. Reducing the lifecycle costs for NASA's space transportation flagship will maximize the exploration and scientific discovery returned from the taxpayer's investment. To that end, decisions made during development of SLS and associated systems will impact the nation's space exploration capabilities for decades. This paper will provide an update to the operations strategy presented at SpaceOps 2012. It will focus on: 1) Preparations to streamline the processing flow and infrastructure needed to produce and launch the world's largest rocket (i.e., through incorporation and modification of proven, heritage systems into the vehicle and ground systems); 2) Implementation of a lean approach to reach-back support of hardware manufacturing, green-run testing, and launch site processing and activities; and 3) Partnering between the vehicle design and operations communities on state-of-the-art predictive operations analysis techniques. An example of innovation is testing the integrated vehicle at the processing facility in parallel, rather than

  16. NASA Space Launch System Operations Outlook

    NASA Technical Reports Server (NTRS)

    Hefner, William Keith; Matisak, Brian P.; McElyea, Mark; Kunz, Jennifer; Weber, Philip; Cummings, Nicholas; Parsons, Jeremy

    2014-01-01

    The National Aeronautics and Space Administration's (NASA) Space Launch System (SLS) Program, managed at the Marshall Space Flight Center (MSFC), is working with the Ground Systems Development and Operations (GSDO) Program, based at the Kennedy Space Center (KSC), to deliver a new safe, affordable, and sustainable capability for human and scientific exploration beyond Earth's orbit (BEO). Larger than the Saturn V Moon rocket, SLS will provide 10 percent more thrust at liftoff in its initial 70 metric ton (t) configuration and 20 percent more in its evolved 130-t configuration. The primary mission of the SLS rocket will be to launch astronauts to deep space destinations in the Orion Multi-Purpose Crew Vehicle (MPCV), also in development and managed by the Johnson Space Center. Several high-priority science missions also may benefit from the increased payload volume and reduced trip times offered by this powerful, versatile rocket. Reducing the life-cycle costs for NASA's space transportation flagship will maximize the exploration and scientific discovery returned from the taxpayer's investment. To that end, decisions made during development of SLS and associated systems will impact the nation's space exploration capabilities for decades. This paper will provide an update to the operations strategy presented at SpaceOps 2012. It will focus on: 1) Preparations to streamline the processing flow and infrastructure needed to produce and launch the world's largest rocket (i.e., through incorporation and modification of proven, heritage systems into the vehicle and ground systems); 2) Implementation of a lean approach to reachback support of hardware manufacturing, green-run testing, and launch site processing and activities; and 3) Partnering between the vehicle design and operations communities on state-ofthe- art predictive operations analysis techniques. An example of innovation is testing the integrated vehicle at the processing facility in parallel, rather than

  17. NASA Astrophysics Technology Needs

    NASA Technical Reports Server (NTRS)

    Stahl, H. Philip

    2012-01-01

    July 2010, NASA Office of Chief Technologist (OCT) initiated an activity to create and maintain a NASA integrated roadmap for 15 key technology areas which recommend an overall technology investment strategy and prioritize NASA?s technology programs to meet NASA?s strategic goals. Science Instruments, Observatories and Sensor Systems(SIOSS) roadmap addresses technology needs to achieve NASA?s highest priority objectives -- not only for the Science Mission Directorate (SMD), but for all of NASA.

  18. NASA Medical Response to Human Spacecraft Accidents

    NASA Technical Reports Server (NTRS)

    Patlach, Robert

    2010-01-01

    Manned space flight is risky business. Accidents have occurred and may occur in the future. NASA's manned space flight programs, with all their successes, have had three fatal accidents, one at the launch pad and two in flight. The Apollo fire and the Challenger and Columbia accidents resulted in a loss of seventeen crewmembers. Russia's manned space flight programs have had three fatal accidents, one ground-based and two in flight. These accidents resulted in the loss of five crewmembers. Additionally, manned spacecraft have encountered numerous close calls with potential for disaster. The NASA Johnson Space Center Flight Safety Office has documented more than 70 spacecraft incidents, many of which could have become serious accidents. At the Johnson Space Center (JSC), medical contingency personnel are assigned to a Mishap Investigation Team. The team deploys to the accident site to gather and preserve evidence for the Accident Investigation Board. The JSC Medical Operations Branch has developed a flight surgeon accident response training class to capture the lessons learned from the Columbia accident. This presentation will address the NASA Mishap Investigation Team's medical objectives, planned response, and potential issues that could arise subsequent to a manned spacecraft accident. Educational Objectives are to understand the medical objectives and issues confronting the Mishap Investigation Team medical personnel subsequent to a human space flight accident.

  19. 75 FR 35091 - NASA Advisory Council; Science Committee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-21

    ... SPACE ADMINISTRATION NASA Advisory Council; Science Committee; Meeting AGENCY: National Aeronautics and... Committee Act, Public Law 92-463, as amended, the National Aeronautics and Space Administration (NASA) announces a meeting of the Science Committee of the NASA Advisory Council (NAC). This Committee reports...

  20. 76 FR 17158 - NASA Advisory Council; Science Committee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-28

    ... SPACE ADMINISTRATION NASA Advisory Council; Science Committee; Meeting AGENCY: National Aeronautics and... Committee Act, Public Law 92-463, as amended, the National Aeronautics and Space Administration (NASA) announces a meeting of the Science Committee of the NASA Advisory Council (NAC). This Committee reports...

  1. 76 FR 8380 - NASA Advisory Council; Science Committee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-14

    ... SPACE ADMINISTRATION NASA Advisory Council; Science Committee; Meeting AGENCY: National Aeronautics and... Committee Act, Public Law 92-463, as amended, the National Aeronautics and Space Administration (NASA) announces a meeting of the Science Committee of the NASA Advisory Council (NAC). This Committee reports...

  2. 76 FR 59446 - NASA Advisory Council; Science Committee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-26

    ... SPACE ADMINISTRATION NASA Advisory Council; Science Committee; Meeting AGENCY: National Aeronautics and... Committee Act, Public Law 92-462, as amended, the National Aeronautics and Space Administration (NASA) announces a meeting of the Science Committee of the NASA Advisory Council (NAC). This Committee reports...

  3. 76 FR 41824 - NASA Advisory Council; Science Committee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-15

    ... SPACE ADMINISTRATION NASA Advisory Council; Science Committee; Meeting AGENCY: National Aeronautics and... Committee Act, Public Law 92-462, as amended, the National Aeronautics and Space Administration (NASA) announces a meeting of the Science Committee of the NASA Advisory Council (NAC). This Committee reports...

  4. 78 FR 77502 - NASA Applied Sciences Advisory Committee Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-23

    ... SPACE ADMINISTRATION NASA Applied Sciences Advisory Committee Meeting AGENCY: National Aeronautics and... Committee Act, Public Law 92-463, as amended, the National Aeronautics and Space Administration (NASA..., 2014, 8:30 a.m. to 3:00 p.m., Local Time. ADDRESSES: NASA Headquarters, Room 3P40, 300 E Street...

  5. 75 FR 54389 - NASA Advisory Council; Science Committee; Meeting.

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-07

    ... SPACE ADMINISTRATION NASA Advisory Council; Science Committee; Meeting. AGENCY: National Aeronautics and... Committee Act, Public Law 92-463, as amended, the National Aeronautics and Space Administration (NASA) announces a meeting of the Science Committee of the NASA Advisory Council (NAC). This Committee reports...

  6. 78 FR 64442 - NASA FAR Supplement: Proposal Adequacy Checklist

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-29

    ... SPACE ADMINISTRATION 48 CFR Parts 1815 and 1852 RIN 2700-AE13 NASA FAR Supplement: Proposal Adequacy Checklist AGENCY: National Aeronautics and Space Administration. ACTION: Proposed rule. SUMMARY: NASA is proposing to amend the NASA FAR Supplement (NFS) to incorporate a proposal adequacy checklist for...

  7. 78 FR 20357 - NASA Advisory Council; Science Committee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-04

    ... SPACE ADMINISTRATION NASA Advisory Council; Science Committee; Meeting AGENCY: National Aeronautics and... Committee Act, Public Law 92-462, as amended, the National Aeronautics and Space Administration (NASA) announces a meeting of the Science Committee of the NASA Advisory Council (NAC). This Committee reports...

