Science.gov

Sample records for administration noaa alaska

  1. NASA, NOAA administrators nominated

    NASA Astrophysics Data System (ADS)

    Richman, Barbara T.

    President Ronald Reagan recently said he intended to nominate James Montgomery Beggs as NASA Administrator and John V. Byrne as NOAA Administrator. These two positions are key scientific posts that have been vacant since the start of the Reagan administration on January 20. The President also said he intends to nominate Hans Mark as NASA Deputy Administrator. At press time, Reagan had not designated his nominee for the director of the Office of Science and Technology Policy.

  2. NOAA administrator reviews agency progress and challenges

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    2011-12-01

    The approach of the new year is a traditional time to tally up successes, failures, and the path ahead. Jane Lubchenco, administrator of the U.S. National Oceanic and Atmospheric Administration (NOAA), examined some agency advances and significant challenges during the 7 December Union Agency Lecture at the AGU Fall Meeting, during a press briefing, and in an interview with Eos. Lubchenco focused on several key areas including the concern about monitoring, mitigating, and managing extreme events; budgetary pressures the agency faces in current fiscal year (FY) 2012 and in FY 2013, with President Barack Obama on 18 November having signed into law a bill, HR 2112, following congressional agreement on a budget legislation conference report; and NOAA's newly released scientific integrity policy (see "NOAA issues scientific integrity policy," Eos Trans. AGU, 92(50), 467, doi:10.1029/2011EO500004, 2011).

  3. NOAA Atmospheric Baseline Observatories in the Arctic: Alaska & Greenland

    NASA Astrophysics Data System (ADS)

    Vasel, B. A.; Butler, J. H.; Schnell, R. C.; Crain, R.; Haggerty, P.; Greenland, S.

    2013-12-01

    The National Oceanic and Atmospheric Administration (NOAA) operates two year-round, long-term climate research facilities, known as Atmospheric Baseline Observatories (ABOs), in the Arctic Region. The Arctic ABOs are part of a core network to support the NOAA Global Monitoring Division's mission to acquire, evaluate, and make available accurate, long-term records of atmospheric gases, aerosol particles, and solar radiation in a manner that allows the causes of change to be understood. The observatory at Barrow, Alaska (BRW) was established in 1973 and is now host to over 200 daily measurements. Located a few kilometers to the east of the village of Barrow at 71.3° N it is also the northernmost point in the United States. Measurement records from Barrow are critical to our understanding of the Polar Regions including exchange among tundra, atmosphere, and ocean. Multiple data sets are available for carbon cycle gases, halogenated gases, solar radiation, aerosol properties, ozone, meteorology, and numerous others. The surface, in situ carbon dioxide record alone consists of over 339,000 measurements since the system was installed in July 1973. The observatory at Summit, Greenland (SUM) has been a partnership with the National Science Foundation (NSF) Division of Polar Programs since 2004, similar to that for South Pole. Observatory data records began in 1997 from this facility located at the top of the Greenland ice sheet at 72.58° N. Summit is unique as the only high-altitude (3200m), mid-troposphere, inland, Arctic observatory, largely free from outside local influences such as thawing tundra or warming surface waters. The measurement records from Summit help us understand long-range transport across the Arctic region, as well as interactions between air and snow. Near-real-time data are available for carbon cycle gases, halogenated gases, solar radiation, aerosol properties, meteorology, ozone, and numerous others. This poster will highlight the two facilities

  4. Operational applications of NOAA-VHRR imagery in Alaska

    NASA Technical Reports Server (NTRS)

    Seifert, R. D.; Carlson, R. F.; Kane, D. L.

    1975-01-01

    Near-real time operational applications of NOAA satellite enhanced thermal infrared imagery to snow monitoring for river flood forecasts, and a photographic overlay technique of imagery to enhance snowcover are presented. Ground truth comparisons show a thermal accuracy of approximately + or - 1 C for detection of surface radiative temperatures. The application of NOAA imagery to flood mapping is also presented.

  5. Education and Outreach in NOAA's Ocean Exploration Program: An Example From a Gulf of Alaska Alvin Cruise

    NASA Astrophysics Data System (ADS)

    Martinez, C.; Keller, R.; Keener-Chavis, P.; Doenges, S.; Fisk, M.; Duncan, R.; Guilderson, T.; Shirley, T.

    2002-12-01

    The report of the President's Panel on Ocean Exploration, Discovering Earth's Final Frontier: A U.S. Strategy for Ocean Exploration, outlined a strategy for a national ocean exploration program that included a strong educational outreach component. The National Oceanic and Atmospheric Administration's (NOAA) new Office of Ocean Exploration (OE), now in its second year, is carrying out the recommendations of the President's Panel through exciting exploratory and educational initiatives. With the establishment of OE, NOAA now has a great opportunity to reach out in new ways to teachers, students, and the general public to share the excitement of daily discoveries while at sea and to demonstrate the science behind these exploration initiatives. In 2002, OE sponsored several major exploration initiatives involving AGU scientists in various regions of our world's oceans, such as the Arctic, the Galápagos, the Gulf of Mexico, and the Gulf of Alaska. An excellent example of the broad spectrum of opportunities that can be developed through a research cruise was the Gulf of Alaska Seamount Exploration Expedition (GOASEX). This Alvin submersible cruise included geologists studying how the seamounts formed, biologists studying crab distribution and reproductive strategies, and oceanographers sampling sediments and deep-sea corals for paleo-oceanographic information. Outreach and education products from this cruise were updated frequently on the Ocean Explorer web site, and included detailed lesson plans, logs, images, video clips, maps, and essays from the field so that students and the general public could follow the expedition. This cruise was also used as an educational platform for fisheries observer trainers from the North Pacific Fisheries Observer Training Center, a 5th grade teacher from Illinois, and several undergraduate and graduate students from various institutions. Cruise participants have already shared their experiences with K-12 students and educators, and

  6. 77 FR 74174 - National Oceanic and Atmospheric Administration (NOAA) National Climate Assessment and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-12-13

    ... National Oceanic and Atmospheric Administration (NOAA) National Climate Assessment and Development Advisory... notice sets forth the schedule of a forthcoming meeting of the DoC NOAA National Climate Assessment and... the call. Please check the National Climate Assessment Web site for additional information at...

  7. National Oceanic and Atmospheric Administration /NOAA/ contamination monitoring instrumentation

    NASA Technical Reports Server (NTRS)

    Maag, C. R.

    1980-01-01

    The JPL has designed and built a plume contamination monitoring package to be installed on a NOAA environmental services satellite. The package is designed to monitor any condensible contamination that occurs during the ignition and burn of a TE-M-364-15 apogee kick motor. The instrumentation and system interface are described, and attention is given to preflight analysis and test.

  8. 78 FR 29331 - Proposed Information Collection; Comment Request; Western Alaska Community Development Quota Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-20

    ... Service monitors the reported catch to assure that quotas are not being exceeded. Information is collected... Alaska Community Development Quota Program AGENCY: National Oceanic and Atmospheric Administration (NOAA... current information collection. The Western Alaska Community Development Quota (CDQ) Program is...

  9. Data compression for National Oceanic and Atmospheric Administration /NOAA/ weather satellite systems

    NASA Technical Reports Server (NTRS)

    Rice, R. F.; Schlutsmeyer, A. P.

    1980-01-01

    The National Oceanic and Atmospheric Administration (NOAA) receives high quality infrared weather images from each of its two geostationary weather satellites at an average data rate of 57 kilobits/second. These images are currently distributed to field stations over 3 kilohertz analog phone lines. The resulting loss in image quality renders the images unacceptable for proposed digital image processing. This paper documents the study leading to a current effort to implement a microprocessor-based universal noiseless coder/decoder to satisfy NOAA's requirements of high quality, good coverage and timely transmission of its infrared images.

  10. NOAA/West coast and Alaska Tsunami warning center Atlantic Ocean response criteria

    USGS Publications Warehouse

    Whitmore, P.; Refidaff, C.; Caropolo, M.; Huerfano-Moreno, V.; Knight, W.; Sammler, W.; Sandrik, A.

    2009-01-01

    West Coast/Alaska Tsunami Warning Center (WCATWC) response criteria for earthquakesoccurring in the Atlantic and Caribbean basins are presented. Initial warning center decisions are based on an earthquake's location, magnitude, depth, distance from coastal locations, and precomputed threat estimates based on tsunami models computed from similar events. The new criteria will help limit the geographical extent of warnings and advisories to threatened regions, and complement the new operational tsunami product suite. Criteria are set for tsunamis generated by earthquakes, which are by far the main cause of tsunami generation (either directly through sea floor displacement or indirectly by triggering of sub-sea landslides).The new criteria require development of a threat data base which sets warning or advisory zones based on location, magnitude, and pre-computed tsunami models. The models determine coastal tsunami amplitudes based on likely tsunami source parameters for a given event. Based on the computed amplitude, warning and advisory zones are pre-set.

  11. 43 CFR 9264.3 - Grazing administration-Alaska; reindeer. [Reserved

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 43 Public Lands: Interior 2 2014-10-01 2014-10-01 false Grazing administration-Alaska; reindeer. 9264.3 Section 9264.3 Public Lands: Interior Regulations Relating to Public Lands (Continued) BUREAU OF... Management § 9264.3 Grazing administration—Alaska; reindeer....

  12. 43 CFR 9264.3 - Grazing administration-Alaska; reindeer. [Reserved

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 43 Public Lands: Interior 2 2011-10-01 2011-10-01 false Grazing administration-Alaska; reindeer. 9264.3 Section 9264.3 Public Lands: Interior Regulations Relating to Public Lands (Continued) BUREAU OF... Management § 9264.3 Grazing administration—Alaska; reindeer....

  13. 43 CFR 9264.3 - Grazing administration-Alaska; reindeer. [Reserved

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 43 Public Lands: Interior 2 2013-10-01 2013-10-01 false Grazing administration-Alaska; reindeer. 9264.3 Section 9264.3 Public Lands: Interior Regulations Relating to Public Lands (Continued) BUREAU OF... Management § 9264.3 Grazing administration—Alaska; reindeer....

  14. 43 CFR 9264.3 - Grazing administration-Alaska; reindeer. [Reserved

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 43 Public Lands: Interior 2 2012-10-01 2012-10-01 false Grazing administration-Alaska; reindeer. 9264.3 Section 9264.3 Public Lands: Interior Regulations Relating to Public Lands (Continued) BUREAU OF... Management § 9264.3 Grazing administration—Alaska; reindeer....

  15. Real-time Tsunami Warning Operations at the NOAA West Coast/Alaska Tsunami Warning Center

    NASA Astrophysics Data System (ADS)

    Whitmore, P.; Huang, P.; Crowley, H.; Ferris, J.; Hale, D.; Knight, W.; Medbery, A.; Nyland, D.; Preller, C.; Turner, B.; Urban, G.

    2007-12-01

    The West Coast/Alaska Tsunami Warning Center (WCATWC) in Palmer, Alaska and the Pacific Tsunami Warning Center (PTWC) in Ewa Beach, Hawaii, provide tsunami warning services for a large portion of the world's coasts. The WCATWC has primary responsibility for providing tsunami detection, warnings, and forecasts to Canada, Puerto Rico, Virgin Islands, and all U.S. States except Hawaii. WCATWC also acts as back-up for the PTWC, requiring the center to constantly monitor global tsunami activities by rapidly detecting and evaluating earthquakes for their tsunamigenic potential. The Centers' goals are to issue initial messages as quickly as possible to alert those near the source to potential danger (assuming there is any), and to follow that with a reasonable forecast of impact level. With these goals in mind, a Watchstander's initial action is based entirely on estimates of tsunami potential from the earthquake's source parameters. The course of action for the first message is determined primarily by the earthquake's magnitude, location, tsunami history, tsunami travel time, estimated threat based on pre-computed models, and pre-set criteria. Supplemental messages, if necessary, are based on wave observations and forecasts generated from hydrodynamic models (which are calibrated with near real-time observations). In April 2006, the WCATWC increased staff level so that the Center can be staffed 24/7 with two watchstanders. Since then, the Center's response time for events within the primary area-of-responsibility has decreased to less than 5 minutes. In order to illustrate the WCATWC's real time tsunami warning operational environment, tsunami warning operation timelines for several tsunamigenic earthquakes - including the September 12 southern Sumatra 8.4 and the January 13 Kuril Island 8.1 earthquakes - are provided. The timelines highlight the key parameters and observations that guide tsunami warning operations chronicling the event through: 1) initial alarm, 2

  16. NOAA/West Coast and Alaska Tsunami Warning Center Pacific Ocean response criteria

    USGS Publications Warehouse

    Whitmore, P.; Benz, H.; Bolton, M.; Crawford, G.; Dengler, L.; Fryer, G.; Goltz, J.; Hansen, R.; Kryzanowski, K.; Malone, S.; Oppenheimer, D.; Petty, E.; Rogers, G.; Wilson, Jim

    2008-01-01

    New West Coast/Alaska Tsunami Warning Center (WCATWC) response criteria for earthquakes occurring in the Pacific basin are presented. Initial warning decisions are based on earthquake location, magnitude, depth, and - dependent on magnitude - either distance from source or precomputed threat estimates generated from tsunami models. The new criteria will help limit the geographical extent of warnings and advisories to threatened regions, and complement the new operational tsunami product suite. Changes to the previous criteria include: adding hypocentral depth dependence, reducing geographical warning extent for the lower magnitude ranges, setting special criteria for areas not well-connected to the open ocean, basing warning extent on pre-computed threat levels versus tsunami travel time for very large events, including the new advisory product, using the advisory product for far-offshore events in the lower magnitude ranges, and specifying distances from the coast for on-shore events which may be tsunamigenic. This report sets a baseline for response criteria used by the WCATWC considering its processing and observational data capabilities as well as its organizational requirements. Criteria are set for tsunamis generated by earthquakes, which are by far the main cause of tsunami generation (either directly through sea floor displacement or indirectly by triggering of slumps). As further research and development provides better tsunami source definition, observational data streams, and improved analysis tools, the criteria will continue to adjust. Future lines of research and development capable of providing operational tsunami warning centers with better tools are discussed.

  17. NOAA Would Receive an 11% Increase Under Obama Administration's Proposed Budget

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    2013-05-01

    The White House's proposed fiscal year (FY) 2014 budget for the National Oceanic and Atmospheric Administration (NOAA) would provide the agency with 5.45 billion, 11% above the FY 2012 spend plan of 4.91 billion (see Table ). The proposal, which was sent to Congress on 10 April, would increase funding for operations, research, and facilities to 3.41 billion (up 7.97% over FY 2012) and for procurement, acquisition, and construction to 2.12 billion (up 17.51%). The budget proposal uses the FY 2012 spend plan as a comparison because Congress approved the FY 2013 appropriations only a few weeks before the FY 2014 proposal was released.

  18. Alaska Power Administration combined financial statements, schedules and supplemental reports, September 30, 1995 and 1994

    SciTech Connect

    1995-12-31

    This report presents the results of the independent certified public accountant`s audit of the Department of Energy`s Alaska Power Administration`s (Alaska) financial statements as of September 30, 1995. The auditors have expressed an unqualified opinion on the 1995 statements. Their reports on Alaska`s internal control structure and on compliance with laws and regulations are also provided. The Alaska Power Administration operates and maintains two hydroelectric projects that include five generator units, three power tunnels and penstocks, and over 88 miles of transmission line. Additional information about Alaska Power Administration is provided in the notes to the financial statements. The 1995 financial statement audit was made under the provisions of the Inspector General Act (5 U.S.C. App.), as amended, the Chief Financial Officers (CFO) Act (31 U.S.C. 1500), and Office of Management and Budget implementing guidance to the CFO Act. The auditor`s work was conducted in accordance with generally accepted government auditing standards. To fulfill the audit responsibilities, the authors contracted with the independent public accounting firm of KPMG Peat Marwick (KPMG) to conduct the audit for us, subject to review. The auditor`s report on Alaska`s internal control structure disclosed no reportable conditions that could have a material effect on the financial statements. The auditor also considered the overview and performance measure data for completeness and material consistency with the basic financial statements, as noted in the internal control report. The auditor`s report on compliance with laws and regulations disclosed no instances of noncompliance by Alaska.

  19. NOAA (National Oceanic and Atmospheric Administration) Aircraft Satellite Data Link (ASDL)

    NASA Astrophysics Data System (ADS)

    Parrish, J. R.; Darby, E. R.; Dugranrut, J. D.; Goldstein, A. S.

    1984-05-01

    The NOAA Aircraft Satellite Data Link (ASDL) is described, includes the data routing, aircraft system and one minute data explanations, types of messages, and radar image transmission. An aircraft ASDL operator's guide with examples of specific message formats are presented.

  20. In-flight measurement of the National Oceanic and Atmospheric Administration (NOAA)-10 static Earth sensor error

    NASA Technical Reports Server (NTRS)

    Harvie, E.; Filla, O.; Baker, D.

    1993-01-01

    Analysis performed in the Goddard Space Flight Center (GSFC) Flight Dynamics Division (FDD) measures error in the static Earth sensor onboard the National Oceanic and Atmospheric Administration (NOAA)-10 spacecraft using flight data. Errors are computed as the difference between Earth sensor pitch and roll angle telemetry and reference pitch and roll attitude histories propagated by gyros. The flight data error determination illustrates the effect on horizon sensing of systemic variation in the Earth infrared (IR) horizon radiance with latitude and season, as well as the effect of anomalies in the global IR radiance. Results of the analysis provide a comparison between static Earth sensor flight performance and that of scanning Earth sensors studied previously in the GSFC/FDD. The results also provide a baseline for evaluating various models of the static Earth sensor. Representative days from the NOAA-10 mission indicate the extent of uniformity and consistency over time of the global IR horizon. A unique aspect of the NOAA-10 analysis is the correlation of flight data errors with independent radiometric measurements of stratospheric temperature. The determination of the NOAA-10 static Earth sensor error contributes to realistic performance expectations for missions to be equipped with similar sensors.

  1. 75 FR 5760 - Proposed Information Collection; Comment Request; Western Alaska Community Development Quota Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-04

    ... Alaska Community Development Quota Program AGENCY: National Oceanic and Atmospheric Administration (NOAA... Commerce, Room 6625, 14th and Constitution Avenue, NW., Washington, DC 20230 (or via the Internet at dHynek... patsy.bearden@noaa.gov . SUPPLEMENTARY INFORMATION: I. Abstract The Community Development Quota...

  2. National Oceanic and Atmospheric Administration(NOAA) Arctic Climate Change Studies: A Contribution to IPY

    NASA Astrophysics Data System (ADS)

    Calder, J.; Overland, J.; Uttal, T.; Richter-Menge, J.; Rigor, I.; Crane, K.

    2004-12-01

    NOAA has initiated four activities that respond to the Arctic Climate Impact Assessment(ACIA) recommendations and represent contributions toward the IPY: 1) Arctic cloud, radiation and aerosol observatories, 2) documentation and attribution of changes in sea-ice thickness through direct measurement and modeling, 3) deriving added value from existing multivariate and historical data, and 4) following physical and biological changes in the northern Bering and Chukchi Seas. Northeast Canada, the central Arctic coast of Russia and the continuing site at Barrow have been chosen as desirable radiation/cloud locations as they exhibit different responses to Arctic Oscillation variability. NOAA is closely collaborating with Canadian groups to establish an observatory at Eureka. NOAA has begun deployment of a network of ice-tethered ice mass balance buoys complemented by several ice profiling sonars. In combination with other sea ice investigators, the Arctic buoy program, and satellites, changes can be monitored more effectively in sea ice throughout the Arctic. Retrospective data analyses includes analysis of Arctic clouds and radiation from surface and satellite measurements, correction of systematic errors in TOVS radiance data sets for the Arctic which began in 1979, addressing the feasibility of an Arctic System Reanalysis, and an Arctic Change Detection project that incorporates historical and recent physical and biological observations and news items at a website, www.arctic.noaa.gov. NOAA has begun a long-term effort to detect change in ecosystem indicators in the northern Bering and Chukchi Seas that could provide a model for other northern marine ecosystems. The first efforts were undertaken in summer 2004 during a joint Russian-US cruise that mapped the regions physical, chemical and biological parameters to set the stage for future operations over the longer term. A line of biophysical moorings provide detection of the expected warming of this area. A

  3. 33 CFR 162.255 - Wrangell Narrows, Alaska; use, administration, and navigation.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 2 2012-07-01 2012-07-01 false Wrangell Narrows, Alaska; use, administration, and navigation. 162.255 Section 162.255 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) PORTS AND WATERWAYS SAFETY INLAND WATERWAYS NAVIGATION...

  4. 33 CFR 162.255 - Wrangell Narrows, Alaska; use, administration, and navigation.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Wrangell Narrows, Alaska; use, administration, and navigation. 162.255 Section 162.255 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) PORTS AND WATERWAYS SAFETY INLAND WATERWAYS NAVIGATION...

  5. 33 CFR 162.255 - Wrangell Narrows, Alaska; use, administration, and navigation.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 2 2013-07-01 2013-07-01 false Wrangell Narrows, Alaska; use, administration, and navigation. 162.255 Section 162.255 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) PORTS AND WATERWAYS SAFETY INLAND WATERWAYS NAVIGATION...

  6. 33 CFR 162.255 - Wrangell Narrows, Alaska; use, administration, and navigation.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 2 2011-07-01 2011-07-01 false Wrangell Narrows, Alaska; use, administration, and navigation. 162.255 Section 162.255 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) PORTS AND WATERWAYS SAFETY INLAND WATERWAYS NAVIGATION...

  7. Alaska

    NASA Technical Reports Server (NTRS)

    2002-01-01

    In this spectacular MODIS image from November 7, 2001, the skies are clear over Alaska, revealing winter's advance. Perhaps the most interesting feature of the image is in its center; in blue against the rugged white backdrop of the Alaska Range, Denali, or Mt. McKinley, casts its massive shadow in the fading daylight. At 20,322 ft (6,194m), Denali is the highest point in North America. South of Denali, Cook Inlet appears flooded with sediment, turning the waters a muddy brown. To the east, where the Chugach Mountains meet the Gulf of Alaska, and to the west, across the Aleutian Range of the Alaska Peninsula, the bright blue and green swirls indicate populations of microscopic marine plants called phytoplankton. Image courtesy Jacques Descloitres, MODIS Land Rapid Response Team at NASA GSFC

  8. Alaska

    NASA Technical Reports Server (NTRS)

    2002-01-01

    In this spectacular MODIS image from November 7, 2001, the skies are clear over Alaska, revealing winter's advance. Perhaps the most interesting feature of the image is in its center; in blue against the rugged white backdrop of the Alaska Range, Denali, or Mt. McKinley, casts its massive shadow in the fading daylight. At 20,322 ft (6,194m), Denali is the highest point in North America. South of Denali, Cook Inlet appears flooded with sediment, turning the waters a muddy brown. To the east, where the Chugach Mountains meet the Gulf of Alaska, and to the west, across the Aleutian Range of the Alaska Peninsula, the bright blue and green swirls indicate populations of microscopic marine plants called phytoplankton.

  9. Alaska

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Though it's not quite spring, waters in the Gulf of Alaska (right) appear to be blooming with plant life in this true-color MODIS image from March 4, 2002. East of the Alaska Peninsula (bottom center), blue-green swirls surround Kodiak Island. These colors are the result of light reflecting off chlorophyll and other pigments in tiny marine plants called phytoplankton. The bloom extends southward and clear dividing line can be seen west to east, where the bloom disappears over the deeper waters of the Aleutian Trench. North in Cook Inlet, large amounts of red clay sediment are turning the water brown. To the east, more colorful swirls stretch out from Prince William Sound, and may be a mixture of clay sediment from the Copper River and phytoplankton. Arcing across the top left of the image, the snow-covered Brooks Range towers over Alaska's North Slope. Frozen rivers trace white ribbons across the winter landscape. The mighty Yukon River traverses the entire state, beginning at the right edge of the image (a little way down from the top) running all the way over to the Bering Sea, still locked in ice. In the high-resolution image, the circular, snow-filled calderas of two volcanoes are apparent along the Alaska Peninsula. In Bristol Bay (to the west of the Peninsula) and in a couple of the semi-clear areas in the Bering Sea, it appears that there may be an ice algae bloom along the sharp ice edge (see high resolution image for better details). Ground-based observations from the area have revealed that an under-ice bloom often starts as early as February in this region and then seeds the more typical spring bloom later in the season.

  10. The National Oceanic and Atmospheric Administration (NOAA) Climate Services Portal: A New Centralized Resource for Distributed Climate Information

    NASA Astrophysics Data System (ADS)

    Burroughs, J.; Baldwin, R.; Herring, D.; Lott, N.; Boyd, J.; Handel, S.; Niepold, F.; Shea, E.

    2010-09-01

    With the rapid rise in the development of Web technologies and climate services across NOAA, there has been an increasing need for greater collaboration regarding NOAA's online climate services. The drivers include the need to enhance NOAA's Web presence in response to customer requirements, emerging needs for improved decision-making capabilities across all sectors of society facing impacts from climate variability and change, and the importance of leveraging climate data and services to support research and public education. To address these needs, NOAA (during fiscal year 2009) embarked upon an ambitious program to develop a NOAA Climate Services Portal (NCS Portal). Four NOAA offices are leading the effort: 1) the NOAA Climate Program Office (CPO), 2) the National Ocean Service's Coastal Services Center (CSC), 3) the National Weather Service's Climate Prediction Center (CPC), and 4) the National Environmental Satellite, Data, and Information Service's (NESDIS) National Climatic Data Center (NCDC). Other offices and programs are also contributing in many ways to the effort. A prototype NCS Portal is being placed online for public access in January 2010, http://www.climate.gov. This website only scratches the surface of the many climate services across NOAA, but this effort, via direct user engagement, will gradually expand the scope and breadth of the NCS Portal to greatly enhance the accessibility and usefulness of NOAA's climate data and services.

  11. 76 FR 53412 - Proposed Information Collection; Comment Request; Alaska Commercial Operator's Annual Report (COAR)

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-26

    ... Commercial Operator's Annual Report (COAR) AGENCY: National Oceanic and Atmospheric Administration (NOAA... currently approved information collection. The Alaska Commercial Operator's Annual Report (COAR) is a report... Administrative Code (AAC), chapter 5 AAC 39.130. In addition, any person or company who receives an...

  12. 76 FR 36094 - Draft NOAA Scientific Integrity Policy and Handbook; Availability

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-21

    ... National Oceanic and Atmospheric Administration Draft NOAA Scientific Integrity Policy and Handbook... Administration (NOAA), Department of Commerce (DOC). ACTION: Draft NOAA Scientific Integrity Policy and Handbook for Public Review. SUMMARY: NOAA's draft scientific integrity policy is available for public...

  13. 78 FR 44465 - Fisheries of the Exclusive Economic Zone Off Alaska; Pacific Ocean Perch in the West Yakutat...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-24

    ... (78 FR 13162, February 26, 2013). In accordance with Sec. 679.20(d)(1)(i), the Administrator, Alaska... fishery. The Acting Assistant Administrator for Fisheries, NOAA (AA), finds good cause to waive the..., 2013. The AA also finds good cause to waive the 30-day delay in the effective date of this action...

  14. 76 FR 46208 - Fisheries of the Exclusive Economic Zone Off Alaska; “Other Rockfish” in the Western Regulatory...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-02

    ... GOA (76 FR 11111, March 1, 2011). In accordance with Sec. 679.20(d)(2), the Administrator, Alaska... fishery. The Assistant Administrator for Fisheries, NOAA (AA), finds good cause to waive the requirement..., 2011. The AA also finds good cause to waive the 30-day delay in the effective date of this action...

  15. 75 FR 39861 - Fisheries of the Exclusive Economic Zone Off Alaska; Northern Rockfish in the Western Regulatory...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-13

    ... GOA (75 FR 11749, March 12, 2010). In accordance with Sec. 679.20(d)(1)(i), the Administrator, Alaska... fishery. The Assistant Administrator for Fisheries, NOAA (AA), finds good cause to waive the requirement... comment because the most recent, relevant data only became available as of July 7, 2010. The AA also...

  16. 78 FR 57097 - Fisheries of the Exclusive Economic Zone Off Alaska; Sharks in the Bering Sea and Aleutian...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-17

    ... GOA (78 FR 13813, March 1, 2013). In accordance with Sec. 679.20(d)(2), the Administrator, Alaska... recently obtained from the fishery. The Assistant Administrator for Fisheries, NOAA (AA), finds good cause... because the most recent, relevant data only became available as of September 10, 2013. The AA also...

  17. 77 FR 40305 - Fisheries of the Exclusive Economic Zone Off Alaska; Pelagic Shelf Rockfish in the Western...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-09

    ... GOA (77 FR 15194, March 14, 2012). In accordance with Sec. 679.20(d)(1)(i), the Administrator, Alaska... from the fishery. The acting Assistant Administrator for Fisheries, NOAA (AA), finds good cause to... became available as of June 29, 2012. ] The AA also finds good cause to waive the 30-day delay in...

  18. Acquisition of Gulfstream IV-SP jet for environmental measurements in the upper troposphere by the National Oceanic and Atmospheric Administration (NOAA)

    SciTech Connect

    Philippsborn, F.R.

    1996-11-01

    Acquisition of a Gulfstream IV-SP jet by the National Oceanic and Atmospheric Administration (NOAA) is intended to address the critical shortage of platforms capable of making intensive in situ meteorological and atmospheric observations in the upper troposphere. Its primary function will be Hurricane Synoptic Surveillance. In its initial configuration, the jet will significantly improve the ability of NOAA scientists to predict the expected path of hurricanes by gathering vertical profiles of wind, temperature, and humidity within 1,000 km of tropical cyclones by means of dropwindsondes over the data-sparse oceanic regions of the western Atlantic, Caribbean Sea and Gulf of Mexico. Future missions proposed for the aircraft include winter storm surveillance, hurricane reconnaissance, weather research, global climate studies, air chemistry, validation of satellite data, and development of remote sensors. 5 refs.

  19. Independent NOAA considered

    NASA Astrophysics Data System (ADS)

    Richman, Barbara T.

    A proposal to pull the National Oceanic and Atmospheric Administration (NOAA) out of the Department of Commerce and make it an independent agency was the subject of a recent congressional hearing. Supporters within the science community and in Congress said that an independent NOAA will benefit by being more visible and by not being tied to a cabinet-level department whose main concerns lie elsewhere. The proposal's critics, however, cautioned that making NOAA independent could make it even more vulnerable to the budget axe and would sever the agency's direct access to the President.The separation of NOAA from Commerce was contained in a June 1 proposal by President Ronald Reagan that also called for all federal trade functions under the Department of Commerce to be reorganized into a new Department of International Trade and Industry (DITI).

  20. NOAA Educational Programs and Opportunities

    NASA Astrophysics Data System (ADS)

    Jackson, N. L.

    2005-12-01

    The National Oceanic and Atmospheric Administration (NOAA) conduct research and gather data about global oceans, atmosphere, space, and the sun. NOAA recruits and retains professional scientific and technical candidates in a variety of specialized occupations. The NOAA Satellites and Information Service is responsible for managing the nations civil operational earth observing satellites. This agency provides opportunities to teachers and students to work with researchers to learn applications or remote sensed data and to develop curricula with create both a stimulating and fruitful classroom experience. This session will offer an overview of NOAA and a discussion on the various opportunities available to teachers and students. Free materials will be given to the attendees.

  1. Fetal alcohol syndrome in Alaska, 1977 through 1992: an administrative prevalence derived from multiple data sources.

    PubMed Central

    Egeland, G M; Perham-Hester, K A; Gessner, B D; Ingle, D; Berner, J E; Middaugh, J P

    1998-01-01

    OBJECTIVES: The prevalence and characteristics of fetal alcohol syndrome cases and the usefulness of various data sources in surveillance were examined in Alaska to guide prevention and future surveillance efforts. METHODS: Sixteen data sources in Alaska were used to identify children with fetal alcohol syndrome. Medical charts were reviewed to verify cases, and records were reviewed to provide descriptive data. RESULTS: Fetal alcohol syndrome rates varied markedly by birth year and race, with the highest prevalence (4.1 per 1000 live births) found among Alaska Natives born between 1985 and 1988. Screening and referral programs to diagnostic clinics identified 70% of all recorded cases. The intervention program for children 0 to 3 years of age detected 29% of age-appropriate cases, and Medicaid data identified 11% of all cases; birth certificates detected only 9% of the age-appropriate cases. CONCLUSIONS: Our findings indicate a high prevalence of fetal alcohol syndrome in Alaska and illustrate that reliance on any one data source would lead to underestimates of the extent of fetal alcohol syndrome in a population. PMID:9585745

  2. NOAA seeks healthy budget

    NASA Astrophysics Data System (ADS)

    Bush, Susan

    The small, crowded room of the House side of the U.S. Capitol building belied the large budget of $1,611,991,000 requested for Fiscal Year 1992 by the National Oceanic and Atmospheric Administration. John A. Knauss, Undersecretary for Oceans and Atmosphere, U.S. Department of Commerce, delivered his testimony on February 28 before the House Appropriations Subcommittee on Commerce, Justice, and State, the Judiciary and Related Agencies. He told the subcommittee that the budget “attempts to balance the two goals of maintaining NOAA's position as an important science agency and addressing the serious budget problems that the government continues to face.”Climate and global change, modernization of the National Weather Service, and the Coastal Ocean Science program are NOAA's three ongoing, high-priority initiatives that the budget addresses. Also, three additional initiatives—a NOAA-wide program to improve environmental data management, President Bush's multiagency Coastal America initiative, and a seafood safety program administered jointly by NOAA and the Food and Drug Administration—are addressed.

  3. Southern Alaska Coastal Relief Model

    NASA Astrophysics Data System (ADS)

    Lim, E.; Eakins, B.; Wigley, R.

    2009-12-01

    The National Geophysical Data Center (NGDC), an office of the National Oceanic and Atmospheric Administration (NOAA), in conjunction with the Cooperative Institute for Research in Environmental Sciences (CIRES) at the University of Colorado at Boulder, has developed a 24 arc-second integrated bathymetric-topographic digital elevation model of Southern Alaska. This Coastal Relief Model (CRM) was generated from diverse digital datasets that were obtained from NGDC, the United States Geological Survey, and other U.S. and international agencies. The CRM spans 170° to 230° E and 48.5° to 66.5° N, including the Gulf of Alaska, Bering Sea, Aleutian Islands, and Alaska’s largest communities: Anchorage, Fairbanks, and Juneau. The CRM provides a framework for enabling scientists to refine tsunami propagation and ocean circulation modeling through increased resolution of geomorphologic features. It may also be useful for benthic habitat research, weather forecasting, and environmental stewardship. Shaded-relief image of the Southern Alaska Coastal Relief Model.

  4. Tropospheric Airborne Meteorological Data Reporting (TAMDAR) Sensor Validation and Verification on National Oceanographic and Atmospheric Administration (NOAA) Lockheed WP-3D Aircraft

    NASA Technical Reports Server (NTRS)

    Tsoucalas, George; Daniels, Taumi S.; Zysko, Jan; Anderson, Mark V.; Mulally, Daniel J.

    2010-01-01

    As part of the National Aeronautics and Space Administration's Aviation Safety and Security Program, the Tropospheric Airborne Meteorological Data Reporting project (TAMDAR) developed a low-cost sensor for aircraft flying in the lower troposphere. This activity was a joint effort with support from Federal Aviation Administration, National Oceanic and Atmospheric Administration, and industry. This paper reports the TAMDAR sensor performance validation and verification, as flown on board NOAA Lockheed WP-3D aircraft. These flight tests were conducted to assess the performance of the TAMDAR sensor for measurements of temperature, relative humidity, and wind parameters. The ultimate goal was to develop a small low-cost sensor, collect useful meteorological data, downlink the data in near real time, and use the data to improve weather forecasts. The envisioned system will initially be used on regional and package carrier aircraft. The ultimate users of the data are National Centers for Environmental Prediction forecast modelers. Other users include air traffic controllers, flight service stations, and airline weather centers. NASA worked with an industry partner to develop the sensor. Prototype sensors were subjected to numerous tests in ground and flight facilities. As a result of these earlier tests, many design improvements were made to the sensor. The results of tests on a final version of the sensor are the subject of this report. The sensor is capable of measuring temperature, relative humidity, pressure, and icing. It can compute pressure altitude, indicated air speed, true air speed, ice presence, wind speed and direction, and eddy dissipation rate. Summary results from the flight test are presented along with corroborative data from aircraft instruments.

  5. 78 FR 5421 - Proposed Information Collection; Comment Request; NOAA's Teacher at Sea Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-25

    ... Teacher at Sea Program AGENCY: National Oceanic and Atmospheric Administration (NOAA), Commerce. ACTION... gain first-hand experience with field research activities through the NOAA Teacher at Sea...

  6. NOAA Lists 20 Coral Species as Threatened

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    2014-09-01

    Twenty coral species have been listed as threatened under the U.S. Endangered Species Act (ESA), the National Oceanic and Atmospheric Administration (NOAA) announced on 27 August. This is NOAA's largest ESA rule making. The coral species include 15 found in the Indo-Pacific region and 5 that are located in the Caribbean. They join two other Caribbean coral species that NOAA listed as threatened in 2006.

  7. Chlorofluorocarbon-11, -12, and nitrous oxide measurements at the NOAA/GMCC (National Oceanic and Atmospheric Administration/Geophysical Monitoring for Climatic Change) baseline stations (16 September 1973 to 31 December 1979)

    SciTech Connect

    Thompson, T.M.; Komhyr, W.D.; Dutton, E.G.

    1985-06-01

    The National Oceanic and Atmospheric Administration's Air Resources Laboratory (NOAA/ARL) began measuring chlorofluorocarbon-11 in 1973 because of the interest in this anthropogenic pollutant as a tracer for the study of mass transfer processes in the atmosphere and the oceans. Interest in chlorofluorocarbon-11, and in chlorofluorocarbon-12 and nitrous oxide, was heightened during the mid-1970's with the realization that these compounds can be decomposed by photolysis in the stratosphere to cause stratospheric ozone destruction by released chlorine atoms. Measurements of chlorofluorocarbon-12 and nitrous oxide were begun by NOAA/ARL in 1977. The report describes the evolution of the chlorofluorocarbon and N/sub 2/O measurement programs through 1979. By that time, the sample collection and analysis techniques became standardized, and have remained the same to the present.

  8. An Education Plan for NOAA

    ERIC Educational Resources Information Center

    National Oceanic and Atmospheric Administration, 2004

    2004-01-01

    U.S. Secretary of Commerce Donald L. Evans has said, "Environmental Literacy is critical to enable learners of all ages to pursue knowledge, produce advanced products, and enhance personal growth." The National Oceanic and Atmospheric Administration (NOAA) recognizes it has a role and a responsibility to the nation in advancing education leading…

  9. The NOAA Annual Greenhouse Gas Index - 2012 Update

    NASA Astrophysics Data System (ADS)

    Butler, J. H.; Montzka, S. A.; Conway, T. J.; Dlugokencky, E. J.; Elkins, J. W.; Masari, K. A.; Schnell, R. C.; Tans, P. P.

    2012-04-01

    For the past several decades, the U.S. National Oceanic and Atmospheric Administration (NOAA) has monitored all of the long-lived atmospheric greenhouse gases. These global measurements have provided input to databases, analyses, and various relevant products, including national and international climate assessments. To make these data more useful and available, NOAA several years ago released its Annual Greenhouse Gas Index (AGGI), http://www.esrl.noaa.gov/gmd/aggi. This index, based on the climate forcing properties of long-lived greenhouse gases, was designed to enhance the connection between scientists and society by providing a normalized standard that can be easily understood and followed. The long-lived gases capture most of the radiative forcing, and uncertainty in their measurement is very small. This allows us to provide a robust measure and assessment of the long-term, radiative influence of these gases. Continuous greenhouse gas measurements are made at baseline climate observatories (Pt. Barrow, Alaska; Mauna Loa, Hawaii; American Samoa; and the South Pole) and weekly flask air samples are collected through a global network of over 60 sites, including an international cooperative program for carbon dioxide and other greenhouse gases. The gas samples are analyzed at NOAA's Earth System Research Laboratory (NOAA/ESRL) in Boulder, Colorado, using WMO standard reference gases prepared by NOAA/ESRL. The AGGI is normalized to 1.00 in 1990, the Kyoto Climate Protocol baseline year. In 2010, the AGGI was 1.29, indicating that global radiative forcing by long-lived greenhouse gases had increased 29% since 1990. During the 1980s CO2 accounted for about 50-60% of the annual increase in radiative forcing by long-lived greenhouse gases, whereas, since 2000, it has accounted for 85-90% of this increase each year. After nearly a decade of virtually level concentrations in the atmosphere, methane (CH4) increased measurably over the past 2-3 years, as did its

  10. NOAA-L

    NASA Technical Reports Server (NTRS)

    McCain, Harry G. (Technical Monitor)

    2000-01-01

    The National Oceanic and Atmospheric Administration (NOAA) and the National Aeronautics and Space Administration (NASA) have jointly developed a valuable series of polar-orbiting Earth environmental observation satellites since 1978. These satellites provide global data to NOAA's short- and long-range weather forecasting systems. The system consists of two polar-orbiting satellites known as the Advanced Television Infrared Observation Satellites (TIROS-N) (ATN). Operating as a pair, these satellites ensure that environmental data, for any region of the Earth, is no more than six hours old. These polar-orbiting satellites have not only provided cost-effective data for very immediate and real needs but also for extensive climate and research programs. The weather data (including images seen on television news programs) has afforded both convenience and safety to viewers throughout the world. The satellites also support the SARSAT (Search and Rescue Satellite Aided Tracking) part of the COSPAS-SARSAT constellation. Russia provides the COSPAS (Russian for Space Systems for the Search of Vessels in Distress) satellites. The international COSPAS-SARSAT system provides for the detection and location of emergency beacons for ships, aircraft, and people in distress and has contributed to the saving of more than 10,000 lives since its inception in 1982.

  11. 78 FR 68816 - Proposed Information Collection; Comment Request; NOAA Space-Based Data Collection System (DCS...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-15

    ... National Oceanic and Atmospheric Administration Proposed Information Collection; Comment Request; NOAA Space- Based Data Collection System (DCS) Agreements AGENCY: National Oceanic and Atmospheric... National Ocean and Atmospheric Administration (NOAA) operates two space-based data collection systems...

  12. 78 FR 26616 - Draft NOAA Five Year Research and Development Plan

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-07

    ... NOAA Five Year Research and Development Plan AGENCY: National Oceanic and Atmospheric Administration (NOAA), Department of Commerce (DOC). ACTION: Draft NOAA Five Year Research and Development Plan for Public Review. SUMMARY: NOAA's draft Five Year Research and Development Plan is available for...

  13. NOAA & Academia Partnership Building Conference. Highlights (3rd, Washington, DC, November 14-15, 2001).

    ERIC Educational Resources Information Center

    National Oceanic and Atmospheric Administration (DOC), Silver Spring, MD.

    In November 2001 the National Oceanic and Atmospheric Administration (NOAA) hosted the third NOAA and Academia Partnership to evaluate, maintain, and expand on efforts to optimize NOAA-university cooperation. Close partnership between the NOAA and U.S. universities has produced many benefits for the U.S. economy and the environment. Based on the…

  14. 50 CFR Figure 3 to Part 679 - Gulf of Alaska Reporting Areas

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... ALASKA Pt. 679, Fig. 3 Figure 3 to Part 679—Gulf of Alaska Reporting Areas ER21AP09.000 b. Coordinates... Part) and NOAA chart 500 (West Coast of North America, Dixon Entrance to Unimak Pass), between 170°00... the US EEZ as described in the current edition of NOAA chart 500 (West Coast of North America,...

  15. 50 CFR Figure 3 to Part 679 - Gulf of Alaska Reporting Areas

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... ALASKA Pt. 679, Fig. 3 Figure 3 to Part 679—Gulf of Alaska Reporting Areas ER21AP09.000 b. Coordinates... Part) and NOAA chart 500 (West Coast of North America, Dixon Entrance to Unimak Pass), between 170°00... the US EEZ as described in the current edition of NOAA chart 500 (West Coast of North America,...

  16. 50 CFR Figure 3 to Part 679 - Gulf of Alaska Reporting Areas

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... ALASKA Pt. 679, Fig. 3 Figure 3 to Part 679—Gulf of Alaska Reporting Areas ER21AP09.000 b. Coordinates... Part) and NOAA chart 500 (West Coast of North America, Dixon Entrance to Unimak Pass), between 170°00... the US EEZ as described in the current edition of NOAA chart 500 (West Coast of North America,...

  17. In Congress NOAA budget set

    NASA Astrophysics Data System (ADS)

    Richman, Barbara T.

    In late November, President Ronald Reagan signed into law the National Oceanic and Atmospheric Administration (NOAA) budget, which is part of the appropriations bill for the Departments of Commerce, Justice, State, the Judiciary, and related agencies; at the same time, he also signed into law an amendment attached to that bill that prohibits the sale of the weather satellites (Eos, May 17, 1983, p. 377, and March 22, 1983, p. 113). Commercialization of the land remote sensing satellite system is still being considered, however.As a result of the conference between the House of Representatives and the Senate appropriations committees, the appropriation for NOAA totals $1020.6 million, with a program level of $1073.1 million. The appropriation is the money that comes from the federal treasury; the program level represents all of the funds—including treasury funds, transfers, residuals, etc.—actually available for the program. Strictly in terms of dollars, the total fiscal 1984 NOAA appropriation is almost level with the fiscal 1983 appropriation of $1000.9 million. In fiscal 1984, NOAA's research core, called Operations, Research, and Facilities (ORF), receives an appropriation of $988.2 million, with a program level of $1014.8 million

  18. The NOAA Big Data Project

    NASA Astrophysics Data System (ADS)

    de la Beaujardiere, J.

    2015-12-01

    The US National Oceanic and Atmospheric Administration (NOAA) is a Big Data producer, generating tens of terabytes per day from hundreds of sensors on satellites, radars, aircraft, ships, and buoys, and from numerical models. These data are of critical importance and value for NOAA's mission to understand and predict changes in climate, weather, oceans, and coasts. In order to facilitate extracting additional value from this information, NOAA has established Cooperative Research and Development Agreements (CRADAs) with five Infrastructure-as-a-Service (IaaS) providers — Amazon, Google, IBM, Microsoft, Open Cloud Consortium — to determine whether hosting NOAA data in publicly-accessible Clouds alongside on-demand computational capability stimulates the creation of new value-added products and services and lines of business based on the data, and if the revenue generated by these new applications can support the costs of data transmission and hosting. Each IaaS provider is the anchor of a "Data Alliance" which organizations or entrepreneurs can join to develop and test new business or research avenues. This presentation will report on progress and lessons learned during the first 6 months of the 3-year CRADAs.

  19. Collection development at the NOAA Central Library

    NASA Technical Reports Server (NTRS)

    Quillen, Steve R.

    1994-01-01

    The National Oceanic and Atmospheric Administration (NOAA) Central Library collection, approximately one million volumes, incorporates the holdings of its predecessor agencies. Within the library, the collections are filed separately, based on their source and/or classification schemes. The NOAA Central Library provides a variety of services to users, ranging from quick reference and interlibrary loan to in-depth research and online data bases.

  20. Self-reported versus administrative identification of American Indian and Alaska Native arrestees: effects on relative estimates of illicit drug use and alcohol abuse.

    PubMed

    Wood, Darryl S; Hays, Zachary R

    2014-01-01

    Arrestee Drug Abuse Monitoring program data were used to consider the effects of two methods of racial classification upon estimates of illicit drug use and alcohol abuse among American Indian/Alaska Native (AI/AN) arrestees. Overall, compared to arrestees who self-identified as Black, White, Asian/Pacific Islander, or Hispanic, arrestees self-identifying as AI/AN were most likely to be identified administratively as something other than AI/AN. Results of 'difference of difference' analyses indicate that differences in estimates of AI/AN versus non-AI/AN arrestees' illicit drug use and alcohol abuse were much more extreme when identification was based on administrative records than when based upon arrestees' self-reports. PMID:25111841

  1. Budget Realities Could Put Damper on Some NOAA Programs

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    2010-12-01

    The fall meeting of the National Oceanic and Atmospheric Administration's (NOAA) Science Advisory Board was in part a study in contrasts: discussing the agency's vision, goals, and recent successes while facing the harsh economic and political landscape that will make it difficult for NOAA to receive sufficient funding for the current fiscal year (FY 2011) to do little more than tread water toward reaching some of those goals. During a 30 November presentation, NOAA administrator Jane Lubchenco provided an overview of NOAA's Next Generation Strategic Plan. The document focuses on four long-term goals: climate adaptation and mitigation, a weather-ready nation, resilient coastal communities and economies, and healthy oceans.

  2. NOAA Enterprise Archive Access Tool

    NASA Astrophysics Data System (ADS)

    Rank, R. H.; McCormick, S.; Cremidis, C.

    2010-12-01

    A challenge for any consumer of National Oceanic and Atmospheric Administration (NOAA) environmental data archives is that the disparate nature of these archives makes it difficult for consumers to access data in a unified manner. If it were possible for consumers to have seamless access to these archives, they would be able to better utilize the data and thus maximize the return on investment for NOAA’s archival program. When unified data access is coupled with sophisticated data querying and discovery techniques, it will be possible to provide consumers with access to richer data sets and services that extend the use of key NOAA data. Theoretically, there are two ways that unified archive access may be achieved. The first approach is to develop a single archive or archiving standard that would replace the current NOAA archives. However, the development of such an archive would pose significant technical and administrative challenges. The second approach is to develop a middleware application that would provide seamless access to all existing archives, in effect allowing each archive to exist “as is” but providing a translation service for the consumer. This approach is deemed more feasible from an administrative and technical standpoint; however, it still presents unique technical challenges due to the disparate architectures that exist across NOAA archives. NOAA has begun developing the NEAAT. The purpose of NEAAT is to provide a middleware and a simple standardized API between NOAA archives and data consumers. It is important to note that NEAAT serves two main purposes: 1) To provide a single application programming interface (API) that enables designated consumers to write their own custom applications capable of searching and acquiring data seamlessly from multiple NOAA archives. 2) To allow archive managers to expose their data to consumers in conjunction with other NOAA resources without modifying their archiving systems or way of presenting data

  3. NOAA Big Data Partnership RFI

    NASA Astrophysics Data System (ADS)

    de la Beaujardiere, J.

