Science.gov

Sample records for administration nnsa ground-based

  1. Administrator D'Agostino Celebrates NNSA's 10-Year Anniversary

    ScienceCinema

    Thomas D'Agostino

    2016-07-12

    NNSA Administrator Thomas D'Agostino highlighted the strong U.S.-Georgian cooperation on nuclear security issues during a day-long visit to the Republic of Georgia in mid-June. He briefed the media at availability at the Tbilisi airport. In April 2009, P

  2. Administrator D'Agostino Celebrates NNSA's 10-Year Anniversary

    SciTech Connect

    Thomas D'Agostino

    2010-04-30

    NNSA Administrator Thomas D'Agostino highlighted the strong U.S.-Georgian cooperation on nuclear security issues during a day-long visit to the Republic of Georgia in mid-June. He briefed the media at availability at the Tbilisi airport. In April 2009, P

  3. NNSA Administrator Looks to Future of Nuclear Security at STRATCOM Symposium

    ScienceCinema

    Thomas D'Agostino

    2016-07-12

    Administrator Thomas P. DAgostino of the National Nuclear Security Administration (NNSA) discusses the future of the Nuclear Security Enterprise and its strategic deterrence mission in light of President Obamas unprecedented nuclear security agenda.

  4. NNSA Administrator Looks to Future of Nuclear Security at STRATCOM Symposium

    SciTech Connect

    Thomas D'Agostino

    2009-08-05

    Administrator Thomas P. DAgostino of the National Nuclear Security Administration (NNSA) discusses the future of the Nuclear Security Enterprise and its strategic deterrence mission in light of President Obamas unprecedented nuclear security agenda.

  5. NNSA Administrator Thomas D'Agostino delivers remarks at DOE's Commemorative Veterans Day Program

    ScienceCinema

    Administrator D'Agostino

    2016-07-12

    Administrator D'Agostino, a Navy veteran, was part of a November 2009 program at DOE headquarters in Washington, D.C., celebrating Veterans Day and commemorating the 10th anniversary of the DOE Veterans Task Force. Veterans comprise nearly 30 percent of NNSA's workforce, and many NNSA employees are currently on active duty.

  6. Nuclear Materials Management U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office (NNSA/NSO)

    SciTech Connect

    Jesse Schrieber

    2008-07-01

    In light of the changing Defense Complex mission, the high cost to storing and protecting nuclear materials, and in consideration of scarcity of resources, it is imperative that the U.S. Department of Energy (DOE) owned nuclear materials are managed effectively. The U.S. Department of Energy, National Nuclear Security Administration (NNSA) Strategic Action Plan outlines the strategy for continuing to meet America’s nuclear security goals, meeting the overall mission challenges of DOE and NNSA as well as giving focus to local missions. The mission of the NNSA/NSO Nuclear Materials Management (NMM) Program is to ensure that nuclear material inventories are accurately assessed and reported, future material needs are adequately planned, and that existing Nevada Test Site (NTS) inventories are efficiently utilized, staged, or dispositioned. The NNSA/NSO understands that the NTS has unique characteristics to serve and benefit the nation with innovative solutions to the complex problems involving Special Nuclear Materials, hazardous materials, and multi-agency, integrated operations. The NNSA/NSO is defining infrastructure requirements for known future missions, developing footprint consolidation strategic action plans, and continuing in the path of facility modernization and improvements. The NNSA/NSO is striving for the NTS to be acknowledged as an ideal location towards mission expansion and growth. The NTS has the capability of providing isolated, large scale construction and development locations for nuclear power or alternate energy source facilities, expanded nuclear material storage sites, and for new development in “green” technology.

  7. NNSA Administrator Tom D'Agostino's speech at the 2009 ISM Conference

    ScienceCinema

    Thomas D'Agostino

    2016-07-12

    National Nuclear Security Administration Administrator Thomas DAgostino addressed the 2009 Department of Energy Integrated Safety Management (ISM) Conference in Knoxville, Tenn., on Wednesday, Aug. 26. In his remarks, Administrator DAgostino highlighted the NNSAs track record of developing innovative approaches to workplace safety. And, while he noted the improvements in NNSAs safety record over the years, the Administrator highlighted the need to ensure that workers across the nuclear security enterprise never become complacent in their approach to safety.

  8. NNSA Administrator Addresses the Next Generation of Nuclear Security Professionals: Part 1

    ScienceCinema

    Thomas D'Agostino

    2016-07-12

    Administrator Thomas DAgostino of the National Nuclear Security Administration addressed the next generation of nuclear security professionals during the opening session of todays 2009 Department of Energy (DOE) Computational Science Graduate Fellowship Annual Conference. Administrator DAgostino discussed NNSAs role in implementing President Obamas nuclear security agenda and encouraged the computing science fellows to consider careers in nuclear security.

  9. NNSA Administrator Addresses the Next Generation of Nuclear Security Professionals: Part 2

    ScienceCinema

    Thomas D'Agostino

    2016-07-12

    Administrator Thomas DAgostino of the National Nuclear Security Administration addressed the next generation of nuclear security professionals during the opening session of todays 2009 Department of Energy (DOE) Computational Science Graduate Fellowship Annual Conference. Administrator DAgostino discussed NNSAs role in implementing President Obamas nuclear security agenda and encouraged the computing science fellows to consider careers in nuclear security.

  10. NNSA Administrator Addresses the Next Generation of Nuclear Security Professionals: Part 2

    SciTech Connect

    Thomas D'Agostino

    2009-07-14

    Administrator Thomas DAgostino of the National Nuclear Security Administration addressed the next generation of nuclear security professionals during the opening session of todays 2009 Department of Energy (DOE) Computational Science Graduate Fellowship Annual Conference. Administrator DAgostino discussed NNSAs role in implementing President Obamas nuclear security agenda and encouraged the computing science fellows to consider careers in nuclear security.

  11. NNSA Administrator Addresses the Next Generation of Nuclear Security Professionals: Part 1

    SciTech Connect

    Thomas D'Agostino

    2009-07-14

    Administrator Thomas DAgostino of the National Nuclear Security Administration addressed the next generation of nuclear security professionals during the opening session of todays 2009 Department of Energy (DOE) Computational Science Graduate Fellowship Annual Conference. Administrator DAgostino discussed NNSAs role in implementing President Obamas nuclear security agenda and encouraged the computing science fellows to consider careers in nuclear security.

  12. NNSA Staff Member Receives NNSA Recognition

    SciTech Connect

    Specht, Elaine S.

    2013-04-01

    This article is intended for publication in the NNSA Nonproliferation and International Security (NIS) Highlights, a quarterly newsletter available in print and e-form. It will be published on the NNSA website and is intended for public release.

  13. NNSA TRITIUM SUPPLY CHAIN

    SciTech Connect

    Wyrick, Steven; Cordaro, Joseph; Founds, Nanette; Chambellan, Curtis

    2013-08-21

    Savannah River Site plays a critical role in the Tritium Production Supply Chain for the National Nuclear Security Administration (NNSA). The entire process includes: • Production of Tritium Producing Burnable Absorber Rods (TPBARs) at the Westinghouse WesDyne Nuclear Fuels Plant in Columbia, South Carolina • Production of unobligated Low Enriched Uranium (LEU) at the United States Enrichment Corporation (USEC) in Portsmouth, Ohio • Irradiation of TPBARs with the LEU at the Tennessee Valley Authority (TVA) Watts Bar Reactor • Extraction of tritium from the irradiated TPBARs at the Tritium Extraction Facility (TEF) at Savannah River Site • Processing the tritium at the Savannah River Site, which includes removal of nonhydrogen species and separation of the hydrogen isotopes of protium, deuterium and tritium.

  14. System Engineering for the NNSA Knowledge Base

    NASA Astrophysics Data System (ADS)

    Young, C.; Ballard, S.; Hipp, J.

    2006-05-01

    To improve ground-based nuclear explosion monitoring capability, GNEM R&E (Ground-based Nuclear Explosion Monitoring Research & Engineering) researchers at the national laboratories have collected an extensive set of raw data products. These raw data are used to develop higher level products (e.g. 2D and 3D travel time models) to better characterize the Earth at regional scales. The processed products and selected portions of the raw data are stored in an archiving and access system known as the NNSA (National Nuclear Security Administration) Knowledge Base (KB), which is engineered to meet the requirements of operational monitoring authorities. At its core, the KB is a data archive, and the effectiveness of the KB is ultimately determined by the quality of the data content, but access to that content is completely controlled by the information system in which that content is embedded. Developing this system has been the task of Sandia National Laboratories (SNL), and in this paper we discuss some of the significant challenges we have faced and the solutions we have engineered. One of the biggest system challenges with raw data has been integrating database content from the various sources to yield an overall KB product that is comprehensive, thorough and validated, yet minimizes the amount of disk storage required. Researchers at different facilities often use the same data to develop their products, and this redundancy must be removed in the delivered KB, ideally without requiring any additional effort on the part of the researchers. Further, related data content must be grouped together for KB user convenience. Initially SNL used whatever tools were already available for these tasks, and did the other tasks manually. The ever-growing volume of KB data to be merged, as well as a need for more control of merging utilities, led SNL to develop our own java software package, consisting of a low- level database utility library upon which we have built several

  15. The process for integrating the NNSA knowledge base.

    SciTech Connect

    Wilkening, Lisa K.; Carr, Dorthe Bame; Young, Christopher John; Hampton, Jeff; Martinez, Elaine

    2009-03-01

    From 2002 through 2006, the Ground Based Nuclear Explosion Monitoring Research & Engineering (GNEMRE) program at Sandia National Laboratories defined and modified a process for merging different types of integrated research products (IRPs) from various researchers into a cohesive, well-organized collection know as the NNSA Knowledge Base, to support operational treaty monitoring. This process includes defining the KB structure, systematically and logically aggregating IRPs into a complete set, and verifying and validating that the integrated Knowledge Base works as expected.

  16. Ground-based Nuclear Detonation Detection (GNDD) Technology Roadmap

    SciTech Connect

    Casey, Leslie A.

    2014-01-13

    This GNDD Technology Roadmap is intended to provide guidance to potential researchers and help management define research priorities to achieve technology advancements for ground-based nuclear explosion monitoring science being pursued by the Ground-based Nuclear Detonation Detection (GNDD) Team within the Office of Nuclear Detonation Detection in the National Nuclear Security Administration (NNSA) of the U.S. Department of Energy (DOE). Four science-based elements were selected to encompass the entire scope of nuclear monitoring research and development (R&D) necessary to facilitate breakthrough scientific results, as well as deliver impactful products. Promising future R&D is delineated including dual use associated with the Comprehensive Nuclear-Test-Ban Treaty (CTBT). Important research themes as well as associated metrics are identified along with a progression of accomplishments, represented by a selected bibliography, that are precursors to major improvements to nuclear explosion monitoring.

  17. NNSA B-Roll: MOX Facility

    ScienceCinema

    None

    2016-07-12

    In 1999, the National Nuclear Security Administration (NNSA) signed a contract with a consortium, now called Shaw AREVA MOX Services, LLC to design, build, and operate a Mixed Oxide (MOX) Fuel Fabrication Facility. This facility will be a major component in the United States program to dispose of surplus weapon-grade plutonium. The facility will take surplus weapon-grade plutonium, remove impurities, and mix it with uranium oxide to form MOX fuel pellets for reactor fuel assemblies. These assemblies will be irradiated in commercial nuclear power reactors.

  18. NNSA B-Roll: MOX Facility

    SciTech Connect

    2010-05-21

    In 1999, the National Nuclear Security Administration (NNSA) signed a contract with a consortium, now called Shaw AREVA MOX Services, LLC to design, build, and operate a Mixed Oxide (MOX) Fuel Fabrication Facility. This facility will be a major component in the United States program to dispose of surplus weapon-grade plutonium. The facility will take surplus weapon-grade plutonium, remove impurities, and mix it with uranium oxide to form MOX fuel pellets for reactor fuel assemblies. These assemblies will be irradiated in commercial nuclear power reactors.

  19. NNSA Signs Memorandum with Kuwait to Increase Cooperation on Nuclear Safeguards and Nonproliferation

    ScienceCinema

    Thomas D'Agostino

    2016-07-12

    On June 23, 2010, the National Nuclear Security Administration (NNSA) signed a Memorandum of Cooperation on nuclear safeguards and other nonproliferation topics with the Kuwait National Nuclear Energy Committee (KNNEC). NNSA Administrator Thomas D'Agostino and KNNEC's Secretary General, Dr. Ahmad Bishara, signed the memorandum at a ceremony at U.S. Department of Energy headquarters in Washington.

  20. NNSA Signs Memorandum with Kuwait to Increase Cooperation on Nuclear Safeguards and Nonproliferation

    SciTech Connect

    Thomas D'Agostino

    2010-06-23

    On June 23, 2010, the National Nuclear Security Administration (NNSA) signed a Memorandum of Cooperation on nuclear safeguards and other nonproliferation topics with the Kuwait National Nuclear Energy Committee (KNNEC). NNSA Administrator Thomas D'Agostino and KNNEC's Secretary General, Dr. Ahmad Bishara, signed the memorandum at a ceremony at U.S. Department of Energy headquarters in Washington.

  1. Goals, Objectives, and Requirements (GOR) of the Ground-based Nuclear Detonation Detection (GNDD) Team for the Office of Defense Nuclear Nonproliferation Research and Development (DNN R&D)

    SciTech Connect

    Casey, Leslie A.

    2014-01-13

    The goal, objectives, and requirements (GOR) presented in this document define a framework for describing research directed specifically by the Ground-based Nuclear Detonation Detection (GNDD) Team of the National Nuclear Security Administration (NNSA). The intent of this document is to provide a communication tool for the GNDD Team with NNSA management and with its stakeholder community. It describes the GNDD expectation that much of the improvement in the proficiency of nuclear explosion monitoring will come from better understanding of the science behind the generation, propagation, recording, and interpretation of seismic, infrasound, hydroacoustic, and radionuclide signals and development of "game-changer" advances in science and technology.

  2. NNSA/NV Consequence Management Capabilities for Radiological Emergency Response

    SciTech Connect

    D. R. Bowman

    2002-10-01

    The U.S. Department of Energy's National Nuclear Security Administration Nevada Operations Office (NNSA/NV) provides an integrated Consequence Management (CM) response capability for the (NNSA) in the event of a radiological emergency. This encompasses planning, technical operations, and home team support. As the lead organization for CM planning and operations, NNSA/NV coordinates the response of the following assets during the planning and operational phases of a radiological accident or incident: (1) Predictive dispersion modeling through the Atmospheric Release Advisory Capability (ARAC) at Lawrence Livermore National Laboratory (LLNL) and the High Consequence Assessment Group at Sandia National Laboratories (SNL); (2) Regional radiological emergency assistance through the eight Radiological Assistance Program (RAP) regional response centers; (3) Medical advice and assistance through the Radiation Emergency Assistance Center/Training Site (REAC/TS) in Oak Ridge, Tennessee; (4) Aerial radiological mapping using the fixed-wing and rotor-wing aircraft of the Aerial Measuring System (AMS); (5) Consequence Management Planning Teams (CMPT) and Consequence Management Response Teams (CMRT) to provide CM field operations and command and control. Descriptions of the technical capabilities employed during planning and operations are given below for each of the elements comprising the integrated CM capability.

  3. NNSA Program Develops the Next Generation of Nuclear Security Experts

    SciTech Connect

    Brim, Cornelia P.; Disney, Maren V.

    2015-09-02

    NNSA is fostering the next generation of nuclear security experts is through its successful NNSA Graduate Fellowship Program (NGFP). NGFP offers its Fellows an exceptional career development opportunity through hands-on experience supporting NNSA mission areas across policy and technology disciplines. The one-year assignments give tomorrow’s leaders in global nuclear security and nonproliferation unparalleled exposure through assignments to Program Offices across NNSA.

  4. APPLICATION OF RISK MANAGEMENT PRACTICES TO NNSA TRITIUM READINESS SUBPROGRAM

    SciTech Connect

    Shete, S; Srini Venkatesh, S

    2007-01-31

    The National Nuclear Security Administration (NNSA), Office of Stockpile Technology (NNSA/NA-123) chartered a risk assessment of the Tritium Readiness (TR) Subprogram to identify risks and to develop handling strategies with specific action items that could be scheduled and tracked to completion in order to minimize program failures. This assessment was performed by a team of subject matter experts (SMEs) comprised of representatives from various organizations participating in the TR Subprogram. The process was coordinated by Savannah River Site, Systems Engineering (SRS/SE) with support from Subprogram Team. The Risk Management Process steps performed during this risk assessment were: Planning, Identification, Grading, Handling, and Impact Determination. All of the information captured during the risk assessment was recorded in a database. The team provided estimates for the cost and schedule impacts of implementing the recommended handling strategies and facilitated the risk based cost contingency analysis. The application of the Risk Management Practices to the NNSA Tritium Readiness Subprogram resulted in: (1) The quarterly review and update of the Risk Management Database to include an evaluation of all existing risks and the identification/evaluation of any potential new risks. (2) The risk status and handling strategy action item tracking mechanism that has visibility and buy-in throughout the Tritium Readiness Subprogram to ensure that approved actions are completed as scheduled and that risk reduction is being achieved. (3) The generation of a risk-based cost contingency estimate that may be used by the Tritium Readiness Subprogram Manager in establishing future year program budgets.

  5. 10 CFR 824.16 - Direction to NNSA contractors.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... INFORMATION SECURITY VIOLATIONS § 824.16 Direction to NNSA contractors. (a) Notwithstanding any other... compel attendance; (3) Disclosures of information or documents obtained during an investigation...

  6. 10 CFR 824.16 - Direction to NNSA contractors.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... INFORMATION SECURITY VIOLATIONS § 824.16 Direction to NNSA contractors. (a) Notwithstanding any other... compel attendance; (3) Disclosures of information or documents obtained during an investigation...

  7. 10 CFR 824.16 - Direction to NNSA contractors.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... INFORMATION SECURITY VIOLATIONS § 824.16 Direction to NNSA contractors. (a) Notwithstanding any other... compel attendance; (3) Disclosures of information or documents obtained during an investigation...

  8. 10 CFR 824.16 - Direction to NNSA contractors.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... INFORMATION SECURITY VIOLATIONS § 824.16 Direction to NNSA contractors. (a) Notwithstanding any other... compel attendance; (3) Disclosures of information or documents obtained during an investigation...

  9. 10 CFR 820.13 - Direction to NNSA contractors.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 4 2012-01-01 2012-01-01 false Direction to NNSA contractors. 820.13 Section 820.13 Energy DEPARTMENT OF ENERGY PROCEDURAL RULES FOR DOE NUCLEAR ACTIVITIES General § 820.13 Direction to NNSA contractors. (a) Notwithstanding any other provision of this part, and pursuant to section 3213...

  10. Proceedings of the 27th Seismic Research Review: Ground-Based Nuclear Explosion Monitoring Technologies

    SciTech Connect

    Wetovsky, Marvin A.; Benson, Jody; Patterson, Eileen F.

    2005-09-20

    These proceedings contain papers prepared for the 27th Seismic Research Review: Ground-Based Nuclear Explosion Monitoring Technologies, held 20-22 September, 2005 in Rancho Mirage, California. These papers represent the combined research related to ground-based nuclear explosion monitoring funded by the National Nuclear Security Administration (NNSA), Air Force Technical Applications Center (AFTAC), Air Force Research Laboratory (AFRL), US Army Space and Missile Defense Command, and other invited sponsors. The scientific objectives of the research are to improve the United States capability to detect, locate, and identify nuclear explosions. The purpose of the meeting is to provide the sponsoring agencies, as well as potential users, an opportunity to review research accomplished during the preceding year and to discuss areas of investigation for the coming year. For the researchers, it provides a forum for the exchange of scientific information toward achieving program goals, and an opportunity to discuss results and future plans. Paper topics include: seismic regionalization and calibration; detection and location of sources; wave propagation from source to receiver; the nature of seismic sources, including mining practices; hydroacoustic, infrasound, and radionuclide methods; on-site inspection; and data processing.

  11. Proceedings of the 29th Monitoring Research Review: Ground-Based Nuclear Explosion Monitoring Technologies

    SciTech Connect

    Wetovsky, Marvin A.; Benson, Jody; Patterson, Eileen F.

    2007-09-25

    These proceedings contain papers prepared for the 29th Monitoring Research Review: Ground-Based Nuclear Explosion Monitoring Technologies, held 25-27 September, 2007 in Denver, Colorado. These papers represent the combined research related to ground-based nuclear explosion monitoring funded by the National Nuclear Security Administration (NNSA), Air Force Technical Applications Center (AFTAC), Air Force Research Laboratory (AFRL), US Army Space and Missile Defense Command, Comprehensive Nuclear-Test-Ban Treaty Organization (CTBTO), and other invited sponsors. The scientific objectives of the research are to improve the United States capability to detect, locate, and identify nuclear explosions. The purpose of the meeting is to provide the sponsoring agencies, as well as potential users, an opportunity to review research accomplished during the preceding year and to discuss areas of investigation for the coming year. For the researchers, it provides a forum for the exchange of scientific information toward achieving program goals, and an opportunity to discuss results and future plans. Paper topics include: seismic regionalization and calibration; detection and location of sources; wave propagation from source to receiver; the nature of seismic sources, including mining practices; hydroacoustic, infrasound, and radionuclide methods; on-site inspection; and data processing.

  12. Proceedings of the 28th Seismic Research Review: Ground-Based Nuclear Explosion Monitoring Technologies

    SciTech Connect

    Wetovsky, Marvin A.; Benson, Jody; Patterson, Eileen F.

    2006-09-19

    These proceedings contain papers prepared for the 28th Seismic Research Review: Ground-Based Nuclear Explosion Monitoring Technologies, held 19-21 September, 2006 in Orlando, Florida. These papers represent the combined research related to ground-based nuclear explosion monitoring funded by the National Nuclear Security Administration (NNSA), Air Force Technical Applications Center (AFTAC), Air Force Research Laboratory (AFRL), US Army Space and Missile Defense Command, Comprehensive Nuclear-Test-Ban Treaty Organization (CTBTO), and other invited sponsors. The scientific objectives of the research are to improve the United States capability to detect, locate, and identify nuclear explosions. The purpose of the meeting is to provide the sponsoring agencies, as well as potential users, an opportunity to review research accomplished during the preceding year and to discuss areas of investigation for the coming year. For the researchers, it provides a forum for the exchange of scientific information toward achieving program goals, and an opportunity to discuss results and future plans. Paper topics include: seismic regionalization and calibration; detection and location of sources; wave propagation from source to receiver; the nature of seismic sources, including mining practices; hydroacoustic, infrasound, and radionuclide methods; on-site inspection; and data processing.

  13. Proceedings of the 2009 Monitoring Research Review: Ground-Based Nuclear Explosion Monitoring Technologies

    SciTech Connect

    Wetovsky, Marv A; Aguilar - Chang, Julio; Anderson, Dale; Arrowsmith, Marie; Arrowsmith, Stephen; Baker, Diane; Begnaud, Michael; Harste, Hans; Maceira, Monica; Patton, Howard; Phillips, Scott; Randall, George; Rowe, Charlotte; Stead, Richard; Steck, Lee; Whitaker, Rod; Yang, Xiaoning

    2009-09-21

    These proceedings contain papers prepared for the Monitoring Research Review 2009: Ground -Based Nuclear Explosion Monitoring Technologies, held 21-23 September, 2009 in Tucson, Arizona,. These papers represent the combined research related to ground-based nuclear explosion monitoring funded by the National Nuclear Security Administration (NNSA), Air Force Research Laboratory (AFRL), US Army Space and Missile Defense Command, Comprehensive Test Ban Treaty Organization (CTBTO), and other invited sponsors. The scientific objectives of the research are to improve the United States’ capability to detect, locate, and identify nuclear explosions. The purpose of the meeting is to provide the sponsoring agencies, as well as potential users, an opportunity to review research accomplished during the preceding year and to discuss areas of investigation for the coming year. For the researchers, it provides a forum for the exchange of scientific information toward achieving program goals, and an opportunity to discuss results and future plans. Paper topics include: seismic regionalization and calibration; detection and location of sources; wave propagation from source to receiver; the nature of seismic sources, including mining practices; hydroacoustic, infrasound, and radionuclide methods; on-site inspection; and data processing.

  14. Proceedings of the 30th Monitoring Research Review: Ground-Based Nuclear Explosion Monitoring

    SciTech Connect

    Wetovsky, Marv A; Aguilar-chang, Julio; Arrowsmith, Marie; Arrowsmith, Stephen; Baker, Diane; Begnaud, Michael; Harste, Hans; Maceira, Monica; Patton, Howard; Phillips, Scott; Randall, George; Revelle, Douglas; Rowe, Charlotte; Stead, Richard; Steck, Lee; Whitaker, Rod; Yang, Xiaoning

    2008-09-23

    These proceedings contain papers prepared for the 30th Monitoring Research Review: Ground-Based Nuclear Explosion Monitoring Technologies, held 23-25 September, 2008 in Portsmouth, Virginia. These papers represent the combined research related to ground-based nuclear explosion monitoring funded by the National Nuclear Security Administration (NNSA), Air Force Technical Applications Center (AFTAC), Air Force Research Laboratory (AFRL), US Army Space and Missile Defense Command, Comprehensive Nuclear-Test-Ban Treaty Organization (CTBTO), and other invited sponsors. The scientific objectives of the research are to improve the United States’ capability to detect, locate, and identify nuclear explosions. The purpose of the meeting is to provide the sponsoring agencies, as well as potential users, an opportunity to review research accomplished during the preceding year and to discuss areas of investigation for the coming year. For the researchers, it provides a forum for the exchange of scientific information toward achieving program goals, and an opportunity to discuss results and future plans. Paper topics include: seismic regionalization and calibration; detection and location of sources; wave propagation from source to receiver; the nature of seismic sources, including mining practices; hydroacoustic, infrasound, and radionuclide methods; on-site inspection; and data processing.

  15. Proceedings of the 2011 Monitoring Research Review: Ground-Based Nuclear Explosion Monitoring Technologies

    SciTech Connect

    Wetovsky, Marvin A.; Patterson, Eileen F.; Sandoval, Marisa N.

    2011-09-13

    These proceedings contain papers prepared for the Monitoring Research Review 2011: Ground-Based Nuclear Explosion Monitoring Technologies, held 13-15 September, 2011 in Tucson, Arizona. These papers represent the combined research related to ground-based nuclear explosion monitoring funded by the National Nuclear Security Administration (NNSA), Defense Threat Reduction Agency (DTRA), Air Force Research Laboratory (AFRL), US Army Space and Missile Defense Command, Comprehensive Nuclear-Test-Ban Treaty Organization (CTBTO), National Science Foundation (NSF), and other invited sponsors. The scientific objectives of the research are to improve the United States' capability to detect, locate, and identify nuclear explosions. The purpose of the meeting is to provide the sponsoring agencies, as well as potential users, an opportunity to review research accomplished during the preceding year and to discuss areas of investigation for the coming year. For the researchers, it provides a forum for the exchange of scientific information toward achieving program goals, and an opportunity to discuss results and future plans. Paper topics include: seismic regionalization and calibration; detection and location of sources; wave propagation from source to receiver; the nature of seismic sources, including mining practices; hydroacoustic, infrasound, and radionuclide methods; on-site inspection; and data processing.

  16. Proceedings of the 2010 Monitoring Research Review: Ground-Based Nuclear Explosion Monitoring Technologies

    SciTech Connect

    Wetovsky, Marvin A; Patterson, Eileen F

    2010-09-21

    These proceedings contain papers prepared for the Monitoring Research Review 2010: Ground-Based Nuclear Explosion Monitoring Technologies, held 21-23 September, 2010 in Orlando, Florida,. These papers represent the combined research related to ground-based nuclear explosion monitoring funded by the National Nuclear Security Administration (NNSA), Air Force Research Laboratory (AFRL), US Army Space and Missile Defense Command, National Science Foundation (NSF), Comprehensive Nuclear-Test-Ban Treaty Organization (CTBTO), and other invited sponsors. The scientific objectives of the research are to improve the United States capability to detect, locate, and identify nuclear explosions. The purpose of the meeting is to provide the sponsoring agencies, as well as potential users, an opportunity to review research accomplished during the preceding year and to discuss areas of investigation for the coming year. For the researchers, it provides a forum for the exchange of scientific information toward achieving program goals, and an opportunity to discuss results and future plans. Paper topics include: seismic regionalization and calibration; detection and location of sources; wave propagation from source to receiver; the nature of seismic sources, including mining practices; hydroacoustic, infrasound, and radionuclide methods; on-site inspection; and data processing.

  17. Ground based infrared astronomy

    NASA Technical Reports Server (NTRS)

    Jennings, D. E.

    1988-01-01

    Infrared spectroscopic instrumentation has been developed for ground-based measurements of astrophysical objects in the intermediate infrared. A conventional Michelson interferometer is limited for astronomical applications in the intermediate infrared by quantum noise fluctuations in the radiation form the source and/or background incident on the detector, and the multiplex advantage is no longer available. One feasible approach to recovering the multiplex advantage is post-dispersion. The infrared signal after passing through telescope and interferometer, is dispersed by a low resolution grating spectrometer onto an array of detectors. The feasibility of the post-dispersion system has been demonstrated with observations of astrophysical objects in the 5 and 10 micrometer atmospheric windows from ground-based telescopes. During FY87/88 the post-disperser was used at the Kitt Peak 4-meter telescope and McMath telescope with facility Fourier transform spectrometers. Jupiter, Saturn, Mars, and Venus were observed. On Jupiter, the resolution at 12 micrometer was 0.01/cm, considerably higher than had been acheived previously. The spectrum contains Jovian ethane and acetylene emission. Construction was begun on the large cryogenic grating spectrometer.

  18. Economic Analysis of National Nuclear Security Administration (NNSA) Modernization Alternatives

    DTIC Science & Technology

    2007-11-01

    ecological systems, political systems, and economic systems. The model is implemented using a software package called STELLA, distributed by isee systems. 3 ...detailed and probably better at their specific tasks than the corresponding module of the Enterprise Model. 3 Go to the isee systems Web site...30 3 . Assembly/Disassembly Facilities ................................................................... 33 vi 4

  19. Highlights from NNSA's Decade of Success

    ScienceCinema

    None

    2016-07-12

    On April 28, 2010, the National Nuclear Security Administration celebrated its 10-year anniversary with a series of events aimed at highlighting a decade of success across the nuclear security enterprise. This slideshow features images from the past 10 years.

  20. Highlights from NNSA's Decade of Success

    SciTech Connect

    2010-04-28

    On April 28, 2010, the National Nuclear Security Administration celebrated its 10-year anniversary with a series of events aimed at highlighting a decade of success across the nuclear security enterprise. This slideshow features images from the past 10 years.

  1. NNSA B-Roll: Fuel Removals

    SciTech Connect

    2010-05-21

    The National Nuclear Security Administration established the Global Threat Reduction Initiative (GTRI) to identify, secure, remove and/or facilitate the disposition of high risk vulnerable nuclear and radiological materials around the world, as quickly as possible, that pose a threat to the United States and the international community.

  2. Data Collection and Integration in Support of the NNSA Knowledge Base

    NASA Astrophysics Data System (ADS)

    Stead, R. J.; Young, C.

    2006-05-01

    The goal of the NNSA Ground-based Nuclear Explosion Research and Engineering program (GNEM R&E)is to develop, demonstrate, and deliver advanced technologies and systems to operational monitoring agencies to support ground-based detection, location, and identification of nuclear explosions. A major component of this is Earth information. This Earth information is embedded in a custom-designed data storage and access system known as the NNSA knowledge base (KB). The GNEM research conducted at the national laboratories to populate the KB requires collection and integration of a remarkably large and diverse collection of geophysical data to develop the types of products needed to improve monitoring capability. The size and diversity of these data present substantial technical challenges to achieve complete, correct, consistent, useful, and accessible information. The bulk of these data are seismic, but there are also hydroacoustic data and a growing volume of infrasound data. The primary categories of data are bulletins (event locations and the supporting detection information), waveforms, and ground-truth event information (GT). These data are processed by the labs to produce the higher-level engineering products (e.g. travel time correction surfaces) that are needed for operational monitoring, but the basic data must also be included in the KB to fully test and verify the operational products. Without the supporting data and metadata capturing the processing details, the operational engineering products cannot be validated and thus will not be used for operations. Over the past several years the NNSA labs have integrated and delivered several versions of the Knowledge Base and in the process we have developed and refined a substantial foundation of software, structures, and procedures to assure high-quality integration of diverse data sets. Software advances include generalized database interfaces (such as dbtoolbox) and generalized QA/QC software. Structural

  3. NNSA B-Roll: Second Line of Defense

    SciTech Connect

    2010-05-21

    The NNSA Office of Second Line of Defense (SLD) works to prevent illicit trafficking in nuclear and radiological materials by securing international land borders, seaports and airports that may be used as smuggling routes for materials needed for a nuclear device or a radiological dispersal device.

  4. NNSA Laboratory Directed Research and Development Program 2008 Symposium--Focus on Energy Security

    SciTech Connect

    Kotta, P R; Sketchley, J A

    2008-08-20

    The Laboratory Directed Research and Development (LDRD) Program was authorized by Congress in 1991 to fund leading-edge research and development central to the national laboratories core missions. LDRD anticipates and engages in projects on the forefront of science and engineering at the Department of Energy (DOE) national laboratories, and has a long history of addressing pressing national security needs at the National Nuclear Security Administration (NNSA) laboratories. LDRD has been a scientific success story, where projects continue to win national recognition for excellence through prestigious awards, papers published and cited in peer-reviewed journals, mainstream media coverage, and patents granted. The LDRD Program is also a powerful means to attract and retain top researchers from around the world, to foster collaborations with other prominent scientific and technological institutions, and to leverage some of the world's most technologically advanced assets. This enables the LDRD Program to invest in high-risk and potentially high-payoff research that creates innovative technical solutions for some of our nation's most difficult challenges. Worldwide energy demand is growing at an alarming rate, as developing nations continue to expand their industrial and economic base on the back of limited global resources. The resulting international conflicts and environmental consequences pose serious challenges not only to this nation, but to the international community as well. The NNSA and its national security laboratories have been increasingly called upon to devote their scientific and technological capabilities to help address issues that are not limited solely to the historic nuclear weapons core mission, but are more expansive and encompass a spectrum of national security missions, including energy security. This year's symposium highlights some of the exciting areas of research in alternative fuels and technology, nuclear power, carbon sequestration

  5. Future challenges and DOE/NNSA-JAEA cooperation for the development of advanced safeguards

    SciTech Connect

    Stevens, Rebecca S; Mc Clelland - Kerr, John; Senzaki, Masao; Hori, Masato

    2009-01-01

    The United States Department of Energy/National Nuclear Security Administration (DOE/NNSA) has been cooperating with Japan on nuclear safeguards for over thirty years. DOE/NNSA has collaborated with the Japan Atomic Energy Agency (JAEA) and its predecessors in addressing the need for innovative solutions to nuclear transparency and verification issues in one of the world's most advanced nuclear fuel cycle states. This collaboration includes over ninety activities that have involved nearly every facility in the JAEA complex and many national laboratories in the U.S. complex. The partnership has yielded new technologies and approaches that have benefited international safeguards not only in Japan, but around the world. The International Atomic Energy Agency uses a number of safeguards solutions developed under this collaboration to improve its inspection efforts in Japan and elsewhere. Japanese facilities serve as test beds for emerging safeguards technologies and are setting the trend for new nuclear energy and fuel cycle development worldwide. The collaboration continues to be an essential component of U.S. safeguards outreach and is integral to the DOE/NNSA's Next Generation Safeguards Initiative. In addition to fostering international safeguards development, the cooperation is an opportunity for U.S. scientists to work in facilities that have no analog in the United States, thus providing crucial real-life experience for and aiding development of the next generation of U.S. safeguards specialists. It is also an important element of promoting regional transparency thereby building confidence in the peaceful nature of nuclear programs in the region. The successes engendered by this partnership provide a strong basis for addressing future safeguards challenges, in Japan and elsewhere. This paper summarizes these challenges and the associated cooperative efforts that are either underway or anticipated.

  6. Nuclear Weapons: NNSA Needs to Establish a Cost and Schedule Baseline for Manufacturing a Critical Nuclear Weapon Component

    DTIC Science & Technology

    2008-05-01

    MOX mixed-oxide NNSA National Nuclear Security Administration PF-4 Plutonium Facility-4 building RRW Reliable Replacement Warhead TA-50...disassembles legacy pits and removes and oxidizes the plutonium, which can be used as a feed metal for the mixed-oxide ( MOX ) fuel polishing activities...Facility at the Savannah River Site. MOX fuel polishing This program purifies plutonium from the ARIES project to specifications that would allow direct

  7. Ground based materials science experiments

    NASA Technical Reports Server (NTRS)

    Meyer, M. B.; Johnston, J. C.; Glasgow, T. K.

    1988-01-01

    The facilities at the Microgravity Materials Science Laboratory (MMSL) at the Lewis Research Center, created to offer immediate and low-cost access to ground-based testing facilities for industrial, academic, and government researchers, are described. The equipment in the MMSL falls into three categories: (1) devices which emulate some aspect of low gravitational forces, (2) specialized capabilities for 1-g development and refinement of microgravity experiments, and (3) functional duplicates of flight hardware. Equipment diagrams are included.

  8. Ground based silicon zoning program

    NASA Technical Reports Server (NTRS)

    Kern, E. L.

    1981-01-01

    The preparation of building flight hardware and carrying out experiments in space was investigated. The ground based investigation phase A/B of the experimental float zoning of silicon is outlined. The overall program goals, leading to recommending experiments to be done in phase C/D are spelled out. Thermophysical properties which must be accurately known to compare thermophysical models to experimental zoning of silicon are listed.

  9. Ground-based IRCM testing

    NASA Astrophysics Data System (ADS)

    Greer, Derek; Owen, Mark

    2010-04-01

    Recent advances in the ability to perform comprehensive ground based Infrared Countermeasure (IRCM) testing have the capability to fill the Test and Evaluation (T&E) gaps for existing and future weapons system acquisition. IRCM testing has historically been dominated and in a manner limited by expensive live fire testing requirements. While live fire testing is a vital part of IRCM T&E, next generation technological developments now enable closed-loop, ground-based IRCM testing to provide valuable complementary test data at a much lower cost. The high cost and limited assets that have prevented live fire and flight testing from providing a thorough hardware based data set required for previous T&E analysis is no longer an issue. In the past, traditional physics based digital system model (DSM) analysis has been utilized to augment the IRCM data sets to make them statistically significant. While DSM is a useful tool in the development of IRCM systems, the newly developed installed system testing utilizing a hardware-in-the-loop construct provides for an enhanced level of fidelity and assurance that the systems will meet the warfighter's needs. The goal of the newly developed test technologies is to develop a statistical significant data set utilizing hardware-in-the-loop at a significantly lower cost than historical methods.

  10. Potential application of LIBS to NNSA next generation safeguards initiative (NGSI)

    SciTech Connect

    Barefield Ii, James E; Clegg, Samuel M; Veirs, Douglas K; Browne, Mike; Lopez, Leon; Martinez, Ron; Le, Loan; Lamontagne, Stephen A

    2009-01-01

    In a climate in which states and nations have been and perhaps currently are involved in the prol iferation of nuclear materials and technologies, advanced methodologies and improvements in current measurement techniques are needed to combat new threats and increased levels of sophistication. The Department of Energy through the National Nuclear Security Administration (NNSA) has undertaken a broad review of International Safeguards. The conclusion from that review was that a comprehensive initiative to revitalize international safeguards technology and the human resource base was urgently needed to keep pace with demands and increasingly sophisticated emerging safeguards challenges. To address these challenges, NNSA launched the Next Generation Safeguards Initiative (NGSI) to develop policies, concepts, technologies, expertise, and infrastructure necessary to sustain the international safeguards system as its mission evolves for the next 25 years. NGSI is designed to revitalize and strengthen the U.S. safeguards technical base, recognizing that without a robust program the United States of America will not be in a position to exercise leadership or provide the necessary support to the IAEA (International Atomic Energy Agency). International safeguards as administrated by the IAEA are the primary vehicle for verifying compliance with the peaceful use and nonproliferation of nuclear materials and technologies. Laser Induced Breakdown Spectroscopy or LIBS has the potential to support the goals of NGSI as follows: by providing (1) automated analysis in complex nuclear processing or reprocessing facilities in real-time or near real-time without sample preparation or removal, (2) isotopic and important elemental ratio (Cm/Pu, Cm/U, ... etc) analysis, and (3) centralized remote control, process monitoring, and analysis of nuclear materials in nuclear facilities at multiple locations within the facility. Potential application of LIBS to international safeguards as

  11. NNSA?s Computing Strategy, Acquisition Plan, and Basis for Computing Time Allocation

    SciTech Connect

    Nikkel, D J

    2009-07-21

    This report is in response to the Omnibus Appropriations Act, 2009 (H.R. 1105; Public Law 111-8) in its funding of the National Nuclear Security Administration's (NNSA) Advanced Simulation and Computing (ASC) Program. This bill called for a report on ASC's plans for computing and platform acquisition strategy in support of stockpile stewardship. Computer simulation is essential to the stewardship of the nation's nuclear stockpile. Annual certification of the country's stockpile systems, Significant Finding Investigations (SFIs), and execution of Life Extension Programs (LEPs) are dependent on simulations employing the advanced ASC tools developed over the past decade plus; indeed, without these tools, certification would not be possible without a return to nuclear testing. ASC is an integrated program involving investments in computer hardware (platforms and computing centers), software environments, integrated design codes and physical models for these codes, and validation methodologies. The significant progress ASC has made in the past derives from its focus on mission and from its strategy of balancing support across the key investment areas necessary for success. All these investment areas must be sustained for ASC to adequately support current stockpile stewardship mission needs and to meet ever more difficult challenges as the weapons continue to age or undergo refurbishment. The appropriations bill called for this report to address three specific issues, which are responded to briefly here but are expanded upon in the subsequent document: (1) Identify how computing capability at each of the labs will specifically contribute to stockpile stewardship goals, and on what basis computing time will be allocated to achieve the goal of a balanced program among the labs. (2) Explain the NNSA's acquisition strategy for capacity and capability of machines at each of the labs and how it will fit within the existing budget constraints. (3) Identify the technical

  12. The VO and Ground-Based Data

    NASA Astrophysics Data System (ADS)

    Huchra, John

    The era of extremely large public databases in astronomy is upon us. such databases are opening the field to new research and new researchers. However it is important to be sure the resources are available to properly archive ground-based astronomical data and include the necessary quality checks and calibrations. A Virtual Observatory without proper archives will have limited usefulness. This also implies that with limited resources not all data can or should be archived. NASA already has a very good handle on US space-based astronomical data. Agencies and organizations that operate astronomical facilities particularly ground based observatories need to plan and budget for these activities now. We should not underestimate the effort required to produce high quality data products that will be useful for the broader community. Currently the best way to ""fill"" archives is with data ftom surveys. That will continue to be the case for most ground based observatories.

  13. Ground-based gravitational-wave observatories

    NASA Astrophysics Data System (ADS)

    Giaime, Joseph

    2017-01-01

    After decades of development and recent upgrades, a network of ground-based interferometric gravitational-wave detectors has begun regular operation. Last year LIGO's two detectors ran for ca. 4 months, observing waves emitted during the inspiral and coalescence of pairs of black holes hundreds of megaparsec from Earth. The results from LIGO's first observational run will be described, as will plans and expectations for a larger network to include Virgo in Europe and other ground-based detectors in the coming years.

  14. Ground-Based Astrometry 2010-2020

    DTIC Science & Technology

    2010-01-01

    rare members of the Galaxy, such as cataclysmic vari- ables and the central stars of planetary nebulae ? Concerted efforts on CVs at optical wave- 4...densities (Thorstensen et al. 2008). Because of ground-based parallax efforts on planetary nebulae central stars, we now know their luminosities and how they

  15. MSFC Skylab ground-based astronomy program

    NASA Technical Reports Server (NTRS)

    Duncan, B. J.

    1974-01-01

    The Skylab Ground-Based Astronomy Program (SGAP) was conducted to enhance the data base of solar physics obtained during the Apollo Telescope Mount (ATM) mission flown in conjunction with the Skylab orbital station. Leading solar physicists from various observatories obtained data from the ground at the same time that orbital data were being acquired by ATM. The acquisition of corollary solar data from the ground simultaneously with the ATM orbital observations helped to provide a broader basis for understanding solar physics by increasing spectral coverage and by the use of additional sophisticated instruments of various types. This report briefly describes the individual tasks and the associated instrumentation selected for this ground-based program and contains as appendices, the final reports from the Principal Investigators.

  16. Ground-based observations of exoplanet atmospheres

    NASA Astrophysics Data System (ADS)

    de Mooij, Ernst Johan Walter

    2011-11-01

    This thesis focuses on the properties of exoplanet atmospheres. The results for ground-based near-infrared secondary eclipse observations of three different exoplanets, TrES-3b, HAT-P-1b and WASP-33b, are presented which have been obtained with ground-based telescopes as part of the GROUSE project. In addition to secondary eclipse observations, the broadband transmission spectrum of the super-Earth GJ1214b is also presented. The transmission spectrum for this low-density planet indicates that it probably has a low-metallicity, hydrogen dominated atmosphere. Finally the results for an ensemble study of the thermal emission properties of hot Jupiters is presented, including the average spectrum for these planets separated based on the level of incident radiation and the activity of their host-stars.

  17. Ground-Based Telescope Parametric Cost Model

    NASA Technical Reports Server (NTRS)

    Stahl, H. Philip; Rowell, Ginger Holmes

    2004-01-01

    A parametric cost model for ground-based telescopes is developed using multi-variable statistical analysis, The model includes both engineering and performance parameters. While diameter continues to be the dominant cost driver, other significant factors include primary mirror radius of curvature and diffraction limited wavelength. The model includes an explicit factor for primary mirror segmentation and/or duplication (i.e.. multi-telescope phased-array systems). Additionally, single variable models based on aperture diameter are derived. This analysis indicates that recent mirror technology advances have indeed reduced the historical telescope cost curve.

  18. Archiving data from ground-based telescopes

    NASA Technical Reports Server (NTRS)

    Albrecht, M. A.

    1992-01-01

    The scientific throughput of a particular observing facility has been demonstrated to be multiplied with the operation of a data archive and its corresponding retrieval system. A requisite to achieve such an exploitation is a well structured observations catalog, i.e. a catalog that includes all information necessary to reduce and analyze the data even many years after its acquisition. At the same time, an information system is required that allow users to browse through the catalog at different levels of detail, adapting the amount of information presented to the actual needs of the user. Archiving data acquired with ground-based telescopes is particularly difficult because of the relative short life-time of instruments and detectors in comparison to the expected life-time of the archive. This feature differentiates ground-based originated archives radically from its spaceborne counterparts. The organization of the observations catalog becomes highly dependent on the capability of the archive to deal with new instrumental configurations. We introduce in this paper, the concept of a catalog database as opposed to the static catalog design currently in use in many archiving facilities, as a method to deal with this problem. We also present a brief review of activities currently in progress in this area.

  19. Telerobotic manipulator developments for ground-based space research

    NASA Technical Reports Server (NTRS)

    Herndon, J. N.; Babcock, S. M.; Butler, P. L.; Costello, H. M.; Glassell, R. L.; Kress, Reid L.; Kuban, D. P.; Rowe, J. C.; Williams, D. M.; Meintel, A. J.

    1988-01-01

    New opportunities for the application of telerobotic systems to enhance human intelligence and dexterity in the hazardous environment of space are presented by the National Aeronautics and Space Administration (NASA) Space Station Program. Because of the need for significant increases in extravehicular activity and the potential increase in hazards associated with space programs, emphasis is being heightened on telerobotic systems research and development. The Automation Technology Branch at NASA Langley Research Center currently is sponsoring the Laboratory Telerobotic Manipulator (LTM) program at Oak Ridge National Laboratory to develop and demonstrate ground-based telerobotic manipulator system hardware for research and demonstrations aimed at future NASA applications. The LTM incorporates traction drives, modularity, redundant kinematics, and state-of-the-art hierarchical control techniques to form a basis for merging the diverse technological domains of robust, high-dexterity teleoperations and autonomous robotic operation into common hardware to further NASA's research.

  20. Ground Based Studies of the Outer Planets

    NASA Technical Reports Server (NTRS)

    Trafton, Laurence M.

    2005-01-01

    This report covers progress to date under this grant on our continuing program to conduct ground based studies of the outer solar system planets and satellites, with emphasis on spectroscopy and atmospheric phenomena. The research continues under our new PAST grant, NNG04G131G beginning 5/1/2004. The original period of performance of the subject grant was 3/1/2001 to 2/28/2004, but was extended one year at no cost. Although there is some overlap in the scientific projects conducted during the extended year with those of the new grant, this report is confined to the portion of the work funded under NAG5-10435. The primary goals for this grant period were a comparative study of outer planet thermospheres/ionospheres near solar maximum, extended to the mid-IR, and the investigation of molecular dimers in outer solar system atmospheres. This project supports NASA's planned space missions, Jupiter Polar Orbiter, outer Planet Microprobes, and the recent Cassini flyby of Jupiter. It also supports the OSS strategic plan themes, The Exploration of the Solar System and The Sun-Earth Connection/ Understanding comparative planetary space environments.

  1. SCIENTIFIC EFFICIENCY OF GROUND-BASED TELESCOPES

    SciTech Connect

    Abt, Helmut A.

    2012-10-01

    I scanned the six major astronomical journals of 2008 for all 1589 papers that are based on new data obtained from ground-based optical/IR telescopes worldwide. Then I collected data on numbers of papers, citations to them in 3+ years, the most-cited papers, and annual operating costs. These data are assigned to four groups by telescope aperture. For instance, while the papers from telescopes with an aperture >7 m average 1.29 more citations than those with an aperture of 2 to <4 m, this represents a small return for a factor of four difference in operating costs. Among the 17 papers that have received {>=}100 citations in 3+ years, only half come from the large (>7 m) telescopes. I wonder why the large telescopes do so relatively poorly and suggest possible reasons. I also found that papers based on archival data, such as the Sloan Digital Sky Survey, produce 10.6% as many papers and 20.6% as many citations as those based on new data. Also, the 577.2 papers based on radio data produced 36.3% as many papers and 33.6% as many citations as the 1589 papers based on optical/IR telescopes.

  2. Ground based research in microgravity materials processing

    NASA Technical Reports Server (NTRS)

    Workman, Gary L.; Rathz, Tom

    1994-01-01

    The core activities performed during this time period have been concerned with tracking the TEMPEST experiments on the shuttle with drops of Zr, Ni, and Nb alloys. In particular a lot of Zr drops are being made to better define the recalescence characteristics of that system so that accurate comparisons of the drop tube results with Tempest can be made. A new liner, with minimal reflectivity characteristics, has been inserted into the drop tube in order to improve the recalescence measurements of the falling drops. The first installation to make the geometric measurements to ensure a proper fit has been made. The stovepipe sections are currently in the shop at MSFC being painted with low reflectivity black paint. Work has also continued on setting up the MEL apparatus obtained from Oak Ridge in the down stairs laboratory at the Drop Tube Facilities. Some ground-based experiments on the same metals as are being processed on TEMPEST are planned for the MEL. The flight schedules for the KC-135 experiments are still to be determined in the near future.

  3. Scientific Efficiency of Ground-based Telescopes

    NASA Astrophysics Data System (ADS)

    Abt, Helmut A.

    2012-10-01

    I scanned the six major astronomical journals of 2008 for all 1589 papers that are based on new data obtained from ground-based optical/IR telescopes worldwide. Then I collected data on numbers of papers, citations to them in 3+ years, the most-cited papers, and annual operating costs. These data are assigned to four groups by telescope aperture. For instance, while the papers from telescopes with an aperture >7 m average 1.29 more citations than those with an aperture of 2 to <4 m, this represents a small return for a factor of four difference in operating costs. Among the 17 papers that have received >=100 citations in 3+ years, only half come from the large (>7 m) telescopes. I wonder why the large telescopes do so relatively poorly and suggest possible reasons. I also found that papers based on archival data, such as the Sloan Digital Sky Survey, produce 10.6% as many papers and 20.6% as many citations as those based on new data. Also, the 577.2 papers based on radio data produced 36.3% as many papers and 33.6% as many citations as the 1589 papers based on optical/IR telescopes.

  4. Ground Based GPS Phase Measurements for Atmospheric Sounding

    DTIC Science & Technology

    2016-06-14

    Ground Based GPS Phase Measurements for Atmospheric Sounding Principal Investigator: Randolph Ware Co-Principal Investigator Christian Rocken UNAVCO...objective of this research is to develop GPS sounding techniques for ground based atmospheric profiling. Atmospheric profiling with GPS from space has been...TITLE AND SUBTITLE Ground Based GPS Phase Measurements for Atmospheric Sounding 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6

  5. Movable Ground Based Recovery System for Reuseable Space Flight Hardware

    NASA Technical Reports Server (NTRS)

    Sarver, George L. (Inventor)

    2013-01-01

    A reusable space flight launch system is configured to eliminate complex descent and landing systems from the space flight hardware and move them to maneuverable ground based systems. Precision landing of the reusable space flight hardware is enabled using a simple, light weight aerodynamic device on board the flight hardware such as a parachute, and one or more translating ground based vehicles such as a hovercraft that include active speed, orientation and directional control. The ground based vehicle maneuvers itself into position beneath the descending flight hardware, matching its speed and direction and captures the flight hardware. The ground based vehicle will contain propulsion, command and GN&C functionality as well as space flight hardware landing cushioning and retaining hardware. The ground based vehicle propulsion system enables longitudinal and transverse maneuverability independent of its physical heading.

  6. Nuclear Weapons: NNSA Has a New Approach to Managing the B61-12 Life Extension, but a Constrained Schedule and Other Risks Remain

    DTIC Science & Technology

    2016-02-01

    Department of Energy responsible for the nation’s nuclear weapons, nonproliferation, and naval reactor programs. NNSA maintains and enhances the safety... NUCLEAR WEAPONS NNSA Has a New Approach to Managing the B61-12 Life Extension, but a Constrained Schedule and...February 2016 NUCLEAR WEAPONS NNSA Has a New Approach to Managing the B61-12 Life Extension, but a Constrained Schedule and Other Risks Remain

  7. Assuring Ground-Based Detect and Avoid for UAS Operations

    NASA Technical Reports Server (NTRS)

    Denney, Ewen W.; Pai, Ganeshmadhav Jagadeesh; Berthold, Randall; Fladeland, Matthew; Storms, Bruce; Sumich, Mark

    2014-01-01

    One of the goals of the Marginal Ice Zones Observations and Processes Experiment (MIZOPEX) NASA Earth science mission was to show the operational capabilities of Unmanned Aircraft Systems (UAS) when deployed on challenging missions, in difficult environments. Given the extreme conditions of the Arctic environment where MIZOPEX measurements were required, the mission opted to use a radar to provide a ground-based detect-and-avoid (GBDAA) capability as an alternate means of compliance (AMOC) with the see-and-avoid federal aviation regulation. This paper describes how GBDAA safety assurance was provided by interpreting and applying the guidelines in the national policy for UAS operational approval. In particular, we describe how we formulated the appropriate safety goals, defined the processes and procedures for system safety, identified and assembled the relevant safety verification evidence, and created an operational safety case in compliance with Federal Aviation Administration (FAA) requirements. To the best of our knowledge, the safety case, which was ultimately approved by the FAA, is the first successful example of non-military UAS operations using GBDAA in the U.S. National Airspace System (NAS), and, therefore, the first nonmilitary application of the safety case concept in this context.

  8. Space transfer with ground-based laser/electric propulsion

    NASA Technical Reports Server (NTRS)

    Landis, Geoffrey A.; Stavnes, Mark; Oleson, Steve; Bozek, John

    1993-01-01

    A new method of providing power to space vehicles consists of using ground-based lasers to beam power to photovoltaic receivers in space. This can be used as a power source for electrically propelled orbital transfer vehicles.

  9. Challenges and Opportunities for Ground-based Helioseismic Observations

    NASA Astrophysics Data System (ADS)

    Chaplin, W. J.

    2013-12-01

    I summarize the current status of ground-based helioseismic observations, in particular the two operational networks GONG and BiSON. I then discuss requirements for continued and future ground-based observations based on key science drivers, finishing with a discussion of SPRING, a proposed future high-spatial-resolution network that would provide helioseismic data and a broad range of synoptic data products.

  10. The U.S./IAEA Workshop on Software Sustainability for Safeguards Instrumentation: Report to the NNSA DOE Office of International Nuclear Safeguards (NA-241)

    SciTech Connect

    Pepper, Susan E.; Pickett, Chris A.; Queirolo, Al; Bachner, Katherine M.; Worrall, Louise G.

    2015-04-07

    The U.S Department of Energy (DOE) National Nuclear Security Administration (NNSA) Next Generation Safeguards Initiative (NGSI) and the International Atomic Energy Agency (IAEA) convened a workshop on Software Sustainability for Safeguards Instrumentation in Vienna, Austria, May 6-8, 2014. Safeguards instrumentation software must be sustained in a changing environment to ensure existing instruments can continue to perform as designed, with improved security. The approaches to the development and maintenance of instrument software used in the past may not be the best model for the future and, therefore, the organizers’ goal was to investigate these past approaches and to determine an optimal path forward. The purpose of this report is to provide input for the DOE NNSA Office of International Nuclear Safeguards (NA-241) and other stakeholders that can be utilized when making decisions related to the development and maintenance of software used in the implementation of international nuclear safeguards. For example, this guidance can be used when determining whether to fund the development, upgrade, or replacement of a particular software product. The report identifies the challenges related to sustaining software, and makes recommendations for addressing these challenges, supported by summaries and detailed notes from the workshop discussions. In addition the authors provide a set of recommendations for institutionalizing software sustainability practices in the safeguards community. The term “software sustainability” was defined for this workshop as ensuring that safeguards instrument software and algorithm functionality can be maintained efficiently throughout the instrument lifecycle, without interruption and providing the ability to continue to improve that software as needs arise.

  11. Highlights from Ground-Based O/IR Interferometers

    NASA Astrophysics Data System (ADS)

    Armstrong, J. Thomas; Creech-Eakman, M. J.; Akeson, R. L.; Bakker, E. J.; Hutter, D. J.; McAlister, H. A.; ten Brummelaar, T.; Townes, C. H.

    2009-01-01

    Ground-based optical/infrared long-baseline interferometry has continued to extend its capabilities in the U.S., where several existing facilites demonstrate its capabilites in a broad range of scientific applications. This poster presents brief overviews of the CHARA Array and the Infrared Spatial Interferometer (ISI) on Mt. Wilson, CA; the Palomar Testbed Interferometer (PTI) on Mt. Palomar, CA; the Navy Prototype Optical Interferometer (NPOI) located on Anderson Mesa near Flagstaff, AZ; and the Keck Interferometer (KI) on Mauna Kea, HI; as well as the Magdalena Ridge Observatory Interferometer (MROI) now under construction at the highest elevation of the Magdalena Mountains of New Mexico. The poster also includes pointers to a small fraction of the scientific results from U.S. interferometers. Recent scientific highlights range from stellar atmospheres (precise diameters, including G/K dwarfs; limb darkening; Cepheid pulsations) to circumstellar material (water detected in a protoplanetary disk; debris disks; Be star disks; warped circumbinary disks; dust shells) to orbits and stellar masses in double, triple, and quadruple systems, to images of stellar surfaces (rapid rotators such Altair), to name a few. While the great majority of results to date have focused on stellar astrophysics, the MROI strives to have sensitivity sufficient to access a number of AGN. Research with these independently operated facilities is sponsored by the California Institute of Technology and the Jet Propulsion Laboratory for PTI; the Oceanographer of the Navy and the Office of Naval Research for NPOI; the National Aeronautics and Space Administration for KI; the National Science Foundation and Georgia State University for the CHARA Array; and the Office of Naval Research, the National Science Foundation, and the Gordon and Betty Moore Foundation for ISI. Funding for MROI is administered through the Office of Naval Research.

  12. Science Highlights from Ground-Based O/IR Interferometers

    NASA Astrophysics Data System (ADS)

    McAlister, Harold A.; Akeson, R.; Armstrong, T.; Bakker, E.; Boden, A.; ten Brummelaar, T.; Creech-Eakman, M.; Hutter, D.

    2007-05-01

    Ground-based optical/infrared long-baseline interferometry has come of age in the U.S. where several existing or planned facilities have produced remarkable scientific results demonstrating the power of the technique within a broad range of scientific applications. This paper presents brief overviews of the following facilities: the Palomar Testbed Interferometer (PTI) on Mt. Palomar, CA; the Navy Prototype Optical Interferometer (NPOI) located on Anderson Mesa near Flagstaff, AZ; the Keck Interferometer (KI) on Mauna Kea, HI; and the CHARA Array on Mt. Wilson, CA. Also described is the Magdalena Ridge Observatory Interferometer (MROI) to be built at the highest elevation of the Magdalena Mountains of New Mexico. Example scientific highlights to date include: The first measurement of stellar rotational oblateness (Altair), the detection of Cepheid pulsations, and ultra-precise astrometry of binaries with PTI; the first six-telescope images (the triple system eta Virginis) and constraints on disk parameters of Be stars with NPOI; resolving the nucleus of NGC 4151 and probing the inner disk regions of YSOs with KI; and, the first direct detection of gravity darkening in single stars (Regulus), calibration of the Baade-Wesselink method for Cepheids, and the first direct measurement of the diameter of an exoplanet (the transit system HD 189733) using the CHARA Array. While the great majority of results to date have focused on stellar astrophysics, the MROI strives to have sensitivity sufficient to access a number of AGN. Research with these independently operated facilities is sponsored by the California Institute of Technology and the Jet Propulsion Laboratory for PTI; the U.S. Naval Observatory and the Naval Research Laboratory for NPOI; the National Aeronautics and Space Administration for KI; and, the National Science Foundation and Georgia State University for the CHARA Array. Funding for MROI is administered through the Office of Naval Research.

  13. Project management for complex ground-based instruments: MEGARA plan

    NASA Astrophysics Data System (ADS)

    García-Vargas, María. Luisa; Pérez-Calpena, Ana; Gil de Paz, Armando; Gallego, Jesús; Carrasco, Esperanza; Cedazo, Raquel; Iglesias, Jorge

    2014-08-01

    The project management of complex instruments for ground-based large telescopes is a challenge itself. A good management is a clue for project success in terms of performance, schedule and budget. Being on time has become a strict requirement for two reasons: to assure the arrival at the telescope due to the pressure on demanding new instrumentation for this first world-class telescopes and to not fall in over-costs. The budget and cash-flow is not always the expected one and has to be properly handled from different administrative departments at the funding centers worldwide distributed. The complexity of the organizations, the technological and scientific return to the Consortium partners and the participation in the project of all kind of professional centers working in astronomical instrumentation: universities, research centers, small and large private companies, workshops and providers, etc. make the project management strategy, and the tools and procedures tuned to the project needs, crucial for success. MEGARA (Multi-Espectrógrafo en GTC de Alta Resolución para Astronomía) is a facility instrument of the 10.4m GTC (La Palma, Spain) working at optical wavelengths that provides both Integral-Field Unit (IFU) and Multi-Object Spectrograph (MOS) capabilities at resolutions in the range R=6,000-20,000. The project is an initiative led by Universidad Complutense de Madrid (Spain) in collaboration with INAOE (Mexico), IAA-CSIC (Spain) and Universidad Politécnica de Madrid (Spain). MEGARA is being developed under contract with GRANTECAN.

  14. Secretary Chu and Administrator D'Agostino at the HEUMF Dedication

    ScienceCinema

    Department of Energy Secretary Steven Chu and Administrator D'Agostino

    2016-07-12

    Speeches by Secretary of Energy Chu and NNSA Administrator Tom D'Agostino at the Highly Enriched Uranium Materials Facility dedication ceremony at the Y-12 National Security Complex in Oak Ridge, Tennessee on March 22, 2010.

  15. Secretary Chu and Administrator D'Agostino at the HEUMF Dedication

    SciTech Connect

    Department of Energy Secretary Steven Chu and Administrator D'Agostino

    2010-03-24

    Speeches by Secretary of Energy Chu and NNSA Administrator Tom D'Agostino at the Highly Enriched Uranium Materials Facility dedication ceremony at the Y-12 National Security Complex in Oak Ridge, Tennessee on March 22, 2010.

  16. Ground Base Skylab Electron Beam Welds in Tantalum

    NASA Technical Reports Server (NTRS)

    2004-01-01

    Comparison of ground-based (left) and Skylab (right) electron beam welds in pure tantalum (Ta) (10X magnification). Residual votices left behind in the ground-based sample after the electron beam passed were frozen into the grain structure. These occurred because of the rapid cooling rate at the high temperature. Although the thermal characteristics and electron beam travel speeds were comparable for the skylab sample, the residual vortices were erased in the grain structure. This may have been due to the fact that final grain size of the solidified material was smaller in the Skylab sample compared to the ground-based sample. The Skylab sample was processed in the M512 Materials Processing Facility (MPF) during Skylab SL-2 Mission. Principal Investigator was Richard Poorman.

  17. Ground-based laser radar measurements of satellite vibrations.

    PubMed

    Schultz, K I; Fisher, S

    1992-12-20

    Vibration signatures from the low-power atmospheric compensation (LACE) satellite are obtained by using the MIT Lincoln Laboratory Firepond coherent CO(2) laser radar facility located in Westford, Mass. The LACE satellite is equipped with IR germanium retroreflectors on deployable/retractable booms to enhance ground-based IR laser radar measurements of on-orbit boom vibrations. Analysis of pulsed cw laser radar measurements of the satellite during and subsequent to boom retraction indicates the presence of a complex time-varying model structure. The observed vibration spectra include vibration modes not previously predicted. These data represent the first observations of satellite vibration modes from a ground-based laser radar.

  18. A ground-based experiment for CMBR anisotropy observations: MITO

    NASA Astrophysics Data System (ADS)

    De Petris, M.; Mainella, G.; Nerozzi, A.; de Bernardis, P.; Garavini, G.; Granata, S.; Guarini, G.; Masi, S.; Melchiorri, B.; Melchiorri, F.; Nobili, S.; Orlando, A.; Palummo, L.; Pisano, G.; Terracina, A.

    1999-07-01

    Ground-based observations at millimeter wavelengths are still competitive with space observatories if inevitable foreground contamination is considered at all stages of data acquisition and analysis. Technical solutions together with carefully chosen cosmological targets and observational strategies are the key points in the development of the MITO experiment.

  19. Vigilant Eagle: ground-based countermeasure system against MANPADS

    NASA Astrophysics Data System (ADS)

    Vollin, Jeff

    2006-05-01

    Man-Portable Air Defense Systems, or MANPADS, have arisen as a major threat to commercial and military air traffic. While no MANPADS attacks have yet occurred within the United States, the risk posed by these weapons is undeniable. MANPADS were originally developed by the Soviet Union and the United States for tactical air defense, but since then these weapons have proliferated around the world. Two major approaches to countering these weapons have arisen: aircraft based and ground based. Aircraft-based systems typically use either flares or lasers to either confuse or blind the oncoming missile, thus driving it off target. These systems have been in use for many years on military aircraft and have been proven effective. However, when one considers the commercial air travel industry, the cost of providing a countermeasure system on every plane becomes prohibitive. A ground-based system by contrast protects every aircraft arriving or departing from an airport. By deploying a ground-based system at high-traffic and hub airports, a large percentage of the flying public can be protected affordably. Vigilant Eagle is such a ground based system which uses High Power Microwaves (HPM) to accomplish this mission.

  20. GLAST and Ground-Based Gamma-Ray Astronomy

    NASA Technical Reports Server (NTRS)

    McEnery, Julie

    2008-01-01

    The launch of the Gamma-ray Large Area Space Telescope together with the advent of a new generation of ground-based gamma-ray detectors such as VERITAS, HESS, MAGIC and CANGAROO, will usher in a new era of high-energy gamma-ray astrophysics. GLAST and the ground based gamma-ray observatories will provide highly complementary capabilities for spectral, temporal and spatial studies of high energy gamma-ray sources. Joint observations will cover a huge energy range, from 20 MeV to over 20 TeV. The LAT will survey the entire sky every three hours, allowing it both to perform uniform, long-term monitoring of variable sources and to detect flaring sources promptly. Both functions complement the high-sensitivity pointed observations provided by ground-based detectors. Finally, the large field of view of GLAST will allow a study of gamma-ray emission on large angular scales and identify interesting regions of the sky for deeper studies at higher energies. In this poster, we will discuss the science returns that might result from joint GLAST/ground-based gamma-ray observations and illustrate them with detailed source simulations.

  1. Preliminary design document: Ground based testbed for avionics systems

    NASA Technical Reports Server (NTRS)

    1989-01-01

    The design and interface requirements for an avionics Ground Based Test bed (GBT) to support Heavy Lift Cargo Vehicles (HLCV) is presented. It also contains data on the vehicle subsystem configurations that are to be supported during their early, pre-PDR developmental phases. Several emerging technologies are also identified for support. A Preliminary Specification Tree is also presented.

  2. Ground-Based Sensing System for Weed Mapping in Cotton

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A ground-based weed mapping system was developed to measure weed intensity and distribution in a cotton field. The weed mapping system includes WeedSeeker® PhD600 sensor modules to indicate the presence of weeds between rows, a GPS receiver to provide spatial information, and a data acquisition and ...

  3. Rainfall Measurement with a Ground Based Dual Frequency Radar

    NASA Technical Reports Server (NTRS)

    Takahashi, Nobuhiro; Horie, Hiroaki; Meneghini, Robert

    1997-01-01

    Dual frequency methods are one of the most useful ways to estimate precise rainfall rates. However, there are some difficulties in applying this method to ground based radars because of the existence of a blind zone and possible error in the radar calibration. Because of these problems, supplemental observations such as rain gauges or satellite link estimates of path integrated attenuation (PIA) are needed. This study shows how to estimate rainfall rate with a ground based dual frequency radar with rain gauge and satellite link data. Applications of this method to stratiform rainfall is also shown. This method is compared with single wavelength method. Data were obtained from a dual frequency (10 GHz and 35 GHz) multiparameter radar radiometer built by the Communications Research Laboratory (CRL), Japan, and located at NASA/GSFC during the spring of 1997. Optical rain gauge (ORG) data and broadcasting satellite signal data near the radar t location were also utilized for the calculation.

  4. The WASP and NGTS ground-based transit surveys

    NASA Astrophysics Data System (ADS)

    Wheatley, P. J.

    2015-10-01

    I will review the current status of ground-based exoplanet transit surveys, using the Wide Angle Search for Planets (WASP) and the Next Generation Transit Survey (NGTS) as specific examples. I will describe the methods employed by these surveys and show how planets from Neptune to Jupiter-size are detected and confirmed around bright stars. I will also give an overview of the remarkably wide range of exoplanet characterization that is made possible with large-telescope follow up of these bright transiting systems. This characterization includes bulk composition and spin-orbit alignment, as well as atmospheric properties such as thermal structure, composition and dynamics. Finally, I will outline how ground-based photometric studies of transiting planets will evolve with the advent of new space-based surveys such as TESS and PLATO.

  5. The Validation of Ground Based Ozone Measurements over Korea.

    NASA Astrophysics Data System (ADS)

    Baek, K. H.; Kim, J. H.; Herman, J. R.; Haffner, D. P.; Kim, J.

    2015-12-01

    The Validation of Ground Based Ozone Measurements over KoreaKorea will launch GEMS instrument in 2018 onboard the Geostationary Korea Multi-Purpose Satellite to monitor tropospheric gas concentrations in both high temporal and spatial resolution. In order to utilize information from satellite, it is crucial to carry out validation of satellite data with respect to ground-based measurements because satellite retrievals suffer from large error. The purpose of this study is to examine the performance of total ozone measurements from Pandora, Brewer, and Dobson which will be used for validation of GEMS ozone product. Because single version of the satellite retrieval algorithm is used to process the entire data set for a given satellite instrument and satellite instrument characteristics are typically changing slowly, it is assumed that sudden jumps or large drifts in ground-satellite total ozone measurements difference for individual sites are commonly related to problems with ground-based measurements. Thereby, satellite measurements can be used to estimate the performance of the ground-based measurement network as well as to identify potential problems residing in individual station. As a reference of satellite ozone measurements, we have selected ozone data derived from OMI-TOMS V8.5 algorithm because it is a very robust algorithm that has well studied about various error sources such as the effects of aerosols and clouds, variation in shape of ozone profiles with season, latitude, and total ozone. For the future validation of GEMS measurements, Korea has planned to use Pandora measurement that has been started operating since 2012. However, Pandora measurements reported to have unusual high total column ozone in the presence of clouds from the comparison of Pandora with OMI total ozone during DISCOVERY-AQ campaign. In this study, we will analyze the Pandora measurements associated with cloud and introduce the statistical technique, Kalman Filter, to correct the

  6. Ground-Based Surveillance and Tracking System (GSTS)

    DTIC Science & Technology

    1987-08-01

    SCHEDULE UNLIMITED 4. PERFORMING ORGANiZATION REPORT NUMBER (S) 5. MONITORING ORGANIZATION REPORT NUMBER (S) 6a. NAME OF. PERFORMING ORGANIZATION 6h. OFFICE...8b. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER ORGANIZATION (If applicable) 8c. ADDRESS (City, State, and ZIP Code) 10. SOURCE OF...FUNDING NUMBERS PROGRAM PROJECT TASK WORK UNIT ELEMENT NO. NO. NO. ACCESSION NO. 11. TITLE (Include Security Classi6carion) Ground-Based Surveillance

  7. Ground-based lidar for atmospheric boundary layer ozone measurements.

    PubMed

    Kuang, Shi; Newchurch, Michael J; Burris, John; Liu, Xiong

    2013-05-20

    Ground-based lidars are suitable for long-term ozone monitoring as a complement to satellite and ozonesonde measurements. However, current ground-based lidars are unable to consistently measure ozone below 500 m above ground level (AGL) due to both engineering issues and high retrieval sensitivity to various measurement errors. In this paper, we present our instrument design, retrieval techniques, and preliminary results that focus on the high-temporal profiling of ozone within the atmospheric boundary layer (ABL) achieved by the addition of an inexpensive and compact mini-receiver to the previous system. For the first time, to the best of our knowledge, the lowest, consistently achievable observation height has been extended down to 125 m AGL for a ground-based ozone lidar system. Both the analysis and preliminary measurements demonstrate that this lidar measures ozone with a precision generally better than ±10% at a temporal resolution of 10 min and a vertical resolution from 150 m at the bottom of the ABL to 550 m at the top. A measurement example from summertime shows that inhomogeneous ozone aloft was affected by both surface emissions and the evolution of ABL structures.