  8. EVA Development and Verification Testing at NASA's Neutral Buoyancy Laboratory

    NASA Technical Reports Server (NTRS)

    Jairala, Juniper C.; Durkin, Robert; Marak, Ralph J.; Sipila, Stepahnie A.; Ney, Zane A.; Parazynski, Scott E.; Thomason, Arthur H.

    2012-01-01

    As an early step in the preparation for future Extravehicular Activities (EVAs), astronauts perform neutral buoyancy testing to develop and verify EVA hardware and operations. Neutral buoyancy demonstrations at NASA Johnson Space Center's Sonny Carter Training Facility to date have primarily evaluated assembly and maintenance tasks associated with several elements of the International Space Station (ISS). With the retirement of the Shuttle, completion of ISS assembly, and introduction of commercial players for human transportation to space, evaluations at the Neutral Buoyancy Laboratory (NBL) will take on a new focus. Test objectives are selected for their criticality, lack of previous testing, or design changes that justify retesting. Assembly tasks investigated are performed using procedures developed by the flight hardware providers and the Mission Operations Directorate (MOD). Orbital Replacement Unit (ORU) maintenance tasks are performed using a more systematic set of procedures, EVA Concept of Operations for the International Space Station (JSC-33408), also developed by the MOD. This paper describes the requirements and process for performing a neutral buoyancy test, including typical hardware and support equipment requirements, personnel and administrative resource requirements, examples of ISS systems and operations that are evaluated, and typical operational objectives that are evaluated.

  9. Research and technology, Lyndon B. Johnson Space Center

    NASA Technical Reports Server (NTRS)

    1984-01-01

    Johnson Space Center accomplishments in new and advanced concepts during 1984 are highlighted. Included are research funded by the Office of Aeronautics and Space Technology; Advanced Programs tasks funded by the Office of Space Flight; and Solar System Exploration and Life Sciences research funded by the Office of Space Sciences and Applications. Summary sections describing the role of the Johnson Space Center in each program are followed by one page descriptions of significant projects. Descriptions are suitable for external consumption, free of technical jargon, and illustrated to increase ease of comprehension.

  10. Research and technology of the Lyndon B. Johnson Space Center

    NASA Technical Reports Server (NTRS)

    1988-01-01

    Johnson Space Center accomplishments in new and advanced concepts during 1987 are highlighted. Included are research projects funded by the Office of Aeronautics and Space Technology, Solar System Exploration and Life Sciences research funded by the Office of Space Sciences and Applications, and advanced Programs tasks funded by the Office of Space Flight. Summary sections describing the role of the Johnson Space Center in each program are followed by descriptions of significant projects. Descriptions are suitable for external consumption, free of technical jargon, and illustrated to increase ease of comprehension.

  11. Research and technology at the Lyndon B. Johnson Space Center

    NASA Technical Reports Server (NTRS)

    1983-01-01

    Johnson Space Center accomplishments in new and advanced concepts during 1983 are highlighted. Included are research funded by the Office of Aeronautics and Space Technology; Advanced Programs tasks funded by the Office of Space Flight; and Solar System Explorations, Life Sciences, and Earth Sciences and Applications research funded by the Office of Space Sciences and Applications. Summary sections describing the role of the Johnson Space Center in each program are followed by one-page descriptions of significant projects. Descriptions are suitable for external consumption, free of technical jargon, and illustrated to increase ease of comprehension.

  12. NASA Exhibits

    NASA Technical Reports Server (NTRS)

    Deardorff, Glenn; Djomehri, M. Jahed; Freeman, Ken; Gambrel, Dave; Green, Bryan; Henze, Chris; Hinke, Thomas; Hood, Robert; Kiris, Cetin; Moran, Patrick; Biegel, Bryan (Technical Monitor)

    2001-01-01

    A series of NASA presentations for the Supercomputing 2001 conference are summarized. The topics include: (1) Mars Surveyor Landing Sites "Collaboratory"; (2) Parallel and Distributed CFD for Unsteady Flows with Moving Overset Grids; (3) IP Multicast for Seamless Support of Remote Science; (4) Consolidated Supercomputing Management Office; (5) Growler: A Component-Based Framework for Distributed/Collaborative Scientific Visualization and Computational Steering; (6) Data Mining on the Information Power Grid (IPG); (7) Debugging on the IPG; (8) Debakey Heart Assist Device: (9) Unsteady Turbopump for Reusable Launch Vehicle; (10) Exploratory Computing Environments Component Framework; (11) OVERSET Computational Fluid Dynamics Tools; (12) Control and Observation in Distributed Environments; (13) Multi-Level Parallelism Scaling on NASA's Origin 1024 CPU System; (14) Computing, Information, & Communications Technology; (15) NAS Grid Benchmarks; (16) IPG: A Large-Scale Distributed Computing and Data Management System; and (17) ILab: Parameter Study Creation and Submission on the IPG.

  13. Highlighting Your Science to NASA

    NASA Astrophysics Data System (ADS)

    Sharkey, C.

    2003-12-01

    An effort is underway to provide greater visibility within NASA headquarters, and to those who provide funding to NASA, of the outstanding work that is being performed by scientists involved in the Solar System Exploration Research and Analysis Programs, most of whom are DPS members. In support of this effort, a new feature has been developed for the NASA Headquarters Solar System Exploration Division web site whereby researchers can provide a synopsis of their current research results. The site (http://solarsystem.nasa.gov/spotlight/ - Username: your email address Password: sse) is an online submission area where NASA-funded scientists can upload the results of their research. There they provide their contact information, briefly describe their research, and upload any associated images or graphics. The information is available to a limited number of reviewers and writers at JPL. Each month, one researcher's work will be chosen as a science spotlight. After a writer interviews the scientist, a brief Power Point presentation that encapsulates their work will be given to Dr. Colleen Hartman at NASA headquarters. She will then present the exciting findings to Associate Administrator for Space Science, Dr. Ed Weiler. The information from some of these highlights can serve as a basis to bring Principal Investigators to NASA Headquarters for exposure to media through Space Science Updates on NASA television. In addition, the science results may also be incorporated into briefing material for the Office of Management and Budget and congressional staffers. Some spotlights will also be converted into feature stories for the Solar System Exploration website so the public, too, can learn about exciting new research. The site, http://solarsystem.nasa.gov/, is one of NASA's most visited. Over the past decade, there has been a trend of flat budgets for Research and Analysis activities. By giving more visibility to results of Solar System research, our goal is to encourage

  14. NASA Astronaut Selection 2009: Behavioral Overview

    NASA Technical Reports Server (NTRS)

    Holland, A. W.; Sipes, W.; Beven, G.; Schmidt, L.; Slack, K.; Seaton, K.; Moomaw, R.; VanderArk, S.

    2010-01-01

    NASA's multi-phase U.S. astronaut selection process seeks to identify the most qualified astronaut candidates from a large number of applicants. With the approaching retirement of the Space Shuttle, NASA focused on selecting those individuals who were most suited to the unique demands of long-duration spaceflight. In total, NASA received 3,535 applications for the 2009 astronaut selection cycle. Of these, 123 were invited to NASA Johnson Space Center (JSC) for Round 1 initial screening and interviews, which consisted of an Astronaut Selection Board (ASB) preliminary interview, medical review, and psychological testing. Of these, 48 individuals were invited to return for Round 2. This round consisted of medical testing, further behavioral assessments, and a second ASB interview. Following this, nine astronaut candidates (ASCANs) were ultimately chosen to go forward to basic training. The contents, benefits, and lessons learned from implementing this phased process will be discussed. The lessons learned can benefit the future selection of space flyers, whether they are NASA or commercial. Learning Objective: 1) Familiarization with the 2009 NASA behavioral screening process for astronaut applicants.