    2014-12-01

    In February 2014, the US National Oceanic and Atmospheric Administration (NOAA) issued a Big Data Request for Information (RFI) from industry and other organizations (e.g., non-profits, research laboratories, and universities) to assess capability and interest in establishing partnerships to position a copy of NOAA's vast data holdings in the Cloud, co-located with easy and affordable access to analytical capabilities. This RFI was motivated by a number of concerns. First, NOAA's data facilities do not necessarily have sufficient network infrastructure to transmit all available observations and numerical model outputs to all potential users, or sufficient infrastructure to support simultaneous computation by many users. Second, the available data are distributed across multiple services and data facilities, making it difficult to find and integrate data for cross-domain analysis and decision-making. Third, large datasets require users to have substantial network, storage, and computing capabilities of their own in order to fully interact with and exploit the latent value of the data. Finally, there may be commercial opportunities for value-added products and services derived from our data. Putting a working copy of data in the Cloud outside of NOAA's internal networks and infrastructures should reduce demands and risks on our systems, and should enable users to interact with multiple datasets and create new lines of business (much like the industries built on government-furnished weather or GPS data). The NOAA Big Data RFI therefore solicited information on technical and business approaches regarding possible partnership(s) that -- at no net cost to the government and minimum impact on existing data facilities -- would unleash the commercial potential of its environmental observations and model outputs. NOAA would retain the master archival copy of its data. Commercial partners would not be permitted to charge fees for access to the NOAA data they receive, but

  4. Gulf of Alaska, Alaska

    NASA Technical Reports Server (NTRS)

    2002-01-01

    This MODIS true-color image shows the Gulf of Alaska and Kodiak Island, the partially snow-covered island in roughly the center of the image. Credit: Jacques Descloitres, MODIS Land Rapid Response Team

  5. The Weather Radar Toolkit, National Oceanic and Atmospheric Administration (NOAA) National Climatic Data Center's support of interoperability and the Global Earth Observation System of Systems (GEOSS)

    NASA Astrophysics Data System (ADS)

    Ansari, S.; Del Greco, S.

    2006-12-01

    In February 2005, 61 countries around the World agreed on a 10 year plan to work towards building open systems for sharing geospatial data and services across different platforms worldwide. This system is known as the Global Earth Observation System of Systems (GEOSS). The objective of GEOSS focuses on easy access to environmental data and interoperability across different systems allowing participating countries to measure the "pulse" of the planet in an effort to advance society. In support of GEOSS goals, NOAA's National Climatic Data Center (NCDC) has developed radar visualization and data exporter tools in an open systems environment. The NCDC Weather Radar Toolkit (WRT) loads Weather Surveillance Radar 1988 Doppler (WSR-88D) volume scan (S-band) data, known as Level-II, and derived products, known as Level-III, into an Open Geospatial Consortium (OGC) compliant environment. The application is written entirely in Java and will run on any Java- supported platform including Windows, Macintosh and Linux/Unix. The application is launched via Java Web Start and runs on the client machine while accessing these data locally or remotely from the NCDC archive, NOAA FTP server or any URL or THREDDS Data Server. The WRT allows the data to be manipulated to create custom mosaics, composites and precipitation estimates. The WRT Viewer provides tools for custom data overlays, Web Map Service backgrounds, animations and basic filtering. The export of images and movies is provided in multiple formats. The WRT Data Exporter allows for data export in both vector polygon (Shapefile, Well-Known Text) and raster (GeoTIFF, ESRI Grid, VTK, NetCDF, GrADS) formats. By decoding the various Radar formats into the NetCDF Common Data Model, the exported NetCDF data becomes interoperable with existing software packages including THREDDS Data Server and the Integrated Data Viewer (IDV). The NCDC recently partnered with NOAA's National Severe Storms Lab (NSSL) to decode Sigmet C-band Doppler

  6. Life-Cycle Data Management at NOAA

    NASA Astrophysics Data System (ADS)

    de la Beaujardiere, J.

    2014-12-01

    The US National Oceanic and Atmospheric Administration (NOAA) operates over a hundred observing systems which span the environment from the bottom of the ocean to the surface of the Sun. The resulting data are essential for immediate priorities such as weather forecasting, and the data also constitute an irreplaceable resource collected at great cost. It is therefore necessary to carefully preserve this information for ongoing scientific use, for new research and applications, and to ensure reproducibility of scientific conclusions. The NOAA data life-cycle includes activities in three major phases: planning and production, management of the resulting data, and usage activities. This paper will describe current work by the NOAA Environmental Data Management Committee (EDMC), Data Management Integration Team (DMIT), and the NOAA National Data Centers in areas including DM planning, documentation, cataloging, data access, and preservation and stewardship to improve and standardize policies and practices for life-cycle data management.

  7. 75 FR 57739 - Notice of Availability of a Draft NOAA Climate Service Strategic Vision and Framework for Public...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-22

    ... National Oceanic and Atmospheric Administration Notice of Availability of a Draft NOAA Climate Service...: Notice of availability of a draft NOAA Climate Service strategic vision and framework for public review... new NOAA Climate Service (NCS). The new service will directly support NOAA's vision of ``an...

  8. In Brief: NOAA moving forward with scientific integrity policy

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    2011-02-01

    The U.S. National Oceanic and Atmospheric Administration (NOAA) is moving forward with an agency-wide scientific integrity policy and has released a draft policy to all of NOAA's employees for their review and comment, NOAA administrator Jane Lubchenco said on 8 February. The draft policy lays out guidance for scientific conduct at the agency, encourages scientists to publish their data and findings, provides whistle-blower protection, encourages NOAA scientists to be leaders in the scientific community, and explicitly states that NOAA science managers and supervisors “must never suppress, alter or otherwise impede the timely release of scientific or technological findings or conclusions,” Lubchenco said at a meeting of the Union of Concerned Scientists' board of directors.

  9. NOAA draft research and development plan released

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    2013-05-01

    The U.S. National Oceanic and Atmospheric Administration (NOAA) has released a new draft version of its 5-year research and development (R&D) plan for 2013-2017, Research and Development at NOAA: Environmental Understanding to Ensure America's Vital and Sustainable Future. The plan, which was announced in the Federal Register on 7 May, will chart a course for R&D in support of the agency's four long-term goals of climate, weather, oceans, and coasts, and it will guide the agency's R&D activities over the next 5 years.

  10. THE SCIENTIFIC BASIS OF NOAA'S AIR QUALITY FORECASTING PROGRAM

    EPA Science Inventory

    For many years, the National Oceanic and Atmospheric Administration (NOAA) has conducted atmospheric research, including chemical and physical measurements, process studies, and the development and evaluation of experimental meteorological and photochemical air quality models. ...

  11. THE NOAA - EPA NATIONAL AIR QUALITY FORECASTING SYSTEM

    EPA Science Inventory

    Building upon decades of collaboration in air pollution meteorology research, in 2003 the National Oceanic and Atmospheric Administration (NOAA) and the United States Environmental Protection Agency (EPA) signed formal partnership agreements to develop and implement an operationa...

  12. Mission Description and In-Flight Operations of ERBE Instruments on ERBS, NOAA 9, and NOAA 10 Spacecraft

    NASA Technical Reports Server (NTRS)

    Snyder, Dianne; Bush, Kathryn; Lee, Kam-Pui; Summerville, Jessica

    1998-01-01

    Instruments of the Earth Radiation Budget Experiment (ERBE) have operated on three different Earth-orbiting spacecraft. The Earth Radiation Budget Satellite (ERBS) is operated by the National Aeronautics and Space Administration (NASA), and the NOAA 9 and NOAA 10 weather satellites are operated by the National Oceanic and Atmospheric Administration (NOAA). This paper is one of a series that describes the ERBE mission, in-orbit environments, instrument design and operational features, and data processing and validation procedures. This paper also describes the in-flight operations for the ERBE nonscanner instruments aboard the ERBS, NOAA 9, and NOAA 10 spacecraft from January 1990 through December 1990. Validation and archives of radiation measurements made by ERBE nonscanner instruments during this period were completed in August 1996. This paper covers normal and special operations of the spacecraft and instruments, operational anomalies, and the responses of the instruments to in-orbit and seasonal variations in the solar environment.

  13. 76 FR 4091 - Proposed Information Collection; Comment Request; Certification Requirements for NOAA's...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-24

    ...; Certification Requirements for NOAA's Hydrographic Product Quality Assurance Program AGENCY: National Oceanic... a quality assurance program under which the Administrator may certify privately-made...

  14. 75 FR 338 - Proposed Information Collection; Comment Request; NOAA Teacher at Sea Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-05

    ... Teacher at Sea Program AGENCY: National Oceanic and Atmospheric Administration (NOAA), Commerce. ACTION... first-hand experience with field research activities through the Teacher at Sea Program. Through...

  15. NOAA requirements and programs

    NASA Technical Reports Server (NTRS)

    Flanders, A. F.

    1975-01-01

    Service programs in NOAA that contemplate using the Geostationary Operational Environmental Satellite (GEOS) Data Collection System (DCS) are considered. The GEOS DCS will be operated by the National Environmental Satellite Service of NOAA as an integral part of the national operation environmental satellite program. This plan is concerned with that part of the GEOS program connected with collection and relay of data from remote locations. Service programs include: (1) hydrological data collection; (2) oceanographic data collection; (3) marine observations from data buoys; (4) Tsunami warning service; and (5) meteorological service.

  16. The NOAA Big Data Project: NEXRAD on the Cloud

    NASA Astrophysics Data System (ADS)

    Sundwall, Jed; Bouffler, Brendan

    2016-04-01

    Last year, the US National Oceanic and Atmospheric Administration (NOAA) made headlines when it entered into a research agreement with Amazon Web Services (AWS) to explore sustainable models to increase the output of open NOAA data. Publicly available NOAA data drives multi-billion dollar industries and critical research efforts. Under this new agreement, AWS and its Data Alliance collaborators are looking at ways to push more NOAA data to the cloud and build an ecosystem of innovation around it. In this presentation, we will provide a brief overview of the NOAA Big Data Project and the AWS Data Alliance, then dive into a specific example of data that has been made available (high resolution Doppler radar from the NEXRAD system) and early use cases.

  17. The NOAA Big Data Project: NEXRAD on the Cloud

    NASA Astrophysics Data System (ADS)

    Gold, A.; Weber, J.

    2015-12-01

    This past April, the US National Oceanic and Atmospheric Administration (NOAA) made headlines when it entered into a research agreement with Amazon Web Services (AWS) to explore sustainable models to increase the output of open NOAA data. Publicly available NOAA data drives multi-billion dollar industries and critical research efforts. Under this new agreement, AWS and its Data Alliance collaborators are looking at ways to push more NOAA data to the cloud and build an ecosystem of innovation around it. In this presentation, we will provide a brief overview of the NOAA Big Data Project and the AWS Data Alliance, then dive into a specific example of data that has been made available (high resolution Doppler radar from the NEXRAD system) and early use cases.

  18. NOAA backscatter studies

    NASA Technical Reports Server (NTRS)

    Post, Madison J.

    1991-01-01

    In the past year, NOAA has measured and analyzed another year's worth of backscatter over Boulder, CO. The average profile was computed from 80 satellite observations of backscatter spread throughout the year, using NOAA's CO2 coherent lidar operating at a wavelength of 10.59 microns. The seasonal averages show a familiar trend (highest backscattering in spring, perhaps due to Asian dust or biomass burning, and lowest backscattering in fall). The 1990 average profile was not significantly different from the 1988 or 1989 profiles, except that it displays a slight increase in the upper troposphere, perhaps due to the Redoubt Volcano. The NOAA's backscatter processing program (BETA) was refined to enable the calculation of gaseous absorption effects based on rawinsonde measurements, as well as using atmospheric models. NOAA participated in two intercomparisons of aerosol measuring instruments near Boulder, called FRLAB (Front Range Lidar, Aircraft, and Balloon Experiment). Considerable effort was also put into developing a multiagency science proposal to NASA headquarters to work with both JPL and NASA-Marshall to produce an airborne Doppler lidar facility for the DC-8.

  19. Traditional Knowledge Strengthens NOAA's Environmental Education

    NASA Astrophysics Data System (ADS)

    Stovall, W. K.; McBride, M. A.; Lewinski, S.; Bennett, S.

    2010-12-01

    Environmental education efforts are increasingly recognizing the value of traditional knowledge, or indigenous science, as a basis to teach the importance of stewardship. The National Oceanic and Atmospheric Administration (NOAA) Pacific Services Center incorporates Polynesian indigenous science into formal and informal education components of its environmental literacy program. By presenting indigenous science side by side with NOAA science, it becomes clear that the scientific results are the same, although the methods may differ. The platforms for these tools span a vast spectrum, utilizing media from 3-D visualizations to storytelling and lecture. Navigating the Pacific Islands is a Second Life project in which users navigate a virtual Polynesian voyaging canoe between two islands, one featuring native Hawaiian practices and the other where users learn about NOAA research and ships. In partnership with the University of Hawai‘i Waikiki Aquarium, the Nana I Ke Kai (Look to the Sea) series focuses on connecting culture and science during cross-discipline, publicly held discussions between cultural practitioners and research scientists. The Indigenous Science Video Series is a multi-use, animated collection of short films that showcase the efforts of NOAA fisheries management and ship navigation in combination with the accompanying Polynesian perspectives. Formal education resources and lesson plans for grades 3-5 focusing on marine science have also been developed and incorporate indigenous science practices as examples of conservation success. By merging traditional knowledge and stewardship practices with NOAA science in educational tools and resources, NOAA's Pacific Services Center is helping to build and increase environmental literacy through the development of educational tools and resources that are applicable to place-based understanding and approaches.

  20. UNIT, ALASKA.

    ERIC Educational Resources Information Center

    Louisiana Arts and Science Center, Baton Rouge.

    THE UNIT DESCRIBED IN THIS BOOKLET DEALS WITH THE GEOGRAPHY OF ALASKA. THE UNIT IS PRESENTED IN OUTLINE FORM. THE FIRST SECTION DEALS PRINCIPALLY WITH THE PHYSICAL GEOGRAPHY OF ALASKA. DISCUSSED ARE (1) THE SIZE, (2) THE MAJOR LAND REGIONS, (3) THE MOUNTAINS, VOLCANOES, GLACIERS, AND RIVERS, (4) THE NATURAL RESOURCES, AND (5) THE CLIMATE. THE…

  1. NOAA-L satellite is lifted for mating

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Inside the B16-10 spacecraft processing hangar at Vandenberg Air Force Base, Calif., workers oversee the lifting and rotating of the National Oceanic and Atmospheric Administration (NOAA-L) satellite to allow for mating of the Apogee Kick Motor (AKM). NOAA-L is part of the Polar-Orbiting Operational Environmental Satellite (POES) program that provides atmospheric measurements of temperature, humidity, ozone and cloud images, tracking weather patterns that affect the global weather and climate. The launch of the NOAA-L satellite is scheduled no earlier than Sept. 12 aboard a Lockheed Martin Titan II rocket. NOAA-L satellite arrives at Vandenberg AFB

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Outside the B16-10 spacecraft processing hangar at Vandenberg Air Force Base, Calif., a crated National Oceanic and Atmospheric Administration (NOAA-L) satellite is lowered to the ground before being moved inside. NOAA-L is part of the Polar-Orbiting Operational Environmental Satellite (POES) program that provides atmospheric measurements of temperature, humidity, ozone and cloud images, tracking weather patterns that affect the global weather and climate. The launch of the NOAA-L satellite is scheduled no earlier than Sept. 12 aboard a Lockheed Martin Titan II rocket. NOAA-L satellite arrives at Vandenberg AFB

    NASA Technical Reports Server (NTRS)

    2000-01-01

    A crated National Oceanic and Atmospheric Administration (NOAA-L) satellite is moved inside the B16-10 spacecraft processing hangar at Vandenberg Air Force Base, Calif. NOAA-L is part of the Polar- Orbiting Operational Environmental Satellite (POES) program that provides atmospheric measurements of temperature, humidity, ozone and cloud images, tracking weather patterns that affect the global weather and climate. The launch of the NOAA-L satellite is scheduled no earlier than Sept. 12 aboard a Lockheed Martin Titan II rocket. NOAA-L satellite arrives at Vandenberg AFB

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Inside the B16-10 spacecraft processing hangar at Vandenberg Air Force Base, Calif., workers oversee the uncrating of the National Oceanic and Atmospheric Administration (NOAA-L) satellite. NOAA-L is part of the Polar-Orbiting Operational Environmental Satellite (POES) program that provides atmospheric measurements of temperature, humidity, ozone and cloud images, tracking weather patterns that affect the global weather and climate. The launch of the NOAA-L satellite is scheduled no earlier than Sept. 12 aboard a Lockheed Martin Titan II rocket. NOAA Seeks Guidance on Ocean Acidification Research

    NASA Astrophysics Data System (ADS)

    2007-03-01

    As the concentration of carbon dioxide in the atmosphere increases, the oceans become more acidic. The U.S. National Oceanic and Atmospheric Administration (NOAA) has already developed a 5-year interdisciplinary program on ocean acidification, which includes establishing coral reef monitoring stations, research on the physiological responses of various organisms to increasing ocean acidity, modeling of ocean acidification and its socioeconomic effect, and development of technology for measuring and monitoring carbon dioxide in the oceans.

  2. NOAA Research Vessel Explores Atlantic Ocean Seamounts

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    2014-10-01

    Mike Ford, a biological oceanographer with the National Oceanic and Atmospheric Administration (NOAA), sat rapt in front of a bank of high-definition monitors. They provided live video and data feeds from a tethered pair of instrument-laden remotely operated vehicles (ROVs) that were descending 4692 meters on their deepest dive ever. Their target: an unnamed and unexplored New England seamount discovered in the North Atlantic last year.

  3. Interoperable Data Access Services for NOAA IOOS

    NASA Astrophysics Data System (ADS)

    de La Beaujardiere, J.

    2008-12-01

    The Integrated Ocean Observing System (IOOS) is intended to enhance our ability to collect, deliver, and use ocean information. The goal is to support research and decision-making by providing data on our open oceans, coastal waters, and Great Lakes in the formats, rates, and scales required by scientists, managers, businesses, governments, and the public. The US National Oceanic and Atmospheric Administration (NOAA) is the lead agency for IOOS. NOAA's IOOS office supports the development of regional coastal observing capability and promotes data management efforts to increase data accessibility. Geospatial web services have been established at NOAA data providers including the National Data Buoy Center (NDBC), the Center for Operational Oceanographic Products and Services (CO-OPS), and CoastWatch, and at regional data provider sites. Services established include Open-source Project for a Network Data Access Protocol (OpenDAP), Open Geospatial Consortium (OGC) Sensor Observation Service (SOS), and OGC Web Coverage Service (WCS). These services provide integrated access to data holdings that have been aggregated at each center from multiple sources. We wish to collaborate with other groups to improve our service offerings to maximize interoperability and enhance cross-provider data integration, and to share common service components such as registries, catalogs, data conversion, and gateways. This paper will discuss the current status of NOAA's IOOS efforts and possible next steps.

  4. NOAA-L satellite arrives at Vandenberg AFB

    NASA Technical Reports Server (NTRS)

    2000-01-01

    A crated National Oceanic and Atmospheric Administration (NOAA-L) satellite arrives at Vandenberg Air Force Base, Calif. It is part of the Polar-Orbiting Operational Environmental Satellite (POES) program that provides atmospheric measurements of temperature, humidity, ozone and cloud images, tracking weather patterns that affect the global weather and climate. The launch of the NOAA-L satellite is scheduled no earlier than Sept. 12 aboard a Lockheed Martin Titan II rocket. 78 FR 55064 - Solicitation for Members of the NOAA Science Advisory Board (SAB) Gulf Coast Ecosystem...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-09

    ... National Oceanic and Atmospheric Administration Solicitation for Members of the NOAA Science Advisory Board (SAB) Gulf Coast Ecosystem Restoration Science Program Advisory Working Group (RSPAWG) AGENCY: National... Administration is publishing this notice to solicit nominations for the NOAA Science Advisory Board Gulf...

  5. 75 FR 13259 - NOAA Is Hosting a Series of Informational Webinars for Individuals and Organizations To Learn...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-19

    ... Individuals and Organizations To Learn About the Proposed NOAA Climate Service AGENCY: Office of Oceanic and... Oceanic and Atmospheric Administration (NOAA) announced their intent to establish a new NOAA Climate... our partners to respond to the growing demands for climate information from the public,...

  6. Merging Space Weather With NOAA's National Weather Service

    NASA Astrophysics Data System (ADS)

    Lanzerotti, Louis

    2004-07-01

    A major change in the reporting structure of the National Oceanic and Atmospheric Administration's Space Environment Center (SEC) is poised to occur later this year when Congress approves the fiscal year 2005 budget proposed by the Bush administration. The activities of the center, together with its proposed budget, will move from under NOAA's research budget and administration to that of the National Weather Service (NWS), which is also administered by NOAA. The weather service will receive augmented funding to accommodate the SEC as one of the service's National Centers for Environmental Prediction.

  7. REPETITIVE DIGITAL NOAA-AVHRR DATA FOR ALASKAN ENGINEERING AND SCIENTIFIC APPLICATIONS.

    USGS Publications Warehouse

    Christie, William M.; Pawlowski, Robert J.; Fleming, Michael D.

    1986-01-01

    Selected digitally enhanced NOAA - Advanced Very High Resolution Radiometer (AVHRR) images taken by the NOAA 6, 7, 8 and 9 Polar Orbiting Satellites demonstrate the capability and application of repetitive low-resolution satellite data to Alaska's engineering and science community. Selected cloud-free visible and thermal infrared images are enhanced to depict distinct oceanographic and geologic processes along Alaska's west coast and adjacent seas. Included are the advance of the Bering Sea ice field, transport of Yukon River sediment into Norton Sound, and monitoring of plume trajectories from the Mount Augustine volcanic eruptions. Presented illustrations are representative of the 94 scenes in a cooperative USGS EROS/NOAA Alaskan AVHRR Digital Archive. This paper will discuss the cooperative efforts in establishing the first year data set and identifying Alaskan applications.

  8. Towards NOAA Forecasts of Permafrost Active Layer Thickness

    NASA Astrophysics Data System (ADS)

    Livezey, M. M.; Jonassen, R. G.; Horsfall, F. M. C.; Jafarov, E. E.; Schaefer, K. M.

    2014-12-01

    NOAA's implementation of its 2014 Arctic Action Plan (AAP) lacks services related to permafrost change yet the Interagency Working Group on Coordination of Domestic Energy Development and Permitting in Alaska noted that warming permafrost challenges land-based development and calls for agencies to provide focused information needed by decision-makers. To address this we propose to link NOAA's existing seasonal forecasts of temperature and precipitation with a high-resolution model of the thermal state of permafrost (Jafarov et al., 2012) to provide near-term (one year ahead) forecasts of active layer thickness (ALT). Such forecasts would be an official NOAA statement of the expected thermal state of permafrost ALT in Alaska and would require: (1) long-term climate outlooks, (2) a permafrost model, (3) detailed specification of local spatial and vertical controls upon soil thermal state, (4) high-resolution vertical measurements of that thermal state, and (5) demonstration of forecast skill in pilot studies. Pilot efforts should focus on oil pipelines where the cost can be justified. With skillful forecasts, engineers could reduce costs of monitoring and repair as well as ecosystem damage by positioning equipment to more rapidly respond to predicted disruptions.

  9. Tsunami.gov: NOAA's Tsunami Information Portal

    NASA Astrophysics Data System (ADS)

    Shiro, B.; Carrick, J.; Hellman, S. B.; Bernard, M.; Dildine, W. P.

    2014-12-01

    We present the new Tsunami.gov website, which delivers a single authoritative source of tsunami information for the public and emergency management communities. The site efficiently merges information from NOAA's Tsunami Warning Centers (TWC's) by way of a comprehensive XML feed called Tsunami Event XML (TEX). The resulting unified view allows users to quickly see the latest tsunami alert status in geographic context without having to understand complex TWC areas of responsibility. The new site provides for the creation of a wide range of products beyond the traditional ASCII-based tsunami messages. The publication of modern formats such as Common Alerting Protocol (CAP) can drive geographically aware emergency alert systems like FEMA's Integrated Public Alert and Warning System (IPAWS). Supported are other popular information delivery systems, including email, text messaging, and social media updates. The Tsunami.gov portal allows NOAA staff to easily edit content and provides the facility for users to customize their viewing experience. In addition to access by the public, emergency managers and government officials may be offered the capability to log into the portal for special access rights to decision-making and administrative resources relevant to their respective tsunami warning systems. The site follows modern HTML5 responsive design practices for optimized use on mobile as well as non-mobile platforms. It meets all federal security and accessibility standards. Moving forward, we hope to expand Tsunami.gov to encompass tsunami-related content currently offered on separate websites, including the NOAA Tsunami Website, National Tsunami Hazard Mitigation Program, NOAA Center for Tsunami Research, National Geophysical Data Center's Tsunami Database, and National Data Buoy Center's DART Program. This project is part of the larger Tsunami Information Technology Modernization Project, which is consolidating the software architectures of NOAA's existing TWC's into

  10. Envisioning Improvements in NOAA Environmental Data Management

    NASA Astrophysics Data System (ADS)

    de la Beaujardiere, J.

    2012-12-01

    The US National Oceanic and Atmospheric Administration (NOAA) produces and maintains a huge, heterogeneous and continuously updated collection of environmental data from a diverse suite of observing systems including satellites, radars, aircraft, ships, in situ sensors, and animal tagging. These data are an irreplaceable national resource and must be discoverable, accessible, well-documented, and preserved for future users. Figure 1 illustrates the concept of operations for the desired target architecture. In this paper we describe current work toward these goals. The NOAA Environmental Data Management (EDM) Committee and other collaborators in the agency are developing an EDM Framework that includes over-arching Principles, Governance, Resources, Standards, Architecture, Assessment, and Infrastructure which apply broadly to many classes of data, and individual Data Lifecycles for particular data collections. See Figure 2. This Framework will inform, organize and support NOAA data management activities. NOAA Procedural Directives regarding archiving, data management planning, metadata, and data sharing by grantees are now being implemented; new Directives regarding data access and data citation are being developed. We have begun initial assessments of how data from our primary observing systems are managed. A Dashboard to measure and encourage progress in these areas is being prototyped. We have established an EDM Wiki to share best practices. Finally, participation in standards bodies and collaboration with other agencies and organizations is helping us to maximize compatibility and leverage existing work.Figure 1: Conceptual overview of the desired target state of NOAA data management activities. Not all activities are illustrated. Figure 2: High-level overview of the conceptual framework for environmental data management activities.

  11. NASA-FAA-NOAA Partnering Strategy

    NASA Technical Reports Server (NTRS)

    Colantonio, Ron

    2003-01-01

    This viewgraph presentation provides an overview of NASA-FAA (Federal Aviation Administration) and NOAA (National Oceanic and Atmospheric Administration) collaboration efforts particularly in the area of aviation and aircraft safety. Five technology areas are being jointly by these agencies: (1) aviation weather information; (2) weather products; (3) automet technologies; (4) forward looking weather sensors and (5) turbulence controls and mitigation systems. Memorandum of Agreements (MOU) between these agencies are reviewed. A general review of the pros and pitfalls of inter-agency collaborations is also presented.

  12. NOAA Plans for Improving Public Access to Science Research (Invited)

    NASA Astrophysics Data System (ADS)

    de la Beaujardiere, J.

    2013-12-01

    The White House Office of Science and Technology Policy (OSTP) issued a memorandum on 2013 February 22 calling for federal agencies to enhance public access to research results (PARR), and required agencies to submit, within 6 months of the memo, draft plans explaining how they would implement the requirements. For the National Oceanic and Atmospheric Administration (NOAA), research results include digital data about the Earth's environment and publications based on those data. Regarding environmental data, NOAA is already very active in ensuring and improving public access. Indeed, National Weather Service (NWS) data was highlighted as one of the good examples in the OSTP memo. More generally, the NOAA National Data Centers, the Environmental Data Management Committee (EDMC), and scientific and technical personnel across the agency are striving to ensure NOAA data are discoverable and accessible on-line, well-documented and formatted for usability, and preserved for future generations as a national asset. This presentation will describe current and potential activities in support of public access to NOAA and NOAA-funded environmental data. Regarding publications, there is greater uncertainty. The fundamental issue is how to ensure no-cost access (after an embargo period) to publications that typically require subscriptions. That issue must be addressed at the interagency level with the journal publishers. The plan indicates that NOAA will adopt shared mechanisms and agreements to the extent possible rather than building new systems. Some elements remain under discussion; this presentation will be limited to those aspects on which there is general agreement.

  13. Data management in NOAA

    NASA Technical Reports Server (NTRS)

    Callicott, William M.

    1993-01-01

    The NOAA archives contain 150 terabytes of data in digital form, most of which are the high volume GOES satellite image data. There are 630 data bases containing 2,350 environmental variables. There are 375 million film records and 90 million paper records in addition to the digital data base. The current data accession rate is 10 percent per year and the number of users are increasing at a 10 percent annual rate. NOAA publishes 5,000 publications and distributes over one million copies to almost 41,000 paying customers. Each year, over six million records are key entered from manuscript documents and about 13,000 computer tapes and 40,000 satellite hardcopy images are entered into the archive. Early digital data were stored on punched cards and open reel computer tapes. In the late seventies, an advanced helical scan technology (AMPEX TBM) was implemented. Now, punched cards have disappeared, the TBM system was abandoned, most data stored on open reel tapes have been migrated to 3480 cartridges, many specialized data sets were distributed on CD ROM's, special archives are being copied to 12 inch optical WORM disks, 5 1/4 inch magneto-optical disks were employed for workstation applications, and 8 mm EXABYTE tapes are planned for major data collection programs. The rapid expansion of new data sets, some of which constitute large volumes of data, coupled with the need for vastly improved access mechanisms, portability, and improved longevity are factors which will influence NOAA's future systems approaches for data management.

  14. NOAA tsunami water level archive - scientific perspectives and discoveries

    NASA Astrophysics Data System (ADS)

    Mungov, G.; Eble, M. C.; McLean, S. J.

    2013-12-01

    The National Oceanic and Atmospheric Administration (NOAA) National Geophysical Data Center (NGDC) and co-located World Data Service for Geophysics (WDS) provides long-term archive, data management, and access to national and global tsunami data. Currently, NGDC archives and processes high-resolution data recorded by the Deep-ocean Assessment and Reporting of Tsunami (DART) network, the coastal-tide-gauge network from the National Ocean Service (NOS) as well as tide-gauge data recorded by all gauges in the two National Weather Service (NWS) Tsunami Warning Centers' (TWCs) regional networks. The challenge in processing these data is that the observations from the deep-ocean, Pacific Islands, Alaska region, and United States West and East Coasts display commonalities, but, at the same time, differ significantly, especially when extreme events are considered. The focus of this work is on how time integration of raw observations (10-seconds to 1-minute) could mask extreme water levels. Analysis of the statistical and spectral characteristics obtained from records with different time step of integration will be presented. Results show the need to precisely calibrate the despiking procedure against raw data due to the significant differences in the variability of deep-ocean and coastal tide-gauge observations. It is shown that special attention should be drawn to the very strong water level declines associated with the passage of the North Atlantic cyclones. Strong changes for the deep ocean and for the West Coast have implications for data quality but these same features are typical for the East Coast regime.

  15. NOAA starts oceanographpy publication

    NASA Astrophysics Data System (ADS)

    A new NOAA publication entitled Oceanographic Monthly Summary began in January. The publication, edited by Steve Auer, replaced two other NOAA periodicals, Gulfstream and Fishing Information, and it will attempt to disseminate the monthly oceanographic information in a more timely and efficient manner than did the other two publications.Oceanographic Monthly Summary contains 15 sea surface temperature (SST) analyses, 3 oceanographic thermal feature analyses, and a Bering Sea/North Slope ice analysis. The SST analyses include monthly means, anomalies, and yearly changes for the Atlantic and Pacific oceans and the Gulf of Mexico in both 2 and 1 degrees latitude/longitude scales. The ocean feature analyses show and describe the monthly activity of the Gulf Stream system and its associated eddies for the northwest Atlantic and Gulf of Mexico as well as other observed thermal features for the western U.S. coast. The Bering Sea/North Slope ice analysis describes sea ice age, thickness, and coverage for the region.The National Weather Service and the National Earth Satellite Service jointly sponsor the publication.

  1. Data management in NOAA

    NASA Technical Reports Server (NTRS)

    Callicott, William M.

    1992-01-01

    NOAA has 11 terabytes of digital data stored on 240,000 computer tapes. There are an additional 100 terabytes (TB) of geostationary satellite data stored in digital form on specially configured SONY U-Matic video tapes at the University of Wisconsin. There are over 90,000,000 non-digital form records in manuscript, film, printed, and chart form which are not easily accessible. The three NOAA Data Centers service 6,000 requests per year and publish 5,000 bulletins which are distributed to 40,000 subscribers. Seventeen CD-ROM's have been produced. Thirty thousand computer tapes containing polar satellite data are being copied to 12 inch WORM optical disks for research applications. The present annual data accumulation rate of 10 TB will grow to 30 TB in 1994 and to 100 TB by the year 2000. The present storage and distribution technologies with their attendant support systems will be overwhelmed by these increases if not improved. Increased user sophistication coupled with more precise measurement technologies will demand better quality control mechanisms, especially for those data maintained in an indefinite archive. There is optimism that the future will offer improved media technologies to accommodate the volumes of data. With the advanced technologies, storage and performance monitoring tools will be pivotal to the successful long-term management of data and information.

  2. NOAA's Improved Fire and Smoke Analysis, A Global Disaster Information Network Initiative

    NASA Astrophysics Data System (ADS)

    Stephens, G.; McNamara, D. P.; Fennimore, R.; Ramsay, B. H.; Ruminski, M.; Ruminski, M.

    2001-05-01

    The National Environmental Satellite, Data, and Information Service (NESDIS) of The National Oceanic and Atmospheric Administration (NOAA) produces a smoke and fire monitoring product based on environmental satellite data. In response to an initiative by NOAA's Global Disaster Information Network (GDIN), NESDIS is in the process of enhancing this product to better serve the needs of its customers. Environmental satellitescan detect and monitor hot spots and smoke associated with wildfires. Infrared and visible band sensors on NESDIS' Geostationary Operational Environmental Satellites (GOES)and Polar Orbiting Operational Environmental Satellites (POES) can delineate hot spots and smoke, respectively, resulting from fire activity. In response to requirements of the Fire Weather Program of the National Weather Service (NWS), NESDIS currently twice per day produces a product delineating hot spots and smoke for selected limited geographic areas of the Continental United States (CONUS). GOES and POES imagery is analyzed on an image display system, and a graphical depiction of smoke and hot spot areas is drawn by the analyst. The product is disseminated as imagery via the Internet, and is utilized by Incident Meteorologists, SPC personnel, and U.S. Forest Service fire managers. In response to formally expressed requirements of the NWS, and informal requests from many other users, including federal, state, and local fire management agencies, for a more frequent, spatially accurate product covering all of CONUS and Alaska, GDIN has initiated a program to enhance NOAA's smoke and fire products. The Satellite Services Division (SSD) of NESDIS' Office of Satellite Data Processing and Distribution is developing the Hazard Mapping System (HMS) based on these requirements. It will use data from GOES, POES, and the Defense Meteorological Satellite Program's (DMSP) On Line Scanner, which can detect hot spots at night. Automated hot spot and smoke detections will be provided by the

  3. Viewpoints: Reflections on the Principalship in Alaska.

    ERIC Educational Resources Information Center

    Hagstrom, David A., Ed.

    In this collection, 32 Alaskan principals, retired principals, assistant principals, and principals-to-be share their experiences as administrators and reflect on their feelings about the nature of the work and about schooling issues in Alaska. Nine of the writings were selected from "Totem Tales," the newsletter of Alaska's Association of…

  4. Status report and FY95 plans -- Re-evaluation of NOAA Dobson spectrophotometer total ozone data. 1994 annual report

    SciTech Connect

    1994-12-31

    The goal of this project was to re-evaluate NOAA/CMDL Dobson spectrophotometer total ozone data during FY94 from the stations Haute Provence, France; Lauder, New Zealand; Perth, Australia; and Poker Flat, Alaska and the Umkehr data from Boulder, Colorado and Mauna Loa, Hawaii. During the second year the authors planned to re-evaluate total ozone data from Byrd, Hallett and South Pole, Antarctica; Fairbanks, Alaska; Puerto Montt, Chile; Huancayo, Peru and Umkehr data from Huancayo.

  5. 75 FR 5945 - Proposed Information Collection; Comment Request; Alaska Cooperatives in the Bering Sea and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-05

    ... Alaska Community Development Quota (CDQ) groups, and western Alaska subsistence salmon user groups is... National Oceanic and Atmospheric Administration Proposed Information Collection; Comment Request; Alaska... ownership standards that had been exploited under the Anti-reflagging Act, to provide Alaska's BSAI...

  6. 77 FR 7228 - Alaska Disaster #AK-00023

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-10

    ... ADMINISTRATION Alaska Disaster AK-00023 AGENCY: U.S. Small Business Administration. ACTION: Notice. SUMMARY: This... applications to: U.S. Small Business Administration, Processing and Disbursement Center, 14925 Kingsport Road.... Small Business Administration, 409 3rd Street SW., Suite 6050, Washington, DC 20416....

  7. NOAA's National Snow Analyses

    NASA Astrophysics Data System (ADS)

    Carroll, T. R.; Cline, D. W.; Olheiser, C. M.; Rost, A. A.; Nilsson, A. O.; Fall, G. M.; Li, L.; Bovitz, C. T.

    2005-12-01

    NOAA's National Operational Hydrologic Remote Sensing Center (NOHRSC) routinely ingests all of the electronically available, real-time, ground-based, snow data; airborne snow water equivalent data; satellite areal extent of snow cover information; and numerical weather prediction (NWP) model forcings for the coterminous U.S. The NWP model forcings are physically downscaled from their native 13 km2 spatial resolution to a 1 km2 resolution for the CONUS. The downscaled NWP forcings drive an energy-and-mass-balance snow accumulation and ablation model at a 1 km2 spatial resolution and at a 1 hour temporal resolution for the country. The ground-based, airborne, and satellite snow observations are assimilated into the snow model's simulated state variables using a Newtonian nudging technique. The principle advantages of the assimilation technique are: (1) approximate balance is maintained in the snow model, (2) physical processes are easily accommodated in the model, and (3) asynoptic data are incorporated at the appropriate times. The snow model is reinitialized with the assimilated snow observations to generate a variety of snow products that combine to form NOAA's NOHRSC National Snow Analyses (NSA). The NOHRSC NSA incorporate all of the available information necessary and available to produce a "best estimate" of real-time snow cover conditions at 1 km2 spatial resolution and 1 hour temporal resolution for the country. The NOHRSC NSA consist of a variety of daily, operational, products that characterize real-time snowpack conditions including: snow water equivalent, snow depth, surface and internal snowpack temperatures, surface and blowing snow sublimation, and snowmelt for the CONUS. The products are generated and distributed in a variety of formats including: interactive maps, time-series, alphanumeric products (e.g., mean areal snow water equivalent on a hydrologic basin-by-basin basis), text and map discussions, map animations, and quantitative gridded products

  8. Coordinating activities between NOAA and other agencies.

    PubMed

    Fritz, A T; Buchman, M F

    1997-11-01

    The Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) and the National Oil and Hazardous Substances Pollution Contingency Plan (NCP) mandate protection of public health, welfare, and the environment at Superfund hazardous waste sites. The NCP requires lead response agenciesto integrate baseline risk assessments into the remedial process that "assess threats to the environment." EPA policy statements direct regional offices to perform thorough, consistent ecological risk assessments, and stress the importance of coordination and technical consultation with the natural resource trustees. As a Federal natural trustee, the National Oceanic and Atmospheric Administration's (NOAA) role and responsibilities within the CERCLA process also are defined and mandated by Federal law. NOAA is responsible for identifying sites in the coastal zone that may affect natural resources, evaluating injury to trust resources, and providing technical advice on assessments and remedial and restoration alternatives. Statutes require lead cleanup agencies and trustee agencies to notify and coordinate with each other during CERCLA response. Over the past ten years, NOAA has gained valuable experience and technical expertise in environmental assessments and in evaluating contaminated aquatic environments. NOAA fulfills its responsibilities through an effective network of Coastal Resource Coordinators (CRCs) who can rapidly respond to local technical requirements and priorities, and coordinate effectively with technical and trustee representatives. In addition to CRCs, an interdisciplinary support group provides technical expertise in the scientific disciplines required to respond to the needs of regional activities. NOAA provides CRCs to coastal EPA regional offices for technical support, and to act as liaisons with Federal and state natural resource trustee agencies. The CRCs help EPA and other lead response agencies identify and assess risks to coastal resources

  9. In Congress Budget Update for NOAA, USGS

    NASA Astrophysics Data System (ADS)

    Richman, Barbara T.

    Among the agenda items facing Congress as it reconvenes this week are the fiscal 1984 budgets for the National Oceanic and Atmospheric Administration (NOAA), which is part of the Department of Commerce, and for the U.S. Geological Survey (USGS), which is within the Department of the Interior. Fiscal year 1984 begins October 1, 1983. As Congress rolls up its shirtsleeves and gets down to business, Eos presents a status report on the two agency budgets.Both House and Senate appropriations committees have finished their work on the NOAA budget, which had been targeted by President Ronald Reagan for a $799.8 million appropriation request (program level of $843.2 million) in his proposed fiscal 1984 budget (Eos, February 15, 1983, p. 65). The House appropriation for NOAA (H.R. 3134 and H.R. 3222) is $998.5 million, with a program level of $1043.9 million. The Senate Appropriations Committee set its appropriation (S. 1721) at $987.8 million, with a program level of $1041.0 million.

  10. 77 FR 19145 - Fisheries of the Exclusive Economic Zone Off Alaska; Pollock in the West Yakutat District in the...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-30

    ... (77 FR 16481, March 21, 2012). As of March 20, 2012, NMFS has determined that approximately 950 metric... Economic Zone Off Alaska; Pollock in the West Yakutat District in the Gulf of Alaska AGENCY: National... comment'' icon, then enter NOAA-NMFS-2012-0069 in the keyword search. Locate the document you wish...

  11. 77 FR 9588 - Fisheries of the Exclusive Economic Zone Off Alaska; Pollock in Statistical Area 630 in the Gulf...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-17

    ...) on January 23, 2012 (77 FR 3638, January 25, 2012). As of February 10, 2012, NMFS has determined that... Economic Zone Off Alaska; Pollock in Statistical Area 630 in the Gulf of Alaska AGENCY: National Marine..., then enter NOAA-NMFS-2012- 0023 in the keyword search. Locate the document you wish to comment on...

  12. 77 FR 64917 - Fisheries of the Exclusive Economic Zone Off Alaska; Pollock in Statistical Area 610 in the Gulf...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-24

    ... (77 FR 64240, October 19, 2012). As of October 17, 2012, NMFS has determined that approximately 1,500... Economic Zone Off Alaska; Pollock in Statistical Area 610 in the Gulf of Alaska AGENCY: National Marine... NOAA-NMFS-2012-0204 in the keyword search. Locate the document you wish to comment on from...

  13. 75 FR 10755 - Proposed Information Collection; Comment Request; 2010 NOAA Engagement Survey Tool

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-09

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF COMMERCE... Engagement Survey Tool AGENCY: National Oceanic and Atmospheric Administration (NOAA), DOC. ACTION: Notice... instrument and instructions should be directed to Louisa Koch, Director, NOAA Office of Education, (202)...

  14. 75 FR 25843 - Notice of Public Review and Comment Period on NOAA's Arctic Vision and Strategy

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-10

    .... SUPPLEMENTARY INFORMATION: To view the document, go to http://www.arctic.noaa.gov/ . I. Summary of the Strategy... NOAA's Arctic Vision and Strategy AGENCY: National Oceanic and Atmospheric Administration. ACTION... Highway, Room 15749, Silver Spring, Maryland 20910 FOR FURTHER INFORMATION CONTACT: Tracy Rouleau,...

  15. 75 FR 63439 - Proposed Information Collection; Comment Request; NOAA Teacher at Sea Alumni Survey

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-15

    ... Teacher at Sea Alumni Survey AGENCY: National Oceanic and Atmospheric Administration (NOAA), Commerce... Teacher at Sea Program. Through this program, educators spend up to three weeks at sea on a NOAA research... order to better serve the participants, the Teacher at Sea Program will survey the teacher...

  16. 77 FR 65674 - Solicitation for Members of the NOAA Science Advisory Board

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-30

    ... Research, Commerce. ACTION: Notice of solicitation for members of the NOAA Science Advisory Board. SUMMARY... Oceans and Atmosphere and NOAA Administrator on long- and short-range strategies for research, education... appointed as special government employees (SGEs) and will be subject to the ethical standards applicable...

  17. Status of the NOAA/CU trans-Pacific profiler network

    NASA Astrophysics Data System (ADS)

    Gage, K. S.; Ecklund, W. L.; Carter, D. A.; McAfee, J. R.; Balsley, B. B.; Riddle, A. C.; Johnston, P. E.; Avery, S. K.; Cole, H.; Woodman, R. F.

    1993-08-01

    The NOAA/CU Network of VHF wind profilers was an outgrowth of MST/ST radar research in NOAA's Aeronomy Laboratory, most notably the Poker Flat MST radar. After the completion of the Poker Flat Project in Alaska elements of the Poker flat system were used at several locations including Pohnpei, Federated States of Micronesia and Piura, Peru to begin construction of a tropical ST radar network. Construction of the network began in 1988 with the support of the U.S. National Science Foundation. The network was designed to provide unique observations of equatorial waves over the pacific ocean as well as observations of convective systems in the tropics.

  18. NOAA's Education Program: Review and Critique

    ERIC Educational Resources Information Center

    Farrington, John W., Ed.; Feder, Michael A., Ed.

    2010-01-01

    There is a national need to educate the public about the ocean, coastal resources, atmosphere and climate. The National Oceanic and Atmospheric Administration (NOAA), the agency responsible for understanding and predicting changes in the Earth's environment and conserving and managing coastal and marine resources to meet the nation's…

  19. 78 FR 16254 - (NOAA) Science Advisory Board (SAB)

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-14

    ... National Oceanic and Atmospheric Administration (NOAA) Science Advisory Board (SAB) AGENCY: Office of... of Commerce (DOC). ACTION: Notice of open meeting. SUMMARY: The Science Advisory Board (SAB) was..., education, and application of science to operations and information services. SAB activities and...

  20. 76 FR 35936 - Alaska Disaster #AK-00020

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-20

    ... From the Federal Register Online via the Government Publishing Office U.S. SMALL BUSINESS ADMINISTRATION Alaska Disaster AK-00020 AGENCY: U.S. Small Business Administration. ACTION: Notice. SUMMARY: This... completed loan applications to: U.S. Small Business Administration, Processing and Disbursement...

  1. 78 FR 39821 - Alaska Disaster #AK-00029

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-02

    ... From the Federal Register Online via the Government Publishing Office ] SMALL BUSINESS ADMINISTRATION Alaska Disaster AK-00029 AGENCY: U.S. Small Business Administration. ACTION: Notice. SUMMARY: This... applications to: U.S. Small Business Administration, Processing and Disbursement Center, 14925 Kingsport...

  2. Open Source Seismic Software in NOAA's Next Generation Tsunami Warning System

    NASA Astrophysics Data System (ADS)

    Hellman, S. B.; Baker, B. I.; Hagerty, M. T.; Leifer, J. M.; Lisowski, S.; Thies, D. A.; Donnelly, B. K.; Griffith, F. P.

    2014-12-01

    The Tsunami Information technology Modernization (TIM) is a project spearheaded by National Oceanic and Atmospheric Administration to update the United States' Tsunami Warning System software currently employed at the Pacific Tsunami Warning Center (Eva Beach, Hawaii) and the National Tsunami Warning Center (Palmer, Alaska). This entirely open source software project will integrate various seismic processing utilities with the National Weather Service Weather Forecast Office's core software, AWIPS2. For the real-time and near real-time seismic processing aspect of this project, NOAA has elected to integrate the open source portions of GFZ's SeisComP 3 (SC3) processing system into AWIPS2. To provide for better tsunami threat assessments we are developing open source tools for magnitude estimations (e.g., moment magnitude, energy magnitude, surface wave magnitude), detection of slow earthquakes with the Theta discriminant, moment tensor inversions (e.g. W-phase and teleseismic body waves), finite fault inversions, and array processing. With our reliance on common data formats such as QuakeML and seismic community standard messaging systems, all new facilities introduced into AWIPS2 and SC3 will be available as stand-alone tools or could be easily integrated into other real time seismic monitoring systems such as Earthworm, Antelope, etc. Additionally, we have developed a template based design paradigm so that the developer or scientist can efficiently create upgrades, replacements, and/or new metrics to the seismic data processing with only a cursory knowledge of the underlying SC3.

  3. NOAA Looks for Advice to Make Its Data Easier to Use

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    2014-03-01

    "There is no sector in American business that wouldn't like to have better environmental information," said Joseph Klimavicz, chief information officer for the National Oceanic and Atmospheric Administration (NOAA).

  4. Draft U.S. ocean policy plan precedes proposal to move NOAA to Interior department

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    2012-01-01

    The Obama administration's ambitious plan to protect oceans was released on 12 January, just 1 day prior to the administration's apparently unrelated announcement of a proposed governmental reorganization that would move the National Oceanic and Atmospheric Administration (NOAA) from the Department of Commerce to the Department of the Interior. The proposed NOAA move is part of a larger administration proposal to consolidate six federal agencies that are focused on business and trade into one department. The action is contingent upon congressional approval. The proposal to move NOAA to the Interior department has prompted a variety of reactions, with some considering it common sense to group agencies dealing with natural resources in the same department. Others have charged that the proposed move could blunt NOAA's leading role in protecting oceans, among other concerns.

  5. 75 FR 59686 - Proposed Information Collection; Comment Request; NOAA Space-Based Data Collection System (DCS...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-28

    ... National Oceanic and Atmospheric Administration Proposed Information Collection; Comment Request; NOAA Space- Based Data Collection System (DCS) Agreements AGENCY: National Oceanic and Atmospheric... space-based data collection systems (DCS), the Geostationary Operational Environmental Satellite...

  6. Geographic Information Network of Alaska: Real-Time Synoptic Satellite Data for Alaska and the High Arctic, Best Available DEMs, and Highest Available Resolution Imagery for Alaska

    NASA Astrophysics Data System (ADS)

    Heinrichs, T. A.; Sharpton, V. L.; Engle, K. E.; Ledlow, L. L.; Seman, L. E.

    2006-12-01

    In support of the International Polar Year, the Geographic Information Network of Alaska (GINA) intends to make available to researchers three important Arctic data sets. The first is near-real-time synoptic scale data from GINA and NOAA/NESDIS satellite ground stations. GINA operates ground stations that receive direct readout from the AVHRR (1.1-km per pixel resolution) and MODIS (250- to 1000-meter) sensors carried on NOAA and NASA satellites. GINA works in partnership with NOAA/NESDIS's Fairbanks Command and Data Acquisition Station (FCDAS) to distribute real-time data captured by FCDAS facilities in Fairbanks and Barrow, Alaska. AVHRR and Feng Yun 1D (1.1-km) sensors are captured in Fairbanks by FCDAS and distributed by GINA. AVHRR data is captured by FCDAS in Barrow and distributed by GINA. Due to its high latitude, the station mask of the Barrow station extends well beyond the Pole, showing the status in real-time of Arctic basin cloud and sea ice conditions. Second, digital elevation models (DEM) for Alaska vary greatly in quality and availability. The best available DEMs for Alaska will be combined and served through a GINA gateway. Third, the best available imagery for more than three quarters of Alaska is 15-meter pan-sharpened Landsat data. Less than a quarter of the state is covered by 5-meter or better data. The best available imagery for Alaska will be combined and served through a GINA gateway. In accordance with the IPY Subcommittee on Data Policy and Management recommendations, all data will be made available via Open Geospatial Consortium protocols, including Web Mapping, Feature, and Coverage Services. Data will also be made available for download in georeferenced formats such as GeoTIFF, MrSID, or GRID. Metadata will be available though the National Spatial Data Infrastructure via Z39.50 GEO protocols and through evolving web-based metadata standards.

