Science.gov

Sample records for administration noaa climate

  1. 77 FR 74174 - National Oceanic and Atmospheric Administration (NOAA) National Climate Assessment and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-12-13

    ... National Oceanic and Atmospheric Administration (NOAA) National Climate Assessment and Development Advisory... notice sets forth the schedule of a forthcoming meeting of the DoC NOAA National Climate Assessment and... the call. Please check the National Climate Assessment Web site for additional information at...

  2. The National Oceanic and Atmospheric Administration (NOAA) Climate Services Portal: A New Centralized Resource for Distributed Climate Information

    NASA Astrophysics Data System (ADS)

    Burroughs, J.; Baldwin, R.; Herring, D.; Lott, N.; Boyd, J.; Handel, S.; Niepold, F.; Shea, E.

    2010-09-01

    With the rapid rise in the development of Web technologies and climate services across NOAA, there has been an increasing need for greater collaboration regarding NOAA's online climate services. The drivers include the need to enhance NOAA's Web presence in response to customer requirements, emerging needs for improved decision-making capabilities across all sectors of society facing impacts from climate variability and change, and the importance of leveraging climate data and services to support research and public education. To address these needs, NOAA (during fiscal year 2009) embarked upon an ambitious program to develop a NOAA Climate Services Portal (NCS Portal). Four NOAA offices are leading the effort: 1) the NOAA Climate Program Office (CPO), 2) the National Ocean Service's Coastal Services Center (CSC), 3) the National Weather Service's Climate Prediction Center (CPC), and 4) the National Environmental Satellite, Data, and Information Service's (NESDIS) National Climatic Data Center (NCDC). Other offices and programs are also contributing in many ways to the effort. A prototype NCS Portal is being placed online for public access in January 2010, http://www.climate.gov. This website only scratches the surface of the many climate services across NOAA, but this effort, via direct user engagement, will gradually expand the scope and breadth of the NCS Portal to greatly enhance the accessibility and usefulness of NOAA's climate data and services.

  3. NASA, NOAA administrators nominated

    NASA Astrophysics Data System (ADS)

    Richman, Barbara T.

    President Ronald Reagan recently said he intended to nominate James Montgomery Beggs as NASA Administrator and John V. Byrne as NOAA Administrator. These two positions are key scientific posts that have been vacant since the start of the Reagan administration on January 20. The President also said he intends to nominate Hans Mark as NASA Deputy Administrator. At press time, Reagan had not designated his nominee for the director of the Office of Science and Technology Policy.

  4. National Oceanic and Atmospheric Administration(NOAA) Arctic Climate Change Studies: A Contribution to IPY

    NASA Astrophysics Data System (ADS)

    Calder, J.; Overland, J.; Uttal, T.; Richter-Menge, J.; Rigor, I.; Crane, K.

    2004-12-01

    NOAA has initiated four activities that respond to the Arctic Climate Impact Assessment(ACIA) recommendations and represent contributions toward the IPY: 1) Arctic cloud, radiation and aerosol observatories, 2) documentation and attribution of changes in sea-ice thickness through direct measurement and modeling, 3) deriving added value from existing multivariate and historical data, and 4) following physical and biological changes in the northern Bering and Chukchi Seas. Northeast Canada, the central Arctic coast of Russia and the continuing site at Barrow have been chosen as desirable radiation/cloud locations as they exhibit different responses to Arctic Oscillation variability. NOAA is closely collaborating with Canadian groups to establish an observatory at Eureka. NOAA has begun deployment of a network of ice-tethered ice mass balance buoys complemented by several ice profiling sonars. In combination with other sea ice investigators, the Arctic buoy program, and satellites, changes can be monitored more effectively in sea ice throughout the Arctic. Retrospective data analyses includes analysis of Arctic clouds and radiation from surface and satellite measurements, correction of systematic errors in TOVS radiance data sets for the Arctic which began in 1979, addressing the feasibility of an Arctic System Reanalysis, and an Arctic Change Detection project that incorporates historical and recent physical and biological observations and news items at a website, www.arctic.noaa.gov. NOAA has begun a long-term effort to detect change in ecosystem indicators in the northern Bering and Chukchi Seas that could provide a model for other northern marine ecosystems. The first efforts were undertaken in summer 2004 during a joint Russian-US cruise that mapped the regions physical, chemical and biological parameters to set the stage for future operations over the longer term. A line of biophysical moorings provide detection of the expected warming of this area. A

  5. 75 FR 57739 - Notice of Availability of a Draft NOAA Climate Service Strategic Vision and Framework for Public...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-22

    ... National Oceanic and Atmospheric Administration Notice of Availability of a Draft NOAA Climate Service...: Notice of availability of a draft NOAA Climate Service strategic vision and framework for public review... new NOAA Climate Service (NCS). The new service will directly support NOAA's vision of ``an...

  6. NOAA administrator reviews agency progress and challenges

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    2011-12-01

    The approach of the new year is a traditional time to tally up successes, failures, and the path ahead. Jane Lubchenco, administrator of the U.S. National Oceanic and Atmospheric Administration (NOAA), examined some agency advances and significant challenges during the 7 December Union Agency Lecture at the AGU Fall Meeting, during a press briefing, and in an interview with Eos. Lubchenco focused on several key areas including the concern about monitoring, mitigating, and managing extreme events; budgetary pressures the agency faces in current fiscal year (FY) 2012 and in FY 2013, with President Barack Obama on 18 November having signed into law a bill, HR 2112, following congressional agreement on a budget legislation conference report; and NOAA's newly released scientific integrity policy (see "NOAA issues scientific integrity policy," Eos Trans. AGU, 92(50), 467, doi:10.1029/2011EO500004, 2011).

  7. ADMINISTRATIVE CLIMATE.

    ERIC Educational Resources Information Center

    BRUCE, ROBERT L.; CARTER, G.L., JR.

    IN THE COOPERATIVE EXTENSION SERVICE, STYLES OF LEADERSHIP PROFOUNDLY AFFECT THE QUALITY OF THE SERVICE RENDERED. ACCORDINGLY, MAJOR INFLUENCES ON ADMINISTRATIVE CLIMATE AND EMPLOYEE PRODUCTIVITY ARE EXAMINED IN ESSAYS ON (1) SOURCES OF JOB SATISFACTION AND DISSATISFACTION, (2) MOTIVATIONAL THEORIES BASED ON JOB-RELATED SATISFACTIONS AND NEEDS,…

  8. NOAA Climate Users Engagement Using Training Activities

    NASA Astrophysics Data System (ADS)

    Timofeyeva, M. M.; Verdin, J. P.; Jones, J.; Pulwarty, R. S.

    2009-12-01

    NOAA National Weather Service (NWS) Climate Services Training Program was initiated in 2001. The training original target audience was NOAA NWS regional and local climate services workforce. As a result of eight-year-long development of the training program, NWS offers two training courses and about 25 online distance learning modules covering various climate topics: climate data and observations, climate variability and change, NWS national and local climate products, their tools, skill, and interpretation. Leveraging climate information and expertise available at all NOAA line offices and partners allows delivery of the most relevant, advanced knowledge and is a very critical aspect of the training program. In 2009 the training program launched a pilot project that expanded the training opportunities for specific user groups. The California Department of Water Resources (DWR) requested a training course with emphasis on Climate, Drought and Remote Sensing for their water resources managers, hydrologists, and engineering staff. The National Integrated Drought Information System (NIDIS) co-sponsored the project. Developing the course NOAA, NIDIS, and DWR staff worked together testing different approaches in order to identify the most appropriate balance between gaps in the target audience climate knowledge and technical level needed for the information communication and delivery. The two-day course was offered in June 2009 for 35 trainees with classroom recording for further dissemination of the training materials in form of online audio-visual presentations (webcasts). The training event brought together NOAA staff and partners from U.S. Geological Survey, the Western Regional Climate Center, NASA, academia, and DWR staff and provided a valuable opportunity for curriculum development and expertise exchange. The course final discussion engaged participants in process of identifying additional climate products and services needed for regional and sector specific

  9. NOAA's Portfolio of Operational Climate Data Records

    NASA Astrophysics Data System (ADS)

    Newport, B. J.; Cecil, D.; Hutchins, C.; Preston, C.; Stachniewicz, J. S.; Wunder, D.

    2015-12-01

    NOAA's Climate Data Record (CDR) Program was established by the National Centers for Environmental Information (NCEI) (formerly the National Climatic Data Center) in order to develop and implement a robust, sustainable, and scientifically defensible approach to producing and preserving climate records from satellite data. Since its inception in 2009 the CDR Program has transitioned 30 CDRs developed by various research groups to an initial operational state at NCEI. As a result of this transition the CDR dataset, metadata, documentation, and source code are archived by NCEI and accessible to the public, and most of the datasets are being extended by the Principal Investigator with CDR Program support. Consistency is maintained by using a formal change control process, with reprocessing and re-archiving as needed. The current portfolio of operational CDRs includes 15 Atmospheric CDRs, four Oceanic CDRs, four Terrestrial CDRs, and seven Fundamental CDRs. The main features of the portfolio will be presented, along with some potential and emerging uses.

  10. 77 FR 32572 - (NOAA) National Climate Assessment and Development Advisory Committee (NCADAC)

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-01

    ... National Oceanic and Atmospheric Administration (NOAA) National Climate Assessment and Development Advisory... National Climate Assessment and Development Advisory Committee (NCADAC) was established by the Secretary of... science and information pertaining to current and future impacts of climate. Time and Date: The...

  11. A new statistical tool for NOAA local climate studies

    NASA Astrophysics Data System (ADS)

    Timofeyeva, M. M.; Meyers, J. C.; Hollingshead, A.

    2011-12-01

    The National Weather Services (NWS) Local Climate Analysis Tool (LCAT) is evolving out of a need to support and enhance the National Oceanic and Atmospheric Administration (NOAA) National Weather Service (NWS) field offices' ability to efficiently access, manipulate, and interpret local climate data and characterize climate variability and change impacts. LCAT will enable NOAA's staff to conduct regional and local climate studies using state-of-the-art station and reanalysis gridded data and various statistical techniques for climate analysis. The analysis results will be used for climate services to guide local decision makers in weather and climate sensitive actions and to deliver information to the general public. LCAT will augment current climate reference materials with information pertinent to the local and regional levels as they apply to diverse variables appropriate to each locality. The LCAT main emphasis is to enable studies of extreme meteorological and hydrological events such as tornadoes, flood, drought, severe storms, etc. LCAT will close a very critical gap in NWS local climate services because it will allow addressing climate variables beyond average temperature and total precipitation. NWS external partners and government agencies will benefit from the LCAT outputs that could be easily incorporated into their own analysis and/or delivery systems. Presently we identified five existing requirements for local climate: (1) Local impacts of climate change; (2) Local impacts of climate variability; (3) Drought studies; (4) Attribution of severe meteorological and hydrological events; and (5) Climate studies for water resources. The methodologies for the first three requirements will be included in the LCAT first phase implementation. Local rate of climate change is defined as a slope of the mean trend estimated from the ensemble of three trend techniques: (1) hinge, (2) Optimal Climate Normals (running mean for optimal time periods), (3) exponentially

  12. NOAA Climate Data Records Access for Applications

    NASA Astrophysics Data System (ADS)

    Stachniewicz, J. S.; Cecil, D.; Hollingshead, A.; Newport, B. J.; Wunder, D.

    2015-12-01

    There are many potential uses of NOAA Climate Data Records (CDRs) for decision-making and catastrophic risk management assessment activities in the federal, state, and local government and private sectors, in addition to their traditional uses by the academic/scientific community. There is growing interest in using NOAA CDRs for such applications and straightforward access to the data is essential if these applications are to be successful. User engagement activities determine the types of data that users need, as well as the spatial and temporal subsets. This talk will present the access methods currently available and in development. Alternate representations and sources of some CDRs will also be discussed. Recent improvements include: 1. CDR information web page 2. Dataset types, sizes, growth, latency, grid/swath 3. Dataset discovery, data access, and sub-setting. 4. Knowing our users and their needs. 5. Known uses of some CDRs. 6. Migration to CLASS. 7. Other representations - GeoTIFF, Obs4MIPS 8. Cloud applications - Google, Microsoft

  13. The Weather Radar Toolkit, National Oceanic and Atmospheric Administration (NOAA) National Climatic Data Center's support of interoperability and the Global Earth Observation System of Systems (GEOSS)

    NASA Astrophysics Data System (ADS)

    Ansari, S.; Del Greco, S.

    2006-12-01

    In February 2005, 61 countries around the World agreed on a 10 year plan to work towards building open systems for sharing geospatial data and services across different platforms worldwide. This system is known as the Global Earth Observation System of Systems (GEOSS). The objective of GEOSS focuses on easy access to environmental data and interoperability across different systems allowing participating countries to measure the "pulse" of the planet in an effort to advance society. In support of GEOSS goals, NOAA's National Climatic Data Center (NCDC) has developed radar visualization and data exporter tools in an open systems environment. The NCDC Weather Radar Toolkit (WRT) loads Weather Surveillance Radar 1988 Doppler (WSR-88D) volume scan (S-band) data, known as Level-II, and derived products, known as Level-III, into an Open Geospatial Consortium (OGC) compliant environment. The application is written entirely in Java and will run on any Java- supported platform including Windows, Macintosh and Linux/Unix. The application is launched via Java Web Start and runs on the client machine while accessing these data locally or remotely from the NCDC archive, NOAA FTP server or any URL or THREDDS Data Server. The WRT allows the data to be manipulated to create custom mosaics, composites and precipitation estimates. The WRT Viewer provides tools for custom data overlays, Web Map Service backgrounds, animations and basic filtering. The export of images and movies is provided in multiple formats. The WRT Data Exporter allows for data export in both vector polygon (Shapefile, Well-Known Text) and raster (GeoTIFF, ESRI Grid, VTK, NetCDF, GrADS) formats. By decoding the various Radar formats into the NetCDF Common Data Model, the exported NetCDF data becomes interoperable with existing software packages including THREDDS Data Server and the Integrated Data Viewer (IDV). The NCDC recently partnered with NOAA's National Severe Storms Lab (NSSL) to decode Sigmet C-band Doppler

  14. Advances of NOAA Training Program in Climate Services

    NASA Astrophysics Data System (ADS)

    Timofeyeva, M. M.

    2012-12-01

    Since 2002, NOAA's National Weather Service (NWS) Climate Services Division (CSD) has offered numerous training opportunities to NWS staff. After eight-years of development, the training program offers three instructor-led courses and roughly 25 online (distance learning) modules covering various climate topics, such as: climate data and observations, climate variability and change, and NWS national / local climate products (tools, skill, and interpretation). Leveraging climate information and expertise available at all NOAA line offices and partners allows for the delivery of the most advanced knowledge and is a very critical aspect of the training program. The emerging NOAA Climate Service (NCS) requires a well-trained, climate-literate workforce at the local level capable of delivering NOAA's climate products and services as well as providing climate-sensitive decision support. NWS Weather Forecast Offices and River Forecast Centers presently serve as local outlets for the NCS climate services. Trained NWS climate service personnel use proactive and reactive approaches and professional education methods in communicating climate variability and change information to local users. Both scientifically-sound messages and amiable communication techniques are important in developing an engaged dialog between the climate service providers and users. Several pilot projects have been conducted by the NWS CSD this past year that apply the program's training lessons and expertise to specialized external user group training. The technical user groups included natural resources managers, engineers, hydrologists, and planners for transportation infrastructure. Training of professional user groups required tailoring instructions to the potential applications for each group of users. Training technical users identified the following critical issues: (1) knowledge of target audience expectations, initial knowledge status, and potential use of climate information; (2) leveraging

  15. Developing NOAA's Climate Data Records From AVHRR and Other Data

    NASA Astrophysics Data System (ADS)

    Privette, J. L.; Bates, J. J.; Kearns, E. J.

    2010-12-01

    As part of the provisional NOAA Climate Service, NOAA is providing leadership in the development of authoritative, measurement-based information on climate change and variability. NOAA’s National Climatic Data Center (NCDC) recently initiated a satellite Climate Data Record Program (CDRP) to provide sustained and objective climate information derived from meteorological satellite data that NOAA has collected over the past 30+ years - particularly from its Polar Orbiting Environmental Satellites (POES) program. These are the longest sustained global measurement records in the world and represent billions of dollars of investment. NOAA is now applying advanced analysis methods -- which have improved remarkably over the last decade -- to the POES AVHRR and other instrument data. Data from other satellite programs, including NASA and international research programs and the Defense Meteorological Satellite Program (DMSP), are also being used. This process will unravel the underlying climate trend and variability information and return new value from the records. In parallel, NCDC will extend these records by applying the same methods to present-day and future satellite measurements, including the Joint Polar Satellite System (JPSS) and Jason-3. In this presentation, we will describe the AVHRR-related algorithm development activities that CDRP recently selected and funded through open competitions. We will particularly discuss some of the technical challenges related to adapting and using AVHRR algorithms with the VIIRS data that should become available with the launch of the NPOESS Preparatory Project (NPP) satellite in early 2012. We will also describe IT system development activities that will provide data processing and reprocessing, storage and management. We will also outline the maturing Program framework, including the strategies for coding and development standards, community reviews, independent program oversight, and research-to-operations algorithm

  16. NOAA Climate Information and Tools for Decision Support Services

    NASA Astrophysics Data System (ADS)

    Timofeyeva, M. M.; Higgins, W.; Strager, C.; Horsfall, F. M.

    2013-12-01

    NOAA is an active participant of the Global Framework for Climate Services (GFCS) contributing data, information, analytical capabilities, forecasts, and decision support services to the Climate Services Partnership (CSP). These contributions emerge from NOAA's own climate services, which have evolved to respond to the urgent and growing need for reliable, trusted, transparent, and timely climate information across all sectors of the U.S. economy. Climate services not only enhance development opportunities in many regions, but also reduce vulnerability to climate change around the world. The NOAA contribution lies within the NOAA Climate Goal mission, which is focusing its efforts on four key climate priority areas: water, extremes, coastal inundation, and marine ecosystems. In order to make progress in these areas, NOAA is exploiting its fundamental capabilities, including foundational research to advance understanding of the Earth system, observations to preserve and build the climate data record and monitor changes in climate conditions, climate models to predict and project future climate across space and time scales, and the development and delivery of decision support services focused on risk management. NOAA's National Weather Services (NWS) is moving toward provision of Decision Support Services (DSS) as a part of the Roadmap on the way to achieving a Weather Ready National (WRN) strategy. Both short-term and long-term weather, water, and climate information are critical for DSS and emergency services and have been integrated into NWS in the form of pilot projects run by National and Regional Operations Centers (NOC and ROCs respectively) as well as several local offices. Local offices with pilot projects have been focusing their efforts on provision of timely and actionable guidance for specific tasks such as DSS in support of Coastal Environments and Integrated Environmental Studies. Climate information in DSS extends the concept of climate services to

  17. Improving Climate Literacy of NOAA Staff and Users

    NASA Astrophysics Data System (ADS)

    Timofeyeva, M. M.; Bair, A.; Staudenmaier, M.; Meyers, J. C.; Mayes, B.; Zdrojewski, J.

    2010-12-01

    Since 2002, NOAA’s National Weather Service (NWS) Climate Services Division (CSD) has offered numerous training opportunities to NWS staff. After eight-years of development, the training program offers three instructor-led courses and roughly 25 online (distance learning) modules covering various climate topics, such as: climate data and observations, climate variability and change, and NWS national / local climate products (tools, skill, and interpretation). Leveraging climate information and expertise available at all NOAA line offices and partners allows for the delivery of the most advanced knowledge and is a very critical aspect of the training program. The emerging NOAA Climate Service (NCS) requires a well-trained, climate-literate workforce at the local level capable of delivering NOAA’s climate products and services as well as providing climate-sensitive decision support. NWS Weather Forecast Offices and River Forecast Centers presently serve as local outlets for the NCS climate services. Trained NWS climate service personnel use proactive and reactive approaches and professional education methods in communicating climate variability and change information to local users. Both scientifically-sound messages and amiable communication techniques are important in developing an engaged dialog between the climate service providers and users. Several pilot projects have been conducted by the NWS CSD this past year that apply the program’s training lessons and expertise to specialized external user group training. The technical user groups included natural resources managers, engineers, hydrologists, and planners for transportation infrastructure. Training of professional user groups required tailoring instructions to the potential applications for each group of users. Training technical users identified the following critical issues: (1) knowledge of target audience expectations, initial knowledge status, and potential use of climate information; (2

  18. Chlorofluorocarbon-11, -12, and nitrous oxide measurements at the NOAA/GMCC (National Oceanic and Atmospheric Administration/Geophysical Monitoring for Climatic Change) baseline stations (16 September 1973 to 31 December 1979)

    SciTech Connect

    Thompson, T.M.; Komhyr, W.D.; Dutton, E.G.

    1985-06-01

    The National Oceanic and Atmospheric Administration's Air Resources Laboratory (NOAA/ARL) began measuring chlorofluorocarbon-11 in 1973 because of the interest in this anthropogenic pollutant as a tracer for the study of mass transfer processes in the atmosphere and the oceans. Interest in chlorofluorocarbon-11, and in chlorofluorocarbon-12 and nitrous oxide, was heightened during the mid-1970's with the realization that these compounds can be decomposed by photolysis in the stratosphere to cause stratospheric ozone destruction by released chlorine atoms. Measurements of chlorofluorocarbon-12 and nitrous oxide were begun by NOAA/ARL in 1977. The report describes the evolution of the chlorofluorocarbon and N/sub 2/O measurement programs through 1979. By that time, the sample collection and analysis techniques became standardized, and have remained the same to the present.

  19. Assessing customer satisfaction for improving NOAA's climate products and services

    NASA Astrophysics Data System (ADS)

    Meyers, J. C.; Hawkins, M. D.; Timofeyeva, M. M.

    2009-12-01

    NOAA's National Weather Service (NWS) Climate Services Division (CSD) is developing a comprehensive climate user requirements process with the ultimate goal of producing climate services that meet the needs of NWS climate information users. An important part of this effort includes engaging users through periodical surveys conducted by the Claes Fornell International (CFI) Group using the American Customer Satisfaction Index (ACSI). The CFI Group conducted a Climate Services Satisfaction (CSS) Survey in May of 2009 to measure customer satisfaction with current products and services and to gain insight on areas for improvement. The CSS Survey rates customer satisfaction on a range of NWS climate services data and products, including Climate Prediction Center (CPC) outlooks, drought monitoring, and ENSO monitoring and forecasts, as well as NWS local climate data services. In addition, the survey assesses the users of the products to give the NWS insight into its climate customer base. The survey also addresses specific topics such as NWS forecast category names, probabilistic nature of climate products, and interpretation issues. The survey results identify user requirements for improving existing NWS climate services and introducing new ones. CSD will merge the survey recommendations with available scientific methodologies and operational capabilities to develop requirements for improved climate products and services. An overview of the 2009 survey results will be presented, such as users' satisfaction with the accuracy, reliability, display and functionality of products and services.

  20. NOAA tools to support CSC and LCC regional climate science priorities in the western Gulf of Mexico

    NASA Astrophysics Data System (ADS)

    Brown, D. P.; Marcy, D.; Robbins, K.; Shafer, M.; Stiller, H.

    2012-12-01

    The National Oceanic and Atmospheric Administration (NOAA) is an active regional partner with the Department of Interior (DOI) in supplying and supporting the delivery of climate science and services. A primary mechanism for NOAA-DOI coordination at the regional scale is the Landscape Conservation Cooperative (LCC) network, which is supported in part by DOI Climate Science Centers (CSC). Together, the CSCs and LCCs provide a framework to identify landscape-scale science and services priorities for conservation and management. As a key partner of the CSCs and an active member of many LCCs, NOAA is working to ensure its own regional product and service delivery efforts will help address these conservation and management challenges. Two examples of NOAA's regional efforts are highlighted here, with a focus on the coastal and interior geographies of the western Gulf of Mexico where NOAA partners with the South Central CSC and participates as a member of the Gulf Coast Prairie LCC. Along the Texas coastline, a sea level rise and coastal flooding impacts viewer, produced by NOAA's Coastal Services Center and available via its Digital Coast interface, allows constituents to visualize estimates of sea level rise, measures of uncertainty, flood frequencies, and environmental (e.g., marsh migration) and socioeconomic (e.g., tidal flooding of built environments) impacts. In the interior of Texas and Louisiana, NOAA's Southern Regional Climate Center is leading a consortium of partners in the development of a unified source of regional water reservoir information, including current conditions, a historical database, and web-based visualization tools to illustrate spatio-temporal variations in water availability to a broad array of hydrological, agricultural, and other customers. These two examples of NOAA products can, in their existing forms, support regional conservation and management priorities for CSCs and LCCs by informing vulnerability assessments and adaptation

  1. Progress and Processes for Generating NOAA's Climate Data Records

    NASA Astrophysics Data System (ADS)

    Johnston, S. S.; Glance, W. J.; Bates, J. J.; Kearns, E. J.

    2011-12-01

    NOAA established a satellite Climate Data Record Program (CDRP) at its National Climatic Data Center (NCDC) to provide a systematic reprocessing capability which will generate sustained and authoritative climate information from 30+ years of satellite data. CDRP implements a unique approach in archiving not only the data products themselves, but also the software, ancillary data, and enough documentation to allow any user with the processing power, to reproduce the data. Best practices, such as a common maturity matrix, software guidelines, and format standards, are employed to facilitate both the transition of research algorithms to operational software, and the long-term maintenance of the software. Throughout the implementation and execution of the program, CDRP seeks to adhere to production guidelines from Global Climate Observing System (GCOS) and World Meteorological Organization's (WMO's) Sustained, Coordinated Processing of Environmental Satellite Data for Climate Monitoring (SCOPE-CM activity. Elements of the CDR Adaptive Processing System (CAPS) are described, along with the system's implementation approach, performance expectations, and plans for growth to accommodate increased CDR processing. In addition, a cost model has been implemented to capture the cost of CDR generation and maintenance, considering variables such as CDR complexity, source, and maturity at the beginning of the process.

  2. Discovering NOAA Climate Data and Product Services (Invited)

    NASA Astrophysics Data System (ADS)

    Baldwin, R.; Ansari, S.; Reid, G.

    2009-12-01

    The National Climatic Data Center (NCDC) archives climate data for the US and the world. These data are provided through traditional web systems as well as web services. The web service implementation follows standards set by the Open Geospatial Consortium (OGC) and the World Wide Web Consortium (W3C). Simple object access protocol (SOAP) and representational state transfer (REST) are the two types of services provided. Provision of many data and product services from multiple organizations presents consumers with the difficulty of discovery. Standards based collection level metadata describe these data and products. This information delivered using a catalog service (CSW) in combination with an ontology service provides a robust mechanism for data discovery. Service endpoints or clients that use service endpoints are embedded within the metadata providing customers with tools to access and interrogate the fine details of the data. These technologies are demonstrated in current NCDC projects such as NOAA Climate Services Portal (NCSP), National Integrated Drought Information System (NIDIS), Pacific Climate Information System (PaCIS) and work with the Consortium of Universities for Advancement of Hydrologic Science (CUAHSI).

  3. Strengthening Climate Services Capabilities and Regional Engagement at NOAA's National Climatic Data Center

    NASA Astrophysics Data System (ADS)

    Shea, E.

    2008-12-01

    The demand for sector-based climate information is rapidly expanding. In order to support this demand, it is crucial that climate information is managed in an effective, efficient, and user-conscious manner. NOAA's National Climatic Data Center is working closely with numerous partners to develop a comprehensive interface that is authoritative, accessible, and responsive to a variety of sectors, stakeholders, and other users. This talk will explore these dynamics and activities, with additional perspectives on climate services derived from the regional and global experiences of the NOAA Integrated Data and Environmental Applications (IDEA) Center in the Pacific. The author will explore the importance of engaging partners and customers in the development, implementation and emergence of a national climate service program. The presentation will draw on the author's experience in climate science and risk management programs in the Pacific, development of regional and national climate services programs and insights emerging from climate services development efforts in NCDC. In this context, the author will briefly discuss some of guiding principles for effective climate services and applications including: - Early and continuous dialogue, partnership and collaboration with users/customers; - Establishing and sustaining trust and credibility through a program of shared learning and joint problem- solving; - Understanding the societal context for climate risk management and using a problem-focused approach to the development of products and services; - Addressing information needs along a continuum of timescales from extreme events to long-term change; and - Embedding education, outreach and communications activities as critical program elements in effective climate services. By way of examples, the author will reference lessons learned from: early Pacific Island climate forecast applications and climate assessment activities; the implementation of the Pacific Climate

  4. Climate Change, Salmon in the NOAA Budget Spotlight

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    2004-05-01

    A U.S. Senate hearing on 29 April about the administration's proposed budget for the National Oceanic and Atmospheric Administration fiscal year 2005 turned testy when senators pressed for specific information about the agency's programs on abrupt climate change and protecting wild salmon. Sen. Olympia Snowe (R-Maine), chair of the Senate Commerce, Science, and Transportation's Subcommittee on Oceans, Fisheries, and Coast Guard, expressed concern that funding for the agency's program on abrupt climate change appears to be eliminated in the proposed budget.

  5. Verification of a New NOAA/NSIDC Passive Microwave Sea-Ice Concentration Climate Record

    NASA Technical Reports Server (NTRS)

    Meier, Walter N.; Peng, Ge; Scott, Donna J.; Savoie, Matt H.

    2014-01-01

    A new satellite-based passive microwave sea-ice concentration product developed for the National Oceanic and Atmospheric Administration (NOAA)Climate Data Record (CDR) programme is evaluated via comparison with other passive microwave-derived estimates. The new product leverages two well-established concentration algorithms, known as the NASA Team and Bootstrap, both developed at and produced by the National Aeronautics and Space Administration (NASA) Goddard Space Flight Center (GSFC). The sea ice estimates compare well with similar GSFC products while also fulfilling all NOAA CDR initial operation capability (IOC) requirements, including (1) self describing file format, (2) ISO 19115-2 compliant collection-level metadata,(3) Climate and Forecast (CF) compliant file-level metadata, (4) grid-cell level metadata (data quality fields), (5) fully automated and reproducible processing and (6) open online access to full documentation with version control, including source code and an algorithm theoretical basic document. The primary limitations of the GSFC products are lack of metadata and use of untracked manual corrections to the output fields. Smaller differences occur from minor variations in processing methods by the National Snow and Ice Data Center (for the CDR fields) and NASA (for the GSFC fields). The CDR concentrations do have some differences from the constituent GSFC concentrations, but trends and variability are not substantially different.

  6. National Oceanic and Atmospheric Administration /NOAA/ contamination monitoring instrumentation

    NASA Technical Reports Server (NTRS)

    Maag, C. R.

    1980-01-01

    The JPL has designed and built a plume contamination monitoring package to be installed on a NOAA environmental services satellite. The package is designed to monitor any condensible contamination that occurs during the ignition and burn of a TE-M-364-15 apogee kick motor. The instrumentation and system interface are described, and attention is given to preflight analysis and test.

  7. The Climate Change Education Evidence Base: Lessons Learned from NOAA's Monitoring and Evaluation Framework Implementation

    NASA Astrophysics Data System (ADS)

    Baek, J.

    2012-12-01

    Federal science mission agencies are under increased pressure to ensure that their STEM education investments accomplish several objectives, including the identification and use of evidence-based approaches. Climate change education and climate literacy programs fall under these broader STEM initiatives. This paper is designed as a primer for climate change education evaluators and researchers to understand the policy context on the use of evidence. Recent initiatives, that include the National Science Foundation (NSF), the National Aeronautics and Space Administration (NASA), the National Oceanic and Atmospheric Administration (NOAA), point to a need for shared goals and measurements amongst the climate change education community. The Tri-agency Climate Change Education (CCE) collaboration, which includes NSF, NASA, and NOAA, developed the Tri-Agency Climate Change Education Common Evaluation Framework Initiative Stakeholder Statement (2012). An excerpt: From the perspective of the tri-agency collaboration, and its individual agency members, the goal of the common framework is not to build a required evaluation scheme or a set of new requirements for our funded climate change education initiatives. Rather, the collaboration would be strengthened by the development of a framework that includes tools, instruments, and/or documentation to: ● Help the agencies see and articulate the relationships between the individual pieces of the tri-agency CCE portfolio; ● Guide the agencies in reporting on the progress, lessons learned, and impacts of the collaboration between the three agencies in developing a coordinated portfolio of climate education initiatives; and ● Help the individual projects, as part of this broader portfolio, understand where they fit into a larger picture. The accomplishments of this initiative to date have been based on the collaborative nature of evaluators the climate change education community within the tri-agency portfolio. While this

  8. NOAA's contribution to an informed society anticipating and responding to climate and its impacts through Climate.gov

    NASA Astrophysics Data System (ADS)

    Niepold, F.

    2012-12-01

    Societal concern about the impacts of climate change is growing. Citizens in public and private sectors want easy access to credible climate science information to help them make informed decisions affecting their lives and livelihoods. Weather and climate influences almost every sector of society, and affects up to 40 percent of the United States' 10 trillion annual economy. (NRC report, 2003 entitled "Satellite Observations of the Earth's Environment: Accelerating the Transition of Research to Operations"). As the leading provider of climate, weather, and water information to the nation and the world, NOAA is a logical source for citizens to turn to for climate information. NOAA must expand and improve the way it communicates, educates, reaches out to, and engages with public stakeholders to better meet the nation's needs for timely, authoritative climate data and information. Citizens are increasingly going online to seek credible, authoritative climate information. However, users report having difficulty locating and using NOAA's online data products and services. Thus, resolving this online accessibility issue will be one of the Climate Portal's main benefits. The use of portal technology and emerging data integration and visualization tools provide an opportunity for NOAA to bring together multiple datasets from diverse disciplines and sources to deliver a more comprehensive picture of climate in the context of affected resources, communities and businesses. Additional benefits include wider extension of NOAA's data to other media such as television and free-choice learning venues, thereby increasing public exposure and engagement. The Climate Portal teams take an audience-focused approach to promoting climate science literacy among the public. The program communicates the challenges, processes, and results of NOAA-supported climate science through stories and data visualizations on the Web and in popular media. They provide information to a range of

  9. Development, Production and Validation of the NOAA Solar Irradiance Climate Data Record

    NASA Astrophysics Data System (ADS)

    Coddington, O.; Lean, J.; Pilewskie, P.; Snow, M. A.; Lindholm, D. M.

    2015-12-01

    A new climate data record of Total Solar Irradiance (TSI) and Solar Spectral Irradiance (SSI), including source code and supporting documentation is now publicly available as part of the National Oceanographic and Atmospheric Administration's (NOAA) National Centers for Environmental Information (NCEI) Climate Data Record (CDR) Program. Daily and monthly averaged values of TSI and SSI, with associated time and wavelength dependent uncertainties, are estimated from 1882 to the present with yearly averaged values since 1610, updated quarterly for the foreseeable future. The new Solar Irradiance Climate Data Record, jointly developed by the University of Colorado at Boulder's Laboratory for Atmospheric and Space Physics (LASP) and the Naval Research Laboratory (NRL), is constructed from solar irradiance models that determine the changes from quiet Sun conditions when bright faculae and dark sunspots are present on the solar disk. The magnitudes of the irradiance changes that these features produce are determined from linear regression of the proxy Mg II index and sunspot area indices against the approximately decade-long solar irradiance measurements made by instruments on the SOlar Radiation and Climate Experiment (SORCE) spacecraft. We describe the model formulation, uncertainty estimates, operational implementation and validation approach. Future efforts to improve the uncertainty estimates of the Solar Irradiance CDR arising from model assumptions, and augmentation of the solar irradiance reconstructions with direct measurements from the Total and Spectral Solar Irradiance Sensor (TSIS: launch date, July 2017) are also discussed.

  10. Training NOAA Staff on Effective Communication Methods with Local Climate Users

    NASA Astrophysics Data System (ADS)

    Timofeyeva, M. M.; Mayes, B.

    2011-12-01

    Since 2002 NOAA National Weather Service (NWS) Climate Services Division (CSD) offered training opportunities to NWS staff. As a result of eight-year-long development of the training program, NWS offers three training courses and about 25 online distance learning modules covering various climate topics: climate data and observations, climate variability and change, NWS national and local climate products, their tools, skill, and interpretation. Leveraging climate information and expertise available at all NOAA line offices and partners allows delivery of the most advanced knowledge and is a very critical aspect of the training program. NWS challenges in providing local climate services includes effective communication techniques on provide highly technical scientific information to local users. Addressing this challenge requires well trained, climate-literate workforce at local level capable of communicating the NOAA climate products and services as well as provide climate-sensitive decision support. Trained NWS climate service personnel use proactive and reactive approaches and professional education methods in communicating climate variability and change information to local users. Both scientifically-unimpaired messages and amiable communication techniques such as story telling approach are important in developing an engaged dialog between the climate service providers and users. Several pilot projects NWS CSD conducted in the past year applied the NWS climate services training program to training events for NOAA technical user groups. The technical user groups included natural resources managers, engineers, hydrologists, and planners for transportation infrastructure. Training of professional user groups required tailoring the instructions to the potential applications of each group of users. Training technical user identified the following critical issues: (1) Knowledge of target audience expectations, initial knowledge status, and potential use of climate

  11. Data compression for National Oceanic and Atmospheric Administration /NOAA/ weather satellite systems

    NASA Technical Reports Server (NTRS)

    Rice, R. F.; Schlutsmeyer, A. P.

    1980-01-01

    The National Oceanic and Atmospheric Administration (NOAA) receives high quality infrared weather images from each of its two geostationary weather satellites at an average data rate of 57 kilobits/second. These images are currently distributed to field stations over 3 kilohertz analog phone lines. The resulting loss in image quality renders the images unacceptable for proposed digital image processing. This paper documents the study leading to a current effort to implement a microprocessor-based universal noiseless coder/decoder to satisfy NOAA's requirements of high quality, good coverage and timely transmission of its infrared images.

  12. NOAA's Satellite Climate Data Records: The Research to Operations Process and Current State

    NASA Astrophysics Data System (ADS)

    Privette, J. L.; Bates, J. J.; Kearns, E. J.; NOAA's Climate Data Record Program

    2011-12-01

    In support of NOAA's mandate to provide climate products and services to the Nation, the National Climatic Data Center initiated the satellite Climate Data Record (CDR) Program. The Program develops and sustains climate information products derived from satellite data that NOAA has collected over the past 30+ years. These are the longest sets of continuous global measurements in existence. Data from other satellite programs, including those in NASA, the Department of Defense, and foreign space agencies, are also used. NOAA is now applying advanced analysis techniques to these historic data. This process is unraveling underlying climate trend and variability information and returning new value from the data. However, the transition of complex data processing chains, voluminous data products and documentation into an systematic, configuration controlled context involves many challenges. In this presentation, we focus on the Program's process for research-to-operations transition and the evolving systems designed to ensure transparency, security, economy and authoritative value. The Program has adopted a two-phase process defined by an Initial Operational Capability (IOC) and a Full Operational Capability (FOC). The principles and procedures for IOC are described, as well as the process for moving CDRs from IOC to FOC. Finally, we will describe the state of the CDRs in all phases the Program, with an emphasis on the seven community-developed CDRs transitioned to NOAA in 2011. Details on CDR access and distribution will be provided.

  13. Climate Literacy: Climate.gov Follow-Up Evaluation—A Study of the Four NOAA Audiences

    NASA Astrophysics Data System (ADS)

    Niepold, F., III; Sullivan, S. B.; Gold, A. U.; Lynds, S. E.; Kirk, K.

    2014-12-01

    NOAA Climate.gov provides science and information for a climate-smart nation. Americans' health, security, and economic well-being are closely linked to climate and weather. NOAA Climate.gov's goals are to promote public understanding of climate science and climate-related events, to make our data products and services easy to access and use, to support educators in improving the nations climate literacy, and to serve people making climate-related decisions with tools and resources that help them answer specific questions.The Climate.Gov Follow-Up Study of the four NOAA Audiences (climate interested public, educators, scientists, policy-makers) built upon the previous literature review and evaluation study conducted by Mooney and Phillips in 2010 and 2012, http://tinyurl.com/ma8vo83. The CIRES Education and Outreach team at the Cooperative Institute for Research in Environmental Sciences at University of Colorado at Boulder and the NOAA Climate.gov team will present results of the new study that used the Quality of Relationship index (awareness, trust, satisfaction, usability, and control mutuality). This index was developed in the previous study and places a new emphasis on the experience of individual users from the four audiences in their regular work or home setting. This new evaluation project used mixed methods, including an online survey, usability studies, phone interviews, and web statistics, providing multiple lines of evidence from which to draw conclusion and recommendations.In the session, we will explore how the NOAA Climate.gov teams used the literature review and new CIRES research to address underlying challenges to achieving the portal's goals. The research in these studies finds that people seek information in ways that are complex and that they do so by consulting a vast array of technologies. Improved and different modes of access to information have, throughout history, been led by technological innovation, but human behavior tends to be

  14. Sustained production of multi-decadal climate records - Lessons from the NOAA Climate Data Record Program

    NASA Astrophysics Data System (ADS)

    Bates, J. J.

    2015-12-01

    NOAA's Climate Data Record (CDR) Program was designed to be responsive to the needs of climate monitoring, research, and services with the ultimate aim of serving decision making across a spectrum of users for the long term. It requires the sustained production of high quality, multidecadal time series data describing the global atmosphere, oceans, and land surface that can be used for informed decision making. The challenges of a long-term program of sustaining CDRs, as contrasted with short-term efforts of traditional three-year research programs, are substantial and different. The sustained production of CDRs requires collaboration between experts in the climate community, data management, and software development and maintenance. It is also informed by scientific application and associated user feedback on the accessibility and usability of the produced CDRs. The CDR Program has developed a metric for assessing the maturity of CDRs with respect to data management, software, and user application and applied it to over 28 CDRs. The main/primary lesson learned over the past seven years is that a rigorous, team approach to data management, employing subject matter experts at every step, is critical to open and transparent production. This approach also makes it much easier to support the needs of users who want near-real-time production of "interim" CDRs for monitoring and users who want to use CDRs for tailored authoritative information, such as a drought index. This talk will review of the history of the CDR program, current status, and plans.

  15. REGIONAL COORDINATION OF NOAA/NATIONAL WEATHER SERVICE CLIMATE SERVICES IN THE WEST (Invited)

    NASA Astrophysics Data System (ADS)

    Bair, A.

    2009-12-01

    The climate services program is an important component in the National Weather Service’s (NWS) mission, and is one of the National Oceanic and Atmospheric Administration’s (NOAA) top five priorities. The Western Region NWS started building a regional and local climate services program in late 2001, with input from local NWS offices and key partners. The original goals of the Western Region climate services program were to strive to provide climate services that were useful, easily accessible, well understood, coordinated and supported by partners, and reflect customer needs. While the program has evolved, and lessons have been learned, these goals are still guiding the program. Regional and local level Climate Services are a fundamental part of NOAA/NWS’s current and future role in providing climate services. There is an ever growing demand for climate information and services to aid the public in decision-making and no single entity alone can provide the range of information and services needed. Coordination and building strong partnerships at the local and regional levels is the key to providing optimal climate services. Over the past 8 years, Western Region NWS has embarked on numerous coordination efforts to build the regional and local climate services programs, such as: collaboration (both internally and externally to NOAA) meetings and projects, internal staff training, surveys, and outreach efforts. In order to gain regional and local buy-in from the NWS staff, multiple committees were utilized to plan and develop goals and structure for the program. While the regional and local climate services program in the NWS Western Region has had many successes, there have been several important lessons learned from efforts that have not been as successful. These lessons, along with past experience, close coordination with partners, and the need to constantly improve/change the program as the climate changes, form the basis for future program development and

  16. The Climate Variability & Predictability (CVP) Program at NOAA - DYNAMO Recent Project Advancements

    NASA Astrophysics Data System (ADS)

    Lucas, S. E.; Todd, J. F.; Higgins, W.

    2013-12-01

    The Climate Variability & Predictability (CVP) Program supports research aimed at providing process-level understanding of the climate system through observation, modeling, analysis, and field studies. This vital knowledge is needed to improve climate models and predictions so that scientists can better anticipate the impacts of future climate variability and change. To achieve its mission, the CVP Program supports research carried out at NOAA and other federal laboratories, NOAA Cooperative Institutes, and academic institutions. The Program also coordinates its sponsored projects with major national and international scientific bodies including the World Climate Research Programme (WCRP), the International Geosphere-Biosphere Programme (IGBP), and the U.S. Global Change Research Program (USGCRP). The CVP program sits within the Earth System Science (ESS) Division at NOAA's Climate Program Office. Dynamics of the Madden-Julian Oscillation (DYNAMO): The Indian Ocean is one of Earth's most sensitive regions because the interactions between ocean and atmosphere there have a discernable effect on global climate patterns. The tropical weather that brews in that region can move eastward along the equator and reverberate around the globe, shaping weather and climate in far-off places. The vehicle for this variability is a phenomenon called the Madden-Julian Oscillation, or MJO. The MJO, which originates over the Indian Ocean roughly every 30 to 90 days, is known to influence the Asian and Australian monsoons. It can also enhance hurricane activity in the northeast Pacific and Gulf of Mexico, trigger torrential rainfall along the west coast of North America, and affect the onset of El Niño. CVP-funded scientists participated in the DYNAMO field campaign in 2011-12. Results from this international campaign are expected to improve researcher's insights into this influential phenomenon. A better understanding of the processes governing MJO is an essential step toward

  17. Advancing Weather and Climate Literacy via NOAA Science On a Sphere Exhibits

    NASA Astrophysics Data System (ADS)

    Rowley, P.; Pisut, D.; Ackerman, S. A.; Mooney, M. E.; Schollaert Uz, S.

    2013-12-01

    The EarthNow project (http://sphere.ssec.wisc.edu/) regularly creates weather and climate visualizations for spherical display exhibits, like Science On a Sphere (SOS), using near real-time data such as NOAA's National Climate Data Center's (NCDC) monthly climate reports and the Climate Prediction Center's (CPC) seasonal outlooks. Viewing timely weather and climate stories on a large sphere-format allows museum visitors to more intuitively learn about global-scale earth system science. Along with producing large animations for SOS exhibits with background content, the EarthNow team also visits SOS museums (there are now over 100 SOS sites around the world) to conduct best-practice trainings and consultancies. These training sessions provide museums with implementation methods tailored to each museum's goals, allowing for a more personalized learning experience for museum visitors. This presentation will convey evaluation and feedback results from these training sites. The EarthNow project is led by the Cooperative Institute for Meteorological Satellite Studies (CIMSS), in collaboration with the Cooperative Institute for Climate and Satellites (CICS-MD) and the NOAA Environmental Visualization Lab.

  18. The NOAA climate monitoring and diagnostics laboratory (CMDL) research program

    SciTech Connect

    Ferguson, E.

    1993-12-31

    The CMDL atmospheric measurement program (knows as GMCC--Global Monitoring for Climate Change, prior to 1990) involves monitoring a variety of environmentally important trace gases at four permanent observations. Mauna Loa, Hawaii, Samoa, South Pole and Barrow, Alaska, as well as numerous other global sites. Shipboard and stratospheric aircraft platforms are also utilized. The greenhouse gases CO{sub 2}, CH{sub 4} and CO are measured and analyzed in order to better understand the global carbon cycle. CFCs, HCFC`s and N{sub 2}O are measured, both because of their greenhouse roles as well as their role in the control of stratospheric ozone. Regular balloon borne measurements of ozone, water vapor and aerosols in the stratosphere, particularly over the South Pole, are contributing to the understanding of stratospheric ozone loss. Lidar and solar transmission measurements are being used to study volcanic aerosols. Some of the most recent results of this program will be described along with the implications related to future climate change.

  19. 75 FR 13259 - NOAA Is Hosting a Series of Informational Webinars for Individuals and Organizations To Learn...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-19

    ... Individuals and Organizations To Learn About the Proposed NOAA Climate Service AGENCY: Office of Oceanic and... Oceanic and Atmospheric Administration (NOAA) announced their intent to establish a new NOAA Climate... our partners to respond to the growing demands for climate information from the public,...

  20. The Navy/NOAA Joint Ice Center's role in the climate and global change program

    NASA Astrophysics Data System (ADS)

    Kniskern, Franklin E.

    1991-07-01

    The Navy/NOAA Joint Ice Center (JIC) is responsible for producing global, regional, and local ice analyses and forecasts for the Arctic, Antarctic, and Great Lakes. Presently, satellite image products are the primary source of sea ice data at the JIC and the NOAA polar orbiting series satellites are the primary source of satellite data. In the future when the JIC's Digital Ice Forecasting and Analysis system (DIFAS) becomes operational, digital satellite data from the NOAA polar orbiters will be used. The JIC is the only organization in the free world that produces weekly global sea ice analyses. These analyses will likely become a good source of data for the cryospheric section of the Climate and Global Change program. Many scientists expect that a change in sea ice extent in the polar regions will be one of the first signals for a change in the earth's climate. A very important new source of data for ice operations and the Climate and Global Change program will be the Synthetic Aperture Radar (SAR) data which will be available in limited amounts starting in 1991. This high-resolution, all-weather data source will allow the JIC, in some polar regions, to provide more detailed analyses of ice extent, ice concentration, ice age and certain ice features such as leads and polynyas. Detailed lead and polynya analyses will yield a better estimate of the heat budget in the polar regions which is an important parameter for the Climate and Global Change program. This paper will describe the various products produced at the JIC and how these products and future ice data and products analyzed on DIFAS will contribute to the cryospheric section of the Climate and Global Change program.

  1. Acquisition of Gulfstream IV-SP jet for environmental measurements in the upper troposphere by the National Oceanic and Atmospheric Administration (NOAA)

    SciTech Connect

    Philippsborn, F.R.

    1996-11-01

    Acquisition of a Gulfstream IV-SP jet by the National Oceanic and Atmospheric Administration (NOAA) is intended to address the critical shortage of platforms capable of making intensive in situ meteorological and atmospheric observations in the upper troposphere. Its primary function will be Hurricane Synoptic Surveillance. In its initial configuration, the jet will significantly improve the ability of NOAA scientists to predict the expected path of hurricanes by gathering vertical profiles of wind, temperature, and humidity within 1,000 km of tropical cyclones by means of dropwindsondes over the data-sparse oceanic regions of the western Atlantic, Caribbean Sea and Gulf of Mexico. Future missions proposed for the aircraft include winter storm surveillance, hurricane reconnaissance, weather research, global climate studies, air chemistry, validation of satellite data, and development of remote sensors. 5 refs.

  2. NOAA Would Receive an 11% Increase Under Obama Administration's Proposed Budget

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    2013-05-01

    The White House's proposed fiscal year (FY) 2014 budget for the National Oceanic and Atmospheric Administration (NOAA) would provide the agency with 5.45 billion, 11% above the FY 2012 spend plan of 4.91 billion (see Table ). The proposal, which was sent to Congress on 10 April, would increase funding for operations, research, and facilities to 3.41 billion (up 7.97% over FY 2012) and for procurement, acquisition, and construction to 2.12 billion (up 17.51%). The budget proposal uses the FY 2012 spend plan as a comparison because Congress approved the FY 2013 appropriations only a few weeks before the FY 2014 proposal was released.

  3. Teaching Earth System Science Using Climate Educational Modules Based on NASA and NOAA Resources

    NASA Astrophysics Data System (ADS)

    Ramirez, P. C.; LaDochy, S.; Patzert, W. C.; Willis, J. K.

    2011-12-01

    The Earth System Science Education Alliance (ESSEA) recently developed a set of climate related educational modules to be used by K-12 teachers. These modules incorporate recent NASA and NOAA resources in Earth Science education. In the summer of 2011, these modules were tested by in-service teachers in courses held at several college campuses. At California State University, Los Angeles, we reviewed two climate modules: The Great Ocean Conveyer Belt and Abrupt Climate Change (http://essea.strategies.org/module.php?module_id=148) and Sulfur Dioxide: Its Role in Climate Change (http://essea.strategies.org/module.php?module_id=168). For each module, 4-6 teachers formed a cohort to complete assignments and unit assessments and to evaluate the effectiveness of the module for use in their classroom. Each module presented the teachers with a task that enabled them to research and better understand the science behind the climate related topic. For The Great Ocean Conveyer Belt, teachers are tasked with evaluating the impacts of the slowing or stopping of the thermohaline circulation on climate. In the same module teachers are charged with determining the possibilities of an abrupt climate shift during this century such as happened in the past. For the Sulfur Dioxide module teachers investigated the climate implications of the occurrence of several major volcanic eruptions within a short time period, as well as the feasibility of using sulfates to geoengineer climate change. In completing module assignments, teachers must list what they already know about the topic as well as formulate questions that still need to be addressed. Teachers then model the related interactions between spheres comprising the earth system (atmosphere-lithosphere, for example) to evaluate possible environmental impacts. Finally, teachers applied their research results to create lesson plans for their students. At a time when climate change and global warming are important topics in science

  4. Monitoring Users' Satisfactions of the NOAA NWS Climate Products and Services

    NASA Astrophysics Data System (ADS)

    Horsfall, F. M.; Timofeyeva, M. M.; Dixon, S.; Meyers, J. C.

    2011-12-01

    The NOAA's National Weather Service (NWS) Climate Services Division (CSD) ensures the relevance of NWS climate products and services. There are several ongoing efforts to identify the level of user satisfaction. One of these efforts includes periodical surveys conducted by Claes Fornell International (CFI) Group using the American Customer Satisfaction Index (ACSI), which is "the only uniform, national, cross-industry measure of satisfaction with the quality of goods and services available in the United States" (http://www.cfigroup.com/acsi/overview.asp). The CFI Group conducted NWS Climate Products and Services surveys in 2004 and 2009. In 2010, a prominent routine was established for a periodical assessment of the customer satisfaction. From 2010 onward, yearly surveys will cover major climate services products and services. An expanded suite of climate products will be surveyed every other year. Each survey evaluated customer satisfaction with a range of NWS climate services, data, and products, including Climate Prediction Center (CPC) outlooks, drought monitoring, and ENSO monitoring and forecasts, as well as NWS local climate data and forecast products and services. The survey results provide insight into the NWS climate customer base and their requirements for climate services. They also evaluate whether we are meeting the needs of customers and the ease of their understanding for routine climate services, forecasts, and outlooks. In addition, the evaluation of specific topics, such as NWS forecast product category names, probabilistic nature of climate products, interpretation issues, etc., were addressed to assess how our users interpret prediction terminology. This paper provides an analysis of the following products: hazards, extended-range, long-lead and drought outlooks, El Nino Southern Oscillation monitoring and predictions as well as local climate data products. Two key issues make comparing the different surveys challenging, including the

  5. Calibration and Validation of the 36-year NOAA/AVHRR Imager Visible Channel Data record in support of the NOAA Climate Data Records program.

    NASA Astrophysics Data System (ADS)

    Gopalan, A.; Doelling, D.; Bhatt, R.; Scarino, B. R.; Bedka, K. M.; Minnis, P.

    2015-12-01

    The NOAA/AVHRR (Advanced Very High Resolution Radiometer) series of polar-orbiting earth-imagers have been flying since 1978 to the present and provide an opportunity to derive a long-term consistent set of well calibrated visible channel radiances for cloud, aerosol, and land use retrievals. This will allow climate modelers to investigate climate natural variability, intra-seasonal oscillations such as the ENSO, and feedback mechanisms over a 36-year record. Large climate perturbations, such as the 1982 and 1998 El Ninos as well as the 1982 El Chichon and 1992 Mt Pinatubo volcanic eruptions, have not been observed since 2000. The vicarious calibration method relies on temporally well characterized multiple pseudo-invariant calibration sites (PICS) referenced to the Aqua-MODIS calibration. The PICS are characterized by NOAA-16 TOA reflectances, over the full range of observed solar zenith angles of a NOAA degrading orbit culminating in a terminator orbit. The NOAA-16 reflectances are first calibrated against Aqua-MODIS using the simultaneous nadir overpass (SNO) method. Site characterization with NOAA-16 has the advantage of reducing the uncertainties associated with spectral band adjustments, since the AVHRR sensor spectral responses are similar. Consistent calibration between the individual desert, polar ice and deep convective cloud PICS approaches validates the methodology. The individual calibration gains are combined to provide the final merged calibration by weighting them by the inverse of their temporal variance. By combining by site stability ensures that site anomalous reflectance drifts do not adversely impact the calibration. Also the merged gain has a lower temporal variability than any individual PICS. In this study we describe the methodology used to derive a new set of calibration coefficients for Channel-1 0.65 (um) and Channel-2 (0.86 um) of the NOAA/AVHRR series of Polar-Orbiting imagers beginning in 1978. We will demonstrate the consistency of

  6. NOAA/NCEI/Regional Climate Services: Working with Partners and Stakeholders across a Wide Network

    NASA Astrophysics Data System (ADS)

    Mecray, E. L.

    2015-12-01

    Federal agencies all require plans to be prepared at the state level that outline the implementation of funding to address wildlife habitat, human health, transportation infrastructure, coastal zone management, environmental management, emergency management, and others. These plans are now requiring the consideration of changing climate conditions. So where does a state turn to discuss lessons learned, obtain tools and information to assess climate conditions, and to work with other states in their region? Regional networks and collaboratives are working to deliver this sector by sector. How do these networks work? Do they fit together in any way? What similarities and differences exist? Is anyone talking across these lines to find common climate information requirements? A sketch is forming that links these efforts, not by blending the sectors, but by finding the areas where coordination is critical, where information needs are common, and where delivery mechanisms can be streamlined. NOAA/National Centers for Environmental Information's Regional Climate Services Directors have been working at the interface of stakeholder-driven information delivery since 2010. This talk will outline the regional climate services delivery framework for the Eastern Region, with examples of regional products and information.

  7. Long-term air quality monitoring at the South Pole by the NOAA program Geophysical Monitoring for Climatic Change

    SciTech Connect

    Robinson, E.; Rodhaine, B.A.; Komhyr, W.D.; Oltmans, S.J.; Steele, L.P.

    1988-02-01

    The objectives of the NOAA program of Geophysical Monitoring for Climatic Change (GMCC) for the South Pole include measurements of atmospheric changes which can potentially impact climate. This paper discusses the long-term GMCC South Pole air chemistry data for carbon dioxide, total ozone, surface ozone, methane, halocarbons, nitrous oxide, and aerosol concentrations, comparing the findings with GMCC data for other regions. Special consideration is given to the results of recent GMCC ozonesonde operations and to an asessment of Dobson ozone spectrophotometer data taken at South Pole by NOAA since 1964. Data are discussed in the framework of Antarctic ozone hole phenomenon. 49 references.

  8. A gradient model of vegetation and climate utilizing NOAA satellite imagery. Phase 1: Texas transect

    NASA Technical Reports Server (NTRS)

    Greegor, D. H.; Norwine, J.

    1981-01-01

    A new experimental climatological model/variable termed the sponge, a measure of moisture availability based on daily temperature maxima and minima and precipitation, is tested for potential biogeographic, ecological, and agro-climatological applications. Results, depicted in tabular and graphic from, suggest that, as a generalized climatic index, sponge's simplicity and sensitivity make particularly appropriate for trans-regional biogeographic studies (e.g., large-area and global vegetation monitoring). The feasibility of utilizing NOAA/AVHRR data for vegetation classification was investigated and a vegetation gradient model that utilizes sponge, and AVHRR pixel data (channels 1 and 2) were obtained for 12 locations. The normalized difference values for the AVHRR data when plotted against vegetation characteristics (biomass, net productivity, leaf area) and sponge values suggest that a multivariate gradient model incorporating AVHRR and sponge data may indeed be useful in global vegetation stratification and monitoring.

  9. A gradient model of vegetation and climate utilizing NOAA satellite imagery. Phase 1: Texas transect

    NASA Technical Reports Server (NTRS)

    Greegor, D.; Norwine, J. (Principal Investigator)

    1981-01-01

    A climatological model/variable termed the sponge (a measure of moisture availability based on daily temperature maxima and minima, and precipitation) was tested for potential biogeograhic, ecological, and agro-climatological applications. Results, depicted in tabular and graphic form, suggest that, as generalized climatic index, sponge is particularly appropriate for large-area and global vegetation monitoring. The feasibility of utilizing NOAA/AVHRR data for vegetation classification was investigated and a vegetation gradient model that utilizes sponge and AVHRR data was initiated. Along an east-west Texas gradient, vegetation, sponge, and AVHRR pixel data (channels 1 and 2) were obtained for 12 locations. The normalized difference values for the AVHRR data when plotted against vegetation characteristics (biomass, net productivity, leaf area) and sponge values along the Texas gradient suggest that a multivariate gradient model incorporating AVHRR and sponge data may indeed be useful in global vegetation stratification and monitoring.