  8. Ground-Based Lidar for Atmospheric Boundary Layer Ozone Measurements

    NASA Technical Reports Server (NTRS)

    Kuang, Shi; Newchurch, Michael J.; Burris, John; Liu, Xiong

    2013-01-01

    Ground-based lidars are suitable for long-term ozone monitoring as a complement to satellite and ozonesonde measurements. However, current ground-based lidars are unable to consistently measure ozone below 500 m above ground level (AGL) due to both engineering issues and high retrieval sensitivity to various measurement errors. In this paper, we present our instrument design, retrieval techniques, and preliminary results that focus on the high-temporal profiling of ozone within the atmospheric boundary layer (ABL) achieved by the addition of an inexpensive and compact mini-receiver to the previous system. For the first time, to the best of our knowledge, the lowest, consistently achievable observation height has been extended down to 125 m AGL for a ground-based ozone lidar system. Both the analysis and preliminary measurements demonstrate that this lidar measures ozone with a precision generally better than 10% at a temporal resolution of 10 min and a vertical resolution from 150 m at the bottom of the ABL to 550 m at the top. A measurement example from summertime shows that inhomogeneous ozone aloft was affected by both surface emissions and the evolution of ABL structures.

  9. Ground-based observations of 67P/Churyumov-Gerasimenko

    NASA Astrophysics Data System (ADS)

    Snodgrass, C.

    2015-10-01

    I will described the campaign of observations from ground-based (and Earth orbiting) telescopes that supports the Rosetta mission. Rosetta gets closer to the nucleus than any previous mission, and returns wonderfully detailed measurements from the heart of the comet, but at the cost of not seeing the large scale coma and tails. The ground-based campaign fills in the missing part of the picture, studying the comet at #1000km resolution, and following how the overall activity of the comet varies. These data provide context information for Rosetta, so changes in the inner coma seen by the spacecraft can be correlated with the phenomena observable in comets. This not only helps to complete our understanding of the activity of 67P, but also allows us to compare it with other comets that are only observed from the ground, and in that way extend the results of the Rosetta mission to the wider population. The ground-based campaign includes observations with nearly all major facilities world-wide. In 2014 the majority of data came from the ESO VLT, as the comet was still relatively faint and in Southern skies, but as it returns to visibility from Earth in 2015 it will be considerably brighter, approaching its perihelion in August, and at Northern declinations. I will show results from the 2014 campaign, including visible wavelength photometry and spectroscopy, and the latest results from early 2015 observations. I will also describe the varied observations that will be included in the campaign post-perihelion, and how all of these results fit around what we are learning about 67P from Rosetta.

  10. Augmenting WFIRST Microlensing with a Ground-Based Telescope Network

    NASA Astrophysics Data System (ADS)

    Zhu, Wei; Gould, Andrew

    2016-06-01

    Augmenting the Wide Field Infrared Survey Telescope (WFIRST) microlensing campaigns with intensive observations from a ground-based network of wide-field survey telescopes would have several major advantages. First, it would enable full two-dimensional (2-D) vector microlens parallax measurements for a substantial fraction of low-mass lenses as well as planetary and binary events that show caustic crossing features. For a significant fraction of the free-floating planet (FFP) events and all caustic-crossing planetary/binary events, these 2-D parallax measurements directly lead to complete solutions (mass, distance, transverse velocity) of the lens object (or lens system). For even more events, the complementary ground-based observations will yield 1-D parallax measurements. Together with the 1-D parallaxes from WFIRST alone, they can probe the entire mass range M > M_Earth. For luminous lenses, such 1-D parallax measurements can be promoted to complete solutions (mass, distance, transverse velocity) by high-resolution imaging. This would provide crucial information not only about the hosts of planets and other lenses, but also enable a much more precise Galactic model. Other benefits of such a survey include improved understanding of binaries (particularly with low mass primaries), and sensitivity to distant ice-giant and gas-giant companions of WFIRST lenses that cannot be detected by WFIRST itself due to its restricted observing windows. Existing ground-based microlensing surveys can be employed if WFIRST is pointed at lower-extinction fields than is currently envisaged. This would come at some cost to the event rate. Therefore the benefits of improved characterization of lenses must be weighed against these costs.

  11. Research on target accuracy for ground-based lidar

    NASA Astrophysics Data System (ADS)

    Zhu, Ling; Shi, Ruoming

    2009-05-01

    In ground based Lidar system, the targets are used in the process of registration, georeferencing for point cloud, and also can be used as check points. Generally, the accuracy of capturing the flat target center is influenced by scanning range and scanning angle. In this research, the experiments are designed to extract accuracy index of the target center with 0-90°scan angles and 100-195 meter scan ranges using a Leica HDS3000 laser scanner. The data of the experiments are listed in detail and the related results are analyzed.

  12. Microgravity research in NASA ground-based facilities

    NASA Technical Reports Server (NTRS)

    Lekan, Jack

    1989-01-01

    An overview of reduced gravity research performed in NASA ground-based facilities sponsored by the Microgravity Science and Applications Program of the NASA Office of Space Science and Applications is presented. A brief description and summary of the operations and capabilities of each of these facilities along with an overview of the historical usage of them is included. The goals and program elements of the Microgravity Science and Applications programs are described and the specific programs that utilize the low gravity facilities are identified. Results from two particular investigations in combustion (flame spread over solid fuels) and fluid physics (gas-liquid flows at microgravity conditions) are presented.

  13. Ground-based observations and AD HOC models

    NASA Astrophysics Data System (ADS)

    Ground based observations of B stars in the visible, the infrared, and the radio region are described along with the ad hoc models proposed to interpret them. It is shown that these observations refer essentially to the photosphere and to the regions of the outer atmosphere where the gas is cool and at low velocity. The characteristics of the variability of the continuous and line spectrum are examined in general and in the cases of individual stars. Finally, linear polarization in the B stars is discussed.

  14. Sky type discrimination using a ground-based sun photometer

    USGS Publications Warehouse

    DeFelice, Thomas P.; Wylie, Bruce K.

    2001-01-01

    A 2-year feasibility study was conducted at the USGS EROS Data Center, South Dakota (43.733°N, 96.6167°W) to assess whether a four-band, ground-based, sun photometer could be used to discriminate sky types. The results indicate that unique spectral signatures do exist between sunny skies (including clear and hazy skies) and cirrus, and cirrostratus, altocumulus or fair-weather cumulus, and thin stratocumulus or altostratus, and fog/fractostratus skies. There were insufficient data points to represent other cloud types at a statistically significant level.

  15. The GROUnd-based Secondary Eclipse project - GROUSE

    NASA Astrophysics Data System (ADS)

    de Mooij, Ernst; de Kok, Remco; Nefs, Bas; Brogi, Matteo; Snellen, Ignas

    2011-11-01

    Secondary eclipse observations of exoplanets at near-infrared wavelengths are important to constrain the energy budgets of hot-Jupiters, since they probe the radiation from the planet's atmosphere at the peak of the spectral energy distribution. Since this wavelength range is accesible from the ground, we have started the GROUnd-based Secondary Eclipse (GROUSE) project. As part of the GROUSE project, we target a sample of hot-Jupiters at near-infrared and optical wavelengths. Planets include TrES-3b, HAT-P-1, WASP-18b and WASP-33b.

  16. Recent Improvements in AMSR2 Ground-Based RFI Filtering

    NASA Astrophysics Data System (ADS)

    Scott, J. P.; Gentemann, C. L.; Wentz, F. J.

    2015-12-01

    Passive satellite radiometer measurements in the microwave frequencies (6-89 GHz) are useful in providing geophysical retrievals of sea surface temperature (SST), atmospheric water vapor, wind speed, rain rate, and more. However, radio frequency interference (RFI) is one of the fastest growing sources of error in these retrievals. RFI can originate from broadcasting satellites, as well as from ground-based instrumentation that makes use of the microwave range. The microwave channel bandwidths used by passive satellite radiometers are often wider than the protected bands allocated for this type of remote sensing, a common practice in microwave radiometer design used to reduce the effect of instrument noise in the observed signal. However, broad channel bandwidths allow greater opportunity for RFI to affect these observations and retrievals. For ground-based RFI, a signal is broadcast directly into the atmosphere which may interfere with the radiometer - its antenna, cold mirror, hot load or the internal workings of the radiometer itself. It is relatively easy to identify and flag RFI from large sources, but more difficult to do so from small, sporadic sources. Ground-based RFI has high spatial and temporal variability, requiring constant, automated detection and removal to avoid spurious trends leaching into the geophysical retrievals. Ascension Island in the South Atlantic Ocean has been one of these notorious ground-based RFI sources, affecting many microwave radiometers, including the AMSR2 radiometer onboard JAXA's GCOM-W1 satellite. Ascension Island RFI mainly affects AMSR2's lower frequency channels (6.9, 7.3, and 10.65 GHz) over a broad spatial region in the South Atlantic Ocean, which makes it challenging to detect and flag this RFI using conventional channel and geophysical retrieval differencing techniques. The authors have developed a new method of using the radiometer's earth counts and hot counts, for the affected channels, to detect an Ascension Island

  17. Correlation of satellite lightning observations with ground-based lightning experiments in Florida, Texas and Oklahoma

    NASA Technical Reports Server (NTRS)

    Edgar, B. C.; Turman, B. N.

    1982-01-01

    Satellite observations of lightning were correlated with ground-based measurements of lightning from data bases obtained at three separate sites. The percentage of ground-based observations of lightning that would be seen by an orbiting satellite was determined.

  18. Ground-based visual inspection for CTBT verification

    SciTech Connect

    Hawkins, W.; Wohletz, K.

    1997-11-01

    Ground-based visual inspection will play an essential role in On-Site Inspection (OSI) for Comprehensive Test Ban Treaty (CTBT) verification. Although seismic and remote sensing techniques are the best understood and most developed methods for detection of evasive testing of nuclear weapons, visual inspection will greatly augment the certainty and detail of understanding provided by these more traditional methods. Not only can ground-based visual inspection offer effective documentation in cases of suspected nuclear testing, but it also can provide accurate source location and testing media properties necessary for detailed analysis of seismic records. For testing in violation of the CTBT, an offending state may attempt to conceal the test, which most likely will be achieved by underground burial. While such concealment may not prevent seismic detection, evidence of test deployment, location, and yield can be disguised. In this light, if a suspicious event is detected by seismic or other remote methods, visual inspection of the event area is necessary to document any evidence that might support a claim of nuclear testing and provide data needed to further interpret seismic records and guide further investigations. However, the methods for visual inspection are not widely known nor appreciated, and experience is presently limited. Visual inspection can be achieved by simple, non-intrusive means, primarily geological in nature, and it is the purpose of this report to describe the considerations, procedures, and equipment required to field such an inspection. The inspections will be carried out by inspectors from members of the CTBT Organization.

  19. Study of Trade Wind Clouds Using Ground Based Stereo Cameras

    NASA Astrophysics Data System (ADS)

    Porter, J.

    2010-12-01

    We employ ground based stereo cameras to derive the three dimensional position of trade wind clouds features. The process employs both traditional and novel methods. The stereo cameras are calibrated for orientation using the sun as a geo-reference point at several times throughout the day. Spatial correlation is used to detect similar cloud features in both camera images and a simultaneous-differential equation is solved to get the best cloud position for the given rays from the cameras to the cloud feature. Once the positions of the clouds are known in three-dimensional space, then it is also possible to derive upper level wind speed and direction by tracking the position of clouds in space and time. The vector winds can be obtained at many locations and heights in a cone region over the surface site. The accuracy of the measurement depends on the camera separation with a trade-off occurring at different camera separations and cloud ranges. The system design and performance will be discussed along with field observations. This approach provides a new way to study clouds for climate change efforts. It also provides an inexpensive way to measure upper level wind fields in cloudy regions. Ground based stereo cameras are used to derive cloud position in space a time.

  20. Examples of recent ground based L-band radiometer experiments

    NASA Astrophysics Data System (ADS)

    Schwank, Mike; Voelksch, I.; Maetzler, Ch.; Wigneron, Jean-Pierre; Kerr, Y. H.; Antolin, M. C.; Coll, A.; Millan-Scheiding, C.; Lopez-Baeza, Ernesto

    L-band (1 -2 GHz) microwave radiometry is a remote sensing technique to monitor soil mois-ture over land surfaces. The European Space Agency's (ESA) Soil Moisture and Ocean Salinity (SMOS) radiometer mission aims at providing global maps of soil moisture, with accuracy bet-ter than 0.04 m3 m-3 every 3 days, with a spatial resolution of approximately 40 km. Monitoring the large scale moisture dynamics at the boundary between the deep bulk soil and the atmo-sphere provides essential information both for terrestrial and atmospheric modellers. Perform-ing ground based radiometer campaigns before the mission launch, during the commissioning phase and during the operative SMOS mission is important for validating the satellite data and for the further improvement of the used radiative transfer models. This presentation starts with an outline of the basic concepts behind remote moisture retrieval from passive L-band radiation. Then the results from a selection of ground based microwave campaigns performed ü with the ELBARA radiometer and its successor models (JULBARA, ELBARAII) are pre-sented. Furthermore, some of the most important technical features, which were implemented in ELBARAII as the result of the experiences made with the forerunner, are outlined.

  1. MODELING ATMOSPHERIC EMISSION FOR CMB GROUND-BASED OBSERVATIONS

    SciTech Connect

    Errard, J.; Borrill, J.; Ade, P. A. R.; Akiba, Y.; Chinone, Y.; Arnold, K.; Atlas, M.; Barron, D.; Elleflot, T.; Baccigalupi, C.; Fabbian, G.; Boettger, D.; Chapman, S.; Cukierman, A.; Delabrouille, J.; Ducout, A.; Feeney, S.; Feng, C.; and others

    2015-08-10

    Atmosphere is one of the most important noise sources for ground-based cosmic microwave background (CMB) experiments. By increasing optical loading on the detectors, it amplifies their effective noise, while its fluctuations introduce spatial and temporal correlations between detected signals. We present a physically motivated 3D-model of the atmosphere total intensity emission in the millimeter and sub-millimeter wavelengths. We derive a new analytical estimate for the correlation between detectors time-ordered data as a function of the instrument and survey design, as well as several atmospheric parameters such as wind, relative humidity, temperature and turbulence characteristics. Using an original numerical computation, we examine the effect of each physical parameter on the correlations in the time series of a given experiment. We then use a parametric-likelihood approach to validate the modeling and estimate atmosphere parameters from the polarbear-i project first season data set. We derive a new 1.0% upper limit on the linear polarization fraction of atmospheric emission. We also compare our results to previous studies and weather station measurements. The proposed model can be used for realistic simulations of future ground-based CMB observations.

  2. Ground-based observation of near-Earth asteroids

    NASA Technical Reports Server (NTRS)

    Gaffey, Michael J.

    1992-01-01

    An increased ground-based observation program is an essential component of any serious attempt to assess the resource potential of near-Earth asteroids. A vigorous search and characterization program could lead to the discovery and description of about 400 to 500 near-Earth asteroids in the next 20 years. This program, in conjunction with meteorite studies, would provide the data base to ensure that the results of a small number of asteroid-rendezvous and sample-return missions could be extrapolated with confidence into a geological base map of the Aten, Apollo, and Amor asteroids. Ground-based spectral studies of nearly 30 members of the Aten/Apollo/Amor population provide good evidence that this class includes bodies composed of silicates, metal-silicates, and carbonaceous assemblages similar to those found in meteorites. The instruments that are being used or could be used to search for near-Earth asteroids are listed. Techniques useful in characterizing asteroids and the types of information obtainable using these techniques are listed.

  3. Aerosol Remote Sensing from AERONET, the Ground-Based Satellite

    NASA Technical Reports Server (NTRS)

    Holben, Brent N.

    2012-01-01

    Atmospheric particles including mineral dust, biomass burning smoke, pollution from carbonaceous aerosols and sulfates, sea salt, impact air quality and climate. The Aerosol Robotic Network (AERONET) program, established in the early 1990s, is a federation of ground-based remote sensing aerosol networks of Sun/sky radiometers distributed around the world, which provides a long-term, continuous and readily accessible public domain database of aerosol optical (e.g., aerosol optical depth) and microphysical (e.g., aerosol volume size distribution) properties for aerosol characterization, validation of satellite retrievals, and synergism with Earth science databases. Climatological aerosol properties will be presented at key worldwide locations exhibiting discrete dominant aerosol types. Further, AERONET's temporary mesoscale network campaign (e.g., UAE2, TIGERZ, DRAGON-USA.) results that attempt to quantify spatial and temporal variability of aerosol properties, establish validation of ground-based aerosol retrievals using aircraft profile measurements, and measure aerosol properties on compatible spatial scales with satellite retrievals and aerosol transport models allowing for more robust validation will be discussed.

  4. Modeling Atmospheric Emission for CMB Ground-based Observations

    NASA Astrophysics Data System (ADS)

    Errard, J.; Ade, P. A. R.; Akiba, Y.; Arnold, K.; Atlas, M.; Baccigalupi, C.; Barron, D.; Boettger, D.; Borrill, J.; Chapman, S.; Chinone, Y.; Cukierman, A.; Delabrouille, J.; Dobbs, M.; Ducout, A.; Elleflot, T.; Fabbian, G.; Feng, C.; Feeney, S.; Gilbert, A.; Goeckner-Wald, N.; Halverson, N. W.; Hasegawa, M.; Hattori, K.; Hazumi, M.; Hill, C.; Holzapfel, W. L.; Hori, Y.; Inoue, Y.; Jaehnig, G. C.; Jaffe, A. H.; Jeong, O.; Katayama, N.; Kaufman, J.; Keating, B.; Kermish, Z.; Keskitalo, R.; Kisner, T.; Le Jeune, M.; Lee, A. T.; Leitch, E. M.; Leon, D.; Linder, E.; Matsuda, F.; Matsumura, T.; Miller, N. J.; Myers, M. J.; Navaroli, M.; Nishino, H.; Okamura, T.; Paar, H.; Peloton, J.; Poletti, D.; Puglisi, G.; Rebeiz, G.; Reichardt, C. L.; Richards, P. L.; Ross, C.; Rotermund, K. M.; Schenck, D. E.; Sherwin, B. D.; Siritanasak, P.; Smecher, G.; Stebor, N.; Steinbach, B.; Stompor, R.; Suzuki, A.; Tajima, O.; Takakura, S.; Tikhomirov, A.; Tomaru, T.; Whitehorn, N.; Wilson, B.; Yadav, A.; Zahn, O.

    2015-08-01

    Atmosphere is one of the most important noise sources for ground-based cosmic microwave background (CMB) experiments. By increasing optical loading on the detectors, it amplifies their effective noise, while its fluctuations introduce spatial and temporal correlations between detected signals. We present a physically motivated 3D-model of the atmosphere total intensity emission in the millimeter and sub-millimeter wavelengths. We derive a new analytical estimate for the correlation between detectors time-ordered data as a function of the instrument and survey design, as well as several atmospheric parameters such as wind, relative humidity, temperature and turbulence characteristics. Using an original numerical computation, we examine the effect of each physical parameter on the correlations in the time series of a given experiment. We then use a parametric-likelihood approach to validate the modeling and estimate atmosphere parameters from the polarbear-i project first season data set. We derive a new 1.0% upper limit on the linear polarization fraction of atmospheric emission. We also compare our results to previous studies and weather station measurements. The proposed model can be used for realistic simulations of future ground-based CMB observations.

  5. Light pollution simulations for planar ground-based light sources.

    PubMed

    Kocifaj, Miroslav

    2008-02-20

    The light pollution model is employed to analyze spatial behavior of luminance at the night sky under cloudless and overcast conditions. Enhanced light excess is particularly identified at cloudy skies, because the clouds efficiently contribute to the downward luminous flux. It is evident that size of ground-based light sources can play an important role in the case of overcast sky conditions. Nevertheless, the realistically sized light sources are rarely embedded into light pollution modeling, and rather they are replaced by simple point sources. We discuss the discrepancies between sky luminance distributions when at first the planar light sources are considered and at second the point-source approximation is accepted. The found differences are noticeable if the size of the light source, distance to the observer, and altitude of a cloudy layer are comparable one to the other. Compared with point-source approximation, an inclusion of the size factor into modeling the light sources leads to partial elimination of the steep changes of sky luminance (typical for point sources of light). The narrow and sharp light pillars normally presented on the sky illuminated by point light sources can disappear or fuse together when two or more nearby light sources are considered with their real sizes. Sky elements situated close to the horizon will glow efficiently if luminous flux originates from two-dimensional ground-based entities (such as cities or villages).

  6. Statistical Studies of Ground-Based Optical Lightning Signatures

    NASA Astrophysics Data System (ADS)

    Hunt, C. R.; Nemzek, R. J.; Suszcynsky, D. M.

    2005-12-01

    Most extensive optical studies of lightning have been conducted from orbit, and the statistics of events collected from earth are relatively poorly documented. The time signatures of optical power measured in the presence of clouds are inevitably affected by scattering,which can distort the signatures by extending and delaying the amplitude profile in time. We have deployed two all-sky photodiode detectors, one in New Mexico and one in Oklahoma, which are gathering data alongside electric field change monitors as part of the LANL EDOTX Great Plains Array. Preliminary results show that the photodiode is sensitive to approximately 50% or more of RF events detected at ranges of up to 30 km, and still has some sensitivity at ranges in excess of 60 km (distances determined by the EDOTX field-change array). The shapes of events within this range were assessed, with focus on rise time, width, peak power, and their correlation to corresponding electric field signatures, and these are being compared with published on-orbit and ground-based data. Initial findings suggest a mean characteristic width (ratio of total detected optical energy to peak power) of 291 +/- 12 microseconds and a mean delay between the RF signal peak and optical peak of 121 +/- 17 microseconds. These values fall between prior ground-based measurements of direct return stroke emissions, and scattering-dominated on-orbit measurements. This work will promote better understanding of the correspondence between radio and optical measurements of lightning.

  7. Airborne and Ground-Based Measurements Using a High-Performance Raman Lidar. Part 2; Ground Based

    NASA Technical Reports Server (NTRS)

    Whiteman, David N.; Cadirola, Martin; Venable, Demetrius; Connell, Rasheen; Rush, Kurt; Leblanc, Thierry; McDermid, Stuart

    2009-01-01

    The same RASL hardware as described in part I was installed in a ground-based mobile trailer and used in a water vapor lidar intercomparison campaign, hosted at Table Mountain, CA, under the auspices of the Network for the Detection of Atmospheric Composition Change (NDACC). The converted RASL hardware demonstrated high sensitivity to lower stratospheric water vapor indicating that profiling water vapor at those altitudes with sufficient accuracy to monitor climate change is possible. The measurements from Table Mountain also were used to explain the reason, and correct , for sub-optimal airborne aerosol extinction performance during the flight campaign.

  8. A New Ground-Based, Hourly Global Lightning Climatology

    NASA Astrophysics Data System (ADS)

    Virts, K.; Wallace, J. M.; Hutchins, M. L.; Holzworth, R. H.

    2012-12-01

    The seasonally and diurnally-varying frequency of lightning flashes provides a measure of the frequency of occurrence of intense convection and, as such, is an important aspect of the Earth's climate. Using continuous observations from the ground-based World-Wide Lightning Location Network (WWLLN), it is possible to generate a global lightning climatology that captures seasonal variations and resolves the diurnal cycle. Hourly lightning animations illuminate the interplay between sea breezes, mountain-valley wind systems, and remotely forced gravity waves in touching off thunderstorms in a variety of geographical settings, such as the Maritime Continent, the central Andes, and equatorial Africa. Examination of intraseasonal variations in lightning over the Maritime Continent reveals the impact of shifts in the low-level wind field on the development and propagation of thunderstorms during the Madden-Julian Oscillation.

  9. Observational Selection Effects with Ground-based Gravitational Wave Detectors

    NASA Astrophysics Data System (ADS)

    Chen, Hsin-Yu; Essick, Reed; Vitale, Salvatore; Holz, Daniel; Katsavounidis, Erik

    2017-01-01

    Ground-based interferometers are not perfectly all-sky instruments, and it is important to account for their behavior when considering the distribution of detected events. In particular, the LIGO detectors are most sensitive to sources above North America and the Indian Ocean and, as the Earth rotates, the sensitive regions are swept across the sky. However, because the detectors do not acquire data uniformly over time, there is a net bias on detectable sources' right ascensions. Both LIGO detectors preferentially collect data during their local night; it is more than twice as likely to be local midnight than noon when both detectors are operating. We discuss these selection effects and how they impact LIGO's observations and electromagnetic follow-up. These effects can inform electromagnetic follow-up activities and optimization, including the possibility of directing observations even before gravitational-wave events occur.

  10. Unique cell culture systems for ground based research

    NASA Technical Reports Server (NTRS)

    Lewis, Marian L.

    1990-01-01

    The horizontally rotating fluid-filled, membrane oxygenated bioreactors developed at NASA Johnson for spacecraft applications provide a powerful tool for ground-based research. Three-dimensional aggregates formed by cells cultured on microcarrier beads are useful for study of cell-cell interactions and tissue development. By comparing electron micrographs of plant seedlings germinated during Shuttle flight 61-C and in an earth-based rotating bioreactor it is shown that some effects of microgravity are mimicked. Bioreactors used in the UAH Bioreactor Laboratory will make it possible to determine some of the effects of altered gravity at the cellular level. Bioreactors can be valuable for performing critical, preliminary-to-spaceflight experiments as well as medical investigations such as in vitro tumor cell growth and chemotherapeutic drug response; the enrichment of stem cells from bone marrow; and the effect of altered gravity on bone and muscle cell growth and function and immune response depression.

  11. Compound auroral micromorphology: ground-based high-speed imaging

    NASA Astrophysics Data System (ADS)

    Kataoka, Ryuho; Fukuda, Yoko; Miyoshi, Yoshizumi; Miyahara, Hiroko; Itoya, Satoru; Ebihara, Yusuke; Hampton, Donald; Dahlgren, Hanna; Whiter, Daniel; Ivchenko, Nickolay

    2015-02-01

    Auroral microphysics still remains partly unexplored. Cutting-edge ground-based optical observations using scientific complementary metal-oxide semiconductor (sCMOS) cameras recently enabled us to observe the fine-scale morphology of bright aurora at magnetic zenith for a variety of rapidly varying features for long uninterrupted periods. We report two interesting examples of combinations of fine-scale rapidly varying auroral features as observed by the sCMOS cameras installed at Poker Flat Research Range (PFRR), Alaska, in February 2014. The first example shows that flickering rays and pulsating modulation simultaneously appeared at the middle of a surge in the pre-midnight sector. The second example shows localized flickering aurora associated with growing eddies at the poleward edge of an arc in the midnight sector.

  12. Free electron lasers as ground based space weapons

    NASA Astrophysics Data System (ADS)

    Goldstein, Gary R.

    1988-12-01

    The free electron laser (FEL) is the most promising directed energy weapon in the SDI program. Its theoretical underpinnings, present achievements and future prospects are reviewed. The general requirements of a ground based laser system are derived and are seen to be quite expensive to implement as well as being far beyond current technical capabilities. Atmospheric propagation effects, particularly Stimulated Raman Scattering, will make the transmission of adequate powers dubious. A summary of existing and proposed FEL parameters shows that, at best, future facilities will be many orders of magnitude away from the required GigaWatt average output powers in the visible or near infrared region. Prospects for FEL midcourse or terminal phase weapons are equally problematic, given the simple countermeasures available to the offense. Use as an ASAT weapon is less technically demanding, but of limited applicability given the vulnerability of an extensive space based targeting system.

  13. Ground-based column abundance measurements of atmospheric hydroxyl

    NASA Astrophysics Data System (ADS)

    Burnett, Clyde R.

    1988-04-01

    The preliminary results of ground-based OH column abundance measurements from Truk, Federated States of Micronesia, are contained. These are the first OH column measurements from the tropics, and constitute a signficcant contribution to the OH data base. Comparisons of tropical OH behavior with the extensive mid-latitude observations serve as a critical test of the current understanding of the HO (sub x) photochemistry and its relationship to the other major chemical families. The quasi-biennial oscillation (QBO) in tropical stratospheric winds exerts a major influence on the Hadley cell vertical transport. Related QBOs in total O3 and in stratospheric H2O were identified, but QBO effects on other stratospheric species are still unknown. The solar tide in the tropics produces a diurnal surface pressure variation of 2 to 3 mb; its effect on OH photochemistry in the stratosphere may be significant.

  14. Ground-based column abundance measurements of atmospheric hydroxyl

    NASA Technical Reports Server (NTRS)

    Burnett, Clyde R.

    1988-01-01

    The preliminary results of ground-based OH column abundance measurements from Truk, Federated States of Micronesia, are contained. These are the first OH column measurements from the tropics, and constitute a signficcant contribution to the OH data base. Comparisons of tropical OH behavior with the extensive mid-latitude observations serve as a critical test of the current understanding of the HO (sub x) photochemistry and its relationship to the other major chemical families. The quasi-biennial oscillation (QBO) in tropical stratospheric winds exerts a major influence on the Hadley cell vertical transport. Related QBOs in total O3 and in stratospheric H2O were identified, but QBO effects on other stratospheric species are still unknown. The solar tide in the tropics produces a diurnal surface pressure variation of 2 to 3 mb; its effect on OH photochemistry in the stratosphere may be significant.

  15. Spatial-angular modeling of ground-based biaxial lidar

    NASA Astrophysics Data System (ADS)

    Agishev, Ravil R.

    1997-10-01

    Results of spatial-angular LIDAR modeling based on an efficiency criterion introduced are represented. Their analysis shows that a low spatial-angular efficiency of traditional VIS and NIR systems is a main cause of a low S/BR ratio at the photodetector input. It determines the considerable measurements errors and the following low accuracy of atmospheric optical parameters retrieval. As we have shown, the most effective protection against intensive sky background radiation for ground-based biaxial LIDAR's consist in forming of their angular field according to spatial-angular efficiency criterion G. Some effective approaches to high G-parameter value achievement to achieve the receiving system optimization are discussed.

  16. Responds of Bone Cells to Microgravity: Ground-Based Research

    NASA Astrophysics Data System (ADS)

    Zhang, Jian; Li, Jingbao; Xu, Huiyun; Yang, Pengfei; Xie, Li; Qian, Airong; Zhao, Yong; Shang, Peng

    2015-11-01

    Severe loss of bone occurs due to long-duration spaceflight. Mechanical loading stimulates bone formation, while bone degradation happens under mechanical unloading. Bone remodeling is a dynamic process in which bone formation and bone resorption are tightly coupled. Increased bone resorption and decreased bone formation caused by reduced mechanical loading, generally result in disrupted bone remodeling. Bone remodeling is orchestrated by multiple bone cells including osteoblast, osteocyte, osteoclast and mesenchymal stem cell. It is yet not clear that how these bone cells sense altered gravity, translate physical stimulus into biochemical signals, and then regulate themselves structurally and functionally. In this paper, studies elucidating the bioeffects of microgravity on bone cells (osteoblast, osteocyte, osteoclast, mesenchymal stem cell) using various platforms including spaceflight and ground-based simulated microgravity were summarized. Promising gravity-sensitive signaling pathways and protein molecules were proposed.

  17. Modelling atmospheric turbulence effects on ground-based telescope systems

    SciTech Connect

    Bradford, L.W.; Flatte, S.M.; Max, C.E.

    1993-09-30

    Questions still exist concerning the appropriate model for turbulence- induced phase fluctuations seen in ground-based telescopes. Bester et al. used a particular observable (slope of the Allan variance) with an infrared interferometer in an attempt to distinguish models. The authors have calculated that observable for Kolmogorov and {open_quotes}random walk{close_quotes} models with a variety of outer scales and altitude-dependent turbulence and wind velocity. The authors have found that clear distinction between models requires good data on the vertical distribution of wind and turbulence. Furthermore, measurements at time separations of order 60 s are necessary to distinguish the {open_quotes}random walk{close_quotes} model from the Kolmogorov model.

  18. Ground-Based Experiments on Vibrational Thermal Convection

    NASA Technical Reports Server (NTRS)

    Schatz, Michael F.; Rogers, Jeffrey L.

    1999-01-01

    Ground-based experiments on g-jitter effects in fluid flow provide insight that complements both theoretical studies and space-based experiments on this problem. We report preliminary results for experiments on Rayleigh-Benard convection subjected to time-dependent accelerations on a shaker table. For sinusoidal modulation, two qualitatively different pattern forming mechanisms come into play: geometry induced wavenumber selection (as in the standard "no-shake" Rayleigh-Benard problem) and dispersion induced wavenumber selection due to parametric instability (as in the Faraday surface-wave problem). We discuss preliminary results on the competition and co-existence of patterns due to these different instability mechanisms. We also discuss the implications of this work on the general question of pattern formation in the presence of noise.

  19. The STACEE Ground-Based Gamma-ray Observatory

    NASA Astrophysics Data System (ADS)

    Ragan, Ken

    2002-04-01

    The Solar Tower Atmospheric Cherenkov Effect Experiment (STACEE) is a ground-based instrument designed to study astrophysical sources of gamma rays in the energy range from 50 to 500 GeV using an array of heliostat mirrors at the National Solar Thermal Test Facility in New Mexico. The mirrors collect Cherenkov light generated by gamma-ray air showers and concentrate it onto cameras composed of photomultiplier tubes. The STACEE instrument is now complete, and uses a total of 64 heliostats. Prototype instruments, using smaller numbers of heliostats, have previously detected gamma emission from both the Crab Nebula and the Active Galactic Nucleus Mrk421. The complete instrument has a lower threshold -- approximately 50 GeV -- than those prototypes due to superior triggering and electronics, including flash ADCs for every channel.We will discuss the performance of the complete instrument in its first full season of operation, and present preliminary results of selected observations.

  20. Martian Meteorological Measurements Using Ground-Based Telescopes

    NASA Astrophysics Data System (ADS)

    Simpson, A.; Bailey, J.; Walter, M.; Crisp, D.

    2005-12-01

    An important component of the continuing Mars research program is the accurate determination of atmospheric and meteorological parameters, and analysis of how these parameters vary spatially and temporally. Ground-based observations are particularly useful in this regard, as they allow simultaneous global coverage and use of high-resolution spectroscopy to complement orbital measurements. Aside from the perils of atmospheric turbulence (correctable to some degree using adaptive optics), infrared observations of planetary atmospheres face another challenge -- correcting for the presence of telluric spectral lines. Based on atmospheric simulations using the SMART radiative transfer modelling tool1, we present evidence that the current technique of mitigating the effect of Earth's atmosphere by observing a nearby star of known spectral type (the ``standard star" method) can generate significant errors. Indeed, our simulations of measurements of the Martian 2-micron carbon dioxide band at a resolving power of 1000 produced variation between ``standard reduced" spectra and original modelled spectra of up to 50%2. Furthermore, we outline our proposed computational technique of iterative reduction by progressing modelled parameters towards observed values (which negates the ``standard star" issue), to be validated on data obtained from IRTF/Gemini South observations in October/November 2005, and present results to date. 1Meadows, V.S., Crisp, D., 1996, Ground-based near-infrared observations of the Venus nightside: The thermal structure and water abundance near the surface, JGR 101:E2, 4595 2Bailey, J. A., Simpson, A. J., Crisp, D., 2005, Correcting Infrared Spectra for Atmospheric Absorption, in preparation

  1. Probing Pluto's Atmosphere Using Ground-Based Stellar Occultations

    NASA Astrophysics Data System (ADS)

    Sicardy, Bruno; Rio de Janeiro Occultation Team, Granada Team, International Occultation and Timing Association, Royal Astronomical Society New Zealand Occultation Section, Lucky Star associated Teams

    2016-10-01

    Over the last three decades, some twenty stellar occultations by Pluto have been monitored from Earth. They occur when the dwarf planet blocks the light from a star for a few minutes as it moves on the sky. Such events led to the hint of a Pluto's atmosphere in 1985, that was fully confirmed during another occultation in 1988, but it was only in 2002 that a new occultation could be recorded. From then on, the dwarf planet started to move in front of the galactic center, which amplified by a large factor the number of events observable per year.Pluto occultations are essentially refractive events during which the stellar rays are bent by the tenuous atmosphere, causing a gradual dimming of the star. This provides the density, pressure and temperature profiles of the atmosphere from a few kilometers above the surface up to about 250 km altitude, corresponding respectively to pressure levels of about 10 and 0.1 μbar. Moreover, the extremely fine spatial resolution (a few km) obtained through this technique allows the detection of atmospheric gravity waves, and permits in principle the detection of hazes, if present.Several aspects make Pluto stellar occultations quite special: first, they are the only way to probe Pluto's atmosphere in detail, as the dwarf planet is far too small on the sky and the atmosphere is far too tenuous to be directly imaged from Earth. Second, they are an excellent example of participative science, as many amateurs have been able to record those events worldwide with valuable scientific returns, in collaboration with professional astronomers. Third, they reveal Pluto's climatic changes on decade-scales and constrain the various seasonal models currently explored.Finally, those observations are fully complementary to space exploration, in particular with the New Horizons (NH) mission. I will show how ground-based occultations helped to better calibrate some NH profiles, and conversely, how NH results provide some key boundary conditions

  2. Independet Component Analyses of Ground-based Exoplanetary Transits

    NASA Astrophysics Data System (ADS)

    Silva Martins-Filho, Walter; Griffith, Caitlin Ann; Pearson, Kyle; Waldmann, Ingo; Biddle, Lauren; Zellem, Robert Thomas; Alvarez-Candal, Alvaro

    2016-10-01

    Most observations of exoplanetary atmospheres are conducted when a "Hot Jupiter" exoplanet transits in front of its host star. These Jovian-sized planets have small orbital periods, on the order of days, and therefore a short transit time, making them more ameanable to observations. Measurements of Hot Jupiter transits must achieve a 10-4 level of accuracy in the flux to determine the spectral modulations of the exoplanetary atmosphere. In order to accomplish this level of precision, we need to extract systematic errors, and, for ground-based measurements, the effects of Earth's atmosphere, from the signal due to the exoplanet, which is several orders of magnitudes smaller. Currently, the effects of the terrestrial atmosphere and the some of the time-dependent systematic errors are treated by dividing the host star by a reference star at each wavelength and time step of the transit. More recently, Independent Component Analyses (ICA) have been used to remove systematic effects from the raw data of space-based observations (Waldmann 2014,2012; Morello et al.,2015,2016). ICA is a statistical method born from the ideas of the blind-source separation studies, which can be used to de-trend several independent source signals of a data set (Hyvarinen and Oja, 2000). One strength of this method is that it requires no additional prior knowledge of the system. Here, we present a study of the application of ICA to ground-based transit observations of extrasolar planets, which are affected by Earth's atmosphere. We analyze photometric data of two extrasolar planets, WASP-1b and GJ3470b, recorded by the 61" Kuiper Telescope at Stewart Observatory using the Harris B and U filters. The presentation will compare the light curve depths and their dispersions as derived from the ICA analysis to those derived by analyses that ratio of the host star to nearby reference stars.References: Waldmann, I.P. 2012 ApJ, 747, 12, Waldamann, I. P. 2014 ApJ, 780, 23; Morello G. 2015 ApJ, 806

  3. Ground-Based Research within NASA's Materials Science Program

    NASA Technical Reports Server (NTRS)

    Gillies, Donald C.; Curreri, Peter (Technical Monitor)

    2002-01-01

    Ground-based research in Materials Science for NASA's Microgravity program serves several purposes, and includes approximately four Principal Investigators for every one in the flight program. While exact classification is difficult. the ground program falls roughly into the following categories: (1) Intellectual Underpinning of the Flight Program - Theoretical Studies; (2) Intellectual Underpinning of the Flight Program - Bringing to Maturity New Research; (3) Intellectual Underpinning of the Flight Program - Enabling Characterization; (4) Intellectual Underpinning of the Flight Program - Thermophysical Property Determination; (5) Radiation Shielding; (6) Preliminary In Situ Resource Utilization; (7) Biomaterials; (8) Nanostructured Materials; (9) Materials Science for Advanced Space Propulsion. It must be noted that while the first four categories are aimed at using long duration low gravity conditions, the other categories pertain more to more recent NASA initiatives in materials science. These new initiatives address NASA's future materials science needs in the realms of crew health and safety, and exploration, and have been included in the most recent NASA Research Announcements (NRA). A description of each of these nine categories will be given together with examples of the kinds of research being undertaken.

  4. Models of ionospheric VLF absorption of powerful ground based transmitters

    NASA Astrophysics Data System (ADS)

    Cohen, M. B.; Lehtinen, N. G.; Inan, U. S.

    2012-12-01

    Ground based Very Low Frequency (VLF, 3-30 kHz) radio transmitters play a role in precipitation of energetic Van Allen electrons. Initial analyses of the contribution of VLF transmitters to radiation belt losses were based on early models of trans-ionospheric propagation known as the Helliwell absorption curves, but some recent studies have found that the model overestimates (by 20-100 dB) the VLF energy reaching the magnetosphere. It was subsequently suggested that conversion of wave energy into electrostatic modes may be responsible for the error. We utilize a newly available extensive record of VLF transmitter energy reaching the magnetosphere, taken from the DEMETER satellite, and perform a direct comparison with a sophisticated full wave model of trans-ionospheric propagation. Although the model does not include the effect of ionospheric irregularities, it correctly predicts the average total power injected into the magnetosphere within several dB. The results, particularly at nighttime, appear to be robust against the variability of the ionospheric electron density. We conclude that the global effect of irregularity scattering on whistler mode conversion to quasi-electrostatic may be no larger than 6 dB.

  5. Future enhancements to ground-based microburst detection

    NASA Technical Reports Server (NTRS)

    Campbell, Steven D.; Matthews, Michael P.; Dasey, Timothy J.

    1994-01-01

    This set of viewgraphs presents the results of the Cockpit Weather Information (CWI) program at M.I.T. Lincoln Laboratory. The CWI program has been funded through NaSA Langley Research Center by the joint NASA/FAA Integrated Airborne Wind Shear Program for the past four years. During this time, over 120 microburst penetrations by research aircraft have been conducted under Terminal Doppler Weather Radar (TDWR) testbed radar surveillance at Orlando, FL. The results of these in-situ measurements have been compared with ground-based detection methods. Several valuable insights were gained from this research activity. First, it was found that the current TDWR microburst shapes do not permit accurate characterization of microburst hazard in terms of the F factor hazard index, because they are based on loss value rather than shear. Second, it was found that the horizontal component of the F factor can be accurately estimated from shear, provided compensation is made for the dependence of outflow strength on altitude. Third, it was found that a simple continuity assumption for estimating the vertical component of the F factor yielded poor results. However, further research has shown that downdraft strength is correlated with features aloft detected by the TDWR radar scan strategy. The outcome of the CWI program is to move from the loss-based wind shear detection algorithm used in the TDWR to a shear-based detection scheme as proposed in the Integrated Terminal Weather System (ITWS).

  6. A design for a ground-based data management system

    NASA Technical Reports Server (NTRS)

    Lambird, Barbara A.; Lavine, David

    1988-01-01

    An initial design for a ground-based data management system which includes intelligent data abstraction and cataloging is described. The large quantity of data on some current and future NASA missions leads to significant problems in providing scientists with quick access to relevant data. Human screening of data for potential relevance to a particular study is time-consuming and costly. Intelligent databases can provide automatic screening when given relevent scientific parameters and constraints. The data management system would provide, at a minimum, information of availability of the range of data, the type available, specific time periods covered together with data quality information, and related sources of data. The system would inform the user about the primary types of screening, analysis, and methods of presentation available to the user. The system would then aid the user with performing the desired tasks, in such a way that the user need only specify the scientific parameters and objectives, and not worry about specific details for running a particular program. The design contains modules for data abstraction, catalog plan abstraction, a user-friendly interface, and expert systems for data handling, data evaluation, and application analysis. The emphasis is on developing general facilities for data representation, description, analysis, and presentation that will be easily used by scientists directly, thus bypassing the knowledge acquisition bottleneck. Expert system technology is used for many different aspects of the data management system, including the direct user interface, the interface to the data analysis routines, and the analysis of instrument status.

  7. Ground-based validation of scientific SCIAMACHY products: First results

    NASA Astrophysics Data System (ADS)

    Wittrock, F.; Fietkau, S.; Heckel, A.; Medeke, T.; Oetjen, H.; Richter, A.; Tarsu, M.; Burrows, J.

    2003-04-01

    In this study data from the Bremian DOAS network for atmospheric measurements (BREDOM) were used to validate columns of O3, NO2, BrO, HCHO and OClO derived from measurements of the SCIAMACHY instrument using the scientific algorithms developed at the University of Bremen. The ground sites range from northern high latitudes (Ny-Ålesund, 79° N, 12°E) over mid-latitudes (Bremen, 53°N, 9°E and Alzate, 46°N, 9°E) to equatorial regions (Nairobi, 1°S, 36° E). Trace gas columns of ozone, NO2, OClO, HCHO, and BrO were retrieved applying the well-known DOAS method to the UV/vis spectra. All ground-based instruments within the network use the MAX (multi axis) DOAS technique. With this it is possible to derive some profile information for the retrieved absorbers, which enables us to further investigate the consistency of trace gas column amounts derived from different platforms.

  8. Bridge Testing With Ground-Based Interferometric Radar: Experimental Results

    SciTech Connect

    Chiara, P.; Morelli, A.

    2010-05-28

    The research of innovative non-contact techniques aimed at the vibration measurement of civil engineering structures (also for damage detection and structural health monitoring) is continuously directed to the optimization of measures and methods. Ground-Based Radar Interferometry (GBRI) represents the more recent technique available for static and dynamic control of structures and ground movements.Dynamic testing of bridges and buildings in operational conditions are currently performed: (a) to assess the conformity of the structure to the project design at the end of construction; (b) to identify the modal parameters (i.e. natural frequencies, mode shapes and damping ratios) and to check the variation of any modal parameters over the years; (c) to evaluate the amplitude of the structural response to special load conditions (i.e. strong winds, earthquakes, heavy railway or roadway loads). If such tests are carried out by using a non-contact technique (like GBRI), the classical issues of contact sensors (like accelerometers) are easily overtaken.This paper presents and discusses the results of various tests carried out on full-scale bridges by using a Stepped Frequency-Continuous Wave radar system.

  9. Cardiovascular effects of weightlessness and ground-based simulation

    NASA Technical Reports Server (NTRS)

    Sandler, Harold

    1988-01-01

    A large number of animal and human flight and ground-based studies were conducted to uncover the cardiovascular effects of weightlessness. Findings indicate changes in cardiovascular function during simulations and with spaceflight that lead to compromised function on reambulation and/or return to earth. This altered state termed cardiovascular deconditioning is most clearly manifest when in an erect body state. Hemodynamic parameters inidicate the presence of excessive tachnycardia, hypotension (leading to presyncope in one-third of the subjects), decreased heart volume, decreased plasma and circulating blood volumes and loss of skeletal muscle mass, particularly in the lower limbs. No clinically harmful effects were observed to date, but in-depth follow-ups were limited, as was available physiologic information. Available data concerning the causes for the observed changes indicate significant roles for mechanisms involved with body fluid-volume regulation, altered cardiac function, and the neurohumoral control of the control of the peripheral circulation. Satisfactory measures are not found. Return to preflight state was variable and only slightly dependent on flight duration. Future progress awaits availability of flight durations longer than several weeks.

  10. Ground deformation from ground-based SAR interferometry

    NASA Astrophysics Data System (ADS)

    Tarchi, Dario; Casagli, Nicola; Fortuny-Guasch, Joaquim; Guerri, Letizia; Antonello, Giuseppe; Leva, Davide

    An in-depth analysis of the last two images acquired by the ground-based interferometric synthetic aperture radar system installed on Stromboli before the 5 April 2003 explosion allowed us to detect the precursory signals of the explosion related to ground deformation. In particular, it was possible to estimate the exact time of the explosion through the time domain analysis of raw data from the radar acquisition. This was interrupted by a blackout that occurred a few seconds after the event. The explosion onset time corresponds to a clear change in the intensity of the backscattered energy, related to the dense volcanic plume emission from the Crater. In addiction, the use of a particular interferometric processing technique for the last two acquisitions, consisting of the selection of synthetic sub-apertures from the main ones and creating with these a sequence of interferograms with a higher temporal resolution, detected precursory deformations starting 2 min before the explosion. These observations indicate the occurrence of an elastic deformation of a centimeter amplitude that affected the volcanic edifice progressively from the Crater down to the Sciara del Fuoco depression.

  11. Ground-based testing and demonstrations of starshades

    NASA Astrophysics Data System (ADS)

    Harness, Anthony; Warwick, Steve; Shipley, Ann; Cash, Webster

    2016-07-01

    The direct detection and characterization of an Earth-like exoplanet is of the highest scientific priority and a leading technology that will enable such discovery is the starshade external occulter. We report on the latest results in ground-based efforts for demonstrating and advancing the technology of starshades. Using the McMath- Pierce Solar Telescope at the Kitt Peak National Observatory, we are able to track stars as they move across the night sky and stabilize a beam of starlight behind a starshade. This has allowed us to conduct the first astronomical observations achieving high-contrast with starshades. In our latest efforts, we have extended the separation between the starshade and telescope to reach an inner working angle of 10 arcseconds at a flight-like Fresnel number and resolution. In this report, we detail the development of a closed-loop feedback system to further stabilize the beam at the extended baseline and provide results on the contrast achieved. We conclude by laying out future work to design a dedicated siderostat-starshade facility for future testing of and observations with starshades. Our main result: we achieved a broadband contrast ratio of 3:2 x 10-5 at 15 arcseconds IWA, while at a flight-like Fresnel number and resolution.

  12. Predicting thunderstorm evolution using ground-based lightning detection networks

    NASA Technical Reports Server (NTRS)

    Goodman, Steven J.

    1990-01-01

    Lightning measurements acquired principally by a ground-based network of magnetic direction finders are used to diagnose and predict the existence, temporal evolution, and decay of thunderstorms over a wide range of space and time scales extending over four orders of magnitude. The non-linear growth and decay of thunderstorms and their accompanying cloud-to-ground lightning activity is described by the three parameter logistic growth model. The growth rate is shown to be a function of the storm size and duration, and the limiting value of the total lightning activity is related to the available energy in the environment. A new technique is described for removing systematic bearing errors from direction finder data where radar echoes are used to constrain site error correction and optimization (best point estimate) algorithms. A nearest neighbor pattern recognition algorithm is employed to cluster the discrete lightning discharges into storm cells and the advantages and limitations of different clustering strategies for storm identification and tracking are examined.

  13. Tissue Engineering of Cartilage on Ground-Based Facilities

    NASA Astrophysics Data System (ADS)

    Aleshcheva, Ganna; Bauer, Johann; Hemmersbach, Ruth; Egli, Marcel; Wehland, Markus; Grimm, Daniela

    2016-06-01

    Investigations under simulated microgravity offer the opportunity for a better understanding of the influence of altered gravity on cells and the scaffold-free three-dimensional (3D) tissue formation. To investigate the short-term influence, human chondrocytes were cultivated for 2 h, 4 h, 16 h, and 24 h on a 2D Fast-Rotating Clinostat (FRC) in DMEM/F-12 medium supplemented with 10 % FCS. We detected holes in the vimentin network, perinuclear accumulations of vimentin after 2 h, and changes in the chondrocytes shape visualised by F-actin staining after 4 h of FRC-exposure. Scaffold-free cultivation of chondrocytes for 7 d on the Random Positioning Machine (RPM), the FRC and the Rotating Wall Vessel (RWV) resulted in spheroid formation, a phenomenon already known from spaceflight experiments with chondrocytes (MIR Space Station) and thyroid cancer cells (SimBox/Shenzhou-8 space mission). The experiments enabled by the ESA-CORA-GBF programme gave us an optimal opportunity to study gravity-related cellular processes, validate ground-based facilities for our chosen cell system, and prepare long-term experiments under real microgravity conditions in space

  14. An approach to space weather studies from ground based observations

    NASA Astrophysics Data System (ADS)

    Minarovjech, M.; Rušin, V.; Rybanský, M.; Kudela, K.; Kollár, V.

    2004-10-01

    We use daily values of the green corona hole areas, as prepared from the ground-based observations above the E-limb of the Sun and cosmic ray flux observed at Climax and Huancayo/Haleakala, to study a relation between them during a long-term period. A cross-correlation method has been used in the period 1953-2002 (the end of solar cycle 18 to mid-cycle 23). There were found green coronal hole areas that precede the cosmic ray of 200 - 270 days, with the maximum of 230 days (an average of 8 months). The 27-day rotational periodicity is stored around the maximum of correlation coefficients that reached values of 0.78 and 0.72, respectively. This correlation could be used to forecast the level of the cosmic ray daily flux at neutron monitor energies. We try to explain this behavior in a framework of the total coronal mass and its expansion into the heliosphere.

  15. Use of ground-based wind profiles in mesoscale forecasting

    NASA Technical Reports Server (NTRS)

    Schlatter, Thomas W.

    1985-01-01

    A brief review is presented of recent uses of ground-based wind profile data in mesoscale forecasting. Some of the applications are in real time, and some are after the fact. Not all of the work mentioned here has been published yet, but references are given wherever possible. As Gage and Balsley (1978) point out, sensitive Doppler radars have been used to examine tropospheric wind profiles since the 1970's. It was not until the early 1980's, however, that the potential contribution of these instruments to operational forecasting and numerical weather prediction became apparent. Profiler winds and radiosonde winds compare favorably, usually within a few m/s in speed and 10 degrees in direction (see Hogg et al., 1983), but the obvious advantage of the profiler is its frequent (hourly or more often) sampling of the same volume. The rawinsonde balloon is launched only twice a day and drifts with the wind. In this paper, I will: (1) mention two operational uses of data from a wind profiling system developed jointly by the Wave Propagation and Aeronomy Laboratories of NOAA; (2) describe a number of displays of these same data on a workstation for mesoscale forecasting developed by the Program for Regional Observing and Forecasting Services (PROFS); and (3) explain some interesting diagnostic calculations performed by meteorologists of the Wave Propagation Laboratory.

  16. Observing Tsunamis in the Ionosphere Using Ground Based GPS Measurements

    NASA Technical Reports Server (NTRS)

    Galvan, D. A.; Komjathy, A.; Song, Y. Tony; Stephens, P.; Hickey, M. P.; Foster, J.

    2011-01-01

    Ground-based Global Positioning System (GPS) measurements of ionospheric Total Electron Content (TEC) show variations consistent with atmospheric internal gravity waves caused by ocean tsunamis following recent seismic events, including the Tohoku tsunami of March 11, 2011. We observe fluctuations correlated in time, space, and wave properties with this tsunami in TEC estimates processed using JPL's Global Ionospheric Mapping Software. These TEC estimates were band-pass filtered to remove ionospheric TEC variations with periods outside the typical range of internal gravity waves caused by tsunamis. Observable variations in TEC appear correlated with the Tohoku tsunami near the epicenter, at Hawaii, and near the west coast of North America. Disturbance magnitudes are 1-10% of the background TEC value. Observations near the epicenter are compared to estimates of expected tsunami-driven TEC variations produced by Embry Riddle Aeronautical University's Spectral Full Wave Model, an atmosphere-ionosphere coupling model, and found to be in good agreement. The potential exists to apply these detection techniques to real-time GPS TEC data, providing estimates of tsunami speed and amplitude that may be useful for future early warning systems.

  17. Characterizing GEO Titan Transtage Fragmentations using Ground-based Measurements

    NASA Technical Reports Server (NTRS)

    Cowardin, H.; Anz-Meador, P.

    2016-01-01

    In a continued effort to better characterize the Geosynchronous Orbit (GEO) environment, NASA's Orbital Debris Program Office (ODPO) utilizes various ground-based optical assets to acquire photometric and spectral data of known debris associated with fragmentations in or near GEO. The Titan IIIC Transtage upper stage is known to have fragmented four times. Two of the four fragmentations were in GEO while a third Transtage fragmented in GEO transfer orbit. The forth fragmentation occurred in Low Earth Orbit. In order to better assess what may be causing these fragmentations, the NASA ODPO recently acquired a Titan Transtage test and display article that was previously in the custody of the 309th Aerospace Maintenance and Regeneration Group (AMARG) in Tucson, Arizona. After initial inspections at AMARG demonstrated that the test article was of sufficient fidelity to be of interest, the test article was brought to JSC to continue material analysis and historical documentation of the Titan Transtage. The Transtage will be a subject of forensic analysis using spectral measurements to compare with telescopic data; as well, a scale model will be created to use in the Optical Measurement Center for photometric analysis of an intact Transtage, including a BRDF. The following presentation will provide a review of the Titan Transtage, the current analysis that has been done to date, and the future work to be completed in support of characterizing the GEO and near GEO orbital debris environment.

  18. Satellite Type Estination from Ground-based Photometric Observation

    NASA Astrophysics Data System (ADS)

    Endo, T.; Ono, H.; Suzuki, J.; Ando, T.; Takanezawa, T.

    2016-09-01

    The optical photometric observation is potentially a powerful tool for understanding of the Geostationary Earth Orbit (GEO) objects. At first, we measured in laboratory the surface reflectance of common satellite materials, for example, Multi-layer Insulation (MLI), mono-crystalline silicon cells, and Carbon Fiber Reinforced Plastic (CFRP). Next, we calculated visual magnitude of a satellite by simplified shape and albedo. In this calculation model, solar panels have dimensions of 2 by 8 meters, and the bus area is 2 meters squared with measured optical properties described above. Under these conditions, it clarified the brightness can change the range between 3 and 4 magnitudes in one night, but color index changes only from 1 to 2 magnitudes. Finally, we observed the color photometric data of several GEO satellites visible from Japan multiple times in August and September 2014. We obtained that light curves of GEO satellites recorded in the B and V bands (using Johnson filters) by a ground-base optical telescope. As a result, color index changed approximately from 0.5 to 1 magnitude in one night, and the order of magnitude was not changed in all cases. In this paper, we briefly discuss about satellite type estimation using the relation between brightness and color index obtained from the photometric observation.

  19. Monitoring Surface Deformation using Polarimetric Ground Based Interferometric Radar

    NASA Astrophysics Data System (ADS)

    Legarsky, J. J.; Gomez, F.; Rosenblad, B.; Loehr, E.; Cherukumilli, S.; Deng, H.; Held, B.; Jenkins, W.

    2012-12-01

    Surface deformation monitoring using ground based interferometric radar (GBIR) measurements may be desirable for a number of applications in the earth sciences. The University of Missouri (MU) research team has ongoing efforts to use the MU GBIR for monitoring surface deformation at a number of sites. Measurements have been collected at sites requiring access by various transportation means such as using off-road vehicle, hiking, and helicopter. Once on site, initial setup takes about 10 minutes. After setup, an image may be acquired by azimuth scan about every 20 seconds. The highly portable system lends itself to rapid deployment in remote environments and repeat survey sites. The MU GBIR's high portability and fast imaging capabilities allow rapid surveying and long-term surveying potential of surface deformation. Imagery may be formed in near real time for initial quick looks. After data collection, imagery data may be further enhanced by radiometric calibration, polarimetric calibration, and time-series analysis. Imaging may be acquired at the electromagnetic spectral bands of C-band and Ku-band. Prior demonstration of millimeter and better sensitivity to deformation over the course of a day of data collects has been performed using the MU GBIR. In addition, the MU GBIR can be removed and re-positioned at the same point with geodetic-grade precision for repeat surveys. Study results and additional development progress will be presented. This project is sponsored by a grant from the National Science Foundation.

  20. Microgravity Investigation of Crew Reactions in 0-G (MICR0-G): Ground-Based Development Effort

    NASA Technical Reports Server (NTRS)

    Newman, Dava J.

    2002-01-01

    This report describes the technology development of an advanced load sensor ground-based prototype and details the preliminary tests in microgravity during parabolic flights. The research effort is entitled, the Microgravity Investigation and Crew Reactions in 0-G (MICR0-G), a ground-based research effort funded by the National Aeronautics and Space Administration (NASA). The MICR0-G project was a follow-on to the Enhanced Dynamic Load Sensors (EDLS) spaceflight experiment flown on the Russian Space Station Mir. The technology development of the advanced load sensor prototype has been carried out by the Massachusetts Institute of Technology (MIT), with collaboration from Politecnico di Milano University and the Italian Space Agency (ASI). The key hardware of the advanced sensor prototype is a set of two types of load sensors - a hand-hold and foot restraints - similar in appearance to the mobility aids found in the Space Shuttle orbiter to assist the crew in moving inside the spacecraft, but able to measure the applied forces and moments about the x-, y-, and z- axes. The aim of Chapter 1 is to give a brief overview of the report contents. The first section summarizes the previous research efforts on astronaut-induced loads in microgravity. The second section provides information on the MICR0-G research project and the technology development work conducted at MIT. Section 1.3 details the motivation for designing a new generation of load sensors and describes the main enhancements and contributions of the MICR0-G advanced load sensors system compared to the EDLS system. Finally, the last section presents the outline of the report.

  1. Spatiotemporal Path-Matching for Comparisons Between Ground- Based and Satellite Lidar Measurements

    NASA Technical Reports Server (NTRS)

    Berkoff, Timothy A.; Valencia, Sandra; Welton, Ellsworth J.; Spinhirne, James D.

    2005-01-01

    The spatiotemporal sampling differences between ground-based and satellite lidar data can contribute to significant errors for direct measurement comparisons. Improvement in sample correspondence is examined by the use of radiosonde wind velocity to vary the time average in ground-based lidar data to spatially match coincident satellite lidar measurements. Results are shown for the 26 February 2004 GLAS/ICESat overflight of a ground-based lidar stationed at NASA GSFC. Statistical analysis indicates that improvement in signal correlation is expected under certain conditions, even when a ground-based observation is mismatched in directional orientation to the satellite track.

  2. Ground-Based Remote Retrievals of Cumulus Entrainment Rates

    SciTech Connect

    Wagner, Timothy J.; Turner, David D.; Berg, Larry K.; Krueger, Steven K.

    2013-07-26

    While fractional entrainment rates for cumulus clouds have typically been derived from airborne observations, this limits the size and scope of available data sets. To increase the number of continental cumulus entrainment rate observations available for study, an algorithm for retrieving them from ground-based remote sensing observations has been developed. This algorithm, called the Entrainment Rate In Cumulus Algorithm (ERICA), uses the suite of instruments at the Southern Great Plains (SGP) site of the United States Department of Energy's Atmospheric Radiation Measurement (ARM) Climate Research Facility as inputs into a Gauss-Newton optimal estimation scheme, in which an assumed guess of the entrainment rate is iteratively adjusted through intercomparison of modeled liquid water path and cloud droplet effective radius to their observed counterparts. The forward model in this algorithm is the Explicit Mixing Parcel Model (EMPM), a cloud parcel model that treats entrainment as a series of discrete entrainment events. A quantified value for measurement uncertainty is also returned as part of the retrieval. Sensitivity testing and information content analysis demonstrate the robust nature of this method for retrieving accurate observations of the entrainment rate without the drawbacks of airborne sampling. Results from a test of ERICA on three months of shallow cumulus cloud events show significant variability of the entrainment rate of clouds in a single day and from one day to the next. The mean value of 1.06 km-¹ for the entrainment rate in this dataset corresponds well with prior observations and simulations of the entrainment rate in cumulus clouds.

  3. Orbital debris removal using ground-based lasers

    NASA Technical Reports Server (NTRS)

    Taylor, Charles R.

    1996-01-01

    Orbiting the Earth are spent rocket stages, non-functioning satellites, hardware from satellite deployment and staging, fragments of exploded spacecraft, and other relics of decades of space exploration: orbital debris. The United States Space Command tracks and maintains a catalog of the largest objects. The catalog contains over 7000 objects. Recent studies have assessed the debris environment in an effort to estimate the number of smaller particles and the probability of a collision causing catastrophic damage to a functioning spacecraft. The results of the studies can be used to show, for example, that the likelihood of a collision of a particle larger than about one centimeter in diameter with the International Space Station during a 10-year period is a few percent, roughly in agreement with earlier estimates for Space Station Freedom. Particles greater than about one centimeter in diameter pose the greatest risk to shielded spacecraft. There are on the order of 105 such particles in low Earth orbit. The United States National Space Policy, begun in 1988, is to minimize debris consistent with mission requirements. Measures such as venting unused fuel to prevent explosions, retaining staging and deployment hardware, and shielding against smaller debris have been taken by the U.S. and other space faring nations. There is at present no program to remove debris from orbit. The natural tendency for upper atmospheric drag to remove objects from low Earth orbit is more than balanced by the increase in the number of debris objects from new launches and fragmentation of existing objects. In this paper I describe a concept under study by the Program Development Laboratory of Marshall Space Flight Center and others to remove debris with a ground-based laser. A longer version of this report, including figures, is available from the author.

  4. Space- and Ground-based Coronal Spectro-Polarimetry

    NASA Astrophysics Data System (ADS)

    Fineschi, Silvano; Bemporad, Alessandro; Rybak, Jan; Capobianco, Gerardo

    This presentation gives an overview of the near-future perspectives of ultraviolet and visible-light spectro-polarimetric instrumentation for probing coronal magnetism from space-based and ground-based observatories. Spectro-polarimetric imaging of coronal emission-lines in the visible-light wavelength-band provides an important diagnostics tool of the coronal magnetism. The interpretation in terms of Hanle and Zeeman effect of the line-polarization in forbidden emission-lines yields information on the direction and strength of the coronal magnetic field. As study case, this presentation will describe the Torino Coronal Magnetograph (CorMag) for the spectro-polarimetric observation of the FeXIV, 530.3 nm, forbidden emission-line. CorMag - consisting of a Liquid Crystal (LC) Lyot filter and a LC linear polarimeter - has been recently installed on the Lomnicky Peak Observatory 20cm Zeiss coronagraph. The preliminary results from CorMag will be presented. The linear polarization by resonance scattering of coronal permitted line-emission in the ultraviolet (UV)can be modified by magnetic fields through the Hanle effect. Space-based UV spectro-polarimeters would provide an additional tool for the disgnostics of coronal magnetism. As a case study of space-borne UV spectro-polarimeters, this presentation will describe the future upgrade of the Sounding-rocket Coronagraphic Experiment (SCORE) to include the capability of imaging polarimetry of the HI Lyman-alpha, 121.6 nm. SCORE is a multi-wavelength imager for the emission-lines, HeII 30.4 nm and HI 121.6 nm, and visible-light broad-band emission of the polarized K-corona. SCORE has flown successfully in 2009. This presentation will describe how in future re-flights SCORE could observe the expected Hanle effect in corona with a HI Lyman-alpha polarimeter.

  5. Ground-based Measurements of Next Generation Spectroradiometric Standard Stars

    NASA Astrophysics Data System (ADS)

    McGraw, John T.

    2013-01-01

    Accurate, radiometric standards are essential to the future of ground- and space-based astronomy and astrophysics. While astronomers tend to think of “standard stars” as available calibration sources, progress at NIST to accurately calibrate inexpensive, easy to use photodiode detectors as spectroradiometric standards from 200 nm to 1800 nm allows referencing astronomical measurements to these devices. Direction-, time-, and wavelength-dependent transmission of Earth’s atmosphere is the single largest source of error for ground-based radiometric measurement of astronomical objects. Measurements and impacts of atmospheric extinction - scattering and absorption - on imaging radiometric and spectroradiometric measurements are described. The conclusion is that accurate real-time measurement of extinction in the column of atmosphere through which standard star observations are made, over the spectral region being observed and over the field of view of the telescope are required. New techniques to directly and simultaneously measure extinction in the column of atmosphere through which observations are made are required. Our direct extinction measurement solution employs three small facility-class instruments working in parallel: a lidar to measure rapidly time variable transmission at three wavelengths with uncertainty of 0.25% per airmass, a spectrophotometer to measure rapidly wavelength variable extinction with sub-1% precision per nanometer resolution element from 350 to 1050nm, and a wide-field camera to measure angularly variable extinction over the field of view. These instruments and their operation will be described. We assert that application of atmospheric metadata provided by this instrument suite corrects for a significant fraction of systematic errors currently limiting radiometric precision, and provides a major step towards measurements that are provably dominated by random noise.

  6. Ozone profiles above Kiruna from two ground-based radiometers

    NASA Astrophysics Data System (ADS)

    Ryan, Niall J.; Walker, Kaley A.; Raffalski, Uwe; Kivi, Rigel; Gross, Jochen; Manney, Gloria L.

    2016-09-01

    This paper presents new atmospheric ozone concentration profiles retrieved from measurements made with two ground-based millimetre-wave radiometers in Kiruna, Sweden. The instruments are the Kiruna Microwave Radiometer (KIMRA) and the Millimeter wave Radiometer 2 (MIRA 2). The ozone concentration profiles are retrieved using an optimal estimation inversion technique, and they cover an altitude range of ˜ 16-54 km, with an altitude resolution of, at best, 8 km. The KIMRA and MIRA 2 measurements are compared to each other, to measurements from balloon-borne ozonesonde measurements at Sodankylä, Finland, and to measurements made by the Microwave Limb Sounder (MLS) aboard the Aura satellite. KIMRA has a correlation of 0.82, but shows a low bias, with respect to the ozonesonde data, and MIRA 2 shows a smaller magnitude low bias and a 0.98 correlation coefficient. Both radiometers are in general agreement with each other and with MLS data, showing high correlation coefficients, but there are differences between measurements that are not explained by random errors. An oscillatory bias with a peak of approximately ±1 ppmv is identified in the KIMRA ozone profiles over an altitude range of ˜ 18-35 km, and is believed to be due to baseline wave features that are present in the spectra. A time series analysis of KIMRA ozone for winters 2008-2013 shows the existence of a local wintertime minimum in the ozone profile above Kiruna. The measurements have been ongoing at Kiruna since 2002 and late 2012 for KIMRA and MIRA 2, respectively.

  7. Observational Selection Effects with Ground-based Gravitational Wave Detectors

    NASA Astrophysics Data System (ADS)

    Chen, Hsin-Yu; Essick, Reed; Vitale, Salvatore; Holz, Daniel E.; Katsavounidis, Erik

    2017-01-01

    Ground-based interferometers are not perfect all-sky instruments, and it is important to account for their behavior when considering the distribution of detected events. In particular, the LIGO detectors are most sensitive to sources above North America and the Indian Ocean, and as the Earth rotates, the sensitive regions are swept across the sky. However, because the detectors do not acquire data uniformly over time, there is a net bias on detectable sources’ right ascensions. Both LIGO detectors preferentially collect data during their local night; it is more than twice as likely to be local midnight than noon when both detectors are operating. We discuss these selection effects and how they impact LIGO’s observations and electromagnetic (EM) follow-up. Beyond galactic foregrounds associated with seasonal variations, we find that equatorial observatories can access over 80% of the localization probability, while mid-latitudes will access closer to 70%. Facilities located near the two LIGO sites can observe sources closer to their zenith than their analogs in the south, but the average observation will still be no closer than 44° from zenith. We also find that observatories in Africa or the South Atlantic will wait systematically longer before they can begin observing compared to the rest of the world though, there is a preference for longitudes near the LIGOs. These effects, along with knowledge of the LIGO antenna pattern, can inform EM follow-up activities and optimization, including the possibility of directing observations even before gravitational-wave events occur.

  8. Cryogenics for ground based and space-borne instrumentation

    NASA Astrophysics Data System (ADS)

    Duband, L.

    In many space sciences project cryogenic detectors are essential for the accomplishment of the scientific objectives, offering unique advantages and unmatched performance. In addition several other components such as the optics can benefit from a cryogenic cooling which reduces the radiative loading. The Service des Basses Températ- ures (SBT) of CEA Grenoble has been involved in space cryogenics for over 20 years now and features a dedicated laboratory, the Cryocoolers and Space Cryogenics group. Various cryocoolers have been developed in the past and our fields of activity focus now on four main technologies: sorption coolers, multistage pulse tubes, adiabatic demagnetization refrigerators (ADR), and cryogenic loop heat pipes. In addition work on two new concepts for ground based dilution refrigerators is also ongoing. Finally developments on various key technologies such as the heat switches, the suspension or structural systems are also carried out. These developments are mainly funded by the European Space Agency (ESA) or by the Centre National d'Études Spatiales (CNES). In this paper we mostly give an overview of the developments carried out at SBT along with several examples of other relevant systems. We use space cryogenics as a thread. However these coolers or techniques can be used on ground, particularly on remote locations where liquid cryogen are unavailable and/or where maintenance must be limited to a strict minimum. In this case they can be simplified and take advantage of on ground resources, and their cost can be significantly reduced. For most of these systems the common feature is the absence of any moving parts or any friction, which guarantees a very good reliability and make them very good candidates for space borne instruments requiring cryogenic temperatures.

  9. Ground based monitoring of channel and floodplain inundation dynamics

    NASA Astrophysics Data System (ADS)

    Nghia Hung, Nguyen; Thoss, Heiko; Güntner, Andreas; Apel, Heiko

    2010-05-01

    Monitoring of floodplain inundation is one of the key issues in respect to hydraulic model calibration, especially for 2-dimensional modeling of floodplains. While in recent years the use of remote sensing products for flood mapping have received a large boost by new techniques and platforms (LiDAR, SAR, optical system, both satellite and airborn) and proved to be a significant step forward in floodplain inundation model calibration, they are not the encompassing answer to the chronic lack of data of floodplain inundation. Due to the singular nature of floods and restrictions in sensor availability, overpass frequencies, unfavorable atmospheric conditions and difficulties in signal interpretation, remote sensing products usually provide only a short but spatially extensive view on the inundation process. In order to get a more encompassing picture of the inundation dynamics, time series of flood parameters have to be collected in the floodplains itself. In order to overcome the intrinsic problem of testing flood monitoring equipment in a short termed research project, an extensive ground-based flood monitoring system was established within the WISDOM (www.wisdom.caf.dlr.de) project in the Mekong Delta. Due to annual flood rhythm flood condition could be guaranteed within the projects duration. The test site Tam Nong in the Plain of Reeds in the Delta was equipped with 21 water level pressure gauges, 7 turbidity sensors and 2 GPS buoys, all designed to run autonomously for a period of 6 month and sampling data in short termed intervals. The collected data show a detailed picture of the inundation and sediment dynamics in the whole area including tidal influence and dike overtopping. This unique data set will be used in combination with spatial explicit water masks derived by remote sensing for 2D hydraulic model calibration.