  7. Alaska Resource Data File, Noatak Quadrangle, Alaska

    USGS Publications Warehouse

    Grybeck, Donald J.; Dumoulin, Julie A.

    2006-01-01

    This report gives descriptions of the mineral occurrences in the Noatak 1:250,000-scale quadrangle, Alaska. The data presented here are maintained as part of a statewide database on mines, prospects and mineral occurrences throughout Alaska.

  8. 78 FR 55772 - Alaska Disaster Number AK-00028

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-11

    ... From the Federal Register Online via the Government Publishing Office ] SMALL BUSINESS ADMINISTRATION Alaska Disaster Number AK-00028 AGENCY: U.S. Small Business Administration. ACTION: Amendment 1... information in the original declaration remains unchanged. (Catalog of Federal Domestic Assistance...

  9. NOAA Budget Proposal Calls for a Small Increase, But Several Programs Would Be Sharply Cut

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    2014-04-01

    The White House's proposed budget of 5.497 billion for the National Oceanic and Atmospheric Administration (NOAA) for fiscal year (FY) 2015 would be good news for the agency overall if Congress goes along with the Obama administration's funding plan. The proposal would increase NOAA's discretionary budget by 174.1 million, 3.27% above the FY 2014 enacted budget (see Table ). The White House announced the overall federal budget on 4 March, and the NOAA budget "blue book" with specific funding numbers was issued in mid-March.

  10. 77 FR 39649 - Fisheries of the Exclusive Economic Zone Off Alaska; “Other Rockfish” in the Western Regulatory...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-05

    ... GOA (77 FR 15194, March 14, 2012). In accordance with Sec. 679.20(d)(2), the Administrator, Alaska... Economic Zone Off Alaska; ``Other Rockfish'' in the Western Regulatory Area of the Gulf of Alaska AGENCY... Western Regulatory Area of the Gulf of Alaska (GOA). This action is necessary because the 2012...

  11. 77 FR 20317 - Fisheries of the Exclusive Economic Zone Off Alaska; Pollock in Statistical Area 610 in the Gulf...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-04

    ... (77 FR 15194, March 14, 2012). In accordance with Sec. 679.20(a)(5)(iv)(B), the Administrator, Alaska... Economic Zone Off Alaska; Pollock in Statistical Area 610 in the Gulf of Alaska AGENCY: National Marine... in the Gulf of Alaska (GOA). This action is necessary to prevent exceeding the B season allowance...

  12. 77 FR 40816 - Fisheries of the Exclusive Economic Zone Off Alaska; Northern Rockfish in the Western Regulatory...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-11

    ... GOA (77 FR 15194, March 14, 2012). In accordance with Sec. 679.20(d)(1)(i), the Administrator, Alaska... Economic Zone Off Alaska; Northern Rockfish in the Western Regulatory Area of the Gulf of Alaska AGENCY... the Western Regulatory Area of the Gulf of Alaska (GOA). This action is necessary to prevent...

  13. 75 FR 52891 - Fisheries of the Exclusive Economic Zone Off Alaska; Pollock in Statistical Area 630 in the Gulf...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-30

    ... (75 FR 11749, March 12, 2010). In accordance with Sec. 679.20(a)(5)(iv)(B) the Administrator, Alaska... Economic Zone Off Alaska; Pollock in Statistical Area 630 in the Gulf of Alaska AGENCY: National Marine... in the Gulf of Alaska (GOA). This action is necessary to prevent exceeding the C season allowance...

  14. Earthquake locations determined by the Southern Alaska seismograph network for October 1971 through May 1989

    USGS Publications Warehouse

    Fogleman, Kent A.; Lahr, John C.; Stephens, Christopher D.; Page, Robert A.

    1993-01-01

    This report describes the instrumentation and evolution of the U.S. Geological Survey's regional seismograph network in southern Alaska, provides phase and hypocenter data for seismic events from October 1971 through May 1989, reviews the location methods used, and discusses the completeness of the catalog and the accuracy of the computed hypocenters. Included are arrival time data for explosions detonated under the Trans-Alaska Crustal Transect (TACT) in 1984 and 1985. The U.S. Geological Survey (USGS) operated a regional network of seismographs in southern Alaska from 1971 to the mid 1990s. The principal purpose of this network was to record seismic data to be used to precisely locate earthquakes in the seismic zones of southern Alaska, delineate seismically active faults, assess seismic risks, document potential premonitory earthquake phenomena, investigate current tectonic deformation, and study the structure and physical properties of the crust and upper mantle. A task fundamental to all of these goals was the routine cataloging of parameters for earthquakes located within and adjacent to the seismograph network. The initial network of 10 stations, 7 around Cook Inlet and 3 near Valdez, was installed in 1971. In subsequent summers additions or modifications to the network were made. By the fall of 1973, 26 stations extended from western Cook Inlet to eastern Prince William Sound, and 4 stations were located to the east between Cordova and Yakutat. A year later 20 additional stations were installed. Thirteen of these were placed along the eastern Gulf of Alaska with support from the National Oceanic and Atmospheric Administration (NOAA) under the Outer Continental Shelf Environmental Assessment Program to investigate the seismicity of the outer continental shelf, a region of interest for oil exploration. Since then the region covered by the network remained relatively fixed while efforts were made to make the stations more reliable through improved electronic

  15. Differences in visible and near-IR responses, and derived vegetation indices, for the NOAA-9 and NOAA-10 AVHRRs: a case study

    USGS Publications Warehouse

    Gallo, Kevin P.; Eidenshink, Jeffery C.

    1988-01-01

    This study evaluates the differences in the visible and near-IR responses of the Advanced Very High Resolution Radiometers (AVHRR) of the National Oceanic and Atmospheric Administration (NOAA)-9 and -10 satellites for coincident sample locations. The study also evaluates the differences in vegetation indices computed from those data. Data were acquired of the southeast portion of the United States for the 6 December 1986 daylight orbits of NOAA-9 and NOAA-10 satellites. The results suggest that, with appropriate gain and offset, the vegetation indices of the two sensor systems may be interchangeable for assessment of land surfaces.

  16. Mission description and in-flight operations of ERBE instruments on ERBS, NOAA 9, and NOAA 10 spacecraft

    NASA Technical Reports Server (NTRS)

    Weaver, William L.; Bush, Kathryn A.; Degnan, Keith T.; Howerton, Clayton E.; Tolson, Carol J.

    1992-01-01

    Instruments of the Earth Radiation Budget Experiment (ERBE) are operating on three different Earth-orbiting spacecraft. The Earth Radiation Budget Satellite (ERBS) is operated by NASA, and NOAA 9 and NOAA 10 weather satellites are operated by the National Oceanic and Atmospheric Administration (NOAA). This paper is the second in a series that describes the ERBE mission, and data processing and validation procedures. This paper describes the spacecraft and instrument operations for the second full year of in-orbit operations, which extend from February 1986 through January 1987. Validation and archival of radiation measurements made by ERBE instruments during this second year of operation were completed in July 1991. This period includes the only time, November 1986 through January 1987, during which all ERBE instruments aboard the ERBE, NOAA 9, and NOAA 10 spacecraft were simultaneously operational. This paper covers normal and special operations of the spacecraft and instruments, operational anomalies, and the responses of the instruments to in-orbit and seasonal variations in the solar environment.

  17. Routine Ocean Monitoring With Synthetic Aperture Radar Imagery Obtained From the Alaska Satellite Facility

    NASA Astrophysics Data System (ADS)

    Pichel, W. G.; Clemente-Colon, P.; Li, X.; Friedman, K.; Monaldo, F.; Thompson, D.; Wackerman, C.; Scott, C.; Jackson, C.; Beal, R.; McGuire, J.; Nicoll, J.

    2006-12-01

    The Alaska Satellite Facility (ASF) has been processing synthetic aperture radar (SAR) data for research and for near-real-time applications demonstrations since shortly after the launch of the European Space Agency's ERS-1 satellite in 1991. The long coastline of Alaska, the vast extent of ocean adjacent to Alaska, a scarcity of in-situ observations, and the persistence of cloud cover all contribute to the need for all-weather ocean observations in the Alaska region. Extensive experience with SAR product processing algorithms and SAR data analysis techniques, and a growing sophistication on the part of SAR data and product users have amply demonstrated the value of SAR instruments in providing this all-weather ocean observation capability. The National Oceanic and Atmospheric Administration (NOAA) has been conducting a near-real-time applications demonstration of SAR ocean and hydrologic products in Alaska since September 1999. This Alaska SAR Demonstration (AKDEMO) has shown the value of SAR-derived, high-resolution (sub kilometer) ocean surface winds to coastal weather forecasting and the understanding of coastal wind phenomena such as gap winds, barrier jets, vortex streets, and lee waves. Vessel positions and ice information derived from SAR imagery have been used for management of fisheries, protection of the fishing fleet, enforcement of fisheries regulations, and protection of endangered marine mammals. Other ocean measurements, with potentially valuable applications, include measurement of wave state (significant wave height, dominant wave direction and wavelength, and wave spectra), mapping of oil spills, and detection of shallow-water bathymetric features. In addition to the AKDEMO, ASF-processed SAR imagery is being used: (1) in the Gulf of Mexico for hurricane wind studies, and post-hurricane oil-spill and oil-platform analyses (the latter employing ship-detection algorithms for detection of changes in oil-platform locations); (2) in the North Pacific

  18. NOAA Ocean Exploration 2003: A Scientific Overview

    NASA Astrophysics Data System (ADS)

    Hammond, S. R.

    2003-12-01

    A little over three years ago, a panel of leading ocean scientists, explorers, and educators developed a national strategy for ocean exploration. Their report, "Discovering Earth's Final Frontier: A U.S. Strategy for Ocean Exploration," opened the door to a new way of thinking about ocean exploration and inspired the National Oceanic and Atmospheric Administration (NOAA) to embark on a mission to expand knowledge and appreciation of the ocean. This year, in collaboration with over 100 partners including university, international, federal, state and tribal science agencies, private research and outreach organizations, civic groups, aquariums and museums, NOAA engaged in major multidisciplinary expeditions and multiple projects around the world aimed at mapping the ocean in new ways, understanding ocean interactions, developing sensors and tools, and reaching out in new ways to stakeholders to communicate findings. Expeditions and projects undertaken this year continued to build on inaugural work in 2001 and 2002 and continue to set a precedent for high quality discovery-based ocean research and exploration. This presentation will focus on expedition highlights and future program directions.

  19. Lessons Learned from the Application of NOAA's "What to Archive

    NASA Astrophysics Data System (ADS)

    Ritchey, N.

    2012-04-01

    A procedure for addressing the complete lifecycle of data was defined by the National Oceanographic and Atmospheric Administration (NOAA) in August 2008. The "NOAA Procedure for Scientific Records Appraisal and Archive Approval" supports US government mandates and directives for records management from the National Archives and Records Administration (NARA) and other US government agencies. This NOAA-wide procedure provides a foundation to identify, appraise, and decide what scientific records are preserved and which are to be disposed and it establishes a formally documented process. The National Climatic Data Center (NCDC) in Asheville, North Carolina implemented the procedure within our organization and applied it to multiple, diverse data types. Initial applications confirm the procedure's flexibility allowing expeditious decisions for well-documented and established records, as well as supporting complex requests requiring engagement of external record experts. With each successive use, a pattern of activities contributing to the cost, complexity, challenges and management of the process is emerging. Lessons learned from the application of NOAA's "What to Archive" process at NCDC will be presented.

  20. NOAA Activities and Plans for New Operational Space Weather Platforms and Sensors

    NASA Astrophysics Data System (ADS)

    Biesecker, D. A.; Mulligan, P.; Cash, M. D.; Reinard, A.; Simpson, M.; Diedrich, B.; Socker, D. G.

    2013-12-01

    The National Oceanic and Atmospheric Administration (NOAA) is vigorously pursuing several space weather platforms that have been demonstrated as requiring replacement. In this time of limited budgets, this has led to the need for creative and innovative solutions. Just as importantly, NOAA is only 13 months away from the launch of its first L1 solar wind monitor, the DSCOVR mission. At the same time, a private company, L'Garde Inc. will be launching a solar sail mission with NOAA as a partner. Recognizing the importance of solar wind monitoring and the need for continuity, the planning process is already underway for the DSCOVR follow-on mission and scenarios for that include commercial data purchases and solar sails. Finally, NOAA planning for an operational coronagraph is moving forward, with continuing development of the Naval Research Laboratory's Compact Coronagraph (CCOR). We will provide details on the current NOAA plans for each of these missions.

  1. 78 FR 39822 - Alaska Disaster #AK-00028

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-02

    ... From the Federal Register Online via the Government Publishing Office SMALL BUSINESS ADMINISTRATION Alaska Disaster AK-00028 AGENCY: U.S. Small Business Administration. ACTION: Notice SUMMARY: This... Deadline Date: 03/25/2014. ADDRESSES: Submit completed loan applications to: U.S. Small...

  2. Creating a More Inclusive Talent Pool for the GeoSciences in NOAA Mission Fields:

    NASA Astrophysics Data System (ADS)

    Rousseau, J.; Trotman, A. A.

    2014-12-01

    The National Oceanic and Atmospheric Administration (NOAA) Educational Partnership Program (EPP) with Minority Serving Institutions (MSI) is recognized as a model federal Science, Technology, Engineering, and Mathematics, (STEM) education investment. The EPP has a premier goal of increasing the numbers of students, especially from underrepresented communities, who are trained and awarded degrees in NOAA mission-relevant STEM fields. This goal is being achieved through awards to support undergraduate and graduate level student scholarships and to enhance NOAA mission-relevant education, research and internships at EPP Cooperative Science Centers located at MSIs. The internships allow undergraduate students to gain technical experience in STEM fields while gaining an understanding of a science mission agency such as NOAA. EPP has built evidence supporting the value of internships with its Undergraduate Scholarship Program (USP). Program metrics are used to refine and improve the internship to ensure student success. Scholarships are competitively awarded and requires applicants to submit a personal statement detailing the NOAA-relevant professional experience the applicant seeks to acquire, and gauges the depth of understanding of the work of NOAA.A focus is the EPP USP Student Internship at NOAA, which has two training phases. The first occurs at NOAA HQ in Maryland and incorporates exposure to NOAA professional culture including mentoring and professional development for scholarship recipients. The second occurs at NOAA facilities in the 50 states and US Territories. The internship projects are conducted under the supervision of a NOAA mentor and allow the scholars to: acquire increased science and technology skills: be attached to a research group and participate in a research activity as part of the team; and, acquire practical experience and knowledge of the day-to-day work of the NOAA facility. EPP has recently initiated the Experiential Research and Training

  3. Frontiers. The Annual Report of the Alaska Commission on Postsecondary Education. Fiscal Year 1995.

    ERIC Educational Resources Information Center

    Barrans, Diane; Forrer, Eric

    This annual report describes activities and accomplishments during fiscal year 1995 of the Alaska Commission on Postsecondary Education (ACPE) which, among other activities, oversees the Alaska Student Loan Programs (ASLP). The report also reports on the ASLP's administration of a Loan Fund to provide lower-interest loans to Alaska residents. It…

  4. An Evaluation of the Alcoholism Rehabilitation Center Located at Fairbanks, Alaska.

    ERIC Educational Resources Information Center

    Grant, Claude W.; And Others

    At the request of the Alaska Bureau of Indian Affairs and the Alaska State Office of Alcoholism, the Alcoholism Rehabilitation Center at Fairbanks which serves Alaska Natives was evaluated in 1971. A three-member evaluation team evaluated the center's: (1) administrative structure and organization, (2) treatment program, and (3) relationship with…

  5. NOAA-L satellite is mated to Apogee Kick Motor at Vandenberg AFB

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Inside the B16-10 spacecraft processing hangar at Vandenberg Air Force Base, Calif., workers oversee the mating of the Apogee Kick Motor (below) to the National Oceanic and Atmospheric Administration (NOAA-L) satellite above. NOAA-L is part of the Polar-Orbiting Operational Environmental Satellite (POES) program that provides atmospheric measurements of temperature, humidity, ozone and cloud images, tracking weather patterns that affect the global weather and climate. The launch of the NOAA-L satellite is scheduled no earlier than Sept. 12 aboard a Lockheed Martin Titan II rocket. 77 FR 13683 - Alaska Federal Lands Long Range Transportation Plan

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-07

    ... Federal Highway Administration Alaska Federal Lands Long Range Transportation Plan AGENCY: Federal Highway..., announced the availability of the draft Alaska Federal Lands Long Range Transportation Plans (LRTP) for..., 2011, at 76 FR 77300, the FHWA published a notice in the Federal Register inviting comments to...

  6. 78 FR 21597 - Marine Mammals: Alaska Harbor Seal Habitats

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-11

    ... measures to protect glacially-associated harbor seal habitats in Alaska (78 FR 15669; March 12, 2013.... SUPPLEMENTARY INFORMATION: On March 12, 2013, NMFS published an ANPR in the Federal Register (78 FR 15669) to... National Oceanic and Atmospheric Administration RIN 0648-BB71 Marine Mammals: Alaska Harbor Seal...

  7. 26 CFR 1.1502-81T - Alaska Native Corporations.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... corporation that is affiliated with a Native Corporation through application of section 60(b)(5) of the Tax... 26 Internal Revenue 12 2010-04-01 2010-04-01 false Alaska Native Corporations. 1.1502-81T Section... TAX (CONTINUED) INCOME TAXES Administrative Provisions and Other Rules § 1.1502-81T Alaska...

  8. NOAA's Scientific Data Stewardship Program

    NASA Astrophysics Data System (ADS)

    Bates, J. J.

    2004-12-01

    The NOAA mission is to understand and predict changes in the Earth's environment and conserve and manage coastal and marine resources to meet the Nation's economic, social and environmental needs. NOAA has responsibility for long-term archiving of the United States environmental data and has recently integrated several data management functions into a concept called Scientific Data Stewardship. Scientific Data Stewardship a new paradigm in data management consisting of an integrated suite of functions to preserve and exploit the full scientific value of NOAA's, and the world's, environmental data These functions include careful monitoring of observing system performance for long-term applications, the generation of authoritative long-term climate records from multiple observing platforms, and the proper archival of and timely access to data and metadata. NOAA has developed a conceptual framework to implement the functions of scientific data stewardship. This framework has five objectives: 1) develop real-time monitoring of all satellite observing systems for climate applications, 2) process large volumes of satellite data extending up to decades in length to account for systematic errors and to eliminate artifacts in the raw data (referred to as fundamental climate data records, FCDRs), 3) generate retrieved geophysical parameters from the FCDRs (referred to as thematic climate data records TCDRs) including combining observations from all sources, 4) conduct monitoring and research by analyzing data sets to uncover climate trends and to provide evaluation and feedback for steps 2) and 3), and 5) provide archives of metadata, FCDRs, and TCDRs, and facilitate distribution of these data to the user community. The term `climate data record' and related terms, such as climate data set, have been used for some time, but the climate community has yet to settle on a concensus definition. A recent United States National Academy of Sciences report recommends using the

  9. Design and Flight Performance of NOAA-K Spacecraft Batteries

    NASA Technical Reports Server (NTRS)

    Rao, Gopalakrishna M.; Chetty, P. R. K.; Spitzer, Tom; Chilelli, P.

    1999-01-01

    The US National Oceanic and Atmospheric Administration (NOAA) operates the Polar Operational Environmental Satellite (POES) spacecraft (among others) to support weather forecasting, severe storm tracking, and meteorological research by the National Weather Service (NWS). The latest in the POES series of spacecraft, named as NOAA-KLMNN, is in orbit and four more are in various phases of development. The NOAA-K spacecraft was launched on May 13, 1998. Each of these spacecraft carry three Nickel-Cadmium batteries designed and manufactured by Lockheed Martin. The battery, which consists of seventeen 40 Ah cells manufactured by SAFT, provides the spacecraft power during the ascent phase, orbital eclipse and when the power demand is in excess of the solar array capability. The NOAA-K satellite is in a 98 degree inclination, 7:30AM ascending node orbit. In this orbit the satellite experiences earth occultation only 25% of the year. This paper provides a brief overview of the power subsystem, followed by the battery design and qualification, the cell life cycle test data, and the performance during launch and in orbit.

  10. Design and Flight Performance of NOAA-K Spacecraft Batteries

    NASA Technical Reports Server (NTRS)

    Rao, Gopalakrishna M.; Chetty, P. R. K.; Spitzer, Tom; Chilelli, P.

    1998-01-01

    The US National Oceanic and Atmospheric Administration (NOAA) operates the Polar Operational Environmental Satellite (POES) spacecraft (among others) to support weather forecasting, severe storm tracking, and meteorological research by the National Weather Service (NWS). The latest in the POES series of spacecraft, named as NOAA-KLMNN', one is in orbit and four more are in various phases of development. The NOAA-K spacecraft was launched on May 13, 1998. Each of these spacecraft carry three Nickel-Cadmium batteries designed and manufactured by Lockheed Martin. The battery, which consists of seventeen 40 Ah cells manufactured by SAFT, provides the spacecraft power during the ascent phase, orbital eclipse and when the power demand is in excess of the solar array capability. The NOAA-K satellite is in a 98 degree inclination, 7:30AM ascending node orbit. In this orbit the satellite experiences earth occultation only 25% of the year. This paper provides a brief overview of the power subsystem, followed by the battery design and qualification, the cell life cycle test data, and the performance during launch and in orbit.

  11. The NOAA Center in Atmospheric Sciences (NCAS) at Howard University

    NASA Astrophysics Data System (ADS)

    Strachan, M. D.; Morris, V. R.

    2003-12-01

    The National Oceanic and Atmospheric Administration (NOAA) of the Department of Commerce established the NOAA Center for Atmospheric Sciences (NCAS), a Cooperative Science Center, in fall 2001 to support the development of quality education to students at minority serving institutions while meeting the prescribed goals of NOAA and the nation. NCAS was established to research some of the critical environmental conditions occurring nationally and globally, and to provide opportunities and programs for students to pursue careers in atmospheric, environmental, and oceanic sciences and remote sensing. A primary goal is to increase the number of highly qualified, well trained graduates in the fields of NOAA related atmospheric sciences. NCAS is led by Howard University, in collaboration with three partners - Jackson State University, the University of Texas at El Paso, and the University of Puerto Rico at Mayaguez. This presentation will highlight the activities and accomplishments in research, education, and outreach of NCAS over its first two years of existence. The primary benefactor of NCAS has been the Howard University Program in Atmospheric Sciences (HUPAS), a comprehensive graduate program in atmospheric sciences with core focus areas of atmospheric chemistry, atmospheric physics, and geophysical fluid dynamics.

  12. Vocational Education Administration Handbook.

    ERIC Educational Resources Information Center

    Ryals, Karen, Ed.; Doherty, Susan Sloan, Ed.

    This handbook for vocational administrators presents an overview of vocational education programs, services, and administrative structures in Alaska. The manual contains three parts. The first, brief section introduces secondary vocational education and lists its enabling legislation. The second part presents a detailed overview of vocational…

  13. 76 FR 65183 - National Oceanic and Atmospheric Administration

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-20

    ... National Oceanic and Atmospheric Administration National Climate Assessment and Development Advisory... Administration (NOAA), Department of Commerce (DOC). ACTION: Notice of open meeting. SUMMARY: The National... of Oceanic and Atmospheric Research, National Oceanic and Atmospheric Administration. BILLING...

  14. A User's Guide to the Tsunami Datasets at NOAA's National Data Buoy Center

    NASA Astrophysics Data System (ADS)

    Bouchard, R. H.; O'Neil, K.; Grissom, K.; Garcia, M.; Bernard, L. J.; Kern, K. J.

    2013-12-01

    The National Data Buoy Center (NDBC) has maintained and operated the National Oceanic and Atmospheric Administration's (NOAA) tsunameter network since 2003. The tsunameters employ the NOAA-developed Deep-ocean Assessment and Reporting of Tsunamis (DART) technology. The technology measures the pressure and temperature every 15 seconds on the ocean floor and transforms them into equivalent water-column height observations. A complex series of subsampled observations are transmitted acoustically in real-time to a moored buoy or marine autonomous vehicle (MAV) at the ocean surface. The surface platform uses its satellite communications to relay the observations to NDBC. NDBC places the observations onto the Global Telecommunication System (GTS) for relay to NOAA's Tsunami Warning Centers (TWC) in Hawai'i and Alaska and to the international community. It takes less than three minutes to speed the observations from the ocean floor to the TWCs. NDBC can retrieve limited amounts of the 15-s measurements from the instrumentation on the ocean floor using the technology's two-way communications. NDBC recovers the full resolution 15-s measurements about every 2 years and forwards the datasets and metadata to the National Geophysical Data Center for permanent archive. Meanwhile, NDBC retains the real-time observations on its website. The type of real-time observation depends on the operating mode of the tsunameter. NDBC provides the observations in a variety of traditional and innovative methods and formats that include descriptors of the operating mode. Datasets, organized by station, are available from the NDBC website as text files and from the NDBC THREDDS server in netCDF format. The website provides alerts and lists of events that allow users to focus on the information relevant for tsunami hazard analysis. In addition, NDBC developed a basic web service to query station information and observations to support the Short-term Inundation Forecasting for Tsunamis (SIFT

  15. Alaska's Economy: What's Ahead?

    ERIC Educational Resources Information Center

    Alaska Review of Social and Economic Conditions, 1987

    1987-01-01

    This review describes Alaska's economic boom of the early 1980s, the current recession, and economic projections for the 1990s. Alaska's economy is largely influenced by oil prices, since petroleum revenues make up 80% of the state government's unrestricted general fund revenues. Expansive state spending was responsible for most of Alaska's…

  16. Alaska Natives & the Land.

    ERIC Educational Resources Information Center

    Arnold, Robert D.; And Others

    Pursuant to the Native land claims within Alaska, this compilation of background data and interpretive materials relevant to a fair resolution of the Alaska Native problem seeks to record data and information on the Native peoples; the land and resources of Alaska and their uses by the people in the past and present; land ownership; and future…

  17. NOAA Operational Tsunameter Support for Research

    NASA Astrophysics Data System (ADS)

    Bouchard, R.; Stroker, K.

    2008-12-01

    In March 2008, the National Oceanic and Atmospheric Administration's (NOAA) National Data Buoy Center (NDBC) completed the deployment of the last of the 39-station network of deep-sea tsunameters. As part of NOAA's effort to strengthen tsunami warning capabilities, NDBC expanded the network from 6 to 39 stations and upgraded all stations to the second generation Deep-ocean Assessment and Reporting of Tsunamis technology (DART II). Consisting of a bottom pressure recorder (BPR) and a surface buoy, the tsunameters deliver water-column heights, estimated from pressure measurements at the sea floor, to Tsunami Warning Centers in less than 3 minutes. This network provides coastal communities in the Pacific, Atlantic, Caribbean, and the Gulf of Mexico with faster and more accurate tsunami warnings. In addition, both the coarse resolution real-time data and the high resolution (15-second) recorded data provide invaluable contributions to research, such as the detection of the 2004 Sumatran tsunami in the Northeast Pacific (Gower and González, 2006) and the experimental tsunami forecast system (Bernard et al., 2007). NDBC normally recovers the BPRs every 24 months and sends the recovered high resolution data to NOAA's National Geophysical Data Center (NGDC) for archive and distribution. NGDC edits and processes this raw binary format to obtain research-quality data. NGDC provides access to retrospective BPR data from 1986 to the present. The DART database includes pressure and temperature data from the ocean floor, stored in a relational database, enabling data integration with the global tsunami and significant earthquake databases. All data are accessible via the Web as tables, reports, interactive maps, OGC Web Map Services (WMS), and Web Feature Services (WFS) to researchers around the world. References: Gower, J. and F. González, 2006. U.S. Warning System Detected the Sumatra Tsunami, Eos Trans. AGU, 87(10). Bernard, E. N., C. Meinig, and A. Hilton, 2007. Deep Ocean

  18. NOAA Budget Increases to $4.1 Billion, But Some Key Items Are Reduced

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    2008-02-01

    The Bush administration has proposed a US$4.1 billion budget for fiscal year (FY) 2009 for the U.S. National Oceanic and Atmospheric Administration (NOAA). The proposed budget, which would be the agency's largest ever, is $202.6 million, or 5.2%, above the FY 2008 enacted budget. By topping $4 billion and the amount Congress passed for FY 2008, the budget proposal crosses into ``a new threshold,'' according Navy Vice Admiral Conrad Lautenbacher, undersecretary of commerce for oceans and atmosphere and NOAA administrator.

  19. 77 FR 13562 - Request for Comments on the 5-Year Review of NOAA's Policy on Partnerships in the Provision of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-07

    ... on Partnerships in the Provision of Environmental Information AGENCY: National Weather Service (NWS... request for comments. SUMMARY: The National Weather Service of the National Oceanic and Atmospheric... National Weather Service of the National Oceanic and Atmospheric Administration (NOAA) is undertaking...

  1. 78 FR 59339 - Intracoastal Waterway Route “Magenta Line” on NOAA Nautical Charts

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-26

    ... Nautical Charts AGENCY: National Ocean Service, National Oceanic and Atmospheric Administration. (NOAA.../image/4DNo3-13 .) The U.S. Coast & Geodetic Survey published seven editions through 1935, when their... Ocean Service, National Oceanic and Atmospheric Administration. BILLING CODE 3510-JE-P...

  2. Prelaunch summary: NOAA-B launch

    NASA Technical Reports Server (NTRS)

    1980-01-01

    The NOAA-B satellite will launch from the Western Test Range into Sun-synchronous orbit to replace the TIROSN-satellite as part of the national operational environmental satellite system in support of the Global Atmospheric Research Program and the World Weather Watch. The mission objectives, primary environmental sensors, launch particulars, flight sequence of events, mission support, and project costs for NOAA-A through NOAA-G are discussed. NASA's responsibilities include launch, in-orbit evaluation and spacecraft checkout.

  3. NOAA's future GOES satellite program

    NASA Astrophysics Data System (ADS)

    Howard, Edward; Heymann, Roger; Dittberner, Gerald J.; Kirkner, Steven

    1996-10-01

    Future weather satellites for NOAA at geosynchronous orbit may be smaller, less costly, and developed by a different process than is currently done. This path is sometimes called the 'smaller, cheaper and faster' process being pursued by NASA. We believe in the future there will be less money, a focus on using the right technology and the desire to get the most value for the resources invested in space missions. In this paper we give an update on our progress to define future GOES. It will include our efforts to trade on user requirement early, to use evolutionary technology, and to consider new cost reduction and program management techniques.

  4. NOAA's hydrolab conducts reef studies

    NASA Astrophysics Data System (ADS)

    This summer, scuba-diving scientists operating from Hydrolab, NOAA's undersea laboratory, are carrying out four experiments aimed at producing better management of coral reefs and their fishery resources. Hydrolab is located at a depth of 50 feet, near the mouth of the Salt River, off St. Croix, U.S. Virgin Islands. The lab houses four scientists for up to 2 weeks at a time, permitting them to swim out into the water to conduct research. The projects make use of both the natural coral reef near Hydrolab and the nearby artificial reef constructed for comparison studies.

  5. 78 FR 13395 - Federal Aviation Administration

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-27

    ... of October 23, 2012 (77 FR 64836) would require placement of fill on submerged lands jointly managed... Federal Aviation Administration Notice of Availability of Draft Alaska National Interest Lands Conservation Act (ANILCA) Section 810 Subsistence Evaluation. AGENCY: Federal Aviation Administration...

  6. The Long-term Performance of NOAA's Operational Open Ocean Tsunameter Array

    NASA Astrophysics Data System (ADS)

    Wasserman, J.; Bouchard, R. H.; Petraitis, D. C.; Rutledge, T. M.; Boudreaux, T. J.; Robbie, M. D.; Yarborough, S.; Fornea, G.

    2015-12-01

    The National Oceanic and Atmospheric Administration's (NOAA) National Data Buoy Center (NDBC) has operated and maintained the full 39-station array of open ocean tsunameters since 2008 using the second generation Deep-ocean Reporting and Assessment of Tsunamis technology. The array provides real-time, ocean bottom measurements to Tsunami Warning Centers (TWC) located in Hawai'i and Alaska. These measurements aid them in detecting the presence or absence of tsunamis in the open ocean and in determining the essential characteristics of a tsunami to support the TWC. Thirty-two of the stations span the Pacific Ocean, while seven are located in the Atlantic Ocean, Gulf of Mexico, and the Caribbean Sea. The sensors are located on the ocean floor to depths of 6000 m and the system must deliver measurements from that depth to the TWCs in 3 minutes or less. These vast horizontal and vertical distances and the often extreme conditions of the open ocean raise considerable challenges in maintaining necessary and sufficient measurements to support the TWCs. To support this effort, NDBC aims to maintain and generally achieves a goal of 80% real-time data availability. Data availability is the percentage of measurements received versus the number of expected measurements. Using seven years of data we examine operational performance parameters such as real-time and retrospective data availability and tsunami detection for trends, patterns, and the factors affecting performance and reliability of the array. We will also discuss the initial results of the Field Evaluation of the 4th Generation technology.

  7. NOAA Environmental Satellite Measurements of Extreme Space Weather Events

    NASA Astrophysics Data System (ADS)

    Denig, W. F.; Wilkinson, D. C.; Redmon, R. J.

    2015-12-01

    For over 40 years the National Oceanic and Atmospheric Administration (NOAA) has continuously monitored the near-earth space environment in support of space weather operations. Data from this period have covered a wide range of geophysical conditions including periods of extreme space weather such as the great geomagnetic March 1989, the 2003 Halloween storm and the more recent St Patrick's Day storm of 2015. While not specifically addressed here, these storms have stressed our technology infrastructure in unexpected and surprising ways. Space weather data from NOAA geostationary (GOES) and polar (POES) satellites along with supporting data from the Air Force are presented to compare and contrast the space environmental conditions measured during extreme events.

  8. Enabling Scientific and Technological Improvements to Meet Core Partner Service Requirements in Alaska - An Arctic Test Bed

    NASA Astrophysics Data System (ADS)

    Petrescu, E. M.; Scott, C. A.

    2014-12-01

    NOAA/NWS Test beds, such as the Joint Hurricane Test Bed (Miami, FL) and the Hazardous Weather Test Bed (Norman, OK) have been highly effective in meeting unique or pressing science and service challenges for the NWS. NWS Alaska Region leadership has developed plans for a significant enhancement to our operational forecast and decision support capabilities in Alaska to address the emerging requirements of the Arctic: An Arctic Test Bed. Historically, the complexity of forecast operations and the inherent challenges in Alaska have not been addressed well by the R&D programs and projects that support the CONUS regions of the NWS. In addition, there are unique science,technology, and support challenges (e.g., sea ice forecasts and arctic drilling prospects) and opportunities (Bilateral agreements with Canada, Russia, and Norway) that would best be worked through Alaska operations. A dedicated test bed will provide a mechanism to transfer technology, research results, and observations advances into operations in a timely and effective manner in support of Weather Ready Nation goals and to enhance decision support services in Alaska. A NOAA Arctic Test Bed will provide a crucial nexus for ensuring NOAA's developers understand Alaska's needs, which are often cross disciplinary (atmosphere, ocean, cryosphere, and hydrologic), to improve NOAA's responsiveness to its Arctic-related science and service priorities among the NWS and OAR (CPO and ESRL), and enable better leveraging of other research initiatives and data sources external to NOAA, including academia, other government agencies, and the private sector, which are particular to the polar region (e.g., WWRP Polar Prediction Project). Organization, capabilities and opportunities will be presentation.

  9. Alaska Volcano Observatory

    USGS Publications Warehouse

    Venezky, Dina Y.; Murray, Tom; Read, Cyrus

    2008-01-01

    Steam plume from the 2006 eruption of Augustine volcano in Cook Inlet, Alaska. Explosive ash-producing eruptions from Alaska's 40+ historically active volcanoes pose hazards to aviation, including commercial aircraft flying the busy North Pacific routes between North America and Asia. The Alaska Volcano Observatory (AVO) monitors these volcanoes to provide forecasts of eruptive activity. AVO is a joint program of the U.S. Geological Survey (USGS), the Geophysical Institute of the University of Alaska Fairbanks (UAFGI), and the State of Alaska Division of Geological and Geophysical Surveys (ADGGS). AVO is one of five USGS Volcano Hazards Program observatories that monitor U.S. volcanoes for science and public safety. Learn more about Augustine volcano and AVO at http://www.avo.alaska.edu.

  10. 76 FR 9209 - Draft NOAA National Aquaculture Policy

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-16

    ... national approach for supporting sustainable aquaculture. The NOAA Aquaculture Program will host national.... Informational Briefings for the Public The NOAA Aquaculture Program will host a series of...

  11. Alaska's renewable energy potential.

    SciTech Connect

    Not Available

    2009-02-01

    This paper delivers a brief survey of renewable energy technologies applicable to Alaska's climate, latitude, geography, and geology. We first identify Alaska's natural renewable energy resources and which renewable energy technologies would be most productive. e survey the current state of renewable energy technologies and research efforts within the U.S. and, where appropriate, internationally. We also present information on the current state of Alaska's renewable energy assets, incentives, and commercial enterprises. Finally, we escribe places where research efforts at Sandia National Laboratories could assist the state of Alaska with its renewable energy technology investment efforts.

  12. Evaluation of the anthropogenic radionuclide concentrations in sediments and fauna collected in the Beaufort Sea and northern Alaska

    SciTech Connect

    Efurd, D.W.; Miller, G.G.; Rokop, D.J.

    1997-07-01

    This study was performed to establish a quality controlled data set about the levels of radio nuclide activity in the environment and in selected biota in the U.S. Arctic. Sediment and biota samples were collected by the National Oceanic and Atmospheric Administration (NOAA), the National Biological Service, and the North Slope Borough`s Department of Wildlife Management to determine the impact of anthropogenic radionuclides in the Arctic. The results summarized in this report are derived from samples collected in northwest Alaska with emphasis on species harvested for subsistence in Barrow, Alaska. Samples were analyzed for the anthropogenic radionuclides {sup 90}Sr, {sup 137}Cs, {sup 238}Pu, {sup 239}Pu, {sup 240}Pu and {sup 241}Am. The naturally occurring radionuclides {sup 40}K, {sup 212}Pb and {sup 214}Pb were also measured. One goal of this study was to determine the amounts of anthropogenic radionuclides present in the Beaufort Sea. Sediment samples were isotopically fingerprinted to determine the sources of radio nuclide activities. Biota samples of subsistence and ecological value were analyzed to search for evidence of bio-accumulation of radionuclides and to determine the radiation exposures associated with subsistence living in northern Alaska. The anthropogenic radio nuclide content of sediments collected in the Beaufort Sea was predominantly the result of the deposition of global fallout. No other sources of anthropogenic radionuclides could be conclusively identified in the sediments. The anthropogenic radio nuclide concentrations in fish, birds and mammals were very low. Assuming that ingestion of food is an important pathway leading to human contact with radioactive contaminants and given the dietary patterns in coastal Arctic communities, it can be surmised that marine food chains are presently not significantly affected.

  13. Measurements of CO and O3 at Shemya, Alaska

    NASA Astrophysics Data System (ADS)

    Jaffe, Dan; Yurganov, Leonid; Pullman, Eric; Reuter, Joseph; Mahura, Alexander; Novelli, Paul

    1998-01-01

    In situ measurements of surface CO were conducted from June 1994 to May 1995, and surface ozone was measured from February to May, 1995, at Shemya, Alaska (52o44'N, 174o06'E) using nondispersive infrared-gas filter correlation (GFC) and UV absorption spectroscopy, respectively. Over the same period, air samples were collected in flasks for analysis of CO and other trace gases as part of the NOAA-CMDL cooperative air sampling network. We compared the continuous GFC measurements with the National Oceanic and Atmospheric Administration Climate Monitoring and Diagnostics Laboratory (NOAA-CMDL) flask data. Over this 1-year period, CO mixing ratios varied between 60 and 250 parts per billion by volume (ppbv). Within this range, the comparison between the two measurements is quite good, with an overall R2 of 0.953 and an average difference of 3.1%. A seasonal cycle is apparent in the CO data, with a springtime maximum and a summer minimum. Synoptic influences on the data include transport from the lower-latitude Pacific, bringing air with very low CO mixing ratios to Shemya, and, occasionally, transport from industrial areas in east Asia, including northern China, Japan, and eastern Russia. A scatterplot of CO versus O3 using all the data shows essentially no relationship at this remote site. This result implies that the primary sources and sinks for these trace gases are different at this location. However, during a few 12- to 48-hour periods in fall and late spring, enhancements in CO or in both CO and O3 were observed. During these periods, isentropic back trajectories indicate transport from the west and southwest. However, the trajectories are often difficult to interpret due to looping and are of short duration due to impact at the surface. These complexities are associated with the presence of cyclonic systems in the region. The local meteorological data suggest that the enhanced concentrations occurred around the time when these cyclonic systems passed near the

  14. NOAA's Data Catalog and the Federal Open Data Policy

    NASA Astrophysics Data System (ADS)

    Wengren, M. J.; de la Beaujardiere, J.

    2014-12-01

    The 2013 Open Data Policy Presidential Directive requires Federal agencies to create and maintain a 'public data listing' that includes all agency data that is currently or will be made publicly-available in the future. The directive requires the use of machine-readable and open formats that make use of 'common core' and extensible metadata formats according to the best practices published in an online repository called 'Project Open Data', to use open licenses where possible, and to adhere to existing metadata and other technology standards to promote interoperability. In order to meet the requirements of the Open Data Policy, the National Oceanic and Atmospheric Administration (NOAA) has implemented an online data catalog that combines metadata from all subsidiary NOAA metadata catalogs into a single master inventory. The NOAA Data Catalog is available to the public for search and discovery, providing access to the NOAA master data inventory through multiple means, including web-based text search, OGC CS-W endpoint, as well as a native Application Programming Interface (API) for programmatic query. It generates on a daily basis the Project Open Data JavaScript Object Notation (JSON) file required for compliance with the Presidential directive. The Data Catalog is based on the open source Comprehensive Knowledge Archive Network (CKAN) software and runs on the Amazon Federal GeoCloud. This presentation will cover topics including mappings of existing metadata in standard formats (FGDC-CSDGM and ISO 19115 XML ) to the Project Open Data JSON metadata schema, representation of metadata elements within the catalog, and compatible metadata sources used to feed the catalog to include Web Accessible Folder (WAF), Catalog Services for the Web (CS-W), and Esri ArcGIS.com. It will also discuss related open source technologies that can be used together to build a spatial data infrastructure compliant with the Open Data Policy.

  15. NOAA draft scientific integrity policy: Comment period open through 20 August

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    2011-08-01

    The National Oceanic and Atmospheric Administration (NOAA) is aiming to finalize its draft scientific integrity policy possibly by the end of the year, Larry Robinson, NOAA assistant secretary for conservation and management, indicated during a 28 July teleconference. The policy “is key to fostering an environment where science is encouraged, nurtured, respected, rewarded, and protected,” Robinson said, adding that the agency's comment period for the draft policy, which was released on 16 June, ends on 20 August. “Science underpins all that NOAA does. This policy is one piece of a broader effort to strengthen NOAA science,” Robinson said, noting that the draft “represents the first ever scientific integrity policy for NOAA. Previously, our policy only addressed research misconduct and focused on external grants. What's new about this policy is that it establishes NOAA's principles for scientific integrity, a scientific code of conduct, and a code of ethics for science supervision and management.”

  16. 77 FR 67580 - Fisheries of the Exclusive Economic Zone Off Alaska; Pacific Cod by Vessels Using Jig Gear in the...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-11-13

    ....20(d)(1)(iii) on June 29, 2012 (77 FR 39183, July 2, 2012). As of November 5, 2012, NMFS has... Economic Zone Off Alaska; Pacific Cod by Vessels Using Jig Gear in the Central Regulatory Area of the Gulf..., then enter NOAA-NMFS-2012-0223 in the keyword search. Locate the document you wish to comment on...

  17. 77 FR 33443 - National Oceanic and Atmospheric Administration

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-06

    ... National Oceanic and Atmospheric Administration Pacific Fishery Management Council; Public Meeting AGENCY: National Marine Fisheries Service (NMFS), National Oceanic and Atmospheric Administration (NOAA), Commerce... Assessment Methods for Data-Moderate Stocks will be held at the National Marine Fisheries Service's...

  18. 75 FR 10757 - Proposed Information Collection; Comment Request; Alaska Region Amendment 80 Permits and Reports

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-09

    ... Region Amendment 80 Permits and Reports AGENCY: National Oceanic and Atmospheric Administration (NOAA... or patsy.bearden@noaa.gov . SUPPLEMENTARY INFORMATION: I. Abstract Amendment 80 to the Fishery... utilization, and improved economic health of the head-and-gut trawl catcher/processor sector. Amendment...

  19. Alaska Library Directory, 1996.

    ERIC Educational Resources Information Center

    Jennings, Mary, Ed.

    This directory of Alaska's Libraries lists: members of the Alaska Library Association (AkLA) Executive Council and Committee Chairs; State Board of Education members; members of the Governor's Advisory Council on Libraries; school, academic and public libraries and their addresses, phone and fax numbers, and contact persons; personal,…

  20. Alaska geothermal bibliography

    SciTech Connect

    Liss, S.A.; Motyka, R.J.; Nye, C.J.

    1987-05-01

    The Alaska geothermal bibliography lists all publications, through 1986, that discuss any facet of geothermal energy in Alaska. In addition, selected publications about geology, geophysics, hydrology, volcanology, etc., which discuss areas where geothermal resources are located are included, though the geothermal resource itself may not be mentioned. The bibliography contains 748 entries.

  1. Renewable Energy in Alaska

    SciTech Connect

    Not Available

    2013-03-01

    This report examines the opportunities, challenges, and costs associated with renewable energy implementation in Alaska and provides strategies that position Alaska's accumulating knowledge in renewable energy development for export to the rapidly growing energy/electric markets of the developing world.

  2. South Central Alaska

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Glacial silt along the Copper River in Alaska is picked up by the wind and carried out over the Gulf of Alaska. This true-color MODIS image from October 26, 2001, shows a large gray dust plume spreading out over the Gulf. West of the Copper River Delta, Cook Inlet is full of sediment.

  3. Lautenbacher will face challenges as new NOAA Head

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    With a non-controversial confirmation hearing on November 8 before the U.S. Senate Commerce Committee, retired U.S. Navy Vice Admiral Conrad Lautenbacher, Jr. is gearing up to soon take over the helm at the National Oceanic and Atmospheric Administration (NOAA). His nomination by the Bush administration also includes serving as undersecretary of commerce for oceans and atmosphere.A number of sources familiar with Lautenbacher indicated that his Navy and managerial skills will be useful in these posts, as he likely will face a number of science, budget, and administrative challenges in running this $3.2-billion agency, which comprises 63% of the Commerce Department budget. These sources also sited Lautenbacher's integrity; his ability to listen to different sides of issues and to consult broadly; his connections to both the scientific and political worlds; and his persuasive ability to get things done.

  4. Mission description and in-flight operations of ERBE instruments on ERBS and NOAA 10 spacecraft, February 1987 - February 1990

    NASA Technical Reports Server (NTRS)

    Busch, Kathryn A.; Degnan, Keith T.

    1994-01-01

    Instruments of the Earth Radiation Budget Experiment (ERBE) are operating on three different Earth-orbiting spacecraft. The Earth Radiation Budget Satellite (ERBS) is operated by the National Aeronautics and Space Administration (NASA), and the NOAA 9 and NOAA 10 weather satellites are operated by the National Oceanic and Atmospheric Administration (NOAA). This paper is the third in a series that describes the ERBE mission in-orbit environments, instrument design and operational features, and data processing and validation procedures. This paper describes the in-flight operations for the ERBE instruments aboard the ERBS and NOAA 10 spacecraft for the period from February 1987 through February 1990. Validation and archival of radiation measurements made by ERBE instruments during this period were completed in May 1992. This paper covers normal and special operations of the spacecraft and instruments, operational anomalies, and the responses of the instruments to in-orbit and seasonal variations in the solar environment.

  5. Assessment of NOAA Processed OceanSat-2 Scatterometer Ocean Surface Vector Wind Products

    NASA Astrophysics Data System (ADS)

    Chang, P.; Jelenak, Z.; Soisuvarn, S.

    2011-12-01

    The Indian Space Research Organization (ISRO) launched the Oceansat-2 satellite on 23 September 2009. Oceansat-2 carries a radar scatterometer instrument (OSCAT) capable of measuring ocean surface vector winds (OSVW) and an ocean color monitor (OCM), which will retrieve sea spectral reflectance. Oceansat-2 is ISRO's second in a series of satellites dedicated to ocean research. It will provide continuity to the services and applications of the Oceansat-1 OCM data along with additional data from a Ku-band pencil beam scatterometer. Oceansat-2 is a three-axis, body stabilized spacecraft placed into a near circular sun-synchronous orbit, at an altitude of 720 kilometers (km), with an equatorial crossing time of around 1200 hours. ISRO, the National Oceanic and Atmospheric Administration (NOAA), the National Aeronautics and Space Administration (NASA) and the European Organization for the Exploitation of Meteorological Satellites (EUMETSAT) share the common goal of optimizing the quality and maximizing the utility of the Oceansat-2 data for the benefit of future global and regional scientific and operational applications. NOAA, NASA and EUMETSAT have been collaboratively working with ISRO on the assessment and analysis of OSCAT data to help facilitate continuation of QuikSCAT's decade-long Ku-band scatterometer data record. NOAA's interests are focused on the utilization of OSCAT data to support operational weather forecasting and warning in the marine environment. OSCAT has the potential to significantly mitigate the loss of NASA's QuikSCAT, which has negatively impacted NOAA's marine forecasting and warning services. Since March 2011 NOAA has been receiving near real time OSCAT measurements via EumetSat. NOAA has developed its own OSCAT wind processor. This processor produces ocean surface vector winds with resolution of 25km. Performance of NOAA OSCAT product will and its availability to larger user community will be presented and discussed.

  6. 15 CFR 995.28 - Use of NOAA emblem.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 15 Commerce and Foreign Trade 3 2011-01-01 2011-01-01 false Use of NOAA emblem. 995.28 Section 995... REQUIREMENTS FOR NOAA HYDROGRAPHIC PRODUCTS AND SERVICES CERTIFICATION REQUIREMENTS FOR DISTRIBUTORS OF NOAA HYDROGRAPHIC PRODUCTS Requirements for Certified Distributors and Value Added Distributors of NOAA ENC...

  7. NOAA's Space Weather Prediction Center, Forecast Office

    NASA Video Gallery

    The Forecast Office of NOAA's Space Weather Prediction Center is the nation's official source of alerts, warnings, and watches. The office, staffed 24/7, is always vigilant for solar activity that ...