  10. NOAA (National Oceanic and Atmospheric Administration) Aircraft Satellite Data Link (ASDL)

    NASA Astrophysics Data System (ADS)

    Parrish, J. R.; Darby, E. R.; Dugranrut, J. D.; Goldstein, A. S.

    1984-05-01

    The NOAA Aircraft Satellite Data Link (ASDL) is described, includes the data routing, aircraft system and one minute data explanations, types of messages, and radar image transmission. An aircraft ASDL operator's guide with examples of specific message formats are presented.

  11. The Consortium for Climate Risk in the Urban Northeast: A NOAA RISA Project

    NASA Astrophysics Data System (ADS)

    Rosenzweig, C.

    2011-12-01

    The Consortium for Climate Risk in the Urban Northeast, or CCRUN, was funded in October 2010 under NOAA's Regional Integrated Sciences and Assessments (RISA) program to serve stakeholder needs in assessing and managing risks from climate variability and change. It is currently also the only RISA team with a principal focus on climate change adaptation in urban settings. While CCRUN's initial focus is on the major cities of the urban Northeast corridor (Philadelphia, New York and Boston), its work will ultimately expand to cover small and medium-sized cities in the relevant portions of Massachusetts, Rhode Island, Connecticut, New York, New Jersey and Pennsylvania as well, so that local needs for targeted climate-risk information can be served in a coordinated way. CCRUN is designed to address the complex challenges that are associated with densely populated, highly interconnected urban areas, including such as urban heat island effects; poor air quality; intense coastal development, and multifunctional settlement along inland waterways; complex overlapping institutional jurisdictions; integrated infrastructure systems; and highly diverse, and in some cases, fragile socio-economic communities. These challenges can best be addressed by the stakeholder-driven interdisciplinary approach taken by the CCRUN RISA team. As an important added benefit, the research accomplishments and lessons learned through stakeholder engagement will provide a foundation for managing climate risks in other urban areas in the United States. CCRUN's initial projects are focused in three broad sectors: Water, Coasts, and Health. Research in each of these sectors is linked through the cross-cutting themes of climate change and community vulnerability, the latter of which is especially important in considerations of environmental justice and equity. CCRUN's stakeholder-driven approach to research can therefore support investigations of the impacts of a changing climate, population growth, and

  12. In-flight measurement of the National Oceanic and Atmospheric Administration (NOAA)-10 static Earth sensor error

    NASA Technical Reports Server (NTRS)

    Harvie, E.; Filla, O.; Baker, D.

    1993-01-01

    Analysis performed in the Goddard Space Flight Center (GSFC) Flight Dynamics Division (FDD) measures error in the static Earth sensor onboard the National Oceanic and Atmospheric Administration (NOAA)-10 spacecraft using flight data. Errors are computed as the difference between Earth sensor pitch and roll angle telemetry and reference pitch and roll attitude histories propagated by gyros. The flight data error determination illustrates the effect on horizon sensing of systemic variation in the Earth infrared (IR) horizon radiance with latitude and season, as well as the effect of anomalies in the global IR radiance. Results of the analysis provide a comparison between static Earth sensor flight performance and that of scanning Earth sensors studied previously in the GSFC/FDD. The results also provide a baseline for evaluating various models of the static Earth sensor. Representative days from the NOAA-10 mission indicate the extent of uniformity and consistency over time of the global IR horizon. A unique aspect of the NOAA-10 analysis is the correlation of flight data errors with independent radiometric measurements of stratospheric temperature. The determination of the NOAA-10 static Earth sensor error contributes to realistic performance expectations for missions to be equipped with similar sensors.

  13. The NOAA Local Climate Analysis Tool - An Application in Support of a Weather Ready Nation

    NASA Astrophysics Data System (ADS)

    Timofeyeva, M. M.; Horsfall, F. M.

    2012-12-01

    climate division data available at NCDC. Applications for other NOAA offices and Federal agencies are currently being investigated, such as incorporation of tidal data, fish stocks, sea surface temperature, health-related data, and analyses relevant to those datasets. We will describe LCAT, its basic functionality, examples of analyses, and progress being made to provide the tool to a broader audience in support of ocean, fisheries, and health applications.

  14. Budget Realities Could Put Damper on Some NOAA Programs

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    2010-12-01

    The fall meeting of the National Oceanic and Atmospheric Administration's (NOAA) Science Advisory Board was in part a study in contrasts: discussing the agency's vision, goals, and recent successes while facing the harsh economic and political landscape that will make it difficult for NOAA to receive sufficient funding for the current fiscal year (FY 2011) to do little more than tread water toward reaching some of those goals. During a 30 November presentation, NOAA administrator Jane Lubchenco provided an overview of NOAA's Next Generation Strategic Plan. The document focuses on four long-term goals: climate adaptation and mitigation, a weather-ready nation, resilient coastal communities and economies, and healthy oceans.

  15. Climate applications for NOAA 1/4° Daily Optimum Interpolation Sea Surface Temperature

    NASA Astrophysics Data System (ADS)

    Boyer, T.; Banzon, P. V. F.; Liu, G.; Saha, K.; Wilson, C.; Stachniewicz, J. S.

    2015-12-01

    Few sea surface temperature (SST) datasets from satellites have the long temporal span needed for climate studies. The NOAA Daily Optimum Interpolation Sea Surface Temperature (DOISST) on a 1/4° grid, produced at National Centers for Environmental Information, is based primarily on SSTs from the Advanced Very High Resolution Radiometer (AVHRR), available from 1981 to the present. AVHRR data can contain biases, particularly when aerosols are present. Over the three decade span, the largest departure of AVHRR SSTs from buoy temperatures occurred during the Mt Pinatubo and El Chichon eruptions. Therefore, in DOISST, AVHRR SSTs are bias-adjusted to match in situ SSTs prior to interpolation. This produces a consistent time series of complete SST fields that is suitable for modelling and investigating local climate phenomena like El Nino or the Pacific warm blob in a long term context. Because many biological processes and animal distributions are temperature dependent, there are also many ecological uses of DOISST (e.g., coral bleaching thermal stress, fish and marine mammal distributions), thereby providing insights into resource management in a changing ocean. The advantages and limitations of using DOISST for different applications will be discussed.

  16. Atmospheric carbon dioxide at Mauna Loa Observatory 1. NOAA global monitoring for climatic change measurements with a nondispersive infrared analyzer, 1974--1985

    SciTech Connect

    Komhyr, W. D.; Harris, T. B.; Waterman, L. S.; Chin, J. F. S.; Thoning, K. W.

    1989-06-20

    Atmospheric CO/sub 2/ measurements made with a nondispersive infrared analyzer during 1974--1985 at Mauna Lao Observatory, Hawaii, are described, with emphasis on the measurement methodology, calibrations, and data accuracy. Monthly mean CO/sub 2/ data, representative of global background conditions, are presented for the period of record. The monthly means were derived from an all-data base of CO/sub 2/ hourly averged archived at the National Oceanic and Atmospheric Administration (NOAA) Geophysical Monitoring for Climatic Change (GMCC) facility in Boulder, Colorado; at the Carbon Dioxide Information Analysis Center (CDIAC) in Oak Ridge, Tennessee; and in the microfiche version of this paper. Flags in the all-data base identify CO/sub 2/ hourly averages that have been deemed unreliable because of sampling and analysis problems or that are unrepresentative of clean background air because of influences of the local environment, for example, CO/sub 2/ uptake by nearby vegetation or contamination and pollution effects. The select NOAA GMCC monthly mean data are compared with similar data obtained independently at Mauna Loa Observatory by the Scripps Institution of Oceanography. The averge difference of corresponding monthly mean CO/sub 2/ values for the two data sets is 0.15/plus minus/0.18 ppm, where the indicated variability is the standard deviation. Careful scrutiny of the NOAA GMCC measurement, calibration, and data processing procedures that might have caused the small bias in the data has revealed no unusual errors. /copyright/ American Geophysical Union 1989

  17. NOAA seeks healthy budget

    NASA Astrophysics Data System (ADS)

    Bush, Susan

    The small, crowded room of the House side of the U.S. Capitol building belied the large budget of $1,611,991,000 requested for Fiscal Year 1992 by the National Oceanic and Atmospheric Administration. John A. Knauss, Undersecretary for Oceans and Atmosphere, U.S. Department of Commerce, delivered his testimony on February 28 before the House Appropriations Subcommittee on Commerce, Justice, and State, the Judiciary and Related Agencies. He told the subcommittee that the budget “attempts to balance the two goals of maintaining NOAA's position as an important science agency and addressing the serious budget problems that the government continues to face.”Climate and global change, modernization of the National Weather Service, and the Coastal Ocean Science program are NOAA's three ongoing, high-priority initiatives that the budget addresses. Also, three additional initiatives—a NOAA-wide program to improve environmental data management, President Bush's multiagency Coastal America initiative, and a seafood safety program administered jointly by NOAA and the Food and Drug Administration—are addressed.

  18. Advances in Web-Based, Near Real-Time Climate Data Ingest For NOAA's Cooperative Volunteer Observation Network

    NASA Astrophysics Data System (ADS)

    Owen, T.; Brewer, M.; Redmond, K.; McCurdy, G.; Kelly, G.; Bonack, B.; Somrek, B.; Doesken, N.; Bollinger, J.

    2006-12-01

    NOAA is charged with collection, preservation and accessibility of a quality digital record of Cooperative Network data and metadata. This record has historically been derived through the imaging and keying of so- called "B-91' forms that are sent by observers and the National Weather Service to the National Climatic Data Center (NCDC). The processing time, including quality assurance checks and serial publication, typically is 45-60 days beyond the data month. Technological and communication advances, coupled with integrated climate and weather and water reporting needs have reached a threshold where near real-time (i.e., daily) reporting of observations is desirable. While ASOS data have long been directly reported to NCDC in this time horizon, National Weather Service Cooperative Network (COOP) data has continued to be recorded on forms. Timely data reporting is fundamental to the success of the U.S. effort in Global Earth Observations, especially for monitoring drought as part of the National Integrated Drought Information System (NIDIS). Coupled with implementation planning for transition of Legacy COOP under NOAA's Environmental Real-Time Observing Network (NERON), work toward such a system is timely. NOAA is working closely with Regional Climate Centers, State Climatologists and other partners to develop a web-based interface based on existing systems (e.g., WxCoder, CoCoRAHS and COOLTAP) to provide for the electronic submission of daily COOP data to NCDC and the climate community. To this end, the following guiding principles have been identified: 1) Provide efficient, easy-to-use data entry system for participating COOP observers, 2) Ensure timely availability of COOP data for all customers, 3) Improve data quality through automated near-real-time data QA/QC, 4) Achieve a paperless electronic data collection, transmission, and archiving system. 5) Allow system flexibility to meet demands of integrating data from future observing systems This presentation

  19. 76 FR 65183 - National Oceanic and Atmospheric Administration

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-20

    ... National Oceanic and Atmospheric Administration National Climate Assessment and Development Advisory... Administration (NOAA), Department of Commerce (DOC). ACTION: Notice of open meeting. SUMMARY: The National... of Oceanic and Atmospheric Research, National Oceanic and Atmospheric Administration. BILLING...

  20. A Three-Legged Stool or Race? Governance Models for NOAA RISAs, DOI CSCs, and USDA Climate Hubs

    NASA Astrophysics Data System (ADS)

    Foster, J. G.

    2014-12-01

    NOAAs Regional Integrated Sciences and Assessments (RISA) Teams, DOIs Climate Science Centers (CSCs), and USDAs Regional Climate Hubs (RCHs) have common missions of integrating climate and related knowledge across scientific disciplines and regions to create "actionable" information that decision-makes can use to manage climate risks and impacts at state and local scales. However, the sponsoring agency programs, university investigators, and local federal officials govern each differently. The three models of program and center governance are 1) exclusively university (RISAs), 2) a hybrid of Federal government and (host) university (CSCs,), and 3) exclusively Federal (Hubs). Each model has it's advantages and disadvantages in terms of legal definition and authority, scientific mission requirements and strategies, flexibility and legitimacy to conduct research and to collaborate regionally with constituencies, leadership and governance approach and "friction points,", staff capacity and ability to engage stakeholders, necessity to deliver products and services, bureaucratic oversight, performance evaluation, and political support at Congressional, state, and local levels. Using available sources of information and data, this paper will compare and contrast the strengths and weakness of these three regional applied climate science center governance models.

  1. A Three-Legged Stool or Race? Governance Models for NOAA RISAs, DOI CSCs, and USDA Climate Hub

    NASA Astrophysics Data System (ADS)

    Foster, J. G.

    2014-12-01

    NOAAs Regional Integrated Sciences and Assessments (RISA) Teams, DOIs Climate Science Centers (CSCs), and USDAs Regional Climate Hubs (RCHs) have common missions of integrating climate and related knowledge across scientific disciplines and regions to create "actionable" information that decision-makes can use to manage climate risks and impacts at state and local scales. However, the sponsoring agency programs, university investigators, and local federal officials govern each differently. The three models of program and center governance are 1) exclusively university (RISAs), 2) a hybrid of Federal government and (host) university (CSCs,), and 3) exclusively Federal (Hubs). Each model has it's advantages and disadvantages in terms of legal definition and authority, scientific mission requirements and strategies, flexibility and legitimacy to conduct research and to collaborate regionally with constituencies, leadership and governance approach and "friction points,", staff capacity and ability to engage stakeholders, necessity to deliver products and services, bureaucratic oversight, performance evaluation, and political support at Congressional, state, and local levels. Using available sources of information and data, this paper will compare and contrast the strengths and weakness of these three regional applied climate science center governance models.

  2. Administrative Satisfaction and the Regulatory Climate at Public Universities.

    ERIC Educational Resources Information Center

    Volkwein, James Fredericks; Malik, Shaukat M.; Napierski-Prancl, Michelle

    1998-01-01

    A study measured the financial, personnel, and academic dimensions of state regulation at 122 public universities, and examined how university and state characteristics affect regulatory climate and administrative flexibility. It also analyzed the dimensions of administrator satisfaction in 12 specific administrative positions in relation to…

  3. NOAA-L satellite arrives at Vandenberg AFB

    NASA Technical Reports Server (NTRS)

    2000-01-01

    A crated National Oceanic and Atmospheric Administration (NOAA-L) satellite arrives at Vandenberg Air Force Base, Calif. It is part of the Polar-Orbiting Operational Environmental Satellite (POES) program that provides atmospheric measurements of temperature, humidity, ozone and cloud images, tracking weather patterns that affect the global weather and climate. The launch of the NOAA-L satellite is scheduled no earlier than Sept. 12 aboard a Lockheed Martin Titan II rocket. NOAA-L

    NASA Technical Reports Server (NTRS)

    McCain, Harry G. (Technical Monitor)

    2000-01-01

    The National Oceanic and Atmospheric Administration (NOAA) and the National Aeronautics and Space Administration (NASA) have jointly developed a valuable series of polar-orbiting Earth environmental observation satellites since 1978. These satellites provide global data to NOAA's short- and long-range weather forecasting systems. The system consists of two polar-orbiting satellites known as the Advanced Television Infrared Observation Satellites (TIROS-N) (ATN). Operating as a pair, these satellites ensure that environmental data, for any region of the Earth, is no more than six hours old. These polar-orbiting satellites have not only provided cost-effective data for very immediate and real needs but also for extensive climate and research programs. The weather data (including images seen on television news programs) has afforded both convenience and safety to viewers throughout the world. The satellites also support the SARSAT (Search and Rescue Satellite Aided Tracking) part of the COSPAS-SARSAT constellation. Russia provides the COSPAS (Russian for Space Systems for the Search of Vessels in Distress) satellites. The international COSPAS-SARSAT system provides for the detection and location of emergency beacons for ships, aircraft, and people in distress and has contributed to the saving of more than 10,000 lives since its inception in 1982.

  4. A NASA-NOAA Update on Global Fire Monitoring Capabilities for Studying Fire-Climate Interactions: Focus on Northern Eurasia

    NASA Astrophysics Data System (ADS)

    Gutman, G.; Csiszar, I.

    2012-04-01

    The global, long-term effects of fires are not well understood and we are learning more every year about its global impacts and potential feedbacks to climate change. The frequency, intensity, severity, and emissions of fires may be changing as a result of climate warming as has been manifested by the observations in northern Eurasia. The climate-fire interaction may produce important societal and environmental impacts in the long run. NASA and NOAA have been developing long-term fire datasets and improving systems to monitor active fires, study fire severity, fire growth, emissions into the atmosphere, and fire effects on carbon stocks. Almost every year there are regions in the world that experience particularly severe fires. For example, less than two years ago the European part of Russia was the focus of attention due to the anomalous heat and dry wave with record high temperatures that caused wildfires rage for weeks and that led to thousands of deaths. The fires also have spread to agricultural land and damaged crops, causing sharp increases of global wheat commodity prices. Remote sensing observations are widely used to monitor fire occurrence, fire spread; smoke dispersion, and atmospheric pollutant levels. In the context of climate warming and acute interest to large-scale emissions from various land-cover disturbances studying spatial-temporal dynamics of forest fire activity is critical. NASA supports several activities related to fires and the Earth system. These include GOFC-GOLD Fire Project Office at University of Maryland and the Rapid Response System for global fire monitoring. NASA has funded many research projects on biomass burning, which cover various geographic regions of the world and analyze impacts of fires on atmospheric carbon in support of REDD initiative, as well as on atmospheric pollution with smoke. Monitoring active fires, studying their severity and burned areas, and estimating fire-induced atmospheric emissions has been the

  5. NOAA draft research and development plan released

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    2013-05-01

    The U.S. National Oceanic and Atmospheric Administration (NOAA) has released a new draft version of its 5-year research and development (R&D) plan for 2013-2017, Research and Development at NOAA: Environmental Understanding to Ensure America's Vital and Sustainable Future. The plan, which was announced in the Federal Register on 7 May, will chart a course for R&D in support of the agency's four long-term goals of climate, weather, oceans, and coasts, and it will guide the agency's R&D activities over the next 5 years.

  6. NOAA-L satellite is lifted for mating

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Inside the B16-10 spacecraft processing hangar at Vandenberg Air Force Base, Calif., workers oversee the lifting and rotating of the National Oceanic and Atmospheric Administration (NOAA-L) satellite to allow for mating of the Apogee Kick Motor (AKM). NOAA-L is part of the Polar-Orbiting Operational Environmental Satellite (POES) program that provides atmospheric measurements of temperature, humidity, ozone and cloud images, tracking weather patterns that affect the global weather and climate. The launch of the NOAA-L satellite is scheduled no earlier than Sept. 12 aboard a Lockheed Martin Titan II rocket. NOAA-L satellite arrives at Vandenberg AFB

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Outside the B16-10 spacecraft processing hangar at Vandenberg Air Force Base, Calif., a crated National Oceanic and Atmospheric Administration (NOAA-L) satellite is lowered to the ground before being moved inside. NOAA-L is part of the Polar-Orbiting Operational Environmental Satellite (POES) program that provides atmospheric measurements of temperature, humidity, ozone and cloud images, tracking weather patterns that affect the global weather and climate. The launch of the NOAA-L satellite is scheduled no earlier than Sept. 12 aboard a Lockheed Martin Titan II rocket. NOAA-L satellite arrives at Vandenberg AFB

    NASA Technical Reports Server (NTRS)

    2000-01-01

    A crated National Oceanic and Atmospheric Administration (NOAA-L) satellite is moved inside the B16-10 spacecraft processing hangar at Vandenberg Air Force Base, Calif. NOAA-L is part of the Polar- Orbiting Operational Environmental Satellite (POES) program that provides atmospheric measurements of temperature, humidity, ozone and cloud images, tracking weather patterns that affect the global weather and climate. The launch of the NOAA-L satellite is scheduled no earlier than Sept. 12 aboard a Lockheed Martin Titan II rocket. NOAA-L satellite arrives at Vandenberg AFB

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Inside the B16-10 spacecraft processing hangar at Vandenberg Air Force Base, Calif., workers oversee the uncrating of the National Oceanic and Atmospheric Administration (NOAA-L) satellite. NOAA-L is part of the Polar-Orbiting Operational Environmental Satellite (POES) program that provides atmospheric measurements of temperature, humidity, ozone and cloud images, tracking weather patterns that affect the global weather and climate. The launch of the NOAA-L satellite is scheduled no earlier than Sept. 12 aboard a Lockheed Martin Titan II rocket. The NOAA Big Data Project

    NASA Astrophysics Data System (ADS)

    de la Beaujardiere, J.

    2015-12-01

    The US National Oceanic and Atmospheric Administration (NOAA) is a Big Data producer, generating tens of terabytes per day from hundreds of sensors on satellites, radars, aircraft, ships, and buoys, and from numerical models. These data are of critical importance and value for NOAA's mission to understand and predict changes in climate, weather, oceans, and coasts. In order to facilitate extracting additional value from this information, NOAA has established Cooperative Research and Development Agreements (CRADAs) with five Infrastructure-as-a-Service (IaaS) providers — Amazon, Google, IBM, Microsoft, Open Cloud Consortium — to determine whether hosting NOAA data in publicly-accessible Clouds alongside on-demand computational capability stimulates the creation of new value-added products and services and lines of business based on the data, and if the revenue generated by these new applications can support the costs of data transmission and hosting. Each IaaS provider is the anchor of a "Data Alliance" which organizations or entrepreneurs can join to develop and test new business or research avenues. This presentation will report on progress and lessons learned during the first 6 months of the 3-year CRADAs.

  7. Developing a Healthy Climate for Educational Change: An Administrative Approach.

    ERIC Educational Resources Information Center

    Walker, Paul D.

    1981-01-01

    Finds three areas of faculty/administrator interaction to have the greatest influence on organizational climate: goal setting and internal governance, application of resources, and organizational and personal development. Suggests strategies under each area for promoting a positive climate. Reports briefly on a panel's assessment of the analysis…

  8. An Assessment of a College of Business Administration's Ethical Climate

    ERIC Educational Resources Information Center

    Schulte, Laura; Carter, Amanda

    2004-01-01

    This study investigated graduate faculty and student perceptions of the ethical climate of a College of Business Administration within a Midwestern metropolitan university and the perceived importance of the ethical climate in the retention of students within graduate academic programs. Eighteen faculty and 90 graduate students completed the…

  9. 77 FR 61574 - National Climate Assessment and Development Advisory Committee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-10

    ... National Oceanic and Atmospheric Administration National Climate Assessment and Development Advisory... notice sets forth the schedule of a forthcoming meeting of the DoC NOAA National Climate Assessment and... the National Climate Assessment Web site for additional information at...

  10. 77 FR 56191 - National Climate Assessment and Development Advisory Committee (NCADAC)

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-12

    ... National Oceanic and Atmospheric Administration National Climate Assessment and Development Advisory... notice sets forth the schedule of a forthcoming meeting of the DoC NOAA National Climate Assessment and... the National Climate Assessment Web site for additional information at...

  11. 76 FR 36094 - Draft NOAA Scientific Integrity Policy and Handbook; Availability

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-21

    ... National Oceanic and Atmospheric Administration Draft NOAA Scientific Integrity Policy and Handbook... Administration (NOAA), Department of Commerce (DOC). ACTION: Draft NOAA Scientific Integrity Policy and Handbook for Public Review. SUMMARY: NOAA's draft scientific integrity policy is available for public...

  12. NOAA's Education Program: Review and Critique

    ERIC Educational Resources Information Center

    Farrington, John W., Ed.; Feder, Michael A., Ed.

    2010-01-01

    There is a national need to educate the public about the ocean, coastal resources, atmosphere and climate. The National Oceanic and Atmospheric Administration (NOAA), the agency responsible for understanding and predicting changes in the Earth's environment and conserving and managing coastal and marine resources to meet the nation's…

  13. Administrative Climate and Novices' Intent to Remain Teaching

    ERIC Educational Resources Information Center

    Pogodzinski, Ben; Youngs, Peter; Frank, Kenneth A.; Belman, Dale

    2012-01-01

    Using survey data from novice teachers at the elementary and middle school level across 11 districts, multilevel logistic regressions were estimated to examine the association between novices' perceptions of the administrative climate and their desire to remain teaching within their schools. We find that the probability that a novice teacher…

  14. 77 FR 43574 - National Climate Assessment and Development Advisory Committee (NCADAC); Open Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-25

    ... National Oceanic and Atmospheric Administration (NOAA) National Climate Assessment and Development Advisory... notice sets forth the schedule of a forthcoming meeting of the DoC NOAA National Climate Assessment and... Pennsylvania Avenue NW., Washington, DC 20006. Please check the National Climate Assessment Web site...

  15. Independent NOAA considered

    NASA Astrophysics Data System (ADS)

    Richman, Barbara T.

    A proposal to pull the National Oceanic and Atmospheric Administration (NOAA) out of the Department of Commerce and make it an independent agency was the subject of a recent congressional hearing. Supporters within the science community and in Congress said that an independent NOAA will benefit by being more visible and by not being tied to a cabinet-level department whose main concerns lie elsewhere. The proposal's critics, however, cautioned that making NOAA independent could make it even more vulnerable to the budget axe and would sever the agency's direct access to the President.The separation of NOAA from Commerce was contained in a June 1 proposal by President Ronald Reagan that also called for all federal trade functions under the Department of Commerce to be reorganized into a new Department of International Trade and Industry (DITI).

  1. Title: An Overview of NOAA's Climate Database Modernization Program (CDMP) whose goal is to make major climate and environmental databases available via the Internet thus increasing the access and utilization of this national resource

    NASA Astrophysics Data System (ADS)

    Ross, T. F.

    2004-12-01

    Instead of being kept in a dusty warehouse, NOAA records are becoming more available to researchers and the public for use in various studies and projects. Modernization efforts involve keying of observations; imaging of original records on paper, microform, or photographs; vectorizing of shoreline charts; converting analog records to a digital format and web hosting data on the WSSRD (Web, Search, Store, Retrieve, Display) system. The number of images on-line via the WSSRD system has grown from just one-half million in 2000 to currently over forty-three million. CDMP has over 40 separate NOAA tasks underway, in an effort to provide increased access to its vast archive of climate and environmental data. The scope and variety of these data recovery projects range from producing digital files of Franklin and Thomas Jefferson's weather and climate diaries, keying early 20th century ionospheric data, building climatologies of the near-earth space environment using satellite data, to digitizing Mechanical Bathythermograph Data measurements of water temperatures at various ocean depths. Many of the records being converted from an analog to digital format are the original records housed in various NOAA Offices and storage facilities. These and many other NOAA records are available only in their original manuscript form and have deteriorated over time. The CDMP program allows these records to be saved for current and future scientists and historians by imaging and keying the data. The images are indexed so they can be more easily located via the Internet. The CDMP program is an example of a successful government project working hand- in-hand with the private sector to recover valuable climate and environmental data. For more information, see the latest annual report at: ncdc.noaa.gov/ oa/climate/cdmp/files/annualreport2003.pdf

  2. NOAA Educational Programs and Opportunities

    NASA Astrophysics Data System (ADS)

    Jackson, N. L.

    2005-12-01

    The National Oceanic and Atmospheric Administration (NOAA) conduct research and gather data about global oceans, atmosphere, space, and the sun. NOAA recruits and retains professional scientific and technical candidates in a variety of specialized occupations. The NOAA Satellites and Information Service is responsible for managing the nations civil operational earth observing satellites. This agency provides opportunities to teachers and students to work with researchers to learn applications or remote sensed data and to develop curricula with create both a stimulating and fruitful classroom experience. This session will offer an overview of NOAA and a discussion on the various opportunities available to teachers and students. Free materials will be given to the attendees.

  3. Tri-Agency Coordination: Challenges and Successes in Creating a Community of Practice among Climate Change Education Principal Investigators funded by NASA, NOAA, and NSF

    NASA Astrophysics Data System (ADS)

    Schoedinger, S. E.; McDougall, C.; Karsten, J. L.; Campbell, D.; Pippin, M. R.; Chambers, L. H.

    2013-12-01

    The effort needed for comprehensive climate change education is far greater than any one institution, education sector, or even federal agency can handle. Recognizing a need to synergistically combine efforts, NSF, NASA, and NOAA have created a collaborative community of their climate change education principal investigators (PIs) through tri-agency coordination. The goals of this tri-agency collaboration are to leverage existing resources, minimize duplicate efforts, and facilitate communication among this emergent community of scientists and educators. NASA, NOAA, and NSF work together to strategically coordinate and support a portfolio of projects focused on climate literacy and education in formal and informal learning environments. The activities of the tri-agency collaboration, including annual meetings for PIs, a catalog of the agencies collective investments in climate change education and the ongoing development of a nascent common evaluation framework, have created a strong national network for effectively engaging diverse audiences with the principles of climate literacy (see Eos Vol. 92, No. 24, 14 June 2011). Last year, after 3 years of active collaboration, similar programs underway at other U.S. Global Change Research Program agencies: the EPA, National Institutes for Environmental Health Sciences, and USDA, were engaged in the collaboration. And, in an attempt to understand the interests of the private sector in this arena, conversations have begun with private philanthropic organizations. This year, as many of the funded projects are maturing, the PI meeting will have a focus on bringing this community together to create a science-theme based tangible outcome that can move the field of climate change education forward. Additional outcomes from this PI meeting will be presented as well as the challenges that were encountered in bringing together institutions with diverse missions, and approaches developed to ensure all parties feel they

  4. NOAA-L satellite is mated to Apogee Kick Motor at Vandenberg AFB

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Inside the B16-10 spacecraft processing hangar at Vandenberg Air Force Base, Calif., workers oversee the mating of the Apogee Kick Motor (below) to the National Oceanic and Atmospheric Administration (NOAA-L) satellite above. NOAA-L is part of the Polar-Orbiting Operational Environmental Satellite (POES) program that provides atmospheric measurements of temperature, humidity, ozone and cloud images, tracking weather patterns that affect the global weather and climate. The launch of the NOAA-L satellite is scheduled no earlier than Sept. 12 aboard a Lockheed Martin Titan II rocket. Atmospheric carbon diooxide mixing ratios from the NOAA Climate Monitoring and Diagnostics Laboratory cooperative flask sampling network, 1967-1993

    SciTech Connect

    Conway, T.J.; Tans, P.P.; BBoden, T.A.

    1996-02-01

    This data report documents monthly atmospheric CO{sub 2} mixing ratios and measurements obtained by analyzing individual flask air samples for the NOAA/CMDL global cooperative flask sampling network. Measurements include land-based sampling sites and shipboard measurements covering 14 latitude bands in the Pacific Ocean and South China Sea. Analysis of the NOAA/CMDL flask CO{sub 2} database shows a long-term increase in atmospheric CO{sub 2} mixing ratios since the late 1960s. This report describes how the samples are collected and analyzed and how the data are processed, defines limitations, and restrictions of the data, describes the contents and format of the data files, and provides tabular listings of the monthly carbon dioxide records.

  5. Accuracy assessment of NOAA's daily reference evapotranspiration maps for the Texas High Plains

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The National Oceanic and Atmospheric Administration (NOAA) provides daily reference ET for the continental U.S. using climatic data from North American Land Data Assimilation System (NLDAS). This data provides large scale spatial representation for reference ET, which is essential for regional scal...

  6. Accuracy assessment of NOAA gridded daily reference evapotranspiration for the Texas High Plains

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The National Oceanic and Atmospheric Administration (NOAA) provides daily reference evapotranspiration (ETref) maps for the contiguous United States using climatic data from North American Land Data Assimilation System (NLDAS). This data provides large-scale spatial representation of ETref, which i...

  7. Tropospheric Airborne Meteorological Data Reporting (TAMDAR) Sensor Validation and Verification on National Oceanographic and Atmospheric Administration (NOAA) Lockheed WP-3D Aircraft

    NASA Technical Reports Server (NTRS)

    Tsoucalas, George; Daniels, Taumi S.; Zysko, Jan; Anderson, Mark V.; Mulally, Daniel J.

    2010-01-01

    As part of the National Aeronautics and Space Administration's Aviation Safety and Security Program, the Tropospheric Airborne Meteorological Data Reporting project (TAMDAR) developed a low-cost sensor for aircraft flying in the lower troposphere. This activity was a joint effort with support from Federal Aviation Administration, National Oceanic and Atmospheric Administration, and industry. This paper reports the TAMDAR sensor performance validation and verification, as flown on board NOAA Lockheed WP-3D aircraft. These flight tests were conducted to assess the performance of the TAMDAR sensor for measurements of temperature, relative humidity, and wind parameters. The ultimate goal was to develop a small low-cost sensor, collect useful meteorological data, downlink the data in near real time, and use the data to improve weather forecasts. The envisioned system will initially be used on regional and package carrier aircraft. The ultimate users of the data are National Centers for Environmental Prediction forecast modelers. Other users include air traffic controllers, flight service stations, and airline weather centers. NASA worked with an industry partner to develop the sensor. Prototype sensors were subjected to numerous tests in ground and flight facilities. As a result of these earlier tests, many design improvements were made to the sensor. The results of tests on a final version of the sensor are the subject of this report. The sensor is capable of measuring temperature, relative humidity, pressure, and icing. It can compute pressure altitude, indicated air speed, true air speed, ice presence, wind speed and direction, and eddy dissipation rate. Summary results from the flight test are presented along with corroborative data from aircraft instruments.

  8. 78 FR 5421 - Proposed Information Collection; Comment Request; NOAA's Teacher at Sea Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-25

    ... Teacher at Sea Program AGENCY: National Oceanic and Atmospheric Administration (NOAA), Commerce. ACTION... gain first-hand experience with field research activities through the NOAA Teacher at Sea...

  9. NOAA's Scientific Data Stewardship Program

    NASA Astrophysics Data System (ADS)

    Bates, J. J.

    2004-12-01

    The NOAA mission is to understand and predict changes in the Earth's environment and conserve and manage coastal and marine resources to meet the Nation's economic, social and environmental needs. NOAA has responsibility for long-term archiving of the United States environmental data and has recently integrated several data management functions into a concept called Scientific Data Stewardship. Scientific Data Stewardship a new paradigm in data management consisting of an integrated suite of functions to preserve and exploit the full scientific value of NOAA's, and the world's, environmental data These functions include careful monitoring of observing system performance for long-term applications, the generation of authoritative long-term climate records from multiple observing platforms, and the proper archival of and timely access to data and metadata. NOAA has developed a conceptual framework to implement the functions of scientific data stewardship. This framework has five objectives: 1) develop real-time monitoring of all satellite observing systems for climate applications, 2) process large volumes of satellite data extending up to decades in length to account for systematic errors and to eliminate artifacts in the raw data (referred to as fundamental climate data records, FCDRs), 3) generate retrieved geophysical parameters from the FCDRs (referred to as thematic climate data records TCDRs) including combining observations from all sources, 4) conduct monitoring and research by analyzing data sets to uncover climate trends and to provide evaluation and feedback for steps 2) and 3), and 5) provide archives of metadata, FCDRs, and TCDRs, and facilitate distribution of these data to the user community. The term `climate data record' and related terms, such as climate data set, have been used for some time, but the climate community has yet to settle on a concensus definition. A recent United States National Academy of Sciences report recommends using the

  10. Lessons Learned from the Application of NOAA's "What to Archive

    NASA Astrophysics Data System (ADS)

    Ritchey, N.

    2012-04-01

    A procedure for addressing the complete lifecycle of data was defined by the National Oceanographic and Atmospheric Administration (NOAA) in August 2008. The "NOAA Procedure for Scientific Records Appraisal and Archive Approval" supports US government mandates and directives for records management from the National Archives and Records Administration (NARA) and other US government agencies. This NOAA-wide procedure provides a foundation to identify, appraise, and decide what scientific records are preserved and which are to be disposed and it establishes a formally documented process. The National Climatic Data Center (NCDC) in Asheville, North Carolina implemented the procedure within our organization and applied it to multiple, diverse data types. Initial applications confirm the procedure's flexibility allowing expeditious decisions for well-documented and established records, as well as supporting complex requests requiring engagement of external record experts. With each successive use, a pattern of activities contributing to the cost, complexity, challenges and management of the process is emerging. Lessons learned from the application of NOAA's "What to Archive" process at NCDC will be presented.

  11. A joint NOAA/USGS study to evaluate satellite assessment of land surface features and climatic variables

    USGS Publications Warehouse

    Gallo, K.P.; Tarpley, J.D.; Howard, S.M.; Moore, D.G.

    1987-01-01

    Data collection and preliminary analyses have begun for a study that will evaluate the usefulness of satellite data for assessment of land surface features and climatic variables. The objective of the study is to determine what relationships exist between routinely available ground-based climatic and land surface information and satellite-obtained land surface information. The overall goal is to contribute to the increasingly important understanding of land surface climatology.

  12. Linkages Between Global Vegetation and Climate: An Analysis Based on NOAA Advanced Very High Resolution Radiometer Data. Degree awarded by Vrije Universiteit, Amsterdam, Netherlands

    NASA Technical Reports Server (NTRS)

    Los, Sietse Oene

    1998-01-01

    A monthly global 1 degree by 1 degree data set from 1982 until 1990 was derived from data collected by the Advanced Very High Resolution Radiometer on board the NOAA 7, 9, and 11 satellites. This data set was used to study the interactions between variations in climate and variations in the "greenness" of vegetation. Studies with the Colorado State University atmospheric general circulation model coupled to the Simple Biosphere model showed a large sensitivity of the hydrological balance to changes in vegetation at low latitudes. The depletion of soil moisture as a result of increased vegetation density provided a negative feedback in an otherwise positive association between increased vegetation, increased evaporation, and increased precipitation proposed by Charney and coworkers. Analysis of climate data showed, at temperate to high latitudes, a positive association between variation in land surface temperature, sea surface temperature and vegetation greenness. At low latitudes the data indicated a positive association between variations in sea surface temperature, rainfall and vegetation greenness. The variations in mid- to high latitude temperatures affected the global average greenness and this could provide an explanation for the increased carbon uptake by the terrestrial surface over the past couple of decades.

  13. NOAA Lists 20 Coral Species as Threatened

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    2014-09-01

    Twenty coral species have been listed as threatened under the U.S. Endangered Species Act (ESA), the National Oceanic and Atmospheric Administration (NOAA) announced on 27 August. This is NOAA's largest ESA rule making. The coral species include 15 found in the Indo-Pacific region and 5 that are located in the Caribbean. They join two other Caribbean coral species that NOAA listed as threatened in 2006.

  14. Land Surface Temperature product validation using NOAA's surface climate observation networks - Scaling methodology for the Visible Infrared Imager Radiometer Suite (VIIRS)

    NASA Astrophysics Data System (ADS)

    Guillevic, P. C.; Privette, J. L.; Coudert, B.; Davis, E.; Meyers, T. P.; Palecki, M. A.; Augustine, J. A.; Ottle, C.

    2011-12-01

    The Land Surface Temperature (LST) product from the Visible Infrared Imager Radiometer Suite (VIIRS) will provide key information for estimating Earth surface energy and water fluxes, improving weather forecasting at high spatial and temporal resolutions, and monitoring climate change. The main challenges in estimating LST from VIIRS and similar sensors (e.g., AVHRR, MODIS, AATSR) are the need to correct for surface emissivity and atmospheric water vapor attenuation, and the difficulty in quantifying LST product accuracy due to the lack of comparable in situ measurements. This work presents a new methodology that combines in situ observations with fine-scale surface modeling to allow routine quantitative assessment of VIIRS LST products and a physically-based framework for testing and improving the retrieval algorithm. The validation scheme uses NOAA's surface observations (surface and meteorological) collected by the US Climate Reference Network (CRN) and the Surface Radiation Budget Network (SURFRAD). The scaling methodology consists of the merging of information collected at different spatial resolutions and the SEtHyS land surface model to fully characterize the satellite products, i.e. measurements from ground stations to satellites platforms at high and moderate resolutions. Based on ground stations deployed over the continental United States, it has the capability to explore scaling issues over terrestrial surfaces spanning a large range of climate regimes and land cover types, including forests and mixed vegetated areas. The approach can be applied to ground stations worldwide. The project was initiated under NPOESS/JPSS program, and it is tested and proven here with NASA/MODIS data. The primary goal is to establish, in near real time, the accuracy of the LST product derived from VIIRS over a selection of field validation sites for the VIIRS algorithm working group and the science-user community.

  15. 75 FR 22391 - Notice of Web Site Publication for the Climate Program Office

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-28

    ... National Oceanic and Atmospheric Administration Notice of Web Site Publication for the Climate Program... Climate Program Office solicitation of grant proposals on its Web site at http://www.climate.noaa.gov... Climate Program Office Web site pertaining to the CPO's research strategies, objectives, and...

  16. Atmospheric Transport Studies Using In-situ Airborne Gas Chromatograph Measurements: An Overview of the NOAA Climate Monitoring and Diagnostics Laboratory (CMDL) Contribution.

    NASA Astrophysics Data System (ADS)

    Moore, F.; Dutton, G.; Elkins, J.; Hall, B.; Hurst, D.; Nance, D.; Ray, E.; Romashkin, P.; Thompson, T.; Volk, C. M.

    2005-12-01

    Accurate models of atmospheric transport are crucial to our current understanding of ozone production/loss and its coupling with climate change. Over the last ``20 years'', improvements in the ability to predict ``The Antarctic Ozone Hole and Polar Ozone Loss'' have tracked improvements in transport models. Data taken from the NOAA/CMDL airborne in-situ GC's (ACATS, LACE, PANTHER, and UCATS) have and will continue to play key roles in quantifying many aspects of stratospheric transport. Our data have been used in many of the model assessments to date. We will display an overview of the transport issues studied over the years using our data. They include descent with mixing within and into the polar vortex, entrainment of mid-latitude air across the vortex edge, upwelling and entrainment in the tropical pipe, isentropic transport across the tropopause into the lowermost stratosphere, mean ages of air parcels in the stratosphere, and stratospheric path distributions. ACATS - Airborne Chromatograph for Atmospheric Trace Species LACE - Lightweight Airborne Chromatograph Experiment PANTHER - PAN and Other Trace Hydrohalocarbons ExpeRiment UCATS - Unmanned aerial systems Chromatograph for Atmospheric Trace Species

  17. An Education Plan for NOAA

    ERIC Educational Resources Information Center

    National Oceanic and Atmospheric Administration, 2004

    2004-01-01

    U.S. Secretary of Commerce Donald L. Evans has said, "Environmental Literacy is critical to enable learners of all ages to pursue knowledge, produce advanced products, and enhance personal growth." The National Oceanic and Atmospheric Administration (NOAA) recognizes it has a role and a responsibility to the nation in advancing education leading…

  18. New Congressional Climate Change Task Force Calls on President to Use Administrative Authority

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    2013-02-01

    Spurred by U.S. congressional inaction on climate change and by President Barack Obama's comments on the topic in his 21 January inaugural address, several Democratic members of Congress announced at a Capitol Hill briefing the formation of a bicameral task force on climate change. In addition, they have called on the president to use his administrative authority to deal with the issue.

  19. The Campus Climate Revisited: Chilly for Women Faculty, Administrators, and Graduate Students.

    ERIC Educational Resources Information Center

    Sandler, Bernice R.; Hall, Roberta M.

    The professional climate often experienced by women faculty and administrators is reported, along with some consideration to the experiences of graduate and professional students. Attention is focused on subtle ways in which women are treated differently and common behaviors that create a chilly professional climate. The information was obtained…

  1. Administrative, Faculty, and Staff Perceptions of Organizational Climate and Commitment in Christian Higher Education

    ERIC Educational Resources Information Center

    Thomas, John Charles

    2008-01-01

    Findings of 957 surveyed employees from four evangelical higher education institutions found a negative correlation for climate and commitment and staff members. Administrators were found to have a more favorable view of their institutional climate than staff. Employee age, tenure, and classification had predictive value for organizational…

  2. The Tri-Agency Climate Education (TrACE) Catalog: Promoting collaboration, effective practice, and a robust portfolio by sharing educational resources developed across NASA, NOAA & NSF climate education initiatives

    NASA Astrophysics Data System (ADS)

    McDougall, C.; Martin, A.; Givens, S. M.; Yue, S.; Wilson, C. E.; Karsten, J. L.

    2012-12-01

    The Tri-Agency Climate Education (TrACE) Catalog is an online, interactive, searchable and browsable web product driven by a database backend. TrACE was developed for and by the community of educators, scientists, and Federal agency representatives involved in a tri-agency collaboration for climate education. NASA, NOAA, and NSF are working together to strategically coordinate and support a portfolio of projects focused on climate literacy and education in formal and informal learning environments. The activities of the tri-agency collaboration, including annual meetings for principal investigators and the ongoing development of a nascent common evaluation framework, have created a strong national network for effectively engaging diverse audiences with the principles of climate literacy (see Eos Vol. 92, No. 24, 14 June 2011). TrACE is a tool for the climate education community that promotes the goals of the tri-agency collaboration to leverage existing resources, minimize duplicate efforts, and facilitate communication among this emergent community of scientists and educators. TrACE was born as "The Matrix," a product of the 2011 Second Annual NASA, NOAA and NSF Climate Change Education Principal Investigators Meeting (see McDougall, Wilson, Martin & Knippenberg, 2011, Abstract ED21B-0583 presented at 2011 Fall Meeting, AGU, San Francisco, CA.) Meeting attendees were asked to populate a pen-and-paper matrix with all of the activities or deliverables they had created or anticipated creating as part of their NOAA/NASA/NSF-funded project. During the 2012 Third Annual Tri-Agency PI Meeting, projects were given the opportunity to add and update their products and deliverables. In the intervening year, the dataset comprising the Matrix was converted to a MySQL database, with a standardized taxonomy and minimum criteria for inclusion, and further developed into the interactive TrACE Catalog. In the fall of 2012, the TrACE Catalog web product will be made publicly

  3. The NOAA Annual Greenhouse Gas Index - 2012 Update

    NASA Astrophysics Data System (ADS)

    Butler, J. H.; Montzka, S. A.; Conway, T. J.; Dlugokencky, E. J.; Elkins, J. W.; Masari, K. A.; Schnell, R. C.; Tans, P. P.

    2012-04-01

    For the past several decades, the U.S. National Oceanic and Atmospheric Administration (NOAA) has monitored all of the long-lived atmospheric greenhouse gases. These global measurements have provided input to databases, analyses, and various relevant products, including national and international climate assessments. To make these data more useful and available, NOAA several years ago released its Annual Greenhouse Gas Index (AGGI), http://www.esrl.noaa.gov/gmd/aggi. This index, based on the climate forcing properties of long-lived greenhouse gases, was designed to enhance the connection between scientists and society by providing a normalized standard that can be easily understood and followed. The long-lived gases capture most of the radiative forcing, and uncertainty in their measurement is very small. This allows us to provide a robust measure and assessment of the long-term, radiative influence of these gases. Continuous greenhouse gas measurements are made at baseline climate observatories (Pt. Barrow, Alaska; Mauna Loa, Hawaii; American Samoa; and the South Pole) and weekly flask air samples are collected through a global network of over 60 sites, including an international cooperative program for carbon dioxide and other greenhouse gases. The gas samples are analyzed at NOAA's Earth System Research Laboratory (NOAA/ESRL) in Boulder, Colorado, using WMO standard reference gases prepared by NOAA/ESRL. The AGGI is normalized to 1.00 in 1990, the Kyoto Climate Protocol baseline year. In 2010, the AGGI was 1.29, indicating that global radiative forcing by long-lived greenhouse gases had increased 29% since 1990. During the 1980s CO2 accounted for about 50-60% of the annual increase in radiative forcing by long-lived greenhouse gases, whereas, since 2000, it has accounted for 85-90% of this increase each year. After nearly a decade of virtually level concentrations in the atmosphere, methane (CH4) increased measurably over the past 2-3 years, as did its

  4. The Relationship between Organizational Climate and the Organizational Silence of Administrative Staff in Education Department

    ERIC Educational Resources Information Center

    Pozveh, Asghar Zamani; Karimi, Fariba

    2016-01-01

    The aim of the present study was to determine the relationship between organizational climate and the organizational silence of administrative staff in Education Department in Isfahan. The research method was descriptive and correlational-type method. The study population was administrative staff of Education Department in Isfahan during the…

  5. 78 FR 68816 - Proposed Information Collection; Comment Request; NOAA Space-Based Data Collection System (DCS...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-15

    ... National Oceanic and Atmospheric Administration Proposed Information Collection; Comment Request; NOAA Space- Based Data Collection System (DCS) Agreements AGENCY: National Oceanic and Atmospheric... National Ocean and Atmospheric Administration (NOAA) operates two space-based data collection systems...

  6. 78 FR 64481 - National Climate Assessment and Development Advisory Committee (NCADAC)

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-29

    ... National Oceanic and Atmospheric Administration National Climate Assessment and Development Advisory... notice sets forth the schedule of a forthcoming meeting of the DoC NOAA National Climate Assessment and... the call. Please check the National Climate Assessment Web site for additional information at...

  7. 76 FR 44307 - National Climate Assessment and Development Advisory Committee (NCADAC)

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-25

    ... National Oceanic and Atmospheric Administration (NOAA) National Climate Assessment and Development Advisory... National Climate Assessment and Development Advisory Committee (NCADAC) was established by the Secretary of... science and information pertaining to current and future impacts of climate. Time and Date: The...

  8. 76 FR 27020 - National Climate Assessment and Development Advisory Committee (NCADAC); Notice of Open Public...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-10

    ... National Oceanic and Atmospheric Administration National Climate Assessment and Development Advisory... meeting of the DoC NOAA National Climate Assessment and Development Advisory Committee (NCADAC). The... Pennsylvania Avenue NW., Washington, DC 20006. Please check the National Climate Assessment Web site...

  9. 78 FR 51711 - National Climate Assessment and Development Advisory Committee (NCADAC)

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-21

    ... National Oceanic and Atmospheric Administration National Climate Assessment and Development Advisory... notice sets forth the schedule of a forthcoming meeting of the DoC NOAA National Climate Assessment and... the call. Please check the National Climate Assessment Web site for additional information at...

  10. 77 FR 64491 - National Climate Assessment and Development Advisory Committee (NCADAC)

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-22

    ... National Oceanic and Atmospheric Administration National Climate Assessment and Development Advisory... notice sets forth the schedule of a forthcoming meeting of the DoC NOAA National Climate Assessment and..., MD 20910. Please check the National Climate Assessment Web site for additional information at...

  11. 78 FR 21598 - National Climate Assessment and Development Advisory Committee (NCADAC)

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-11

    ... National Oceanic and Atmospheric Administration National Climate Assessment and Development Advisory... notice sets forth the schedule of a forthcoming meeting of the DoC NOAA National Climate Assessment and... the call. Please check the National Climate Assessment Web site for additional information at...

  12. 77 FR 64492 - National Climate Assessment and Development Advisory Committee (NCADAC)

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-22

    ... pertaining to current and future impacts of climate change upon the United States; and to provide advice and... National Oceanic and Atmospheric Administration National Climate Assessment and Development Advisory...: Notice is hereby given cancelling the DoC NOAA National Climate Assessment and Development...

  13. 78 FR 26616 - Draft NOAA Five Year Research and Development Plan

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-07

    ... NOAA Five Year Research and Development Plan AGENCY: National Oceanic and Atmospheric Administration (NOAA), Department of Commerce (DOC). ACTION: Draft NOAA Five Year Research and Development Plan for Public Review. SUMMARY: NOAA's draft Five Year Research and Development Plan is available for...

  14. NOAA & Academia Partnership Building Conference. Highlights (3rd, Washington, DC, November 14-15, 2001).

    ERIC Educational Resources Information Center

    National Oceanic and Atmospheric Administration (DOC), Silver Spring, MD.

    In November 2001 the National Oceanic and Atmospheric Administration (NOAA) hosted the third NOAA and Academia Partnership to evaluate, maintain, and expand on efforts to optimize NOAA-university cooperation. Close partnership between the NOAA and U.S. universities has produced many benefits for the U.S. economy and the environment. Based on the…

  15. In Congress NOAA budget set

    NASA Astrophysics Data System (ADS)

    Richman, Barbara T.

    In late November, President Ronald Reagan signed into law the National Oceanic and Atmospheric Administration (NOAA) budget, which is part of the appropriations bill for the Departments of Commerce, Justice, State, the Judiciary, and related agencies; at the same time, he also signed into law an amendment attached to that bill that prohibits the sale of the weather satellites (Eos, May 17, 1983, p. 377, and March 22, 1983, p. 113). Commercialization of the land remote sensing satellite system is still being considered, however.As a result of the conference between the House of Representatives and the Senate appropriations committees, the appropriation for NOAA totals $1020.6 million, with a program level of $1073.1 million. The appropriation is the money that comes from the federal treasury; the program level represents all of the funds—including treasury funds, transfers, residuals, etc.—actually available for the program. Strictly in terms of dollars, the total fiscal 1984 NOAA appropriation is almost level with the fiscal 1983 appropriation of $1000.9 million. In fiscal 1984, NOAA's research core, called Operations, Research, and Facilities (ORF), receives an appropriation of $988.2 million, with a program level of $1014.8 million

  16. Collection development at the NOAA Central Library

    NASA Technical Reports Server (NTRS)

    Quillen, Steve R.

    1994-01-01

    The National Oceanic and Atmospheric Administration (NOAA) Central Library collection, approximately one million volumes, incorporates the holdings of its predecessor agencies. Within the library, the collections are filed separately, based on their source and/or classification schemes. The NOAA Central Library provides a variety of services to users, ranging from quick reference and interlibrary loan to in-depth research and online data bases.

  17. The Effects of Teacher Perceptions of Administrative Support, School Climate, and Academic Success in Urban Schools

    ERIC Educational Resources Information Center

    Robinson, Lakishia N.

    2015-01-01

    Teacher turnover refers to major changes in teachers' assignments from one school year to the next. Past research has given an overview of several factors of teacher turnover. These factors include the school environment, teacher collaborative efforts, administrative support, school climate, location, salary, classroom management, academic…

  18. Administrative Satisfaction and the Regulatory Climate at Public Institutions. AIR 1997 Annual Forum Paper.

    ERIC Educational Resources Information Center

    Volkwein, James Fredericks; Malik, Shaukat M.; Napierski-Prancl, Michelle

    This study examined the effects of state regulation of financial, personnel, and academic resources on the administrative flexibility granted to universities, and tested the hypothesis that state regulatory climate influences levels of managerial satisfaction. Data were gathered through two surveys. The first covered management flexibility and…

  19. In Brief: NOAA predicts busy hurricane season

    NASA Astrophysics Data System (ADS)

    Zielinski, Sarah

    2007-06-01

    Scientists at NOAA's Climate Prediction Center estimate that there is a 75% chance that the 2007 Atlantic hurricane season will be more active than average, with 13-17 named storms, 7-10 hurricanes, and 3-5 hurricanes reaching Category 3 or higher. An average hurricane season has 11 named storms, 6 hurricanes, and 2 major hurricanes. According to Gerry Bell, NOAA's lead seasonal hurricane forecaster, the 2007 season could be in the higher range of predicted activity if a La Niña forms, or even higher if the La Niña is particularly strong. Last year, NOAA also predicted an above-normal Atlantic season; the actual season, however, was quiet, to which NOAA scientists credit an unexpected El Ni~o that developed rapidly and created an environment hostile to storm formation and strengthening.

  20. NOAA Enterprise Archive Access Tool

    NASA Astrophysics Data System (ADS)

    Rank, R. H.; McCormick, S.; Cremidis, C.

    2010-12-01

    A challenge for any consumer of National Oceanic and Atmospheric Administration (NOAA) environmental data archives is that the disparate nature of these archives makes it difficult for consumers to access data in a unified manner. If it were possible for consumers to have seamless access to these archives, they would be able to better utilize the data and thus maximize the return on investment for NOAA’s archival program. When unified data access is coupled with sophisticated data querying and discovery techniques, it will be possible to provide consumers with access to richer data sets and services that extend the use of key NOAA data. Theoretically, there are two ways that unified archive access may be achieved. The first approach is to develop a single archive or archiving standard that would replace the current NOAA archives. However, the development of such an archive would pose significant technical and administrative challenges. The second approach is to develop a middleware application that would provide seamless access to all existing archives, in effect allowing each archive to exist “as is” but providing a translation service for the consumer. This approach is deemed more feasible from an administrative and technical standpoint; however, it still presents unique technical challenges due to the disparate architectures that exist across NOAA archives. NOAA has begun developing the NEAAT. The purpose of NEAAT is to provide a middleware and a simple standardized API between NOAA archives and data consumers. It is important to note that NEAAT serves two main purposes: 1) To provide a single application programming interface (API) that enables designated consumers to write their own custom applications capable of searching and acquiring data seamlessly from multiple NOAA archives. 2) To allow archive managers to expose their data to consumers in conjunction with other NOAA resources without modifying their archiving systems or way of presenting data

  1. NOAA Big Data Partnership RFI

    NASA Astrophysics Data System (ADS)

    de la Beaujardiere, J.

    2014-12-01

    In February 2014, the US National Oceanic and Atmospheric Administration (NOAA) issued a Big Data Request for Information (RFI) from industry and other organizations (e.g., non-profits, research laboratories, and universities) to assess capability and interest in establishing partnerships to position a copy of NOAA's vast data holdings in the Cloud, co-located with easy and affordable access to analytical capabilities. This RFI was motivated by a number of concerns. First, NOAA's data facilities do not necessarily have sufficient network infrastructure to transmit all available observations and numerical model outputs to all potential users, or sufficient infrastructure to support simultaneous computation by many users. Second, the available data are distributed across multiple services and data facilities, making it difficult to find and integrate data for cross-domain analysis and decision-making. Third, large datasets require users to have substantial network, storage, and computing capabilities of their own in order to fully interact with and exploit the latent value of the data. Finally, there may be commercial opportunities for value-added products and services derived from our data. Putting a working copy of data in the Cloud outside of NOAA's internal networks and infrastructures should reduce demands and risks on our systems, and should enable users to interact with multiple datasets and create new lines of business (much like the industries built on government-furnished weather or GPS data). The NOAA Big Data RFI therefore solicited information on technical and business approaches regarding possible partnership(s) that -- at no net cost to the government and minimum impact on existing data facilities -- would unleash the commercial potential of its environmental observations and model outputs. NOAA would retain the master archival copy of its data. Commercial partners would not be permitted to charge fees for access to the NOAA data they receive, but

  2. Solutions Network Formulation Report. Improving NOAA's Tides and Currents Through Enhanced Data Inputs from NASA's Ocean Surface Topography Mission

    NASA Technical Reports Server (NTRS)

    Guest, DeNeice C.

    2006-01-01

    The Nation uses water-level data for a variety of practical purposes, including hydrography, nautical charting, maritime navigation, coastal engineering, and tsunami and storm surge warnings (NOAA, 2002; Digby et al., 1999). Long-term applications include marine boundary determinations, tidal predictions, sea-level trend monitoring, oceanographic research, and climate research. Accurate and timely information concerning sea-level height, tide, and ocean current is needed to understand their impact on coastal management, disaster management, and public health. Satellite altimeter data products are currently used by hundreds of researchers and operational users to monitor ocean circulation and to improve scientists understanding of the role of the oceans in climate and weather. The NOAA (National Oceanic and Atmospheric Administration) National Ocean Service has been monitoring sea-level variations for many years (NOAA, 2006). NOAA s Tides & Currents DST (decision support tool, managed by the Center for Operational Oceanographic Products and Services, is the portal to a vast collection of oceanographic and meteorological data (historical and real-time), predictions, and nowcasts and forecasts. This report assesses the capacity of NASA s satellite altimeter data to meet societal decision support needs through incorporation into NOAA s Tides & Currents.

  3. Life-Cycle Data Management at NOAA

    NASA Astrophysics Data System (ADS)

    de la Beaujardiere, J.

    2014-12-01

    The US National Oceanic and Atmospheric Administration (NOAA) operates over a hundred observing systems which span the environment from the bottom of the ocean to the surface of the Sun. The resulting data are essential for immediate priorities such as weather forecasting, and the data also constitute an irreplaceable resource collected at great cost. It is therefore necessary to carefully preserve this information for ongoing scientific use, for new research and applications, and to ensure reproducibility of scientific conclusions. The NOAA data life-cycle includes activities in three major phases: planning and production, management of the resulting data, and usage activities. This paper will describe current work by the NOAA Environmental Data Management Committee (EDMC), Data Management Integration Team (DMIT), and the NOAA National Data Centers in areas including DM planning, documentation, cataloging, data access, and preservation and stewardship to improve and standardize policies and practices for life-cycle data management.