  10. Ground Based Investigation of Electrostatic Accelerometer in HUST

    NASA Astrophysics Data System (ADS)

    Bai, Y.; Zhou, Z.

    2013-12-01

    High-precision electrostatic accelerometers with six degrees of freedom (DOF) acceleration measurement were successfully used in CHAMP, GRACE and GOCE missions which to measure the Earth's gravity field. In our group, space inertial sensor based on the capacitance transducer and electrostatic control technique has been investigated for test of equivalence principle (TEPO), searching non-Newtonian force in micrometer range, and satellite Earth's field recovery. The significant techniques of capacitive position sensor with the noise level at 2×10-7pF/Hz1/2 and the μV/Hz1/2 level electrostatic actuator are carried out and all the six servo loop controls by using a discrete PID algorithm are realized in a FPGA device. For testing on ground, in order to compensate one g earth's gravity, the fiber torsion pendulum facility is adopt to measure the parameters of the electrostatic controlled inertial sensor such as the resolution, and the electrostatic stiffness, the cross couple between different DOFs. A short distance and a simple double capsule equipment the valid duration about 0.5 second is set up in our lab for the free fall tests of the engineering model which can directly verify the function of six DOF control. Meanwhile, high voltage suspension method is also realized and preliminary results show that the horizontal axis of acceleration noise is about 10-8m/s2/Hz1/2 level which limited mainly by the seismic noise. Reference: [1] Fen Gao, Ze-Bing Zhou, Jun Luo, Feasibility for Testing the Equivalence Principle with Optical Readout in Space, Chin. Phys. Lett. 28(8) (2011) 080401. [2] Z. Zhu, Z. B. Zhou, L. Cai, Y. Z. Bai, J. Luo, Electrostatic gravity gradiometer design for the advanced GOCE mission, Adv. Sp. Res. 51 (2013) 2269-2276. [3] Z B Zhou, L Liu, H B Tu, Y Z Bai, J Luo, Seismic noise limit for ground-based performance measurements of an inertial sensor using a torsion balance, Class. Quantum Grav. 27 (2010) 175012. [4] H B Tu, Y Z Bai, Z B Zhou, L Liu, L

  11. The Automatic Measuring Machines and Ground-Based Astrometry

    NASA Astrophysics Data System (ADS)

    Sergeeva, T. P.

    The introduction of the automatic measuring machines into the astronomical investigations a little more then a quarter of the century ago has increased essentially the range and the scale of projects which the astronomers could capable to realize since then. During that time, there have been dozens photographic sky surveys, which have covered all of the sky more then once. Due to high accuracy and speed of automatic measuring machines the photographic astrometry has obtained the opportunity to create the high precision catalogs such as CpC2. Investigations of the structure and kinematics of the stellar components of our Galaxy has been revolutionized in the last decade by the advent of automated plate measuring machines. But in an age of rapidly evolving electronic detectors and space-based catalogs, expected soon, one could think that the twilight hours of astronomical photography have become. On opposite of that point of view such astronomers as D.Monet (U.S.N.O.), L.G.Taff (STScI), M.K.Tsvetkov (IA BAS) and some other have contended the several ways of the photographic astronomy evolution. One of them sounds as: "...special efforts must be taken to extract useful information from the photographic archives before the plates degrade and the technology required to measure them disappears". Another is the minimization of the systematic errors of ground-based star catalogs by employment of certain reduction technology and a dense enough and precise space-based star reference catalogs. In addition to that the using of the higher resolution and quantum efficiency emulsions such as Tech Pan and some of the new methods of processing of the digitized information hold great promise for future deep (B<25) surveys (Bland-Hawthorn et al. 1993, AJ, 106, 2154). Thus not only the hard working of all existing automatic measuring machines is apparently needed but the designing, development and employment of a new generation of portable, mobile scanners is very necessary. The

  12. Ground based monitoring of channel and floodplain inundation dynamics

    NASA Astrophysics Data System (ADS)

    Apel, H.; Hung, N. N.; Güntner, A.; Thoss, H.

    2009-12-01

    Monitoring of floodplain inundation is one of the key issues in respect to hydraulic model calibration, especially for 2-dimensional modeling of floodplains. While in recent years the use of remote sensing products for flood mapping have received a large boost by new techniques and platforms (LiDAR, SAR, optical system, both satellite and airborn) and proved to be a significant step forward in floodplain inundation model calibration, they are not the encompassing answer to the chronic lack of data of floodplain inundation. Due to the singular nature of floods and restrictions in sensor availability, overpass frequencies, unfavorable atmospheric conditions and difficulties in signal interpretation, remote sensing products usually provide only a short but spatially extensive view on the inundation process. In order to get a more encompassing picture of the inundation dynamics, time series of flood parameters have to be collected in the floodplains itself. In order to overcome the intrinsic problem of testing flood monitoring equipment in a short termed research project, an extensive ground-based flood monitoring system was established within the WISDOM (www.wisdom.caf.dlr.de) project in the Mekong Delta. Due to annual flood rhythm flood condition could be guaranteed within the projects duration. The test site Tam Nong in the Plain of Reeds in the Delta was equipped with 21 water level pressure gauges, 7 turbidity sensors and 2 GPS buoys, all designed to run autonomously for a period of 6 month and sampling data in short termed intervals. The equipment used range from cheap pressure sensors to rather expensive developments like the GPS buoys. Nevertheless, overall costs of the systems are comparatively low, especially in cost-benefit considerations. This is because they are developed for continuous monitoring, are modular in their sensor configuration and movable, i.e. reusable. The collected data show a detailed picture of the inundation and sediment dynamics in the

  13. Postural Responses Following Space Flight and Ground Based Analogs

    NASA Technical Reports Server (NTRS)

    Kofman, Igor S.; Reschke, Millard F.; Cerisano, Jody M.; Fisher, Elizabeth A.; Tomilovskaya, Elena V.; Kozlovskaya, Inessa B.; Bloomberg, Jacob B.

    2013-01-01

    With the transition from the Shuttle program to the International Space Station (ISS), the opportunity to fly sensorimotor experiments in a weightless environment has become increasingly more difficult to obtain. As a result, more investigations have turned to ground-based analogs as a way of evaluating an experiment's viability. The two primary analogs available to most investigators are 6deg head down bed rest (HDBR) and dry immersion (DI). For the time being, HDBR investigations have been associated with studies conducted in the United States while the Russians and several other European Union states have concentrated their efforts on using DI as the space flight analog of choice. While either model may be viable for cardiovascular, bone and other system changes, vestibular and sensorimotor investigators have retained serious reservations of either analog's potential to serve as a replacement for a true weightless environment. These reservations have merit, but it is worthwhile to consider that not all changes associated with sensorimotor function during space flight are the result of top-down modifications, but may also be due to the lack, or change, of appropriate support surfaces applying force to the bottom of the feet. To this end we have compared quiet stance postural responses between short duration Space Shuttle flights, long duration ISS flights and HDBR of varying duration. Using these three platforms, representing different modifications of support we investigated postural ataxia using a quiet stance model. Quiet stance was obtained by asking the subjects to stand upright on a force plate, eyes open, arms at the side of the body for three min. From the force plate we obtained average sway velocity in two axes as well as length of line (stabilogram). These parameters were then related to EMG activity recorded from the medial gastrocnemius and lateral tibialis. It is significant to note that postural ataxia measured as quiet stance shows analogous

  14. Ground-Based Observing Campaign of Briz-M Debris

    NASA Technical Reports Server (NTRS)

    Lederer, S. M.; Buckalew, B.; Frith, J.; Cowardin, H. M.; Hickson, P.; Matney, M.; Anz-Meador, P.

    2017-01-01

    In 2015, NASA's Orbital Debris Program Office (ODPO) completed the installation of the Meter Class Autonomous Telescope (MCAT) on Ascension Island. MCAT is a 1.3m optical telescope designed with a fast tracking capability for observing orbital debris at all orbital regimes (Low-Erath orbits to Geosyncronous (GEO) orbits) from a low latitude site. This new asset is dedicated year-round for debris observations, and its location fills a geographical gap in the Ground-based Electro Optical Space Surveillance (GEODSS) network. A commercial off the shelf (COTS) research grade 0.4m telescope (named the Benbrook telescope) will also be installed on Ascension at the end of 2016. This smaller version is controlled by the same master software, designed by Euclid Research, and can be tasked to work independently or in concert with MCAT. Like MCAT, it has a the same suite of filters, a similar field of view, and a fast-tracking Astelco mount, and is also capable of tracking debris at all orbital regimes. These assets are well suited for targeted campagins or surveys of debris. Since 2013, NASA's ODPO has also had extensive access to the 3.8m infrared UKIRT telescope, located on Mauna Kea. At nearly 14,000-ft, this site affords excellent conditions for collecting both photometery and spectroscopy at near-IR (0.9 - 2.5 micrometers SWIR) and thermal-IR (8 - 25 micrometers; LWIR) regimes, ideal for investigating material properties as well as thermal characteristics and sizes of debris. For the purposes of understanding orbital debris, taking data in both survey mode as well as targeting individual objects for more in-depth characterizations are desired. With the recent break-ups of Briz-M rocket bodies, we have collected a suite of data in the optical, near-infrared, and mid-infrared of in-tact objects as well as those classified as debris. A break-up at GEO of a Briz-M rocket occurred in January, 2016, well timed for the first remote observing survey-campaign with MCAT. Access to

  15. Long term landslide monitoring with Ground Based SAR

    NASA Astrophysics Data System (ADS)

    Monserrat, Oriol; Crosetto, Michele; Luzi, Guido; Gili, Josep; Moya, Jose; Corominas, Jordi

    2014-05-01

    In the last decade, Ground-Based (GBSAR) has proven to be a reliable microwave Remote Sensing technique in several application fields, especially for unstable slopes monitoring. GBSAR can provide displacement measurements over few squared kilometres areas and with a very high spatial and temporal resolution. This work is focused on the use of GBSAR technique for long term landslide monitoring based on a particular data acquisition configuration, which is called discontinuous GBSAR (D-GBSAR). In the most commonly used GBSAR configuration, the radar is left installed in situ, acquiring data periodically, e.g. every few minutes. Deformations are estimated by processing sets of GBSAR images acquired during several weeks or months, without moving the system. By contrast, in the D-GBSAR the radar is installed and dismounted at each measurement campaign, revisiting a given site periodically. This configuration is useful to monitor slow deformation phenomena. In this work, two alternative ways for exploiting the D-GBSAR technique will be presented: the DInSAR technique and the Amplitude based Technique. The former is based on the exploitation of the phase component of the acquired SAR images and it allows providing millimetric precision on the deformation estimates. However, this technique presents several limitations like the reduction of measurable points with an increase in the period of observation, the ambiguous nature of the phase measurements, and the influence of the atmospheric phase component that can make it non applicable in some cases, specially when working in natural environments. The second approach, that is based on the use of the amplitude component of GB-SAR images combined with a image matching technique, will allow the estimation of the displacements over specific targets avoiding two of the limitations commented above: the phase unwrapping and atmosphere contribution but reducing the deformation measurement precision. Two successful examples of D

  16. Ground-based Space Weather Monitoring with LOFAR

    NASA Astrophysics Data System (ADS)

    Wise, Michael; van Haarlem, Michiel; Lawrence, Gareth; Reid, Simon; Bos, Andre; Rawlings, Steve; Salvini, Stef; Mitchell, Cathryn; Soleimani, Manuch; Amado, Sergio; Teresa, Vital

    As one of the first of a new generation of radio instruments, the International LOFAR Telescope (ILT) will provide a number of unique and novel capabilities for the astronomical community. These include remote configuration and operation, dynamic real-time processing and system response, and the ability to provide multiple simultaneous streams of data to a community whose scientific interests run the gamut from lighting in the atmospheres of distant planets to the origins of the universe itself. The LOFAR (LOw Frequency ARray) system is optimized for a frequency range from 30-240 MHz and consists of multiple antenna fields spread across Europe. In the Netherlands, a total 36 LOFAR stations are nearing completion with an initial 8 international stations currently being deployed in Germany, France, Sweden, and the UK. Digital beam-forming techniques make the LOFAR system agile and allow for rapid repointing of the telescope as well as the potential for multiple simultaneous observations. With its dense core array and long interferometric baselines, LOFAR has the potential to achieve unparalleled sensitivity and spatial resolution in the low frequency radio regime. LOFAR will also be one of the first radio observatories to feature automated processing pipelines to deliver fully calibrated science products to its user community. As we discuss in this presentation, the same capabilities that make LOFAR a powerful tool for radio astronomy also provide an excellent platform upon which to build a ground-based monitoring system for space weather events. For example, the ability to monitor Solar activity in near real-time is one of the key scientific capabilities being developed for LOFAR. With only a fraction of its total observing capacity, LOFAR will be able to provide continuous monitoring of the Solar spectrum over the entire 10-240 MHz band down to microsecond timescales. Autonomous routines will scan these incoming spectral data for evidence of Solar flares and be

  17. Biosensors for EVA: Improved Instrumentation for Ground-based Studies

    NASA Technical Reports Server (NTRS)

    Soller, B.; Ellerby, G.; Zou, F.; Scott, P.; Jin, C.; Lee, S. M. C.; Coates, J.

    2010-01-01

    During lunar excursions in the EVA suit, real-time measurement of metabolic rate is required to manage consumables and guide activities to ensure safe return to the base. Metabolic rate, or oxygen consumption (VO2), is normally measured from pulmonary parameters but cannot be determined with standard techniques in the oxygen-rich environment of a spacesuit. Our group has developed novel near infrared spectroscopic (NIRS) methods to calculate muscle oxygen saturation (SmO 2), hematocrit, and pH, and we recently demonstrated that we can use our NIRS sensor to measure VO 2 on the leg during cycling. Our NSBRI project has 4 objectives: (1) increase the accuracy of the metabolic rate calculation through improved prediction of stroke volume; (2) investigate the relative contributions of calf and thigh oxygen consumption to metabolic rate calculation for walking and running; (3) demonstrate that the NIRS-based noninvasive metabolic rate methodology is sensitive enough to detect decrement in VO 2 in a space analog; and (4) improve instrumentation to allow testing within a spacesuit. Over the past year we have made progress on all four objectives, but the most significant progress was made in improving the instrumentation. The NIRS system currently in use at JSC is based on fiber optics technology. Optical fiber bundles are used to deliver light from a light source in the monitor to the patient, and light reflected back from the patient s muscle to the monitor for spectroscopic analysis. The fiber optic cables are large and fragile, and there is no way to get them in and out of the test spacesuit used for ground-based studies. With complimentary funding from the US Army, we undertook a complete redesign of the sensor and control electronics to build a novel system small enough to be used within the spacesuit and portable enough to be used by a combat medic. In the new system the filament lamp used in the fiber optic system was replaced with a novel broadband near infrared

  18. Ground-based grasslands data to support remote sensing and ecosystem modeling of terrestrial primary production

    SciTech Connect

    Olson, R.J.; Turner, R.S.; Scurlock, J.M.O.; Jennings, S.V.

    1995-12-31

    Estimating terrestrial net primary production (NPP) using remote- sensing tools and ecosystem models requires adequate ground-based measurements for calibration, parameterization, and validation. These data needs were strongly endorsed at a recent meeting of ecosystem modelers organized by the International Geosphere-Biosphere Programme`s (IGBP`s) Data and Information System (DIS) and its Global Analysis, Interpretation, and Modelling (GAIM) Task Force. To meet these needs, a multinational, multiagency project is being coordinated by the IGBP DIS to compile existing NPP data from field sites and to regionalize NPP point estimates to various-sized grid cells. Progress at Oak Ridge National Laboratory (ORNL) on compiling NPP data for grasslands as part of the IGBP DIS data initiative is described. Site data and associated documentation from diverse field studies are being acquired for selected grasslands and are being reviewed for completeness, consistency, and adequacy of documentation, including a description of sampling methods. Data are being compiled in a database with spatial, temporal, and thematic characteristics relevant to remote sensing and global modeling. NPP data are available from the ORNL Distributed Active Archive Center (DAAC) for biogeochemical dynamics. The ORNL DAAC is part of the Earth Observing System Data and Information System, of the US National Aeronautics and Space Administration.

  19. Ground-based grasslands data to support remote sensing and ecosystem modeling of terrestrial primary production

    NASA Technical Reports Server (NTRS)

    Olson, R. J.; Scurlock, J. M. O.; Turner, R. S.; Jennings, S. V.

    1995-01-01

    Estimating terrestrial net primary production (NPP) using remote-sensing tools and ecosystem models requires adequate ground-based measurements for calibration, parameterization, and validation. These data needs were strongly endorsed at a recent meeting of ecosystem modelers organized by the International Geosphere-Biosphere Program's (IGBP's) Data and Information System (DIS) and its Global Analysis, Interpretation, and Modelling (GAIM) Task Force. To meet these needs, a multinational, multiagency project is being coordinated by the IGBP DIS to compile existing NPP data from field sites and to regionalize NPP point estimates to various-sized grid cells. Progress at Oak Ridge National Laboratory (ORNL) on compiling NPP data for grasslands as part of the IGBP DIS data initiative is described. Site data and associated documentation from diverse field studies are being acquired for selected grasslands and are being reviewed for completeness, consistency, and adequacy of documentation, including a description of sampling methods. Data are being compiled in a database with spatial, temporal, and thematic characteristics relevant to remote sensing and global modeling. NPP data are available from the ORNL Distributed Active Archive Center (DAAC) for biogeochemical dynamics. The ORNL DAAC is part of the Earth Observing System Data and Information System, of the US National Aeronautics and Space Administration.

  20. The thermo-vibrational convection in microgravity condition. Ground-based modelling.

    NASA Astrophysics Data System (ADS)

    Zyuzgin, A. V.; Putin, G. F.; Harisov, A. F.

    In 1995-2000 at orbital station "Mir" has been carried out the series of experiments with the equipment "Alice" for the studying regimes of heat transfer in the supercritical fluids under influence inertial microaccelerations. The experiments have found out existence of the thermo-vibrational and thermo-inertial convective movements in the real weightlessness[1] and controlling microgravity fields[2]. However regarding structures of thermovibrational convection the results of experiments have inconsistent character. Therefore carrying out the ground-based modeling of the given problem is actually. In this work in laboratory conditions were investigated the thermo-vibrational convective movements from the dot heat source at high-frequency vibrations of the cavity with the fluid and presence quasi-static microacceleration. As the result of ground-based modeling, the regimes of convective flows, similar observed in the space experiment are received. Evolution of the convective structures and the spatial-temporary characteristics of movements are investigated in a wide range of the problem parameters. The control criteria and its critical value are determined. The received results well coordinated to the data of space experiments and allow adding and expanding representation about thermo-vibrational effects in conditions of real weightlessness and remove the contradictions concerning structures thermo-vibrational convective flows, received at the analysis of the given orbital experiments. The research described in this publication was made possible in part by Russian Foundation for Basic Research and Administration of Perm Region, Russia, under grant 04-02-96038, and Award No. PE-009-0 of the U.S. Civilian Research & Development Foundation for the Independent States of the Former Soviet Union (CRDF). A.V. Zyuzgin, A. I. Ivanov, V. I. Polezhaev, G. F. Putin, E. B. Soboleva Convective Motions in Near-Critical Fluids under Real Zero-Gravity Conditions. Cosmic Research

  1. Comparison of Airborne and Ground-Based Function Allocation Concepts for NextGen Using Human-In-The-Loop Simulations

    NASA Technical Reports Server (NTRS)

    Wing, David J.; Prevot, Thomas; Murdoch, Jennifer L.; Cabrall, Christopher D.; Homola, Jeffrey R.; Martin, Lynne H.; Mercer, Joey S.; Hoadley, Sherwood T.; Wilson, Sara R.; Hubbs, Clay E.; Chamberlain, James P.; Chartrand, Ryan C.; Consiglio, Maria C.; Palmer, Michael T.

    2010-01-01

    This paper presents an air/ground functional allocation experiment conducted by the National Aeronautics and Space Administration (NASA) using two human-in-the-Loop simulations to compare airborne and ground-based approaches to NextGen separation assurance. The approaches under investigation are two trajectory-based four-dimensional (4D) concepts; one referred to as "airborne trajectory management with self-separation" (airborne) the other as "ground-based automated separation assurance" (ground-based). In coordinated simulations at NASA's Ames and Langley Research Centers, the primary operational participants -controllers for the ground-based concept and pilots for the airborne concept - manage the same traffic scenario using the two different 4D concepts. The common scenarios are anchored in traffic problems that require a significant increase in airspace capacity - on average, double, and in some local areas, close to 250% over current day levels - in order to enable aircraft to safely and efficiently traverse the test airspace. The simulations vary common independent variables such as traffic density, sequencing and scheduling constraints, and timing of trajectory change events. A set of common metrics is collected to enable a direct comparison of relevant results. The simulations will be conducted in spring 2010. If accepted, this paper will be the first publication of the experimental approach and early results. An initial comparison of safety and efficiency as well as operator acceptability under the two concepts is expected.

  2. Exoplanets -New Results from Space and Ground-based Surveys

    NASA Astrophysics Data System (ADS)

    Udry, Stephane

    The exploration of the outer solar system and in particular of the giant planets and their environments is an on-going process with the Cassini spacecraft currently around Saturn, the Juno mission to Jupiter preparing to depart and two large future space missions planned to launch in the 2020-2025 time frame for the Jupiter system and its satellites (Europa and Ganymede) on the one hand, and the Saturnian system and Titan on the other hand [1,2]. Titan, Saturn's largest satellite, is the only other object in our Solar system to possess an extensive nitrogen atmosphere, host to an active organic chemistry, based on the interaction of N2 with methane (CH4). Following the Voyager flyby in 1980, Titan has been intensely studied from the ground-based large telescopes (such as the Keck or the VLT) and by artificial satellites (such as the Infrared Space Observatory and the Hubble Space Telescope) for the past three decades. Prior to Cassini-Huygens, Titan's atmospheric composition was thus known to us from the Voyager missions and also through the explorations by the ISO. Our perception of Titan had thus greatly been enhanced accordingly, but many questions remained as to the nature of the haze surrounding the satellite and the composition of the surface. The recent revelations by the Cassini-Huygens mission have managed to surprise us with many discoveries [3-8] and have yet to reveal more of the interesting aspects of the satellite. The Cassini-Huygens mission to the Saturnian system has been an extraordinary success for the planetary community since the Saturn-Orbit-Insertion (SOI) in July 2004 and again the very successful probe descent and landing of Huygens on January 14, 2005. One of its main targets was Titan. Titan was revealed to be a complex world more like the Earth than any other: it has a dense mostly nitrogen atmosphere and active climate and meteorological cycles where the working fluid, methane, behaves under Titan conditions the way that water does on

  3. Precursor Analysis for Flight- and Ground-Based Anomaly Risk Significance Determination

    NASA Technical Reports Server (NTRS)

    Groen, Frank

    2010-01-01

    This slide presentation reviews the precursor analysis for flight and ground based anomaly risk significance. It includes information on accident precursor analysis, real models vs. models, and probabilistic analysis.

  4. Assessing ground-based counts of nestling bald eagles in northeastern Minnesota

    USGS Publications Warehouse

    Fuller, M.R.; Hatfield, J.S.; Lindquist, E.L.

    1995-01-01

    We present evidence that the bald eagle (Haliaeetus leucocephalus) productivity survey in the Boundary Waters Canoe Area Wilderness of northeastern Minnesota may have underestimated the number of nestlings during 1986-1988. Recommendations are provided to achieve more accurate ground-based counts. By conducting ground-based observations for up to 1 hour/nest, an accurate count of the number of bald eagle nestlings can be obtained. If nests are only observed for up to 30 minutes/nest, an accurate determination of nest success can be made. The effort that managers put into counts should be based on the intended use of the productivity data. If small changes in mean productivity would trigger management action, the less acurate ground-based counts should be conducted with caution. Prior to implementing ground-based counts, a study like ours should estimate bias associated with different survey procedures and the observation time needed to achieve accurate results.

  5. Application of ground-based LIDAR for gully investigation in agricultural landscapes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Detailed scientific investigation of gullies in agricultural fields requires accurate topographic information with adequate temporal and spatial resolution. New technologies, such as ground-based LIDAR systems, are capable of generating datasets with high temporal and spatial resolutions. The spatia...

  6. Ground-based Infrared Observations of Water Vapor and Hydrogen Peroxide in the Atmosphere of Mars

    NASA Astrophysics Data System (ADS)

    Encrenaz, T.; Greathouse, T. K.; Bitner, M.; Kruger, A.; Richter, M. J.; Lacy, J. H.; Bézard, B.; Fouchet, T.; Lefevre, F.; Forget, F.; Atreya, S. K.

    2008-11-01

    Ground-based observations of water vapor and hydrogen peroxide have been obtained in the thermal infrared range, using the TEXES instrument at the NASA Infrared Telescope Facility, for different times of the seasonal cycle.

  7. System Identification and Automatic Mass Balancing of Ground-Based Three-Axis Spacecraft Simulator

    DTIC Science & Technology

    2006-08-01

    System Identification and Automatic Mass Balancing of Ground-Based Three-Axis Spacecraft Simulator Jae-Jun Kim∗ and Brij N. Agrawal † Department of...TITLE AND SUBTITLE System Identification and Automatic Mass Balancing of Ground-Based Three-Axis Spacecraft Simulator 5a. CONTRACT NUMBER 5b...and Dynamics, Vol. 20, No. 4, July-August 1997, pp. 625-632. 6Schwartz, J. L. and Hall, C. D., “ System Identification of a Spherical Air-Bearing

  8. Studies of Plasma Instability Processes Excited by Ground Based High Power HF ("Heating") Facilities

    DTIC Science & Technology

    2001-04-01

    by ground based high power HF (’ heating ’) facilities 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER Dr. Alexander...Prescribed by ANSI Std. Z39-18 Grant SPC 00-4010 Final Report STUDIES OF PLASMA INSTABILITY PROCESSES EXCITED BY GROUND BASED HIGH POWER HF (" HEATING ...growing field of ionospheric HF heating . The main new results can be summarized as following: 1. Two sets of observations of suprathermal electrons

  9. (DCT-FY08) Target Detection Using Multiple Modality Airborne and Ground Based Sensors

    DTIC Science & Technology

    2013-03-01

    AFRL-OSR-VA-TR-2013-0005 (DCT-FY08) Target Detection Using Multiple Modality Airborne and Ground Based Sensors Avideh Zakhor...Include area code) 17-08-2012 FINAL 4-1-2008 to 11-30-2011 (DCT-FY08) Target Detection Using Multiple Modality Airborne and Ground Based Sensors ...automatic, photo-realistic 3D models of building interiors. We have developed an ambulatory human operated backpack system made of a suite of sensors

  10. Predictors of sprint start speed: the effects of resistive ground-based vs. inclined treadmill training.

    PubMed

    Myer, Gregory D; Ford, Kevin R; Brent, Jensen L; Divine, Jon G; Hewett, Timothy E

    2007-08-01

    There is currently no consensus with regard to the most effective method to train for improved acceleration, or with regard to which kinematic variable provides the greatest opportunity for improvement in this important performance characteristic. The purpose of this study was to determine the effects of resistive ground-based speed training and incline treadmill speed training on speed-related kinematic measures and sprint start speed. The hypothesis tested was that incline treadmill training would improve sprint start time, while the ground-based resistive training would not. Corollary hypotheses were that treadmill training would increase stride frequency and ground-based training would not affect kinematics during the sprint start. Thirty-one high school female soccer players (15.7 +/- 0.5 years) were assigned to either treadmill (n = 17) or ground-based (n = 14) training groups and trained 2 times a week for 6 weeks. The treadmill group utilized incline speed training on a treadmill, while the ground-based group utilized partner band resistance ground-based techniques. Three-dimensional motion analysis was used (4.5 m mark) before and after training to quantify kinematics during the fastest of 3 recorded sprint starts (9.1 m). Both groups decreased average sprint start time from 1.75 +/- 0.12 to 1.68 +/- 0.08 seconds (p < 0.001). Training increased stride frequency (p = 0.030) but not stride length. After training, total vertical pelvic displacement and stride length predicted 62% of the variance in sprint start time for the resistive ground-based group, while stride length and stride frequency accounted for 67% prediction of the variance in sprint start time for the treadmill group. The results of this study indicate that both incline treadmill and resistive ground-based training are effective at improving sprint start speed, although they potentially do so through differing mechanisms.

  11. Achievements in testing of the MGA and FRAM isotopic software codes under the DOE/NNSA-IRSN cooperation of gamma-ray isotopic measurement systems

    SciTech Connect

    Vo, Duc; Wang, Tzu - Fang; Funk, Pierre; Weber, Anne - Laure; Pepin, Nicolas; Karcher, Anna

    2009-01-01

    DOE/NNSA and IRSN collaborated on a study of gamma-ray instruments and analysis methods used to perform isotopic measurements of special nuclear materials. The two agencies agreed to collaborate on the project in response to inconsistencies that were found in the various versions of software and hardware used to determine the isotopic abundances of uranium and plutonium. IRSN used software developed internally to test the MGA and FRAM isotopic analysis codes for criteria used to stop data acquisition. The stop-criterion test revealed several unusual behaviors in both the MGA and FRAM software codes.

  12. Science Highlights and Future Plans of Ground-based Optical/infrared Interferometry

    NASA Astrophysics Data System (ADS)

    Akeson, Rachel L.; Armstrong, J. T.; Creech-Eakman, M.; Hinz, P.; Hutter, D.; McAlister, H.; Ragland, S.; Ridgway, S.; ten Brummelaar, T.; Townes, C.; Wizinowich, P.

    2009-05-01

    Ground-based optical/infrared long-baseline interferometry continues to extend its capabilities in the U.S., where several existing facilities demonstrate its unique capabilities in a broad range of scientific applications. This poster presents brief overviews of the CHARA Array and the Infrared Spatial Interferometer (ISI) on Mt. Wilson, CA; the Navy Prototype Optical Interferometer (NPOI) on Anderson Mesa near Flagstaff, AZ; and the Keck Interferometer (KI) on Mauna Kea, HI; as well as under-construction facilities; the Magdalena Ridge Observatory Interferometer (MROI) in the Magdalena Mountains of New Mexico and the Large Binocular Telescope Interferometer (LBTI) on Mt. Graham, Arizona. Also included are pointers to a sample of the scientific results from U.S. interferometers and to data archives. Recent scientific highlights range from stellar atmospheres (precise diameters, including G/K dwarfs; limb darkening; Cepheid pulsations) to circumstellar material (water detected in a protoplanetary disk; debris disks; Be star disks; warped circumbinary disks; dust shells) to orbits and stellar masses in double, triple, and quadruple systems, to images of stellar surfaces. While the great majority of results to date have focused on stellar astrophysics, the MROI strives to have sensitivity sufficient to access a statistical sample of AGN. We have recently formed a consortium and are proposing to open all our facilities to the broader astronomical community via an opportunity called MOISAIC (Milliarcsecond Optical/Infrared Science: Access to Interferometry for the Community). Research with these independently operated facilities is sponsored by the Oceanographer of the Navy and the Office of Naval Research for NPOI; the National Aeronautics and Space Administration for KI and LBTI; the National Science Foundation and Georgia State University for the CHARA Array; and the Office of Naval Research, the National Science Foundation, and the Gordon and Betty Moore Foundation

  13. THE 1998 NOVEMBER 14 OCCULTATION OF GSC 0622-00345 BY SATURN. I. TECHNIQUES FOR GROUND-BASED STELLAR OCCULTATIONS

    SciTech Connect

    Harrington, Joseph; French, Richard G. E-mail: rfrench@wellesley.ed

    2010-06-10

    On 1998 November 14, Saturn and its rings occulted the star GSC 0622-00345. We observed atmospheric immersion with NSFCAM at the National Aeronautics and Space Administration's Infrared Telescope Facility on Mauna Kea, Hawaii. Immersion occurred at 55.{sup 0}5 S planetocentric latitude. A 2.3 {mu}m, CH{sub 4}-band filter suppressed reflected sunlight. Atmospheric emersion and ring data were not successfully obtained. We describe our observation, light curve production, and timing techniques, including improvements in aperture positioning, removal of telluric scintillation effects, and timing. Many of these techniques are known within the occultation community, but have not been described in the reviewed literature. We present a light curve whose signal-to-noise ratio per scale height is 267, among the best ground-based signals yet achieved, despite a disadvantage of up to 8 mag in the stellar flux compared to prior work.

  14. Spaceflight induces changes in splenocyte subpopulations: effectiveness of ground-based models.

    PubMed

    Pecaut, M J; Simske, S J; Fleshner, M

    2000-12-01

    Spaceflight produces changes in the immune system. The mechanisms for the alterations in immune function after spaceflight remain unclear due in part to the difficulties associated with conducting spaceflight research. The purpose of the following studies, therefore, was to create a ground-based protocol that can reproduce the immunological changes found after spaceflight, i.e., changes in splenic lymphocyte populations. Rats were exposed to either flight aboard the Space Shuttle Endeavor (STS-77) or ground-based simulations of various components of the spaceflight experience. The ground-based mock spaceflight was comprised of exposure to launch and landing loads and unloading of the hindlimbs. In addition, each component of this ground-based mock spaceflight was tested separately. The results were that spaceflight reduced splenic CD4(+) T (helper/inducer) cells and CD11b(+) (neutrophils/macrophages) cells. The ground-based simulations of spaceflight did not reproduce the same pattern of splenocyte changes. In fact, exposure to landing loads alone increased splenic CD4(+) T (helper/inducer) cells. These findings support the conclusion that the ground models tested did not induce similar changes in the immune system as did spaceflight. It is possible, therefore, that stressors/factors unique to the spaceflight experience impact the immune system in ways that cannot be currently, fully modeled on the ground.

  15. Supporting a Diverse Community of Undergraduate Researchers in Satellite and Ground-Based Remote Sensing

    NASA Astrophysics Data System (ADS)

    Blake, R.; Liou-Mark, J.

    2012-12-01

    The U.S. remains in grave danger of losing its global competitive edge in STEM. To find solutions to this problem, the Obama Administration proposed two new national initiatives: the Educate to Innovate Initiative and the $100 million government/private industry initiative to train 100,000 STEM teachers and graduate 1 million additional STEM students over the next decade. To assist in ameliorating the national STEM plight, the New York City College of Technology has designed its NSF Research Experience for Undergraduate (REU) program in satellite and ground-based remote sensing to target underrepresented minority students. Since the inception of the program in 2008, a total of 45 undergraduate students of which 38 (84%) are considered underrepresented minorities in STEM have finished or are continuing with their research or are pursuing their STEM endeavors. The program is comprised of the three primary components. The first component, Structured Learning Environments: Preparation and Mentorship, provides the REU Scholars with the skill sets necessary for proficiency in satellite and ground-based remote sensing research. The students are offered mini-courses in Geographic Information Systems, MATLAB, and Remote Sensing. They also participate in workshops on the Ethics of Research. Each REU student is a member of a team that consists of faculty mentors, post doctorate/graduate students, and high school students. The second component, Student Support and Safety Nets, provides undergraduates a learning environment that supports them in becoming successful researchers. Special networking and Brown Bag sessions, and an annual picnic with research scientists are organized so that REU Scholars are provided with opportunities to expand their professional community. Graduate school support is provided by offering free Graduate Record Examination preparation courses and workshops on the graduate school application process. Additionally, students are supported by college

  16. Local ionospheric electron density reconstruction from simultaneous ground-based GNSS and ionosonde measurements

    NASA Astrophysics Data System (ADS)

    Stankov, S. M.; Warnant, R.; Stegen, K.

    2009-04-01

    entire altitude range is a straightforward process. As a by-product of the described procedure, the value of the ionospheric slab thickness can be easily computed. To be able to provide forecast, additional information about the current solar and geomagnetic activity is needed. For the purpose, observations available in real time -- at the Royal Institute of Meteorology (RMI), the Royal Observatory of Belgium (ROB), and the US National Oceanic and Atmospheric Administration (NOAA) -- are used. Recently, a new hybrid model for estimating and predicting the local magnetic index K has been developed. This hybrid model has the advantage of using both, ground-based (geomagnetic field components) and space-based (solar wind parameters) measurements, which results in more reliable estimates of the level of geomagnetic activity - current and future. The described reconstruction procedure has been tested on actual measurements at the RMI Dourbes Geophysics Centre (coordinates: 50.1N, 4.6E) where a GPS receiver is collocated with a digital ionosonde (code: DB049, type: Lowell DGS 256). Currently, the nominal time resolution between two consecutive reconstructions is set to 15 minutes with a forecast horizon for each reconstruction of up to 60 minutes. Several applications are envisaged. For example, the ionospheric propagation delays can be estimated and corrected much easier if the electron density profile is available at a nearby location on a real-time basis. Also, both the input data and the reconstruction results can be used for validation purposes in ionospheric models, maps, and services. Recent studies suggest that such ionospheric monitoring systems can help research/services related to aircraft navigation, e.g. for development of the ‘ionospheric threat' methodology.

  17. Facilities for Simulation of Microgravity in the ESA Ground-Based Facility Programme

    NASA Astrophysics Data System (ADS)

    Brungs, Sonja; Egli, Marcel; Wuest, Simon L.; M. Christianen, Peter C.; W. A. van Loon, Jack J.; Ngo Anh, Thu Jennifer; Hemmersbach, Ruth

    2016-06-01

    Knowledge of the role of gravity in fundamental biological processes and, consequently, the impact of exposure to microgravity conditions provide insight into the basics of the development of life as well as enabling long-term space exploration missions. However, experimentation in real microgravity is expensive and scarcely available; thus, a variety of platforms have been developed to provide, on Earth, an experimental condition comparable to real microgravity. With the aim of simulating microgravity conditions, different ground-based facilities (GBF) have been constructed such as clinostats and random positioning machines as well as magnets for magnetic levitation. Here, we give an overview of ground-based facilities for the simulation of microgravity which were used in the frame of an ESA ground-based research programme dedicated to providing scientists access to these experimental capabilities in order to prepare their space experiments.

  18. BigBOSS: The Ground-Based Stage IV BAO Experiment

    SciTech Connect

    Schlegel, David; Bebek, Chris; Heetderks, Henry; Ho, Shirley; Lampton, Michael; Levi, Michael; Mostek, Nick; Padmanabhan, Nikhil; Perlmutter, Saul; Roe, Natalie; Sholl, Michael; Smoot, George; White, Martin; Dey, Arjun; Abraham, Tony; Jannuzi, Buell; Joyce, Dick; Liang, Ming; Merrill, Mike; Olsen, Knut; Salim, Samir

    2009-04-01

    The BigBOSS experiment is a proposed DOE-NSF Stage IV ground-based dark energy experiment to study baryon acoustic oscillations (BAO) and the growth of structure with an all-sky galaxy redshift survey. The project is designed to unlock the mystery of dark energy using existing ground-based facilities operated by NOAO. A new 4000-fiber R=5000 spectrograph covering a 3-degree diameter field will measure BAO and redshift space distortions in the distribution of galaxies and hydrogen gas spanning redshifts from 0.2< z< 3.5. The Dark Energy Task Force figure of merit (DETF FoM) for this experiment is expected to be equal to that of a JDEM mission for BAO with the lower risk and cost typical of a ground-based experiment.

  19. Extragalactic Science with the Next Generation of Ground Based TeV {gamma}-Ray Telescopes

    SciTech Connect

    Krawczynski, Henric

    2008-12-24

    The ground based Cherenkov telescope experiments H.E.S.S., MAGIC, and VERITAS, and the space borne Fermi Gamma-Ray Space Telescope are currently exploring the galactic and extragalactic Universe in {gamma}-rays. At the time of writing this article, a large number of Active Galactic Nuclei have been studied in great detail and the {gamma}-ray observations have had a major impact on our understanding of the structure of jets from these objects. In this contribution, the status of ground based {gamma}-ray observations of AGN and other extragalactic source classes is reviewed as of October, 2008. After discussing source classes that could be detected with next generation ground based experiments like AGIS, CTA, and HAWC, the potential impact of the observations on the fields of high energy astrophysics, structure formation, observational cosmology, and fundamental physics is reviewed. We close with a discussion of the technical requirements that arise from the science drivers.

  20. Decadal Challenges in Ground-Based Observations for Solar and Space Physics (Invited)

    NASA Astrophysics Data System (ADS)

    Robinson, R. M.

    2013-12-01

    Ground-based observations of the sun and near-Earth space have long provided the fundamental information needed to achieve a better understanding of the coupled Sun-Earth system and the processes responsible for solar activity and its effects on Earth's magnetosphere, ionosphere, and atmosphere. Observations based on both active and passive radio wave and optical techniques provide measurements throughout Earth's atmosphere, geospace, the heliosphere, and the Sun. Although the number of observing instruments, the capabilities of the instruments, and the variety of ground-based assets continue to open new frontiers and enable scientific discoveries, gaps still exist, not only in terms of the spatial coverage of the measurements, but also in the properties of the system that are observed and the cadence and frequency of the observations. Fortunately, new technologies have provided the tools by which these challenges can be overcome. This is an opportune time to develop an integrated strategy for development, deployment, operation, and data analysis of ground-based assets. These include, for example, advanced networking technologies, crowd-sourced data acquisition, and multi-use observational platforms. Ground-based observations can also be optimized through the development of smart sensors, that operate at low power and are easily deployable, reconfigurable, and remotely operable. Furthermore, the data from ground-based observations will be collected, archived, and disseminated in ways that will enable effective and productive data mining, image and pattern recognition, cross-correlation among diverse data sets, and broadly-based collaborative research. These capabilities are especially important as we attempt to understand the system aspects of the solar-terrestrial environment. The next decade will undoubtedly see new understanding and discoveries resulting from improved and expanded ground-based instruments, as well as in their strategic deployment and operation.

  1. Behavior of stem cells under outer-space microgravity and ground-based microgravity simulation.

    PubMed

    Zhang, Cui; Li, Liang; Chen, Jianling; Wang, Jinfu

    2015-06-01

    With rapid development of space engineering, research on life sciences in space is being conducted extensively, especially cellular and molecular studies on space medicine. Stem cells, undifferentiated cells that can differentiate into specialized cells, are considered a key resource for regenerative medicine. Research on stem cells under conditions of microgravity during a space flight or a ground-based simulation has generated several excellent findings. To help readers understand the effects of outer space and ground-based simulation conditions on stem cells, we reviewed recent studies on the effects of microgravity (as an obvious environmental factor in space) on morphology, proliferation, migration, and differentiation of stem cells.

  2. Comparison of backscatter ultraviolet /BUV/ and ground-based total ozone fields for December 1970

    NASA Technical Reports Server (NTRS)

    Miller, A. J.; Korty, B.; Heath, D. F.

    1979-01-01

    For the period December 1970, comparison is made between the monthly average analyses (mapped fields) of the backscatter ultraviolet (BUV) total ozone data and the ground-based observations. In particular, significant differences of over 50 Dobson units are noted over the region of the North Atlantic Ocean with the BUV of greater magnitude than the ground-based data. As part of the overall verification program, both analyses are compared against the 100 mb height fields. The results indicate that the BUV analysis in the region of question is the more consistent of the two.

  3. First ground-based FTIR-observations of methane in the tropics

    NASA Astrophysics Data System (ADS)

    Petersen, A. K.; Warneke, T.; Frankenberg, C.; Bergamaschi, P.; Gerbig, C.; Notholt, J.; Buchwitz, M.; Schneising, O.; Schrems, O.

    2010-02-01

    Total column concentrations and volume mixing ratio profiles of methane have been retrieved from ground-based solar absorption FTIR spectra in the near-infrared recorded in Paramaribo (Suriname). The methane FTIR observations are compared with TM5 model simulations and satellite observations from SCIAMACHY, and represent the first validation of SCIAMACHY retrievals in the tropics using ground-based remote sensing techniques. Apart from local biomass burning features, our methane FTIR observations agree well with the SCIAMACHY retrievals and TM5 model simulations.

  4. First ground-based FTIR observations of methane in the inner tropics over several years

    NASA Astrophysics Data System (ADS)

    Petersen, A. K.; Warneke, T.; Frankenberg, C.; Bergamaschi, P.; Gerbig, C.; Notholt, J.; Buchwitz, M.; Schneising, O.; Schrems, O.

    2010-08-01

    Total column concentrations of methane have been retrieved from ground-based solar absorption FTIR spectra in the near-infrared recorded in Paramaribo (Suriname). The methane FTIR observations are compared with TM5 model simulations and satellite observations from SCIAMACHY, and represent the first validation of SCIAMACHY retrievals in the inner tropics using ground-based remote sensing techniques. Apart from local biomass burning features, our methane FTIR observations agree well with TM5 model simulations. The comparison of the direct measured CH4/CO2 ratios by FTIR and satellite reveals that the satellite can hardly detect methane emissions of tropical biomass burning due to the used retrieval method.

  5. Ground-Based VIS/NIR Reflectance Spectra of 25143 Itokawa: What Hayabusa will See and How Ground-Based Data can Augment Analyses

    NASA Technical Reports Server (NTRS)

    Vilas, Faith; Abell, P. A.; Jarvis, K. S.

    2004-01-01

    Planning for the arrival of the Hayabusa spacecraft at asteroid 25143 Itokawa includes consideration of the expected spectral information to be obtained using the AMICA and NIRS instruments. The rotationally-resolved spatial coverage the asteroid we have obtained with ground-based telescopic spectrophotometry in the visible and near-infrared can be utilized here to address expected spacecraft data. We use spectrophotometry to simulate the types of data that Hayabusa will receive with the NIRS and AMICA instruments, and will demonstrate them here. The NIRS will cover a wavelength range from 0.85 m, and have a dispersion per element of 250 Angstroms. Thus, we are limited in coverage of the 1.0 micrometer and 2.0 micrometer mafic silicate absorption features. The ground-based reflectance spectra of Itokawa show a large component of olivine in its surface material, and the 2.0 micrometer feature is shallow. Determining the olivine to pyroxene abundance ratio is critically dependent on the attributes of the 1.0- and 2.0 micrometer features. With a cut-off near 2,1 micrometer the longer edge of the 2.0- feature will not be obtained by NIRS. Reflectance spectra obtained using ground-based telescopes can be used to determine the regional composition around space-based spectral observations, and possibly augment the longer wavelength spectral attributes. Similarly, the shorter wavelength end of the 1.0 micrometer absorption feature will be partially lost to the NIRS. The AMICA filters mimic the ECAS filters, and have wavelength coverage overlapping with the NIRS spectral range. We demonstrate how merging photometry from AMICA will extend the spectral coverage of the NIRS. Lessons learned from earlier spacecraft to asteroids should be considered.

  6. Land cover for Ukraine: the harmonization of remote sensing and ground-based data

    NASA Astrophysics Data System (ADS)

    Lesiv, M.; Shchepashchenko, D.; Shvidenko, A.; See, L. M.; Bun, R.

    2012-12-01

    This study focuses on the development of a land cover map of the Ukraine through harmonization of remote sensing and ground-based data. At present there is no land cover map of the Ukraine available that is of sufficient accuracy for use in environmental modeling. The existing remote sensing data are not enough accurate. In this study we compare the territory of the Ukraine from three global remote sensing products (GlobCover 2009, MODIS Land Cover and GLC-2000) using a fuzzy logic methodology in order to capture the uncertainty in the classification of land cover. The results for the Ukraine show that GlobCover 2009, MODIS Land Cover and GLC-2000 have a fuzzy agreement of 65%. We developed a weighted algorithm for the creation of a land cover map based on an integration of a number of global land cover and remote sensing products including the GLC-2000, GlobCover 2009, MODIS Land Cover, the Vegetation Continuous Fields product, digital map of administrative units and forest account data at the local level. This weighted algorithm is based on the results of comparing these products and an analysis of a dataset of validation points for different land cover types in the Ukraine. We applied this algorithm to generate a forest land cover type map. This raster map contains a forest expectation index that was calculated for each pixel. Forest land was then allocated based on forest statistics at the local level. Areas with a higher forest expectation index were allocated with forest first until the results matched the forest statistics. The result is the first digital map of forest (with a spatial resolution of 300m) for the Ukraine, which consistent with forest and land accounts, remote sensing datasets and GIS products. The forest land was well defined in forest rich areas (i.e. in the northern part of the Ukraine, the Carpathians and the Crimea); well less accurate areas were identified in the steppe due to heterogeneous land cover. Acknowledgements. This research was

  7. Comparison of Ground-Based and Airborne Function Allocation Concepts for NextGen Using Human-In-The-Loop Simulations

    NASA Technical Reports Server (NTRS)

    Wing, David J.; Prevot, Thomas; Murdoch, Jennifer L.; Cabrall, Christopher D.; Homola, Jeffrey R.; Martin, Lynne H.; Mercer, Joey S.; Hoadley, Sherwood T.; Wilson, Sara R.; Hubbs, Clay E.; Chamberlain, James P.; Chartrand, Ryan C.; Consiglio, Maria C.; Palmer, Michael T.

    2010-01-01

    Investigation of function allocation for the Next Generation Air Transportation System is being conducted by the National Aeronautics and Space Administration (NASA). To provide insight on comparability of different function allocations for separation assurance, two human-in-the-loop simulation experiments were conducted on homogeneous airborne and ground-based approaches to four-dimensional trajectory-based operations, one referred to as ground-based automated separation assurance (groundbased) and the other as airborne trajectory management with self-separation (airborne). In the coordinated simulations at NASA s Ames and Langley Research Centers, controllers for the ground-based concept at Ames and pilots for the airborne concept at Langley managed the same traffic scenarios using the two different concepts. The common scenarios represented a significant increase in airspace demand over current operations. Using common independent variables, the simulations varied traffic density, scheduling constraints, and the timing of trajectory change events. Common metrics were collected to enable a comparison of relevant results. Where comparisons were possible, no substantial differences in performance or operator acceptability were observed. Mean schedule conformance and flight path deviation were considered adequate for both approaches. Conflict detection warning times and resolution times were mostly adequate, but certain conflict situations were detected too late to be resolved in a timely manner. This led to some situations in which safety was compromised and/or workload was rated as being unacceptable in both experiments. Operators acknowledged these issues in their responses and ratings but gave generally positive assessments of the respective concept and operations they experienced. Future studies will evaluate technical improvements and procedural enhancements to achieve the required level of safety and acceptability and will investigate the integration of

  8. Ground-based thermal and multispectral imaging of limited irrigation crops

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Ground-based methods of remote sensing can be used as ground-truth for satellite-based remote sensing, and in some cases may be a more affordable means of obtaining such data. Plant canopy temperature has been used to indicate and quantify plant water stress. A field research study was conducted in ...

  9. Ground-Based Remote Sensing of Water-Stressed Crops: Thermal and Multispectral Imaging

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Ground-based methods of remote sensing can be used as ground-truthing for satellite-based remote sensing, and in some cases may be a more affordable means of obtaining such data. Plant canopy temperature has been used to indicate and quantify plant water stress. A field research study was conducted ...

  10. Research and development for Onboard Navigation (ONAV) ground based expert/trainer system: Test report

    NASA Technical Reports Server (NTRS)

    Bochsler, Daniel C.

    1988-01-01

    The test results for the onboard navigation (ONAV) Ground Based Expert System Trainer System for an aircraft/space shuttle navigation entry phase system are described. A summary of the test methods and analysis results are included. Functional inspection and execution, interface tests, default data sources, function call returns, status light indicators, and user interface command acceptance are covered.

  11. Evaluation of rotating-cylinder and piston-cylinder reactors for ground-based emulsion polymerization

    NASA Technical Reports Server (NTRS)

    Vanderhoff, J. W.; El-Aasser, M. S.

    1987-01-01

    The objectives of this program are to apply ground-based emulsion polymerization reactor technology to improve the production of: monodisperse latex particles for calibration standards, chromatographic separation column packing, and medical research; and commercial latexes such as those used for coatings, foams, and adhesives.

  12. Plant diversity to support humans in a CELSS ground-based demonstrator

    NASA Technical Reports Server (NTRS)

    Howe, J. M.; Hoff, J. E.

    1982-01-01

    Factors that influence the human nutritional requirements envisioned in a controlled ecological life support system ground-based demonstrator and on bioavailability experiments of Ca, Fe and Zn are discussed. The interrelationhip of protein and magnesium on Ca retention is also described.

  13. Ground Based Reflectance Measurements of Arid Rangeland Vegetation Communities of the Southwestern United States

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In 1997 a research program began using an Analytical Spectral Device (ASD-FR) spectroradiometer to collect ground based in situ radiance/reflectance measurements from vegetation communities typical of semiarid/arid rangelands of southwestern United States. Measurements were made after the spring (Ap...

  14. Comparisons of Satellite Optical Observations with Ground-Based Observations of Lightning, Then and Now

    NASA Astrophysics Data System (ADS)

    Beasley, W. H.; Noble, C. M.; Edgar, B. C.; Suszcynsky, D. M.; Light, T. E.

    2001-12-01

    About 20 years ago, the first and third authors presented a paper comparing the optical observations of lightning from the DMSP Piggy Back Experiment (PBE) with ground-based manually determined lightning ground-strike locations. In one case in 1977 there were eleven optical events from one satellite pass over the region of interest for which there were ground-based data available. In general there were few periods of overlap because the area covered by the ground-based research direction-finding systems was limited. Now, the Photo-Diode Detector (PDD) on board the FORTE satellite, a cooperative effort between LANL and Sandia Labs, provides hundreds of optical observations that are correlated with ground-strike location data from the National Lightning Detection Network on every pass over a stormy region of the U.S. Though in some ways it should not be too surprising that there are similarities, since the PDD instrument on the FORTE satellite is very similar to the PBE instrument, it has been very interesting to re-visit the 1977 observations to compare what was seen and what was not seen by the satellite and ground-based systems, then and now. The characteristics of the optical observations for which there were no ground-strike data in 1977 are remarkably similar to those of the events attributed to cloud flashes in the FORTE data sets. We show the power-time histories of the optical observations then and now.

  15. Combined Spectral Index to Improve Ground-Based Estimates of Nitrogen Status in Dryland Wheat

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Recent studies have demonstrated the usefulness of the single ratio Normalized Difference Vegetation Index (NDVI) and ground-based remote sensing for estimating crop yield potential and basing in-season nitrogen (N) fertilizer application. The NDVI is positively related to crop N status and leaf ar...

  16. Analysis of global cloudiness. 2: Comparison of ground-based and satellite-based cloud climatologies

    SciTech Connect

    Mokhov, I.I.; Schlesinger, M.E. |

    1994-08-01

    Cloud climatologies are developed and intercompared for International Satellite Cloud Climatology Project (ISCCO) (1983-1988), Meteor I (1971-1980), Meteor II (1979-1988), and Nimbus 7 (1979-1985) satellite observations, and for Berlyand and Strokina (1975, 1980) and Warren et al. (1986, 1988) ground-based observations. The satellite annual-mean, global- mean cloudiness, 0.57 +/- 0.05, is less than the ground-based value, 0.61 +/- 0.01, predominantly because of the low value for Nimbus 7. There is agreement between the satellite means of ISCCP, 0.62, and Meteor II, 0.61, and the ground-based means of Warren et al., 0.62, and Berlyand and Strokina, 0.60. Each satellite- and ground-based climatology shows that the hemispheric- mean cloudiness is larger in summer than that in winter in both the northern and southern hemispheres. Excluding Nimbus 7 observations, the zonal- mean cloudiness distributions for January, July, and July minus January display reasonably good agreement between 60 deg S and 60 deg N. In polar latitudes there is significant disagreement among the different climatologies, even in the sign of cloudiness changes from winter to summer. This evinces the need for special cloudiness experiments in polar regions, particularly in winter and summer.

  17. Low Power Ground-Based Laser Illumination for Electric Propulsion Applications

    NASA Technical Reports Server (NTRS)

    Lapointe, Michael R.; Oleson, Steven R.

    1994-01-01

    A preliminary evaluation of low power, ground-based laser powered electric propulsion systems is presented. A review of available and near-term laser, photovoltaic, and adaptive optic systems indicates that approximately 5-kW of ground-based laser power can be delivered at an equivalent one-sun intensity to an orbit of approximately 2000 km. Laser illumination at the proper wavelength can double photovoltaic array conversion efficiencies compared to efficiencies obtained with solar illumination at the same intensity, allowing a reduction in array mass. The reduced array mass allows extra propellant to be carried with no penalty in total spacecraft mass. The extra propellant mass can extend the satellite life in orbit, allowing additional revenue to be generated. A trade study using realistic cost estimates and conservative ground station viewing capability was performed to estimate the number of communication satellites which must be illuminated to make a proliferated system of laser ground stations economically attractive. The required number of satellites is typically below that of proposed communication satellite constellations, indicating that low power ground-based laser beaming may be commercially viable. However, near-term advances in low specific mass solar arrays and high energy density batteries for LEO applications would render the ground-based laser system impracticable.

  18. Acoustic Disturbance of Ionospheric Plasma by a Ground-Based Radiator

    NASA Astrophysics Data System (ADS)

    Koshovyi, V. V.; Soroka, S. O.

    The authors present the first results of experimental testing of the possibilities of acoustic disturbance of the ionosphere by a controllable ground-based low-power radiator. Detection of ionospheric perturbations of this kind by radiophysical complexes based on the decameter radiotelescope URAN-3 is discussed.

  19. Ground-Based Navigation and Dispersion Analysis for the Orion Exploration Mission 1

    NASA Technical Reports Server (NTRS)

    D' Souza, Christopher; Holt, Greg; Zanetti, Renato; Wood, Brandon

    2016-01-01

    This paper presents the Orion Exploration Mission 1 Linear Covariance Analysis for the DRO mission using ground-based navigation. The Delta V statistics for each maneuver are presented. In particular, the statistics of the lunar encounters and the Entry Interface are presented.

  20. Uncertainties in Instantaneous Rainfall Rate Estimates: Satellite vs. Ground-Based Observations

    NASA Astrophysics Data System (ADS)

    Amitai, E.; Huffman, G. J.; Goodrich, D. C.

    2012-12-01

    High-resolution precipitation intensities are significant in many fields. For example, hydrological applications such as flood forecasting, runoff accommodation, erosion prediction, and urban hydrological studies depend on an accurate representation of the rainfall that does not infiltrate the soil, which is controlled by the rain intensities. Changes in the rain rate pdf over long periods are important for climate studies. Are our estimates accurate enough to detect such changes? While most evaluation studies are focusing on the accuracy of rainfall accumulation estimates, evaluation of instantaneous rainfall intensity estimates is relatively rare. Can a speceborne radar help in assessing ground-based radar estimates of precipitation intensities or is it the other way around? In this presentation we will provide some insight on the relative accuracy of instantaneous precipitation intensity fields from satellite and ground-based observations. We will examine satellite products such as those from the TRMM Precipitation Radar and those from several passive microwave imagers and sounders by comparing them with advanced high-resolution ground-based products taken at overpass time (snapshot comparisons). The ground based instantaneous rain rate fields are based on in situ measurements (i.e., the USDA/ARS Walnut Gulch dense rain gauge network), remote sensing observations (i.e., the NOAA/NSSL NMQ/Q2 radar-only national mosaic), and multi-sensor products (i.e., high-resolution gauge adjusted radar national mosaics, which we have developed by applying a gauge correction on the Q2 products).

  1. A Fast Method for Embattling Optimization of Ground-Based Radar Surveillance Network

    NASA Astrophysics Data System (ADS)

    Jiang, H.; Cheng, H.; Zhang, Y.; Liu, J.

    A growing number of space activities have created an orbital debris environment that poses increasing impact risks to existing space systems and human space flight. For the safety of in-orbit spacecraft, a lot of observation facilities are needed to catalog space objects, especially in low earth orbit. Surveillance of Low earth orbit objects are mainly rely on ground-based radar, due to the ability limitation of exist radar facilities, a large number of ground-based radar need to build in the next few years in order to meet the current space surveillance demands. How to optimize the embattling of ground-based radar surveillance network is a problem to need to be solved. The traditional method for embattling optimization of ground-based radar surveillance network is mainly through to the detection simulation of all possible stations with cataloged data, and makes a comprehensive comparative analysis of various simulation results with the combinational method, and then selects an optimal result as station layout scheme. This method is time consuming for single simulation and high computational complexity for the combinational analysis, when the number of stations increases, the complexity of optimization problem will be increased exponentially, and cannot be solved with traditional method. There is no better way to solve this problem till now. In this paper, target detection procedure was simplified. Firstly, the space coverage of ground-based radar was simplified, a space coverage projection model of radar facilities in different orbit altitudes was built; then a simplified objects cross the radar coverage model was established according to the characteristics of space objects orbit motion; after two steps simplification, the computational complexity of the target detection was greatly simplified, and simulation results shown the correctness of the simplified results. In addition, the detection areas of ground-based radar network can be easily computed with the

  2. Ground-based and spacecraft-based data sets: examples of synergy from recent missions

    NASA Astrophysics Data System (ADS)

    Buratti, Bonnie; Hicks, Michael; Bauer, James

    2015-08-01

    Missions to small bodies have returned a wealth of observations at high spatial resolution and new wavelengths. Nevertheless, spacecraft data is often deficient in many ways, lacking in temporal coverage, specific viewing geometries, context, spectral range, and calibrations. Several recent examples illustrate how modest ground-based “support” measurements for missions to small bodies have substantially enhanced the results from these missions. Triton, Neptune’s giant moon, was observed by Voyager 2 in 1989: high resolution images showed a sublimating polar cap and explosive plumes of volatiles. This instant in time was placed into context by subsequent ground-based and HST observations of the moon that showed continued volatile transport. Similarly, decades of ground-based observations leading up to the New Horizons fast flyby of Pluto monitored long-term changes in frosts on the dwarf planet’s surface. Another example of synergistic measurements for small-body missions is that of complementary solar phase angle coverage. Space-based missions seldom have small phase angle measurements; similarly, ground-based measurements are often lacking at large solar phase angles (except of course for NEOs). This complementary phase angle coverage enables accurate photometric modeling, including determination of the bolometric Bond albedo, which is a key parameter for thermal modeling. Another key use of ground-based observations is to check and refine spacecraft calibrations, at least at wavelengths that are visible from Earth. In some cases, complete calibration sets are provided by Earth-based observing programs, such as that of ROLO (RObotic Lunar Observatory) for the Moon. Finally, context and the “big picture” in both time and space are provided by telescopic views of spacecraft targets before, during, and after mission durations or critical events.The astronomical community should continue to support, and participate in, teams that make synergistic

  3. Validation of CALIPSO level-2 products using a ground based lidar in Thessaloniki, Greece

    NASA Astrophysics Data System (ADS)

    Giannakaki, Elina; Vraimaki, Eleni; Balis, Dimitris

    2011-11-01

    We present initial aerosol validation results of the space-borne lidar CALIOP -onboard the CALIPSO satellite - Level 2 extinction coefficient profiles, using coincident observations performed with a ground-based lidar in Thessaloniki, Greece (40.5° N, 22.9° E, 50m above sea level). A ground-based backscatter/Raman lidar system is operating since 2000 at the Laboratory of Atmospheric Physics (LAP) in the framework of the European Aerosol Research LIdar NETwork (EARLINET), the first lidar network for tropospheric aerosol studies on a continental scale. Since July 2006, a total of 150 coincidental aerosol ground-based lidar measurements were performed over Thessaloniki during CALIPSO overpasses. The ground-based measurements were performed each time CALIPSO overpasses the station location within a maximum distance of 100 km. The duration of the ground-based lidar measurements was approximately two hours, centred on the satellite overpass time. The analysis was performed for 4 different horizontal resolutions of 5, 25, 45 and 105 km. For our analysis we have used Atmospheric Volume Description (AVD) array to screen out everything that is not an aerosol. Also, the cloud-aerosol discrimination (CAD) score, which provides a numerical confidence level for the classification of layers by the CALIOP cloud-aerosol discrimination algorithm was set between -80 and -100. CALIPSO extinction QC flags, which summarize the final state of the extinction retrieval, was also used. In our analysis we have used those measurements where the lidar ratio is unchanged (extinction QC = 0) during the extinction retrieval or it the retrieval is constrained (extinction QC = 1). The comparison was performed both for extinction and backscater coefficient profiles. For clear sky conditions, the comparison shows good performances of the CALIPSO on-board lidar.

  4. Connecting ground-based in-situ observations, ground-based remote sensing and satellite data within the Pan Eurasian Experiment (PEEX) program

    NASA Astrophysics Data System (ADS)

    Petäjä, Tuukka; de Leeuw, Gerrit; Lappalainen, Hanna K.; Moisseev, Dmitri; O'Connor, Ewan; Bondur, Valery; Kasimov, Nikolai; Kotlyakov, Vladimir; Guo, Huadong; Zhang, Jiahua; Matvienko, Gennadii; Kerminen, Veli-Matti; Baklanov, Alexander; Zilitinkevich, Sergej; Kulmala, Markku

    2014-10-01

    Human activities put an increasing stress on the Earth' environment and push the safe and sustainable boundaries of the vulnerable eco-system. It is of utmost importance to gauge with a comprehensive research program the current status of the environment, particularly in the most vulnerable locations. The Pan-Eurasian Experiment (PEEX) is a new multidisciplinary research program aiming at resolving the major uncertainties in the Earth system science and global sustainability questions in the Arctic and boreal Pan-Eurasian regions. The PEEX program aims to (i) understand the Earth system and the influence of environmental and societal changes in both pristine and industrialized Pan-Eurasian environments, (ii) establish and sustain long-term, continuous and comprehensive ground-based airborne and seaborne research infrastructures, and utilize satellite data and multi-scale model frameworks filling the gaps of the insitu observational network, (iii) contribute to regional climate scenarios in the northern Pan-Eurasia and determine the relevant factors and interactions influencing human and societal wellbeing (iv) promote the dissemination of PEEX scientific results and strategies in scientific and stake-holder communities and policy making, (v) educate the next generation of multidisciplinary global change experts and scientists, and (vi) increase the public awareness of climate change impacts in the Pan- Eurasian region. In this contribution, we underline general features of the satellite observations relevant to the PEEX research program and how satellite observations connect to the ground-based observations.

  5. Ground-based microwave remote sensing of temperature inversions in the Bergen valley, Norway

    NASA Astrophysics Data System (ADS)

    Wolf, Tobias; Esau, Igor; Reuder, Joachim

    2014-05-01

    The temperature profiles in the urbanized Bergen valley, Norway, are characterized by wintertime temperature inversions, which have a strong impact on the surface layer air quality in the city. We present the results from two years of vertical temperature profile measurements obtained with the ground-based microwave temperature profiler MTP-5HE and show the advantages of ground-based remote sensing with this instrument for the monitoring of atmospheric temperature inversions. From a subset of the final, filtered dataset we found that the mean difference between temperatures measured with the MTP-5HE and an automatic meteorological station (AMS) on a nearby mountain was as low as -0.03 ± 0.78 K during inversion free conditions and -0.06 ± 0.71 K during ground-based temperature inversions. The only selection criterion for this subset was a wind speed of more than 5 m/s and to ensure comparability between the location of the AMS and the central valley atmosphere. We found two regimes of ground-based inversions: Non-persistent inversions lasting shorter than 2 hours that are mostly thinner than 100 m and more persistent inversions often reaching 270 m above sea level. The height of the shorter inversions was consistent with the maximum height of inversions found in a previous study based on tethersonde measurements. Ground-based inversions mostly occurred during situations characterized by weak winds in the ERA-Interim reanalysis, to a large degree independent from wind direction. A distinct south-easterly tail in the ERA-Interim wind distribution with wind speeds as high as 16 m/s might have been connected to a wake effect from a nearby mountain. The strong channeling effect within the valley that was also found in previous studies was evident. The ground-based remote sensing was particularly useful for the monitoring of elevated temperature inversions between 170 m and 720 m above sea level. This kind of inversions has not been observed in this valley before. They

  6. Synergy benefit in temperature, humiditiy and cloud property profiling by integrating ground based and satellite measurements

    NASA Astrophysics Data System (ADS)

    Ebell, K.; Orlandi, E.; Hünerbein, A.; Crewell, S.; Löhnert, U.

    2012-12-01

    Accurate, highly vertically resolved temperature, humidity and cloud property profiles are needed for many applications. They are essential for climate monitoring, a better process understanding and the subsequent improvement of parameterizations in numerical weather prediction and climate models. In order to provide such profiles with a high temporal resolution, multiple wavelength active and passive remote sensing techniques available at ground based observatories, e.g. the Atmospheric Radiation Measruement (ARM) Program and Cloudnet facilities, need to be exploited. In particular, the Integrated Profiling Technique (IPT, Löhnert et al., 2008) has been successfully applied to simultaneously derive profiles of temperature, humidity and liquid water by a Bayesian based retrieval using a combination of ground based microwave radiometer, cloud radar and a priori information. Within the project ICOS (Integrating Cloud Observations from Ground and Space - a Way to Combine Time and Space Information), we develop a flexible IPT, which allows for the combination of a variety of ground based measurements from cloud radar, microwave radiometer (MWR) and IR spectrometer as well as satellite based information from the Spinning Enhanced Visible and InfraRed Imager (SEVIRI) onboard of METEOSAT. As ground based observations are mainly sensitive to the lower parts of the troposphere, the satellite measurements provide complementary information and are thus expected to improve the estimates of the thermodynamic and cloud property profiles, i. e. hydrometeor content and effective radius, considerably. In addition to the SEVIRI IR measurements, which are provided with a high repetition time, information from polar orbiting satellites could be included. In paticular, the potential of the Advanced Microwave Sounding Unit-A (AMSU-A) and Microwave Sounding Unit (MHS) in the retrieval is investigated. In order to understand the improvement by integrating the measurements of the above

  7. Measuring glacier surface temperatures with ground-based thermal infrared imaging

    NASA Astrophysics Data System (ADS)

    Aubry-Wake, Caroline; Baraer, Michel; McKenzie, Jeffrey M.; Mark, Bryan G.; Wigmore, Oliver; Hellström, Robert È.; Lautz, Laura; Somers, Lauren

    2015-10-01

    Spatially distributed surface temperature is an important, yet difficult to observe, variable for physical glacier melt models. We utilize ground-based thermal infrared imagery to obtain spatially distributed surface temperature data for alpine glaciers. The infrared images are used to investigate thermal microscale processes at the glacier surface, such as the effect of surface cover type and the temperature gradient at the glacier margins on the glacier's temperature dynamics. Infrared images were collected at Cuchillacocha Glacier, Cordillera Blanca, Peru, on 23-25 June 2014. The infrared images were corrected based on ground truth points and local meteorological data. For the control points, the Pearson's correlation coefficient between infrared and station temperatures was 0.95. The ground-based infrared camera has the potential for greatly improving glacier energy budget studies, and our research shows that it is critical to properly correct the thermal images to produce robust, quantifiable data.

  8. Evaluating the Accuracy of Plasmasphere Data Assimilation from Ground-Based Observations

    NASA Astrophysics Data System (ADS)

    Jorgensen, A. M.; Lichtenberger, J.; Friedel, R. H.; Clilverd, M.; Heilig, B.; Vellante, M.; Raita, T.; Rodger, C. J.; Reda, J.; Collier, A.; Holzworth, R. H.; Ober, D. M.; Boudouridis, A.; Zesta, E.; Chi, P. J.

    2013-05-01

    VLF and magnetometer observations can be used to remotely sense the plasmasphere. VLF whistler waves can be used to measure the electron density and magnetic Field Line Resonance (FLR) measurements can be used to measure the mass density. In principle it is then possible to remotely map the plasmasphere with a network of ground-based stations which are also less expensive and more permanent than satellites. The PLASMON project, funded by the EU FP-7 program, is in the process of doing just this. A large number of ground-based observations will be input into a data assimilative framework which models the plasmasphere structure and dynamics. The data assimilation framework combines the Ensemble Kalman Filter with the Dynamic Global Core Plasma Model. Here we simulate the observations from these networks, with appropriate uncertainties, and use them to drive the data assimilation framework to recover the plasmaspheric configuration. We will discuss the level of accuracy that can be achieved.

  9. Evaluating the Accuracy of Plasmasphere Data Assimilation from Ground-Based Observations

    NASA Astrophysics Data System (ADS)

    Jorgensen, A. M.; Lichtenberger, J.; Duffy, J.; Friedel, R. H.; Clilverd, M.; Heilig, B.; Vallante, M.; Manninen, J. K.; Rodger, C. J.; Collier, A.; Reda, J.; Holzworth, R. H.; Ober, D. M.; Boudouridis, A.; Zesta, E.; Chi, P. J.

    2012-12-01

    VLF and magnetometer observations can be used to remotely sense the plasmasphere. VLF whistler waves can be used to measure the electron density and magnetic Field Line Resonance (FLR) measurements can be used to measure the mass density. In principle it is then possible to remotely map the plasmasphere with a network of ground-based stations which are also less expensive and more permanent than satellites. The PLASMON project, funded by the EU FP-7 program, is in the process of doing just this. A large number of ground-based observations will be input into a data assimilative framework which models the plasmasphere structure and dynamics. The data assimilation framework combines the Ensemble Kalman Filter with the Dynamic Global Core Plasma Model. Here we simulate the observations from these networks, with appropriate uncertainties, and use them to drive the data assimilation framework to recover the plasmaspheric configuration. We will discuss the level of accuracy that can be achieved.

  10. DEM extraction and its accuracy analysis with ground-based SAR interferometry

    NASA Astrophysics Data System (ADS)

    Dong, J.; Yue, J. P.; Li, L. H.