  8. In Brief: NOAA predicts busy hurricane season

    NASA Astrophysics Data System (ADS)

    Zielinski, Sarah

    2007-06-01

    Scientists at NOAA's Climate Prediction Center estimate that there is a 75% chance that the 2007 Atlantic hurricane season will be more active than average, with 13-17 named storms, 7-10 hurricanes, and 3-5 hurricanes reaching Category 3 or higher. An average hurricane season has 11 named storms, 6 hurricanes, and 2 major hurricanes. According to Gerry Bell, NOAA's lead seasonal hurricane forecaster, the 2007 season could be in the higher range of predicted activity if a La Niña forms, or even higher if the La Niña is particularly strong. Last year, NOAA also predicted an above-normal Atlantic season; the actual season, however, was quiet, to which NOAA scientists credit an unexpected El Ni~o that developed rapidly and created an environment hostile to storm formation and strengthening.

  9. NOAA's Use of High-Resolution Imagery

    NASA Technical Reports Server (NTRS)

    Hund, Erik

    2007-01-01

    NOAA's use of high-resolution imagery consists of: a) Shoreline mapping and nautical chart revision; b) Coastal land cover mapping; c) Benthic habitat mapping; d) Disaster response; and e) Imagery collection and support for coastal programs.

  10. NOAA budget would boost satellite funding but cut some key areas

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    2012-03-01

    The White House's proposed fiscal year (FY) 2013 budget for the National Oceanic and Atmospheric Administration (NOAA), announced on 13 February, looks favorable at first glance. The administration's request calls for $5.1 billion, an increase of $153 million (3.1%) above the FY 2012 estimated budget. However, the increase for NOAA satellites is $163 million, which means that other areas within the agency would be slated for decreased funding, including programs within the National Ocean Service (NOS), National Marine Fisheries Service (NMFS), National Weather Service (NWS), and some NOAA education programs. The proposed overall budget for the agency “reflects the overarching importance of weather satellites to public safety, to national security, and to the economy,” NOAA director Jane Lubchenco said at a 16 February briefing, noting that difficult choices were made regarding the budget. “Due to significant resources required for our weather satellites and the economic conditions in the country, other parts of our budget have been reduced, in some cases quite significantly,” she said. She added that the imperative to fund both the Joint Polar Satellite System (JPSS) and geostationary satellites in FY 2013 “imposes serious constraints on the rest of NOAA's budget.”

  11. Wild Fire Emissions for the NOAA Operational HYSPLIT Smoke Model

    NASA Astrophysics Data System (ADS)

    Huang, H. C.; ONeill, S. M.; Ruminski, M.; Shafran, P.; McQueen, J.; DiMego, G.; Kondragunta, S.; Gorline, J.; Huang, J. P.; Stunder, B.; Stein, A. F.; Stajner, I.; Upadhayay, S.; Larkin, N. K.

    2015-12-01

    Particulate Matter (PM) generated from forest fires often lead to degraded visibility and unhealthy air quality in nearby and downstream areas. To provide near-real time PM information to the state and local agencies, the NOAA/National Weather Service (NWS) operational HYSPLIT (Hybrid Single Particle Lagrangian Integrated Trajectory Model) smoke modeling system (NWS/HYSPLIT smoke) provides the forecast of smoke concentration resulting from fire emissions driven by the NWS North American Model 12 km weather predictions. The NWS/HYSPLIT smoke incorporates the U.S. Forest Service BlueSky Smoke Modeling Framework (BlueSky) to provide smoke fire emissions along with the input fire locations from the NOAA National Environmental Satellite, Data, and Information Service (NESDIS)'s Hazard Mapping System fire and smoke detection system. Experienced analysts inspect satellite imagery from multiple sensors onboard geostationary and orbital satellites to identify the location, size and duration of smoke emissions for the model. NWS/HYSPLIT smoke is being updated to use a newer version of USFS BlueSky. The updated BlueSky incorporates the Fuel Characteristic Classification System version 2 (FCCS2) over the continental U.S. and Alaska. FCCS2 includes a more detailed description of fuel loadings with additional plant type categories. The updated BlueSky also utilizes an improved fuel consumption model and fire emission production system. For the period of August 2014 and June 2015, NWS/HYSPLIT smoke simulations show that fire smoke emissions with updated BlueSky are stronger than the current operational BlueSky in the Northwest U.S. For the same comparisons, weaker fire smoke emissions from the updated BlueSky were observed over the middle and eastern part of the U.S. A statistical evaluation of NWS/HYSPLIT smoke predicted total column concentration compared to NOAA NESDIS GOES EAST Aerosol Smoke Product retrievals is underway. Preliminary results show that using the newer version

  12. 78 FR 48859 - Proposed Information Collection; Comment Request; 2013 NOAA Engagement Survey Tool

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-12

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF COMMERCE... Engagement Survey Tool AGENCY: National Oceanic and Atmospheric Administration (NOAA), Commerce. ACTION... rather than the Office of Education and the Gulf of Mexico Regional Collaboration Team, as it...

  13. 75 FR 6354 - NOAA Great Lakes Habitat Restoration Program Project Grants under the Great Lakes Restoration...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-09

    ... of Grant Funds for Fiscal Year 2010, published in the Federal Register (75 FR 3101). That... contained in the Federal Register notice of February 11, 2008 (73 FR 7696), are applicable to this... National Oceanic and Atmospheric Administration RIN 0648-ZC10 NOAA Great Lakes Habitat Restoration...

  14. 77 FR 32572 - (NOAA) National Climate Assessment and Development Advisory Committee (NCADAC)

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-01

    ... National Oceanic and Atmospheric Administration (NOAA) National Climate Assessment and Development Advisory... National Climate Assessment and Development Advisory Committee (NCADAC) was established by the Secretary of... science and information pertaining to current and future impacts of climate. Time and Date: The...

  15. Accuracy assessment of NOAA's daily reference evapotranspiration maps for the Texas High Plains

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The National Oceanic and Atmospheric Administration (NOAA) provides daily reference ET for the continental U.S. using climatic data from North American Land Data Assimilation System (NLDAS). This data provides large scale spatial representation for reference ET, which is essential for regional scal...

  16. Accuracy assessment of NOAA gridded daily reference evapotranspiration for the Texas High Plains

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The National Oceanic and Atmospheric Administration (NOAA) provides daily reference evapotranspiration (ETref) maps for the contiguous United States using climatic data from North American Land Data Assimilation System (NLDAS). This data provides large-scale spatial representation of ETref, which i...

  17. 15 CFR 911.7 - Continuation of the NOAA Data Collection Systems.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 15 Commerce and Foreign Trade 3 2012-01-01 2012-01-01 false Continuation of the NOAA Data Collection Systems. 911.7 Section 911.7 Commerce and Foreign Trade Regulations Relating to Commerce and Foreign Trade (Continued) NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION, DEPARTMENT OF COMMERCE GENERAL REGULATIONS POLICIES AND PROCEDURES...

  18. 15 CFR 911.7 - Continuation of the NOAA Data Collection Systems.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 15 Commerce and Foreign Trade 3 2013-01-01 2013-01-01 false Continuation of the NOAA Data Collection Systems. 911.7 Section 911.7 Commerce and Foreign Trade Regulations Relating to Commerce and Foreign Trade (Continued) NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION, DEPARTMENT OF COMMERCE GENERAL REGULATIONS POLICIES AND PROCEDURES...

  19. Alaska Problem Resource Manual: Alaska Future Problem Solving Program. Alaska Problem 1985-86.

    ERIC Educational Resources Information Center

    Gorsuch, Marjorie, Ed.

    "Alaska's Image in the Lower 48," is the theme selected by a Blue Ribbon panel of state and national leaders who felt that it was important for students to explore the relationship between Alaska's outside image and the effect of that image on the federal programs/policies that impact Alaska. An overview of Alaska is presented first in this…

  20. Overview of environmental and hydrogeologic conditions at King Salmon, Alaska

    USGS Publications Warehouse

    Waythomas, C.F.

    1994-01-01

    The Federal Aviation Administration is conducting preliminary environmental assessments at most of its present or former facilities in Alaska. Information about environmental conditions at King Salmon, Alaska are presented in this report. This report gives an overview of the geology, hydro- logy, and climate of the King Salmon area and describes general geohydrologic conditions. A thick alluvial aquifer underlies King Salmon and both ground water and surface water are plentiful in the area.

  1. The Early Years, the Critical Years: Implications of Brain Research on Early Childhood Policy and Practice in Alaska. Conference Proceedings (Anchorage, Alaska, September 23-25, 1998).

    ERIC Educational Resources Information Center

    Alaska State Dept. of Community and Regional Affairs, Juneau.

    Alaska's "The Early Years, The Critical Years" conference was designed to educate participants about current brain research, give them an opportunity to discuss public policy with state administrators, provide a forum to develop recommendations and activities to support young children in Alaska, and offer quality training about early development.…

  2. 77 FR 60106 - Membership of the National Oceanic and Atmospheric Administration Performance Review Board

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-02

    ... National Oceanic and Atmospheric Administration Membership of the National Oceanic and Atmospheric Administration Performance Review Board AGENCY: National Oceanic and Atmospheric Administration (NOAA...., Director, Air Resources Laboratory, Office of Air Resources Laboratory, Office of Oceanic and......

  3. Alaska marine ice atlas

    SciTech Connect

    LaBelle, J.C.; Wise, J.L.; Voelker, R.P.; Schulze, R.H.; Wohl, G.M.

    1982-01-01

    A comprehensive Atlas of Alaska marine ice is presented. It includes information on pack and landfast sea ice and calving tidewater glacier ice. It also gives information on ice and related environmental conditions collected over several years time and indicates the normal and extreme conditions that might be expected in Alaska coastal waters. Much of the information on ice conditions in Alaska coastal waters has emanated from research activities in outer continental shelf regions under assessment for oil and gas exploration and development potential. (DMC)

  4. Alaska Resource Data File, Wiseman quadrangle, Alaska

    USGS Publications Warehouse

    Britton, Joe M.

    2003-01-01

    Descriptions of the mineral occurrences shown on the accompanying figure follow. See U.S. Geological Survey (1996) for a description of the information content of each field in the records. The data presented here are maintained as part of a statewide database on mines, prospects and mineral occurrences throughout Alaska.

  5. Libraries in Alaska: MedlinePlus

    MedlinePlus

    ... this page: https://medlineplus.gov/libraries/alaska.html Libraries in Alaska To use the sharing features on ... JavaScript. Anchorage University of Alaska Anchorage Alaska Medical Library 3211 Providence Drive Anchorage, AK 99508-8176 907- ...

  6. NOAA Utilization of the Global Hawk Unmanned Aircraft for Atmospheric Research and Forecast Improvement

    NASA Astrophysics Data System (ADS)

    Wick, G. A.; Hood, R. E.; Black, M. L.; Spackman, J. R.; Ralph, F. M.; Intrieri, J. M.; Hock, T. F.; Neiman, P. J.

    2014-12-01

    High altitude, long endurance unmanned aircraft provide a tremendous new capability for monitoring the atmosphere in support of weather research and forecast improvement. The NOAA Unmanned Aircraft Systems (UAS) program is collaborating with NASA on the use of their Global Hawk (GH) aircraft for research into better understanding and forecasting high-impact weather events. NOAA has participated in multiple field campaigns either in partnership with NASA including the Genesis and Rapid Intensification Processes (GRIP, 2010) and the Hurricane and Severe Storm Sentinel (HS3, 2011-2014) experiments, or under NOAA leadership during the Winter Storms and Pacific Atmospheric Rivers (WISPAR, 2011) experiment. This past year, NOAA began a 3-year project, Sensing Hazards with Operational Unmanned Technology (SHOUT), to quantify the influence of UAS data on high-impact weather prediction and assess the operational effectiveness of UAS to help mitigate the risk of potential satellite observing gaps. The NOAA UAS system partnered with the National Center for Atmospheric Research in the development of a dropsonde system for the GH which has been flown along with other remote sensing instrumentation. This presentation summarizes our key results to date and describes our planned activities over the next two years. Flights during WISPAR provided measurements of water vapor transport within atmospheric rivers for evaluation of numerical weather prediction forecasts and analyses. A flight sampling the Arctic atmosphere north of Alaska included the first dropsondes released in the Arctic since the 1950's and extensive measurements of boundary-layer variability over an ocean-ice lead feature. Assimilation of GH dropsonde data collected in the environment around tropical storms during HS3 has demonstrated significant positive forecast improvements. Data are also being employed in the validation of multiple satellite-derived products. In SHOUT, campaigns are planned targeting Atlantic

  7. Budget Increases Proposed for NOAA and Energy Department

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    2009-05-01

    In addition to the Obama administration's proposed budget increases for NASA, the Environmental Protection Agency, and the U.S. Geological Survey (see Eos, 90(10), 83, 2009, and 90(20), 175, 2009), other federal Earth and space science agencies also would receive boosts in the proposed fiscal year (FY) 2010 budget. The proposed budget comes on top of the 2009 American Recovery and Reinvestment Act's (ARRA) US$18.3 billion in stimulus spending for research and development that can be apportioned between the FY 2009 and FY 2010 budgets. This news item focuses on the budget proposals for the National Oceanic and Atmospheric Administration (NOAA) and the Department of Energy (DOE). Next week, Eos will look at the budget proposal for the National Science Foundation.

  8. Alaska: A frontier divided

    SciTech Connect

    O'Dell, R. )

    1986-09-01

    The superlatives surrounding Alaska are legion. Within the borders of the 49th US state are some of the world's greatest concentrations of waterfowl, bald eagles, fur seals, walrus, sea lions, otters, and the famous Kodiak brown bear. Alaska features the highest peak of North America, the 20,320-foot Mount McKinley, and the longest archipelago of small islands, the Aleutians. The state holds the greatest percentage of protected wilderness per capita in the world. The expanse of some Alaskan glaciers dwarfs entire countries. Like the periodic advance and retreat of its glaciers, Alaska appears with some regularity on the national US agenda. It last achieved prominence when President Jimmy Carter signed the Alaska National Interest Lands Conservation Act in 1980. Since then the conflict between environmental protection and economic development has been played out throughout the state, and Congress is expected to turn to Alaskan issues again in its next sessions.

  9. The Operational Use of Suomi National Polar-Orbiting Partnership (S-NPP) Satellite Information in Alaska

    NASA Astrophysics Data System (ADS)

    Scott, C. A.; Goldberg, M.

    2014-12-01

    The National Weather Service (NWS), Alaska Region (AR) provides warnings, forecasts and information for an area greater than 20% of the size of the continental United States. This region experiences an incredible diversity of weather phenomena, yet ironically is one of the more data-sparse areas in the world. Polar orbiting satellite-borne sensors offer one of the most cost effective means of gaining repetitive information over this data-sparse region to provide insight on Alaskan weather and the environment on scales ranging from synoptic to mesoscale in a systematic manner. Because of Alaska's high latitude location, polar orbiting satellites can provide coverage about every two hours at high resolution. The Suomi National Polar-orbiting Partnership (S-NPP) Satellite, equipped with a new generation of satellite sensors to better monitor, detect, and track weather and the environment was launched October 2011. Through partnership through the with NESDIS JPSS, the University of Alaska - Geographical Information Network of Alaska (GINA), the NWS Alaska Region was able to gain timely access to the Visible Infrared Imaging Radiometer Suite (VIIRS) imagery from S-NPP. The imagery was quickly integrated into forecast operations across the spectrum of NWS Alaska areas of responsibility. The VIIRS has provided a number of new or improved capabilities for detecting low cloud/fog, snow cover, volcanic ash, fire hotspots/smoke, flooding due to river ice break up, and sea ice and ice-free passages. In addition the Alaska Region has successfully exploited the 750 m spatial resolution of the VIIRS/Near Constant Contrast (NCC) low-light visible measurements. Forecasters have also begun the integration of NOAA Unique Cross-track Infrared Sounder (CrIS)/Advanced Technology Microwave Sounder (ATMS) Processing System (NUCAPS) Soundings in AWIPS-II operations at WFO Fairbanks and Anchorage, the Alaska Aviation Weather Unit (AAWU) and the Alaska Region, Regional Operations Center (ROC

  10. Alaska Center for Climate Assessment and Policy: Partnering with Decision-Makers in Climate Change Adaptation

    NASA Astrophysics Data System (ADS)

    White, D.; Trainor, S.; Walsh, J.; Gerlach, C.

    2008-12-01

    The Alaska Center for Climate Assessment and Policy (ACCAP; www.uaf.edu/accap) is one of several, NOAA funded, Regional Integrated Science and Policy (RISA) programs nation-wide (http://www.climate.noaa.gov/cpo_pa/risa/). Our mission is to assess the socio-economic and biophysical impacts of climate variability in Alaska, make this information available to local and regional decision-makers, and improve the ability of Alaskans to adapt to a changing climate. We partner with the University of Alaska?s Scenario Network for Alaska Planning (SNAP; http://www.snap.uaf.edu/), state and local government, state and federal agencies, industry, and non-profit organizations to communicate accurate and up-to-date climate science and assist in formulating adaptation and mitigation plans. ACCAP and SNAP scientists are members of the Governor?s Climate Change Sub-Cabinet Adaptation and Mitigation Advisory and Technical Working Groups (http://www.climatechange.alaska.gov/), and apply their scientific expertise to provide down-scaled, state-wide maps of temperature and precipitation projections for these groups. An ACCAP scientist also serves as co-chair for the Fairbanks North Star Borough Climate Change Task Force, assisting this group as they work through the five-step model for climate change planning put forward by the International Council for Local Environmental Initiatives (http://www.investfairbanks.com/Taskforces/climate.php). ACCAP scientists work closely with federal resource managers in on a range of projects including: partnering with the U.S. Fish and Wildlife Service to analyze hydrologic changes associated with climate change and related ecological impacts and wildlife management and development issues on Alaska?s North Slope; partnering with members of the Alaska Interagency Wildland Fire Coordinating Group in statistical modeling to predict seasonal wildfire activity and coordinate fire suppression resources state-wide; and working with Alaska Native Elders and

  11. Alaska Resource Data File, Point Lay quadrangle, Alaska

    USGS Publications Warehouse

    Grybeck, Donald J.

    2006-01-01

    This report gives descriptions of the mineral occurrences in the Point Lay 1:250,000-scale quadrangle, Alaska. The data presented here are maintained as part of a statewide database on mines, prospects and mineral occurrences throughout Alaska.

  12. NOAA-USGS Debris-Flow Warning System - Final Report

    USGS Publications Warehouse

    NOAA-USGS Debris Flow Task Force

    2005-01-01

    Landslides and debris flows cause loss of life and millions of dollars in property damage annually in the United States (National Research Council, 2004). In an effort to reduce loss of life by debris flows, the National Oceanic and Atmospheric Administration's (NOAA) National Weather Service (NWS) and the U.S. Geological Survey (USGS) operated an experimental debris-flow prediction and warning system in the San Francisco Bay area from 1986 to 1995 that relied on forecasts and measurements of precipitation linked to empirical precipitation thresholds to predict the onset of rainfall-triggered debris flows. Since 1995, there have been substantial improvements in quantifying precipitation estimates and forecasts, development of better models for delineating landslide hazards, and advancements in geographic information technology that allow stronger spatial and temporal linkage between precipitation forecasts and hazard models. Unfortunately, there have also been several debris flows that have caused loss of life and property across the United States. Establishment of debris-flow warning systems in areas where linkages between rainfall amounts and debris-flow occurrence have been identified can help mitigate the hazards posed by these types of landslides. Development of a national warning system can help support the NOAA-USGS goal of issuing timely Warnings of potential debris flows to the affected populace and civil authorities on a broader scale. This document presents the findings and recommendations of a joint NOAA-USGS Task Force that assessed the current state-of-the-art in precipitation forecasting and debris-flow hazard-assessment techniques. This report includes an assessment of the science and resources needed to establish a demonstration debris-flow warning project in recently burned areas of southern California and the necessary scientific advancements and resources associated with expanding such a warning system to unburned areas and, possibly, to a

  13. NOAA tools to support CSC and LCC regional climate science priorities in the western Gulf of Mexico

    NASA Astrophysics Data System (ADS)

    Brown, D. P.; Marcy, D.; Robbins, K.; Shafer, M.; Stiller, H.

    2012-12-01

    The National Oceanic and Atmospheric Administration (NOAA) is an active regional partner with the Department of Interior (DOI) in supplying and supporting the delivery of climate science and services. A primary mechanism for NOAA-DOI coordination at the regional scale is the Landscape Conservation Cooperative (LCC) network, which is supported in part by DOI Climate Science Centers (CSC). Together, the CSCs and LCCs provide a framework to identify landscape-scale science and services priorities for conservation and management. As a key partner of the CSCs and an active member of many LCCs, NOAA is working to ensure its own regional product and service delivery efforts will help address these conservation and management challenges. Two examples of NOAA's regional efforts are highlighted here, with a focus on the coastal and interior geographies of the western Gulf of Mexico where NOAA partners with the South Central CSC and participates as a member of the Gulf Coast Prairie LCC. Along the Texas coastline, a sea level rise and coastal flooding impacts viewer, produced by NOAA's Coastal Services Center and available via its Digital Coast interface, allows constituents to visualize estimates of sea level rise, measures of uncertainty, flood frequencies, and environmental (e.g., marsh migration) and socioeconomic (e.g., tidal flooding of built environments) impacts. In the interior of Texas and Louisiana, NOAA's Southern Regional Climate Center is leading a consortium of partners in the development of a unified source of regional water reservoir information, including current conditions, a historical database, and web-based visualization tools to illustrate spatio-temporal variations in water availability to a broad array of hydrological, agricultural, and other customers. These two examples of NOAA products can, in their existing forms, support regional conservation and management priorities for CSCs and LCCs by informing vulnerability assessments and adaptation

  14. NOAA Plans for Geomagnetic Storm Observations

    NASA Astrophysics Data System (ADS)

    Diedrich, B. L.; Biesecker, D. A.; Mulligan, P.; Simpson, M.

    2012-12-01

    For many years, NOAA has issued geomagnetic storm watches and warnings based on coronal mass ejection (CME) imagery and in-situ solar wind measurements from research satellites. The NOAA Satellite and Information Service (NESDIS) recognizes the importance of this service to protecting technological infrastructure including power grids, polar air travel, and satellite navigation, so is actively planning to replace these assets to ensure their continued availability. NOAA, NASA, and the US Air Force are working on launching the first operational solar wind mission in 2014, the Deep Space Climate Observatory (DSCOVR), to follow NASA's Advanced Composition Explorer (ACE) in making solar wind measurements at the sun-Earth L1 for 15-60 minute geomagnetic storm warning. For continuing operations after the DSCOVR mission, one technology NOAA is looking at is solar sails that could greatly improve the lead time of geomagnetic storm warnings by stationkeeping closer to the sun than L1. We are working with NASA and private industry on the Sunjammer solar sail demonstration mission to test making solar wind measurements from a solar sail in the sun-Earth L1 region. NOAA uses CME imagery from the NASA/ESA Solar and Heliospheric Observatory (SOHO) and the NASA Solar Terrestrial Relations Observatory (STEREO) satellites to issue 1-3 day geomagnetic storm watches. For the future, NOAA worked with the Naval Research Laboratory (NRL) to develop a Compact Coronagraph (CCOR) through Phase A, and is studying ways to complete instrument development and test fly it for use in the future.

  15. 50 CFR Table 10 to Part 679 - Gulf of Alaska Retainable Percentages

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 50 Wildlife and Fisheries 13 2012-10-01 2012-10-01 false Gulf of Alaska Retainable Percentages 10 Table 10 to Part 679 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION, DEPARTMENT OF COMMERCE (CONTINUED) FISHERIES OF THE EXCLUSIVE ECONOMIC ZONE OFF ALASKA Pt. 679, Table 10 Table 10...

  16. 50 CFR Table 10 to Part 679 - Gulf of Alaska Retainable Percentages

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 50 Wildlife and Fisheries 11 2011-10-01 2011-10-01 false Gulf of Alaska Retainable Percentages 10 Table 10 to Part 679 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION, DEPARTMENT OF COMMERCE (CONTINUED) FISHERIES OF THE EXCLUSIVE ECONOMIC ZONE OFF ALASKA Pt. 679, Table 10 Table 10...

  17. 50 CFR Table 10 to Part 679 - Gulf of Alaska Retainable Percentages

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 50 Wildlife and Fisheries 13 2014-10-01 2014-10-01 false Gulf of Alaska Retainable Percentages 10 Table 10 to Part 679 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION, DEPARTMENT OF COMMERCE (CONTINUED) FISHERIES OF THE EXCLUSIVE ECONOMIC ZONE OFF ALASKA Pt. 679, Table 10 Table 10...

  18. 50 CFR Table 10 to Part 679 - Gulf of Alaska Retainable Percentages

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 50 Wildlife and Fisheries 13 2013-10-01 2013-10-01 false Gulf of Alaska Retainable Percentages 10 Table 10 to Part 679 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION, DEPARTMENT OF COMMERCE (CONTINUED) FISHERIES OF THE EXCLUSIVE ECONOMIC ZONE OFF ALASKA Pt. 679, Table 10 Table 10...

  19. 50 CFR Table 10 to Part 679 - Gulf of Alaska Retainable Percentages

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 50 Wildlife and Fisheries 9 2010-10-01 2010-10-01 false Gulf of Alaska Retainable Percentages 10 Table 10 to Part 679 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION, DEPARTMENT OF COMMERCE (CONTINUED) FISHERIES OF THE EXCLUSIVE ECONOMIC ZONE OFF ALASKA Pt. 679, Table 10 Table 10 to...

  20. Alaska Resource Data File: Chignik quadrangle, Alaska

    USGS Publications Warehouse

    Pilcher, Steven H.

    2000-01-01

    Descriptions of the mineral occurrences can be found in the report. See U.S. Geological Survey (1996) for a description of the information content of each field in the records. The data presented here are maintained as part of a statewide database on mines, prospects and mineral occurrences throughout Alaska. There is a website from which you can obtain the data for this report in text and Filemaker Pro formats

  1. Grant award to the Division of Mental Health and Developmental Disabilities, Department of Health and Social Services, State of Alaska. Center for Substance Abuse Treatment (CSAT), Center for Mental Health Services (CMHS), Substance Abuse and Mental Health Services Administration (SAMHSA), HHS. Availability of grant funds for the Division of Mental Health and Developmental Disabilities, Department of Health and Social Services, State of Alaska.

    PubMed

    1999-04-16

    This notice is to inform the public that CSAT and CMHS are making available approximately $5,000,000 for an award in FY 1999 to the Division of Mental Health and Developmental Disabilities, Department of Health and Social Services, State of Alaska to support development, implementation, and evaluation of a comprehensive, seamless system of care for persons with co-occurring substance abuse (including alcohol and other drugs) and mental health disorders in Anchorage, Alaska, and its environs. CSAT and CMHS will make this award if the application is recommended for approval by the Initial Review Group and the CSAT and CMHS National Advisory Councils. This is not a formal request for applications; assistance will be provided only to the Alaska Division of Mental Health and Developmental Disabilities. Eligibility for this program is limited to the State of Alaska, as specified in Congressional report language, in recognition of primacy of its responsibility for, and interest in, providing for the needs of its citizens, and because the success of the program will depend upon the authority and ability to broadly coordinate the variety of resources essential for full program success. The State has committed itself to moving certain mental health services from their extant institutional bases to community bases, and, simultaneously, changing from parallel systems of service delivery--for substance abuse and mental health problems--to an approach designed to deliver services seamlessly to persons with comorbidity. Alaska needs a high level of systemic competence in delivering these services due, in great part, to its climate (resulting in deaths of homeless comorbid persons), and to the requirements of its proposed systems changes. The proposed project presents a unique opportunity for SAMHSA and its Centers to learn, first hand, how the transition from parallel systems to a seamless system of care can be accomplished in a small city in a rural/frontier State, and at what

  2. Latest developments of geostationary microwave sounder technologies for NOAA's mission

    NASA Astrophysics Data System (ADS)

    Bajpai, Shyam; Madden, Michael; Chu, Donald; Yapur, Martin

    2006-12-01

    The National Oceanic and Atmospheric Administration (NOAA) have been flying microwave sounders since 1975 on Polar Operational Environmental Satellites (POES). Microwave observations have made significant contributions to the understanding of the atmosphere and earth surface. This has helped in improving weather and storm tracking forecasts. However, NOAA's Geostationary Operational Environmental Satellites (GOES) have microwave requirements that can not be met due to the unavailability of proven technologies. Several studies of a Geostationary Microwave Sounder (GMS) have been conducted. Among those, are the Geostationary Microwave Sounder (GEM) that uses a mechanically steered solid dish antenna and the Geostationary Synthetic Thinned Aperture Radiometer (GeoSTAR) that utilizes a sparse aperture array. Both designs take advantage of the latest developments in sensor technology. NASA/Jet Propulsion Lab (JPL) has recently successfully built and tested a prototype ground-based GeoSTAR at 50 GHz frequency with promising test results. Current GOES IR Sounders are limited to cloud top observations. Therefore, a sounding suite of IR and Microwave should be able to provide observations under clear as well as cloudy conditions all the time. This paper presents the results of the Geostationary Microwave Sounder studies, user requirements, frequencies, technologies, limitations, and implementation strategies.

  3. NOAA's Weather-Ready Nation: Progress and Plans

    NASA Astrophysics Data System (ADS)

    Scharfenberg, K.

    2014-12-01

    The National Oceanic and Atmospheric Administration (NOAA) Weather-Ready Nation program is about building community resilience in the face of increasing vulnerability to extreme weather and water events. Through community partnerships and infusion of new science and technology, better preparedness is reducing the devastating impacts of these extreme events. For the past three years, the National Weather Service has been leading the Weather-Ready Nation strategy through a number of initiatives, focused around a series of pilot projects for transforming internal National Weather Service Operations. The "Emergency Response Specialist" technical role and associated training has been developed to better apply new hazardous weather research and technology to critical community decisions. High-resolution storm surge inundation mapping was introduced to the public in 2014 during Hurricane Arthur with successful results. The dual-polarization upgrade to the Nation's weather radar network has also been completed, with successful application of improved tornado, flash flood, and winter storm warning services. This presentation will focus on the application of these science initiatives under the NOAA Weather-Ready Nation program, and will further discuss NWS plans for operational application of future advances in research and technology.

  4. NOAA GOES Satellite Sees March 12/13 Storm

    NASA Video Gallery

    This animation of NOAA's GOES satellite data shows the progression of the major winter storm over the U.S. Mid-Atlantic and Northeastern U.S. on March 12 and 13.Credit: NASA/NOAA GOES Project, Denn...

  5. Flood frequency in Alaska

    USGS Publications Warehouse

    Childers, J.M.

    1970-01-01

    Records of peak discharge at 183 sites were used to study flood frequency in Alaska. The vast size of Alaska, its great ranges of physiography, and the lack of data for much of the State precluded a comprehensive analysis of all flood determinants. Peak stream discharges, where gaging-station records were available, were analyzed for 2-year, 5-year, 10-year, 25-year, and 50-year average-recurrence intervals. A regional analysis of the flood characteristics by multiple-regression methods gave a set of equations that can be used to estimate floods of selected recurrence intervals up to 50 years for any site on any stream in Alaska. The equations relate floods to drainage-basin characteristics. The study indicates that in Alaska the 50-year flood can be estimated from 10-year gaging- station records with a standard error of 22 percent whereas the 50-year flood can be estimated from the regression equation with a standard error of 53 percent. Also, maximum known floods at more than 500 gaging stations and miscellaneous sites in Alaska were related to drainage-area size. An envelope curve of 500 cubic feet per second per square mile covered all but 2 floods in the State.

  6. Re-evaluation of total and Umkehr ozone data from NOAA-CMDL Dobson spectrophotometer observatories. Final report

    SciTech Connect

    Komhyr, W.D.; Quincy, D.M.; Grass, R.D.; Koenig, G.L. |

    1995-12-01

    This report describes work to improve the quality of total ozone and Umkehr data obtained in the past at the NOAA Climate Monitoring and Diagnostics Laboratory and the Dobson spectrophotometer ozone observatories. The authors present results of total ozone data re-evaluations for ten stations: Byrd, Antarctica; Fairbanks, Alaska; Hallett, Antarctica; Huancayo, Peru; Haute Provence, France; Lauder, New Zealand; Perth, Australia; Poker Flat, Alaska; Puerto Montt, Chile; and South Pole, Antarctica. The improved data will be submitted in early 1996 to the World Meteorological Organization (WMO) World Ozone Data Center (WODC), and the Atmospheric Environment Service for archiving. Considerable work has been accomplished, also, in reevaluating Umkehr data from seven of the stations, viz., Huancayo, Haute Provence, Lauder, Perth, Poker Flat, Boulder, Colorado; and Mauna Loa, Hawaii.

  7. 15 CFR 996.30 - Use of the NOAA emblem.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 15 Commerce and Foreign Trade 3 2011-01-01 2011-01-01 false Use of the NOAA emblem. 996.30 Section... REQUIREMENTS FOR NOAA HYDROGRAPHIC PRODUCTS AND SERVICES QUALITY ASSURANCE AND CERTIFICATION REQUIREMENTS FOR NOAA HYDROGRAPHIC PRODUCTS AND SERVICES Other Quality Assurance Program Matters § 996.30 Use of...

  8. Accretion of southern Alaska

    USGS Publications Warehouse

    Hillhouse, J.W.

    1987-01-01

    Paleomagnetic data from southern Alaska indicate that the Wrangellia and Peninsular terranes collided with central Alaska probably by 65 Ma ago and certainly no later than 55 Ma ago. The accretion of these terranes to the mainland was followed by the arrival of the Ghost Rocks volcanic assemblage at the southern margin of Kodiak Island. Poleward movement of these terranes can be explained by rapid motion of the Kula oceanic plate, mainly from 85 to 43 Ma ago, according to recent reconstructions derived from the hot-spot reference frame. After accretion, much of southwestern Alaska underwent a counterclockwise rotation of about 50 ?? as indicated by paleomagnetic poles from volcanic rocks of Late Cretaceous and Early Tertiary age. Compression between North America and Asia during opening of the North Atlantic (68-44 Ma ago) may account for the rotation. ?? 1987.

  9. 76 FR 39857 - Alaska Coastal Management Program Withdrawal From the National Coastal Management Program Under...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-07

    ... National Oceanic Atmospheric Administration Alaska Coastal Management Program Withdrawal From the National Coastal Management Program Under the Coastal Zone Management Act (CZMA) AGENCY: Office of Ocean and Coastal Resource Management (OCRM), National Ocean Service (NOS), National Oceanic...

  10. Evolution of the NOAA National Weather Service Satellite Broadcast Network (SBN) to Europe's DVB-S satellite communications technology standard

    NASA Astrophysics Data System (ADS)

    Cragg, Phil; Brockman, William E.

    2006-08-01

    The National Oceanic and Atmospheric Administration's (NOAA) National Weather Service (NWS) uses a commercial Satellite Broadcast Network (SBN) to distribute weather data to the NWS AWIPS workstations and National Centers and to NWS Family of Service Users. Advances in science and technology from NOAA's observing systems, such as remote sensing satellites and NEXRAD radars, and advances in Numeric Weather Prediction have greatly increased the volume of data to be transmitted via the SBN. The NOAA-NWS SBN Evolution Program did a trade study resulting in the selection of Europe's DVB-S communication protocol as the basis for enabling a significant increase in the SBN capacity. The Digital Video Broadcast (DVB) group, started to develop digital TV for Europe through satellite broadcasting, has become the current standard for defining technology for satellite broadcasting of digital data for much of the world. NOAA-NWS implemented the DVB-S with inexpensive, Commercial Off The Shelf receiving equipment. The modernized NOAA-NWS SBN meets current performance goals and provides the basis for continued future expansion with no increase in current communication costs. This paper discusses aspects of the NOAA-NWS decision and the migration to the DVB-S standard for its commercial satellite broadcasts of observations and Numerical Weather Prediction data.

  11. 2012 Alaska Performance Scholarship Outcomes Report

    ERIC Educational Resources Information Center

    Rae, Brian

    2012-01-01

    As set forth in Alaska Statute 14.43.840, Alaska's Departments of Education & Early Development (EED) and Labor and Workforce Development (DOLWD), the University of Alaska (UA), and the Alaska Commission on Postsecondary Education (ACPE) present this first annual report on the Alaska Performance Scholarship to the public, the Governor,…

  12. Alaska Mathematics Standards

    ERIC Educational Resources Information Center

    Alaska Department of Education & Early Development, 2012

    2012-01-01

    High academic standards are an important first step in ensuring that all Alaska's students have the tools they need for success. These standards reflect the collaborative work of Alaskan educators and national experts from the nonprofit National Center for the Improvement of Educational Assessment. Further, they are informed by public…

  13. ECOREGIONS OF ALASKA

    EPA Science Inventory

    A map of ecoregions of Alaska has been produced as a framework for organizing and interpreting environmental data for state, national, and international inventory, monitoring, and research efforts. he map and descriptions for 20 ecological regions were derived by synthesizing inf...

  14. Customer Service in Alaska.

    ERIC Educational Resources Information Center

    Ogliore, Judy

    1997-01-01

    Examines how the child support enforcement program in Alaska has responded to the challenges of distance, weather, and cultural differences through training representatives, making waiting areas more comfortable, conducting random customer evaluation of services, establishing travel hubs in regional offices and meeting with community leaders and…

  15. Current Ethnomusicology in Alaska.

    ERIC Educational Resources Information Center

    Johnston, Thomas F.

    The systematic study of Eskimo, Indian, and Aleut musical sound and behavior in Alaska, though conceded to be an important part of white efforts to foster understanding between different cultural groups and to maintain the native cultural heritage, has received little attention from Alaskan educators. Most existing ethnomusical studies lack one or…

  16. Seismology Outreach in Alaska

    NASA Astrophysics Data System (ADS)

    Gardine, L.; Tape, C.; West, M. E.

    2014-12-01

    Despite residing in a state with 75% of North American earthquakes and three of the top 15 ever recorded, most Alaskans have limited knowledge about the science of earthquakes. To many, earthquakes are just part of everyday life, and to others, they are barely noticed until a large event happens, and often ignored even then. Alaskans are rugged, resilient people with both strong independence and tight community bonds. Rural villages in Alaska, most of which are inaccessible by road, are underrepresented in outreach efforts. Their remote locations and difficulty of access make outreach fiscally challenging. Teacher retention and small student bodies limit exposure to science and hinder student success in college. The arrival of EarthScope's Transportable Array, the 50th anniversary of the Great Alaska Earthquake, targeted projects with large outreach components, and increased community interest in earthquake knowledge have provided opportunities to spread information across Alaska. We have found that performing hands-on demonstrations, identifying seismological relevance toward career opportunities in Alaska (such as natural resource exploration), and engaging residents through place-based experience have increased the public's interest and awareness of our active home.

  17. Alaska's Cold Desert.

    ERIC Educational Resources Information Center

    Brune, Jeff; And Others

    1996-01-01

    Explores the unique features of Alaska's Arctic ecosystem, with a focus on the special adaptations of plants and animals that enable them to survive in a stressful climate. Reviews the challenges facing public and private land managers who seek to conserve this ecosystem while accommodating growing demands for development. Includes classroom…

  18. Alaska Glaciers and Rivers

    NASA Technical Reports Server (NTRS)

    2007-01-01

    The Moderate Resolution Imaging Spectroradiometer (MODIS) on NASA's Terra satellite captured this image on October 7, 2007, showing the Alaska Mountains of south-central Alaska already coated with snow. Purple shadows hang in the lee of the peaks, giving the snow-clad land a crumpled appearance. White gives way to brown on the right side of the image where the mountains yield to the lower-elevation Susitna River Valley. The river itself cuts a silver, winding path through deep green forests and brown wetlands and tundra. Extending from the river valley, are smaller rivers that originated in the Alaska Mountains. The source of these rivers is evident in the image. Smooth white tongues of ice extend into the river valleys, the remnants of the glaciers that carved the valleys into the land. Most of the water flowing into the Gulf of Alaska from the Susitna River comes from these mountain glaciers. Glacier melt also feeds glacier lakes, only one of which is large enough to be visible in this image. Immediately left of the Kahiltna River, the aquamarine waters of Chelatna Lake stand out starkly against the brown and white landscape.

  19. Alaska and Yukon Fires

    Atmospheric Science Data Center

    2014-05-15

    article title:  Smoke Signals from the Alaska and Yukon Fires   ... the Yukon Territory from mid-June to mid-July, 2004. Thick smoke particles filled the air during these fires, prompting Alaskan officials to issue air quality warnings. Some of the smoke from these fires was detected as far away as New Hampshire. These ...

  20. Suicide in Northwest Alaska.

    ERIC Educational Resources Information Center

    Travis, Robert

    1983-01-01

    Between 1975 and 1979 the Alaskan Native suicide rate (90.9 per 100,000) in Northwest Alaska was more than seven times the national average. Alienation, loss of family, low income, alcohol abuse, high unemployment, and more education were factors related to suicidal behavior. Average age for suicidal behavior was 22.5. (Author/MH)

  1. Facilitating Adaptation to Changing Storm Surge Patterns in Western Alaska.

    NASA Astrophysics Data System (ADS)

    Murphy, K. A.; Holman, A.; Reynolds, J.

    2014-12-01

    Coastal regions of North America are already experiencing the effects of climate change and the consequences of new storm patterns and sea level rise. These climate change effects are even more pronounced in western Alaska where the loss of sea ice in early winter and spring are exposing the coast to powerful winter storms that are visibly altering the landscape, putting coastal communities at risk, and are likely impacting important coastal wildlife habitat in ways we don't yet understand. The Western Alaska Landscape Conservation Cooperative has funded a suite of projects to improve the information available to assist managers and communities to adapt changes in coastal storms and their impacts. Projects range from modeling tide, wave and storm surge patters, to ShoreZone and NHD mapping, to bathymetry mapping, community vulnerability assessments and risks to important wildlife habitat. This group of diverse projects has helped stimulate momentum among partners which will lead to better tools for communities to respond to dangerous storms. For example, the State of Alaska and NOAA are working together to compile a series of community-scale maps that utilize best-available datasets to streamline communication about forecasted storm surges, local elevations and potentially impacted infrastructure during storm events that may lead to coastal flooding.

  2. The NOAA Satellite Observing System Architecture Study

    NASA Technical Reports Server (NTRS)

    Volz, Stephen; Maier, Mark; Di Pietro, David

    2016-01-01

    NOAA is beginning a study, the NOAA Satellite Observing System Architecture (NSOSA) study, to plan for the future operational environmental satellite system that will follow GOES and JPSS, beginning about 2030. This is an opportunity to design a modern architecture with no pre-conceived notions regarding instruments, platforms, orbits, etc. The NSOSA study will develop and evaluate architecture alternatives to include partner and commercial alternatives that are likely to become available. The objectives will include both functional needs and strategic characteristics (e.g., flexibility, responsiveness, sustainability). Part of this study is the Space Platform Requirements Working Group (SPRWG), which is being commissioned by NESDIS. The SPRWG is charged to assess new or existing user needs and to provide relative priorities for observational needs in the context of the future architecture. SPRWG results will serve as input to the process for new foundational (Level 0 and Level 1) requirements for the next generation of NOAA satellites that follow the GOES-R, JPSS, DSCOVR, Jason-3, and COSMIC-2 missions.

  3. NOAA Inter-Agency Networking for Open Data and Research Results

    NASA Astrophysics Data System (ADS)

    de la Beaujardiere, J.

    2015-12-01

    The US National Oceanic and Atmospheric Administration (NOAA) generates tens of terabytes of data per day from hundreds of sensors on satellites, radars, aircraft, ships, and buoys, and from numerical models. With rare exceptions, all of these data should be made publicly accessible in a usable fashion. NOAA has long been both an advocate and a practitioner of open data, and has observations going back 150 years in its archives. The NOAA data management community therefore welcomed the White House mandates on Open Data and Open Research, and has striven to improve standardization internally and in collaboration with other organizations. This paper will summarize the state of inter-agency networking by NOAA, and will discuss future perspectives, in particular the need to achieve a state where the appropriate technology choices for particular classes of geospatial data are obvious and beyond discussion, and where data sharing and metadata creation are built into agency workflows for project planning, approval, and execution, so that instead of writing and enforcing mandates we can focus on actually using data from multiple sources to improve understanding and decision-making.

  4. 76 FR 77300 - Alaska Federal Lands Long Range Transportation Plan

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-12

    ... Federal Highway Administration Alaska Federal Lands Long Range Transportation Plan AGENCY: Federal Highway... Lands Long Range Transportation Plans (LRTP) for public review and comment. The draft plans outline a... United States Code Section 204 requires all Federal land management agencies to conduct long...

  5. 50 CFR 20.132 - Subsistence use in Alaska.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 50 Wildlife and Fisheries 8 2011-10-01 2011-10-01 false Subsistence use in Alaska. 20.132 Section 20.132 Wildlife and Fisheries UNITED STATES FISH AND WILDLIFE SERVICE, DEPARTMENT OF THE INTERIOR... WILDLIFE AND PLANTS (CONTINUED) MIGRATORY BIRD HUNTING Administrative and Miscellaneous Provisions §...

  6. 50 CFR 20.132 - Subsistence use in Alaska.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 50 Wildlife and Fisheries 6 2010-10-01 2010-10-01 false Subsistence use in Alaska. 20.132 Section 20.132 Wildlife and Fisheries UNITED STATES FISH AND WILDLIFE SERVICE, DEPARTMENT OF THE INTERIOR... WILDLIFE AND PLANTS (CONTINUED) MIGRATORY BIRD HUNTING Administrative and Miscellaneous Provisions §...

  7. Statistical Abstract 1987. [University of Alaska System of Higher Education].

    ERIC Educational Resources Information Center

    Gaylord, Thomas A.; And Others

    The 1987 edition of the statistical abstract for the University of Alaska System offers data to be used by public officials, institutional administrators, and the Board of Regents in developing university programs and plans. In 1987 the University used its old organizational structure for the last time due to state funding reductions, and this…

  8. Asthma and American Indians/Alaska Natives

    MedlinePlus

    ... Minority Population Profiles > American Indian/Alaska Native > Asthma Asthma and American Indians/Alaska Natives In 2014, 218, ... Native American adults reported that they currently have asthma. American Indian/Alaska Native children are 30% more ...

  9. 15 CFR Appendix A to Part 950 - Schedule of User Fees for Access to NOAA Environmental Data

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 15 Commerce and Foreign Trade 3 2012-01-01 2012-01-01 false Schedule of User Fees for Access to NOAA Environmental Data A Appendix A to Part 950 Commerce and Foreign Trade Regulations Relating to Commerce and Foreign Trade (Continued) NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION, DEPARTMENT OF COMMERCE GENERAL REGULATIONS OF THE...

  10. Simulated NASA Satellite Data Products for the NOAA Integrated Coral Reef Observation Network/Coral Reef Early Warning System

    NASA Technical Reports Server (NTRS)

    Estep, Leland; Spruce, Joseph P.

    2007-01-01

    This RPC (Rapid Prototyping Capability) experiment will demonstrate the use of VIIRS (Visible/Infrared Imager/Radiometer Suite) and LDCM (Landsat Data Continuity Mission) sensor data as significant input to the NOAA (National Oceanic and Atmospheric Administration) ICON/ CREWS (Integrated Coral Reef Observation System/Coral Reef Early Warning System). The project affects the Coastal Management Program Element of the Applied Sciences Program.

  11. Educator House Call: On-Line Data for Educators' Needs Assessment--Summary Report. NOAA Technical Memorandum GLERL-149

    ERIC Educational Resources Information Center

    Sturtevant, Rochelle A.; Marshall, Ann

    2009-01-01

    On July 15, 2009, National Oceanic and Atmospheric Administration's (NOAA's) Great Lakes Environmental Research Laboratory (GLERL) co-hosted a focus group--Educator House Calls: On-Line Data for Educators. The focus group was conducted at GLERL's main laboratory in Ann Arbor. The workshop was organized and funded by COSEE Great Lakes with student…

  12. NOAA Climate Users Engagement Using Training Activities

    NASA Astrophysics Data System (ADS)

    Timofeyeva, M. M.; Verdin, J. P.; Jones, J.; Pulwarty, R. S.

    2009-12-01

    NOAA National Weather Service (NWS) Climate Services Training Program was initiated in 2001. The training original target audience was NOAA NWS regional and local climate services workforce. As a result of eight-year-long development of the training program, NWS offers two training courses and about 25 online distance learning modules covering various climate topics: climate data and observations, climate variability and change, NWS national and local climate products, their tools, skill, and interpretation. Leveraging climate information and expertise available at all NOAA line offices and partners allows delivery of the most relevant, advanced knowledge and is a very critical aspect of the training program. In 2009 the training program launched a pilot project that expanded the training opportunities for specific user groups. The California Department of Water Resources (DWR) requested a training course with emphasis on Climate, Drought and Remote Sensing for their water resources managers, hydrologists, and engineering staff. The National Integrated Drought Information System (NIDIS) co-sponsored the project. Developing the course NOAA, NIDIS, and DWR staff worked together testing different approaches in order to identify the most appropriate balance between gaps in the target audience climate knowledge and technical level needed for the information communication and delivery. The two-day course was offered in June 2009 for 35 trainees with classroom recording for further dissemination of the training materials in form of online audio-visual presentations (webcasts). The training event brought together NOAA staff and partners from U.S. Geological Survey, the Western Regional Climate Center, NASA, academia, and DWR staff and provided a valuable opportunity for curriculum development and expertise exchange. The course final discussion engaged participants in process of identifying additional climate products and services needed for regional and sector specific

  13. Geographical and Temporal Differences in NOAA Observed Ground-Level Ozone in the Arctic

    NASA Astrophysics Data System (ADS)

    McClure-Begley, Audra; Petropavlovskikh, Irina; Andrews, Betsy; Hageman, Derek; Oltmans, Samuel; Uttal, Taneil

    2016-04-01

    The Arctic region is rapidly gaining interest and support for scientific studies to help understand and characterize the processes, sources, and chemical composition of the Arctic environment. In order to understand the Arctic climate system and the changes that are occurring, it is imperative to know the behavior and impact of atmospheric constituents. Surface level ozone in the Arctic is variable in both time and space and plays an essential role on the oxidation capacity of the atmosphere. NOAA Global Monitoring Division (NOAA/GMD) maintains continuous measurements and long-term records of ground-level ozone from Barrow, Alaska (since 1973) and Summit, Greenland (since 2000). Measurements taken by Thermo-Scientific ozone monitors are collected and examined with the NOAA/GMD Aerosol LiveCPD acquisition and software. These quality controlled data are used to develop seasonal climatologies, understand diurnal variation, and analyze differences in stations specifics by addressing spatial variability in the Arctic. Once typical ozone behavior is characterized, anomalies in the record are defined and investigated. Increased ozone events associated with transported pollution and photochemical production of ozone, and ozone depletion episodes related to sea-ice halogen release and chemical destruction of ozone are the primary processes which lead to deviations from typical ground-level ozone conditions. The measurements taken from Barrow and Summit are a critical portion of the IASOA network of observations of ground-level ozone and are investigated to ensure proper data management and quality control, as well as provide the fundamental understanding of ground-level ozone behavior in the Arctic.