  4. Regional Design Approach in Designing Climatic Responsive Administrative Building in the 21st Century

    NASA Astrophysics Data System (ADS)

    Haja Bava Mohidin, Hazrina Binti; Ismail, Alice Sabrina

    2015-01-01

    The objective of this paper is to explicate on the study of modern administrative building in Malaysia which portrays regional design approach that conforms to the local context and climate by reviewing two case studies; Perdana Putra (1999) and former Prime Minister's Office (1967). This paper is significant because the country's stature and political statement was symbolized by administrative building as a national icon. In other words, it is also viewed as a cultural object that is closely tied to a particular social context and nation historical moment. Administrative building, therefore, may exhibit various meanings. This paper uses structuralism paradigm and semiotic principles as a methodological approach. This paper is of importance for practicing architects and society in the future as it offers new knowledge and understanding in identifying the suitable climatic consideration that may reflect regionalist design approach in modern administrative building. These elements then may be adopted in designing public buildings in the future with regional values that are important for expressing national culture to symbolize the identity of place and society as well as responsive to climate change.

  5. Developing Climate Resilience Toolkit Decision Support Training Sectio

    NASA Astrophysics Data System (ADS)

    Livezey, M. M.; Herring, D.; Keck, J.; Meyers, J. C.

    2014-12-01

    The Climate Resilience Toolkit (CRT) is a Federal government effort to address the U.S. President's Climate Action Plan and Executive Order for Climate Preparedness. The toolkit will provide access to tools and products useful for climate-sensitive decision making. To optimize the user experience, the toolkit will also provide access to training materials. The National Oceanic and Atmospheric Administration (NOAA) has been building a climate training capability for 15 years. The target audience for the training has historically been mainly NOAA staff with some modified training programs for external users and stakeholders. NOAA is now using this climate training capacity for the CRT. To organize the CRT training section, we collaborated with the Association of Climate Change Officers to determine the best strategy and identified four additional complimentary skills needed for successful decision making: climate literacy, environmental literacy, risk assessment and management, and strategic execution and monitoring. Developing the climate literacy skills requires knowledge of climate variability and change, as well as an introduction to the suite of available products and services. For the development of an environmental literacy category, specific topics needed include knowledge of climate impacts on specific environmental systems. Climate risk assessment and management introduces a process for decision making and provides knowledge on communication of climate information and integration of climate information in planning processes. The strategic execution and monitoring category provides information on use of NOAA climate products, services, and partnership opportunities for decision making. In order to use the existing training modules, it was necessary to assess their level of complexity, catalog them, and develop guidance for users on a curriculum to take advantage of the training resources to enhance their learning experience. With the development of this CRT

  6. Global Climate Patterns to Model the Spatial and Temporal Distribution of Vector-Borne Diseases

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Global climate patterns, such as the El Niño/Southern Oscillation (ENSO), have been shown to have an impact on vector-borne infectious disease outbreaks. In October 2006 the Climate Prediction Center of the National Oceanic and Atmospheric Administration (NOAA/CPC) issued an unscheduled El Niño advi...

  7. 75 FR 69920 - (NOAA) Science Advisory Board (SAB)

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-16

    ... meeting agenda. Place: The meeting will be held both days at Dupont Hotel, 1500 New Hampshire Ave., NW... SAB Climate Working Group; (2) Strategic Framework for the Climate Service; (3) Report on the Climate... Research; (6) NOAA Response to the Ecosystem Science and Management Working Group Recommendations on...

  8. In Brief: NOAA moving forward with scientific integrity policy

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    2011-02-01

    The U.S. National Oceanic and Atmospheric Administration (NOAA) is moving forward with an agency-wide scientific integrity policy and has released a draft policy to all of NOAA's employees for their review and comment, NOAA administrator Jane Lubchenco said on 8 February. The draft policy lays out guidance for scientific conduct at the agency, encourages scientists to publish their data and findings, provides whistle-blower protection, encourages NOAA scientists to be leaders in the scientific community, and explicitly states that NOAA science managers and supervisors “must never suppress, alter or otherwise impede the timely release of scientific or technological findings or conclusions,” Lubchenco said at a meeting of the Union of Concerned Scientists' board of directors.

  9. Optical Passive Sensor Calibration for Satellite Remote Sensing and the Legacy of NOAA and NIST Cooperation

    PubMed Central

    Datla, Raju; Weinreb, Michael; Rice, Joseph; Johnson, B. Carol; Shirley, Eric; Cao, Changyong

    2014-01-01

    This paper traces the cooperative efforts of scientists at the National Oceanic and Atmospheric Administration (NOAA) and the National Institute of Standards and Technology (NIST) to improve the calibration of operational satellite sensors for remote sensing of the Earth’s land, atmosphere and oceans. It gives a chronological perspective of the NOAA satellite program and the interactions between the two agencies’ scientists to address pre-launch calibration and issues of sensor performance on orbit. The drive to improve accuracy of measurements has had a new impetus in recent years because of the need for improved weather prediction and climate monitoring. The highlights of this cooperation and strategies to achieve SI-traceability and improve accuracy for optical satellite sensor data are summarized1. PMID:26601030

  10. Optical Passive Sensor Calibration for Satellite Remote Sensing and the Legacy of NOAA and NIST Cooperation.

    PubMed

    Datla, Raju; Weinreb, Michael; Rice, Joseph; Johnson, B Carol; Shirley, Eric; Cao, Changyong

    2014-01-01

    This paper traces the cooperative efforts of scientists at the National Oceanic and Atmospheric Administration (NOAA) and the National Institute of Standards and Technology (NIST) to improve the calibration of operational satellite sensors for remote sensing of the Earth's land, atmosphere and oceans. It gives a chronological perspective of the NOAA satellite program and the interactions between the two agencies' scientists to address pre-launch calibration and issues of sensor performance on orbit. The drive to improve accuracy of measurements has had a new impetus in recent years because of the need for improved weather prediction and climate monitoring. The highlights of this cooperation and strategies to achieve SI-traceability and improve accuracy for optical satellite sensor data are summarized. PMID:26601030

  11. THE SCIENTIFIC BASIS OF NOAA'S AIR QUALITY FORECASTING PROGRAM

    EPA Science Inventory

    For many years, the National Oceanic and Atmospheric Administration (NOAA) has conducted atmospheric research, including chemical and physical measurements, process studies, and the development and evaluation of experimental meteorological and photochemical air quality models. ...

  12. THE NOAA - EPA NATIONAL AIR QUALITY FORECASTING SYSTEM

    EPA Science Inventory

    Building upon decades of collaboration in air pollution meteorology research, in 2003 the National Oceanic and Atmospheric Administration (NOAA) and the United States Environmental Protection Agency (EPA) signed formal partnership agreements to develop and implement an operationa...

  13. Mission Description and In-Flight Operations of ERBE Instruments on ERBS, NOAA 9, and NOAA 10 Spacecraft

    NASA Technical Reports Server (NTRS)

    Snyder, Dianne; Bush, Kathryn; Lee, Kam-Pui; Summerville, Jessica

    1998-01-01

    Instruments of the Earth Radiation Budget Experiment (ERBE) have operated on three different Earth-orbiting spacecraft. The Earth Radiation Budget Satellite (ERBS) is operated by the National Aeronautics and Space Administration (NASA), and the NOAA 9 and NOAA 10 weather satellites are operated by the National Oceanic and Atmospheric Administration (NOAA). This paper is one of a series that describes the ERBE mission, in-orbit environments, instrument design and operational features, and data processing and validation procedures. This paper also describes the in-flight operations for the ERBE nonscanner instruments aboard the ERBS, NOAA 9, and NOAA 10 spacecraft from January 1990 through December 1990. Validation and archives of radiation measurements made by ERBE nonscanner instruments during this period were completed in August 1996. This paper covers normal and special operations of the spacecraft and instruments, operational anomalies, and the responses of the instruments to in-orbit and seasonal variations in the solar environment.

  14. The Role of Global Climate Patterns on the Spatial and Temporal distribution of Vector-Borne Disease

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Global climate patterns, such as the El Niño/Southern Oscillation (ENSO, have been shown to have an impact on vector-borne infectious disease outbreaks. In October 2006 the Climate Prediction Center of the National Oceanic and Atmospheric Administration (NOAA/CPC) issued an unscheduled El Niño advis...

  15. 76 FR 4091 - Proposed Information Collection; Comment Request; Certification Requirements for NOAA's...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-24

    ...; Certification Requirements for NOAA's Hydrographic Product Quality Assurance Program AGENCY: National Oceanic... a quality assurance program under which the Administrator may certify privately-made...

  16. 75 FR 338 - Proposed Information Collection; Comment Request; NOAA Teacher at Sea Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-05

    ... Teacher at Sea Program AGENCY: National Oceanic and Atmospheric Administration (NOAA), Commerce. ACTION... first-hand experience with field research activities through the Teacher at Sea Program. Through...

  17. Ozone-Depleting Gases in the Atmosphere: Results From 28 Years of Measurements by the NOAA Climate Monitoring and Diagnostics Laboratory (CMDL)

    NASA Astrophysics Data System (ADS)

    Hurst, D. F.; Elkins, J. W.; Montzka, S. A.; Butler, J. H.; Dutton, G. S.; Hall, B. D.; Mondeel, D. J.; Moore, F. L.; Nance, J. D.; Romashkin, P. A.; Thompson, T. M.

    2005-12-01

    Back in 1978, NOAA/CMDL initiated the weekly filling of flasks at CMDL observatories in Alaska, Hawaii, American Samoa, and Antarctica for analyses of CFC-11, CFC-12 and N2O in the home laboratory. A decade later, each observatory was outfitted with an automated gas chromatograph to make routine, in situ measurements of these three source gases plus methyl chloroform and carbon tetrachloride. Both measurement programs are ongoing, having expanded over the years to include methyl halides and substitutes for regulated halocarbons, to presently account for 95% of the total burden of long-lived Cl and Br believed to enter the stratosphere. These long-term monitoring data have been assimilated into temporal records of the global tropospheric burdens of ozone-depleting chlorine and bromine which are critical input to models that predict future trends in stratospheric ozone. Other information pivotal to ozone projections, such as the atmospheric lifetimes of source gases, stratospheric entry values for total chlorine and total bromine, and identification of the stratospheric sink regions for long-lived source gases, has been gained from in situ measurements by NOAA/CMDL instruments aboard NASA high-altitude aircraft (ER-2 and WB-57) and balloons since 1991. Though CMDL's routine monitoring activities provide important historical records of halogenated source gases in the atmosphere, significant inaccuracies in ozone projections may propagate from the uncertain estimates of impending emissions of ozone-depleting gases. Scenarios of future halocarbon emissions require substantial assumptions about past and pending compliance with the Montreal Protocol, and the sizes and release rates of existing global reservoirs (banks) of halocarbons. Recent work by CMDL has focused on quantifying halocarbon bank emission rates in Russia, the USA, and Canada through geographically extensive measurements aboard trains and low-altitude aircraft. The USA and Canada results indicate that

  18. NOAA requirements and programs

    NASA Technical Reports Server (NTRS)

    Flanders, A. F.

    1975-01-01

    Service programs in NOAA that contemplate using the Geostationary Operational Environmental Satellite (GEOS) Data Collection System (DCS) are considered. The GEOS DCS will be operated by the National Environmental Satellite Service of NOAA as an integral part of the national operation environmental satellite program. This plan is concerned with that part of the GEOS program connected with collection and relay of data from remote locations. Service programs include: (1) hydrological data collection; (2) oceanographic data collection; (3) marine observations from data buoys; (4) Tsunami warning service; and (5) meteorological service.

  19. NOAA Plans for Geomagnetic Storm Observations

    NASA Astrophysics Data System (ADS)

    Diedrich, B. L.; Biesecker, D. A.; Mulligan, P.; Simpson, M.

    2012-12-01

    For many years, NOAA has issued geomagnetic storm watches and warnings based on coronal mass ejection (CME) imagery and in-situ solar wind measurements from research satellites. The NOAA Satellite and Information Service (NESDIS) recognizes the importance of this service to protecting technological infrastructure including power grids, polar air travel, and satellite navigation, so is actively planning to replace these assets to ensure their continued availability. NOAA, NASA, and the US Air Force are working on launching the first operational solar wind mission in 2014, the Deep Space Climate Observatory (DSCOVR), to follow NASA's Advanced Composition Explorer (ACE) in making solar wind measurements at the sun-Earth L1 for 15-60 minute geomagnetic storm warning. For continuing operations after the DSCOVR mission, one technology NOAA is looking at is solar sails that could greatly improve the lead time of geomagnetic storm warnings by stationkeeping closer to the sun than L1. We are working with NASA and private industry on the Sunjammer solar sail demonstration mission to test making solar wind measurements from a solar sail in the sun-Earth L1 region. NOAA uses CME imagery from the NASA/ESA Solar and Heliospheric Observatory (SOHO) and the NASA Solar Terrestrial Relations Observatory (STEREO) satellites to issue 1-3 day geomagnetic storm watches. For the future, NOAA worked with the Naval Research Laboratory (NRL) to develop a Compact Coronagraph (CCOR) through Phase A, and is studying ways to complete instrument development and test fly it for use in the future.

  20. Validation of the Version 1 NOAA/NASA Pathfinder Sea Surface Temperature Data Set

    NASA Technical Reports Server (NTRS)

    Smith, Elizabeth A.

    1998-01-01

    A high-resolution, global satellite-derived sea surface temperature (SST) data set called Pathfinder, from the Advanced Very High Resolution Radiometer (AVHRR) aboard the NOAA Polar Orbiters, is available from the Jet Propulsion Laboratory Physical Oceanography Distributed Active Archive Center (JPL PO.DAAC). Suitable for research as well as education, the Pathfinder SST data set is a result of a collaboration between the National Oceanographic and Atmospheric Administration (NOAA), the National Aeronautics and Space Administration (NASA) and investigators at several universities. NOAA and NASA are the sponsors of the Pathfinder Program, which takes advantage of currently archived Earth science data from satellites. Where necessary, satellite sensors have been intercalibrated, algorithms improved and processing procedures revised, in order to produce long time-series, global measurements of ocean, land and atmospheric properties necessary for climate research. Many Pathfinder data sets are available to researchers now, nearly a decade before the first launch of NASA's Earth Observing System (EOS). The lessons learned from the Pathfinder programs will facilitate the processing and management of terabytes of data from EOS. The Oceans component of Pathfinder has undertaken to reprocess all Global Area Coverage (GAC) data acquired by the 5-channel AVHRRs since 1981. The resultant data products are consistent and stably calibrated [Rao, 1993a, Rao, 1993b, Brown et al., 1993], Earth-gridded SST fields at a variety of spatial and temporal resolutions.

  1. The NOAA Big Data Project: NEXRAD on the Cloud

    NASA Astrophysics Data System (ADS)

    Sundwall, Jed; Bouffler, Brendan

    2016-04-01

    Last year, the US National Oceanic and Atmospheric Administration (NOAA) made headlines when it entered into a research agreement with Amazon Web Services (AWS) to explore sustainable models to increase the output of open NOAA data. Publicly available NOAA data drives multi-billion dollar industries and critical research efforts. Under this new agreement, AWS and its Data Alliance collaborators are looking at ways to push more NOAA data to the cloud and build an ecosystem of innovation around it. In this presentation, we will provide a brief overview of the NOAA Big Data Project and the AWS Data Alliance, then dive into a specific example of data that has been made available (high resolution Doppler radar from the NEXRAD system) and early use cases.

  2. The NOAA Big Data Project: NEXRAD on the Cloud

    NASA Astrophysics Data System (ADS)

    Gold, A.; Weber, J.

    2015-12-01

    This past April, the US National Oceanic and Atmospheric Administration (NOAA) made headlines when it entered into a research agreement with Amazon Web Services (AWS) to explore sustainable models to increase the output of open NOAA data. Publicly available NOAA data drives multi-billion dollar industries and critical research efforts. Under this new agreement, AWS and its Data Alliance collaborators are looking at ways to push more NOAA data to the cloud and build an ecosystem of innovation around it. In this presentation, we will provide a brief overview of the NOAA Big Data Project and the AWS Data Alliance, then dive into a specific example of data that has been made available (high resolution Doppler radar from the NEXRAD system) and early use cases.

  3. NOAA backscatter studies

    NASA Technical Reports Server (NTRS)

    Post, Madison J.

    1991-01-01

    In the past year, NOAA has measured and analyzed another year's worth of backscatter over Boulder, CO. The average profile was computed from 80 satellite observations of backscatter spread throughout the year, using NOAA's CO2 coherent lidar operating at a wavelength of 10.59 microns. The seasonal averages show a familiar trend (highest backscattering in spring, perhaps due to Asian dust or biomass burning, and lowest backscattering in fall). The 1990 average profile was not significantly different from the 1988 or 1989 profiles, except that it displays a slight increase in the upper troposphere, perhaps due to the Redoubt Volcano. The NOAA's backscatter processing program (BETA) was refined to enable the calculation of gaseous absorption effects based on rawinsonde measurements, as well as using atmospheric models. NOAA participated in two intercomparisons of aerosol measuring instruments near Boulder, called FRLAB (Front Range Lidar, Aircraft, and Balloon Experiment). Considerable effort was also put into developing a multiagency science proposal to NASA headquarters to work with both JPL and NASA-Marshall to produce an airborne Doppler lidar facility for the DC-8.

  4. RELATIVE EFFECTS OF OBSERVATIONALLY-NUDGED MODEL METEOROLOGY AND DOWN-SCALED GLOBAL CLIMATE MODEL METEOROLOGY ON BIOGENIC EMISSIONS FOR THE UNITED STATES

    EPA Science Inventory

    The United States Environmental Protection Agency (USEPA) and National Oceanic and Atmospheric Administration (NOAA) participate in a multi-agency examination of the effects of climate change through the U.S. Climate Change Science Program (CCSP, 2003). The EPA Global Change Rese...

  5. Triagency collaboration for the advancement of climate change education

    NASA Astrophysics Data System (ADS)

    Wilson, Carolyn E.; Chambers, Lin H.; Schoedinger, Sarah

    2011-06-01

    Second Annual NASA, NOAA, and NSF Climate Change Education Principal Investigators Meeting; Fairfax, Virginia, 28 February to 2 March 2011; In 2009 the Obama administration identified climate change research and education as a presidential priority. Embracing the spirit of the America COMPETES Act, which encourages coordination of federal science, technology, engineering, and mathematics (STEM) education activities and programs, NASA, the National Oceanic and Atmospheric Administration (NOAA), and the National Science Foundation (NSF) have been working together to increase funding opportunities for projects focused on global climate literacy and education in formal and informal learning environments and have fostered collaborations among awardees that create a strong national network for effectively presenting climate science to diverse audiences.

  6. Traditional Knowledge Strengthens NOAA's Environmental Education

    NASA Astrophysics Data System (ADS)

    Stovall, W. K.; McBride, M. A.; Lewinski, S.; Bennett, S.

    2010-12-01

    Environmental education efforts are increasingly recognizing the value of traditional knowledge, or indigenous science, as a basis to teach the importance of stewardship. The National Oceanic and Atmospheric Administration (NOAA) Pacific Services Center incorporates Polynesian indigenous science into formal and informal education components of its environmental literacy program. By presenting indigenous science side by side with NOAA science, it becomes clear that the scientific results are the same, although the methods may differ. The platforms for these tools span a vast spectrum, utilizing media from 3-D visualizations to storytelling and lecture. Navigating the Pacific Islands is a Second Life project in which users navigate a virtual Polynesian voyaging canoe between two islands, one featuring native Hawaiian practices and the other where users learn about NOAA research and ships. In partnership with the University of Hawai‘i Waikiki Aquarium, the Nana I Ke Kai (Look to the Sea) series focuses on connecting culture and science during cross-discipline, publicly held discussions between cultural practitioners and research scientists. The Indigenous Science Video Series is a multi-use, animated collection of short films that showcase the efforts of NOAA fisheries management and ship navigation in combination with the accompanying Polynesian perspectives. Formal education resources and lesson plans for grades 3-5 focusing on marine science have also been developed and incorporate indigenous science practices as examples of conservation success. By merging traditional knowledge and stewardship practices with NOAA science in educational tools and resources, NOAA's Pacific Services Center is helping to build and increase environmental literacy through the development of educational tools and resources that are applicable to place-based understanding and approaches.

  7. NOAA Seeks Guidance on Ocean Acidification Research

    NASA Astrophysics Data System (ADS)

    2007-03-01

    As the concentration of carbon dioxide in the atmosphere increases, the oceans become more acidic. The U.S. National Oceanic and Atmospheric Administration (NOAA) has already developed a 5-year interdisciplinary program on ocean acidification, which includes establishing coral reef monitoring stations, research on the physiological responses of various organisms to increasing ocean acidity, modeling of ocean acidification and its socioeconomic effect, and development of technology for measuring and monitoring carbon dioxide in the oceans.

  8. NOAA Research Vessel Explores Atlantic Ocean Seamounts

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    2014-10-01

    Mike Ford, a biological oceanographer with the National Oceanic and Atmospheric Administration (NOAA), sat rapt in front of a bank of high-definition monitors. They provided live video and data feeds from a tethered pair of instrument-laden remotely operated vehicles (ROVs) that were descending 4692 meters on their deepest dive ever. Their target: an unnamed and unexplored New England seamount discovered in the North Atlantic last year.

  9. Interoperable Data Access Services for NOAA IOOS

    NASA Astrophysics Data System (ADS)

    de La Beaujardiere, J.

    2008-12-01

    The Integrated Ocean Observing System (IOOS) is intended to enhance our ability to collect, deliver, and use ocean information. The goal is to support research and decision-making by providing data on our open oceans, coastal waters, and Great Lakes in the formats, rates, and scales required by scientists, managers, businesses, governments, and the public. The US National Oceanic and Atmospheric Administration (NOAA) is the lead agency for IOOS. NOAA's IOOS office supports the development of regional coastal observing capability and promotes data management efforts to increase data accessibility. Geospatial web services have been established at NOAA data providers including the National Data Buoy Center (NDBC), the Center for Operational Oceanographic Products and Services (CO-OPS), and CoastWatch, and at regional data provider sites. Services established include Open-source Project for a Network Data Access Protocol (OpenDAP), Open Geospatial Consortium (OGC) Sensor Observation Service (SOS), and OGC Web Coverage Service (WCS). These services provide integrated access to data holdings that have been aggregated at each center from multiple sources. We wish to collaborate with other groups to improve our service offerings to maximize interoperability and enhance cross-provider data integration, and to share common service components such as registries, catalogs, data conversion, and gateways. This paper will discuss the current status of NOAA's IOOS efforts and possible next steps.

  10. 78 FR 55064 - Solicitation for Members of the NOAA Science Advisory Board (SAB) Gulf Coast Ecosystem...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-09

    ... National Oceanic and Atmospheric Administration Solicitation for Members of the NOAA Science Advisory Board (SAB) Gulf Coast Ecosystem Restoration Science Program Advisory Working Group (RSPAWG) AGENCY: National... Administration is publishing this notice to solicit nominations for the NOAA Science Advisory Board Gulf...

  11. Schoolwide Social-Behavioral Climate, Student Problem Behavior, and Related Administrative Decisions: Empirical Patterns from 1,510 Schools Nationwide

    ERIC Educational Resources Information Center

    Spaulding, Scott A.; Irvin, Larry K.; Horner, Robert H.; May, Seth L.; Emeldi, Monica; Tobin, Tary J.; Sugai, George

    2010-01-01

    Office discipline referral (ODR) data provide useful information about problem behavior and consequence patterns, social-behavioral climates, and effects of social-behavioral interventions in schools. The authors report patterns of ODRs and subsequent administrative decisions from 1,510 schools nationwide that used the School-Wide Information…

  12. Merging Space Weather With NOAA's National Weather Service

    NASA Astrophysics Data System (ADS)

    Lanzerotti, Louis

    2004-07-01

    A major change in the reporting structure of the National Oceanic and Atmospheric Administration's Space Environment Center (SEC) is poised to occur later this year when Congress approves the fiscal year 2005 budget proposed by the Bush administration. The activities of the center, together with its proposed budget, will move from under NOAA's research budget and administration to that of the National Weather Service (NWS), which is also administered by NOAA. The weather service will receive augmented funding to accommodate the SEC as one of the service's National Centers for Environmental Prediction.

  13. Tsunami.gov: NOAA's Tsunami Information Portal

    NASA Astrophysics Data System (ADS)

    Shiro, B.; Carrick, J.; Hellman, S. B.; Bernard, M.; Dildine, W. P.

    2014-12-01

    We present the new Tsunami.gov website, which delivers a single authoritative source of tsunami information for the public and emergency management communities. The site efficiently merges information from NOAA's Tsunami Warning Centers (TWC's) by way of a comprehensive XML feed called Tsunami Event XML (TEX). The resulting unified view allows users to quickly see the latest tsunami alert status in geographic context without having to understand complex TWC areas of responsibility. The new site provides for the creation of a wide range of products beyond the traditional ASCII-based tsunami messages. The publication of modern formats such as Common Alerting Protocol (CAP) can drive geographically aware emergency alert systems like FEMA's Integrated Public Alert and Warning System (IPAWS). Supported are other popular information delivery systems, including email, text messaging, and social media updates. The Tsunami.gov portal allows NOAA staff to easily edit content and provides the facility for users to customize their viewing experience. In addition to access by the public, emergency managers and government officials may be offered the capability to log into the portal for special access rights to decision-making and administrative resources relevant to their respective tsunami warning systems. The site follows modern HTML5 responsive design practices for optimized use on mobile as well as non-mobile platforms. It meets all federal security and accessibility standards. Moving forward, we hope to expand Tsunami.gov to encompass tsunami-related content currently offered on separate websites, including the NOAA Tsunami Website, National Tsunami Hazard Mitigation Program, NOAA Center for Tsunami Research, National Geophysical Data Center's Tsunami Database, and National Data Buoy Center's DART Program. This project is part of the larger Tsunami Information Technology Modernization Project, which is consolidating the software architectures of NOAA's existing TWC's into

  14. Envisioning Improvements in NOAA Environmental Data Management

    NASA Astrophysics Data System (ADS)

    de la Beaujardiere, J.

    2012-12-01

    The US National Oceanic and Atmospheric Administration (NOAA) produces and maintains a huge, heterogeneous and continuously updated collection of environmental data from a diverse suite of observing systems including satellites, radars, aircraft, ships, in situ sensors, and animal tagging. These data are an irreplaceable national resource and must be discoverable, accessible, well-documented, and preserved for future users. Figure 1 illustrates the concept of operations for the desired target architecture. In this paper we describe current work toward these goals. The NOAA Environmental Data Management (EDM) Committee and other collaborators in the agency are developing an EDM Framework that includes over-arching Principles, Governance, Resources, Standards, Architecture, Assessment, and Infrastructure which apply broadly to many classes of data, and individual Data Lifecycles for particular data collections. See Figure 2. This Framework will inform, organize and support NOAA data management activities. NOAA Procedural Directives regarding archiving, data management planning, metadata, and data sharing by grantees are now being implemented; new Directives regarding data access and data citation are being developed. We have begun initial assessments of how data from our primary observing systems are managed. A Dashboard to measure and encourage progress in these areas is being prototyped. We have established an EDM Wiki to share best practices. Finally, participation in standards bodies and collaboration with other agencies and organizations is helping us to maximize compatibility and leverage existing work.Figure 1: Conceptual overview of the desired target state of NOAA data management activities. Not all activities are illustrated. Figure 2: High-level overview of the conceptual framework for environmental data management activities.

  15. NASA-FAA-NOAA Partnering Strategy

    NASA Technical Reports Server (NTRS)

    Colantonio, Ron

    2003-01-01

    This viewgraph presentation provides an overview of NASA-FAA (Federal Aviation Administration) and NOAA (National Oceanic and Atmospheric Administration) collaboration efforts particularly in the area of aviation and aircraft safety. Five technology areas are being jointly by these agencies: (1) aviation weather information; (2) weather products; (3) automet technologies; (4) forward looking weather sensors and (5) turbulence controls and mitigation systems. Memorandum of Agreements (MOU) between these agencies are reviewed. A general review of the pros and pitfalls of inter-agency collaborations is also presented.

  16. NOAA Plans for Improving Public Access to Science Research (Invited)

    NASA Astrophysics Data System (ADS)

    de la Beaujardiere, J.

    2013-12-01

    The White House Office of Science and Technology Policy (OSTP) issued a memorandum on 2013 February 22 calling for federal agencies to enhance public access to research results (PARR), and required agencies to submit, within 6 months of the memo, draft plans explaining how they would implement the requirements. For the National Oceanic and Atmospheric Administration (NOAA), research results include digital data about the Earth's environment and publications based on those data. Regarding environmental data, NOAA is already very active in ensuring and improving public access. Indeed, National Weather Service (NWS) data was highlighted as one of the good examples in the OSTP memo. More generally, the NOAA National Data Centers, the Environmental Data Management Committee (EDMC), and scientific and technical personnel across the agency are striving to ensure NOAA data are discoverable and accessible on-line, well-documented and formatted for usability, and preserved for future generations as a national asset. This presentation will describe current and potential activities in support of public access to NOAA and NOAA-funded environmental data. Regarding publications, there is greater uncertainty. The fundamental issue is how to ensure no-cost access (after an embargo period) to publications that typically require subscriptions. That issue must be addressed at the interagency level with the journal publishers. The plan indicates that NOAA will adopt shared mechanisms and agreements to the extent possible rather than building new systems. Some elements remain under discussion; this presentation will be limited to those aspects on which there is general agreement.

  17. Data management in NOAA

    NASA Technical Reports Server (NTRS)

    Callicott, William M.

    1993-01-01

    The NOAA archives contain 150 terabytes of data in digital form, most of which are the high volume GOES satellite image data. There are 630 data bases containing 2,350 environmental variables. There are 375 million film records and 90 million paper records in addition to the digital data base. The current data accession rate is 10 percent per year and the number of users are increasing at a 10 percent annual rate. NOAA publishes 5,000 publications and distributes over one million copies to almost 41,000 paying customers. Each year, over six million records are key entered from manuscript documents and about 13,000 computer tapes and 40,000 satellite hardcopy images are entered into the archive. Early digital data were stored on punched cards and open reel computer tapes. In the late seventies, an advanced helical scan technology (AMPEX TBM) was implemented. Now, punched cards have disappeared, the TBM system was abandoned, most data stored on open reel tapes have been migrated to 3480 cartridges, many specialized data sets were distributed on CD ROM's, special archives are being copied to 12 inch optical WORM disks, 5 1/4 inch magneto-optical disks were employed for workstation applications, and 8 mm EXABYTE tapes are planned for major data collection programs. The rapid expansion of new data sets, some of which constitute large volumes of data, coupled with the need for vastly improved access mechanisms, portability, and improved longevity are factors which will influence NOAA's future systems approaches for data management.

  18. Solutions Network Formulation Report: Improving NOAA's PORTS(R) Through Enhanced Data Inputs from NASA's Ocean Surface Topography Mission

    NASA Technical Reports Server (NTRS)

    Guest, DeNeice

    2007-01-01

    The Nation uses water-level data for a variety of practical purposes, including nautical charting, maritime navigation, hydrography, coastal engineering, and tsunami and storm surge warnings. Long-term applications include marine boundary determinations, tidal predictions, sea-level trend monitoring, oceanographic research, and climate research. Accurate and timely information concerning sea-level height, tide, and ocean current is needed to understand their impact on coastal management, disaster management, and public health. Satellite altimeter data products are currently used by hundreds of researchers and operational users to monitor ocean circulation and to improve scientists understanding of the role of the oceans in climate and weather. The NOAA (National Oceanic and Atmospheric Administration) National Ocean Service has been monitoring sea-level variations for many years. NOAA s PORTS (Physical Oceanographic Real-Time System) DST (decision support tool), managed by the Center for Operational Oceanographic Products and Services, supports safe and cost-efficient navigation by providing ship masters and pilots with accurate real-time information required to avoid groundings and collisions. This report assesses the capacity of NASA s satellite altimeter data to meet societal decision support needs through incorporation into NOAA s PORTS. NASA has a long heritage of collecting data for ocean research, including its current Terra and Aqua missions. Numerous other missions provide additional important information for coastal management issues, and data collection will continue in the coming decade with such missions as the OSTM (Ocean Surface Topography Mission). OSTM will provide data on sea-surface heights for determining ocean circulation, climate change, and sea-level rise. We suggest that NASA incorporate OSTM altimeter data (C- and Ku-band) into NOAA s PORTS DST in support of NASA s Coastal Management National Application with secondary support to the

  19. A Safer Place? LGBT Educators, School Climate, and Implications for Administrators

    ERIC Educational Resources Information Center

    Wright, Tiffany E.; Smith, Nancy J.

    2015-01-01

    Over an 8-year span, two survey studies were conducted to analyze LGBT -teachers' perceptions of their school climate and the impact of school leaders on that climate. This article presents nonparametric, descriptive, and qualitative results of the National Survey of Educators' Perceptions of School Climate 2011 compared with survey results from…

  20. NOAA starts oceanographpy publication

    NASA Astrophysics Data System (ADS)

    A new NOAA publication entitled Oceanographic Monthly Summary began in January. The publication, edited by Steve Auer, replaced two other NOAA periodicals, Gulfstream and Fishing Information, and it will attempt to disseminate the monthly oceanographic information in a more timely and efficient manner than did the other two publications.Oceanographic Monthly Summary contains 15 sea surface temperature (SST) analyses, 3 oceanographic thermal feature analyses, and a Bering Sea/North Slope ice analysis. The SST analyses include monthly means, anomalies, and yearly changes for the Atlantic and Pacific oceans and the Gulf of Mexico in both 2 and 1 degrees latitude/longitude scales. The ocean feature analyses show and describe the monthly activity of the Gulf Stream system and its associated eddies for the northwest Atlantic and Gulf of Mexico as well as other observed thermal features for the western U.S. coast. The Bering Sea/North Slope ice analysis describes sea ice age, thickness, and coverage for the region.The National Weather Service and the National Earth Satellite Service jointly sponsor the publication.

  1. Data management in NOAA

    NASA Technical Reports Server (NTRS)

    Callicott, William M.

    1992-01-01

    NOAA has 11 terabytes of digital data stored on 240,000 computer tapes. There are an additional 100 terabytes (TB) of geostationary satellite data stored in digital form on specially configured SONY U-Matic video tapes at the University of Wisconsin. There are over 90,000,000 non-digital form records in manuscript, film, printed, and chart form which are not easily accessible. The three NOAA Data Centers service 6,000 requests per year and publish 5,000 bulletins which are distributed to 40,000 subscribers. Seventeen CD-ROM's have been produced. Thirty thousand computer tapes containing polar satellite data are being copied to 12 inch WORM optical disks for research applications. The present annual data accumulation rate of 10 TB will grow to 30 TB in 1994 and to 100 TB by the year 2000. The present storage and distribution technologies with their attendant support systems will be overwhelmed by these increases if not improved. Increased user sophistication coupled with more precise measurement technologies will demand better quality control mechanisms, especially for those data maintained in an indefinite archive. There is optimism that the future will offer improved media technologies to accommodate the volumes of data. With the advanced technologies, storage and performance monitoring tools will be pivotal to the successful long-term management of data and information.

  2. NOAA Atmospheric Baseline Observatories in the Arctic: Alaska & Greenland

    NASA Astrophysics Data System (ADS)

    Vasel, B. A.; Butler, J. H.; Schnell, R. C.; Crain, R.; Haggerty, P.; Greenland, S.

    2013-12-01

    The National Oceanic and Atmospheric Administration (NOAA) operates two year-round, long-term climate research facilities, known as Atmospheric Baseline Observatories (ABOs), in the Arctic Region. The Arctic ABOs are part of a core network to support the NOAA Global Monitoring Division's mission to acquire, evaluate, and make available accurate, long-term records of atmospheric gases, aerosol particles, and solar radiation in a manner that allows the causes of change to be understood. The observatory at Barrow, Alaska (BRW) was established in 1973 and is now host to over 200 daily measurements. Located a few kilometers to the east of the village of Barrow at 71.3° N it is also the northernmost point in the United States. Measurement records from Barrow are critical to our understanding of the Polar Regions including exchange among tundra, atmosphere, and ocean. Multiple data sets are available for carbon cycle gases, halogenated gases, solar radiation, aerosol properties, ozone, meteorology, and numerous others. The surface, in situ carbon dioxide record alone consists of over 339,000 measurements since the system was installed in July 1973. The observatory at Summit, Greenland (SUM) has been a partnership with the National Science Foundation (NSF) Division of Polar Programs since 2004, similar to that for South Pole. Observatory data records began in 1997 from this facility located at the top of the Greenland ice sheet at 72.58° N. Summit is unique as the only high-altitude (3200m), mid-troposphere, inland, Arctic observatory, largely free from outside local influences such as thawing tundra or warming surface waters. The measurement records from Summit help us understand long-range transport across the Arctic region, as well as interactions between air and snow. Near-real-time data are available for carbon cycle gases, halogenated gases, solar radiation, aerosol properties, meteorology, ozone, and numerous others. This poster will highlight the two facilities

  3. NOAA's National Snow Analyses

    NASA Astrophysics Data System (ADS)

    Carroll, T. R.; Cline, D. W.; Olheiser, C. M.; Rost, A. A.; Nilsson, A. O.; Fall, G. M.; Li, L.; Bovitz, C. T.

    2005-12-01

    NOAA's National Operational Hydrologic Remote Sensing Center (NOHRSC) routinely ingests all of the electronically available, real-time, ground-based, snow data; airborne snow water equivalent data; satellite areal extent of snow cover information; and numerical weather prediction (NWP) model forcings for the coterminous U.S. The NWP model forcings are physically downscaled from their native 13 km2 spatial resolution to a 1 km2 resolution for the CONUS. The downscaled NWP forcings drive an energy-and-mass-balance snow accumulation and ablation model at a 1 km2 spatial resolution and at a 1 hour temporal resolution for the country. The ground-based, airborne, and satellite snow observations are assimilated into the snow model's simulated state variables using a Newtonian nudging technique. The principle advantages of the assimilation technique are: (1) approximate balance is maintained in the snow model, (2) physical processes are easily accommodated in the model, and (3) asynoptic data are incorporated at the appropriate times. The snow model is reinitialized with the assimilated snow observations to generate a variety of snow products that combine to form NOAA's NOHRSC National Snow Analyses (NSA). The NOHRSC NSA incorporate all of the available information necessary and available to produce a "best estimate" of real-time snow cover conditions at 1 km2 spatial resolution and 1 hour temporal resolution for the country. The NOHRSC NSA consist of a variety of daily, operational, products that characterize real-time snowpack conditions including: snow water equivalent, snow depth, surface and internal snowpack temperatures, surface and blowing snow sublimation, and snowmelt for the CONUS. The products are generated and distributed in a variety of formats including: interactive maps, time-series, alphanumeric products (e.g., mean areal snow water equivalent on a hydrologic basin-by-basin basis), text and map discussions, map animations, and quantitative gridded products

  4. Coordinating activities between NOAA and other agencies.

    PubMed

    Fritz, A T; Buchman, M F

    1997-11-01

    The Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) and the National Oil and Hazardous Substances Pollution Contingency Plan (NCP) mandate protection of public health, welfare, and the environment at Superfund hazardous waste sites. The NCP requires lead response agenciesto integrate baseline risk assessments into the remedial process that "assess threats to the environment." EPA policy statements direct regional offices to perform thorough, consistent ecological risk assessments, and stress the importance of coordination and technical consultation with the natural resource trustees. As a Federal natural trustee, the National Oceanic and Atmospheric Administration's (NOAA) role and responsibilities within the CERCLA process also are defined and mandated by Federal law. NOAA is responsible for identifying sites in the coastal zone that may affect natural resources, evaluating injury to trust resources, and providing technical advice on assessments and remedial and restoration alternatives. Statutes require lead cleanup agencies and trustee agencies to notify and coordinate with each other during CERCLA response. Over the past ten years, NOAA has gained valuable experience and technical expertise in environmental assessments and in evaluating contaminated aquatic environments. NOAA fulfills its responsibilities through an effective network of Coastal Resource Coordinators (CRCs) who can rapidly respond to local technical requirements and priorities, and coordinate effectively with technical and trustee representatives. In addition to CRCs, an interdisciplinary support group provides technical expertise in the scientific disciplines required to respond to the needs of regional activities. NOAA provides CRCs to coastal EPA regional offices for technical support, and to act as liaisons with Federal and state natural resource trustee agencies. The CRCs help EPA and other lead response agencies identify and assess risks to coastal resources

  5. In Congress Budget Update for NOAA, USGS

    NASA Astrophysics Data System (ADS)

    Richman, Barbara T.

    Among the agenda items facing Congress as it reconvenes this week are the fiscal 1984 budgets for the National Oceanic and Atmospheric Administration (NOAA), which is part of the Department of Commerce, and for the U.S. Geological Survey (USGS), which is within the Department of the Interior. Fiscal year 1984 begins October 1, 1983. As Congress rolls up its shirtsleeves and gets down to business, Eos presents a status report on the two agency budgets.Both House and Senate appropriations committees have finished their work on the NOAA budget, which had been targeted by President Ronald Reagan for a $799.8 million appropriation request (program level of $843.2 million) in his proposed fiscal 1984 budget (Eos, February 15, 1983, p. 65). The House appropriation for NOAA (H.R. 3134 and H.R. 3222) is $998.5 million, with a program level of $1043.9 million. The Senate Appropriations Committee set its appropriation (S. 1721) at $987.8 million, with a program level of $1041.0 million.

  6. Creating a climate literate society: A review of efforts to ensure climate literate citizens

    NASA Astrophysics Data System (ADS)

    Niepold, F.; McCaffery, M.; Barstow, D.

    2008-12-01

    This session will present about the effort to develop the Climate Literacy essential principles and fundamental concepts using the AAAS Project 2061 Atlas of Science. The development team included representatives from federal science agencies, formal and informal educators, non-governmental organizations, and other institutions involved with climate research, education, and outreach. This effort resulted in a guide that can be used to engage the broad community to develop a robust conceptual framework that addresses the essential principles and fundamental concepts that climate literate citizens and students should know. That document has been reviewed and commented on extensively during several reviews. A recent report completed for NOAA by the Center for Earth and Space Science Education (/Revolutionizing Earth System Science Education for the 21st Century/) found that Earth system science education in the United States is in need of significant improvement. The report finds that there is great variation in how states incorporate modern Earth and climate science into their science standards. Through a partnership between the National Oceanic and Atmospheric Administration (NOAA) and American Association for the Advancement of Science (AAAS) Project 2061 we have collaborated to define climate literacy and develop weather and climate benchmarks for science literacy. The newly developed and revised national weather and climate science education standards were published in March of 2007 in the AAAS Project 2061 Atlas for Science Literacy volume II served as a basis for the climate literacy effort. The Climate Literacy essential principles and fundamental concepts are available at: http://www.climate.noaa.gov/education/ and through the Climate Literacy Network at http://www.climateliteracynow.org.

  7. 75 FR 10755 - Proposed Information Collection; Comment Request; 2010 NOAA Engagement Survey Tool

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-09

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF COMMERCE... Engagement Survey Tool AGENCY: National Oceanic and Atmospheric Administration (NOAA), DOC. ACTION: Notice... instrument and instructions should be directed to Louisa Koch, Director, NOAA Office of Education, (202)...

  8. 75 FR 25843 - Notice of Public Review and Comment Period on NOAA's Arctic Vision and Strategy

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-10

    .... SUPPLEMENTARY INFORMATION: To view the document, go to http://www.arctic.noaa.gov/ . I. Summary of the Strategy... NOAA's Arctic Vision and Strategy AGENCY: National Oceanic and Atmospheric Administration. ACTION... Highway, Room 15749, Silver Spring, Maryland 20910 FOR FURTHER INFORMATION CONTACT: Tracy Rouleau,...

  9. 75 FR 63439 - Proposed Information Collection; Comment Request; NOAA Teacher at Sea Alumni Survey

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-15

    ... Teacher at Sea Alumni Survey AGENCY: National Oceanic and Atmospheric Administration (NOAA), Commerce... Teacher at Sea Program. Through this program, educators spend up to three weeks at sea on a NOAA research... order to better serve the participants, the Teacher at Sea Program will survey the teacher...

  10. 77 FR 65674 - Solicitation for Members of the NOAA Science Advisory Board

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-30

    ... Research, Commerce. ACTION: Notice of solicitation for members of the NOAA Science Advisory Board. SUMMARY... Oceans and Atmosphere and NOAA Administrator on long- and short-range strategies for research, education... appointed as special government employees (SGEs) and will be subject to the ethical standards applicable...

  11. Fourth National Aeronautics and Space Administration Weather and Climate Program Science Review

    NASA Technical Reports Server (NTRS)

    Kreins, E. R. (Editor)

    1979-01-01

    The NASA Weather and Climate Program has two major thrusts. The first involves the development of experimental and prototype operational satellite systems, sensors, and space facilities for monitoring and understanding the atmosphere. The second thrust involves basic scientific investigation aimed at studying the physical and chemical processes which control weather and climate. This fourth science review concentrated on the scientific research rather than the hardware development aspect of the program. These proceedings contain 65 papers covering the three general areas: severe storms and local weather research, global weather, and climate.

  12. 78 FR 16254 - (NOAA) Science Advisory Board (SAB)

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-14

    ... National Oceanic and Atmospheric Administration (NOAA) Science Advisory Board (SAB) AGENCY: Office of... of Commerce (DOC). ACTION: Notice of open meeting. SUMMARY: The Science Advisory Board (SAB) was..., education, and application of science to operations and information services. SAB activities and...

  13. NOAA Operational Space Environmental Monitoring - Current Capabilities and Future Directions

    NASA Astrophysics Data System (ADS)

    Denig, William; Redmon, Rob; Mulligan, Patricia

    2014-05-01

    During the next few years the U.S. National Oceanic and Atmospheric Administration (NOAA) will field new operational capabilities for monitoring the near-earth space environment in addition to maintaining continued measurements in geostationary orbit. The most exciting new capability will be transitioning routine solar wind and magnetic field measurements at L1 (240 Re) from the NASA Advanced Composition Explorer (ACE) satellite to the Deep Space Climate Observatory (DSCOVR) which will be launched in early 2015 with a projected on-orbit readiness in mid-2015. Also under consideration is a solar-sail demonstration mission, called SUNJAMMER, for acquiring plasma and field measurements at twice the L1 location. Both DSCOVR and SUNJAMMER will provide a near-term advanced warning of impending space weather events that can adversely affect communications, satellite operations, GPS positioning and commercial air transportation. NESDIS has also supported the development of a Compact Coronagraph (CCOR) which could provide a several day warning of space weather when coupled with an interplanetary disturbance propagation model like ENLIL. Routine monitoring of the ionosphere will be provided by the Constellation Observing System for Meteorology, Ionosphere and Climate (COSMIC) II as a system which is a partnership among the Taiwan's National Space Organization, the U.S. Air Force and NOAA. The new operational capabilities provided by DSCOVR, SUNJAMMER, CCOR and COSMIC II are provided against the backdrop of continued space environmental measurements from the Geostationary Operational Environmental Satellites (GOES) which, in the near future, will transition to the GOES-R series of advanced space weather sensors. Continued space environmental measurements in polar low earth orbit (LEO) will continue to be provided by the remaining Polar Operational Environmental Satellites (POES) and the European MetOp satellites. Instrument specialists at the National Geophysical Data Center

  14. The Development of NOAA Education Common Outcome Performance Measures (Invited)

    NASA Astrophysics Data System (ADS)

    Baek, J.

    2013-12-01

    The National Oceanic and Atmospheric Administration (NOAA) Education Council has embarked on an ambitious Monitoring and Evaluation (M&E) project that will allow it to assess education program outcomes and impacts across the agency, line offices, and programs. The purpose of this internal effort is to link outcome measures to program efforts and to evaluate the success of the agency's education programs in meeting the strategic goals. Using an outcome-based evaluation approach, the NOAA Education Council is developing two sets of common outcome performance measures, environmental stewardship and professional development. This presentation will examine the benefits and tradeoffs of common outcome performance measures that collect program results across a portfolio of education programs focused on common outcomes. Common outcome performance measures have a few benefits to our agency and to the climate education field at large. The primary benefit is shared understanding, which comes from our process for writing common outcome performance measures. Without a shared and agreed upon set of definitions for the measure of an outcome, the reported results may not be measuring the same things and would incorrectly indicate levels of performance. Therefore, our writing process relies on a commitment to developing a shared set of definitions based on consensus. We hope that by taking the time to debate and coming to agreement across a diverse set of programs, the strength of our common measures can indicate real progress towards outcomes we care about. An additional benefit is that these common measures can be adopted and adapted by other agencies and organizations that share similar theories of change. The measures are not without their drawbacks, and we do make tradeoffs as part of our process in order to continue making progress. We know that any measure is necessarily a narrow slice of performance. A slice that may not best represent the unique and remarkable contribution

  15. Communication Climate and Administrative Burnout: A Technique for Relieving Some of the Pressures.

    ERIC Educational Resources Information Center

    Pood, Elliott; Jellicorse, John Lee

    1984-01-01

    Reports on how a communication audit was used as a technique to reduce burnout. Covers designing and administrating the instruments and then analyzing the results through group discussion. Includes a sample Communication Audit Instrument. (PD)

  16. NOAA Looks for Advice to Make Its Data Easier to Use

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    2014-03-01

    "There is no sector in American business that wouldn't like to have better environmental information," said Joseph Klimavicz, chief information officer for the National Oceanic and Atmospheric Administration (NOAA).

  17. Draft U.S. ocean policy plan precedes proposal to move NOAA to Interior department

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    2012-01-01

    The Obama administration's ambitious plan to protect oceans was released on 12 January, just 1 day prior to the administration's apparently unrelated announcement of a proposed governmental reorganization that would move the National Oceanic and Atmospheric Administration (NOAA) from the Department of Commerce to the Department of the Interior. The proposed NOAA move is part of a larger administration proposal to consolidate six federal agencies that are focused on business and trade into one department. The action is contingent upon congressional approval. The proposal to move NOAA to the Interior department has prompted a variety of reactions, with some considering it common sense to group agencies dealing with natural resources in the same department. Others have charged that the proposed move could blunt NOAA's leading role in protecting oceans, among other concerns.

  18. 75 FR 59686 - Proposed Information Collection; Comment Request; NOAA Space-Based Data Collection System (DCS...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-28

    ... National Oceanic and Atmospheric Administration Proposed Information Collection; Comment Request; NOAA Space- Based Data Collection System (DCS) Agreements AGENCY: National Oceanic and Atmospheric... space-based data collection systems (DCS), the Geostationary Operational Environmental Satellite...

  19. Assessing Extremes Climatology Using NWS Local Climate Analysis Tool

    NASA Astrophysics Data System (ADS)

    Timofeyeva, M. M.; Hollingshead, A.; Hilderbrand, D.; Mayes, B.; Hartley, T.; Kempf McGavock, N. M.; Lau, E.; Olenic, E. A.; Motta, B.; Bunge, R.; Brown, L. E.; Fritsch, F.

    2010-12-01

    The Local Climate Analysis Tool (LCAT) is evolving out of a need to support and enhance the National Oceanic and Atmospheric Administration (NOAA) National Weather Service (NWS) field offices’ ability to access, manipulate, and interpret local climate data and characterize climate variability and change impacts. LCAT will enable NWS Regional Headquarters, Weather Forecast Offices, Weather Service Offices, and River Forecast Centers the ability to conduct regional and local climate studies using station and reanalysis gridded data and various statistical techniques for climate analysis. The analysis results will be used for climate services to guide local decision makers in weather and climate sensitive actions and to deliver information to the general public. Field offices need standardized, scientifically sound methodology for local climate analysis (such as trend, composites, and principal statistical and time-series analysis) that is comprehensive, accessible, and efficient, with the potential to expand with growing NOAA Climate Services needs. The methodology for climate analyses is practiced by the NWS Climate Prediction Center (CPC), NOAA National Climatic Data Center, and NOAA Earth System Research Laboratory, as well as NWS field office staff. LCAT will extend this practice at the local level, allowing it to become both widespread and standardized, and thus improve NWS climate services capabilities. LCAT focus is on the local scale (as opposed to national and global scales of CPC products). The LCAT will: -Improve professional competency of local office staff and expertise in providing local information to their users. LCAT will improve quality of local climate services -Ensure adequate local input to CPC products that depend on local information, such as the U.S. Drought Monitor. LCAT will allow improvement of CPC climate products -Allow testing of local climate variables beyond temperature averages and precipitation totals such as climatology of

  20. A Study of the Perceived Relationships between the Leadership Style of Elementary Administrators and School Climate

    ERIC Educational Resources Information Center

    Ferree, Stephanie A.

    2013-01-01

    As national and state demands continue to mandate school improvement, leaders in schools have continued to seek answers from leadership theory and research to improve and sustain the culture and climate that has been created in order for diverse populations to meet academic excellence. The purpose of this research was to determine the relationship…

  1. Third National Aeronautics and Space Administration Weather and climate program science review

    NASA Technical Reports Server (NTRS)

    Kreins, E. R. (Editor)

    1977-01-01

    Research results of developing experimental and prototype operational systems, sensors, and space facilities for monitoring, and understanding the atmosphere are reported. Major aspects include: (1) detection, monitoring, and prediction of severe storms; (2) improvement of global forecasting; and (3) monitoring and prediction of climate change.

  2. The Effects of School Administration Self-Efficacy on School Climate and Student Achievement

    ERIC Educational Resources Information Center

    Davis, Brian R.

    2013-01-01

    The purpose of the study was to determine if there are significant relationships between the efficacies of the school principal, the climate of the school, and student achievement. Five schools within a small rural school district participated in this study. The principals completed the Principal Sense of Efficacy Scale, while the teachers at the…

  3. Transition of SSMI Data to a Climate Data Record

    NASA Astrophysics Data System (ADS)

    Semunegus, H.; Bates, J. J.

    2007-12-01

    Since 1993, the National Oceanic and Atmospheric Administration's (NOAA) National Climatic Data Center (NCDC) has served as the active archive of passive microwave satellite measurements from the Defense Meteorological Satellite Program's (DMSP) Special Sensor Microwave Imager (SSMI) instrument. SSMI data measurements have been used extensively to generate climate data sets (including rain, snow, ice, cloud liquid water, and total precipitable water) in support of both national and international programs. A project by NCDC and NOAA's Center for Satellite Applications and Research (STAR) is working towards the goal of regenerating a high quality SSMI Climate Data Record as defined by NOAA's Scientific Data Stewardship (SDS) program. As part of this effort, the SSMI Temperature Data Record (TDR) and Sensor Data Record (SDR) datasets have been reprocessed as value-added network Common Data Form (netCDF) orbit files. Data quality control flags embedded in netCDF orbit files preserve the original data, while warning users of erroneous geolocation, radiance and temporal values at the pixel level. These orbit files will also extend the period of record of SSMI data publicly available at NOAA's Comprehensive Large-Array Stewardship System (CLASS) by several years (August 1993-February 1997). Making earlier SSMI data available to customers and improving the quality of the SSMI dataset are important steps in attaining higher levels of dataset maturity in terms of scientific value and data preservation.

  4. NPOESS Contributions to Climate Observations

    NASA Astrophysics Data System (ADS)

    Day, D. W.; Mussetto, M.

    2009-12-01

    The Environmental Data Products (EDRs) generated from the science instrument suite on the National Polar-orbiting Operational Environmental Satellite System (NPOESS) contribute to 16 of the 26 essential climate variables (ECVs) that are observable from space. NPOESS has the capacity to accommodate additional sensors to increase support for observing climate variables. This poster provides an overview of the ECVs that NPOESS will support and potential sensors that NPOESS could accommodate to support additional ECVs. Northrop Grumman Space Technology (NGST) is the system prime contractor for the National Polar-orbiting Operational Environmental Satellite System (NPOESS). The United States is developing the National Polar-orbiting Operational Environmental Satellite System through the Integrated Program Office (IPO), comprised of the National Oceanic and Atmospheric Administration (NOAA), the Department of Defense (DoD), and the National Aeronautics and Space Administration (NASA).

  5. NOAA Budget Proposal Calls for a Small Increase, But Several Programs Would Be Sharply Cut

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    2014-04-01

    The White House's proposed budget of 5.497 billion for the National Oceanic and Atmospheric Administration (NOAA) for fiscal year (FY) 2015 would be good news for the agency overall if Congress goes along with the Obama administration's funding plan. The proposal would increase NOAA's discretionary budget by 174.1 million, 3.27% above the FY 2014 enacted budget (see Table ). The White House announced the overall federal budget on 4 March, and the NOAA budget "blue book" with specific funding numbers was issued in mid-March.

  6. NOAA GCOM-W1/AMSR2 Oceanic Environmental Products: Phase-2

    NASA Astrophysics Data System (ADS)

    Jelenak, Z.; Alsweiss, S.; Chang, P.; Park, J. Y.

    2014-12-01

    Passive microwave radiometry is a special application of microwave communications technology for the purpose of collecting Earth's electromagnetic radiation. With the use of radiometers onboard earth orbiting satellites, scientists are able to monitor the Earth's environment and climate system on both short- and long-term temporal scales with near global coverage. The Global Change Observation Mission (GCOM) is part of the Japanese Aerospace Exploration Agency (JAXA) broader commitment toward global and long-term observation of the Earth's environment. GCOM consists of two polar orbiting satellite series, GCOM-W (Water) and GCOM-C (Climate), with 1-year overlap between them for inter-calibration. AMSR2 onboard GCOM-W1 is a microwave radiometer system that measures dual polarized radiances at 6.9, 7.3, 10.65, 18.7, 23.8, 36.5, and 89.0 GHz. It is a sun-synchronous orbiter that acquires microwave radiances by conically scanning the Earth's surface at a nominal earth incidence angle of 55 degrees that results in a wide swath of 1450 km. As a part of Joint Polar Satellite System (JPSS) program the National Oceanic and Atmospheric Administration (NOAA) GCOM-W1 product development and validation project will provide NOAA's users access to critical geophysical products derived from AMSR-2. These products, which are detailed in NOAA's JPSS Level 1 Requirements Document Supplement, include: microwave brightness temperature, total precipitable water, cloud liquid water, precipitation type/rate, sea surface temperature, and Sea Surface Wind Speed. Phase-1 of the AMSR-2 project at NOAA included inter-calibration of AMSR-2 measured brightness temperatures with the Tropical Rainfall Measuring Mission Microwave Imager as the reference radiometer. The second phase of the project utilized the calibrated brightness temperatures in a robust Bayesian network to retrieve more accurate geophysical parameters over the ocean surface. It can handle retrievals even with missing channels and

  7. Historical Space Weather Datasets within NOAA

    NASA Astrophysics Data System (ADS)

    Denig, W. F.; Mabie, J. J.; Horan, K.; Clark, C.

    2013-12-01

    The National Geophysical Data Center (NGDC) is primarily responsible for scientific data stewardship of operational space weather data from NOAA's fleet of environmental satellites in geostationary and polar, low-earth orbits. In addition to this and as the former World Data Center for Solar Terrestrial Physics from 1957 to 2011 NGDC acquired a large variety of solar and space environmental data in differing formats including paper records and on film. Management of this heterogeneous collection of environmental data is a continued responsibility of NGDC as a participant in the new World Data System. Through the former NOAA Climate Data Modernization Program many of these records were converted to digital format and are readily available online. However, reduced funding and staff have put a strain on NGDC's ability to effectively steward these historical datasets, some of which are unique and, in particular cases, were the basis of fundamental scientific breakthroughs in our understanding of the near-earth space environment. In this talk, I will provide an overview of the historical space weather datasets which are currently managed by NGDC and discuss strategies for preserving these data during these fiscally stressing times.

  8. An approach to designing a national climate service

    PubMed Central

    Miles, E. L.; Snover, A. K.; Whitely Binder, L. C.; Sarachik, E. S.; Mote, P. W.; Mantua, N.