  15. The History of the Animal Care Program at NASA Johnson Space Center

    NASA Technical Reports Server (NTRS)

    Khan-Mayberry, Noreen; Bassett, Stephanie

    2010-01-01

    This slide presentation reviews the work of the Animal Care Program (ACP). Animals have been used early in space exploration to ascertain if it were possible to launch a manned spacecraft. The program is currently involved in many studies that assist in enhancing the scientific knowledge of the effect of space travel. The responsibilities of the ACP are: (1) Organize and supervise animal care operations & activities (research, testing & demonstration). (2) Maintain full accreditation by the International Association for the Assessment and Accreditation of Laboratory Animal Care (AAALAC) (3) Ensure protocol compliance with IACUC recommendations (4) Training astronauts for in-flight animal experiments (5) Maintain accurate & timely records for all animal research testing approved by JSC IACUC (6) Organize IACUC meetings and assist IACUC members (7) Coordinate IACUC review of the Institutional Program for Humane Care and Use of Animals (every 6 mos)

  16. Configuration Management (CM) Support for KM Processes at NASA/Johnson Space Center (JSC)

    NASA Technical Reports Server (NTRS)

    Cioletti, Louis

    2010-01-01

    Collection and processing of information are critical aspects of every business activity from raw data to information to an executable decision. Configuration Management (CM) supports KM practices through its automated business practices and its integrated operations within the organization. This presentation delivers an overview of JSC/Space Life Sciences Directorate (SLSD) and its methods to encourage innovation through collaboration and participation. Specifically, this presentation will illustrate how SLSD CM creates an embedded KM activity with an established IT platform to control and update baselines, requirements, documents, schedules, budgets, while tracking changes essentially managing critical knowledge elements.

  17. 75 FR 70951 - NASA Advisory Council; NASA Commercial Space Committee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-19

    ... SPACE ADMINISTRATION NASA Advisory Council; NASA Commercial Space Committee; Meeting AGENCY: National Aeronautics and Space Administration. ACTION: Notice of meeting. SUMMARY: In accordance with the Federal Advisory Committee Act, Public Law 92-463, as amended, the National Aeronautics and Space...

  18. NASA Balloon Technology Developments

    NASA Technical Reports Server (NTRS)

    Fairbrother, D. A.

    2004-01-01

    The National Aeronautics and Space Administration (NASA) Balloon Program has been, and will continue to be, committed to improving the capabilities of balloons to support science missions. Fundamental to vehicle improvement is a program of technology development that will enable improved flight performance throughout the next decade. The program s technology thrust areas include: materials, vehicle design & development, structural analysis, operations & support systems, performance modeling and planetary balloons. Building on the foundations of the 18-year research and development program, a technology roadmap has been generated which identifies specific areas of interest to NASA and the vision of future developments. The major components of the roadmap are: vehicle systems, balloon-craft systems, operational and safety support systems, and planetary vehicles. Current technology activities include nanocomposite balloon films, a new balloon designed to lift 3600 kgs to 36 km, a balloon rotation rate study and Mars pumpkin balloon investigations. The technology roadmap, as well as specific projects and recent advancements, will be presented.

  19. NASA balloon technology developments

    NASA Astrophysics Data System (ADS)

    Fairbrother, D. A.

    The National Aeronautics and Space Administration (NASA) Balloon Program has been, and will continue to be, committed to improving the capabilities of balloons to support science missions. Fundamental to vehicle improvement is a program of technology development that will enable improved flight performance throughout the next decade. The program's technology thrust areas include: materials, vehicle design & development, structural analysis, operations & support systems, performance modeling and planetary balloons. Building on the foundations of the 18-year research and development program, a technology roadmap has been generated which identifies specific areas of interest to NASA and the vision of future developments. The major components of the roadmap are: vehicle systems, ballooncraft systems, operational and safety support systems, and planetary vehicles. Current technology activities include nanocomposite balloon films, a new balloon designed to lift 3600 kgs to 36 km, a balloon rotation rate study and Mars pumpkin balloon investigations. The technology roadmap, as well as specific projects and recent advancements, will be presented.

  20. Space debris modeling at NASA

    NASA Astrophysics Data System (ADS)

    Johnson, Nicholas L.

    2001-10-01

    Since the Second European Conference on Space Debris in 1997, the Orbital Debris Program Office at the NASA Johnson Space Center has undertaken a major effort to update and improve the principal software tools employed to model the space debris environment and to evaluate mission risks. NASA's orbital debris engineering model, ORDEM, represents the current and near-term Earth orbital debris population from the largest spacecraft to the smallest debris in a manner which permits spacecraft engineers and experimenters to estimate the frequency and velocity with which a satellite may be struck by debris of different sizes. Using expanded databases and a new program design, ORDEM2000 provides a more accurate environment definition combined with a much broader array of output products in comparison with its predecessor, ORDEM96. Studies of the potential long-term space debris environment are now conducted with EVOVLE 4.0, which incorporates significant advances in debris characterization and breakup modeling. An adjunct to EVOLVE 4.0, GEO EVOLVE has been created to examine debris issues near the geosynchronous orbital regime. In support of NASA Safety Standard (NSS) 1740.14, which establishes debris mitigation guidelines for all NASA space programs, a set of evaluation tools called the Debris Assessment Software (DAS) is specifically designed for program offices to determine whether they are in compliance with NASA debris mitigation guidelines. DAS 1.5 has recently been completed with improved WINDOWS compatibility and graphics functions. DAS 2.0 will incorporate guideline changes in a forthcoming revision to NSS 1740.14. Whereas DAS contains a simplified model to calculate possible risks associated with satellite reentries, NASA's higher fidelity Object Reentry Survival Analysis Tool (ORSAT) has been upgraded to Version 5.0. With the growing awareness of the potential risks posed by uncontrolled satellite reentries to people and property on Earth, the application of

  1. The NASA OCEAN project--an ocean-space analog

    PubMed

    Chamberland, D

    1996-01-01

    An advanced life support system (ALS) with bioregenerative components may one day be required for long-term, deep space exploration, in extended missions to Mars or in establishing long-term bases on the moon. Intensive research programs on such ALS systems have been ongoing throughout the National Aeronautics and Space Administration (NASA) since 1988. Notably, projects have been initiated at the John F. Kennedy Space Center (KSC), Ames Research Center (ARC), and the Lyndon B. Johnson Space Center (JSC). The KSC ALS work has been named the "Breadboard Project" because of its approach developing the components and combining them into a breadboard to understanding the bioregenerative ALS picture [also called a Controlled Ecological Life Support System (CELSS)] in smaller pieces, similar to an electronic "breadboard." The Breadboard Project has been involved for 7 years in the study of higher crops grown in a 113 m3 chamber--the longest operating and largest such closed, controlled growth chamber in the world. This chamber has proven itself to be very successful in growing a wide variety of crops from seedlings to harvest and in helping researchers understand the complex biological cycle of such edible plants in closed, environmentally controlled environments. Because the system's ultimate use will be a more challenging environment, moving a specially designed piece of the system into extreme conditions was an important test. Engineers at KSC developed a compact, portable, functional plant module for testing in the world's only fixed seafloor laboratory at Key Largo, FL. The laboratory, called MarineLab, is operated out of the facilities of the Marine Resources Development Foundation in a lagoon of some 10 m depth. The project was called the OCEAN project (Ocean CELSS Experimental Analog NASA).

  2. NEEMO - NASA's Extreme Environment Mission Operations: On to a NEO

    NASA Technical Reports Server (NTRS)

    Bell, M. S.; Baskin, P. J.; Todd, W. L.