  14. Significant Alaska minerals

    SciTech Connect

    Robinson, M.S.; Bundtzen, T.K.

    1982-01-01

    Alaska ranks in the top four states in gold production. About 30.5 million troy oz have been produced from lode and placer deposits. Until 1930, Alaska was among the top 10 states in copper production; in 1981, Kennecott Copper Company had prospects of metal worth at least $7 billion. More than 85% of the 20 million oz of silver derived have been byproducts of copper mining. Nearly all lead production has been as a byproduct of gold milling. Molybdenum is a future Alaskan product; in 1987 production is scheduled to be about 12% of world demand. Uranium deposits discovered in the Southeast are small but of high grade and easily accessible; farther exploration depends on improvement of a depressed market. Little has been done with Alaskan iron and zinc, although large deposits of the latter were discovered. Alaskan jade has a market among craftspeople. A map of the mining districts is included. 2 figures, 1 table.

  15. Coal resources of Alaska

    SciTech Connect

    Sanders, R.B.

    1982-01-01

    In the late 1800s, whaling ships carried Alaskan coal, and it was used to thaw ground for placer gold mining. Unfortunate and costly political maneuvers in the early 1900s delayed coal removal, but the Alaska Railroad and then World War II provided incentives for opening mines. Today, 33 million acres (about 9% of the state) is classified as prospectively valuable for coal, much of it under federal title. Although the state's geology is poorly known, potential for discovery of new fields exists. The US Geological Survey estimates are outdated, although still officially used. The total Alaska onshore coal resource is estimated to be 216 to 4216 billion tons of which 141 billion tons are identified resources; an additional 1430 billion tons are believed to lie beneath Cook Inlet. Transportation over mountain ranges and wetlands is the biggest hurdle for removal. Known coal sources and types are described and mapped. 1 figure.

  16. 76 FR 66196 - Fisheries of the Exclusive Economic Zone Off Alaska; Pacific Cod by Vessels Harvesting Pacific...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-26

    ... GOA (76 FR 11111, March 1, 2011). In accordance with Sec. 679.20(d)(1)(i), the Administrator, Alaska... Economic Zone Off Alaska; Pacific Cod by Vessels Harvesting Pacific Cod for Processing by the Inshore...; closure. SUMMARY: NMFS is prohibiting directed fishing for Pacific cod by vessels harvesting Pacific...

  17. 75 FR 64957 - Fisheries of the Exclusive Economic Zone Off Alaska; Pacific Cod by Vessels Catching Pacific Cod...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-21

    ... GOA (75 FR 11749, March 12, 2010). In accordance with Sec. 679.20(d)(1)(i), the Administrator, Alaska... Economic Zone Off Alaska; Pacific Cod by Vessels Catching Pacific Cod for Processing by the Offshore...; closure. ] SUMMARY: NMFS is prohibiting directed fishing for Pacific cod by vessels catching Pacific...

  18. 77 FR 54838 - Fisheries of the Exclusive Economic Zone Off Alaska; Reallocation of Pacific Cod in the Western...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-06

    ... specifications for groundfish in the GOA (77 FR 15194, March 14, 2012). The Administrator, Alaska Region... included in the final 2012 harvest specifications for groundfish in the GOA (77 FR 15194, March 14, 2012... Economic Zone Off Alaska; Reallocation of Pacific Cod in the Western Regulatory Area of the Gulf of...

  19. 76 FR 55276 - Fisheries of the Exclusive Economic Zone Off Alaska; Octopus in the Bering Sea and Aleutian Islands

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-07

    ... of the BSAI (76 FR 11139, March 1, 2011) and an apportionment from the non-specified reserve of groundfish (76 FR 17360, March 29, 2011). In accordance with Sec. 679.20(d)(2), the Administrator, Alaska... Economic Zone Off Alaska; Octopus in the Bering Sea and Aleutian Islands AGENCY: National Marine...

  20. 77 FR 21683 - Fisheries of the Exclusive Economic Zone Off Alaska; Pacific Cod by Catcher/processors Using...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-11

    ... GOA (77 FR 15194, March 14, 2012). In accordance with Sec. 679.20(d)(1)(i), the Administrator, Alaska... Economic Zone Off Alaska; Pacific Cod by Catcher/processors Using Trawl Gear in the Central Regulatory Area... directed fishing for Pacific cod by catcher/processors (C/Ps) using trawl gear in the Central...

  1. 76 FR 4552 - Fisheries of the Exclusive Economic Zone Off Alaska; Pacific Cod by Catcher/Processors Using Pot...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-26

    ... 2011 harvest specifications for groundfish in the BSAI (75 FR 11778, March 12, 2010) and inseason adjustment (76 FR 467, January 5, 2011). In accordance with Sec. 679.20(d)(1)(iii), the Administrator, Alaska... Economic Zone Off Alaska; Pacific Cod by Catcher/Processors Using Pot Gear in the Bering Sea and...

  2. 78 FR 7280 - Fisheries of the Exclusive Economic Zone Off Alaska; Pacific Cod by Catcher/Processors Using Pot...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-01

    ... 2013 harvest specifications for groundfish in the BSAI (77 FR 10669, February 23, 2012) and inseason adjustment (78 FR 270, January 3, 2013). In accordance with Sec. 679.20(d)(1)(iii), the Administrator, Alaska... Economic Zone Off Alaska; Pacific Cod by Catcher/Processors Using Pot Gear in the Bering Sea and...

  3. Problems of Definition of Tribe in Alaska Relating to Public Law 93-638. Hearings Before the Subcommittee on Indian Affairs of the Committee on Interior and Insular Affairs, United States Senate, 94th Congress, 2nd Session on Problems Associated with the Statutory Definitions of Tribe as They Relate to Native Alaskans (Juneau, Alaska, September 2, 1976; Anchorage, Alaska, September 3, 1976; Bethel, Alaska, September 4, 1976).

    ERIC Educational Resources Information Center

    Congress of the U.S., Washington, DC. Senate Committee on Interior and Insular Affairs.

    Testimony presented in these hearings centers on the legal problems derived from the many and varied statutory definitions of "tribe" and the resulting confusion on the part of the administrators of Federal programs designed to benefit American Indians and Alaska Natives (e.g., in Alaska, there are currently about 465 legal entities which may be…

  4. 75 FR 5251 - Fisheries of the Exclusive Economic Zone Off Alaska; Pacific Cod by Catcher Vessels Greater Than...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-02

    ... harvest specifications for groundfish in the BSAI (74 FR 7359, February 17, 2010) and inseason adjustment (74 FR 68717, December 29, 2009). In accordance with Sec. 679.20(d)(1)(iii), the Administrator, Alaska... Economic Zone Off Alaska; Pacific Cod by Catcher Vessels Greater Than or Equal to 60 Feet (18.3...

  5. Bridging the Great Divide: Connecting Alaska Native Learners and Leaders via "High Touch-High Tech" Distance Learning.

    ERIC Educational Resources Information Center

    Berkshire, Steven; Smith, Gary

    The Rural Alaska Native Adult program of Alaska Pacific University is specifically designed for adult Native learners. Courses in business administration, human services, and teacher education are offered to rural Native adult students via an interactive Internet-based format after an initial 1-week residency. The Internet component is facilitated…

  6. 43 CFR 29.3 - Fund administration.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 43 Public Lands: Interior 1 2010-10-01 2010-10-01 false Fund administration. 29.3 Section 29.3 Public Lands: Interior Office of the Secretary of the Interior TRANS-ALASKA PIPELINE LIABILITY FUND § 29.3 Fund administration. (a) The Fund shall be administered by a Board of Trustees designated by...

  7. Aniakchak Crater, Alaska Peninsula

    USGS Publications Warehouse

    Smith, Walter R.

    1925-01-01

    The discovery of a gigantic crater northwest of Aniakchak Bay (see fig. 11) closes what had been thought to be a wide gap in the extensive series of volcanoes occurring at irregular intervals for nearly 600 miles along the axial line of the Alaska Peninsula and the Aleutian Islands. In this belt there are more active and recently active volcanoes than in all the rest of North America. Exclusive of those on the west side of Cook Inlet, which, however, belong to the same group, this belt contains at least 42 active or well-preserved volcanoes and about half as many mountains suspected or reported to be volcanoes. The locations of some of these mountains and the hot springs on the Alaska Peninsula and the Aleutian Islands are shown on a map prepared by G. A. Waring. Attention has been called to these volcanoes for nearly two centuries, but a record of their activity since the discovery of Alaska is far from being complete, and an adequate description of them as a group has never been written. Owing to their recent activity or unusual scenic beauty, some of the best known of the group are Mounts Katmai, Bogoslof, and Shishaldin, but there are many other beautiful and interesting cones and craters.

  8. Validation of the Version 1 NOAA/NASA Pathfinder Sea Surface Temperature Data Set

    NASA Technical Reports Server (NTRS)

    Smith, Elizabeth A.

    1998-01-01

    A high-resolution, global satellite-derived sea surface temperature (SST) data set called Pathfinder, from the Advanced Very High Resolution Radiometer (AVHRR) aboard the NOAA Polar Orbiters, is available from the Jet Propulsion Laboratory Physical Oceanography Distributed Active Archive Center (JPL PO.DAAC). Suitable for research as well as education, the Pathfinder SST data set is a result of a collaboration between the National Oceanographic and Atmospheric Administration (NOAA), the National Aeronautics and Space Administration (NASA) and investigators at several universities. NOAA and NASA are the sponsors of the Pathfinder Program, which takes advantage of currently archived Earth science data from satellites. Where necessary, satellite sensors have been intercalibrated, algorithms improved and processing procedures revised, in order to produce long time-series, global measurements of ocean, land and atmospheric properties necessary for climate research. Many Pathfinder data sets are available to researchers now, nearly a decade before the first launch of NASA's Earth Observing System (EOS). The lessons learned from the Pathfinder programs will facilitate the processing and management of terabytes of data from EOS. The Oceans component of Pathfinder has undertaken to reprocess all Global Area Coverage (GAC) data acquired by the 5-channel AVHRRs since 1981. The resultant data products are consistent and stably calibrated [Rao, 1993a, Rao, 1993b, Brown et al., 1993], Earth-gridded SST fields at a variety of spatial and temporal resolutions.

  9. Solutions Network Formulation Report. Improving NOAA's Tides and Currents Through Enhanced Data Inputs from NASA's Ocean Surface Topography Mission

    NASA Technical Reports Server (NTRS)

    Guest, DeNeice C.

    2006-01-01

    The Nation uses water-level data for a variety of practical purposes, including hydrography, nautical charting, maritime navigation, coastal engineering, and tsunami and storm surge warnings (NOAA, 2002; Digby et al., 1999). Long-term applications include marine boundary determinations, tidal predictions, sea-level trend monitoring, oceanographic research, and climate research. Accurate and timely information concerning sea-level height, tide, and ocean current is needed to understand their impact on coastal management, disaster management, and public health. Satellite altimeter data products are currently used by hundreds of researchers and operational users to monitor ocean circulation and to improve scientists understanding of the role of the oceans in climate and weather. The NOAA (National Oceanic and Atmospheric Administration) National Ocean Service has been monitoring sea-level variations for many years (NOAA, 2006). NOAA s Tides & Currents DST (decision support tool, managed by the Center for Operational Oceanographic Products and Services, is the portal to a vast collection of oceanographic and meteorological data (historical and real-time), predictions, and nowcasts and forecasts. This report assesses the capacity of NASA s satellite altimeter data to meet societal decision support needs through incorporation into NOAA s Tides & Currents.

  10. Alaska's Children, 2000. Alaska Head Start State Collaboration Project. Quarterly Report.

    ERIC Educational Resources Information Center

    Douglas, Dorothy, Ed.

    2000-01-01

    This document consists of the two 2000 issues of "Alaska's Children," which provides information on the Alaska Head Start State Collaboration Project and updates on Head Start activities in Alaska. Regular features include a calendar of conferences and meetings, a status report on Alaska's children, reports from the Alaska Children's Trust, and…

  11. 78 FR 53137 - Flint Hills Resources Alaska, LLC, BP Pipelines (Alaska) Inc., ConocoPhillips Transportation...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-28

    ... formal complaint against BP Pipelines (Alaska) Inc., ConocoPhillips Transportation Alaska, Inc., and... Energy Regulatory Commission Flint Hills Resources Alaska, LLC, BP Pipelines (Alaska) Inc., ConocoPhillips Transportation Alaska, Inc., ExxonMobil Pipeline Company; Notice of Complaint Take notice that...

  12. Improvements in NOAA's Operational Tsunameter Network since December 2004

    NASA Astrophysics Data System (ADS)

    Bouchard, R.; Kohler, C.; McArthur, S.; Burnett, W. H.; Wells, W. I.; Luke, R.

    2009-12-01

    In December 2004 during the devastating Sumatran Tsunami, the National Oceanic and Atmospheric Administration (NOAA) had five tsunameter stations established in the North Pacific Ocean and one in the South Pacific Ocean operated and maintained by NOAA’s National Data Buoy Center (NDBC). The original six tsunameters employed the technology of the first generation Deep-ocean Assessment and Reporting of Tsunamis (DART I) developed by NOAA’s Pacific Marine Environmental Laboratory (PMEL) and successfully transitioned to NDBC in 2003. The technology consists of a Bottom Pressure Recorder (BPR) that makes pressure measurements near the sea-floor and a surface buoy. It takes less than three minutes for data to get from the BPR, which can reside to depths of 6000 m, to users. The BPR contains a tsunami detection algorithm that will place the BPR in rapid reporting mode(also know as Event Mode). The two most profound improvements to the network were its expansion to 39 stations and the transition and upgrade to the second generation DART II systems. In the aftermath of the Sumatran Tsunami, NOAA expanded the network to 39 stations to bolster the US tsunami warning system by providing coastal communities in the Pacific, Atlantic, Caribbean and the Gulf of Mexico with faster and more accurate tsunami warnings. Cooperating NOAA offices selected the sites in consultation with the US Geological Survey and other interested parties. Since their initial establishment, NDBC has relocated some stations to improve data availability by reducing the risks of vessel collision, extreme winds, seas, and currents. NDBC completed the network in March 2008. During the expansion of the NOAA network, NDBC assisted several countries in the deploying and distributing data from their own DART II tsunameters. NDBC completed the upgraded of all stations to the DART II systems by the end of 2007. The significant capability fielded by the DART II technology was the bi-directional communications

  13. Optical Passive Sensor Calibration for Satellite Remote Sensing and the Legacy of NOAA and NIST Cooperation

    PubMed Central

    Datla, Raju; Weinreb, Michael; Rice, Joseph; Johnson, B. Carol; Shirley, Eric; Cao, Changyong

    2014-01-01

    This paper traces the cooperative efforts of scientists at the National Oceanic and Atmospheric Administration (NOAA) and the National Institute of Standards and Technology (NIST) to improve the calibration of operational satellite sensors for remote sensing of the Earth’s land, atmosphere and oceans. It gives a chronological perspective of the NOAA satellite program and the interactions between the two agencies’ scientists to address pre-launch calibration and issues of sensor performance on orbit. The drive to improve accuracy of measurements has had a new impetus in recent years because of the need for improved weather prediction and climate monitoring. The highlights of this cooperation and strategies to achieve SI-traceability and improve accuracy for optical satellite sensor data are summarized1. PMID:26601030

  14. At-sea test validation data needed to verify the NOAA/DOE CWP Analytic Code

    SciTech Connect

    Major, R. A.

    1980-03-12

    Test data requirements are developed in this memorandum for the one-third scale Ocean Thermal Energy Conversion (OTEC) cold water pipe (CWP) at-sea tests. A major goal of the at-sea tests is to collect sufficient data so that the National Oceanic and Atmospheric Administration (NOAA)/Department of Energy (DOE) CWP Analytic Code can be validated. The code is examined to determine the individual responses requiring verification. The wave environment is then considered for prototype survival and the scaled test. The expected response of the OTEC CWP test article in the test environment is used to form a basis of the test plan. Requirements for the tests of standard configurations of the OTEC CWP test system are first planned followed by requirements for tests of alternate configurations and evolutions. The final product is a set of justified NOAA/CWP analytic code validation requirements.

  15. BOREAS AFM-6 NOAA/ETL 35 GHz Cloud/Turbulence Radar GIF Images

    NASA Technical Reports Server (NTRS)

    Martner, Brooks E.; Newcomer, Jeffrey A. (Editor); Hall, Forrest G.; Smith, David E. (Technical Monitor)

    2000-01-01

    The Boreal Ecosystem-Atmosphere Study (BOREAS) Airborne Fluxes and Meteorology (AFM)-6 team from the National Oceanic and Atmospheric Administration/Environment Technology Laboratory (NOAA/ETL) operated a 35-GHz cloud-sensing radar in the Northern Study Area (NSA) near the Old Jack Pine (OJP) tower from 16 Jul 1994 to 08 Aug 1994. This data set contains a time series of GIF images that show the structure of the lower atmosphere. The NOAA/ETL 35-GHz cloud/turbulence radar GIF images are available from the Earth Observing System Data and Information System (EOSDIS) Oak Ridge National Laboratory (ORNL) Distributed Active Archive Center (DAAC). The data files are available on a CD-ROM (see document number 20010000884).

  16. Optical Passive Sensor Calibration for Satellite Remote Sensing and the Legacy of NOAA and NIST Cooperation.

    PubMed

    Datla, Raju; Weinreb, Michael; Rice, Joseph; Johnson, B Carol; Shirley, Eric; Cao, Changyong

    2014-01-01

    This paper traces the cooperative efforts of scientists at the National Oceanic and Atmospheric Administration (NOAA) and the National Institute of Standards and Technology (NIST) to improve the calibration of operational satellite sensors for remote sensing of the Earth's land, atmosphere and oceans. It gives a chronological perspective of the NOAA satellite program and the interactions between the two agencies' scientists to address pre-launch calibration and issues of sensor performance on orbit. The drive to improve accuracy of measurements has had a new impetus in recent years because of the need for improved weather prediction and climate monitoring. The highlights of this cooperation and strategies to achieve SI-traceability and improve accuracy for optical satellite sensor data are summarized. PMID:26601030

  17. Rural Alaska Mentoring Project (RAMP)

    ERIC Educational Resources Information Center

    Cash, Terry

    2011-01-01

    For over two years the National Dropout Prevention Center (NDPC) at Clemson University has been supporting the Lower Kuskokwim School District (LKSD) in NW Alaska with their efforts to reduce high school dropout in 23 remote Yup'ik Eskimo villages. The Rural Alaska Mentoring Project (RAMP) provides school-based E-mentoring services to 164…

  18. Alaska Native Land Claims. [Textbook].

    ERIC Educational Resources Information Center

    Arnold, Robert D.; And Others

    Written for students at the secondary level, this textbook on Alaska Native land claims includes nine chapters, eight appendices, photographs, maps, graphs, bibliography, and an index. Chapters are titled as follows: (1) Earliest Times (Alaska's first settlers, eighteenth century territories, and other claimants); (2) American Indians and Their…

  19. Preparing Teachers for Rural Alaska.

    ERIC Educational Resources Information Center

    Barnhardt, Ray

    1999-01-01

    This article discusses preparing teachers to teach in rural Alaska. An anecdote illustrates how outsiders who come to work in rural Alaska get into trouble because they are unprepared for conditions unique to the North. These conditions end up being viewed as impediments rather than opportunities. The same is true for the field of education. Of…

  20. NOAA Climate Data Records Access for Applications

    NASA Astrophysics Data System (ADS)

    Stachniewicz, J. S.; Cecil, D.; Hollingshead, A.; Newport, B. J.; Wunder, D.

    2015-12-01

    There are many potential uses of NOAA Climate Data Records (CDRs) for decision-making and catastrophic risk management assessment activities in the federal, state, and local government and private sectors, in addition to their traditional uses by the academic/scientific community. There is growing interest in using NOAA CDRs for such applications and straightforward access to the data is essential if these applications are to be successful. User engagement activities determine the types of data that users need, as well as the spatial and temporal subsets. This talk will present the access methods currently available and in development. Alternate representations and sources of some CDRs will also be discussed. Recent improvements include: 1. CDR information web page 2. Dataset types, sizes, growth, latency, grid/swath 3. Dataset discovery, data access, and sub-setting. 4. Knowing our users and their needs. 5. Known uses of some CDRs. 6. Migration to CLASS. 7. Other representations - GeoTIFF, Obs4MIPS 8. Cloud applications - Google, Microsoft

  1. Historical Space Weather Datasets within NOAA

    NASA Astrophysics Data System (ADS)

    Denig, W. F.; Mabie, J. J.; Horan, K.; Clark, C.

    2013-12-01

    The National Geophysical Data Center (NGDC) is primarily responsible for scientific data stewardship of operational space weather data from NOAA's fleet of environmental satellites in geostationary and polar, low-earth orbits. In addition to this and as the former World Data Center for Solar Terrestrial Physics from 1957 to 2011 NGDC acquired a large variety of solar and space environmental data in differing formats including paper records and on film. Management of this heterogeneous collection of environmental data is a continued responsibility of NGDC as a participant in the new World Data System. Through the former NOAA Climate Data Modernization Program many of these records were converted to digital format and are readily available online. However, reduced funding and staff have put a strain on NGDC's ability to effectively steward these historical datasets, some of which are unique and, in particular cases, were the basis of fundamental scientific breakthroughs in our understanding of the near-earth space environment. In this talk, I will provide an overview of the historical space weather datasets which are currently managed by NGDC and discuss strategies for preserving these data during these fiscally stressing times.

  2. GeoFORCE Alaska, A Successful Summer Exploring Alaska's Geology

    NASA Astrophysics Data System (ADS)

    Wartes, D.

    2012-12-01

    Thirty years old this summer, RAHI, the Rural Alaska Honors Institute is a statewide, six-week, summer college-preparatory bridge program at the University of Alaska Fairbanks for Alaska Native and rural high school juniors and seniors. This summer, in collaboration with the University of Texas Austin, the Rural Alaska Honors Institute launched a new program, GeoFORCE Alaska. This outreach initiative is designed to increase the number and diversity of students pursuing STEM degree programs and entering the future high-tech workforce. It uses Earth science to entice kids to get excited about dinosaurs, volcanoes and earthquakes, and includes physics, chemistry, math, biology and other sciences. Students were recruited from the Alaska's Arctic North Slope schools, in 8th grade to begin the annual program of approximately 8 days, the summer before their 9th grade year and then remain in the program for all four years of high school. They must maintain a B or better grade average and participate in all GeoFORCE events. The culmination is an exciting field event each summer. Over the four-year period, events will include trips to Fairbanks and Anchorage, Arizona, Oregon and the Appalachians. All trips focus on Earth science and include a 100+ page guidebook, with tests every night culminating with a final exam. GeoFORCE Alaska was begun by the University of Alaska Fairbanks in partnership with the University of Texas at Austin, which has had tremendous success with GeoFORCE Texas. GeoFORCE Alaska is managed by UAF's long-standing Rural Alaska Honors Institute, that has been successfully providing intense STEM educational opportunities for Alaskan high school students for over 30 years. The program will add a new cohort of 9th graders each year for the next four years. By the summer of 2015, GeoFORCE Alaska is targeting a capacity of 160 students in grades 9th through 12th. Join us to find out more about this exciting new initiative, which is enticing young Alaska Native

  3. 2013 Alaska Performance Scholarship Outcomes Report

    ERIC Educational Resources Information Center

    Rae, Brian

    2013-01-01

    In accordance with Alaska statute the departments of Education & Early Development (EED) and Labor and Workforce Development (DOLWD), the University of Alaska (UA), and the Alaska Commission on Postsecondary Education (ACPE) present this second annual report on the Alaska Performance Scholarship (APS). Among the highlights: (1) In the public…

  4. Distributed Datamining for NASA/NOAA databases

    NASA Astrophysics Data System (ADS)

    Chen, R.; Park, B. H.; Sivakumar, K.; Kargupta, H.; Ma, J.; da, M.

    2002-12-01

    sources: NASA DAO data and NOAA SAA data. The NASA DAO data is a subset of the Data Assimilation Office's (DAO) monthly mean data set. It has global spatial coverage and a temporal coverage ranging from March 1980 to November 1993. The NOAA SAA data is a product of NOAA and US department of defense (DOD) US Polar-orbiting environment satellites (POES). Seventeen features from NASA DAO and eight features from NOAA SAA data was used in our experiments. A Bayesian network (BN) model was first contructed from the two datasets combined. This BN, referred to as the centralized BN, served as the ground truth for comparing the performance of our collective BN learning algorithm. Our preliminary experiments reveal a number of interesting trends. Correlations between specific DAO and NOAA data features are evident. Specific features are consistently observed as root nodes in the BN, suggesting that these features could possibly be the ``cause'' for certain phenomenon. Seasonal trends in the data reflect appropriate seasonal changes in the BN model.

  5. NOAA ESRL Atmospheric Research Operations in California

    NASA Astrophysics Data System (ADS)

    Vasel, B. A.; Borgeld, J.; Ives, M.; Conway, T.; Karion, A.; Fischer, M. L.; Andrews, A. E.; Sweeney, C.; Andrews, B.; Oltmans, S. J.; Johnson, B. J.; Patrick, L. C.; Berkoff, T.

    2009-12-01

    In 2009 the NOAA Earth System Research Laboratory (ESRL) had over two dozen operational research programs within the state of California. These diverse research missions include the Fire Weather Service and Support, the Pt Sur Debris Flow Project, and the Unmanned Aircraft Systems (UAS) regional test bed. The ESRL Global Monitoring Division had 10 atmospheric measurement programs with a common goal to understand the regional and global climate impacts in and around California. The NOAA Trinidad Head (THD) baseline observatory, run in cooperation with Humboldt State University (HSU), was recently promoted to the top-tier WMO/Global Atmospheric Watch (GAW) global station in 2009. The Trinidad Head observatory was strategically located (April 2002) along the west coast to monitor the air entering the United States and is now being impacted by effluents and anthropogenic aerosols and gases from booming Asian economies. Recent forest fire seasons in CA have had dramatic effects on aerosol properties and ozone concentrations measured at the THD site. Light aircraft flights made by NOAA/ESRL as part of the Airborne Greenhouse Emissions Survey (AGES) campaign in collaboration with Lawrence Berkeley National Lab and UC Davis in the spring and summer of 2008 captured large signals indicative of urban air plumes with highly correlated CO2, CH4, CO, as well as agricultural signatures with enhanced CH4 coincident with depleted CO2. These flights also captured a large signal from the northern CA wildfires enabling the comparison of signatures from forest fires to other sources. Ozonesonde balloon flights have been done weekly at the THD site since August of 1997 and bi-monthly vertical aircraft profiles above THD for carbon cycle gases (>50 gas species) began in September of 2003. In 2008 carbon cycle flasks were added to the HSU research vessel, the Coral Sea, to obtain surface values ~20 nautical miles offshore from the THD observatory. Particular attention will be paid to the

  6. Metamorphic facies map of Alaska

    SciTech Connect

    Dusel-Bacon, C.; O-Rourke, E.F.; Reading, K.E.; Fitch, M.R.; Klute, M.A.

    1985-04-01

    A metamorphic-facies of Alaska has been compiled, following the facies-determination scheme of the Working Group for the Cartography of the Metamorphic Belts of the World. Regionally metamorphosed rocks are divided into facies series where P/T gradients are known and into facies groups where only T is known. Metamorphic rock units also are defined by known or bracketed age(s) of metamorphism. Five regional maps have been prepared at a scale of 1:1,000,000; these maps will provide the basis for a final colored version of the map at a scale of 1:2,500,000. The maps are being prepared by the US Geological Survey in cooperation with the Alaska Division of Geological and Geophysical Surveys. Precambrian metamorphism has been documented on the Seward Peninsula, in the Baird Mountains and the northeastern Kuskokwim Mountains, and in southwestern Alaska. Pre-Ordovician metamorphism affected the rocks in central Alaska and on southern Prince of Wales Island. Mid-Paleozoic metamorphism probably affected the rocks in east-central Alaska. Most of the metamorphic belts in Alaska developed during Mesozoic or early Tertiary time in conjuction with accretion of many terranes. Examples are Jurassic metamorphism in east-central Alaska, Early Cretaceous metamorphism in the southern Brooks Range and along the rim of the Yukon-Kovyukuk basin, and late Cretaceous to early Tertiary metamorphism in the central Alaska Range. Regional thermal metamorphism was associated with multiple episodes of Cretaceous plutonism in southeastern Alaska and with early Tertiary plutonism in the Chugach Mountains. Where possible, metamorphism is related to tectonism. Meeting participants are encouraged to comment on the present version of the metamorphic facies map.

  7. The NOAA-NASA CZCS Reanalysis Effort

    NASA Technical Reports Server (NTRS)

    Gregg, Watson W.; Conkright, Margarita E.; OReilly, John E.; Patt, Frederick S.; Wang, Meng-Hua; Yoder, James; Casey-McCabe, Nancy; Koblinsky, Chester J. (Technical Monitor)

    2001-01-01

    Satellite observations of global ocean chlorophyll span over two decades. However, incompatibilities between processing algorithms prevent us from quantifying natural variability. We applied a comprehensive reanalysis to the Coastal Zone Color Scanner (CZCS) archive, called the NOAA-NASA CZCS Reanalysis (NCR) Effort. NCR consisted of 1) algorithm improvement (AI), where CZCS processing algorithms were improved using modernized atmospheric correction and bio-optical algorithms, and 2) blending, where in situ data were incorporated into the CZCS AI to minimize residual errors. The results indicated major improvement over the previously available CZCS archive. Global spatial and seasonal patterns of NCR chlorophyll indicated remarkable correspondence with modern sensors, suggesting compatibility. The NCR permits quantitative analyses of interannual and interdecadal trends in global ocean chlorophyll.

  8. NOAA's Portfolio of Operational Climate Data Records

    NASA Astrophysics Data System (ADS)

    Newport, B. J.; Cecil, D.; Hutchins, C.; Preston, C.; Stachniewicz, J. S.; Wunder, D.

    2015-12-01

    NOAA's Climate Data Record (CDR) Program was established by the National Centers for Environmental Information (NCEI) (formerly the National Climatic Data Center) in order to develop and implement a robust, sustainable, and scientifically defensible approach to producing and preserving climate records from satellite data. Since its inception in 2009 the CDR Program has transitioned 30 CDRs developed by various research groups to an initial operational state at NCEI. As a result of this transition the CDR dataset, metadata, documentation, and source code are archived by NCEI and accessible to the public, and most of the datasets are being extended by the Principal Investigator with CDR Program support. Consistency is maintained by using a formal change control process, with reprocessing and re-archiving as needed. The current portfolio of operational CDRs includes 15 Atmospheric CDRs, four Oceanic CDRs, four Terrestrial CDRs, and seven Fundamental CDRs. The main features of the portfolio will be presented, along with some potential and emerging uses.

  9. The NASA/NOAA Electronic Theater

    NASA Technical Reports Server (NTRS)

    Hasler, A. F.

    2003-01-01

    The NASA/NOAA Electronic Theater presents Earth science observations and visualizations from space in a historical perspective. Fly in from outer space to Cambridge and Harvard University. Zoom through the Cosmos to SLC and site of the 2002 Winter Olympics using 1 m IKONOS "Spy Satellite" data. Contrast the 1972 Apollo 17 "Blue Marble" image of the Earth with the latest US and International global satellite images that allow us to view our Planet from any vantage point. See the latest spectacular images from NASA/NOAA remote sensing missions like Terra, GOES, TRMM, SeaWiFS, & Landsat 7, of storms & fires like Hurricane Isabel and the LNSan Diego firestorms of 2003. See how High Definition Television (HDTV) is revolutionizing the way we do science communication. Take the pulse of the planet on a daily, annual and 30-year time scale. See daily thunderstorms, the annual blooming of the northern hemisphere landmasses and oceans, fires in Africa, dust storms in Iraq, and carbon monoxide exhaust from global burning. See visualizations featured on Newsweek, TIME, National Geographic, Popular Science covers & National & International Network TV. Spectacular new global visualizations of the observed and simulated atmosphere & oceans are shown. See the currents and vortexes in the oceans that bring up the nutrients to feed tiny plankton and draw the fish, whales and fishermen. See the how the ocean blooms in response to El Niiioh Niiia climate changes. The Etheater will be presented using the latest High Definition TV (HDTV) and video projection technology on a large screen. See the global city lights, and the great NE US blackout of August 2003 observed by the "night-vision" DMSP satellite.

  10. NOAA's Integrated Tsunami Database: Data for improved forecasts, warnings, research, and risk assessments

    NASA Astrophysics Data System (ADS)

    Stroker, Kelly; Dunbar, Paula; Mungov, George; Sweeney, Aaron; McCullough, Heather; Carignan, Kelly

    2015-04-01

    The National Oceanic and Atmospheric Administration (NOAA) has primary responsibility in the United States for tsunami forecast, warning, research, and supports community resiliency. NOAA's National Geophysical Data Center (NGDC) and co-located World Data Service for Geophysics provide a unique collection of data enabling communities to ensure preparedness and resilience to tsunami hazards. Immediately following a damaging or fatal tsunami event there is a need for authoritative data and information. The NGDC Global Historical Tsunami Database (http://www.ngdc.noaa.gov/hazard/) includes all tsunami events, regardless of intensity, as well as earthquakes and volcanic eruptions that caused fatalities, moderate damage, or generated a tsunami. The long-term data from these events, including photographs of damage, provide clues to what might happen in the future. NGDC catalogs the information on global historical tsunamis and uses these data to produce qualitative tsunami hazard assessments at regional levels. In addition to the socioeconomic effects of a tsunami, NGDC also obtains water level data from the coasts and the deep-ocean at stations operated by the NOAA/NOS Center for Operational Oceanographic Products and Services, the NOAA Tsunami Warning Centers, and the National Data Buoy Center (NDBC) and produces research-quality data to isolate seismic waves (in the case of the deep-ocean sites) and the tsunami signal. These water-level data provide evidence of sea-level fluctuation and possible inundation events. NGDC is also building high-resolution digital elevation models (DEMs) to support real-time forecasts, implemented at 75 US coastal communities. After a damaging or fatal event NGDC begins to collect and integrate data and information from many organizations into the hazards databases. Sources of data include our NOAA partners, the U.S. Geological Survey, the UNESCO Intergovernmental Oceanographic Commission (IOC) and International Tsunami Information Center

  11. Marine benthic habitat mapping of Muir Inlet, Glacier Bay National Park and Preserve, Alaska, with an evaluation of the Coastal and Marine Ecological Classification Standard III

    USGS Publications Warehouse

    Trusel, Luke D.; Cochrane, Guy R.; Etherington, Lisa L.; Powell, Ross D.; Mayer, Larry A.

    2010-01-01

    Seafloor geology and potential benthic habitats were mapped in Muir Inlet, Glacier Bay National Park and Preserve, Alaska, using multibeam sonar, ground-truth information, and geological interpretations. Muir Inlet is a recently deglaciated fjord that is under the influence of glacial and paraglacial marine processes. High glacially derived sediment and meltwater fluxes, slope instabilities, and variable bathymetry result in a highly dynamic estuarine environment and benthic ecosystem. We characterize the fjord seafloor and potential benthic habitats using the Coastal and Marine Ecological Classification Standard (CMECS) recently developed by the National Oceanic and Atmospheric Administration (NOAA) and NatureServe. Substrates within Muir Inlet are dominated by mud, derived from the high glacial debris flux. Water-column characteristics are derived from a combination of conductivity temperature depth (CTD) measurements and circulation-model results. We also present modern glaciomarine sediment accumulation data from quantitative differential bathymetry. These data show Muir Inlet is divided into two contrasting environments: a dynamic upper fjord and a relatively static lower fjord. The accompanying maps represent the first publicly available high-resolution bathymetric surveys of Muir Inlet. The results of these analyses serve as a test of the CMECS and as a baseline for continued mapping and correlations among seafloor substrate, benthic habitats, and glaciomarine processes.

  12. Climate Change Implications to Vegetation Production in Alaska

    NASA Astrophysics Data System (ADS)

    Neigh, C. S.

    2008-12-01

    Investigation of long-term NOAA series of Advanced Very High Resolution Radiometer normalized difference vegetation index (NDVI) data from 1982 through 2005 revealed statistically significant vegetation response to climate drivers of temperature, precipitation and solar radiation with exclusion of fire disturbance. Abiotic trends were calculated and correlated to satellite remote sensing observations of vegetation productivity to understand biophysical processes that could impact ecosystem carbon storage. Warming throughout Alaska resulted in disparate trajectories for vegetation growth due to precipitation and photosynthetically active radiation variation. Interior spruce forest low lands in late summer had precipitation deficit which resulted in extensive fire disturbance and browning of undisturbed vegetation with reduced post-fire recovery in burned sites; while Northern slope alpine and moist tundra had increased production due to warmer-wetter conditions during the late 1990s and early 2000s. Coupled investigation of vegetation's response to warming climate in Alaska found spatially dynamic processes with and without fire disturbance observed from coarse resolution satellite instruments. Future effort will simulate carbon cycle process with fire disturbance to understand spatially variant source-sink distribution of Alaskan ecosystems.

  13. 75 FR 54661 - Alaska Disaster #AK-00018 Declaration of Economic Injury

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-08

    ... ADMINISTRATION Alaska Disaster AK-00018 Declaration of Economic Injury AGENCY: U.S. Small Business Administration. ACTION: Notice. SUMMARY: This is a notice of an Economic Injury Disaster Loan (EIDL) declaration for the...., Suite 6050, Washington, DC 20416. SUPPLEMENTARY INFORMATION: Notice is hereby given that as a result...

  14. 77 FR 71667 - Alaska Disaster #AK-00026 Declaration of Economic Injury

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-12-03

    ... ADMINISTRATION Alaska Disaster AK-00026 Declaration of Economic Injury AGENCY: U.S. Small Business Administration. ACTION: Notice. SUMMARY: This is a notice of an Economic Injury Disaster Loan (EIDL) declaration for the...., Suite 6050, Washington, DC 20416. SUPPLEMENTARY INFORMATION: Notice is hereby given that as a result...

  15. Space Weather impact on the degradation of NOAA POES MEPED proton detectors

    NASA Astrophysics Data System (ADS)

    Glesnes Ødegaard, Linn-Kristine; Nesse Tyssøy, Hilde; Jakobsen Sandanger, Marit Irene; Stadsnes, Johan; Søraas, Finn

    2016-06-01

    The Medium Energy Proton and Electron Detector (MEPED) on board the National Oceanic and Atmospheric Administration Polar Orbiting Environmental Satellites (NOAA POES) is known to degrade with time. In recent years a lot of effort has been put into calibrating the degraded proton detectors. We make use of previous work and show that the degradation of the detectors can be attributed to the radiation dose of each individual instrument. However, the effectiveness of the radiation in degrading the detector is modulated when it is weighted by the mean ap index, increasing the degradation rate in periods with high geomagnetic activity, and decreasing it through periods of low activity. When taking ap and the radiation dose into account, we find that the degradation rate is independent of spacecraft and detector pointing direction. We have developed a model to estimate the correction factor for all the MEPED detectors as a function of accumulated corrected flux and the ap index. We apply the routine to NOAA POES spacecraft starting with NOAA-15, including the European satellites MetOp-02 and MetOp-01, and estimate correction factors.

  16. Detection and mapping vegetation cover based on the Spectral Angle Mapper algorithm using NOAA AVHRR data

    NASA Astrophysics Data System (ADS)

    Yagoub, Houria; Belbachir, Ahmed Hafid; Benabadji, Noureddine

    2014-06-01

    Satellite data, taken from the National Oceanic and Atmospheric Administration (NOAA) have been proposed and used for the detection and the cartography of vegetation cover in North Africa. The data used were acquired at the Analysis and Application of Radiation Laboratory (LAAR) from the Advanced Very High Resolution Radiometer (AVHRR) sensor of 1 km spatial resolution. The Spectral Angle Mapper Algorithm (SAM) is used for the classification of many studies using high resolution satellite data. In the present paper, we propose to apply the SAM algorithm to the moderate resolution of the NOAA AVHRR sensor data for classifying the vegetation cover. This study allows also exploiting other classification methods for the low resolution. First, the normalized difference vegetation index (NDVI) is extracted from two channels 1 and 2 of the AVHRR sensor. In order to obtain an initial density representation of vegetal formation distribution, a methodology, based on the combination between the threshold method and the decision tree, is used. This combination is carried out due to the lack of accurate data related to the thresholds that delimit each class. In a second time, and based on spectral behavior, a vegetation cover map is developed using SAM algorithm. Finally, with the use of low resolution satellite images (NOAA AVHRR) and with only two channels, it is possible to identify the most dominant species in North Africa such as: forests of the Liege oaks, other forests, cereal's cultivation, steppes and bar soil.

  17. Validation of the NOAA/NESDIS satellite aerosol product over the North Atlantic in 1989

    NASA Astrophysics Data System (ADS)

    Ignatov, Aleksandr M.; Stowe, Larry L.; Sakerin, Sergey M.; Korotaev, Gennady K.

    1995-03-01

    A validation experiment and resulting potential improvements to the operational satellite optical thickness product at the National Oceanic and Atmospheric Administration/National Environmental Satellite Data and Information Service (NOAA/NESDIS) are presented. An earlier paper described a set of Sun photometer measurements collected from the Soviet R/V Akademik Vernadsky during its cruise in the Atlantic Ocean and Mediterranean Sea from September to December 1989. The accuracy of the Sun photometer aerosol optical thickness was proven acceptable of use as a ground truth standard for validation of the NOAA product. This paper describes the validation methodology and the results of its application to the NOAA 11 satellite product. A systematic underestimation in the operational values by about 35%, relative to the ship truth, is found. Causes for this discrepancy are examined, emphasizing the importance of careful satellite instrument calibration, and a revision of the oceanic reflectance model used in the retrieval algorithm. It is shown that the remaining systematic underestimate in satellite aerosol optical thickness can be attributed only to the aerosol model used in the retrieval. Additional checks of this conclusion using independent data sets are underway. If confirmed, a fundamental revision of the presently used aerosol model would be required. An example of a simple adjustment to the present aerosol model which successfully removes the bias is given, based on the assumption of an absorbing aerosol.

  18. A new statistical tool for NOAA local climate studies

    NASA Astrophysics Data System (ADS)

    Timofeyeva, M. M.; Meyers, J. C.; Hollingshead, A.

    2011-12-01

    The National Weather Services (NWS) Local Climate Analysis Tool (LCAT) is evolving out of a need to support and enhance the National Oceanic and Atmospheric Administration (NOAA) National Weather Service (NWS) field offices' ability to efficiently access, manipulate, and interpret local climate data and characterize climate variability and change impacts. LCAT will enable NOAA's staff to conduct regional and local climate studies using state-of-the-art station and reanalysis gridded data and various statistical techniques for climate analysis. The analysis results will be used for climate services to guide local decision makers in weather and climate sensitive actions and to deliver information to the general public. LCAT will augment current climate reference materials with information pertinent to the local and regional levels as they apply to diverse variables appropriate to each locality. The LCAT main emphasis is to enable studies of extreme meteorological and hydrological events such as tornadoes, flood, drought, severe storms, etc. LCAT will close a very critical gap in NWS local climate services because it will allow addressing climate variables beyond average temperature and total precipitation. NWS external partners and government agencies will benefit from the LCAT outputs that could be easily incorporated into their own analysis and/or delivery systems. Presently we identified five existing requirements for local climate: (1) Local impacts of climate change; (2) Local impacts of climate variability; (3) Drought studies; (4) Attribution of severe meteorological and hydrological events; and (5) Climate studies for water resources. The methodologies for the first three requirements will be included in the LCAT first phase implementation. Local rate of climate change is defined as a slope of the mean trend estimated from the ensemble of three trend techniques: (1) hinge, (2) Optimal Climate Normals (running mean for optimal time periods), (3) exponentially

  19. NOAA Operational Space Environmental Monitoring - Current Capabilities and Future Directions

    NASA Astrophysics Data System (ADS)

    Denig, William; Redmon, Rob; Mulligan, Patricia

    2014-05-01

    During the next few years the U.S. National Oceanic and Atmospheric Administration (NOAA) will field new operational capabilities for monitoring the near-earth space environment in addition to maintaining continued measurements in geostationary orbit. The most exciting new capability will be transitioning routine solar wind and magnetic field measurements at L1 (240 Re) from the NASA Advanced Composition Explorer (ACE) satellite to the Deep Space Climate Observatory (DSCOVR) which will be launched in early 2015 with a projected on-orbit readiness in mid-2015. Also under consideration is a solar-sail demonstration mission, called SUNJAMMER, for acquiring plasma and field measurements at twice the L1 location. Both DSCOVR and SUNJAMMER will provide a near-term advanced warning of impending space weather events that can adversely affect communications, satellite operations, GPS positioning and commercial air transportation. NESDIS has also supported the development of a Compact Coronagraph (CCOR) which could provide a several day warning of space weather when coupled with an interplanetary disturbance propagation model like ENLIL. Routine monitoring of the ionosphere will be provided by the Constellation Observing System for Meteorology, Ionosphere and Climate (COSMIC) II as a system which is a partnership among the Taiwan's National Space Organization, the U.S. Air Force and NOAA. The new operational capabilities provided by DSCOVR, SUNJAMMER, CCOR and COSMIC II are provided against the backdrop of continued space environmental measurements from the Geostationary Operational Environmental Satellites (GOES) which, in the near future, will transition to the GOES-R series of advanced space weather sensors. Continued space environmental measurements in polar low earth orbit (LEO) will continue to be provided by the remaining Polar Operational Environmental Satellites (POES) and the European MetOp satellites. Instrument specialists at the National Geophysical Data Center

  20. Bringing Experience from the Field into the Classroom with the NOAA Teacher at Sea and PolarTREC Teacher Research Experience Programs

    NASA Astrophysics Data System (ADS)

    Eubanks, E. D.; Kohin, S.; Oberbauer, S.

    2008-12-01

    As a participant of the National Oceanic and Atmospheric Administration (NOAA), Teacher at Sea (2007) and the Arctic Research Consortium of the U.S., PolarTREC (2008) programs, I have had the opportunity to participate in hands-on research with leading scientific researchers from the tropics to the Arctic. These Teacher Researcher Experiences (TRE's) and the resulting relationships that have developed with the scientific community have been an asset to my professional development and have greatly enhanced my students' learning. The opportunity to participate in data collection and hands-on research with a NOAA researcher, Dr. Kohin, helped me bring shark, ocean, and ship science from my expedition onboard the NOAA Ship David Starr Jordan in the Channel Island region into my classroom. The new knowledge, experiences, and resources that I brought back allowed me to create lesson plans and host Shark Month--an activity that involved all 300 students in my school. My students were able to link real data regarding the location of sharks to practical application and still meet state standards. Likewise, the scientist from my PolarTREC expedition, Dr. Oberbauer, is assisting me in a long-term plan to incorporate his data into my classroom curricula. Already, my experiences from Barrow, Alaska, have been shared through webinars with my community and as a keynote speaker to over 600 Palm Beach County science teachers. We are also working together to develop a yearlong curriculum, in which my entire school of 300 students will discover interdisciplinary polar science. Participation in TRE's has been beneficial for my students and my community, but what is the return on the investment for the scientists who invited me to participate in their research? Both scientists have transferred their knowledge out of the laboratory and made a link between their research and a different generation--our future scientists. They become instrumental science leaders in a community of young

  1. Water level ingest, archive and processing system - an integral part of NOAA's tsunami database

    NASA Astrophysics Data System (ADS)

    McLean, S. J.; Mungov, G.; Dunbar, P. K.; Price, D. J.; Mccullough, H.

    2013-12-01

    The National Oceanic and Atmospheric Administration (NOAA), National Geophysical Data Center (NGDC) and collocated World Data Service for Geophysics (WDS) provides long-term archive, data management, and access to national and global tsunami data. Archive responsibilities include the NOAA Global Historical Tsunami event and runup database, damage photos, as well as other related hazards data. Beginning in 2008, NGDC was given the responsibility of archiving, processing and distributing all tsunami and hazards-related water level data collected from NOAA observational networks in a coordinated and consistent manner. These data include the Deep-ocean Assessment and Reporting of Tsunami (DART) data provided by the National Data Buoy Center (NDBC), coastal-tide-gauge data from the National Ocean Service (NOS) network and tide-gauge data from the two National Weather Service (NWS) Tsunami Warning Centers (TWCs) regional networks. Taken together, this integrated archive supports tsunami forecast, warning, research, mitigation and education efforts of NOAA and the Nation. Due to the variety of the water level data, the automatic ingest system was redesigned, along with upgrading the inventory, archive and delivery capabilities based on modern digital data archiving practices. The data processing system was also upgraded and redesigned focusing on data quality assessment in an operational manner. This poster focuses on data availability highlighting the automation of all steps of data ingest, archive, processing and distribution. Examples are given from recent events such as the October 2012 hurricane Sandy, the Feb 06, 2013 Solomon Islands tsunami, and the June 13, 2013 meteotsunami along the U.S. East Coast.

  2. NOAA/National Weather Service Operational Applications and Training of S-NPP Imagery and Products in Preparation for JPSS Mission Readiness

    NASA Astrophysics Data System (ADS)

    Motta, B.; Miller, S. D.; Folmer, M. J.; Lindstrom, S.; Nietfeld, D.; Stevens, E.; Dankers, T.; Baker, M.; Meier, B.; Mostek, A. J.; Hillger, D.

    2014-12-01

    The National Oceanic and Atmospheric Administration's (NOAA) National Weather Service (NWS), in collaboration with the NOAA National Environmental Satellite, Data and Information Service (NESDIS) and its Cooperative Institutes, have been prototyping various operational applications of Suomi-NPP satellite imagery and products. Some of these new satellite capabilities are NOAA and S-NPP mission unique and have resulted in new science applications for high impact events and related impact-based decision support services. From detection to monitoring to recovery-phase operations, S-NPP debuts new NOAA-unique capabilities for true color RGB imagery, Near Constant Contrast Day-Night Band Imagery, Flood/Ice Detection and Monitoring, Wildfire and Smoke Detection and Monitoring, Severe Weather Environmental and Storm Analysis, Dust Detection and Monitoring, and Global Infrared and Microwave Atmospheric Soundings. These newly demonstrated applications have been part of the research to operations transitions occurring in the NOAA Satellite Proving Ground (JPSS and GOES-R) and NOAA training developed as part of the Virtual Institute for Satellite Integration and Training (VISIT).

  3. The Development of NOAA Education Common Outcome Performance Measures (Invited)

    NASA Astrophysics Data System (ADS)

    Baek, J.