    2006-01-01

    Climate variability and change are considerably important for a wide range of human activities and natural ecosystems. Climate science has made major advances during the last two decades, yet climate information is neither routinely useful for nor used in planning. What is needed is a mechanism, a national climate service (NCS), to connect climate science to decision-relevant questions and support building capacity to anticipate, plan for, and adapt to climate fluctuations. This article contributes to the national debate for an NCS by describing the rationale for building an NCS, the functions and services it would provide, and how it should be designed and evaluated. The NCS is most effectively achieved as a federal interagency partnership with critically important participation by regional climate centers, state climatologists, the emerging National Integrated Drought Information System, and the National Oceanic and Atmospheric Administration (NOAA) Regional Integrated Sciences Assessment (RISA) teams in a sustained relationship with a wide variety of stakeholders. Because the NCS is a service, and because evidence indicates that the regional spatial scale is most important for delivering climate services, given subnational geographical/geophysical complexity, attention is focused on lessons learned from the University of Washington Climate Impacts Group's 10 years of experience, the first of the NOAA RISA teams. PMID:17158218

  9. An approach to designing a national climate service.

    PubMed

    Miles, E L; Snover, A K; Whitely Binder, L C; Sarachik, E S; Mote, P W; Mantua, N

    2006-12-26

    Climate variability and change are considerably important for a wide range of human activities and natural ecosystems. Climate science has made major advances during the last two decades, yet climate information is neither routinely useful for nor used in planning. What is needed is a mechanism, a national climate service (NCS), to connect climate science to decision-relevant questions and support building capacity to anticipate, plan for, and adapt to climate fluctuations. This article contributes to the national debate for an NCS by describing the rationale for building an NCS, the functions and services it would provide, and how it should be designed and evaluated. The NCS is most effectively achieved as a federal interagency partnership with critically important participation by regional climate centers, state climatologists, the emerging National Integrated Drought Information System, and the National Oceanic and Atmospheric Administration (NOAA) Regional Integrated Sciences Assessment (RISA) teams in a sustained relationship with a wide variety of stakeholders. Because the NCS is a service, and because evidence indicates that the regional spatial scale is most important for delivering climate services, given subnational geographical/geophysical complexity, attention is focused on lessons learned from the University of Washington Climate Impacts Group's 10 years of experience, the first of the NOAA RISA teams. PMID:17158218

  10. Differences in visible and near-IR responses, and derived vegetation indices, for the NOAA-9 and NOAA-10 AVHRRs: a case study

    USGS Publications Warehouse

    Gallo, Kevin P.; Eidenshink, Jeffery C.

    1988-01-01

    This study evaluates the differences in the visible and near-IR responses of the Advanced Very High Resolution Radiometers (AVHRR) of the National Oceanic and Atmospheric Administration (NOAA)-9 and -10 satellites for coincident sample locations. The study also evaluates the differences in vegetation indices computed from those data. Data were acquired of the southeast portion of the United States for the 6 December 1986 daylight orbits of NOAA-9 and NOAA-10 satellites. The results suggest that, with appropriate gain and offset, the vegetation indices of the two sensor systems may be interchangeable for assessment of land surfaces.

  11. Evolving Data System Architectures in NOAA: Perspectives from the National Data Centers

    NASA Astrophysics Data System (ADS)

    Casey, K. S.; Mesick, S.; Kowal, D.; Kearns, E. J.; Hausman, S. A.; DelGreco, S. A.; Morris, J.

    2014-12-01

    For decades, the National Oceanic and Atmospheric Administration (NOAA) has operated three distinct National Data Centers to manage its large and diverse environmental data collections. These centers, the National Oceanographic Data Center (NODC), the National Geophysical Data Center (NGDC), and the National Climatic Data Center (NCDC), have collaborated over the years on various programs and projects to esnure the long term preservation and scientific stewardship of their archived data, workflows, and algorithms. In recent years, the pace of collaboration has accelerated dramatically as new observing missions have come online, as new designated communities have emerged, and as waves of consolidation have swept across NOAA, driven by technological, budgetary, and policy-oriented pressures. An update on how NODC, NGDC, and NCDC have responded to these pressures and have been evolving their data system architectures and operations to keep pace with the new requirements will be presented. Examples efforts in the areas of streamlined data ingest, improved data discoverability, and enhanced data interoperability will be provided to illustrate the Natonal Data Centers' committment to meeting the needs of their user communities and highlight the rapid evolution taking place in their science data systems.

  12. Social Climate and Administrative Decision-Making Research for Institutional Renewal.

    ERIC Educational Resources Information Center

    Rasheed, Mohammed A.

    An Arabic translation of the "Work Environment Scale" was administered to the employees of Riyadh University's College of Education in Saudi Arabia for the purpose of gathering data useful in administrative decision-making. The survey investigated the work environment of the college as it is perceived by three distinct groups: the faculty, the…

  13. Online Impact Prioritization of Essential Climate Variables on Climate Change

    NASA Astrophysics Data System (ADS)

    Forsythe-Newell, S. P.; Barkstrom, B. B.; Roberts, K. P.

    2007-12-01

    The National Oceanic & Atmospheric Administration (NOAA)'s NCDC Scientific Data Stewardship (SDS) Team has developed an online prototype that is capable of displaying the "big picture" perspective of all Essential Climate Variable (ECV) impacts on society and value to the IPCC. This prototype ECV-Model provides the ability to visualize global ECV information with options to drill down in great detail. It offers a quantifiable prioritization of ECV impacts that potentially may significantly enhance collaboration with respect to dealing effectively with climate change. The ECV-Model prototype assures anonymity and provides an online input mechanism for subject matter experts and decision makers to access, review and submit: (1) ranking of ECV"s, (2) new ECV's and associated impact categories and (3) feedback about ECV"s, satellites, etc. Input and feedback are vetted by experts before changes or additions are implemented online. The SDS prototype also provides an intuitive one-stop web site that displays past, current and planned launches of satellites; and general as well as detailed information in conjunction with imagery. NCDC's version 1.0 release will be available to the public and provide an easy "at-a-glance" interface to rapidly identify gaps and overlaps of satellites and associated instruments monitoring climate change ECV's. The SDS version 1.1 will enhance depiction of gaps and overlaps with instruments associated with In-Situ and Satellites related to ECVs. NOAA's SDS model empowers decision makers and the scientific community to rapidly identify weaknesses and strengths in monitoring climate change ECV's and potentially significantly enhance collaboration.

  14. Mission description and in-flight operations of ERBE instruments on ERBS, NOAA 9, and NOAA 10 spacecraft

    NASA Technical Reports Server (NTRS)

    Weaver, William L.; Bush, Kathryn A.; Degnan, Keith T.; Howerton, Clayton E.; Tolson, Carol J.

    1992-01-01

    Instruments of the Earth Radiation Budget Experiment (ERBE) are operating on three different Earth-orbiting spacecraft. The Earth Radiation Budget Satellite (ERBS) is operated by NASA, and NOAA 9 and NOAA 10 weather satellites are operated by the National Oceanic and Atmospheric Administration (NOAA). This paper is the second in a series that describes the ERBE mission, and data processing and validation procedures. This paper describes the spacecraft and instrument operations for the second full year of in-orbit operations, which extend from February 1986 through January 1987. Validation and archival of radiation measurements made by ERBE instruments during this second year of operation were completed in July 1991. This period includes the only time, November 1986 through January 1987, during which all ERBE instruments aboard the ERBE, NOAA 9, and NOAA 10 spacecraft were simultaneously operational. This paper covers normal and special operations of the spacecraft and instruments, operational anomalies, and the responses of the instruments to in-orbit and seasonal variations in the solar environment.

  15. Climate Change and Water Resources Management: A Federal Perspective

    USGS Publications Warehouse

    Brekke, Levi D.; Kiang, Julie E.; Olsen, J. Rolf; Pulwarty, Roger S.; Raff, David A.; Turnipseed, D. Phil; Webb, Robert S.; White, Kathleen D.

    2009-01-01

    Many challenges, including climate change, face the Nation's water managers. The Intergovernmental Panel on Climate Change (IPCC) has provided estimates of how climate may change, but more understanding of the processes driving the changes, the sequences of the changes, and the manifestation of these global changes at different scales could be beneficial. Since the changes will likely affect fundamental drivers of the hydrological cycle, climate change may have a large impact on water resources and water resources managers. The purpose of this interagency report prepared by the U.S. Geological Survey (USGS), U.S. Army Corps of Engineers (USACE), Bureau of Reclamation (Reclamation), and National Oceanic and Atmospheric Administration (NOAA) is to explore strategies to improve water management by tracking, anticipating, and responding to climate change. This report describes the existing and still needed underpinning science crucial to addressing the many impacts of climate change on water resources management.

  16. NOAA Ocean Exploration 2003: A Scientific Overview

    NASA Astrophysics Data System (ADS)

    Hammond, S. R.

    2003-12-01

    A little over three years ago, a panel of leading ocean scientists, explorers, and educators developed a national strategy for ocean exploration. Their report, "Discovering Earth's Final Frontier: A U.S. Strategy for Ocean Exploration," opened the door to a new way of thinking about ocean exploration and inspired the National Oceanic and Atmospheric Administration (NOAA) to embark on a mission to expand knowledge and appreciation of the ocean. This year, in collaboration with over 100 partners including university, international, federal, state and tribal science agencies, private research and outreach organizations, civic groups, aquariums and museums, NOAA engaged in major multidisciplinary expeditions and multiple projects around the world aimed at mapping the ocean in new ways, understanding ocean interactions, developing sensors and tools, and reaching out in new ways to stakeholders to communicate findings. Expeditions and projects undertaken this year continued to build on inaugural work in 2001 and 2002 and continue to set a precedent for high quality discovery-based ocean research and exploration. This presentation will focus on expedition highlights and future program directions.

  17. NOAA Activities and Plans for New Operational Space Weather Platforms and Sensors

    NASA Astrophysics Data System (ADS)

    Biesecker, D. A.; Mulligan, P.; Cash, M. D.; Reinard, A.; Simpson, M.; Diedrich, B.; Socker, D. G.

    2013-12-01

    The National Oceanic and Atmospheric Administration (NOAA) is vigorously pursuing several space weather platforms that have been demonstrated as requiring replacement. In this time of limited budgets, this has led to the need for creative and innovative solutions. Just as importantly, NOAA is only 13 months away from the launch of its first L1 solar wind monitor, the DSCOVR mission. At the same time, a private company, L'Garde Inc. will be launching a solar sail mission with NOAA as a partner. Recognizing the importance of solar wind monitoring and the need for continuity, the planning process is already underway for the DSCOVR follow-on mission and scenarios for that include commercial data purchases and solar sails. Finally, NOAA planning for an operational coronagraph is moving forward, with continuing development of the Naval Research Laboratory's Compact Coronagraph (CCOR). We will provide details on the current NOAA plans for each of these missions.

  18. Devils Lake Climate, Weather, and Water Decision Support System

    NASA Astrophysics Data System (ADS)

    Horsfall, F. M.; Kluck, D. R.; Brewer, M.; Timofeyeva, M. M.; Symonds, J.; Dummer, S.; Frazier, M.; Shulski, M.; Akyuz, A.

    2010-12-01

    North Dakota’s Devils Lake area represents an example of a community struggling with a serious climate-related problem. The Devils Lake water level elevation has been rising since 1993 due to a prolonged wet period, and it is now approaching the spill stage into the Cheyenne River and ultimately into the Red River of the North. The impacts of the rising water have already caused significant disruption to the surrounding communities, and even greater impacts will be seen if the lake reaches the spill elevation. These impacts include flooding, water quality issues, impacts to agriculture and ecosystems, and impacts to local and regional economies. National Oceanic and Atmospheric Administration (NOAA), through the National Weather Service (NWS), the National Environmental Satellite, Data, and Information Service (NESDIS), and the Office of Oceanic and Atmospheric Research (OAR), provides the U.S. public with climate, water, and weather services, including meteorological, hydrological and climate data, warnings, and forecasts of weather and climate from near- to longer-term timescales. In support of the people of Devils Lake, the surrounding communities, the people of North Dakota, and the other Federal agencies with responsibilities in the area, NOAA launched the first ever climate-sensitive decision support web site (www.devilslake.noaa.gov) in July 2010. The website is providing integrated weather, water, and climate information for the area, and has links to information from other agencies, such as USGS, to help decision makers as they address this ongoing challenge. This paper will describe the website and other ongoing activities by NOAA in support of this community.

  19. Enhancement of Local Climate Analysis Tool

    NASA Astrophysics Data System (ADS)

    Horsfall, F. M.; Timofeyeva, M. M.; Dutton, J.

    2012-12-01

    The National Oceanographic and Atmospheric Administration (NOAA) National Weather Service (NWS) will enhance its Local Climate Analysis Tool (LCAT) to incorporate specific capabilities to meet the needs of various users including energy, health, and other communities. LCAT is an online interactive tool that provides quick and easy access to climate data and allows users to conduct analyses at the local level such as time series analysis, trend analysis, compositing, correlation and regression techniques, with others to be incorporated as needed. LCAT uses principles of Artificial Intelligence in connecting human and computer perceptions on application of data and scientific techniques in multiprocessing simultaneous users' tasks. Future development includes expanding the type of data currently imported by LCAT (historical data at stations and climate divisions) to gridded reanalysis and General Circulation Model (GCM) data, which are available on global grids and thus will allow for climate studies to be conducted at international locations. We will describe ongoing activities to incorporate NOAA Climate Forecast System (CFS) reanalysis data (CFSR), NOAA model output data, including output from the National Multi Model Ensemble Prediction System (NMME) and longer term projection models, and plans to integrate LCAT into the Earth System Grid Federation (ESGF) and its protocols for accessing model output and observational data to ensure there is no redundancy in development of tools that facilitate scientific advancements and use of climate model information in applications. Validation and inter-comparison of forecast models will be included as part of the enhancement to LCAT. To ensure sustained development, we will investigate options for open sourcing LCAT development, in particular, through the University Corporation for Atmospheric Research (UCAR).

  20. Creating a More Inclusive Talent Pool for the GeoSciences in NOAA Mission Fields:

    NASA Astrophysics Data System (ADS)

    Rousseau, J.; Trotman, A. A.

    2014-12-01

    The National Oceanic and Atmospheric Administration (NOAA) Educational Partnership Program (EPP) with Minority Serving Institutions (MSI) is recognized as a model federal Science, Technology, Engineering, and Mathematics, (STEM) education investment. The EPP has a premier goal of increasing the numbers of students, especially from underrepresented communities, who are trained and awarded degrees in NOAA mission-relevant STEM fields. This goal is being achieved through awards to support undergraduate and graduate level student scholarships and to enhance NOAA mission-relevant education, research and internships at EPP Cooperative Science Centers located at MSIs. The internships allow undergraduate students to gain technical experience in STEM fields while gaining an understanding of a science mission agency such as NOAA. EPP has built evidence supporting the value of internships with its Undergraduate Scholarship Program (USP). Program metrics are used to refine and improve the internship to ensure student success. Scholarships are competitively awarded and requires applicants to submit a personal statement detailing the NOAA-relevant professional experience the applicant seeks to acquire, and gauges the depth of understanding of the work of NOAA.A focus is the EPP USP Student Internship at NOAA, which has two training phases. The first occurs at NOAA HQ in Maryland and incorporates exposure to NOAA professional culture including mentoring and professional development for scholarship recipients. The second occurs at NOAA facilities in the 50 states and US Territories. The internship projects are conducted under the supervision of a NOAA mentor and allow the scholars to: acquire increased science and technology skills: be attached to a research group and participate in a research activity as part of the team; and, acquire practical experience and knowledge of the day-to-day work of the NOAA facility. EPP has recently initiated the Experiential Research and Training

  1. M.Y.S.P.A.C.E. : Multinational Youth Studying Practical Applications of Climatic Events

    NASA Astrophysics Data System (ADS)

    Mckay, M.; Arvedson, J. P.; Arvedson, P.

    2014-12-01

    M.Y. S.P.A.C.E. (Multinational Youth Studying Practical Applications of Climatic Events) is an international collaboration of high school students engaged in self-selected research projects on the local impact of global environmental issues. Students work with their own, trained, Teacher Leaders at their school sites using both locally generated and satellite-based remote-sensing data with support from the National Oceanic and Atmospheric Administration (NOAA) and the National Aeronautics and Space Administration (NASA). Teams from each school meet at the annual Satellites & Education Conference to discover global trends in their collective data and present their findings. Students learn and practice techniques of scientific investigation; methods of data processing, analysis and interpretation; leadership; and effective communication. They work with NOAA and NASA scientists and engineers, experience university campus life, and can apply for special internships at selected university research centers such as the Center for Energy and Sustainability (CE&S), the Center for Spatial Analysis and Remote Sensing (CSARS), and graduate research opportunities in Geosciences and Environment. The M.Y. S.P.A.C.E. Program is an initiative of the Satellites & Education Conference, which is produced by the non-profit Satellite Educators Association. It is administered from the campus of California State University, Los Angeles. NOAA, NASA, and the NOAA-CREST West grant support the program. It is aligned with NOAA goals of building excitement about careers in science, math, engineering and technology.

  2. 75 FR 37405 - Notice of Public Review and Comment Period on NOAA's Next Generation Strategic Plan (NGSP)

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-29

    ... domains. NOAA's Long-Term Goals: Climate Adaptation and Mitigation: An informed society anticipating and... goals: Long-term goal: Climate Adaptation and Mitigation - An informed society anticipating and... and adaptation efforts supported by sustained, reliable, and timely climate services. ] Objective:...

  3. Valuation of Mortality Risk Attributable to Climate Change: Investigating the Effect of Survey Administration Modes on a VSL

    PubMed Central

    Ščasný, Milan; Alberini, Anna

    2012-01-01

    The health impact attributable to climate change has been identified as one of the priority areas for impact assessment. The main goal of this paper is to estimate the monetary value of one key health effect, which is premature mortality. Specifically, our goal is to derive the value of a statistical life from people’s willingness to pay for avoiding the risk of dying in one post-transition country in Europe, i.e., the Czech Republic. We carried out a series of conjoint choice experiments in order to value mortality risk reductions. We found the responses to the conjoint choice questions to be reasonable and consistent with the economic paradigm. The VSL is about EUR 2.4 million, and our estimate is comparable with the value of preventing a fatality as used in one of the integrated assessment models. To investigate whether carrying out the survey through the internet may violate the welfare estimate, we administered our questionnaire to two independent samples of respondents using two different modes of survey administration. The results show that the VSLs for the two groups of respondents are €2.25 and €2.55 million, and these figures are statistically indistinguishable. However, the key parameters of indirect utility between the two modes of survey administration are statistically different when specific subgroups of population, such as older respondents, are concerned. Based on this evidence, we conclude that properly designed and administered on-line surveys are a reliable method for administering questionnaires, even when the latter are cognitively challenging. However, attention should be paid to sampling and choice regarding the mode of survey administration if the preference of specific segments of the population is elicited. PMID:23249861

  4. NOAA ESRL Atmospheric Research Operations in California

    NASA Astrophysics Data System (ADS)

    Vasel, B. A.; Borgeld, J.; Ives, M.; Conway, T.; Karion, A.; Fischer, M. L.; Andrews, A. E.; Sweeney, C.; Andrews, B.; Oltmans, S. J.; Johnson, B. J.; Patrick, L. C.; Berkoff, T.

    2009-12-01

    In 2009 the NOAA Earth System Research Laboratory (ESRL) had over two dozen operational research programs within the state of California. These diverse research missions include the Fire Weather Service and Support, the Pt Sur Debris Flow Project, and the Unmanned Aircraft Systems (UAS) regional test bed. The ESRL Global Monitoring Division had 10 atmospheric measurement programs with a common goal to understand the regional and global climate impacts in and around California. The NOAA Trinidad Head (THD) baseline observatory, run in cooperation with Humboldt State University (HSU), was recently promoted to the top-tier WMO/Global Atmospheric Watch (GAW) global station in 2009. The Trinidad Head observatory was strategically located (April 2002) along the west coast to monitor the air entering the United States and is now being impacted by effluents and anthropogenic aerosols and gases from booming Asian economies. Recent forest fire seasons in CA have had dramatic effects on aerosol properties and ozone concentrations measured at the THD site. Light aircraft flights made by NOAA/ESRL as part of the Airborne Greenhouse Emissions Survey (AGES) campaign in collaboration with Lawrence Berkeley National Lab and UC Davis in the spring and summer of 2008 captured large signals indicative of urban air plumes with highly correlated CO2, CH4, CO, as well as agricultural signatures with enhanced CH4 coincident with depleted CO2. These flights also captured a large signal from the northern CA wildfires enabling the comparison of signatures from forest fires to other sources. Ozonesonde balloon flights have been done weekly at the THD site since August of 1997 and bi-monthly vertical aircraft profiles above THD for carbon cycle gases (>50 gas species) began in September of 2003. In 2008 carbon cycle flasks were added to the HSU research vessel, the Coral Sea, to obtain surface values ~20 nautical miles offshore from the THD observatory. Particular attention will be paid to the

  5. The NASA/NOAA Electronic Theater

    NASA Technical Reports Server (NTRS)

    Hasler, A. F.

    2003-01-01

    The NASA/NOAA Electronic Theater presents Earth science observations and visualizations from space in a historical perspective. Fly in from outer space to Cambridge and Harvard University. Zoom through the Cosmos to SLC and site of the 2002 Winter Olympics using 1 m IKONOS "Spy Satellite" data. Contrast the 1972 Apollo 17 "Blue Marble" image of the Earth with the latest US and International global satellite images that allow us to view our Planet from any vantage point. See the latest spectacular images from NASA/NOAA remote sensing missions like Terra, GOES, TRMM, SeaWiFS, & Landsat 7, of storms & fires like Hurricane Isabel and the LNSan Diego firestorms of 2003. See how High Definition Television (HDTV) is revolutionizing the way we do science communication. Take the pulse of the planet on a daily, annual and 30-year time scale. See daily thunderstorms, the annual blooming of the northern hemisphere landmasses and oceans, fires in Africa, dust storms in Iraq, and carbon monoxide exhaust from global burning. See visualizations featured on Newsweek, TIME, National Geographic, Popular Science covers & National & International Network TV. Spectacular new global visualizations of the observed and simulated atmosphere & oceans are shown. See the currents and vortexes in the oceans that bring up the nutrients to feed tiny plankton and draw the fish, whales and fishermen. See the how the ocean blooms in response to El Niiioh Niiia climate changes. The Etheater will be presented using the latest High Definition TV (HDTV) and video projection technology on a large screen. See the global city lights, and the great NE US blackout of August 2003 observed by the "night-vision" DMSP satellite.

  6. Design and Flight Performance of NOAA-K Spacecraft Batteries

    NASA Technical Reports Server (NTRS)

    Rao, Gopalakrishna M.; Chetty, P. R. K.; Spitzer, Tom; Chilelli, P.

    1999-01-01

    The US National Oceanic and Atmospheric Administration (NOAA) operates the Polar Operational Environmental Satellite (POES) spacecraft (among others) to support weather forecasting, severe storm tracking, and meteorological research by the National Weather Service (NWS). The latest in the POES series of spacecraft, named as NOAA-KLMNN, is in orbit and four more are in various phases of development. The NOAA-K spacecraft was launched on May 13, 1998. Each of these spacecraft carry three Nickel-Cadmium batteries designed and manufactured by Lockheed Martin. The battery, which consists of seventeen 40 Ah cells manufactured by SAFT, provides the spacecraft power during the ascent phase, orbital eclipse and when the power demand is in excess of the solar array capability. The NOAA-K satellite is in a 98 degree inclination, 7:30AM ascending node orbit. In this orbit the satellite experiences earth occultation only 25% of the year. This paper provides a brief overview of the power subsystem, followed by the battery design and qualification, the cell life cycle test data, and the performance during launch and in orbit.

  7. Design and Flight Performance of NOAA-K Spacecraft Batteries

    NASA Technical Reports Server (NTRS)

    Rao, Gopalakrishna M.; Chetty, P. R. K.; Spitzer, Tom; Chilelli, P.

    1998-01-01

    The US National Oceanic and Atmospheric Administration (NOAA) operates the Polar Operational Environmental Satellite (POES) spacecraft (among others) to support weather forecasting, severe storm tracking, and meteorological research by the National Weather Service (NWS). The latest in the POES series of spacecraft, named as NOAA-KLMNN', one is in orbit and four more are in various phases of development. The NOAA-K spacecraft was launched on May 13, 1998. Each of these spacecraft carry three Nickel-Cadmium batteries designed and manufactured by Lockheed Martin. The battery, which consists of seventeen 40 Ah cells manufactured by SAFT, provides the spacecraft power during the ascent phase, orbital eclipse and when the power demand is in excess of the solar array capability. The NOAA-K satellite is in a 98 degree inclination, 7:30AM ascending node orbit. In this orbit the satellite experiences earth occultation only 25% of the year. This paper provides a brief overview of the power subsystem, followed by the battery design and qualification, the cell life cycle test data, and the performance during launch and in orbit.

  8. The NOAA Center in Atmospheric Sciences (NCAS) at Howard University

    NASA Astrophysics Data System (ADS)

    Strachan, M. D.; Morris, V. R.

    2003-12-01

    The National Oceanic and Atmospheric Administration (NOAA) of the Department of Commerce established the NOAA Center for Atmospheric Sciences (NCAS), a Cooperative Science Center, in fall 2001 to support the development of quality education to students at minority serving institutions while meeting the prescribed goals of NOAA and the nation. NCAS was established to research some of the critical environmental conditions occurring nationally and globally, and to provide opportunities and programs for students to pursue careers in atmospheric, environmental, and oceanic sciences and remote sensing. A primary goal is to increase the number of highly qualified, well trained graduates in the fields of NOAA related atmospheric sciences. NCAS is led by Howard University, in collaboration with three partners - Jackson State University, the University of Texas at El Paso, and the University of Puerto Rico at Mayaguez. This presentation will highlight the activities and accomplishments in research, education, and outreach of NCAS over its first two years of existence. The primary benefactor of NCAS has been the Howard University Program in Atmospheric Sciences (HUPAS), a comprehensive graduate program in atmospheric sciences with core focus areas of atmospheric chemistry, atmospheric physics, and geophysical fluid dynamics.

  9. Climate Model Diagnostic and Evaluation: With a Focus on Satellite Observations

    NASA Technical Reports Server (NTRS)

    Waliser, Duane

    2011-01-01

    Each year, we host a summer school that brings together the next generation of climate scientists - about 30 graduate students and postdocs from around the world - to engage with premier climate scientists from the Jet Propulsion Laboratory and elsewhere. Our yearly summer school focuses on topics on the leading edge of climate science research. Our inaugural summer school, held in 2011, was on the topic of "Using Satellite Observations to Advance Climate Models," and enabled students to explore how satellite observations can be used to evaluate and improve climate models. Speakers included climate experts from both NASA and the National Oceanic and Atmospheric Administration (NOAA), who provided updates on climate model diagnostics and evaluation and remote sensing of the planet. Details of the next summer school will be posted here in due course.

  10. NOAA Operational Tsunameter Support for Research

    NASA Astrophysics Data System (ADS)

    Bouchard, R.; Stroker, K.

    2008-12-01

    In March 2008, the National Oceanic and Atmospheric Administration's (NOAA) National Data Buoy Center (NDBC) completed the deployment of the last of the 39-station network of deep-sea tsunameters. As part of NOAA's effort to strengthen tsunami warning capabilities, NDBC expanded the network from 6 to 39 stations and upgraded all stations to the second generation Deep-ocean Assessment and Reporting of Tsunamis technology (DART II). Consisting of a bottom pressure recorder (BPR) and a surface buoy, the tsunameters deliver water-column heights, estimated from pressure measurements at the sea floor, to Tsunami Warning Centers in less than 3 minutes. This network provides coastal communities in the Pacific, Atlantic, Caribbean, and the Gulf of Mexico with faster and more accurate tsunami warnings. In addition, both the coarse resolution real-time data and the high resolution (15-second) recorded data provide invaluable contributions to research, such as the detection of the 2004 Sumatran tsunami in the Northeast Pacific (Gower and González, 2006) and the experimental tsunami forecast system (Bernard et al., 2007). NDBC normally recovers the BPRs every 24 months and sends the recovered high resolution data to NOAA's National Geophysical Data Center (NGDC) for archive and distribution. NGDC edits and processes this raw binary format to obtain research-quality data. NGDC provides access to retrospective BPR data from 1986 to the present. The DART database includes pressure and temperature data from the ocean floor, stored in a relational database, enabling data integration with the global tsunami and significant earthquake databases. All data are accessible via the Web as tables, reports, interactive maps, OGC Web Map Services (WMS), and Web Feature Services (WFS) to researchers around the world. References: Gower, J. and F. González, 2006. U.S. Warning System Detected the Sumatra Tsunami, Eos Trans. AGU, 87(10). Bernard, E. N., C. Meinig, and A. Hilton, 2007. Deep Ocean

  11. NOAA Budget Increases to $4.1 Billion, But Some Key Items Are Reduced

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    2008-02-01

    The Bush administration has proposed a US$4.1 billion budget for fiscal year (FY) 2009 for the U.S. National Oceanic and Atmospheric Administration (NOAA). The proposed budget, which would be the agency's largest ever, is $202.6 million, or 5.2%, above the FY 2008 enacted budget. By topping $4 billion and the amount Congress passed for FY 2008, the budget proposal crosses into ``a new threshold,'' according Navy Vice Admiral Conrad Lautenbacher, undersecretary of commerce for oceans and atmosphere and NOAA administrator.

  12. 77 FR 13562 - Request for Comments on the 5-Year Review of NOAA's Policy on Partnerships in the Provision of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-07

    ... on Partnerships in the Provision of Environmental Information AGENCY: National Weather Service (NWS... request for comments. SUMMARY: The National Weather Service of the National Oceanic and Atmospheric... National Weather Service of the National Oceanic and Atmospheric Administration (NOAA) is undertaking...

  13. 78 FR 59339 - Intracoastal Waterway Route “Magenta Line” on NOAA Nautical Charts

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-26

    ... Nautical Charts AGENCY: National Ocean Service, National Oceanic and Atmospheric Administration. (NOAA.../image/4DNo3-13 .) The U.S. Coast & Geodetic Survey published seven editions through 1935, when their... Ocean Service, National Oceanic and Atmospheric Administration. BILLING CODE 3510-JE-P...

  14. Prelaunch summary: NOAA-B launch

    NASA Technical Reports Server (NTRS)

    1980-01-01

    The NOAA-B satellite will launch from the Western Test Range into Sun-synchronous orbit to replace the TIROSN-satellite as part of the national operational environmental satellite system in support of the Global Atmospheric Research Program and the World Weather Watch. The mission objectives, primary environmental sensors, launch particulars, flight sequence of events, mission support, and project costs for NOAA-A through NOAA-G are discussed. NASA's responsibilities include launch, in-orbit evaluation and spacecraft checkout.

  15. NOAA's future GOES satellite program

    NASA Astrophysics Data System (ADS)

    Howard, Edward; Heymann, Roger; Dittberner, Gerald J.; Kirkner, Steven

    1996-10-01

    Future weather satellites for NOAA at geosynchronous orbit may be smaller, less costly, and developed by a different process than is currently done. This path is sometimes called the 'smaller, cheaper and faster' process being pursued by NASA. We believe in the future there will be less money, a focus on using the right technology and the desire to get the most value for the resources invested in space missions. In this paper we give an update on our progress to define future GOES. It will include our efforts to trade on user requirement early, to use evolutionary technology, and to consider new cost reduction and program management techniques.

  16. NOAA's hydrolab conducts reef studies

    NASA Astrophysics Data System (ADS)

    This summer, scuba-diving scientists operating from Hydrolab, NOAA's undersea laboratory, are carrying out four experiments aimed at producing better management of coral reefs and their fishery resources. Hydrolab is located at a depth of 50 feet, near the mouth of the Salt River, off St. Croix, U.S. Virgin Islands. The lab houses four scientists for up to 2 weeks at a time, permitting them to swim out into the water to conduct research. The projects make use of both the natural coral reef near Hydrolab and the nearby artificial reef constructed for comparison studies.

  17. NOAA Environmental Satellite Measurements of Extreme Space Weather Events

    NASA Astrophysics Data System (ADS)

    Denig, W. F.; Wilkinson, D. C.; Redmon, R. J.

    2015-12-01

    For over 40 years the National Oceanic and Atmospheric Administration (NOAA) has continuously monitored the near-earth space environment in support of space weather operations. Data from this period have covered a wide range of geophysical conditions including periods of extreme space weather such as the great geomagnetic March 1989, the 2003 Halloween storm and the more recent St Patrick's Day storm of 2015. While not specifically addressed here, these storms have stressed our technology infrastructure in unexpected and surprising ways. Space weather data from NOAA geostationary (GOES) and polar (POES) satellites along with supporting data from the Air Force are presented to compare and contrast the space environmental conditions measured during extreme events.

  18. Towards Interoperable Data Access through Climate.gov

    NASA Astrophysics Data System (ADS)

    Shrestha, S. R.; Marshall, J.; Stewart, J.; Ansari, S.; O'Brien, K.; Phillips, M. B.; Herring, D.

    2012-12-01

    The National Oceanic and Atmospheric Administration's (NOAA) Climate.gov team is enhancing users' ability to locate, preview, and acquire climate data. The Climate.gov team has created the Data Access and Interoperability project to design a web-based platform where interoperability between systems can be leveraged to allow greater data discovery, access, visualization and delivery. The team envisions an Interoperable Data Platform wherein systems can integrate with each other to support the synthesis of Climate data. Interoperability is the ability for users to discover the available climate data, preview and interact with the data, and acquire the data in common digital formats through a simple web-based interface. The Climate.gov Interoperable Data Platform uses the concepts of Representational State Transfer (REST) and common best practices for Web Services. Emerging standards for automation of machine-to-machine operations, such as OpenSearch autodiscovery, are being implemented throughout the Data Platform to ensure harmonization between data service providers, integrators and consumers. Implementation of common specifications will ensure compatibility between systems within NOAAand non-NOAA systems. The goal of the Interoperable Data Platform is to leverage existing web services, standards and existing solutions across the Earth sciences domain instead of creating new technologies. The Data Platform strives to become an integral part of the integration mechanisms supporting a system-of-systems ecosystem for Earth sciences information. As the team works across the organization, it will evaluate the capabilities of the participating systems to capture and assess the relative maturity of each system according to the Technology Infusion Working Group (TIWG) Interoperability Readiness Levels (IRL) as the reference for the interoperability mapping within NOAA. This will help establish the gaps and opportunities for integrating systems across a common set of

  19. 2013 Update of NOAA's Annual Greenhouse Gas Index

    NASA Astrophysics Data System (ADS)

    Butler, James H.; Montzka, Stephen A.; Dlugokencky, Edward J.; Elkins, James W.; Masari, Kenneth A.; Schnell, Russell C.; Tans, Pieter P.

    2013-04-01

    Indexes are becoming increasingly important in communicating messages about climate change to a diverse public. Indexes exist for a number of climate-related phenomena including heat, precipitation, and extreme events. These help communicate complex phenomena to the public and, at times, policy makers, to aid in understanding or making decisions. Several years ago, NOAA introduced a unique index for expressing the influence of human-emitted, long-lived greenhouse gases in the atmosphere (DJ Hofmann et al., Tellus, 2006, S8B 614-619). Essentially a condensation and normalization of radiative forcing from long-lived gases, the NOAA Annual Greenhouse Gas Index (AGGI) was designed to enhance the connection between scientists and society by providing a standard that could be easily understood and followed. The index each year is calculated from high quality, long-term observations by NOAA's Global Monitoring Division, which includes real-time measurements extending over the past five decades, as well as published ice core record that go back to 1750. The AGGI is normalized to 1.00 in 1990, the Kyoto Climate Protocol baseline year. At the end of 2011, the AGGI was 1.30, indicating that global radiative forcing by long-lived greenhouse gases had increased 30% since 1990. During the 1980s CO2 accounted for about 50-60% of the annual increase in radiative forcing by long-lived greenhouse gases, whereas, since 2000, it has accounted for 85-90% of this increase each year. After nearly a decade of virtually level concentrations in the atmosphere, methane (CH4) increased measurably over the past 2-3 years, as did its contribution to radiative forcing. In addition to presenting the AGGI for 2012, increases in radiative forcing will be evaluated and discussed with respect to the contributions from CO2, CH4, nitrous oxide (N2O), chlorofluorocarbons (CFCs), and other emerging greenhouse gases.

  20. Towards NOAA Forecasts of Permafrost Active Layer Thickness

    NASA Astrophysics Data System (ADS)

    Livezey, M. M.; Jonassen, R. G.; Horsfall, F. M. C.; Jafarov, E. E.; Schaefer, K. M.

    2014-12-01

    NOAA's implementation of its 2014 Arctic Action Plan (AAP) lacks services related to permafrost change yet the Interagency Working Group on Coordination of Domestic Energy Development and Permitting in Alaska noted that warming permafrost challenges land-based development and calls for agencies to provide focused information needed by decision-makers. To address this we propose to link NOAA's existing seasonal forecasts of temperature and precipitation with a high-resolution model of the thermal state of permafrost (Jafarov et al., 2012) to provide near-term (one year ahead) forecasts of active layer thickness (ALT). Such forecasts would be an official NOAA statement of the expected thermal state of permafrost ALT in Alaska and would require: (1) long-term climate outlooks, (2) a permafrost model, (3) detailed specification of local spatial and vertical controls upon soil thermal state, (4) high-resolution vertical measurements of that thermal state, and (5) demonstration of forecast skill in pilot studies. Pilot efforts should focus on oil pipelines where the cost can be justified. With skillful forecasts, engineers could reduce costs of monitoring and repair as well as ecosystem damage by positioning equipment to more rapidly respond to predicted disruptions.

  1. NOAA Operational Ocean Products from AMSR-2 Microwave Radiometer

    NASA Astrophysics Data System (ADS)

    Jelenak, Zorana; Chang, Paul; Alsweiss, Suleiman; Park, Jun; Meyers, Patrick

    2014-05-01

    The Japanese Aerospace Exploration Agency (JAXA) Global Change Observation Mission (GCOM) consists of two satellite series, Water (GCOM-W) and Climate (GCOM-C). The first satellite of the GCOM program, GCOM-W1, was launched on May 18, 2012 carrying the follow-on to the Advanced Microwave Scanning Radiometer - Earth Observing System (AMSR-E), AMSR-2. NOAA's GCOM-W1 product development and validation project will provide NOAA's users access to critical geophysical products derived from AMSR-2. These products, which are detailed in NOAA's Joint Polar Satellite System (JPSS) Level 1 Requirements Document Supplement, include: NOAA AMSR-2 Product Requirements: Day 1 Product Capability • Microwave Brightness Temperature (MBT) • Total Precipitable Water (TPW) • Cloud Liquid Water (CLW) • Precipitation Type/Rate (PT/R) • Sea Surface Temperature (SST) • Sea Surface Wind Speed (SSW) Day 2 Product Capability • Soil Moisture (SM) • Sea Ice Characterization (SIC) • Snow Cover/Depth (SC/D) • Snow Water Equivalent (SWE) • Surface Type (ST) GCOM-W1 data is being captured at the KSAT Svalbard Ground Station and assembled into APID packets. Using the JPSS (NPP) infrastructure, the GCOM raw data (APID packets) are routed to the NOAA Interface Data Processing System (IDPS), in near-real time. Once received at the IDPS, the APID packets will be reformatted into Raw Data Records (RDRs) and sent to the NPP Data Exploitation (NDE) system for distribution to the Environmental Satellite Date Processing System where further processing to brightness temperatures (Level 1)/sensor data records (SDRs) and geophysical products (Level 2)/Environmental Data Records (EDRs) will be performed. The RDRs are processed to SDRs utilizing software provided by JAXA. The goal of the product processing system is to provide validated operational L2 products from the AMSR-2 instrument that address the GCOM-W1 requirements in the JPSS L1RD Supplemental for distribution to operational users

  2. Long Term Monitoring of Greenhouse Gases at NOAA - a Forty Year Record

    NASA Astrophysics Data System (ADS)

    Butler, J. H.

    2009-04-01

    NOAA's Earth System Research Laboratory and its precursor organizations have been monitoring trends and distributions of greenhouse gases and other climatically relevant constituents in the atmosphere for over 40 years (http://www.esrl.noaa.gov/gmd). The focus of these measurements has been to obtain reliable records of global trends and distributions, but the experimental design and use of these measurements have advanced over time with evolving scientific questions. In earlier days, measurements and data products were global in nature (e.g., Annual Greenhouse Gas Index, http://www.esrl.noaa.gov/gmd/aggi). Later, they addressed intra-hemispheric properties, continental contributions, and eventually regional sources and sinks (e.g., http://CarbonTracker.noaa.gov). Today, and into this century, scientific questions continue to progress and the observation systems will need to progress accordingly. Critical questions likely will center on greenhouse gas emission reduction efforts, ecosystem feedbacks, and climate surprises. Regional information will become increasingly important for supporting greenhouse gas emission reduction efforts, and this information must be accurate, precise, and without bias. With emerging diverse, regionalized efforts to monitor greenhouse gases, comparability of measurements and measurement systems becomes more important than ever. NOAA, with its long-standing networks and its role as the WMO Central Calibration Laboratory for the major greenhouse gases, is well positioned to provide the linkages necessary to assure that regional measurements are comparable. Policy-makers, businesses, and regulatory organizations will need the best information available for decision-making. This presentation will identify major, climate-relevant findings that have come from NOAA's networks and those of others over the past several decades and will address the long-term monitoring needs to support decision-making over the next decades as society begins to

  3. Noaa's Jpss Program: the Next Generation of Operational Earth Observations

    NASA Astrophysics Data System (ADS)

    Goldberg, M.

    2012-12-01

    The Joint Polar Satellite System is NOAA's new operational satellite program and includes the SUOMI National Polar-orbiting Partnership (NPP) as a bridge between NOAA's operational Polar Orbiting Environmental Satellite (POES) series, which began in 1978, and the first JPSS operational satellite scheduled for launch in 2017. The NPP was completed as originally planned and launched on October 28, 2011 and carries the following five sensors: - Visible/Infrared Imager Radiometer Suite (VIIRS) that provides advanced imaging and radiometric capabilities. - Cross-track Infrared Sounder (CrIS) that provides improved atmospheric moisture and temperature profiles in clear conditions. - Advanced Technology Microwave Sounder (ATMS) that provides improved atmospheric moisture and temperature profiles in cloudy conditions. - Ozone Mapping and Profiler Suite (OMPS) that provides improved vertical and horizontal measurements of the distribution of ozone in the Earth's atmosphere. - Clouds and the Earth's Radiant Energy System (CERES) sensor that continues precise, calibrated global measurements of the earth's radiation budget JPSS provides critical data for key NOAA product and services, which the Nation depends on. These products and services include: Weather forecasting - data from the CRIS and the ATMS are needed to forecast weather events out to 7 days. Nearly 85% of all data used in weather forecasting are from polar orbiting satellites. Environmental monitoring - data from the VIIRS are used to monitor the environment including the health of coastal ecosystems, drought conditions, hydrology, fire, smoke, dust, snow and ice, and the state of oceans, including sea surface temperature and ocean color. Climate monitoring - data from JPSS instruments, including OMPS, CERES and TSIS will provide continuity to climate data records established using NOAA POES and NASA Earth Observing System (EOS) satellite observations. These data records provide a unified and coherent long

  4. Comparison of NOAA-CREST Soil Moisture Measurements with SMOS Products

    NASA Astrophysics Data System (ADS)

    Norouzi, H.; Forbes, A.

    2014-12-01

    In October 2014, the Soil Moisture Active and Passive mission (SMAP) will launch into a near-polar and sun- synchronous orbit. SMAP includes the first 3 KM resolution product, by both radar and radiometer sensors which will transmit useful information concentrating on the global measurements of soil moisture and freeze/thaw cycles. NOAA- CREST (National Oceanic and Atmospheric Administration- Cooperative Remote Sensing Science and Technology) deploys a series of in-situ devices into the soil, and an L-BAND Radiometer close to the site ground at the Cary Institute in Millbrook, NY. The site is important for future validation of SMAP mission. Comparing mathematical and ground based remote sensing of soil moisture is beneficial to ensure the accuracy of the measurements. The focus of this research is to analyze and compare soil moisture from ESA- SMOS (Europe Space Agency- Soil Moisture Ocean Salinity) mission and the Cary Institute's soil moisture measurements within the same time period, and location. In the interest of establishing superb authentication; comparing SMOS and ground measurements will justify the accuracy of the newly launch satellite. Discrepancies can be found between field point measurement and relatively large footprint of SMOS, which affects comparison and validation. Several techniques and statistical methods will provide a more meaningful comparison to analyze soil moisture data. The results of this project will help to provide a useful method to compare the NOAA-CREST soil moisture measurements and SMAP measurements. In conclusion, the SMAP advance technology will provide more accurate feedback for modeling numerical weather and climate models. Keywords: Soil Moisture, Precipitation, CREST-SMART, Cary Institute, In-situ, Remote Sensors Accurate Soil Moisture Data, Millbrook, N.Y., CATDS, Hydrology is the branch of science concerning properties of earth's water especially its movement in relation to land. SMOS MIRAS, SMAP, Sensors (Underground)

  5. A long-term and reproducible passive microwave sea ice concentration data record for climate studies and monitoring

    NASA Astrophysics Data System (ADS)

    Peng, G.; Meier, W. N.; Scott, D. J.; Savoie, M. H.

    2013-05-01

    A long-term, consistent, and reproducible satellite-based passive microwave sea ice concentration climate data record (CDR) is available for climate studies, monitoring, and model validation with an initial operation capability (IOC). The daily and monthly sea ice concentration data are on the National Snow and Ice Data Center (NSIDC) polar stereographic grid with nominal 25 × 25 km grid cells in both the Southern and Northern Hemisphere Polar Regions from 9 July 1987 to 31 December 2007 with an update through 2011 underway. The data files are available in the NetCDF data format at http://nsidc.org/data/g02202.html and archived by the National Oceanic and Atmospheric Administration (NOAA)'s National Climatic Data Center (NCDC) under the satellite climate data record program (noaa.gov/cdr/operationalcdrs.html"target="_blank">http://www.ncdc.noaa.gov/cdr/operationalcdrs.html). The description and basic characteristics of the NOAA/NSIDC passive microwave sea ice concentration CDR are presented here. The CDR provides similar spatial and temporal variability as the heritage products to the user communities with the additional documentation, traceability, and reproducibility that meet current standards and guidelines for climate data records. The dataset along with detailed data processing steps and error source information can be found at: doi:10.7265/N5B56GN3.

  6. 75 FR 30383 - NOAA's Arctic Vision and Strategy; Comment Period Extension

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-01

    ...NOAA wishes to ensure its Arctic Vision and Strategy document reaches the broadest possible audience and allows adequate time for review, and therefore is extending the public comment period by fifteen days. The Arctic has profound significance for climate and functioning of ecosystems around the globe. The region is particularly vulnerable and prone to rapid change. Increasing air and ocean......

  7. 76 FR 9209 - Draft NOAA National Aquaculture Policy

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-16

    ... national approach for supporting sustainable aquaculture. The NOAA Aquaculture Program will host national.... Informational Briefings for the Public The NOAA Aquaculture Program will host a series of...

  8. Integrating Climate Change Into Restoration Practices in the Great Lakes Region: Creating a "Climate-smart" Great Lakes Restoration Initiative (GLRI)

    NASA Astrophysics Data System (ADS)

    Koslow, M.; Murray, M. W.

    2010-12-01

    Stakeholders from various Great Lakes sectors such as industry, state and city, federal, non-profit and academia gathered in September of 2010 in Buffalo, New York to provide ideas and input on how to integrate climate change into actions of the United States federal agencies. The mechanism by which the National Oceanic and Atmospheric Administration (NOAA) and the Environmental Protection Agency (EPA) employ climate change adaptation actions in the Great Lakes region is the Great Lakes Restoration Initiative (GLRI). In 2010 475 million was allocated through the GLRI to NOAA and EPA for on-the-ground ecological restoration projects throughout the region and 300 million is expected for 2011. With the goal to make these restoration projects "climate-smart," stakeholders made recommendations that include: application of information from the scientific community, emergency measures to deal with climate change-related surprises, priority steps for dealing with non-climate change related issues that are to be affected by climate change and steps to deal with climate change impacts on the Great Lakes ecosystem that differ from other ecosystems.

  9. Workshop on Bridging Satellite Climate Data Gaps

    PubMed Central

    Cooksey, Catherine; Datla, Raju

    2011-01-01

    Detecting the small signals of climate change for the most essential climate variables requires that satellite sensors make highly accurate and consistent measurements. Data gaps in the time series (such as gaps resulting from launch delay or failure) and inconsistencies in radiometric scales between satellites undermine the credibility of fundamental climate data records, and can lead to erroneous analysis in climate change detection. To address these issues, leading experts in Earth observations from National Aeronautics and Space Administration (NASA), National Oceanic and Atmospheric Adminstration (NOAA), United States Geological Survey (USGS), and academia assembled at the National Institute of Standards and Technology on December 10, 2009 for a workshop to prioritize strategies for bridging and mitigating data gaps in the climate record. This paper summarizes the priorities for ensuring data continuity of variables relevant to climate change in the areas of atmosphere, land, and ocean measurements and the recommendations made at the workshop for overcoming planned and unplanned gaps in the climate record. PMID:26989581

  10. NOAA's Data Catalog and the Federal Open Data Policy

    NASA Astrophysics Data System (ADS)

    Wengren, M. J.; de la Beaujardiere, J.

    2014-12-01

    The 2013 Open Data Policy Presidential Directive requires Federal agencies to create and maintain a 'public data listing' that includes all agency data that is currently or will be made publicly-available in the future. The directive requires the use of machine-readable and open formats that make use of 'common core' and extensible metadata formats according to the best practices published in an online repository called 'Project Open Data', to use open licenses where possible, and to adhere to existing metadata and other technology standards to promote interoperability. In order to meet the requirements of the Open Data Policy, the National Oceanic and Atmospheric Administration (NOAA) has implemented an online data catalog that combines metadata from all subsidiary NOAA metadata catalogs into a single master inventory. The NOAA Data Catalog is available to the public for search and discovery, providing access to the NOAA master data inventory through multiple means, including web-based text search, OGC CS-W endpoint, as well as a native Application Programming Interface (API) for programmatic query. It generates on a daily basis the Project Open Data JavaScript Object Notation (JSON) file required for compliance with the Presidential directive. The Data Catalog is based on the open source Comprehensive Knowledge Archive Network (CKAN) software and runs on the Amazon Federal GeoCloud. This presentation will cover topics including mappings of existing metadata in standard formats (FGDC-CSDGM and ISO 19115 XML ) to the Project Open Data JSON metadata schema, representation of metadata elements within the catalog, and compatible metadata sources used to feed the catalog to include Web Accessible Folder (WAF), Catalog Services for the Web (CS-W), and Esri ArcGIS.com. It will also discuss related open source technologies that can be used together to build a spatial data infrastructure compliant with the Open Data Policy.

  11. NOAA draft scientific integrity policy: Comment period open through 20 August

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    2011-08-01

    The National Oceanic and Atmospheric Administration (NOAA) is aiming to finalize its draft scientific integrity policy possibly by the end of the year, Larry Robinson, NOAA assistant secretary for conservation and management, indicated during a 28 July teleconference. The policy “is key to fostering an environment where science is encouraged, nurtured, respected, rewarded, and protected,” Robinson said, adding that the agency's comment period for the draft policy, which was released on 16 June, ends on 20 August. “Science underpins all that NOAA does. This policy is one piece of a broader effort to strengthen NOAA science,” Robinson said, noting that the draft “represents the first ever scientific integrity policy for NOAA. Previously, our policy only addressed research misconduct and focused on external grants. What's new about this policy is that it establishes NOAA's principles for scientific integrity, a scientific code of conduct, and a code of ethics for science supervision and management.”

  12. A Long-Term and Reproducible Passive Microwave Sea Ice Concentration Data Record for Climate Studies and Monitoring

    NASA Technical Reports Server (NTRS)

    Peng, G.; Meier, W. N.; Scott, D. J.; Savoie, M. H.

    2013-01-01

    A long-term, consistent, and reproducible satellite-based passive microwave sea ice concentration climate data record (CDR) is available for climate studies, monitoring, and model validation with an initial operation capability (IOC). The daily and monthly sea ice concentration data are on the National Snow and Ice Data Center (NSIDC) polar stereographic grid with nominal 25 km × 25 km grid cells in both the Southern and Northern Hemisphere polar regions from 9 July 1987 to 31 December 2007. The data files are available in the NetCDF data format at http://nsidc.org/data/g02202.html and archived by the National Climatic Data Center (NCDC) of the National Oceanic and Atmospheric Administration (NOAA) under the satellite climate data record program (http://www.ncdc.noaa.gov/cdr/operationalcdrs.html). The description and basic characteristics of the NOAA/NSIDC passive microwave sea ice concentration CDR are presented here. The CDR provides similar spatial and temporal variability as the heritage products to the user communities with the additional documentation, traceability, and reproducibility that meet current standards and guidelines for climate data records. The data set, along with detailed data processing steps and error source information, can be found at http://dx.doi.org/10.7265/N5B56GN3.

  13. 77 FR 33443 - National Oceanic and Atmospheric Administration

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-06

    ... National Oceanic and Atmospheric Administration Pacific Fishery Management Council; Public Meeting AGENCY: National Marine Fisheries Service (NMFS), National Oceanic and Atmospheric Administration (NOAA), Commerce... Assessment Methods for Data-Moderate Stocks will be held at the National Marine Fisheries Service's...

  14. Lautenbacher will face challenges as new NOAA Head

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    With a non-controversial confirmation hearing on November 8 before the U.S. Senate Commerce Committee, retired U.S. Navy Vice Admiral Conrad Lautenbacher, Jr. is gearing up to soon take over the helm at the National Oceanic and Atmospheric Administration (NOAA). His nomination by the Bush administration also includes serving as undersecretary of commerce for oceans and atmosphere.A number of sources familiar with Lautenbacher indicated that his Navy and managerial skills will be useful in these posts, as he likely will face a number of science, budget, and administrative challenges in running this $3.2-billion agency, which comprises 63% of the Commerce Department budget. These sources also sited Lautenbacher's integrity; his ability to listen to different sides of issues and to consult broadly; his connections to both the scientific and political worlds; and his persuasive ability to get things done.

  15. Mission description and in-flight operations of ERBE instruments on ERBS and NOAA 10 spacecraft, February 1987 - February 1990

    NASA Technical Reports Server (NTRS)

    Busch, Kathryn A.; Degnan, Keith T.

    1994-01-01

    Instruments of the Earth Radiation Budget Experiment (ERBE) are operating on three different Earth-orbiting spacecraft. The Earth Radiation Budget Satellite (ERBS) is operated by the National Aeronautics and Space Administration (NASA), and the NOAA 9 and NOAA 10 weather satellites are operated by the National Oceanic and Atmospheric Administration (NOAA). This paper is the third in a series that describes the ERBE mission in-orbit environments, instrument design and operational features, and data processing and validation procedures. This paper describes the in-flight operations for the ERBE instruments aboard the ERBS and NOAA 10 spacecraft for the period from February 1987 through February 1990. Validation and archival of radiation measurements made by ERBE instruments during this period were completed in May 1992. This paper covers normal and special operations of the spacecraft and instruments, operational anomalies, and the responses of the instruments to in-orbit and seasonal variations in the solar environment.

  16. Assessment of NOAA Processed OceanSat-2 Scatterometer Ocean Surface Vector Wind Products

    NASA Astrophysics Data System (ADS)

    Chang, P.; Jelenak, Z.; Soisuvarn, S.

    2011-12-01

    The Indian Space Research Organization (ISRO) launched the Oceansat-2 satellite on 23 September 2009. Oceansat-2 carries a radar scatterometer instrument (OSCAT) capable of measuring ocean surface vector winds (OSVW) and an ocean color monitor (OCM), which will retrieve sea spectral reflectance. Oceansat-2 is ISRO's second in a series of satellites dedicated to ocean research. It will provide continuity to the services and applications of the Oceansat-1 OCM data along with additional data from a Ku-band pencil beam scatterometer. Oceansat-2 is a three-axis, body stabilized spacecraft placed into a near circular sun-synchronous orbit, at an altitude of 720 kilometers (km), with an equatorial crossing time of around 1200 hours. ISRO, the National Oceanic and Atmospheric Administration (NOAA), the National Aeronautics and Space Administration (NASA) and the European Organization for the Exploitation of Meteorological Satellites (EUMETSAT) share the common goal of optimizing the quality and maximizing the utility of the Oceansat-2 data for the benefit of future global and regional scientific and operational applications. NOAA, NASA and EUMETSAT have been collaboratively working with ISRO on the assessment and analysis of OSCAT data to help facilitate continuation of QuikSCAT's decade-long Ku-band scatterometer data record. NOAA's interests are focused on the utilization of OSCAT data to support operational weather forecasting and warning in the marine environment. OSCAT has the potential to significantly mitigate the loss of NASA's QuikSCAT, which has negatively impacted NOAA's marine forecasting and warning services. Since March 2011 NOAA has been receiving near real time OSCAT measurements via EumetSat. NOAA has developed its own OSCAT wind processor. This processor produces ocean surface vector winds with resolution of 25km. Performance of NOAA OSCAT product will and its availability to larger user community will be presented and discussed.

  17. New Developments in NOAA's Comprehensive Large Array-Data Stewardship System

    NASA Astrophysics Data System (ADS)

    Ritchey, N. A.; Morris, J. S.; Carter, D. J.

    2012-12-01

    The Comprehensive Large Array-data Stewardship System (CLASS) is part of the NOAA strategic goal of Climate Adaptation and Mitigation that gives focus to the building and sustaining of key observational assets and data archives critical to maintaining the global climate record. Since 2002, CLASS has been NOAA's enterprise solution for ingesting, storing and providing access to a host of near real-time remote sensing streams such as the Polar and Geostationary Operational Environmental Satellites (POES and GOES) and the Defense Meteorological Satellite Program (DMSP). Since October, 2011 CLASS has also been the dedicated Archive Data Segment (ADS) of the Suomi National Polar-orbiting Partnership (S-NPP). As the ADS, CLASS receives raw and processed S-NPP records for archival and distribution to the broad user community. Moving beyond just remote sensing and model data, NOAA has endorsed a plan to migrate all archive holdings from NOAA's National Data Centers into CLASS while retiring various disparate legacy data storage systems residing at the National Climatic Data Center (NCDC), National Geophysical Data Center (NGDC) and the National Oceanographic Data Center (NODC). In parallel to this data migration, CLASS is evolving to a service-oriented architecture utilizing cloud technologies for dissemination in addition to clearly defined interfaces that allow better collaboration with partners. This evolution will require implementation of standard access protocols and metadata which will lead to cost effective data and information preservation.

  18. Preliminary Development of the Brief-California School Climate Survey: Dimensionality and Measurement Invariance across Teachers and Administrators

    ERIC Educational Resources Information Center

    You, Sukkyung; O'Malley, Meagan D.; Furlong, Michael J.

    2014-01-01

    A brief 15-item version of the California School Climate Scale (Brief-CSCS) is presented to fill a need for a measure that could be used for periodic monitoring of school personnel's general perception of the climate of their school campus. From a sample of 81,261 California school personnel, random subsamples of 2,400 teachers and 2,400…

  19. 15 CFR 995.28 - Use of NOAA emblem.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 15 Commerce and Foreign Trade 3 2011-01-01 2011-01-01 false Use of NOAA emblem. 995.28 Section 995... REQUIREMENTS FOR NOAA HYDROGRAPHIC PRODUCTS AND SERVICES CERTIFICATION REQUIREMENTS FOR DISTRIBUTORS OF NOAA HYDROGRAPHIC PRODUCTS Requirements for Certified Distributors and Value Added Distributors of NOAA ENC...

  20. NOAA's Space Weather Prediction Center, Forecast Office

    NASA Video Gallery

    The Forecast Office of NOAA's Space Weather Prediction Center is the nation's official source of alerts, warnings, and watches. The office, staffed 24/7, is always vigilant for solar activity that ...

  1. NOAA's Use of High-Resolution Imagery

    NASA Technical Reports Server (NTRS)

    Hund, Erik

    2007-01-01

    NOAA's use of high-resolution imagery consists of: a) Shoreline mapping and nautical chart revision; b) Coastal land cover mapping; c) Benthic habitat mapping; d) Disaster response; and e) Imagery collection and support for coastal programs.

  2. NOAA budget would boost satellite funding but cut some key areas

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    2012-03-01

    The White House's proposed fiscal year (FY) 2013 budget for the National Oceanic and Atmospheric Administration (NOAA), announced on 13 February, looks favorable at first glance. The administration's request calls for $5.1 billion, an increase of $153 million (3.1%) above the FY 2012 estimated budget. However, the increase for NOAA satellites is $163 million, which means that other areas within the agency would be slated for decreased funding, including programs within the National Ocean Service (NOS), National Marine Fisheries Service (NMFS), National Weather Service (NWS), and some NOAA education programs. The proposed overall budget for the agency “reflects the overarching importance of weather satellites to public safety, to national security, and to the economy,” NOAA director Jane Lubchenco said at a 16 February briefing, noting that difficult choices were made regarding the budget. “Due to significant resources required for our weather satellites and the economic conditions in the country, other parts of our budget have been reduced, in some cases quite significantly,” she said. She added that the imperative to fund both the Joint Polar Satellite System (JPSS) and geostationary satellites in FY 2013 “imposes serious constraints on the rest of NOAA's budget.”