    2014-03-01

    Two altimetry models extracting DEM (Digital Elevation Model) with the GBSAR (Ground-Based Synthetic Aperture Radar) technology are studied and their accuracies are analyzed in detail. The approximate and improved altimetry models of GBSAR were derived from the spaceborne radar altimetry based on the principles of the GBSAR technology. The error caused by the parallel ray approximation in the approximate model was analyzed quantitatively, and the results show that the errors cannot be ignored for the ground-based radar system. For the improved altimetry model, the elevation error expression can be acquired by simulating and analyzing the error propagation coefficients of baseline length, wavelength, differential phase and range distance in the mathematical model. By analyzing the elevation error with the baseline and range distance, the results show that the improved altimetry model is suitable for high-precision DEM and the accuracy can be improved by adjusting baseline and shortening slant distance.

  11. Infrared ground-based astronomy with the Hughes 256 X 256 PtSi array

    NASA Technical Reports Server (NTRS)

    Fowler, A.; Joyce, R.; Gatley, I.; Gates, J.; Herring, J.

    1989-01-01

    It is shown that large format PtSi Schottky diode infrared arrays, the Hughes 256 X 256 hybrid Schottky array in particular, are competitive alternatives to the smaller format photovoltaic arrays for ground-based astronomy. The modest quantum efficiency of the PtSi compared to the photovoltaic devices is more than compensated for by the larger format. The use of hybrid technology yields effective fill factors of nearly 100 percent, and the low dark current, noise, excellent imaging characteristics, cost, and solid nitrogen operating temperature add to the effectiveness of this array for ground-based imaging. In addition to discussing the characteristics of this array, researchers present laboratory test data and astronomical results achieved at Kitt Peak.

  12. Thunderstorms and ground-based radio noise as observed by radio astronomy Explorer 1

    NASA Technical Reports Server (NTRS)

    Caruso, J. A.; Herman, J. R.

    1973-01-01

    Radio Astronomy Explorer (RAE) data were analyzed to determine the frequency dependence of HF terrestrial radio noise power. RAE observations of individual thunderstorms, mid-ocean areas, and specific geographic regions for which concommitant ground based measurements are available indicate that noise power is a monotonically decreasing function of frequency which conforms to expectations over the geographic locations and time periods investigated. In all cases investigated, active thunderstorm regions emit slightly higher power as contrasted to RAE observations of the region during meteorologically quiet periods. Noise levels are some 15 db higher than predicted values over mid-ocean, while in locations where ground based measurements are available a maximum deviation of 5 db occurs. Worldwide contour mapping of the noise power at 6000 km for five individual months and four observing frequencies, examples of which are given, indicate high noise levels over continental land masses with corresponding lower levels over ocean regions.

  13. Networking ground-based images of Comet Halley during the Giotto encounter

    NASA Technical Reports Server (NTRS)

    Rees, David; Perla, Israel; Meredith, Nigel P.; Green, James; Van Der Heijden, Nick

    1986-01-01

    During the period immediately before and after the European, Russian, and Japanese spacecraft encounters with Comet Halley in early March 1986, sequences of ground-based electronic images of the comet, obtained at Table Mountain Observatory (TMO), CA, were transmitted via the Space Physics Analysis Network (SPAN) to the European Space Operations Centre (ESOC), and to University College London (UCL). During the 48-h period when the European Space Agency spacecraft Giotto was within the extended coma of Comet Halley, the ground-based images revealed that the comet displayed several spectacular near-nuclear and large-scale features. The TMO images provided a format for the interpretation of the unique in situ results obtained during the closest of the five spacecraft encounters with Comet Halley.

  14. Comparative analysis of UVB exposure between Nimbus 7/TOMS satellite estimates and ground-based measurements

    NASA Astrophysics Data System (ADS)

    Gao, Zhiqiang; Gao, Wei

    2010-08-01

    This study describes the patterns of variation in ultraviolet (UV) exposure across time and space using two continental scale data sets on UV radiation and conducts a comparative analysis of two sources of noontime UV-B exposure data across the continental US. One dataset was collected from 37 ground-based stations equipped with broadband UV-B-1 Pyranometers across North America whereas the other dataset was of synchronous satellite data collected from the Nimbus-7/TOMS sensor. Comparisons of these datasets confirmed agreement between the ground-based measurements and the TOMS satellite estimates with correlation coefficients of 0.87 and 0.95 for daily and monthly UV Index time series (i.e., a common metric of UV radiation exposure), respectively.

  15. Entry Dispersion Analysis for the HAYABUSA Spacecraft using Ground-Based Optical Observation

    NASA Astrophysics Data System (ADS)

    Yamaguchi, Tomohiro; Yoshikawa, Makoto; Yagi, Masafumi; Tholen, David J.

    2011-10-01

    The HAYABUSA asteroid explorer successfully released its sample capsule to Australia on 2010 June 13. Since the Earth reentry phase of sample return was critical, many backup plans for predicting the landing location were prepared. This paper considers the reentry dispersion using ground-based optical observation as a backup observation for radiometric observation. Several scenarios were calculated and compared for the reentry phase of HAYABUSA to evaluate the navigation accuracy of the ground-based observation. The optical observation doesn't require any active reaction from a spacecraft, and thus these results show that optical observations could be a steady backup strategy even if a spacecraft had some trouble. We also evaluated the landing dispersion of HAYABUSA only with optical observation.

  16. Space debris removal using a high-power ground-based laser

    SciTech Connect

    Monroe, D.K.

    1993-12-31

    The feasibility and practicality of using a ground-based laser (GBL) to remove artificial space debris is examined. Physical constraints indicate that a reactor-pumped laser (RPL) may be best suited for this mission, because of its capabilities for multimegawatt output long run-times, and near-diffraction-limited initial beams. Simulations of a laser-powered debris removal system indicate that a 5-MW RPL with a 10-meter-diameter beam director and adaptive optics capabilities can deorbit 1-kg debris from space station altitudes. Larger debris can be deorbited or transferred to safer orbits after multiple laser engagements. A ground-based laser system may be the only realistic way to access and remove some 10,000 separate objects, having velocities in the neighborhood of 7 km/sec, and being spatially distributed over some 10{sup 10} km{sup 3} of space.

  17. Gaussian total variation blind restoration of ground-based space object imagery

    NASA Astrophysics Data System (ADS)

    Guo, Shiping; Zhang, Rongzhi; Xu, Rong; Liu, Changhai; Li, Jisheng

    2016-11-01

    We focus on the restoration of ground-based space object adaptive optics (AO) images distorted by atmospheric turbulence. A total variation (TV) blind AO images restoration method taking advantage of low-order Gaussian derivative operators is presented. Unlike previous definition of the TV regularization term, we propose to define the TV prior by the Gaussian gradient operators instead of the general finite-difference gradient operators. Specifically, in each iterative step of alternating minimization when solving the TV blind deconvolution problem, the first-order Gaussian derivative operator (i.e. gradient magnitude of Gaussian) is used to construct the total variation norm of object image, and the secondorder Gaussian derivative operator (i.e. Laplacian of Gaussian) is used to spatially adjust the regularization parameter. Comparative simulation experiments show that this simple improvement is much practicable for ground-based space object images and can provide more robust performance on both restoration accuracy and convergence property.

  18. Combined Characterisation of GOME and TOMS Total Ozone Using Ground-Based Observations from the NDSC

    NASA Technical Reports Server (NTRS)

    Lambert, J.-C.; VanRoozendael, M.; Simon, P. C.; Pommereau, J.-P.; Goutail, F.; Andersen, S. B.; Arlander, D. W.; BuiVan, N. A.; Claude, H.; deLaNoee, J.; DeMaziere, M.; Dorokhov, V.; Eriksen, P.; Gleason, J. F.; Tornkvist, K. Karlsen; Hoiskar, B. A. Kastad; Kyroe, E.; Leveau, J.; Merienne, M.-F.; Milinevsky, G.

    1998-01-01

    Several years of total ozone measured from space by the ERS-2 GOME, the Earth Probe Total Ozone Mapping Spectrometer (TOMS), and the ADEOS TOMS, are compared with high-quality ground-based observations associated with the Network for the Detection of Stratospheric Change (NDSC), over an extended latitude range and a variety of geophysical conditions. The comparisons with each spaceborne sensor are combined altogether for investigating their respective solar zenith angle (SZA) dependence, dispersion, and difference of sensitivity. The space- and ground-based data are found to agree within a few percent on average. However, the analysis highlights for both Global Ozone Monitoring Experiment (GOME) and TOMS several sources of discrepancies, including a dependence on the SZA at high latitudes and internal inconsistencies.

  19. Response of Inconel 617 superalloy to combined ground-based and STS reentry exposure

    NASA Technical Reports Server (NTRS)

    Clark, R. K.; Unnam, J.

    1984-01-01

    Inconel 617 is a nickel-based superalloy which is being considered for heat-shield applications because of its high-temperature strength, good oxidation resistance and high emittance of oxidized surfaces. While the effects of simulated reentry conditions on emittance and oxidation of Inconel 617 have been studied, the combined effects of the ground-based environment with sea salt exposure and the reentry environment have not been evaluated. Experimental results are presented to show the effects of environmental simulation including ground-based and reentry exposure on the emittance and oxidation of Inconel 617. Specimens were exposed to simulated reentry at a surface temperature of 2000 F in the Langley Research Center Hypersonic Materials Environmental Test System (HYMETS) Facility with and without alternate exposures to an atmospheric seashore environment or a laboratory sea salt environment. This paper presents emittance, mass loss, oxide chemistry, and alloy composition data for the specimens.

  20. Evaluating evaporation from field crops using airborne radiometry and ground-based meteorological data

    USGS Publications Warehouse

    Jackson, R. D.; Moran, M.S.; Gay, L.W.; Raymond, L.H.

    1987-01-01

    Airborne measurements of reflected solar and emitted thermal radiation were combined with ground-based measurements of incoming solar radiation, air temperature, windspeed, and vapor pressure to calculate instantaneous evaporation (LE) rates using a form of the Penman equation. Estimates of evaporation over cotton, wheat, and alfalfa fields were obtained on 5 days during a one-year period. A Bowen ratio apparatus, employed simultaneously, provided ground-based measurements of evaporation. Comparison of the airborne and ground techniques showed good agreement, with the greatest difference being about 12% for the instantaneous values. Estimates of daily (24 h) evaporation were made from the instantaneous data. On three of the five days, the difference between the two techniques was less than 8%, with the greatest difference being 25%. The results demonstrate that airborne remote sensing techniques can be used to obtain spatially distributed values of evaporation over agricultural fields. ?? 1987 Springer-Verlag.

  1. Ground-based mm-wave emission spectroscopy for the detection and monitoring of stratospheric ozone

    NASA Technical Reports Server (NTRS)

    Parrish, A.; Dezafra, R.; Solomon, P.

    1981-01-01

    The molecular rotational spectrum of ozone is quite rich in the mm-wave region from 50 to 300 GHz. An apparatus, which was developed primarily for detection and measurement of stratospheric ClO and other trace molecules, is found to be well suited also for the observation of ozone lines. The collecting antenna of the apparatus is a simple mm-waveguide feedhorn. The detector is a superheterodyne mixer using a special high frequency Schottky diode and a klystron local oscillator. The spectrometer is a 256 channel filter bank with 1 MHz resolution per channel. The apparatus is believed to be the first ground-based mm-wave instrument having the capability of obtaining data of sufficient quality to make use of the inversion technique. The ground based radio technique is most sensitive to changes in vertical distribution in the region above 25 km, a region which is difficult to sample by other techniques.

  2. Space Fence Ground-Based Radar System Increment 1 (Space Fence Inc 1)

    DTIC Science & Technology

    2015-12-01

    Selected Acquisition Report (SAR) RCS: DD-A&T(Q&A)823-438 Space Fence Ground-Based Radar System Increment 1 (Space Fence Inc 1) As of FY 2017...Officer PM - Program Manager POE - Program Office Estimate RDT&E - Research, Development, Test, and Evaluation SAR - Selected Acquisition Report SCP... Selective Availability Anti-spoofing Module SIMCERT - Simulator Certification SOC - Space Operations Center SORTS - Status of Resources and Training System

  3. Using ground-based stereo cameras to derive cloud-level wind fields.

    PubMed

    Porter, John N; Cao, Guang Xia

    2009-08-15

    Upper-level wind fields are obtained by tracking the motion of cloud features as seen in calibrated ground-based stereo cameras. By tracking many cloud features, it is possible to obtain horizontal wind speed and direction over a cone area throughout the troposphere. Preliminary measurements were made at the Mauna Loa Observatory, and resulting wind measurements are compared with winds from the Hilo, Hawaii radiosondes.

  4. Coordinated X-ray/ground-based monitoring of Seyfert 1s

    NASA Astrophysics Data System (ADS)

    Uttley, P.

    2003-05-01

    Co-ordinated X-ray and optical monitoring programs are beginning to reveal the complex connection between the X-ray and optical emitting regions in the central engines of Seyfert galaxies. I will discuss the current state of our knowledge of the optical/X-ray connection in Seyferts, and demonstrate how Lobster, in conjunction with the new generation of ground based robotic observatories, will greatly enhance our understanding of the origins of the continuum emission in AGN.

  5. Ground-based follow-up of the Gaia-RVS radial velocity standards

    NASA Astrophysics Data System (ADS)

    Soubiran, C.; Jasniewicz, G.; Zurbach, C.; Crifo, F.; Sartoretti, P.; Katz, D.; Marchal, O.; Panuzzo, P.; Udry, S.

    2016-12-01

    The RVS spectrograph on board of Gaia having no calibration device, radial velocity standards are needed to calibrate the zero-point of the instrument. We have prepared a list of 2798 such stars, well distributed over the sky, and compiled ˜25 000 individual RV measurements from ground-based velocimeters. For a fraction of these stars, their stability at the 300 ms level during the Gaia mission has still to be assessed. The catalogue and follow-up programme are presented.

  6. Ground Based Simulation Evaluation of the Effects of Time Delays and Motion on Rotorcraft Handling Qualities

    DTIC Science & Technology

    1992-01-01

    Inc. C Lometa, CA ADOLPH ATENCIO, JR. DAVID L. KEY Aeroflightdynamics Directorate U.S. Army Aviation Systems Command Ames Research Center Moffett Field...CA JANUARY 1992 - . Final Report Prepared for Aeroflightdynamics Directorate US Army Aviation Systems Command Ames Research Center Moffett Field, CA...Ground-based simulation is an important tool in the assessment of handling qualities of rotorcraft for both research and development. The strengths and

  7. A ground based phase control system for the solar power satellite, volume 4

    NASA Technical Reports Server (NTRS)

    Chie, C. M.

    1980-01-01

    A ground phase control system is studied as an alternative approach to the current reference retrodirective phase control system in order to simplify the spaceborne hardware requirement. Based on waveform selections, functional subsystems to implement the ground-based phase control concept are identified and functionally represented. It was concluded that the feasibility of the concept becomes unclear if the conditions of the ionosphere and satellite motion are not met.

  8. Toward the Ground-based Imaging of Satellites at Geosynchronous Altitude

    DTIC Science & Technology

    2011-09-01

    these fall quite a bit short of our requirements. As a result, we considered an imaging interferometer . The exiting facilities do not have enough...fibers. Over a traditional ground-based interferometer , sensitivity is improved since losses due to the vacuum feed system and delay lines are...Std Z39-18 Figure 1: The concept described in this paper is an optical interferometer mounted on a steerable platform. Light from the apertures is

  9. Ground-based FTIR measurements of CLONO[sub 2] vertical column amounts in the Arctic

    SciTech Connect

    Notholt, J. ); Clarmann, T.V.; Adrian, G.P. ); Schrems, O. )

    1994-06-22

    This article presents results of a ground-based FTIR spectroscopy study of ClONO[sub 2] conducted at Ny-Alesund (79[degrees]N) during March 1992. These measurements were made both inside and outside the polar vortex. Column densities outside the vortex were larger than at midlatitudes. Inside the vortex, there was more variability, and even larger values were observed at times.

  10. Ground-based FTIR measurements of vertical column densities of several trace gases above Spitsbergen

    SciTech Connect

    Notholt, J. ); Schrems, O. )

    1994-06-22

    The authors report column density measurements of N[sub 2]O, CH[sub 4], HF, HCl, O[sub 3], NO[sub 2] and HNO[sub 3], made from Ny-Alesund (79[degrees]N), using a ground-based FTIR instrument. The data was collected in March 1992, over a time interval where the site was inside, and then outside the polar vortex.

  11. The crop growth research chamber: A ground-based facility for CELSS research

    NASA Technical Reports Server (NTRS)

    Bubenheim, David L.

    1990-01-01

    A ground based facility for the study of plant growth and development under stringently controlled environments is being developed by the Closed Ecological Life Support System (CELSS) program at the Ames Research Center. Several Crop Growth Research Chambers (CGRC) and laboratory support equipment provide the core of this facility. The CGRC is a closed (sealed) system with a separate recirculating atmosphere and nutrient delivery systems. The atmospheric environment, hydroponic environment, systems controls, and data acquisition are discussed.

  12. Atomic oxygen interaction with spacecraft materials: Relationship between orbital and ground-based testing for materials certification

    NASA Technical Reports Server (NTRS)

    Cross, Jon B.; Koontz, Steven L.; Lan, Esther H.

    1993-01-01

    The effects of atomic oxygen on boron nitride (BN), silicon nitride (Si3N4), Intelsat 6 solar cell interconnects, organic polymers, and MoS2 and WS2 dry lubricant, were studied in Low Earth Orbit (LEO) flight experiments and in a ground based simulation facility. Both the inflight and ground based experiments employed in situ electrical resistance measurements to detect penetration of atomic oxygen through materials and Electron Spectroscopy for Chemical Analysis (ESCA) analysis to measure chemical composition changes. Results are given. The ground based results on the materials studied to date show good qualitative correlation with the LEO flight results, thus validating the simulation fidelity of the ground based facility in terms of reproducing LEO flight results. In addition it was demonstrated that ground based simulation is capable of performing more detailed experiments than orbital exposures can presently perform. This allows the development of a fundamental understanding of the mechanisms involved in the LEO environment degradation of materials.

  13. Interactive dynamic three-dimensional scene for the ground-based three-dimensional display

    NASA Astrophysics Data System (ADS)

    Hou, Peining; Sang, Xinzhu; Guo, Nan; Chen, Duo; Yan, Binbin; Wang, Kuiru; Dou, Wenhua; Xiao, Liquan

    2016-10-01

    Three-dimensional (3D) displays provides valuable tools for many fields, such as scientific experiment, education, information transmission, medical imaging and physical simulation. Ground based 360° 3D display with dynamic and controllable scene can find some special applications, such as design and construction of buildings, aeronautics, military sand table and so on. It can be utilized to evaluate and visualize the dynamic scene of the battlefield, surgical operation and the 3D canvas of art. In order to achieve the ground based 3D display, the public focus plane should be parallel to the camera's imaging planes, and optical axes should be offset to the center of public focus plane in both vertical and horizontal directions. Virtual cameras are used to display 3D dynamic scene with Unity 3D engine. Parameters of virtual cameras for capturing scene are designed and analyzed, and locations of virtual cameras are determined by the observer's eye positions in the observing space world. An interactive dynamic 3D scene for ground based 360° 3D display is demonstrated, which provides high-immersion 3D visualization.

  14. A Ground-Based Array to Observe Geospace Electrodynamics During Adverse Space Weather Conditions

    NASA Astrophysics Data System (ADS)

    Sojka, J. J.; Eccles, J. V.; Rice, D.

    2004-05-01

    Geomagnetic Storms occur with surprising frequency and create adverse space weather conditions. During these periods, our knowledge and ability to specify or forecast in adequate detail for user needs is negligible. Neither experimental observations nor theoretical developments have made a significant new impact on the problem for over two decades. Although we can now map Total Electron Content (TEC) in the ionosphere over a continent with sufficient resolution to see coherent long-lived structures, these do not provide constraints on the geospace electrodynamics that is at the heart of our lack of understanding. We present arguments for the need of a continental deployment of ground-based sensors to stepwise advance our understanding of the geospace electrodynamics when it is most adverse from a space weather perspective and also most frustrating from an understanding of Magnetosphere-Ionosphere coupling. That a continental-scale deployment is more productive at addressing the problem than a realizable global distribution is shown. Each measurement is discussed from the point-of-view of either providing new knowledge or becoming a key for future real-time specification and forecasting for user applications. An example of a storm database from one mid-latitude station for the 31 March 2002 is used as a conceptual point in a ground-based array. The presentation focuses on scientific questions that have eluded a quantitative solution for over three decades and view a ground-based array as an "IGY" type of catalyst for answering these questions.

  15. Integrating ground-based EO data in satellite-based systems

    SciTech Connect

    Jennings, S.V.; Daugherty, P.; Yow, T.G.

    1997-02-01

    Earth observation (EO) and other forms of geo-referenced data are typically thought of as being ``satellite data.`` It is true that the majority of EO data are satellite oriented; thus, most on-line EO data systems are designed primarily for satellite image data. However, there is A small but significant minority of EO data that is not satellite image data; i.e., it is ground-based or terrestrial data Unfortunately, many on-line systems designed for satellite data do not take into account the somewhat different nature of associated ground-based data, Data queries that work most of the time but fail because the system has not taken into account less common data are not robust enough for today`s users. In order to avoid embarrassing problems, EO system designers must be aware of the nature of ground- based data. In this paper we describe some of our insights on this subject in the hope that the designers of other systems may learn from our experience.

  16. Evaluation of the consistency of OMI-TOMS total ozone with collocated ground-based measurements

    NASA Astrophysics Data System (ADS)

    Ma, Mingliang; Shi, Runhe; Bai, Kaixu; Liu, Chaoshun; Gao, Wei; Sun, Zhibin

    2016-09-01

    As Ozone Monitoring Instrument (OMI) onboard the Aura satellite has provided global scale ozone measurements on a daily basis since 2004, the long-term stability and consistency of ozone retrievals is thus of critical importance, especially for the ozone recovery assessment. This study aims to evaluate the long-term stability of total ozone derived from the OMI Total Ozone Mapping Spectrometer (OMI-TOMS) algorithm, by comparing with collocated ground-based total ozone measurements recorded from 42Dobson spectrophotometers during the period 2004-2015. It is indicative that the OMI-TOMS total ozone is in good agreement with collocated ground-based measurements, with a R2 of 0.96 and root mean square error (RMSE) of 3.3%. Further investigations show that the OMI-TOMS total ozone is of quality, as no significant latitude dependence is observed. In the past 12 years, the OMI-TOMS total ozone is highly consistent with the ground-based Dobson total ozone, with a variation of mean relative difference less than 1%. In general, the OMI-TOMS total ozone performs well and can be used with confidence.

  17. Ground-based Imager and Magnetometer Network for Auroral STudies (GIMNAST)

    NASA Astrophysics Data System (ADS)

    Frey, H. U.; Mende, S. B.

    2012-12-01

    A large network of all-sky cameras and ground based magnetometers has been installed in Canada, Alaska, and Greenland as part of the NASA Midex Time History of Events and Macroscale Interactions during Substorms (THEMIS) mission. In connection with plasma measurements in the deep magnetotail that system has been extremely valuable for the determination of auroral effects prior to substorm onset. Now that two of the THEMIS spacecraft became ARTEMIS in their orbits around the moon and the orbits of the remaining near-Earth three THEMIS satellites have drifted away from their conjunctions over North America during northern winter, the ground-based system has become less valuable for the space mission. However, the National Science Foundation agreed to support the continued operation of the Alaska and Greenland sites under the new name Ground-based Imager and Magnetometer Network for Auroral STudies (GIMNAST). The sites are now extremely valuable in support of radar measurements by the Advanced Modular Incoherent Scatter Radar (AMISR) in Poker Flat (PFISR), rocket launches out of Poker Flat, and the global ionospheric monitoring by the Super Dual Auroral radar Network (SuperDARN). We will present results of recent collaborations between GIMNAST and external users.

  18. Limitation of Ground-based Estimates of Solar Irradiance Due to Atmospheric Variations

    NASA Technical Reports Server (NTRS)

    Wen, Guoyong; Cahalan, Robert F.; Holben, Brent N.

    2003-01-01

    The uncertainty in ground-based estimates of solar irradiance is quantitatively related to the temporal variability of the atmosphere's optical thickness. The upper and lower bounds of the accuracy of estimates using the Langley Plot technique are proportional to the standard deviation of aerosol optical thickness (approx. +/- 13 sigma(delta tau)). The estimates of spectral solar irradiance (SSI) in two Cimel sun photometer channels from the Mauna Loa site of AERONET are compared with satellite observations from SOLSTICE (Solar Stellar Irradiance Comparison Experiment) on UARS (Upper Atmospheric Research Satellite) for almost two years of data. The true solar variations related to the 27-day solar rotation cycle observed from SOLSTICE are about 0.15% at the two sun photometer channels. The variability in ground-based estimates is statistically one order of magnitude larger. Even though about 30% of these estimates from all Level 2.0 Cimel data fall within the 0.4 to approx. 0.5% variation level, ground-based estimates are not able to capture the 27-day solar variation observed from SOLSTICE.

  19. Aerosol characterization and transport pathway using ground-based measurement and space borne remote sensing

    NASA Astrophysics Data System (ADS)

    Boyouk, Neda; Léon, Jean-François; Delbarre, Hervé

    2008-10-01

    Using two years measurements of aerosol extinction coefficient retrieval from CALIPSO as a joint NASA-CNES satellite mission along with ground-based measurements of particle mass concentration (PM2.5), we assess particulate matter air quality over different urban and periurban areas in France. In order to understanding the influence of the long range transport onto the local aerosol load we have focused on analysing of pollution event in Lille - urban area and Dunkerque - industrial area. We compared ground- based measurements with CALIPSO measurements. The CALIPSO level 2 aerosol records are more useful because the extinction coefficient is available. We use the extinction coefficient profiles which are provided by CALIPSO to depict the vertical structure of the aerosol properties. The combination of ground- based measurements of PM2.5, aerosol optical thickness (AOT's) obtained by Aeronet network data and CALIOP data enhances the possibilities of studying transport pathway of aerosol in the atmosphere and aerosol optical properties (aerosol extinction coefficient, aerosol optical depth, atmosphere transparency). The linear relationship between AOT _CALIPSO and AOT _ Aeronet network shows a slop of 0.4 in north of France. Moreover, we observed the good relationship between PM2.5 and AOT by CALIPSO profiles with a slope of 57.59 and correlation coefficient of 0.75 over France.

  20. Ground-based FTIR measurements of NH3 total columns and comparison with IASI data

    NASA Astrophysics Data System (ADS)

    Vigouroux, Corinne; De Mazière, Martine; Desmet, Filip; Hermans, Christian; Langerock, Bavo; Scolas, Francis; Van Damme, Martin; Clarisse, Lieven; Coheur, Pierre-François

    2013-04-01

    Atmospheric ammonia (NH3) dominates global emissions of total reactive nitrogen. It has an impact on human health, as a precursor of fine particulate matter, and on Earth's ecosystems, via deposition. The main source of global NH3 emissions is agriculture, the remaining ones being the oceans, natural vegetation, humans, wild animals and biomass burning. The global atmospheric budget of NH3 is still very uncertain in chemical models, highlighting the critical need for satellite and ground-based observations. We present, for the first time, time-series (2009 - 2011) of NH3 total columns obtained from ground-based FTIR measurements. These observations are performed at Reunion Island (21°S, 55°E), one of the two subtropical stations, in Southern Hemisphere, of the ground-based Network for the Detection of Atmospheric Composition Change (NDACC) equipped with FTIR instruments. The seasonal and inter-annual variabilities of ammonia observed at Reunion Island from the ground are compared to the ones derived from recent IASI data obtained with a new retrieval method based on the calculation of a Hyperspectral Range Index.

  1. Estimating evapotranspiration and drought stress with ground-based thermal remote sensing in agriculture: a review.

    PubMed

    Maes, W H; Steppe, K

    2012-08-01

    As evaporation of water is an energy-demanding process, increasing evapotranspiration rates decrease the surface temperature (Ts) of leaves and plants. Based on this principle, ground-based thermal remote sensing has become one of the most important methods for estimating evapotranspiration and drought stress and for irrigation. This paper reviews its application in agriculture. The review consists of four parts. First, the basics of thermal remote sensing are briefly reviewed. Second, the theoretical relation between Ts and the sensible and latent heat flux is elaborated. A modelling approach was used to evaluate the effect of weather conditions and leaf or vegetation properties on leaf and canopy temperature. Ts increases with increasing air temperature and incoming radiation and with decreasing wind speed and relative humidity. At the leaf level, the leaf angle and leaf dimension have a large influence on Ts; at the vegetation level, Ts is strongly impacted by the roughness length; hence, by canopy height and structure. In the third part, an overview of the different ground-based thermal remote sensing techniques and approaches used to estimate drought stress or evapotranspiration in agriculture is provided. Among other methods, stress time, stress degree day, crop water stress index (CWSI), and stomatal conductance index are discussed. The theoretical models are used to evaluate the performance and sensitivity of the most important methods, corroborating the literature data. In the fourth and final part, a critical view on the future and remaining challenges of ground-based thermal remote sensing is presented.

  2. Comparison of Thermal Structure Results from Venus Express and Ground Based Observations since Vira

    NASA Astrophysics Data System (ADS)

    Limaye, Sanjay

    2016-07-01

    An international team was formed in 2013 through the International Space Studies Institute (Bern, Switzerland) to compare recent results of the Venus atmospheric thermal structure from spacecraft and ground based observations made since the Venus International Reference Atmosphere (VIRA) was developed (Kliore et al., 1985, Keating et al., 1985). Five experiments on European Space Agency's Venus Express orbiter mission have yielded results on the atmospheric structure during is operational life (April 2006 - November 2014). Three of these were from occultation methods: at near infrared wavelengths from solar occultations, (SOIR, 70 - 170 km), at ultraviolet wavelengths from stellar occultations (SPICAV, 90-140 km), and occultation of the VEx-Earth radio signal (VeRa, 40-90 km). In-situ drag measurements from three different techniques (accelerometry, torque, and radio tracking, 130 - 200 km) were also obtained using the spacecraft itself while passive infrared remote sensing was used by the VIRTIS experiment (70 - 120 km). The only new data in the -40-70 km altitude range are from radio occultation, as no new profiles of the deep atmosphere have been obtained since the VeGa 2 lander measurements in 1985 (not included in VIRA). Some selected ground based results available to the team were also considered by team in the inter comparisons. The temperature structure in the lower thermosphere from disk resolved ground based observations (except for one ground based investigation), is generally consistent with the Venus Express results. These experiments sampled at different periods, at different locations and at different local times and have different vertical and horizontal resolution and coverage. The data were therefore binned in latitude and local time bins and compared, ignoring temporal variations over the life time of the Venus Express mission and assumed north-south symmetry. Alternating warm and cooler layers are present in the 120-160 altitude range in results

  3. Comparative analyses of the ultraviolet-B flux over the continental United State based on the NASA total ozone mapping spectrometer data and USDA ground-based measurements

    NASA Astrophysics Data System (ADS)

    Gao, Zhiqiang; Gao, Wei; Chang, Ni-Bin

    2010-10-01

    In recent years, the risk of health effects caused by the increased exposure to Ultraviolet-B (UVB) due to stratospheric ozone depletion has received wide attention. In the US, there are two ways to accurately measure the UVB. They include: 1) the National Aeronautical and Space Administration (NASA) Nimbus-7 total ozone mapping spectrometer (TOMS), and 2) the United State Department of Agriculture (USDA) ground-based network. This paper compares these two sensors' data for the ultraviolet index (UVI) nationally and regionally to support possible public health, agricultural, and ecological analyses in the future. The major findings of our study are: 1) although there are discrepancies between these two data sets, the temporal correlation coefficients can be as high as 98%. 2) Both types of data sources depict the macroscopic spatial pattern of the UVI across the continental US.indicating a strong spatial correlation; 3) The two data sources are generally consistent though the UVI of the NASA TOMS data are often about 0.13-1.05 units larger than those of the USDA ground-based measurements; and 4) Varying differences can be seen between the Midwest and two coastal regions. While the level of the UVI on the west coast has shown a decreasing trend in the past few years, its counterpart on the east coast showed an opposite trend in between 2000 and 2005. It is hard to conclude that the changes are due to variations of total ozone concentrations in this study period. The USDA ground-based measurements may be better applied for time series analysis for public health, ecological, and agricultural applications due to their ability to provide intensive calibrated point measurements.

  4. Kepler and Ground-Based Transits of the exo-Neptune HAT-P-11b

    NASA Technical Reports Server (NTRS)

    Deming, Drake; Sada, Pedro V.; Jackson, Brian; Peterson, Steven W.; Agol, Eric; Knutson, Heather A.; Jennings, Donald E.; Haase, Plynn; Bays, Kevin

    2011-01-01

    We analyze 26 archival Kepler transits of the exo-Neptune HAT-P-11b, supplemented by ground-based transits observed in the blue (B band) and near-IR (J band). Both the planet and host star are smaller than previously believed; our analysis yields Rp = 4.31 R xor 0.06 R xor and Rs = 0.683 R solar mass 0.009 R solar mass, both about 3 sigma smaller than the discovery values. Our ground-based transit data at wavelengths bracketing the Kepler bandpass serve to check the wavelength dependence of stellar limb darkening, and the J-band transit provides a precise and independent constraint on the transit duration. Both the limb darkening and transit duration from our ground-based data are consistent with the new Kepler values for the system parameters. Our smaller radius for the planet implies that its gaseous envelope can be less extensive than previously believed, being very similar to the H-He envelope of GJ 436b and Kepler-4b. HAT-P-11 is an active star, and signatures of star spot crossings are ubiquitous in the Kepler transit data. We develop and apply a methodology to correct the planetary radius for the presence of both crossed and uncrossed star spots. Star spot crossings are concentrated at phases 0.002 and +0.006. This is consistent with inferences from Rossiter-McLaughlin measurements that the planet transits nearly perpendicular to the stellar equator. We identify the dominant phases of star spot crossings with active latitudes on the star, and infer that the stellar rotational pole is inclined at about 12 deg 5 deg to the plane of the sky. We point out that precise transit measurements over long durations could in principle allow us to construct a stellar Butterfly diagram to probe the cyclic evolution of magnetic activity on this active K-dwarf star.

  5. Wavelength dependence of star images formed by large ground-based telescopes including ELTs

    NASA Astrophysics Data System (ADS)

    McKechnie, T. Stewart

    2016-08-01

    Star image appearance in large ground-based telescopes is determined by the properties of the Optical Path Difference (OPD) fluctuation associated with the image-forming wave potions collected by the telescope aperture. The principal properties are the root mean square (rms) OPD fluctuation and the autocorrelation function of the OPD fluctuation. The OPD properties ultimately depend on the combined effects of turbulence in the atmospheric path, the fixed aberrations of the telescope and, if appropriate, the corrective effects of Adaptive Optics (AO). The equations given in this paper relating star image properties to the OPD properties (and also the inverse relations) apply to all large ground-based reflector telescopes, including ELTs. They apply equally to telescopes with and without AO. The OPD properties can be obtained directly from an image of an unresolved star. This image represents the intensity Point Spread Function (PSF) corresponding to the entire end-to-end imaging path. To obtain the full OPD information compliment, however, the image must be formed at a wavelength that delivers the most general type of star image: a core and halo image. Once the OPD properties have been obtained from such an image, the intensity PSF for the telescope/atmosphere/AO combination can immediately be calculated for any other wavelengths of interest in the extended optical wavelength range, 0.3 μm - 1000 μm. There are numerous applications for the mathematical relationships set out in this paper, including characterization of atmospheric paths, assessment of telescope/AO imaging performance, establishing wave front tolerances for ELTs and other large ground-based telescopes, and the rapid identification of sweetspot wavelength regions where highest resolution is achieved and star images attain maximum central intensity.

  6. Estimation of Antarctic ozone loss from Ground-based total column measurements

    NASA Astrophysics Data System (ADS)

    Kuttippurath, J.; Goutail, F.; Pommereau, J.-P.; Lefèvre, F.; Roscoe, H. K.; Pazmiño, A.; Feng, W.; Chipperfield, M. P.

    2010-03-01

    The passive ozone method is used to estimate ozone loss from ground-based measurements in the Antarctic. A sensitivity study shows that the O3 loss can be estimated within an accuracy of ~4%. The method is then applied to the observations from Amundsen-Scott/South Pole, Arrival Heights, Belgrano, Concordia, Dumont d'Urville, Faraday, Halley, Marambio, Neumayer, Rothera, Syowa and Zhongshan for the diagnosis of ozone loss in the Antarctic. On average, the five-day running mean of the vortex averaged ozone column loss deduced from the ground-based stations shows about 53% in 2009, 59% in 2008, 55% in 2007, 56% in 2006 and 61% in 2005. The observed O3 loss and loss rates are in very good agreement with the satellite observations (Ozone Monitoring Instrument and Sciamachy) and are well reproduced by the model (Reprobus and SLIMCAT) calculations. The historical ground-based total ozone measurements show that the depletion started in the late 1970s, reached a maximum in the early 1990s, stabilising afterwards at this level until present, with the exception of 2002, the year of an early vortex break-up. There is no indication of significant recovery yet. At southern mid-latitudes, a total ozone reduction of 40-50% is observed at the newly installed station Rio Gallegos and 25-35% at Kerguelen in October-November of 2008-2009 and 2005-2009 (except 2008) respectively, and of 10-20% at Macquarie Island in July-August of 2006-2009. This illustrates the significance of measurements at the edges of Antarctica.

  7. CO2 vertical profile retrieval from ground-based IR atmospheric spectra

    NASA Astrophysics Data System (ADS)

    Khosravian, Kobra; Loehnert, Ulrich; Turner, David; Ebell, Kerstin

    2016-04-01

    CO2 vertical profile retrieval from ground-based IR atmospheric spectra In this study, we developed an algorithm for retrieving the CO2 vertical profile from atmospheric ground-based zenith spectra in the mid IR. Providing the CO2 profile from continuous (24h/day) ground-based spectra would be a great potential for studying the carbon cycle, the evaluation of satellite measurements or the assessment of numerical models, which forecast the near-surface CO2 flux. In order to retrieve the CO2 profile, we used observations of the Atmospheric Emitted Radiance Interferometer (AERI) that was installed at the JOYCE (Jülich ObservatorY for Cloud Evolution), Germany in 2012. AERI measures downwelling infrared radiances from 520 cm-1 (3.3 μm) to 3020 cm-1 (19 μm) with a spectral resolution of 1 cm-1 and a temporal resolution of 1 minute. In a first step, we performed sensitivity studies for finding the most-suited spectral bands with highest sensitivity to the mean column amount of CO2 volume mixing ratio (VMR). Then an algorithm, known as AERIoe (Turner and Löhnert 2014), was applied to retrieve the mean column amount of CO2 VMR using simulated radiances in clear sky cases. AERIoe is a variational retrieval algorithm to provide information on Temperature, humidity, trace gases and clouds. The simulated AERI radiances were generated by a line by line radiative transfer model (LBLRTM) using model temperature, humidity and CO2 profile. The retrieval results of mean column amount of CO2 VMR are in good agreement with the true ones. In addition to the mean column amount, we modified AERIoe to retrieve the CO2 vertical profile. First results reveal that there is more than 1 degree of freedom for CO2 profile. We will show results how the retrieval method is refined to optimally exploit the information on the CO2 profile contained in the AERI measurements.

  8. Coupled Simulations, Ground-Based Experiments and Flight Experiments for Astrodynamics Research

    NASA Astrophysics Data System (ADS)

    Boyce, R.; Brown, M.; Lorrain, P.; Capon, C.; Lambert, A.; Benson, C.; Tuttle, S.; Griffin, D.

    Near-Earth satellites undergo complex and poorly understood interactions with their environment, leading to large uncertainties in predicting orbits and an associated risk of collision with other satellites and with space debris. The nature, evolution and behaviour of the growing cloud of space debris in that environment is even less well understood. Significant effort and expenditure is currently being made by governments in Australia, UK, USA, Europe and elsewhere in space surveillance and tracking, in order to mitigate the risk. However, a major gap exists with respect to the science of in-orbit behaviour. Research is underway in Australia to enable the prediction of the orbits of near-Earth space objects with order(s) of magnitude greater fidelity than currently possible. This is being achieved by coupling together the necessary parts of the puzzle - the physics of rarefied space object “aerodynamics” and the space physics and space weather that affects it - and employing our capabilities in ground-based and in-orbit experiments, ground-based observations and high performance computing to do so. As part of the effort, UNSW Canberra is investing $10M to develop a sustainable university-led program to develop and fly affordable in-orbit missions for space research. In the coming 6 years, we will fly a minimum of four cubesat missions, some in partnership with DSTO, which will include flight experiments for validating Space Situational Awareness astrodynamics simulation and observation capabilities. The flights are underpinned by ground-based experimental research employing space test chambers, advanced diagnostics, and supercomputer simulations that couple DSMC and Particle-in-Cell methods for modelling space object interactions with the ionosphere. This paper will describe the research both underway and planned, with particular emphasis on the coupled numerical/experimental/flight approach.

  9. Ground-based microwave measuring of middle atmosphere ozone and temperature profiles during sudden stratospheric warming

    NASA Astrophysics Data System (ADS)

    Feigin, A. M.; Shvetsov, A. A.; Krasilnikov, A. A.; Kulikov, M. Y.; Karashtin, D. A.; Mukhin, D.; Bolshakov, O. S.; Fedoseev, L. I.; Ryskin, V. G.; Belikovich, M. V.; Kukin, L. M.

    2012-12-01

    We carried out the experimental campaign aimed to study the response of middle atmosphere on a sudden stratospheric warming in winter 2011-2012 above Nizhny Novgorod, Russia (56N, 44E). We employed the ground-based microwave complex for remote sensing of middle atmosphere developed in the Institute of Applied Physics of the Russian Academy of Science. The complex combines two room-temperature radiometers, i.e. microwave ozonometer and the stratospheric thermometer. Ozonometer is a heterodyne spectroradiometer, operating in a range of frequencies that include the rotation transition of ozone molecules with resonance frequency 110.8 GHz. Operating frequency range of the stratospheric thermometer is 52.5-5.4 GHz and includes lower frequency edge of 5 mm molecular oxygen absorption bands and among them two relatively weak lines of O2 emission. Digital fast Fourier transform spectrometers developed by "Acqiris" are employed for signal spectral analysis. The spectrometers have frequency range 0.05-1 GHz and realizes the effective resolution about 61 KHz. For retrieval vertical profiles of ozone and temperature from radiometric data we applied novel method based on Bayesian approach to inverse problem solution, which assumed a construction of probability distribution of the characteristics of retrieved profiles with taking into account measurement noise and available a priori information about possible distributions of ozone and temperature in the middle atmosphere. Here we introduce the results of the campaign in comparison with Aura MLS data. Presented data includes one sudden stratospheric warming event which took place in January 13-14 and was accompanied by temperature increasing up to 310 K at 45 km height. During measurement period, ozone and temperature variations were (almost) anti-correlated, and total ozone abundance achieved a local maxima during the stratosphere cooling phase. In general, results of ground-based measurements are in good agreement with

  10. Structure and evolution of Pluto's Atmosphere from ground-based stellar occultations between 2002 and 2015

    NASA Astrophysics Data System (ADS)

    Meza, Erick; Sicardy, Bruno; Rio de Janeiro occultation Team, Granada occultation Team, International Occultation and Timing Association

    2016-10-01

    Ground-Based stellar occultations probe Pluto's atmosphere from about 3 km altitude (~ 10 μbar pressure level) up to 260 km altitude (~0.1 μbar). Our main goal is to derive Pluto's atmosphere evolution using thirteen ground-based occultations observed between 2002 and 2015 (plus 2016, if available). We consistently analyze the light curves using the Dias et al. (ApJ 811, 53, 2015) model, and confirm the general pressure increase by a factor of about 1.5 between 2002 and 2015 and a factor of almost three between 1988 and 2015. Implications for Pluto's seasonal evolution will be briefly discussed in the context of the New Horizons (NH) findings.Ground-based-derived temperature profiles will be compared with NH's results, where we use new temperature boundary conditions in our inversion procedures, as given by NH near 260 km altitude. Although the profiles reasonably agree, significant discrepancies are observed both in the deeper stratospheric zone (altitude < 30 km), and the mesospheric zone (altitudes between 30 and 260 km). Possible biases will be discussed.Additionally, we use a central flash event observed in New Zealand on June 29, 2015 (close to the NH flyby) to provide an upper limit of Pluto's atmospheric oblateness near 4 km altitude. We will also explore the possibility that small deviations in the observed flash (compared to the model) are caused by the local topographic features revealed by NH.Finally, possible correlations between spike activity in the occultation light-curves and local underlying presence of free nitrogen ice terrains will be investigated.Part of the research leading to these results has received funding from the European Research Council under the European Community's H2020 (2014-2020/ ERC Grant Agreement n 669416 "LUCKY STAR").

  11. GROMOS-C, a novel ground-based microwave radiometer for ozone measurement campaigns

    NASA Astrophysics Data System (ADS)

    Fernandez, S.; Murk, A.; Kämpfer, N.

    2015-07-01

    Stratospheric ozone is of major interest as it absorbs most harmful UV radiation from the sun, allowing life on Earth. Ground-based microwave remote sensing is the only method that allows for the measurement of ozone profiles up to the mesopause, over 24 hours and under different weather conditions with high time resolution. In this paper a novel ground-based microwave radiometer is presented. It is called GROMOS-C (GRound based Ozone MOnitoring System for Campaigns), and it has been designed to measure the vertical profile of ozone distribution in the middle atmosphere by observing ozone emission spectra at a frequency of 110.836 GHz. The instrument is designed in a compact way which makes it transportable and suitable for outdoor use in campaigns, an advantageous feature that is lacking in present day ozone radiometers. It is operated through remote control. GROMOS-C is a total power radiometer which uses a pre-amplified heterodyne receiver, and a digital fast Fourier transform spectrometer for the spectral analysis. Among its main new features, the incorporation of different calibration loads stands out; this includes a noise diode and a new type of blackbody target specifically designed for this instrument, based on Peltier elements. The calibration scheme does not depend on the use of liquid nitrogen; therefore GROMOS-C can be operated at remote places with no maintenance requirements. In addition, the instrument can be switched in frequency to observe the CO line at 115 GHz. A description of the main characteristics of GROMOS-C is included in this paper, as well as the results of a first campaign at the High Altitude Research Station at Jungfraujoch (HFSJ), Switzerland. The validation is performed by comparison of the retrieved profiles against equivalent profiles from MLS (Microwave Limb Sounding) satellite data, ECMWF (European Centre for Medium-Range Weather Forecast) model data, as well as our nearby NDACC (Network for the Detection of Atmospheric

  12. Ground-based microwave complex for remote sounding of middle atmosphere thermal structure and ozone concentration

    NASA Astrophysics Data System (ADS)

    Shvetsov, Alexander; Kulikov, Mikhail; Feigin, Alexander; Karashtin, Dmitry; Krasilnikov, Alexander; Mukhin, Dmitry; Bolshakov, Oleg; Fedoseev, Lev; Ryskin, Vitaly; Belikovich, Michael; Kukin, Lev

    2012-07-01

    Existing methods of remote sensing of the thermal structure of the atmosphere and the ozone layer are based on measurements from space. However, having great advantage in global coverage of the Earth they cannot provide high spatial and temporal resolution, required to study rapidly occurring phenomena. This problem can be solving by ground-based system of remote sounding. For this purpose ground-based microwave complex for remote sensing of middle atmosphere thermal structure and ozone concentration have been developed in the Institute of Applied Physics of the Russian Academy of Sciences. The complex consists of the microwave ozonometer and the stratospheric thermometer. Ozonometer is a heterodyne spectroradiometer, operating in the frequency range that include the rotation transition of ozone molecules 6 _{1.5}-6 _{0.6} with resonance frequency 110.836 GHz. Operating frequency range of the stratospheric thermometer is 52.5-54.5 GHz and includes low frequency edge of 5 mm molecular oxygen absorption bands and some relatively weak lines of O _{2} resolved from the ground. Digital fast Fourier transform spectrometer developed by ``Acqiris'' company is employed for signal spectral analysis on intermediate frequency in both spectroradiometers. The spectrometer has frequency range 0.05-1 GHz and realizes the effective resolution about 61~KHz. Retrieval of the atmospheric temperature and ozone profiles is made on the basis of results of the radiation spectrum measurements. The Bayesian approach method is used for combined retrieval of stratosphere temperature and ozone profiles. This method allows statistically correct inclusion of both the measurement noise and the a priori information on the reconstructed profile needed for regularization of the problem. First simultaneous ground-based measurements of self-radiation of atmospheric ozone and oxygen have been made in January, 2012 during the sudden stratospheric warming above Nizhny Novgorod, Russia. Temperature and

  13. Estimating forest LAI profiles and structural parameters using a ground-based laser called 'Echidna'.

    PubMed

    Jupp, David L B; Culvenor, D S; Lovell, J L; Newnham, G J; Strahler, A H; Woodcock, C E

    2009-02-01

    There are many techniques for measuring leaf area index (LAI) and forest canopy foliage profiles but their accuracy is questionable. This paper briefly reviews current methods of estimating forest LAI and presents a novel, ground-based laser system, Echidna that can make a wide range of measurements of forest structure, including LAI. Here, use of the system to provide field data and derived gap probabilities in the form of a 'hemispherical photograph with range' is demonstrated. The results show consistency and reproducibility and do not depend on special conditions for the natural light field.

  14. Protocol for Atomic Oxygen Testing of Materials in Ground-Based Facilities. No. 2

    NASA Technical Reports Server (NTRS)

    Minton, Timothy K.

    1995-01-01

    A second version of standard guidelines is proposed for improving materials testing in ground-based atomic oxygen environments for the purpose of predicting the durability of the tested materials in low Earth orbit (LEO). Accompanying these guidelines are background information and notes about testing. Both the guidelines and the additional information are intended to aid users who wish to evaluate the potential hazard of atomic oxygen in LEO to a candidate space component without actually flying the component in space, and to provide a framework for more consistent atomic oxygen testing in the future.

  15. Numerical modeling of polarization properties of the return signals in ground-based LIDAR cloud sensing

    NASA Astrophysics Data System (ADS)

    Kablukova, E. G.; Kargin, B. A.; Lisenko, A. A.

    2015-10-01

    The paper presents results of numerical statistical simulations of experiments of ground-based sensing of cloud layers by terahertz linearly polarized radiation for certain wavelengths from the atmospheric transparency windows. Summarized results of many years' field measurements of liquid droplet size distributions in temperate latitudes of the Earth and the distributions obtained by aircraft experiments off Great Britain's coast are used in the scattering layer models. The models of the scattering medium take into account the vertical stratification of water vapor concentration in the atmosphere and the differences in cloud layer microstructure at the top and the base.

  16. Triton's surface properties - A preliminary analysis from ground-based, Voyager photopolarimeter subsystem, and laboratory measurements

    NASA Technical Reports Server (NTRS)

    Buratti, B. J.; Lane, A. L.; Gibson, J.; Burrows, H.; Nelson, R. M.; Bliss, D.; Smythe, W.; Garkanian, V.; Wallis, B.

    1991-01-01

    The surface properties of Triton were investigated using data from the ground-based and Voyager photopolarimeter subsystem (PPS) observations of Triton's phase curve. The results indicate that Triton has a high single-scattering albedo (0.96 +/-0.01 at 0.75 micron) and an unusually compacted surface, possibly similar to that of Europa. Results also suggest that Triton's single-particle phase function and the macroscopically rough character of its surface are similar to those of most other icy satellites.

  17. Exo-zodi detection capability of the Ground-Based European Nulling Interferometry Experiment (GENIE) instrument.

    PubMed

    Wallner, Oswald; Flatscher, Reinhold; Ergenzinger, Klaus

    2006-06-20

    The Ground-Based European Nulling Interferometry Experiment (GENIE) is intended as an Earth-based precursor for the European Darwin mission that will prepare the Darwin science program and demonstrate the required technology at system level. We propose a compact nulling interferometer design consisting of a two-telescope aperture configuration, an optional split-pupil add-on, and only four active control loops for counteracting environmentally induced disturbances. We show by simulation that the proposed instrument is able to detect, within a few minutes of observation time, exo-zodiacal dust clouds around Sunlike stars at 20 parsecs that are 20 times stronger than the local zodiacal dust cloud density.

  18. Retrieval of Atmospheric CO2 Column from Ground-based Near IR Spectra of the Sun

    NASA Technical Reports Server (NTRS)

    Wennberg, Paul

    2005-01-01

    This grant has supported a graduate research assistant stipend for Zhonghua Yang, a geochemistry Ph.D. student at Caltech. In this project, we have significantly improved the retrieval of atmospheric column CO2 (and molecular oxygen) from ground-based, high resolution near-IR solar transmission spectra. This work has greatly benefited from interactions with Dr. Geoffrey Toon and Stan Sander of NASA's Jet Propulsion Laboratory and with James T. Randerson, University of California - Irvine. The results from this study are summarized in three publications, reprints of which are enclosed in with this report.

  19. First comparison of simultaneous IRIS, BUV, and ground-based measurements of total ozone

    NASA Technical Reports Server (NTRS)

    Prior, E. J.; Oza, B. J.

    1978-01-01

    In the present paper, the zonally-averaged global distribution of total ozone obtained simultaneously from different measurements are compared with respect to differences in the measured latitudinal and seasonal variations of total ozone. Emphasis is placed on systematic discrepancies that appear to be related to differences in the sensing methodologies or instruments. While the zonal averages of the IRIS and BUV satellite techniques agree quite well at low latitudes, the results are consistently higher for IRIS than for BUV above mid-latitudes in both the Northern and Southern Hemispheres. The BUV and ground-based ultraviolet averages agree better with each other than with infrared IRIS measurements.

  20. Methane Emissions from Bangladesh: Bridging the Gap Between Ground-based and Space-borne Estimates

    NASA Astrophysics Data System (ADS)

    Peters, C.; Bennartz, R.; Hornberger, G. M.

    2015-12-01

    Gaining an understanding of methane (CH4) emission sources and atmospheric dispersion is an essential part of climate change research. Large-scale and global studies often rely on satellite observations of column CH4 mixing ratio whereas high-spatial resolution estimates rely on ground-based measurements. Extrapolation of ground-based measurements on, for example, rice paddies to broad region scales is highly uncertain because of spatio-temporal variability. We explore the use of ground-based river stage measurements and independent satellite observations of flooded area along with satellite measurements of CH4 mixing ratio to estimate the extent of methane emissions. Bangladesh, which comprises most of the Ganges Brahmaputra Meghna (GBM) delta, is a region of particular interest for studying spatio-temporal variation of methane emissions due to (1) broadscale rice cultivation and (2) seasonal flooding and atmospheric convection during the monsoon. Bangladesh and its deltaic landscape exhibit a broad range of environmental, economic, and social circumstances that are relevant to many nations in South and Southeast Asia. We explore the seasonal enhancement of CH4 in Bangladesh using passive remote sensing spectrometer CH4 products from the SCanning Imaging Absorption SpectroMeter for Atmospheric CHartographY (SCIAMACHY) and the Atmospheric Infrared Sounder (AIRS). The seasonal variation of CH4 is compared to independent estimates of seasonal flooding from water gauge stations and space-based passive microwave water-to-land fractions from the Tropical Rainfall Measuring Mission Microwave Imager (TRMM-TMI). Annual cycles in inundation (natural and anthropogenic) and atmospheric CH4 concentrations show highly correlated seasonal signals. NOAA's HYSPLIT model is used to determine atmospheric residence time of ground CH4 fluxes. Using the satellite observations, we can narrow the large uncertainty in extrapolation of ground-based CH4 emission estimates from rice paddies

  1. Liquid Structures and Physical Properties -- Ground Based Studies for ISS Experiments

    NASA Technical Reports Server (NTRS)

    Kelton, K. F.; Bendert, J. C.; Mauro, N. A.

    2012-01-01

    Studies of electrostatically-levitated supercooled liquids have demonstrated strong short- and medium-range ordering in transition metal and alloy liquids, which can influence phase transitions like crystal nucleation and the glass transition. The structure is also related to the liquid properties. Planned ISS experiments will allow a deeper investigation of these results as well as the first investigations of a new type of coupling in crystal nucleation in primary crystallizing liquids, resulting from a linking of the stochastic processes of diffusion with interfacial-attachment. A brief description of the techniques used for ground-based studies and some results relevant to planned ISS investigations are discussed.

  2. Plant diversity to support humans in a CELSS ground based demonstrator

    NASA Technical Reports Server (NTRS)

    Howe, J. M.; Hoff, J. E.

    1981-01-01

    A controlled ecological life support system (CELSS) for human habitation in preparation for future long duration space flights is considered. The success of such a system depends upon the feasibility of revitalization of food resources and the human nutritional needs which are to be met by these food resources. Edible higher plants are prime candidates for the photoautotrophic components of this system if nutritionally adequate diets can be derived from these plant sources to support humans. Human nutritional requirements information based on current knowledge are developed for inhabitants envisioned in the CELSS ground based demonstrator. Groups of plant products that can provide the nutrients are identified.

  3. Improved ground-based FTS measurement for column abundance CO2 retrievals(Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Goo, Tae-Young

    2016-10-01

    The National Institute of Meteorological Sciences has operated a ground-based Fourier Transform Spectrometer (FTS) at Anmyeondo, Korea since December 2012. Anmyeondo FTS site is a designated operational station of Total Carbon Column Observing Network (TCCON) and belongs to regional Global Atmosphere Watch observatory. A Bruker IFS-125HR model, which has a significantly high spectral resolution by 0.02 cm-1, is employed and instrument specification is almost same as the TCCON configuration. such as a spectrum range of 3,800 16,000 cm-1, a resolution of 1 cm-1, InGaAs and Si-Diode detectors and CaF2 beam splitter. It is found that measured spectra have a good agreement with simulated spectra. In order to improve the spectral accuracy and stability, The Operational Automatic System for Intensity of Sunray (OASIS) has been developed. The OASIS can provide consistent photon energy optimized to detector range by controlling the diameter of solar beam reflected from the mirror of suntracker. As a result, monthly modulation efficiency (ME), which indicates the spectral accuracy of FTS measurement, has been recorded the vicinity of 99.9% since Feb 2015. The ME of 98% is regarded as the error of 0.1% in the ground-based in-situ CO2 measurement. Total column abundances of CO2 and CH4 during 2015 are estimated by using GGG v14 and compared with ground-based in-situ CO2 and CH4 measurements at the height of 86 m above sea level. The seasonality of CO2 is well captured by both FTS and in-situ measurements while there is considerable difference on the amplitude of CO2 seasonal variation due to the insensitivity of column CO2 to the surface carbon cycle dynamics in nature as well as anthropogenic sources. Total column CO2 and CH4 approximately vary from 395 ppm to 405 ppm and from 1.82 ppm to 1.88 ppm, respectively. It should be noted that few measurements obtained in July to August because of a lot of cloud and fog. It is found that enhancement of CH4 from the FTS at Anmyeondo

  4. A Program of Ground-Based Astronomy to Complement Einstein Observations.

    DTIC Science & Technology

    1982-11-30

    Astronomy D T I C i CO-,,, Uv I,. WA TOPE: -. Gary A. Cbanan Assistant Professor of Phy.3[cs i t0V.l.., 1982 %30𔃼 0 ii CONTENTS Page A. REPORT DOCUMENTATION...block number) A total of eight ground-based astronomical observing programs were carried out in pursuit of a multiwavelength approach to a number of...astro- physical problems. Synthesis of these results with existing X-ray data led to considerable progress on problems of the emission mechanisms and

  5. Solar irradiance from Nimbus-7 compared with ground-based photometry

    NASA Technical Reports Server (NTRS)

    Chapman, G. A.; Cookson, A. M.; Hoyt, D. V.

    1994-01-01

    We have compared total solar irradiance from Nimbus-7 with ground-based photometry from the San Fernando Observatory (SFO) for 109 days between 1 June and 31 December, 1988. We have also included in some analyses NOAA-9 SBUV2 data or F10.7 radio flux. The Nimbus-7 data are from orbital samples, averaged to the mean time of observation at SFO. Using the same parameters as in Chapman et al. (1992), the multiple regression gives an R(exp 2) = 0.9131 and a 'solar minimum' irradiance, S(sub 0) = 1371.76 +/- 0.18 W/sq m for the best fit.

  6. Test and training simulator for ground-based teleoperated in-orbit servicing

    NASA Technical Reports Server (NTRS)

    Schaefer, Bernd E.

    1989-01-01

    For the Post-IOC(In-Orbit Construction)-Phase of COLUMBUS it is intended to use robotic devices for the routine operations of ground-based teleoperated In-Orbit Servicing. A hardware simulator for verification of the relevant in-orbit operations technologies, the Servicing Test Facility, is necessary which mainly will support the Flight Control Center for the Manned Space-Laboratories for operational specific tasks like system simulation, training of teleoperators, parallel operation simultaneously to actual in-orbit activities and for the verification of the ground operations segment for telerobotics. The present status of definition for the facility functional and operational concept is described.

  7. Sensitivity of ground-based Cherenkov telescopes for anisotropics in the cosmic gamma-ray background

    SciTech Connect

    Ripken, Joachim; Horns, Dieter; Elsaesser, Dominik; Mannheim, Karl

    2008-12-24

    Self-annihilating dark matter contributes to the extra galactic very high-energy {gamma}-ray background. This contribution is expected to be anisotropic following the density distribution of non-baryonic dark matter. We explore the possibilities to search for these anisotropies with present and future ground-based gamma-ray experiments like H.E.S.S., MAGIC, or CTA. A multipole-expansion of simulated events is used to investigate the sensitivity for anisotropies detectable with narrow field of view observations.

  8. Hypergravity Facilities in the ESA Ground-Based Facility Program - Current Research Activities and Future Tasks

    NASA Astrophysics Data System (ADS)

    Frett, Timo; Petrat, Guido; W. A. van Loon, Jack J.; Hemmersbach, Ruth; Anken, Ralf

    2016-06-01

    Research on Artificial Gravity (AG) created by linear acceleration or centrifugation has a long history and could significantly contribute to realize long-term human spaceflight in the future. Employing centrifuges plays a prominent role in human physiology and gravitational biology. This article gives a short review about the background of Artificial Gravity with respect to hypergravity (including partial gravity) and provides information about actual ESA ground-based facilities for research on a variety of biosystems such as cells, plants, animals or, particularly, humans.

  9. Morphology classification of galaxies in CL 0939+4713 using a ground-based telescope image

    NASA Technical Reports Server (NTRS)

    Fukugita, M.; Doi, M.; Dressler, A.; Gunn, J. E.

    1995-01-01

    Morphological classification is studied for galaxies in cluster CL 0939+4712 at z = 0.407 using simple photometric parameters obtained from a ground-based telescope image with seeing of 1-2 arcseconds full width at half maximim (FWHM). By ploting the galaxies in a plane of the concentration parameter versus mean surface brightness, we find a good correlation between the location on the plane and galaxy colors, which are known to correlate with morphological types from a recent Hubble Space Telescope (HST) study. Using the present method, we expect a success rate of classification into early and late types of about 70% or possibly more.

  10. Methodology of a combined ground based testing and numerical modelling analysis of supersonic combustion flow paths

    NASA Astrophysics Data System (ADS)

    Hannemann, Klaus; Karl, Sebastian; Martinez Schramm, Jan; Steelant, Johan

    2010-10-01

    In the framework of the European Commission co-funded LAPCAT (Long-Term Advanced Propulsion Concepts and Technologies) project, the methodology of a combined ground-based testing and numerical modelling analysis of supersonic combustion flow paths was established. The approach is based on free jet testing of complete supersonic combustion ramjet (scramjet) configurations consisting of intake, combustor and nozzle in the High Enthalpy Shock Tunnel Göttingen (HEG) of the German Aerospace Center (DLR) and computational fluid dynamics studies utilising the DLR TAU code. The capability of the established methodology is demonstrated by applying it to the flow path of the generic HyShot II scramjet flight experiment configuration.

  11. Nanoradian ground-based astrometry, optical navigation, and artificial reference stars

    NASA Astrophysics Data System (ADS)

    Zhai, Chengxing; Shao, Michael; Biswas, Abhijit; Ely, Todd; Jacobs, Christopher; Lazio, Joseph; Martin-Mur, Tomas; Owen, William; Rud, Mike; Saini, Navtej; Sandhu, Jagmit; Turyshev, Slava; Werne, Thomas

    2016-08-01

    Spacecraft carrying optical communication lasers can be treated as artificial stars, whose relative astrometry to Gaia reference stars provides spacecraft positions in the plane-of-sky for optical navigation. To be comparable to current Deep Space Network delta-Differential One-way Ranging measurements, thus sufficient for navigation, nanoradian optical astrometry is required. Here we describe our error budget, techniques for achieving nanoradian level ground-base astrometry, and preliminary results from a 1 m telescope. We discuss also how these spacecraft may serve as artificial reference stars for adaptive optics, high precision astrometry to detect exoplanets, and tying reference frames defined by radio and optical measurements.

  12. Ground-based and spaceborn observations of the type II burst with developed fine structure

    NASA Astrophysics Data System (ADS)

    Dorovskyy, V.; Melnik, V.; Konovalenko, A.; Brazhenko, A.; Rucker, H.; Stanislavskyy, A.; Panchenko, M.

    2012-09-01

    The combination of two huge ground-based radio telescopes (UTR-2 and URAN-2) operated in decameter wavelengths with three spatially separated spacecrafts (SOHO, STEREO-A and STEREO-B) equipped with white light coronagraphs, UV telescopes and decameter-hectometer band radio telescopes created a unique opportunity to investigate the high energy solar transients, such as CMEs and their manifestations in radio bands - type II bursts. In this paper we made detailed analysis of the powerful and complex event occurred on 7 June 2011 consisted of Halo-CME and type II burst with rich fine structure.

  13. Ground-Based Gas-Liquid Flow Research in Microgravity Conditions: State of Knowledge

    NASA Technical Reports Server (NTRS)

    McQuillen, J.; Colin, C.; Fabre, J.

    1999-01-01

    During the last decade, ground-based microgravity facilities have been utilized in order to obtain predictions for spacecraft system designers and further the fundamental understanding of two-phase flow. Although flow regime, pressure drop and heat transfer coefficient data has been obtained for straight tubes and a limited number of fittings, measurements of the void fraction, film thickness, wall shear stress, local velocity and void information are also required in order to develop general mechanistic models that can be utilized to ascertain the effects of fluid properties, tube geometry and acceleration levels. A review of this research is presented and includes both empirical data and mechanistic models of the flow behavior.

  14. Cloud-Base-Height Estimation from Paired Ground-Based Hemispherical Observations

    SciTech Connect

    Kassianov, Evgueni I.; Long, Charles N.; Christy, Jason E.

    2005-08-01

    The Total Sky Imager (TSI) and Hemispheric Sky Imager (HSI) each have a hemispherical field-of-view (FOV) and many TSIs are now deployed. Currently, these instruments have been used routinely to provide a time series of the fractional sky cover only. In this study, we examine the possible retrieval of cloud base height (CBH) from TSI surface observations. This paper presents a validation analysis of a new retrieval using both a model-output inverse problem and independent, ground-based Micropulse Lidar data. The obtained results suggest that, at least for single layer cloud fields, moderately accurate (within ~0.35 km) CBH retrieval is possible.

  15. How close are ground-based Fabry-Perot thermospheric wind and temperature measurements to exospheric values? A simulation study

    NASA Technical Reports Server (NTRS)

    Mccormac, F. G.; Killeen, T. L.; Nardi, B.; Smith, R. W.

    1987-01-01

    A computer simulation model of the measurement process for a ground-based Fabry-Perot interferometer (FPI) has been developed and used to study how variations of wind and temperature along the instrument line-of-sight affect the Doppler shift and width of the observed nightglow O(1D) emission line at high spectral resolution. Ground-based-derived temperatures in the nighttime sector of the winter hemisphere are found to give values that are representative of the peak O(1D) emission altitude. However, when the vertical temperature gradients are large, the ground-based FPI temperature measurement may differ by as much as about 12 percent from the temperature at the peak emission height. Simulations of the FPI measurement of nighttime thermospheric temperatures show that ground-based-derived temperatures may be lower by about 10 percent than the corresponding exospheric temperatures in the winter hemisphere and by about 15 percent in the summer hemisphere.

  16. A Process Model for Deployment Planning of Ground-based Air Defense System Against Asymmetric Homeland Threat

    DTIC Science & Technology

    2009-01-01

    A Process Model for Deployment Planning of Ground-based Air Defense System Against Asymmetric Homeland Threat Ronald L. Cypert Scientific...units, along with coordination at the state and federal agency level, a dynamic process modeling capability was chosen to chart the myriad...COVERED 00-00-2009 to 00-00-2009 4. TITLE AND SUBTITLE A Process Model for Deployment Planning of Ground-based Air Defense System Against

  17. Comparisons of MgII core-wing data with Ground-Based Ca K-line

    NASA Astrophysics Data System (ADS)

    Chapman, G. A.; Preminger, D.

    2011-12-01

    Magnesium_II core-wing ratio data will be compared with ground-based K-line photometry for most of cycle 22 and 23. The ground-based data is the photmetric sum computed from the composite K-line obtained from the San Fernando Observatory. We will examine several MgII core-wing composites. This work is partially supported by grants NNX11AB51G from NASA and ATM-0848518 from NSF.

  18. Blue Skies through a Blue Sky: an attempt to detect Rayleigh scattering in an exoplanet atmosphere from a ground-based telescope

    NASA Astrophysics Data System (ADS)

    Luchsinger, Kristen; Redfield, Seth; Cauley, Paul W.; Barman, Travis S.; Jensen, Adam G.

    2017-01-01

    When studying planetary atmospheres, scattering signatures, such as Rayleigh scattering, can often be the most easily characterized signal. This is especially true in terrestrial atmospheres, where Rayleigh scattering is the dominant spectral feature in optical wavelengths. These scattering signatures, unlike molecular or atomic line absorption, are broad and continuous, and are char- acterized by a single slope. Rayleigh scattering provides an imporant glimpse into the atmospheric composition of an exoplanet's atmosphere, and a Rayleigh scattering detection on a smaller, ground-based telescope can be a useful method to identify interesting science targets for larger, space-based telescopes.We will present observations of three exoplanets using the HYDRA multi- object spectrometer on the WIYN telescope at Kitt Peak National Observatory. We obtained two transits each for WASP 12b and GJ 3470b, and one transit for HD 189733b, for a range of wavelengths between 4500 Å and 9201 Å. A successful Rayleigh scattering detection in the atmospheres of these planets using this in- strument would represent a step forward in our current detection capabilities and open up the study of planetary atmospheres to smaller, ground-based telescopes.Data presented herein were obtained at the WIYN Observatory from telescope time allocated to NN-EXPLORE through the scientific partnership of the National Aeronautics and Space Administration, the National Science Foundation, and the National Optical Astronomy Observatory. This work was supported by a NASA WIYN PI Data Award, administered by the NASA Exoplanet Science Institute.

  19. Toward understanding of differences in current cloud retrievals of ARM ground-based measurements

    SciTech Connect

    Zhao C.; Dunn M.; Xie, S.; Klein, S. A.; Protat, A.; Shupe, M. D.; McFarlane, S. A.; Comstock, J. M.; Delanoë, J.; Deng, M.; Hogan, R. J.; Huang, D.; Jensen, M. P.; Mace, G. G.; McCoy, R.; O’Connor, E. J.; Turner, D. D.; Wang, Z.

    2012-05-30

    Accurate observations of cloud microphysical properties are needed for evaluating and improving the representation of cloud processes in climate models and better estimate of the Earth radiative budget. However, large differences are found in current cloud products retrieved from ground-based remote sensing measurements using various retrieval algorithms. Understanding the differences is an important step to address uncertainties in the cloud retrievals. In this study, an in-depth analysis of nine existing ground-based cloud retrievals using ARM remote sensing measurements is carried out. We place emphasis on boundary layer overcast clouds and high level ice clouds, which are the focus of many current retrieval development efforts due to their radiative importance and relatively simple structure. Large systematic discrepancies in cloud microphysical properties are found in these two types of clouds among the nine cloud retrieval products, particularly for the cloud liquid and ice particle effective radius. Note that the differences among some retrieval products are even larger than the prescribed uncertainties reported by the retrieval algorithm developers. It is shown that most of these large differences have their roots in the retrieval theoretical bases, assumptions, as well as input and constraint parameters. This study suggests the need to further validate current retrieval theories and assumptions and even the development of new retrieval algorithms with more observations under different cloud regimes.

  20. Toward Understanding of Differences in Current Cloud Retrievals of ARM Ground-based Measurements

    SciTech Connect

    Zhao, Chuanfeng; Xie, Shaocheng; Klein, Stephen A.; Protat, Alain; Shupe, Matthew D.; McFarlane, Sally A.; Comstock, Jennifer M.; Delanoe, Julien; Deng, Min; Dunn, Maureen; Hogan, Robin; Huang, Dong; Jensen, Michael; Mace, Gerald G.; McCoy, Renata; O'Conner, Ewan J.; Turner, Dave; Wang, Zhien

    2012-05-30

    Accurate observations of cloud microphysical properties are needed for evaluating and improving the representation of cloud processes in climate models. However, large differences are found in current cloud products retrieved from ground-based remote sensing measurements using various retrieval algorithms. Understanding the differences is an important step to address uncertainties in the cloud retrievals. In this study, an in-depth analysis of nine existing ground-based cloud retrievals using ARM remote sensing measurements is carried out. We place emphasize on boundary layer overcast clouds and high level ice clouds, which are the focus of many current retrieval development efforts due to their radiative importance and relatively simple structure. Large systematic discrepancies in cloud microphysical properties are found in these two types of clouds among the nine cloud retrieval products, particularly for the cloud liquid and ice effective radius. It is shown that most of these large differences have their roots in the retrieval algorithms used by these cloud products, including the retrieval theoretical bases, assumptions, as well as input and constraint parameters. This study suggests the need to further validate current retrieval theories and assumptions and even the development of new retrieval algorithms with more observations under different cloud regimes.