    2013-12-01

    The National Oceanic and Atmospheric Administration (NOAA) Education Council has embarked on an ambitious Monitoring and Evaluation (M&E) project that will allow it to assess education program outcomes and impacts across the agency, line offices, and programs. The purpose of this internal effort is to link outcome measures to program efforts and to evaluate the success of the agency's education programs in meeting the strategic goals. Using an outcome-based evaluation approach, the NOAA Education Council is developing two sets of common outcome performance measures, environmental stewardship and professional development. This presentation will examine the benefits and tradeoffs of common outcome performance measures that collect program results across a portfolio of education programs focused on common outcomes. Common outcome performance measures have a few benefits to our agency and to the climate education field at large. The primary benefit is shared understanding, which comes from our process for writing common outcome performance measures. Without a shared and agreed upon set of definitions for the measure of an outcome, the reported results may not be measuring the same things and would incorrectly indicate levels of performance. Therefore, our writing process relies on a commitment to developing a shared set of definitions based on consensus. We hope that by taking the time to debate and coming to agreement across a diverse set of programs, the strength of our common measures can indicate real progress towards outcomes we care about. An additional benefit is that these common measures can be adopted and adapted by other agencies and organizations that share similar theories of change. The measures are not without their drawbacks, and we do make tradeoffs as part of our process in order to continue making progress. We know that any measure is necessarily a narrow slice of performance. A slice that may not best represent the unique and remarkable contribution

  4. Alaska Interagency Ecosystem Health Work Group

    USGS Publications Warehouse

    Shasby, Mark

    2009-01-01

    The Alaska Interagency Ecosystem Health Work Group is a community of practice that recognizes the interconnections between the health of ecosystems, wildlife, and humans and meets to facilitate the exchange of ideas, data, and research opportunities. Membership includes the Alaska Native Tribal Health Consortium, U.S. Geological Survey, Alaska Department of Environmental Conservation, Alaska Department of Health and Social Services, Centers for Disease Control and Prevention, U.S. Fish and Wildlife Service, Alaska Sea Life Center, U.S. Environmental Protection Agency, and Alaska Department of Fish and Game.

  5. NASA/NOAA/AMS Earth Science Electronic Theater

    NASA Technical Reports Server (NTRS)

    Hasler, A. F.; Einaudi, Franco (Technical Monitor)

    2001-01-01

    The NASA/NOAA/AMS Earth Science Electronic Theater presents Earth science observations and visualizations in a historical perspective. Fly in from outer space to Florida and the KSC Visitor's Center. Go back to the early weather satellite images from the 1960s see them contrasted with the latest International global satellite weather movies including killer hurricanes & tornadic thunderstorms. See the latest spectacular images from NASA and NOAA remote sensing missions like GOES, NOAA, TRMM, SeaWiFS, Landsat7, & new Terra which will be visualized with state-of-the art tools.

  6. Alaska Athabascan stellar astronomy

    NASA Astrophysics Data System (ADS)

    Cannon, Christopher M.

    Stellar astronomy is a fundamental component of Alaska Athabascan cultures that facilitates time-reckoning, navigation, weather forecasting, and cosmology. Evidence from the linguistic record suggests that a group of stars corresponding to the Big Dipper is the only widely attested constellation across the Northern Athabascan languages. However, instruction from expert Athabascan consultants shows that the correlation of these names with the Big Dipper is only partial. In Alaska Gwich'in, Ahtna, and Upper Tanana languages the Big Dipper is identified as one part of a much larger circumpolar humanoid constellation that spans more than 133 degrees across the sky. The Big Dipper is identified as a tail, while the other remaining asterisms within the humanoid constellation are named using other body part terms. The concept of a whole-sky humanoid constellation provides a single unifying system for mapping the night sky, and the reliance on body-part metaphors renders the system highly mnemonic. By recognizing one part of the constellation the stargazer is immediately able to identify the remaining parts based on an existing mental map of the human body. The circumpolar position of a whole-sky constellation yields a highly functional system that facilitates both navigation and time-reckoning in the subarctic. Northern Athabascan astronomy is not only much richer than previously described; it also provides evidence for a completely novel and previously undocumented way of conceptualizing the sky---one that is unique to the subarctic and uniquely adapted to northern cultures. The concept of a large humanoid constellation may be widespread across the entire subarctic and have great antiquity. In addition, the use of cognate body part terms describing asterisms within humanoid constellations is similarly found in Navajo, suggesting a common ancestor from which Northern and Southern Athabascan stellar naming strategies derived.

  7. Operation IceBridge Alaska

    NASA Astrophysics Data System (ADS)

    Larsen, C.

    2015-12-01

    The University of Alaska Fairbanks (UAF) has flown LiDAR missions for Operation IceBridge in Alaska each year since 2009, expanding upon UAF's airborne laser altimetry program which started in 1994. These observations show that Alaska's regional mass balance is -75+11/-16 Gt yr-1 (1994-2013) (Larsen et al., 2015). A surprising result is that the rate of surface mass loss observed on non-tidewater glaciers in Alaska is extremely high. At these rates, Alaska contributes ~1 mm to global sea level rise every 5 years. Given the present lack of adequate satellite resources, Operation IceBridge airborne surveys by UAF are the most effective and efficient method to monitor this region's impact on global sea level rise. Ice depth measurements using radar sounding have been part of these airborne surveys since 2012. Many of Alaska's tidewater glaciers are bedded significantly below sea level. The depth and extent of glacier beds below sea level are critical factors in the dynamics of tidewater retreat. Improved radar processing tools are being used to predict clutter using forward simulation. This is essential to properly sort out true bed returns, which are often masked or obscured by valley wall returns. This presentation will provide an overview of the program, highlighting recent findings and observations from the most recent campaigns, and focusing on techniques used for the extrapolation of surface elevation changes to regional mass balances.

  8. Preliminary evaluation of wind energy potential: Cook Inlet area, Alaska

    SciTech Connect

    Hiester, T.R.

    1980-06-01

    This report summarizes work on a project performed under contract to the Alaska Power Administration (APA). The objective of this research was to make a preliminary assessment of the wind energy potential for interconnection with the Cook Inlet area electric power transmission and distribution systems, to identify the most likely candidate regions (25 to 100 square miles each) for energy potential, and to recommend a monitoring program sufficient to quantify the potential.

  9. SENSITIVITY OF THE NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION MULTILAYER MODEL TO INSTRUMENT ERROR AND PARAMETERIZATION UNCERTAINTY

    EPA Science Inventory

    The response of the National Oceanic and Atmospheric Administration multilayer inferential dry deposition velocity model (NOAA-MLM) to error in meteorological inputs and model parameterization is reported. Monte Carlo simulations were performed to assess the uncertainty in NOA...

  10. Improving Student Achievement in Alaska. Alaska Goals 2000 Annual Report, 1997-98.

    ERIC Educational Resources Information Center

    Alaska State Dept. of Education, Juneau.

    Alaska Goals 2000 is part of a coordinated, statewide effort to improve public education for all students in Alaska. In 1997-1998, 90% of Alaska's federal funding was used to fund grants to local school districts, and 10% was used to fund state-level activities through the Alaska Department of Education. During 1997-1998, curriculum frameworks and…

  11. 78 FR 73144 - Subsistence Management Program for Public Lands in Alaska; Western Interior Alaska Federal...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-05

    ... Subsistence Management Program for Public Lands in Alaska; Western Interior Alaska Federal Subsistence... subsistence uses on Federal public lands and waters in Alaska. The Federal Subsistence Board, which includes... the subsistence management of fish and wildlife on Federal public lands in Alaska. The Board...

  12. Alaska's Children, 1998. Alaska Head Start State Collaboration Project, Quarterly Report.

    ERIC Educational Resources Information Center

    Douglas, Dorothy, Ed.

    1998-01-01

    This document consists of four issues of the quarterly report "Alaska's Children," which provides information on the Alaska Head Start State Collaboration Project and updates on Head Start activities in Alaska. Regular features in the issues include a calendar of conferences and meetings, a status report on Alaska's children, reports from the…

  13. 15 CFR 911.7 - Continuation of the NOAA Data Collection Systems.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... REGULATIONS POLICIES AND PROCEDURES CONCERNING USE OF THE NOAA SPACE-BASED DATA COLLECTION SYSTEMS § 911.7 Continuation of the NOAA Data Collection Systems. (a) NOAA expects to continue to operate DCS on its... 15 Commerce and Foreign Trade 3 2010-01-01 2010-01-01 false Continuation of the NOAA...

  14. 15 CFR 911.4 - Use of the NOAA Data Collection Systems.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 15 Commerce and Foreign Trade 3 2010-01-01 2010-01-01 false Use of the NOAA Data Collection... POLICIES AND PROCEDURES CONCERNING USE OF THE NOAA SPACE-BASED DATA COLLECTION SYSTEMS § 911.4 Use of the NOAA Data Collection Systems. (a) Use of the NOAA DCS will only be authorized in accordance with...

  15. 15 CFR 911.5 - NOAA Data Collection Systems Use Agreements.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 15 Commerce and Foreign Trade 3 2010-01-01 2010-01-01 false NOAA Data Collection Systems Use... POLICIES AND PROCEDURES CONCERNING USE OF THE NOAA SPACE-BASED DATA COLLECTION SYSTEMS § 911.5 NOAA Data Collection Systems Use Agreements. (a)(1) In order to use a NOAA DCS, each user must have an agreement...

  16. 15 CFR 911.7 - Continuation of the NOAA Data Collection Systems.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 15 Commerce and Foreign Trade 3 2011-01-01 2011-01-01 false Continuation of the NOAA Data... REGULATIONS POLICIES AND PROCEDURES CONCERNING USE OF THE NOAA SPACE-BASED DATA COLLECTION SYSTEMS § 911.7 Continuation of the NOAA Data Collection Systems. (a) NOAA expects to continue to operate DCS on...

  17. 15 CFR 911.5 - NOAA Data Collection Systems Use Agreements.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 15 Commerce and Foreign Trade 3 2011-01-01 2011-01-01 false NOAA Data Collection Systems Use... POLICIES AND PROCEDURES CONCERNING USE OF THE NOAA SPACE-BASED DATA COLLECTION SYSTEMS § 911.5 NOAA Data Collection Systems Use Agreements. (a)(1) In order to use a NOAA DCS, each user must have an agreement...

  18. Disaster warning system study summary. [cost estimates using NOAA satellites

    NASA Technical Reports Server (NTRS)

    Leroy, B. F.; Maloy, J. E.; Braley, R. C.; Provencher, C. E.; Schumaker, H. A.; Valgora, M. E.

    1977-01-01

    A conceptual satellite system to replace or complement NOAA's data collection, internal communications, and public information dissemination systems for the mid-1980's was defined. Program cost and cost sensitivity to variations in communications functions are analyzed.

  19. Improved NOAA satellite scheduled for launch. [mission update

    NASA Technical Reports Server (NTRS)

    Brennan, W. J.; Mccormack, D.; Senstad, K.

    1981-01-01

    A description of the NOAA-C satellite and its Atlas launch vehicle are presented. The satellite instrumentation and data transmission systems are discussed. A flight sequence of events is given along with a listing of the mission management responsibilities.

  20. Access High Quality Imagery from the NOAA View Portal

    NASA Astrophysics Data System (ADS)

    Pisut, D.; Powell, A. M.; Loomis, T.; Goel, V.; Mills, B.; Cowan, D.

    2013-12-01

    NOAA curates a vast treasure trove of environmental data, but one that is sometimes not easily accessed, especially for education, outreach, and media purposes. Traditional data portals in NOAA require extensive knowledge of the specific names of observation platforms, models, and analyses, along with nomenclature for variable outputs. A new website and web mapping service (WMS) from NOAA attempts to remedy such issues. The NOAA View data imagery portal provides a seamless entry point into data from across the agency: satellite, models, in-situ analysis, etc. The system provides the user with ability to browse, animate, and download high resolution (e.g., 4,000 x 2,000 pixel) imagery, Google Earth, and even proxy data files. The WMS architecture also allows the resources to be ingested into other software systems or applications.

  1. NOAA Marine and Arctic Monitoring Using UASs

    NASA Astrophysics Data System (ADS)

    Jacobs, T.; Coffey, J. J.; Hood, R. E.; Hall, P.; Adler, J.

    2014-12-01

    Unmanned systems have the potential to efficiently, effectively, economically and safely bridging critical observation requirements in an environmentally friendly manner. As the United States' Marine and Arctic areas of interest expand and include hard-to-reach regions of the Earth (such as the Arctic and remote oceanic areas) optimizing unmanned capabilities will be needed to advance the United States' science, technology and security efforts. Through increased multi-mission and multi-agency operations using improved inter-operable and autonomous unmanned systems, the research and operations communities will better collect environmental intelligence and better protect our Country against hazardous weather, environmental, marine and polar hazards. This presentation will examine NOAA's Marine and Arctic Monitoring UAS strategies which includes developing a coordinated effort to maximize the efficiency and capabilities of unmanned systems across the federal government and research partners. Numerous intra- and inter-agency operational demonstrations and assessments have been made to verify and validated these strategies. The presentation will also discuss the requisite sUAS capabilities and our experience in using them.

  2. Alaska GeoFORCE, A New Geologic Adventure in Alaska

    NASA Astrophysics Data System (ADS)

    Wartes, D.

    2011-12-01

    RAHI, the Rural Alaska Honors Institute is a statewide, six-week, summer college-preparatory bridge program at the University of Alaska Fairbanks for Alaska Native and rural high school juniors and seniors. A program of rigorous academic activity combines with social, cultural, and recreational activities. Students are purposely stretched beyond their comfort levels academically and socially to prepare for the big step from home or village to a large culturally western urban campus. This summer RAHI is launching a new program, GeoFORCE Alaska. This outreach initiative is designed to increase the number and diversity of students pursuing STEM degree programs and entering the future high-tech workforce. It uses Earth science as the hook because most kids get excited about dinosaurs, volcanoes and earthquakes, but it includes physics, chemistry, math, biology and other sciences. Students will be recruited, initially from the Arctic North Slope schools, in the 8th grade to begin the annual program of approximately 8 days, the summer before their 9th grade year and then remain in the program for all four years of high school. They must maintain a B or better grade average and participate in all GeoFORCE events. The carrot on the end of the stick is an exciting field event each summer. Over the four-year period, events will include trips to Fairbanks, Arizona, Oregon and the Appalachians. All trips are focused on Earth science and include a 100+ page guidebook, with tests every night culminating with a final exam. GeoFORCE Alaska is being launched by UAF in partnership with the University of Texas at Austin, which has had tremendous success with GeoFORCE Texas. GeoFORCE Alaska will be managed by UAF's long-standing Rural Alaska Honors Insitute (RAHI) that has been successfully providing intense STEM educational opportunities for Alaskan high school students for almost 30 years. The Texas program, with adjustments for differences in culture and environment, will be

  3. Catalog of geological and geophysical data for the National Petroleum Reserve in Alaska

    SciTech Connect

    Ikelman, J.A.

    1986-01-01

    National Geophysical Data Center (NGDC), a unit of the US Department of Commerce/National Oceanic and Atmospheric Administration, is one of several data centers that collectively represent the National Environmental Satellite, Data, and Information Service. NGDC stores terrestrial and marine data collected from around the world. This catalog contains geophysical and geological data available for the National Petroleum Reserve in Alaska. Data includes reflection and refraction seismology, gravity, magnetics, topography, well logs, and geothermics. This catalog is for those interested in the development of Alaska's National Petroleum Reserve. The National Petroleum Reserve in Alaska is located on the Alaskan North Slope. The National Petroleum Reserve program was established in February 1923 by President Warren Harding, who recognized the need for potential domestic sources of oil in the event of a national emergency. The National Petroleum Reserve in Alaska was originally called the Naval Petroleum Reserve No. 4. The Reserve covers about 24 million acres, about the size of Indiana.

  4. Profile: American Indian/Alaska Native

    MedlinePlus

    ... million American Indians and Alaska Natives. Typically, this urban clientele has less accessibility to hospitals; health clinics ... IHS and tribal health programs. Studies on the urban American Indian and Alaska Native population have documented ...

  5. 76 FR 53151 - Alaska Native Claims Selection

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-25

    ... Kuskokwim Corporation, Successor in Interest to Red Devil Incorporated. The decision approves the surface... Devil, Alaska, and are located in: Seward Meridian, Alaska T. 22 N., R. 44 W., Secs. 27 to 34,...

  6. 75 FR 5575 - Taking and Importing Marine Mammals; Navy Training Activities Conducted in the Gulf of Alaska

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-03

    ... National Oceanic and Atmospheric Administration RIN 0648-XU14 Taking and Importing Marine Mammals; Navy...), National Oceanic and Atmospheric Administration (NOAA), Commerce. ACTION: Notice; receipt of application... pressure from underwater detonations. The Navy requests authorization to take individuals of 20 species...

  7. 78 FR 40638 - Fisheries of the Exclusive Economic Zone Off Alaska; Northern Rockfish in the Western Regulatory...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-08

    ... GOA (78 FR 13162, February 26, 2013). In accordance with Sec. 679.20(d)(1)(i), the Administrator... from the fishery. The acting Assistant Administrator for Fisheries, NOAA (AA), finds good cause to... available as of July 1, 2013. The AA also finds good cause to waive the 30-day delay in the effective...

  8. 78 FR 42022 - Fisheries of the Exclusive Economic Zone Off Alaska; “Other Rockfish” in the Western Regulatory...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-15

    ... of the GOA (78 FR 13162, February 26, 2013). In accordance with Sec. 679.20(d)(2), the Administrator... obtained from the fishery. The Acting Assistant Administrator for Fisheries, NOAA (AA), finds good cause to... of July 8, 2013. ] The AA also finds good cause to waive the 30-day delay in the effective date...

  9. 75 FR 8840 - Fisheries of the Exclusive Economic Zone Off Alaska; Pacific Cod by Catcher/Processors Using Pot...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-26

    ... 2010 harvest specifications for groundfish in the BSAI (74 FR 7359, February 17, 2009) and inseason adjustment (74 FR 68717, December 29, 2009)). In accordance with Sec. 679.20(d)(1)(iii), the Administrator... from the fishery. The Assistant Administrator for Fisheries, NOAA (AA), finds good cause to waive...

  10. Malaspina Glacier, Alaska

    NASA Technical Reports Server (NTRS)

    2001-01-01

    This image from the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) instrument on NASA's Terra satellite covers an area of 55 by 40 kilometers (34 by 25 miles) over the southwest part of the Malaspina Glacier and Icy Bay in Alaska. The composite of infrared and visible bands results in the snow and ice appearing light blue, dense vegetation is yellow-orange and green, and less vegetated, gravelly areas are in orange. According to Dr. Dennis Trabant (U.S. Geological Survey, Fairbanks, Alaska), the Malaspina Glacier is thinning. Its terminal moraine protects it from contact with the open ocean; without the moraine, or if sea level rises sufficiently to reconnect the glacier with the ocean, the glacier would start calving and retreat significantly. ASTER data are being used to help monitor the size and movement of some 15,000 tidal and piedmont glaciers in Alaska. Evidence derived from ASTER and many other satellite and ground-based measurements suggests that only a few dozen Alaskan glaciers are advancing. The overwhelming majority of them are retreating.

    This ASTER image was acquired on June 8, 2001. With its 14 spectral bands from the visible to the thermal infrared wavelength region, and its high spatial resolution of 15 to 90 meters (about 50 to 300 feet), ASTER will image Earth for the next six years to map and monitor the changing surface of our planet.

    ASTER is one of five Earth-observing instruments launched December 18,1999, on NASA's Terra satellite. The instrument was built by Japan's Ministry of Economy, Trade and Industry. A joint U.S./Japan science team is responsible for validation and calibration of the instrument and the data products. Dr. Anne Kahle at NASA's Jet Propulsion Laboratory, Pasadena, Calif., is the U.S. science team leader; Bjorn Eng of JPL is the project manager. ASTER is the only high-resolution imaging sensor on Terra. The Terra mission is part of NASA's Earth Science Enterprise, along-term research and

  11. ESTIMATING THE TRANSFER AND DEPOSITION OF DIOXIN AND ATRZINE TO THE GREAT LAKES BASIN WITH THE NOAA HYSPLIT MODEL - AN OVERVIEW

    EPA Science Inventory

    Over the last few years, the International Joint Commission has been supporting development of a PC-based transfer model, derived from the HYSPLIT model created at the National Oceanic and Atmospheric Administration (NOAA), to determine, in a cost-effective way, the extent of dep...

  12. 75 FR 32360 - Proposed Information Collection; Comment Request; Alaska Crab Report Forms

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-08

    ... Crab Report Forms AGENCY: National Oceanic and Atmospheric Administration (NOAA), Department of.... 1801 et seq.) The FMP for Bering Sea and Aleutian Islands (BSAI) Crab includes the Crab Rationalization (CR) Program, a limited access system that allocates BSAI Management Area Crab resources...

  13. 75 FR 9157 - Proposed Information Collection; Comment Request; Alaska Region Scale and Catch Weighing...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-01

    ... Region Scale and Catch Weighing Requirements AGENCY: National Oceanic and Atmospheric Administration... or patsy.bearden@noaa.gov . SUPPLEMENTARY INFORMATION: I. Abstract The scale and catch weighing... accurately weighed and accounted for. Scale and catch-weighing monitoring is required for Western...

  14. 75 FR 31761 - Proposed Information Collection; Comment Request; Alaska Region Gear Identification Requirements

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-04

    ... Region Gear Identification Requirements AGENCY: National Oceanic and Atmospheric Administration (NOAA... also specify the size and color of markings. The marking of gear aids law enforcement and enables other fishermen to report on misplaced gear. II. Method of Collection No information is submitted; this is a...

  15. 78 FR 72869 - Fisheries of the Exclusive Economic Zone Off Alaska; North Pacific Halibut and Sablefish...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-04

    ... includes any retro-payments (e.g., bonuses, delayed partial payments, post-season payments) made to the IFQ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF COMMERCE...: National Marine Fisheries Service (NMFS), National Oceanic and Atmospheric Administration (NOAA),...

  16. 77 FR 71783 - Fisheries of the Exclusive Economic Zone Off Alaska; North Pacific Halibut and Sablefish...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-12-04

    ... includes any retro-payments (e.g., bonuses, delayed partial payments, post-season payments) made to the IFQ... From the Federal Register Online via the Government Publishing Office ] DEPARTMENT OF COMMERCE...: National Marine Fisheries Service (NMFS), National Oceanic and Atmospheric Administration (NOAA),...

  17. 75 FR 76957 - Fisheries of the Exclusive Economic Zone Off Alaska; North Pacific Halibut and Sablefish...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-10

    ... fish during the year. This includes any retro-payments (e.g., bonuses, delayed partial payments, post... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF COMMERCE...: National Marine Fisheries Service (NMFS), National Oceanic and Atmospheric Administration (NOAA),...

  18. Trends in Alaska's People and Economy.

    ERIC Educational Resources Information Center

    Leask, Linda; Killorin, Mary; Martin, Stephanie

    This booklet provides data on Alaska's population, economy, health, education, government, and natural resources, including specific information on Alaska Natives. Since 1960, Alaska's population has tripled and become more diverse, more stable, older, less likely to be male or married, and more concentrated. About 69 percent of the population…

  19. 50 CFR 32.21 - Alaska.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... WILDLIFE REFUGE SYSTEM HUNTING AND FISHING Refuge-Specific Regulations for Hunting and Fishing § 32.21 Alaska. Alaska refuges are opened to hunting, fishing and trapping pursuant to the Alaska National Interest Lands Conservation Act (Pub. L. 96-487, 94 Stat. 2371). Information regarding specific...

  20. 50 CFR 32.21 - Alaska.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 50 Wildlife and Fisheries 9 2014-10-01 2014-10-01 false Alaska. 32.21 Section 32.21 Wildlife and Fisheries UNITED STATES FISH AND WILDLIFE SERVICE, DEPARTMENT OF THE INTERIOR (CONTINUED) THE NATIONAL WILDLIFE REFUGE SYSTEM HUNTING AND FISHING Refuge-Specific Regulations for Hunting and Fishing § 32.21 Alaska. Alaska refuges are opened to...

  1. Some Books about Alaska Received in 1986.

    ERIC Educational Resources Information Center

    Alaska State Dept. of Education, Juneau. Div. of State Libraries.

    This publication is an annotated listing of 143 books about Alaska or the Arctic, received by the Alaska Division of State Libraries in 1986. Most of the material is current or published in recent years, with the exception of government publications. Categories are juvenile, adult non-fiction, adult fiction, and reference. A few Alaska state and…

  2. 33 CFR 80.1705 - Alaska.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Alaska. 80.1705 Section 80.1705 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY INTERNATIONAL NAVIGATION RULES COLREGS DEMARCATION LINES Alaska § 80.1705 Alaska. The 72 COLREGS shall apply on all the sounds,...

  3. Instrument interface description for NOAA 2000 instruments with European morning spacecraft and/or NOAA-OPQ spacecraft

    NASA Technical Reports Server (NTRS)

    1993-01-01

    The purpose is to describe at a high level the common interface provisions and constraints placed on the NOAA-2000 instruments and the interfacing spacecraft elements in the following areas: electrical interface, mechanical interface, thermal interface, magnetic interface, electromagnetic compatibility, structural/mechanical environmental interface, contamination control, and the ionizing radiation environment. The requirements reflect the fact that these instruments must be compatible with a number of different polar orbiting satellite vehicles including the NOAA-OPQ satellites and the EUMETSAT METOP satellites.

  4. Alexander Archipelago, Southeastern Alaska

    NASA Technical Reports Server (NTRS)

    2002-01-01

    West of British Columbia, Canada, and south of the Yukon Territory, the southeastern coastline of Alaska trails off into the islands of the Alexander Archipelago. The area is rugged and contains many long, U-shaped, glaciated valleys, many of which terminate at tidewater. The Alexander Archipelago is home to Glacier Bay National Park. The large bay that has two forks on its northern end is Glacier Bay itself. The eastern fork is Muir inlet, into which runs the Muir glacier, named for the famous Scottish-born naturalist John Muir. Glacier Bay opens up into the Icy Strait. The large, solid white area to the west is Brady Icefield, which terminates at the southern end in Brady's Glacier. To locate more interesting features from Glacier Bay National Park, take a look at the park service map. As recently as two hundred years ago, a massive ice field extended into Icy Strait and filled the Glacier Bay. Since that time, the area has experienced rapid deglaciation, with many large glaciers retreating 40, 60, even 80 km. While temperatures have increased in the region, it is still unclear whether the rapid recession is part of the natural cycle of tidewater glaciers or is an indicator of longer-term climate change. For more on Glacier Bay and climate change, read an online paper by Dr. Dorothy Hall, a MODIS Associate Science Team Member. Credit: Jacques Descloitres, MODIS Land Rapid Response Team, NASA/GSFC

  5. Alaska Pipeline Insulation

    NASA Technical Reports Server (NTRS)

    1979-01-01

    Crude oil moving through the 800-mile Trans-Alaska Pipeline must be kept at a relatively high temperature, about 180 degrees Fahrenheit, to maintain the fluidity of the oil. In Arctic weather, that demands highly effective insulation. General Electric Co.'s Space Division, Valley Forge, Pennsylvania, provided it with a spinoff product called Therm-O-Trol. Shown being installed on the pipeline, Therm-O-Trol is a metal-bonded polyurethane foam especially formulated for Arctic insulation. A second GE spinoff product, Therm-O-Case, solved a related problem involved in bringing hot crude oil from 2,000-foot-deep wells to the surface without transferring oil heat to the surrounding permafrost soil; heat transfer could melt the frozen terrain and cause dislocations that might destroy expensive well casings. Therm-O-Case is a double-walled oil well casing with multi-layered insulation which provides an effective barrier to heat transfer. Therm-O-Trol and Therm-O-Case are members of a family of insulating products which stemmed from technology developed by GE Space Division in heat transferlthermal control work on Gemini, Apollo and other NASA programs.

  6. Recurrent flares in active region NOAA 11283

    NASA Astrophysics Data System (ADS)

    Romano, P.; Zuccarello, F.; Guglielmino, S. L.; Berrilli, F.; Bruno, R.; Carbone, V.; Consolini, G.; de Lauretis, M.; Del Moro, D.; Elmhamdi, A.; Ermolli, I.; Fineschi, S.; Francia, P.; Kordi, A. S.; Landi Degl'Innocenti, E.; Laurenza, M.; Lepreti, F.; Marcucci, M. F.; Pallocchia, G.; Pietropaolo, E.; Romoli, M.; Vecchio, A.; Vellante, M.; Villante, U.

    2015-10-01

    Context. Flares and coronal mass ejections (CMEs) are solar phenomena that are not yet fully understood. Several investigations have been performed to single out their related physical parameters that can be used as indices of the magnetic complexity leading to their occurrence. Aims: In order to shed light on the occurrence of recurrent flares and subsequent associated CMEs, we studied the active region NOAA 11283 where recurrent M and X GOES-class flares and CMEs occurred. Methods: We use vector magnetograms taken by HMI/SDO to calculate the horizontal velocity fields of the photospheric magnetic structures, the shear and the dip angles of the magnetic field, the magnetic helicity flux distribution, and the Poynting fluxes across the photosphere due to the emergence and the shearing of the magnetic field. Results: Although we do not observe consistent emerging magnetic flux through the photosphere during the observation time interval, we detected a monotonic increase of the magnetic helicity accumulated in the corona. We found that both the shear and the dip angles have high values along the main polarity inversion line (PIL) before and after all the events. We also note that before the main flare of X2.1 GOES class, the shearing motions seem to inject a more significant energy than the energy injected by the emergence of the magnetic field. Conclusions: We conclude that the very long duration (about 4 days) of the horizontal displacement of the main photospheric magnetic structures along the PIL has a primary role in the energy release during the recurrent flares. This peculiar horizontal velocity field also contributes to the monotonic injection of magnetic helicity into the corona. This process, coupled with the high shear and dip angles along the main PIL, appears to be responsible for the consecutive events of loss of equilibrium leading to the recurrent flares and CMEs. A movie associated to Fig. 4 is available in electronic form at http://www.aanda.org

  7. Ionosphere monitoring using NOAA's CORS network

    NASA Astrophysics Data System (ADS)

    Smith, D.

    NOAA's National Geodetic Survey is currently engaged in research to use the CORS (Continuously Operating GPS Reference Stations) network to model the ionosphere over the conterminous United States and surrounding areas. The CORS network consists of over 700 stations that continuously collect data from all GPS satellite vehicles in view; these data are available free of charge for (predominantly) positioning applications. However, the nature of the network makes it an excellent tool for continuously monitoring the nature of the ionosphere over and near the conterminous United States. From the standpoint of geodesy, the ionosphere effect is generally considered a nuisance parameter: that should be modeled and removed so that the ambiguity in dual frequency GPS carrier-phase signals may be resolved and accurate positions determined. As such, the initial direction of this research is toward modeling the ionosphere for geodetic use, using a single-layer "shell model". The results presented here show the first steps toward accurately modeling the ionosphere through the CORS network, in terms of absolute (non-differential) Total Electron Content Units (TECUs) through an innovative cross-over adjustment of "tracks". Each track is made by the intersection of a satellite/receiver vector with the ionosphere shell as the satellite moves overhead. Results of the initial research in applying the modeled ionosphere toward ambiguity resolution will be discussed. Limitations of using the one-dimensional shell will also be presented. Future plans for creating a time-stream of the ionosphere, increasing the complexity beyond the shell model, and applications toward nowcast and forecast of the ionosphere, will also be discussed.

  8. Alaska Energy Inventory Project: Consolidating Alaska's Energy Resources

    NASA Astrophysics Data System (ADS)

    Papp, K.; Clough, J.; Swenson, R.; Crimp, P.; Hanson, D.; Parker, P.

    2007-12-01

    Alaska has considerable energy resources distributed throughout the state including conventional oil, gas, and coal, and unconventional coalbed and shalebed methane, gas hydrates, geothermal, wind, hydro, and biomass. While much of the known large oil and gas resources are concentrated on the North Slope and in the Cook Inlet regions, the other potential sources of energy are dispersed across a varied landscape from frozen tundra to coastal settings. Despite the presence of these potential energy sources, rural Alaska is mostly dependent upon diesel fuel for both electrical power generation and space heating needs. At considerable cost, large quantities of diesel fuel are transported to more than 150 roadless communities by barge or airplane and stored in large bulk fuel tank farms for winter months when electricity and heat are at peak demands. Recent increases in the price of oil have severely impacted the price of energy throughout Alaska, and especially hard hit are rural communities and remote mines that are off the road system and isolated from integrated electrical power grids. Even though the state has significant conventional gas resources in restricted areas, few communities are located near enough to these resources to directly use natural gas to meet their energy needs. To address this problem, the Alaska Energy Inventory project will (1) inventory and compile all available Alaska energy resource data suitable for electrical power generation and space heating needs including natural gas, coal, coalbed and shalebed methane, gas hydrates, geothermal, wind, hydro, and biomass and (2) identify locations or regions where the most economic energy resource or combination of energy resources can be developed to meet local needs. This data will be accessible through a user-friendly web-based interactive map, based on the Alaska Department of Natural Resources, Land Records Information Section's (LRIS) Alaska Mapper, Google Earth, and Terrago Technologies' Geo

  9. Verification of a New NOAA/NSIDC Passive Microwave Sea-Ice Concentration Climate Record

    NASA Technical Reports Server (NTRS)

    Meier, Walter N.; Peng, Ge; Scott, Donna J.; Savoie, Matt H.

    2014-01-01

    A new satellite-based passive microwave sea-ice concentration product developed for the National Oceanic and Atmospheric Administration (NOAA)Climate Data Record (CDR) programme is evaluated via comparison with other passive microwave-derived estimates. The new product leverages two well-established concentration algorithms, known as the NASA Team and Bootstrap, both developed at and produced by the National Aeronautics and Space Administration (NASA) Goddard Space Flight Center (GSFC). The sea ice estimates compare well with similar GSFC products while also fulfilling all NOAA CDR initial operation capability (IOC) requirements, including (1) self describing file format, (2) ISO 19115-2 compliant collection-level metadata,(3) Climate and Forecast (CF) compliant file-level metadata, (4) grid-cell level metadata (data quality fields), (5) fully automated and reproducible processing and (6) open online access to full documentation with version control, including source code and an algorithm theoretical basic document. The primary limitations of the GSFC products are lack of metadata and use of untracked manual corrections to the output fields. Smaller differences occur from minor variations in processing methods by the National Snow and Ice Data Center (for the CDR fields) and NASA (for the GSFC fields). The CDR concentrations do have some differences from the constituent GSFC concentrations, but trends and variability are not substantially different.

  10. Partial and preliminary inventory of NOAA data for ARM/IDASS research

    SciTech Connect

    Martner, B.E.

    1991-06-01

    The first quarter of 1991 was an extremely active time for atmospheric measurements in the Denver area. Four field projects were conducted with overlapping schedules and area domains between mid-January and mid-April. The data collected may be of mutual interest to the participants of the various projects. Data inventory catalogs for each project will assist researchers by documenting the kinds of measurements, periods of observation, the data archival mediums, and the data availability. This report provides a partial and preliminary inventory of data obtained for the Department of Energy`s Atmospheric Radiation Measurement (ARM) program Integrated Data Assimilation and Sounding System (IDASS) research. It includes only those measurements obtained by the National Oceanic and Atmospheric Administration`s Wave Propagation Laboratory and Aeronomy Laboratory (NOAA/WPL and NOAA/AL). Many of these data are currently undergoing post-processing and inspection by each instrument`s operating group to improve and insure data quality. Therefore, the information in this report is preliminary.

  11. Alaska volcanoes guidebook for teachers

    USGS Publications Warehouse

    Adleman, Jennifer N.

    2011-01-01

    Alaska’s volcanoes, like its abundant glaciers, charismatic wildlife, and wild expanses inspire and ignite scientific curiosity and generate an ever-growing source of questions for students in Alaska and throughout the world. Alaska is home to more than 140 volcanoes, which have been active over the last 2 million years. About 90 of these volcanoes have been active within the last 10,000 years and more than 50 of these have been active since about 1700. The volcanoes in Alaska make up well over three-quarters of volcanoes in the United States that have erupted in the last 200 years. In fact, Alaska’s volcanoes erupt so frequently that it is almost guaranteed that an Alaskan will experience a volcanic eruption in his or her lifetime, and it is likely they will experience more than one. It is hard to imagine a better place for students to explore active volcanism and to understand volcanic hazards, phenomena, and global impacts. Previously developed teachers’ guidebooks with an emphasis on the volcanoes in Hawaii Volcanoes National Park (Mattox, 1994) and Mount Rainier National Park in the Cascade Range (Driedger and others, 2005) provide place-based resources and activities for use in other volcanic regions in the United States. Along the lines of this tradition, this guidebook serves to provide locally relevant and useful resources and activities for the exploration of numerous and truly unique volcanic landscapes in Alaska. This guidebook provides supplemental teaching materials to be used by Alaskan students who will be inspired to become educated and prepared for inevitable future volcanic activity in Alaska. The lessons and activities in this guidebook are meant to supplement and enhance existing science content already being taught in grade levels 6–12. Correlations with Alaska State Science Standards and Grade Level Expectations adopted by the Alaska State Department of Education and Early Development (2006) for grades six through eleven are listed at

  12. The NOAA Near Real-time OMI-SO2 Cloud Visualization and Product Distribution System

    NASA Astrophysics Data System (ADS)

    Vicente, G.; Serafino, G.; Krueger, A.; Carn, S.; Yang, K.; Krotkov, N.; Guffanti, M.; Levelt, P.

    2007-12-01

    The Ozone Monitoring Instrument (OMI) on the NASA EOS/Aura research satellite allows measurement of SO2 concentrations at UV wavelengths with daily global coverage. SO2 is detected from space using its strong absorption band structure in the near UV (300-320 nm) as well as in IR bands near 7.3 and 8.6 mm. Thirty years of UV SO2 measurements with the Total Ozone Mapping Spectrometer (TOMS) and OMI sensors have shown that the highest concentrations of SO2 occur in volcanic clouds produced by explosive magmatic eruptions, which also emit ash. However, icing of ash particles in water-rich eruption clouds, and/or suppression of the IR split- window signal by ambient water vapor or cloud opacity can inhibit direct detection of ash from space. Large SO2 concentrations are therefore a reliable indicator of the presence of airborne volcanic ash. UV SO2 measurements are very robust and are insensitive to the factors that confound IR data. SO2 and ash can be detected in a very fresh eruption cloud due to sunlight backscattering and ash presence can be confirmed by UV derived aerosol index measurements. The lack of other large point sources of SO2 facilitates development and implementation of automated searches for volcanic clouds with a very low false alarm rate. The NASA Earth Sciences Applications Office has funded a cooperative agreement between UMBC, NOAA, GSFC, and USGS to infuse research satellite SO2 data products into volcanic hazard Decision Support Systems (DSSs) operated by the National Oceanic and Atmospheric Administration (NOAA) and the US Geological Survey (USGS). This will provide aviation alerts to the Federal Aviation Administration (FAA), that will reduce false alarms and permit more robust detection and tracking of volcanic clouds, and includes the development of an eruption alarm system, and potential recognition of pre-eruptive volcanic degassing. Near real-time (NRT) observations of SO2 and volcanic ash can therefore be incorporated into data products

  13. Teshekpuk Lake, Alaska

    NASA Technical Reports Server (NTRS)

    2006-01-01

    This ASTER image of Teshekpuk Lake on Alaska's North Slope, within the National Petroleum Reserve, was acquired on August 15, 2000. It covers an area of 58.7 x 89.9 km, and is centered near 70.4 degrees north latitude, 153 degrees west longitude.

    With its 14 spectral bands from the visible to the thermal infrared wavelength region, and its high spatial resolution of 15 to 90 meters (about 50 to 300 feet), ASTER images Earth to map and monitor the changing surface of our planet.

    ASTER is one of five Earth-observing instruments launched December 18, 1999, on NASA's Terra satellite. The instrument was built by Japan's Ministry of Economy, Trade and Industry. A joint U.S./Japan science team is responsible for validation and calibration of the instrument and the data products.

    The broad spectral coverage and high spectral resolution of ASTER provides scientists in numerous disciplines with critical information for surface mapping, and monitoring of dynamic conditions and temporal change. Example applications are: monitoring glacial advances and retreats; monitoring potentially active volcanoes; identifying crop stress; determining cloud morphology and physical properties; wetlands evaluation; thermal pollution monitoring; coral reef degradation; surface temperature mapping of soils and geology; and measuring surface heat balance.

    The U.S. science team is located at NASA's Jet Propulsion Laboratory, Pasadena, Calif. The Terra mission is part of NASA's Science Mission Directorate.

    Size: 58.7 by 89.9 kilometers (36.4 by 55.7 miles) Location: 70.4 degrees North latitude, 153 degrees West longitude Orientation: North at top Image Data: ASTER Bands 3, 2, and 1 Original Data Resolution: ASTER 30 meters (98.4 feet) Dates Acquired: August 15, 2000

  14. Alaska Resource Data File, Talkeetna Mountains quadrangle, Alaska

    USGS Publications Warehouse

    Rogers, Robert K.; Schmidt, Jeanine M.

    2003-01-01

    Descriptions of the mineral occurrences shown on the accompanying figure follow. See U.S. Geological Survey (1996) for a description of the information content of each field in the records. The data presented here are maintained as part of a statewide database on mines, prospects and mineral occurrences throughout Alaska.

  15. Tuberculosis among Children in Alaska.

    ERIC Educational Resources Information Center

    Gessner, Bradford D.

    1997-01-01

    The incidence of tuberculosis among Alaskan children under 15 was more than twice the national rate, with Alaska Native children showing a much higher incidence. Children with household exposure to adults with active tuberculosis had a high risk of infection. About 22 percent of pediatric tuberculosis cases were identified through school…

  16. Tularemia in Alaska, 1938 - 2010

    PubMed Central

    2011-01-01

    Tularemia is a serious, potentially life threatening zoonotic disease. The causative agent, Francisella tularensis, is ubiquitous in the Northern hemisphere, including Alaska, where it was first isolated from a rabbit tick (Haemophysalis leporis-palustris) in 1938. Since then, F. tularensis has been isolated from wildlife and humans throughout the state. Serologic surveys have found measurable antibodies with prevalence ranging from < 1% to 50% and 4% to 18% for selected populations of wildlife species and humans, respectively. We reviewed and summarized known literature on tularemia surveillance in Alaska and summarized the epidemiological information on human cases reported to public health officials. Additionally, available F. tularensis isolates from Alaska were analyzed using canonical SNPs and a multi-locus variable-number tandem repeats (VNTR) analysis (MLVA) system. The results show that both F. t. tularensis and F. t. holarctica are present in Alaska and that subtype A.I, the most virulent type, is responsible for most recently reported human clinical cases in the state. PMID:22099502

  17. Tularemia in Alaska, 1938 - 2010.

    PubMed

    Hansen, Cristina M; Vogler, Amy J; Keim, Paul; Wagner, David M; Hueffer, Karsten

    2011-01-01

    Tularemia is a serious, potentially life threatening zoonotic disease. The causative agent, Francisella tularensis, is ubiquitous in the Northern hemisphere, including Alaska, where it was first isolated from a rabbit tick (Haemophysalis leporis-palustris) in 1938. Since then, F. tularensis has been isolated from wildlife and humans throughout the state. Serologic surveys have found measurable antibodies with prevalence ranging from < 1% to 50% and 4% to 18% for selected populations of wildlife species and humans, respectively. We reviewed and summarized known literature on tularemia surveillance in Alaska and summarized the epidemiological information on human cases reported to public health officials. Additionally, available F. tularensis isolates from Alaska were analyzed using canonical SNPs and a multi-locus variable-number tandem repeats (VNTR) analysis (MLVA) system. The results show that both F. t. tularensis and F. t. holarctica are present in Alaska and that subtype A.I, the most virulent type, is responsible for most recently reported human clinical cases in the state. PMID:22099502

  18. A Title I Refinement: Alaska.

    ERIC Educational Resources Information Center

    Hazelton, Alexander E.; And Others

    Through joint planning with a number of school districts and the Region X Title I Technical Assistance Center, and with the help of a Title I Refinement grant, Alaska has developed a system of data storage and retrieval using microcomputers that assists small school districts in the evaluation and reporting of their Title I programs. Although this…

  19. Adventures in the Alaska Economy.

    ERIC Educational Resources Information Center

    Jackstadt, Steve; Huskey, Lee

    This publication was developed to increase students' understanding of basic economic concepts and the historical development of Alaska's economy. Comics depict major historical events as they occurred, but specific characters are fictionalized. Each of nine episodes is accompanied by several pages of explanatory text, which enlarges on the episode…

  20. Leafhoppers and potatoes in Alaska

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Research conducted from 2004 to 2006 in the main potato production areas of Alaska resulted in the identification of 41 leafhopper species associated with agricultural settings. Two species, Davisonia snowi (Dorst) and Macrosteles fascifrons (Stål), made up approximately 60% of the total number of i...

  1. Alaska and Bering Sea Bloom

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Alaska was relatively clear as was part of the Bering Sea where the aquamarine bloom is still visible in this SeaWiFS image. Credit: Provided by the SeaWiFS Project, NASA/Goddard Space Flight Center, and ORBIMAGE

  2. SSBUV and NOAA-11 SBUV/2 Solar Variability Measurements

    NASA Technical Reports Server (NTRS)

    DeLand, Matthew T.; Cebula, Richard P.; Hilsenrath, Ernest

    1998-01-01

    The Shuttle SBUV (SSBUV) and NOAA-11 SBUV/2 instruments measured solar spectral UV irradiance during the maximum and declining phase of solar cycle 22. The SSB UV data accurately represent the absolute solar UV irradiance between 200-405 nm, and also show the long-term variations during eight flights between October 1989 and January 1996. These data have been used to correct long-term sensitivity changes in the NOAA-11 SBUV/2 data, which provide a near-daily record of solar UV variations over the 170-400 nm region between December 1988 and October 1994. The NOAA-11 data demonstrate the evolution of short-term solar UV activity during solar cycle 22.

  3. Volcano seismicity in Alaska

    NASA Astrophysics Data System (ADS)

    Buurman, Helena

    I examine the many facets of volcano seismicity in Alaska: from the short-lived eruption seismicity that is limited to only the few weeks during which a volcano is active, to the seismicity that occurs in the months following an eruption, and finally to the long-term volcano seismicity that occurs in the years in which volcanoes are dormant. I use the rich seismic dataset that was recorded during the 2009 eruption of Redoubt Volcano to examine eruptive volcano seismicity. I show that the progression of magma through the conduit system at Redoubt could be readily tracked by the seismicity. Many of my interpretations benefited greatly from the numerous other datasets collected during the eruption. Rarely was there volcanic activity that did not manifest itself in some way seismically, however, resulting in a remarkably complete chronology within the seismic record of the 2009 eruption. I also use the Redoubt seismic dataset to study post-eruptive seismicity. During the year following the eruption there were a number of unexplained bursts of shallow seismicity that did not culminate in eruptive activity despite closely mirroring seismic signals that had preceded explosions less than a year prior. I show that these episodes of shallow seismicity were in fact related to volcanic processes much deeper in the volcanic edifice by demonstrating that earthquakes that were related to magmatic activity during the eruption were also present during the renewed shallow unrest. These results show that magmatic processes can continue for many months after eruptions end, suggesting that volcanoes can stay active for much longer than previously thought. In the final chapter I characterize volcanic earthquakes on a much broader scale by analyzing a decade of continuous seismic data across 46 volcanoes in the Aleutian arc to search for regional-scale trends in volcano seismicity. I find that volcanic earthquakes below 20 km depth are much more common in the central region of the arc

  4. NOAA-11 SBUV/2 measurements of solar UV variations

    NASA Technical Reports Server (NTRS)

    Cebula, R. P.; Deland, M. T.; Hilsenrath, E.

    1995-01-01

    The SBUV/2 instrument onboard the NOAA-11 satellite made daily solar spectral irradiance measurements in the wavelength region 160405 nm at 1.1 nm resolution between January 1989 and October 1994. These observations continued the uninterrupted series of solar measurements begun by the Nimbus-7 SBUV in 1978 and continued by NOAA-9 SBUV/2. While the measurements made by the SBUV-series instruments furnish an excellent data base for studies of solar UV variability, these instruments do not have an internal mew to evaluate and correct for long-term instrument sensitivity degradation, needed to evaluate solar cycle timescale irradiance change. During yearly Shuttle flights the Shuttle SBUV (SSBUV) also performs solar spectral irradiance measurements in the wavelength region 200 to 400 nm with an instrument that is calibrated preflight, inflight, and postflight. Comparisons between the simultaneous NOAA-11 SBUV/2 and SSBUV solar measurements are used to identify and correct long term sensitivity changes in the satellite instrument. The NOAA-11 data will then be used to evaluate long-term solar change. We present a progress report on the above process. At this preliminary stage uncertainties in the calibration transfer between SSBUV and NOAA-11 SBUV/2 are too large to accurately evaluate long-term solar change near the A1 edge, but solar rotational activity variations can be evaluated. We find that rotational activity declined from roughly 6% peak-to-peak (p-p) near the maximum of solar cycle 22 in 1989-1991 to approximately 3% p-p in mid 1992 and 2% p-p by mid 1994. Emphasizing rotational variations, comparisons between the 200 nm data and the NOAA-11 Mg II proxy index are presented.

  5. Developing NOAA's Climate Data Records From AVHRR and Other Data

    NASA Astrophysics Data System (ADS)

    Privette, J. L.; Bates, J. J.; Kearns, E. J.

    2010-12-01

    As part of the provisional NOAA Climate Service, NOAA is providing leadership in the development of authoritative, measurement-based information on climate change and variability. NOAA’s National Climatic Data Center (NCDC) recently initiated a satellite Climate Data Record Program (CDRP) to provide sustained and objective climate information derived from meteorological satellite data that NOAA has collected over the past 30+ years - particularly from its Polar Orbiting Environmental Satellites (POES) program. These are the longest sustained global measurement records in the world and represent billions of dollars of investment. NOAA is now applying advanced analysis methods -- which have improved remarkably over the last decade -- to the POES AVHRR and other instrument data. Data from other satellite programs, including NASA and international research programs and the Defense Meteorological Satellite Program (DMSP), are also being used. This process will unravel the underlying climate trend and variability information and return new value from the records. In parallel, NCDC will extend these records by applying the same methods to present-day and future satellite measurements, including the Joint Polar Satellite System (JPSS) and Jason-3. In this presentation, we will describe the AVHRR-related algorithm development activities that CDRP recently selected and funded through open competitions. We will particularly discuss some of the technical challenges related to adapting and using AVHRR algorithms with the VIIRS data that should become available with the launch of the NPOESS Preparatory Project (NPP) satellite in early 2012. We will also describe IT system development activities that will provide data processing and reprocessing, storage and management. We will also outline the maturing Program framework, including the strategies for coding and development standards, community reviews, independent program oversight, and research-to-operations algorithm

  6. 77 FR 66564 - Fisheries of the Exclusive Economic Zone Off Alaska; Reallocation of Pacific Cod in the Western...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-11-06

    ... (77 FR 15194, March 14, 2012) and reallocation on September 1, 2012 (77 FR 54838, September 6, 2012... groundfish in the GOA (77 FR 15194, March 14, 2012). The Administrator, Alaska Region (Regional Administrator... 2012 harvest specifications for groundfish in the GOA (77 FR 15194, March 14, 2012) are revised...