  3. A Phenomenological Study of Perceptions of Early Childhood Administrators Related to Transformational Leadership, Educational Paths, and Organizational Climate

    ERIC Educational Resources Information Center

    Hayes, Lori

    2012-01-01

    Early childhood (EC) administrators could be the most important contributors to quality experiences in EC settings; they are also responsible for the caliber of experiences for children and staff. A quality EC program is licensed and accredited with administrators who have professional preparation and work experience and can lead and manage EC…

  4. 78 FR 48859 - Proposed Information Collection; Comment Request; 2013 NOAA Engagement Survey Tool

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-12

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF COMMERCE... Engagement Survey Tool AGENCY: National Oceanic and Atmospheric Administration (NOAA), Commerce. ACTION... rather than the Office of Education and the Gulf of Mexico Regional Collaboration Team, as it...

  5. 75 FR 6354 - NOAA Great Lakes Habitat Restoration Program Project Grants under the Great Lakes Restoration...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-09

    ... of Grant Funds for Fiscal Year 2010, published in the Federal Register (75 FR 3101). That... contained in the Federal Register notice of February 11, 2008 (73 FR 7696), are applicable to this... National Oceanic and Atmospheric Administration RIN 0648-ZC10 NOAA Great Lakes Habitat Restoration...

  6. 15 CFR 911.7 - Continuation of the NOAA Data Collection Systems.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 15 Commerce and Foreign Trade 3 2012-01-01 2012-01-01 false Continuation of the NOAA Data Collection Systems. 911.7 Section 911.7 Commerce and Foreign Trade Regulations Relating to Commerce and Foreign Trade (Continued) NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION, DEPARTMENT OF COMMERCE GENERAL REGULATIONS POLICIES AND PROCEDURES...

  7. 15 CFR 911.7 - Continuation of the NOAA Data Collection Systems.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 15 Commerce and Foreign Trade 3 2013-01-01 2013-01-01 false Continuation of the NOAA Data Collection Systems. 911.7 Section 911.7 Commerce and Foreign Trade Regulations Relating to Commerce and Foreign Trade (Continued) NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION, DEPARTMENT OF COMMERCE GENERAL REGULATIONS POLICIES AND PROCEDURES...

  8. Providing Western Regional Climate Services - Perspectives from the Western Regional Climate Center

    NASA Astrophysics Data System (ADS)

    Brown, T. J.; Redmond, K. T.

    2014-12-01

    The western United States faces distinct challenges such as persistent drought, dwindling water resources amidst an expanding population, and climate-sensitive alpine environments. The complex terrain of the region compounds these challenges. The Western Regional Climate Center (WRCC), one of six National Oceanic and Atmospheric Administration (NOAA) university-based regional climate centers, has been providing climate services since 1986 that support the unique needs of stakeholders in the mountainous region of the western U.S. This includes meteorological data, tools, and products for thousands of stations across the West, and gridded data products, such as based on PRISM for example, that are used for drought assessment among other needs. WRCC and partners have developed numerous web-based tools and products to support decision-making and research pertinent to the West. Changing climate and variability along with the diverse physical and human geographies of the western U.S. require continuous advancements in climate knowledge and applications development. Examples include the need for tools and model downscaling that support and inform adaptation, mitigation and resiliency planning; web-based analytics that would allow users to interact and explore temporal and spatial data and relationships, and products from new satellite sensors that can provide higher resolution information on soil moisture and vegetation health given the sparseness of in-situ observations for the vastness of the West. This presentation provides an overview of some insights, opportunities and challenges of providing current and future climate services in the West.

  9. 77 FR 60106 - Membership of the National Oceanic and Atmospheric Administration Performance Review Board

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-02

    ... National Oceanic and Atmospheric Administration Membership of the National Oceanic and Atmospheric Administration Performance Review Board AGENCY: National Oceanic and Atmospheric Administration (NOAA...., Director, Air Resources Laboratory, Office of Air Resources Laboratory, Office of Oceanic and......

  10. NASA/NOAA/AMS Earth Science Electronic Theatre

    NASA Technical Reports Server (NTRS)

    Hasler, Fritz; Pierce, Hal; Einaudi, Franco (Technical Monitor)

    2001-01-01

    The NASA/NOAA/AMS Earth Science Electronic Theater presents Earth science observations and visualizations in a historical perspective. Fly in from outer space to Florida and the KSC Visitor's Center. Go back to the early weather satellite images from the 1960s see them contrasted with the latest International global satellite weather movies including killer hurricanes & tornadic thunderstorms. See the latest spectacular images from NASA and NOAA remote sensing missions like GOES, NOAA, TRMM, SeaWiFS, Landsat 7, & new Terra which will be visualized with state-of-the art tools. Shown in High Definition TV resolution (2048 x 768 pixels) are visualizations of hurricanes Lenny, Floyd, Georges, Mitch, Fran and Linda. See visualizations featured on covers of magazines like Newsweek, TIME, National Geographic, Popular Science and on National & International Network TV. New Digital Earth visualization tools allow us to roam & zoom through massive global images including a Landsat tour of the US, with drill-downs into major cities using 1 m resolution spy-satellite technology from the Space Imaging IKONOS satellite, Spectacular new visualizations of the global atmosphere & oceans are shown. See massive dust storms sweeping across Africa. See ocean vortexes and currents that bring up the nutrients to feed tiny plankton and draw the fish, giant whales and fisherman. See the how the ocean blooms in response to these currents and El Nino/La Nina climate changes. The demonstration is interactively driven by a SGI Octane Graphics Supercomputer with dual CPUs, 5 Gigabytes of RAM and Terabyte disk using two projectors across the super sized Universe Theater panoramic screen.

  11. Budget Increases Proposed for NOAA and Energy Department

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    2009-05-01

    In addition to the Obama administration's proposed budget increases for NASA, the Environmental Protection Agency, and the U.S. Geological Survey (see Eos, 90(10), 83, 2009, and 90(20), 175, 2009), other federal Earth and space science agencies also would receive boosts in the proposed fiscal year (FY) 2010 budget. The proposed budget comes on top of the 2009 American Recovery and Reinvestment Act's (ARRA) US$18.3 billion in stimulus spending for research and development that can be apportioned between the FY 2009 and FY 2010 budgets. This news item focuses on the budget proposals for the National Oceanic and Atmospheric Administration (NOAA) and the Department of Energy (DOE). Next week, Eos will look at the budget proposal for the National Science Foundation.

  12. Identifying Decision Support Tools to Bridge Climate and Agricultural Needs in the Midwest

    NASA Astrophysics Data System (ADS)

    Hall, B. L.; Kluck, D. R.; Hatfield, J.; Black, C.; Kellner, O.; Woloszyn, M.; Timlin, M. S.

    2015-12-01

    Climate monitoring tools designed to help stakeholders reduce climate impacts have been developed for the primary Midwest field crops of corn and soybean. However, the region also produces vital livestock and specialty crops that currently lack similar climate monitoring and projection tools. In autumn 2015, the National Oceanic and Atmospheric Administration's (NOAA's) National Integrated Drought Information System (NIDIS) and Midwestern Regional Climate Center (MRCC) partnered with the US Department of Agriculture's Midwest Climate Hub to convene agriculture stakeholders, climate scientists, and climate service specialists to discuss climate impacts and needs for these two, often under-represented, sectors. The goals of this workshop were to (1) identify climate impacts that specialty crops and livestock producers face within the Midwest, (2) develop an understanding of the types of climate and weather information and tools currently available in the Midwest that could be applied to decision making, and (3) discover the types of climate and weather information and tools needed to address concerns of specialty crop and livestock commodities across the Midwest. This presentation will discuss the workshop and provide highlights of the outcomes that developed into strategic plans for the future to better serve these sectors of agriculture in the Midwest.

  13. A long-term and reproducible passive microwave sea ice concentration data record for climate studies and monitoring

    NASA Astrophysics Data System (ADS)

    Peng, G.; Meier, W. N.; Scott, D. J.; Savoie, M. H.

    2013-10-01

    A long-term, consistent, and reproducible satellite-based passive microwave sea ice concentration climate data record (CDR) is available for climate studies, monitoring, and model validation with an initial operation capability (IOC). The daily and monthly sea ice concentration data are on the National Snow and Ice Data Center (NSIDC) polar stereographic grid with nominal 25 km × 25 km grid cells in both the Southern and Northern Hemisphere polar regions from 9 July 1987 to 31 December 2007. The data files are available in the NetCDF data format at http://nsidc.org/data/g02202.html and archived by the National Climatic Data Center (NCDC) of the National Oceanic and Atmospheric Administration (NOAA) under the satellite climate data record program (noaa.gov/cdr/operationalcdrs.html"target="_blank">http://www.ncdc.noaa.gov/cdr/operationalcdrs.html). The description and basic characteristics of the NOAA/NSIDC passive microwave sea ice concentration CDR are presented here. The CDR provides similar spatial and temporal variability as the heritage products to the user communities with the additional documentation, traceability, and reproducibility that meet current standards and guidelines for climate data records. The data set, along with detailed data processing steps and error source information, can be found at http://dx.doi.org/10.7265/N5B56GN3.

  14. NOAA-USGS Debris-Flow Warning System - Final Report

    USGS Publications Warehouse

    NOAA-USGS Debris Flow Task Force

    2005-01-01

    Landslides and debris flows cause loss of life and millions of dollars in property damage annually in the United States (National Research Council, 2004). In an effort to reduce loss of life by debris flows, the National Oceanic and Atmospheric Administration's (NOAA) National Weather Service (NWS) and the U.S. Geological Survey (USGS) operated an experimental debris-flow prediction and warning system in the San Francisco Bay area from 1986 to 1995 that relied on forecasts and measurements of precipitation linked to empirical precipitation thresholds to predict the onset of rainfall-triggered debris flows. Since 1995, there have been substantial improvements in quantifying precipitation estimates and forecasts, development of better models for delineating landslide hazards, and advancements in geographic information technology that allow stronger spatial and temporal linkage between precipitation forecasts and hazard models. Unfortunately, there have also been several debris flows that have caused loss of life and property across the United States. Establishment of debris-flow warning systems in areas where linkages between rainfall amounts and debris-flow occurrence have been identified can help mitigate the hazards posed by these types of landslides. Development of a national warning system can help support the NOAA-USGS goal of issuing timely Warnings of potential debris flows to the affected populace and civil authorities on a broader scale. This document presents the findings and recommendations of a joint NOAA-USGS Task Force that assessed the current state-of-the-art in precipitation forecasting and debris-flow hazard-assessment techniques. This report includes an assessment of the science and resources needed to establish a demonstration debris-flow warning project in recently burned areas of southern California and the necessary scientific advancements and resources associated with expanding such a warning system to unburned areas and, possibly, to a

  15. Total carbon dioxide, hydrographic, and nitrate measurements in the Southwest Pacific during Austral autumn, 1990: Results from NOAA/PMEL CGC-90 cruise

    SciTech Connect

    Lamb, M.F.; Feely, R.A.; Moore, L.

    1995-10-01

    In support of the National Oceanic and Atmospheric Administration (NOAA) Climate and Global Change (C&GC) Program, Pacific Marine Environmental Laboratory (PMEL) scientists have been measuring the growing burden of greenhouse gases in the thermocline waters of the Pacific Ocean since 1980. Collection of data at a series of hydrographic stations along longitude 170{degrees} W during austral autumn of 1990 was designed to enhance understanding of the increase in the column burden of chlorofluorocarbons and carbon dioxide in the thermocline waters since the last expedition in 1984. This document presents the procedures and methods used to obtain total carbon dioxide (TCO{sub 2}), hydrographic, and nitrate data during the NOAA/PMEL research vessel (R/V) Malcolm Baldrige CGC-90 Cruise. Data were collected along two legs; sampling for Leg 1 began along 170{degrees} W from 15{degrees} S to 60{degrees} S, then angled northwest toward New Zealand across the Western Boundary Current. Leg 2 included a reoccupation of some stations between 30{degrees} S and 15{degrees} S on 170{degrees} W and measurements from 15{degrees} S to 5{degrees} N along 170{degrees} W. The following data report summarizes the TCO{sub 2}, salinity, temperature, and nitrate measurements from 63 stations. The TCO, concentration in seawater samples was measured using a coulometric/extraction system (Models 5011 and 5030, respectively) originated by Ken Johnson. The NOAA/PMEL R/V Malcolm Baldrige CGC-90 Cruise data set is available without charge as a numeric data package (NDP) from the Carbon Dioxide Information Analysis Center. The NDP consists of two oceanographic data files, two FORTRAN 77 data retrieval routine files, a {open_quotes}readme{close_quotes} file, and this printed documentation, which describes the contents and format of all files as well as the procedures and methods used to obtain the data.

  16. Latest developments of geostationary microwave sounder technologies for NOAA's mission

    NASA Astrophysics Data System (ADS)

    Bajpai, Shyam; Madden, Michael; Chu, Donald; Yapur, Martin

    2006-12-01

    The National Oceanic and Atmospheric Administration (NOAA) have been flying microwave sounders since 1975 on Polar Operational Environmental Satellites (POES). Microwave observations have made significant contributions to the understanding of the atmosphere and earth surface. This has helped in improving weather and storm tracking forecasts. However, NOAA's Geostationary Operational Environmental Satellites (GOES) have microwave requirements that can not be met due to the unavailability of proven technologies. Several studies of a Geostationary Microwave Sounder (GMS) have been conducted. Among those, are the Geostationary Microwave Sounder (GEM) that uses a mechanically steered solid dish antenna and the Geostationary Synthetic Thinned Aperture Radiometer (GeoSTAR) that utilizes a sparse aperture array. Both designs take advantage of the latest developments in sensor technology. NASA/Jet Propulsion Lab (JPL) has recently successfully built and tested a prototype ground-based GeoSTAR at 50 GHz frequency with promising test results. Current GOES IR Sounders are limited to cloud top observations. Therefore, a sounding suite of IR and Microwave should be able to provide observations under clear as well as cloudy conditions all the time. This paper presents the results of the Geostationary Microwave Sounder studies, user requirements, frequencies, technologies, limitations, and implementation strategies.

  17. NOAA's Weather-Ready Nation: Progress and Plans

    NASA Astrophysics Data System (ADS)

    Scharfenberg, K.

    2014-12-01

    The National Oceanic and Atmospheric Administration (NOAA) Weather-Ready Nation program is about building community resilience in the face of increasing vulnerability to extreme weather and water events. Through community partnerships and infusion of new science and technology, better preparedness is reducing the devastating impacts of these extreme events. For the past three years, the National Weather Service has been leading the Weather-Ready Nation strategy through a number of initiatives, focused around a series of pilot projects for transforming internal National Weather Service Operations. The "Emergency Response Specialist" technical role and associated training has been developed to better apply new hazardous weather research and technology to critical community decisions. High-resolution storm surge inundation mapping was introduced to the public in 2014 during Hurricane Arthur with successful results. The dual-polarization upgrade to the Nation's weather radar network has also been completed, with successful application of improved tornado, flash flood, and winter storm warning services. This presentation will focus on the application of these science initiatives under the NOAA Weather-Ready Nation program, and will further discuss NWS plans for operational application of future advances in research and technology.

  18. U.S. Science Agencies and GEWEX: Working Together to Advance Climate Science

    NASA Astrophysics Data System (ADS)

    Lawford, R. G.; Sorooshian, S.

    2007-12-01

    There have been major developments in climate science during the past two decades, mainly as a result of expanding capabilities to observe and model the climate system. Through its research on the global energy and water cycle, the Global Energy and Water cycle EXperiment (GEWEX) - one of the core projects of the World Climate Research Programme (WCRP) - has been making significant contributions to these developments. Support from the United States through the National Aeronautics and Space Administration (NASA), the National Oceanic and Atmospheric Administration (NOAA), the Department of Energy (DOE) and the Climate Change Science Program (CCSP) water cycle activities have contributed substantially to the effectiveness and success of GEWEX. In return, GEWEX has advanced the use of satellite data for climate applications, contributed to the development of meteorological and hydrologic services and has facilitated the emergence of a number of new insights that have advanced climate science. This presentation provides an overview of the above contributions and outlines GEWEX plans to continue such research until 2012 and possibly beyond. In particular, the contributions of NASA to hydrological science and climate studies will be described in the presentation, as well as the role of NOAA in supporting research related to monsoons, climate modeling and land surface studies. The support of DOE in GEWEX cloud process studies will also be introduced. The contributions of the U.S. through the Hydrology Applications Project (HAP) to the United Nations Educational, Scientific, and Cultural Organization (UNESCO) will also be outlined, including efforts to develop strategies for the application of GEWEX science to water resources through UNESCO International Hydrology Programme (IHP) networks. As this presentation will demonstrate, GEWEX continues to play a central role in addressing many of the water cycle issues being studied by the U.S. CCSP.

  19. NOAA GOES Satellite Sees March 12/13 Storm

    NASA Video Gallery

    This animation of NOAA's GOES satellite data shows the progression of the major winter storm over the U.S. Mid-Atlantic and Northeastern U.S. on March 12 and 13.Credit: NASA/NOAA GOES Project, Denn...

  20. Permafrost and Climate Change

    NASA Astrophysics Data System (ADS)

    Basnet, S.; Shahroudi, N.

    2012-12-01

    This paper examines the effects of climate change on Permafrost. Climate change has been shown to have a global correlation with decreased snow cover in high latitudes. In the current research station and satellite data were used to detect the location of permafrost. Permafrost is dependent on the temperature of the ground surface. Air temperature and snow cover from Integrated Surface Database (ISD) downloaded from National Climatic Data Center (NCDC) were observed for six consecutive years (1999-2004). The research was carried out over the entire globe to study the trend between fluctuating temperature and snow cover. Number of days with temperature below zero (freezing) and above zero (melting) was counted over a 6-year period. It was observed that each year the area of ice cover decreased by 0.3% in the Northern Hemisphere; a 1% increase in air temperature was also observed. Furthermore, the results from station data for snow cover and air temperature were compared with the snow cover and skin temperature from the satellite data. The skin temperature was retrieved from infrared (IR) radiance at International Satellite Cloud Climatology Project (ISCCP) and the snow cover is derived from visible satellite data at The National Environmental Satellite, Data, and Information Service (NESDIS), part of the National Oceanic and Atmospheric Administration (NOAA). Both dataset projected that the higher latitudes had the highest number of days with temperature below zero degree Celsius and these locations will be able to house permafrost. In order to improve the data quality as well as for more accurate results, in the future ISD data and satellite skin temperature will be analyzed for longer period of time (1979-2011) and (1983-2007) respectively also, two additional station data will be studied. The two datasets for future studies are Integrated Global Radiosonde Archive (IGRA) and International Comprehensive Ocean-Atmosphere Data Set (ICOADS). The results outputted by

  1. The Community Climate System Model Project from an Interagency Perspective

    SciTech Connect

    Bader, D C; Bamzai, A; Fein, J; Patrinos, A; Leinen, M

    2005-06-16

    In 2007, the Intergovernmental Panel on Climate Change (IPCC) will publish its Fourth Assessment Report of the Scientific Basis of Climate Change (AR4). A significant portion of the AR4 will be the analysis of coupled general circulation model (GCM) simulations of the climate of the past century as well as scenarios of future climates under prescribed emission scenarios. Modeling groups worldwide have contributed to AR4, including three from the U.S., the Community Climate System Model (CCSM) project, the National Aeronautics and Space Administration (NASA) Goddard Institute for Space Sciences, and the National Oceanic and Atmospheric Administration (NOAA) Geophysical Fluid Dynamics Laboratory (GFDL). This collection of model results is providing a wealth of new information that will be used to examine the state of climate science, the potential impacts from climate changes, and the policy consequences that they imply. Our focus here is on the CCSM project. Although it is centered at the National Center for Atmospheric Research (NCAR), the CCSM version 3 (CCSM3) was designed, developed, and applied in a uniquely distributed fashion with participation by many institutions. This model has produced some of the most scientifically complete and highest resolution simulations of climate change to date, thanks to the teamwork of many scientists and software engineers. Their contributions will become obvious as a steady stream of peer-reviewed publications appears in the scientific literature. Less obvious, however, is the largely hidden, unprecedented level of interagency cooperation and multi-institutional coordination that provided the direction and resources necessary to make the CCSM project successful. Contrary to the widely-held opinion that the US climate research effort in general, and the climate modeling effort in particular, is fragmented and disorganized (NRC 1998, 2001), the success of the CCSM project demonstrates that a uniquely US approach to model

  2. A long-term Northern Hemisphere snow cover extent data record for climate studies and monitoring

    NASA Astrophysics Data System (ADS)

    Estilow, T. W.; Young, A. H.; Robinson, D. A.

    2015-06-01

    This paper describes the long-term, satellite-based visible snow cover extent National Oceanic and Atmospheric Administration (NOAA) climate data record (CDR) currently available for climate studies, monitoring, and model validation. This environmental data product is developed from weekly Northern Hemisphere snow cover extent data that have been digitized from snow cover maps onto a Cartesian grid draped over a polar stereographic projection. The data have a spatial resolution of 190.6 km at 60° latitude, are updated monthly, and span the period from 4 October 1966 to the present. The data comprise the longest satellite-based CDR of any environmental variable. Access to the data is provided in Network Common Data Form (netCDF) and archived by NOAA's National Climatic Data Center (NCDC) under the satellite Climate Data Record Program (doi:10.7289/V5N014G9). The basic characteristics, history, and evolution of the data set are presented herein. In general, the CDR provides similar spatial and temporal variability to its widely used predecessor product. Key refinements included in the CDR improve the product's grid accuracy and documentation and bring metadata into compliance with current standards for climate data records.

  3. 15 CFR 996.30 - Use of the NOAA emblem.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 15 Commerce and Foreign Trade 3 2011-01-01 2011-01-01 false Use of the NOAA emblem. 996.30 Section... REQUIREMENTS FOR NOAA HYDROGRAPHIC PRODUCTS AND SERVICES QUALITY ASSURANCE AND CERTIFICATION REQUIREMENTS FOR NOAA HYDROGRAPHIC PRODUCTS AND SERVICES Other Quality Assurance Program Matters § 996.30 Use of...

  4. NOAA GCOM-W1/AMSR2 Product Processing and Validation System (Invited)

    NASA Astrophysics Data System (ADS)

    Chang, P.; Jelenak, Z.; Ferraro, R. R.; Alsweiss, S.; Park, J.; Meyers, P. C.; Zhan, X.; Liu, J.; Key, J.; Kongoli, C.; Weng, F.; Maturi, E.; Harris, A.; Wolf, W.; Thomas, K. S.; Soulliard, L.

    2013-12-01

    The Japanese Aerospace Exploration Agency (JAXA) Global Change Observation Mission (GCOM) consists of two satellite series, Water (GCOM-W) and Climate (GCOM-C). The first satellite of the GCOM program, GCOM-W1, was launched on May 18, 2012 carrying the follow-on to the Advanced Microwave Scanning Radiometer - Earth Observing System (AMSR-E), AMSR-2. NOAA's GCOM-W1 product development and validation project will provide NOAA's users access to critical geophysical products derived from AMSR-2. These products, which are detailed in NOAA's Joint Polar Satellite System (JPSS) Level 1 Requirements Document Supplement, include: NOAA AMSR-2 Product Requirements: Day 1 Product Capability Microwave Brightness Temperature (MBT) Total Precipitable Water (TPW) Cloud Liquid Water (CLW) Precipitation Type/Rate (PT/R) Sea Surface Temperature (SST) Sea Surface Wind Speed (SSW) Day 2 Product Capability Soil Moisture (SM) Sea Ice Characterization (SIC) Snow Cover/Depth (SC/D) Snow Water Equivalent (SWE) GCOM-W1 data will be captured at the KSAT Svalbard Ground Station and assembled into APID packets. Using the JPSS (NPP) infrastructure, the GCOM raw data (APID packets) are routed to the NOAA Interface Data Processing System (IDPS), in near-real time. Once received at the IDPS, the APID packets will be reformatted into Raw Data Records (RDRs) and sent to the NPP Data Exploitation (NDE) system for distribution to the Environmental Satellite Data Processing System where further processing to brightness temperatures (Level 1, sensor data records (SDRs)) and geophysical products (Level 2, Environmental Data Records (EDRs)) will be performed. The RDRs are processed to SDRs utilizing software provided by JAXA. The EDRs are generated utilizing NOAA's AMSR-2 product processing system. The goal of the product processing system is to provide validated operational Level 2 products from the AMSR-2 instrument that address the GCOM-W1 requirements in the JPSS L1RD Supplemental for distribution to

  5. NOAA Data Rescue of Key Solar Databases and Digitization of Historical Solar Images

    NASA Astrophysics Data System (ADS)

    Coffey, H. E.

    2006-08-01

    Over a number of years, the staff at NOAA National Geophysical Data Center (NGDC) has worked to rescue key solar databases by converting them to digital format and making them available via the World Wide Web. NOAA has had several data rescue programs where staff compete for funds to rescue important and critical historical data that are languishing in archives and at risk of being lost due to deteriorating condition, loss of any metadata or descriptive text that describe the databases, lack of interest or funding in maintaining databases, etc. The Solar-Terrestrial Physics Division at NGDC was able to obtain funds to key in some critical historical tabular databases. Recently the NOAA Climate Database Modernization Program (CDMP) funded a project to digitize historical solar images, producing a large online database of historical daily full disk solar images. The images include the wavelengths Calcium K, Hydrogen Alpha, and white light photos, as well as sunspot drawings and the comprehensive drawings of a multitude of solar phenomena on one daily map (Fraunhofer maps and Wendelstein drawings). Included in the digitization are high resolution solar H-alpha images taken at the Boulder Solar Observatory 1967-1984. The scanned daily images document many phases of solar activity, from decadal variation to rotational variation to daily changes. Smaller versions are available online. Larger versions are available by request. See http://www.ngdc.noaa.gov/stp/SOLAR/ftpsolarimages.html. The tabular listings and solar imagery will be discussed.

  6. Evolution of the NOAA National Weather Service Satellite Broadcast Network (SBN) to Europe's DVB-S satellite communications technology standard

    NASA Astrophysics Data System (ADS)

    Cragg, Phil; Brockman, William E.

    2006-08-01

    The National Oceanic and Atmospheric Administration's (NOAA) National Weather Service (NWS) uses a commercial Satellite Broadcast Network (SBN) to distribute weather data to the NWS AWIPS workstations and National Centers and to NWS Family of Service Users. Advances in science and technology from NOAA's observing systems, such as remote sensing satellites and NEXRAD radars, and advances in Numeric Weather Prediction have greatly increased the volume of data to be transmitted via the SBN. The NOAA-NWS SBN Evolution Program did a trade study resulting in the selection of Europe's DVB-S communication protocol as the basis for enabling a significant increase in the SBN capacity. The Digital Video Broadcast (DVB) group, started to develop digital TV for Europe through satellite broadcasting, has become the current standard for defining technology for satellite broadcasting of digital data for much of the world. NOAA-NWS implemented the DVB-S with inexpensive, Commercial Off The Shelf receiving equipment. The modernized NOAA-NWS SBN meets current performance goals and provides the basis for continued future expansion with no increase in current communication costs. This paper discusses aspects of the NOAA-NWS decision and the migration to the DVB-S standard for its commercial satellite broadcasts of observations and Numerical Weather Prediction data.

  7. Satellite Remote Sensing of Ozone Change, Air Quality and Climate

    NASA Technical Reports Server (NTRS)

    Hilsenrath, Ernest; Bhartia, Pawan K. (Technical Monitor)

    2001-01-01

    To date satellite remote sensing of ozone depletion has been very successful. Data sets have been validated and measured trends are in agreement with model calculations. Technology developed for sensing the stratosphere is now being employed to study air quality and climate with promising results. These new data show that air quality is a transcontinental issue, but that better instrumentation is needed. Recent data show a connection between the stratosphere, troposphere and climate, which will require new technology to quantify these relationships. NASA and NOAA (National Oceanic and Atmospheric Administration) are planning and developing new missions. Recent results from TOMS (Total Ozone Mapping Spectrometer), SeaWiffs, and Terra will be discussed and upcoming missions to study atmospheric chemistry will be discussed.

  8. Climate Change Education Roundtable: A Coherent National Strategy

    NASA Astrophysics Data System (ADS)

    Storksdieck, M.; Feder, M.; Climate Change Education Roundtable

    2010-12-01

    The Climate Change Education (CCE) Roundtable fosters ongoing discussion of the challenges to and strategies for improving public understanding of climate science and climate change among federal agencies, the business community, non-profit, and academic sectors. The CCE Roundtable is provides a critical mechanism for developing a coherent, national strategy to advance climate change education guided by the best available research evidence. Through its meetings and workshops, the roundtable brings together 30 federal and state policymakers, educators, communications and media experts, and members from the business and scientific community. The roundtable includes a number of ex officio members from federal agencies with dedicated interests in climate change education, including officials from the National Science Foundation’s EHR Directorate and its collaborating partner divisions, the National Oceanic and Atmospheric Administration (NOAA), the National Aeronautics and Space Administration (NASA), the Department of Interior, the Department of Energy, and the Department of Education. The issues that are addressed by the roundtable include: - ways to incorporate knowledge about learning and understanding in developing informative programs and materials for decision-makers who must cope with climate change - the design of educational programs for professionals such as local planners, water managers, and the like, to enable them to better understand the implications of climate change for their decisions - development of training programs for scientists to help them become better communicators to decision-makers about implications of, and solutions to climate change - coordinated and collaborative efforts at the national level between federal agencies and other stakeholders This presenation will describe how the roundtable is fostering a coherent direction for climate change education.

  9. Wyoming Basin Rapid Ecoregional Assessment: A Science-Management Partnership to Inform Public Land Management under Changing Climate Conditions

    NASA Astrophysics Data System (ADS)

    Ray, A. J.; Means, R.; Liebmann, B.; Carr, N. B.

    2013-12-01

    The U.S. Bureau of Land Management (BLM) administers more public land in the U.S. West than any other Federal agency, including over 17.5 million acres of public lands and 40.7 million acres of federal mineral estate in Wyoming. BLM is developing Rapid Ecoregional Assessments (REAs), to support ecoregion-based conservation strategies on public lands and to facilitate planning and analysis for the management of ecological resources, and will feed into a wide range management plans such as Resource Management Plans and National Environmental Policy Act documents. This analysis includes 'change agents' including climate and energy development. BLM Wyoming, the National Oceanic and Atmospheric Administration (NOAA), and US Geological Survey (USGS) are partnering to synthesize and create climate science to inform the BLM Wyoming Basin Rapid Ecoregional Assessment, a landscape-scale ecological assessment for over 33 million acres in Wyoming, Colorado, Utah, Idaho, and Montana. BLM needs to know vulnerabilities to climate of their resources, therefore, a primary focus of the assessment is to project the potential risks and vulnerabilities to the structure and functions of ecological communities posed by changing climate, and the associated management implications. In addition to synthesizing information from various downscaling efforts, NOAA is working to provide BLM with the translational information to provide an assessment of the strengths and weaknesses of different downscaling datasets being used in ecological modeling. Primary among BLM's concerns is which among the global climate models reasonably represent the climate features of Wyoming. Another significant concern arises because ecological modelers have put substantial effort into studies using different downscaled climate datasets; BLM Wyoming is interested in how the ecological modeling results would be expected to be different, given these different climate datasets. For longer range decision making, BLM

  10. NASA/NOAA Electronic Theater: 90 Minutes of Spectacular Visualization

    NASA Technical Reports Server (NTRS)

    Hasler, A. F.

    2004-01-01

    The NASA/NOAA Electronic Theater presents Earth science observations and visualizations from space in a historical perspective. Fly in from outer space to Ashville and the Conference Auditorium. Zoom through the Cosmos to SLC and site of the 2002 Winter Olympics using 1 m IKONOS 'Spy Satellite' data. Contrast the 1972 Apollo 17 'Blue Marble' image of the Earth with the latest US and International global satellite images that allow us to view our Planet from any vantage point. See the latest spectacular images from NASA/NOAA remote sensing missions like Terra, GOES, TRMM, SeaWiFS, & Landsat 7, of storms & fires like Hurricane Isabel and the LA/San Diego Fire Storms of 2003. See how High Definition Television (HDTV) is revolutionizing the way we do science communication. Take the pulse of the planet on a daily, annual and 30-year time scale. See daily thunderstorms, the annual blooming of the northern hemisphere land masses and oceans, fires in Africa, dust storms in Iraq, and carbon monoxide exhaust from global burning. See visualizations featured on Newsweek, TIME, National Geographic, Popular Science covers & National & International Network TV. Spectacular new global visualizations of the observed and simulated atmosphere and Oceans are shown. See the currents and vortexes in the Oceans that bring up the nutrients blooms in response to El Nino/La Nina climate changes. The Etheater will be presented using the latest High Definition TV (HDTV) and video projection technology on a large screen. See the global city lights, and the great NE US blackout of August 2003 observed by the 'night-vision' DMSP satellite.

  11. NASA/NOAA Electronic Theater: An Hour of Spectacular Visualization

    NASA Technical Reports Server (NTRS)

    Hasier, A. F.

    2004-01-01

    The NASA/NOAA Electronic Theater presents Earth science observations and visualizations from space in a historical perspective. Fly in from outer space to Utah, Logan and the USU Agriculture Station. Compare zooms through the Cosmos to the sites of the 2004 Summer and 2002 Winter Olympic games using 1 m IKONOS "Spy Satellite" data. Contrast the 1972 Apollo 17 "Blue Marble" image of the Earth with the latest US and International global satellite images that allow us to view our Planet from any vantage point. See the latest spectacular images h m NASA/NOAA remote sensing missions like Terra, GOES, TRMM, SeaWiF!3,& Landsat 7, of storms & fires like Hurricanes Charlie & Isabel and the LA/San Diego Fire Storms of 2003. See how High Definition Television (HDTV) is revolutionizing the way we do science communication. Take the pulse of the planet on a daily, annual and 30-year time scale. See daily thunderstorms, the annual greening of the northern hemisphere land masses and oceans, fires in Africa, dust storms in Iraq, and carbon monoxide exhaust from global burning. See visualizations featured on Newsweek, TIME, National Geographic, Popular Science covers & National & International Network TV. Spectacular new global visualizations of the observed and simulated atmosphere & oceans are shown. See the currents and vortexes in the oceans that bring up the nutrients to feed tiny plankton and draw the fish, whales and fishermen. See the how the Ocean blooms in response to El Nino/La Nina climate changes. The E-theater will be presented using the latest High Definition TV and video projection technology on a large screen. See the global city lights, and the great NE US blackout of August 2003 observed by the "night-vision" DMSP satellite.

  12. The NOAA Satellite Observing System Architecture Study

    NASA Technical Reports Server (NTRS)

    Volz, Stephen; Maier, Mark; Di Pietro, David

    2016-01-01

    NOAA is beginning a study, the NOAA Satellite Observing System Architecture (NSOSA) study, to plan for the future operational environmental satellite system that will follow GOES and JPSS, beginning about 2030. This is an opportunity to design a modern architecture with no pre-conceived notions regarding instruments, platforms, orbits, etc. The NSOSA study will develop and evaluate architecture alternatives to include partner and commercial alternatives that are likely to become available. The objectives will include both functional needs and strategic characteristics (e.g., flexibility, responsiveness, sustainability). Part of this study is the Space Platform Requirements Working Group (SPRWG), which is being commissioned by NESDIS. The SPRWG is charged to assess new or existing user needs and to provide relative priorities for observational needs in the context of the future architecture. SPRWG results will serve as input to the process for new foundational (Level 0 and Level 1) requirements for the next generation of NOAA satellites that follow the GOES-R, JPSS, DSCOVR, Jason-3, and COSMIC-2 missions.

  13. NOAA Inter-Agency Networking for Open Data and Research Results

    NASA Astrophysics Data System (ADS)

    de la Beaujardiere, J.

    2015-12-01

    The US National Oceanic and Atmospheric Administration (NOAA) generates tens of terabytes of data per day from hundreds of sensors on satellites, radars, aircraft, ships, and buoys, and from numerical models. With rare exceptions, all of these data should be made publicly accessible in a usable fashion. NOAA has long been both an advocate and a practitioner of open data, and has observations going back 150 years in its archives. The NOAA data management community therefore welcomed the White House mandates on Open Data and Open Research, and has striven to improve standardization internally and in collaboration with other organizations. This paper will summarize the state of inter-agency networking by NOAA, and will discuss future perspectives, in particular the need to achieve a state where the appropriate technology choices for particular classes of geospatial data are obvious and beyond discussion, and where data sharing and metadata creation are built into agency workflows for project planning, approval, and execution, so that instead of writing and enforcing mandates we can focus on actually using data from multiple sources to improve understanding and decision-making.

  14. 15 CFR Appendix A to Part 950 - Schedule of User Fees for Access to NOAA Environmental Data

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 15 Commerce and Foreign Trade 3 2012-01-01 2012-01-01 false Schedule of User Fees for Access to NOAA Environmental Data A Appendix A to Part 950 Commerce and Foreign Trade Regulations Relating to Commerce and Foreign Trade (Continued) NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION, DEPARTMENT OF COMMERCE GENERAL REGULATIONS OF THE...

  15. Simulated NASA Satellite Data Products for the NOAA Integrated Coral Reef Observation Network/Coral Reef Early Warning System

    NASA Technical Reports Server (NTRS)

    Estep, Leland; Spruce, Joseph P.

    2007-01-01

    This RPC (Rapid Prototyping Capability) experiment will demonstrate the use of VIIRS (Visible/Infrared Imager/Radiometer Suite) and LDCM (Landsat Data Continuity Mission) sensor data as significant input to the NOAA (National Oceanic and Atmospheric Administration) ICON/ CREWS (Integrated Coral Reef Observation System/Coral Reef Early Warning System). The project affects the Coastal Management Program Element of the Applied Sciences Program.

  16. Educator House Call: On-Line Data for Educators' Needs Assessment--Summary Report. NOAA Technical Memorandum GLERL-149

    ERIC Educational Resources Information Center

    Sturtevant, Rochelle A.; Marshall, Ann

    2009-01-01

    On July 15, 2009, National Oceanic and Atmospheric Administration's (NOAA's) Great Lakes Environmental Research Laboratory (GLERL) co-hosted a focus group--Educator House Calls: On-Line Data for Educators. The focus group was conducted at GLERL's main laboratory in Ann Arbor. The workshop was organized and funded by COSEE Great Lakes with student…

  17. Integration and Visualization of Multiple Sensors in Generating the NOAA Operational Snow and Ice Cover Products

    NASA Astrophysics Data System (ADS)

    Li, M.; Helfrich, S.

    2011-12-01

    Global snow and ice cover is a key component in the climate and hydrologic system as well as daily weather forecasting. The National Oceanic and Atmospheric Administration (NOAA) has produced a daily northern hemisphere snow and ice cover chart since 1997 through the Interactive Multisensor Snow and Ice Mapping System (IMS). The IMS integrates and visualizes a wide variety of satellite data, as well as derived snow/ice products and surface observations, to provide meteorologists with the ability to interactively prepare the daily northern hemisphere snow and ice cover chart. These products are presently used as operational inputs into several weather prediction models and are applied in climate monitoring. The IMS is currently on its second version (released in 2004) and scheduled to be upgraded to the third version (V3) in 2013. The IMS V3 will have nearly 40 external inputs as data sources processed by the IMS, which fall into five data formats: binary image, HDF file, GeoTIFF image, Shapefile image and ASCII file. With the exception of the GeoTIFF and Shapefile files, which are used directly by IMS, all other types of data are pre-processed to ENVI image file format and "sectorized" for different areas around the northern hemisphere. The IMS V3 will generate daily snow and ice cover maps in five formats: ASCII, ENVI, GeoTIFF, GIF and GRIB2 and three resolutions: 24km, 4km and 1km. In this presentation, the methods are discussed for accessing and processing satellite data, model results and surface reports. All input data with varying formats and resolutions are processed to a fixed projection. The visualization methodology for IMS are provided for five different resolutions of 48km, 24km, 8km, 4km, 2km and 1km. This work will facilitate the future enhancement of IMS, provide users with an understanding of the software architecture, provide a prospectus on future data sources, and help to preserve the integrity of the long-standing satellite-derived snow and ice

  18. Improvements in NOAA's Operational Tsunameter Network since December 2004

    NASA Astrophysics Data System (ADS)

    Bouchard, R.; Kohler, C.; McArthur, S.; Burnett, W. H.; Wells, W. I.; Luke, R.

    2009-12-01

    In December 2004 during the devastating Sumatran Tsunami, the National Oceanic and Atmospheric Administration (NOAA) had five tsunameter stations established in the North Pacific Ocean and one in the South Pacific Ocean operated and maintained by NOAA’s National Data Buoy Center (NDBC). The original six tsunameters employed the technology of the first generation Deep-ocean Assessment and Reporting of Tsunamis (DART I) developed by NOAA’s Pacific Marine Environmental Laboratory (PMEL) and successfully transitioned to NDBC in 2003. The technology consists of a Bottom Pressure Recorder (BPR) that makes pressure measurements near the sea-floor and a surface buoy. It takes less than three minutes for data to get from the BPR, which can reside to depths of 6000 m, to users. The BPR contains a tsunami detection algorithm that will place the BPR in rapid reporting mode(also know as Event Mode). The two most profound improvements to the network were its expansion to 39 stations and the transition and upgrade to the second generation DART II systems. In the aftermath of the Sumatran Tsunami, NOAA expanded the network to 39 stations to bolster the US tsunami warning system by providing coastal communities in the Pacific, Atlantic, Caribbean and the Gulf of Mexico with faster and more accurate tsunami warnings. Cooperating NOAA offices selected the sites in consultation with the US Geological Survey and other interested parties. Since their initial establishment, NDBC has relocated some stations to improve data availability by reducing the risks of vessel collision, extreme winds, seas, and currents. NDBC completed the network in March 2008. During the expansion of the NOAA network, NDBC assisted several countries in the deploying and distributing data from their own DART II tsunameters. NDBC completed the upgraded of all stations to the DART II systems by the end of 2007. The significant capability fielded by the DART II technology was the bi-directional communications

  19. At-sea test validation data needed to verify the NOAA/DOE CWP Analytic Code

    SciTech Connect

    Major, R. A.

    1980-03-12

    Test data requirements are developed in this memorandum for the one-third scale Ocean Thermal Energy Conversion (OTEC) cold water pipe (CWP) at-sea tests. A major goal of the at-sea tests is to collect sufficient data so that the National Oceanic and Atmospheric Administration (NOAA)/Department of Energy (DOE) CWP Analytic Code can be validated. The code is examined to determine the individual responses requiring verification. The wave environment is then considered for prototype survival and the scaled test. The expected response of the OTEC CWP test article in the test environment is used to form a basis of the test plan. Requirements for the tests of standard configurations of the OTEC CWP test system are first planned followed by requirements for tests of alternate configurations and evolutions. The final product is a set of justified NOAA/CWP analytic code validation requirements.

  20. BOREAS AFM-6 NOAA/ETL 35 GHz Cloud/Turbulence Radar GIF Images

    NASA Technical Reports Server (NTRS)

    Martner, Brooks E.; Newcomer, Jeffrey A. (Editor); Hall, Forrest G.; Smith, David E. (Technical Monitor)

    2000-01-01

    The Boreal Ecosystem-Atmosphere Study (BOREAS) Airborne Fluxes and Meteorology (AFM)-6 team from the National Oceanic and Atmospheric Administration/Environment Technology Laboratory (NOAA/ETL) operated a 35-GHz cloud-sensing radar in the Northern Study Area (NSA) near the Old Jack Pine (OJP) tower from 16 Jul 1994 to 08 Aug 1994. This data set contains a time series of GIF images that show the structure of the lower atmosphere. The NOAA/ETL 35-GHz cloud/turbulence radar GIF images are available from the Earth Observing System Data and Information System (EOSDIS) Oak Ridge National Laboratory (ORNL) Distributed Active Archive Center (DAAC). The data files are available on a CD-ROM (see document number 20010000884).

  1. Distributed Datamining for NASA/NOAA databases

    NASA Astrophysics Data System (ADS)

    Chen, R.; Park, B. H.; Sivakumar, K.; Kargupta, H.; Ma, J.; da, M.

    2002-12-01

    sources: NASA DAO data and NOAA SAA data. The NASA DAO data is a subset of the Data Assimilation Office's (DAO) monthly mean data set. It has global spatial coverage and a temporal coverage ranging from March 1980 to November 1993. The NOAA SAA data is a product of NOAA and US department of defense (DOD) US Polar-orbiting environment satellites (POES). Seventeen features from NASA DAO and eight features from NOAA SAA data was used in our experiments. A Bayesian network (BN) model was first contructed from the two datasets combined. This BN, referred to as the centralized BN, served as the ground truth for comparing the performance of our collective BN learning algorithm. Our preliminary experiments reveal a number of interesting trends. Correlations between specific DAO and NOAA data features are evident. Specific features are consistently observed as root nodes in the BN, suggesting that these features could possibly be the ``cause'' for certain phenomenon. Seasonal trends in the data reflect appropriate seasonal changes in the BN model.

  2. Big Data Partnerships at NOAA's National Centers for Environmental Information

    NASA Astrophysics Data System (ADS)

    Casey, K. S.

    2015-12-01

    NOAA's National Centers for Environmental Information (NCEI) was created this year as the merger of the previously distinct National Climatic Data Center, National Geophysical Data Center, and National Oceanographic Data Center. Stewarding petabytes of data from thousands of institutions and individuals around the world, from thousands of platforms and data types in a wide range of data formats, NCEI sees partnerships as an essential component of its Big Data operations. To ensure the optimal reuse of all of these data, NCEI engages partners along tiers of data stewardship from long-term preservation and basic access, to enhanced access and quality control, through value-added product development, and on to national and international services. This presentation will detail how NCEI is engaged in efforts like the Big Data Partnership Cooperative Research and Development Agreements, the Big Earth Data Initiative, national and international data exchange networks, and with partners across governmental, academic, and commercial sectors to "big data enable" its data collections and serve as the Nation's trusted and authoritative source of environmental data and information.

  3. Forest classification of southeast Asia using NOAA AVHRR data

    SciTech Connect

    Achard, F.; Estreguil, C.

    1995-12-01

    Tropical deforestation is one of the most significant forms of global environmental change. It has been identified as an important component of the global carbon cycle while also having been shown to effect regional climate and hydrology. Methodologies using the 1 km resolution data of the NOAA AVHRR instrument were developed for tropical forest spectral discrimination and mapping at a regional scale. Tropical Southeast Asia was selected as a cause study using a multitemporal AVHRR data set of 1990--1992. This study documents first the relevance of AVHRR data to assess the extent of seasonal and dense forest and, moreover, reports on the derivation of a specific fragmented/disturbed forest class. A geographically dependent methodology is developed: for continental Southeast Asia, where generally good cloud-free images are available during the dry season and seasonal vegetation formations are present, multitemporal AVHRR mosaics were produced before the classification process. For insular Southeast Asia, which is particularly affected by the cloud cover and where only humid vegetation formations are present, a multitemporal set of single-date AVHRR images was first classified, and then the classifications were mosaicked together using a combination of two criteria (image quality and maximum occurrence). Unsupervised classifications using NDVI and Channel 3 radiance were processed in both cases. Verification of the AVHRR class assignment was carried out locally using a few high spatial resolution satellite images. It highlights the sources of misclassification.

  4. NOAA Drought Task Force: A Coordinated Research Initiative to Advance Drought Understanding, Monitoring and Prediction

    NASA Astrophysics Data System (ADS)

    Mariotti, A.; Barrie, D.

    2014-12-01

    The NOAA's Drought Task Force was first established in October 2011 and renewed in October 2014 with the goal of achieving significant new advances in the ability to understand, monitor and predict drought over North America. The Task Force is an initiative of NOAA's Climate Program Office Modeling, Analysis, Predictions, and Projections (MAPP) program in support of the National Integrated Drought Information System NIDIS. The Drought Task Force also represents an important research contribution to efforts to develop an international Global Drought Information System (GDIS). The Drought Task Force brings together leading drought scientists research laboratories and/or operational centers from NOAA, other U.S. agencies laboratories and academia. Their concerted research effort builds on individual MAPP research projects and related drought-research sector developments. The projects span the wide spectrum of drought research needed to make fundamental advances, from those aimed at the basic understanding of drought mechanisms to those evaluating new drought monitoring and prediction tools for operational and service purposes. This contribution will present an overview of Drought Task Force activities and plans to date, including highlights of research activities and how the group has been working in partnership with NIDIS and synergy with GDIS to advance the science underpinning the development, assessment and provision of drought information.

  5. Visions of our Planet's Atmosphere, Land and Oceans: NASA/NOAA E-Theater 2003

    NASA Technical Reports Server (NTRS)

    Hasler, Fritz

    2003-01-01

    The NASA/NOAA Electronic Theater presents Earth science observations from space in a spectacular way. Fly in from outer space to the conference location as well as the site of the 2002 Olympic Winter Games using data from NASA satellites and the IKONOS "Spy Satellite". See HDTV movie Destination Earth 2002 incorporating the Olympic Zooms, NBC footage of the 2002 Olympics, the shuttle, & the best NASA/NOAA Earth science visualizations. See the latest US and international global satellite weather movies including hurricanes, typhoons & "tornadoes". See the latest visualizations from NASA/NOAA and International remote sensing missions like Terra, Aqua, GOES, GMS , SeaWiFS, & Landsat. Feel the pulse of our planet. See how land vegetation, ocean plankton, clouds and temperatures respond to the sun & seasons. See vortexes and currents in the global oceans that bring up the nutrients to feed tiny algae and draw the fish, whales and fisherman. See the how the ocean blooms in response to these currents and El Nino/La Nina climate changes. See the city lights, fishing fleets, gas flares and bio-mass burning of the Earth at night observed by the the "night-vision" DMSP satellite. The presentation will be made using the latest HDTV and video projection technology by: Dr. Fritz Hasler NASA/Goddard Space Flight Center

  6. Visions of our Planet's Atmosphere, Land and Oceans: NASA/NOAA E-Theater 2003

    NASA Technical Reports Server (NTRS)

    Hasler, Fritz

    2003-01-01

    The NASA/NOAA Electronic Theater presents Earth science observations from space in a spectacular way. Fly in from outer space to the conference location as well as the site of the 2002 Olympic Winter Games using data from NASA satellites and the IKONOS 'Spy Satellite". See HDTV movie Destination Earth 2002 incorporating the Olympic Zooms, NBC footage of the 2002 Olympics, the shuttle, & the best NASA/NOAA Earth science visualizations. See the latest US and international global satellite weather movies including hurricanes, typhoons & "tornadoes". See the latest visualizations from NASA/NOAA and International remote sensing missions like Terra, Aqua, GOES, GMS, SeaWiFS, & Landsat. Feel the pulse of OUT planet. See how land vegetation, ocean plankton, clouds and temperatures respond to the sun & seasons. See vortexes and currents in the global oceans that bring up the nutrients to feed tiny algae and draw the fish, whales and fisherman. See the how the ocean blooms in response to these currents and El Nino/La Nina climate changes. See the city lights, fishing fleets, gas flares and bio-mass burning of the Earth at night observed by the "night-vision" DMSP satellite. The presentation will be made using the latest HDTV and video projection technology by: Dr. Fritz Hasler NASA/Goddard Space Flight Center.

  7. Visions of our Planet's Atmosphere, Land and Oceans: NASA/NOAA E-Theater 2003

    NASA Technical Reports Server (NTRS)

    Hasler, Fritz

    2003-01-01

    The NASA/NOAA Electronic Theater presents Earth science observations from space in a spectacular way. Fly in from outer space to the conference location as well as the site of the 2002 Olympic Winter Games using data from NASA satellites and the IKONOS "Spy Satellite". See HDTV movie Destination Earth 2002 incorporating the Olympic Zooms, NBC footage of the 2002 Olympics, the shuttle, & the best NASA/NOAA Earth science visualizations. See the latest US and international global satellite weather movies including hurricanes, typhoons & "tornadoes". See the latest visualizations from NASA/NOAA and International remote sensing missions like Terra, Aqua, GOES, GMS, SeaWiFS, & Landsat. Feel the pulse of our planet. See how land vegetation, ocean plankton, clouds and temperatures respond to the sun & seasons. See vortexes and currents in the global oceans that bring up the nutrients to feed tiny algae and draw the fish, whales and fisherman. See the how the ocean blooms in response to these currents and El Nino/La Nina climate changes. See the city lights, fishing fleets, gas flares and bio-mass burning of the Earth at night observed by the "night-vision" DMSP satellite. The presentation will be made using the latest HDTV and video projection technology by: Dr. Fritz Hasler NASA/Goddard Space Flight Center

  8. NOAA's Global Network of N2O Observations

    NASA Astrophysics Data System (ADS)

    Dlugokencky, E. J.; Crotwell, A. M.; Crotwell, M.; Masarie, K. A.; Lang, P. M.; Dutton, G. S.; Hall, B. D.

    2014-12-01

    Nitrous oxide has surpassed CFC-12 to become the third largest contributor to radiative forcing. When climate impacts for equal emitted masses of N2O and CO2 are integrated over 100 years, N2O impacts are about 300 times greater than those of CO2. Increasing the atmospheric burden of N2O also decreases the abundance of O3 in the stratosphere. With reductions in emissions of ODSs as a result of the Montreal Protocol, N2O now has the largest ODP-weighted emissions of all gases. Given its long lifetime of about 130 years, today's emissions will impact climate and stratospheric O3 for a long time. Because emission rates are very small and spread over enormous areas, the detailed N2O budget has large uncertainties. It also means measurement requirements on precision and accuracy are stringent, especially for the background atmosphere. The Carbon Cycle Group of NOAA ESRL's Global Monitoring Division began measuring N2O in discrete air samples collected as part of its global cooperative air sampling network in 1998. Data from about 60 air sampling sites provide important constraints on the large-scale budget of N2O and provide boundary conditions for continental and regional-scale studies. This presentation will briefly describe the procedures used to ensure the data are of sufficient quality to meet scientific demands, and describe remaining limitations. Although sampling is infrequent (weekly), the data are quite useful in N2O budget studies. Examples will be given of large scale constraints on N2O's budget, including the global burden, trends in the burden, global emissions, spatial distributions, vertical gradients, and seasonal patterns.

  9. Operational applications of NOAA-VHRR imagery in Alaska

    NASA Technical Reports Server (NTRS)

    Seifert, R. D.; Carlson, R. F.; Kane, D. L.

    1975-01-01

    Near-real time operational applications of NOAA satellite enhanced thermal infrared imagery to snow monitoring for river flood forecasts, and a photographic overlay technique of imagery to enhance snowcover are presented. Ground truth comparisons show a thermal accuracy of approximately + or - 1 C for detection of surface radiative temperatures. The application of NOAA imagery to flood mapping is also presented.

  10. A National Strategy for Advancing Climate Modeling

    SciTech Connect

    Dunlea, Edward; Elfring, Chris

    2012-12-04

    Climate models are the foundation for understanding and projecting climate and climate-related changes and are thus critical tools for supporting climate-related decision making. This study developed a holistic strategy for improving the nation's capability to accurately simulate climate and related Earth system changes on decadal to centennial timescales. The committee's report is a high level analysis, providing a strategic framework to guide progress in the nation's climate modeling enterprise over the next 10-20 years. This study was supported by DOE, NSF, NASA, NOAA, and the intelligence community.

  11. Atmospheric CO/sub 2/ concentrations the NOAA/GMCC flask and continuous sampling network

    SciTech Connect

    Gammon, R.; Peterson, J.T.; Komhyr, W.D.

    1984-09-01

    Atmospheric CO/sub 2/ concentrations have and are being monitored in the NOAA Geophysical Monitoring for Climatic Change (GMCC) program at 20 sites during the 1970s and continuing into the 1980s. There are four continuous monitoring sites and 20 flask sampling sites. The continuous monitoring data are reported as monthly averages corrected and converted to the 1981 WMO X81 mole fraction scale. The flask samples are reported as individual samples (some sites have data for the late 1960s also) which can be summarized into monthly averages.

  12. A 30 year High -Spatial Resolution Cloud Climatology from NOAA's PATMOS-x Project

    NASA Astrophysics Data System (ADS)

    Heidinger, A. K.; Walther, A.; Foster, M. J.

    2010-12-01

    The Pathfinder Atmospheres Extended (PATMOS-x) project at NOAA has recently developed a new higher spatial resolution data set derived from over 30 years of data from the Advanced Very High Resolution Radiometer. The PATMOS-x data is now online and has been submitted into the GEWEX cloud climatology assessment library of cloud climate data sets. This data also benefits from a recent recalibration of the solar reflectance channels. This work will present our latest analysis and provide our insights into the strengths and limitations of this new data. Comparisons with GEWEX data sets and to the recently generated AVHRR cloud climatology from EUMETSAT will be shown.

  13. Atmospheric climate data: Problems and promises

    NASA Technical Reports Server (NTRS)

    1986-01-01

    The explosive growth in the quantity and diversity of weather and climate data, the growing handicap that the distinction between weather and climate in NOAA imposes on the efficient management and use of data is discussed. Also discussed is the uncertainty induced by the lack of clear commitment and consistent policies regarding federal roles and responsibilities in operating and maintaining the national weather and climate data system.

  14. The NOAA-NASA CZCS Reanalysis Effort

    NASA Technical Reports Server (NTRS)

    Gregg, Watson W.; Conkright, Margarita E.; OReilly, John E.; Patt, Frederick S.; Wang, Meng-Hua; Yoder, James; Casey-McCabe, Nancy; Koblinsky, Chester J. (Technical Monitor)

    2001-01-01

    Satellite observations of global ocean chlorophyll span over two decades. However, incompatibilities between processing algorithms prevent us from quantifying natural variability. We applied a comprehensive reanalysis to the Coastal Zone Color Scanner (CZCS) archive, called the NOAA-NASA CZCS Reanalysis (NCR) Effort. NCR consisted of 1) algorithm improvement (AI), where CZCS processing algorithms were improved using modernized atmospheric correction and bio-optical algorithms, and 2) blending, where in situ data were incorporated into the CZCS AI to minimize residual errors. The results indicated major improvement over the previously available CZCS archive. Global spatial and seasonal patterns of NCR chlorophyll indicated remarkable correspondence with modern sensors, suggesting compatibility. The NCR permits quantitative analyses of interannual and interdecadal trends in global ocean chlorophyll.

  15. NOAA's Integrated Tsunami Database: Data for improved forecasts, warnings, research, and risk assessments

    NASA Astrophysics Data System (ADS)

    Stroker, Kelly; Dunbar, Paula; Mungov, George; Sweeney, Aaron; McCullough, Heather; Carignan, Kelly

    2015-04-01

    The National Oceanic and Atmospheric Administration (NOAA) has primary responsibility in the United States for tsunami forecast, warning, research, and supports community resiliency. NOAA's National Geophysical Data Center (NGDC) and co-located World Data Service for Geophysics provide a unique collection of data enabling communities to ensure preparedness and resilience to tsunami hazards. Immediately following a damaging or fatal tsunami event there is a need for authoritative data and information. The NGDC Global Historical Tsunami Database (http://www.ngdc.noaa.gov/hazard/) includes all tsunami events, regardless of intensity, as well as earthquakes and volcanic eruptions that caused fatalities, moderate damage, or generated a tsunami. The long-term data from these events, including photographs of damage, provide clues to what might happen in the future. NGDC catalogs the information on global historical tsunamis and uses these data to produce qualitative tsunami hazard assessments at regional levels. In addition to the socioeconomic effects of a tsunami, NGDC also obtains water level data from the coasts and the deep-ocean at stations operated by the NOAA/NOS Center for Operational Oceanographic Products and Services, the NOAA Tsunami Warning Centers, and the National Data Buoy Center (NDBC) and produces research-quality data to isolate seismic waves (in the case of the deep-ocean sites) and the tsunami signal. These water-level data provide evidence of sea-level fluctuation and possible inundation events. NGDC is also building high-resolution digital elevation models (DEMs) to support real-time forecasts, implemented at 75 US coastal communities. After a damaging or fatal event NGDC begins to collect and integrate data and information from many organizations into the hazards databases. Sources of data include our NOAA partners, the U.S. Geological Survey, the UNESCO Intergovernmental Oceanographic Commission (IOC) and International Tsunami Information Center

  16. From Science to Action: Teaching and Talking about Climate Change in a Museum Exhibition

    NASA Astrophysics Data System (ADS)

    Barnes, H.