  1. Functional Allocation for Ground-Based Automated Separation Assurance in NextGen

    NASA Technical Reports Server (NTRS)

    Prevot, Thomas; Mercer, Joey; Martin, Lynne; Homola, Jeffrey; Cabrall, Christopher; Brasil, Connie

    2010-01-01

    As part of an ongoing research effort into functional allocation in a NextGen environment, a controller-in-the-loop study on ground-based automated separation assurance was conducted at NASA Ames' Airspace Operations Laboratory in February 2010. Participants included six FAA front line managers, who are currently certified professional controllers and four recently retired controllers. Traffic scenarios were 15 and 30 minutes long where controllers interacted with advanced technologies for ground-based separation assurance, weather avoidance, and arrival metering. The automation managed the separation by resolving conflicts automatically and involved controllers only by exception, e.g., when the automated resolution would have been outside preset limits. Results from data analyses show that workload was low despite high levels of traffic, Operational Errors did occur but were closely tied to local complexity, and safety acceptability ratings varied with traffic levels. Positive feedback was elicited for the overall concept with discussion on the proper allocation of functions and trust in automation.

  2. Report on the ground-based observation campaign of 67P/Churyumov-Gerasimenko

    NASA Astrophysics Data System (ADS)

    Jehin, Emmanuel

    2015-11-01

    Rosetta gets closer to the nucleus than any previous mission, and returns wonderfully detailed measurements from the heart of the comet, but at the cost of not seeing the large scale coma and tails. The ground-based campaign fills in the missing part of the picture, studying the comet at about 1000 km resolution, and following how the overall activity of the comet varies. These data provide context information for Rosetta, so changes in the inner coma seen by the spacecraft can be correlated with the phenomena observable in comets. This will not only help to complete our understanding of the activity of 67P, but also to allow us to compare it with other comets that are only observed from the ground.The ground-based campaign includes observations with nearly all major facilities world-wide. In 2014 the majority of data came from the ESO VLT, as the comet was still relatively faint and in Southern skies, but as it returns to visibility from Earth in 2015 it is considerably brighter, approaching its perihelion in August, and at Northern declinations. I will present results from the 2014 campaign, including visible wavelength photometry and spectroscopy, and the latest results from 2015 observations.

  3. Profile negotiation - A concept for integrating airborne and ground-based automation for managing arrival traffic

    NASA Technical Reports Server (NTRS)

    Green, Steven M.; Den Braven, Wim; Williams, David H.

    1991-01-01

    The profile negotiation process (PNP) concept as applied to the management of arrival traffic within the extended terminal area is presented, focusing on functional issues from the ground-based perspective. The PNP is an interactive process between an aircraft and air traffic control (ATC) which combines airborne and ground-based automation capabilities to determine conflict-free trajectories that are as close to an aircraft's preference as possible. Preliminary results from a real-time simulation study show that the controller teams are able to consistently and effectively negotiate conflict-free vertical profiles with 4D-equipped aircraft. The ability of the airborne 4D flight management system to adapt to ATC specified 4D trajectory constraints is found to be a requirement for successful execution of the PNP. It is recommended that the conventional method of cost index iteration for obtaining the minimum fuel 4D trajectory be supplemented by a method which constrains the profile speeds to those desired by ATC.

  4. Radar volume reflectivity estimation using an array of ground-based rainfall drop size detectors

    NASA Astrophysics Data System (ADS)

    Lane, John; Merceret, Francis; Kasparis, Takis; Roy, D.; Muller, Brad; Jones, W. Linwood

    2000-08-01

    Rainfall drop size distribution (DSD) measurements made by single disdrometers at isolated ground sites have traditionally been used to estimate the transformation between weather radar reflectivity Z and rainfall rate R. Despite the immense disparity in sampling geometries, the resulting Z-R relation obtained by these single point measurements has historically been important in the study of applied radar meteorology. Simultaneous DSD measurements made at several ground sites within a microscale area may be used to improve the estimate of radar reflectivity in the air volume surrounding the disdrometer array. By applying the equations of motion for non-interacting hydrometers, a volume estimate of Z is obtained from the array of ground based disdrometers by first calculating a 3D drop size distribution. The 3D-DSD model assumes that only gravity and terminal velocity due to atmospheric drag within the sampling volume influence hydrometer dynamics. The sampling volume is characterized by wind velocities, which are input parameters to the 3D-DSD model, composed of vertical and horizontal components. Reflectivity data from four consecutive WSR-88D volume scans, acquired during a thunderstorm near Melbourne, FL on June 1, 1997, are compared to data processed using the 3D-DSD model and data form three ground based disdrometers of a microscale array.

  5. Education and Public Outreach for MSFC's Ground-Based Observations in Support of the HESSI Mission

    NASA Technical Reports Server (NTRS)

    Adams, Mitzi L.; Hagyard, Mona J.; Newton, Elizabeth K.

    1999-01-01

    A primary focus of NASA is the advancement of science and the communication of these advances to a number of audiences, both within the science research community and outside it. The upcoming High Energy Solar Spectroscopic Imager (HESSI) mission and the MSFC ground-based observing program, provide an excellent opportunity to communicate our knowledge of the Sun, its cycle of activity, the role of magnetic fields in that activity, and its effect on our planet. In addition to ground-based support of the HESSI mission, MSFC's Solar Observatory, located in North Alabama, will involve students and the local education community in its day-to-day operations, an experience which is more immediate, personal, and challenging than their everyday educational experience. Further, by taking advantage of the Internet, our program can reach beyond the immediate community. By joining with Fernbank Science Center in Atlanta, Georgia, we will leverage their almost 30 years'experience in science program delivery in diverse situations to a distance learning opportunity which can encompass the entire Southeast and beyond. This poster will outline our education and public outreach plans in support of the HESSI mission in which we will target middle and high school students and their teachers.

  6. Monitoring of displacements with ground-based microwave interferometry: IBIS-S and IBIS-L

    NASA Astrophysics Data System (ADS)

    Rödelsperger, Sabine; Läufer, Gwendolyn; Gerstenecker, Carl; Becker, Matthias

    2010-06-01

    One fundamental component of early warning systems for natural hazards is displacement monitoring. Spaceborne SAR Interferometry has proven to be a powerful remote sensing tool for this task. Lately new ground-based SAR instruments are available. Their application field is wide and they combine high resolution and accuracy with the classical benefits of remote sensing techniques. Here, the principles of the microwave interferometer IBIS are presented, as well as its advantages and disadvantages compared to common monitoring techniques. IBIS can be operated in two modes: IBIS-S is a microwave interferometer capable of high frequency displacement monitoring of buildings and structures (up to 200 Hz); IBIS-L is a ground-based SAR for long-term displacement monitoring of buildings and natural phenomena as landslides, glaciers, etc. Exemplary three applications are presented: the use of IBIS-S for dynamic monitoring of a chimney; the use of IBIS-L for displacement monitoring in an active quarry and the long-term operation of IBIS-L as part of a “Volcano Fast Response System” (VFRS) on an active volcano.

  7. Impact of focusing of Ground Based SAR data on the quality of interferometric SAR applications

    NASA Astrophysics Data System (ADS)

    Zonno, Mariantonietta; Mascolo, Luigi; Guccione, Pietro; Nico, Giovanni; Di Pasquale, Andrea

    2014-10-01

    A Ground-Based Synthetic Aperture Radar (GB-SAR) is nowadays employed in several applications. The processing of ground-based, space and airborne SAR data relies on the same physical principles. Nevertheless specific algorithms for the focusing of data acquired by GB-SAR system have been proposed in literature. In this work the impact of the main focusing methods on the interferometric phase dispersion and on the coherence has been studied by employing a real dataset obtained by carrying out an experiment. Several acquisitions of a scene with a corner reflector mounted on a micrometric screw have been made; before some acquisitions the micrometric screw has been displaced of few millimetres in the Line-of-Sight direction. The images have been first focused by using two different algorithms and correspondently, two different sets of interferograms have been generated. The mean and standard deviation of the phase values in correspondence of the corner reflector have been compared to those obtained by knowing the real displacement of the micrometric screw. The mean phase and its dispersion and the coherence values for each focusing algorithm have been quantified and both the precision and the accuracy of the interferometic phase measurements obtained by using the two different focusing methods have been assessed.

  8. Performance analysis of weak target detection via ground-based synthetic aperture radar

    NASA Astrophysics Data System (ADS)

    Zhou, Yong-sheng; Zhou, Mei; Tang, Ling-li; Li, Chuan-rong

    2011-10-01

    Polarimetric Interferometric Synthetic Aperture Radar (Pol-InSAR) is an emerging technique that combines interferometric SAR and polarimetric SAR techniques and has shown its effectiveness in the detection of buried weak targets. The detection performance is affected by the SAR parameters as well as the covering characteristics. In this paper, the effects of covering characteristics on the detection performance were emphasized and experimentally investigated by a ground-based Pol-InSAR system. Firstly, the detection principle for buried weak target by Pol-InSAR technique was presented, which is based on the use of interferometric coherence variation with polarization. Then the ground-based two dimensional rail (TDR) SAR used for investigation was introduced. Furthermore, the experiment target scene was designed and the effects of different covering type, different covering moisture, and different covering depth on the detection performance of weak targets were shown and analyzed. Preliminary results confirmed the effectiveness of Pol-InSAR technique used for weak target detection and it would be helpful for the further investigation of this technique.

  9. Development of PIAA Complex Mask Coronagraphs for large aperture ground-based telescopes

    NASA Astrophysics Data System (ADS)

    Newman, Kevin; Sirbu, Dan; Belikov, Ruslan; Guyon, Olivier

    2016-07-01

    The Phase Induced Amplitude Apodization Complex Mask Coronagraph (PIAACMC) is an architecture for directly observing extra-solar planets, and can achieve performance near the theoretical limits for any direct-detection instrument. The PIAACMC architecture includes aspheric PIAA optics, and a complex phase-shifting focal plane mask that provides a pi phase shift to a portion of the on-axis starlight. The phase-shifted starlight is forced to interfere destructively with the un-shifted starlight, causing the starlight to be eliminated, and allowing a region for high-contrast imaging near the star. The PIAACMC architecture can be designed for segmented and obscured apertures, so it is particularly well suited for ground-based observing with the next generation of large telescopes. There will be unique scientific opportunities for directly observing Earth-like planets around nearby low-mass stars. We will discuss design strategies for adapting PIAACMC for the next generation of large ground-based telescopes, and present progress on the development of the focal plane mask technology. We also present simulations of wave-front control with PIAACMC, and suggest directions to apply the coronagraph architecture to future telescopes.

  10. Towards the development of tamper-resistant, ground-based mobile sensor nodes

    NASA Astrophysics Data System (ADS)

    Mascarenas, David; Stull, Christopher; Farrar, Charles

    2011-11-01

    Mobile sensor nodes hold great potential for collecting field data using fewer resources than human operators would require and potentially requiring fewer sensors than a fixed-position sensor array. It would be very beneficial to allow these mobile sensor nodes to operate unattended with a minimum of human intervention. In order to allow mobile sensor nodes to operate unattended in a field environment, it is imperative that they be capable of identifying and responding to external agents that may attempt to tamper with, damage or steal the mobile sensor nodes, while still performing their data collection mission. Potentially hostile external agents could include animals, other mobile sensor nodes, or humans. This work will focus on developing control policies to help enable a mobile sensor node to identify and avoid capture by a hostile un-mounted human. The work is developed in a simulation environment, and demonstrated using a non-holonomic, ground-based mobile sensor node. This work will be a preliminary step toward ensuring the cyber-physical security of ground-based mobile sensor nodes that operate unattended in potentially unfriendly environments.

  11. Detectability and Parameter Estimation of Gravitational Waves from Cosmic String with Ground-Based Detectors

    NASA Astrophysics Data System (ADS)

    Yuzurihara, Hirotaka; Kanda, Nobuyuki

    Cosmic string is one dimensional topological defects which might be formed at the phase transition in the early universe. Gravitational Wave (GW) waveform and its power spectrum from structure in closed cosmic string loop that is called as "cusp" are theoretically predicted. Cosmic string is thought to be described with two characteristic parameters: string tension μ and initial loop size α. We demonstrate numerical simulation for GWs from closed comic string loops to study detectability and parameter decision with ground-based detectors, such as KAGRA, advanced LIGO, advanced Virgo and LIGO-India. We employ characteristic parameters 10 - 13 < Gμ < 10 - 7 and 10 - 16 < α < 10 - 1, assuming uniform distribution of cosmic string in isotropic direction, at time epochs of loop forming and GW emission according to the universe model. We calculate waveform numerically in time domain of each GW from these distributed cosmic strings, and superpose waveforms to generate continuously observational signal on the ground-based GW detectors, including detector responses. We consider data analysis for stochastic background type gravitational wave signatures in the observation.

  12. Ground-based assessment of JAXA mouse habitat cage unit by mouse phenotypic studies.

    PubMed

    Shimbo, Miki; Kudo, Takashi; Hamada, Michito; Jeon, Hyojung; Imamura, Yuki; Asano, Keigo; Okada, Risa; Tsunakawa, Yuki; Mizuno, Seiya; Yagami, Ken-Ichi; Ishikawa, Chihiro; Li, Haiyan; Shiga, Takashi; Ishida, Junji; Hamada, Juri; Murata, Kazuya; Ishimaru, Tomohiro; Hashimoto, Misuzu; Fukamizu, Akiyoshi; Yamane, Mutsumi; Ikawa, Masahito; Morita, Hironobu; Shinohara, Masahiro; Asahara, Hiroshi; Akiyama, Taishin; Akiyama, Nobuko; Sasanuma, Hiroki; Yoshida, Nobuaki; Zhou, Rui; Wang, Ying-Ying; Ito, Taito; Kokubu, Yuko; Noguchi, Taka-Aki K; Ishimine, Hisako; Kurisaki, Akira; Shiba, Dai; Mizuno, Hiroyasu; Shirakawa, Masaki; Ito, Naoki; Takeda, Shin; Takahashi, Satoru

    2016-05-20

    The Japan Aerospace Exploration Agency developed the mouse Habitat Cage Unit (HCU) for installation in the Cell Biology Experiment Facility (CBEF) onboard the Japanese Experimental Module ("Kibo") on the International Space Station. The CBEF provides "space-based controls" by generating artificial gravity in the HCU through a centrifuge, enabling a comparison of the biological consequences of microgravity and artificial gravity of 1 g on mice housed in space. Therefore, prior to the space experiment, a ground-based study to validate the habitability of the HCU is necessary to conduct space experiments using the HCU in the CBEF. Here, we investigated the ground-based effect of a 32-day housing period in the HCU breadboard model on male mice in comparison with the control cage mice. Morphology of skeletal muscle, the thymus, heart, and kidney, and the sperm function showed no critical abnormalities between the control mice and HCU mice. Slight but significant changes caused by the HCU itself were observed, including decreased body weight, increased weights of the thymus and gastrocnemius, reduced thickness of cortical bone of the femur, and several gene expressions from 11 tissues. Results suggest that the HCU provides acceptable conditions for mouse phenotypic analysis using CBEF in space, as long as its characteristic features are considered. Thus, the HCU is a feasible device for future space experiments.

  13. Estimation of solar backscatter ultraviolet albedo using ground-based Umkehr measurements

    SciTech Connect

    DeLuisi, J.J. ); Longenecker, D.U. ); Chu, W.P. ); Mateer, C.L.

    1993-02-20

    A retrieval method was developed to estimate the solar backscatter ultraviolet (SBUV) satellite albedo for the ozone profiler wavelengths using ground-based ultraviolet measurements. For the present investigation the Umkehr was used as the ground-based ultraviolet measurement. Simulated SBUV data and Umkehr data theoretically computed from a priori ozone profiles observed by the SAGE II satellite were used to develop the retrieval algorithm and to test its capability. The test indicated that albedos for the SBUV ozone profiler wavelengths should allow estimates to a precision of [plus minus]5% or better, depending on the accuracy of the ultraviolet measurement. Retrievals using actual Umkehr observations were also performed to provide a preliminary look at the magnitude and annual variation of retrieved albedos. A case study was performed, comparing retrieved albedos with SBUV-measured albedos. The SBUV albedo change was seen to be approximately twice as large as the albedo changes estimated by the Umkehr method. Results of the investigation suggest that the method of estimation may be useful for determining the drift rate of the SBUV calibration. 20 refs., 5 figs., 4 tabs.

  14. Understanding the Laminar Distribution of Tropospheric Ozone from Ground-Based, Airborne, Spaceborne, and Modeling Perspectives

    NASA Technical Reports Server (NTRS)

    Newchurch, Mike; Johnson, Matthew S.; Huang, Guanyu; Kuang, Shi; Wang, Lihua; Chance, Kelly; Liu, Xiong

    2016-01-01

    Laminar ozone structure is a ubiquitous feature of tropospheric-ozone distributions resulting from dynamic and chemical atmospheric processes. Understanding the characteristics of these ozone laminae and the mechanisms responsible for producing them is important to outline the transport pathways of trace gases and to quantify the impact of different sources on tropospheric background ozone. In this study, we present a new method to detect ozone laminae to understand their climatological characteristics of occurrence frequency in terms of thickness and altitude. We employ both ground-based and airborne ozone lidar measurements and other synergistic observations and modeling to investigate the sources and mechanisms such as biomass burning transport, stratospheric intrusion, lightning-generated NOx, and nocturnal low-level jets that are responsible for depleted or enhanced tropospheric ozone layers. Spaceborne (e.g., OMI (Ozone Monitoring Instrument), TROPOMI (Tropospheric Monitoring Instrument), TEMPO (Tropospheric Emissions: Monitoring of Pollution)) measurements of these laminae will observe greater horizontal extent and lower vertical resolution than balloon-borne or lidar measurements will quantify. Using integrated ground-based, airborne, and spaceborne observations in a modeling framework affords insight into how to gain knowledge of both the vertical and horizontal evolution of these ubiquitous ozone laminae.

  15. Characterization and simulation of a ground-based millimeter wave observation system for Arctic atmospheric research

    NASA Astrophysics Data System (ADS)

    Ryan, Niall J.; Walker, Kaley A.

    2015-01-01

    A preparatory performance and error characterization was carried out for a ground-based millimeter wave instrument designed for high Arctic atmospheric research. The instrument is a radiometer to measure rotational emission spectra of O3, ClO, HNO3, and N2O, between 265 and 280 GHz, using a sensitive superconductor-insulator-superconductor detector. Forward and inverse modeling tests have been performed to assess the instrument/inversion system and to determine the sources of the most significant errors in the retrieval of each trace gas. The altitude ranges over which retrievals of concentrations can be made were found to be ~13-62 km for O3, ~12.5-39 km for N2O, ~12-36 km for HNO3, and ~18-46 km for ClO. For each target species the measurement and smoothing errors calculated with an optimal estimation method (OEM) were compared to the errors calculated from inversions of 500 simulated spectra. The absolute error from these inversions agreed well the OEM results, but there were systematic differences that are attributed to nonlinearities in the forward model. The results of these nonlinearities can cause biases of the order of 5-10% of the a priori profile if they are not accounted for when averaging concentration profiles or when analyzing trends in concentration. The techniques used here can be applied to any ground-based remote sounder.

  16. Preliminary Design of a Ramjet for Integration with Ground-Based Launch Assist

    NASA Technical Reports Server (NTRS)

    Sayles, Emily L.

    2008-01-01

    This viewgraph presentation reviews the preliminary design of a ramjet for integration with a ground based launch assist. The reasons for the use of ground-based launch assist and the proposed mechanism for a system are reviewed. The use of a Optimal Trajectory by Implicit Simulation (OTIS), to model the flight and comparison with an actual rocket trajectory is given. The OTIS system is reviewed, The benefits of a launch assist system are analyzed concluding that a launch assist can provide supersonic speeds thus allowing ignition of ramjet without an onboard compressor. This means a further reduction in total launch weight. The Ramjet study is reviewed next. This included a review of the ONX simulations, the verification of the ONX results with the use of Holloman Sled experiment data as derived from the Feasibility of Ramjet Engine Test Capability on The Holloman AFB Sled Track. The conclusion was that the ONX system was not sufficient to meet the needs for the modeling required. The GECAT (Graphical Engine Cycle Analysis Tool) is examined. The results of the GECAT simulations was verified with data from Stataltex and D21 flights. The Next steps are: to create a GECAT Model of a launch assist ramjet, to adjust the geometry to produce the desired thrust, and to survey the ramjet's performance over a range of Mach numbers. The assumptions and requirements of a launch assist ramjet are given, and the acceptable flight regimes are reviewed.

  17. Low frequency gravitational wave detection with ground-based atom interferometer arrays

    NASA Astrophysics Data System (ADS)

    Chaibi, W.; Geiger, R.; Canuel, B.; Bertoldi, A.; Landragin, A.; Bouyer, P.

    2016-01-01

    We propose a new detection strategy for gravitational waves (GWs) below a few hertz based on a correlated array of atom interferometers (AIs). Our proposal allows us to reduce the Newtonian noise (NN), which limits all ground based GW detectors below a few hertz, including previous atom interferometry-based concepts. Using an array of long baseline AI gradiometers yields several estimations of the NN, whose effect can thus be reduced via statistical averaging. Considering the km baseline of current optical detectors, a NN rejection of a factor of 2 could be achieved and tested with existing AI array geometries. Exploiting the correlation properties of the gravity acceleration noise, we show that a tenfold or more NN rejection is possible with a dedicated configuration. Considering a conservative NN model and the current developments in cold atom technology, we show that strain sensitivities below 1 ×10-19/√{Hz } in the 0.3 -3 Hz frequency band can be within reach, with a peak sensitivity of 3 ×10-23/√{Hz } at 2 Hz . Our proposed configuration could extend the observation window of current detectors by a decade and fill the gap between ground-based and space-based instruments.

  18. Estimation of volcanic ash emissions through assimilating satellite data and ground-based observations

    NASA Astrophysics Data System (ADS)

    Lu, Sha; Lin, Hai Xiang; Heemink, Arnold; Segers, Arjo; Fu, Guangliang

    2016-09-01

    In this paper, we reconstruct the vertical profile of volcanic ash emissions by assimilating satellite data and ground-based observations using a modified trajectory-based 4D-Var (Trj4DVar) approach. In our previous work, we found that the lack of vertical resolution in satellite ash column data can result in a poor estimation of the injection layer where the ash is emitted into the atmosphere. The injection layer is crucial for the forecast of volcanic ash clouds. To improve estimation, Trj4DVar was implemented, and it has shown increased performance in twin experiments using synthetic observations. However, there are some cases with real satellite data where Trj4DVar has difficulty in obtaining an accurate estimation of the injection layer. To remedy this, we propose a modification of Trj4DVar, test it with synthetic twin experiments, and evaluate real data performance. The results show that the modified Trj4DVar is able to accurately estimate the injection height (location of the maximal emission rate) by incorporating the plume height (top of the ash plume) and mass eruption rate data obtained from ground-based observations near the source into the assimilation system. This will produce more accurate emission estimations and more reliable forecasts of volcanic ash clouds. Also provided are two strategies on the preprocessing and proper use of satellite data.

  19. Nighttime Aerosol Optical Depth Measurements Using a Ground-based Lunar Photometer

    NASA Technical Reports Server (NTRS)

    Berkoff, Tim; Omar, Ali; Haggard, Charles; Pippin, Margaret; Tasaddaq, Aasam; Stone, Tom; Rodriguez, Jon; Slutsker, Ilya; Eck, Tom; Holben, Brent; Welton, Judd; da Silva, Arlindo; Colarco, Pete; Trepte, Charles; Winker, David

    2015-01-01

    In recent years it was proposed to combine AERONET network photometer capabilities with a high precision lunar model used for satellite calibration to retrieve columnar nighttime AODs. The USGS lunar model can continuously provide pre-atmosphere high precision lunar irradiance determinations for multiple wavelengths at ground sensor locations. When combined with measured irradiances from a ground-based AERONET photometer, atmospheric column transmissions can determined yielding nighttime column aerosol AOD and Angstrom coefficients. Additional demonstrations have utilized this approach to further develop calibration methods and to obtain data in polar regions where extended periods of darkness occur. This new capability enables more complete studies of the diurnal behavior of aerosols, and feedback for models and satellite retrievals for the nighttime behavior of aerosols. It is anticipated that the nighttime capability of these sensors will be useful for comparisons with satellite lidars such as CALIOP and CATS in additional to ground-based lidars in MPLNET at night, when the signal-to-noise ratio is higher than daytime and more precise AOD comparisons can be made.

  20. Determination of chlorophyll photosynthetic potential in vegetation using ground-based and satellite methods

    NASA Astrophysics Data System (ADS)

    Botvich, Irina; Alexander, Sidko; Pisman, Tamara; Shevyrnogov, Anatoly

    An integrated study of the vegetation in the south of Krasnoyarsk Territory was carried out on the basis of ground-based and satellite remote measurements. The research objects were agricultural crops (wheat, oats) during the vegetation period. The satellite calculations were based on the data having high (Landsat 7 ETM+) and medium spatial resolution (Terra-Modis). Both kinds of data were used to calculate the chlorophyll photosynthetic potential (CPSP) as the area of the triangle made up by the reflection values in the green, red and near infrared spectrum regions. The connection was determined between the ground-based and satellite measurements of CPSP. Having analyzed the remote field and satellite measurements of the brightness spectral ratios of agricultural crops during vegetation, we showed the possibility of estimation of structural changes in the near infrared spectrum region. A lack or excess of water in plants causes structural changes in their phytoelements, which affects their reflectance. We showed the possibility of assessing morpho-physiological changes and species composition of crops. We determined the correlation between the spectral reflectance in various crops with chlorophyll content in plants and biomass changes.

  1. Ground-based and spacecraft observations of lightning activity on Saturn

    NASA Astrophysics Data System (ADS)

    Zakharenko, V.; Mylostna, C.; Konovalenko, A.; Zarka, P.; Fischer, G.; Grießmeier, J.-M.; Litvinenko, G.; Rucker, H.; Sidorchuk, M.; Ryabov, B.; Vavriv, D.; Ryabov, V.; Cecconi, B.; Coffre, A.; Denis, L.; Fabrice, C.; Pallier, L.; Schneider, J.; Kozhyn, R.; Vinogradov, V.; Mukha, D.; Weber, R.; Shevchenko, V.; Nikolaenko, V.

    2012-02-01

    In late 2007, Saturn electrostatic discharges (SED) were simultaneously observed at the radio telescope UTR-2 and with the Cassini spacecraft. Observations at UTR-2 were performed with a multichannel receiver in the frequency range 12-33 MHz, and those performed on Cassini-with a swept frequency receiver that is part of the RPWS (Radio and Plasma Wave Science) instrument in the frequency band 1.8-16 MHz. We got a very good coincidence between data of UTR-2 and Cassini. It is shown for the first time that ground-based radio astronomy lets us detect Saturn's lightning with a high degree of reliability despite terrestrial interferences. This is the necessary basis for further detailed study of the temporal and spectral characteristics of the SEDs with ground based radio telescopes. Based on six observation sessions, several parameters of SEDs were determined, in particularly a correlation of 0.77±0.15 between the average intensity of storms and the e-folding time.

  2. Synchronized observations by using the STEREO and the largest ground-based decametre radio telescope

    NASA Astrophysics Data System (ADS)

    Konovalenko, A. A.; Stanislavsky, A. A.; Rucker, H. O.; Lecacheux, A.; Mann, G.; Bougeret, J.-L.; Kaiser, M. L.; Briand, C.; Zarka, P.; Abranin, E. P.; Dorovsky, V. V.; Koval, A. A.; Mel'nik, V. N.; Mukha, D. V.; Panchenko, M.

    2013-08-01

    We consider the approach to simultaneous (synchronous) solar observations of radio emission by using the STEREO-WAVES instruments (frequency range 0.125-16 MHz) and the largest ground-based low-frequency radio telescope. We illustrate it by the UTR-2 radio telescope implementation (10-30 MHz). The antenna system of the radio telescope is a T-shape-like array of broadband dipoles and is located near the village Grakovo in the Kharkiv region (Ukraine). The third observation point on the ground in addition to two space-based ones improves the space-mission performance capabilities for the determination of radio-emission source directivity. The observational results from the high sensitivity antenna UTR-2 are particularly useful for analysis of STEREO data in the condition of weak event appearances during solar activity minima. In order to improve the accuracy of flux density measurements, we also provide simultaneous observations with a large part of the UTR-2 radio telescope array and its single dipole close to the STEREO-WAVES antennas in sensitivity. This concept has been studied by comparing the STEREO data with ground-based records from 2007-2011 and shown to be effective. The capabilities will be useful in the implementation of new instruments (LOFAR, LWA, MWA, etc.) and during the future Solar Orbiter mission.

  3. De-mystifying earned value management for ground based astronomy projects, large and small

    NASA Astrophysics Data System (ADS)

    Norton, Timothy; Brennan, Patricia; Mueller, Mark

    2014-08-01

    The scale and complexity of today's ground based astronomy projects have justifiably required Principal Investigator's and their project teams to adopt more disciplined management processes and tools in order to achieve timely and accurate quantification of the progress and relative health of their projects. Earned Value Management (EVM) is one such tool. Developed decades ago and used extensively in the defense and construction industries, and now a requirement of NASA projects greater than $20M; EVM has gained a foothold in ground-based astronomy projects. The intent of this paper is to de-mystify EVM by discussing the fundamentals of project management, explaining how EVM fits with existing principles, and describing key concepts every project can use to implement their own EVM system. This paper also discusses pitfalls to avoid during implementation and obstacles to its success. The authors report on their organization's most recent experience implementing EVM for the GMT-Consortium Large Earth Finder (G-CLEF) project. G-CLEF is a fiber-fed, optical echelle spectrograph that has been selected as a first light instrument for the Giant Magellan Telescope (GMT), planned for construction at the Las Campanas Observatory in Chile's Atacama Desert region.

  4. Mesospheric minor-species determinations from rocket and ground-based i. r. measurements

    SciTech Connect

    Ulwick, J.C.; Baker, K.D.; Baker, D.J.; Steed, A.J.; Pendleton, W.R.

    1987-01-01

    A wealth of ground-based, balloon and rocket measurements of the airglow hydroxyl (OH) emission was accumulated by various experiments. Indeed, since the first-reported rocket observations (HEPPNER and MEREDITH, 1958), there have been over 50 rocket flights from which OH emission profiles have been reported (BAKER and STAIR, 1987). The sensors initially measured in the visible range (PACKER, 1961) and later in the infrared (LOWE, 1960; BAKER, 1978). Models were constructed of the photochemistry (MOREELS et al., 1977; BATTANER and LOPEZ-MORENO, 1979) and of the vertical-species transport in an attempt to fit the measured hydroxyl radiance variations. However, uncertainties exit in quenching-rate coefficients, radiation-transition probabilities and number densities of participating species, such that results are not conclusive (COXON and FOSTER, 1982; DUPUIS et al., 1986). As part of the overall investigation of neutral atmospheric dynamics of the middle atmosphere and to investigate the excitation processes of the night airglow, a coordinated rocket and ground-based measurement program was conducted as part of the MAP/WINE campaign to observe simultaneously several key parameters.

  5. Potential use of ground-based sensor technologies for weed detection.

    PubMed

    Peteinatos, Gerassimos G; Weis, Martin; Andújar, Dionisio; Rueda Ayala, Victor; Gerhards, Roland

    2014-02-01

    Site-specific weed management is the part of precision agriculture (PA) that tries to effectively control weed infestations with the least economical and environmental burdens. This can be achieved with the aid of ground-based or near-range sensors in combination with decision rules and precise application technologies. Near-range sensor technologies, developed for mounting on a vehicle, have been emerging for PA applications during the last three decades. These technologies focus on identifying plants and measuring their physiological status with the aid of their spectral and morphological characteristics. Cameras, spectrometers, fluorometers and distance sensors are the most prominent sensors for PA applications. The objective of this article is to describe-ground based sensors that have the potential to be used for weed detection and measurement of weed infestation level. An overview of current sensor systems is presented, describing their concepts, results that have been achieved, already utilized commercial systems and problems that persist. A perspective for the development of these sensors is given.

  6. Capabilities and constraints of NASA's ground-based reduced gravity facilities

    NASA Technical Reports Server (NTRS)

    Lekan, Jack; Neumann, Eric S.; Sotos, Raymond G.

    1993-01-01

    The ground-based reduced gravity facilities of NASA have been utilized to support numerous investigations addressing various processes and phenomina in several disciplines for the past 30 years. These facilities, which include drop towers, drop tubes, aircraft, and sounding rockets are able to provide a low gravity environment (gravitational levels that range from 10(exp -2)g to 10(exp -6)g) by creating a free fall or semi-free fall condition where the force of gravity on an experiment is offset by its linear acceleration during the 'fall' (drop or parabola). The low gravity condition obtained on the ground is the same as that of an orbiting spacecraft which is in a state of perpetual free fall. The gravitational levels and associated duration times associated with the full spectrum of reduced gravity facilities including spaced-based facilities are summarized. Even though ground-based facilities offer a relatively short experiment time, this available test time has been found to be sufficient to advance the scientific understanding of many phenomena and to provide meaningful hardware tests during the flight experiment development process. Also, since experiments can be quickly repeated in these facilities, multistep phenomena that have longer characteristic times associated with them can sometimes be examined in a step-by-step process. There is a large body of literature which has reported the study results achieved through using reduced-gravity data obtained from the facilities.

  7. Coordinated ground-based and geosynchronous satellite-based measurements of auroral pulsations

    SciTech Connect

    Suszcynsky, David M.; Borovsky, Joseph E.; Thomsen, Michelle F.; McComas, David J.; Belian, Richard D.

    1996-09-01

    We describe a technique that uses a ground-based all-sky video camera and geosynchronous satellite-based plasma and energetic particle detectors to study ionosphere-magnetosphere coupling as it relates to the aurora. The video camera system was deployed in Eagle, Alaska for a seven month period at the foot of the magnetic field line that threads geosynchronous satellite 1989-046. Since 1989-046 corotates with the earth, its footprint remains nearly fixed in the vicinity of Eagle, allowing for routine continuous monitoring of an auroral field line at its intersections with the ground and with geosynchronous orbit. As an example of the utility of this technique, we present coordinated ground-based and satellite based observations during periods of auroral pulsations and compare this data to the predictions of both the relaxation oscillator theory and flow cyclotron maser theory for the generation of pulsating aurorae. The observed plasma and energetic particle characteristics at geosynchronous orbit during pulsating aurorae displays are found to be in agreement with the predictions of both theories lending further support that a cyclotron resonance mechanism is responsible for auroral pulsations.

  8. Ground-based assessment of JAXA mouse habitat cage unit by mouse phenotypic studies

    PubMed Central

    Shimbo, Miki; Kudo, Takashi; Hamada, Michito; Jeon, Hyojung; Imamura, Yuki; Asano, Keigo; Okada, Risa; Tsunakawa, Yuki; Mizuno, Seiya; Yagami, Ken-ichi; Ishikawa, Chihiro; Li, Haiyan; Shiga, Takashi; Ishida, Junji; Hamada, Juri; Murata, Kazuya; Ishimaru, Tomohiro; Hashimoto, Misuzu; Fukamizu, Akiyoshi; Yamane, Mutsumi; Ikawa, Masahito; Morita, Hironobu; Shinohara, Masahiro; Asahara, Hiroshi; Akiyama, Taishin; Akiyama, Nobuko; Sasanuma, Hiroki; Yoshida, Nobuaki; Zhou, Rui; Wang, Ying-Ying; Ito, Taito; Kokubu, Yuko; Noguchi, Taka-aki K.; Ishimine, Hisako; Kurisaki, Akira; Shiba, Dai; Mizuno, Hiroyasu; Shirakawa, Masaki; Ito, Naoki; Takeda, Shin; Takahashi, Satoru

    2016-01-01

    The Japan Aerospace Exploration Agency developed the mouse Habitat Cage Unit (HCU) for installation in the Cell Biology Experiment Facility (CBEF) onboard the Japanese Experimental Module (“Kibo”) on the International Space Station. The CBEF provides “space-based controls” by generating artificial gravity in the HCU through a centrifuge, enabling a comparison of the biological consequences of microgravity and artificial gravity of 1 g on mice housed in space. Therefore, prior to the space experiment, a ground-based study to validate the habitability of the HCU is necessary to conduct space experiments using the HCU in the CBEF. Here, we investigated the ground-based effect of a 32-day housing period in the HCU breadboard model on male mice in comparison with the control cage mice. Morphology of skeletal muscle, the thymus, heart, and kidney, and the sperm function showed no critical abnormalities between the control mice and HCU mice. Slight but significant changes caused by the HCU itself were observed, including decreased body weight, increased weights of the thymus and gastrocnemius, reduced thickness of cortical bone of the femur, and several gene expressions from 11 tissues. Results suggest that the HCU provides acceptable conditions for mouse phenotypic analysis using CBEF in space, as long as its characteristic features are considered. Thus, the HCU is a feasible device for future space experiments. PMID:26822934

  9. Ground-based observation of emission lines from the corona of a red-dwarf star.

    PubMed

    Schmitt, J H; Wichmann, R

    2001-08-02

    All 'solar-like' stars are surrounded by coronae, which contain magnetically confined plasma at temperatures above 106 K. (Until now, only the Sun's corona could be observed in the optical-as a shimmering envelope during a total solar eclipse.) As the underlying stellar 'surfaces'-the photospheres-are much cooler, some non-radiative process must be responsible for heating the coronae. The heating mechanism is generally thought to be magnetic in origin, but is not yet understood even for the case of the Sun. Ultraviolet emission lines first led to the discovery of the enormous temperature of the Sun's corona, but thermal emission from the coronae of other stars has hitherto been detectable only from space, at X-ray wavelengths. Here we report the detection of emission from highly ionized iron (Fe XIII at 3,388.1 A) in the corona of the red-dwarf star CN Leonis, using a ground-based telescope. The X-ray flux inferred from our data is consistent with previously measured X-ray fluxes, and the non-thermal line width of 18.4 km s-1 indicates great similarities between solar and stellar coronal heating mechanisms. The accessibility and spectral resolution (45,000) of the ground-based instrument are much better than those of X-ray satellites, so a new window to the study of stellar coronae has been opened.

  10. Ground based instruments and basic structures supporting rocket & balloon campaigns at Esrange

    NASA Astrophysics Data System (ADS)

    Widell, Ola

    2005-08-01

    Many campaigns at Esrange are involving validation of scientific instruments onboard satellites. The validation is often done by balloon borne flights within different stratospheric conditions. Several campaigns are also coordinated programs including rocket, balloon and ground-based instruments. For testing of unmanned vehicles and parachute systems we are taking advantage of the huge land recovery area near Esrange and the Vidsel test field 300km south of Esrange. Several flights within the NEAT concept have been performed. An optical observatory called KEOPS, located at Esrange, is the main site for ground based instruments. The observatory is mainly dedicated for optical instruments like photometers, cameras, FPIs and an IR interferometer. The major expansion of the launch pad for stratospheric balloons and the cooperation with NASA will result in long duration balloon flights from Esrange to Alaska carrying heavy astronomical payloads. First flight will start summer 2005 and with annual flights. The accommodation complex is also extended to a total of more than 100 rooms.

  11. Atomic oxygen effects on boron nitride and silicon nitride: A comparison of ground based and space flight data

    NASA Technical Reports Server (NTRS)

    Cross, J. B.; Lan, E. H.; Smith, C. A.; Whatley, W. J.

    1990-01-01

    The effects of atomic oxygen on boron nitride (BN) and silicon nitride (Si3N4) were evaluated in a low Earth orbit (LEO) flight experiment and in a ground based simulation facility. In both the inflight and ground based experiments, these materials were coated on thin (approx. 250A) silver films, and the electrical resistance of the silver was measured in situ to detect any penetration of atomic oxygen through the BN and Si3N4 materials. In the presence of atomic oxygen, silver oxidizes to form silver oxide, which has a much higher electrical resistance than pure silver. Permeation of atomic oxygen through BN, as indicated by an increase in the electrical resistance of the silver underneath, was observed in both the inflight and ground based experiments. In contrast, no permeation of atomic oxygen through Si3N4 was observed in either the inflight or ground based experiments. The ground based results show good qualitative correlation with the LEO flight results, indicating that ground based facilities such as the one at Los Alamos National Lab can reproduce space flight data from LEO.

  12. A comparison of ground-based and space flight data: Atomic oxygen reactions with boron nitride and silicon nitride

    NASA Technical Reports Server (NTRS)

    Cross, J. B.; Lan, E. H.; Smith, C. A.; Whatley, W. J.; Koontz, S. L.

    1990-01-01

    The effects of atomic oxygen on boron nitride (BN) and silicon nitride (Si3N4) have been studied in low Earth orbit (LEO) flight experiments and in a ground-based simulation facility at Los Alamos National Laboratory. Both the in-flight and ground-based experiments employed the materials coated over thin (approx 250 Angstrom) silver films whose electrical resistance was measured in situ to detect penetration of atomic oxygen through the BN and Si3N4 materials. In the presence of atomic oxygen, silver oxidizes to form silver oxide, which has a much higher electrical resistance than pure silver. Permeation of atomic oxygen through BN, as indicated by an increase in the electrical resistance of the silver underneath, was observed in both the in-flight and ground-based experiments. In contrast, no permeation of atomic oxygen through Si3N4 was observed in either the in-flight or ground-based experiments. The ground-based results show good qualitative correlation with the LEO flight results, thus validating the simulation fidelity of the ground-based facility in terms of reproducing LEO flight results.

  13. Coordinated Ground-Based Observations and the New Horizons Fly-by of Pluto

    NASA Astrophysics Data System (ADS)

    Young, Eliot; Young, Leslie; Parker, Joel; Binzel, Richard

    2015-04-01

    The New Horizons (NH) spacecraft is scheduled to make its closest approach to Pluto on July 14, 2015. NH carries seven scientific instruments, including separate UV and Visible-IR spectrographs, a long-focal-length imager, two plasma-sensing instruments and a dust counter. There are three arenas in particular in which ground-based observations should augment the NH instrument suite in synergistic ways: IR spectra at wavelengths longer than 2.5 µm (i.e., longer than the NH Ralph spectrograph), stellar occultation observations near the time of the fly-by, and thermal surface maps and atmospheric CO abundances based on ALMA observations - we discuss the first two of these. IR spectra in the 3 - 5 µm range cover the CH4 absorption band near 3.3 µm. This band can be an important constraint on the state and areal extent of nitrogen frost on Pluto's surface. If this band depth is close to zero (as was observed by Olkin et al. 2007), it limits the area of nitrogen frost, which is bright at that wavelength. Combined with the NH observations of nitrogen frost at 2.15 µm, the ground-based spectra will determine how much nitrogen frost is diluted with methane, which is a basic constraint on the seasonal cycle of sublimation and condensation that takes place on Pluto (and similar objects like Triton and Eris). There is a fortuitous stellar occultation by Pluto on 29-JUN-2015, only two weeks before the NH closest approach. The occulted star will be the brightest ever observed in a Pluto event, about 2 magnitudes brighter than Pluto itself. The track of the event is predicted to cover parts of Australia and New Zealand. Thanks to HST and ground based campaigns to find a TNO target reachable by NH, the position of the shadow path will be known at the +/-100 km level, allowing SOFIA and mobile ground-based observers to reliably cover the central flash region. Ground-based & SOFIA observations in visible and IR wavelengths will characterize the haze opacity and vertical

  14. Administrators: Nursing Home Administrator

    ERIC Educational Resources Information Center

    Kahl, Anne

    1976-01-01

    Responsibilities, skills needed, training needed, earnings, employment outlook, and sources of additional information are outlined for the administrator who holds the top management job in a nursing home. (JT)

  15. Ground-Based Deep-Penetrating Radar Studies Along The US-ITASE Traverse

    NASA Astrophysics Data System (ADS)

    Jacobel, R. W.; Welch, B. C.; Bills, M. T.; Engle, T. J.

    2003-12-01

    In recent years airborne geophysical surveys have provided high-quality data over selected portions of the West Antarctic Ice Sheet (WAIS). Coupled with new information at visible and radar wavelengths from satellite sensors, these surveys have greatly enhanced our understanding of the dynamics of the WAIS. Until recently, ground-based radar studies have generally been limited to more localized areas and small-scale ice dynamics problems where they provide greater spatial resolution than airborne surveys, often with higher definition (S/N) of imaged features. During the past four years, the US-ITASE platform has provided an opportunity for ground-based deep radar profiling over several thousand kilometers of the WAIS and portions of the East Antarctic Ice Sheet, including more detailed studies of selected sites where ice cores have been drilled. These traverses have enabled us to produced high definition images of bedrock and internal stratigraphy on a continental scale, combining attributes of both airborne and ground-based surveys. We have developed a ruggedized impulse-based radar system to withstand the physical demands of a heavy vehicle traverse at speeds up to 15 Km/hr and also obtain data with high spatial resolution along-track and high definition of internal reflectors. Operating at a center frequency of 3 MHz this system utilizes a 14 bit A/D board at digitizing rates of 100 MHz and records stacked waveforms depicting bedrock and ice internal reflections approximately every 15 meters of surface travel. Surface coordinates are obtained from precision GPS measurements which together with the high data density enable us to migrate profile sections to correctly image steeply-dipping reflectors. We present here a sample of results from over 2000 km of profiles completed during the 2001-2003 field seasons, including routes from Byrd Station toward Siple Station and Byrd to South Pole. In addition to the bedrock record that identifies a number of new regions of

  16. Tropospheric water vapor imaging by combination of ground-based and spaceborne GNSS sounding data

    NASA Astrophysics Data System (ADS)

    Foelsche, Ulrich; Kirchengast, Gottfried

    2001-11-01

    The Global Navigation Satellite System (GNSS) comprises the U.S. system GPS (Global Positioning System), its Russian pendant GLONASS, and presumably, in the future, the European system Galileo. The potential of GNSS-based phase delay measurements for accurately estimating vertically and slant-path-integrated water vapor has been demonstrated recently for radio links between GPS satellites and ground-based GPS receivers. GNSS-based radio occultation, on the other hand, has been demonstrated via the GPS/Meteorology experiment to deliver accurate near-vertical profiles of atmospheric variables such as temperature and humidity with high vertical resolution. Height-resolving imaging of atmospheric water vapor becomes feasible when occultation profiles from spaceborne receivers in Low Earth Orbits (LEO) are combined with ground-based GNSS data from a colocated receiver network. We developed a two-dimensional, height-resolving tomographic imaging technique following the Bayesian approach for optimal combination of information from different sources. Using simulated GNSS-based water vapor measurements from LEO and ground, we show representative results derived from simple synthetic refractivity fields as well as from a realistic refractivity field based on a European Centre for Medium-Range Weather Forecasts (ECMWF) analysis. For cases located poleward of ˜40° we found a new simple mapping function to perform best within our forward model scheme, where the only free parameter is the climatological scale height in the troposphere, the exact value of which is not critical. The mapping function exploits the ratio between the straight-line ray path length within the first two scale heights above surface and the "effective height" defined by these first two scale heights. We found our technique capable of reconstructing atmospheric features like water vapor maxima near the top of the trade wind inversion. Adjustment of the integral over the water vapor profile measurements to

  17. KEPLER AND GROUND-BASED TRANSITS OF THE EXO-NEPTUNE HAT-P-11b

    SciTech Connect

    Deming, Drake; Jackson, Brian; Jennings, Donald E.; Sada, Pedro V.; Peterson, Steven W.; Haase, Flynn; Bays, Kevin; Agol, Eric; Knutson, Heather A.

    2011-10-10

    We analyze 26 archival Kepler transits of the exo-Neptune HAT-P-11b, supplemented by ground-based transits observed in the blue (B band) and near-IR (J band). Both the planet and host star are smaller than previously believed; our analysis yields R{sub p} = 4.31 R{sub +} {+-} 0.06 R{sub +} and R{sub s} = 0.683 R{sub sun} {+-} 0.009 R{sub sun}, both about 3{sigma} smaller than the discovery values. Our ground-based transit data at wavelengths bracketing the Kepler bandpass serve to check the wavelength dependence of stellar limb darkening, and the J-band transit provides a precise and independent constraint on the transit duration. Both the limb darkening and transit duration from our ground-based data are consistent with the new Kepler values for the system parameters. Our smaller radius for the planet implies that its gaseous envelope can be less extensive than previously believed, being very similar to the H-He envelope of GJ 436b and Kepler-4b. HAT-P-11 is an active star, and signatures of star spot crossings are ubiquitous in the Kepler transit data. We develop and apply a methodology to correct the planetary radius for the presence of both crossed and uncrossed star spots. Star spot crossings are concentrated at phases -0.002 and +0.006. This is consistent with inferences from Rossiter-McLaughlin measurements that the planet transits nearly perpendicular to the stellar equator. We identify the dominant phases of star spot crossings with active latitudes on the star, and infer that the stellar rotational pole is inclined at about 12{sup 0} {+-} 5{sup 0} to the plane of the sky. We point out that precise transit measurements over long durations could in principle allow us to construct a stellar Butterfly diagram to probe the cyclic evolution of magnetic activity on this active K-dwarf star.

  18. Four years of ground-based total ozone measurements by visible spectrometry in Antarctica

    NASA Technical Reports Server (NTRS)

    Goutail, F.; Pommereau, J. P.; Sarkissian, A.

    1994-01-01

    Visible spectrometers SAOZ have been developed at Service d'Aeronomie for permanent ground-based ozone monitoring at all latitudes up to the polar circle in winter. Observations are made by looking at the sunlight scattered at zenith in the visible range, twice a day, at sunrise and sunset. Compared to ozone observations in the UV generally in use, visible observations in the small Chappuis bands at twilight have the advantages of being independent of stratospheric temperature, little contaminated by tropospheric ozone and multiple scattering, and of permitting observations even in winter at the polar circle. SAOZ instruments have been installed since 1988 at several stations in the Antarctic and the Arctic. More than four years data at Dumont d'Urville in Terre Adelie (67 deg S) are now available. The station is generally located at the edge of the vortex in spring and therefore the ozone hole is seen there only occasionally. The lowest values (140 DU) were reported in early October 1991. According to these first regular observations throughout the whole winter ozone seems to increase in late autumn and winter. Its decay does not start before the end of August. Although of smaller amplitude than with the previous version five data, the ratio between the groundbased and satellite/TOMS measurements displays a systematic seasonal variation correlated partly to the sun zenith angle of observations from orbit and partly to the temperature of the stratosphere. Since ground-based measurements are always made at 90 deg SZA, the SZA dependence must come from the satellite data interpretation (TOMS observations are between 43 to 88 deg SZA). The temperature dependence could be partly due to variations of ozone absorption cross-sections in the ultraviolet used by the satellite spectrometer, and partly to a systematic seasonal cycle of the air mass factor use in the interpretation of the ground based observations. However, the last contribution appears to be too small to

  19. System-level view of geospace dynamics: Challenges for high-latitude ground-based observations

    NASA Astrophysics Data System (ADS)

    Donovan, E.

    2014-12-01

    Increasingly, research programs including GEM, CEDAR, GEMSIS, GO Canada, and others are focusing on how geospace works as a system. Coupling sits at the heart of system level dynamics. In all cases, coupling is accomplished via fundamental processes such as reconnection and plasma waves, and can be between regions, energy ranges, species, scales, and energy reservoirs. Three views of geospace are required to attack system level questions. First, we must observe the fundamental processes that accomplish the coupling. This "observatory view" requires in situ measurements by satellite-borne instruments or remote sensing from powerful well-instrumented ground-based observatories organized around, for example, Incoherent Scatter Radars. Second, we need to see how this coupling is controlled and what it accomplishes. This demands quantitative observations of the system elements that are being coupled. This "multi-scale view" is accomplished by networks of ground-based instruments, and by global imaging from space. Third, if we take geospace as a whole, the system is too complicated, so at the top level we need time series of simple quantities such as indices that capture important aspects of the system level dynamics. This requires a "key parameter view" that is typically provided through indices such as AE and DsT. With the launch of MMS, and ongoing missions such as THEMIS, Cluster, Swarm, RBSP, and ePOP, we are entering a-once-in-a-lifetime epoch with a remarkable fleet of satellites probing processes at key regions throughout geospace, so the observatory view is secure. With a few exceptions, our key parameter view provides what we need. The multi-scale view, however, is compromised by space/time scales that are important but under-sampled, combined extent of coverage and resolution that falls short of what we need, and inadequate conjugate observations. In this talk, I present an overview of what we need for taking system level research to its next level, and how

  20. Ground-based Network and Supersite Measurements for Studying Aerosol Properties and Aerosol-Cloud Interactions

    NASA Technical Reports Server (NTRS)

    Tsay, Si-Chee; Holben, Brent N.

    2008-01-01

    From radiometric principles, it is expected that the retrieved properties of extensive aerosols and clouds from reflected/emitted measurements by satellite (and/or aircraft) should be consistent with those retrieved from transmitted/emitted radiance observed at the surface. Although space-borne remote sensing observations contain large spatial domain, they are often plagued by contamination of surface signatures. Thus, ground-based in-situ and remote-sensing measurements, where signals come directly from atmospheric constituents, the sun, and the Earth-atmosphere interactions, provide additional information content for comparisons that confirm quantitatively the usefulness of the integrated surface, aircraft, and satellite datasets. The development and deployment of AERONET (AErosol RObotic NETwork) sunphotometer network and SMART-COMMIT (Surface-sensing Measurements for Atmospheric Radiative Transfer - Chemical, Optical & Microphysical Measurements of In-situ Troposphere) mobile supersite are aimed for the optimal utilization of collocated ground-based observations as constraints to yield higher fidelity satellite retrievals and to determine any sampling bias due to target conditions. To characterize the regional natural and anthropogenic aerosols, AERONET is an internationally federated network of unique sunphotometry that contains more than 250 permanent sites worldwide. Since 1993, there are more than 480 million aerosol optical depth observations and about 15 sites have continuous records longer than 10 years for annual/seasonal trend analyses. To quantify the energetics of the surface-atmosphere system and the atmospheric processes, SMART-COMMIT instrument into three categories: flux radiometer, radiance sensor and in-situ probe. Through participation in many satellite remote-sensing/retrieval and validation projects over eight years, SMART-COMMIT have gradually refine( and been proven vital for field deployment. In this paper, we will demonstrate the

  1. Ground-based acoustic parametric generator impact on the atmosphere and ionosphere in an active experiment

    NASA Astrophysics Data System (ADS)

    Rapoport, Yuriy G.; Cheremnykh, Oleg K.; Koshovy, Volodymyr V.; Melnik, Mykola O.; Ivantyshyn, Oleh L.; Nogach, Roman T.; Selivanov, Yuriy A.; Grimalsky, Vladimir V.; Mezentsev, Valentyn P.; Karataeva, Larysa M.; Ivchenko, Vasyl. M.; Milinevsky, Gennadi P.; Fedun, Viktor N.; Tkachenko, Eugen N.

    2017-01-01

    We develop theoretical basics of active experiments with two beams of acoustic waves, radiated by a ground-based sound generator. These beams are transformed into atmospheric acoustic gravity waves (AGWs), which have parameters that enable them to penetrate to the altitudes of the ionospheric E and F regions where they influence the electron concentration of the ionosphere. Acoustic waves are generated by the ground-based parametric sound generator (PSG) at the two close frequencies. The main idea of the experiment is to design the output parameters of the PSG to build a cascade scheme of nonlinear wave frequency downshift transformations to provide the necessary conditions for their vertical propagation and to enable penetration to ionospheric altitudes. The PSG generates sound waves (SWs) with frequencies f1 = 600 and f2 = 625 Hz and large amplitudes (100-420 m s-1). Each of these waves is modulated with the frequency of 0.016 Hz. The novelty of the proposed analytical-numerical model is due to simultaneous accounting for nonlinearity, diffraction, losses, and dispersion and inclusion of the two-stage transformation (1) of the initial acoustic waves to the acoustic wave with the difference frequency Δf = f2 - f1 in the altitude ranges 0-0.1 km, in the strongly nonlinear regime, and (2) of the acoustic wave with the difference frequency to atmospheric acoustic gravity waves with the modulational frequency in the altitude ranges 0.1-20 km, which then reach the altitudes of the ionospheric E and F regions, in a practically linear regime. AGWs, nonlinearly transformed from the sound waves, launched by the two-frequency ground-based sound generator can increase the transparency of the ionosphere for the electromagnetic waves in HF (MHz) and VLF (kHz) ranges. The developed theoretical model can be used for interpreting an active experiment that includes the PSG impact on the atmosphere-ionosphere system, measurements of electromagnetic and acoustic fields, study of

  2. Overview and Initial Results from the DEEPWAVE Airborne and Ground-Based Measurement Program

    NASA Astrophysics Data System (ADS)

    Fritts, D. C.

    2015-12-01

    The deep-propagating gravity wave experiment (DEEPWAVE) was performed on and over New Zealand, the Tasman Sea, and the Southern Ocean with core airborne measurements extending from 5 June to 21 July 2014 and supporting ground-based measurements spanning a longer interval. The NSF/NCAR GV employed standard flight-level measurements and new airborne lidar and imaging measurements of gravity waves (GWs) from sources at lower altitudes throughout the stratosphere and into the mesosphere and lower thermosphere (MLT). The new GV lidars included a Rayleigh lidar measuring atmospheric density and temperature from ~20-60 km and a sodium resonance lidar measuring sodium density and temperature at ~75-105 km. An airborne Advanced Mesosphere Temperature Mapper (AMTM) and two IR "wing" cameras imaged the OH airglow temperature and/or intensity fields extending ~900 km across the GV flight track. The DLR Falcon was equipped with its standard flight-level instruments and an aerosol Doppler lidar measuring radial winds below the Falcon. DEEPWAVE also included extensive ground-based measurements in New Zealand, Tasmania, and Southern Ocean Islands. DEEPWAVE performed 26 GV flights and 13 Falcon flights, and ground-based measurements occurred whether or not the aircraft were flying. Collectively, many diverse cases of GW forcing, propagation, refraction, and dissipation spanning altitudes of 0-100 km were observed. Examples include strong mountain wave (MW) forcing and breaking in the lower and middle stratosphere, weak MW forcing yielding MW penetration into the MLT having very large amplitudes and momentum fluxes, MW scales at higher altitudes ranging from ~10-250 km, large-scale trailing waves from orography refracting into the polar vortex and extending to high altitudes, GW generation by deep convection, large-scale GWs arising from jet stream sources, and strong MWs in the MLT arising from strong surface flow over a small island. DEEPWAVE yielded a number of surprises, among

  3. The Application of Millimeter Wave Spectroscopy to Ground-Based Remote Sensing of the Atmosphere

    NASA Astrophysics Data System (ADS)

    Ryan, Niall J.

    A new ground-based millimeter wave radiometer, SṔEIR, was designed as part of an observation system to detect and monitor ozone-related trace gases in the Arctic stratosphere. SṔEIR is designed to operate in the frequency range 265-280 GHz and measure the atmospheric spectra of ozone, nitrous oxide, nitric acid, and chlorine monoxide, from which vertical profiles of the gas concentrations can be retrieved. The observation system was characterised and simulated to determine its capability while operating at its intended location at Eureka, Nunavut (80°N). The altitude ranges and resolution of the retrieved profiles were determined, as well as the most significant sources of error in the profile of each gas. Optimal estimation statistics were compared to inversions of 500 simulated spectra. The results are in good agreement but showed that nonlinearities in the forward model, if not accounted for, can cause errors of 5- 10% when constructing climatologies or analyzing trends with the trace gas profiles. A sensitivity study was performed to quantify the effects that uncertainties in the spectral parameters of molecules have on ground-based measurements at 265-280 GHz, and recommendations are made for new laboratory measurements. An inversion scheme was created to retrieve ozone profiles from measurements made by KIMRA (Kiruna Microwave Radiometer) and MIRA 2 (Millimeter Wave Radiometer 2), two ground-based millimeter wave radiometers in Kiruna, Sweden (68°N). The resulting profiles in winter/spring 2012/2013 were compared to each other, and to those from ozonesondes and the satellite instrument Aura MLS (Microwave Limb Sounder). The Kiruna instruments are biased low compared to the ozonesondes and generally agree with MLS. A significant oscillatory bias was found in KIMRA profiles and is attributed to standing wave features in the spectral measurements. Winter-time KIMRA ozone from 2008-2013 was used to investigate the natural variability of ozone above Kiruna

  4. The Application of Millimeter Wave Spectroscopy to Ground-Based Remote Sensing of the Atmosphere

    NASA Astrophysics Data System (ADS)

    Ryan, Niall J.

    A new ground-based millimeter wave radiometer, SPEIR, was designed as part of an observation system to detect and monitor ozone-related trace gases in the Arctic stratosphere. SPEIR is designed to operate in the frequency range 265--280 GHz and measure the atmospheric spectra of ozone, nitrous oxide, nitric acid, and chlorine monoxide, from which vertical profiles of the gas concentrations can be retrieved. The observation system was characterised and simulated to determine its capability while operating at its intended location at Eureka, Nunavut (80°N). The altitude ranges and resolution of the retrieved profiles were determined, as well as the most significant sources of error in the profile of each gas. Optimal estimation statistics were compared to inversions of 500 simulated spectra. The results are in good agreement but showed that nonlinearities in the forward model, if not accounted for, can cause errors of 5--10% when constructing climatologies or analyzing trends with the trace gas profiles. A sensitivity study was performed to quantify the effects that uncertainties in the spectral parameters of molecules have on ground-based measurements at 265--280 GHz, and recommendations are made for new laboratory measurements. An inversion scheme was created to retrieve ozone profiles from measurements made by KIMRA (Kiruna Microwave Radiometer) and MIRA 2 (Millimeter Wave Radiometer 2), two ground-based millimeter wave radiometers in Kiruna, Sweden (68°N). The resulting profiles in winter/spring 2012/2013 were compared to each other, and to those from ozonesondes and the satellite instrument Aura MLS (Microwave Limb Sounder). The Kiruna instruments are biased low compared to the ozonesondes and generally agree with MLS. A significant oscillatory bias was found in KIMRA profiles and is attributed to standing wave features in the spectral measurements. Winter-time KIMRA ozone from 2008--2013 was used to investigate the natural variability of ozone above Kiruna. A

  5. Some validation results of orbital and ground based CO and CH4 total content measurements in background and industrial regions

    NASA Astrophysics Data System (ADS)

    Rakitin, Vadim; Shtabkin, Yury; Elansky, Nikolai; Skorokhod, Andrey; Safronov, Alexandr; Dzhola, Anatoly

    2015-04-01

    The results of ground-based spectroscopic measurements of CO and CH4 total content (TC) in Moscow, Zvenigorod (53 km toward West from the Moscow center), ZOTTO station (Central Siberia) and Beijing (China) during 2010-2014 years for conditions of typical and anomalous emission rates are presented and compared with satellite TC data (the latest versions of MOPITT, AIRS, IASI products). The empiric coefficients and relationships between data of ground-based and satellite CO and CH4 total contents (TC) are discussed. The comparison demonstrated a good agreement (R2 ~ 0.6-0.9) of satellite and ground-based CO TC data in low pollution conditions and systematic underestimation of satellite CO TC (150-300 %) in condition of intense surface emissions (events of wild fires in Siberia in 2011-2012 and strong atmospheric pollutions in Beijing). The best correlation (R2 ~ 0.4) for polluted conditions of Beijing was obtained in summer time-period for averaged AIRS v.6 CO TC data for 1o*1o grid, but K=Ugrb/Ustl = 2.5, where Ugrb and Ustlare ground based and satellite diurnal TC values relatively. Under excluding of the days with low ABL heights (HABL ≥1000m selection) the correlation between satellite and ground based CO TC diurnal data increases (R2 ~ 0.7, K=1.5). Orbital AIRS CH4 total columns good enough correlate with ground-based data (R2 ~0.4-0.7). IASI CH4TC diurnal data have no correlation with AIRS and ground-based TC.

  6. A flexible flight display research system using a ground-based interactive graphics terminal

    NASA Technical Reports Server (NTRS)

    Hatfield, J. J.; Elkins, H. C.; Batson, V. M.; Poole, W. L.

    1975-01-01

    Requirements and research areas for the air transportation system of the 1980 to 1990's were reviewed briefly to establish the need for a flexible flight display generation research tool. Specific display capabilities required by aeronautical researchers are listed and a conceptual system for providing these capabilities is described. The conceptual system uses a ground-based interactive graphics terminal driven by real-time radar and telemetry data to generate dynamic, experimental flight displays. These displays are scan converted to television format, processed, and transmitted to the cockpits of evaluation aircraft. The attendant advantages of a Flight Display Research System (FDRS) designed to employ this concept are presented. The detailed implementation of an FDRS is described. The basic characteristics of the interactive graphics terminal and supporting display electronic subsystems are presented and the resulting system capability is summarized. Finally, the system status and utilization are reviewed.

  7. Determination of mixing-layer height by ground-based remote sensing

    NASA Astrophysics Data System (ADS)

    Emeis, S.; Schäfer, K.; Münkel, C.

    2009-09-01

    Different ground-based remote sensing methods are today available to profile the boundary-layer and to derive such information as vertical layering and mixing-layer height (MLH). A SODAR detects the vertical profile of temperature fluctuations and gradients. By an algorithm which uses the acoustic backscatter intensity and the variance of the vertical velocity component estimates of the MLH can be made. A ceilometer detects the vertical distribution of aerosol particles and water droplets. By an algorithm which uses the vertical gradient of the optical backscatter intensity estimates of the MLH can be made. A RASS directly detects the vertical temperature profile and therefore allows for a direct measurement of MLH by analysing the vertical temperature gradient. In this presentation MLH determination from all three instruments will be compared and a few applications in the fields of air quality and wind energy will be presented. Limitations and restrictions of the different methods will be discussed.

  8. First measurements of the Twomey indirect effect using ground-based remote sensors

    NASA Astrophysics Data System (ADS)

    Feingold, Graham; Eberhard, Wynn L.; Veron, Dana E.; Previdi, Michael

    2003-03-01

    We demonstrate first measurements of the aerosol indirect effect using ground-based remote sensors at a continental US site. The response of nonprecipitating, ice-free clouds to changes in aerosol loading is quantified in terms of a relative change in cloud-drop effective radius for a relative change in aerosol extinction under conditions of equivalent cloud liquid water path. This is done in a single column of air at a temporal resolution of 20 s (spatial resolution of ~100 m). Cloud-drop effective radius is derived from a cloud radar and microwave radiometer. Aerosol extinction is measured below cloud base by a Raman lidar. Results suggest that aerosols associated with maritime or northerly air trajectories tend to have a stronger effect on clouds than aerosols associated with northwesterly trajectories that also have local influence. There is good correlation (0.67) between the cloud response and a measure of cloud turbulence.

  9. An advanced hypervelocity aerophysics facility - A ground-based flight-test range

    NASA Technical Reports Server (NTRS)

    Witcofski, R. D.; Scallion, W. I.; Carter, D. J., Jr.; Courter, R. W.

    1991-01-01

    The paper discusses a concept for a ground-based flight-test facility, a large aeroballistic range capable of launching models large enough to permit the installation of significant amounts of onboard instrumentation. The large model size would also provide thick shock/boundary layers, thus providing the opportunity to measure flow-field properties via advanced offboard diagnostics. Current fabrication technology should permit the construction of a two-stage light-gas gun capable of accelerating 20 to 25 cm diameter models to velocities on the order of 6 km/sec. An electromagnetic launcher or a ram accelerator is considered as a potential means for achieving larger model sizes and/or greater launch velocities. Possible methods for obtaining and recording data are discussed as are the test chamber and model deceleration section requirements.

  10. Remote and ground-based measurements of ozone profiles during the MAP/GLOBUS 1983 campaign

    NASA Astrophysics Data System (ADS)

    de La Noe, J.; Brillet, J.; Turati, C.; Megie, G.; Godin, S.

    1987-05-01

    Ozone observations were carried out during the MAP/GLOBUS campaign in September 1983 by five ground-based instruments located either at the Observatoire de Haute-Provence (the Dobson spectrophotometer, the IR SISAM spectrometer, and the UV Lidar) the Bordeaux Observatory (a microwave spectrometer), or at the Biscarosse station (another Dobson spectrophotometer). A balloon-borne microwave spectrometer was flown from Aire-sur-l'Adour on September 28. A brief description of the instruments is given. Results obtained by the different instruments are also given. Their comparison is done first with respect to the ozone content over the whole month of September, then within layers 4, 5 and part of 6 for which Brewer-Mast sonde measurements were included, and finally for vertical profiles at altitudes higher than 30 km. Most comparisons show a good agreement, in general within 5 percent on the average.

  11. Airborne and ground based lidar measurements of the atmospheric pressure profile

    NASA Technical Reports Server (NTRS)

    Korb, C. Laurence; Schwemmer, Geary K.; Dombrowski, Mark; Weng, Chi Y.

    1989-01-01

    The first high accuracy remote measurements of the atmospheric pressure profile have been made. The measurements were made with a differential absorption lidar system that utilizes tunable alexandrite lasers. The absorption in the trough between two lines in the oxygen A-band near 760 nm was used for probing the atmosphere. Measurements of the two-dimensional structure of the pressure field were made in the troposphere from an aircraft looking down. Also, measurements of the one-dimensional structure were made from the ground looking up. Typical pressure accuracies for the aircraft measurements were 1.5-2 mbar with a 30-m vertical resolution and a 100-shot average (20 s), which corresponds to a 2-km horizontal resolution. Typical accuracies for the upward viewing ground based measurements were 2.0 mbar for a 30-m resolution and a 100-shot average.

  12. Stress and Recovery Responses during a 105-day Ground-based Space Simulation.

    PubMed

    Nicolas, Michel; Gushin, Vadim

    2015-12-01

    The present study analysed the time course of the psychological process of stress and recovery in six healthy male volunteers during the Mars 105 experimentation, a 105-day ground-based space analogue. The multidimensional assessment of stress and recovery responses showed that stress levels decreased significantly throughout the 105-day isolated and confined extreme (ICE) experiment, especially on its social dimension. In line with previous studies, Fatigue showed a global and progressive reduction. The present results suggest that ICE exposure may not systematically induce stress overload and impaired psychological states. To optimize adaptation to ICE conditions, further improvements in positive psychological effects may be possible by improving the countermeasures, as well as the screening and selection of participants, in order to enhance coping capacities and to improve the balance of recovery-stress states.

  13. z'-BAND GROUND-BASED DETECTION OF THE SECONDARY ECLIPSE OF WASP-19b

    SciTech Connect

    Burton, J. R.; Watson, C. A.; Pollacco, D.; Littlefair, S. P.; Dhillon, V. S.; Gibson, N. P.; Marsh, T. R.

    2012-08-01

    We present the ground-based detection of the secondary eclipse of the transiting exoplanet WASP-19b. The observations were made in the Sloan z' band using the ULTRACAM triple-beam CCD camera mounted on the New Technology Telescope. The measurement shows a 0.088% {+-} 0.019% eclipse depth, matching previous predictions based on H- and K-band measurements. We discuss in detail our approach to the removal of errors arising due to systematics in the data set, in addition to fitting a model transit to our data. This fit returns an eclipse center, T{sub 0}, of 2455578.7676 HJD, consistent with a circular orbit. Our measurement of the secondary eclipse depth is also compared to model atmospheres of WASP-19b and is found to be consistent with previous measurements at longer wavelengths for the model atmospheres we investigated.

  14. Ground-based observations of atmospheric trace gases from 1995 to 2003

    NASA Astrophysics Data System (ADS)

    Oetjen, H.; Wittrock, F.; Fietkau, S.; Ladstätter-Weißenmayer, A.; Medeke, T.; Richter, A.; Burrows, J.

    2003-04-01

    This study presents ground-based measurements of atmospheric trace gases (ozone, NO2, BrO, HCHO and OClO) by means of UV/visible spectroscopy from 1995 to 2003. The measurements sites range from northern high latitudes (Ny-Ålesund, 79° N, 12°E) over mid-latitudes (Bremen, 53°N, 9°E) to equatorial regions (Nairobi, 1°S, 36° E). In 2002 all instruments have been substantially enhanced to use different line of sights close to the horizon as additional viewing geometries. With this MAX- DOAS (multi axis Differential Optical Absorption Spectroscopy) technique it is possible to derive profile information for the retrieved absorbers, which enables us to further investigate the consistency of trace column amounts derived from different platforms and/or from model calculations.

  15. Integrated ground-based and remotely sensed data to support global studies of environmental change

    SciTech Connect

    Olson, R.J.; Turner, R.S.; Garten, C.T.

    1994-09-15

    Data centers routinely archive and distribute large databases of high quality and with rigorous documentation but, to meet the needs of global studies effectively and efficiently, data centers must go beyond these traditional roles. Global studies of environmental change require integrated databases of multiple data types that are accurately coordinated in terms of spatial, temporal and thematic properties. Such datasets must be designed and developed jointly by scientific researchers, computer specialists, and policy analysts. The presentation focuses on our approach for organizing data from ground-based research programs so that the data can be linked with remotely sensed data and other map data into integrated databases with spatial, temporal, and thematic characteristics relevant to global studies. The development of an integrated database for Net Primary Productivity is described to illustrate the process.

  16. First Ground-based Observation of Transient Luminous Events over Southern Africa

    NASA Astrophysics Data System (ADS)

    Nnadih, Ogechukwu; Kosch, Michael; Martinez, Peter

    2016-07-01

    We present the first ground-based observations in southern Africa of Transient Luminous Events (TLEs) in the summer of 2015/16 over convective thunderstorms. For the months of December to February, South Africa has one of the highest lightning stroke rates in the world. This was part of the AfriSprite campaign initiated by the South African National Space Agency. These observations show a variety of fine structures such as tree-like shaped, carrot, angel and jellyfish-shaped sprites. The South African Weather Service array of VLF receivers is used to locate and quantify the magnitude and polarity of the lightning strikes associated with TLEs. We plan to make bi-static as well as multi-wavelength observations in future.

  17. Multispectral mapping of the lunar surface using ground-based telescopes

    NASA Technical Reports Server (NTRS)

    Mccord, T. B.; Feierberg, M. A.; Pieters, C.

    1976-01-01

    Images of the lunar surface were obtained at several wavelengths using a silicon vidicon imaging system and ground-based telescopes. These images were recorded and processed in digital form so that quantitative information was preserved. The photometric precision of the images is shown to be better than 1%. Ratio images calculated by dividing images obtained at two wavelengths (0.40/0.56 and 0.95/0.56 microns) are presented for about 50% of the lunar frontside. Spatial resolution is about 2 km at the subearth point. A complex of distinct units is evident in the images. Earlier work with the reflectance spectrum of lunar materials indicates that, for the most part, these units are compositionally distinct.