    2011-01-01

    During NEEMO missions, a crew of six Aquanauts lives aboard the National Oceanic and Atmospheric Administration (NOAA) Aquarius Underwater Laboratory the world's only undersea laboratory located 5.6 km off shore from Key Largo, Florida. The Aquarius habitat is anchored 62 feet deep on Conch Reef which is a research only zone for coral reef monitoring in the Florida Keys National Marine Sanctuary. The crew lives in saturation for a week to ten days and conducts a variety of undersea EVAs (Extra Vehicular Activities) to test a suite of long-duration spaceflight Engineering, Biomedical, and Geoscience objectives. The crew also tests concepts for future lunar exploration using advanced navigation and communication equipment in support of the Constellation Program planetary exploration analog studies. The Astromaterials Research and Exploration Science (ARES) Directorate and Behavioral Health and Performance (BHP) at NASA/Johnson Space Center (JSC), Houston, Texas support this effort to produce a high-fidelity test-bed for studies of human planetary exploration in extreme environments as well as to develop and test the synergy between human and robotic curation protocols including sample collection, documentation, and sample handling. The geoscience objectives for NEEMO missions reflect the requirements for Lunar Surface Science outlined by the LEAG (Lunar Exploration Analysis Group) and CAPTEM (Curation and Analysis Planning Team for Extraterrestrial Materials) white paper [1]. The BHP objectives are to investigate best meas-ures and tools for assessing decrements in cogni-tive function due to fatigue, test the feasibility study examined how teams perform and interact across two levels, use NEEMO as a testbed for the development, deployment, and evaluation of a scheduling and planning tool. A suite of Space Life Sciences studies are accomplished as well, ranging from behavioral health and performance to immunology, nutrition, and EVA suit design results of which will

  3. The NASA OCEAN project--an ocean-space analog

    PubMed

    Chamberland, D

    1996-01-01

    An advanced life support system (ALS) with bioregenerative components may one day be required for long-term, deep space exploration, in extended missions to Mars or in establishing long-term bases on the moon. Intensive research programs on such ALS systems have been ongoing throughout the National Aeronautics and Space Administration (NASA) since 1988. Notably, projects have been initiated at the John F. Kennedy Space Center (KSC), Ames Research Center (ARC), and the Lyndon B. Johnson Space Center (JSC). The KSC ALS work has been named the "Breadboard Project" because of its approach developing the components and combining them into a breadboard to understanding the bioregenerative ALS picture [also called a Controlled Ecological Life Support System (CELSS)] in smaller pieces, similar to an electronic "breadboard." The Breadboard Project has been involved for 7 years in the study of higher crops grown in a 113 m3 chamber--the longest operating and largest such closed, controlled growth chamber in the world. This chamber has proven itself to be very successful in growing a wide variety of crops from seedlings to harvest and in helping researchers understand the complex biological cycle of such edible plants in closed, environmentally controlled environments. Because the system's ultimate use will be a more challenging environment, moving a specially designed piece of the system into extreme conditions was an important test. Engineers at KSC developed a compact, portable, functional plant module for testing in the world's only fixed seafloor laboratory at Key Largo, FL. The laboratory, called MarineLab, is operated out of the facilities of the Marine Resources Development Foundation in a lagoon of some 10 m depth. The project was called the OCEAN project (Ocean CELSS Experimental Analog NASA). PMID:11538567

  4. The NASA Bed Rest Project

    NASA Technical Reports Server (NTRS)

    Rhodes, Bradley; Meck, Janice

    2005-01-01

    NASA s National Vision for Space Exploration includes human travel beyond low earth orbit and the ultimate safe return of the crews. Crucial to fulfilling the vision is the successful and timely development of countermeasures for the adverse physiological effects on human systems caused by long term exposure to the microgravity environment. Limited access to in-flight resources for the foreseeable future increases NASA s reliance on ground-based analogs to simulate these effects of microgravity. The primary analog for human based research will be head-down bed rest. By this approach NASA will be able to evaluate countermeasures in large sample sizes, perform preliminary evaluations of proposed in-flight protocols and assess the utility of individual or combined strategies before flight resources are requested. In response to this critical need, NASA has created the Bed Rest Project at the Johnson Space Center. The Project establishes the infrastructure and processes to provide a long term capability for standardized domestic bed rest studies and countermeasure development. The Bed Rest Project design takes a comprehensive, interdisciplinary, integrated approach that reduces the resource overhead of one investigator for one campaign. In addition to integrating studies operationally relevant for exploration, the Project addresses other new Vision objectives, namely: 1) interagency cooperation with the NIH allows for Clinical Research Center (CRC) facility sharing to the benefit of both agencies, 2) collaboration with our International Partners expands countermeasure development opportunities for foreign and domestic investigators as well as promotes consistency in approach and results, 3) to the greatest degree possible, the Project also advances research by clinicians and academia alike to encourage return to earth benefits. This paper will describe the Project s top level goals, organization and relationship to other Exploration Vision Projects, implementation

  5. Cells growing in NASA Bioreactor

    NASA Technical Reports Server (NTRS)

    1998-01-01

    For 5 days on the STS-70 mission, a bioreactor cultivated human colon cancer cells, which grew to 30 times the volume of control specimens grown on Earth. This significant result was reproduced on STS-85 which grew mature structures that more closely match what are found in tumors in humans. Shown here, clusters of cells slowly spin inside a bioreactor. On Earth, the cells continually fall through the buffer medium and never hit bottom. In space, they are naturally suspended. Rotation ensures gentle stirring so waste is removed and fresh nutrient and oxygen are supplied. The NASA Bioreactor provides a low turbulence culture environment which promotes the formation of large, three-dimensional cell clusters. Due to their high level of cellular organization and specialization, samples constructed in the bioreactor more closely resemble the original tumor or tissue found in the body. The Bioreactor is rotated to provide gentle mixing of fresh and spent nutrient without inducing shear forces that would damage the cells. The work is sponsored by NASA's Office of Biological and Physical Research. The bioreactor is managed by the Biotechnology Cell Science Program at NASA's Johnson Space Center (JSC). NASA-sponsored bioreactor research has been instrumental in helping scientists to better understand normal and cancerous tissue development. In cooperation with the medical community, the bioreactor design is being used to prepare better models of human colon, prostate, breast and ovarian tumors. Cartilage, bone marrow, heart muscle, skeletal muscle, pancreatic islet cells, liver and kidney are just a few of the normal tissues being cultured in rotating bioreactors by investigators.

  6. Johnson County Community College and Burlington Northern Railroad.

    ERIC Educational Resources Information Center

    Radakovich, Dan; Lindsay, Susan; Osborn, Bill

    In order to serve the educational needs of the business community and generate revenues, Johnson County Community College (Kansas) formed a partnership with Burlington Northern Railroad in which the railroad's training facility would be relocated on the college's campus. This report documents the development of that relationship, its purpose, and…

  7. Contextual view of Johnson Ranch (Nunes Dairy) showing workers residence ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Contextual view of Johnson Ranch (Nunes Dairy) showing workers residence 2 (extreme left) residence 1, calf barn (in front of brick silo), barn 1 and pole barn (extreme right); view to southwest. - Nunes Dairy, 9854 Bruceville Road, Elk Grove, Sacramento County, CA

  8. Amplifiers Module Prototype for the Johnson Noise Thermometry System

    SciTech Connect

    Britton Jr, Charles L; Bull, Nora D; Roberts, Michael

    2013-06-01

    This document is intended to summarize the development and testing of the amplifier module portion of the Johnson Noise Thermometry (JNT) system developed at ORNL. The proposed system has been presented in an earlier report [1]. A more extensive project background including the project rationale is available in the initial project report [2].

  9. 1976-1977 Johnson-O'Malley Technical Assistance Handbook.

    ERIC Educational Resources Information Center

    Leonard, Terry

    Designed to provide a practical approach to the rules and regulations governing implementation of the American Indian Self-Determination and Education Assistance Act (PL 93-638) in conjunction with the Johnson-O'Malley Act (JOM), this technical assistance handbook is written in comic book style. Using straightforward language, this manual…

  10. 46. Peaks of Otter. View of the Johnson Farm, one ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    46. Peaks of Otter. View of the Johnson Farm, one of two historic structures left at peak of otter. The farm's interpretation focuses on the 1930's. Looking southeast. - Blue Ridge Parkway, Between Shenandoah National Park & Great Smoky Mountains, Asheville, Buncombe County, NC

  11. Scott Morgan Johnson Middle School: Personalization Leads to Unlimited Success

    ERIC Educational Resources Information Center

    Principal Leadership, 2013

    2013-01-01

    The well-known lyrics may be "The Eyes of Texas Are Upon You," but at Scott Morgan Johnson Middle School in McKinney, TX, it's definitely the "eye of the tiger" that sets the bar for Tiger PRIDE (perseverance, respect, integrity, determination, and excellence). This article describes how those ideals have been infused…

  12. Derivation of Johnson-Cousins Magnitudes from DSLR Camera Observations

    NASA Astrophysics Data System (ADS)

    Park, Woojin; Pak, Soojong; Shim, Hyunjin; Le, Huynh Anh N.; Im, Myungshin; Chang, Seunghyuk; Yu, Joonkyu

    2016-01-01

    The RGB Bayer filter system consists of a mosaic of R, G, and B filters on the grid of the photo sensors which typical commercial DSLR (Digital Single Lens Reflex) cameras and CCD cameras are equipped with. Lot of unique astronomical data obtained using an RGB Bayer filter system are available, including transient objects, e.g. supernovae, variable stars, and solar system bodies. The utilization of such data in scientific research requires that reliable photometric transformation methods are available between the systems. In this work, we develop a series of equations to convert the observed magnitudes in the RGB Bayer filter system (RB, GB, and BB) into the Johnson-Cousins BVR filter system (BJ, VJ, and RC). The new transformation equations derive the calculated magnitudes in the Johnson-Cousins filters (BJcal, VJcal, and RCcal) as functions of RGB magnitudes and colors. The mean differences between the transformed magnitudes and original magnitudes, i.e. the residuals, are (BJ - BJcal) = 0.064 mag, (VJ - VJcal) = 0.041 mag, and (RC - RCcal) = 0.039 mag. The calculated Johnson-Cousins magnitudes from the transformation equations show a good linear correlation with the observed Johnson-Cousins magnitudes.