    2011-12-01

    The goal of Earth Revealed, a permanent exhibition at the Museum of Science and Industry (MSI) is to teach the science behind climate change by making the data accessible, personable, and relevant. In live science experiences guided by an MSI facilitator, guests discuss, vote, share knowledge, ideas, and action items that individuals can take to help reduce climate change. Through a partnership with the National Oceanic and Atmospheric Administration (NOAA), MSI receives the data sets and images that are projected onto a spherical display system. Using the Science on a Sphere, facilitators engage guests in a live participatory show up to five times a day to discuss climate change. Facilitators are trained to use inquiry based learning strategies and positive reinforcement engagement strategies. In the 20 minute live science experience, audience members participate and the facilitator is expected to tailor content according to the group's responses. The theme of Earth Revealed is climate change, and there are multiple stories that facilitators use to engage guests. Based on images from NOAA and through current science news research facilitators discuss content ranging from sea surface temperature to the earth's atmosphere. CO2 + You is the title of the longest running live science experience in Earth Revealed, and is dedicated to teaching how CO2 relates to climate change and how guests can reduce carbon dioxide emissions and thus help mitigate climate change. Participants in this session will learn a bit more in depth about the structure of MSI's Earth Revealed Live Science Experiences, and learn the teaching and participation strategies applied to increase guest participation, discussion, and learning. Session attendees will have an opportunity to participate in the inquiry process and explore various types of positive reinforcement strategies MSI facilitators are trained to implement.

  17. Space Weather impact on the degradation of NOAA POES MEPED proton detectors

    NASA Astrophysics Data System (ADS)

    Glesnes Ødegaard, Linn-Kristine; Nesse Tyssøy, Hilde; Jakobsen Sandanger, Marit Irene; Stadsnes, Johan; Søraas, Finn

    2016-06-01

    The Medium Energy Proton and Electron Detector (MEPED) on board the National Oceanic and Atmospheric Administration Polar Orbiting Environmental Satellites (NOAA POES) is known to degrade with time. In recent years a lot of effort has been put into calibrating the degraded proton detectors. We make use of previous work and show that the degradation of the detectors can be attributed to the radiation dose of each individual instrument. However, the effectiveness of the radiation in degrading the detector is modulated when it is weighted by the mean ap index, increasing the degradation rate in periods with high geomagnetic activity, and decreasing it through periods of low activity. When taking ap and the radiation dose into account, we find that the degradation rate is independent of spacecraft and detector pointing direction. We have developed a model to estimate the correction factor for all the MEPED detectors as a function of accumulated corrected flux and the ap index. We apply the routine to NOAA POES spacecraft starting with NOAA-15, including the European satellites MetOp-02 and MetOp-01, and estimate correction factors.

  18. Detection and mapping vegetation cover based on the Spectral Angle Mapper algorithm using NOAA AVHRR data

    NASA Astrophysics Data System (ADS)

    Yagoub, Houria; Belbachir, Ahmed Hafid; Benabadji, Noureddine

    2014-06-01

    Satellite data, taken from the National Oceanic and Atmospheric Administration (NOAA) have been proposed and used for the detection and the cartography of vegetation cover in North Africa. The data used were acquired at the Analysis and Application of Radiation Laboratory (LAAR) from the Advanced Very High Resolution Radiometer (AVHRR) sensor of 1 km spatial resolution. The Spectral Angle Mapper Algorithm (SAM) is used for the classification of many studies using high resolution satellite data. In the present paper, we propose to apply the SAM algorithm to the moderate resolution of the NOAA AVHRR sensor data for classifying the vegetation cover. This study allows also exploiting other classification methods for the low resolution. First, the normalized difference vegetation index (NDVI) is extracted from two channels 1 and 2 of the AVHRR sensor. In order to obtain an initial density representation of vegetal formation distribution, a methodology, based on the combination between the threshold method and the decision tree, is used. This combination is carried out due to the lack of accurate data related to the thresholds that delimit each class. In a second time, and based on spectral behavior, a vegetation cover map is developed using SAM algorithm. Finally, with the use of low resolution satellite images (NOAA AVHRR) and with only two channels, it is possible to identify the most dominant species in North Africa such as: forests of the Liege oaks, other forests, cereal's cultivation, steppes and bar soil.

  19. Validation of the NOAA/NESDIS satellite aerosol product over the North Atlantic in 1989

    NASA Astrophysics Data System (ADS)

    Ignatov, Aleksandr M.; Stowe, Larry L.; Sakerin, Sergey M.; Korotaev, Gennady K.

    1995-03-01

    A validation experiment and resulting potential improvements to the operational satellite optical thickness product at the National Oceanic and Atmospheric Administration/National Environmental Satellite Data and Information Service (NOAA/NESDIS) are presented. An earlier paper described a set of Sun photometer measurements collected from the Soviet R/V Akademik Vernadsky during its cruise in the Atlantic Ocean and Mediterranean Sea from September to December 1989. The accuracy of the Sun photometer aerosol optical thickness was proven acceptable of use as a ground truth standard for validation of the NOAA product. This paper describes the validation methodology and the results of its application to the NOAA 11 satellite product. A systematic underestimation in the operational values by about 35%, relative to the ship truth, is found. Causes for this discrepancy are examined, emphasizing the importance of careful satellite instrument calibration, and a revision of the oceanic reflectance model used in the retrieval algorithm. It is shown that the remaining systematic underestimate in satellite aerosol optical thickness can be attributed only to the aerosol model used in the retrieval. Additional checks of this conclusion using independent data sets are underway. If confirmed, a fundamental revision of the presently used aerosol model would be required. An example of a simple adjustment to the present aerosol model which successfully removes the bias is given, based on the assumption of an absorbing aerosol.

  20. Water level ingest, archive and processing system - an integral part of NOAA's tsunami database

    NASA Astrophysics Data System (ADS)

    McLean, S. J.; Mungov, G.; Dunbar, P. K.; Price, D. J.; Mccullough, H.

    2013-12-01

    The National Oceanic and Atmospheric Administration (NOAA), National Geophysical Data Center (NGDC) and collocated World Data Service for Geophysics (WDS) provides long-term archive, data management, and access to national and global tsunami data. Archive responsibilities include the NOAA Global Historical Tsunami event and runup database, damage photos, as well as other related hazards data. Beginning in 2008, NGDC was given the responsibility of archiving, processing and distributing all tsunami and hazards-related water level data collected from NOAA observational networks in a coordinated and consistent manner. These data include the Deep-ocean Assessment and Reporting of Tsunami (DART) data provided by the National Data Buoy Center (NDBC), coastal-tide-gauge data from the National Ocean Service (NOS) network and tide-gauge data from the two National Weather Service (NWS) Tsunami Warning Centers (TWCs) regional networks. Taken together, this integrated archive supports tsunami forecast, warning, research, mitigation and education efforts of NOAA and the Nation. Due to the variety of the water level data, the automatic ingest system was redesigned, along with upgrading the inventory, archive and delivery capabilities based on modern digital data archiving practices. The data processing system was also upgraded and redesigned focusing on data quality assessment in an operational manner. This poster focuses on data availability highlighting the automation of all steps of data ingest, archive, processing and distribution. Examples are given from recent events such as the October 2012 hurricane Sandy, the Feb 06, 2013 Solomon Islands tsunami, and the June 13, 2013 meteotsunami along the U.S. East Coast.

  1. Using NMME in Region-Specific Operational Seasonal Climate Forecasts

    NASA Astrophysics Data System (ADS)

    Gronewold, A.; Bolinger, R. A.; Fry, L. M.; Kompoltowicz, K.

    2015-12-01

    The National Oceanic and Atmospheric Administration's Climate Prediction Center (NOAA/CPC) provides access to a suite of real-time monthly climate forecasts that comprise the North American Multi-Model Ensemble (NMME) in an attempt to meet increasing demands for monthly to seasonal climate prediction. While the graphical map forecasts of the NMME are informative, there is a need to provide decision-makers with probabilistic forecasts specific to their region of interest. Here, we demonstrate the potential application of the NMME to address regional climate projection needs by developing new forecasts of temperature and precipitation for the North American Great Lakes, the largest system of lakes on Earth. Regional opertional water budget forecasts rely on these outlooks to initiate monthly forecasts not only of the water budget, but of monthly lake water levels as well. More specifically, we present an alternative for improving existing operational protocols that currently involve a relatively time-consuming and subjective procedure based on interpreting the maps of the NMME. In addition, all forecasts are currently presented in the NMME in a probabilistic format, with equal weighting given to each member of the ensemble. In our new evolution of this product, we provide historical context for the forecasts by superimposing them (in an on-line graphical user interface) with the historical range of observations. Implementation of this new tool has already led to noticeable advantages in regional water budget forecasting, and has the potential to be transferred to other regional decision-making authorities as well.

  2. NOAA/National Weather Service Operational Applications and Training of S-NPP Imagery and Products in Preparation for JPSS Mission Readiness

    NASA Astrophysics Data System (ADS)

    Motta, B.; Miller, S. D.; Folmer, M. J.; Lindstrom, S.; Nietfeld, D.; Stevens, E.; Dankers, T.; Baker, M.; Meier, B.; Mostek, A. J.; Hillger, D.

    2014-12-01

    The National Oceanic and Atmospheric Administration's (NOAA) National Weather Service (NWS), in collaboration with the NOAA National Environmental Satellite, Data and Information Service (NESDIS) and its Cooperative Institutes, have been prototyping various operational applications of Suomi-NPP satellite imagery and products. Some of these new satellite capabilities are NOAA and S-NPP mission unique and have resulted in new science applications for high impact events and related impact-based decision support services. From detection to monitoring to recovery-phase operations, S-NPP debuts new NOAA-unique capabilities for true color RGB imagery, Near Constant Contrast Day-Night Band Imagery, Flood/Ice Detection and Monitoring, Wildfire and Smoke Detection and Monitoring, Severe Weather Environmental and Storm Analysis, Dust Detection and Monitoring, and Global Infrared and Microwave Atmospheric Soundings. These newly demonstrated applications have been part of the research to operations transitions occurring in the NOAA Satellite Proving Ground (JPSS and GOES-R) and NOAA training developed as part of the Virtual Institute for Satellite Integration and Training (VISIT).

  3. Contrail Coverage Over the USA Derived from NOAA and EOS Satellite Data

    NASA Technical Reports Server (NTRS)

    Palikonda, Rabindra; Minnis, Patrick; Duda, David P.

    2004-01-01

    Contrails, like natural cirrus clouds, can cause a warming of the Earth-atmospheric system by absorbing longwave radiation from the surface and lower troposphere and radiating additional radiation back to the surface. They can also produce some cooling of the surface during the daytime by reflecting some sunlight back to space. Recently, Minnis et al. (2004) determined from surface observations of cirrus cloud cover that the overall impact appears to be a warming that is consistent with theoretical calculations, at least over the United States of America (USA) and surrounding areas. This finding highlights the need to better understand the formation and persistence of contrails and their radiative properties. To better assess the climatic impact of contrails, it is essential to determine the variability of the contrail microphysical properties, their impact on the atmospheric radiation budget, and their relationship to the atmospheric state. To that end, this paper continues the analyses of Advanced Very High Resolution Radiometer (AVHRR) data from the NOAA-15 (N15), NOAA-16 (N16), and NOAA-17 (N17) satellites, Moderate Resolution Imaging Spectroradiometer (MODIS) data from the Terra and Aqua satellites. The combination of these satellites provides a relatively comprehensive coverage of the daily cycle of air traffic. Thus, it should be possible to use these data to help understand the impact of air traffic on the upper tropospheric humidity during the day as well as determine the local-time variability of contrail coverage. The results will be valuable for developing models of contrail effects and methods for mitigating the impact of aviation on climate.

  4. NPP VIIRS Land Surface Temperature EDR validation using NOAA's observation networks

    NASA Astrophysics Data System (ADS)

    Guillevic, P. C.; Privette, J. L.

    2012-12-01

    NOAA will soon use the new Visible Infrared Imager Radiometer Suite (VIIRS) on the Joint Polar Satellite System (JPSS) as its primary polar-orbiting satellite imager. Employing a near real-time processing system, NOAA will generate a series of Environmental Data Records (EDRs) from VIIRS data. For example, the VIIRS Land Surface Temperature (LST) EDR will estimate the surface skin temperature over all global land areas and provide key information for monitoring Earth surface energy and water fluxes. Because both VIIRS and its processing algorithms are new, NOAA is conducting a rigorous calibration and validation program to understand and improve product quality. This work presents a new validation methodology to estimate the quantitative uncertainty in the LST EDR, and contribute to improving the retrieval algorithm. It employs a physically-based approach to scaling up point LST measurements currently made operationally at many field and weather stations around the world. The scaling method consists of the merging information collected at different spatial resolutions within a land surface model to fully characterize large area (km x km scale) satellite products. The approach can be used to explore scaling issues over terrestrial surfaces spanning a large range of climate regimes and land cover types, including forests and mixed vegetated areas. First results show that VIIRS and MODIS (collection 5) LST products are very consistent. Over vegetated areas, VIIRS LST EDRs verify JPSS program quality requirements - bias and precision specifications of VIIRS LST EDRs are 1.5K and 2.5K. However, VIIRS agrees better with scaled-up field data than with non-scaled field observations. Over desert areas, current VIIRS LST EDRs do not verify JPSS specifications. VIIRS and MODIS LST products tend to underestimate surface temperature at night. Ultimately, this validation approach should lead to an accurate and continuously-assessed VIIRS LST products suitable to support weather

  5. NASA/NOAA/AMS Earth Science Electronic Theater

    NASA Technical Reports Server (NTRS)

    Hasler, A. F.; Einaudi, Franco (Technical Monitor)

    2001-01-01

    The NASA/NOAA/AMS Earth Science Electronic Theater presents Earth science observations and visualizations in a historical perspective. Fly in from outer space to Florida and the KSC Visitor's Center. Go back to the early weather satellite images from the 1960s see them contrasted with the latest International global satellite weather movies including killer hurricanes & tornadic thunderstorms. See the latest spectacular images from NASA and NOAA remote sensing missions like GOES, NOAA, TRMM, SeaWiFS, Landsat7, & new Terra which will be visualized with state-of-the art tools.

  6. Incorporating Fundamentals of Climate Monitoring into Climate Indicators at the National Climatic Data Center

    NASA Astrophysics Data System (ADS)

    Arndt, D. S.

    2014-12-01

    In recent years, much attention has been dedicated to the development, testing and implementation of climate indicators. Several Federal agencies and academic groups have commissioned suites of indicators drawing upon and aggregating information available across the spectrum of climate data stewards and providers. As a long-time participant in the applied climatology discipline, NOAA's National Climatic Data Center (NCDC) has generated climate indicators for several decades. Traditionally, these indicators were developed for sectors with long-standing relationships with, and needs of, the applied climatology field. These have recently been adopted and adapted to meet the needs of sectors who have newfound sensitivities to climate and needs for climate data. Information and indices from NOAA's National Climatic Data Center have been prominent components of these indicator suites, and in some cases have been drafted in toto by these aggregators, often with improvements to the communicability and aesthetics of the indicators themselves. Across this history of supporting needs for indicators, NCDC climatologists developed a handful of practical approaches and philosophies that inform a successful climate monitoring product. This manuscript and presentation will demonstrate the utility this set of practical applications that translate raw data into useful information.

  7. Classification and evaluation of vegetation dynamics of major ecosystems in Colorado using NOAA satellite data

    NASA Astrophysics Data System (ADS)

    Shahmoradi-Varnamkhasti, Amrali

    The objective of this study was to determine performance and year-to-year consistency of land cover/land use classification in the state of Colorado, based on intra-annual variations of greenness, and to evaluate vegetation dynamics in major rangeland ecosystems in the state. Data used for the study included biweekly Normalized Difference Vegetation Index (NDVI) data from the Advanced Very High Resolution Radiometer (AVHRR) of the National Oceanic and Atmospheric Administration (NOAA) satellite, and climatic, edaphic, and topographic data. The data were obtained from 1990 to 1993. Overall accuracies of classification performance for eleven major cover types were 57.1, 53.3, 52.5, and 52.8 percent for 1990. 1991, 1992, and 1993, respectively. No significant differences were found between the four years. However, using four-year combined data improved classification performance to an overall accuracy of 61.7 percent. Regression analyses between precipitation, temperature, and biweekly NDVI were conducted for grassland ecosystems of the study site. NDVI values did not show a strong relationship between the sum of precipitation and average temperature for time periods of four weeks. Some NDVI-related variables were used to evaluate vegetation dynamics of rangeland ecosystems. Stepwise regression procedures showed that annual precipitation is not an effective explanatory variable for NDVI-related indicators of primary production for the rangelands tested. Annual temperature, however, showed some correlation with indicators of primary production and rain use efficiency for six of ten rangeland types of mountains and plains. Soil texture showed significant correlation with most NDVI-related variables for major grasslands. For shrublands, however, there was little correlation between soil texture and NDVI-related variables. Topographic variables of aspect and slope correlated with NDVI-related variables, and correlations were more significant for vegetation types of the

  8. SENSITIVITY OF THE NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION MULTILAYER MODEL TO INSTRUMENT ERROR AND PARAMETERIZATION UNCERTAINTY

    EPA Science Inventory

    The response of the National Oceanic and Atmospheric Administration multilayer inferential dry deposition velocity model (NOAA-MLM) to error in meteorological inputs and model parameterization is reported. Monte Carlo simulations were performed to assess the uncertainty in NOA...

  9. 15 CFR 911.7 - Continuation of the NOAA Data Collection Systems.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... REGULATIONS POLICIES AND PROCEDURES CONCERNING USE OF THE NOAA SPACE-BASED DATA COLLECTION SYSTEMS § 911.7 Continuation of the NOAA Data Collection Systems. (a) NOAA expects to continue to operate DCS on its... 15 Commerce and Foreign Trade 3 2010-01-01 2010-01-01 false Continuation of the NOAA...

  10. 15 CFR 911.4 - Use of the NOAA Data Collection Systems.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 15 Commerce and Foreign Trade 3 2010-01-01 2010-01-01 false Use of the NOAA Data Collection... POLICIES AND PROCEDURES CONCERNING USE OF THE NOAA SPACE-BASED DATA COLLECTION SYSTEMS § 911.4 Use of the NOAA Data Collection Systems. (a) Use of the NOAA DCS will only be authorized in accordance with...

  11. 15 CFR 911.5 - NOAA Data Collection Systems Use Agreements.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 15 Commerce and Foreign Trade 3 2010-01-01 2010-01-01 false NOAA Data Collection Systems Use... POLICIES AND PROCEDURES CONCERNING USE OF THE NOAA SPACE-BASED DATA COLLECTION SYSTEMS § 911.5 NOAA Data Collection Systems Use Agreements. (a)(1) In order to use a NOAA DCS, each user must have an agreement...

  12. 15 CFR 911.7 - Continuation of the NOAA Data Collection Systems.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 15 Commerce and Foreign Trade 3 2011-01-01 2011-01-01 false Continuation of the NOAA Data... REGULATIONS POLICIES AND PROCEDURES CONCERNING USE OF THE NOAA SPACE-BASED DATA COLLECTION SYSTEMS § 911.7 Continuation of the NOAA Data Collection Systems. (a) NOAA expects to continue to operate DCS on...

  13. 15 CFR 911.5 - NOAA Data Collection Systems Use Agreements.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 15 Commerce and Foreign Trade 3 2011-01-01 2011-01-01 false NOAA Data Collection Systems Use... POLICIES AND PROCEDURES CONCERNING USE OF THE NOAA SPACE-BASED DATA COLLECTION SYSTEMS § 911.5 NOAA Data Collection Systems Use Agreements. (a)(1) In order to use a NOAA DCS, each user must have an agreement...

  14. Disaster warning system study summary. [cost estimates using NOAA satellites

    NASA Technical Reports Server (NTRS)

    Leroy, B. F.; Maloy, J. E.; Braley, R. C.; Provencher, C. E.; Schumaker, H. A.; Valgora, M. E.

    1977-01-01

    A conceptual satellite system to replace or complement NOAA's data collection, internal communications, and public information dissemination systems for the mid-1980's was defined. Program cost and cost sensitivity to variations in communications functions are analyzed.

  15. Improved NOAA satellite scheduled for launch. [mission update

    NASA Technical Reports Server (NTRS)

    Brennan, W. J.; Mccormack, D.; Senstad, K.

    1981-01-01

    A description of the NOAA-C satellite and its Atlas launch vehicle are presented. The satellite instrumentation and data transmission systems are discussed. A flight sequence of events is given along with a listing of the mission management responsibilities.

  16. Access High Quality Imagery from the NOAA View Portal

    NASA Astrophysics Data System (ADS)

    Pisut, D.; Powell, A. M.; Loomis, T.; Goel, V.; Mills, B.; Cowan, D.

    2013-12-01

    NOAA curates a vast treasure trove of environmental data, but one that is sometimes not easily accessed, especially for education, outreach, and media purposes. Traditional data portals in NOAA require extensive knowledge of the specific names of observation platforms, models, and analyses, along with nomenclature for variable outputs. A new website and web mapping service (WMS) from NOAA attempts to remedy such issues. The NOAA View data imagery portal provides a seamless entry point into data from across the agency: satellite, models, in-situ analysis, etc. The system provides the user with ability to browse, animate, and download high resolution (e.g., 4,000 x 2,000 pixel) imagery, Google Earth, and even proxy data files. The WMS architecture also allows the resources to be ingested into other software systems or applications.

  17. NOAA Marine and Arctic Monitoring Using UASs

    NASA Astrophysics Data System (ADS)

    Jacobs, T.; Coffey, J. J.; Hood, R. E.; Hall, P.; Adler, J.

    2014-12-01

    Unmanned systems have the potential to efficiently, effectively, economically and safely bridging critical observation requirements in an environmentally friendly manner. As the United States' Marine and Arctic areas of interest expand and include hard-to-reach regions of the Earth (such as the Arctic and remote oceanic areas) optimizing unmanned capabilities will be needed to advance the United States' science, technology and security efforts. Through increased multi-mission and multi-agency operations using improved inter-operable and autonomous unmanned systems, the research and operations communities will better collect environmental intelligence and better protect our Country against hazardous weather, environmental, marine and polar hazards. This presentation will examine NOAA's Marine and Arctic Monitoring UAS strategies which includes developing a coordinated effort to maximize the efficiency and capabilities of unmanned systems across the federal government and research partners. Numerous intra- and inter-agency operational demonstrations and assessments have been made to verify and validated these strategies. The presentation will also discuss the requisite sUAS capabilities and our experience in using them.

  18. Receivers Gather Data for Climate, Weather Prediction

    NASA Technical Reports Server (NTRS)

    2012-01-01

    Signals from global positioning system (GPS) satellites are now being used for more than just location and navigation information. By looking at the radio waves from GPS satellites, a technology developed at NASA s Jet Propulsion Laboratory (JPL) not only precisely calculates its position, but can also use a technique known as radio occultation to help scientists study the Earth s atmosphere and gravity field to improve weather forecasts, monitor climate change, and enhance space weather research. The University Corporation for Atmospheric Research (UCAR), a nonprofit group of universities in Boulder, Colorado, compares radio occultation to the appearance of a pencil when viewed though a glass of water. The water molecules change the path of visible light waves so that the pencil appears bent, just like molecules in the air bend GPS radio signals as they pass through (or are occulted by) the atmosphere. Through measurements of the amount of bending in the signals, scientists can construct detailed images of the ionosphere (the energetic upper part of the atmosphere) and also gather information about atmospheric density, pressure, temperature, and moisture. Once collected, this data can be input into weather forecasting and climate models for weather prediction and climate studies. Traditionally, such information is obtained through the use of weather balloons. In 1998, JPL started developing a new class of GPS space science receivers, called Black Jack, that could take precise measurements of how GPS signals are distorted or delayed along their way to the receiver. By 2006, the first demonstration of a GPS radio occultation constellation was launched through a collaboration among Taiwan s National Science Council and National Space Organization, the U.S. National Science Foundation, NASA, the National Oceanic and Atmospheric Administration (NOAA), and other Federal entities. Called the Constellation Observing System for Meteorology, Ionosphere, and Climate (COSMIC

  19. ESTIMATING THE TRANSFER AND DEPOSITION OF DIOXIN AND ATRZINE TO THE GREAT LAKES BASIN WITH THE NOAA HYSPLIT MODEL - AN OVERVIEW

    EPA Science Inventory

    Over the last few years, the International Joint Commission has been supporting development of a PC-based transfer model, derived from the HYSPLIT model created at the National Oceanic and Atmospheric Administration (NOAA), to determine, in a cost-effective way, the extent of dep...

  20. Cooperation between public administration and scientific research in raising awareness on the role of urban planning in responding to climate change in Portugal

    NASA Astrophysics Data System (ADS)

    Alcoforado, M. J.; Campos, V.; Oliveira, S.; Andrade, H.; Festas, M. J.

    2009-09-01

    Following the IPCC predictions of climate change, even considering one of the "best” scenarios (B1), temperature will rise circa 2°C by 2100. In southern Europe, predictions also indicate a greater precipitation variability, that is the increase in drought frequency, together with an increment of flood risk, with detrimental impacts on water availability and quality, summer tourism and crop productivity, among others. Urban areas create their own local climate, resulting in higher temperatures (UHI), modified wind patterns and lower air quality, among several other consequences. Therefore, as a result of both global and urban induced changes, the climate of cities has suffered several modifications over time, particularly in sprawling urban areas. In November 2007, the ministers responsible for spatial planning and territorial cohesion of the European Union, gathered at the Azores Informal Ministerial on Territorial Cohesion during the Portuguese Presidency, considered climate change to be one of the most important territorial challenges Europe is facing and stated that "our cities and regions need to become more resilient in the context of climate change”. They also agreed that spatial and urban planning is a suitable tool to define cost-effective adaptation measures. Furthermore, the Ministers committed themselves to put mitigation and adaptation issues of climate change into the mainstream of spatial and urban development policy at national, regional and local level. These decisions have lead to different actions in the Member States. In Portugal, the new Policy for the Cities POLIS XXI has selected the relationship between climate change and urban development as one of the key issues to be addressed by projects initiated by local authorities and submitted for co-financing through the OP "Territorial Enhancement” of the NSRF. This paper presents one of the actions taken by the Portuguese Directorate General for Spatial Planning and Urban Development

  1. Instrument interface description for NOAA 2000 instruments with European morning spacecraft and/or NOAA-OPQ spacecraft

    NASA Technical Reports Server (NTRS)

    1993-01-01

    The purpose is to describe at a high level the common interface provisions and constraints placed on the NOAA-2000 instruments and the interfacing spacecraft elements in the following areas: electrical interface, mechanical interface, thermal interface, magnetic interface, electromagnetic compatibility, structural/mechanical environmental interface, contamination control, and the ionizing radiation environment. The requirements reflect the fact that these instruments must be compatible with a number of different polar orbiting satellite vehicles including the NOAA-OPQ satellites and the EUMETSAT METOP satellites.

  2. The implementation of NEMS GFS Aerosol Component (NGAC) Version 1.0 for global dust forecasting at NOAA/NCEP

    NASA Astrophysics Data System (ADS)

    Lu, Cheng-Hsuan; da Silva, Arlindo; Wang, Jun; Moorthi, Shrinivas; Chin, Mian; Colarco, Peter; Tang, Youhua; Bhattacharjee, Partha S.; Chen, Shen-Po; Chuang, Hui-Ya; Juang, Hann-Ming Henry; McQueen, Jeffery; Iredell, Mark

    2016-05-01

    The NOAA National Centers for Environmental Prediction (NCEP) implemented the NOAA Environmental Modeling System (NEMS) Global Forecast System (GFS) Aerosol Component (NGAC) for global dust forecasting in collaboration with NASA Goddard Space Flight Center (GSFC). NGAC Version 1.0 has been providing 5-day dust forecasts at 1° × 1° resolution on a global scale, once per day at 00:00 Coordinated Universal Time (UTC), since September 2012. This is the first global system capable of interactive atmosphere aerosol forecasting at NCEP. The implementation of NGAC V1.0 reflects an effective and efficient transitioning of NASA research advances to NCEP operations, paving the way for NCEP to provide global aerosol products serving a wide range of stakeholders, as well as to allow the effects of aerosols on weather forecasts and climate prediction to be considered.

  3. NOAA tsunami water level archive - scientific perspectives and discoveries

    NASA Astrophysics Data System (ADS)

    Mungov, G.; Eble, M. C.; McLean, S. J.

    2013-12-01

    The National Oceanic and Atmospheric Administration (NOAA) National Geophysical Data Center (NGDC) and co-located World Data Service for Geophysics (WDS) provides long-term archive, data management, and access to national and global tsunami data. Currently, NGDC archives and processes high-resolution data recorded by the Deep-ocean Assessment and Reporting of Tsunami (DART) network, the coastal-tide-gauge network from the National Ocean Service (NOS) as well as tide-gauge data recorded by all gauges in the two National Weather Service (NWS) Tsunami Warning Centers' (TWCs) regional networks. The challenge in processing these data is that the observations from the deep-ocean, Pacific Islands, Alaska region, and United States West and East Coasts display commonalities, but, at the same time, differ significantly, especially when extreme events are considered. The focus of this work is on how time integration of raw observations (10-seconds to 1-minute) could mask extreme water levels. Analysis of the statistical and spectral characteristics obtained from records with different time step of integration will be presented. Results show the need to precisely calibrate the despiking procedure against raw data due to the significant differences in the variability of deep-ocean and coastal tide-gauge observations. It is shown that special attention should be drawn to the very strong water level declines associated with the passage of the North Atlantic cyclones. Strong changes for the deep ocean and for the West Coast have implications for data quality but these same features are typical for the East Coast regime.

  4. Recurrent flares in active region NOAA 11283

    NASA Astrophysics Data System (ADS)

    Romano, P.; Zuccarello, F.; Guglielmino, S. L.; Berrilli, F.; Bruno, R.; Carbone, V.; Consolini, G.; de Lauretis, M.; Del Moro, D.; Elmhamdi, A.; Ermolli, I.; Fineschi, S.; Francia, P.; Kordi, A. S.; Landi Degl'Innocenti, E.; Laurenza, M.; Lepreti, F.; Marcucci, M. F.; Pallocchia, G.; Pietropaolo, E.; Romoli, M.; Vecchio, A.; Vellante, M.; Villante, U.

    2015-10-01

    Context. Flares and coronal mass ejections (CMEs) are solar phenomena that are not yet fully understood. Several investigations have been performed to single out their related physical parameters that can be used as indices of the magnetic complexity leading to their occurrence. Aims: In order to shed light on the occurrence of recurrent flares and subsequent associated CMEs, we studied the active region NOAA 11283 where recurrent M and X GOES-class flares and CMEs occurred. Methods: We use vector magnetograms taken by HMI/SDO to calculate the horizontal velocity fields of the photospheric magnetic structures, the shear and the dip angles of the magnetic field, the magnetic helicity flux distribution, and the Poynting fluxes across the photosphere due to the emergence and the shearing of the magnetic field. Results: Although we do not observe consistent emerging magnetic flux through the photosphere during the observation time interval, we detected a monotonic increase of the magnetic helicity accumulated in the corona. We found that both the shear and the dip angles have high values along the main polarity inversion line (PIL) before and after all the events. We also note that before the main flare of X2.1 GOES class, the shearing motions seem to inject a more significant energy than the energy injected by the emergence of the magnetic field. Conclusions: We conclude that the very long duration (about 4 days) of the horizontal displacement of the main photospheric magnetic structures along the PIL has a primary role in the energy release during the recurrent flares. This peculiar horizontal velocity field also contributes to the monotonic injection of magnetic helicity into the corona. This process, coupled with the high shear and dip angles along the main PIL, appears to be responsible for the consecutive events of loss of equilibrium leading to the recurrent flares and CMEs. A movie associated to Fig. 4 is available in electronic form at http://www.aanda.org

  5. Ionosphere monitoring using NOAA's CORS network

    NASA Astrophysics Data System (ADS)

    Smith, D.

    NOAA's National Geodetic Survey is currently engaged in research to use the CORS (Continuously Operating GPS Reference Stations) network to model the ionosphere over the conterminous United States and surrounding areas. The CORS network consists of over 700 stations that continuously collect data from all GPS satellite vehicles in view; these data are available free of charge for (predominantly) positioning applications. However, the nature of the network makes it an excellent tool for continuously monitoring the nature of the ionosphere over and near the conterminous United States. From the standpoint of geodesy, the ionosphere effect is generally considered a nuisance parameter: that should be modeled and removed so that the ambiguity in dual frequency GPS carrier-phase signals may be resolved and accurate positions determined. As such, the initial direction of this research is toward modeling the ionosphere for geodetic use, using a single-layer "shell model". The results presented here show the first steps toward accurately modeling the ionosphere through the CORS network, in terms of absolute (non-differential) Total Electron Content Units (TECUs) through an innovative cross-over adjustment of "tracks". Each track is made by the intersection of a satellite/receiver vector with the ionosphere shell as the satellite moves overhead. Results of the initial research in applying the modeled ionosphere toward ambiguity resolution will be discussed. Limitations of using the one-dimensional shell will also be presented. Future plans for creating a time-stream of the ionosphere, increasing the complexity beyond the shell model, and applications toward nowcast and forecast of the ionosphere, will also be discussed.

  6. TEMPORAL DISAGGREGATION OF PROBABILISTIC SEASONAL CLIMATE FORECASTS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Seasonal climate forecasts are issued by NOAA/CPC for average temperature and total precipitation over 3-month overlapping periods covering the coming year. Many crop and hydrologic models employ weather generators based on monthly statistics to produce stochastic realizations of daily weather (e.g...

  7. Partial and preliminary inventory of NOAA data for ARM/IDASS research

    SciTech Connect

    Martner, B.E.

    1991-06-01

    The first quarter of 1991 was an extremely active time for atmospheric measurements in the Denver area. Four field projects were conducted with overlapping schedules and area domains between mid-January and mid-April. The data collected may be of mutual interest to the participants of the various projects. Data inventory catalogs for each project will assist researchers by documenting the kinds of measurements, periods of observation, the data archival mediums, and the data availability. This report provides a partial and preliminary inventory of data obtained for the Department of Energy`s Atmospheric Radiation Measurement (ARM) program Integrated Data Assimilation and Sounding System (IDASS) research. It includes only those measurements obtained by the National Oceanic and Atmospheric Administration`s Wave Propagation Laboratory and Aeronomy Laboratory (NOAA/WPL and NOAA/AL). Many of these data are currently undergoing post-processing and inspection by each instrument`s operating group to improve and insure data quality. Therefore, the information in this report is preliminary.

  8. Geographical and Temporal Differences in NOAA Observed Ground-Level Ozone in the Arctic

    NASA Astrophysics Data System (ADS)

    McClure-Begley, Audra; Petropavlovskikh, Irina; Andrews, Betsy; Hageman, Derek; Oltmans, Samuel; Uttal, Taneil

    2016-04-01

    The Arctic region is rapidly gaining interest and support for scientific studies to help understand and characterize the processes, sources, and chemical composition of the Arctic environment. In order to understand the Arctic climate system and the changes that are occurring, it is imperative to know the behavior and impact of atmospheric constituents. Surface level ozone in the Arctic is variable in both time and space and plays an essential role on the oxidation capacity of the atmosphere. NOAA Global Monitoring Division (NOAA/GMD) maintains continuous measurements and long-term records of ground-level ozone from Barrow, Alaska (since 1973) and Summit, Greenland (since 2000). Measurements taken by Thermo-Scientific ozone monitors are collected and examined with the NOAA/GMD Aerosol LiveCPD acquisition and software. These quality controlled data are used to develop seasonal climatologies, understand diurnal variation, and analyze differences in stations specifics by addressing spatial variability in the Arctic. Once typical ozone behavior is characterized, anomalies in the record are defined and investigated. Increased ozone events associated with transported pollution and photochemical production of ozone, and ozone depletion episodes related to sea-ice halogen release and chemical destruction of ozone are the primary processes which lead to deviations from typical ground-level ozone conditions. The measurements taken from Barrow and Summit are a critical portion of the IASOA network of observations of ground-level ozone and are investigated to ensure proper data management and quality control, as well as provide the fundamental understanding of ground-level ozone behavior in the Arctic.

  9. What we learn from updates of NOAA's Annual Greenhouse Gas Index (AGGI)

    NASA Astrophysics Data System (ADS)

    Butler, James H.; Montzka, Stephen A.; Dlugokencky, Edward; Elkins, James W.; Masarie, Kenneth; Schnell, Russell C.; Tans, Pieter; Dutton, Geoff; Miller, Ben R.

    2014-05-01

    Several years ago, NOAA introduced a unique index for expressing the influence of human-emitted, long-lived greenhouse gases in the atmosphere (D.J. Hofmann et al., Tellus, 2006, S8B, 614-619). Being a condensation and normalization of radiative forcing from long-lived gases, the NOAA Annual Greenhouse Gas Index (AGGI) was designed to enhance the connection between scientists and society by providing a standard that could be easily understood and followed. The index each year is calculated from high quality, long-term observations by NOAA's Global Monitoring Division, which includes real-time measurements extending over the past five decades, as well as published ice core records that go back to 1750. The AGGI is radiative forcing from these long-lived gases, normalized to 1.00 in 1990, the Kyoto Climate Protocol baseline year. For 2012, the AGGI was 1.32, indicating that global radiative forcing by long-lived greenhouse gases had increased 32% since 1990. During the 1980s CO2 accounted for about 50-60% of the annual increase in radiative forcing (and the AGGI) by long-lived greenhouse gases, whereas, since 2000, it has accounted for 80-90% of this increase each year. After nearly a decade of virtually level concentrations in the atmosphere, methane (CH4) has increased measurably over the past 6 years, as did its contribution to radiative forcing (and the AGGI). This year, in addition to updating the AGGI for 2013, increases in radiative forcing will be evaluated and discussed with respect to time-dependent changes in the contributions from CO2, CH4, nitrous oxide (N2O), chlorofluorocarbons (CFCs), and other emerging greenhouse gases.

  10. 77 FR 17406 - National Climate Assessment and Development Advisory Committee (NCADAC) Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-26

    ... National Climate Assessment and Development Advisory Committee (NCADAC) Meeting AGENCY: Office of Oceanic... proposed agenda of a forthcoming meeting of the DoC NOAA National Climate Assessment and Development...., Washington, DC 20006. Please check the National Climate Assessment Web site for additional information...

  11. The NOAA Near Real-time OMI-SO2 Cloud Visualization and Product Distribution System

    NASA Astrophysics Data System (ADS)

    Vicente, G.; Serafino, G.; Krueger, A.; Carn, S.; Yang, K.; Krotkov, N.; Guffanti, M.; Levelt, P.

    2007-12-01

    The Ozone Monitoring Instrument (OMI) on the NASA EOS/Aura research satellite allows measurement of SO2 concentrations at UV wavelengths with daily global coverage. SO2 is detected from space using its strong absorption band structure in the near UV (300-320 nm) as well as in IR bands near 7.3 and 8.6 mm. Thirty years of UV SO2 measurements with the Total Ozone Mapping Spectrometer (TOMS) and OMI sensors have shown that the highest concentrations of SO2 occur in volcanic clouds produced by explosive magmatic eruptions, which also emit ash. However, icing of ash particles in water-rich eruption clouds, and/or suppression of the IR split- window signal by ambient water vapor or cloud opacity can inhibit direct detection of ash from space. Large SO2 concentrations are therefore a reliable indicator of the presence of airborne volcanic ash. UV SO2 measurements are very robust and are insensitive to the factors that confound IR data. SO2 and ash can be detected in a very fresh eruption cloud due to sunlight backscattering and ash presence can be confirmed by UV derived aerosol index measurements. The lack of other large point sources of SO2 facilitates development and implementation of automated searches for volcanic clouds with a very low false alarm rate. The NASA Earth Sciences Applications Office has funded a cooperative agreement between UMBC, NOAA, GSFC, and USGS to infuse research satellite SO2 data products into volcanic hazard Decision Support Systems (DSSs) operated by the National Oceanic and Atmospheric Administration (NOAA) and the US Geological Survey (USGS). This will provide aviation alerts to the Federal Aviation Administration (FAA), that will reduce false alarms and permit more robust detection and tracking of volcanic clouds, and includes the development of an eruption alarm system, and potential recognition of pre-eruptive volcanic degassing. Near real-time (NRT) observations of SO2 and volcanic ash can therefore be incorporated into data products

  12. A multiple model assessment of seasonal climate forecast skill for applications

    NASA Astrophysics Data System (ADS)

    Lavers, David; Luo, Lifeng; Wood, Eric F.

    2009-12-01

    Skilful seasonal climate forecasts have potential to affect decision making in agriculture, health and water management. Organizations such as the National Oceanic and Atmospheric Administration (NOAA) are currently planning to move towards a climate services paradigm, which will rest heavily on skilful forecasts at seasonal (1 to 9 months) timescales from coupled atmosphere-land-ocean models. We present a careful analysis of the predictive skill of temperature and precipitation from eight seasonal climate forecast models with the joint distribution of observations and forecasts. Using the correlation coefficient, a shift in the conditional distribution of the observations given a forecast can be detected, which determines the usefulness of the forecast for applications. Results suggest there is a deficiency of skill in the forecasts beyond month-1, with precipitation having a more pronounced drop in skill than temperature. At long lead times only the equatorial Pacific Ocean exhibits significant skill. This could have an influence on the planned use of seasonal forecasts in climate services and these results may also be seen as a benchmark of current climate prediction capability using (dynamic) couple models.

  13. Climate Change Community Outreach Initiative (CCCOI)--A Gulf of Mexico Education Partnership

    NASA Astrophysics Data System (ADS)

    Walker, S. H.; Stone, D.; Schultz, T.; LeBlanc, T.; Miller-Way, T.; Estrada, P.

    2012-12-01

    This five-year, Gulf of Mexico regional collaborative is funded by the National Oceanic and Atmospheric Administration (NOAA)-Office of Education and represents a successful grant submitted by the FL Aquarium as a member of the Association of Zoos and Aquariums (AZA). This climate change effort focuses on enhanced content knowledge and the manner in which personal actions and behaviors contribute to sustainability and stewardship. Diverse audiences—represented by visitors at the informal centers listed above—have been and are involved in the following activities: social networking via responses to climate change surveys; an "ocean and climate change defender" computer game, specifically designed for this project; an average of 10 annual outreach events implemented by these facilities at community festivals; climate change lectures provided to family audiences; and professional development workshops for informal and formal educators. This presentation will provide opportunities and challenges encountered during the first two years of implementation. This regional effort is also aligned with both the Ocean Literacy: Essential Principles and the Climate Literacy: Essential Principles. Additional partners include: Normandeau Associates, Conservation Enterprises, Unlimited, and Mindclay Creative.

  14. The Calibration of AVHRR Visible Dual Gain using Meteosat-8 for NOAA-16 to 18

    NASA Technical Reports Server (NTRS)

    Doelling, David R.; Garber, Donald P.; Avey, L. A.; Nguyen, Louis; Minnis, Patrick

    2007-01-01

    The NOAA AVHRR program has given the remote sensing community over 25 years of imager radiances to retrieve global cloud, vegetation, and aerosol properties. This dataset can be used for long-term climate research, if the AVHRR instrument is well calibrated. Unfortunately, the AVHRR instrument does not have onboard visible calibration and does degrade over time. Vicarious post-launch calibration is necessary to obtain cloud properties that are not biased over time. The recent AVHRR-3 instrument has a dual gain in the visible channels in order to achieve greater radiance resolution in the clear-sky. This has made vicarious calibration of the AVHRR-3 more difficult to unravel. Reference satellite radiances from well-calibrated instruments, usually equipped with solar diffusers, such as MODIS, have been used to successfully vicariously calibrate other visible instruments. Transfer of calibration from one satellite to another using co-angled, collocated, coincident radiances has been well validated. Terra or Aqua MODIS and AVHRR comparisons can only be performed over the poles during summer. However, geostationary satellites offer a transfer medium that captures both parts of the dual gain. This AVHRR-3 calibration strategy uses, calibrated with MODIS, Meteosat-8 radiances simultaneously to determine the dual gains using 50km regions. The dual gain coefficients will be compared with the nominal coefficients. Results will be shown for all visible channels for NOAA-17.

  15. Vegetation monitoring and yield prediction from NOAA-AVHRR GAC data in the Argentinean Pampa

    NASA Astrophysics Data System (ADS)

    Kerdiles, Herve; Magrin, G.; Rebella, Cesar M.; Seguin, B.

    1995-01-01

    Ten years of NOAA GAC data over the Argentinean Pampa were analyzed in relation with climate and crop production. Correlations between crop yield and monthly NDVI (cumulated or not, weighted by the global radiation or not) reached 0.87 for wheat, 0.85 for soybean and 0.83 for corn, despite the classical limitations of AVHRR data (mixed response, atmospheric and directional noise, sensor calibration), the monthly frequency and the size of the test areas (10,000 km2). The quality of these results was partly due to the extensive character of the Pampa's cropping system since the correlation between final yield and NDVI relies on the following two hypothesis: NDVI can predict biomass and biomass is a good indicator of final grain yield. The best correlations were observed with the NDVI sensed at maximum green biomass, hence permitting yield estimations one to two months before harvest. Standard errors of regression were of 0.22, 0.17, and 0.63 t/ha for wheat, soybean, and maize respectively, for a mean yield around 1.7, 2.2, and 3.8 t/ha, respectively. Last, the complement between NDVI data and crop physiologically based models was examined. Despite the data related limitations, the relationship between CERES wheat predicted LAI and NOAA monthly GAC NDVI appeared as promising.

  16. A Case Study: Climate Change Decision Support for the Apalachicola, Chattahoochee, Flint Basins

    NASA Astrophysics Data System (ADS)

    Day, G. N.; McMahon, G.; Friesen, N.; Carney, S.

    2011-12-01

    Riverside Technology, inc. has developed a Climate Change Decision Support System (DSS) to provide water managers with a tool to explore a range of current Global Climate Model (GCM) projections to evaluate their potential impacts on streamflow and the reliability of future water supplies. The system was developed as part of a National Oceanic and Atmospheric Administration (NOAA) Small Business Innovation Research (SBIR) project. The DSS uses downscaled GCM data as input to small-scale watershed models to produce time series of projected undepleted streamflow for various emission scenarios and GCM simulations. Until recently, water managers relied on historical streamflow data for water resources planning. In many parts of the country, great effort has been put into estimating long-term historical undepleted streamflow accounting for regulation, diversions, and return flows to support planning and water rights administration. In some cases, longer flow records have been constructed using paleohydrologic data in an attempt to capture climate variability beyond what is evident during the observed historical record. Now, many water managers are recognizing that historical data may not be representative of an uncertain climate future, and they have begun to explore the use of climate projections in their water resources planning. The Climate Change DSS was developed to support water managers in planning by accounting for both climate variability and potential climate change. In order to use the information for impact analysis, the projected streamflow time series can be exported and substituted for the historical streamflow data traditionally applied in their system operations models for water supply planning. This paper presents a case study in which climate-adjusted flows are coupled with the U.S. Army Corps of Engineers (USACE) ResSim model for the Apalachicola, Chattahoochee, and Flint (ACF) River basins. The study demonstrates how climate scenarios can be used

  17. DataStreme Earth's Climate System: Building a Climate Literate Society through Effective Partnerships

    NASA Astrophysics Data System (ADS)

    Brey, J. A.; Geer, I. W.; Weinbeck, R. S.; Mills, E. W.; Nugnes, K. A.; Stimach, A. E.

    2015-12-01

    Effective partnerships are key to increasing climate and overall environmental literacy. Financial support from NSF, NASA, and NOAA has allowed the American Meteorological Society (AMS) to offer DataStreme courses for almost 20 years. DataStreme Atmosphere, Ocean, and Earth's Climate System (ECS) are offered each fall and spring semester by Local Implementation Teams (LITs) across the country in coordination with AMS Education Program scientists and educators who develop instructional materials, provide logistical support to the LITs, and administer the project. A long-standing partnership with State University of New York's The College at Brockport gives teachers the opportunity to receive 3 tuition-free graduate credits upon successful completion of each DataStreme course and construction of a Plan of Action for educational peer-training. DataStreme ECS investigates the fundamental science of Earth's climate system, explores humans' impact on it, and identifies actions needed in response to climate change. The course provides participants with the knowledge to make informed climate decisions. In fact, according to a recent three-year study conducted by AMS, 98% of DataStreme ECS participants reported an increase in environmental literacy as a result of the course. DataStreme Atmosphere, Ocean, and ECS content has been improved because of AMS partnerships with NOAA and NASA. Specifically, hundreds of NASA and NOAA scientists and faculty from numerous institutions both domestic and abroad have contributed and reviewed DataStreme ECS content. Additional collaborations with Consortium for Ocean Leadership and the U.S. Ice Drilling Program greatly improved the course's paleoclimate content. Looking ahead, the Climate Resilience Toolkit from NOAA's Climate Program Office will further bolster the course this fall. These partnerships have resulted in a powerful, content-rich climate science course for K-12 teachers, building the foundation to a climate literate society.

  18. The Science Behind the NASA/NOAA Electronic Theater 2002

    NASA Technical Reports Server (NTRS)

    Hasler, A. Fritz; Starr, David (Technical Monitor)

    2002-01-01

    Details of the science stories and scientific results behind the Etheater Earth Science Visualizations from the major remote sensing institutions around the country will be explained. The NASA Electronic Theater presents Earth science observations and visualizations in a historical perspective. Fly in from outer space to Temple Square and the University of Utah Campus. Go back to the early weather satellite images from the 1960s see them contrasted with the latest US/Europe/Japan global weather data. See the latest images and image sequences from NASA & NOAA missions like Terra, GOES, NOAA, TRMM, SeaWiFS, Landsat 7 visualized with state-of-the art tools. A similar retrospective of numerical weather models from the 1960s will be compared with the latest "year 2002" high-resolution models. See the inner workings of a powerful hurricane as it is sliced and dissected using the University of Wisconsin Vis-5D interactive visualization system. The largest super computers are now capable of realistic modeling of the global oceans. See ocean vortexes and currents that bring up the nutrients to feed phitoplankton and zooplankton as well as draw the crill fish, whales and fisherman. See the how the ocean blooms in response to these currents and El Nino/La Nina climate regimes. The Internet and networks have appeared while computers and visualizations have vastly improved over the last 40 years. These advances make it possible to present the broad scope and detailed structure of the huge new observed and simulated datasets in a compelling and instructive manner. New visualization tools allow us to interactively roam & zoom through massive global images larger than 40,000 x 20,000 pixels. Powerful movie players allow us to interactively roam, zoom & loop through 4000 x 4000 pixel bigger than HDTV movies of up to 5000 frames. New 3D tools allow highly interactive manipulation of detailed perspective views of many changing model quantities. See the 1m resolution before and after

  19. The Science Behind the NASA/NOAA Electronic Theater 2002

    NASA Technical Reports Server (NTRS)

    Hasler, A. Fritz; Starr, David (Technical Monitor)

    2002-01-01

    Details of the science stories and scientific results behind the Etheater Earth Science Visualizations from the major remote sensing institutions around the country will be explained. The NASA Electronic Theater presents Earth science observations and visualizations in a historical perspective. Fly in from outer space to Temple Square and the University of Utah Campus. Go back to the early weather satellite images from the 1960s see them contrasted with the latest US/Europe/Japan global weather data. See the latest images and image sequences from NASA & NOAA missions like Terra, GOES, NOAA, TRMM, SeaWiFS, Landsat 7 visualized with state-of-the art tools. A similar retrospective of numerical weather models from the 1960s will be compared with the latest "year 2002" high-resolution models. See the inner workings of a powerful hurricane as it is sliced and dissected using the University of Wisconsin Vis-5D interactive visualization system. The largest super computers are now capable of realistic modeling of the global oceans. See ocean vortexes and currents that bring up the nutrients to feed phitoplankton and zooplankton as well as draw the crill fish, whales and fisherman. See the how the ocean blooms in response to these currents and El Nino/La Nina climate regimes. The Internet and networks have appeared while computers and visualizations have vastly improved over the last 40 years. These advances make it possible to present the broad scope and detailed structure of the huge new observed and simulated datasets in a compelling and instructive manner. New visualization tools allow us to interactively roam & zoom through massive global images larger than 40,000 x 20,000 pixels. Powerful movie players allow us to interactively roam, zoom & loop through 4000 x 4000 pixel bigger than HDTV movies of up to 5000 frames. New 3D tools allow highly interactive manipulation of detailed perspective views of many changing model quantities. See the 1m resolution before and after

  20. SSBUV and NOAA-11 SBUV/2 Solar Variability Measurements

    NASA Technical Reports Server (NTRS)

    DeLand, Matthew T.; Cebula, Richard P.; Hilsenrath, Ernest

    1998-01-01

    The Shuttle SBUV (SSBUV) and NOAA-11 SBUV/2 instruments measured solar spectral UV irradiance during the maximum and declining phase of solar cycle 22. The SSB UV data accurately represent the absolute solar UV irradiance between 200-405 nm, and also show the long-term variations during eight flights between October 1989 and January 1996. These data have been used to correct long-term sensitivity changes in the NOAA-11 SBUV/2 data, which provide a near-daily record of solar UV variations over the 170-400 nm region between December 1988 and October 1994. The NOAA-11 data demonstrate the evolution of short-term solar UV activity during solar cycle 22.

  1. NOAA-11 SBUV/2 measurements of solar UV variations

    NASA Technical Reports Server (NTRS)

    Cebula, R. P.; Deland, M. T.; Hilsenrath, E.

    1995-01-01

    The SBUV/2 instrument onboard the NOAA-11 satellite made daily solar spectral irradiance measurements in the wavelength region 160405 nm at 1.1 nm resolution between January 1989 and October 1994. These observations continued the uninterrupted series of solar measurements begun by the Nimbus-7 SBUV in 1978 and continued by NOAA-9 SBUV/2. While the measurements made by the SBUV-series instruments furnish an excellent data base for studies of solar UV variability, these instruments do not have an internal mew to evaluate and correct for long-term instrument sensitivity degradation, needed to evaluate solar cycle timescale irradiance change. During yearly Shuttle flights the Shuttle SBUV (SSBUV) also performs solar spectral irradiance measurements in the wavelength region 200 to 400 nm with an instrument that is calibrated preflight, inflight, and postflight. Comparisons between the simultaneous NOAA-11 SBUV/2 and SSBUV solar measurements are used to identify and correct long term sensitivity changes in the satellite instrument. The NOAA-11 data will then be used to evaluate long-term solar change. We present a progress report on the above process. At this preliminary stage uncertainties in the calibration transfer between SSBUV and NOAA-11 SBUV/2 are too large to accurately evaluate long-term solar change near the A1 edge, but solar rotational activity variations can be evaluated. We find that rotational activity declined from roughly 6% peak-to-peak (p-p) near the maximum of solar cycle 22 in 1989-1991 to approximately 3% p-p in mid 1992 and 2% p-p by mid 1994. Emphasizing rotational variations, comparisons between the 200 nm data and the NOAA-11 Mg II proxy index are presented.

  2. The NOAA-National Geographic Society Waterspout Expedition (1993).

    NASA Astrophysics Data System (ADS)

    Golden, Joseph H.; Bluestein, Howard B.

    1994-12-01

    This paper describes afield program conducted by NOAA and the National Geographic Society in late August 1993 near Key West, Florida. The mission of the expedition was to obtain close-up photographic documentation of waterspouts. Using a NOAA helicopter as an observing platform, the participants dropped flares onto the sea surface to visualize the airflow and filmed waterspouts using a state-of-the art motion picture camera and still cameras. Over a dozen waterspouts funnel clouds wore observed, and the most detailed movies of spray vortices over taken were obtained.

  3. Climatic variability effects on summer cropping systems of the Iberian Peninsula

    NASA Astrophysics Data System (ADS)

    Capa-Morocho, M.; Rodríguez-Fonseca, B.; Ruiz-Ramos, M.

    2012-04-01

    Climate variability and changes in the frequency of extremes events have a direct impact on crop yield and damages. Climate anomalies projections at monthly and yearly timescale allows us for adapting a cropping system (crops, varieties and management) to take advantage of favorable conditions or reduce the effect of adverse conditions. The objective of this work is to develop indices to evaluate the effect of climatic variability in summer cropping systems of Iberian Peninsula, in an attempt of relating yield variability to climate variability, extending the work of Rodríguez-Puebla (2004). This paper analyses the evolution of the yield anomalies of irrigated maize in several representative agricultural locations in Spain with contrasting temperature and precipitation regimes and compare it to the evolution of different patterns of climate variability, extending the methodology of Porter and Semenov (2005). To simulate maize yields observed daily data of radiation, maximum and minimum temperature and precipitation were used. These data were obtained from the State Meteorological Agency of Spain (AEMET). Time series of simulated maize yields were computed with CERES-maize model for periods ranging from 22 to 49 years, depending on the observed climate data available for each location. The computed standardized anomalies yields were projected on different oceanic and atmospheric anomalous fields and the resulting patterns were compared with a set of documented patterns from the National Oceanic and Atmospheric Administration (NOAA). The results can be useful also for climate change impact assessment, providing a scientific basis for selection of climate change scenarios where combined natural and forced variability represent a hazard for agricultural production. Interpretation of impact projections would also be enhanced.

  4. BOREAS AFM-1 NOAA/ATDD Long-EZ Aircraft Flux data Over the SSA

    NASA Technical Reports Server (NTRS)

    Crawford, Timothy L.; Baldocchi, Dennis; Hall, Forrest G. (Editor); Knapp, David E. (Editor); Gunter, Laureen; Dumas, Ed; Smith, David E. (Technical Monitor)

    2000-01-01

    This data set contains measurements from the Airborne Flux and Meteorology (AFM)-1 National Oceanographic and Atmospheric Administration/Atmospheric Turbulence and Diffusion Division (NOAA/ATDD) Long-EZ Aircraft collected during the 1994 Intensive Field Campaigns (IFCs) at the southern study area (SSA). These measurements were made from various instruments mounted on the aircraft. The data that were collected include aircraft altitude, wind direction, wind speed, air temperature, potential temperature, water mixing ratio, U and V components of wind velocity, static pressure, surface radiative temperature, downwelling and upwelling total radiation, downwelling and upwelling longwave radiation, net radiation, downwelling and upwelling photosynthectically active radiation (PAR), greenness index, CO2 concentration, O3 concentration, and CH4 concentration. There are also various columns that indicate the standard deviation, skewness, kurtosis, and trend of some of these data. The data are stored in tabular ASCII files. The NOAA/ATDD Long-EZ aircraft flux data are available from the Earth Observing System Data and Information System (EOSDIS) Oak Ridge National Laboratory (ORNL) Distributed Active Archive Center (DAAC). The data files are available on a CD-ROM (see document number 20010000884).

  5. Intergrating Data From NASA Missions Into NOAAs Pacific Region Intergrated Climatology Information Products (PRICIP)

    NASA Astrophysics Data System (ADS)

    Benham, L.; Chester, K.; Eisberg, A.; Iyer, S.; Lee, K.; Marra, J.; Schmidt, C.; Skiles, J.

    2008-12-01

    The Pacific Region Integrated Climatology Information Products (PRICIP) Project is developing a number of products that will successfully promote awareness and understanding of the patterns and effects of "storminess" in the Pacific Rim. The National Oceanic and Atmospheric Administration's (NOAA) Integrated Data and Environmental Applications (IDEA) Center initiated the PRICIP Project to improve our understanding of such storm processes by creating a web portal containing both scientific and socioeconomic information about Pacific storms. Working in conjunction with partners at NOAA, students from the NASA Ames DEVELOP internship program are integrating NASA satellite imagery into the PRICIP web portal by animating eight storm systems that took place in the South Pacific Ocean between 1992 and 2005, four other anomalous high water events in the Hawaiian Islands, and annual storm tracks. The primary intended audience includes coastal disaster management decision-makers and other similarly concerned agencies. The broad access of these web-based products is also expected to reach scientists, the National Weather Service (NWS), the Federal Emergency Management Agency (FEMA), and media broadcasting consumers. The newly integrated and animated hindcast data will also help educate laypersons about past storms and help them for future storms.

  6. Validation of GOES-Derived Surface Radiation Using NOAA's Physical Retrieval Method

    SciTech Connect

    Habte, A.; Sengupta, M.; Wilcox, S.

    2013-01-01

    This report was part of a multiyear collaboration with the University of Wisconsin and the National Oceanic and Atmospheric Administration (NOAA) to produce high-quality, satellite-based, solar resource datasets for the United States. High-quality, solar resource assessment accelerates technology deployment by making a positive impact on decision making and reducing uncertainty in investment decisions. Satellite-based solar resource datasets are used as a primary source in solar resource assessment. This is mainly because satellites provide larger areal coverage and longer periods of record than ground-based measurements. With the advent of newer satellites with increased information content and faster computers that can process increasingly higher data volumes, methods that were considered too computationally intensive are now feasible. One class of sophisticated methods for retrieving solar resource information from satellites is a two-step, physics-based method that computes cloud properties and uses the information in a radiative transfer model to compute solar radiation. This method has the advantage of adding additional information as satellites with newer channels come on board. This report evaluates the two-step method developed at NOAA and adapted for solar resource assessment for renewable energy with the goal of identifying areas that can be improved in the future.

  7. A Quality Control study of the distribution of NOAA MIRS Cloudy retrievals during Hurricane Sandy

    NASA Astrophysics Data System (ADS)

    Fletcher, S. J.