  18. Instruments, Detectors and the Future of Astronomy with Large Ground Based Telescopes

    NASA Astrophysics Data System (ADS)

    Simons, Douglas A.; Amico, Paola; Baade, Dietrich; Barden, Sam; Campbell, Randall; Finger, Gert; Gilmore, Kirk; Gredel, Roland; Hickson, Paul; Howell, Steve; Hubin, Norbert; Kaufer, Andreas; Kohley, Ralf; MacQueen, Philip; Markelov, Sergej; Merrill, Mike; Miyazaki, Satoshi; Nakaya, Hidehiko; O'Donoghue, Darragh; Oliva, Tino; Richichi, Andrea; Salmon, Derrick; Schmidt, Ricardo; Su, Hongjun; Tulloch, Simon; García Vargas, Maria Luisa; Wagner, R. Mark; Wiecha, Olivier; Ye, Binxun

    2005-01-01

    Results of a survey of instrumentation and detector systems, either currently deployed or planned for use at telescopes larger than 3.5 m, in ground based observatories world-wide, are presented. This survey revealed a number of instrumentation design trends at optical, near, and mid-infrared wavelengths. Some of the most prominent trends include the development of vastly larger optical detector systems (> 109 pixels) than anything built to date, and the frequent use of mosaics of near-infrared detectors - something that was quite rare only a decade ago in astronomy. Some future science applications for detectors are then explored, in an attempt to build a bridge between current detectors and what will be needed to support the research ambitions of astronomers in the future.

  19. Future Ground-Based Solar System Research: a Prospective Workshop Summary

    NASA Astrophysics Data System (ADS)

    Boehnhardt, H.; Käufl, H. U.

    2009-09-01

    The article tries to provide a perspective summary of the planetary science to be performed with future extremely large telescopes (ELTs) as an outcome of the workshop on ‘Future Ground-based Solar System Research: Synergies between Space Probes and Space Telescopes’ held on 8-12 September 2008 in Portoferraio on Isola d’ Elba, Italy. It addresses science cases on solar system objects that might challenge the capabilities of ELTs and that provide a major step forward in the knowledge and understanding of planetary system objects per se and all populations. We also compile high-level requirements for such telescopes and their instrumentation that should enable successful ELT usage for research on objects in the Solar System, the ‘disturbing foreground to real astronomy’.

  20. (21) Lutetia spectrophotometry from Rosetta-OSIRIS images and comparison to ground-based observations

    NASA Astrophysics Data System (ADS)

    Magrin, S.; La Forgia, F.; Pajola, M.; Lazzarin, M.; Massironi, M.; Ferri, F.; da Deppo, V.; Barbieri, C.; Sierks, H.; Osiris Team

    2012-06-01

    Here we present some preliminary results on surface variegation found on (21) Lutetia from ROSETTA-OSIRIS images acquired on 2010-07-10. The spectrophotometry obtained by means of the two cameras NAC and WAC (Narrow and Wide Angle Cameras) is consistent with ground based observations, and does not show surface diversity above the data error bars. The blue and UV images (shortward 500 nm) may, however, indicate a variegation of the optical properties of the asteroid surface on the Baetica region (Sierks et al., 2011). We also speculate on the contribution due to different illumination and to different ground properties (composition or, more probably, grain size diversity). In particular a correlation with geologic units independently defined by Massironi et al. (2012) is evident, suggesting that the variegation of the ground optical properties is likely to be real.

  1. Comparison of total ozone amounts derived from satellite and ground-based measurements

    NASA Technical Reports Server (NTRS)

    Planet, Walter G.; Miller, Alvin J.; Angell, James K.

    1988-01-01

    Total ozone amounts derived from the NOAA operational sounder (TOVS) are compared to measurements from Nimbus-7 SBUV and ground-based Dobson spectrophotometer observations over a seven-year period. The global trends of the data, in terms of deviations from long-term averages, derived from measurements by each satellite instrument show qualitative agreement until mid-1984 when the data diverge with the TOVS-derived data showing higher values. Additionally, more significant differences appear in both the north and south temperate zones' records. The trends derived from the satellite systems' measurements also show differences from that of the Dobson instrument measurements with the trend of the TOVS measurements showing generally better overall agreement with the Dobson data record.

  2. Guide for inservice inspection of ground-based pressure vessels and systems

    NASA Technical Reports Server (NTRS)

    1976-01-01

    This guide includes recommendations for inservice inspection and recertification of ground based, unfired pressure vessels and all pressurized systems including those served by fired pressure vessels hereinafter referred to as pressure vessels, systems and components of systems. It covers the vast array of pound based industrial and special purpose pressurized components and systems used at NASA field installations for research and development and those utility systems and components that require more than routine maintenance to insure continued structural integrity for their useful life. Through surveillance and correction of inservice deterioration, NASA will maintain a safe working environment for their own and contractor personnel, safety for the public sector and protection against loss of capital investment.

  3. Noctilucent clouds: modern ground-based photographic observations by a digital camera network.

    PubMed

    Dubietis, Audrius; Dalin, Peter; Balčiūnas, Ričardas; Černis, Kazimieras; Pertsev, Nikolay; Sukhodoev, Vladimir; Perminov, Vladimir; Zalcik, Mark; Zadorozhny, Alexander; Connors, Martin; Schofield, Ian; McEwan, Tom; McEachran, Iain; Frandsen, Soeren; Hansen, Ole; Andersen, Holger; Grønne, Jesper; Melnikov, Dmitry; Manevich, Alexander; Romejko, Vitaly

    2011-10-01

    Noctilucent, or "night-shining," clouds (NLCs) are a spectacular optical nighttime phenomenon that is very often neglected in the context of atmospheric optics. This paper gives a brief overview of current understanding of NLCs by providing a simple physical picture of their formation, relevant observational characteristics, and scientific challenges of NLC research. Modern ground-based photographic NLC observations, carried out in the framework of automated digital camera networks around the globe, are outlined. In particular, the obtained results refer to studies of single quasi-stationary waves in the NLC field. These waves exhibit specific propagation properties--high localization, robustness, and long lifetime--that are the essential requisites of solitary waves.

  4. A 14-day ground-based hypokinesia study in nonhuman primates: A compilation of results

    NASA Technical Reports Server (NTRS)

    Kazarian, L.; Cann, C. E.; Parfitt, M.; Simmons, D.; Morey-Holton, E.

    1981-01-01

    A 14 day ground based hypokinesia study with rhesus monkeys was conducted to determine if a spaceflight of similar duration might affect bone remodeling and calcium homeostatis. The monkeys were placed in total body casts and sacrificed either immediately upon decasting or 14 days after decasting. Changes in vertebral strength were noted and further deterioration of bone strength continued during the recovery phase. Resorption in the vertebrae increased dramatically while formation decreased. Cortical bone formation was impaired in the long bones. The immobilized animals showed a progressive decrease in total serum calcium which rebounded upon remobilization. Most mandibular parameters remained unchanged during casting except for retardation of osteon birth or maturation rate and density distribution of matrix and mineral moieties.

  5. Theory of plasma contactors in ground-based experiments and low earth orbit

    NASA Technical Reports Server (NTRS)

    Gerver, M. J.; Hastings, D. E.; Oberhardt, M. R.

    1990-01-01

    An examination of several models of electron collection by plasma contactors leads to a definition of the range of validity and applicability for each model. It is noted that most present ground-based experiments are of limited relevance to space applications of plasma contactors, since they operate in a regime where the magnetic field and effective collisions are at most only marginally important. An exception is the experiment of Stenzel and Urrutia (1986), which examined a plasma whose electron Larmor radius was small by comparison to the scale of the potential, and in which the anomalous transport of electrons across the magnetic field was important. The enhanced electron current was not continuous in time, but occurred in periodic bursts as the instabilities periodically emerged, saturated, and decayed.

  6. Quantifying greenhouse gas emissions from coal fires using airborne and ground-based methods

    USGS Publications Warehouse

    Engle, M.A.; Radke, L.F.; Heffern, E.L.; O'Keefe, J. M. K.; Smeltzer, C.D.; Hower, J.C.; Hower, J.M.; Prakash, A.; Kolker, A.; Eatwell, R.J.; ter, Schure A.; Queen, G.; Aggen, K.L.; Stracher, G.B.; Henke, K.R.; Olea, R.A.; Roman-Colon, Y.

    2011-01-01

    Coal fires occur in all coal-bearing regions of the world and number, conservatively, in the thousands. These fires emit a variety of compounds including greenhouse gases. However, the magnitude of the contribution of combustion gases from coal fires to the environment is highly uncertain, because adequate data and methods for assessing emissions are lacking. This study demonstrates the ability to estimate CO2 and CH4 emissions for the Welch Ranch coal fire, Powder River Basin, Wyoming, USA, using two independent methods: (a) heat flux calculated from aerial thermal infrared imaging (3.7-4.4td-1 of CO2 equivalent emissions) and (b) direct, ground-based measurements (7.3-9.5td-1 of CO2 equivalent emissions). Both approaches offer the potential for conducting inventories of coal fires to assess their gas emissions and to evaluate and prioritize fires for mitigation. ?? 2011.

  7. Dynamics of field-aligned currents reconstructed by the ground-based and satellite data

    NASA Astrophysics Data System (ADS)

    Nikolaeva, V. D.; Kotikov, A. L.; Sergienko, T. I.

    2014-09-01

    Parameters of field-aligned currents reconstructed by ground-based measurements of magnetic field in the Scandinavian countries (IMAGE) and ionospheric conductivity for specific events of the 6 and 8 December 2004 are represented here. Ionospheric conductivity was calculated from precipitating electron flux measured at DMSP-13 satellite and electron density EISCAT incoherent scattering radar direct measurements. There is a high correlation between field-aligned currents, calculated from DMSP-13 satellite data and field-aligned currents calculated from radar measurements for the December 6, 2004 in the presence of developed ionospheric current system. The comparison of field-aligned currents, reconstructed by the proposed method, with the currents calculated by the variation of magnetic field on the DMSP satellites, confirms correctness of the offered algorithm.

  8. Space debris removal by ground-based lasers: main conclusions of the European project CLEANSPACE.

    PubMed

    Esmiller, Bruno; Jacquelard, Christophe; Eckel, Hans-Albert; Wnuk, Edwin

    2014-11-01

    Studies show that the number of debris in low Earth orbit is exponentially growing despite future debris release mitigation measures considered. Specifically, the already existing population of small and medium debris (between 1 cm and several dozens of cm) is today a concrete threat to operational satellites. A ground-based laser solution which can remove, at low expense and in a nondestructive way, hazardous debris around selected space assets appears as a highly promising answer. This solution is studied within the framework of the CLEANSPACE project which is part of the FP7 space program. The overall CLEANSPACE objective is: to propose an efficient and affordable global system architecture, to tackle safety regulation aspects, political implications and future collaborations, to develop affordable technological bricks, and to establish a roadmap for the development and the future implantation of a fully functional laser protection system. This paper will present the main conclusions of the CLEANSPACE project.

  9. Space Weather Studies Using Ground-based Experimental Complex in Kazakhstan

    NASA Astrophysics Data System (ADS)

    Kryakunova, O.; Yakovets, A.; Monstein, C.; Nikolayevskiy, N.; Zhumabayev, B.; Gordienko, G.; Andreyev, A.; Malimbayev, A.; Levin, Yu.; Salikhov, N.; Sokolova, O.; Tsepakina, I.

    2015-12-01

    Kazakhstan ground-based experimental complex for space weather study is situated near Almaty. Results of space environment monitoring are accessible via Internet on the web-site of the Institute of Ionosphere (http://www.ionos.kz/?q=en/node/21) in real time. There is a complex database with hourly data of cosmic ray intensity, geomagnetic field intensity, and solar radio flux at 10.7 cm and 27.8 cm wavelengths. Several studies using those data are reported. They are an estimation of speed of a coronal mass ejection, a study of large scale traveling distrubances, an analysis of geomagnetically induced currents using the geomagnetic field data, and a solar energetic proton event on 27 January 2012.

  10. Brine shrimp development in space: ground-based data to shuttle flight results

    NASA Technical Reports Server (NTRS)

    Spooner, B. S.; DeBell, L.; Hawkins, L.; Metcalf, J.; Guikema, J. A.; Rosowski, J.

    1992-01-01

    The brine shrimp, Artemia salina, has been used as a model system to assess microgravity effects on developing organisms. Following fertilization and early development, the egg can arrest in early gastrula as a dehydrated cyst stage that is stable to harsh environments over long time periods. When salt water is added, the cysts can reactivate, with embryonic development and egg hatching occurring in about 24 h. A series of larval molts or instars, over about a 2 week period, results in the adult crustacean. We have assessed these developmental events in a closed syringe system, a bioprocessing module, in ground-based studies, and have conducted preliminary in-orbit experiments aboard the Space Shuttle Atlantis during the flights of STS-37 and STS-43. Although the in-flight data are limited, spectacular degrees of development have been achieved.

  11. Retrieval of Ozone Profile from Ground-Base Zenith Sky Measurements

    NASA Technical Reports Server (NTRS)

    Bhartia, P. K.; Petropavlovskikh, I.; Einaudi, Franco (Technical Monitor)

    2000-01-01

    In this talk I will discuss recent results from examining the information content in zenith sky UV (ZUV) measurements from ground for the retrieval of vertical ozone profile. Our results indicate that ZUV can provide high quality ozone profile from ground to 50 km at roughly 10 krn vertical resolution that can be used for the calibration of satellite instruments. However, to take advantage of this the instruments must be better calibrated and it is also necessary that the ground-based Brewer instruments are operated in a mode that is different from the routine operational mode. This will allow one to correct for instrument calibration drifts and to remove noise due to clouds and aerosols. A key technical issue is if the instrument can be reprogrammed to do so.

  12. Theoretical interpretation of the ground-based photometry of Saturn's B ring

    NASA Technical Reports Server (NTRS)

    Lumme, K.; Irvine, W. M.; Esposito, L. W.

    1983-01-01

    Small tilt angle photographic photometry obtained during 1979 and 1981 apparitions is combined with previous data to derive physical parameters for the Saturn B ring in red and blue colors. The value of the volume density is 0.020 + or - 0.004, with no indication of dependence on either the color or the tilt for values between 6 and 26 deg. For the geometric albedo of a single particle, the derived values of 0.61 + or - 0.04 in the red and 0.41 + or - 0.03 in the blue are superior to earlier estimates lacking the most recent data. The present results indicate that the ground-based photometry is fully consistent with the classical, many-particle-thick ring model.

  13. Comparison of On-Orbit and Ground Based Hollow Cathode Operation

    NASA Technical Reports Server (NTRS)

    Burke, Tom (Technical Monitor); Carpenter, Christian

    2003-01-01

    The Plasma Contactor Unit (PCU) was developed by the Rocketdyne division of Boeing to control charging of the International Space Station (ISS). Each PCU contains a Hollow Cathode Assembly (HCA), which emits the charge control electrons. The HCAs were designed and fabricated at NASA's Glenn Research Center (GRC). GRC's HCA development program included manufacture of engineering, qualification, and flight model HCAs as well as wear tests and qualification tests. GRC is currently tracking the on-orbit data for the flight HCAs. This data will be discussed with comparison to operating parameters verified by ground based HCA tests. The flight HCAs continue to operate flawlessly. The first unit has accumulated more than 3650 hours of on-orbit operation and the second unit has accumulated over 5550 hours.

  14. Ground-Based Validation of CCI Ozone Profile Climate Research Data Package Release 2015

    NASA Astrophysics Data System (ADS)

    Hubert, D.; Keppens, A.; Granville, J.; Verhoelst, T.; Lambert, J.-C.; Delcloo, A.; Hauchecorne, A.; Kivi, R.; Stubi, R.

    2016-08-01

    Validation is one of the cornerstones of ESA's Climate Change Initiative programme and of the Ozone_cci subproject in particular. Its objective is threefold: identification of the optimal retrieval algorithm for each instrument, characterisation of all products in the Climate Research Data Package, and assessment of their compliance with climate user requirements and specific research needs. We present the latest validation analyses and results of the ozone profile products (from limb- and nadir-viewing instruments) developed during the second phase of the Ozone_cci project: explorations of data content and information content, and comparisons of satellite data to ground-based reference observations. Ultimately, the validation conclusions are presented to data product users in the Product Validation and Intercomparison Report.

  15. Dynamical study of low Earth orbit debris collision avoidance using ground based laser

    NASA Astrophysics Data System (ADS)

    Khalifa, N. S.

    2015-06-01

    The objective of this paper was to investigate the orbital velocity changes due to the effect of ground based laser force. The resulting perturbations of semi-major axis, miss distance and collision probability of two approaching objects are studied. The analytical model is applied for low Earth orbit debris of different eccentricities and area to mass ratio and the numerical test shows that laser of medium power ∼5 kW can perform a small change Δ V ‾ of an average magnitude of 0.2 cm/s which can be accumulated over time to be about 3 cm/day. Moreover, it is confirmed that applying laser Δ V ‾ results in decreasing collision probability and increasing miss distance in order to avoid collision.

  16. Space debris removal using a high-power ground-based laser

    SciTech Connect

    Monroe, D.K.

    1993-08-01

    The feasibility of utilizing a ground-based laser without an orbital mirror for space debris removal is examined. Technical issues include atmospheric transmission losses, adaptive-optics corrections of wavefront distortions, laser field of view limitations, and laser-induced impulse generation. The physical constraints require a laser with megawatt output, long run-time capability, and wavelength with good atmospheric transmission characteristics. It is found that a 5-MW reactor-pumped laser can deorbit debris having masses of the order of one kilogram from orbital altitudes to be used by Space Station Freedom. Debris under one kilogram can be deorbited after one pass over the laser site, while larger debris can be deorbited or transferred to alternate orbits after multiple passes over the site.

  17. The Ground-based Electro-Optical Deep Space Surveillance /GEODSS/ system

    NASA Astrophysics Data System (ADS)

    Jeas, W. C.; Anctil, R.

    1981-11-01

    After an account of the four-site Baker-Nunn telescope system that was its forerunner, the Ground-based Electro-Optical Deep Space Surveillance (GEODSS) system is described with attention to its function, capabilities, and such system elements as its telescopes and their mounts, TV camera, automatic moving target indicator (AMTI), and software. GEODSS is a passive tracking system operating within the constraints of night skies and atmospheric conditions, and consists of two 40-inch aperture wide-field telescopes equipped with sensitive, low light level television cameras and radiometers that are coupled to signal processors and computerized system management. Satellite signal detection is by means of the sunlight reflected by objects as dim as 16.0 m and site locations are in New Mexico, South Korea, Diego Garcia and the Eastern Atlantic, providing overlapping sky coverage. Detection, observation and object orbit element maintenance extends to altitudes of 40,000 km.

  18. Perturbations of ionosphere-magnetosphere coupling by powerful VLF emissions from ground-based transmitters

    SciTech Connect

    Belov, A. S. Markov, G. A.; Ryabov, A. O.; Parrot, M.

    2012-12-15

    The characteristics of the plasma-wave disturbances stimulated in the near-Earth plasma by powerful VLF radiation from ground-based transmitters are investigated. Radio communication VLF transmitters of about 1 MW in power are shown to produce artificial plasma-wave channels (density ducts) in the near-Earth space that originate in the lower ionosphere above the disturbing emission source and extend through the entire ionosphere and magnetosphere of the Earth along the magnetic field lines. Measurements with the onboard equipment of the DEMETER satellite have revealed that under the action of emission from the NWC transmitter, which is one of the most powerful VLF radio transmitters, the generation of quasi-electrostatic (plasma) waves is observed on most of the satellite trajectory along the disturbed magnetic flux tube. This may probably be indicative of stimulated emission of a magnetospheric maser.

  19. Nova V2362 Cygni (Nova Cygni 2006): Spitzer, Swift, and Ground-Based Spectral Evolution

    NASA Technical Reports Server (NTRS)

    Lynch, David K.; Venturini, Catherine C.; Mazuk, S.; Woodward, Charles; Gehrz, Robert; Rayner, John; Helton, L.A.; Ness, Jan-Uwe; Starrfield, Sumner; Rudy, Richard J.; Russell, Ray W.; Osborne, Julian P.; Page, Kim; Pearson, Richard; Wagner, R. Mark; Puetter, Richard C.; Perry, Raleigh B.; Schwarz, Greg; Vanlandingham, Karen; Black, John; Bode, Michael; Evans, Aneurin; Geballe, Thomas; Greenhouse, Matthew; Hauschildt, Peter

    2008-01-01

    Nova V2362 Cygni has undergone a number of very unusual changes. Ground-based spectroscopy initially revealed a normal sequence of events: the object faded and its near-infrared emission lines gradually shifted to higher excitation conditions until about day 100 when the optical fading reversed and the object slowly brightened. This was accompanied by a rise in the Swift X-ray telescope flux and a sudden shift in excitation of the visible and IR spectrum back to low levels. The new lower excitation spectrum revealed broad line widths and many P-Cygni profiles, all indicative of the ejection of a second shell. Eventually, dust formed, the X-ray brightness -- apparently unaffected by dust formation -- peaked and then declined, and the object faded at all wavelengths. The Spitzer dust spectra revealed a number of solid-state emission features that, at this time, are not identified.

  20. Collecting, analyzing and archiving of ground based infrared solar spectra obtained from several locations

    NASA Technical Reports Server (NTRS)

    Murcray, David G.; Murcray, Frank J.; Goldman, Aaron; Mcelroy, Charles T.; Chu, William P.; Rinsland, Curtis P.; Woods, Peter; Matthews, W. A.; Johnston, P. V.

    1990-01-01

    The infrared solar spectrum as observed from the ground under high resolution contains thousands of absorption lines. The majority of these lines are due to compounds that are present in the Earth's atmosphere. Ground based infrared solar spectra contain information concerning the composition of the atmosphere at the time the spectra were obtained. The objective of this program is to record solar spectra from various ground locations, and to analyze and archive these spectra. The analysis consists of determining, for as many of the absorption lines as possible, the molecular species responsible for the absorption, and to verify that current models of infrared transmission match the observed spectra. Archiving is an important part of the program, since a number of the features in the spectra have not been identified. At some later time, when the features are identified, it will be possible to determine the amount of that compound that was present in the atmosphere at the time the spectrum was taken.

  1. Flight validation of ground-based assessment for control power requirements at high angles of attack

    NASA Technical Reports Server (NTRS)

    Ogburn, Marilyn E.; Ross, Holly M.; Foster, John V.; Pahle, Joseph W.; Sternberg, Charles A.; Traven, Ricardo; Lackey, James B.; Abbott, Troy D.

    1994-01-01

    A review is presented in viewgraph format of an ongoing NASA/U.S. Navy study to determine control power requirements at high angles of attack for the next generation high-performance aircraft. This paper focuses on recent flight test activities using the NASA High Alpha Research Vehicle (HARV), which are intended to validate results of previous ground-based simulation studies. The purpose of this study is discussed, and the overall program structure, approach, and objectives are described. Results from two areas of investigation are presented: (1) nose-down control power requirements and (2) lateral-directional control power requirements. Selected results which illustrate issues and challenges that are being addressed in the study are discussed including test methodology, comparisons between simulation and flight, and general lessons learned.

  2. Deep-space navigation applications of improved ground-based optical astrometry

    NASA Technical Reports Server (NTRS)

    Null, G. W.; Owen, W. M., Jr.; Synnott, S. P.

    1992-01-01

    Improvements in ground-based optical astrometry will eventually be required for navigation of interplanetary spacecraft when these spacecraft communicate at optical wavelengths. Although such spacecraft may be some years off, preliminary versions of the astrometric technology can also be used to obtain navigational improvements for the Galileo and Cassini missions. This article describes a technology-development and observational program to accomplish this, including a cooperative effort with U.S. Naval Observatory Flagstaff Station. For Galileo, Earth-based astrometry of Jupiter's Galilean satellites may improve their ephemeris accuracy by a factor of 3 to 6. This would reduce the requirements for onboard optical navigation pictures, so that more of the data transmission capability (currently limited by high-gain antenna deployment problems) can be used for science data. Also, observations of European Space Agency (ESA) Hipparcos stars with asteroid 243 Ida may provide significantly improved navigation accuracy for a planned August 1993 Galileo spacecraft encounter.

  3. Some requirements for the future giant low frequency ground based radio telescopes

    NASA Astrophysics Data System (ADS)

    Konovalenko, A. A.; Falkovich, I. S.; Gridin, A. A.; Lecheux, A.; Rosolen, C.; Rucker, H.

    2003-04-01

    During last years the interest to the low frequency radio astronomy is growing considerably. The projects of space-borne and ground-based new generation giant radio telescope (i.e. LOFAR) are discussed actively. The largest existing low frequency systems, at first, UTR-2 and URAN Ukraine) and NDA (France) are useful for the probing of new astrophysical ideas as well as of new technical approaches and requirements including future giant radio telescopes and solar system radio astronomy purposes. The 30 elements array with active dipoles was created on UTR-2 observatory for the test of some principal requirements. The investigations of the array confirmed the sensitivity, frequency range, interference immunity and low cost what need for the future instruments.

  4. Space- and Ground-Based Crystal Growth Using a Baffle (CGB)

    NASA Technical Reports Server (NTRS)

    Ostrogorsky, A. G.; Marin, C.; Peignier, T.; Duffar, T.; Volz, M.; Jeter, L.; Luz, P.

    2001-01-01

    The composition of semiconductor crystals produced in space by conventional melt-growth processes (directional solidification and zone melting) is affected by minute levels of residual micro-acceleration, which causes natural convection. The residual acceleration has random magnitude, direction and frequency. Therefore, the velocity field in the melt is apriori unpredictable. As a result, the composition of the crystals grown in space can not be predicted and reproduced. The method for directional solidification with a submerged heater or a baffle was developed under NASA sponsorship. The disk-shaped baffle acts as a partition, creating a small melt zone at the solid-liquid interface. As a result, in ground based experiment the level of buoyancy-driven convection at the interface is significantly reduced. In several experiments with Te-doped GaSb, nearly diffusion controlled segregation was achieved.

  5. Atmospheric turbulence and the resolution limits of large ground-based telescopes: Reply to comment

    SciTech Connect

    McKechnie, T.S.

    1993-11-01

    The highly resolved star images obtained with the 4-m Kitt Peak telescope have eluded explanation by conventional theory and yet are quite consistent with alternative predictions based on a smaller value of L{sub o}. Tatarskii and Zavorotny claim that conventional theory also can predict the images, but one notes that they do not actually give specific predictions to support their claim. Based on a mistaken assumption about the magnitude of rms wave-height variations, they conclude that there is no difference between a core and a bright speckle. Thus they may not recognize the enormous significance of cores to L{sub o} ground-based tracking and imaging at infrared wavelengths. 13 refs.

  6. Ground-based lidar beach topography of Fire Island, New York, April 2013

    USGS Publications Warehouse

    Brenner, Owen T.; Hapke, Cheryl J.; Spore, Nicholas J.; Brodie, Katherine L.; McNinch, Jesse E.

    2015-01-01

    The U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center in Florida and the U.S. Army Corps of Engineers Field Research Facility in Duck, North Carolina, collaborated to gather alongshore ground-based lidar beach elevation data at Fire Island, New York. This high-resolution elevation dataset was collected on April 10, 2013, to characterize beach topography following substantial erosion that occurred during Hurricane Sandy, which made landfall on October 29, 2012, and multiple, strong winter storms. The ongoing beach monitoring is part of the Hurricane Sandy Supplemental Project GS2-2B. This USGS data series includes the resulting processed elevation point data (xyz) and an interpolated digital elevation model (DEM).

  7. A search technique for planets in nearby binary stars using a ground-based interferometer

    NASA Astrophysics Data System (ADS)

    Traub, W. A.; Carleton, N. P.; Porro, I. L.

    1996-04-01

    A search for Jovian-type planets in 100 nearby binary stars could be carried out with the existing ground-based infrared-optical telescope array (IOTA) interferometer. We would study binaries with sufficiently great separation (25-50 AU; typical separation around 0.4 arcsec) that such a planet could be in a stable orbit about one member of the pair. The method is to measure the angular separation of stars in each binary, with a single-measurement accuracy sufficient to detect the amplitude of a Uranus orbiting one of the stars. The technique is based on an auxiliary device, the pupil-splitting interferometer (PSI), which substantially reduces systematic and random errors by converting a measurement of angular separation into a measurement of the differential optical delay between the two components of the binary. The program would be relatively economical, and could begin soon.

  8. Ground-based FTIR measurements of vertical column densities of several trace gases above Spitsbergen

    NASA Astrophysics Data System (ADS)

    Notholt, J.; Schrems, O.

    During the EASOE campaign ground-based FTIR measurements have been performed in March 1992 at Ny-Ålesund (Spitsbergen, 79°N, 12°E) to derive column amounts of several trace gases. For the first part of the measurement campaign Ny-Ålesund was situated inside the polar vortex. The obtained concentrations of N2O, CH4 and HF inside the vortex are consistent with subsidence. The ratio of HClstrat/HF varied from about 2.0 inside to about 2.8 outside the vortex. Inside the vortex low values for NO2 and high values for HNO3 were found. The O3 concentrations inside the vortex are slightly lower than what was observed outside the vortex.

  9. Space life sciences: ground-based iron-ion biology and physics, including shielding.

    PubMed

    2005-01-01

    This session of the 35th Scientific Assembly of COSPAR focuses on recent advances in ground-based studies of high-energy (mainly 1 GeV/nucleon) iron ions. The theme is interdisciplinary in nature and encompasses both physics and biology reports. Manned space missions, including those of the International Space Station and the planned Mars mission, will require the extended presence of crew members in space. As such, a better understanding in shielding design--in radiation detection as well as radio-protection based on simulating studies--is much needed. On the other hand, a better understanding of the basic mechanisms that modulate radiation sensitivity; in determining DNA double strand breaks, chromosomal aberrations, and the induction of apoptosis, will provide important information for an interventional approach.

  10. Chlorine oxide in the stratospheric ozone layer Ground-based detection and measurement

    NASA Technical Reports Server (NTRS)

    Parrish, A.; De Zafra, R. L.; Solomon, P. M.; Barrett, J. W.; Carlson, E. R.

    1981-01-01

    Stratospheric chlorine oxide, a significant intermediate product in the catalytic destruction of ozone by atomic chlorine, has been detected and measured by a ground-based 204 GHz, millimeter-wave receiver. Data taken at latitude 42 deg N on 17 days between January 10 and February 18, 1980 yield an average chlorine oxide column density of approximately 1.05 x 10 to the 14th/sq cm or approximately 2/3 that of the average of eight in situ balloon flight measurements (excluding the anomalously high data of July 14, 1977) made over the past four years at 32 deg N. Less chlorine oxide below 35 km and a larger vertical gradient than predicted by theoretical models of the stratospheric ozone layer are found.

  11. Ground based studies of the vibrational and rotational dynamics of acoustically levitated drops and shells

    NASA Technical Reports Server (NTRS)

    Trinh, E. H.; Leung, E.

    1990-01-01

    A substantial amount of experimental data can be gathered on the dynamics of acoustically positioned liquids in a ground-based laboratory and during short duration low-gravity parabolic flights of the KC-135. The preliminary results of a set of measurements of the static shape, of the vibrational spectrum, and the rotation equilibrium shapes of simple drops and liquid shells carried out using ultrasonic levitators working between 19 and 40 kHz is presented. The droplet diameter ranges between 1 and 5 mm, the surface tension of the liquid used varies between 25 and 70 dynes/cm, and the viscosity is changed between 1 to 1,000 cP. Of particular interest is the variation of the frequency of the fundamental mode of shape oscillation with various factors, and the effects of static drop shape deformation on the limit of stability of the axisymmetric shape of a drop in solid-body rotation.

  12. Ground-based testing of the dynamics of flexible space structures using band mechanisms

    NASA Technical Reports Server (NTRS)

    Yang, L. F.; Chew, Meng-Sang

    1991-01-01

    A suspension system based on a band mechanism is studied to provide the free-free conditions for ground based validation testing of flexible space structures. The band mechanism consists of a noncircular disk with a convex profile, preloaded by torsional springs at its center of rotation so that static equilibrium of the test structure is maintained at any vertical location; the gravitational force will be directly counteracted during dynamic testing of the space structure. This noncircular disk within the suspension system can be configured to remain unchanged for test articles with the different weights as long as the torsional spring is replaced to maintain the originally designed frequency ratio of W/k sub s. Simulations of test articles which are modeled as lumped parameter as well as continuous parameter systems, are also presented.

  13. Description of the Large Gap Magnetic Suspension System (LGMSS) ground-based experiment

    NASA Technical Reports Server (NTRS)

    Groom, Nelson J.

    1991-01-01

    A description of the Large Gap Magnetic Suspension System (LGMSS) ground-based experiment is presented. The LGMSS provides five degrees of freedom control of a cylindrical suspended element which is levitated above a floor-mounted array of air core electromagnets. The uncontrolled degree of freedom is rotation about the long axis of the cylinder (roll). Levitation and control forces are produced on a permanent magnet core which is embedded in the cylinder. The cylinder also contains light emitting diodes (LEDs), assorted electrons, and a power supply. The LEDs provide active targets for an optical position measurement system which is being developed in-house at the Langley Research Center. The optical position measurement system will provide six degrees of freedom position information for the LGMSS control system.

  14. Map-making for the Next Generation of Ground-based Submillimeter Instruments

    NASA Astrophysics Data System (ADS)

    Marsden, G.; Brazier, A.; Jenness, T.; Sayers, J.; Scott, D.

    2014-05-01

    Current ground-based submillimeter (submm) instruments (e.g. SCUBA-2, SHARC-2 and LABOCA) have hundreds to thousands of detectors, sampled at tens to hundreds of hertz, generating up to hundreds of gigabytes per night. Since noise is correlated between detectors and in time, due to atmospheric signals and temperature oscillations, naive map-making is not applicable. In addition, the size of the data sets makes direct likelihood based inversion techniques intractable. As a result, the data reduction approach for most current submm cameras is to adopt iterative methods in order to separate noise from sky signal, and hence effectively produce astronomical images. We investigate how today's map-makers scale to the next generation of instruments, which will have tens of thousands of detectors sampled at thousands of hertz, leading to data sets of challenging size. We propose strategies for reducing such large data sets.

  15. Retrievals of atmospheric variables on the gas giants from ground-based mid-infrared imaging

    NASA Astrophysics Data System (ADS)

    Fletcher, L. N.; Orton, G. S.; Yanamandra-Fisher, P.; Fisher, B. M.; Parrish, P. D.; Irwin, P. G. J.

    2009-03-01

    Thermal-infrared imaging of Jupiter and Saturn using the NASA/IRTF and Subaru observatories are quantitatively analyzed to assess the capabilities for reproducing and extending the zonal mean atmospheric results of the Cassini/CIRS experiment. We describe the development of a robust, systematic and reproducible approach to the acquisition and reduction of planetary images in the mid-infrared (7-25 μm), and perform an adaptation and validation of the optimal estimation, correlated- k retrieval algorithm described by Irwin et al. [Irwin, P., Teanby, N., de Kok, R., Fletcher, L., Howett, C., Tsang, C., Wilson, C., Calcutt, S., Nixon, C., Parrish, P., 2008. J. Quant. Spectrosc. Radiat. Trans. 109 (6), 1136-1150] for channel-integrated radiances. Synthetic spectral analyses and a comparison to Cassini results are used to verify our abilities to retrieve temperatures, haze opacities and gaseous abundances from filtered imaging. We find that ground-based imaging with a sufficiently high spatial resolution is able to reproduce the three-dimensional temperature and para-H 2 fields measured by spacecraft visiting Jupiter and Saturn, allowing us to investigate vertical wind shear, pressure and, with measured cloud-top winds, Ertel potential vorticity on potential temperature surfaces. Furthermore, by scaling vertical profiles of NH 3, PH 3, haze opacity and hydrocarbons as free parameters during thermal retrievals, we can produce meridional results comparable with CIRS spectroscopic investigations. This paper demonstrates that mid-IR imaging instruments operating at ground-based observatories have access to several dynamical and chemical diagnostics of the atmospheric state of the gas giants, offering the prospect for quantitative studies over much longer baselines and often covering much wider areas than is possible from spaceborne platforms.

  16. High Resolution Spectral Analysis of Hiss and Chorus Emissions in Ground Based Data

    NASA Astrophysics Data System (ADS)

    Hosseini Aliabad, S. P.; Golkowski, M.; Gibby, A. R.

    2015-12-01

    The dynamic evolution of the radiation belts is believed to be controlled in large part by two separate but related classes of naturally occurring plasma waves: ELF/VLF chorus and hiss emissions. Although whistler mode chorus has been extensively studied since the first reports by Storey in 1953, the source mechanism and properties are still subjects of active research. Moreover, the origin of plasmaspheric hiss, the electromagnetic emission believed to be responsible for the gap between the inner and outer radiation belts, has been debated for over four decades. Although these waves can be observed in situ on spacecraft, ground-based observing stations can provide orders of magnitude higher data volumes and decades long data coverage essential for certain long-term and statistical studies of wave properties. Recent observational and theoretical works suggest that high resolution analysis of the spectral features of both hiss and chorus emissions can provide insight into generation processes and be used to validate existing theories. Application of the classic Fourier (FFT) technique unfortunately yields a tradeoff between time and frequency resolution. In additional to Fourier spectra, we employ novel methods to make spectrograms with high time and frequency resolutions, independently using minimum variance distortionless response (MVDR). These techniques are applied to ground based data observations of hiss and chorus made in Alaska. Plasmaspheric hiss has been widely regarded as a broadband, structure less, incoherent emission. We quantify the extent to which plasmaspheric hiss can be a coherent emission with complex fine structure. Likewise, to date, researchers have differentiated between hiss and chorus coherency primarily using qualitative "naked eye" approaches to amplitude spectra. Using a quantitative approach to observed amplitude and we present more rigorous classification criteria for these emissions.

  17. Issues for Simulation of Galactic Cosmic Ray Exposures for Radiobiological Research at Ground-Based Accelerators.

    PubMed

    Kim, Myung-Hee Y; Rusek, Adam; Cucinotta, Francis A

    2015-01-01

    For radiobiology research on the health risks of galactic cosmic rays (GCR) ground-based accelerators have been used with mono-energetic beams of single high charge, Z and energy, E (HZE) particles. In this paper, we consider the pros and cons of a GCR reference field at a particle accelerator. At the NASA Space Radiation Laboratory (NSRL), we have proposed a GCR simulator, which implements a new rapid switching mode and higher energy beam extraction to 1.5 GeV/u, in order to integrate multiple ions into a single simulation within hours or longer for chronic exposures. After considering the GCR environment and energy limitations of NSRL, we performed extensive simulation studies using the stochastic transport code, GERMcode (GCR Event Risk Model) to define a GCR reference field using 9 HZE particle beam-energy combinations each with a unique absorber thickness to provide fragmentation and 10 or more energies of proton and (4)He beams. The reference field is shown to well represent the charge dependence of GCR dose in several energy bins behind shielding compared to a simulated GCR environment. However, a more significant challenge for space radiobiology research is to consider chronic GCR exposure of up to 3 years in relation to simulations with animal models of human risks. We discuss issues in approaches to map important biological time scales in experimental models using ground-based simulation, with extended exposure of up to a few weeks using chronic or fractionation exposures. A kinetics model of HZE particle hit probabilities suggests that experimental simulations of several weeks will be needed to avoid high fluence rate artifacts, which places limitations on the experiments to be performed. Ultimately risk estimates are limited by theoretical understanding, and focus on improving knowledge of mechanisms and development of experimental models to improve this understanding should remain the highest priority for space radiobiology research.

  18. Issues for Simulation of Galactic Cosmic Ray Exposures for Radiobiological Research at Ground-Based Accelerators

    PubMed Central

    Kim, Myung-Hee Y.; Rusek, Adam; Cucinotta, Francis A.

    2015-01-01

    For radiobiology research on the health risks of galactic cosmic rays (GCR) ground-based accelerators have been used with mono-energetic beams of single high charge, Z and energy, E (HZE) particles. In this paper, we consider the pros and cons of a GCR reference field at a particle accelerator. At the NASA Space Radiation Laboratory (NSRL), we have proposed a GCR simulator, which implements a new rapid switching mode and higher energy beam extraction to 1.5 GeV/u, in order to integrate multiple ions into a single simulation within hours or longer for chronic exposures. After considering the GCR environment and energy limitations of NSRL, we performed extensive simulation studies using the stochastic transport code, GERMcode (GCR Event Risk Model) to define a GCR reference field using 9 HZE particle beam–energy combinations each with a unique absorber thickness to provide fragmentation and 10 or more energies of proton and 4He beams. The reference field is shown to well represent the charge dependence of GCR dose in several energy bins behind shielding compared to a simulated GCR environment. However, a more significant challenge for space radiobiology research is to consider chronic GCR exposure of up to 3 years in relation to simulations with animal models of human risks. We discuss issues in approaches to map important biological time scales in experimental models using ground-based simulation, with extended exposure of up to a few weeks using chronic or fractionation exposures. A kinetics model of HZE particle hit probabilities suggests that experimental simulations of several weeks will be needed to avoid high fluence rate artifacts, which places limitations on the experiments to be performed. Ultimately risk estimates are limited by theoretical understanding, and focus on improving knowledge of mechanisms and development of experimental models to improve this understanding should remain the highest priority for space radiobiology research. PMID:26090339

  19. Investigating energetic electron precipitation through combining ground-based and balloon observations

    NASA Astrophysics Data System (ADS)

    Clilverd, Mark A.; Rodger, Craig J.; McCarthy, Michael; Millan, Robyn; Blum, Lauren W.; Cobbett, Neil; Brundell, James B.; Danskin, Donald; Halford, Alexa J.

    2017-01-01

    A detailed comparison is undertaken of the energetic electron spectra and fluxes of two precipitation events that were observed in 18/19 January 2013. A novel but powerful technique of combining simultaneous ground-based subionospheric radio wave data and riometer absorption measurements with X-ray fluxes from a Balloon Array for Relativistic Radiation-belt Electron Losses (BARREL) balloon is used for the first time as an example of the analysis procedure. The two precipitation events are observed by all three instruments, and the relative timing is used to provide information/insight into the spatial extent and evolution of the precipitation regions. The two regions were found to be moving westward with drift periods of 5-11 h and with longitudinal dimensions of 20° and 70° (1.5-3.5 h of magnetic local time). The electron precipitation spectra during the events can be best represented by a peaked energy spectrum, with the peak in flux occurring at 1-1.2 MeV. This suggests that the radiation belt loss mechanism occurring is an energy-selective process, rather than one that precipitates the ambient trapped population. The motion, size, and energy spectra of the patches are consistent with electromagnetic ion cyclotron-induced electron precipitation driven by injected 10-100 keV protons. Radio wave modeling calculations applying the balloon-based fluxes were used for the first time and successfully reproduced the ground-based subionospheric radio wave and riometer observations, thus finding strong agreement between the observations and the BARREL measurements.

  20. AN A PRIORI INVESTIGATION OF ASTROPHYSICAL FALSE POSITIVES IN GROUND-BASED TRANSITING PLANET SURVEYS

    SciTech Connect

    Evans, Tom M.; Sackett, Penny D.

    2010-03-20

    Astrophysical false positives due to stellar eclipsing binaries pose one of the greatest challenges to ground-based surveys for transiting hot Jupiters. We have used known properties of multiple star systems and hot Jupiter systems to predict, a priori, the number of such false detections and the number of genuine planet detections recovered in two hypothetical but realistic ground-based transit surveys targeting fields close to the galactic plane (b {approx} 10{sup 0}): a shallow survey covering a magnitude range 10 < V < 13 and a deep survey covering a magnitude range 15 < V < 19. Our results are consistent with the commonly reported experience of false detections outnumbering planet detections by a factor of {approx}10 in shallow surveys, while in our synthetic deep survey we find {approx}1-2 false detections for every planet detection. We characterize the eclipsing binary configurations that are most likely to cause false detections and find that they can be divided into three main types: (1) two dwarfs undergoing grazing transits, (2) two dwarfs undergoing low-latitude transits in which one component has a substantially smaller radius than the other, and (3) two eclipsing dwarfs blended with one or more physically unassociated foreground stars. We also predict that a significant fraction of hot Jupiter detections are blended with the light from other stars, showing that care must be taken to identify the presence of any unresolved neighbors in order to obtain accurate estimates of planetary radii. This issue is likely to extend to terrestrial planet candidates in the CoRoT and Kepler transit surveys, for which neighbors of much fainter relative brightness will be important.

  1. Evaluation of satellite soil moisture products over Norway using ground-based observations

    NASA Astrophysics Data System (ADS)

    Griesfeller, A.; Lahoz, W. A.; Jeu, R. A. M. de; Dorigo, W.; Haugen, L. E.; Svendby, T. M.; Wagner, W.

    2016-03-01

    In this study we evaluate satellite soil moisture products from the advanced SCATterometer (ASCAT) and the Advanced Microwave Scanning Radiometer - Earth Observing System (AMSR-E) over Norway using ground-based observations from the Norwegian water resources and energy directorate. The ASCAT data are produced using the change detection approach of Wagner et al. (1999), and the AMSR-E data are produced using the VUA-NASA algorithm (Owe et al., 2001, 2008). Although satellite and ground-based soil moisture data for Norway have been available for several years, hitherto, such an evaluation has not been performed. This is partly because satellite measurements of soil moisture over Norway are complicated owing to the presence of snow, ice, water bodies, orography, rocks, and a very high coastline-to-area ratio. This work extends the European areas over which satellite soil moisture is validated to the Nordic regions. Owing to the challenging conditions for soil moisture measurements over Norway, the work described in this paper provides a stringent test of the capabilities of satellite sensors to measure soil moisture remotely. We show that the satellite and in situ data agree well, with averaged correlation (R) values of 0.72 and 0.68 for ASCAT descending and ascending data vs in situ data, and 0.64 and 0.52 for AMSR-E descending and ascending data vs in situ data for the summer/autumn season (1 June-15 October), over a period of 3 years (2009-2011). This level of agreement indicates that, generally, the ASCAT and AMSR-E soil moisture products over Norway have high quality, and would be useful for various applications, including land surface monitoring, weather forecasting, hydrological modelling, and climate studies. The increasing emphasis on coupled approaches to study the earth system, including the interactions between the land surface and the atmosphere, will benefit from the availability of validated and improved soil moisture satellite datasets, including those

  2. Solar System data mining for Gaia and ground-based observational support

    NASA Astrophysics Data System (ADS)

    Tanga, Paolo; Cellino, Alberto; Delbo, Marco; Hestroffer, Daniel; Mignard, Francois; Mouret, Serge; Thuillot, William

    The Gaia mission will observe between 2.5 and 3x105 Solar System objects. Most of them will be asteroids. As described elsewhere (Cellino et al. 2007, Tanga et al. 2007, Mignard et al. 2008) Gaia will provide a complete dynamical and physical characterisation of these bodies, that has no comparisons with the datasets ever obtained by a single groundor spacebased telescope. In fact, high precision astrometry, flux measurements and spectra will be available in an homogeneous set of data. However, in order to fully exploit the scientific potential of the data, a dedicated processing structure is needed. For this reason, a specific data reduction and analysis pipeline is under development. Some aspects of the implementation require solving interesting challenges in Solar System dynamics, consisting in new and more complex formulations of classic problems. We discuss, in particular, the determination of asteroid masses and the measurement of non-gravitational forces. Also, we show that - in the case of Solar System objects - the high astrometric accuracy of Gaia cannot completely rule out the use of ground-based data for increasing the extent of the final mission products. Well planned and focused preand post-mission observational campaigns could thus greatly help to reach goals situated at the edge (or beyond) the reach of Gaia observations alone. References Cellino, A., Tanga, P., Dell'Oro, A., Hestroffer, D. 2007. Asteroid science with Gaia: Sizes, spin properties, overall shapes and taxonomy. Adv. Space Res. 40 (2), 202-208 Mignard, F.,Cellino, A., Muinonen, K., Tanga, P., Delbo, D., Dell'Oro, A., Granvik, M., Hestroffer, D., Mouret, S., Thuillot, W., Virtanen, J. 2008. The Gaia mission: expected applications to asteroid science. Earth Moon and Planets, in press Tanga, P., Hestroffer, D., Cellino, A., Mignard, F. 2007. Gaia observations of Solar System objects: Impact on dynamics and ground-based observations. Adv. Space Res. 40 (2), 209-214

  3. Mixed-field GCR Simulations for Radiobiological Research Using Ground Based Accelerators

    NASA Technical Reports Server (NTRS)

    Kim, Myung-Hee Y.; Rusek, Adam; Cucinotta, Francis A.

    2014-01-01

    Space radiation is comprised of a large number of particle types and energies, which have differential ionization power from high energy protons to high charge and energy (HZE) particles and secondary neutrons produced by galactic cosmic rays (GCR). Ground based accelerators such as the NASA Space Radiation Laboratory (NSRL) at Brookhaven National Laboratory (BNL) are used to simulate space radiation for radiobiology research and dosimetry, electronics parts, and shielding testing using mono-energetic beams for single ion species. As a tool to support research on new risk assessment models, we have developed a stochastic model of heavy ion beams and space radiation effects, the GCR Event-based Risk Model computer code (GERMcode). For radiobiological research on mixed-field space radiation, a new GCR simulator at NSRL is proposed. The NSRL-GCR simulator, which implements the rapid switching mode and the higher energy beam extraction to 1.5 GeV/u, can integrate multiple ions into a single simulation to create GCR Z-spectrum in major energy bins. After considering the GCR environment and energy limitations of NSRL, a GCR reference field is proposed after extensive simulation studies using the GERMcode. The GCR reference field is shown to reproduce the Z and LET spectra of GCR behind shielding within 20% accuracy compared to simulated full GCR environments behind shielding. A major challenge for space radiobiology research is to consider chronic GCR exposure of up to 3-years in relation to simulations with cell and animal models of human risks. We discuss possible approaches to map important biological time scales in experimental models using ground-based simulation with extended exposure of up to a few weeks and fractionation approaches at a GCR simulator.

  4. Ground-based Light Curves Two Pluto Days Before the New Horizons Passage

    NASA Astrophysics Data System (ADS)

    Bosh, A. S.; Pasachoff, J. M.; Babcock, B. A.; Durst, R. F.; Seeger, C. H.; Levine, S. E.; Abe, F.; Suzuki, D.; Nagakane, M.; Sickafoose, A. A.; Person, M. J.; Zuluaga, C.; Kosiarek, M. R.

    2015-12-01

    We observed the occultation of a 12th magnitude star, one of the two brightest occultation stars ever in our dozen years of continual monitoring of Pluto's atmosphere through such studies, on 29 June 2015 UTC. At Canterbury University's Mt. John University Observatory on the south island of New Zealand, in clear sky, we used our POETS frame-transfer CCD at 10 Hz with GPS timing on the 1-m McLellan telescope as well as an infrared camera on an 0.6-m telescope and three-color photometry at a slower cadence on a second 0.6-m telescope. The light curves show a central flash, indicating that we were close to the center of the occultation path, and allowing us to explore Pluto's atmosphere lower than usual. The light curves show that Pluto's atmosphere remained robust. Observations from 0.5- and 0.4-m telescopes at the Auckland Observatory gave the first half of the occultation before clouds came in. We coordinated our observations with aircraft observations with NASA's Stratospheric Observatory for Infrared Astronomy (SOFIA) and its High Speed Imaging Photometer for Occultations (HIPO). Our ground-based and airborne stellar-occultation effort came only just over two weeks of Earth days and two Pluto days (based on Pluto's rotational period) before the flyby of NASA's New Horizons spacecraft, meaning that the mission's exquisite snapshot of Pluto's atmosphere can be placed in the context of our series of ground-based occultation observations carried out on a regular basis since 2002 following a first Pluto occultation observed in 1988 from aloft. Our observations were supported by NASA Planetary Astronomy grants NNX12AJ29G to Williams College, NNX15AJ82G to Lowell Observatory, and NNX10AB27G to MIT, and by the National Research Foundation of South Africa. We thank Alan Gilmore, Pam Kilmartin, Robert Lucas, Paul Tristam, and Carolle Varughese for assistance at Mt. John.

  5. Microwave signatures of ice hydrometeors from ground-based observations above Summit, Greenland

    NASA Astrophysics Data System (ADS)

    Pettersen, Claire; Bennartz, Ralf; Kulie, Mark S.; Merrelli, Aronne J.; Shupe, Matthew D.; Turner, David D.

    2016-04-01

    Multi-instrument, ground-based measurements provide unique and comprehensive data sets of the atmosphere for a specific location over long periods of time and resulting data compliment past and existing global satellite observations. This paper explores the effect of ice hydrometeors on ground-based, high-frequency passive microwave measurements and attempts to isolate an ice signature for summer seasons at Summit, Greenland, from 2010 to 2013. Data from a combination of passive microwave, cloud radar, radiosonde, and ceilometer were examined to isolate the ice signature at microwave wavelengths. By limiting the study to a cloud liquid water path of 40 g m-2 or less, the cloud radar can identify cases where the precipitation was dominated by ice. These cases were examined using liquid water and gas microwave absorption models, and brightness temperatures were calculated for the high-frequency microwave channels: 90, 150, and 225 GHz. By comparing the measured brightness temperatures from the microwave radiometers and the calculated brightness temperature using only gas and liquid contributions, any residual brightness temperature difference is due to emission and scattering of microwave radiation from the ice hydrometeors in the column. The ice signature in the 90, 150, and 225 GHz channels for the Summit Station summer months was isolated. This measured ice signature was then compared to an equivalent brightness temperature difference calculated with a radiative transfer model including microwave single-scattering properties for several ice habits. Initial model results compare well against the 4 years of summer season isolated ice signature in the high-frequency microwave channels.

  6. Intercomparison among tropospheric ozone and nitrogen dioxide data obtained by satellite- and ground-based measurements

    NASA Astrophysics Data System (ADS)

    Noguchi, K.; Urita, N.; Ohta, E.; Hayashida, S.; Richter, A.; Burrows, J. P.; Liu, X.; Chance, K.; Ziemke, J. R.

    2005-12-01

    Rapid economical growth and industrial development in East Asian regions are causing serious air pollution. The influence of such air pollution is not limited to a local scale but reaches an intercontinental or hemispheric scale. Satellite-borne observations can monitor the behaviors of air pollutants in a global scale for long periods with a single instrument. In particular, ozone and nitrogen dioxide in the troposphere have a crucial role in air pollution, and many studies have tried to derive those species. Recently, instrumentations and retrieval techniques have made a lot of progress in measurements of tropospheric constituents. However, tropospheric observations from space need careful validation because of difficulties in detecting signals from the lower atmosphere through the middle atmosphere. In the present study, we intercompare the tropospheric ozone and nitrogen dioxide data obtained by satellite- and ground-based measurements in order to validate the satellite measurements. For the validation of tropospheric ozone, we utilize ozonesonde data provided by WOUDC, and three satellite-borne data (Tropospheric Ozone Residual (TOR), Cloud Slicing, and GOME) are intercompared. For nitrogen dioxide, we compare GOME observations with ground-based air monitoring measurements in Japan which are operationally conducted by the Ministry of the Environment Japan. This study demonstrates the validity and potential of those satellite datasets to apply for quantitative analysis of dispersion of air pollutants and their chemical lifetime. Acknowledgments. TOR data is provided by J. Fishman via http://asd-www.larc.nasa.gov/TOR/data.html. The ground observation data of nitrogen dioxide over Japan is provided by National Institute for Environmental Studies (NIES) under the collaboration study with NIES and Nara Women's University.

  7. Calibration of ground-based microwave radiometers - Accuracy assessment and recommendations for network users

    NASA Astrophysics Data System (ADS)

    Pospichal, Bernhard; Küchler, Nils; Löhnert, Ulrich; Crewell, Susanne; Czekala, Harald; Güldner, Jürgen

    2016-04-01

    Ground-based microwave radiometers (MWR) are becoming widely used in atmospheric remote sensing and start to be routinely operated by national weather services and other institutions. However, common standards for calibration of these radiometers and a detailed knowledge about the error characteristics is needed, in order to assimilate the data into models. Intercomparisons of calibrations by different MWRs have rarely been done. Therefore, two calibration experiments in Lindenberg (2014) and Meckenheim (2015) were performed in the frame of TOPROF (Cost action ES1303) in order to assess uncertainties and differences between various instruments. In addition, a series of experiments were taken in Oklahoma in autumn 2014. The focus lay on the performance of the two main instrument types, which are currently used operationally. These are the MP-Profiler series by Radiometrics Corporation as well as the HATPRO series by Radiometer Physics GmbH (RPG). Both instrument types are operating in two frequency bands, one along the 22 GHz water vapour line, the other one at the lower wing of the 60 GHz oxygen absorption complex. The goal was to establish protocols for providing quality controlled (QC) MWR data and their uncertainties. To this end, standardized calibration procedures for MWR were developed and recommendations for radiometer users were compiled. We focus here mainly on data types, integration times and optimal settings for calibration intervals, both for absolute (liquid nitrogen, tipping curve) as well as relative (hot load, noise diode) calibrations. Besides the recommendations for ground-based MWR operators, we will present methods to determine the accuracy of the calibration as well as means for automatic data quality control. In addition, some results from the intercomparison of different radiometers will be discussed.

  8. Ali Observatory in Tibet: a unique northern site for future CMB ground-based observations

    NASA Astrophysics Data System (ADS)

    Su, Meng

    2015-08-01

    Ground-based CMB observations have been performed at the South Pole and the Atacama desert in Chile. However, a significant fraction of the sky can not be observed from just these two sites. For a full sky coverage from the ground in the future, a northern site for CMB observation, in particular CMB polarization, is required. Besides the long-thought site in Greenland, the high altitude Tibet plateau provides another opportunity. I will describe the Ali Observatory in Tibet, located at N32°19', E80°01', as a potential site for ground-based CMB observations. The new site is located on almost 5100m mountain, near Gar town, where is an excellent site for both infrared and submillimeter observations. Study with the long-term database of ground weather stations and archival satellite data has been performed. The site has enough relative height on the plateau and is accessible by car. The Shiquanhe town is 40 mins away by driving, and a recently opened airport with 40 mins driving, the site also has road excess, electricity, and optical fiber with fast internet. Preliminary measurement of the Precipitable Water Vapor is ~one quarter less than 0.5mm per year and the long term monitoring is under development. In addition, surrounding higher sites are also available and could be further developed if necessary. Ali provides unique northern sky coverage and together with the South Pole and the Atacama desert, future CMB observations will be able to cover the full sky from ground.

  9. Seasonal and Temporal Changes on Jupiter and Saturn: A Review of Ground-based Observations

    NASA Astrophysics Data System (ADS)

    Yanamandra-Fisher, Padma A.; Orton, G. S.; Fisher, B. M.; Fletcher, L. N.; Miller, A. S.

    2010-10-01

    We report on the seasonal and temporal changes observed on Jupiter and Saturn, based on near- and mid-infrared data acquired from several observatories (NASA/InfraRed Telescope Facility, NAOJ/Subaru, ESO/Very Large Telescope) and provide compelling rationale for a coordinated network of large telescopes for continued ground-based observations. Jupiter has been experiencing an era of atmospheric global upheaval since 2005, the observed atmospheric changes being manifestations of changes in local meteorology and latent physical parameters of the system, and occur on various timescales and latitudes. The discrete storms in Jupiter's atmosphere have undergone significant changes over the past decade. The merger of the three white ovals into Oval BA and its subsequent color change in 2006 appear to be correlated to periodic interactions with the Great Red Spot (GRS). Subsequent episodes of GRS-Oval BA interactions in 2006 and 2008 and the upcoming interaction in 2010 provide snapshots of changes in the local meteorology. We identify relationships between latent physical variables of the spatially and temporally changing systems in terms of cloud opacities, aerosol distribution and thermal fields. Ground-based near- and mid-infrared observations of Saturn from 1995 - 2009, covering half a Saturnian year, provide a rich data set to model seasonal changes in Saturn's atmosphere from autumnal equinox (1995) to vernal equinox (2009). Since 1995, as Saturn's south pole received increasing solar insolation, its albedo exhibits an increase in reflectivity at mid-latitudes in the southern hemisphere, decreasing towards the equator, anti-correlated with the thermal field. Similar to equatorial oscillations of temperatures on Earth and Jupiter, Saturn displays stratospheric temperature oscillations, with a period of half a Saturnian year, suggesting the influence of seasonal forcing. We anticipate development of similar phenomena in the next few years, as Saturn approaches

  10. Mixed-field GCR Simulations for Radiobiological Research using Ground Based Accelerators

    NASA Astrophysics Data System (ADS)

    Kim, Myung-Hee Y.; Rusek, Adam; Cucinotta, Francis

    Space radiation is comprised of a large number of particle types and energies, which have differential ionization power from high energy protons to high charge and energy (HZE) particles and secondary neutrons produced by galactic cosmic rays (GCR). Ground based accelerators such as the NASA Space Radiation Laboratory (NSRL) at Brookhaven National Laboratory (BNL) are used to simulate space radiation for radiobiology research and dosimetry, electronics parts, and shielding testing using mono-energetic beams for single ion species. As a tool to support research on new risk assessment models, we have developed a stochastic model of heavy ion beams and space radiation effects, the GCR Event-based Risk Model computer code (GERMcode). For radiobiological research on mixed-field space radiation, a new GCR simulator at NSRL is proposed. The NSRL-GCR simulator, which implements the rapid switching mode and the higher energy beam extraction to 1.5 GeV/u, can integrate multiple ions into a single simulation to create GCR Z-spectrum in major energy bins. After considering the GCR environment and energy limitations of NSRL, a GCR reference field is proposed after extensive simulation studies using the GERMcode. The GCR reference field is shown to reproduce the Z and LET spectra of GCR behind shielding within 20 percents accuracy compared to simulated full GCR environments behind shielding. A major challenge for space radiobiology research is to consider chronic GCR exposure of up to 3-years in relation to simulations with cell and animal models of human risks. We discuss possible approaches to map important biological time scales in experimental models using ground-based simulation with extended exposure of up to a few weeks and fractionation approaches at a GCR simulator.

  11. Ground based mobile isotopic methane measurements in the Front Range, Colorado

    NASA Astrophysics Data System (ADS)

    Vaughn, B. H.; Rella, C.; Petron, G.; Sherwood, O.; Mielke-Maday, I.; Schwietzke, S.

    2014-12-01

    Increased development of unconventional oil and gas resources in North America has given rise to attempts to monitor and quantify fugitive emissions of methane from the industry. Emission estimates of methane from oil and gas basins can vary significantly from one study to another as well as from EPA or State estimates. New efforts are aimed at reconciling bottom-up, or inventory-based, emission estimates of methane with top-down estimates based on atmospheric measurements from aircraft, towers, mobile ground-based vehicles, and atmospheric models. Attributing airborne measurements of regional methane fluxes to specific sources is informed by ground-based measurements of methane. Stable isotopic measurements (δ13C) of methane help distinguish between emissions from the O&G industry, Confined Animal Feed Operations (CAFO), and landfills, but analytical challenges typically limit meaningful isotopic measurements to individual point sampling. We are developing a toolbox to use δ13CH4 measurements to assess the partitioning of methane emissions for regions with multiple methane sources. The method was applied to the Denver-Julesberg Basin. Here we present data from continuous isotopic measurements obtained over a wide geographic area by using MegaCore, a 1500 ft. tube that is constantly filled with sample air while driving, then subsequently analyzed at slower rates using cavity ring down spectroscopy (CRDS). Pressure, flow and calibration are tightly controlled allowing precise attribution of methane enhancements to their point of collection. Comparisons with point measurements are needed to confirm regional values and further constrain flux estimates and models. This effort was made in conjunction with several major field campaigns in the Colorado Front Range in July-August 2014, including FRAPPÉ (Front Range Air Pollution and Photochemistry Experiment), DISCOVER-AQ, and the Air Water Gas NSF Sustainability Research Network at the University of Colorado.

  12. Plans of a test bed for ionospheric modelling based on Fennoscandian ground-based instrumentation

    NASA Astrophysics Data System (ADS)

    Kauristie, Kirsti; Kero, Antti; Verronen, Pekka T.; Aikio, Anita; Vierinen, Juha; Lehtinen, Markku; Turunen, Esa; Pulkkinen, Tuija; Virtanen, Ilkka; Norberg, Johannes; Vanhamäki, Heikki; Kallio, Esa; Kestilä, Antti; Partamies, Noora; Syrjäsuo, Mikko

    2016-07-01

    One of the recommendations for teaming among research groups in the COSPAR/ILWS roadmap is about building test beds in which coordinated observing supports model development. In the presentation we will describe a test bed initiative supporting research on ionosphere-thermosphere-magnetosphere interactions. The EISCAT incoherent scatter radars with their future extension, EISCAT3D, form the backbone of the proposed system. The EISCAT radars are surrounded by versatile and dense arrays of ground-based instrumentation: magnetometers and auroral cameras (the MIRACLE and IMAGE networks), ionospheric tomography receivers (the TomoScand network) and other novel technology for upper atmospheric probing with radio waves (e.g. the KAIRA facility, riometers and the ionosonde maintained by the Sodankylä Geophysical Observatory). As a new opening, close coordination with the Finnish national cubesat program is planned. We will investigate opportunities to establish a cost efficient nanosatellite program which would support the ground-based observations in a systematic and persistent manner. First experiences will be gathered with the Aalto-1 and Aalto-2 satellites, latter of which will be the Finnish contribution to the international QB50 mission. We envisage close collaboration also in the development of data analysis tools with the goal to integrate routines and models from different research groups to one system, where the different elements support each other. In the longer run we are aiming for a modelling framework with observational guidance which gives a holistic description on ionosphere-thermosphere processes and this way enables reliable forecasts on upper atmospheric space weather activity.

  13. Ground Based Retrievals of Small Ice Crystals and Water Phase in Arctic Cirrus

    NASA Astrophysics Data System (ADS)

    Mishra, Subhashree; Mitchell, David L.; DeSlover, Daniel

    2009-03-01

    The microphysical properties of cirrus clouds are uncertain due to the problem of ice particles shattering at the probe inlet upon sampling. To facilitate better estimation of small ice crystal concentrations in cirrus clouds, a new ground-based remote sensing technique has been used in combination with in situ aircraft measurements. Data from the Mixed-Phase Arctic Cloud Experiment (M-PACE), conducted at the north slope of Alaska (winter 2004), have been used to test a new method for retrieving the liquid water path (LWP) and ice water path (IWP) in mixed phase clouds. The framework of the retrieval algorithm consists of the modified anomalous diffraction approximation or MADA (for mixed phase cloud optical properties), a radar reflectivity-ice microphysics relationship and a temperature-dependent ice particle size distribution (PSD) scheme. Cloud thermal emission measurements made by the ground-based Atmospheric Emitted Radiance Interferometer (AERI) yield information on the total water path (TWP) while reflectivity measurements from the Millimeter Cloud Radar (MMCR) are used to derive the IWP. The AERI is also used to indicate the concentration of small ice crystals (D<50 μm) relative to the larger ice particles. Combining this small crystal information with the PSD scheme describing the larger particle concentrations yields the retrieved PSD. Small ice crystals are evaluated using the absorption properties of photon tunneling or wave resonance while the liquid water fraction is evaluated using classical Beer's law absorption. While this is still a work in progress, the anticipated products from this AERI-radar retrieval scheme are the IWP, LWP, small-to-large ice crystal number concentration ratio and effective diameter for cirrus, as well as the ice particle number concentration for a given ice water content (IWC).

  14. Ground-based imaging remote sensing of ice clouds: uncertainties caused by sensor, method and atmosphere

    NASA Astrophysics Data System (ADS)

    Zinner, Tobias; Hausmann, Petra; Ewald, Florian; Bugliaro, Luca; Emde, Claudia; Mayer, Bernhard

    2016-09-01

    In this study a method is introduced for the retrieval of optical thickness and effective particle size of ice clouds over a wide range of optical thickness from ground-based transmitted radiance measurements. Low optical thickness of cirrus clouds and their complex microphysics present a challenge for cloud remote sensing. In transmittance, the relationship between optical depth and radiance is ambiguous. To resolve this ambiguity the retrieval utilizes the spectral slope of radiance between 485 and 560 nm in addition to the commonly employed combination of a visible and a short-wave infrared wavelength.An extensive test of retrieval sensitivity was conducted using synthetic test spectra in which all parameters introducing uncertainty into the retrieval were varied systematically: ice crystal habit and aerosol properties, instrument noise, calibration uncertainty and the interpolation in the lookup table required by the retrieval process. The most important source of errors identified are uncertainties due to habit assumption: Averaged over all test spectra, systematic biases in the effective radius retrieval of several micrometre can arise. The statistical uncertainties of any individual retrieval can easily exceed 10 µm. Optical thickness biases are mostly below 1, while statistical uncertainties are in the range of 1 to 2.5.For demonstration and comparison to satellite data the retrieval is applied to observations by the Munich hyperspectral imager specMACS (spectrometer of the Munich Aerosol and Cloud Scanner) at the Schneefernerhaus observatory (2650 m a.s.l.) during the ACRIDICON-Zugspitze campaign in September and October 2012. Results are compared to MODIS and SEVIRI satellite-based cirrus retrievals (ACRIDICON - Aerosol, Cloud, Precipitation, and Radiation Interactions and Dynamics of Convective Cloud Systems; MODIS - Moderate Resolution Imaging Spectroradiometer; SEVIRI - Spinning Enhanced Visible and Infrared Imager). Considering the identified

  15. Critical Evaluation of the ISCCP Simulator Using Ground-Based Remote Sensing Data

    SciTech Connect

    Mace, G G; Houser, S; Benson, S; Klein, S A; Min, Q

    2009-11-02

    Given the known shortcomings in representing clouds in Global Climate Models (GCM) comparisons with observations are critical. The International Satellite Cloud Climatology Project (ISCCP) diagnostic products provide global descriptions of cloud top pressure and column optical depth that extends over multiple decades. The necessary limitations of the ISCCP retrieval algorithm require that before comparisons can be made between model output and ISCCP results the model output must be modified to simulate what ISCCP would diagnose under the simulated circumstances. We evaluate one component of the so-called ISCCP simulator in this study by comparing ISCCP and a similar algorithm with various long-term statistics derived from the Atmospheric Radiation Measurement (ARM) Southern Great Plains (SGP) Climate Research Facility ground-based remote sensors. We find that were a model to simulate the cloud radiative profile with the same accuracy as can be derived from the ARM data, then the likelihood of that occurrence being placed in the same cloud top pressure and optical depth bin as ISCCP of the 9 bins that have become standard ranges from 30% to 70% depending on optical depth. While the ISCCP simulator improved the agreement of cloud-top pressure between ground-based remote sensors and satellite observations, we find minor discrepancies due to the parameterization of cloud top pressure in the ISCCP simulator. The primary source of error seems to be related to discrepancies in visible optical depth that are not accounted for in the ISCCP simulator. We show that the optical depth discrepancies are largest when the assumptions necessary for plane parallel radiative transfer optical depths retrievals are violated.

  16. An evaluation of IASI-NH3 with ground-based Fourier transform infrared spectroscopy measurements

    NASA Astrophysics Data System (ADS)

    Dammers, Enrico; Palm, Mathias; Van Damme, Martin; Vigouroux, Corinne; Smale, Dan; Conway, Stephanie; Toon, Geoffrey C.; Jones, Nicholas; Nussbaumer, Eric; Warneke, Thorsten; Petri, Christof; Clarisse, Lieven; Clerbaux, Cathy; Hermans, Christian; Lutsch, Erik; Strong, Kim; Hannigan, James W.; Nakajima, Hideaki; Morino, Isamu; Herrera, Beatriz; Stremme, Wolfgang; Grutter, Michel; Schaap, Martijn; Wichink Kruit, Roy J.; Notholt, Justus; Coheur, Pierre-F.; Erisman, Jan Willem

    2016-08-01

    Global distributions of atmospheric ammonia (NH3) measured with satellite instruments such as the Infrared Atmospheric Sounding Interferometer (IASI) contain valuable information on NH3 concentrations and variability in regions not yet covered by ground-based instruments. Due to their large spatial coverage and (bi-)daily overpasses, the satellite observations have the potential to increase our knowledge of the distribution of NH3 emissions and associated seasonal cycles. However the observations remain poorly validated, with only a handful of available studies often using only surface measurements without any vertical information. In this study, we present the first validation of the IASI-NH3 product using ground-based Fourier transform infrared spectroscopy (FTIR) observations. Using a recently developed consistent retrieval strategy, NH3 concentration profiles have been retrieved using observations from nine Network for the Detection of Atmospheric Composition Change (NDACC) stations around the world between 2008 and 2015. We demonstrate the importance of strict spatio-temporal collocation criteria for the comparison. Large differences in the regression results are observed for changing intervals of spatial criteria, mostly due to terrain characteristics and the short lifetime of NH3 in the atmosphere. The seasonal variations of both datasets are consistent for most sites. Correlations are found to be high at sites in areas with considerable NH3 levels, whereas correlations are lower at sites with low atmospheric NH3 levels close to the detection limit of the IASI instrument. A combination of the observations from all sites (Nobs = 547) give a mean relative difference of -32.4 ± (56.3) %, a correlation r of 0.8 with a slope of 0.73. These results give an improved estimate of the IASI-NH3 product performance compared to the previous upper-bound estimates (-50 to +100 %).

  17. Automated cloud classification using a ground based infra-red camera and texture analysis techniques

    NASA Astrophysics Data System (ADS)

    Rumi, Emal; Kerr, David; Coupland, Jeremy M.; Sandford, Andrew P.; Brettle, Mike J.

    2013-10-01

    Clouds play an important role in influencing the dynamics of local and global weather and climate conditions. Continuous monitoring of clouds is vital for weather forecasting and for air-traffic control. Convective clouds such as Towering Cumulus (TCU) and Cumulonimbus clouds (CB) are associated with thunderstorms, turbulence and atmospheric instability. Human observers periodically report the presence of CB and TCU clouds during operational hours at airports and observatories; however such observations are expensive and time limited. Robust, automatic classification of cloud type using infrared ground-based instrumentation offers the advantage of continuous, real-time (24/7) data capture and the representation of cloud structure in the form of a thermal map, which can greatly help to characterise certain cloud formations. The work presented here utilised a ground based infrared (8-14 μm) imaging device mounted on a pan/tilt unit for capturing high spatial resolution sky images. These images were processed to extract 45 separate textural features using statistical and spatial frequency based analytical techniques. These features were used to train a weighted k-nearest neighbour (KNN) classifier in order to determine cloud type. Ground truth data were obtained by inspection of images captured simultaneously from a visible wavelength colour camera at the same installation, with approximately the same field of view as the infrared device. These images were classified by a trained cloud observer. Results from the KNN classifier gave an encouraging success rate. A Probability of Detection (POD) of up to 90% with a Probability of False Alarm (POFA) as low as 16% was achieved.