  13. Guy B. Johnson Revisited: Another Look at Gullah.

    ERIC Educational Resources Information Center

    Baird, Keith E.

    1980-01-01

    Reviews the debate between Herskovits, Turner, and Johnson on Africanisms in Gullah. Suggests that Whinnom's approach, which considers pidgins and creoles under the rubric of "linguistic hybridization," is a more appropriate model with which to view Gullah, making irrelevant the question of whether it is an African or European language. (GC)

  14. [Bullous systemic lupus mimicking a Stevens-Johnson syndrome].

    PubMed

    Montoya, Claudia L; Echeverri, Andrés F; González, Martha L; Tobón, Gabriel; Serrano, Carlos D

    2015-01-01

    Autoimmune bullous diseases represent a diagnostic challenge due to the wide spectrum of pathologies that share similar clinical features. This paper reports the case of a woman admitted with a supposed diagnosis of a Stevens-Johnson syndrome, in which the history, the profile of autoimmunity and interdisciplinary approach were of vital importance to clarify the clinical picture.

  15. NASA UAS Update

    NASA Technical Reports Server (NTRS)

    Bauer, Jeffrey Ervin; Mulac, Brenda Lynn

    2010-01-01

    Last year may prove to be a pivotal year for the National Aeronautics and Space Administration (NASA) in the Unmanned Aircraft Systems (UAS) arena, especially in relation to routine UAS access to airspace as NASA accepted an invitation to join the UAS Executive Committee (UAS ExCom). The UAS ExCom is a multi-agency, Federal executive-level committee comprised of the Federal Aviation Administration (FAA), Department of Defense (DoD), Department of Homeland Security (DHS), and NASA with the goals to: 1) Coordinate and align efforts between key Federal Government agencies to achieve routine safe federal public UAS operations in the National Airspace System (NAS); 2) Coordinate and prioritize technical, procedural, regulatory, and policy solutions needed to deliver incremental capabilities; 3) Develop a plan to accommodate the larger stakeholder community at the appropriate time; and 4) Resolve conflicts between Federal Government agencies (FAA, DoD, DHS, and NASA), related to the above goals. The committee was formed in recognition of the need of UAS operated by these agencies to access to the National Airspace System (NAS) to support operational, training, development and research requirements. In order to meet that need, technical, procedural, regulatory, and policy solutions are required to deliver incremental capabilities leading to routine access. The formation of the UAS ExCom is significant in that it represents a tangible commitment by FAA senior leadership to address the UAS access challenge. While the focus of the ExCom is government owned and operated UAS, civil UAS operations are bound to benefit by the progress made in achieving routine access for government UAS. As the UAS ExCom was forming, NASA's Aeronautics Research Mission Directorate began to show renewed interest in UAS, particularly in relation to the future state of the air transportation system under the Next Generation Air Transportation System (NextGen). NASA made funding from the American

  16. NASA Restructuring Draws Mixed Reactions

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    2004-07-01

    Some scientists are optimistic about what they say will be new opportunities and clout that the Earth and space sciences will have under the organizational restructuring that NASA announced 24 June, while others are concerned that these sciences may be buried bureaucratically, and suffer fiscally. Under the restructuring, which takes effect on 1 August, Goddard Space Flight Center director Alphonso Diaz will become the Science associate administrator. Associate administrator for space science Edward Weiler will become the new head of Goddard. Associate administrator for Earth Science, Ghassem Asrar, will become science deputy associate administrator and chief scientist for exploration.

  17. NASA Radio Frequency Spectrum Management Manual

    NASA Technical Reports Server (NTRS)

    1989-01-01

    The Radio Frequency (RF) Spectrum Management Manual sets forth procedures and guidelines for the management requirements for controlling the use of radio frequencies by the National Aeronautics and Space Administration. It is applicable to NASA Headquarters and field installations. NASA Management Instruction 1102.3 assigns the authority for management of radio frequencies for the National Aeronautics and Space Administration to the Associate Administrator for Space Operations, NASA Headquarters. This manual is issued in loose-leaf form and will be revised by page changes.

  18. NASA Earth Remote Sensing Programs: An Overview with Special Emphasis on the NASA/JAXA Led Global Precipitation Measurement Mission

    NASA Technical Reports Server (NTRS)

    Stocker, Erich Franz

    2009-01-01

    This slide presentation gives an overview of NASA's operations monitoring the earth from space. It includes information on NASA's administrative divisions and key operating earth science missions with specific information on the Landsat satellites, Seastar spacecraft, and the TRMM satellite.

  19. 78 FR 72011 - Interpretation Concerning Involvement of NASA Astronauts During a Licensed Launch or Reentry

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-02

    ... parachutes. Emergency operations could also include the NASA astronaut manually piloting a vehicle to a water... Federal Aviation Administration 14 CFR Part 460 Interpretation Concerning Involvement of NASA Astronauts... (NASA) regarding whether the space transportation regulations of the Federal Aviation...

  20. Department of Defense / General Services Administration / National...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-20

    ... (DoD), General Services Administration (GSA), and National Aeronautics and Space Administration (NASA...., Washington, DC 20405, (202) 501-4755. SUPPLEMENTARY INFORMATION: DoD, GSA, and NASA, under their several... Acquisition Policy. DOD/GSA/NASA (FAR)--Final Rule Stage Regulation Sequence Title Identifier Number...

  1. NASA Desert RATS 2010: Preliminary results for science operations conducted in the San Francisco Volcanic Field, Arizona

    NASA Astrophysics Data System (ADS)

    Gruener, J. E.; Lofgren, G. E.; Bluethmann, W. J.; Abercromby, A. F.

    2013-10-01

    The National Aeronautics and Space Administration (NASA) is working with international partners to develop the space architectures and mission plans necessary for human spaceflight beyond Earth orbit. The Apollo missions to the Moon demonstrated conclusively that surface mobility is a key asset that improves the efficiency of human explorers on a planetary surface. NASA's Desert Research and Technology Studies (Desert RATS), a multi-year series of tests of hardware and operations carried out annually in the high desert of Arizona, has tested a crewed pressurized rover concept referred to as the Space Exploration Vehicle (SEV). During NASA's Desert RATS 2010, four 2-person crews driving two SEVs collectively conducted 12 days of field exploration in the San Francisco Volcanic Field in northern Arizona. They collected 461 samples, with a total mass of 161.2 kg, on 70 simulated extravehicular activities (EVAs). Each SEV crew traveled over 60 km during their field explorations. This paper illustrates where the actual field sites, or 'science stations', were located, provides a brief description of the types of samples collected at each station, and highlights some of the more interesting sites. Most of the geologic samples collected at Desert RATS 2010 were well documented at the site of collection, and upon delivery to the Johnson Space Center the samples were given a preliminary examination. The samples are available for further study by interested researchers developing scientific instruments for use on the surfaces of the Moon and Mars, or for geological investigations of the San Francisco Volcanic Field.

  2. President Kennedy, Vice President Johnson and Dr. von Braun at Redstone Airfield

    NASA Technical Reports Server (NTRS)

    1962-01-01

    President John F. Kennedy, Vice President Lyndon B. Johnson and Marshall Space Flight Center Director Dr. Wernher von Braun at the Redstone Arsenal Airfield, September 11, 1962. Kennedy and Johnson visited the Marshall Center to tour national space facilities.