    2013-12-01

    Cloudy radiance present a difficult challenge to data assimilation (DA) systems, through both the radiative transfer system as well the hydrometers required to resolve the cloud and precipitation. In most DA systems the hydrometers are not control variables due to many limitations. The National Oceanic and Atmospheric Administration's (NOAA) Microwave Integrated Retrieval System (MIRS) is producing products from the NPP-ATMS satellite where the scene is cloud and precipitation affected. The test case that we present here is the life time of Hurricane and then Superstorm Sandy in October 2012. As a quality control study we shall compare the retrieved water vapor content during the lifetime of Sandy with the first guess and the analysis from the NOAA Gridpoint Statistical Interpolation (GSI) system. The assessment involves the gross error check system against the first guess with different values for the observational error's variance to see if the difference is within three standard deviations. We shall also compare against the final analysis at the relevant cycles to see if the products which have been retrieved through a cloudy radiance are similar, given that the DA system does not assimilate cloudy radiances yet.

  8. Science and applications from the next generation of particle and field instruments on the NOAA satellites

    NASA Astrophysics Data System (ADS)

    Green, Janet; Onsager, Terrance; Rodriguez, Juan; Singer, Howard

    The vision of the National Oceanic and Atmospheric Administration (NOAA) Space Weather Prediction Center (SWPC) is, "A nation prepared to mitigate the effects of space weather through the understanding and use of actionable alerts, forecasts, and data products." To achieve this vision, NOAA maintains a constellation of satellites equipped with space weather sensors in geosynchronous and low Earth orbits. The data from these sensors drive space weather models and forecasts delivered to customers such as power utilities, airlines, GPS users, and satellite operators through our operational forecast office and website. Here we describe the heritage and new sensors onboard the Geostationary Operational Environmental Satellites (GOES)-NOP, GOES-R, and Joint Polar Satellite System (JPSS) and the relevance of the data for radiation belt studies and modeling. We describe the implementation of a new radiation belt and satellite charging product known as the Space Environmental Anomalies Expert System-Real Time [O'Brien et al., 2009]. Finally, we discuss the anticipated direction for new space weather models and research at SWPC.

  9. NOAA Graphical Flood Severity Inundation Mapping: Enhancing River Forecasts with Geographic Information Systems (GIS)

    NASA Astrophysics Data System (ADS)

    Marcy, D.; Donaldson, T.

    2006-12-01

    The National Oceanic and Atmospheric Administration (NOAA) National Weather Service (NWS) provides flood forecast information in a variety of formats, including graphical hydrographs and text products. Beginning in 2002, the NOAA Coastal Services Center (CSC) and NWS have worked in partnership to develop geographic information systems (GIS) based graphical flood severity inundation products. GIS techniques are used along with the best available topographic data and flood surface profiles generated from hydraulic models to develop inundation maps of the areal extent of NWS flood categories (minor, moderate, major), along with a range of water surface elevations at selected vertical intervals. The resulting inundation map products are called NWS flood severity inundation map libraries and will become a part of the suite of new products being disseminated via the Advanced Hydrologic Prediction Service (AHPS) program. In 2006, the CSC through the contractor, Watershed Concepts, developed a methodologies and standards document and map template for new graphical flood severity products. This report, titled "Methods and Standards for National Weather Service Flood Severity Inundation Maps" will serve as the basis and guide for creating new flood severity inundation map libraries at specific NWS river forecast points. This paper will describe 1.) the history and components of these inundation maps products, 2.) the process for developing flood severity inundation maps using these methods and standards, 3.) the connection of these products to the FEMA map modernization program, 4.) and delivery of these products via the web.

  10. Comparisons of the MG II index products from the NOAA-9 and NOAA-11 SBUV/2 instruments

    NASA Technical Reports Server (NTRS)

    Deland, M. T.; Cebula, R. P.

    1994-01-01

    The Mg II index is a proxy indicator of solar UV activity which is produced from measurements of the chromospheric Mg II absortion line at 280 nm. Mg II index data sets have been derived from the NOAA-9 and NOAA-11 SBUV/2 irradiance data sets using both discrete scan measurements about the Mg II line and continuous scan (sweep) measurements over the UV spectrum from 160 - 400 nm. This paper will discuss the rationale behind the creation of the different Mg II index products, and make a quantitative assessment of the differences between these products. Recommendations for future use of the Mg II index will also be presented.

  11. NOAA's Improved Fire and Smoke Analysis, A Global Disaster Information Network Initiative

    NASA Astrophysics Data System (ADS)

    Stephens, G.; McNamara, D. P.; Fennimore, R.; Ramsay, B. H.; Ruminski, M.; Ruminski, M.

    2001-05-01

    The National Environmental Satellite, Data, and Information Service (NESDIS) of The National Oceanic and Atmospheric Administration (NOAA) produces a smoke and fire monitoring product based on environmental satellite data. In response to an initiative by NOAA's Global Disaster Information Network (GDIN), NESDIS is in the process of enhancing this product to better serve the needs of its customers. Environmental satellitescan detect and monitor hot spots and smoke associated with wildfires. Infrared and visible band sensors on NESDIS' Geostationary Operational Environmental Satellites (GOES)and Polar Orbiting Operational Environmental Satellites (POES) can delineate hot spots and smoke, respectively, resulting from fire activity. In response to requirements of the Fire Weather Program of the National Weather Service (NWS), NESDIS currently twice per day produces a product delineating hot spots and smoke for selected limited geographic areas of the Continental United States (CONUS). GOES and POES imagery is analyzed on an image display system, and a graphical depiction of smoke and hot spot areas is drawn by the analyst. The product is disseminated as imagery via the Internet, and is utilized by Incident Meteorologists, SPC personnel, and U.S. Forest Service fire managers. In response to formally expressed requirements of the NWS, and informal requests from many other users, including federal, state, and local fire management agencies, for a more frequent, spatially accurate product covering all of CONUS and Alaska, GDIN has initiated a program to enhance NOAA's smoke and fire products. The Satellite Services Division (SSD) of NESDIS' Office of Satellite Data Processing and Distribution is developing the Hazard Mapping System (HMS) based on these requirements. It will use data from GOES, POES, and the Defense Meteorological Satellite Program's (DMSP) On Line Scanner, which can detect hot spots at night. Automated hot spot and smoke detections will be provided by the

  12. Contracting Out. National Oceanic and Atmospheric Administration's Central Library. Report to the Chairman, Subcommittee on Commerce, Justice, State, and the Judiciary, Committee on Appropriations, U.S. Senate.

    ERIC Educational Resources Information Center

    General Accounting Office, Washington, DC.

    In response to a request by the Senate Committee on Appropriations for an examination of the A-76 program of the Department of Commerce's National Oceanic and Atmospheric Administration (NOAA), in particular NOAA's decision to contract for the operation of its Central Library, this report describes a General Accounting Office (GAO) review which:…

  13. Threats, Challenges, and Promise of Marine Microbes: A NOAA Perspective with Emphasis on Ecological Forecasting

    NASA Astrophysics Data System (ADS)

    Sandifer, P. A.

    2012-12-01

    Fully functioning ecosystems, as well as healthy humans, depend on robust and diverse communities of microbes. The diversity of microbes in the marine environment is estimated to be huge, dwarfing diversity of other life forms, and crucial for many ecosystem processes. Despite the ubiquity and extreme importance of microbial life in the sea - from the air-surface interface to the deepest abyss and sediments - we know relatively little about this biotic component that may compose a large proportion of the total biomass on the planet. As the nation's principal steward of marine living resources, NOAA is both responsible for and vitally interested in marine microbes, from a variety of perspectives. These include (1) health threats to humans and other organisms and how these may be affected by climate change and ecosystem alteration; (2) detoxification of organic pollutants such as hydrocarbons (e.g., in the Deep Water Horizon oil catastrophe); (3) production of valuable natural products including potential new pharmaceuticals; (4) roles in biogeochemical cycles (e.g., for carbon, nitrogen, phosphorus, iron, etc.) and how human activities may affect these roles; (5) development and deployment of new methods to detect and quantify certain marine microbes, and incorporation of these into ocean observing systems; (6) development of Earth System models that include much improved understanding of microbial functional diversity and microbially mediated biogeochemical processes; (7) dynamics of bacterial, phyto- and zooplankton blooms, including for harmful algae and bacteria; (8) effects of climate change factors (e.g., temperature, CO2 concentrations, ocean acidification, changes in habitats and species distribution, etc.) on marine microbes; and others. Many of these topics likely will be discussed by others in this session. This presentation will focus primarily on NOAA's activities in addressing health threats emanating from a variety of microbes in the marine

  14. Bangladesh Agro-Climatic Environmental Monitoring Project

    NASA Technical Reports Server (NTRS)

    Vermillion, C.; Maurer, H.; Williams, M.; Kamowski, J.; Moore, T.; Maksimovich, W.; Obler, H.; Gilbert, E.

    1988-01-01

    The Agro-Climatic Environmental Monitoring Project (ACEMP) is based on a Participating Agency Service Agreement (PASA) between the Agency for International Development (AID) and the National Oceanic and Atmospheric Administration (NOAA). In FY80, the Asia Bureau and Office of Federal Disaster Assistance (OFDA), worked closely to develop a funding mechanism which would meet Bangladesh's needs both for flood and cyclone warning capability and for application of remote sensing data to development problems. In FY90, OFDA provided for a High Resolution Picture Transmission (HRPT) receiving capability to improve their forecasting accuracy for cyclones, flooding and storm surges. That equipment is primarily intended as a disaster prediction and preparedness measure. The ACEM Project was designed to focus on the development applications of remote sensing technology. Through this Project, AID provided to the Bangladesh Government (BDG) the equipment, technical assistance, and training necessary to collect and employ remote sensing data made available by satellites as well as hydrological data obtained from data collection platforms placed in major rivers. The data collected will enable the BDG to improve the management of its natural resources.

  15. Exploring Seafloor Volcanoes in Cyberspace: NOAA's "Ocean Explorer" Inspires Inquiry

    ERIC Educational Resources Information Center

    Hjelm, Elizabeth

    2011-01-01

    Seafloor exploration being done by scientists is an ideal way to introduce students to technology as a tool for inquiry. The same technology that allows scientists to share data in near real time can also provide students the tools to become researchers. NOAA's Ocean Explorer Explorations website is a rich research data bank that can be used by…

  16. State Geography Using NOAA Polar-Orbiting Satellites.

    ERIC Educational Resources Information Center

    Stadler, Stephen J.

    1985-01-01

    NOAA polar-orbiting satellites have the capability of providing views of entire states. This article describes the characteristics of data from these satellites, indicates their advantages and disadvantages, and shows how the satellite data can be used in a statewide representation of physical geography for students at the introductory level. (RM)

  17. 15 CFR 995.28 - Use of NOAA emblem.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... HYDROGRAPHIC PRODUCTS Requirements for Certified Distributors and Value Added Distributors of NOAA ENC Products...)(ii) and (b)(3)(ii); and there can be no endorsement or favoritism toward the distributor or value... part does not automatically grant the distributor or value added distributor the right to use the...

  18. 15 CFR 904.104 - Final administrative decision.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... filed as provided in § 904.201(a), the NOVA becomes effective as the final administrative decision and order of NOAA 30 days after service of the NOVA or on the last day of any delay period granted. (b) If...

  19. 15 CFR 904.104 - Final administrative decision.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... filed as provided in § 904.201(a), the NOVA becomes effective as the final administrative decision and order of NOAA 30 days after service of the NOVA or on the last day of any delay period granted. (b) If...

  20. 15 CFR 904.104 - Final administrative decision.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... filed as provided in § 904.201(a), the NOVA becomes effective as the final administrative decision and order of NOAA 30 days after service of the NOVA or on the last day of any delay period granted. (b) If...

  1. 15 CFR 904.104 - Final administrative decision.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... filed as provided in § 904.201(a), the NOVA becomes effective as the final administrative decision and order of NOAA 30 days after service of the NOVA or on the last day of any delay period granted. (b) If...

  2. 15 CFR 904.104 - Final administrative decision.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... filed as provided in § 904.201(a), the NOVA becomes effective as the final administrative decision and order of NOAA 30 days after service of the NOVA or on the last day of any delay period granted. (b) If...

  3. Response of Florida shelf ecosystems to climate change: from macro to micro scales

    USGS Publications Warehouse

    Robbins, Lisa; Raabe, Ellen

    2010-01-01

    U.S. Geological Survey (USGS) research in St. Petersburg, Fla., is focusing attention on marine environments of the Florida shelf at three levels, from regional to estuarine to the individual organism. The USGS is partnering on this project with the Florida Department of Agriculture and Consumer Services (DACS), National Oceanic and Atmospheric Administration (NOAA), and the University of South Florida (USF) in marine studies. The specific goals of these combined efforts are an improved understanding of the effects of ocean acidification on regional carbonate processes, changes in individual estuaries, and organism-level response. This understanding will assist in developing appropriate Federal, State, and local management responses to climate change in coastal areas.

  4. 15 CFR 995.26 - Conversion of NOAA ENC ® files to other formats.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 15 Commerce and Foreign Trade 3 2010-01-01 2010-01-01 false Conversion of NOAA ENC ® files to... ASSURANCE AND CERTIFICATION REQUIREMENTS FOR NOAA HYDROGRAPHIC PRODUCTS AND SERVICES CERTIFICATION REQUIREMENTS FOR DISTRIBUTORS OF NOAA HYDROGRAPHIC PRODUCTS Requirements for Certified Distributors and...

  5. The Effects of El Niño on Precipitation in Southern California Climate Divisions: Year 2016 Precipitation Forecast.

    NASA Astrophysics Data System (ADS)

    Perez Cruz, L.; Idris, N.; El-Askary, H. M.

    2015-12-01

    Recently, it has been reported by the National Oceanic and Atmospheric Administration (NOAA) that there is very high chance not only for El Niño to continue through Northern Hemisphere winter 2015-16, but also a remarkable chance for El Niño to last into early spring 2016. This research aims at: 1) investigating the impact of El Niño on precipitation in the Southern California Climate Divisions: Climate Division 6 South Coast Drainage, and Division 7 South Coast Desert Basin. 2) Analyzing the precipitation of Southern California region using the Empirical Mode Decomposition Method (EMD). 3) Looking at the SOI components and compare it with the precipitation components of Southern California Climate Divisions. 4) Comparing precipitation data with Niño indices: Niño 1+2, Niño 3, Nino 3.4, and Niño 4. As results, we found a significant cross correlation of 0.7 between SOI component 10 and precipitation component 10 in Climate Division 6. Furthermore, among all the Niño indices, Niño 3 region displayed the best correlation. When we compared precipitation division 7 component 9 with Niño 3 component 10, a 0.95 cross correlation value was obtained. The lowest cross correlation value of (0.33) was obtained from Climate Division 6, precipitation component 7 with Niño 4 component 7.

  6. Improving NOAA's NWLON Through Enhanced Data Inputs from NASA's Ocean Surface Topography

    NASA Technical Reports Server (NTRS)

    Guest, DeNeice C.

    2010-01-01

    This report assesses the benefit of incorporating NASA's OSTM (Ocean Surface Topography Mission) altimeter data (C- and Ku-band) into NOAA's (National Oceanic and Atmospheric Administration) NWLON (National Water Level Observation Network) DSS (Decision Support System). This data will enhance the NWLON DSS by providing additional inforrnation because not all stations collect all meteorological parameters (sea-surface height, ocean tides, wave height, and wind speed over waves). OSTM will also provide data where NWLON stations are not present. OSTM will provide data on seasurface heights for determining sea-level rise and ocean circulation. Researchers and operational users currently use satellite altimeter data products with the GSFCOO NASA data model to obtain sea-surface height and ocean circulation inforrnation. Accurate and tirnely inforrnation concerning sea-level height, tide, and ocean currents is needed to irnprove coastal tidal predictions, tsunarni and storm surge warnings, and wetland restoration.

  7. OpenClimateGIS - A Web Service Providing Climate Model Data in Commonly Used Geospatial Formats

    NASA Astrophysics Data System (ADS)

    Erickson, T. A.; Koziol, B. W.; Rood, R. B.

    2011-12-01

    The goal of the OpenClimateGIS project is to make climate model datasets readily available in commonly used, modern geospatial formats used by GIS software, browser-based mapping tools, and virtual globes.The climate modeling community typically stores climate data in multidimensional gridded formats capable of efficiently storing large volumes of data (such as netCDF, grib) while the geospatial community typically uses flexible vector and raster formats that are capable of storing small volumes of data (relative to the multidimensional gridded formats). OpenClimateGIS seeks to address this difference in data formats by clipping climate data to user-specified vector geometries (i.e. areas of interest) and translating the gridded data on-the-fly into multiple vector formats. The OpenClimateGIS system does not store climate data archives locally, but rather works in conjunction with external climate archives that expose climate data via the OPeNDAP protocol. OpenClimateGIS provides a RESTful API web service for accessing climate data resources via HTTP, allowing a wide range of applications to access the climate data.The OpenClimateGIS system has been developed using open source development practices and the source code is publicly available. The project integrates libraries from several other open source projects (including Django, PostGIS, numpy, Shapely, and netcdf4-python).OpenClimateGIS development is supported by a grant from NOAA's Climate Program Office.

  8. Using NOAA-AVHRR estimates of land surface temperature for regional agrometeorogical modelling

    NASA Astrophysics Data System (ADS)

    de Wit, A. J. W.; Boogaard, H. L.; van Diepen, C. A.

    2004-09-01

    Agrometeorological crop simulation models are used increasingly in spatial applications like regional crop monitoring and yield forecasting. The spatial application of these models involves gathering spatially representative values of meteorological input variables (temperature, radiation and precipitation). This is usually accomplished by interpolating meteorological variables measured at point locations. This paper explores the use of advanced very high resolution radiometer (AVHRR)-derived surface temperature as a replacement for interpolated maximum air temperature in a spatial crop monitoring and yield forecasting system. A 2-year set of daily National Oceanic And Atmospheric Administration (NOAA)-AVHRR images over western Europe was used to derive estimates of daily surface temperature aggregated over 50 km × 50 km gridcells, a land cover database was used to select only pixels that were classified as 'arable land'. On days that did not yield data due to cloud cover, the monthly average surface temperature was substituted. The AVHRR-derived surface temperature is usually higher than the maximum air temperature measured at a weather station. To account for this difference, an empirical model was used that relates surface temperature to maximum air temperature. The model parameters were obtained using calibration with the maximum air temperature measured at five weather stations. Next, it was applied to the entire AVHRR data set in order to convert AVHRR surface temperature into a simulated maximum air temperature. Finally, a case study was carried out by using the WOrld FOod Studies (WOFOST) crop model to simulate growth of winter-wheat and sunflower for Spain using both the simulated maximum air temperature and the interpolated maximum air temperature from weather stations. Our results demonstrate that the spatial patterns of the yearly temperature sums over Spain are similar for both sources of temperature. Therefore, it can be concluded that the AVHRR

  9. Climate Mobile: A Climate Education App For Everyone

    NASA Astrophysics Data System (ADS)

    Yunck, T. P.

    2011-12-01

    There exists a vast and energetic community of non-scientists concerned about climate change and engaged in exploring how they can contribute to our collective response. There are also many, equally energetic, who question the scientific consensus on climate change. To professionals who follow the debates it is plain that few non-scientists possess up-to-date climate information, or the means to make meaningful use of such information as can be found scattered across the internet. To remedy this GeoOptics Inc. has developed, as a spinoff of NASA's "Climate Virtual Observatory," an educational iPhone app called Climate Mobile, aka "CliMate." It allows users to call up the latest information on global surface and atmospheric temperatures and trends, Arctic ice cover, weather, atmospheric CO2 concentrations, and solar activity, along with IPCC climate forecasts and tutorials on climate change, space weather, greenhouse warming, and other subjects. Two advanced tools, the Climate Analyzer and the Sensor Data Comparator, allow the citizen-scientist to explore climate data in greater depth. The Analyzer offers access to the 130-year global surface temperature data from NOAA/NCDC and NASA/GISS, and the 32-year atmospheric temperature record from the MSU and AMSU instruments on NOAA satellites. Users can examine data for the full globe, or partitioned by N/S hemisphere or land and ocean and can filter, plot and compare the data over any desired interval, using smoothing windows ranging from 1 month to 15 years. The Comparator allows users to compare atmospheric temperature data from AIRS, GPS radio occultation, and ECMWF global analyses both regionally and globally, and compute instrumental biases and sigmas under different filtering strategies to better understand the inherent properties of each. With these tools users can generate and view plots, tailor the plot characteristics, save the results, or send them to a URL or email address. To illustrate the utility of the

  10. Administrative Synergy

    ERIC Educational Resources Information Center

    Hewitt, Kimberly Kappler; Weckstein, Daniel K.

    2012-01-01

    One of the biggest obstacles to overcome in creating and sustaining an administrative professional learning community (PLC) is time. Administrators are constantly deluged by the tyranny of the urgent. It is a Herculean task to carve out time for PLCs, but it is imperative to do so. In this article, the authors describe how an administrative PLC…

  11. National K-12 Educator Conference; "Earth Then, Earth Now: Our Changing Climate" (July 23-24, 2008)

    SciTech Connect

    Flammer, Karen; O'Shaughnessy, Tam

    2013-12-11

    With the support of the Department of Energy, the National Science Teachers Association and the National Oceanic and Atmospheric Administration, Imaginary Lines Inc. (dba Sally Ride Science) delivered a highly successful 2-day conference to 165 K-12 educators on climate change. The event took place on July 23rd and 24th, 2008 at the NOAA facility in Silver Spring, MD. The conference celebrated the 25th anniversary of Dr. Sally Ride’s first flight into space in 1983 and examined how our understanding of Earth has changed in those 25 years. One the first day of the conference, participants heard a keynote talk delivered by Dr. Sally Ride, followed by presentations by well-known climate change scientists: Dr. Richard Somerville, Dr. Inez Fung and Dr. Susan Solomon. These sessions were concurrently webcast and made available to educators who were unable to attend the conference. On the second day of the conference, participants attended breakout sessions where they performed climate change activities (e.g. “Neato Albedo!”, “Greenhouse in a Bottle”, “Shell-Shocked”) that they could take back to their classrooms. Additional break-out sessions on using remote sensing images to illustrate climate change effects on Earth’s surface and how to address the climate change debate, were also offered. During lunch, participants attended an Educator Street Fair and had the opportunity to interact with representatives from NOAA, NASA, the EPA, NEEF and the JASON project. A follow-up evaluation survey was administered to all conference attendees immediately following the conference to evaluate its effectiveness. The results of this survey were overwhelmingly positive. The conference materials: presentation Power Points, workshop handouts and activities were available for teachers to download after the conference from the Sally Ride Science website. In summary, the approximately $55K support for the Department of Energy was used to help plan, deliver and evaluate the

  12. What Is Climate Change? (Environmental Health Student Portal)

    MedlinePlus

    ... vs Climate Change Global Warming (National Ocean and Atmospheric Administration) - Introduction to global warming with links to greenhouse effect, sea levels, and future climate change. Games and ...

  13. ARM-LBNL-NOAA Flask Sampler for Carbon Cycle Gases

    DOE Data Explorer

    Torn, Margaret

    2008-01-15

    Data from ccg-flasks are sampled at the ARM SGP site and analyzed by the NOAA Earth System Research Laboratory (ESRL) as part of the NOAA Cooperative Global Air Sampling Network. Surface samples are collected from a 60m tower at the SGP Central Facility, usually once per week on one afternoon. The aircraft samples are collected approximately weekly from a chartered aircraft, and the collection flight path is centered over the tower where the surface samples are collected. Samples are collected by the ARM/LBNL Carbon Project. CO2 flask data contains measurements of CO2 concentration and CO2 stable isotope ratios (13CO2 and C18OO) from flasks collected at the SGP site. The flask samples are collected at 2m, 4m, 25m, and 60m along the 60m tower.

  14. NOAA-9 Earth Radiation Budget Experiment (ERBE) scanner offsets determination

    NASA Technical Reports Server (NTRS)

    Avis, Lee M.; Paden, Jack; Lee, Robert B., III; Pandey, Dhirendra K.; Stassi, Joseph C.; Wilson, Robert S.; Tolson, Carol J.; Bolden, William C.

    1994-01-01

    The Earth Radiation Budget Experiment (ERBE) instruments are designed to measure the components of the radiative exchange between the Sun, Earth and space. ERBE is comprised of three spacecraft, each carrying a nearly identical set of radiometers: a three-channel narrow-field-of-view scanner, a two-channel wide-field-of-view (limb-to-limb) non-scanning radiometer, a two-channel medium field-of view (1000 km) non-scanning radiometer, and a solar monitor. Ground testing showed the scanners to be susceptible to self-generated and externally generated electromagnetic noise. This paper describes the pre-launch corrective measures taken and the post-launch corrections to the NOAA-9 scanner data. The NOAA-9 scanner has met the mission objectives in accuracy and precision, in part because of the pre-launch reductions of and post-launch data corrections for the electromagnetic noise.

  15. Non-standard Space Weather Products and Services from NOAA

    NASA Astrophysics Data System (ADS)

    Denig, W. F.; Viereck, R. A.

    2012-12-01

    The NOAA National Geophysical Data Center (NGDC) and Space Weather Prediction Center (SWPC) have developed and are continuing to develop a variety of "non-standard" data products for near real-time space weather applications. Core space weather services provided by SWPC include access to space environmental data from NOAA operational satellites and leveraged data from NASA and USAF assets. Core services also include operational space weather model results providing environmental specifications and forecasts. Non-standard products to be discussed include space weather services and applications that have either not yet reached operational maturity or are being released as beta-version test products. Included are the Forecasting Ionospheric Real-time Scintillation Tool (FIRST), the Ovation Prime Real-Time product, the Space Environment Anomaly Expert System Real Time (SEAESRT) and the PEople Empowered Product (PEEP). The status of these products, including how to access and provide comments, will be presented.

  16. NOAA 26.5 Ah LEO characterization test

    NASA Technical Reports Server (NTRS)

    Morrow, G. W.

    1986-01-01

    The General Electric (GE) 26.5 Ah NOAA-G flight nickel-cadmium cells were obtained from RCA-Astro Electronics to undergo performance characterization testing at the Goddard Space Flight Center (GSFC). This lot of cells was manufactured with passivated positive plate, to control nickel structure attack duing active material impregnation, and less electrolyte than normal (less than 3cc/Ah). The cells were tested in a parametric low Earth orbit (LEO) cycling regime that was previously used to test and characterize standard 50 Ah cells. Life cycle testing at the Naval Weapons Support Center (NWSC), in Crane, followed. The results of the test showed nominal performance in comparison with previous test data on the standard 50. Life cycle testing in the NOAA orbital regime is continuing at NWSC.

  17. Impact of Scatterometer Ocean Wind Vector Data on NOAA Operations

    NASA Astrophysics Data System (ADS)

    Jelenak, Z.; Chang, P.; Brennan, M. J.; Sienkiewicz, J. M.

    2015-12-01

    Near real-time measurements of ocean surface vector winds (OSVW), including both wind speed and direction from non-NOAA satellites, are being widely used in critical operational NOAA forecasting and warning activities. The scatterometer wind data data have had major operational impact in: a) determining wind warning areas for mid-latitude systems (gale, storm,hurricane force); b) determining tropical cyclone 34-knot and 50-knot wind radii. c) tracking the center location of tropical cyclones, including the initial identification of their formation. d) identifying and warning of extreme gap and jet wind events at all latitudes. e) identifying the current location of frontal systems and high and low pressure centers. f) improving coastal surf and swell forecasts Much has been learned about the importance and utility of satellite OSVW data in operational weather forecasting and warning by exploiting OSVW research satellites in near real-time. Since December 1999 when first data from QuikSCAT scatterometer became available in near real time NOAA operations have been benefiting from ASCAT scatterometer observations on MetOp-A and B, Indian OSCAT scatterometer on OceanSat-3 and lately NASA's RapidScat mission on International Space Station. With oceans comprising over 70 percent of the earth's surface, the impacts of these data have been tremendous in serving society's needs for weather and water information and in supporting the nation's commerce with information for safe, efficient, and environmentally sound transportation and coastal preparedness. The satellite OSVW experience that has been gained over the past decade by users in the operational weather community allows for realistic operational OSVW requirements to be properly stated for future missions. Successful model of transitioning research data into operation implemented by Ocean Winds Team in NOAA's NESDIS/STAR office and subsequent data impacts will be presented and discussed.

  18. Evaluation of the NOAA CAREERS Weather Camp's Effectiveness in Promoting Atmospheric Science amongst High School Students

    NASA Astrophysics Data System (ADS)

    Olgin, J. G.; Fitzgerald, R. M.; Morris, V. R.

    2013-12-01

    The NOAA Center for Atmospheric Science (NCAS) sponsors the Channeling Atmospheric Research into Educational Experiences Reaching Students program (CAREERS); a program that manages a network of weather camps for students in secondary education with particular focus on increasing access for students from traditionally underrepresented backgrounds. Hosted by a college or university, the primary mission goals of the program are to engage students in discussions, lectures and interactive projects to better learn and comprehend a suite of atmospheric science disciplines (i.e. weather forecasting, environmental modeling, atmospheric data acquisition), and guide talented students towards higher education to pursue careers in atmospheric science primarily, or toward other STEM field professions. The need to evaluate and analyze the program's efficacy is crucial for continued growth and sustainability. Therefore a means to identify and measure the success of the program's initiatives will be addressed. Two Hispanic serving institutions, the University of Texas at El Paso (UTEP) and the University of Puerto Rico in Mayaguez (UPRM), both hosted the CAREER weather camps during the summers of 2012 and 2013, and provide the basis of this initial analysis. Participants performed entrance surveys of their knowledge of atmospheric science prior to the course. They were then re-evaluated through exit surveys over the topics covered during the weather camp. These data will be analyzed to correlate which program activities worked best in increasing participant awareness (i.e. geology tours of the local area, discussion on local climate variations, geophysical and geochemical demonstrations), and comprehension of atmospheric science. A comparison between the two universities on their uniqueness in program design and execution will also highlight those activities that best progressed CAREERS' program goals. Results from this analysis, along with possible new strategies for improved

  19. The NOAA Ship Okeanos Explorer Education Materials Collection: Bringing Ocean Exploration Alive for Teachers and Students

    NASA Astrophysics Data System (ADS)

    Haynes, S.

    2012-12-01

    The NOAA Ship Okeanos Explorer, America's first Federal ship dedicated to ocean exploration, is envisioned as the ship upon which learners of all ages embark together on scientific voyages of exploration to poorly-known or unexplored areas of the global ocean. Through a combination of lessons, web pages, a ship tracker and dynamic imagery and video, learners participate as ocean explorers in breakthrough discoveries leading to increased scientific understanding and enhanced literacy about our ocean world. The Okeanos Explorer Education Materials Collection was developed to encourage educators and students to become personally involved with the ship's voyages and discoveries. This collection is presented in two volumes: Volume 1: Why Do We Explore? (modern reasons for ocean exploration - specifically, climate change, energy, human health and ocean health) and Volume 2: How Do We Explore? (21st Century strategies and tools for ocean exploration, including telepresence, sonar mapping, water column exploration and remotely operated vehicles). These volumes have been developed into full-day professional development opportunities provided at NOAA OER Alliance Partner sites nationwide and include lessons for grades 5-12 designed to support the evolving science education needs currently articulated in the K-12 Framework for Science Education. Together, the lessons, web pages, ship tracker and videos provide a dynamic education package for teachers to share modern ocean exploration in the classroom and inspire the next generation of explorers. This presentation will share these two Volumes, highlights from current explorations of the Okeanos Explorer and how they are used in ocean explorer lessons, and methods for accessing ocean explorer resources and following along with expeditions.;

  20. NOAA In Situ - Satellite Blended Analysis of Surface Salinity (BASS): Prototype Algorithm and Applications

    NASA Astrophysics Data System (ADS)

    Xie, P.; Boyer, T.; Bayler, E. J.; Xue, Y.; Byrne, D. A.; Reagan, J. R.; Locarnini, R. A.; Kumar, A.

    2012-12-01

    A prototype analysis of monthly sea surface salinity (SSS) has been constructed on a 1olat/lon grid over the global ocean by blending information from in situ measurements and satellite retrievals. Three data sets are included as inputs to the blended analysis, i.e., in situ SSS measurements aggregated and quality controlled by NOAA/NODC, and the passive microwave (PMW) retrievals from the Aquarius/SAC-D and SMOS satellites, received and post-processed at NOAA/STAR. The in situ SSS measurements used here are mainly from the Argo program, but also include those from the tropical moored buoy array (TAO/TRITON, PIRATA, RAMA) data and CTDs and glider data. The blended analysis is defined in two sequential steps. First, the bias in the satellite retrievals is removed through PDF matching against the co-located in situ measurements. The final blended analysis is then defined through the optimal interpolation (OI), where the analysis for the previous time step is used as the first guess while the in situ measurements and the bias-corrected satellite retrievals are employed as the observations to update the first guess. Cross-validations tests are conducted by comparing the blended analysis against the withdrawn SSS measurements from the PIRATA arrays. Results showed improved quantitative accuracy of the blended analysis compared to the satellite estimates and the in situ data alone analysis in the tropical Atlantic. The blended analysis, constructed from January 2010 to the present, is used to examine the co-variability among the SSS, E-P, SST, SSH, and surface wind stress in the annual cycle over the tropical Atlantic and to estimate the SSS bias in the NCEP's Climate Forecast System Reanalysis (CFSR) and Global Ocean Data Assimilation System (GODAS) . Results will be reported at the meeting.

  1. Visions of our Planet's Atmosphere, Land and Oceans: NASA/NOAA Electronic Theater 2002

    NASA Technical Reports Server (NTRS)

    Haser, Fritz; Starr, David (Technical Monitor)

    2002-01-01

    The NASA/NOAA Electronic Theater presents Earth science observations and visualizations in a historical perspective. Fly in from outer space to the 2002 Winter Olympic Stadium Site of the Olympic Opening and Closing Ceremonies in Salt Lake City. Fly in and through Olympic Alpine Venues using 1 m IKONOS "Spy Satellite" data. Go back to the early weather satellite images from the 1960s and see them contrasted with the latest US and international global satellite weather movies including hurricanes and "tornadoes". See the latest visualizations of spectacular images from NASA/NOAA remote sensing missions like Terra, GOES, TRMM, SeaWiFS, Landsat 7 including new 1 - min GOES rapid scan image sequences of Nov 9th 2001 Midwest tornadic thunderstorms and have them explained. See how High-Definition Television (HDTV) is revolutionizing the way we communicate science. (In cooperation with the American Museum of Natural History in NYC) See dust storms in Africa and smoke plumes from fires in Mexico. See visualizations featured on the covers of Newsweek, TIME, National Geographic, Popular Science and on National and International Network TV. New computer software tools allow us to roam and zoom through massive global images e.g. Landsat tours of the US, and Africa, showing desert and mountain geology as well as seasonal changes in vegetation. See animations of the polar ice packs and the motion of gigantic Antarctic Icebergs from SeaWinds. data. Spectacular new visualizations of the global atmosphere and oceans are shown. See vortexes and currents in the global oceans that bring up the nutrients to feed tiny algae and draw the fish, whales and fisherman. See the how the ocean blooms in response to these currents and El Nino/La Nina climate changes. See the city lights, fishing fleets, gas flares and bio-mass burning of the Earth at night observed by the "night-vision" DMSP military satellite.

  2. Spatial and temporal vegetation change in Southern Brazilian Amazon using GIS and NOAA /AVHRR data

    NASA Astrophysics Data System (ADS)

    Kazadi, S.; Yoshikawa, S.

    2007-05-01

    Over the past two decades, environmental alteration in the Amazon Basin due to land development, population increase, and the consequent deforestation, has become a serious ecological problem in this region known to be, both climatologically and biogenetically, one of the most important regions in the world. In Mato Grosso, the Brazilian state with the highest deforestation rate, vegetation cover change has been reported to occur over large areas due to the introduction of large-scale mechanized agriculture, extensive cattle ranching and slash-and-burn cultivation. Spatial and temporal land cover (vegetation) change is noted to potentially set up temperature increase and rainfall decrease. We stress on the importance of vegetation change information as crucial inputs for eco-climatic analysis of these spatial patterns of change and their temporal trend at local scale, as well as for real-time monitoring or detection of the deforestation events for appropriate action by the Brazilian government. In this study, Principal Component Analysis (PCA) is performed onto NOAA AVHRR remote-sensed and multi- spectral data covering the 1981-2003 period, using GIS. Our investigation focuses on developing a vegetation quantification algorithm for change detection in the vegetation cover over every few years, using the PCA first component, which is shown to characterize the overall vegetation cover types. Land cover features and their spatio-temporal change over the Southern Brazilian Amazon are analyzed and discussed, and their relationships with global and regional eco-climatic phenomena is highlighted.

  3. NOAA Ecosystem Data Assembly Center for the Gulf of Mexico

    NASA Astrophysics Data System (ADS)

    Parsons, A. R.; Beard, R. H.; Arnone, R. A.; Cross, S. L.; Comar, P. G.; May, N.; Strange, T. P.

    2006-12-01

    Through research programs at the NOAA Northern Gulf of Mexico Cooperative Institute (CI), NOAA is establishing an Ecosystem Data Assembly Center (EDAC) for the Gulf of Mexico. The EDAC demonstrates the utility of integrating many heterogeneous data types and streams used to characterized and identify ecosystems for the purpose of determining the health of ecosystems and identifying applications of the data within coastal resource management activities. Data streams include meteorological, physical oceanographic, ocean color, benthic, biogeochemical surveys, fishery, as well as fresh water fluxes (rainfall and river flow). Additionally the EDAC will provide an interface to the ecosystem data through an ontology based on the Coastal/Marine Ecological Classification System (CMECS). Applications of the ontological approach within the EDAC will be applied to increase public knowledge on habitat and ecosystem awareness. The EDAC plans to leverage companion socioeconomic studies to identify the essential data needed for continued EDAC operations. All data-management architectures and practices within the EDAC ensure interoperability with the Integrated Ocean Observing System (IOOS) national backbone by incorporating the IOOS Data Management and Communications Plan. Proven data protocols, standards, formats, applications, practices and architectures developed by the EDAC will be transitioned to the NOAA National Data Centers.

  4. Best Practices in Mentoring in NOAA Scholarship Programs

    NASA Astrophysics Data System (ADS)

    Kaplan, M.; Sarvis, S.; Dancy, V.

    2015-12-01

    Through established scholarship programs, NOAA hosts 125 - 175 undergraduate students each summer to participate in internship opportunities at agency facilities. In order to host a scholar, NOAA labs and offices must designate a mentor who develops a project and oversees activities of the student throughout the summer. NOAA implements best practices in mentoring in the following ways: mentor and intern responsibilities are clearly defined in a manual; mentors are required to take an online mentor training class; mentors and scholars are matched through an online system and scholars conduct a site visit prior to beginning the internship; proposed internship projects are reviewed by scholarship program managers to assure they are sufficiently analytical and will advance the student in their future academic and career goals; and mentors are surveyed at the midpoint, allowing scholarship program managers to identify problems and intervene if possible. These practices have resulted in strong results. Students identify the mentor relationship, hands-on experience and networking with professionals as the three most important outcomes of the internship experience.

  5. A Restrospective and Prospective Examination of NOAA Solar Imaging

    NASA Astrophysics Data System (ADS)

    Hill, S. M.

    2015-12-01

    NOAA has provided soft X-ray imaging of the lower corona since the early 2000's. It is currently building the spacecraft and instrumentation to observe the sun in the extreme ultraviolet (EUV) through 2036. After more than 6 million calibrated images, it is appropriate to examine NOAA data as providing retrospective context for scientific missions. In particular, this presentation examines the record of GOES Solar X-ray Imager (SXI) observations, including continuity, photometric stability and comparison to other contemporary x-ray imagers. The first GOES Solar X-ray Imager was launched in 2001 and entered operations in 2003. The current SXIs will remain in operations until approximately 2020, when a new series of Solar (extreme-)Ultraviolet Imagers (SUVIs) will replace them as the current satellites reach their end of life. In the sense that the SXIs are similar to Yokoh's SXT and Hinode's XRT, the SUVI instruments will be similar to SOHO's EIT and SDO's AIA. The move to narrowband EUV imagers will better support eventual operational estimation of plasma conditions. In particular, plans are to leverage advances in automated image processing and segmentation to assist forecasters. While NOAA's principal use of these observations is real-time space weather forecasting, they will continue to provide a consistent context measurement for researchers for decades to come.

  6. Reductions in seasonal climate forecast dependability as a result of downscaling.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    NOAA's Climate Prediction Center issues seasonal climate forecasts predicting total precipitation and average air temperature for three-month periods out to a year in advance. The utility of seasonal forecasts for agricultural applications depends on several forecast characteristics, including depe...

  7. 75 FR 38079 - National Oceanic and Atmospheric Administration (NOAA) Science Advisory Board (SAB)

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-01

    ...The Science Advisory Board (SAB) was established by a Decision Memorandum dated September 25, 1997, and is the only Federal Advisory Committee with responsibility to advise the Under Secretary of Commerce for Oceans and Atmosphere on strategies for research, education, and application of science to operations and information services. SAB activities and advice provide necessary input to ensure......

  8. Reevaluation of the NOAA/CMDL carbon monoxide reference scale and comparisons with CO reference gases at NASA-Langley and the Fraunhofer Institut

    NASA Technical Reports Server (NTRS)

    Novelli, P. C.; Collins, J. E., Jr.; Myers, R. C.; Sachse, G. W.; Scheel, H. E.

    1994-01-01

    The carbon monoxide (CO) reference scale created by the National Oceanic and Atmospheric Administration/Climate Monitoring and Diagnostics Laboratory (NOAA/CMDL) is used to quantify measurements of CO in the atmosphere, calibrate standards of other laboratories and to otherwise provide reference gases to the community measuring atmospheric CO. This reference scale was created based upon a set of primary standards prepared by gravimetric methods at CMDL and has been propagated to a set of working standards. In this paper we compare CO mixing ratios assigned to the working standards by three approaches: (1) calibration against the original gravimetric standards, (2) calibration using only working standards as the reference gas, and (3) calibration against three new gravimetric standards prepared to CMDL. The agreement between these values was typically better than 1%. The calibration histories of CMDL working standards are reviewed with respect to expected rates of CO change in the atmosphere. Using a Monte Carlo approach to simulate the effect of drifting standards on calculated mixing ratios, we conclude that the error solely associated with the maintenance of standards will limit the ability to detect small CO changes in the atmosphere. We also report results of intercalibration experiments conducted between CMDL and the Diode Laser Sensor Group (DACOM) at the NASA Langley Research Center (Hampton, Virginia), and CMDL and the Fraunhofer-Institut (Garmisch-Partenkirchen, Germany). Each laboratory calibrated several working standards for CO using their reference gases, and these results were compared to calibrations conducted by CMDL. The intercomparison of eight standards (CO concentrations between approximately 100 and approximately 165 ppb) by CMDL and NASA agreed to better than +/- 2%. The calibration of six standards (CO concentrations between approximately 50 and approximately 210 ppb) by CMDL and the Fraunhofer-Institut agreed to within +/- 2% for four

  9. Emissions of volatile organic compounds (VOCs) from oil and natural gas activities: compositional comparison of 13 major shale basins via NOAA airborne measurements

    NASA Astrophysics Data System (ADS)

    Gilman, J.; Lerner, B. M.; Aikin, K. C.; De Gouw, J. A.; Koss, A.; Yuan, B.; Warneke, C.; Peischl, J.; Ryerson, T. B.; Holloway, J. S.; Graus, M.; Tokarek, T. W.; Isaacman-VanWertz, G. A.; Sueper, D.; Worsnop, D. R.

    2015-12-01

    The recent and unprecedented increase in natural gas production from shale formations is associated with a rise in the production of non-methane volatile organic compounds (VOCs) including natural gas plant liquids (e.g., ethane, propane, and butanes) and liquid lease condensate (e.g., pentanes, hexanes, aromatics and cycloalkanes). Since 2010, the production of natural gas liquids and the amount of natural gas vented/flared has increased by factors of ~1.28 and 1.57, respectively (U.S. Energy and Information Administration), indicating an increasingly large potential source of hydrocarbons to the atmosphere. Emission of VOCs may affect local and regional air quality due to the potential to form tropospheric ozone and organic particles as well as from the release of toxic species such as benzene and toluene. The 2015 Shale Oil and Natural Gas Nexus (SONGNex) campaign studied emissions from oil and natural gas activities across the central United States in order to better understand their potential air quality and climate impacts. Here we present VOC measurements from 19 research flights aboard the NOAA WP-3D over 11 shale basins across 8 states. Non-methane hydrocarbons were measured using an improved whole air sampler (iWAS) with post-flight analysis via a custom-built gas chromatograph-mass spectrometer (GC-MS). The whole air samples are complimented by higher-time resolution measurements of methane (Picarro spectrometer), ethane (Aerodyne spectrometer), and VOCs (H3O+ chemical ionization mass spectrometer). Preliminary analysis show that the Permian Basin on the New Mexico/Texas border had the highest observed VOC mixing ratios for all basins studied. We will utilize VOC enhancement ratios to compare the composition of methane and VOC emissions for each basin and the associated reactivities of these gases with the hydroxyl radical, OH, as a proxy for potential ozone formation.

  10. The Atlantic Climate Change Program

    SciTech Connect

    Molinari, R.L. ); Battisti, D. ); Bryan, K. ); Walsh, J. )

    1994-07-01

    The Atlantic Climate Change Program (ACCP) is a component of NOAA's Climate and Global Change Program. ACCP is directed at determining the role of the thermohaline circulation of the Atlantic Ocean on global atmospheric climate. Efforts and progress in four ACCP elements are described. Advances include (1) descriptions of decadal and longer-term variability in the coupled ocean-atmosphere-ice system of the North Atlantic; (2) development of tools needed to perform long-term model runs of coupled simulations of North Atlantic air-sea interaction; (3) definition of mean and time-dependent characteristics of the thermohaline circulation; and (4) development of monitoring strategies for various elements of the thermohaline circulation. 20 refs., 4 figs., 1 tab.

  11. Precipitation Climate Data Records

    NASA Astrophysics Data System (ADS)

    Nelson, B. R.; Prat, O.; Vasquez, L.

    2015-12-01

    Five precipitation CDRs are now or soon will be transitioned to NOAA's CDR program. These include the PERSIANN data set, which is a 30-year record of daily adjusted global precipitation based on retrievals from satellite microwave data using artificial neural networks. The AMSU-A/B/Hydrobundle is an 11-year record of precipitable water, cloud water, ice water, and other variables. CMORPH (the NOAA Climate Prediction Center Morphing Technique) is a 17-year record of daily and sub-daily adjusted global precipitation measured from passive microwave and infrared data at high spatial and temporal resolution. GPCP (the Global Precipitation Climatology Project) is an approximately 30-year record of monthly and pentad adjusted global precipitation and a 17-year record of daily adjusted global precipitation. The NEXRAD Reanalysis is a 10-year record of high resolution NEXRAD radar based adjusted CONUS-wide hourly and daily precipitation. This study provides an assessment of the existing and transitioned long term precipitation CDRs and includes the verification of the five precipitation CDRs using various methods including comparison with in-situ data sets and trend analysis. As all of the precipitation related CDRs are transitioned, long term analyses can be performed. Comparisons at varying scales (hourly, daily and longer) of the precipitation CDRs with in-situ data sets are provided as well as a first look at what could be an ensemble long term precipitation data record.

  12. NOAA Introduces its First-Generation Reference Evapotranspiration Product

    NASA Astrophysics Data System (ADS)

    Hobbins, M.; Geli, H. M.; Lewis, C.; Senay, G. B.; Verdin, J. P.

    2013-12-01

    NOAA is producing daily, gridded operational, long-term, reference evapotranspiration (ETo) data for the National Water Census (NWC). The NWC is a congressional mandate to provide water managers with accurate, up-to-date, scientifically defensible reporting on the national water cycle; as such, it requires a high-quality record of actual ET, which we derive as a fraction of NOAA's land-based ETo a fraction determined by remotely sensed (RS) LST and/or surface reflectance in an operational version of the Simplified Surface Energy Balance (SSEBop). This methodology permits mapping of ET on a routine basis with a high degree of consistency at multiple spatial scales. This presentation addresses the ETo input to this process. NOAA's ETo dataset is generated from the American Society of Civil Engineers Standardized Penman-Monteith equation driven by hourly, 0.125-degree (~12-km) data from the North American Land Data Assimilation System (NLDAS). Coverage is CONUS-wide from Jan 1, 1979, to within five days of the present. The ETo is verified against agro-meteorological stations in western CONUS networks, while a first-order, second-moment uncertainty analysis indicates when, where, and to what extent each driver contributes to ETo variability (and so potentially require the most attention). As the NWC's mandate requires a nationwide coverage, the ETo dataset must also be verified outside of the measure's traditional, agricultural/irrigated areas of application. In this presentation, we summarize the verification of the gridded ETo product and demonstrate the drivers of ETo variability in space and time across CONUS. Beyond its primary use as a component of ET in the NWC, we further explore potential uses of the ETo product as an input to drought models and as a stand-alone index of fast-developing agricultural drought, or 'flash drought.' NOAA's product is the first consistently modeled, daily, continent-wide ETo dataset that is both up-to-date and as temporally

  13. Modernizing Administration.

    ERIC Educational Resources Information Center

    Lombardi, Vincent L.; Hildebrand, Verna

    1981-01-01

    Suggests assignment of research duties and rotation of teaching and management roles for college administrators, to increase their effectiveness and diminish the negative effects of declining enrollments. (JD)

  14. Satellite radiation observations and climate theory

    NASA Technical Reports Server (NTRS)

    Ohring, G.; Gruber, A.

    1983-01-01

    The representative applications of satellite observations of the earth radiation budget in climate studies are discussed. Consideration is given to the use of satellite observational data for validating numerical estimates of the sensitivity of longwave radiation, surface temperature, and cloud amount to changes in the radiation budget. Particular emphasis is given to the application of satellite observations to the validation of temperature estimates obtained from the NOAA Seasonal Hemispheric Zonal Average Model (SZHAM).

  15. Integration of Visibility Sensors in NOAA PORTS® to aid in Decision Making for Safe Navigation

    NASA Astrophysics Data System (ADS)

    Roggenstein, E. B.

    2012-12-01

    The National Oceanic and Atmospheric Administration (NOAA) National Ocean Service (NOS) Physical Oceanographic Real-Time System (PORTS®) provides real-time water level, currents and meteorological data for aid to navigation in twenty-three major ports and harbors. In response to PORTS® users' requests for visibility data, NOS began testing several varieties of visibility sensors for operations in a marine environment. Extensive testing resulted in the selection of the Vaisala FS11 visibility sensor. The FS11 sensor uses forward scattering technology to measure the amount of scattering in a small volume of air between the transmitter and receiver, resulting in an extrapolated visibility at a set height out to 75 km. Two sensors have been successfully operating in the Mobile Bay PORTS® at Middle Bay Port and Pinto Island since installation in 2010. The sensors are positioned at a height of 3 m above the ground, 24 km apart along the western shore of the bay in areas susceptible to fog formation. Real-time data from these sensors are disseminated on NOAA's Center for Operational Oceanographic Products and Services (COOPS) PORTS® website every 6 minutes (min) and for distances up to 10 km (5.4 nm) from the instrument. This has proven to aid port pilots' decision making for safe movement of vessels in the harbor. Additionally, the Pinto Island sensor is located directly adjacent to the shipping channel - an area with high levels of atmospheric particulates of high carbon content. These particulates do not appear to have negatively affected sensor performance. This success has prompted interest in visibility sensors from other harbors with PORTS®. The ports of San Francisco, Narragansett Bay, Chesapeake Bay, Jacksonville FL, and Gulfport MS are planning or exploring the addition of visibility sensors to their PORTS® to aid in navigation. Additionally, the NOAA/COOPS Ocean System Test Evaluation Program (OSTEP) has continued with additional field testing of the FS11

  16. Characterizing the Behavior of NOAA's Hydrologic Ensemble Forecast Service in California

    NASA Astrophysics Data System (ADS)

    He, M.; Whitin, B.; Brown, J.; Fickenscher, P.; Henkel, A.; Talanki, S.; Hartman, R.

    2014-12-01

    The National Oceanic and Atmospheric Administration (NOAA)'s National Weather Service (NWS) is implementing the Hydrologic Ensemble Forecast Service (HEFS) across the operating areas of the 13 NWS River Forecast Centers (RFCs). As the implementation progresses, hindcasting and validation is necessary to understand the strengths and weaknesses of the HEFS and to guide its operational use. Particularly in regions such as California that encompass a broad range of elevation, temperature, and precipitation gradients, the quality of the HEFS forecasts will vary geographically, and it is important to understand the degrees and controls on forecast quality in this context. This study aims to develop a comprehensive understanding of the quality of HEFS forecasts in California, with the aim of guiding and enhancing the implementation of the HEFS, as well as informing end-users about the expected quality of the HEFS forecasts. The HEFS was calibrated with temperature and precipitation forecasts from the Global Ensemble Forecast System (GEFS) of the National Centers for Environmental Prediction. Also, in order to determine forecast skill and to benchmark the HEFS against a simpler forecasting system, the HEFS was calibrated with a conditional ("resampled") climatology. The calibrated HEFS was used to generate retrospective forecasts of precipitation, temperature, and streamflow for a 25-year (1985-2009) period for six basins in the state. The forecast horizon was 1-14 days. The retrospective forecasts were verified conditionally on forecast lead time, magnitude, and season. Preliminary results indicate that HEFS forecasts are much more skillful when forced by inputs from the GEFS, rather than resampled climatology. However, there are noticeable differences in forecast quality among basins. These observations demonstrate the applicability of HEFS in a wide hydroclimatic gradient within California, while highlighting the difficulty in generalizing its behavior across the state.

  17. An efficient contextual algorithm to detect subsurface fires with NOAA/AVHRR data

    SciTech Connect

    Gautam, R.S.; Singh, D.; Mittal, A.

    2008-07-15

    This paper deals with the potential application of National Oceanic and Atmospheric Administration (NOAA)/Advanced Very High Resolution Radiometer (AVHRR) data to detect subsurface fire (subsurface hotspots) by proposing an efficient contextual algorithm. Although few algorithms based on the fixed-thresholding approach have been proposed for subsurface hotspot detection, however, for each application, thresholds have to be specifically tuned to cope with unique environmental conditions. The main objective of this paper is to develop an instrument-independent adaptive method by which direct threshold or multithreshold can be avoided. The proposed contextual algorithm is helpful to monitor subsurface hotspots with operational satellite data, such as the Jharia region of India, without making any region-specific guess in thresholding. Novelty of the proposed work lies in the fact that once the algorithmic model is developed for the particular region of interest after optimizing the model parameters, there is no need to optimize those parameters again for further satellite images. Hence, the developed model can be used for optimized automated detection and monitoring of subsurface hotspots for future images of the particular region of interest. The algorithm is adaptive in nature and uses vegetation index and different NOAA/AVHRR channel's statistics to detect hotspots in the region of interest. The performance of the algorithm is assessed in terms of sensitivity and specificity and compared with other well-known thresholding, techniques such as Otsu's thresholding, entropy-based thresholding, and existing contextual algorithm proposed by Flasse and Ceccato. The proposed algorithm is found to give better hotspot detection accuracy with lesser false alarm rate.

  18. The new climate data record of total and spectral solar irradiance: Current progress and future steps

    NASA Astrophysics Data System (ADS)

    Coddington, Odele; Lean, Judith; Rottman, Gary; Pilewskie, Peter; Snow, Martin; Lindholm, Doug

    2016-04-01

    We present a climate data record of Total Solar Irradiance (TSI) and Solar Spectral Irradiance (SSI), with associated time and wavelength dependent uncertainties, from 1610 to the present. The data record was developed jointly by the Laboratory for Atmospheric and Space Physics (LASP) at the University of Colorado Boulder and the Naval Research Laboratory (NRL) as part of the National Oceanographic and Atmospheric Administration's (NOAA) National Centers for Environmental Information (NCEI) Climate Data Record (CDR) Program, where the data record, source code, and supporting documentation are archived. TSI and SSI are constructed from models that determine the changes from quiet Sun conditions arising from bright faculae and dark sunspots on the solar disk using linear regression of proxies of solar magnetic activity with observations from the SOlar Radiation and Climate Experiment (SORCE) Total Irradiance Monitor (TIM), Spectral Irradiance Monitor (SIM), and SOlar Stellar Irradiance Comparison Experiment (SOLSTICE). We show that TSI can be separately modeled to within TIM's measurement accuracy from solar rotational to solar cycle time scales and we assume that SSI measurements are reliable on solar rotational time scales. We discuss the model formulation, uncertainty estimates, and operational implementation and present comparisons of the modeled TSI and SSI with the measurement record and with other solar irradiance models. We also discuss ongoing work to assess the sensitivity of the modeled irradiances to model assumptions, namely, the scaling of solar variability from rotational-to-cycle time scales and the representation of the sunspot darkening index.

  19. Embedding Climate Services

    NASA Astrophysics Data System (ADS)

    Shafer, M.; Boone, M.; Keim, B. D.

    2015-12-01

    With the rapidly-increasing number of climate services providers, the landscape for putting climate into practice is getting both easier to access and more confusing. Each provider serves a different clientele, and in so doing draws more stakeholder organizations into the sphere of those using climate information in decision-making. The challenge has been in connecting these new stakeholders with expertise that may reside within a different provider organization. To help close the gap, the Southern Climate Impacts Planning Program (SCIPP; http://www.southernclimate.org), a NOAA RISA Team, initiated a summer internship program, where students with expertise in meteorology or climatology would work for an organization more closely aligned with another climate services provider network. The format was patterned after the successful NSF-funded Research Experience for Undergraduates (REU) program at the National Weather Center, where students are selected from undergraduate programs across the nation to spend a summer conducting research under a scientific mentor. The SCIPP initiative flipped this model, instead sending students to organizations with operational needs for climate information to work under their mentorship in partnership with SCIPP scientists. Over the past two summers, SCIPP has recruited students to work at landscape-based (Gulf Coast Joint Venture and National Wetlands Research Center) and community-based (Tulsa Partners) organizations. Students worked alongside the organizations' staff on a daily basis and were supported through periodic calls with the SCIPP team to help identify appropriate datasets and work through methodological issues. This presentation will discuss how these relationships were created, the expertise of each of the organizations involved, and outcomes from the projects.

  20. Administrative Support.

    ERIC Educational Resources Information Center

    Doran, Dorothy; And Others

    This guide is intended to assist business education teachers in administrative support courses. The materials presented are based on the Arizona validated occupational competencies and tasks for the occupations of receptionist, secretary, and administrative assistant. Word processing skills have been infused into each of the three sections. The…

  1. Administrative Ecology

    ERIC Educational Resources Information Center

    McGarity, Augustus C., III; Maulding, Wanda

    2007-01-01

    This article discusses how all four facets of administrative ecology help dispel the claims about the "impossibility" of the superintendency. These are personal ecology, professional ecology, organizational ecology, and community ecology. Using today's superintendency as an administrative platform, current literature describes a preponderance of…

  2. Utilization of Precipitation and Moisture Products Derived from Satellites to Support NOAA Operational Precipitation Forecasts

    NASA Astrophysics Data System (ADS)

    Ferraro, R.; Zhao, L.; Kuligowski, R. J.; Kusselson, S.; Ma, L.; Kidder, S. Q.; Forsythe, J. M.; Jones, A. S.; Ebert, E. E.; Valenti, E.