  7. The NOAA-National Geographic Society Waterspout Expedition (1993).

    NASA Astrophysics Data System (ADS)

    Golden, Joseph H.; Bluestein, Howard B.

    1994-12-01

    This paper describes afield program conducted by NOAA and the National Geographic Society in late August 1993 near Key West, Florida. The mission of the expedition was to obtain close-up photographic documentation of waterspouts. Using a NOAA helicopter as an observing platform, the participants dropped flares onto the sea surface to visualize the airflow and filmed waterspouts using a state-of-the art motion picture camera and still cameras. Over a dozen waterspouts funnel clouds wore observed, and the most detailed movies of spray vortices over taken were obtained.

  8. International Trade Curriculum. A Joint Vocational Education Curriculum Project of Alaska, Oregon & Washington.

    ERIC Educational Resources Information Center

    Oregon State Dept. of Education, Salem. Div. of Vocational Technical Education.

    This document is intended to help instructors and administrators develop secondary and postsecondary instructional programs on international trade that are based on competencies identified as those needed in international business by companies in Alaska, Oregon, and Washington. The first section introduces competency-based curriculum and includes…

  9. Work of the Bureau of Education for the Natives of Alaska. Bulletin, 1923, No. 45

    ERIC Educational Resources Information Center

    Hamilton, William

    1923-01-01

    The administration of the work of the Bureau of Education in Alaska involves great difficulties, arising principally from the remoteness of most of the schools, the enormous distances between the schools, the meager means of communication, and the severity of the climate. In addition to maintaining schools for the children belonging to the…

  10. Guidelines for Developing Sex Bias Free Vocational Education Programs in Small Secondary Schools in Alaska.

    ERIC Educational Resources Information Center

    Alaska State Dept. of Education, Juneau.

    These guidelines, developed by a nine-member task force, were designed to help district administrators, curriculum planners, building principals/head teachers, vocational education directors, and teachers in small rural secondary schools in Alaska to plan, implement, and administer vocational education programs that are free of sex bias. The…

  11. 14 CFR 91.323 - Increased maximum certificated weights for certain airplanes operated in Alaska.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 2 2014-01-01 2014-01-01 false Increased maximum certificated weights for certain airplanes operated in Alaska. 91.323 Section 91.323 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) AIR TRAFFIC AND GENERAL OPERATING RULES GENERAL OPERATING AND FLIGHT RULES Special...

  12. 14 CFR 91.323 - Increased maximum certificated weights for certain airplanes operated in Alaska.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 2 2013-01-01 2013-01-01 false Increased maximum certificated weights for certain airplanes operated in Alaska. 91.323 Section 91.323 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) AIR TRAFFIC AND GENERAL OPERATING RULES GENERAL OPERATING AND FLIGHT RULES Special...

  13. State of Alaska Student Financial Aid Programs. 1992-93 Annual Report.

    ERIC Educational Resources Information Center

    Alaska State Commission on Postsecondary Education, Juneau.

    This annual report describes the activities of the Alaska Commission on Postsecondary Education during the 1992-93 fiscal year and the administration of the various student financial aid programs under its direction. It discusses the Commission's mandate, membership, goals, and current functions, including priorities for the coming year and new…

  14. 50 CFR Table 2 to Part 226 - Major Stellar Sea Lion Haulout Sites in Alaska

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 50 Wildlife and Fisheries 7 2010-10-01 2010-10-01 false Major Stellar Sea Lion Haulout Sites in Alaska 2 Table 2 to Part 226 Wildlife and Fisheries NATIONAL MARINE FISHERIES SERVICE, NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION, DEPARTMENT OF COMMERCE MARINE MAMMALS DESIGNATED CRITICAL HABITAT...

  15. 50 CFR Table 2 to Part 226 - Major Stellar Sea Lion Haulout Sites in Alaska

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 50 Wildlife and Fisheries 9 2011-10-01 2011-10-01 false Major Stellar Sea Lion Haulout Sites in Alaska 2 Table 2 to Part 226 Wildlife and Fisheries NATIONAL MARINE FISHERIES SERVICE, NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION, DEPARTMENT OF COMMERCE MARINE MAMMALS DESIGNATED CRITICAL HABITAT...

  16. 50 CFR Table 2 to Part 226 - Major Stellar Sea Lion Haulout Sites in Alaska

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 50 Wildlife and Fisheries 10 2013-10-01 2013-10-01 false Major Stellar Sea Lion Haulout Sites in Alaska 2 Table 2 to Part 226 Wildlife and Fisheries NATIONAL MARINE FISHERIES SERVICE, NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION, DEPARTMENT OF COMMERCE MARINE MAMMALS DESIGNATED CRITICAL HABITAT...

  17. 50 CFR Table 2 to Part 226 - Major Stellar Sea Lion Haulout Sites in Alaska

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 50 Wildlife and Fisheries 10 2012-10-01 2012-10-01 false Major Stellar Sea Lion Haulout Sites in Alaska 2 Table 2 to Part 226 Wildlife and Fisheries NATIONAL MARINE FISHERIES SERVICE, NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION, DEPARTMENT OF COMMERCE MARINE MAMMALS DESIGNATED CRITICAL HABITAT...

  18. 50 CFR Table 2 to Part 226 - Major Steller Sea Lion Haulout Sites in Alaska

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 50 Wildlife and Fisheries 10 2014-10-01 2014-10-01 false Major Steller Sea Lion Haulout Sites in Alaska 2 Table 2 to Part 226 Wildlife and Fisheries NATIONAL MARINE FISHERIES SERVICE, NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION, DEPARTMENT OF COMMERCE MARINE MAMMALS DESIGNATED CRITICAL HABITAT...

  19. 77 FR 47371 - Proposed Information Collection; Comment Request; Alaska Interagency Electronic Reporting System...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-08

    ... collection techniques or other forms of information technology. Comments submitted in response to this notice... National Oceanic and Atmospheric Administration Proposed Information Collection; Comment Request; Alaska... opportunity to comment on proposed and/or continuing information collections, as required by the...

  20. 78 FR 41332 - Fisheries of the Exclusive Economic Zone Off Alaska

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-10

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF COMMERCE National Oceanic and Atmospheric Administration 50 CFR Part 679 Fisheries of the Exclusive Economic Zone Off Alaska CFR Correction In Title 50 of the Code of Federal Regulations, Part 660 to End, revised...

  1. 78 FR 41332 - Fisheries of the Exclusive Economic Zone Off Alaska

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-10

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF COMMERCE National Oceanic and Atmospheric Administration 50 CFR Part 679 Fisheries of the Exclusive Economic Zone Off Alaska CFR Correction 0 In Title 50 of the Code of Federal Regulations, Part 660 to End,...

  2. Minority Women's Health: American Indians/Alaska Natives

    MedlinePlus

    ... Health > American Indians/Alaska Natives Minority Women's Health American Indians/Alaska Natives Related information How to Talk to ... disease. Return to top Health conditions common in American Indian and Alaska Native women Accidents Alcoholism and drug ...

  3. Evolving Data System Architectures in NOAA: Perspectives from the National Data Centers

    NASA Astrophysics Data System (ADS)

    Casey, K. S.; Mesick, S.; Kowal, D.; Kearns, E. J.; Hausman, S. A.; DelGreco, S. A.; Morris, J.

    2014-12-01

    For decades, the National Oceanic and Atmospheric Administration (NOAA) has operated three distinct National Data Centers to manage its large and diverse environmental data collections. These centers, the National Oceanographic Data Center (NODC), the National Geophysical Data Center (NGDC), and the National Climatic Data Center (NCDC), have collaborated over the years on various programs and projects to esnure the long term preservation and scientific stewardship of their archived data, workflows, and algorithms. In recent years, the pace of collaboration has accelerated dramatically as new observing missions have come online, as new designated communities have emerged, and as waves of consolidation have swept across NOAA, driven by technological, budgetary, and policy-oriented pressures. An update on how NODC, NGDC, and NCDC have responded to these pressures and have been evolving their data system architectures and operations to keep pace with the new requirements will be presented. Examples efforts in the areas of streamlined data ingest, improved data discoverability, and enhanced data interoperability will be provided to illustrate the Natonal Data Centers' committment to meeting the needs of their user communities and highlight the rapid evolution taking place in their science data systems.

  4. BOREAS AFM-1 NOAA/ATDD Long-EZ Aircraft Flux data Over the SSA

    NASA Technical Reports Server (NTRS)

    Crawford, Timothy L.; Baldocchi, Dennis; Hall, Forrest G. (Editor); Knapp, David E. (Editor); Gunter, Laureen; Dumas, Ed; Smith, David E. (Technical Monitor)

    2000-01-01

    This data set contains measurements from the Airborne Flux and Meteorology (AFM)-1 National Oceanographic and Atmospheric Administration/Atmospheric Turbulence and Diffusion Division (NOAA/ATDD) Long-EZ Aircraft collected during the 1994 Intensive Field Campaigns (IFCs) at the southern study area (SSA). These measurements were made from various instruments mounted on the aircraft. The data that were collected include aircraft altitude, wind direction, wind speed, air temperature, potential temperature, water mixing ratio, U and V components of wind velocity, static pressure, surface radiative temperature, downwelling and upwelling total radiation, downwelling and upwelling longwave radiation, net radiation, downwelling and upwelling photosynthectically active radiation (PAR), greenness index, CO2 concentration, O3 concentration, and CH4 concentration. There are also various columns that indicate the standard deviation, skewness, kurtosis, and trend of some of these data. The data are stored in tabular ASCII files. The NOAA/ATDD Long-EZ aircraft flux data are available from the Earth Observing System Data and Information System (EOSDIS) Oak Ridge National Laboratory (ORNL) Distributed Active Archive Center (DAAC). The data files are available on a CD-ROM (see document number 20010000884).

  5. Intergrating Data From NASA Missions Into NOAAs Pacific Region Intergrated Climatology Information Products (PRICIP)

    NASA Astrophysics Data System (ADS)

    Benham, L.; Chester, K.; Eisberg, A.; Iyer, S.; Lee, K.; Marra, J.; Schmidt, C.; Skiles, J.

    2008-12-01

    The Pacific Region Integrated Climatology Information Products (PRICIP) Project is developing a number of products that will successfully promote awareness and understanding of the patterns and effects of "storminess" in the Pacific Rim. The National Oceanic and Atmospheric Administration's (NOAA) Integrated Data and Environmental Applications (IDEA) Center initiated the PRICIP Project to improve our understanding of such storm processes by creating a web portal containing both scientific and socioeconomic information about Pacific storms. Working in conjunction with partners at NOAA, students from the NASA Ames DEVELOP internship program are integrating NASA satellite imagery into the PRICIP web portal by animating eight storm systems that took place in the South Pacific Ocean between 1992 and 2005, four other anomalous high water events in the Hawaiian Islands, and annual storm tracks. The primary intended audience includes coastal disaster management decision-makers and other similarly concerned agencies. The broad access of these web-based products is also expected to reach scientists, the National Weather Service (NWS), the Federal Emergency Management Agency (FEMA), and media broadcasting consumers. The newly integrated and animated hindcast data will also help educate laypersons about past storms and help them for future storms.

  6. Validation of GOES-Derived Surface Radiation Using NOAA's Physical Retrieval Method

    SciTech Connect

    Habte, A.; Sengupta, M.; Wilcox, S.

    2013-01-01

    This report was part of a multiyear collaboration with the University of Wisconsin and the National Oceanic and Atmospheric Administration (NOAA) to produce high-quality, satellite-based, solar resource datasets for the United States. High-quality, solar resource assessment accelerates technology deployment by making a positive impact on decision making and reducing uncertainty in investment decisions. Satellite-based solar resource datasets are used as a primary source in solar resource assessment. This is mainly because satellites provide larger areal coverage and longer periods of record than ground-based measurements. With the advent of newer satellites with increased information content and faster computers that can process increasingly higher data volumes, methods that were considered too computationally intensive are now feasible. One class of sophisticated methods for retrieving solar resource information from satellites is a two-step, physics-based method that computes cloud properties and uses the information in a radiative transfer model to compute solar radiation. This method has the advantage of adding additional information as satellites with newer channels come on board. This report evaluates the two-step method developed at NOAA and adapted for solar resource assessment for renewable energy with the goal of identifying areas that can be improved in the future.

  7. A Quality Control study of the distribution of NOAA MIRS Cloudy retrievals during Hurricane Sandy

    NASA Astrophysics Data System (ADS)

    Fletcher, S. J.

    2013-12-01

    Cloudy radiance present a difficult challenge to data assimilation (DA) systems, through both the radiative transfer system as well the hydrometers required to resolve the cloud and precipitation. In most DA systems the hydrometers are not control variables due to many limitations. The National Oceanic and Atmospheric Administration's (NOAA) Microwave Integrated Retrieval System (MIRS) is producing products from the NPP-ATMS satellite where the scene is cloud and precipitation affected. The test case that we present here is the life time of Hurricane and then Superstorm Sandy in October 2012. As a quality control study we shall compare the retrieved water vapor content during the lifetime of Sandy with the first guess and the analysis from the NOAA Gridpoint Statistical Interpolation (GSI) system. The assessment involves the gross error check system against the first guess with different values for the observational error's variance to see if the difference is within three standard deviations. We shall also compare against the final analysis at the relevant cycles to see if the products which have been retrieved through a cloudy radiance are similar, given that the DA system does not assimilate cloudy radiances yet.

  8. Science and applications from the next generation of particle and field instruments on the NOAA satellites

    NASA Astrophysics Data System (ADS)

    Green, Janet; Onsager, Terrance; Rodriguez, Juan; Singer, Howard

    The vision of the National Oceanic and Atmospheric Administration (NOAA) Space Weather Prediction Center (SWPC) is, "A nation prepared to mitigate the effects of space weather through the understanding and use of actionable alerts, forecasts, and data products." To achieve this vision, NOAA maintains a constellation of satellites equipped with space weather sensors in geosynchronous and low Earth orbits. The data from these sensors drive space weather models and forecasts delivered to customers such as power utilities, airlines, GPS users, and satellite operators through our operational forecast office and website. Here we describe the heritage and new sensors onboard the Geostationary Operational Environmental Satellites (GOES)-NOP, GOES-R, and Joint Polar Satellite System (JPSS) and the relevance of the data for radiation belt studies and modeling. We describe the implementation of a new radiation belt and satellite charging product known as the Space Environmental Anomalies Expert System-Real Time [O'Brien et al., 2009]. Finally, we discuss the anticipated direction for new space weather models and research at SWPC.

  9. NOAA Graphical Flood Severity Inundation Mapping: Enhancing River Forecasts with Geographic Information Systems (GIS)

    NASA Astrophysics Data System (ADS)

    Marcy, D.; Donaldson, T.

    2006-12-01

    The National Oceanic and Atmospheric Administration (NOAA) National Weather Service (NWS) provides flood forecast information in a variety of formats, including graphical hydrographs and text products. Beginning in 2002, the NOAA Coastal Services Center (CSC) and NWS have worked in partnership to develop geographic information systems (GIS) based graphical flood severity inundation products. GIS techniques are used along with the best available topographic data and flood surface profiles generated from hydraulic models to develop inundation maps of the areal extent of NWS flood categories (minor, moderate, major), along with a range of water surface elevations at selected vertical intervals. The resulting inundation map products are called NWS flood severity inundation map libraries and will become a part of the suite of new products being disseminated via the Advanced Hydrologic Prediction Service (AHPS) program. In 2006, the CSC through the contractor, Watershed Concepts, developed a methodologies and standards document and map template for new graphical flood severity products. This report, titled "Methods and Standards for National Weather Service Flood Severity Inundation Maps" will serve as the basis and guide for creating new flood severity inundation map libraries at specific NWS river forecast points. This paper will describe 1.) the history and components of these inundation maps products, 2.) the process for developing flood severity inundation maps using these methods and standards, 3.) the connection of these products to the FEMA map modernization program, 4.) and delivery of these products via the web.

  10. Comparisons of the MG II index products from the NOAA-9 and NOAA-11 SBUV/2 instruments

    NASA Technical Reports Server (NTRS)

    Deland, M. T.; Cebula, R. P.

    1994-01-01

    The Mg II index is a proxy indicator of solar UV activity which is produced from measurements of the chromospheric Mg II absortion line at 280 nm. Mg II index data sets have been derived from the NOAA-9 and NOAA-11 SBUV/2 irradiance data sets using both discrete scan measurements about the Mg II line and continuous scan (sweep) measurements over the UV spectrum from 160 - 400 nm. This paper will discuss the rationale behind the creation of the different Mg II index products, and make a quantitative assessment of the differences between these products. Recommendations for future use of the Mg II index will also be presented.

  11. NOAA GCOM-W1/AMSR2 Oceanic Environmental Products: Phase-2

    NASA Astrophysics Data System (ADS)

    Jelenak, Z.; Alsweiss, S.; Chang, P.; Park, J. Y.

    2014-12-01

    Passive microwave radiometry is a special application of microwave communications technology for the purpose of collecting Earth's electromagnetic radiation. With the use of radiometers onboard earth orbiting satellites, scientists are able to monitor the Earth's environment and climate system on both short- and long-term temporal scales with near global coverage. The Global Change Observation Mission (GCOM) is part of the Japanese Aerospace Exploration Agency (JAXA) broader commitment toward global and long-term observation of the Earth's environment. GCOM consists of two polar orbiting satellite series, GCOM-W (Water) and GCOM-C (Climate), with 1-year overlap between them for inter-calibration. AMSR2 onboard GCOM-W1 is a microwave radiometer system that measures dual polarized radiances at 6.9, 7.3, 10.65, 18.7, 23.8, 36.5, and 89.0 GHz. It is a sun-synchronous orbiter that acquires microwave radiances by conically scanning the Earth's surface at a nominal earth incidence angle of 55 degrees that results in a wide swath of 1450 km. As a part of Joint Polar Satellite System (JPSS) program the National Oceanic and Atmospheric Administration (NOAA) GCOM-W1 product development and validation project will provide NOAA's users access to critical geophysical products derived from AMSR-2. These products, which are detailed in NOAA's JPSS Level 1 Requirements Document Supplement, include: microwave brightness temperature, total precipitable water, cloud liquid water, precipitation type/rate, sea surface temperature, and Sea Surface Wind Speed. Phase-1 of the AMSR-2 project at NOAA included inter-calibration of AMSR-2 measured brightness temperatures with the Tropical Rainfall Measuring Mission Microwave Imager as the reference radiometer. The second phase of the project utilized the calibrated brightness temperatures in a robust Bayesian network to retrieve more accurate geophysical parameters over the ocean surface. It can handle retrievals even with missing channels and

  12. Forestry timber typing. Tanana demonstration project, Alaska ASVT. [Alaska

    NASA Technical Reports Server (NTRS)

    Morrissey, L. A.; Ambrosia, V. G.

    1982-01-01

    The feasibility of using LANDSAT digital data in conjunction with topographic data to delineate commercial forests by stand size and crown closure in the Tanana River basin of Alaska was tested. A modified clustering approach using two LANDSAT dates to generate an initial forest type classification was then refined with topographic data. To further demonstrate the ability of remotely sensed data in a fire protection planning framework, the timber type data were subsequently integrated with terrain information to generate a fire hazard map of the study area. This map provides valuable assistance in initial attack planning, determining equipment accessibility, and fire growth modeling. The resulting data sets were incorporated into the Alaska Department of Natural Resources geographic information system for subsequent utilization.

  13. IPY to Mark Expansion of Research Facilities on the North Slope of Alaska

    NASA Astrophysics Data System (ADS)

    Zak, B. D.; Eicken, H.; Sheehan, G. W.; Glenn, R.

    2004-12-01

    The Barrow Global Climate Change Research Facility will open to researchers on the North Slope of Alaska during the 2007-08 anniversary of the first IPY. Between 1949 and 1980, arctic researchers were very active on the North Slope and in nearby waters largely because of the Naval Arctic Research Laboratory (NARL) at Barrow. NARL provided easy access, laboratories and logistical support. NARL was closed in 1981, but particularly during this past decade, Barrow-based arctic research projects have been back on the upswing. The National Oceanic and Atmospheric Administration (NOAA) Climate Monitoring and Diagnostics Laboratory (CMDL) Barrow station was founded during the 1970s, and continues as part of NOAA's five station global network for monitoring atmospheric composition. The North Slope Borough's Department of Wildlife Management (DWM) has for the past 20 years conducted its own research. The DWM also served as logistical provider for growing numbers of arctic researchers without other logistical support. In the late 1990s, the Department of Energy Atmospheric Radiation Measurement program (ARM: DOE's principal climate change research effort) created a Cloud and Radiation Testbed on the North Slope with atmospheric instrumentation at Barrow and Atqasuk. It is now part of the ARM Climate Research Facility, a National User Facility. In response to growing researcher needs, the Barrow Arctic Science Consortium (BASC) was formed in the late 1990s as a non-profit logistical support and community coordinating organization, and received the endorsement of Ukpeagvik Inupiat Corporation (UIC), NSB and the local community college. BASC provides logistical support to National Science Foundation (NSF) researchers through a cooperative agreement, and to others on a fee for service basis. UIC also dedicated 11 square miles of its land as the Barrow Environmental Observatory (BEO), and charged BASC with management of the BEO. This land that has been used for research for more

  14. Contracting Out. National Oceanic and Atmospheric Administration's Central Library. Report to the Chairman, Subcommittee on Commerce, Justice, State, and the Judiciary, Committee on Appropriations, U.S. Senate.

    ERIC Educational Resources Information Center

    General Accounting Office, Washington, DC.

    In response to a request by the Senate Committee on Appropriations for an examination of the A-76 program of the Department of Commerce's National Oceanic and Atmospheric Administration (NOAA), in particular NOAA's decision to contract for the operation of its Central Library, this report describes a General Accounting Office (GAO) review which:…

  15. Alaska Native Participation in the Civilian Conservation Corps. Alaska Historical Commission Studies in History No. 206.

    ERIC Educational Resources Information Center

    Sorensen, Connor; And Others

    The report is a finding aid to the sources which document the 1937 federal policy decision mandating that 50% of the enrollees in the Civilian Conservation Corps (CCC) in Alaska must be Alaska Natives and provides a list of the Native CCC projects in Alaska. The finding aid section is organized according to the location of the collections and…

  16. Fisheries Education in Alaska. Conference Report. Alaska Sea Grant Report 82-4.

    ERIC Educational Resources Information Center

    Smoker, William W., Ed.

    This conference was an attempt to have the fishing industry join the state of Alaska in building fisheries education programs. Topics addressed in papers presented at the conference include: (1) fisheries as a part of life in Alaska, addressing participation of Alaska natives in commercial fisheries and national efforts; (2) the international…

  17. 76 FR 303 - Alaska: Adequacy of Alaska's Municipal Solid Waste Landfill Permit Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-04

    ... AGENCY 40 CFR Parts 239 and 258 Alaska: Adequacy of Alaska's Municipal Solid Waste Landfill Permit... proposes to approve Alaska's modification of its approved Municipal Solid Waste Landfill (MSWLF) permit... Domenic Calabro, Office of Air, Waste, and Toxics, U.S. EPA, Region 10, 1200 Sixth Avenue, Suite...

  18. 76 FR 270 - Alaska: Adequacy of Alaska Municipal Solid Waste Landfill Permit Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-04

    ...: I. Background On March 22, 2004, EPA issued a final rule (69 FR 13242) amending the Municipal Solid... AGENCY 40 CFR Parts 239 and 258 Alaska: Adequacy of Alaska Municipal Solid Waste Landfill Permit Program... modification to Alaska's approved Municipal Solid Waste Landfill (MSWLF) permit program. The...

  19. Exploring Seafloor Volcanoes in Cyberspace: NOAA's "Ocean Explorer" Inspires Inquiry

    ERIC Educational Resources Information Center

    Hjelm, Elizabeth

    2011-01-01

    Seafloor exploration being done by scientists is an ideal way to introduce students to technology as a tool for inquiry. The same technology that allows scientists to share data in near real time can also provide students the tools to become researchers. NOAA's Ocean Explorer Explorations website is a rich research data bank that can be used by…

  20. State Geography Using NOAA Polar-Orbiting Satellites.

    ERIC Educational Resources Information Center

    Stadler, Stephen J.

    1985-01-01

    NOAA polar-orbiting satellites have the capability of providing views of entire states. This article describes the characteristics of data from these satellites, indicates their advantages and disadvantages, and shows how the satellite data can be used in a statewide representation of physical geography for students at the introductory level. (RM)

  1. 15 CFR 995.28 - Use of NOAA emblem.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... HYDROGRAPHIC PRODUCTS Requirements for Certified Distributors and Value Added Distributors of NOAA ENC Products...)(ii) and (b)(3)(ii); and there can be no endorsement or favoritism toward the distributor or value... part does not automatically grant the distributor or value added distributor the right to use the...

  2. 75 FR 69920 - (NOAA) Science Advisory Board (SAB)

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-16

    ... meeting agenda. Place: The meeting will be held both days at Dupont Hotel, 1500 New Hampshire Ave., NW... SAB Climate Working Group; (2) Strategic Framework for the Climate Service; (3) Report on the Climate... Research; (6) NOAA Response to the Ecosystem Science and Management Working Group Recommendations on...

  3. 15 CFR 904.104 - Final administrative decision.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... filed as provided in § 904.201(a), the NOVA becomes effective as the final administrative decision and order of NOAA 30 days after service of the NOVA or on the last day of any delay period granted. (b) If...

  4. 15 CFR 904.104 - Final administrative decision.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... filed as provided in § 904.201(a), the NOVA becomes effective as the final administrative decision and order of NOAA 30 days after service of the NOVA or on the last day of any delay period granted. (b) If...

  5. 15 CFR 904.104 - Final administrative decision.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... filed as provided in § 904.201(a), the NOVA becomes effective as the final administrative decision and order of NOAA 30 days after service of the NOVA or on the last day of any delay period granted. (b) If...

  6. 15 CFR 904.104 - Final administrative decision.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... filed as provided in § 904.201(a), the NOVA becomes effective as the final administrative decision and order of NOAA 30 days after service of the NOVA or on the last day of any delay period granted. (b) If...

  7. 15 CFR 904.104 - Final administrative decision.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... filed as provided in § 904.201(a), the NOVA becomes effective as the final administrative decision and order of NOAA 30 days after service of the NOVA or on the last day of any delay period granted. (b) If...

  8. 15 CFR 995.26 - Conversion of NOAA ENC ® files to other formats.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 15 Commerce and Foreign Trade 3 2010-01-01 2010-01-01 false Conversion of NOAA ENC ® files to... ASSURANCE AND CERTIFICATION REQUIREMENTS FOR NOAA HYDROGRAPHIC PRODUCTS AND SERVICES CERTIFICATION REQUIREMENTS FOR DISTRIBUTORS OF NOAA HYDROGRAPHIC PRODUCTS Requirements for Certified Distributors and...

  9. USGS releases Alaska oil assessment

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    With the U.S. Congress gearing up for a House-Senate conference committee battle about whether to open the Alaska National Wildlife Refuge (ANWR) for oil drilling, a new assessment of the amount of oil in the federal portion of the U.S. National Petroleum Reserve in Alaska (NRPA) is influencing the debate.The U.S. Geological Survey has found that the NPRA holds "significantly greater" petroleum resources than had been estimated previously This finding was disclosed in a 16 May report. The assessment estimated that technically recoverable oil on NPRA federal lands are between 5.9 and 13.2 billion barrels of oil; a 1980 assessment estimated between 0.3 and 5.4 billion barrels.

  10. Alaska Volcano Observatory's KML Tools

    NASA Astrophysics Data System (ADS)

    Valcic, L.; Webley, P. W.; Bailey, J. E.; Dehn, J.

    2008-12-01

    Virtual Globes are now giving the scientific community a new medium to present data, which is compatible across multiple disciplines. They also provide scientists the ability to display their data in real-time, a critical factor in hazard assessment. The Alaska Volcano Observatory remote sensing group has developed Keyhole Markup Language (KML) tools that are used to display satellite data for volcano monitoring and forecast ash cloud movement. The KML tools allow an analyst to view the satellite data in a user-friendly web based environment, without a reliance on non-transportable, proprietary software packages. Here, we show how the tools are used operationally for thermal monitoring of volcanic activity, volcanic ash cloud detection and dispersion modeling, using the Puff model. animate.images.alaska.edu/

  11. 1964 Great Alaska Earthquake: a photographic tour of Anchorage, Alaska

    USGS Publications Warehouse

    Thoms, Evan E.; Haeussler, Peter J.; Anderson, Rebecca D.; McGimsey, Robert G.

    2014-01-01

    On March 27, 1964, at 5:36 p.m., a magnitude 9.2 earthquake, the largest recorded earthquake in U.S. history, struck southcentral Alaska (fig. 1). The Great Alaska Earthquake (also known as the Good Friday Earthquake) occurred at a pivotal time in the history of earth science, and helped lead to the acceptance of plate tectonic theory (Cox, 1973; Brocher and others, 2014). All large subduction zone earthquakes are understood through insights learned from the 1964 event, and observations and interpretations of the earthquake have influenced the design of infrastructure and seismic monitoring systems now in place. The earthquake caused extensive damage across the State, and triggered local tsunamis that devastated the Alaskan towns of Whittier, Valdez, and Seward. In Anchorage, the main cause of damage was ground shaking, which lasted approximately 4.5 minutes. Many buildings could not withstand this motion and were damaged or collapsed even though their foundations remained intact. More significantly, ground shaking triggered a number of landslides along coastal and drainage valley bluffs underlain by the Bootlegger Cove Formation, a composite of facies containing variably mixed gravel, sand, silt, and clay which were deposited over much of upper Cook Inlet during the Late Pleistocene (Ulery and others, 1983). Cyclic (or strain) softening of the more sensitive clay facies caused overlying blocks of soil to slide sideways along surfaces dipping by only a few degrees. This guide is the document version of an interactive web map that was created as part of the commemoration events for the 50th anniversary of the 1964 Great Alaska Earthquake. It is accessible at the U.S. Geological Survey (USGS) Alaska Science Center website: http://alaska.usgs.gov/announcements/news/1964Earthquake/. The website features a map display with suggested tour stops in Anchorage, historical photographs taken shortly after the earthquake, repeat photography of selected sites, scanned documents

  12. Overview of environmental and hydrogeologic conditions at Moses Point, Alaska

    USGS Publications Warehouse

    Dorava, J.M.; Ayres, R.P.; Sisco, W.C.

    1994-01-01

    The Federal Aviation Administration facility at Moses Point is located at the mouth of the Kwiniuk River on the Seward Peninsula in northwestern Alaska. This area has long cold winters and short summers which affect the hydrology of the area. The Federal Aviation Administration owns or operates airport support facilities at the Moses Point site and wishes to consider the subsistence lifestyles of area residents and the quality of the current environment when evaluating options for remediation of environmental contamination at their facilities. Currently no operating wells are in the area, but the vulnerability of the aquifer and other alternative water supplies are being evaluated because the Federal Aviation Administration has a potential liability for the storage and use of hazardous materials in the area.

  13. 2005 Volcanic Activity in Alaska, Kamchatka, and the Kurile Islands: Summary of Events and Response of the Alaska Volcano Observatory

    USGS Publications Warehouse

    McGimsey, R.G.; Neal, C.A.; Dixon, J.P.; Ushakov, Sergey

    2008-01-01

    The Alaska Volcano Observatory (AVO) responded to eruptive activity or suspected volcanic activity at or near 16 volcanoes in Alaska during 2005, including the high profile precursory activity associated with the 2005?06 eruption of Augustine Volcano. AVO continues to participate in distributing information about eruptive activity on the Kamchatka Peninsula, Russia, and in the Kurile Islands of the Russian Far East, in conjunction with the Kamchatkan Volcanic Eruption Response Team (KVERT) and the Sakhalin Volcanic Eruption Response Team (SVERT), respectively. In 2005, AVO helped broadcast alerts about activity at 8 Russian volcanoes. The most serious hazard posed from volcanic eruptions in Alaska, Kamchatka, or the Kurile Islands is the placement of ash into the atmosphere at altitudes traversed by jet aircraft along the North Pacific and Russian Trans East air routes. AVO, KVERT, and SVERT work collaboratively with the National Weather Service, Federal Aviation Administration, and the Volcanic Ash Advisory Centers to provide timely warnings of volcanic eruptions and the production and movement of ash clouds.

  14. ALASKA OIL AND GAS EXPLORATION, DEVELOPMENT, AND PERMITTING PROJECT

    SciTech Connect

    Richard McMahon; Robert Crandall; Chas Dense; Sean Weems

    2003-11-19

    This is the second technical report, covering the period from April 1, 2003 through September 30, 2003. This project brings together three parts of the oil exploration, development, and permitting process to form the foundation for a more fully integrated information technology infrastructure for the State of Alaska. The geo-technical component is a shared effort between the State Department of Administration and the US Department of Energy. The Alaska Oil and Gas Conservation Commission is rapidly converting high volumes of paper documents and geo-technical information to formats suitable for search and retrieval over the Internet. The permitting component is under the lead of the DNR Office of Project Management and Permitting. A web-based system will enable the public and other review participants to track permit status, submit and view comments, and obtain important project information on-line. By automating several functions of the current manual process, permit applications will be completed more quickly and accurately, and agencies will be able to complete reviews with fewer delays. Structural changes are taking place in terms of organization, statutory authority, and regulatory requirements. Geographic Information Systems are a central component to the organization of information, and the delivery of on-line services. Progress has been made to deploy the foundation system for the shared GIS based on open GIS protocols to the extent feasible. Alaska has nearly one-quarter of the nation's supply of crude oil, at least five billion barrels of proven reserves. The American Association of Petroleum Geologists report that the 1995 National Assessment identified the North Slope as having 7.4 billion barrels of technically recoverable oil and over 63 trillion cubic feet of natural gas. From these reserves, Alaska produces roughly one-fifth of the nation's daily crude oil production, or approximately one million barrels per day from over 1,800 active wells.

  15. Bering Strait, Alaska, United States

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Summer run off from the Yukon River, the source of which is hidden by clouds on image right, is filling the Norton Sound (image center) with brownish sediment. The Bering Sea (image left) appears to be supporting a large phytoplankton population, as blue-green swirls are evident from north to south in this true-color MODIS image of Alaska. Credit: Jacques Descloitres, MODIS Land Rapid Response Team

  16. Outbreak of Hepatitis A on an Offshore Petroleum Platform, Alaska

    PubMed Central

    Kosatsky, Tom; Middaugh, John P.; Hall, David

    1988-01-01

    An outbreak of 8 cases of hepatitis A among the 36-member crew of an offshore Alaska petroleum production platform was linked to a previous outbreak in an urban day-care center. Transmission of hepatitis A on the platform related most plausibly to refrigerated food items contaminated by a cook with mild disease. Control efforts included identifying and treating contacts of case patients who had traveled far from the platform before becoming ill. Early serologic confirmation of diagnosed cases and rapid reporting to public health authorities are essential to prevent disease transmission. Timely investigation can limit the administration of immune globulin to persons at high risk of contracting the disease. PMID:3348024

  17. Holocene coastal glaciation of Alaska

    NASA Astrophysics Data System (ADS)

    Calkin, Parker E.; Wiles, Gregory C.; Barclay, David J.

    2001-01-01

    Holocene fluctuations of the three cirque glaciers on the Seward Peninsula and five groups of tidewater- and land-terminating glaciers along the northernmost Gulf of Alaska, provide a proxy record of late Holocene climatic change. Furthermore, the movements of the coastal glaciers were relevant to late Holocene native American migration. The earliest expansion was recorded about 6850 yr BP by Hubbard Glacier at the head of Yakutat Bay in the Gulf of Alaska; however, its down-fjord advance to the bay mouth was delayed until ˜2700 BP. Similarly, expansions of the Icy Bay, Bering, and McCarty glaciers occurred near their present termini by ˜3600-3000 BP, compatible with marked cooling and precipitation increases suggested by the Alaskan pollen record. Decrease in glacier activity ˜2000 BP was succeeded by advances of Gulf coastal glaciers between 1500 and 1300 BP, correlative with early Medieval expansions across the Northern Hemisphere. A Medieval Optimum, encompassing at least a few centuries prior to AD 1200 is recognized by general retreat of land-terminating glaciers, but not of all tidewater glaciers. Little Ice Age advances of land-based glaciers, many dated with the precision of tree-ring cross-dating, were centered on the middle 13th or early 15th centuries, the middle 17th and the last half of the 19th century A.D. Strong synchrony of these events across coastal Alaska is evident.

  18. Improving NOAA's NWLON Through Enhanced Data Inputs from NASA's Ocean Surface Topography

    NASA Technical Reports Server (NTRS)

    Guest, DeNeice C.

    2010-01-01

    This report assesses the benefit of incorporating NASA's OSTM (Ocean Surface Topography Mission) altimeter data (C- and Ku-band) into NOAA's (National Oceanic and Atmospheric Administration) NWLON (National Water Level Observation Network) DSS (Decision Support System). This data will enhance the NWLON DSS by providing additional inforrnation because not all stations collect all meteorological parameters (sea-surface height, ocean tides, wave height, and wind speed over waves). OSTM will also provide data where NWLON stations are not present. OSTM will provide data on seasurface heights for determining sea-level rise and ocean circulation. Researchers and operational users currently use satellite altimeter data products with the GSFCOO NASA data model to obtain sea-surface height and ocean circulation inforrnation. Accurate and tirnely inforrnation concerning sea-level height, tide, and ocean currents is needed to irnprove coastal tidal predictions, tsunarni and storm surge warnings, and wetland restoration.

  19. Solutions Network Formulation Report: Improving NOAA's PORTS(R) Through Enhanced Data Inputs from NASA's Ocean Surface Topography Mission

    NASA Technical Reports Server (NTRS)

    Guest, DeNeice

    2007-01-01

    The Nation uses water-level data for a variety of practical purposes, including nautical charting, maritime navigation, hydrography, coastal engineering, and tsunami and storm surge warnings. Long-term applications include marine boundary determinations, tidal predictions, sea-level trend monitoring, oceanographic research, and climate research. Accurate and timely information concerning sea-level height, tide, and ocean current is needed to understand their impact on coastal management, disaster management, and public health. Satellite altimeter data products are currently used by hundreds of researchers and operational users to monitor ocean circulation and to improve scientists understanding of the role of the oceans in climate and weather. The NOAA (National Oceanic and Atmospheric Administration) National Ocean Service has been monitoring sea-level variations for many years. NOAA s PORTS (Physical Oceanographic Real-Time System) DST (decision support tool), managed by the Center for Operational Oceanographic Products and Services, supports safe and cost-efficient navigation by providing ship masters and pilots with accurate real-time information required to avoid groundings and collisions. This report assesses the capacity of NASA s satellite altimeter data to meet societal decision support needs through incorporation into NOAA s PORTS. NASA has a long heritage of collecting data for ocean research, including its current Terra and Aqua missions. Numerous other missions provide additional important information for coastal management issues, and data collection will continue in the coming decade with such missions as the OSTM (Ocean Surface Topography Mission). OSTM will provide data on sea-surface heights for determining ocean circulation, climate change, and sea-level rise. We suggest that NASA incorporate OSTM altimeter data (C- and Ku-band) into NOAA s PORTS DST in support of NASA s Coastal Management National Application with secondary support to the

  20. 78 FR 40638 - Fisheries of the Exclusive Economic Zone Off Alaska; Dusky Rockfish in the Western Regulatory...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-08

    ... established by the final 2013 and 2014 harvest specifications for groundfish of the GOA (78 FR 13162, February... Assistant Administrator for Fisheries, NOAA (AA), finds good cause to waive the requirement to provide prior... because the most recent, relevant data only became available as of July 1, 2013. The AA also finds...

  1. 76 FR 16699 - Fisheries of the Exclusive Economic Zone Off Alaska; Pollock in Statistical Area 620 in the Gulf...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-25

    ... specifications for groundfish of the GOA (76 FR 11111, March 1, 2011). In accordance with Sec. 679.20(d)(1)(i... Assistant Administrator for Fisheries, NOAA (AA), finds good cause to waive the requirement to provide prior... data only became available as of March 21, 2011. The AA also finds good cause to waive the 30-day...

  2. 76 FR 14319 - Fisheries of the Exclusive Economic Zone Off Alaska; Pollock in Statistical Area 630 in the Gulf...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-16

    ... (76 FR 11111, March 1, 2011). In accordance with Sec. 679.20(d)(1)(i), the Regional Administrator has... Fisheries, NOAA (AA), finds good cause to waive the requirement to provide prior notice and opportunity for... of March 10, 2011. The AA also finds good cause to waive the 30-day delay in the effective date...

  3. 75 FR 39861 - Fisheries of the Exclusive Economic Zone Off Alaska; Pelagic Shelf Rockfish in the Western...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-13

    ... GOA (75 FR 11749, March 12, 2010). In accordance with Sec. 679.20(d)(1)(i) and Sec. 679.20(d)(1)(ii)(B... information recently obtained from the fishery. The Assistant Administrator for Fisheries, NOAA (AA), finds... of July 7, 2010. The AA also finds good cause to waive the 30-day delay in the effective date of...

  4. 75 FR 9534 - Fisheries of the Exclusive Economic Zone Off Alaska; Pollock in Statistical Area 610 in the Gulf...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-03

    ... (74 FR 7333, February 17, 2009) and inseason adjustment (74 FR 68713, December 29, 2009). In... from the fishery. The Assistant Administrator for Fisheries, NOAA (AA), finds good cause to waive the... the most recent, relevant data only became available as of February 25, 2010. The AA also finds...

  5. 77 FR 19146 - Fisheries of the Economic Exclusive Zone Off Alaska; Shallow-Water Species Fishery by Vessels...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-30

    ... of the GOA (77 FR 15194, March 14, 2012), for the period 1200 hrs, A.l.t., January 20, 2012, through... fishery. The Assistant Administrator for Fisheries, NOAA (AA), finds good cause to waive the requirement.... The AA also finds good cause to waive the 30-day delay in the effective date of this action under 5...

  6. 78 FR 44033 - Fisheries of the Exclusive Economic Zone Off Alaska; Northern Rockfish in the Western Regulatory...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-23

    ... groundfish of the GOA (78 FR 13162, February 26, 2013). In accordance with Sec. 679.20(d)(2), the... recently obtained from the fishery. The Acting Assistant Administrator for Fisheries, NOAA (AA), finds good... available as of July 17, 2013. The AA also finds good cause to waive the 30-day delay in the effective...

  7. 76 FR 71913 - Fisheries of the Exclusive Economic Zone Off Alaska; “Other Flatfish” in the Bering Sea Subarea...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-21

    ... FR 11139, March 1, 2011) and apportionment of the reserves (76 FR 53840, August 30, 2011). In... Administrator for Fisheries, NOAA, (AA) finds good cause to waive the requirement to provide prior notice and... most recent and relevant data only became available as of November 14, 2011. The AA also finds...

  8. 78 FR 57537 - Fisheries of the Exclusive Economic Zone Off Alaska; Shortraker Rockfish in the Bering Sea and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-19

    ... 2013 and 2014 final harvest specifications for groundfish of the BSAI (78 FR 13813, March 1, 2013). In... obtained from the fishery. The Assistant Administrator for Fisheries, NOAA (AA), finds good cause to waive... comment because the most recent, relevant data only became available as of September 13, 2013. The AA...

  9. 75 FR 11749 - Fisheries of the Exclusive Economic Zone Off Alaska; Pollock in Statistical Area 630 in the Gulf...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-12

    ... (74 FR 7333, February 1, 2009) and inseason adjustment (74 FR 68713, December 29, 2009). In accordance... from the fishery. The Assistant Administrator for Fisheries, NOAA (AA), finds good cause to waive the... the most recent, relevant data only became available as of March 8, 2010. The AA also finds good...

  10. 78 FR 15643 - Fisheries of the Exclusive Economic Zone Off Alaska; Pacific Cod by Catcher Vessels Using Trawl...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-12

    ... and 2014 harvest specifications for groundfish in the BSAI (78 FR 13813, March 1, 2013). In accordance... Acting Assistant Administrator for Fisheries, NOAA (AA), finds good cause to waive the requirement to... available as of March 7, 2013. The AA also finds good cause to waive the 30-day delay in the effective...

  11. 78 FR 42891 - Fisheries of the Exclusive Economic Zone Off Alaska; Rougheye Rockfish in the Bering Sea and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-18

    ... final 2013 and 2014 harvest specifications for groundfish of the BSAI (78 FR 13813, March 1, 2013). In... recently obtained from the fishery. The Acting Assistant Administrator for Fisheries, NOAA (AA), finds good..., 2013. The AA also finds good cause to waive the 30-day delay in the effective date of this action...

  12. 77 FR 13013 - Fisheries of the Exclusive Economic Zone Off Alaska; Pacific Cod by Catcher Vessels Using Trawl...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-05

    ... specifications for groundfish in the BSAI (77 FR 10669, February 23, 2012). In accordance with Sec. 679.20(d)(1... Administrator for Fisheries, NOAA (AA), finds good cause to waive the requirement to provide prior notice and... AA also finds good cause to waive the 30-day delay in the effective date of this action under 5...

  13. 78 FR 24361 - Fisheries of the Exclusive Economic Zone Off Alaska; Greenland Turbot in the Bering Sea Subarea...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-25

    ... and 2014 harvest specifications for groundfish in the BSAI (78 FR 13813, March 1, 2013). In accordance... information recently obtained from the fishery. The Assistant Administrator for Fisheries, NOAA (AA), finds... available as of April 19, 2013. The AA also finds good cause to waive the 30-day delay in the effective...

  14. 76 FR 17793 - Fisheries of the Exclusive Economic Zone Off Alaska; Pollock in Statistical Area 610 in the Gulf...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-31

    ... (76 FR 11111, March 1, 2011). In accordance with Sec. 679.20(d)(1)(i), the Regional Administrator has... Fisheries, NOAA (AA), finds good cause to waive the requirement to provide prior notice and opportunity for... of March 25, 2011. The AA also finds good cause to waive the 30-day delay in the effective date...

  15. 77 FR 12213 - Fisheries of the Economic Exclusive Zone Off Alaska; Shallow-Water Species by Amendment 80...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-29

    ... tons as established by the final 2011 and 2012 harvest specifications for groundfish of the GOA (76 FR... information recently obtained from the fishery. The Acting Assistant Administrator for Fisheries, NOAA (AA... because the most recent, relevant data only became available as of February 23, 2012. The AA also...

  16. 78 FR 11789 - Fisheries of the Exclusive Economic Zone Off Alaska; Pollock in Statistical Area 630 in the Gulf...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-20

    ... groundfish of the GOA (77 FR 15194, March 14, 2012) and inseason adjustment (78 FR 267, January 3, 2013). In... from the fishery. The Acting Assistant Administrator for Fisheries, NOAA (AA), finds good cause to... became available as of February 12, 2013. The AA also finds good cause to waive the 30-day delay in...

  17. New Coastal Tsunami Gauges: Application at Augustine Volcano, Cook Inlet, Alaska

    NASA Astrophysics Data System (ADS)

    Burgy, M.; Bolton, D. K.

    2006-12-01

    Recent eruptive activity at Augustine Volcano and its associated tsunami threat to lower Cook Inlet pointed out the need for a quickly deployable tsunami detector which could be installed on Augustine Island's coast. The detector's purpose would be to verify tsunami generation by direct observation of the wave at the source to support tsunami warning decisions along populated coastlines. To fill this need the Tsunami Mobile Alert Real-Time (TSMART) system was developed at NOAA's West Coast/Alaska Tsunami Warning Center with support from the University of Alaska Tsunami Warning and Environmental Observatory for Alaska program (TWEAK) and the Alaska Volcano Observatory (AVO). The TSMART system consists of a pressure sensor installed as near as possible to the low tide line. The sensor is enclosed in a water-tight hypalon bag filled with propylene-glycol to prevent silt damage to the sensor and freezing. The bag is enclosed in a perforated, strong plastic pipe about 16 inches long and 8 inches in diameter enclosed at both ends for protection. The sensor is cabled to a data logger/radio/power station up to 300 feet distant. Data are transmitted to a base station and made available to the warning center in real-time through the internet. This data telemetry system can be incorporated within existing AVO and Plate Boundary Observatory networks which makes it ideal for volcano-tsunami monitoring. A TSMART network can be utilized anywhere in the world within 120 miles of an internet connection. At Augustine, two test stations were installed on the east side of the island in August 2006. The sensors were located very near the low tide limit and covered with rock, and the cable was buried to the data logger station which was located well above high tide mark. Data logger, radio, battery and other electronics are housed in an enclosure mounted to a pole which also supports an antenna and solar panel. Radio signal is transmitted to a repeater station higher up on the island

  18. Trinidad Head, California: New NOAA/CMDL Baseline Observatory for Monitoring Asian Atmospheric Effluents

    NASA Astrophysics Data System (ADS)

    Schnell, R. C.; Butler, J. H.

    2002-12-01

    Long-range transport of dust and air pollution from Asia to the Mauna Loa, Hawaii, Atmospheric Baseline Observatory has been documented since the early 1970s. In a single year, as many as 30 distinct pollution flow events from Asia have been observed there. Some flows last a few hours, whereas others persist for up to 5 days. More recently, it has been recognized by both measurements and satellite photos that there are significant numbers of air pollution flow events from Asia into North America along a broad front, ranging from the north slope of Alaska to central California. There is a valid concern that ozone and ozone precursors advecting from Asia could eventually put California into noncompliance with federal air-quality regulations. As a component of the Intercontinental Transport and Chemical Transformation (ITCT) program, NOAA/CMDL established an atmospheric monitoring observatory (April 2002) at Trinidad Head, California in collaboration with Humboldt State University, to monitor both the inflow of air pollution from Asia as well as regionally influenced air. The station monitors aerosols, ozone (continuous surface and weekly ozonesonde balloon profiles), radiation, and halocarbon and carbon cycle trace gases (weekly flasks). Data from Trinidad Head are monitored via the internet at CMDL in Boulder. Plans call for the installation of a GC/MS for the measurement of PAN, hydrocarbons, and certain halocarbons, and for vertical profiles of trace gases and ozone to be obtained (with light aircraft) upwind and above the site on a weekly basis. It is expected that the Trinidad Head observatory will expand measurement programs over the next 5 years and be in operation for many decades to come.

  19. Alaska Volcano Observatory at 20

    NASA Astrophysics Data System (ADS)

    Eichelberger, J. C.