  3. NASA Budget Focuses on Exploration

    NASA Astrophysics Data System (ADS)

    Zielinski, Sarah

    2006-02-01

    NASA has decided to rebalance its priorities following several years of healthy growth for science, turning its focus instead towards expanding support for manned space exploration, explained NASA Administrator Michael Griffin at a 16 February hearing before the U.S. House of Representatives Committee on Science. The Bush Administration has requested $16.8 billion for NASA in Fiscal Year 2007, an increase of 3.2 percent over the previous year. Most of the benefit would go to the exploration program, which would get a 55 percent increase in funding-for a total of $3.9 billion-primarily for the development of the new Crew Exploration Vehicle and Crew Launch Vehicle. The science budget would grow by 1.5 percent in FY2007-to $5.3 billion-and then is projected to grow by just one percent per year in 2008-2011.

  4. Goldin confirmed as NASA Chief

    NASA Astrophysics Data System (ADS)

    Jones, Richard M.

    1992-04-01

    Daniel S. Goldin was sworn in as NASA's new administrator on April 1 after the Senate confirmed his nomination the day before. Goldin replaces Richard H. Truly, who resigned in February and left the position on April 1. Goldin made a favorable impression during his confirmation hearing on March 27 before the Senate Commerce Committee.It is widely recognized that outgoing Administrator Richard Truly resigned because of disagreements with the National Space Council. Sen. Albert Gore (D-Tenn.) addressed this point early in the hearing, declaring that it is “critical” that NASA continue as an independent agency and “not as a wing of the White House.” Goldin's opening remarks addressed this point, as he said forcefully, “I will consult with you on a regular basis and I will be in charge of NASA.”

  5. NASA Bioreactors Advance Disease Treatments

    NASA Technical Reports Server (NTRS)

    2009-01-01

    The International Space Station (ISS) is falling. This is no threat to the astronauts onboard, however, because falling is part of the ISS staying in orbit. The absence of gravity beyond the Earth s atmosphere is actually an illusion; at the ISS s orbital altitude of approximately 250 miles above the surface, the planet s gravitational pull is only 12-percent weaker than on the ground. Gravity is constantly pulling the ISS back to Earth, but the space station is also constantly traveling at nearly 18,000 miles per hour. This means that, even though the ISS is falling toward Earth, it is moving sideways fast enough to continually miss impacting the planet. The balance between the force of gravity and the ISS s motion creates a stable orbit, and the fact that the ISS and everything in it including the astronauts are falling at an equal rate creates the condition of weightlessness called microgravity. The constant falling of objects in orbit is not only an important principle in space, but it is also a key element of a revolutionary NASA technology here on Earth that may soon help cure medical ailments from heart disease to diabetes. In the mid-1980s, NASA researchers at Johnson Space Center were investigating the effects of long-term microgravity on human tissues. At the time, the Agency s shuttle fleet was grounded following the 1986 Space Shuttle Challenger disaster, and researchers had no access to the microgravity conditions of space. To provide a method for recreating such conditions on Earth, Johnson s David Wolf, Tinh Trinh, and Ray Schwarz developed that same year a horizontal, rotating device called a rotating wall bioreactor that allowed the growth of human cells in simulated weightlessness. Previously, cell cultures on Earth could only be grown two-dimensionally in Petri dishes, because gravity would cause the multiplying cells to sink within their growth medium. These cells do not look or function like real human cells, which grow three-dimensionally in

  6. NASA's Man-Systems Integration Standards: A Human Factors Engineering Standard for Everyone in the Nineties

    NASA Technical Reports Server (NTRS)

    Booher, Cletis R.; Goldsberry, Betty S.

    1994-01-01

    During the second half of the 1980s, a document was created by the National Aeronautics and Space Administration (NASA) to aid in the application of good human factors engineering and human interface practices to the design and development of hardware and systems for use in all United States manned space flight programs. This comprehensive document, known as NASA-STD-3000, the Man-Systems Integration Standards (MSIS), attempts to address, from a human factors engineering/human interface standpoint, all of the various types of equipment with which manned space flight crew members must deal. Basically, all of the human interface situations addressed in the MSIS are present in terrestrially based systems also. The premise of this paper is that, starting with this already created standard, comprehensive documents addressing human factors engineering and human interface concerns could be developed to aid in the design of almost any type of equipment or system which humans interface with in any terrestrial environment. Utilizing the systems and processes currently in place in the MSIS Development Facility at the Johnson Space Center in Houston, TX, any number of MSIS volumes addressing the human factors / human interface needs of any terrestrially based (or, for that matter, airborne) system could be created.

  7. NASA Facts, Mars and Earth.

    ERIC Educational Resources Information Center

    National Aeronautics and Space Administration, Washington, DC. Educational Programs Div.

    Presented is one of a series of National Aeronautics and Space Administration (NASA) facts about the exploration of Mars. In this publication, emphasis is placed on the sun's planetary system with note made that there is no one theory for the origin and subsequent evolution of the Solar System that is generally accepted. Ideas from many scientists…

  8. NASA Launch Services Program Overview

    NASA Technical Reports Server (NTRS)

    Higginbotham, Scott

    2016-01-01

    The National Aeronautics and Space Administration (NASA) has need to procure a variety of launch vehicles and services for its unmanned spacecraft. The Launch Services Program (LSP) provides the Agency with a single focus for the acquisition and management of Expendable Launch Vehicle (ELV) launch services. This presentation will provide an overview of the LSP and its organization, approach, and activities.

  9. NASA's Great Observatories: Paper Model.

    ERIC Educational Resources Information Center

    National Aeronautics and Space Administration, Washington, DC.

    This educational brief discusses observatory stations built by the National Aeronautics and Space Administration (NASA) for looking at the universe. This activity for grades 5-12 has students build paper models of the observatories and study their history, features, and functions. Templates for the observatories are included. (MVL)

  10. Pharmacy in a New Frontier - The First Five Years at the Johnson Space Center Pharmacy

    NASA Technical Reports Server (NTRS)

    Bayuse, Tina

    2008-01-01

    A poster entitled "Space Medicine - A New Role for Clinical Pharmacists" was presented in December 2001 highlighting an up-and-coming role for pharmacists at the Johnson Space Center (JSC) in Houston, Texas. Since that time, the operational need for the pharmacy profession has expanded with the administration s decision to open a pharmacy on site at JSC to complement the care provided by the Flight Medicine and Occupational Medicine Clinics. The JSC Pharmacy is a hybrid of traditional retail and hospital pharmacy and is compliant with the ambulatory care standards set forth by the Joint Commission. The primary charge for the pharmacy is to provide medication management for JSC. In addition to providing ambulatory care for both clinics, the pharmacists also practice space medicine. A pharmacist had been involved in the packing of both the Space Shuttle and International Space Station Medical Kits before the JSC Pharmacy was established; however, the role of the pharmacist in packing medical kits has grown. The pharmacists are now full members of the operations team providing consultation for new drug delivery systems, regulations, and patient safety issues. As the space crews become more international, so does the drug information provided by the pharmacists. This presentation will review the journey of the JSC Pharmacy as it celebrated its five year anniversary in April of 2008. The implementation of the pharmacy, challenges to the incorporation of the pharmacy into an existing health-care system, and the current responsibilities of a pharmacist at the Johnson Space Center will be discussed.

  11. NASA Technical Standards Program

    NASA Technical Reports Server (NTRS)

    Gill, Paul S.; Vaughan, WIlliam W.

    2003-01-01

    The NASA Technical Standards Program was officially established in 1997 as result of a directive issued by the Administrator. It is responsible for Agency wide technical standards development, adoption (endorsement), and conversion of Center-unique standards for Agency wide use. One major element of the Program is the review of NSA technical standards products and replacement with non-Government Voluntary Consensus Standards in accordance with directions issued by the Office of Management and Budget. As part of the Program s function, it developed a NASA Integrated Technical Standards Initiative that consists of and Agency wide full-text system, standards update notification system, and lessons learned - standards integration system. The Program maintains a "one stop-shop" Website for technical standards ad related information on aerospace materials, etc. This paper provides information on the development, current status, and plans for the NAS Technical Standards Program along with metrics on the utility of the products provided to both users within the nasa.gov Domain and the Public Domain.