  18. Ground-based telescope pointing and tracking optimization using a neural controller.

    PubMed

    Mancini, D; Brescia, M; Schipani, P

    2003-01-01

    Neural network models (NN) have emerged as important components for applications of adaptive control theories. Their basic generalization capability, based on acquired knowledge, together with execution rapidity and correlation ability between input stimula, are basic attributes to consider NN as an extremely powerful tool for on-line control of complex systems. By a control system point of view, not only accuracy and speed, but also, in some cases, a high level of adaptation capability is required in order to match all working phases of the whole system during its lifetime. This is particularly remarkable for a new generation ground-based telescope control system. Infact, strong changes in terms of system speed and instantaneous position error tolerance are necessary, especially in case of trajectory disturb induced by wind shake. The classical control scheme adopted in such a system is based on the proportional integral (PI) filter, already applied and implemented on a large amount of new generation telescopes, considered as a standard in this technological environment. In this paper we introduce the concept of a new approach, the neural variable structure proportional integral, (NVSPI), related to the implementation of a standard multi layer perceptron network in new generation ground-based Alt-Az telescope control systems. Its main purpose is to improve adaptive capability of the Variable structure proportional integral model, an already innovative control scheme recently introduced by authors [Proc SPIE (1997)], based on a modified version of classical PI control model, in terms of flexibility and accuracy of the dynamic response range also in presence of wind noise effects. The realization of a powerful well tested and validated telescope model simulation system allowed the possibility to directly compare performances of the two control schemes on simulated tracking trajectories, revealing extremely encouraging results in terms of NVSPI control robustness and

  19. Ground-based RGB imaging to determine the leaf water potential of potato plants

    NASA Astrophysics Data System (ADS)

    Zakaluk, Robert F.

    The determination of plant water status from leaf water potential (Psi L) data obtained by conventional methods is impractical for meeting real time irrigation monitoring requirements. This research, undertaken first, in a greenhouse and then in the field, examined the use of artificial neural network (ANN) modeling of RGB (red green blue) images, captured by a ground-based, five mega pixel digital camera, to predict the leaf water potential of potato (Solanum tuberosum L). The greenhouse study examined cv. Russet Burbank, while the field study examined cv. Sangre. The protocol was similar in both studies: (1) images were acquired over different soil nitrate (N) and volumetric water content levels, (2) images were radiometrically calibrated, (3) green foliage was classified and extracted from the images, and (4) image transformations, and vegetation indices were calculated and transformed using principal components analysis (PCA). The findings from both studies were similar: (1) the R and G bands were more important than the B image band in the classification of green leaf pigment, (2) soil N showed an inverse linear relationship against leaf reflectance in the G image band, (3) the ANN model input neuron weights with more separation between soil N and PsiL were more important than other input neurons in predicting PsiL, and (4) the measured and predicted PsiL validation datasets were normally distributed with equal variances and means that were not significantly different. Based on these research findings, the ground-based digital camera proved to be an adequate sensor for image acquisition and a practical tool for acquiring data for predicting the PsiL of potato plants. Keywords: nitrogen, IHS transformation, chromaticity transformation, principal components, vegetation indices, remote sensing, artificial neural network, digital camera.

  20. Validation of OMI UV measurements against ground-based measurements at a station in Kampala, Uganda

    NASA Astrophysics Data System (ADS)

    Muyimbwa, Dennis; Dahlback, Arne; Stamnes, Jakob; Hamre, Børge; Frette, Øyvind; Ssenyonga, Taddeo; Chen, Yi-Chun

    2015-04-01

    We present solar ultraviolet (UV) irradiance data measured with a NILU-UV instrument at a ground site in Kampala (0.31°N, 32.58°E), Uganda for the period 2005-2014. The data were analyzed and compared with UV irradiances inferred from the Ozone Monitoring Instrument (OMI) for the same period. Kampala is located on the shores of lake Victoria, Africa's largest fresh water lake, which may influence the climate and weather conditions of the region. Also, there is an excessive use of worn cars, which may contribute to a high anthropogenic loading of absorbing aerosols. The OMI surface UV algorithm does not account for absorbing aerosols, which may lead to systematic overestimation of surface UV irradiances inferred from OMI satellite data. We retrieved UV index values from OMI UV irradiances and validated them against the ground-based UV index values obtained from NILU-UV measurements. The UV index values were found to follow a seasonal pattern similar to that of the clouds and the rainfall. OMI inferred UV index values were overestimated with a mean bias of about 28% under all-sky conditions, but the mean bias was reduced to about 8% under clear-sky conditions when only days with radiation modification factor (RMF) greater than 65% were considered. However, when days with RMF greater than 70, 75, and 80% were considered, OMI inferred UV index values were found to agree with the ground-based UV index values to within 5, 3, and 1%, respectively. In the validation we identified clouds/aerosols, which were present in 88% of the measurements, as the main cause of OMI inferred overestimation of the UV index.

  1. Nutritional status assessment in semiclosed environments: ground-based and space flight studies in humans

    NASA Technical Reports Server (NTRS)

    Smith, S. M.; Davis-Street, J. E.; Rice, B. L.; Nillen, J. L.; Gillman, P. L.; Block, G.

    2001-01-01

    Adequate nutrition is critical during long-term spaceflight, as is the ability to easily monitor dietary intake. A comprehensive nutritional status assessment profile was designed for use before, during and after flight. It included assessment of both dietary intake and biochemical markers of nutritional status. A spaceflight food-frequency questionnaire (FFQ) was developed to evaluate intake of key nutrients during spaceflight. The nutritional status assessment protocol was evaluated during two ground-based closed-chamber studies (60 and 91 d; n = 4/study), and was implemented for two astronauts during 4-mo stays on the Mir space station. Ground-based studies indicated that the FFQ, administered daily or weekly, adequately estimated intake of key nutrients. Chamber subjects maintained prechamber energy intake and body weight. Astronauts tended to eat 40--50% of WHO-predicted energy requirements, and lost >10% of preflight body mass. Serum ferritin levels were lower after the chamber stays, despite adequate iron intake. Red blood cell folate concentrations were increased after the chamber studies. Vitamin D stores were decreased by > 40% on chamber egress and after spaceflight. Mir crew members had decreased levels of most nutritional indices, but these are difficult to interpret given the insufficient energy intake and loss of body mass. Spaceflight food systems can provide adequate intake of macronutrients, although, as expected, micronutrient intake is a concern for any closed or semiclosed food system. These data demonstrate the utility and importance of nutritional status assessment during spaceflight and of the FFQ during extended-duration spaceflight.

  2. The ENIGMA project: a ground-based magnetic array for space research

    NASA Astrophysics Data System (ADS)

    Daglis, I. A.; Balasis, G.; Anastasiadis, A.; Ganas, A.; Melis, N.; Baumjohann, W.; Magnes, W.; Mandea, M.; Lesur, V.; Korte, M.

    2010-05-01

    National Observatory of Athens (NOA) currently operates ENIGMA (HellENIc GeoMagnetic Array), an array of 4 ground-based magnetometer stations in the area of south-eastern Europe (central and southern Greece). The current stations are latitudinally equi-spaced between 30° and 33° corrected geomagnetic latitude. In the near future another station will be installed in Macedonia or Thrace, and there are plans for the installation of an additional station in Crete by mid-2010. One of the primary research objectives assigned to ENIGMA is the study of geomagnetic field line resonances (FLRs). The latter is a well-established phenomenon taking place in the Earth's magnetosphere. It can be pictured as the formation of standing magnetohydrodynamic waves on magnetic field lines with fixed ends at the conjugate ionospheres. An interesting option in this field of research would be to compare ultra-low-frequency (ULF) wave observations in space made by ESA's Cluster mission and on the ground acquired by these mid-to-low-latitude ground-based observation sites of the Earth's magnetic field. Cluster has a high inclination orbit; insofar studies at high latitudes are more justified for direct interactions along the magnetic field lines. So, for a Cluster-ENIGMA study one has to expect some indirect, somehow related reactions with propagations perpendicular to the B-field. The Cluster-ENIGMA study can serve as a pilot-study for the upcoming Swarm mission of ESA. The Swarm constellation of spacecraft will allow, for the first time, the unique determination of the near-Earth field aligned currents, which connect various regions of the magnetosphere with the ionosphere and can be regarded as a complement to the Cluster mission.

  3. Measurement of Surface Deformation using a Ground-based Real Aperture Interferometer

    NASA Astrophysics Data System (ADS)

    Werner, C. L.; Wiesmann, A.; Strozzi, T.; Wegmueller, U.

    2007-12-01

    Differential interferometry has proven as a technique to be very useful for the measurement of surface deformation relating to geophysical processes such as earthquakes, landslides, volcanoes, glaciers. Up until recently these measurements have been performed from data derived from space borne sensors such as ERS, Envisat, and Radarsat. These space borne sensors have the advantage of obtaining large area acquisitions but are limited in a number of ways. Most serious is the lack of dense temporal sampling due to long repeat times. Also due to the fixed orbit track, the number of views of the scene is limited. Ground based interferometry (GBI) has demonstrated the capability to continuously map the motion of landslides, glaciers, at mm scale. The advantages of ground-based observation include on-demand availability, the potential of continuous observations, and flexibility in selection of the observation geometry with very small baselines, high spatial resolution, and the potential to suppress atmospheric phase variations by averaging by acquisition of multiple images. GBI implementations up to this time have utilized a small antenna traveling along a linear rail. We have developed a new Terrestrial Radar Interferometer (TRI) operating at 17.2 GHz and utilizing a azimuthal rotating interferometric array of real-aperture antennas Because the two SLC images are created simultaneously, we can create an elevation model of the entire scene, even for scatterers that are incoherent. The scope of this paper is to describe the system and performance for generating height and deformation maps. We show some our first results mapping motion of the Rhône Glacier in Switzerland and the Tessina landslide near the city of Belluno in Northern Italy.

  4. Functional proteomic analysis revealed ground-base ion radiations cannot reflect biological effects of space radiations of rice

    NASA Astrophysics Data System (ADS)

    Wang, Wei; Sun, Yeqing; Zhao, Qian; Han, Lu

    2016-07-01

    Highly ionizing radiation (HZE) in space is considered as main factor causing biological effects. Radiobiological studies during space flights are unrepeatable due to the variable space radiation environment, ground-base ion radiations are usually performed to simulate of the space biological effect. Spaceflights present a low-dose rate (0.1˜~0.3mGy/day) radiation environment inside aerocrafts while ground-base ion radiations present a much higher dose rate (100˜~500mGy/min). Whether ground-base ion radiation can reflect effects of space radiation is worth of evaluation. In this research, we compared the functional proteomic profiles of rice plants between on-ground simulated HZE particle radiation and spaceflight treatments. Three independent ground-base seed ionizing radiation experiments with different cumulative doses (dose range: 2˜~20000mGy) and different liner energy transfer (LET) values (13.3˜~500keV/μμm) and two independent seed spaceflight experiments onboard Chinese 20th satellite and SZ-6 spacecraft were carried out. Alterations in the proteome were analyzed by two-dimensional difference gel electrophoresis (2-D DIGE) with MALDI-TOF/TOF mass spectrometry identifications. 45 and 59 proteins showed significant (p<0.05) and reproducible quantitative differences in ground-base ion radiation and spaceflight experiments respectively. The functions of ground-base radiation and spaceflight proteins were both involved in a wide range of biological processes. Gene Ontology enrichment analysis further revealed that ground-base radiation responsive proteins were mainly involved in removal of superoxide radicals, defense response to stimulus and photosynthesis, while spaceflight responsive proteins mainly participate in nucleoside metabolic process, protein folding and phosphorylation. The results implied that ground-base radiations cannot truly reflect effects of spaceflight radiations, ground-base radiation was a kind of indirect effect to rice causing

  5. Assessment of NASA airborne laser altimetry data using ground-based GPS data near Summit Station, Greenland

    NASA Astrophysics Data System (ADS)

    Brunt, Kelly M.; Hawley, Robert L.; Lutz, Eric R.; Studinger, Michael; Sonntag, John G.; Hofton, Michelle A.; Andrews, Lauren C.; Neumann, Thomas A.

    2017-03-01

    A series of NASA airborne lidars have been used in support of satellite laser altimetry missions. These airborne laser altimeters have been deployed for satellite instrument development, for spaceborne data validation, and to bridge the data gap between satellite missions. We used data from ground-based Global Positioning System (GPS) surveys of an 11 km long track near Summit Station, Greenland, to assess the surface-elevation bias and measurement precision of three airborne laser altimeters including the Airborne Topographic Mapper (ATM), the Land, Vegetation, and Ice Sensor (LVIS), and the Multiple Altimeter Beam Experimental Lidar (MABEL). Ground-based GPS data from the monthly ground-based traverses, which commenced in 2006, allowed for the assessment of nine airborne lidar surveys associated with ATM and LVIS between 2007 and 2016. Surface-elevation biases for these altimeters - over the flat, ice-sheet interior - are less than 0.12 m, while assessments of measurement precision are 0.09 m or better. Ground-based GPS positions determined both with and without differential post-processing techniques provided internally consistent solutions. Results from the analyses of ground-based and airborne data provide validation strategy guidance for the Ice, Cloud, and land Elevation Satellite 2 (ICESat-2) elevation and elevation-change data products.

  6. A Ground-based validation of GOSAT-observed atmospheric CO2 in Inner-Mongolian grasslands

    NASA Astrophysics Data System (ADS)

    Qin, X.; Lei, L.; Kawasaki, M.; Oohasi, M.; Zeng, Z.

    2014-03-01

    Atmospheric carbon dioxide (CO2) is a long-lived greenhouse gas that significantly contributes to global warming. Long-term and continuous measurements of atmospheric CO2 to investigate its global distribution and concentration variations are important for accurately understanding its potential climatic effects. Satellite measurements from space can offer atmospheric CO2 data for climate change research. For that, ground-based measurements are required for validation and improving the precision of satellite-measured CO2. We implemented observation experiment of CO2 column densities in the Xilinguole grasslands in Inner Mongolia, China, using a ground-based measurement system, which mainly consists of an optical spectrum analyzer (OSA), a sun tracker and a notebook controller. Measurements from our ground-based system were analyzed and compared with those from the Greenhouse gas Observation SATellite (GOSAT). The ground-based measurements had an average value of 389.46 ppm, which was 2.4 ppm larger than from GOSAT, with a standard deviation of 3.4 ppm. This result is slightly larger than the difference between GOSAT and the Total Carbon Column Observing Network (TCCON). This study highlights the usefulness of the ground-based OSA measurement system for analyzing atmospheric CO2 column densities, which is expected to supplement the current TCCON network.

  7. Determination of the Characteristics of Ground-Based IR Spectral Instrumentation for Environmental Monitoring of the Atmosphere

    NASA Astrophysics Data System (ADS)

    Makarova, M. V.; Poberovskii, A. V.; Hase, F.; Timofeyev, Yu. M.; Imhasin, Kh. Kh.

    2016-07-01

    This is a study of the spectral characteristics of a ground-based spectral system consisting of an original system for tracking the sun developed at St. Petersburg State University and a Bruker IFS125HR Fourier spectrometer. The importance of accounting for the actual instrument function of the spectral system during processing of ground-based IR spectra of direct solar radiation is illustrated by the example of determining the overall abundance of methane in the atmosphere. Spectral intervals are proposed for taking spectra of direct solar radiation with an HBr cell, which yield information on the parameters of the ground-based system, while simultaneously checking the alignment of the system for each spectrum of the atmosphere.

  8. NASA's Newest Orbital Debris Ground-based Telescope Assets: MCAT and UKIRT

    NASA Astrophysics Data System (ADS)

    Lederer, S.; Frith, J.; Pace, L. F.; Cowardin, H. M.; Hickson, P.; Glesne, T.; Maeda, R.; Buckalew, B.; Nishimoto, D.; Douglas, D.; Stansbery, E. G.

    2014-09-01

    NASAs Orbital Debris Program Office (ODPO) will break ground on Ascension Island in 2014 to build the newest optical (0.30 1.06 microns) ground-based telescope asset dedicated to the study of orbital debris. The Meter Class Autonomous Telescope (MCAT) is a 1.3m optical telescope designed to track objects in orbits ranging from Low Earth Orbit (LEO) to Geosynchronous Earth Orbit (GEO). Ascension Island is located in the South Atlantic Ocean, offering longitudinal sky coverage not afforded by the Ground-based Electro-Optical Deep Space Surveillance (GEODSS) network. With a fast-tracking dome, a suite of visible wide-band filters, and a time-delay integration (TDI) capable camera, MCAT is capable of multiple observing modes ranging from tracking cataloged debris targets to surveying the overall debris environment. Access to the United Kingdom Infrared Telescope (UKIRT) will extend our spectral coverage into the near- (0.8-5 micron) and mid- to far-infrared (8-25 micron) regime. UKIRT is a 3.8m telescope located on Mauna Kea on the Big Island of Hawaii. At nearly 14,000-feet and above the atmospheric inversion layer, this is one of the premier astronomical sites in the world and is an ideal setting for an infrared telescope. An unprecedented one-third of this telescopes time has been allocated to collect orbital debris data for NASAs ODPO over a 2-year period. UKIRT has several instruments available to obtain low-resolution spectroscopy in both the near-IR and the mid/far-IR. Infrared spectroscopy is ideal for constraining the material types, albedos and sizes of debris targets, and potentially gaining insight into reddening effects caused by space weathering. In addition, UKIRT will be used to acquire broadband photometric imaging at GEO with the Wide Field Camera (WFCAM) for studying known objects of interest as well as collecting data in survey-mode to discover new targets. Results from the first stage of the debris campaign will be presented. The combination of

  9. NASA's Newest Orbital Debris Ground-based Telescope Assets: MCAT and UKIRT

    NASA Technical Reports Server (NTRS)

    Lederer, S. M.; Frith, J. M.; Pace, L. F.; Cowardin, H. M.; Cowardin, H. M.; Hickson, P.; Glesne, T.; Maeda, R.; Buckalew, B.; Nishimoto, D.; Douglas, D.; Stansbery, E. G.

    2014-01-01

    NASA's Orbital Debris Program Office (ODPO) will break ground on Ascension Island in 2014 to build the newest optical (0.30 - 1.06 micrometers) ground-based telescope asset dedicated to the study of orbital debris. The Meter Class Autonomous Telescope (MCAT) is a 1.3m optical telescope designed to track objects in orbits ranging from Low Earth Orbit (LEO) to Geosynchronous Earth Orbit (GEO). Ascension Island is located in the South Atlantic Ocean, offering longitudinal sky coverage not afforded by the Ground-based Electro-Optical Deep Space Surveillance (GEODSS) network. With a fast-tracking dome, a suite of visible wide-band filters, and a time-delay integration (TDI) capable camera, MCAT is capable of multiple observing modes ranging from tracking cataloged debris targets to surveying the overall debris environment. Access to the United Kingdom Infrared Telescope (UKIRT) will extend our spectral coverage into the near- (0.8-5 micrometers) and mid- to far-infrared (8-25 micrometers) regime. UKIRT is a 3.8m telescope located on Mauna Kea on the Big Island of Hawaii. At nearly 14,000-feet and above the atmospheric inversion layer, this is one of the premier astronomical sites in the world and is an ideal setting for an infrared telescope. An unprecedented one-third of this telescope's time has been allocated to collect orbital debris data for NASA's ODPO over a 2-year period. UKIRT has several instruments available to obtain low-resolution spectroscopy in both the near-IR and the mid/far-IR. Infrared spectroscopy is ideal for constraining the material types, albedos and sizes of debris targets, and potentially gaining insight into reddening effects caused by space weathering. In addition, UKIRT will be used to acquire broadband photometric imaging at GEO with the Wide Field Camera (WFCAM) for studying known objects of interest as well as collecting data in survey-mode to discover new targets. Results from the first stage of the debris campaign will be presented. The

  10. The use of products from ground-based GNSS observations in meteorological nowcasting

    NASA Astrophysics Data System (ADS)

    Terradellas, E.; Callado, A.; Pascual, R.; Téllez, B.

    2009-09-01

    Heavy rainfall is often focalized in areas of moisture convergence. A close relationship between precipitation and fast variations of vertically-integrated water vapour (IWV) has been found in numerous cases. Furthermore, a latency of several tens of minutes of the precipitation relative to a rapid increase of the water vapour contents appears to be a common truth. Therefore, continuous monitoring of atmospheric humidity and its spatial distribution is crucial to the operational forecaster for a proper nowcasting of heavy rainfall events. Radiosonde releases yield measurements of atmospheric humidity, but they are very sparse and present a limited time resolution of 6 to 12 hours. The microwave signals continuously broadcasted by the Global Navigation Satellite System (GNSS) satellites are influenced by the water vapour as they travel through the atmosphere to ground-based receivers. The total zenith delay (ZTD) of these signals, a by-product of the geodetic processing, is already operationally assimilated into numerical weather prediction (NWP) models and has positive impact on the prediction of precipitation events, as it has been reported after the analysis of parallel runs. Estimates of IWV retrieved from ground-based GNSS observations may also constitute a source of information on the horizontal distribution and the time evolution of atmospheric humidity that can be presented to the forecaster. Several advantages can be attributed to the ground-based GNSS as a meteorological observing system. First, receiving networks can be built and maintained at a relatively low cost, which it can, additionally, be shared among different users. Second, the quality of the processed observations is insensitive to the weather conditions and, third, the temporal resolution of its products is very high. On the other hand, the current latency of the data disposal, ranging between one and two hours, is acceptable for the NWP community, but appears to be excessive for nowcasting

  11. Proteomic and Epigenetic Analysis of Rice after Seed Spaceflight and Ground-Base Ion Radiations

    NASA Astrophysics Data System (ADS)

    Wang, Wei; Sun, Yeqing; Peng, Yuming; Zhao, Qian; Wen, Bin; Yang, Jun

    Highly ionizing radiation (HZE) in space is considered as main factor causing biological effects to plant seeds. In previous work, we compared the proteomic profiles of rice plants growing after seed spaceflights to ground controls by two-dimensional difference gel electrophoresis (2-D DIGE) with mass spectrometry and found that the protein expression profiles were changed and differentially expressed proteins participated in most of the biological processes of rice. To further evaluate the dosage effects of space radiation and compare between low- and high-dose ion effects, we carried out three independent ground-base ionizing radiation experiments with different cumulative doses (low-dose range: 2~1000mGy, high-dose range: 2000~20000mGy) to rice seeds and performed proteomic analysis of seedlings. We found that protein expression profiles showed obvious boundaries between low- and high-dose radiation groups. Rates of differentially expressed proteins presented a dose-dependent effect, it reached the highest value at 2000mGy dosage point in all three radiation experiments coincidently; while proteins responded to low-dose radiations preferred to change their expressions at the minimum dosage (2mGy). Proteins participating in rice biological processes also responded differently between low- and high-dose radiations: proteins involved in energy metabolism and photosynthesis tended to be regulated after low-dose radiations while stress responding, protein folding and cell redox homeostasis related proteins preferred to change their expressions after high-dose radiations. By comparing the proteomic profiles between ground-base radiations and spaceflights, it was worth noting that ground-base low-dose ion radiation effects shared similar biological effects as space environment. In addition, we discovered that protein nucleoside diphosphate kinase 1 (NDPK1) showed obvious increased regulation after spaceflights and ion radiations. NDPK1 catalyzes nucleotide metabolism

  12. MAD-4-MITO, a multi array of detectors for ground-based mm/submm SZ observations

    NASA Astrophysics Data System (ADS)

    Lamagna, L.; de Petris, M.; Melchiorri, F.; Battistelli, E.; de Grazia, M.; Luzzi, G.; Orlando, A.; Savini, G.

    2002-05-01

    The last few years have seen a large development of mm technology and ultra-sensitive detectors devoted to microwave astronomy and astrophysics. The possibility to deal with large numbers of these detectors assembled into multi-pixel imaging systems has greatly improved the performance of microwave observations, even from ground-based stations, especially combining the power of multi-band detectors with their new imaging capabilities. Hereafter, we will present the development of a multi-pixel solution devoted to Sunyaev-Zel'dovich observations from ground-based telescopes, that is going to be operated from the Millimeter and Infrared Testagrigia Observatory. .

  13. TESTING GROUND BASED GEOPHYSICAL TECHNIQUES TO REFINE ELECTROMAGNETIC SURVEYS NORTH OF THE 300 AREA HANFORD WASHINGTON

    SciTech Connect

    PETERSEN SW

    2010-12-02

    Airborne electromagnetic (AEM) surveys were flown during fiscal year (FY) 2008 within the 600 Area in an attempt to characterize the underlying subsurface and to aid in the closure and remediation design study goals for the 200-PO-1 Groundwater Operable Unit (OU). The rationale for using the AEM surveys was that airborne surveys can cover large areas rapidly at relatively low costs with minimal cultural impact, and observed geo-electrical anomalies could be correlated with important subsurface geologic and hydrogeologic features. Initial interpretation of the AEM surveys indicated a tenuous correlation with the underlying geology, from which several anomalous zones likely associated with channels/erosional features incised into the Ringold units were identified near the River Corridor. Preliminary modeling resulted in a slightly improved correlation but revealed that more information was required to constrain the modeling (SGW-39674, Airborne Electromagnetic Survey Report, 200-PO-1 Groundwater Operable Unit, 600 Area, Hanford Site). Both time-and frequency domain AEM surveys were collected with the densest coverage occurring adjacent to the Columbia River Corridor. Time domain surveys targeted deeper subsurface features (e.g., top-of-basalt) and were acquired using the HeliGEOTEM{reg_sign} system along north-south flight lines with a nominal 400 m (1,312 ft) spacing. The frequency domain RESOLVE system acquired electromagnetic (EM) data along tighter spaced (100 m [328 ft] and 200 m [656 ft]) north-south profiles in the eastern fifth of the 200-PO-1 Groundwater OU (immediately adjacent to the River Corridor). The overall goal of this study is to provide further quantification of the AEM survey results, using ground based geophysical methods, and to link results to the underlying geology and/or hydrogeology. Specific goals of this project are as follows: (1) Test ground based geophysical techniques for the efficacy in delineating underlying geology; (2) Use ground

  14. Geospace Science from Ground-based Magnetometer Arrays: Advances in Sensors, Data Collection, and Data Integration

    NASA Astrophysics Data System (ADS)

    Mann, Ian; Chi, Peter

    2016-07-01

    Networks of ground-based magnetometers now provide the basis for the diagnosis of magnetic disturbances associated with solar wind-magnetosphere-ionosphere coupling on a truly global scale. Advances in sensor and digitisation technologies offer increases in sensitivity in fluxgate, induction coil, and new micro-sensor technologies - including the promise of hybrid sensors. Similarly, advances in remote connectivity provide the capacity for truly real-time monitoring of global dynamics at cadences sufficient for monitoring and in many cases resolving system level spatio-temporal ambiguities especially in combination with conjugate satellite measurements. A wide variety of the plasmaphysical processes active in driving geospace dynamics can be monitored based on the response of the electrical current system, including those associated with changes in global convection, magnetospheric substorms and nightside tail flows, as well as due to solar wind changes in both dynamic pressure and in response to rotations of the direction of the IMF. Significantly, any changes to the dynamical system must be communicated by the propagation of long-period Alfven and/or compressional waves. These wave populations hence provide diagnostics for not only the energy transport by the wave fields themselves, but also provide a mechanism for diagnosing the structure of the background plasma medium through which the waves propagate. Ultra-low frequency (ULF) waves are especially significant in offering a monitor for mass density profiles, often invisible to particle detectors because of their very low energy, through the application of a variety of magneto-seismology and cross-phase techniques. Renewed scientific interest in the plasma waves associated with near-Earth substorm dynamics, including magnetosphere-ionosphere coupling at substorm onset and their relation to magnetotail flows, as well the importance of global scale ultra-low frequency waves for the energisation, transport

  15. Ground-based imaging spectrometry of canopy phenology and chemistry in a deciduous forest

    NASA Astrophysics Data System (ADS)

    Toomey, M. P.; Friedl, M. A.; Frolking, S. E.; Hilker, T.; O'Keefe, J.; Richardson, A. D.

    2013-12-01

    Phenology, annual life cycles of plants and animals, is a dynamic ecosystem attribute and an important feedback to climate change. Vegetation phenology is commonly monitored at canopy to continental scales using ground based digital repeat photography and satellite remote sensing, respectively. Existing systems which provide sufficient temporal resolution for phenological monitoring, however, lack the spectral resolution necessary to investigate the coupling of phenology with canopy chemistry (e.g. chlorophyll, nitrogen, lignin-cellulose content). Some researchers have used narrowband (<10 nm resolution) spectrometers at phenology monitoring sites, yielding new insights into seasonal changes in leaf biochemistry. Such instruments integrate the spectral characteristics of the entire canopy, however, masking considerable variability between species and plant functional types. There is an opportunity, then, for exploring the potential of imaging spectrometers to investigate the coupling of canopy phenology and the leaf biochemistry of individual trees. During the growing season of April-October 2013 we deployed an imaging spectrometer with a spectral range of 371-1042 nm and resolution of ~5 nm (Surface Optics Corporation 710; San Diego, CA) on a 35 m tall tower at the Harvard Forest, Massachusetts. The image resolution was ~0.25 megapixels and the field of view encompassed approximately 20 individual tree crowns at a distance of 20-40 m. The instrument was focused on a mixed hardwoods canopy composed of 4 deciduous tree species and one coniferous tree species. Scanning was performed daily with an acquisition frequency of 30 minutes during daylight hours. Derived imagery were used to calculate a suite of published spectral indices used to estimate foliar content of key pigments: cholorophyll, carotenoids and anthocyanins. Additionally, we calculated the photochemical reflectance index (PRI) as well as the position and slope of the red edge as indicators of mid- to

  16. Evaluation of atmospheric dust prediction models using ground-based observations

    NASA Astrophysics Data System (ADS)

    Terradellas, Enric; María Baldasano, José; Cuevas, Emilio; Basart, Sara; Huneeus, Nicolás; Camino, Carlos; Dundar, Cinhan; Benincasa, Francesco

    2013-04-01

    An important step in numerical prediction of mineral dust is the model evaluation aimed to assess its performance to forecast the atmospheric dust content and to lead to new directions in model development and improvement. The first problem to address the evaluation is the scarcity of ground-based routine observations intended for dust monitoring. An alternative option would be the use of satellite products. They have the advantage of a large spatial coverage and a regular availability. However, they do have numerous drawbacks that make the quantitative retrievals of aerosol-related variables difficult and imprecise. This work presents the use of different ground-based observing systems for the evaluation of dust models in the Regional Center for Northern Africa, Middle East and Europe of the World Meteorological Organization (WMO) Sand and Dust Storm Warning Advisory and Assessment System (SDS-WAS). The dust optical depth at 550 nm forecast by different models is regularly compared with the AERONET measurements of Aerosol Optical Depth (AOD) for 40 selected stations. Photometric measurements are a powerful tool for remote sensing of the atmosphere allowing retrieval of aerosol properties, such as AOD. This variable integrates the contribution of different aerosol types, but may be complemented with spectral information that enables hypotheses about the nature of the particles. Comparison is restricted to cases with low Ångström exponent values in order to ensure that coarse mineral dust is the dominant aerosol type. Additionally to column dust load, it is important to evaluate dust surface concentration and dust vertical profiles. Air quality monitoring stations are the main source of data for the evaluation of surface concentration. However they are concentrated in populated and industrialized areas around the Mediterranean. In the present contribution, results of different models are compared with observations of PM10 from the Turkish air quality network for

  17. Integration between ground based and satellite SAR data in landslide mapping: The San Fratello case study

    NASA Astrophysics Data System (ADS)

    Bardi, Federica; Frodella, William; Ciampalini, Andrea; Bianchini, Silvia; Del Ventisette, Chiara; Gigli, Giovanni; Fanti, Riccardo; Moretti, Sandro; Basile, Giuseppe; Casagli, Nicola

    2014-10-01

    The potential use of the integration of PSI (Persistent Scatterer Interferometry) and GB-InSAR (Ground-based Synthetic Aperture Radar Interferometry) for landslide hazard mitigation was evaluated for mapping and monitoring activities of the San Fratello landslide (Sicily, Italy). Intense and exceptional rainfall events are the main factors that triggered several slope movements in the study area, which is susceptible to landslides, because of its steep slopes and silty-clayey sedimentary cover. In the last three centuries, the town of San Fratello was affected by three large landslides, developed in different periods: the oldest one occurred in 1754, damaging the northeastern sector of the town; in 1922 a large landslide completely destroyed a wide area in the western hillside of the town. In this paper, the attention is focussed on the most recent landslide that occurred on 14 February 2010: in this case, the phenomenon produced the failure of a large sector of the eastern hillside, causing severe damages to buildings and infrastructures. In particular, several slow-moving rotational and translational slides occurred in the area, making it suitable to monitor ground instability through different InSAR techniques. PS-InSAR™ (permanent scatterers SAR interferometry) techniques, using ERS-1/ERS-2, ENVISAT, RADARSAT-1, and COSMO-SkyMed SAR images, were applied to analyze ground displacements during pre- and post-event phases. Moreover, during the post-event phase in March 2010, a GB-InSAR system, able to acquire data continuously every 14 min, was installed collecting ground displacement maps for a period of about three years, until March 2013. Through the integration of space-borne and ground-based data sets, ground deformation velocity maps were obtained, providing a more accurate delimitation of the February 2010 landslide boundary, with respect to the carried out traditional geomorphological field survey. The integration of GB-InSAR and PSI techniques proved to

  18. Definition and archiving of ground-based observations in support of space missions

    NASA Astrophysics Data System (ADS)

    Coustenis, A.; Europlanet Wg3&5

    This science case was developed by the WG3&5 to induce and optimize the follow- up of space missions or to monitor a probe entry, in order to provide support in the case of failure, and help achieve science objectives. The space mission data need to be complemented by ground-based and space-borne observations that can help interpret the space mission return. Such coordinated observations were performed at the time of the Huygens descent in Titan's atmosphere and led to a JGR special issue publication (2006, in press). We should gather and archive all such observations to support space missions already existing or to come. For this we would need to get the space mission data from Cassini-Huygens (both images and spectra), Venus Express, Mars Express and future missions (to Europa and Mercury for instance) and complete them with ground-based observations (spectra, images, radio data, radar,...) of Titan, Venus, Mars, Europa, Mercury with the HST, ISO, etc, as well as amateur observations, if possible, taken from 1990 on. This applies to cometary, moon and planet surfaces/subsurfaces composition- structure. This would help among other with the target selections (comets, moons) and landing sites for SMART-1 (on the Moon). There are specific needs for stereoscopic images of the Moon and other objects. Our study will assist in optimizing the Rosetta mission return. For Mercury we need to observe from the ground at the time of the Bepi-Colombo mission to cross-calibrate the mission data. There are many examples of success from this additional input, as for instance with Cassini-Huygens (DWE- Channel C), Galileo, etc. For Titan there is a requirement for RADAR measurements of the whole surface during the extended Cassini mission. Also, assist with the interpretation of high-resolution DISR images in terms of surface activity and surface-atmosphere interactions This involves in some cases techniques possible only from the Earth such as the VLBI 1 radio-tracking of a space

  19. On the weighting of SABER temperature profiles for comparison with ground based hydroxyl rotational temperatures.

    NASA Astrophysics Data System (ADS)

    French, William; Mulligan, Frank

    2010-05-01

    Kinetic temperature profiles are retrieved from limb-emission radiance measurements of CO2 at 15 and 4.3 um by the SABER (Sounding of the Atmosphere using Broadband Emission Radiometry) instrument on the TIMED (Thermosphere Ionosphere Mesosphere Energetics and Dynamics) satellite. Profiles extend from about 20-120km and measurements are available since the spacecraft launch in Dec-2001. Hydroxyl (6-2) band rotational temperatures are measured using a ground-based scanning spectrometer at Davis station, Antarctica (68°S, 78°E). Measurements are available each year since 1995 on nights between early February and late October, when the sun is more than 6° below the horizon. In order to compare temperatures from these two instruments we must derive hydroxyl layer equivalent temperatures for the SABER profiles using a weighting function which represents the hydroxyl layer profile. In this study, we examine a number of different weighting profiles to determine the best equivalent to hydroxyl nightly average temperatures at Davis. These profiles include (1) the customary Gaussian peaked at 87km and width 8km [Baker and Stair, 1988 :Physica Scripta. 37 611-622], (2) the layer profile derived from WINDIIUARS hydroxyl height profiles [She and Lowe, 1998 :JASTP 60, 1573-1583], (3) layer profiles derived from the hydroxyl volume emission rate (VER) from the SABER OH-B channel at 1.6um, which contains the Meinel OH(4-2) and OH(5-3) bands and (4) a Gaussian fitted to the SABER hydroxyl VER peak. The comparison is made with approximately 2500 SABER retrievals from overpasses within 500km of Davis station, and with solar zenith angle >97°, which have coincident hydroxyl temperature measurements over the 8 winters between 2002 and 2009. Due to the satellite 60 day yaw cycle the sampling over Davis has occurred in approximately the same three time intervals each year; between days 75-140, 196-262 and 323-014, however the latter interval is entirely rejected on the solar zenith

  20. Itokawa: The power of ground-based mid-infrared observations

    NASA Astrophysics Data System (ADS)

    Müller, Thomas G.; Sekiguchi, T.; Kaasalainen, M.; Abe, M.; Hasegawa, S.

    2007-05-01

    Pre-encounter ground-based N- and Q-band thermal observations of NEA Itokawa led to a size prediction of 520(±50) x 270(±30) x 230(±20) m, corresponding to an effective diameter of 318 m (Müller et al. 2005, A&A 443). This is in almost perfect agreement with the final in-situ results (Deff=(535x294x209)? = 320 m; Demura et al. 2006, Science 312). The corresponding radar value (Ostro et al. 2005, DPS 37, #15.19), based on the same shape model (Kaasalainen et al. 2005, ASP Conf. Series), was about 20% too high (Deff = (594x320x288)?= 379 m). The very simple mid-infrared observations revealed a surface which is dominated by bare rocks rather than a thick regolith layer. This prediction was nicely confirmed by the Hayabusa mission (e.g., Fujiwara et al. 2006; Saito et al. 2006, Science 312). The ground-based measurements covered three different phase angles which enabled us to determine the thermal properties with unprecedented accuracy and in excellent agreement with the results from the touch-down measurements (Okada et al., 2006, LPS XXXVII; Yano et al. 2006, Science 312). These thermal values are also key ingredients for Yarkovsky and YORP calculations (e.g., Vokrouhlický et al. 2004, A&A 414; Vokrouhlický et al. 2005, Icarus 173). We present a direct comparison between the predictions of our thermophysical model work and the corresponding Hayabusa results. In addition to the above mentioned properties, our data allowed us to derive the surface albedo and to estimate the total mass. We believe that with our well-tested and calibrated techniques (Lagerros 1996/97/98, A&A; Müller & Lagerros 1998/2002, A&A) we have tools at hand to distinguish between monolithic, regolith-covered and rubble pile near-Earth objects by only using remote thermal observations. This project also emphasizes the high and so far not yet fully exploited potential of thermophysical modeling techniques for the NEA/NEO exploration.

  1. Impact of particles on the Planck HFI detectors: Ground-based measurements and physical interpretation

    NASA Astrophysics Data System (ADS)

    Catalano, A.; Ade, P.; Atik, Y.; Benoit, A.; Bréele, E.; Bock, J. J.; Camus, P.; Chabot, M.; Charra, M.; Crill, B. P.; Coron, N.; Coulais, A.; Désert, F.-X.; Fauvet, L.; Giraud-Héraud, Y.; Guillaudin, O.; Holmes, W.; Jones, W. C.; Lamarre, J.-M.; Macías-Pérez, J.; Martinez, M.; Miniussi, A.; Monfardini, A.; Pajot, F.; Patanchon, G.; Pelissier, A.; Piat, M.; Puget, J.-L.; Renault, C.; Rosset, C.; Santos, D.; Sauvé, A.; Spencer, L. D.; Sudiwala, R.

    2014-09-01

    The Planck High Frequency Instrument (HFI) surveyed the sky continuously from August 2009 to January 2012. Its noise and sensitivity performance were excellent (from 11 to 40 aW Hz-1), but the rate of cosmic-ray impacts on the HFI detectors was unexpectedly higher than in other instruments. Furthermore, collisions of cosmic rays with the focal plane produced transient signals in the data (glitches) with a wide range of characteristics and a rate of about one glitch per second. A study of cosmic-ray impacts on the HFI detector modules has been undertaken to categorize and characterize the glitches, to correct the HFI time-ordered data, and understand the residual effects on Planck maps and data products. This paper evaluates the physical origins of glitches observed by the HFI detectors. To better understand the glitches observed by HFI in flight, several ground-based experiments were conducted with flight-spare HFI bolometer modules. The experiments were conducted between 2010 and 2013 with HFI test bolometers in different configurations using varying particles and impact energies. The bolometer modules were exposed to 23 MeV protons from the Orsay IPN Tandem accelerator, and to 241Am and 244Cm α-particle and 55Fe radioactive X-ray sources. The calibration data from the HFI ground-based preflight tests were used to further characterize the glitches and compare glitch rates with statistical expectations under laboratory conditions. Test results provide strong evidence that the dominant family of glitches observed in flight are due to cosmic-ray absorption by the silicon die substrate on which the HFI detectors reside. Glitch energy is propagated to the thermistor by ballistic phonons, while thermal diffusion also contributes. The average ratio between the energy absorbed, per glitch, in the silicon die and thatabsorbed in the bolometer is equal to 650. We discuss the implications of these results for future satellite missions, especially those in the far

  2. New advanced netted ground based and topside radio diagnostics for Space Weather Program

    NASA Astrophysics Data System (ADS)

    Rothkaehl, Hanna; Krankowski, Andrzej; Morawski, Marek; Atamaniuk, Barbara; Zakharenkova, Irina; Cherniak, Iurii

    2014-05-01

    To give a more detailed and complete understanding of physical plasma processes that govern the solar-terrestrial space, and to develop qualitative and quantitative models of the magnetosphere-ionosphere-thermosphere coupling, it is necessary to design and build the next generation of instruments for space diagnostics and monitoring. Novel ground- based wide-area sensor networks, such as the LOFAR (Low Frequency Array) radar facility, comprising wide band, and vector-sensing radio receivers and multi-spacecraft plasma diagnostics should help solve outstanding problems of space physics and describe long-term environmental changes. The LOw Frequency ARray - LOFAR - is a new fully digital radio telescope designed for frequencies between 30 MHz and 240 MHz located in Europe. The three new LOFAR stations will be installed until summer 2015 in Poland. The LOFAR facilities in Poland will be distributed among three sites: Lazy (East of Krakow), Borowiec near Poznan and Baldy near Olsztyn. All they will be connected via PIONIER dedicated links to Poznan. Each site will host one LOFAR station (96 high-band+96 low-band antennas). They will most time work as a part of European network, however, when less charged, they can operate as a national network The new digital radio frequency analyzer (RFA) on board the low-orbiting RELEC satellite was designed to monitor and investigate the ionospheric plasma properties. This two-point ground-based and topside ionosphere-located space plasma diagnostic can be a useful new tool for monitoring and diagnosing turbulent plasma properties. The RFA on board the RELEC satellite is the first in a series of experiments which is planned to be launched into the near-Earth environment. In order to improve and validate the large scales and small scales ionospheric structures we will used the GPS observations collected at IGS/EPN network employed to reconstruct diurnal variations of TEC using all satellite passes over individual GPS stations and the

  3. Spatial representativeness of ground-based solar radiation measurements estimated from high-resolution Meteosat data

    NASA Astrophysics Data System (ADS)

    Zyta Hakuba, Maria; Folini, Doris; Sanchez-Lorenzo, Arturo; Wild, Martin

    2014-05-01

    The validation of gridded surface solar radiation (SSR) data often relies on the comparison with ground-based in-situ measurements. This poses the question on how representative a point measurement is for a larger-scale surrounding. We use the high-resolution (0.03° ) SIS MVIRI data from the Satellite Application Facility on Climate Monitoring (CM SAF) to study the spatial sub-grid variability in all-sky surface solar radiation (SSR) over Europe, Africa, and parts of South America as covered by the Meteosat disk. This is done for the CERES EBAF 1° standard grid and two equal-angle grids of 0.25° and 3° resolution. Furthermore, we quantify the spatial representativeness of numerous surface sites from the BSRN and the GEBA for their site-centered larger surroundings varying in size from 0.25° to 3°, as well as with respect to the given standard grids. These analyses are done on a climatological annual and monthly mean basis over the period 2001-2005. The annual mean sub-grid variability (mean absolute deviation) in the 1° standard grid over European land is on average 1.6% (2.4 Wm¯²), with a maximum of up to 10% in Northern Spain (Hakuba et al. 2013). As expected, highest sub-grid variability is found in mountainous and coastal regions. The annual mean representation error of point values at 143 surface sites in Europe with respect to their 1° surrounding and the 1° standard grid is on average 2% (3 Wm¯² ). For larger surroundings of 3°, the representation error increases to 3% (4.8 Wm¯²), which is of similar order as the measurement accuracy of in-situ observations. Most of the sites can thus be considered as representative for their larger surroundings of up to 3°, which holds also true for the majority of BSRN sites located in Africa and South America. This representation error can be reduced if site-specific correction factors are applied or when multiple sites are available in the same grid cell, i.e., three more sites reduce the error by 50

  4. Ground-based Pc5 ULF wave power: Solar wind speed and MLT dependence

    NASA Astrophysics Data System (ADS)

    Pahud, D. M.; Rae, I. J.; Mann, I. R.; Murphy, K. R.; Amalraj, V.

    2009-07-01

    Using over 20 years of ground-based magnetometer data from the CANOPUS/CARISMA magnetometer array, we present a statistical characterisation of Pc5 ultra-low frequency (ULF) power in the 2-10 mHz band as a function of magnetic local time (MLT), L-shell, and solar wind speed. We examine the power across L-shells between 4.2 and 7.9, using data from the PINA, ISLL, GILL and FCHU stations, and demonstrate that there is a significant MLT dependence in both the H- and D-component median 2-10 mHz power during both fast (>500 km/s) and slow (<500 km/s) solar wind speeds. The H-component power consistently dominates over D-component power at all MLTs and during both fast and slow solar wind. At the higher-L stations (L>5.4), there are strong MLT power peaks in the morning and midnight local time sectors; the morning sector dominating midnight during fast solar wind events. At lower L-shells, there is no evidence of the midnight peak and the 2-10 mHz power is more symmetric with respect to MLT except during the fastest solar wind speeds. There is little evidence in the ground-based power of a localised MLT peak in ULF power at dusk, except at the lowest L-shell station, predominantly in the H-component. The median 2-10 mHz power increases with an approximate power law dependence on solar wind speed, at all local times across the L-shell domain studied in both components. The H-component power peaks at the latitude of the GILL station, with significantly lower power at both higher and lower L-shells. Conversely, the D-component power increases monotonically. We believe that this is evidence for 2-10 mHz power accumulating at auroral latitudes in field line resonances. Finally, we discuss how such ULF wave power characterisation might be used to derive empirical radiation belt radial diffusion coefficients based on, and driven by, the solar wind speed dependence of ULF wave power.

  5. Ground-based measurements of the emission rate and composition of gases from the Holuhraun eruption

    NASA Astrophysics Data System (ADS)

    Pfeffer, Melissa A.; Stefánsdóttir, Gerður; Bergsson, Baldur; Barsotti, Sara; Galle, Bo; Conde, Vladimir; Donovan, Amy; Aiuppa, Alessandro; Burton, Mike; Keller, Nicole S.; Askew, Robert A.; Ilyinskaya, Evgenia; La Spina, Alessandro; Sigurðardóttir, Guðmunda M.; Jónasdóttir, Elín B.; Snorrason, Árni; Stefánsson, Andri; Tsanev, Vitchko

    2015-04-01

    The ongoing fissure eruption at Holuhraun is distinguished by high concentrations of gases being released both from the vent(s) where lava is being extruded and from the cooling lava. The conditions for making ground-based measurements of the gases are particularly challenging: remote location, optically dense plume with high SO2 column amounts, low UV intensity, frequent clouds and precipitation, an extensive and hot lava field, and ramparts around the main vent. Three scanning DOASes capable of streaming data in almost real-time have been installed less than 15 km from the fissure. As of writing, there are two scanning DOASes operating while one unrecoverable instrument has been trapped by the lava. Traverses with a car-mounted DOAS are made along the ring road down-wind from the eruption when conditions are favorable. The SO2 emission rate is greater in the long-range traverses than from the near-source DOAS measurements. The data is being examined so that the uncertainty in the DOAS measurements can be constrained. Preliminary SO2 emission rates for the first month and a half of the eruption are ~400 kg/s with some days greater than 1000 kg/s. Plume composition measurements were made by FTIR, MultiGAS, DOAS and filter pack during multiple campaigns in the first two months of the eruption. The FTIR measurements indicated a significantly drier plume than the MultiGAS measurements. The CO2/SO2 ratio measured by MultiGAS and FTIR agree very well. Mobile DOAS traverses indicate that 80-90 % of the SO2 emissions came from the main vent with the remainder being released by the cooling lava. FTIR measured higher HCl/SO2 ratios from the cooling lava than from the main vent. The last campaign that successfully collected data (in October) showed with both FTIR and MultiGAS a drop in CO2/SO2. Since then, there have been no successful campaign measurements. Further ground-based measurements to determine the relative contribution of the lava field to the total emissions and

  6. Comparing ECMWF UV Processor and Aerosol Scheme with Ground-Based Measurements

    NASA Astrophysics Data System (ADS)

    Cesnulyte, V.; Lindfors, A. V.; Pitkänen, M. R. A.; Lehtinen, K. E.; Morcrette, J. J.; Arola, A. T.

    2014-12-01

    The ECMWF (European Centre for Medium-Range Weather Forecasts) system offers an alternative approach to provide global UV data products which can support environmental assessments of UV radiation, biological and photochemical impact studies, and to contribute to the global climatology of UV radiation. The ECMWF model includes the effect of aerosols as a part of its radiation transfer calculations. During the first steps of the development of the UV processor, an aerosol climatology was used. In the latest version, however, prognostic aerosols have been coupled with the UV processor which, as a result, provides information about the global UV radiation and can be an alternative to satellite observations. The aim of this study is to evaluate the ECMWF UV/aerosol optical depth (AOD) model against ground-based measurements and further develop the UV Processor. The ECMWF shortwave radiative transfer scheme provides the UV radiation at the surface for wavelengths between 280 and 400nm. However, for this analysis, the wavelength ranges 290-320 (UVB) and 320-340 (UVA) were used. This is the first time when a global model such as the ECMWF is evaluated for the performance of AOD at a UV wavelength. The results show that the MACC system generally provides a good representation of the AOD on a monthly basis, showing a realistic seasonal cycle. The model is mostly able to capture major dust load events and also the peak months of biomass burning correctly. When comparing hourly AOD values, the model-measurement agreement is better for biomass burning (CC = 0.90) and dust sites (CC = 0.77) than for urban sites (CC = 0.70). All sites included in the study show a relative mean bias at 340 nm smaller than that at 500 nm, indicating a strong wavelength-dependence in the performance of the AOD in the MACC system. Validating the UV Processor, in all the UV validation sites, the model-measurement ratio decreased with increasing solar zenith angle (SZA). This effect is larger for UVB

  7. MetaSensing's FastGBSAR: ground based radar for deformation monitoring

    NASA Astrophysics Data System (ADS)

    Rödelsperger, Sabine; Meta, Adriano

    2014-10-01

    The continuous monitoring of ground deformation and structural movement has become an important task in engineering. MetaSensing introduces a novel sensor system, the Fast Ground Based Synthetic Aperture Radar (FastGBSAR), based on innovative technologies that have already been successfully applied to airborne SAR applications. The FastGBSAR allows the remote sensing of deformations of a slope or infrastructure from up to a distance of 4 km. The FastGBSAR can be setup in two different configurations: in Real Aperture Radar (RAR) mode it is capable of accurately measuring displacements along a linear range profile, ideal for monitoring vibrations of structures like bridges and towers (displacement accuracy up to 0.01 mm). Modal parameters can be determined within half an hour. Alternatively, in Synthetic Aperture Radar (SAR) configuration it produces two-dimensional displacement images with an acquisition time of less than 5 seconds, ideal for monitoring areal structures like dams, landslides and open pit mines (displacement accuracy up to 0.1 mm). The MetaSensing FastGBSAR is the first ground based SAR instrument on the market able to produce two-dimensional deformation maps with this high acquisition rate. By that, deformation time series with a high temporal and spatial resolution can be generated, giving detailed information useful to determine the deformation mechanisms involved and eventually to predict an incoming failure. The system is fully portable and can be quickly installed on bedrock or a basement. The data acquisition and processing can be fully automated leading to a low effort in instrument operation and maintenance. Due to the short acquisition time of FastGBSAR, the coherence between two acquisitions is very high and the phase unwrapping is simplified enormously. This yields a high density of resolution cells with good quality and high reliability of the acquired deformations. The deformation maps can directly be used as input into an Early

  8. Estimating crop yields by integrating the FAO Crop Specific Water Balance model with real-time satellite data and ground-based ancillary data

    NASA Astrophysics Data System (ADS)

    Reynolds, Curt Andrew

    The broad objective of this research was to develop a spatial model which provides both timely and quantitative regional maize yield estimates for real-time Early Warning Systems (EWS) by integrating satellite data with ground-based ancillary data. The Food and Agriculture Organization (FAO) Crop Specific Water Balance (CSWB) model was modified by using the real-time spatial data that include: dekad (ten-day) estimated rainfall (RFE) and Normalized Difference Vegetation Index (NDVI) composites derived from the METEOSAT and NOAA-AVHRR satellites, respectively; ground-based dekad potential evapo-transpiration (PET) data and seasonal estimated area-planted data provided by the Government of Kenya (GoK). A Geographical Information System (GIS) software was utilized to: drive the crop yield model; manage the spatial and temporal variability of the satellite images; interpolate between ground-based potential evapo-transpiration and rainfall measurements; and import ancillary data such as soil maps, administrative boundaries, etc. In addition, agro-ecological zones, length of growing season, and crop production functions, as defined by the FAO, were utilized to estimate quantitative maize yields. The GIS-based CSWB model was developed for three different resolutions: agro-ecological zone (AEZ) polygons; 7.6-kilometer pixels; and 1.1-kilometer pixels. The model was validated by comparing model production estimates from archived satellite and agro-meteorological data to historical district maize production reports from two Kenya government agencies, the Ministry of Agriculture (MoA) and the Department of Resource Surveys and Remote Sensing (DRSRS). For the AEZ analysis, comparison of model district maize production results and district maize production estimates from the MoA (1989-1997) and the DRSRS (1989-1993) revealed correlation coefficients of 0.94 and 0.93, respectively. The comparison for the 7.6-kilometer analysis showed correlation coefficients of 0.95 and 0

  9. Evidence of Urban Precipitation Anomalies from Satellite and Ground-Based Measurements

    NASA Technical Reports Server (NTRS)

    Shepherd, J. Marshall; Manyin, M.; Negri, Andrew

    2004-01-01

    Urbanization is one of the extreme cases of land use change. Most of world's population has moved to urban areas. Although currently only 1.2% of the land is considered urban, the spatial coverage and density of cities are expected to rapidly increase in the near future. It is estimated that by the year 2025, 60% of the world's population will live in cities. Human activity in urban environments also alters weather and climate processes. However, our understanding of urbanization on the total Earth-weather-climate system is incomplete. Recent literature continues to provide evidence that anomalies in precipitation exist over and downwind of major cities. Current and future research efforts are actively seeking to verify these literature findings and understand potential cause-effect relationships. The novelty of this study is that it utilizes rainfall data from multiple satellite data sources (e.g. TRMM precipitation radar, TRMM-geosynchronous-rain gauge merged product, and SSM/I) and ground-based measurements to identify spatial anomalies and temporal trends in precipitation for cities around the world. Early results will be presented and placed within the context of weather prediction, climate assessment, and societal applications.

  10. Evidence of Urban Precipitation Anomalies from Satellite and Ground-Based Measurements

    NASA Technical Reports Server (NTRS)

    Shepherd, J. M.; Manyin, M.; Negri, A.

    2004-01-01

    Urbanization is one of the extreme cases of land use change. Most of world s population has moved to urban areas. Although currently only 1.2% of the land is considered urban, the spatial coverage and density of cities are expected to rapidly increase in the near future. It is estimated that by the year 2025,60% of the world s population will live in cities. Human activity in urban environments also alters weather and climate processes. However, our understanding of urbanization on the total Earth-weather-climate system is incomplete. Recent literature continues to provide evidence that anomalies in precipitation exist over and downwind of major cities. Current and future research efforts are actively seeking to verify these literature findings and understand potential cause- effect relationships. The novelty of this study is that it utilizes rainfall data from multiple satellite data sources (e.g. TRMM precipitation radar, TRMM-geosynchronous-rain gauge merged product, and SSM/I) and ground-based measurements to identify spatial anomalies and temporal trends in precipitation for cities around the world. Early results will be presented and placed within the context of weather prediction, climate assessment, and societal applications.

  11. Continuous ground-based aerosol Lidar observation during seasonal pollution events at Wuxi, China

    NASA Astrophysics Data System (ADS)

    Wong, Man Sing; Qin, Kai; Lian, Hong; Campbell, James R.; Lee, Kwon Ho; Sheng, Shijie

    2017-04-01

    Haze pollution has long been a significant research topic and challenge in China, with adverse effects on air quality, agricultural production, as well as human health. In coupling with ground-based Lidar measurements, air quality observation, meteorological data, and backward trajectories model, two typical haze events at Wuxi, China are analyzed respectively, depicting summer and winter scenarios. Results indicate that the winter haze pollution is a compound pollution process mainly affected by calm winds that induce pollution accumulation near the surface. In the summer case, with the exception of influence from PM2.5 concentrations, ozone is the main pollutant and regional transport is also a significant influencing factor. Both events are marked by enhanced PM2.5 concentrations, driven by anthropogenic emissions of pollutants such as vehicle exhaust and factory fumes. Meteorological factors such as wind speed/direction and relative humidity are also contributed. These results indicate how the vertical profile offered by routine regional Lidar monitoring helps aid in understanding local variability and trends, which may be adapted for developing abatement strategies that improve air quality.

  12. CO2 Total Column Variability From Ground-Based FTIR Measurements Over Central Mexico

    NASA Astrophysics Data System (ADS)

    Baylon, J. L.; Stremme, W.; Plaza, E.; Bezanilla, A.; Grutter, M.; Hase, F.; Blumenstock, T.

    2014-12-01

    There are now several space missions dedicated to measure greenhouse gases in order to improve the understanding of the carbon cycle. Ground based measurement sites are of great value in the validation process, however there are only a few stations in tropical latitudes. We present measurements of solar-absorption infrared spectra recorded on two locations over Central Mexico: the High-Altitude Station Altzomoni (19.12 N, 98.65 W), located in the Izta-Popo National Park outside of Mexico City; and the UNAM's Atmospheric Observatory (19.32 N, 99.17 W) in Mexico City. These measurements were performed using a high resolution Fourier transform infrared spectrometer FTIR (Bruker, HR 120/5) at Altzomoni and a moderate resolution FTIR (Bruker, Vertex 80) within the city. In this work, we present the first results for total vertical columns of CO2 derived from near-infrared spectra recorded at both locations using the retrieval code PROFFIT. We present the seasonal cycle and variability from the measurements, as well as the full diagnostics of the retrieval in order assess its quality and discuss the differences of both instruments and locations (altitudes, urban vs remote). This work aims to contribute to generate high quality datasets for satellite validation.

  13. The Palomar kernel-phase experiment: testing kernel phase interferometry for ground-based astronomical observations

    NASA Astrophysics Data System (ADS)

    Pope, Benjamin; Tuthill, Peter; Hinkley, Sasha; Ireland, Michael J.; Greenbaum, Alexandra; Latyshev, Alexey; Monnier, John D.; Martinache, Frantz

    2016-01-01

    At present, the principal limitation on the resolution and contrast of astronomical imaging instruments comes from aberrations in the optical path, which may be imposed by the Earth's turbulent atmosphere or by variations in the alignment and shape of the telescope optics. These errors can be corrected physically, with active and adaptive optics, and in post-processing of the resulting image. A recently developed adaptive optics post-processing technique, called kernel-phase interferometry, uses linear combinations of phases that are self-calibrating with respect to small errors, with the goal of constructing observables that are robust against the residual optical aberrations in otherwise well-corrected imaging systems. Here, we present a direct comparison between kernel phase and the more established competing techniques, aperture masking interferometry, point spread function (PSF) fitting and bispectral analysis. We resolve the α Ophiuchi binary system near periastron, using the Palomar 200-Inch Telescope. This is the first case in which kernel phase has been used with a full aperture to resolve a system close to the diffraction limit with ground-based extreme adaptive optics observations. Excellent agreement in astrometric quantities is found between kernel phase and masking, and kernel phase significantly outperforms PSF fitting and bispectral analysis, demonstrating its viability as an alternative to conventional non-redundant masking under appropriate conditions.

  14. Convective cloud fields in the Atlantic sector of the Arctic: Satellite and ground-based observations

    NASA Astrophysics Data System (ADS)

    Esau, I. N.; Chernokulsky, A. V.

    2015-12-01

    Convective cloudiness in the Atlantic sector of the Arctic is considered as an atmospheric spatially self-organized convective field. Convective cloud development is usually studied as a local process reflecting the convective instability of the turbulent planetary boundary layer over a heated surface. The convective cloudiness has a different dynamical structure in high latitudes. Cloud development follows cold-air outbreaks into the areas with a relatively warm surface. As a result, the physical and morphological characteristics of clouds, such as the type of convective cloud, and their geographical localization are interrelated. It has been shown that marginal sea ice and coastal zones are the most frequently occupied by Cu hum, Cu med convective clouds, which are organized in convective rolls. Simultaneously, the open water marine areas are occupied by Cu cong, Cb, which are organized in convective cells. An intercomparison of cloud statistics using satellite data ISCCP and ground-based observations has revealed an inconsistency in the cloudiness trends in these data sources: convective cloudiness decreases in ISCCP data and increases in the groundbased observation data. In general, according to the stated hypothesis, the retreat of the sea-ice boundary may lead to an increase in the amount of convective clouds.

  15. New efforts using helicopter-borne and ground based electromagnetics for mineral exploration

    NASA Astrophysics Data System (ADS)

    Meyer, U.; Siemon, B.; Noell, U.; Gutzmer, J.; Spitzer, K.; Becken, M.

    2014-12-01

    Throughout the last decades mineral resources, especially rare earth elements, gained a steadily growing importance in industry and therefore as well in exploration. New targets for mineral investigations came into focus and known sources have been and will be revisited. Since most of the mining for mineral resources in the past took place in the upper hundred metres below surface new techniques made deeper mining economically feasible. Consequently, mining engineers need the best possible knowledge about the full spatial extent of prospective geological structures, including their maximum depths. Especially in Germany and Europe, politics changed in terms not to rely only on the global mineral trade market but on national resources, if available. BGR and partners therefore started research programs on different levels to evaluate and develop new technologies on environmental friendly, non-invasive spatial exploration using airborne and partly ground-based electromagnetic methods. Mining waste heaps have been explored for valuable residual minerals (research project ROBEHA), a promising tin bearing ore body is being explored by airborne electromagnetics (research project E3) and a new airborne technology is aimed at to be able to reach investigation depths of about 1 km (research project DESMEX). First results of the projects ROBEHA and E3 will be presented and the project layout of DESMEX will be discussed.

  16. A case for using ground-based thermal inertia measurements to detect Martian caves.

    PubMed

    Groemer, Gernot; Foresta, Luca; Turetschek, Thomas; Bothe, Claudia; Boyd, Andrea; Dinkelaker, Aline; Dissertori, Markus; Fasching, David; Fischer, Monika; Föger, Daniel; Frischauf, Norbert; Fritsch, Lukas; Fuchs, Harald; Gautsch, Christoph; Gerard, Stephan; Goetzloff, Linda; Gołebiowska, Izabella; Gorur, Paavan; Groemer, Gerhard; Groll, Petra; Haider, Christian; Haider, Olivia; Hauth, Eva; Hauth, Stefan; Hettrich, Sebastian; Jais, Wolfgang; Jones, Natalie; Taj-Eddine, Kamal; Karl, Alexander; Kauerhoff, Tilo; Khan, Muhammad Shadab; Kjeldsen, Andreas; Klauck, Jan; Losiak, Anna; Luger, Markus; Luger, Thomas; Luger, Ulrich; McArthur, Jane; Moser, Linda; Neuner, Julia; Orgel, Csilla; Ori, Gian Gabriele; Paternesi, Roberta; Peschier, Jarno; Pfeil, Isabella; Prock, Silvia; Radinger, Josef; Ragonig, Christoph; Ramirez, Barbara; Ramo, Wissam; Rampey, Mike; Sams, Arnold; Sams, Elisabeth; Sams, Sebastian; Sandu, Oana; Sans, Alejandra; Sansone, Petra; Scheer, Daniela; Schildhammer, Daniel; Scornet, Quentin; Sejkora, Nina; Soucek, Alexander; Stadler, Andrea; Stummer, Florian; Stumptner, Willibald; Taraba, Michael; Tlustos, Reinhard; Toferer, Ernst; Winter, Egon; Zanella-Kux, Katja

    2014-05-01

    Martian caves are regarded as one of the most interesting locations in which to search for life on the planet. Data obtained during the MARS2013 expedition at Hamar Laghdad Ridge in the Tafilalt region of Morocco indicate that even small cavities can display thermal behavior that is characteristic for caves. For example, temperature in a cavity equaled 14°C±0.1°C before sunrise, which was higher than the temperature of the ambient air (10°C±0.1°C) and proximate rocks (9°C±0.1°C) at the same time. Within 30 min after sunrise, when the temperature of surrounding rocks corresponded to 15°C, this thermal relationship reversed. Measurements were conducted under simulated spaceflight conditions, including near-real-time interpretation of data that were acquired in a complex flight planning environment. We conclude that using ground-based thermal contrast measurements, in 7-14 μm band before and after sunset, is an effective method for Mars astronauts to identify caves, possibly superior to usage of space-based or ground-penetrating data.

  17. Ground-based measurements of galactic cosmic ray fragmentation in shielding

    NASA Technical Reports Server (NTRS)

    Schimmerling, W.

    1992-01-01

    The mean free path for nuclear interactions of galactic cosmic-rays is comparable to shielding and tissue thicknesses present in human interplanetary exploration, resulting in a significant fraction of nuclear reaction products at depth. In order to characterize the radiation field, the energy spectrum, the angular distribution, and the multiplicity of each type of secondary particles must also be known as a function of depth. Reactions can take place anywhere in a thick absorber; therefore, it is necessary to know these quantities as a function of particle energy for all particles produced. HZE transport methods are used to predict the radiation field; they are dependent on models of the interaction of man-made systems with the space environment to an even greater extent than methods used for other types of radiation. Hence, there is a major need to validate these transport codes by comparison with experimental data. The most cost-effective method of validation is a comparison with ground-based experimental measurements. A research program to provide such validation measurements using neon, iron and other accelerated heavy ion beams will be discussed and illustrated using results from ongoing experiments and their comparison with current transport codes. The extent to which physical measurements yield radiobiological predictions will be discussed.

  18. Evaluation of Satellite and Ground Based Precipitation Products for Flood Forecasting

    NASA Astrophysics Data System (ADS)

    Chintalapudi, S.; Sharif, H.; Yeggina, S.

    2012-04-01

    The development in satellite-derived rainfall estimates encouraged the hydrological modeling in sparse gauged basins or ungauged basins. Especially, physically-based distributed hydrological models can benefit from the good spatial and temporal coverage of satellite precipitation products. In this study, three satellite derived precipitation datasets (TRMM, CMORPH, and PERSIANN), NEXRAD, and rain gauge precipitation datasets were used to drive the hydrological model. The physically-based, distributed hydrological model Gridded Surface Subsurface Hydrological Analysis (GSSHA) was used in this study. Focus will be on the results from the Guadalupe River Basin above Canyon Lake and below Comfort, Texas. The Guadalupe River Basin above Canyon Lake and below Comfort Texas drains an area of 1232 km2. Different storm events will be used in these simulations. August 2007 event was used as calibration and June 2007 event was used as validation. Results are discussed interms of accuracy of satellite precipitation estimates with the ground based precipitation estimates, predicting peak discharges, runoff volumes, time lag, and spatial distribution. The initial results showed that, model was able to predict the peak discharges and runoff volumes when using NEXRAD MPE data, and TRMM 3B42 precipitation product. The results also showed that there was time lag in hydrographs driven by both PERSIANN and CMORPH data sets.

  19. Ground-Based Observations of Saturn's North Polar Spot and Hexagon.

    PubMed

    Sanchez-Lavega, A; Lecacheux, J; Colas, F; Laques, P

    1993-04-16

    Ground-based observations of two conspicuous features near the north pole of Saturn, the polar vortex and the hexagonal wave structure, were made from July 1990 to October 1991, 10 years after their discovery. During this period the polar spot drifted in longitude, relative to system III, by -0.0353 degrees per day on average. Superimposed on this mean motion, the spot also underwent short-term rapid excursions in longitude of up to approximately 14 degrees at rates of up to approximately 1 degrees per day. The spot also exhibited irregular variations in its latitude location. A combination of these data together with those obtained by Voyager 1 and 2 in 1980 and 1981 shows that the spot drifted -0.0577 degrees per day for the 11-year interval from 1980 to 1991. The large lifetime of both features indicates that they are insensitive to the strong variations in the seasonal heating of the cloud layers in the upper polar atmosphere.

  20. Space Borne and Ground Based InSAR Data Integration: The Åknes Test Site

    NASA Astrophysics Data System (ADS)

    Bardi, Federica; Raspini, Federico; Ciampalini, Andrea; Kristensen, Lene; Rouyet, Line; Rune Lauknes, Tom; Frauenfelder, Regula; Casagli, Nicola

    2016-04-01

    This work concerns a proposal of integration between InSAR (Interferometric Synthetic Aperture Radar) data acquired by ground based (GB) and satellite platforms. The selected test site is the Åknes rockslide, which affects the western Norwegian coast; the availability of GB-InSAR and satellite InSAR data, and the accessibility of a wide literature make the landslide suitable for testing the proposed procedure. The first step consists in the organization of a geodatabase, performed in GIS environment, containing all the available data. The second step concerns the analysis of satellite and GB-InSAR data, separately. Two datasets, acquired by RADARSAT-2 (related to a period between October 2008 and August 2013) and by a combination of TerraSAR-X and TanDEM-X (acquired between July 2010 and October 2012), both of them in ascending orbit, processed applying SBAS (Small BAseline Subset), are available. GB-InSAR data related to 5 different campaigns of measurements, referred to the summer seasons of 2006, 2008, 2009, 2010 and 2012 are available too. The third step relies on data integration, performed firstly on a qualitative point of view and lately on a semi-quantitative point of view. The results of the proposed procedure have been validated by comparing them with GPS (Global Positioning System) data.

  1. Development of ground-based ELF/VLF receiver system in Wuhan and its first results

    NASA Astrophysics Data System (ADS)

    Chen, Yanping; Yang, Guobin; Ni, Binbin; Zhao, Zhengyu; Gu, Xudong; Zhou, Chen; Wang, Feng

    2016-05-01

    A new digital low-frequency receiver system has been developed at Wuhan University for sensitive reception of low-latitude broadband Extremely Low Frequency (ELF) and Very Low Frequency (VLF) radio waves originating from either natural or artificial sources. These low-frequency radio waves are useful for ionospheric remote sensing, geospace environment monitoring, and submarine communications. This paper presents the principle and architecture of the system framework, including magnetic loop antenna design, low-noise analog front-end and digital receiver with data sampling and transmission. A new structure is adopted in the analog front end to provide high common-mode rejection and to reduce interference. On basis of field programmable gate array (FPGA) device and Universal Serial Bus (USB) architecture, the digital receiver is developed along with time keeping and synchronization module. The validity and feasibility of the self-developed ground-based ELF/VLF receiver system is evaluated by first results of experimental data that show the temporal variation of broadband ELF/VLF wave spectral intensity in Wuhan (30.54 °N, 114.37 °E). In addition to the acquisition of VLF transmitter signals at various frequencies, tweek atmospherics are also clearly captured to occur at multiple modes up to n = 6.

  2. Ozone and nitrogen dioxide ground based monitoring by zenith sky visible spectrometry in Arctic and Antarctic

    NASA Technical Reports Server (NTRS)

    Pommereau, J. P.; Goutail, F.

    1988-01-01

    Unattended diode array spectrometers have been designed for ground based stratospheric trace species monitoring by zenith sky visible spectrometry. Measurements are performed with a 1.0 nm resolution between 290 nm and 590 nm in order to allow simultaneous evaluations of column densities of ozone, nitrogen dioxide. Field tests have shown that the species can be monitored with a precision of + or - 2 Dobson for the first and + or - 2.10 to the 15th mol/sq cm for the second, although the absolute accuracy of the method is limited by the error of the estimation of the atmospheric optical path of the scattered light. Two identical instruments were set up in January 1988, one in Antarctica at Dumont d'Urville (66 S, 140 E) to be operated all year and another one in the Arctic at ESRANGE at Kiruna (68 N; 22 E) which will operate to the final warming of spring 1988. The data are processed in real time at both stations. O3 and NO2 columns are transmitted together with surface and stratospheric temperature and winds. They are also recorded for further treatment and search for OClO and BrO. Only one month of data from Antarctica is available at the moment. Obtained during polar summer, they cannot show more than stable columns of O3 and NO2 and for the last species, the buildup of its diurnal variation.