    2008-12-01

    The Alaska Volcano Observatory (AVO) was established in 1988 in the wake of the 1986 Augustine eruption through a congressional earmark. Even within the volcanological community, there was skepticism about AVO. Populations directly at risk in Alaska were small compared to Cascadia, and the logistical costs of installing and maintaining monitoring equipment were much higher. Questions were raised concerning the technical feasibility of keeping seismic stations operating through the long, dark, stormy Alaska winters. Some argued that AVO should simply cover Augustine with instruments and wait for the next eruption there, expected in the mid 90s (but delayed until 2006), rather than stretching to instrument as many volcanoes as possible. No sooner was AVO in place than Redoubt erupted and a fully loaded passenger 747 strayed into the eruption cloud between Anchorage and Fairbanks, causing a powerless glide to within a minute of impact before the pilot could restart two engines and limp into Anchorage. This event forcefully made the case that volcano hazard mitigation is not just about people and infrastructure on the ground, and is particularly important in the heavily traveled North Pacific where options for flight diversion are few. In 1996, new funding became available through an FAA earmark to aggressively extend volcano monitoring far into the Aleutian Islands with both ground-based networks and round-the-clock satellite monitoring. Beyond the Aleutians, AVO developed a monitoring partnership with Russians volcanologists at the Institute of Volcanology and Seismology in Petropavlovsk-Kamchatsky. The need to work together internationally on subduction phenomena that span borders led to formation of the Japan-Kamchatka-Alaska Subduction Processes (JKASP) consortium. JKASP meets approximately biennially in Sapporo, Petropavlovsk, and Fairbanks. In turn, these meetings and support from NSF and the Russian Academy of Sciences led to new international education and

  20. NOAA Operational Ocean Products from AMSR-2 Microwave Radiometer

    NASA Astrophysics Data System (ADS)

    Jelenak, Zorana; Chang, Paul; Alsweiss, Suleiman; Park, Jun; Meyers, Patrick

    2014-05-01

    The Japanese Aerospace Exploration Agency (JAXA) Global Change Observation Mission (GCOM) consists of two satellite series, Water (GCOM-W) and Climate (GCOM-C). The first satellite of the GCOM program, GCOM-W1, was launched on May 18, 2012 carrying the follow-on to the Advanced Microwave Scanning Radiometer - Earth Observing System (AMSR-E), AMSR-2. NOAA's GCOM-W1 product development and validation project will provide NOAA's users access to critical geophysical products derived from AMSR-2. These products, which are detailed in NOAA's Joint Polar Satellite System (JPSS) Level 1 Requirements Document Supplement, include: NOAA AMSR-2 Product Requirements: Day 1 Product Capability • Microwave Brightness Temperature (MBT) • Total Precipitable Water (TPW) • Cloud Liquid Water (CLW) • Precipitation Type/Rate (PT/R) • Sea Surface Temperature (SST) • Sea Surface Wind Speed (SSW) Day 2 Product Capability • Soil Moisture (SM) • Sea Ice Characterization (SIC) • Snow Cover/Depth (SC/D) • Snow Water Equivalent (SWE) • Surface Type (ST) GCOM-W1 data is being captured at the KSAT Svalbard Ground Station and assembled into APID packets. Using the JPSS (NPP) infrastructure, the GCOM raw data (APID packets) are routed to the NOAA Interface Data Processing System (IDPS), in near-real time. Once received at the IDPS, the APID packets will be reformatted into Raw Data Records (RDRs) and sent to the NPP Data Exploitation (NDE) system for distribution to the Environmental Satellite Date Processing System where further processing to brightness temperatures (Level 1)/sensor data records (SDRs) and geophysical products (Level 2)/Environmental Data Records (EDRs) will be performed. The RDRs are processed to SDRs utilizing software provided by JAXA. The goal of the product processing system is to provide validated operational L2 products from the AMSR-2 instrument that address the GCOM-W1 requirements in the JPSS L1RD Supplemental for distribution to operational users

  1. Administrative Synergy

    ERIC Educational Resources Information Center

    Hewitt, Kimberly Kappler; Weckstein, Daniel K.

    2012-01-01

    One of the biggest obstacles to overcome in creating and sustaining an administrative professional learning community (PLC) is time. Administrators are constantly deluged by the tyranny of the urgent. It is a Herculean task to carve out time for PLCs, but it is imperative to do so. In this article, the authors describe how an administrative PLC…

  2. Some Books about Alaska Received in 1990.

    ERIC Educational Resources Information Center

    Alaska State Dept. of Education, Juneau. Div. of State Libraries.

    This annual bibliography of Alaska- and Arctic-related publications received by the Alaska Division of State Libraries is divided into three categories. There are 26 titles in the "Juvenile Fiction" section, 122 in the "Adult Non-Fiction" section, and 19 in the "Adult Fiction" section. Government publications are generally not included, although a…

  3. Some Books about Alaska Received in 1987.

    ERIC Educational Resources Information Center

    Alaska State Dept. of Education, Juneau. Div. of State Libraries.

    This is the 1987 edition of an annual annotated listing of Alaska-Arctic related publications received by the Alaska Division of State Libraries. Divided into four sections, this bibliography describes each book, identifies the publisher and price per copy, and includes ISBN numbers. Some of the entries also include the Library of Congress numbers…

  4. Alaska School District Cost Study Update

    ERIC Educational Resources Information Center

    Tuck, Bradford H.; Berman, Matthew; Hill, Alexandra

    2005-01-01

    The Legislative Budget and Audit Committee of the Alaska Legislature has asked The Institute of Social and Economic Research (ISER) at the University of Alaska Anchorage to make certain changes and adjustments to the Geographic Cost of Education Index (GCEI) that the American Institutes for Research (AIR) constructed and reported on in Alaska…

  5. Alaska interim land cover mapping program

    USGS Publications Warehouse

    U.S. Geological Survey

    1987-01-01

    In order to meet the requirements of the Alaska National Interest Lands Conservation Act (ANILCA) for comprehensive resource and management plans from all major land management agencies in Alaska, the USGS has begun a program to classify land cover for the entire State using Landsat digital data. Vegetation and land cover classifications, generated in cooperation with other agencies, currently exist for 115 million acres of Alaska. Using these as a base, the USGS has prepared a comprehensive plan for classifying the remaining areas of the State. The development of this program will lead to a complete interim vegetation and land cover classification system for Alaska and allow the dissemination of digital data for those areas classified. At completion, 153 Alaska 1:250,000-scale quadrangles will be published and will include land cover from digital Landsat classifications, statistical summaries of all land cover by township, and computer-compatible tapes. An interagency working group has established an Alaska classification system (table 1) composed of 18 classes modified from "A land use and land cover classification system for use with remote sensor data" (Anderson and others, 1976), and from "Revision of a preliminary classification system for vegetation of Alaska" (Viereck and Dyrness, 1982) for the unique ecoregions which are found in Alaska.

  6. 75 FR 43199 - Alaska Native Claims Selection

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-23

    ... approving the conveyance of surface estate for certain lands to Beaver Kwit'chin Corporation, pursuant to... Doyon, Limited when the surface estate is conveyed to Beaver Kwit'chin Corporation. The lands are in the vicinity of Beaver, Alaska, and are located in: Fairbanks Meridian, Alaska T. 16 N., R. 1 E., Secs. 1 to...

  7. 40 CFR 81.302 - Alaska.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 18 2012-07-01 2012-07-01 false Alaska. 81.302 Section 81.302 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) DESIGNATION OF AREAS FOR AIR QUALITY PLANNING PURPOSES Section 107 Attainment Status Designations § 81.302 Alaska. Alaska—TSP Designated area Does not meet...

  8. 78 FR 7807 - Alaska Native Claims Selection

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-04

    ... Bureau of Land Management Alaska Native Claims Selection AGENCY: Bureau of Land Management, Interior...), notice is hereby given that an appealable decision will be issued by the Bureau of Land Management (BLM... from: Bureau of Land Management, Alaska State Office, 222 West Seventh......

  9. 78 FR 42543 - Alaska Native Claims Selection

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-16

    ... Bureau of Land Management Alaska Native Claims Selection AGENCY: Bureau of Land Management, Interior...), notice is hereby given that an appealable decision will be issued by the Bureau of Land Management (BLM... from: Bureau of Land Management, Alaska State Office, 222 West Seventh......

  10. 78 FR 64002 - Alaska Native Claims Selection

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-25

    ... Bureau of Land Management Alaska Native Claims Selection AGENCY: Bureau of Land Management, Interior...), notice is hereby given that an appealable decision will be issued by the Bureau of Land Management (BLM... from: Bureau of Land Management, Alaska State Office, 222 West Seventh......

  11. 78 FR 7807 - Alaska Native Claims Selection

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-04

    ... Bureau of Land Management Alaska Native Claims Selection AGENCY: Bureau of Land Management, Interior...), notice is hereby given that an appealable decision will be issued by the Bureau of Land Management (BLM... decision may be obtained from: Bureau of Land Management, Alaska State......

  12. Culturally Responsive Guidelines for Alaska Public Libraries.

    ERIC Educational Resources Information Center

    Alaska Univ., Fairbanks. Alaska Native Knowledge Network.

    These guidelines are predicated on the belief that culturally appropriate service to indigenous peoples is a fundamental principle of Alaska public libraries. While the impetus for developing the guidelines was service to the Alaska Native community, they can also be applied to other cultural groups. A culturally responsive library environment is…

  13. Distance Learning in Alaska's Rural Schools.

    ERIC Educational Resources Information Center

    Bramble, William J.

    1986-01-01

    The distance education and instructional technology projects that have been undertaken in Alaska over the last decade are detailed in this paper. The basic services offered by the "Learn Alaska Network" are described in relation to three user groups: K-12 education; postsecondary education; and general public education and information. The audio…

  14. Infant Mortality and American Indians/Alaska Natives

    MedlinePlus

    ... Heath & Mortality Infant Mortality and American Indians/Alaska Natives American Indian/Alaska Natives have 1.5 times the ... Cause of Death (By rank) # American Indian/Alaska Native Deaths American Indian/Alaska Native Death Rate #Non- Hispanic White ...

  15. Long-term Variability in Pacific Decadal Oscillation Teleconnections to Climate in Alaska: From "In a Relationship" to "It's Complicated"

    NASA Astrophysics Data System (ADS)

    Heckler, S.; McAfee, S. A.

    2015-12-01

    Since the Pacific Decadal Oscillation's (PDO) identification in 1997, it has been widely used as a seasonal-forecasting and decision-making tool in Alaska. Gulf of Alaska sea surface temperatures have oscillated every few decades between warmer (positive PDO) and colder (negative PDO). In the historical record, there are two negative phases and two positive phases, but since 2000, the PDO has vacillated between warm and cold states annually. Recent inconsistencies in the phase of the PDO as well as its influence on climate have warranted further study of this climate phenomenon. Previous work found that strength and importance of the PDO teleconnections to temperature and precipitation varied widely over time in the Twentieth Century Reanalysis (v2) data and in CRU TS3.2.1. In light of the inherent problems with reanalyses and with gridded products in data-poor areas, it is necessary to examine individual station data to further understand the relationship of the PDO with climate in Alaska. This study examines temperature and precipitation data for individual stations across Alaska to determine the stability of PDO teleconnections. Individual station data were downloaded from the NOAA National Centers for Environmental Information GHCN-D database. For the months of January, February and March, stations with at least 90% complete data for all three months were selected. Using stations grouped according to the recently developed Alaska climate divisions, the stability of PDO teleconnections was analyzed in terms of station anomalies from the PRISM climatology. In many parts of the state, the relationship between the PDO and local climate was not as stable as expected. Even at individual stations, the strength and influence of the PDO was often inconsistent over time.

  16. ARM-LBNL-NOAA Flask Sampler for Carbon Cycle Gases

    DOE Data Explorer

    Torn, Margaret

    2008-01-15

    Data from ccg-flasks are sampled at the ARM SGP site and analyzed by the NOAA Earth System Research Laboratory (ESRL) as part of the NOAA Cooperative Global Air Sampling Network. Surface samples are collected from a 60m tower at the SGP Central Facility, usually once per week on one afternoon. The aircraft samples are collected approximately weekly from a chartered aircraft, and the collection flight path is centered over the tower where the surface samples are collected. Samples are collected by the ARM/LBNL Carbon Project. CO2 flask data contains measurements of CO2 concentration and CO2 stable isotope ratios (13CO2 and C18OO) from flasks collected at the SGP site. The flask samples are collected at 2m, 4m, 25m, and 60m along the 60m tower.

  17. NOAA-9 Earth Radiation Budget Experiment (ERBE) scanner offsets determination

    NASA Technical Reports Server (NTRS)

    Avis, Lee M.; Paden, Jack; Lee, Robert B., III; Pandey, Dhirendra K.; Stassi, Joseph C.; Wilson, Robert S.; Tolson, Carol J.; Bolden, William C.

    1994-01-01

    The Earth Radiation Budget Experiment (ERBE) instruments are designed to measure the components of the radiative exchange between the Sun, Earth and space. ERBE is comprised of three spacecraft, each carrying a nearly identical set of radiometers: a three-channel narrow-field-of-view scanner, a two-channel wide-field-of-view (limb-to-limb) non-scanning radiometer, a two-channel medium field-of view (1000 km) non-scanning radiometer, and a solar monitor. Ground testing showed the scanners to be susceptible to self-generated and externally generated electromagnetic noise. This paper describes the pre-launch corrective measures taken and the post-launch corrections to the NOAA-9 scanner data. The NOAA-9 scanner has met the mission objectives in accuracy and precision, in part because of the pre-launch reductions of and post-launch data corrections for the electromagnetic noise.

  18. Non-standard Space Weather Products and Services from NOAA

    NASA Astrophysics Data System (ADS)

    Denig, W. F.; Viereck, R. A.

    2012-12-01

    The NOAA National Geophysical Data Center (NGDC) and Space Weather Prediction Center (SWPC) have developed and are continuing to develop a variety of "non-standard" data products for near real-time space weather applications. Core space weather services provided by SWPC include access to space environmental data from NOAA operational satellites and leveraged data from NASA and USAF assets. Core services also include operational space weather model results providing environmental specifications and forecasts. Non-standard products to be discussed include space weather services and applications that have either not yet reached operational maturity or are being released as beta-version test products. Included are the Forecasting Ionospheric Real-time Scintillation Tool (FIRST), the Ovation Prime Real-Time product, the Space Environment Anomaly Expert System Real Time (SEAESRT) and the PEople Empowered Product (PEEP). The status of these products, including how to access and provide comments, will be presented.

  19. NOAA 26.5 Ah LEO characterization test

    NASA Technical Reports Server (NTRS)

    Morrow, G. W.

    1986-01-01

    The General Electric (GE) 26.5 Ah NOAA-G flight nickel-cadmium cells were obtained from RCA-Astro Electronics to undergo performance characterization testing at the Goddard Space Flight Center (GSFC). This lot of cells was manufactured with passivated positive plate, to control nickel structure attack duing active material impregnation, and less electrolyte than normal (less than 3cc/Ah). The cells were tested in a parametric low Earth orbit (LEO) cycling regime that was previously used to test and characterize standard 50 Ah cells. Life cycle testing at the Naval Weapons Support Center (NWSC), in Crane, followed. The results of the test showed nominal performance in comparison with previous test data on the standard 50. Life cycle testing in the NOAA orbital regime is continuing at NWSC.

  20. Advances of NOAA Training Program in Climate Services

    NASA Astrophysics Data System (ADS)

    Timofeyeva, M. M.

    2012-12-01

    Since 2002, NOAA's National Weather Service (NWS) Climate Services Division (CSD) has offered numerous training opportunities to NWS staff. After eight-years of development, the training program offers three instructor-led courses and roughly 25 online (distance learning) modules covering various climate topics, such as: climate data and observations, climate variability and change, and NWS national / local climate products (tools, skill, and interpretation). Leveraging climate information and expertise available at all NOAA line offices and partners allows for the delivery of the most advanced knowledge and is a very critical aspect of the training program. The emerging NOAA Climate Service (NCS) requires a well-trained, climate-literate workforce at the local level capable of delivering NOAA's climate products and services as well as providing climate-sensitive decision support. NWS Weather Forecast Offices and River Forecast Centers presently serve as local outlets for the NCS climate services. Trained NWS climate service personnel use proactive and reactive approaches and professional education methods in communicating climate variability and change information to local users. Both scientifically-sound messages and amiable communication techniques are important in developing an engaged dialog between the climate service providers and users. Several pilot projects have been conducted by the NWS CSD this past year that apply the program's training lessons and expertise to specialized external user group training. The technical user groups included natural resources managers, engineers, hydrologists, and planners for transportation infrastructure. Training of professional user groups required tailoring instructions to the potential applications for each group of users. Training technical users identified the following critical issues: (1) knowledge of target audience expectations, initial knowledge status, and potential use of climate information; (2) leveraging

  1. Impact of Scatterometer Ocean Wind Vector Data on NOAA Operations

    NASA Astrophysics Data System (ADS)

    Jelenak, Z.; Chang, P.; Brennan, M. J.; Sienkiewicz, J. M.

    2015-12-01

    Near real-time measurements of ocean surface vector winds (OSVW), including both wind speed and direction from non-NOAA satellites, are being widely used in critical operational NOAA forecasting and warning activities. The scatterometer wind data data have had major operational impact in: a) determining wind warning areas for mid-latitude systems (gale, storm,hurricane force); b) determining tropical cyclone 34-knot and 50-knot wind radii. c) tracking the center location of tropical cyclones, including the initial identification of their formation. d) identifying and warning of extreme gap and jet wind events at all latitudes. e) identifying the current location of frontal systems and high and low pressure centers. f) improving coastal surf and swell forecasts Much has been learned about the importance and utility of satellite OSVW data in operational weather forecasting and warning by exploiting OSVW research satellites in near real-time. Since December 1999 when first data from QuikSCAT scatterometer became available in near real time NOAA operations have been benefiting from ASCAT scatterometer observations on MetOp-A and B, Indian OSCAT scatterometer on OceanSat-3 and lately NASA's RapidScat mission on International Space Station. With oceans comprising over 70 percent of the earth's surface, the impacts of these data have been tremendous in serving society's needs for weather and water information and in supporting the nation's commerce with information for safe, efficient, and environmentally sound transportation and coastal preparedness. The satellite OSVW experience that has been gained over the past decade by users in the operational weather community allows for realistic operational OSVW requirements to be properly stated for future missions. Successful model of transitioning research data into operation implemented by Ocean Winds Team in NOAA's NESDIS/STAR office and subsequent data impacts will be presented and discussed.

  2. NOAA Ecosystem Data Assembly Center for the Gulf of Mexico

    NASA Astrophysics Data System (ADS)

    Parsons, A. R.; Beard, R. H.; Arnone, R. A.; Cross, S. L.; Comar, P. G.; May, N.; Strange, T. P.

    2006-12-01

    Through research programs at the NOAA Northern Gulf of Mexico Cooperative Institute (CI), NOAA is establishing an Ecosystem Data Assembly Center (EDAC) for the Gulf of Mexico. The EDAC demonstrates the utility of integrating many heterogeneous data types and streams used to characterized and identify ecosystems for the purpose of determining the health of ecosystems and identifying applications of the data within coastal resource management activities. Data streams include meteorological, physical oceanographic, ocean color, benthic, biogeochemical surveys, fishery, as well as fresh water fluxes (rainfall and river flow). Additionally the EDAC will provide an interface to the ecosystem data through an ontology based on the Coastal/Marine Ecological Classification System (CMECS). Applications of the ontological approach within the EDAC will be applied to increase public knowledge on habitat and ecosystem awareness. The EDAC plans to leverage companion socioeconomic studies to identify the essential data needed for continued EDAC operations. All data-management architectures and practices within the EDAC ensure interoperability with the Integrated Ocean Observing System (IOOS) national backbone by incorporating the IOOS Data Management and Communications Plan. Proven data protocols, standards, formats, applications, practices and architectures developed by the EDAC will be transitioned to the NOAA National Data Centers.

  3. Best Practices in Mentoring in NOAA Scholarship Programs

    NASA Astrophysics Data System (ADS)

    Kaplan, M.; Sarvis, S.; Dancy, V.

    2015-12-01

    Through established scholarship programs, NOAA hosts 125 - 175 undergraduate students each summer to participate in internship opportunities at agency facilities. In order to host a scholar, NOAA labs and offices must designate a mentor who develops a project and oversees activities of the student throughout the summer. NOAA implements best practices in mentoring in the following ways: mentor and intern responsibilities are clearly defined in a manual; mentors are required to take an online mentor training class; mentors and scholars are matched through an online system and scholars conduct a site visit prior to beginning the internship; proposed internship projects are reviewed by scholarship program managers to assure they are sufficiently analytical and will advance the student in their future academic and career goals; and mentors are surveyed at the midpoint, allowing scholarship program managers to identify problems and intervene if possible. These practices have resulted in strong results. Students identify the mentor relationship, hands-on experience and networking with professionals as the three most important outcomes of the internship experience.

  4. A Restrospective and Prospective Examination of NOAA Solar Imaging

    NASA Astrophysics Data System (ADS)

    Hill, S. M.

    2015-12-01

    NOAA has provided soft X-ray imaging of the lower corona since the early 2000's. It is currently building the spacecraft and instrumentation to observe the sun in the extreme ultraviolet (EUV) through 2036. After more than 6 million calibrated images, it is appropriate to examine NOAA data as providing retrospective context for scientific missions. In particular, this presentation examines the record of GOES Solar X-ray Imager (SXI) observations, including continuity, photometric stability and comparison to other contemporary x-ray imagers. The first GOES Solar X-ray Imager was launched in 2001 and entered operations in 2003. The current SXIs will remain in operations until approximately 2020, when a new series of Solar (extreme-)Ultraviolet Imagers (SUVIs) will replace them as the current satellites reach their end of life. In the sense that the SXIs are similar to Yokoh's SXT and Hinode's XRT, the SUVI instruments will be similar to SOHO's EIT and SDO's AIA. The move to narrowband EUV imagers will better support eventual operational estimation of plasma conditions. In particular, plans are to leverage advances in automated image processing and segmentation to assist forecasters. While NOAA's principal use of these observations is real-time space weather forecasting, they will continue to provide a consistent context measurement for researchers for decades to come.

  5. 76 FR 45217 - Fisheries of the Exclusive Economic Zone Off Alaska; Central Gulf of Alaska Rockfish Program...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-28

    ... Economic Zone Off Alaska; Central Gulf of Alaska Rockfish Program; Amendment 88 AGENCY: National Marine... submitted Amendment 88 to the Fishery Management Plan for Groundfish of the Gulf of Alaska (FMP) for review... gains realized under the Rockfish Pilot Program and viability of the Gulf of Alaska fisheries....

  6. 75 FR 38079 - National Oceanic and Atmospheric Administration (NOAA) Science Advisory Board (SAB)

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-01

    ...The Science Advisory Board (SAB) was established by a Decision Memorandum dated September 25, 1997, and is the only Federal Advisory Committee with responsibility to advise the Under Secretary of Commerce for Oceans and Atmosphere on strategies for research, education, and application of science to operations and information services. SAB activities and advice provide necessary input to ensure......

  7. Alaska Village Electric Load Calculator

    SciTech Connect

    Devine, M.; Baring-Gould, E. I.

    2004-10-01

    As part of designing a village electric power system, the present and future electric loads must be defined, including both seasonal and daily usage patterns. However, in many cases, detailed electric load information is not readily available. NREL developed the Alaska Village Electric Load Calculator to help estimate the electricity requirements in a village given basic information about the types of facilities located within the community. The purpose of this report is to explain how the load calculator was developed and to provide instructions on its use so that organizations can then use this model to calculate expected electrical energy usage.

  8. NOAA Introduces its First-Generation Reference Evapotranspiration Product

    NASA Astrophysics Data System (ADS)

    Hobbins, M.; Geli, H. M.; Lewis, C.; Senay, G. B.; Verdin, J. P.

    2013-12-01

    NOAA is producing daily, gridded operational, long-term, reference evapotranspiration (ETo) data for the National Water Census (NWC). The NWC is a congressional mandate to provide water managers with accurate, up-to-date, scientifically defensible reporting on the national water cycle; as such, it requires a high-quality record of actual ET, which we derive as a fraction of NOAA's land-based ETo a fraction determined by remotely sensed (RS) LST and/or surface reflectance in an operational version of the Simplified Surface Energy Balance (SSEBop). This methodology permits mapping of ET on a routine basis with a high degree of consistency at multiple spatial scales. This presentation addresses the ETo input to this process. NOAA's ETo dataset is generated from the American Society of Civil Engineers Standardized Penman-Monteith equation driven by hourly, 0.125-degree (~12-km) data from the North American Land Data Assimilation System (NLDAS). Coverage is CONUS-wide from Jan 1, 1979, to within five days of the present. The ETo is verified against agro-meteorological stations in western CONUS networks, while a first-order, second-moment uncertainty analysis indicates when, where, and to what extent each driver contributes to ETo variability (and so potentially require the most attention). As the NWC's mandate requires a nationwide coverage, the ETo dataset must also be verified outside of the measure's traditional, agricultural/irrigated areas of application. In this presentation, we summarize the verification of the gridded ETo product and demonstrate the drivers of ETo variability in space and time across CONUS. Beyond its primary use as a component of ET in the NWC, we further explore potential uses of the ETo product as an input to drought models and as a stand-alone index of fast-developing agricultural drought, or 'flash drought.' NOAA's product is the first consistently modeled, daily, continent-wide ETo dataset that is both up-to-date and as temporally

  9. Relevant Adult Programs, Resilient Students, and Retention-Driven Administration

    ERIC Educational Resources Information Center

    Beth Sullivan, Esther; Pagano, Rosanne V.

    2012-01-01

    In ten years, Alaska Pacific University has moved from a totally decentralized administration of its adult online program to a very centralized structure. Drastic changes in funding sources and student needs have compelled the university to take new approaches. As the learning landscape continues to shift for adults, online learners, and Alaska…

  10. Modernizing Administration.

    ERIC Educational Resources Information Center

    Lombardi, Vincent L.; Hildebrand, Verna

    1981-01-01

    Suggests assignment of research duties and rotation of teaching and management roles for college administrators, to increase their effectiveness and diminish the negative effects of declining enrollments. (JD)

  11. Hyperspectral surveying for mineral resources in Alaska

    USGS Publications Warehouse

    Kokaly, Raymond F.; Graham, Garth E.; Hoefen, Todd M.; Kelley, Karen D.; Johnson, Michaela R.; Hubbard, Bernard E.

    2016-01-01

    Alaska is a major producer of base and precious metals and has a high potential for additional undiscovered mineral resources. However, discovery is hindered by Alaska’s vast size, remoteness, and rugged terrain. New methods are needed to overcome these obstacles in order to fully evaluate Alaska’s geology and mineral resource potential. Hyperspectral surveying is one method that can be used to rapidly acquire data about the distributions of surficial materials, including different types of bedrock and ground cover. In 2014, the U.S. Geological Survey began the Alaska Hyperspectral Project to assess the applicability of this method in Alaska. The primary study area is a remote part of the eastern Alaska Range where porphyry deposits are exposed. In collaboration with the Alaska Division of Geological and Geophysical Surveys, the University of Alaska Fairbanks, and the National Park Service, the U.S. Geological Survey is collecting and analyzing hyperspectral data with the goals of enhancing geologic mapping and developing methods to identify and characterize mineral deposits elsewhere in Alaska.

  12. Historical Data from the NOAA WP-3D Arctic Gas and Aerosol Sampling Program (AGASP) Flights: 1983, 1986, 1989 and 1992

    NASA Astrophysics Data System (ADS)

    Schnell, R. C.; Sheridan, P. J.

    2009-12-01

    A NOAA WP-3D instrumented for gas, aerosol and radiation measurements was flown 400 research hours over four periods (March-April: 1983, 1986, 1989 and 1992) covering large areas of the Arctic Basin from Alaska to Norway studying Arctic Haze and air chemistry. In 1986 the program included aircraft from the University of Washington; AES, Canada; and NILU, Norway. Profiles were conducted above the Barrow, Alert and Ny Alesund atmospheric baseline stations, and numerous profiles across the low level inversion layer over the ice cap to put surface, boundary layer and free troposphere measurements into perspective. Highlights from AGASP include observations of up to 6 stacked layers of air pollution >5,000 km from the nearest possible source regions; layers of air pollution containing high concentrations of black carbon and anthropogenic gases; photochemical ozone depletion in the Arctic boundary layer; intrusions of stratospheric air injecting stratospheric gases and aerosols deep into the Arctic troposphere; haze optical depths of up to 0.5; and data showing that heat and moisture from open leads in the Arctic ice pack can breach the boundary layer inversion and rise to near the tropopause. In most profiles,aerosol light scattering, and ozone, black carbon and condensation nucleus concentrations were much reduced beneath boundary layer temperature inversion (~1 km above the ice). Since most of the AGASP and related publications pre-date current easy electronic access, a file listing the titles and sources of 185 papers published in journals, books, and NOAA Technical Memos is available at http://www.esrl.noaa.gov/gmd/obop/schnell/.

  13. Integration of Visibility Sensors in NOAA PORTS® to aid in Decision Making for Safe Navigation

    NASA Astrophysics Data System (ADS)

    Roggenstein, E. B.

    2012-12-01

    The National Oceanic and Atmospheric Administration (NOAA) National Ocean Service (NOS) Physical Oceanographic Real-Time System (PORTS®) provides real-time water level, currents and meteorological data for aid to navigation in twenty-three major ports and harbors. In response to PORTS® users' requests for visibility data, NOS began testing several varieties of visibility sensors for operations in a marine environment. Extensive testing resulted in the selection of the Vaisala FS11 visibility sensor. The FS11 sensor uses forward scattering technology to measure the amount of scattering in a small volume of air between the transmitter and receiver, resulting in an extrapolated visibility at a set height out to 75 km. Two sensors have been successfully operating in the Mobile Bay PORTS® at Middle Bay Port and Pinto Island since installation in 2010. The sensors are positioned at a height of 3 m above the ground, 24 km apart along the western shore of the bay in areas susceptible to fog formation. Real-time data from these sensors are disseminated on NOAA's Center for Operational Oceanographic Products and Services (COOPS) PORTS® website every 6 minutes (min) and for distances up to 10 km (5.4 nm) from the instrument. This has proven to aid port pilots' decision making for safe movement of vessels in the harbor. Additionally, the Pinto Island sensor is located directly adjacent to the shipping channel - an area with high levels of atmospheric particulates of high carbon content. These particulates do not appear to have negatively affected sensor performance. This success has prompted interest in visibility sensors from other harbors with PORTS®. The ports of San Francisco, Narragansett Bay, Chesapeake Bay, Jacksonville FL, and Gulfport MS are planning or exploring the addition of visibility sensors to their PORTS® to aid in navigation. Additionally, the NOAA/COOPS Ocean System Test Evaluation Program (OSTEP) has continued with additional field testing of the FS11

  14. The Climate Change Education Evidence Base: Lessons Learned from NOAA's Monitoring and Evaluation Framework Implementation

    NASA Astrophysics Data System (ADS)

    Baek, J.

    2012-12-01

    Federal science mission agencies are under increased pressure to ensure that their STEM education investments accomplish several objectives, including the identification and use of evidence-based approaches. Climate change education and climate literacy programs fall under these broader STEM initiatives. This paper is designed as a primer for climate change education evaluators and researchers to understand the policy context on the use of evidence. Recent initiatives, that include the National Science Foundation (NSF), the National Aeronautics and Space Administration (NASA), the National Oceanic and Atmospheric Administration (NOAA), point to a need for shared goals and measurements amongst the climate change education community. The Tri-agency Climate Change Education (CCE) collaboration, which includes NSF, NASA, and NOAA, developed the Tri-Agency Climate Change Education Common Evaluation Framework Initiative Stakeholder Statement (2012). An excerpt: From the perspective of the tri-agency collaboration, and its individual agency members, the goal of the common framework is not to build a required evaluation scheme or a set of new requirements for our funded climate change education initiatives. Rather, the collaboration would be strengthened by the development of a framework that includes tools, instruments, and/or documentation to: ● Help the agencies see and articulate the relationships between the individual pieces of the tri-agency CCE portfolio; ● Guide the agencies in reporting on the progress, lessons learned, and impacts of the collaboration between the three agencies in developing a coordinated portfolio of climate education initiatives; and ● Help the individual projects, as part of this broader portfolio, understand where they fit into a larger picture. The accomplishments of this initiative to date have been based on the collaborative nature of evaluators the climate change education community within the tri-agency portfolio. While this

  15. Review: groundwater in Alaska (USA)

    USGS Publications Warehouse

    Callegary, J.B.; Kikuchi, C.P.; Koch, J.C.; Lilly, M.R.; Leake, S.A.

    2013-01-01

    Groundwater in the US state of Alaska is critical to both humans and ecosystems. Interactions among physiography, ecology, geology, and current and past climate have largely determined the location and properties of aquifers as well as the timing and magnitude of fluxes to, from, and within the groundwater system. The climate ranges from maritime in the southern portion of the state to continental in the Interior, and arctic on the North Slope. During the Quaternary period, topography and rock type have combined with glacial and periglacial processes to develop the unconsolidated alluvial aquifers of Alaska and have resulted in highly heterogeneous hydrofacies. In addition, the long persistence of frozen ground, whether seasonal or permanent, greatly affects the distribution of aquifer recharge and discharge. Because of high runoff, a high proportion of groundwater use, and highly variable permeability controlled in part by permafrost and seasonally frozen ground, understanding groundwater/surface-water interactions and the effects of climate change is critical for understanding groundwater availability and the movement of natural and anthropogenic contaminants.

  16. Characterizing the Behavior of NOAA's Hydrologic Ensemble Forecast Service in California

    NASA Astrophysics Data System (ADS)

    He, M.; Whitin, B.; Brown, J.; Fickenscher, P.; Henkel, A.; Talanki, S.; Hartman, R.

    2014-12-01

    The National Oceanic and Atmospheric Administration (NOAA)'s National Weather Service (NWS) is implementing the Hydrologic Ensemble Forecast Service (HEFS) across the operating areas of the 13 NWS River Forecast Centers (RFCs). As the implementation progresses, hindcasting and validation is necessary to understand the strengths and weaknesses of the HEFS and to guide its operational use. Particularly in regions such as California that encompass a broad range of elevation, temperature, and precipitation gradients, the quality of the HEFS forecasts will vary geographically, and it is important to understand the degrees and controls on forecast quality in this context. This study aims to develop a comprehensive understanding of the quality of HEFS forecasts in California, with the aim of guiding and enhancing the implementation of the HEFS, as well as informing end-users about the expected quality of the HEFS forecasts. The HEFS was calibrated with temperature and precipitation forecasts from the Global Ensemble Forecast System (GEFS) of the National Centers for Environmental Prediction. Also, in order to determine forecast skill and to benchmark the HEFS against a simpler forecasting system, the HEFS was calibrated with a conditional ("resampled") climatology. The calibrated HEFS was used to generate retrospective forecasts of precipitation, temperature, and streamflow for a 25-year (1985-2009) period for six basins in the state. The forecast horizon was 1-14 days. The retrospective forecasts were verified conditionally on forecast lead time, magnitude, and season. Preliminary results indicate that HEFS forecasts are much more skillful when forced by inputs from the GEFS, rather than resampled climatology. However, there are noticeable differences in forecast quality among basins. These observations demonstrate the applicability of HEFS in a wide hydroclimatic gradient within California, while highlighting the difficulty in generalizing its behavior across the state.

  17. Comparison of NOAA-CREST Soil Moisture Measurements with SMOS Products

    NASA Astrophysics Data System (ADS)

    Norouzi, H.; Forbes, A.

    2014-12-01

    In October 2014, the Soil Moisture Active and Passive mission (SMAP) will launch into a near-polar and sun- synchronous orbit. SMAP includes the first 3 KM resolution product, by both radar and radiometer sensors which will transmit useful information concentrating on the global measurements of soil moisture and freeze/thaw cycles. NOAA- CREST (National Oceanic and Atmospheric Administration- Cooperative Remote Sensing Science and Technology) deploys a series of in-situ devices into the soil, and an L-BAND Radiometer close to the site ground at the Cary Institute in Millbrook, NY. The site is important for future validation of SMAP mission. Comparing mathematical and ground based remote sensing of soil moisture is beneficial to ensure the accuracy of the measurements. The focus of this research is to analyze and compare soil moisture from ESA- SMOS (Europe Space Agency- Soil Moisture Ocean Salinity) mission and the Cary Institute's soil moisture measurements within the same time period, and location. In the interest of establishing superb authentication; comparing SMOS and ground measurements will justify the accuracy of the newly launch satellite. Discrepancies can be found between field point measurement and relatively large footprint of SMOS, which affects comparison and validation. Several techniques and statistical methods will provide a more meaningful comparison to analyze soil moisture data. The results of this project will help to provide a useful method to compare the NOAA-CREST soil moisture measurements and SMAP measurements. In conclusion, the SMAP advance technology will provide more accurate feedback for modeling numerical weather and climate models. Keywords: Soil Moisture, Precipitation, CREST-SMART, Cary Institute, In-situ, Remote Sensors Accurate Soil Moisture Data, Millbrook, N.Y., CATDS, Hydrology is the branch of science concerning properties of earth's water especially its movement in relation to land. SMOS MIRAS, SMAP, Sensors (Underground)

  18. An efficient contextual algorithm to detect subsurface fires with NOAA/AVHRR data

    SciTech Connect

    Gautam, R.S.; Singh, D.; Mittal, A.

    2008-07-15

    This paper deals with the potential application of National Oceanic and Atmospheric Administration (NOAA)/Advanced Very High Resolution Radiometer (AVHRR) data to detect subsurface fire (subsurface hotspots) by proposing an efficient contextual algorithm. Although few algorithms based on the fixed-thresholding approach have been proposed for subsurface hotspot detection, however, for each application, thresholds have to be specifically tuned to cope with unique environmental conditions. The main objective of this paper is to develop an instrument-independent adaptive method by which direct threshold or multithreshold can be avoided. The proposed contextual algorithm is helpful to monitor subsurface hotspots with operational satellite data, such as the Jharia region of India, without making any region-specific guess in thresholding. Novelty of the proposed work lies in the fact that once the algorithmic model is developed for the particular region of interest after optimizing the model parameters, there is no need to optimize those parameters again for further satellite images. Hence, the developed model can be used for optimized automated detection and monitoring of subsurface hotspots for future images of the particular region of interest. The algorithm is adaptive in nature and uses vegetation index and different NOAA/AVHRR channel's statistics to detect hotspots in the region of interest. The performance of the algorithm is assessed in terms of sensitivity and specificity and compared with other well-known thresholding, techniques such as Otsu's thresholding, entropy-based thresholding, and existing contextual algorithm proposed by Flasse and Ceccato. The proposed algorithm is found to give better hotspot detection accuracy with lesser false alarm rate.

  19. Hazard communication by the Alaska Volcano Observatory Concerning the 2008 Eruptions of Okmok and Kasatochi Volcanoes, Aleutian Islands, Alaska

    NASA Astrophysics Data System (ADS)

    Adleman, J. N.; Cameron, C. E.; Neal, T. A.; Shipman, J. S.

    2008-12-01

    The significant explosive eruptions of Okmok and Kasatochi volcanoes in 2008 tested the hazard communication systems at the Alaska Volcano Observatory (AVO) including a rigorous test of the new format for written notices of volcanic activity. AVO's Anchorage-based Operations facility (Ops) at the USGS Alaska Science Center serves as the hub of AVO's eruption response. From July 12 through August 28, 2008 Ops was staffed around the clock (24/7). Among other duties, Ops staff engaged in communicating with the public, media, and other responding federal and state agencies and issued Volcanic Activity Notices (VAN) and Volcano Observatory Notifications for Aviation (VONA), recently established and standardized products to announce eruptions, significant activity, and alert level and color code changes. In addition to routine phone communications with local, national and international media, on July 22, AVO held a local press conference in Ops to share observations and distribute video footage collected by AVO staff on board a U.S. Coast Guard flight over Okmok. On July 27, AVO staff gave a public presentation on the Okmok eruption in Unalaska, AK, 65 miles northeast of Okmok volcano and also spoke with local public safety and industry officials, observers and volunteer ash collectors. AVO's activity statements, photographs, and selected data streams were posted in near real time on the AVO public website. Over the six-week 24/7 period, AVO staff logged and answered approximately 300 phone calls in Ops and approximately 120 emails to the webmaster. Roughly half the logged calls were received from interagency cooperators including NOAA National Weather Service's Alaska Aviation Weather Unit and the Center Weather Service Unit, both in Anchorage. A significant number of the public contacts were from mariners reporting near real-time observations and photos of both eruptions, as well as the eruption of nearby Cleveland Volcano on July 21. As during the 2006 eruption of

  20. Administrative Support.

    ERIC Educational Resources Information Center

    Doran, Dorothy; And Others

    This guide is intended to assist business education teachers in administrative support courses. The materials presented are based on the Arizona validated occupational competencies and tasks for the occupations of receptionist, secretary, and administrative assistant. Word processing skills have been infused into each of the three sections. The…

  1. Administrative Ecology

    ERIC Educational Resources Information Center

    McGarity, Augustus C., III; Maulding, Wanda

    2007-01-01

    This article discusses how all four facets of administrative ecology help dispel the claims about the "impossibility" of the superintendency. These are personal ecology, professional ecology, organizational ecology, and community ecology. Using today's superintendency as an administrative platform, current literature describes a preponderance of…

  2. 77 FR 50712 - Information Collection: Southern Alaska Sharing Network and Subsistence Study; Proposed...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-22

    ... Bureau of Ocean Energy Management Information Collection: Southern Alaska Sharing Network and Subsistence... in Alaska, ``Southern Alaska Sharing Network and Subsistence Study.'' DATES: Submit written comments.... Title: Southern Alaska Sharing Network and Subsistence Study. Abstract: The Bureau of Ocean...

  3. EarthScope Transportable Array (TA) Plans for Deployment in Alaska and Yukon

    NASA Astrophysics Data System (ADS)

    Hafner, K.; Busby, R. W.; Woodward, R.; Frassetto, A.

    2012-12-01

    The USArray portion of the National Science Foundation (NSF)-funded EarthScope project has been rolling across the continental United States from west to east since its construction began in October 2003. The Transportable Array (TA) element of Earthscope / USArray is a large deployment of 400 high quality broadband seismographs that is operated by the Incorporated Research Institutions for Seismology (IRIS) Consortium. The TA will reach the last installation in the eastern US in September 2013, after installing and operating 1678 stations. Following this ten-year deployment across the contiguous 48 US states and southernmost Canada the EarthScope USArray is expected to move to Alaska in 2014, contingent on a renewal proposal for the period FY14-FY18. The plan is to cover Alaska and parts of the Yukon Territory with approximately 300 stations at an 85 km grid-like spacing. The TA station grid will include about 35 existing seismic stations in Alaska. The NSF is currently supporting preparatory work to develop station design and communication concepts appropriate for the variable Alaska conditions. The siting of stations has been a focus of planning to-date, particularly the coordination with existing Alaskan seismic and GPS stations as well as Canadian stations. There is considerable interest in at least some of the stations becoming permanent assets to the existing station operators. We are also working on developing potential collaborative efforts with NOAA and other federal agencies, as well as groups conducting permafrost studies in the Arctic. We describe the station design, including modifications for long-term power and telemetry in remote regions. We have been testing sensor emplacement techniques that can be used across Alaska, particularly in regions of tundra underlain by permafrost, that will yield low horizontal noise at long periods. Results from several test stations are presented and the technique to emplace sensors is discussed. Feedback and

  4. 75 FR 5541 - Fisheries of the Exclusive Economic Zone Off Alaska; Pacific Cod by Vessels Catching Pacific Cod...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-03

    ... harvest specifications for groundfish of the GOA (74 FR 7333, February 17, 2010) and inseason adjustment (74 FR 68713, December 29, 2009). In accordance with Sec. 679.20(d)(1)(i), the Regional Administrator... Economic Zone Off Alaska; Pacific Cod by Vessels Catching Pacific Cod for Processing by the...

  5. 77 FR 76425 - Fisheries of the Exclusive Economic Zone Off Alaska; Reallocation of Pacific Cod in the Central...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-12-28

    ... specifications for Pacific cod included in the final 2012 harvest specifications for groundfish in the GOA (77 FR... groundfish in the GOA (77 FR 15194, March 14, 2012), after a 1,627 mt apportionment to the trawl catcher... to the pot and jig gear sectors (77 FR 67579, November 13, 2012). The Administrator, Alaska...

  6. 75 FR 7976 - Fisheries of the Exclusive Economic Zone Off Alaska; Pacific Cod by Vessels Catching Pacific Cod...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-23

    ... harvest specifications for groundfish of the GOA (74 FR 7333, February 17, 2010) and inseason adjustment (74 FR 68713, December 29, 2010). In accordance with Sec. 679.20(d)(1)(i), the Regional Administrator... Economic Zone Off Alaska; Pacific Cod by Vessels Catching Pacific Cod for Processing by the...

  7. 75 FR 8839 - Fisheries of the Exclusive Economic Zone Off Alaska; Pacific Cod by Vessels Catching Pacific Cod...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-26

    ... harvest specifications for groundfish of the GOA (74 FR 7333, February 17, 2010) and inseason adjustment (74 FR 68713, December 29, 2009). In accordance with Sec. 679.20(d)(1)(i), the Regional Administrator... Economic Zone Off Alaska; Pacific Cod by Vessels Catching Pacific Cod for Processing by the...

  8. 77 FR 64918 - Fisheries of the Exclusive Economic Zone Off Alaska; “Other Rockfish” in the Aleutian Islands...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-24

    ... BSAI (77 FR 10669, February 23, 2012). In accordance with Sec. 679.20(d)(2), the Administrator, Alaska... (AA), finds good cause to waive the requirement to provide prior notice and opportunity for public... 18, 2012. The AA also finds good cause to waive the 30-day delay in the effective date of this...

  9. 78 FR 4346 - Fisheries of the Exclusive Economic Zone Off Alaska; Pacific Cod by Catcher/Processors Using...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-22

    ... GOA (77 FR 15194, March 14, 2012) and inseason adjustment to the final 2013 harvest specifications for Pacific cod (78 FR 267, January 3, 2013). In accordance with Sec. 679.20(d)(1)(i), the Administrator... Economic Zone Off Alaska; Pacific Cod by Catcher/Processors Using Trawl Gear in the Western Regulatory...

  10. 77 FR 3638 - Fisheries of the Exclusive Economic Zone Off Alaska; Pacific Cod by Catcher/Processors Using Pot...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-25

    ... 2012 harvest specifications for groundfish in the BSAI (76 FR 11139, March 1, 2011) and inseason adjustment (76 FR 81875, December 29, 2011). In accordance with Sec. 679.20(d)(1)(iii), the Administrator... Economic Zone Off Alaska; Pacific Cod by Catcher/Processors Using Pot Gear in the Bering Sea and...

  11. 78 FR 23683 - Fisheries of the Exclusive Economic Zone Off Alaska; Pacific Cod by Catcher/Processors Using...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-22

    ... GOA (78 FR 13162, February 26, 2013). In accordance with Sec. 679.20(d)(1)(i), the Administrator... Economic Zone Off Alaska; Pacific Cod by Catcher/Processors Using Trawl Gear in the Central Regulatory Area... directed fishing for Pacific cod by catcher/processors (C/Ps) using trawl gear in the Central...

  12. 76 FR 76903 - Fisheries of the Exclusive Economic Zone Off Alaska; Reallocation of Pacific Cod in the Bering...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-09

    ... final 2011 and 2012 harvest specifications for groundfish in the BSAI (76 FR 11139, March 1, 2011) and subsequent reallocation (76 FR 54137, August 31, 2011). The Administrator, Alaska Region, NMFS (Regional... (76 FR 66655, October 27, 2011). Therefore, in accordance with Sec. 679.20(a)(7)(iii)(A),...

  13. 76 FR 40836 - Fisheries of the Exclusive Economic Zone Off Alaska; Pelagic Shelf Rockfish by Vessels Subject to...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-12

    ... GOA (76 FR 11111, March 1, 2011). In accordance with Sec. 679.20(d)(1)(v)(A), the Administrator... Economic Zone Off Alaska; Pelagic Shelf Rockfish by Vessels Subject to Amendment 80 Sideboard Limits in the... prohibiting directed fishing for pelagic shelf rockfish (PSR) by Amendment 80 vessels subject to...

  14. 76 FR 12293 - Fisheries of the Exclusive Economic Zone Off Alaska; Reallocation of Pacific Cod in the Bering...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-07

    ... FR 11139, March 1, 2011). The Administrator, Alaska Region, NMFS, has determined that jig vessels... the BSAI (76 FR 11139, March 1, 2011) are revised as follows: 810 mt to the A season apportionment for... meters) length overall using hook-and-line or pot gear in the Bering Sea and Aleutian Islands...

  15. 76 FR 17360 - Fisheries of the Exclusive Economic Zone Off Alaska; Octopus in the Bering Sea and Aleutian...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-29

    ... electronic public comments via the Federal eRulemaking Portal Web site at http://www.regulations.gov . Mail... (76 FR 11139, March 1, 2011). In accordance with Sec. 679.20(a)(3) the Regional Administrator, Alaska... groundfish in the BSAI (76 FR 11139, March 1, 2011). The harvest specification for octopus included in...

  16. 76 FR 39789 - Fisheries of the Exclusive Economic Zone Off Alaska; Northern Rockfish and Pelagic Shelf Rockfish...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-07

    ... 2012 harvest specifications for groundfish in the GOA (76 FR 11111, March 1, 2011). Consequently, in accordance with Sec. 679.83(a)(3), the Administrator, Alaska Region, NMFS, deems it appropriate for.... ACTION: Temporary rule; closure. SUMMARY: NMFS deems it appropriate to not open directed fishing...

  17. 78 FR 35771 - Fisheries of the Exclusive Economic Zone Off Alaska; Atka Mackerel in the Bering Sea and Aleutian...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-14

    ... (78 FR 13813, March 1, 2013). In accordance with Sec. 679.20(d)(1)(iii), the Regional Administrator... Economic Zone Off Alaska; Atka Mackerel in the Bering Sea and Aleutian Islands Management Area AGENCY.... ACTION: Temporary rule; closure. SUMMARY: NMFS is prohibiting directed fishing for Atka mackerel in...

  18. 78 FR 16195 - Fisheries of the Exclusive Economic Zone Off Alaska; Bering Sea and Aleutian Islands; 2013 and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-14

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF COMMERCE National Oceanic and Atmospheric Administration 50 CFR Part 679 RIN 0648-XC311 Fisheries of the Exclusive Economic Zone Off Alaska; Bering Sea and Aleutian Islands; 2013 and 2014 Harvest Specifications...

  19. 76 FR 54137 - Fisheries of the Exclusive Economic Zone Off Alaska; Reallocation of Pacific Cod in the Bering...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-31

    ... specifications for groundfish in the BSAI (76 FR 11139, March 1, 2011) and reallocation (76 FR 29671, May 23... established by the final 2011 and 2012 harvest specifications for groundfish in the BSAI (76 FR 11139, March 1, 2011) and reallocation (76 FR 24403, May 2, 2011). The Administrator, Alaska Region, NMFS,...

  20. 76 FR 13098 - Fisheries of the Exclusive Economic Zone Off Alaska; Pacific Cod by Catcher Vessels Less Than 60...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-10

    ... the BSAI (76 FR 11139, March 1, 2011). In accordance with Sec. 679.20(d)(1)(iii), the Administrator... Economic Zone Off Alaska; Pacific Cod by Catcher Vessels Less Than 60 Feet (18.3 m) Length Overall Using... less than 60 feet (18.3 m) length overall (LOA) using hook-and-line or pot gear in the Bering Sea...