  12. NASA Technical Standards Program

    NASA Technical Reports Server (NTRS)

    Gill, Paul S.; Vaughan, William W.; Parker, Nelson C. (Technical Monitor)

    2002-01-01

    The NASA Technical Standards Program was officially established in 1997 as result of a directive issued by the Administrator. It is responsible for Agency wide technical standards development, adoption (endorsement), and conversion of Center-unique standards for Agency wide use. One major element of the Program is the review of NSA technical standards products and replacement with non-Government Voluntary Consensus Standards in accordance with directions issued by the Office of Management and Budget. As part of the Program's function, it developed a NASA Integrated Technical Standards Initiative that consists of and Agency wide full-text system, standards update notification system, and lessons learned-standards integration system. The Program maintains a 'one stop-shop' Website for technical standards ad related information on aerospace materials, etc. This paper provides information on the development, current status, and plans for the NAS Technical Standards Program along with metrics on the utility of the products provided to both users within the nasa.gov Domain and the Public Domain.

  13. NASA Records Database

    NASA Technical Reports Server (NTRS)

    Callac, Christopher; Lunsford, Michelle

    2005-01-01

    The NASA Records Database, comprising a Web-based application program and a database, is used to administer an archive of paper records at Stennis Space Center. The system begins with an electronic form, into which a user enters information about records that the user is sending to the archive. The form is smart : it provides instructions for entering information correctly and prompts the user to enter all required information. Once complete, the form is digitally signed and submitted to the database. The system determines which storage locations are not in use, assigns the user s boxes of records to some of them, and enters these assignments in the database. Thereafter, the software tracks the boxes and can be used to locate them. By use of search capabilities of the software, specific records can be sought by box storage locations, accession numbers, record dates, submitting organizations, or details of the records themselves. Boxes can be marked with such statuses as checked out, lost, transferred, and destroyed. The system can generate reports showing boxes awaiting destruction or transfer. When boxes are transferred to the National Archives and Records Administration (NARA), the system can automatically fill out NARA records-transfer forms. Currently, several other NASA Centers are considering deploying the NASA Records Database to help automate their records archives.

  14. 76 FR 21072 - NASA Advisory Council; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-14

    ... From the Federal Register Online via the Government Publishing Office NATIONAL AERONAUTICS AND SPACE ADMINISTRATION NASA Advisory Council; Meeting AGENCY: National Aeronautics and Space... NASA Advisory Council. DATES: Thursday, May 5, 2011, 8 a.m.-5 p.m., Local Time Friday, May 6, 2011, 8...

  15. 48 CFR 1842.271 - NASA clause.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 48 Federal Acquisition Regulations System 6 2013-10-01 2013-10-01 false NASA clause. 1842.271 Section 1842.271 Federal Acquisition Regulations System NATIONAL AERONAUTICS AND SPACE ADMINISTRATION... NASA clause. Insert the clause at 1852.242-70, Technical Direction, when paragraph 3(m) of the...

  16. 48 CFR 1842.271 - NASA clause.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 48 Federal Acquisition Regulations System 6 2010-10-01 2010-10-01 true NASA clause. 1842.271 Section 1842.271 Federal Acquisition Regulations System NATIONAL AERONAUTICS AND SPACE ADMINISTRATION... NASA clause. Insert the clause at 1852.242-70, Technical Direction, when paragraph 3(m) of the...

  17. 78 FR 5116 - NASA Information Security Protection

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-24

    ... Executive Order of 13132 E.O. 13132, ``Federalism,'' 64 FR 43255 (August 4, 1999) requires regulations be... SPACE ADMINISTRATION 14 CFR Part 1203 RIN 2700-AD61 NASA Information Security Protection AGENCY..., Classified National Security Information, and appropriately to correspond with NASA's internal...

  18. 48 CFR 1842.271 - NASA clause.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 48 Federal Acquisition Regulations System 6 2011-10-01 2011-10-01 false NASA clause. 1842.271 Section 1842.271 Federal Acquisition Regulations System NATIONAL AERONAUTICS AND SPACE ADMINISTRATION... NASA clause. Insert the clause at 1852.242-70, Technical Direction, when paragraph 3(m) of the...

  19. 48 CFR 1842.271 - NASA clause.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 48 Federal Acquisition Regulations System 6 2012-10-01 2012-10-01 false NASA clause. 1842.271 Section 1842.271 Federal Acquisition Regulations System NATIONAL AERONAUTICS AND SPACE ADMINISTRATION... NASA clause. Insert the clause at 1852.242-70, Technical Direction, when paragraph 3(m) of the...

  20. 75 FR 59747 - NASA Advisory Council; Meeting.

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-28

    ... From the Federal Register Online via the Government Publishing Office NATIONAL AERONAUTICS AND SPACE ADMINISTRATION NASA Advisory Council; Meeting. AGENCY: National Aeronautics and Space... NASA Advisory Council. DATES: Wednesday, October 6, 2010, 8 a.m.-5 p.m. (local time). Thursday,...

  1. 48 CFR 1842.271 - NASA clause.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 48 Federal Acquisition Regulations System 6 2014-10-01 2014-10-01 false NASA clause. 1842.271 Section 1842.271 Federal Acquisition Regulations System NATIONAL AERONAUTICS AND SPACE ADMINISTRATION... NASA clause. Insert the clause at 1852.242-70, Technical Direction, when paragraph 3(m) of the...

  2. OAI and NASA's Scientific and Technical Information.

    ERIC Educational Resources Information Center

    Nelson, Michael L.; Rocker, JoAnne; Harrison, Terry L.

    2003-01-01

    Details NASA's (National Aeronautics & Space Administration (USA)) involvement in defining and testing the Open Archives Initiative (OAI) Protocol for Metadata Harvesting (OAI-PMH) and experience with adapting existing NASA distributed searching DLs (digital libraries) to use the OAI-PMH and metadata harvesting. Discusses some new digital…

  3. NASA Earth Science Enterprise 2000 Education Catalog.

    ERIC Educational Resources Information Center

    Schwerin, Theresa

    The National Aeronautical Space Administration's (NASA) Earth Science Enterprise (ESE) produces a wide range of products for teachers and students and supports educational activities for all grade levels in cooperation with the NASA Headquarters Education Division. This catalog presents the diverse educational programs, products, and resources…

  4. NASA Initiatives with Historically Black Colleges & Universities.

    ERIC Educational Resources Information Center

    National Aeronautics and Space Administration, Washington, DC.

    This publication outlines the involvement of the National Aeronautics and Space Administration (NASA) with Historically Black Colleges and Universities (HBCU) programs in aeronautics and space research. NASA aims to assist HBCUs in science, engineering, and technology programs and also to encourage greater participation of minorities in its…

  5. Genetics Home Reference: Stevens-Johnson syndrome/toxic epidermal necrolysis

    MedlinePlus

    ... Conditions Stevens-Johnson syndrome/toxic epidermal necrolysis Stevens-Johnson syndrome/toxic epidermal necrolysis Enable Javascript to view ... Download PDF Open All Close All Description Stevens-Johnson syndrome/toxic epidermal necrolysis (SJS/TEN) is a ...

  6. SPE propulsion electrolyzer for NASA's integrated propulsion test article

    NASA Technical Reports Server (NTRS)

    1991-01-01

    Hamilton Standard has delivered a 3000 PSI SPE Propulsion Electrolyzer Stack and Special Test Fixture to the NASA Lyndon B. Johnson Space Center (JSC) Integrated Propulsion Test Article (IPTA) program in June 1990, per contract NAS9-18030. This prototype unit demonstrates the feasibility of SPE-high pressure water electrolysis for future space applications such as Space Station propulsion and Lunar/Mars energy storage. The SPE-Propulsion Electrolyzer has met or exceeded all IPTA program goals. It continues to function as the primary hydrogen and oxygen source for the IPTA test bed at the NASA/JSC Propulsion and Power Division Thermochemical Test Branch.