  3. Ground Based Remote Sensing of the First Aerosol Indirect Effect: An Update

    NASA Astrophysics Data System (ADS)

    Previdi, M.; Feingold, G.; Veron, D. E.; Eberhard, W. L.

    2003-12-01

    The first aerosol indirect effect can be defined as an increase in the shortwave albedo of clouds due to higher concentrations of atmospheric aerosol, whereby the aerosol acts as cloud condensation nuclei to produce increased cloud droplet concentrations and smaller, more reflective droplets. The current work is one step toward achieving a more complete understanding of the indirect effect, which will consequently allow for a better determination of how changes in cloud induced by aerosol may affect the radiation budget and thus the climate. We utilize a series of continuous ground-based measurements from the Southern Great Plains (SGP) Atmospheric Radiation Measurement (ARM) program to investigate the indirect effect. Days that exhibit ice-free, single layered, nonprecipitating clouds are analyzed, with the indirect effect quantified as the relative change in cloud droplet effective radius for a relative change in aerosol extinction (under conditions of equivalent cloud liquid water path). Several cases from the first six years of our analysis (1998-2003) are described here, and probable reasons for the differences in the cloud response to aerosol among the cases are discussed.

  4. Ground-based spectroscopic measurements of atmospheric gas composition near Saint Petersburg (Russia)

    NASA Astrophysics Data System (ADS)

    Timofeyev, Yury; Virolainen, Yana; Makarova, Maria; Poberovsky, Anatoly; Polyakov, Alexander; Ionov, Dmitry; Osipov, Sergey; Imhasin, Hamud

    2016-05-01

    Since early 2009, high-resolution solar absorption spectra have been recorded at the Peterhof station (59.88°N, 29.82°E) of Saint Petersburg State University located in the suburbs of St. Petersburg. Measurements are made with the Fourier Transform Infrared (FTIR) system, which consists of Bruker IFS 125HR instrument (with maximum spectral resolution of 0.005 cm-1) and self-designed solar tracker. We derived total column (TC) of a dozen of atmospheric gases from recorded spectra and performed the error analysis of these retrievals. Furthermore, we analysed the temporal variability of the important climatically active gases, such as H2O, CH4, O3, CO, and NO2 near St. Petersburg and compared our retrievals with independent ground-based and satellite data, as well as with the results of EMAC model numerical simulations. Currently, the results of our measurements and the measuring system are under validation for entering the international Network for the Detection of Atmospheric Composition Change (NDACC).

  5. NASA HRP Plans for Collaboration at the IBMP Ground-Based Experimental Facility (NEK)

    NASA Technical Reports Server (NTRS)

    Cromwell, Ronita L.

    2016-01-01

    NASA and IBMP are planning research collaborations using the IBMP Ground-based Experimental Facility (NEK). The NEK offers unique capabilities to study the effects of isolation on behavioral health and performance as it relates to spaceflight. The NEK is comprised of multiple interconnected modules that range in size from 50-250m(sup3). Modules can be included or excluded in a given mission allowing for flexibility of platform design. The NEK complex includes a Mission Control Center for communications and monitoring of crew members. In an effort to begin these collaborations, a 2-week mission is planned for 2017. In this mission, scientific studies will be conducted to assess facility capabilities in preparation for longer duration missions. A second follow-on 2-week mission may be planned for early in 2018. In future years, long duration missions of 4, 8 and 12 months are being considered. Missions will include scenarios that simulate for example, transit to and from asteroids, the moon, or other interplanetary travel. Mission operations will be structured to include stressors such as, high workloads, communication delays, and sleep deprivation. Studies completed at the NEK will support International Space Station expeditions, and future exploration missions. Topics studied will include communication, crew autonomy, cultural diversity, human factors, and medical capabilities.

  6. Multi-component vertical profile retrievals for ground-based MAX-DOAS

    NASA Astrophysics Data System (ADS)

    Irie, Hitoshi; Kanaya, Yugo; Takashima, Hisahiro; van Roozendael, Michel; Wittrock, Folkard; Piters, Ankie

    2010-05-01

    We attempt to retrieve lower-tropospheric vertical profile information for 8 components from ground-based Multi-Axis Differential Optical Absorption Spectroscopy (MAX-DOAS) measurements. The components retrieved include aerosol extinction coefficients (AEC) at two wavelengths 357 and 476 nm, NO2, HCHO, CHOCHO, H2O, SO2, and O3 volume mixing ratios (VMRs). This method was applied to MAX-DOAS observations performed at Cabauw, the Netherlands (52.0°N, 4.9°E) in June-July 2009 during the Cabauw Intercomparison campaign of Nitrogen Dioxide measuring Instruments (CINDI) campaign. For the lowest layer of retrieved profiles at 0-1 km, two channels of AEC values reveal consistent variations. NO2 showed typical diurnal variations with maximum in early morning and minimum in the afternoon. Positive correlations between HCHO and CHOCHO were often seen. H2O VMR agreed well with that derived from NCEP surface data, and was used to judge cloudy cases after conversion to relative humidity. All these results support the capability of MAX-DOAS observations applicable to various air quality studies. Similar multi-component retrievals applied to observations in Japan are also presented in this talk.

  7. Potential Application of NASA Aerospace Technology to Ground-Based Power System

    NASA Technical Reports Server (NTRS)

    Povinelli, Louis A.; Welch, Gerard E.; Bakhle, Milind A.; Brown, Gerald V.

    2000-01-01

    A review of some of the basic gas turbine technology being developed at the NASA John H. Glenn Research Center at Lewis Field, which may have the potential to be applied to ground-based systems, is presented in this paper. Only a sampling of the large number of research activities underway at the Glenn Research Center can be represented here. The items selected for presentation are those that may lead to increased power and efficiency, reduced cycle design time and cost, improved thermal design, reduced fatigue and fracture, reduced mechanical friction and increased operating margin. The topic of improved material will be presented in this conference and shall not be discussed here. The topics selected for presentation are key research activities at the Glenn Center of Excellence on Turbo-machinery. These activities should be of interest and utility to this ISABE (International Symposium on Air Breathing Engines) Special Forum on Aero-Derivative Land-Based Gas Turbines and to the power industry.

  8. The potential of THEMIS satellite and ground-based measurements for data mining

    NASA Astrophysics Data System (ADS)

    Frey, S.; Angelopoulos, V.; Sibeck, D. G.; Phan, T.; Eastwood, J. P.; Runov, A.; Frey, H. U.

    2009-12-01

    Launched on February 17, 2007 on a DELTA II rocket, NASA's Time History of Events and Macroscale Interactions during Substorms (THEMIS) mission is a Medium-class Explorer project and the first space mission to study the sequence of magnetospheric events that trigger gigantic auroral displays in the polar regions using a macro-scale constellation of spacecraft. THEMIS is composed of a space segment of 5 identical probes equipped with particle and field instruments and a ground segment of about 20 Ground-Based Observatories with all-sky cameras and magnetometers. During its nominal mission THEMIS has observed over 20 substorm events, measured radial profiles of high energy particles through the radiation belts year-round, and provided numerous multi-point measurements across the magnetopause and bow shock with upstream monitoring. THEMIS data as well as the methods developed to simultaneously detect magnetospheric processes or structures are ideal for the development of software tools to efficiently extract data. We will present the potential of the THEMIS data to catalog magnetospheric events, define search patterns for event detection as well standardized interfaces with models.

  9. A ground-based optical transmission spectrum of WASP-6b

    SciTech Connect

    Jordán, Andrés; Espinoza, Néstor; Rabus, Markus; Eyheramendy, Susana; Sing, David K.; Désert, Jean-Michel; Bakos, Gáspár Á.; Fortney, Jonathan J.; López-Morales, Mercedes; Szentgyorgyi, Andrew; Maxted, Pierre F. L.; Triaud, Amaury H. M. J.

    2013-12-01

    We present a ground-based optical transmission spectrum of the inflated sub-Jupiter-mass planet WASP-6b. The spectrum was measured in 20 spectral channels from 480 nm to 860 nm using a series of 91 spectra over a complete transit event. The observations were carried out using multi-object differential spectrophotometry with the Inamori-Magellan Areal Camera and Spectrograph on the Baade Telescope at Las Campanas Observatory. We model systematic effects on the observed light curves using principal component analysis on the comparison stars and allow for the presence of short and long memory correlation structure in our Monte Carlo Markov Chain analysis of the transit light curves for WASP-6. The measured transmission spectrum presents a general trend of decreasing apparent planetary size with wavelength and lacks evidence for broad spectral features of Na and K predicted by clear atmosphere models. The spectrum is consistent with that expected for scattering that is more efficient in the blue, as could be caused by hazes or condensates in the atmosphere of WASP-6b. WASP-6b therefore appears to be yet another massive exoplanet with evidence for a mostly featureless transmission spectrum, underscoring the importance that hazes and condensates can have in determining the transmission spectra of exoplanets.

  10. TeV γ-ray astronomy with ground-based air-shower arrays

    NASA Astrophysics Data System (ADS)

    Mostafá, Miguel A.

    2016-07-01

    The TeV energy band is a very exciting window into the origin of high energy cosmic radiation, particle acceleration, and the annihilation of dark matter particles. Above a few hundred GeV, ground-based experiments of very large effective areas open a new domain to study extragalactic sources at intermediate redshifts, galaxy clusters, gamma ray bursts, AGN and their flaring states, extended sources and galactic diffuse emission, and to indirect searches for dark matter. In particular, ground arrays of particle detectors -that operate with high duty cycles and large fields of view- can extend to multi-TeV energies the measurements made with experiments on satellites, and complement the observations done with air Cherenkov telescopes on the ground. Key science goals of ground arrays include performing unbiased all-sky surveys, monitoring of transient events from known (and unknown) sources, and detecting extended regions of diffuse emission. In this paper, the status and most recent results from ARGO-YBJ, Tibet AS, HAWC, and LHAASO are presented.

  11. PSC and volcanic aerosol routine observations in Antarctica by UV-visible ground-based spectrometry

    NASA Technical Reports Server (NTRS)

    Sarkissian, A.; Pommereau, J. P.; Goutail, F.

    1994-01-01

    Polar statospheric clouds (PSC) and stratospheric aerosol can be observed by ground-based UV-visible spectrometry by looking at the variation of the color of the sky during twilight. A radiative transfer model shows that reddenings are caused by high altitude (22-28 km) thin layers of scatterers, while low altitude (12-20 km) thick ones result in blueings. The color index method applied on 4 years of observations at Dumont d'Urville (67 deg S), from 1988 to 1991, shows that probably because the station is located at the edge of the vortex, dense PSC are uncommon. More unexpected is the existence of a systematic seasonal variation of the color of the twilight sky - bluer at spring - which reveals the formation of a dense scattering layer at or just above the tropopause at the end of the winter. Large scattering layers are reported above the station in 1991, first in August around 12-14 km, later in September at 22-24 km. They are attributed to volcanic aerosol from Mt Hudson and Mt Pinatubo respectively, which erupted in 1991. Inspection of the data shows that the lowest entered rapidly into the polar vortex but not the highest which remained outside, demonstrating that the vortex was isolated at 22-26 km.

  12. Nonlinear transient survival level seismic finite element analysis of Magellan ground based telescope

    NASA Astrophysics Data System (ADS)

    Griebel, Matt; Buleri, Christine; Baylor, Andrew; Gunnels, Steve; Hull, Charlie; Palunas, Povilas; Phillips, Mark

    2016-07-01

    The Magellan Telescopes are a set of twin 6.5 meter ground based optical/near-IR telescopes operated by the Carnegie Institution for Science at the Las Campanas Observatory (LCO) in Chile. The primary mirrors are f/1.25 paraboloids made of borosilicate glass and a honeycomb structure. The secondary mirror provides both f/11 and f/5 focal lengths with two Nasmyth, three auxiliary, and a Cassegrain port on the optical support structure (OSS). The telescopes have been in operation since 2000 and have experienced several small earthquakes with no damage. Measurement of in situ response of the telescopes to seismic events showed significant dynamic amplification, however, the response of the telescopes to a survival level earthquake, including component level forces, displacements, accelerations, and stresses were unknown. The telescopes are supported with hydrostatic bearings that can lift up under high seismic loading, thus causing a nonlinear response. For this reason, the typical response spectrum analysis performed to analyze a survival level seismic earthquake is not sufficient in determining the true response of the structure. Therefore, a nonlinear transient finite element analysis (FEA) of the telescope structure was performed to assess high risk areas and develop acceleration responses for future instrument design. Several configurations were considered combining different installed components and altitude pointing directions. A description of the models, methodology, and results are presented.

  13. Seven years of middle-atmospheric CO in the Arctic by ground based radiometry

    NASA Astrophysics Data System (ADS)

    Ryan, Niall; Palm, Mathias; Raffalski, Uwe; Larsson, Richard; Notholt, Justus

    2016-04-01

    During polar winter, carbon monoxide (CO) is a well-suited tracer for middle atmospheric dynamics and for studying the polar vortex boundary: In polar night the chemical reactions involving atmospheric carbon monoxide are negligible due to the lack of sunlight and, as a result, the gas exhibits strong vertical and horizontal gradients in the stratosphere and mesosphere. Due to the upcoming likely gap in satellite profiling instruments, and in order to maintain a long-term global record of atmospheric trace gas concentrations, current and future satellite missions must be inter-calibrated using measurements from ground-based instruments around the globe. The Kiruna Microwave Radiometer (KIMRA), installed at the Swedish Institute of Space Physics, Kiruna, Sweden (67.8 N, 20.4 E), has been measuring microwave spectra of emissions from atmospheric CO since 2007. This contribution presents the CO concentration record which has been retrieved from KIMRA measurements using different temperature datasets: measurements from the Defense Meteorological Satellite Program - F18 and model output from the European Centre for Medium-Range Weather Forecasts. The concentration profiles, retrieved between 40 and 80 km altitude, are compared to data from the Microwave Limb Sounder on the Aura satellite and are used to examine the concentration gradient across the polar vortex edge.

  14. Ground-Based Robotic Sensing of an Agricultural Sub-Canopy Environment

    NASA Astrophysics Data System (ADS)

    Burns, A.; Peschel, J.

    2015-12-01

    Airborne remote sensing is a useful method for measuring agricultural crop parameters over large areas; however, the approach becomes limited to above-canopy characterization as a crop matures due to reduced visual access of the sub-canopy environment. During the growth cycle of an agricultural crop, such as soybeans, the micrometeorology of the sub-canopy environment can significantly impact pod development and reduced yields may result. Larger-scale environmental conditions aside, the physical structure and configuration of the sub-canopy matrix will logically influence local climate conditions for a single plant; understanding the state and development of the sub-canopy could inform crop models and improve best practices but there are currently no low-cost methods to quantify the sub-canopy environment at a high spatial and temporal resolution over an entire growth cycle. This work describes the modification of a small tactical and semi-autonomous, ground-based robotic platform with sensors capable of mapping the physical structure of an agricultural row crop sub-canopy; a soybean crop is used as a case study. Point cloud data representing the sub-canopy structure are stored in LAS format and can be used for modeling and visualization in standard GIS software packages.

  15. Super-Gaussian apodization in ground based telescopes for high contrast coronagraph imaging.

    PubMed

    Cagigas, Miguel A; Valle, Pedro J; Cagigal, Manuel P

    2013-05-20

    We introduce the use of Super-Gaussian apodizing functions in the telescope pupil plane and/or the coronagraph Lyot plane to improve the imaging contrast in ground-based coronagraphs. We describe the properties of the Super-Gaussian function, we estimate its second-order moment in the pupil and Fourier planes and we check it as an apodizing function. We then use Super-Gaussian function to apodize the telescope pupil, the coronagraph Lyot plane or both of them. The result is that a proper apodizing masks combination can reduce the exoplanet detection distance up to a 45% with respect to the classic Lyot coronagraph, for moderately aberrated wavefronts. Compared to the prolate spheroidal function the Super-Gaussian apodizing function allows the planet light up to 3 times brighter. An extra help to increase the extinction rate is to perform a frame selection (Lucky Imaging technique). We show that a selection of the 10% best frames will reduce up to a 20% the detection angular distance when using the classic Lyot coronagraph but that the reduction is only around the 5% when using an apodized coronagraph.

  16. Ground-based thermal imaging of groundwater flow processes at the seepage face

    NASA Astrophysics Data System (ADS)

    Deitchman, Richard S.; Loheide, Steven P.

    2009-07-01

    There is no existing method to quantitatively image groundwater processes along a seepage face. Thus, it is often difficult to quantify the magnitude and spatial variability of groundwater flux. The objective of this work is to assess the use of ground-based thermal remote sensing for fine-scale mapping of groundwater discharge and for locating the water table position along a stream bank seepage face. Seepage faces are poorly understood and often neglected in regional hydrologic studies though they likely exert significant influence on hydrologic and ecologic processes in riparian zones. Although the importance of riparian areas is broadly recognized, our ability to quantify hydrologic, ecologic and biogeochemical processes and ecosystem services is hampered by our inability to characterize spatially variable processes such as groundwater discharge. This work employs a new, transferable, non-invasive method that uses heat as a natural tracer to image spatially-variable groundwater flow processes and distinguish between focused and diffuse groundwater discharge to the surface. We report, for the first time, that thermal remote sensing of groundwater at the seepage face provides indirect imaging of both the saturated zone-unsaturated zone transition and groundwater flux at the centimeter scale, offering insight into flow heterogeneity.

  17. Haze event monitoring and investigation in Penang Island, Malaysia using a ground-based backscatter Lidar

    NASA Astrophysics Data System (ADS)

    Hee, W. S.; Tan, F.; Lim, H. S.; Matjafri, M. Z.

    2014-06-01

    During 24th July 2013 to 1st August 2013, a haze event struck Penang Island, causing the visibility to decrease and increase in Air Pollution Index (API). A ground-based backscatter Lidar, operate at 355 nm which was setup at the roof top of the School of Physics, Universiti Sains Malaysia. It was used to monitor and investigate the haze event. For this work, we studied the daytime variation of the aerosol intensity, distribution, planetary boundary layer (PBL) height and the aerosol optical depth (AOD) values during these days. We found that the aerosol are very intense during the first two days of the haze event and slowly decline as time passed. Finally the haze event died off on 1st August 2013. As for daily aerosol distribution, aerosols are generally more intense during the afternoon. Its intensity is slightly lower in the morning and evening. Similar trends were observed for AOD values as they increase from morning to afternoon and slowly decrease in the evening. Most aerosols are found contained below the PBL which generally found at around 1000 - 2000 m in height.

  18. A Methodology for Evaluating the Fidelity of Ground-Based Flight Simulators

    NASA Technical Reports Server (NTRS)

    Zeyada, Y.; Hess, R. A.

    1999-01-01

    An analytical and experimental investigation was undertaken to model the manner in which pilots perceive and utilize visual, proprioceptive, and vestibular cues in a ground-based flight simulator. The study was part of a larger research effort which has the creation of a methodology for determining flight simulator fidelity requirements as its ultimate goal. The study utilized a closed-loop feedback structure of the pilot/simulator system which included the pilot, the cockpit inceptor, the dynamics of the simulated vehicle and the motion system. With the exception of time delays which accrued in visual scene production in the simulator, visual scene effects were not included in this study. The NASA Ames Vertical Motion Simulator was used in a simple, single-degree of freedom rotorcraft bob-up/down maneuver. Pilot/vehicle analysis and fuzzy-inference identification were employed to study the changes in fidelity which occurred as the characteristics of the motion system were varied over five configurations. The data from three of the five pilots that participated in the experimental study were analyzed in the fuzzy-inference identification. Results indicate that both the analytical pilot/vehicle analysis and the fuzzy-inference identification can be used to reflect changes in simulator fidelity for the task examined.

  19. Ground-Based Tests of Spacecraft Polymeric Materials under OXY-GEN Plasma-Beam

    NASA Astrophysics Data System (ADS)

    Chernik, Vladimir; Novikov, Lev; Gaidar, Anna

    2016-07-01

    Spacecraft LEO mission is accompanied by destruction of polymeric material surface under influence of atomic oxygen flow. Sources of molecular, plasma and ion beams are used for the accelerated ground-based tests of spacecraft materials. In the work application of oxygen plasma accelerator of a duoplasmatron type is described. Plasma particles have been accelerated up to average speed of 13-16 km/s. Influence of such beam on materials leads to more intensive destruction of polymers than in LEO. This fact allows to execute tests in the accelerated time scale by a method of an effective fluence. Special measures were given to decrease a concentration of both gaseous and electrode material impurities in the oxygen beam. In the work the results of simulative tests of spacecraft materials and experiments on LEO are considered. Comparison of plasma beam simulation with LEO data has shown conformity for structures of a number of polymeric materials. The relative erosion yields (normalized with respect to polyimide) of the tested materials are shown practically equal to those in LEO. The obtained results give grounds for using the plasma-generation mode with ion energies of 20-30 eV to accelerated testing of spacecraft materials for long -term LEO missions.

  20. Simulated forecasts for primordial B -mode searches in ground-based experiments

    NASA Astrophysics Data System (ADS)

    Alonso, David; Dunkley, Joanna; Thorne, Ben; Næss, Sigurd

    2017-02-01

    Detecting the imprint of inflationary gravitational waves on the B -mode polarization of the cosmic microwave background (CMB) is one of the main science cases for current and next-generation CMB experiments. In this work we explore some of the challenges that ground-based facilities will have to face in order to carry out this measurement in the presence of galactic foregrounds and correlated atmospheric noise. We present forecasts for stage-3 (S3) and planned stage-4 (S4) experiments based on the analysis of simulated sky maps using a map-based Bayesian foreground-cleaning method. Our results thus consistently propagate the uncertainties on foreground parameters such as spatially varying spectral indices, as well as the bias on the measured tensor-to-scalar ratio r caused by an incorrect modeling of the foregrounds. We find that S3 and S4-like experiments should be able to put constraints on r of the order σ (r )=(0.5 - 1.0 )×10-2 and σ (r )=(0.5 - 1.0 )×10-3 respectively, assuming instrumental systematic effects are under control. We further study deviations from the fiducial foreground model, finding that, while the effects of a second polarized dust component would be minimal on both S3 and S4, a 2% polarized anomalous dust emission component would be clearly detectable by stage-4 experiments.

  1. Ground-Based Phase of Spaceflight Experiment "Biosignal" Using Autonomic Microflurimeter "Fluor-K"

    NASA Astrophysics Data System (ADS)

    Grigorieva, O. V.; Gal'chuk, S. V.; Rudimov, E. G.; Buravkova, L. B.

    2013-02-01

    The majority of flight experiments with the use of cell cultures and equipment like KUBIK and CRIOGEM carried out on board of the satellites (Bion, Foton) and ISS only allows the after-flight biosamples to be analyzed. As far as with few exceptions, the real-time cellular parameters registration for a long period is hard to be implemented. We developed the "Fluor-K" equipment - precision, small-sized, autonomous, two-channel, programmed fluorimeter. This device is designed for registration of differential fluorescent signal from organic and non-organic objects of microscale in small volumes (cellular organelles suspensions, animal and human cells, unicellular algae, bacteria, various fluorescent colloid solutions). Beside that, "Fluor-K" allows simultaneous detection of temperature. The ground-based tests of the device proved successful. The developed software can support experimental schedules while real-time data registration with the built-in storage device allows changes in selected parameters to be analyzed using wide range of fluorescent probes.

  2. FINDING EXTRATERRESTRIAL LIFE USING GROUND-BASED HIGH-DISPERSION SPECTROSCOPY

    SciTech Connect

    Snellen, I. A. G.; Le Poole, R.; Brogi, M.; Birkby, J.; De Kok, R. J.

    2013-02-20

    Exoplanet observations promise one day to unveil the presence of extraterrestrial life. Atmospheric compounds in strong chemical disequilibrium would point to large-scale biological activity just as oxygen and methane do in the Earth's atmosphere. The cancellation of both the Terrestrial Planet Finder and Darwin missions means that it is unlikely that a dedicated space telescope to search for biomarker gases in exoplanet atmospheres will be launched within the next 25 years. Here we show that ground-based telescopes provide a strong alternative for finding biomarkers in exoplanet atmospheres through transit observations. Recent results on hot Jupiters show the enormous potential of high-dispersion spectroscopy to separate the extraterrestrial and telluric signals, making use of the Doppler shift of the planet. The transmission signal of oxygen from an Earth-twin orbiting a small red dwarf star is only a factor of three smaller than that of carbon monoxide recently detected in the hot Jupiter {tau} Booetis b, albeit such a star will be orders of magnitude fainter. We show that if Earth-like planets are common, the planned extremely large telescopes can detect oxygen within a few dozen transits. Ultimately, large arrays of dedicated flux-collector telescopes equipped with high-dispersion spectrographs can provide the large collecting area needed to perform a statistical study of life-bearing planets in the solar neighborhood.

  3. Ground-based observations of MF/HF radio noise in the auroral zone

    SciTech Connect

    Weatherwax, A.T.; LaBelle, J.; Trimpi, M.L.; Brittain, R.; Treumann, R.A.

    1994-02-01

    Broadband noise enhancements in the frequency range of {approximately} 1.4-4.8 MHz have been observed with a ground-based receiver located at Two Rivers, Alaska (near Fairbanks). During the 5-month period from November 1991 to March 1992, eight broadband noise enhancements were recorded. A correlation is observed between the radio noise enhancements and magnetic activity recorded with the magnetometer in College, Alaska (45 km away). Initial examination of college ionosonde data also suggest that sporadic E is associated with the termination of some of the events. The enhancements are characterized by a low-frequency cutoff at {approximately} 1.4 MHz and a decrease in intensity near {approximately} 2.8 MHz, which roughly correspond to 1 and 2 times the ionospheric electron cyclotron frequency, respectively. Although some discrete man-made signals are observed to be enhanced during the events, the bulk of the broadband enhancements may be composed of natural signals. If natural, the observed spectral shape is consistent with calculations of synchrotron radiation combined with cyclotron absorption; in this case, these signals would be diagnostic of the hardness of the auroral electron energy spectrum. 26 refs., 9 figs.

  4. Antarctic Ground-based Observations During Selected THEMIS Satellite Event Studies

    NASA Astrophysics Data System (ADS)

    Weatherwax, A. T.; Lessard, M.; Lanzerotti, L.; Mende, S.; Frey, H.; Inan, U.; Spasojevic, M.; Engebretson, M.; Posch, J.; Petit, N.; Clauer, R.; Labelle, J.; Ridley, A.; Rosenberg, T.; Detrick, D.

    2007-12-01

    In Antarctica, the Polar Experiment Network for Geospace Upper-atmosphere Investigations (PENGUIn) team operates a suite of optical and radio wave imagers, magnetometers, riometers, and ELF-HF receivers at South Pole and McMurdo stations, as well as from the Automated Geophysical Observatories (AGOs) on the Antarctic polar plateau. These stations span locations from the auroral zone to deep in the polar cap. Employing data from this array, ground-based observations during several THEMIS satellite event studies will be discussed. These include: a flux transfer event (FTE) on May 20, 2007; a solar wind shock propagation on June 21; a hot flow anomaly on July 4; high latitude optical events on August 8th and 10th; and substorm events on March 23rd and 24th. Of particular interest is the FTE event where the magnetometer Z-component appears to have the signature of a line current passing overhead at South Pole and a sharp cutoff of 2-4 kHz VLF signals is also observed at the time the current moved overhead. Cosmic noise absorption and 630 nm optical signals also began about the time the currents moved overhead, and then tracked the H-component of the magnetometer. The enhanced optical signal was coincident with increased ionosphere currents as shown by the H-component. In this presentation, a southern hemisphere contextual description of this event, and the others listed above, will be presented.

  5. Short Timescale Variables In Stellar Clusters: From Gaia To Ground-Based Telescopes

    NASA Astrophysics Data System (ADS)

    Roelens, Maroussia; Blanco-Cuaresma, Sergi; Eyer, Laurent; Mowlavi, Nami; Lecoeur-Taïbi, Isabelle; Rimoldini, Lorenzo; Palaversa, Lovro; Süveges, Maria; Charnas, Jonathan

    2016-07-01

    Combined studies of variable stars and stellar clusters open great horizons, and they allow us to improve our understanding of stellar cluster formation and stellar evolution. In that prospect, the Gaia mission will provide astrometric, photometric, and spectroscopic data for about one billion stars of the Milky Way. This will represent a major census of stellar clusters, and it will drastically increase the number of known variable stars. In particular, the peculiar Gaia scanning law offers the opportunity to investigate the rather unexplored domain of short timescale variability (from tens of seconds to a dozen of hours), bringing invaluable clues to the fields of stellar physics and stellar aggregates.We assess the Gaia capabilities in terms of short timescale variability detection, using extensive light-curve simulations for various variable object types. We show that Gaia can detect periodic variability phenomena with amplitude variations larger than a few millimagnitudes. Additionally, we plan to perform subsequent follow-up of variables stars detected in clusters by Gaia to better characterize them. Hence, we develop a pipeline for the analysis of high cadence photometry from ground-based telescopes such as the 1.2m Euler telescope (La Silla, Chile) and the 1.2m Mercator telescope (La Palma, Canary Islands).

  6. ULF cusp pulsations: Diurnal variations and interplanetary magnetic field correlations with ground-based observations

    SciTech Connect

    McHarg, M.G.; Olson, J.V.; Newell, P.T.

    1995-10-01

    In this paper the authors establish the Pc 5 magnetic pulsation signatures of the cusp and boundary regions for the high-latitude dayside cusp region. These signatures were determined by comparing spectrograms of the magnetic pulsations with optical observations of particle precipitation regions observed at the cusp. The ULF pulsations have a diurnal variation, and a cusp discriminant is proposed using a particular narrow-band feature in the pulsation spectrograms. The statistical distribution of this pattern over a 253-day period resembles the statistical cusp description using particle precipitation data from the Defense Meterological Satellite Program (DMSP). The distribution of the ground-based cusp discriminant is found to peak 1 hour earlier than the DMSP cusp distribution. This offset is due to the interplanetary magnetic field (IMF) being predominantly negative B{sub y} for the period when the data were collected. The authors find the diurnal variations so repeatable that only three main categories have statistically different IMF distributions. The identification of the signatures in the magnetic spectrograms of the boundary regions and central cusp allows the spectrogram to be used as a {open_quotes}time line{close_quotes} that shows when the station passed under different regions of the dayside oval. 36 refs., 11 figs., 1 tab.

  7. Ground-based prototype quantum cascade laser heterodyne radiometer for atmospheric studies

    NASA Astrophysics Data System (ADS)

    Weidmann, D.; Reburn, W. J.; Smith, K. M.

    2007-07-01

    The advent of quantum cascade lasers has provided matured continuously tunable solid state laser sources emitting from mid-infrared to terahertz wavelengths. Such sources, used as local oscillators, offer the practical prospect of aircraft, high altitude platform, and satellite deployment of compact and shot noise limited heterodyne radiometers for Earth observation and astronomy. A ground-based prototype of a quantum cascade laser heterodyne radiometer operating in the mid-infrared has been developed and is presented. The instrument design and concepts are described, together with evaluation of the instrument in the laboratory and during field measurements of atmospheric ozone. In this study the best performance achieved by the prototype quantum cascade laser heterodyne radiometer was a signal-to-noise ratio of three times the theoretical shot-noise limit. The prototype has allowed the main sources of excess noise to be identified as residual optical feedback in the local oscillator optical path and a lack of mechanical and thermal stability in the local oscillator collimation system. Instrument improvements are currently being implemented and enhanced performance is expected in the near future.

  8. Statistical retrieval of thin liquid cloud microphysical properties using ground-based infrared and microwave observations

    NASA Astrophysics Data System (ADS)

    Marke, Tobias; Ebell, Kerstin; Löhnert, Ulrich; Turner, David D.

    2016-12-01

    In this article, liquid water cloud microphysical properties are retrieved by a combination of microwave and infrared ground-based observations. Clouds containing liquid water are frequently occurring in most climate regimes and play a significant role in terms of interaction with radiation. Small perturbations in the amount of liquid water contained in the cloud can cause large variations in the radiative fluxes. This effect is enhanced for thin clouds (liquid water path, LWP <100 g/m2), which makes accurate retrieval information of the cloud properties crucial. Due to large relative errors in retrieving low LWP values from observations in the microwave domain and a high sensitivity for infrared methods when the LWP is low, a synergistic retrieval based on a neural network approach is built to estimate both LWP and cloud effective radius (reff). These statistical retrievals can be applied without high computational demand but imply constraints like prior information on cloud phase and cloud layering. The neural network retrievals are able to retrieve LWP and reff for thin clouds with a mean relative error of 9% and 17%, respectively. This is demonstrated using synthetic observations of a microwave radiometer (MWR) and a spectrally highly resolved infrared interferometer. The accuracy and robustness of the synergistic retrievals is confirmed by a low bias in a radiative closure study for the downwelling shortwave flux, even for marginally invalid scenes. Also, broadband infrared radiance observations, in combination with the MWR, have the potential to retrieve LWP with a higher accuracy than a MWR-only retrieval.

  9. Remote Sensing of Cloud Properties using Ground-based Measurements of Zenith Radiance

    NASA Technical Reports Server (NTRS)

    Chiu, J. Christine; Marshak, Alexander; Knyazikhin, Yuri; Wiscombe, Warren J.; Barker, Howard W.; Barnard, James C.; Luo, Yi

    2006-01-01

    An extensive verification of cloud property retrievals has been conducted for two algorithms using zenith radiances measured by the Atmospheric Radiation Measurement (ARM) Program ground-based passive two-channel (673 and 870 nm) Narrow Field-Of-View Radiometer. The underlying principle of these algorithms is that clouds have nearly identical optical properties at these wavelengths, but corresponding spectral surface reflectances (for vegetated surfaces) differ significantly. The first algorithm, the RED vs. NIR, works for a fully three-dimensional cloud situation. It retrieves not only cloud optical depth, but also an effective radiative cloud fraction. Importantly, due to one-second time resolution of radiance measurements, we are able, for the first time, to capture detailed changes in cloud structure at the natural time scale of cloud evolution. The cloud optical depths tau retrieved by this algorithm are comparable to those inferred from both downward fluxes in overcast situations and microwave brightness temperatures for broken clouds. Moreover, it can retrieve tau for thin patchy clouds, where flux and microwave observations fail to detect them. The second algorithm, referred to as COUPLED, couples zenith radiances with simultaneous fluxes to infer 2. In general, the COUPLED and RED vs. NIR algorithms retrieve consistent values of tau. However, the COUPLED algorithm is more sensitive to the accuracies of measured radiance, flux, and surface reflectance than the RED vs. NIR algorithm. This is especially true for thick overcast clouds where it may substantially overestimate z.

  10. Ground-based observations of uranus and neptune using CCD instruments

    SciTech Connect

    Smith, B.A.

    1985-07-01

    The author verifies that with the help of charge-coupled devices (CCD) great progress is being made in ground-based astronomical observations, including the study of the remote giant planets Uranus and Neptune. In reading the CCD the top row of pixels (potential wells) is moved into the sequential (shift) reading register; after this each row (line) of pixels moves its electrons upward (in each column) until the bottom row is cleared. This process is repeated for each row until the device is interrogated sequentially. The use of CCD detectors for purposes of image acquisition and spectroscopy has already found wide popularity at astronomical observatories, and soon it will spread to space research. The first known attempts to use CCD to obtain astronomical images was made by the author and his colleagues in April 1976. The result was the first observations of structure on the dark disk of Uranus. In general, the more refined the mathematical provision, the more information can be extracted from the images or spectra.

  11. Atmospheric aerosol characterization with a ground-based SPEX spectropolarimetric instrument

    NASA Astrophysics Data System (ADS)

    van Harten, G.; de Boer, J.; Rietjens, J. H. H.; Di Noia, A.; Snik, F.; Volten, H.; Smit, J. M.; Hasekamp, O. P.; Henzing, J. S.; Keller, C. U.

    2014-06-01

    Characterization of atmospheric aerosols is important for understanding their impact on health and climate. A wealth of aerosol parameters can be retrieved from multi-angle, multi-wavelength radiance and polarization measurements of the clear sky. We developed a ground-based SPEX instrument (groundSPEX) for accurate spectropolarimetry, based on the passive, robust, athermal and snapshot spectral polarization modulation technique, and hence ideal for field deployment. It samples the scattering phase function in the principal plane in an automated fashion, using a motorized pan/tilt unit and automatic exposure time detection. Extensive radiometric and polarimetric calibrations were performed, yielding values for both random noise and systematic uncertainties. The absolute polarimetric accuracy at low degrees of polarization is established to be ~ 5 × 10-3. About 70 measurement sequences have been performed throughout four clear-sky days at Cabauw, the Netherlands. Several aerosol parameters were retrieved: aerosol optical thickness, effective radius, and complex refractive index for fine and coarse mode. The results are in good agreement with the co-located AERONET products, with a correlation coefficient of ρ = 0.932 for the total aerosol optical thickness at 550 nm.

  12. Atmospheric aerosol characterization with a ground-based SPEX spectropolarimetric instrument

    NASA Astrophysics Data System (ADS)

    van Harten, G.; de Boer, J.; Rietjens, J. H. H.; Di Noia, A.; Snik, F.; Volten, H.; Smit, J. M.; Hasekamp, O. P.; Henzing, J. S.; Keller, C. U.

    2014-12-01

    Characterization of atmospheric aerosols is important for understanding their impact on health and climate. A wealth of aerosol parameters can be retrieved from multi-angle, multi-wavelength radiance and polarization measurements of the clear sky. We developed a ground-based SPEX instrument (groundSPEX) for accurate spectropolarimetry, based on the passive, robust, athermal, and snapshot spectral polarization modulation technique, and is hence ideal for field deployment. It samples the scattering phase function in the principal plane in an automated fashion, using a motorized pan/tilt unit and automatic exposure time detection. Extensive radiometric and polarimetric calibrations were performed, yielding values for both random noise and systematic uncertainties. The absolute polarimetric accuracy at low degrees of polarization is established to be ~5 × 10-3. About 70 measurement sequences have been performed throughout four clear-sky days at Cabauw, the Netherlands. Several aerosol parameters were retrieved: aerosol optical thickness, effective radius, and complex refractive index for fine and coarse mode. The results are in good agreement with the colocated AERONET products, with a correlation coefficient of ρ = 0.932 for the total aerosol optical thickness at 550 nm.

  13. Ground-based Optical Observations of Geophysical Phenomena: Aurora Borealis and Meteors

    NASA Astrophysics Data System (ADS)

    Samara, Marilia

    2010-10-01

    Advances in low-light level imaging technology have enabled significant improvements in the ground based study of geophysical phenomena. In this talk we focus on two such phenomena that occur in the Earth's ionosphere: aurorae and meteors. Imaging the aurora which is created by the interplay of the Earth's magnetosphere, ionosphere and atmosphere, provides a tool for remote sensing physical processes that are otherwise very difficult to study. By quantifying the intensities, scale sizes and lifetimes of auroral structures, we can gain significant insight into the physics behind the generation of the aurora and the interaction of the magnetosphere with the solar wind. Additionally, the combination of imaging with radars provides complimentary data and therefore more information than either method on its own. Meteor observations are a perfect example of this because the radar can accurately determine only the line-of-sight component of velocity, while imaging provides the direction of motion, the perpendicular velocity and brightness (a proxy for mass), therefore enabling a much more accurate determination of the full velocity vector and mass.

  14. Ground-based remote sensing scheme for monitoring aerosol-cloud interactions

    NASA Astrophysics Data System (ADS)

    Sarna, K.; Russchenberg, H. W. J.

    2015-11-01

    A method for continuous observation of aerosol-cloud interactions with ground-based remote sensing instruments is presented. The main goal of this method is to enable the monitoring of cloud microphysical changes due to the changing aerosol concentration. We use high resolution measurements from lidar, radar and radiometer which allow to collect and compare data continuously. This method is based on a standardised data format from Cloudnet and can be implemented at any observatory where the Cloudnet data set is available. Two example study cases were chosen from the Atmospheric Radiation Measurement (ARM) Program deployment at Graciosa Island, Azores, Portugal in 2009 to present the method. We show the Pearson Product-Moment Correlation Coefficient, r, and the Coefficient of Determination, r2 for data divided into bins of LWP, each of 10 g m-2. We explain why the commonly used way of quantity aerosol cloud interactions by use of an ACI index (ACIr,τ = dln re,τ/dlnα) is not the best way of quantifying aerosol-cloud interactions.

  15. Characterization of Activity at Loki from Galileo and Ground-based Observations

    NASA Technical Reports Server (NTRS)

    Howell, R. R.; Lopes, R. M.

    2004-01-01

    While Loki is the most active volcanic center on Io, major questions remain concerning the nature of that activity. Rathbun et al. showed that the activity was semi-periodic, and suggested it was due to a resurfacing wave which swept across a lava lake as the crust cooled and become unstable. However in 2001 new observations showed that an intermediate level, less periodic mode of activity had apparently begun. Galileo-NIMS observations of Loki clearly show that the highest temperatures are found near the edge of the patera, consistent with disruption of a lava lake at the margins. NIMS observations also show gradients in temperature across the patera which, when modeled in terms of lava cooling models, are generally consistent with ages expected for the resurfacing wave but may also be consistent with spreading flows. We present a further analysis of NIMS data from I24 and I32 which help define the nature of the temperature variations present in Loki patera, along with Galileo-SSI images from the G1-I32 flybys which show albedo changes apparently correlated with the "periodic" activity measured from ground-based observations.

  16. A six-beam method to measure turbulence statistics using ground-based wind lidars

    NASA Astrophysics Data System (ADS)

    Sathe, A.; Mann, J.; Vasiljevic, N.; Lea, G.

    2014-10-01

    A so-called six-beam method is proposed to measure atmospheric turbulence using a ground-based wind lidar. This method requires measurement of the radial velocity variances at five equally spaced azimuth angles on the base of a scanning cone and one measurement at the center of the scanning circle, i.e.using a vertical beam at the same height. The scanning configuration is optimized to minimize the sum of the random errors in the measurement of the second-order moments of the components (u,v, w) of the wind field. We present this method as an alternative to the so-called velocity azimuth display (VAD) method that is routinely used in commercial wind lidars, and which usually results in significant averaging effects of measured turbulence. In the VAD method, the high frequency radial velocity measurements are used instead of their variances. The measurements are performed using a pulsed lidar (WindScanner), and the derived turbulence statistics (using both methods) such as the u and v variances are compared with those obtained from a reference cup anemometer and a wind vane at 89 m height under different atmospheric stabilities. The measurements show that in comparison to the reference cup anemometer, depending on the atmospheric stability and the wind field component, the six-beam method measures between 85-101% of the reference turbulence, whereas the VAD method measures between 66-87% of the reference turbulence.

  17. A six-beam method to measure turbulence statistics using ground-based wind lidars

    NASA Astrophysics Data System (ADS)

    Sathe, A.; Mann, J.; Vasiljevic, N.; Lea, G.

    2015-02-01

    A so-called six-beam method is proposed to measure atmospheric turbulence using a ground-based wind lidar. This method requires measurement of the radial velocity variances at five equally spaced azimuth angles on the base of a scanning cone and one measurement at the centre of the scanning circle, i.e.using a vertical beam at the same height. The scanning configuration is optimized to minimize the sum of the random errors in the measurement of the second-order moments of the components (u,v, w) of the wind field. We present this method as an alternative to the so-called velocity azimuth display (VAD) method that is routinely used in commercial wind lidars, and which usually results in significant averaging effects of measured turbulence. In the VAD method, the high frequency radial velocity measurements are used instead of their variances. The measurements are performed using a pulsed lidar (WindScanner), and the derived turbulence statistics (using both methods) such as the u and v variances are compared with those obtained from a reference cup anemometer and a wind vane at 89 m height under different atmospheric stabilities. The measurements show that in comparison to the reference cup anemometer, depending on the atmospheric stability and the wind field component, the six-beam method measures between 85 and 101% of the reference turbulence, whereas the VAD method measures between 66 and 87% of the reference turbulence.

  18. Transionospheric attenuation of 100 kHz radio waves inferred from satellite and ground based observations

    NASA Astrophysics Data System (ADS)

    Fullekrug, Martin; Parrot, Michel; Ash, Matthew; Astin, Ivan; Williams, Paul; Talhi, R.

    2009-03-01

    Around fifty LORAN (LOng RAnge Navigation) transmitters in the northern hemisphere currently launch continuously pulsed 100 kHz radio waves into the Earth's atmosphere for marine navigation. It is discovered that the 100 kHz radio waves from the LORAN transmissions can be detected by the DEMETER satellite at an altitude of ~660 km above the transmitters. These novel electric field measurements in space enable the determination of the nocturnal transionospheric attenuation by comparison with ground based electric field measurements. The electric field measurements on the satellite indicate that the nocturnal transionospheric attenuation of 100 kHz radio waves from LORAN transmissions is equivalent to a nocturnal subionospheric attenuation of the 100 kHz radio waves at a distance of ~7-9 Mm. The radio waves exhibit an average subionospheric attenuation of ~5 dB/Mm and it is concluded that the nocturnal transionospheric attenuation of 100 kHz radio waves is ~35-45 dB. This result enables future space missions to quantify the intensity of lightning discharges associated with transient luminous events and terrestrial γ-ray flashes.

  19. Escherichia coli biofilms formed under low-shear modeled microgravity in a ground-based system.

    PubMed

    Lynch, S V; Mukundakrishnan, K; Benoit, M R; Ayyaswamy, P S; Matin, A

    2006-12-01

    Bacterial biofilms cause chronic diseases that are difficult to control. Since biofilm formation in space is well documented and planktonic cells become more resistant and virulent under modeled microgravity, it is important to determine the effect of this gravity condition on biofilms. Inclusion of glass microcarrier beads of appropriate dimensions and density with medium and inoculum, in vessels specially designed to permit ground-based investigations into aspects of low-shear modeled microgravity (LSMMG), facilitated these studies. Mathematical modeling of microcarrier behavior based on experimental conditions demonstrated that they satisfied the criteria for LSMMG conditions. Experimental observations confirmed that the microcarrier trajectory in the LSMMG vessel concurred with the predicted model. At 24 h, the LSMMG Escherichia coli biofilms were thicker than their normal-gravity counterparts and exhibited increased resistance to the general stressors salt and ethanol and to two antibiotics (penicillin and chloramphenicol). Biofilms of a mutant of E. coli, deficient in sigma(s), were impaired in developing LSMMG-conferred resistance to the general stressors but not to the antibiotics, indicating two separate pathways of LSMMG-conferred resistance.

  20. The Effect of Pulsar Timing Noise and Glitches on Timing Analysis for Ground Based Telescopes Observation

    NASA Astrophysics Data System (ADS)

    Oña-Wilhelmi, E.; de Jager, O. C.; Contreras, J. L.; de los Reyes, R.; Fonseca, V.; López, M.; Lucarelli, F.; MAGIC Collaboration

    2003-07-01

    Pulsed emission from a number of gamma-ray pulsars is expected to be detectable with next generation ground-based gamma-ray telescopes such as MAGIC and possibly H.E.S.S. within a few hours of observations. The sensitivity is however not sufficient to enable a detection within a few seconds as reached by radio surveys. In some cases we may be fortunate to do a period search given a few hours' data, but if the signal is marginal, the correct period parameters must be known to allow a folding of the gamma-ray arrival times. The residual phases are then sub jected to a test for uniformity from which the significance of a signal can be assessed. If contemporary radio parameters are not available, we have to extrap olate archival radio parameters to the observation time in question. Such an extrap olation must then be accurate enough to avoid significant pulse smearing. The pulsar ephemerides from the archival data of HartRAO and Princeton (b etween 1989 and 1998) provide an excellent opportunity to study the accuracy of extrap olations of such ephemerides to the present moment, if an appropriate time shift is intro duced. The aim of this study is to investigate the smear in the gamma-ray pulse profile during a single night of observations.

  1. Petascale Computing for Ground-Based Solar Physics with the DKIST Data Center

    NASA Astrophysics Data System (ADS)

    Berukoff, Steven J.; Hays, Tony; Reardon, Kevin P.; Spiess, DJ; Watson, Fraser; Wiant, Scott

    2016-05-01

    When construction is complete in 2019, the Daniel K. Inouye Solar Telescope will be the most-capable large aperture, high-resolution, multi-instrument solar physics facility in the world. The telescope is designed as a four-meter off-axis Gregorian, with a rotating Coude laboratory designed to simultaneously house and support five first-light imaging and spectropolarimetric instruments. At current design, the facility and its instruments will generate data volumes of 3 PB per year, and produce 107-109 metadata elements.The DKIST Data Center is being designed to store, curate, and process this flood of information, while providing association of science data and metadata to its acquisition and processing provenance. The Data Center will produce quality-controlled calibrated data sets, and make them available freely and openly through modern search interfaces and APIs. Documented software and algorithms will also be made available through community repositories like Github for further collaboration and improvement.We discuss the current design and approach of the DKIST Data Center, describing the development cycle, early technology analysis and prototyping, and the roadmap ahead. We discuss our iterative development approach, the underappreciated challenges of calibrating ground-based solar data, the crucial integration of the Data Center within the larger Operations lifecycle, and how software and hardware support, intelligently deployed, will enable high-caliber solar physics research and community growth for the DKIST's 40-year lifespan.

  2. Large-Scale Ionospheric Conductance from Combined Satellite and Ground-Based Electromagnetic Data

    NASA Astrophysics Data System (ADS)

    Green, D. L.; Waters, C. L.; Korth, H.; Anderson, B. J.; Ridley, A. J.; Barnes, R. J.

    2006-12-01

    The spatial and temporal distribution of ionospheric conductance is a critical parameter for magnetosphere- ionosphere coupling. At present, global ionospheric conductance estimates with high time resolution (< 1 hour) are only available by combining optical satellite data with models of precipitating particle interaction with the neutral atmosphere. The alternative approach presented here extends previous methods that estimate ionospheric conductance using electromagnetic data. Since it is not possible to have complete knowledge of the horizontal ionospheric current (ěc{J}\\perp) based solely on observations from the Earth's surface, previous applications of Ohm's law to the height-integrated ionosphere have required an assumed Hall to Pedersen conductance ratio (α=Σ_H/Σ_P). Recently available magnetic field observations from the Iridium satellite constellation are here combined with ground-based magnetometer data to estimate the complete horizontal ionospheric current, ěc{J}\\perp. This result, combined with electric field information obtained from the Super Dual Auroral Radar Network, allows the Hall and Pedersen conductances to be independently calculated without assuming a value for α. Initial conductance results are presented for an event with 1 hour integration time and favorable data coverage.

  3. Ground-based real-time tracking and traverse recovery of China's first lunar rover

    NASA Astrophysics Data System (ADS)

    Zhou, Huan; Li, Haitao; Xu, Dezhen; Dong, Guangliang

    2016-02-01

    The Chang'E-3 unmanned lunar exploration mission forms an important stage in China's Lunar Exploration Program. China's first lunar rover "Yutu" is a sub-probe of the Chang'E-3 mission. Its main science objectives cover the investigations of the lunar soil and crust structure, explorations of mineral resources, and analyses of matter compositions. Some of these tasks require accurate real-time and continuous position tracking of the rover. To achieve these goals with the scale-limited Chinese observation network, this study proposed a ground-based real-time very long baseline interferometry phase referencing tracking method. We choose the Chang'E-3 lander as the phase reference source, and the accurate location of the rover is updated every 10 s using its radio-image sequences with the help of a priori information. The detailed movements of the Yutu rover have been captured with a sensitivity of several centimeters, and its traverse across the lunar surface during the first few days after its separation from the Chang'E-3 lander has been recovered. Comparisons and analysis show that the position tracking accuracy reaches a 1-m level.

  4. Laser Guidestar Satellite for Ground-based Adaptive Optics Imaging of Geosynchronous Satellites

    NASA Astrophysics Data System (ADS)

    Marlow, W.; Carlton, A.; Yoon, H.; Clark, J.; Haughwout, C.; Cahoy, K.; Males, J.; Close, L.; Morzinski, K.

    2016-09-01

    In this study, we assess the utility of using a maneuverable nanosatellite laser guidestar from a geostationary equatorial orbit to enable ground-based, adaptive optics imaging of geosynchronous satellites with next-generation extremely large telescopes. The concept for a satellite guide star was rst discussed in the literature by Greenaway in the early 1990s, and expanded upon by Albert in 2012. With a satellite-based laser as an adaptive optics guidestar, the source laser does not need to scatter, and is well above atmospheric turbulence. When viewed from the ground through a turbulent atmosphere, the angular size of the satellite guidestar is much smaller than a back-scattered source. Advances in small satellite technology and capability allow us to revisit the concept on a 6U CubeSat, measuring 10 cm by 20 cm by 30 cm. We show that a system that uses a satellite-based laser transmitter can be relatively low power (1 W transmit power), operated intermittently, and requires little propellant to relocate within the geosynchronous belt. We present results of a design study on the feasibility of a small satellite guidestar and highlight the potential benets to the space situational awareness community.

  5. Observation of methane in this decade by ground-based FTIR Spectrometer over Poker Flat, ALASKA

    NASA Astrophysics Data System (ADS)

    Kasai, Y.; Kagawa, A.; Jones, N. B.; Murayama, Y.

    2010-12-01

    Tropospheric CH4 is an important greenhouse gas as second largest radiative forcing in the troposphere with a long lifetime of ~10 years (Rinsland et. al., 2005). Poker Flat is a suitable location to detect CH4 abnormally due to Siberian/Alaskan biomass burning (Kasai et. al., 2005), volcano, and an anthropogenical emissions such as gas leakage from pipe-lines. We have been observed troposheric CH4 over 10 years between 2000-2010 by using ground-based spectroscopic infrared solar absorption remote sensing measurement over Poker Flat, ALASKA (65.11N, 147.42W, 0.61km). CH4 vertical profiles were obtained by using SFIT2 ver.3.9 which incorporates Rodgers’ formulation of the Optimal Estimation Method (OEM) with an iterative Newton scheme (Rodgers, 2000). Frequency region of the CH4 is used 2600-2900 cm-1 region with the resolution 0.036cm-1. Seasonal and annual variation of the tropospheric CH4 in this decades was obtained. Increasing trend of tropospheric CH4 was observed. Several enhancement and depletion events were also observed.

  6. FORTRAN program for analyzing ground-based radar data: Usage and derivations, version 6.2

    NASA Technical Reports Server (NTRS)

    Haering, Edward A., Jr.; Whitmore, Stephen A.

    1995-01-01

    A postflight FORTRAN program called 'radar' reads and analyzes ground-based radar data. The output includes position, velocity, and acceleration parameters. Air data parameters are also provided if atmospheric characteristics are input. This program can read data from any radar in three formats. Geocentric Cartesian position can also be used as input, which may be from an inertial navigation or Global Positioning System. Options include spike removal, data filtering, and atmospheric refraction corrections. Atmospheric refraction can be corrected using the quick White Sands method or the gradient refraction method, which allows accurate analysis of very low elevation angle and long-range data. Refraction properties are extrapolated from surface conditions, or a measured profile may be input. Velocity is determined by differentiating position. Accelerations are determined by differentiating velocity. This paper describes the algorithms used, gives the operational details, and discusses the limitations and errors of the program. Appendices A through E contain the derivations for these algorithms. These derivations include an improvement in speed to the exact solution for geodetic altitude, an improved algorithm over earlier versions for determining scale height, a truncation algorithm for speeding up the gradient refraction method, and a refinement of the coefficients used in the White Sands method for Edwards AFB, California. Appendix G contains the nomenclature.

  7. On Advanced Estimation Techniques for Exoplanet Detection and Characterization Using Ground-based Coronagraphs

    PubMed Central

    Lawson, Peter R.; Poyneer, Lisa; Barrett, Harrison; Frazin, Richard; Caucci, Luca; Devaney, Nicholas; Furenlid, Lars; Gładysz, Szymon; Guyon, Olivier; Krist, John; Maire, Jérôme; Marois, Christian; Mawet, Dimitri; Mouillet, David; Mugnier, Laurent; Pearson, Iain; Perrin, Marshall; Pueyo, Laurent; Savransky, Dmitry

    2015-01-01

    The direct imaging of planets around nearby stars is exceedingly difficult. Only about 14 exoplanets have been imaged to date that have masses less than 13 times that of Jupiter. The next generation of planet-finding coronagraphs, including VLT-SPHERE, the Gemini Planet Imager, Palomar P1640, and Subaru HiCIAO have predicted contrast performance of roughly a thousand times less than would be needed to detect Earth-like planets. In this paper we review the state of the art in exoplanet imaging, most notably the method of Locally Optimized Combination of Images (LOCI), and we investigate the potential of improving the detectability of faint exoplanets through the use of advanced statistical methods based on the concepts of the ideal observer and the Hotelling observer. We propose a formal comparison of techniques using a blind data challenge with an evaluation of performance using the Receiver Operating Characteristic (ROC) and Localization ROC (LROC) curves. We place particular emphasis on the understanding and modeling of realistic sources of measurement noise in ground-based AO-corrected coronagraphs. The work reported in this paper is the result of interactions between the co-authors during a week-long workshop on exoplanet imaging that was held in Squaw Valley, California, in March of 2012. PMID:26347393

  8. Comparison of On-orbit and Ground Based Hollow Cathode Operation

    NASA Technical Reports Server (NTRS)

    Patterson, Michael (Technical Monitor); Carpenter, Christian

    2003-01-01

    The Plasma Contactor Units (PCUs) were developed at NASA Glenn Research Center (GRC) and Boeing for charge control on board the International Space Station (ISS). Since the first ignition of a PCU on 10/16/2000 over 3,900 hours of operation have been demonstrated on a single unit. In order to guarantee that the PCUs hollow cathode assemblies (HCAs), which emit the electrons used for charge control, would satisfy the life requirement of 18,000 hours, a ground based hollow cathode life test program was initiated at GRC. The life test program aimed at 27,000 hours of operation on a single unit to demonstrate the industry standard 1.5 times operational life requirement. As of this printing, over 18,000 hours of operation have been accumulated on a single hollow cathode. By comparing the data received from the on-orbit HCAs to the data obtained for the life test cathodes, a comparison may be drawn to determine if the on-orbit HCAs are operating normally, with a final goal of predicting lifetime. Based on the data taken thus far, it can be concluded that the on-orbit HCAs are operating within their design specifications.

  9. Optical Properties of Aerosols from Long Term Ground-Based Aeronet Measurements

    NASA Technical Reports Server (NTRS)

    Holben, B. N.; Tanre, D.; Smirnov, A.; Eck, T. F.; Slutsker, I.; Dubovik, O.; Lavenu, F.; Abuhassen, N.; Chatenet, B.

    1999-01-01

    AERONET is an optical ground-based aerosol monitoring network and data archive supported by NASA's Earth Observing System and expanded by federation with many non-NASA institutions including AEROCAN (AERONET CANada) and PHOTON (PHOtometrie pour le Traiteinent Operatonnel de Normalisation Satellitaire). The network hardware consists of identical automatic sun-sky scanning spectral radiometers owned by national agencies and universities purchased for their own monitoring and research objectives. Data are transmitted hourly through the data collection system (DCS) on board the geostationary meteorological satellites GMS, GOES and METEOSAT and received in a common archive for daily processing utilizing a peer reviewed series of algorithms thus imposing a standardization and quality control of the product data base. Data from this collaboration provides globally distributed near real time observations of aerosol spectral optical depths, aerosol size distributions, and precipitable water in diverse aerosol regimes. Access to the AERONET data base has shifted from the interactive program 'demonstrat' (reserved for PI's) to the AERONET homepage allowing faster access and greater development for GIS object oriented retrievals and analysis with companion geocoded data sets from satellites, LIDAR and solar flux measurements for example. We feel that a significant yet under utilized component of the AERONET data base are inversion products made from hourly principal plane and almucanter measurements. The current inversions have been shown to retrieve aerosol volume size distributions. A significant enhancement to the inversion code has been developed and is presented in these proceedings.

  10. Ground-based measurements of galactic cosmic ray fragmentation in shielding.

    PubMed

    Schimmerling, W

    1992-01-01

    The mean free path for nuclear interactions of galactic cosmic-rays is comparable to shielding and tissue thicknesses present in human interplanetary exploration, resulting in a significant fraction of nuclear reaction products at depth. In order to characterize the radiation field, the energy spectrum, the angular distribution, and the multiplicity of each type of secondary particles must also be known as a function of depth. Reactions can take place anywhere in a thick absorber; therefore, it is necessary to know these quantities as a function of particle energy for all particles produced. HZE transport methods are used to predict the radiation field; they are dependent on models of the interaction of man-made systems with the space environment to an even greater extent than methods used for other types of radiation. Hence, there is a major need to validate these transport codes by comparison with experimental data. The most cost-effective method of validation is a comparison with ground-based experimental measurements. A research program to provide such validation measurements using neon, iron and other accelerated heavy ion beams will be discussed and illustrated using results from ongoing experiments and their comparison with current transport codes. The extent to which physical measurements yield radiobiological predictions will be discussed.

  11. Ground-based multispectral high-speed imaging of flickering aurora

    NASA Astrophysics Data System (ADS)

    Kataoka, Ryuho; Miyoshi, Yoshizumi; Sakanoi, Takeshi; Yaegashi, Ayumi; Ebihara, Yusuke; Shiokawa, Kazuo

    2011-07-01

    It has been suggested that dispersive Alfven waves (DAWs) are capable of accelerating electrons via Landau resonance, and the interference of DAWs plays an essential role to create flickering auroral patterns. Here we show evidence that the leading front of a typical interference pattern is more energetic than the trailing part, based on ground-based high-speed imaging observations at wavelengths of 670.5 nm and 844.6 nm, which are sensitive to relatively hard and soft electrons, respectively. The fine spatial resolution of 9.5 deg field-of-view at magnetic zenith and the 100 Hz sampling rate of electron multiplying charge-coupled device (EMCCD) enabled us to resolve the spatiotemporal variation of the flickering aurora. It is found that there is only 10 ms time delay with 0.5 km spatial shift on average in the obtained flickering patterns at two wavelengths. The time delay and spatial shift can be comprehensively explained by the traveling inhomogeneous interference pattern of DAWs, probably associated with the Landau damping and/or time-of-flight effect, which is only detectable using the highest resolved temporal and spatial observations of flickering aurora.

  12. Validation of the Glory TIM and a Ground-Based SORCE TIM (Invited)

    NASA Astrophysics Data System (ADS)

    Harber, D.; Heuerman, K.; Kopp, G.

    2010-12-01

    The total solar irradiance (TSI) climate data record is essential for detecting potential long-term solar variability and estimating climate sensitivity to solar forcing. This data record currently relies on measurements from over 10 different spaceborne radiometers. Because differences between instruments exceed the stated individual instrument uncertainties, the data record to date has depended on overlapping measurements to adjust for offsets in order to generate a single continuous record. This technique is only possible with continuous and overlapping measurements. The risk of loss of continuity in this 32-year record drives the need for a strategy that is robust to a loss of continuity via improved absolute accuracies. Such an approach requires instruments with <0.01% uncertainty on an absolute scale. The TSI Radiometer Facility (TRF) was recently created to perform end-to-end irradiance calibrations of TSI instruments at full solar power with accuracies approaching this level. The first such facility in the world, the TRF allows direct irradiance comparisons between a TSI instrument under test and a NIST-calibrated reference cryogenic radiometer viewing the same uniform input light beam in a common vacuum system. The NASA Glory mission’s Total Irradiance Monitor (TIM), a TSI instrument that is planned for launch in 2010 with a design similar to the SORCE TIM, was validated in the TRF in March-April 2010, and a ground-based SORCE TIM has been similarly validated. Results of these inter-comparisons will be presented.

  13. Ground-based demonstration of the European Laser Timing (ELT) experiment.

    PubMed

    Schreiber, Karl Ulrich; Prochazka, Ivan; Lauber, Pierre; Hugentobler, Urs; Schäfer, Wolfgang; Cacciapuoti, Luigi; Nasca, Rosario

    2010-03-01

    The development of techniques for the comparison of distant clocks and for the distribution of stable and accurate time scales has important applications in metrology and fundamental physics research. Additionally, the rapid progress of frequency standards in the optical domain is presently demanding additional efforts for improving the performances of existing time and frequency transfer links. Present clock comparison systems in the microwave domain are based on GPS and two-way satellite time and frequency transfer (TWSTFT). European Laser Timing (ELT) is an optical link presently under study in the frame of the ESA mission Atomic Clock Ensemble in Space (ACES). The on-board hardware for ELT consists of a corner cube retro-reflector (CCR), a single-photon avalanche diode (SPAD), and an event timer board connected to the ACES time scale. Light pulses fired toward ACES by a laser ranging station will be detected by the SPAD diode and time tagged in the ACES time scale. At the same time, the CCR will re-direct the laser pulse toward the ground station providing precise ranging information. We have carried out a ground-based feasibility study at the Geodetic Observatory Wettzell. By using ordinary satellites with laser reflectors and providing a second independent detection port and laser pulse timing unit with an independent time scale, it is possible to evaluate many aspects of the proposed time transfer link before the ACES launch.

  14. Ionospheric convection and structure using ground-based digital ionosondes. Technical report, August 1986-June 1987

    SciTech Connect

    Reinisch, B.W.; Buchau, J.; Weber, E.J.; McNamara, L.F.; Tang, J.S.

    1988-02-01

    Ground-based digital ionosonde observations of the winter polar-cap F region were used to demonstrate that the magnetospherically induced ionospheric convection can be measured for the bottomside ionosphere. A number of measurements indicate that the drift direction is predominately anti-sunward with speeds that vary between 300 and 900 meters/second. Other measurements show a steady westward drift until local magnetic midnight and then a change to an eastward drift. The ionospheric drifts are consistent with the expected sunward return flows of the two-cell polar-plasma convection pattern. The utility of data from a network of digital ionosondes is enhanced through automatic scaling of parameters needed for research and radio wave propagation management. The values of hmF2 deduced by real-height analysis of automatically scaled Digisonde ionograms were compared with simple methods based on routinely scaled ionospheric characteristics. Systematic discrepancies were found between the hmF2 values obtained from the simple methods and the real-height analysis. Overestimates of 15-20 km were found for the night data from five stations and low solar activity. Daytime discrepancies are normally less, with 80% showing agreement within + or - 10 km.

  15. Spent coffee grounds-based activated carbon preparation for sequestering of malachite green

    NASA Astrophysics Data System (ADS)

    Lim, Jun-Wei; Lam, Keat-Ying; Bashir, Mohammed J. K.; Yeong, Yin-Fong; Lam, Man-Kee; Ho, Yeek-Chia

    2016-11-01

    The key of reported work was to optimize the fabricating factors of spent coffee grounds-based activated carbon (SCG-bAC) used to sequester Malachite Green (MG) form aqueous solution via adsorption process. The fabricating factors of impregnation ratio with ortho-phosphoric acid, activation temperature and activation time were simultaneously optimized by central composite design (CCD) of response surface methodology (RSM) targeting on maximum removal of MG. At the optimum condition, 96.3% of MG was successfully removed by SCG-bAC at the impregnation ratio with ortho-phosphoric acid of 0.50, activation temperature of 554°C and activation time of 31.4 min. Statistical model that could predict the MG removal percentage was also derived and had been statistically confirmed to be significant. Subsequently, the MG adsorption equilibrium data was found well-fitted to Langmuir isotherm model, indicating the predominance of monolayer adsorption of MG on SCG-bAC surface. To conclude, the findings from the this study unveil the potential of spent coffee grounds as an alternative precursor in fabricating low-cost AC for the treatment of wastewater loaded with MG pollutant.

  16. Comparison of In-Situ, Model and Ground Based In-Flight Icing Severity

    NASA Technical Reports Server (NTRS)

    Johnston, Christopher J.; Serke, David J.; Adriaansen, Daniel R.; Reehorst, Andrew L.; Politovich, Marica K.; Wolff, Cory A.; McDonough, Frank

    2011-01-01

    As an aircraft flies through supercooled liquid water, the liquid freezes instantaneously to the airframe thus altering its lift, drag, and weight characteristics. In-flight icing is a contributing factor to many aviation accidents, and the reliable detection of this hazard is a fundamental concern to aviation safety. The scientific community has recently developed products to provide in-flight icing warnings. NASA's Icing Remote Sensing System (NIRSS) deploys a vertically--pointing Ka--band radar, a laser ceilometer, and a profiling multi-channel microwave radiometer for the diagnosis of terminal area in-flight icing hazards with high spatial and temporal resolution. NCAR s Current Icing Product (CIP) combines several meteorological inputs to produce a gridded, three-dimensional depiction of icing severity on an hourly basis. Pilot reports are the best and only source of information on in-situ icing conditions encountered by an aircraft. The goal of this analysis was to ascertain how the testbed NIRSS icing severity product and the operational CIP severity product compare to pilot reports of icing severity, and how NIRSS and CIP compare to each other. This study revealed that the icing severity product from the ground-based NASA testbed system compared very favorably with the operational model-based product and pilot reported in-situ icing.

  17. Nitrogen dioxide in the stratosphere and troposphere measured by ground-based absorption spectroscopy.

    PubMed

    Noxon, J F

    1975-08-15

    The NO(2) abundance in the stratosphere has been determined from ground-based spectra of the rising and setting sun and moon and of the twilight sky near 4500 angstroms. The spectra were taken at the Fritz Peak Observatory, at an altitude of 3 kilometers in the Colorado mountains. Separation of the stratospheric contribution requires observations at a relatively unpolluted site; direct measurement of the tropospheric absorption in the Colorado mountains often yields an upper limit on the tropospheric mixing ratio of 0.1 part per billion. The stratospheric NO(2) abundance is two to three times greater at night than during the day and increases significantly during the course of a sunlit day; these changes are related to photolytic decomposition of NO(2) and N(2)O(5) in the daytime stratosphere. Absorption by NO(3) was sought but not found; the results set an upper limit of 2 percent on the nighttime abundance ratio of NO(3) to NO(2) in the stratosphere.

  18. Soil moisture retrieval using ground based bistatic scatterometer data at X-band

    NASA Astrophysics Data System (ADS)

    Gupta, Dileep Kumar; Prasad, Rajendra; Kumar, Pradeep; Vishwakarma, Ajeet Kumar

    2017-02-01

    Several hydrological phenomenon and applications need high quality soil moisture information of the top Earth surface. The advent of technologies like bistatic scatterometer can retrieve soil moisture information with high accuracy and hence used in present study. The radar data is acquired by specially designed ground based bistatic scatterometer system in the specular direction of 20-70° incidence angles at steps of 5° for HH and VV polarizations. This study provides first time comprehensive evaluation of different machine learning algorithms for the retrieval of soil moisture using the X-band bistatic scatterometer measurements. The comparison of different artificial neural network (ANN) models such as back propagation artificial neural network (BPANN), radial basis function artificial neural network (RBFANN), generalized regression artificial neural network (GRANN) along with linear regression model (LRM) are used to estimate the soil moisture. The performance indices such as %Bias, Root Mean Squared Error (RMSE) and Nash-Sutcliffe Efficiency (NSE) are used to evaluate the performances of the machine learning techniques. Among different models employed in this study, the BPANN is found to have marginally higher performance in case of HH polarization while RBFANN is found suitable with VV polarization followed by GRANN and LRM. The results obtained are of considerable scientific and practical value to the wider scientific community for the number of practical applications and research studies in which radar datasets are used.

  19. On Advanced Estimation Techniques for Exoplanet Detection and Characterization Using Ground-based Coronagraphs.

    PubMed

    Lawson, Peter R; Poyneer, Lisa; Barrett, Harrison; Frazin, Richard; Caucci, Luca; Devaney, Nicholas; Furenlid, Lars; Gładysz, Szymon; Guyon, Olivier; Krist, John; Maire, Jérôme; Marois, Christian; Mawet, Dimitri; Mouillet, David; Mugnier, Laurent; Pearson, Iain; Perrin, Marshall; Pueyo, Laurent; Savransky, Dmitry

    2012-07-01

    The direct imaging of planets around nearby stars is exceedingly difficult. Only about 14 exoplanets have been imaged to date that have masses less than 13 times that of Jupiter. The next generation of planet-finding coronagraphs, including VLT-SPHERE, the Gemini Planet Imager, Palomar P1640, and Subaru HiCIAO have predicted contrast performance of roughly a thousand times less than would be needed to detect Earth-like planets. In this paper we review the state of the art in exoplanet imaging, most notably the method of Locally Optimized Combination of Images (LOCI), and we investigate the potential of improving the detectability of faint exoplanets through the use of advanced statistical methods based on the concepts of the ideal observer and the Hotelling observer. We propose a formal comparison of techniques using a blind data challenge with an evaluation of performance using the Receiver Operating Characteristic (ROC) and Localization ROC (LROC) curves. We place particular emphasis on the understanding and modeling of realistic sources of measurement noise in ground-based AO-corrected coronagraphs. The work reported in this paper is the result of interactions between the co-authors during a week-long workshop on exoplanet imaging that was held in Squaw Valley, California, in March of 2012.

  20. GROUND-BASED TRANSIT OBSERVATIONS OF THE SUPER-EARTH 55 Cnc e

    SciTech Connect

    De Mooij, E. J. W.; López-Morales, M.; Karjalainen, R.; Hrudkova, M.; Jayawardhana, Ray

    2014-12-20

    We report the first ground-based detections of the shallow transit of the super-Earth exoplanet 55 Cnc e using a 2 m class telescope. Using differential spectrophotometry, we observed one transit in 2013 and another in 2014, with average spectral resolutions of ∼700 and ∼250, spanning the Johnson BVR photometric bands. We find a white light planet-to-star radius ratio of 0.0190{sub −0.0027}{sup +0.0023} from the 2013 observations and 0.0200{sub −0.0018}{sup +0.0017} from the 2014 observations. The two data sets combined result in a radius ratio of 0.0198{sub −0.0014}{sup +0.0013}. These values are all in agreement with previous space-based results. Scintillation noise in the data prevents us from placing strong constraints on the presence of an extended hydrogen-rich atmosphere. Nevertheless, our detections of 55 Cnc e in transit demonstrate that moderate-sized telescopes on the ground will be capable of routine follow-up observations of super-Earth candidates discovered by the Transiting Exoplanet Survey Satellite around bright stars. We expect it also will be possible to place constraints on the atmospheric characteristics of those planets by devising observational strategies to minimize scintillation noise.