  7. Mission to Mars: Connecting Diverse Student Groups with NASA Experts

    NASA Technical Reports Server (NTRS)

    Polsgrove, Tara; Jones, David; Sadowski-Fugitt, Leslie; Kowrach, Nicole

    2012-01-01

    The Museum of Science and Industry in Chicago has formulated an innovative approach to inspiring the next generation to pursue STEM education. Middle school students in Chicago and at nearby Challenger Learning Centers work in teams to design a mission to Mars. Each mission includes real time access to NASA experts through partnerships with Marshall Space Flight Center, Johnson Space Center, and the Jet Propulsion Laboratory. Interactive videoconferencing connects students at the museum with students at a Challenger Learning Center and with NASA experts. This paper describes the approach, the results from the program s first year, and future opportunities for nationwide expansion.

  8. NASA Human Health and Performance Center (NHHPC)

    NASA Technical Reports Server (NTRS)

    Davis, Jeffery R.

    2010-01-01

    This slide presentation reviews the purpose, potential members and participants of the NASA Human Health and Performance Center (NHHPC). Included in the overview is a brief description of the administration and current activities of the NHHPC.

  9. The Science behind a NASA Poster.

    ERIC Educational Resources Information Center

    Ashby, Susanne

    2002-01-01

    Uses National Aeronautics and Space Administration (NASA) posters and the information behind them as instructional materials to connect real world science to the classroom. Provides a list of resources. (YDS)

  10. Managing NASA in the Apollo era

    NASA Technical Reports Server (NTRS)

    Levine, A. S.

    1982-01-01

    The administration and organization are described and analyzed. Policies on manpower and the budgetary process for contracting for research development, the structure of NASA-DOD relations, and program planning are discussed.

  11. NASA Aeronautics Research: An Assessment

    NASA Technical Reports Server (NTRS)

    2008-01-01

    The U.S. air transportation system is vital to the economic well-being and security of the United States. To support continued U.S. leadership in aviation, Congress and NASA requested that the National Research Council undertake a decadal survey of civil aeronautics research and technology (R&T) priorities that would help NASA fulfill its responsibility to preserve U.S. leadership in aeronautics technology. In 2006, the National Research Council published the Decadal Survey of Civil Aeronautics. That report presented a set of six strategic objectives for the next decade of aeronautics R&T, and it described 51 high-priority R&T challenges--characterized by five common themes--for both NASA and non-NASA researchers. The National Research Council produced the present report, which assesses NASA's Aeronautics Research Program, in response to the National Aeronautics and Space Administration Authorization Act of 2005 (Public Law 109-155). This report focuses on three sets of questions: 1. How well does NASA's research portfolio implement appropriate recommendations and address relevant high-priority research and technology challenges identified in the Decadal Survey of Civil Aeronautics? If gaps are found, what steps should be taken by the federal government to eliminate them? 2. How well does NASA's aeronautics research portfolio address the aeronautics research requirements of NASA, particularly for robotic and human space exploration? How well does NASA's aeronautics research portfolio address other federal government department/agency non-civil aeronautics research needs? If gaps are found, what steps should be taken by NASA and/or other parts of the federal government to eliminate them? 3. Will the nation have a skilled research workforce and research facilities commensurate with the requirements in (1) and (2) above? What critical improvements in workforce expertise and research facilities, if any, should NASA and the nation make to achieve the goals of NASA

  12. 75 FR 17438 - NASA Advisory Council; Education and Public Outreach Committee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-06

    ... SPACE ADMINISTRATION NASA Advisory Council; Education and Public Outreach Committee; Meeting AGENCY... Administration announces a meeting of the Education and Public Outreach Committee of the NASA Advisory Council... following topics: Issues for NASA Communications NASA's 2010 Pilot Activities for Middle and High...

  13. NASA telerobotics technology highlights

    SciTech Connect

    Weisbin, C.R.; Lavery, D.

    1994-12-31

    The goal of the National Aeronautics and Space Administration`s (NASA`s) Telerobotics Program, part of the over-all research program of the Office of Advanced Concepts and Technology (OACT), is to develop the technology in space-borne systems that enables new space tasks in Earth-orbiting satellite and platform servicing; robotic tending of science payloads and instruments; and planetary surface exploration, scientific sampling, and in situ analysis. Our objective is that by 2004, 50% of the extra-vehicular activity (EVA)-required operations on orbit and on planetary surfaces may be conducted via remote operation. The technologies developed for space have important dual uses for commercial areas such as medical robotics, agriculture, and subsea welding; this synergy is being actively encouraged. Moreover, mutually reciprocal collaboration with international partners (e.g., Japan and Russia) has received increasing attention. The purpose of this paper is to provide an overview of some of the ongoing program activities, which are described briefly.

  14. Development of high frequency and wide bandwidth Johnson noise thermometry

    SciTech Connect

    Crossno, Jesse; Liu, Xiaomeng; Kim, Philip; Ohki, Thomas A.; Fong, Kin Chung

    2015-01-12

    We develop a high frequency, wide bandwidth radiometer operating at room temperature, which augments the traditional technique of Johnson noise thermometry for nanoscale thermal transport studies. Employing low noise amplifiers and an analog multiplier operating at 2 GHz, auto- and cross-correlated Johnson noise measurements are performed in the temperature range of 3 to 300 K, achieving a sensitivity of 5.5 mK (110 ppm) in 1 s of integration time. This setup allows us to measure the thermal conductance of a boron nitride encapsulated monolayer graphene device over a wide temperature range. Our data show a high power law (T ∼ 4) deviation from the Wiedemann-Franz law above T ∼ 100 K.

  15. Quality of Streams in Johnson County, Kansas, 2002-07

    USGS Publications Warehouse

    Rasmussen, Teresa J.

    2008-01-01

    Water quality of streams in Johnson County, Kansas was evaluated from October 2002 through December 2007 in a cooperative study between the U.S. Geological Survey and the Johnson County Stormwater Management Program. Water quality at 42 stream sites, representing urban and rural basins, was characterized by evaluating benthic macroinvertebrates, water (discrete and continuous data), and/or streambed sediment. Point and nonpoint sources and transport were described for water-quality constituents including suspended sediment, dissolved solids and major ions, nutrients (nitrogen and phosphorus), indicator bacteria, pesticides, and organic wastewater and pharmaceutical compounds. The information obtained from this study is being used by city and county officials to develop effective management plans for protecting and improving stream quality. This fact sheet summarizes important results from three comprehensive reports published as part of the study and available on the World Wide Web at http://ks.water.usgs.gov/Kansas/studies/qw/joco/ .

  16. 14 CFR § 1221.113 - Use of the NASA Flags.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 5 2014-01-01 2014-01-01 false Use of the NASA Flags. § 1221.113 Section § 1221.113 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION THE NASA SEAL AND OTHER DEVICES, AND THE CONGRESSIONAL SPACE MEDAL OF HONOR NASA Seal, NASA Insignia, NASA Logotype,...

  17. 14 CFR § 1221.106 - Establishment of the NASA Flag.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 5 2014-01-01 2014-01-01 false Establishment of the NASA Flag. § 1221.106 Section § 1221.106 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION THE NASA SEAL AND OTHER DEVICES, AND THE CONGRESSIONAL SPACE MEDAL OF HONOR NASA Seal, NASA Insignia, NASA Logotype,...

  18. 14 CFR § 1221.111 - Use of the NASA Logotype.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 5 2014-01-01 2014-01-01 false Use of the NASA Logotype. § 1221.111 Section § 1221.111 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION THE NASA SEAL AND OTHER DEVICES, AND THE CONGRESSIONAL SPACE MEDAL OF HONOR NASA Seal, NASA Insignia, NASA Logotype,...

  19. 14 CFR § 1221.110 - Use of the NASA Insignia.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 5 2014-01-01 2014-01-01 false Use of the NASA Insignia. § 1221.110 Section § 1221.110 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION THE NASA SEAL AND OTHER DEVICES, AND THE CONGRESSIONAL SPACE MEDAL OF HONOR NASA Seal, NASA Insignia, NASA Logotype,...

  20. 14 CFR 1221.112 - Use of the NASA Program Identifiers.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 5 2012-01-01 2012-01-01 false Use of the NASA Program Identifiers. 1221.112 Section 1221.112 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION THE NASA SEAL AND OTHER DEVICES, AND THE CONGRESSIONAL SPACE MEDAL OF HONOR NASA Seal, NASA Insignia, NASA...