    2012-12-01

    NOAA/NESDIS operates a constellation of polar and geostationary orbiting satellites to support weather forecasts and to monitor the climate. Additionally, NOAA utilizes satellite assets from other U.S. agencies like NASA and the Department of Defense, as well as those from other nations with similar weather and climate responsibilities (i.e., EUMETSAT and JMA). Over the past two decades, through joint efforts between U.S. and international government researchers, academic partners, and private sector corporations, a series of "value added" products have been developed to better serve the needs of weather forecasters and to exploit the full potential of precipitation and moisture products generated from these satellites. In this presentation, we will focus on two of these products - Ensemble Tropical Rainfall Potential (eTRaP) and Blended Total Precipitable Water (bTPW) - and provide examples on how they contribute to hydrometeorological forecasts. In terms of passive microwave satellite products, TPW perhaps is most widely used to support real-time forecasting applications, as it accurately depicts tropospheric water vapor and its movement. In particular, it has proven to be extremely useful in determining the location, timing, and duration of "atmospheric rivers" which contribute to and sustain flooding events. A multi-sensor approach has been developed and implemented at NESDIS in which passive microwave estimates from multiple satellites and sensors are merged to create a seamless, bTPW product that is more efficient for forecasters to use. Additionally, this product is being enhanced for utilization for television weather forecasters. Examples will be shown to illustrate the roll of atmospheric rivers and contribution to flooding events, and how the bTPW product was used to improve the forecast of these events. Heavy rains associated with land falling tropical cyclones (TC) frequently trigger floods that cause millions of dollars of damage and tremendous loss

  3. Zoonoses and climate variability.

    PubMed

    Cardenas, Rocio; Sandoval, Claudia M; Rodriguez-Morales, Alfonso J; Vivas, Paul

    2008-12-01

    Leishmaniasis in the Americas is transmitted by Lutzomyia spp., which have many animal reservoirs. Previous studies indicated potential changes in vectors of climate-related distribution, but impact outcomes need to be further studied. We report climatic and El Niño events during 1985-2002 that may have had an impact on leishmaniasis in 11 southern departments of Colombia: Amazonas, Caquetá, Cauca (Ca), Huila, Meta (Mt), Nariño, Putumayo (Py), Tolima, Valle (Va), Vaupes (Vp), and Vichada. Climatic data were obtained by satellite and epidemiologic data were obtained from the Health Ministry. NOAA climatic classification and SOI/ONI indexes were used as indicators of global climate variability. Yearly variation comparisons and median trend deviations were made for disease incidence and climatic variability. During this period there was considerable climatic variability, with a strong El Niño for 6 years and a strong La Niña for 8. During this period, 19,212 cases of leishmaniasis were registered, for a mean of 4756.83 cases/year. Disease in the whole region increased (mean of 4.98%) during the El Niño years in comparison to the La Niña years, but there were differences between departments with increases during El Niño (Mt 6.95%, Vp 4.84%), but the rest showed an increase during La Niña (1.61%-64.41%). Differences were significant in Va (P= 0.0092), Py (P= 0.0001), Ca (P= 0.0313), and for the whole region (P= 0.0023), but not in the rest of the departments. The importance of climate change is shown by shifts in insect and animal distributions. These data reflect the importance of climate on transmission of leishmaniasis and open further investigations related to forecasting and monitoring systems, where understanding the relationship between zoonoses and climate variability could help to improve the management of these emerging and reemerging diseases. PMID:19120241

  4. New Directions for the NOAA Solar and Terrestrial Physics Division

    NASA Astrophysics Data System (ADS)

    Denig, W. F.

    2011-12-01

    To a large degree the Solar and Terrestrial Physics (STP) Division within the NOAA National Geophysical Data Center has been historically viewed as a final reposition for solar-geophysical data acquired from providers around the world. This perception was mostly due to STP's participation as a World Data Center (WDC) for Solar-Terrestrial Physics (Boulder) within the International Council for Science (ICSU). As such, STP was responsible for the archive, access and assessment of diverse collections of space environmental data collected worldwide, including data from the former Soviet Union and other "non-friendly" nation states. The WDC system was established during the 1957-58 International Geophysical Year at a time when the information technology infrastructure was rudimentary and central repositories of data were needed to manage and disseminate a vast quantity of environmental information. In today's internet savvy culture the need for centralized collections of data is no longer a critical element in the effective dissemination and utilization of data. The Virtual Observatory (VxO) initiative for heliophysics capitalizes on today's robust communications infrastructure to "virtually" collect and disseminate solar-geophysical data. As STP moves away from its traditional role as a central repository of environmental data it is refocusing its mission to be the authoritative provider of NOAA space weather data using dissemination tools well coupled to the VxOs. To this end and as a means to develop these tools, STP is building on revolutionary web services and user-interface technologies to create a novel and customizable interface for the presentation of original and derived data products. Overall, the focus for the division is on operational space weather data collected by NOAA's fleet of environmental satellites in polar orbit and at geosynchronous altitudes and other operational datasets acquired from the U.S. Air Force. This talk will provide both an

  5. 78 FR 17640 - National Climate Assessment and Development Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-22

    ... National Oceanic and Atmospheric Administration National Climate Assessment and Development Advisory... the National Climate Assessment and Development Advisory Committee (NCADAC) for a six-month period.... Decker, Designated Federal Officer, National Climate Assessment and Development Advisory Committee,...

  6. 77 FR 40341 - Proposed Information Collection; Comment Request; Application for Appointment in the NOAA...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-09

    ... professionals trained in engineering, earth sciences, oceanography, meteorology, fisheries science, and other... credit hours of science, engineering, or other disciplines related to NOAA's missions (including...

  7. Value of Undergraduate Internship Experiences at NOAA: Analysis of Survey Results

    NASA Astrophysics Data System (ADS)

    Kaplan, M.

    2014-12-01

    This presentation will examine survey data from over 500 undergraduates who participated in summer internships at NOAA facilities as Ernest F. Hollings Scholars and Educational Partnership Program (EPP) Undergraduate Scholars. NOAA selects over 100 students per year to receive academic support in their junior and senior years and a paid summer internship at any NOAA facility in the country. Scholars are hosted by NOAA mentors who actively oversee summer research activities. Analysis of survey results identified six thematic impacts from the internship experience (McIntosh and Baek, 2013).

  8. Transitioning GONG data processing to NOAA SWPC operations

    NASA Astrophysics Data System (ADS)

    Reinard, Alysha; Marble, Andrew R.; Berger, Thomas

    2016-05-01

    The NOAA Space Weather Prediction Center (SWPC) is the nation's official source of space weather watches, warnings, and alerts, providing 24x7 forecasting and support to critical infrastructure operators around the world. Observations of the conditions on the Sun are crucial for determining when and if a warning is needed. The Global Oscillation Network Group (GONG) operated by the National Solar Observatory (NSO) consists of six ground stations, allowing continuous observations of the Sun. Of particular interest for space weather purposes are the H-alpha images and magnetograms. The H-alpha data are used to identify filaments and their eruptions, to assess active region evolution and plage extent, and to help localize flare locations. The magnetograms are used to identify neutral lines, to examine potential shearing areas and to characterize the magnetic structure of active regions. GONG magnetograms also provide the initial condition for models of solar wind expansion through the heliosphere such as the WSA-Enlil model. Although beyond the scope of current space weather applications, GONG helioseismology products can be used to assess active region emergence on the far side of the Sun and to indicate the flaring potential of a front-side active region. These products are being examined as future tools in flare prediction.NSO has operated GONG as a science facility since 1995 and has provided processed space weather data products to NOAA via for the past several years. In 2014 the White House Office of Management and Budget (OMB) requested that NOAA transition the GONG network to an operational space weather asset in order to ensure the continued flow of critical data for solar wind models. NSO will continue to operate and manage the instruments and sites, but the H-alpha images and 10 minute averaged magnetogram data will be sent directly to SWPC for processing and use in space weather modeling. SWPC will make these data available to NSO and the public via the

  9. Transitioning GONG data processing to NOAA SWPC operations

    NASA Astrophysics Data System (ADS)

    Reinard, A.; Marble, A.; Hill, F.; Berger, T. E.

    2015-12-01

    The NOAA Space Weather Prediction Center (SWPC) is the nation's official source of space weather watches, warnings, and alerts, providing 24x7 forecasting and support to critical infrastructure operators around the world. Observations of the conditions on the Sun are crucial for determining when and if a warning is needed. The Global Oscillation Network Group (GONG) operated by the National Solar Observatory (NSO) consists of six ground stations, allowing continuous observations of the Sun. Of particular interest for space weather purposes are the H-alpha images and magnetograms. The H-alpha data are used to identify filaments and their eruptions, to assess active region evolution and plage extent, and to help localize flare locations. The magnetograms are used to identify neutral lines, to examine potential shearing areas and to characterize the magnetic structure of active regions. GONG magnetograms also provide the initial condition for models of solar wind expansion through the heliosphere such as the WSA-Enlil model. Although beyond the scope of current space weather applications, GONG helioseismology products can be used to assess active region emergence on the far side of the Sun and to indicate the flaring potential of a front-side active region. These products are being examined as future tools in flare prediction. NSO has operated GONG as a science facility since 1995 and has provided processed space weather data products to NOAA via public internet connections for the past several years. In 2014 the White House Office of Management and Budget (OMB) requested that NOAA transition the GONG network to an operational space weather asset in order to ensure the continued flow of critical magnetogram data for solar wind models. NSO will continue to operate and manage the instruments and sites, but the H-alpha images and 10 minute averaged magnetogram data will be sent directly to SWPC for processing and use in space weather modeling. SWPC will make these data

  10. NOAA's Van-Based Mobile Atmospheric Emissions Measurement Laboratory

    NASA Astrophysics Data System (ADS)

    Dube, W. P.; Peischl, J.; Neuman, J. A.; Eilerman, S. J.; Holloway, M.; Roberts, O.; Aikin, K. C.; Ryerson, T. B.

    2015-12-01

    The Chemical Science Division (CSD) mobile atmospheric emissions measurement laboratory is the second and latest of two mobile measurement vans outfitted for atmospheric sampling by the NOAA Earth System Research Laboratory. In this presentation we will describe the modifications made to this vehicle to provide a versatile and relatively inexpensive instrument platform including: the 2 kW 120 volt instrument power system; battery back-up system; data acquisition system; real-time display; meteorological, directional, and position sensor package; and the typical atmospheric emissions instrument package. The van conversion uses commercially available, off-the-shelf components from the marine and RV industries, thus keeping the costs quite modest.

  11. NOAA AVHRR and its uses for rainfall and evapotranspiration monitoring

    NASA Technical Reports Server (NTRS)

    Kerr, Yann H.; Imbernon, J.; Dedieu, G.; Hautecoeur, O.; Lagouarde, J. P.

    1989-01-01

    NOAA-7 Advanced Very High Resolution Radiometer (AVHRR) Global Vegetation Indices (GVI) were used during the 1986 rainy season (June-September) over Senegal to monitor rainfall. The satellite data were used in conjunction with ground-based measurements so as to derive empirical relationships between rainfall and GVI. The regression obtained was then used to map the total rainfall corresponding to the growing season, yielding good results. Normalized Difference Vegetation Indices (NDVI) derived from High Resolution Picture Transmission (HRPT) data were also compared with actual evapotranspiration (ET) data and proved to be closely correlated with it with a time lapse of 20 days.

  12. Recent Progress Towards Establishing an Arctic Ocean Observing System - A NOAA Contribution to the Study of Environmental Arctic Change (SEARCH)

    NASA Astrophysics Data System (ADS)

    Rigor, I. G.; Richter-Menge, J.; Calder, J.

    2004-12-01

    SEARCH is a coordinated, interagency program focused on understanding the full scope of changes taking place in the Arctic and to determine if the changes indicate the start of a major climate shift in this region. NOAA has initiated its contribution to the SEARCH program with seed activities that address high priority issues relating to the atmosphere and the cryosphere. One element of the NOAA SEARCH program is an Arctic Ocean Observing System. This presentation describes the recent progress made in establishing components of this observing system, specifically the deployment of drifting ice mass balance mass (IMB) and ocean buoys and a seafloor mooring equipped with ice profiling sonar (IPS). We present examples of data collected from the drifting buoys, show the location of equipment deployed in 2003, the planned deployments for 2004, and describe other historic observations of changes in the thickness of the sea ice cover. Combined, these data are being used to monitor changes in the thickness of the Arctic sea ice cover and in near surface ocean characteristics.

  13. NOAA/USGS Demonstration Flash-Flood and Debris-Flow Early-Warning System

    NASA Astrophysics Data System (ADS)

    Restrepo, P.; Cannon, S.; Laber, J.; Jorgensen, D.; Werner, K.

    2009-04-01

    Flash floods and debris flows are common following wildfires in southern California. On 25 December 2003, sixteen people were swept to their deaths by debris flows generated from basins in the San Bernardino Mountains that burned the previous fall. In an effort to reduce loss of life by floods and debris flows, the National Oceanic and Atmospheric Administration (NOAA) and the United States Geological Survey (USGS) established a prototype flash flood and debris flow early warning system for recently burned areas located in eight counties of southern California in the fall of 2005. This prototype system combines the existing NOAA's National Weather Service (NWS) Flash Flood Monitoring and Prediction (FFMP) system and USGS rainfall intensity-duration thresholds for debris flow and flash flood occurrence. Separate sets of thresholds are defined for the occurrence of debris flows and flash floods in response to storms during 1) the first winter after a fire, and 2) following a year of vegetative recovery. The FFMP was modified to identify when both flash floods and debris flows are likely to occur based on comparisons between precipitation (including radar estimates, in situ measurements, and short-term forecasts) and the rainfall intensity-duration thresholds developed specifically for burned areas. Advisory outlooks, watches, and warnings are disseminated to emergency management personnel through NOAA's Advanced Weather Information Processing System (AWIPS). The FFMP provides a cost-effective and efficient approach to implement a warning system on a 24-hour, 7-day-a-week basis. In 2004 the system was advanced to incorporate a web-based procedure developed by the NWS Weather Forecast Office (WFO) in Oxnard, CA that provides information about each fire to forecasters, and displays hazard maps generated by the USGS that show those basins most likely to produce the largest debris flow events within recently burned areas. During four years of operation, the WFOs in Oxnard

  14. A User's Guide to the Tsunami Datasets at NOAA's National Data Buoy Center

    NASA Astrophysics Data System (ADS)

    Bouchard, R. H.; O'Neil, K.; Grissom, K.; Garcia, M.; Bernard, L. J.; Kern, K. J.

    2013-12-01

    The National Data Buoy Center (NDBC) has maintained and operated the National Oceanic and Atmospheric Administration's (NOAA) tsunameter network since 2003. The tsunameters employ the NOAA-developed Deep-ocean Assessment and Reporting of Tsunamis (DART) technology. The technology measures the pressure and temperature every 15 seconds on the ocean floor and transforms them into equivalent water-column height observations. A complex series of subsampled observations are transmitted acoustically in real-time to a moored buoy or marine autonomous vehicle (MAV) at the ocean surface. The surface platform uses its satellite communications to relay the observations to NDBC. NDBC places the observations onto the Global Telecommunication System (GTS) for relay to NOAA's Tsunami Warning Centers (TWC) in Hawai'i and Alaska and to the international community. It takes less than three minutes to speed the observations from the ocean floor to the TWCs. NDBC can retrieve limited amounts of the 15-s measurements from the instrumentation on the ocean floor using the technology's two-way communications. NDBC recovers the full resolution 15-s measurements about every 2 years and forwards the datasets and metadata to the National Geophysical Data Center for permanent archive. Meanwhile, NDBC retains the real-time observations on its website. The type of real-time observation depends on the operating mode of the tsunameter. NDBC provides the observations in a variety of traditional and innovative methods and formats that include descriptors of the operating mode. Datasets, organized by station, are available from the NDBC website as text files and from the NDBC THREDDS server in netCDF format. The website provides alerts and lists of events that allow users to focus on the information relevant for tsunami hazard analysis. In addition, NDBC developed a basic web service to query station information and observations to support the Short-term Inundation Forecasting for Tsunamis (SIFT

  15. NOAA-ISRO joint science projects on Earth observation system science, technology, and applications for societal benefits

    NASA Astrophysics Data System (ADS)

    Powell, A.; Jayarman, V.; Kondragunta, S.; Kogan, F.; Kuligowski, R.; Maturi, E.

    2006-12-01

    India and the United States of America (U.S.A.) held a joint conference from June 21-25, 2004 in Bangalore, India to strengthen and expand cooperation in the area of space science, applications, and commerce. Following the recommendations in the joint vision statement released at the end of the conference, the National Oceanic and Atmospheric Administration (NOAA) and the Indian Space and Reconnaissance Organization (ISRO) initiated several joint science projects in the area of satellite product development and applications. This is an extraordinary step since it concentrates on improvements in the data and scientific exchange between India and the United States, consistent with a Memorandum of Understanding (MOU) signed by the two nations in 1997. With the relationship between both countries strengthening with President Bush's visit in early 2006 and new program announcements between the two countries, there is a renewed commitment at ISRO and other Indian agencies and at NOAA in the U.S. to fulfill the agreements reached on the joint science projects. The collaboration is underway with several science projects that started in 2005 providing initial results. NOAA and ISRO agreed that the projects must promote scientific understanding of the satellite data and lead to a satellite-based decision support systems for disaster and public health warnings. The projects target the following areas: --supporting a drought monitoring system for India --improving precipitation estimates over India from Kalpana-1 --increasing aerosol optical depth measurements and products over India --developing early indicators of malaria and other vector borne diseases via satellite monitoring of environmental conditions and linking them to predictive models --monitoring sea surface temperature (SST) from INSAT-3D to support improved forecasting of regional storms, monsoon onset and cyclones. The research collaborations and results from these projects will be presented and discussed in the

  16. The NOAA-NASA Operational System for Near-Real-Time Volcanic Eruption Detection via Satellite Observations

    NASA Astrophysics Data System (ADS)

    Vicente, G.; Serafino, G.; Krueger, A.; Schroeder, W.; Carn, S.; Yang, K.; Krotkov, N.; Guffanti, M.; Levett, P.

    2009-04-01

    The Ozone Monitoring Instrument (OMI) on the NASA EOS/Aura research satellite allows measurement of SO2 concentrations at UV wavelengths with daily global coverage. SO2 is detected from space using its strong absorption band structure in the near UV (300-320 nm) as well as in IR bands near 7.3 and 8.6 mm. UV SO2 measurements are very robust and are insensitive to the factors that confound IR data. SO2 and ash can be detected in a very fresh volcanic eruption cloud due to sunlight backscattering and ash presence can be confirmed by UV derived aerosol index measurements. This will provide aviation alerts to the Federal Aviation Administration (FAA) with reduced false alarm ratios and permit more robust detection and tracking of volcanic clouds, and includes the development of an eruption alarm system, and potential recognition of pre-eruptive volcanic degassing. Near real-time (NRT) observations of SO2 and volcanic ash can therefore be incorporated into data products compatible with Decision Support Tools (DSTs) in use at Volcanic Ash Advisory Centers (VAACs) in Washington and Anchorage, and the USGS Volcano Observatories. In this presentation we show the latest NOAA Office of Satellite Data Processing and Distribution (OSDPD) development of an online NRT image and data product distribution system that generates eruption alarms, allows the extraction of volcanic cloud subsets for special processing, and provides access to analysis tools and graphical products derived from the OMI and the Atmospheric Infrared Sounder (AIRS) and MODIS Instrument. Products are infused into DSTs including the Volcanic Ash Coordination Tool (VACT), under development by the NOAA Forecast Systems Laboratory and the FAA's Oceanic Weather Product Development Team (OWPDT), to monitor and track, drifting volcanic clouds and aerosol index. More details: http://satepsanone.nesdis.noaa.gov/pub/OMI/OMISO2/index.html

  17. Automatic cloud detection applied to NOAA-11/AVHRR imagery

    SciTech Connect

    Derrien, M.; Farki, B.; Harang, L.; LeGleau, H.; Noyalet, A.; Pochic, D.; Sairouni, A. . Centre de Meteorologie Spatiale)

    1993-12-01

    The imagery from the AVHRR on board NOAA polar orbiting satellites allows a description of cloud cover, oceanic, and continental surfaces that is used by Meteo-France for nowcasting activities and as input for numerical weather prediction models (NWP). A real-time processing scheme has been designed at the Centre de Meteorologie Spatiale (CMS) in Lannion to extract cloud cover and surface parameters from NOAA-11 AVHRR imagery received at CMS. The key step of this scheme is cloud detection. It is based upon threshold tests applied to different combinations of channels. Its main originality is its complete automation by the computation of the 11[mu]m infrared threshold from a monthly sea surface temperature (SST) climatology over the oceans and from air temperature (near the surface) forecast by NWP over land. A special test has been implemented to detect cloud edges and subpixel clouds over continental surfaces during daytime. It is applied daily in deferred time only to compute normalized difference vegetation index (NDVI). This scheme has been used operationally since February 1990, and its quality has been checked. It has enabled the routine production of various products. A nighttime cloud classification is sent to all French Forecasters; NDVI values are computed daily and used to map the vegetation cover; and SST and thermal fronts are derived operationally from nighttime imagery.

  18. Teaching Climate and Culture as Part of Advanced Climate Change Education at the University of North Carolina

    NASA Astrophysics Data System (ADS)

    Heim, R. R.; Voos, G.; Shein, K. A.

    2008-12-01

    A new class, 'Climate and Culture' was introduced at the University of North Carolina Asheville (UNCA) during the 2007-2008 fall semester. This multi-disciplinary course addresses climate, climate change, and climatological impacts on various aspects of society and culture. UNCA's proximity to the NOAA National Climatic Data Center and several climate consultancies allows the university to tap climate specialists for their expertise. Four contemporary climate textbooks provide broad background reading material and are accompanied by a series of guest lecturers who explore a diverse set of issues including climate fundamentals, uncertainty in science and decision-making, natural resources and climate, climate in the media, urban and regional planning for climate change, and the impact of climate change on various socio-economic sectors, developing countries, international negotiations, policy making, and strategies. This paper provides an overview of the 'Climate and Culture' course and discusses its role as part of the UNCA Master of Liberal Arts Degree. Stemming from the success of this course, UNCA is also initiating a graduate program titled: Climate Change and Society, which is an innovative, interdisciplinary graduate program aimed at bridging the gap between climate change science and climate's effects on society. That program will begin offering classes August 2009.

  19. Validation of AIRS V6 Surface Temperature over Greenland with GCN and NOAA Stations

    NASA Technical Reports Server (NTRS)

    Lee, Jae N.; Hearty, Thomas; Cullather, Richard; Nowicki, Sophie; Susskind, Joel

    2016-01-01

    This work compares the temporal and spatial characteristics of the AIRSAMSU (Atmospheric Infrared Sounder Advanced Microwave Sounding Unit A) Version 6 and MODIS (Moderate resolution Imaging Spectroradiometer) Collection 5 derived surface temperatures over Greenland. To estimate uncertainties in space-based surface temperature measurements, we re-projected the MODIS Ice Surface Temperature (IST) to 0.5 by 0.5 degree spatial resolution. We also re-gridded AIRS Skin Temperature (Ts) into the same grid but classified with different cloud conditions and surface types. These co-located data sets make intercomparison between the two instruments relatively straightforward. Using this approach, the spatial comparison between the monthly mean AIRS Ts and MODIS IST is in good agreement with RMS 2K for May 2012. This approach also allows the detection of any long-term calibration drift and the careful examination of calibration consistency in the MODIS and AIRS temperature data record. The temporal correlations between temperature data are also compared with those from in-situ measurements from GC-Net (GCN) and NOAA stations. The coherent time series of surface temperature evident in the correlation between AIRS Ts and GCN temperatures suggest that at monthly time scales both observations capture the same climate signal over Greenland. It is also suggested that AIRS surface air temperature (Ta) can be used to estimate the boundary layer inversion.

  20. NOAA Coral Reef Watch: Decision Support Tools for Coral Reef Managers

    NASA Astrophysics Data System (ADS)

    Rauenzahn, J.; Eakin, C.; Skirving, W. J.; Burgess, T.; Christensen, T.; Heron, S. F.; Li, J.; Liu, G.; Morgan, J.; Nim, C.; Parker, B. A.; Strong, A. E.

    2010-12-01

    A multitude of natural and anthropogenic stressors exert substantial influence on coral reef ecosystems and contribute to bleaching events, slower coral growth, infectious disease outbreaks, and mortality. Satellite-based observations can monitor, at a global scale, environmental conditions that influence both short-term and long-term coral reef ecosystem health. From research to operations, NOAA Coral Reef Watch (CRW) incorporates paleoclimatic, in situ, and satellite-based biogeophysical data to provide near-real-time and forecast information and tools to help managers, researchers, and other stakeholders interpret coral health and stress. CRW has developed an operational, near-real-time product suite that includes sea surface temperature (SST), SST time series data, SST anomaly charts, coral bleaching HotSpots, and Degree Heating Weeks (DHW). Bi-weekly global SST analyses are based on operational nighttime-only SST at 50-km resolution. CRW is working to develop high-resolution products to better address thermal stress on finer scales and is applying climate models to develop seasonal outlooks of coral bleaching. Automated Satellite Bleaching Alerts (SBAs), available at Virtual Stations worldwide, provide the only global early-warning system to notify managers of changing reef environmental conditions. Currently, CRW is collaborating with numerous domestic and international partners to develop new tools to address ocean acidification, infectious diseases of corals, combining light and temperature to detect coral photosystem stress, and other parameters.

  1. Potential for early warning of maalria in India using NOAA-AVHRR based vegetation health indices

    NASA Astrophysics Data System (ADS)

    Dhiman, R. C.; Kogan, Felix; Singh, Neeru; Singh, R. P.; Dash, A. P.

    Malaria is still a major public health problem in India with about 1 82 million cases annually and 1000 deaths As per World Health Organization WHO estimates about 1 3 million Disability Adjusted Life Years DALYs are lost annually due to malaria in India Central peninsular region of India is prone to malaria outbreaks Meteorological parameters changes in ecological conditions development of resistance in mosquito vectors development of resistance in Plasmodium falciparum parasite and lack of surveillance are the likely reasons of outbreaks Based on satellite data and climatic factors efforts have been made to develop Early Warning System EWS in Africa but there is no headway in this regard in India In order to find out the potential of NOAA satellite AVHRR derived Vegetation Condition Index VCI Temperature Condition Index TCI and a cumulative indicator Vegetation Health Index VHI were attempted to find out their potential for development of EWS Studies were initiated by analysing epidemiological data of malaria vis-a-vis VCI TCI and VHI from Bikaner and Jaisalmer districts of Rajasthan and Tumkur and Raichur districts of Karnataka Correlation coefficients between VCI and monthly malaria cases for epidemic years were computed Positive correlation 0 67 has been found with one-month lag between VCI and malaria incidence in respect of Tumkur while a negative correlation with TCI -0 45 is observed In Bikaner VCI is found to be negatively related -0 71 with malaria cases in epidemic year of 1994 Weekly

  2. Comparison of land surface temperature measurements at NOAA CRN sites with airborne and satellite observations

    NASA Astrophysics Data System (ADS)

    Krishnan, P.; Kochendorfer, J.; Baker, B.; Dumas, E.; Meyers, T. P.; Guillevic, P.; Corda, S.; Muratore, J.; Martos, B.

    2011-12-01

    Land surface temperature (LST) is a key variable for studying global or regional land surface processes and the energy and water vapor exchange at the biosphere-atmosphere interface. In an effort to better quantify the spatial variability and overall representativeness of single-point surface temperature measurement being recorded at NOAA's Climate Reference Network (CRN) sites and to improve the accuracy of satellite land surface temperature measurements, airborne flight campaigns were conducted over two vegetated sites in Tennessee, USA during 2010 to 2011. During the campaign, multiple measurements of land surface temperature were made using Infra-Red temperature sensors at micrometeorological tower sites and onboard an instrumented Piper Navajo airborne research aircraft. In addition to this, coincident Moderate Resolution Imaging Spectroradiometer (MODIS) LST observations, onboard the NASA Terra and Aqua Earth Observing System satellites were used. The aircraft-based and satellite based land surface temperature measurements were compared to in situ, tower based LST measurements. Preliminary results show good agreement between in situ, aircraft and satellite measurements.

  3. Cloud climatology in the Canary Islands region using NOAA-AVHRR data

    NASA Astrophysics Data System (ADS)

    González, Albano; Cerdeña, Abidán; Pérez, Juan C.; Díaz, Ana M.

    2007-10-01

    In this work a threshold technique for cloud detection and classification is applied to 9 years NOAA-AVHRR imagery in order to obtain a cloud climatology of the Canary Islands region (Northeast Atlantic Ocean). Once the clouds are classified, a retrieval method is used to estimate cloud macro- and micro-physical parameters, such as, effective particle size, optical thickness and top temperature. This retrieval method is based on the inversion of the simulated radiances obtained by a numerical radiative transfer model, libRadtran, using artificial neural networks (ANNs). The ANNs, whose architecture was based on Multilayer Perceptron model, were trained with simulated theoretical radiances using backpropagation with momentum method, and their architectures were optimized through genetic algorithms. The global procedure was performed for both day and night overpasses and, from a set of more than 9000 images, maps of relative frequency were calculated. These results were compared with ISCCP data for the 21-year period 1984-2004. The relationships between the retrieved cloud properties and some climate and atmospheric variables were also considered.

  4. Metadata Access Tool for Climate and Health

    NASA Astrophysics Data System (ADS)

    Trtanji, J.

    2012-12-01

    The need for health information resources to support climate change adaptation and mitigation decisions is growing, both in the United States and around the world, as the manifestations of climate change become more evident and widespread. In many instances, these information resources are not specific to a changing climate, but have either been developed or are highly relevant for addressing health issues related to existing climate variability and weather extremes. To help address the need for more integrated data, the Interagency Cross-Cutting Group on Climate Change and Human Health, a working group of the U.S. Global Change Research Program, has developed the Metadata Access Tool for Climate and Health (MATCH). MATCH is a gateway to relevant information that can be used to solve problems at the nexus of climate science and public health by facilitating research, enabling scientific collaborations in a One Health approach, and promoting data stewardship that will enhance the quality and application of climate and health research. MATCH is a searchable clearinghouse of publicly available Federal metadata including monitoring and surveillance data sets, early warning systems, and tools for characterizing the health impacts of global climate change. Examples of relevant databases include the Centers for Disease Control and Prevention's Environmental Public Health Tracking System and NOAA's National Climate Data Center's national and state temperature and precipitation data. This presentation will introduce the audience to this new web-based geoportal and demonstrate its features and potential applications.

  5. Agricultural Climate Services Planning and Engagement in the Midwest

    NASA Astrophysics Data System (ADS)

    Kluck, D.

    2009-12-01

    Agribusiness and related industries in the Midwest are dominant influences on the regional economy, politics and the livelihoods of many communities. The successes and failures of crops and commodities markets in this area, often referred to as the “Corn Belt”, has a disproportionate effect globally in terms of food and energy production. Agribusiness in the Midwest is proud of the fact that they “feed the world” and have some of the highest output per acre of row crops on Earth. In spite of attempts to lessen the impact of climate (irrigation, genetic manipulation, etc…) it remains one of the most influential inputs to crop success. Thus, early warning of climate events and repercussions from climate change are increasingly important for preparedness, sustainability and adaptation. Drought, floods, heat, cold, early/late freeze, disease and invasive species all serve as major factors for this sector. Recognizing the importance of these impacts, NOAA and its partners plan to continue a discussion on the needs of critical information for agricultural decision makers. NOAA and its partners are eager to understand the climate information priorities within the agricultural community so it can determine where effort and support should go to address the gaps. This September 9-10th NOAA will convene experts from NOAA, Illinois-Indiana Sea Grant, USDA-CSREES (Extension Services), academia, state climate offices, Regional Climate Centers, and others to determine a possible path for such services. This meeting will follow on from the “Corn and Climate Workshop” which began this discussion last September (2008). This will be a first for regional climate services planning meetings in the Midwest. A plethora of possible inputs and outcomes are anticipated from the meeting. One of the goals is to collect and prioritize actionable suggestions from a variety of sources before and during the two-day session. From this list, meeting participants will discuss and

  6. Re-evaluation of total and Umkehr ozone data from NOAA-CMDL Dobson spectrophotometer observatories. Final report

    SciTech Connect

    Komhyr, W.D.; Quincy, D.M.; Grass, R.D.; Koenig, G.L. |

    1995-12-01

    This report describes work to improve the quality of total ozone and Umkehr data obtained in the past at the NOAA Climate Monitoring and Diagnostics Laboratory and the Dobson spectrophotometer ozone observatories. The authors present results of total ozone data re-evaluations for ten stations: Byrd, Antarctica; Fairbanks, Alaska; Hallett, Antarctica; Huancayo, Peru; Haute Provence, France; Lauder, New Zealand; Perth, Australia; Poker Flat, Alaska; Puerto Montt, Chile; and South Pole, Antarctica. The improved data will be submitted in early 1996 to the World Meteorological Organization (WMO) World Ozone Data Center (WODC), and the Atmospheric Environment Service for archiving. Considerable work has been accomplished, also, in reevaluating Umkehr data from seven of the stations, viz., Huancayo, Haute Provence, Lauder, Perth, Poker Flat, Boulder, Colorado; and Mauna Loa, Hawaii.

  7. View from the Administrator's Office.

    ERIC Educational Resources Information Center

    Shaub, Walter M.

    1999-01-01

    Discusses Environmental Protection Agency (EPA) administrator Carol Browner's views on facilitating practical approaches that address major environmental issues in the United States. Examines issues of helping local communities, climate impact and prevention, water quality and quantity, and the EPA's changing role in society. (WRM)

  8. Phytoclimatic Atlas of the Spanish Peninsular territory. First approach: Climate Atlas of Spain

    NASA Astrophysics Data System (ADS)

    Gonzalo, J.

    2010-09-01

    regionalization process: height, real distance to the coast, potential radiation and cloudiness for temperature-related target variables, and height, Euclidean distance to the coast and cloudiness for precipitation target variables. Height and distance to de coast, were derived from the Digital Elevation Model DEM 250 MONA pro Europe provided by DG-Joint Research Centre of the European Commission. The spatial resolution of this DEM is of 0,0025° (approximately 278 m in UTM projection, Zone 30). Potential radiation was computed using r.sun radiative transference model (©JRC Institute for Environment and Sustainability, 2003). As for the orographic effect it was analysed by computing an hemispheric viewshed with the above-mentioned DEM. Cloudiness was obtained from cloud masks derived from multitemporal satellite imagery recorded on a daily basis by the AVHRR instrument on board of NOAA satellites (National Oceanic and Atmospheric Administration - NOAA. NESDIS/NCDC. Climate Services Division. Satellite Services Branch. USA). To this purpose, NOAA daily images for the period 1987 -2004 (resampled at 1 km resolution) were provided by the Remote Sensing Laboratory of Valladolid University. After the cross-validation of co-regionalization models, Ordinary Co-Kringing method was selected as the best option to obtain a geo-database with 48 spatially continuous climatic variables (4 monthly variables along 12 month) with 1 km spatial resolution.

  9. Diagnostic studies of climate variability

    SciTech Connect

    Bradley, R.S. ); Diaz, H.F. )

    1992-01-01

    This paper reports on the progress on the first year of the diagnostic studies of climate variability project. The objectives were as follows: to initiate studies of long-term climatic variability, using long instrumental data sets, and proxy records; to examine regional changes of temperature and precipitation over the past century in relation to changes at the hemispheric and global scale; and to produce a map-based archive of monthly and seasonal temperature, precipitation and pressure data fore display on PCs. Significant progress has been made in all of these areas. This paper summarizes results of the work accomplished. Part A summarizes results of the work accomplished. Part A summarizes the work accomplished primarily at the University of Massachusetts. Part B summarizes work primarily conducted at NOAA/ERL. A list of papers published, in press, or in preparation then follows. Appendix 1 is a description of the proposed research in 1992--93, and a proposed budget.

  10. 76 FR 16386 - NOAA Policy on Prohibited and Approved Uses of the Asset Forfeiture Fund

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-23

    ... of the Asset Forfeiture Fund AGENCY: National Marine Fisheries Service (NMFS), National Oceanic and... NOAA are deposited in an enforcement asset forfeiture fund. NOAA finalized its policy on March 16, 2011... Policy on Prohibited and Approved Uses of the Asset Forfeiture Fund Strong management and oversight...

  11. Atmospheric methane data for the period 1983-1985 from the NOAA/GMCC global cooperative flask sampling network. Technical memo

    SciTech Connect

    Lang, P.M.; Steele, L.P.; Martin, R.C.; Masarie, K.A.

    1990-03-01

    The report presents details of relevant aspects of the NOAA/GMCC program to measure atmospheric methane concentrations through its global, cooperative, flask sampling network. These aspects include the history of the development of the program; details of the sampling network; the flasks and the flask sampling methods; the analytical instrumentation and methods; and the calibration gases and methods. The data from individual flask samples are tabulated, as are the monthly average methane concentrations. Through adequate documentation it is more likely that the full value of these methane measurements will be realized in long-term studies of the greenhouse effect and climate change.

  12. VIIRS ocean color data visualization and processing with IDL-based NOAA-SeaDAS

    NASA Astrophysics Data System (ADS)

    Wang, Xiaolong; Liu, Xiaoming; Jiang, Lide; Wang, Menghua; Sun, Junqiang

    2014-11-01

    The NOAA Sea-viewing Data Analysis System (NOAA-SeaDAS) is an Interactive Data Language (IDL)-based satellite data visualization, analysis, and processing system based on the version 6.4 of the NASA's Sea-viewing Wide Field-ofview (SeaWiFS) Data Analysis System (SeaDAS) released in 2012. NOAA-SeaDAS inherited all the original functionalities of SeaDAS 6.4 and was upgraded with many new functions and new sensor supports, particularly the support of the Visible Infrared Imaging Radiometer Suite (VIIRS) onboard the Suomi National Polar-Orbiting Partnership (SNPP). The main goal of the NOAA-SeaDAS development is primarily in support of NOAA ocean color team's calibration and validation activities. The current version of NOAA-SeaDAS can visualize, analyze, and process VIIRS Sensor Data Records (SDR or Level-1B data) produced by the NOAA Interface Data Processing System (IDPS), ocean color Environmental Data Records (EDR or Level-2 data) produced by the NOAA Multi-Sensor Level-1 to Level- 2 (MSL12) ocean color data processing system, and Level-3 data binned or mapped from Level-2 data produced by NOAA-MSL12. NOAA-SeaDAS is currently serving an active IDL user group at NOAA and will serve other institutions and universities in the future. The goal is to allow various scientific users to visualize, analyze, and process VIIRS data from Level-1B through Level-2 and Level-3. In addition, NOAA-SeaDAS can also visualize satellite images from the Korean Geostationary Ocean Color Imager (GOCI), as well as many other satellite ocean color sensors, e.g., SeaWiFS, the Moderate Resolution Imaging Spectroradiometer (MODIS), etc. NOAA-SeaDAS is under constant development to create new system functionalities and enhance user experience. With constantly increasing volume in the global ocean color data archive, NOAA-SeaDAS will play an important role in support of global marine environment data analysis and various scientific applications.

  13. Outgoing Longwave Radiation (OLR) as signatures of pre-seismic activities before Nepal 2015 Earthquakes using onboard NOAA satellite data

    NASA Astrophysics Data System (ADS)

    Chakraborty, Suman; Chakrabarti, Sandip Kumar; Sasmal, Sudipta

    2016-07-01

    Earthquake preparation processes start almost a month before its actual occurrence. There are various tools in detecting such processes among which Outgoing Longwave Radiation (OLR) measurements is a significant one. We studied these signals before the devastating Nepal earthquake that occurred on 12 May, 2015 at 12:50 pm local time (07:05 UTC) with a Richter scale magnitude of M = 7.3 and depth 10 km (6.21 miles) at southeast of Kodari. To study the effects of seismic activities on OLR, we used the data archived by the National Environmental Satellite Data and Information Service (NESDIS) of National Oceanic and Atmospheric Administration (NOAA) onto two degree grids for a period of more than 27 years. For the period 2005 till date, data from NOAA18 satellite is used. The data has been chosen with a temporal coverage from 8th May to 17th May, 2015 and a spatial coverage from 20 ^{o}N to 36 ^{o}N latitudes, 78 ^{o}E to 94 ^{o}E longitudes. We followed the method of 'Eddy field calculation mean' to find anomalies in daily OLR curves. We found singularities in Eddy field around the earthquake epicentre three days prior to the earthquake day and its disappearance after the event. Such intensification of Eddy field and its fading away after the shock event can be due to the large amount of energy released before the earthquake.

  14. Mid tropospheric CO2 concentration observed from space (NOAA-10) and in situ (aircraft campaigns): a first qualitative comparison

    NASA Astrophysics Data System (ADS)

    Serrar, S.; Chédin, A.; Scott, N. A.; Armante, R.; Ciais, P.

    In a recent study, we have shown that atmospheric concentration variations (monthly, seasonal, annual) of CO2 may be retrieved from observations of the National Oceanic and Atmospheric Administration (NOAA) polar meteorological satellite series, in addition to their main mission of measuring atmospheric temperature and moisture global fields. The method developed, a non-linear regression inverse model based on the Multi-Layer Perceptron (MLP), was applied to the platform NOAA-10, providing global monthly maps of mid-tropospheric mean CO2 concentration over the tropics (20N-20S), at the spatial resolution of 15 longitude by 15 latitude, for the period July 1987 to June 1991. A rough estimate of the method-induced standard deviation of these retrievals (resolution of 15x15 and one month) is of the order of 3.0 ppm (less than 1%). These results have been compared qualitatively (the time periods covered not being the same) to a number of in situ aircraft measurements of the CO2 concentration made approximately at the altitude ``seen'' by the satellite (peak of the response function at about 10 km). These in situ measurements include: properly equipped commercial airliners flying between Japan and Australia (1993-1999), scientific campaigns like TRACE-A PEMWEST A and B, PEMTROPICS A and B, ACE-1, etc. This comparison focuses on the concentration gradients (latitudinal, longitudinal, or along aircraft tracks), and proposes explanations linked to transport, convection, biomass burning, pollution, etc.

  15. Wild Fire Emissions for the NOAA Operational HYSPLIT Smoke Model

    NASA Astrophysics Data System (ADS)

    Huang, H. C.; ONeill, S. M.; Ruminski, M.; Shafran, P.; McQueen, J.; DiMego, G.; Kondragunta, S.; Gorline, J.; Huang, J. P.; Stunder, B.; Stein, A. F.; Stajner, I.; Upadhayay, S.; Larkin, N. K.

    2015-12-01

    Particulate Matter (PM) generated from forest fires often lead to degraded visibility and unhealthy air quality in nearby and downstream areas. To provide near-real time PM information to the state and local agencies, the NOAA/National Weather Service (NWS) operational HYSPLIT (Hybrid Single Particle Lagrangian Integrated Trajectory Model) smoke modeling system (NWS/HYSPLIT smoke) provides the forecast of smoke concentration resulting from fire emissions driven by the NWS North American Model 12 km weather predictions. The NWS/HYSPLIT smoke incorporates the U.S. Forest Service BlueSky Smoke Modeling Framework (BlueSky) to provide smoke fire emissions along with the input fire locations from the NOAA National Environmental Satellite, Data, and Information Service (NESDIS)'s Hazard Mapping System fire and smoke detection system. Experienced analysts inspect satellite imagery from multiple sensors onboard geostationary and orbital satellites to identify the location, size and duration of smoke emissions for the model. NWS/HYSPLIT smoke is being updated to use a newer version of USFS BlueSky. The updated BlueSky incorporates the Fuel Characteristic Classification System version 2 (FCCS2) over the continental U.S. and Alaska. FCCS2 includes a more detailed description of fuel loadings with additional plant type categories. The updated BlueSky also utilizes an improved fuel consumption model and fire emission production system. For the period of August 2014 and June 2015, NWS/HYSPLIT smoke simulations show that fire smoke emissions with updated BlueSky are stronger than the current operational BlueSky in the Northwest U.S. For the same comparisons, weaker fire smoke emissions from the updated BlueSky were observed over the middle and eastern part of the U.S. A statistical evaluation of NWS/HYSPLIT smoke predicted total column concentration compared to NOAA NESDIS GOES EAST Aerosol Smoke Product retrievals is underway. Preliminary results show that using the newer version

  16. Precipitation of relativistic electrons as seen by NOAA POES

    NASA Astrophysics Data System (ADS)

    Yahnin, Alexander; Gvozdevsky, Boris; Yahnina, Tatyana; Semenova, Nadezhda

    The MEPED instrument onboard NOAA Polar-orbiting Operational Environmental Satellites (NOAA POES) was designed to measure precipitating and quasi-trapped protons and electrons in the ranges 30 keV to 200 MeV (for protons) and 30 keV to 2500 keV (for electrons). In particular, proton telescopes measure protons in six channels: P1 (30-80 keV), P2 (80-250 keV), P3 (250-800 keV), P4 (800-2500 keV), P5 (2500-6900 keV), and P6 (>6900 keV). Protons appear in the P6 channel very seldom (only during Solar Proton Events). At the same time, this channel can be contaminated by relativistic (E ~ 1 MeV) electrons. Using P6 data we performed a study of the relativistic electron precipitation (REP) within the interval of 25 July - 31 August 2005 characterizing by variable geomagnetic activity. We found that most often the REP events are observed in the night sector in relation to the isotropy boundary of relativistic electrons. It means that these REP events are due to violation of the adiabatic motion of particles in the region of a relatively weak magnetic field in the equatorial plane of magnetosphere. Further, a substantial part of REP events is observed in association with enhancements of energetic (E>30 keV) electrons equatorward of the electron isotropy boundary. We interpret the precipitation of electrons in the wide range of energies as result of scattering the particles into the loss cone by ELF/VLF waves. Finally, relativistic electrons can be scattered into the loss cone by EMIC waves. This possibility is actively discussed in the literature. It is known that EMIC waves effectively scatter energetic protons and produce proton precipitation bursts equatorward of the proton isotropic boundary. To investigate the REP/EMIC wave relationship we consider how such proton precipitation bursts seen in P1-P3 channels correlate with REP. It turned out that proton precipitation bursts observed in the morning and day sectors do not correlate with REP events, but in the evening

  17. Administrative IT

    ERIC Educational Resources Information Center

    Grayson, Katherine, Ed.

    2006-01-01

    When it comes to Administrative IT solutions and processes, best practices range across the spectrum. Enterprise resource planning (ERP), student information systems (SIS), and tech support are prominent and continuing areas of focus. But widespread change can also be accomplished via the implementation of campuswide document imaging and sharing,…

  18. Engineering Administration.

    ERIC Educational Resources Information Center

    Naval Personnel Program Support Activity, Washington, DC.

    This book is intended to acquaint naval engineering officers with their duties in the engineering department. Standard shipboard organizations are analyzed in connection with personnel assignments, division operations, and watch systems. Detailed descriptions are included for the administration of directives, ship's bills, damage control, training…

  19. Database Administrator

    ERIC Educational Resources Information Center

    Moore, Pam

    2010-01-01

    The Internet and electronic commerce (e-commerce) generate lots of data. Data must be stored, organized, and managed. Database administrators, or DBAs, work with database software to find ways to do this. They identify user needs, set up computer databases, and test systems. They ensure that systems perform as they should and add people to the…

  20. Education and Outreach in NOAA's Ocean Exploration Program: An Example From a Gulf of Alaska Alvin Cruise

    NASA Astrophysics Data System (ADS)

    Martinez, C.; Keller, R.; Keener-Chavis, P.; Doenges, S.; Fisk, M.; Duncan, R.; Guilderson, T.; Shirley, T.

    2002-12-01

    The report of the President's Panel on Ocean Exploration, Discovering Earth's Final Frontier: A U.S. Strategy for Ocean Exploration, outlined a strategy for a national ocean exploration program that included a strong educational outreach component. The National Oceanic and Atmospheric Administration's (NOAA) new Office of Ocean Exploration (OE), now in its second year, is carrying out the recommendations of the President's Panel through exciting exploratory and educational initiatives. With the establishment of OE, NOAA now has a great opportunity to reach out in new ways to teachers, students, and the general public to share the excitement of daily discoveries while at sea and to demonstrate the science behind these exploration initiatives. In 2002, OE sponsored several major exploration initiatives involving AGU scientists in various regions of our world's oceans, such as the Arctic, the Galápagos, the Gulf of Mexico, and the Gulf of Alaska. An excellent example of the broad spectrum of opportunities that can be developed through a research cruise was the Gulf of Alaska Seamount Exploration Expedition (GOASEX). This Alvin submersible cruise included geologists studying how the seamounts formed, biologists studying crab distribution and reproductive strategies, and oceanographers sampling sediments and deep-sea corals for paleo-oceanographic information. Outreach and education products from this cruise were updated frequently on the Ocean Explorer web site, and included detailed lesson plans, logs, images, video clips, maps, and essays from the field so that students and the general public could follow the expedition. This cruise was also used as an educational platform for fisheries observer trainers from the North Pacific Fisheries Observer Training Center, a 5th grade teacher from Illinois, and several undergraduate and graduate students from various institutions. Cruise participants have already shared their experiences with K-12 students and educators, and

  1. Remote Sensing-Driven Climatic/Environmental Variables for Modelling Malaria Transmission in Sub-Saharan Africa.

    PubMed

    Ebhuoma, Osadolor; Gebreslasie, Michael

    2016-01-01

    Malaria is a serious public health threat in Sub-Saharan Africa (SSA), and its transmission risk varies geographically. Modelling its geographic characteristics is essential for identifying the spatial and temporal risk of malaria transmission. Remote sensing (RS) has been serving as an important tool in providing and assessing a variety of potential climatic/environmental malaria transmission variables in diverse areas. This review focuses on the utilization of RS-driven climatic/environmental variables in determining malaria transmission in SSA. A systematic search on Google Scholar and the Institute for Scientific Information (ISI) Web of Knowledge(SM) databases (PubMed, Web of Science and ScienceDirect) was carried out. We identified thirty-five peer-reviewed articles that studied the relationship between remotely-sensed climatic variable(s) and malaria epidemiological data in the SSA sub-regions. The relationship between malaria disease and different climatic/environmental proxies was examined using different statistical methods. Across the SSA sub-region, the normalized difference vegetation index (NDVI) derived from either the National Oceanic and Atmospheric Administration (NOAA) Advanced Very High Resolution Radiometer (AVHRR) or Moderate-resolution Imaging Spectrometer (MODIS) satellite sensors was most frequently returned as a statistically-significant variable to model both spatial and temporal malaria transmission. Furthermore, generalized linear models (linear regression, logistic regression and Poisson regression) were the most frequently-employed methods of statistical analysis in determining malaria transmission predictors in East, Southern and West Africa. By contrast, multivariate analysis was used in Central Africa. We stress that the utilization of RS in determining reliable malaria transmission predictors and climatic/environmental monitoring variables would require a tailored approach that will have cognizance of the geographical/climatic

  2. Remote Sensing-Driven Climatic/Environmental Variables for Modelling Malaria Transmission in Sub-Saharan Africa

    PubMed Central

    Ebhuoma, Osadolor; Gebreslasie, Michael

    2016-01-01

    Malaria is a serious public health threat in Sub-Saharan Africa (SSA), and its transmission risk varies geographically. Modelling its geographic characteristics is essential for identifying the spatial and temporal risk of malaria transmission. Remote sensing (RS) has been serving as an important tool in providing and assessing a variety of potential climatic/environmental malaria transmission variables in diverse areas. This review focuses on the utilization of RS-driven climatic/environmental variables in determining malaria transmission in SSA. A systematic search on Google Scholar and the Institute for Scientific Information (ISI) Web of KnowledgeSM databases (PubMed, Web of Science and ScienceDirect) was carried out. We identified thirty-five peer-reviewed articles that studied the relationship between remotely-sensed climatic variable(s) and malaria epidemiological data in the SSA sub-regions. The relationship between malaria disease and different climatic/environmental proxies was examined using different statistical methods. Across the SSA sub-region, the normalized difference vegetation index (NDVI) derived from either the National Oceanic and Atmospheric Administration (NOAA) Advanced Very High Resolution Radiometer (AVHRR) or Moderate-resolution Imaging Spectrometer (MODIS) satellite sensors was most frequently returned as a statistically-significant variable to model both spatial and temporal malaria transmission. Furthermore, generalized linear models (linear regression, logistic regression and Poisson regression) were the most frequently-employed methods of statistical analysis in determining malaria transmission predictors in East, Southern and West Africa. By contrast, multivariate analysis was used in Central Africa. We stress that the utilization of RS in determining reliable malaria transmission predictors and climatic/environmental monitoring variables would require a tailored approach that will have cognizance of the geographical/climatic

  3. Visions of our Planet's Atmosphere, Land and Oceans: NASA/NOAA Electronic Theater 2002

    NASA Technical Reports Server (NTRS)

    Hasler, A. F.; Starr, David (Technical Monitor)

    2001-01-01

    The NASA/NOAA Electronic Theater presents Earth science observations and visualizations in a historical perspective. Fly in from outer space to the Olympic Medals Plaza, the new Gateway Center, and the University of Utah Stadium Site of the Olympic Opening and Closing Ceremonies in Salt Lake City. Fly in and through the Park City, and Snow Basin sites of the 2002 Winter Olympic Alpine Venues using 1 m IKONOS "Spy Satellite" data. See the four seasons of the Wasatch Front as observed by Landsat 7 at 15m resolution and watch the trees turn color in the Fall, snow come and go in the mountains and the reservoirs freeze and melt. Go back to the early weather satellite images from the 1960s and see them contrasted with the latest US and international global satellite weather movies including hurricanes & "tornadoes". See the latest visualizations of spectacular images from NASA/NOAA remote sensing missions like Terra, GOES, TRMM, SeaWiFS, Landsat 7 including new 1 - min GOES rapid scan image sequences of Nov 9th 2001 Midwest tornadic thunderstorms and have them explained. See how High-Definition Television (HDTV) is revolutionizing the way we communicate science. (In cooperation with the American Museum of Natural History in NYC) See dust storms in Africa and smoke plumes from fires in Mexico. See visualizations featured on the covers of Newsweek, TIME, National Geographic, Popular Science & on National & International Network TV. New computer software tools allow us to roam & zoom through massive global images e.g. Landsat tours of the US, and Africa, showing desert and mountain geology as well as seasonal changes in vegetation. See animations of the polar ice packs and the motion of gigantic Antarctic Icebergs from SeaWinds data. Spectacular new visualizations of the global atmosphere & oceans are shown. See vortexes and currents in the global oceans that bring up the nutrients to feed tiny algae and draw the fish, whales and fisherman. See the how the ocean blooms in

  4. Visions of our Planet's Atmosphere, Land and Oceans: NASA/NOAA Electronic Theater 2002

    NASA Technical Reports Server (NTRS)

    Hasler, A. F.; Starr, David (Technical Monitor)

    2002-01-01

    The NASA/NOAA Electronic Theater presents Earth science observations and visualizations in a historical perspective. Fly in from outer space to the Olympic Medals Plaza, the new Gateway Center, and the University of Utah Stadium Site of the Olympic Opening and Closing Ceremonies in Salt Lake City. Fly in and through the Park City, and Snow Basin sites of the 2002 Winter Olympic Alpine Venues using 1 m IKONOS "Spy Satellite" data. See the four seasons of the Wasatch Front as observed by Landsat 7 at 15m resolution and watch the trees turn color in the Fall, snow come and go in the mountains and the reservoirs freeze and melt. Go back to the early weather satellite images from the 1960s and see them contrasted with the latest US and international global satellite weather movies Including hurricanes & "tornadoes". See the latest visualizations of spectacular images from NASA/NOAA remote sensing missions like Terra, GOES, TRMM, SeaWiFS, Landsat 7 including new 1 - min GOES rapid scan image sequences of Nov 9th 2001 Midwest tornadic thunderstorms and have them explained. See how High-Definition Television (HDTV) is revolutionizing the way we communicate science. (In cooperation with the American Museum of Natural History in NYC) See dust storms in Africa and smoke plumes from fires in Mexico. See visualizations featured on the covers Of Newsweek, TIME, National Geographic, Popular Science & on National & International Network TV. New computer software. tools allow us to roam & zoom through massive global images e.g. Landsat tours of the US, and Africa, showing desert and mountain geology as well as seasonal changes in vegetation. See animations of the polar ice packs and the motion of gigantic Antarctic Icebergs from SeaWinds data. Spectacular new visualizations of the global atmosphere & oceans are shown. See vertexes and currents in the global oceans that bring up the nutrients to feed tin) algae and draw the fish, whales and fisherman. See the how the ocean blooms in

  5. Tales from the Jungle: The Evolving Climate Services Ecosystem

    NASA Astrophysics Data System (ADS)

    Redmond, K. T.

    2015-12-01

    In 2001 the NRC Report "A Climate Services Vision: First Steps Toward the Future" examined the state and trends of climate services. That report included a definition of this term that has lost no relevance: "The timely production and delivery of useful climate data, information, and knowledge to decision makers." The original entities delivering such services, at the state level, are represented by the American Association of State Climatologists (AASC). In 1986 the NOAA Regional Climate Center program was initiated, followed in 1994 by the NOAA Regional Climate Sciences and Assessments. Since 2010 we have seen the establishment of the USDI Climate Science Centers and the Landscape Conservation Cooperatives, the NOAA Regional Climate Service Directors, and the USDA Regional Climate Hubs. The recent expansion of formal programs has essentially filled out the agency "niche space." Other non-governmental and private entities are also expanding into this space. The present profusion runs a risk of creating a perception of excessive duplication in some quarters, including those funding these enterprises. Collectively these activities form what can be thought of as an ecosystem of climate services. A certain amount of replication is desirable, healthy, and necessary, but beyond some point can be excessive unless the total capacity remains insufficient. Each component has come into existence for a different set of reasons. Since these components were invented by human beings, their subsequent evolution can in theory be guided by humans. The history and purpose of each component needs to be borne in mind, with capsule descriptions suitable for rapid delivery to the decision-makers who approve the support for the various components. Good communication among the components is therefore essential for a healthy and functional overall system. This in turn calls for the ability to adequately represent the role of each of those components, a purpose best informed through actual

  6. Analysis of NOAA-MSFC GOES X-ray telescope

    NASA Technical Reports Server (NTRS)

    Shealy, D. L.

    1979-01-01

    The general telescope system was assumed to be a paraboloid-hyperboloid in a Wolter Type 1 configuration. The equations which specify the telescope parameters and the resolution as a function of the collecting area are discussed as well as the spot size and point response function for off-axis rays. The measured resolution of the Goddard ATM X-ray telescope (S-056) is compared to the rms blur circle radius and the full width half maximum of the line spread function. An empirical scaling formula, Eq. 26, which transforms the rms blur circle radius into a more accurate measure of resolution, is introduced. The geometrical imaging properties of the proposed NOAA-MSFC GOES X-ray telescope are considered. Conclusions and alternate mirror designs are included.

  7. A new method of recalibrating NOAA MEPED proton measurements

    NASA Astrophysics Data System (ADS)

    Sandanger, Marit Irene; Glesnes Ødegaard, Linn-Kristine; Nesse Tyssøy, Hilde; Stadsnes, Johan; Søraas, Finn; Oksavik, Kjellmar

    2014-05-01

    Since 1978 the NOAA/POES satellites have continuously monitored energetic particles with the MEPED instrument. After some years of operation, the particle detectors become degraded due to radiation damage. Fortunately, both new and older satellites are operational at the same time. By comparing the monthly averaged proton energy spectra from a newly launched satellite with all the older satellites in the same altitude range, we derive the correction factor due to radiation damage. For the years in between new satellites, we calculate the correction factor using two different methods based on cumulative flux and the Ap index. The cumulated flux for each satellite gives an estimate of the amount of radiation damage and therefor the degradation. The Ap index describes the level of geomagnetic activity the detector environment.

  8. Vegetation monitoring and classification using NOAA/AVHRR satellite data

    NASA Technical Reports Server (NTRS)

    Greegor, D. H., Jr.; Norwine, J. R.

    1983-01-01

    A vegetation gradient model, based on a new surface hydrologic index and NOAA/AVHRR meteorological satellite data, has been analyzed along a 1300 km east-west transect across the state of Texas. The model was developed to test the potential usefulness of such low-resolution data for vegetation stratification and monitoring. Normalized Difference values (ratio of AVHRR bands 1 and 2, considered to be an index of greenness) were determined and evaluated against climatological and vegetation characteristics at 50 sample locations (regular intervals of 0.25 deg longitude) along the transect on five days in 1980. Statistical treatment of the data indicate that a multivariate model incorporating satellite-measured spectral greenness values and a surface hydrologic factor offer promise as a new technique for regional-scale vegetation stratification and monitoring.

  9. Homologous flares and the evolution of NOAA Active Region 2372

    NASA Technical Reports Server (NTRS)

    Strong, K. T.; Smith, J. B., Jr.; Mccabe, M. K.; Machado, M. E.; Saba, J. L. R.; Simnett, G. M.

    1984-01-01

    A detailed record of the evolution of NOAA Active Region 2372 has been compiled by the FBS Homology Study Group. It was one of the most prolific flare-producing regions observed by SMM. The flares occurred in distinct stages which corresponded to particular evolutionary phases in the development of the active region magnetic field. By comparison with a similar but less productive active region, it is found that the activity seems to be related to the magnetic complexity of the region and the amount of shear in the field. Further, the soft X-ray emission in the quiescent active region is related to its flare rate. Within the broader definition of homology adopted, there was a degree of homology between the events within each stage of evolution of AR2372.

  10. Jason-3, climate and outreach

    NASA Astrophysics Data System (ADS)

    Rosmorduc, Vinca; Bronner, Emilie; De Staerke, Danielle

    2016-04-01

    Two radar altimetry satellites are to be launched beginning of 2016. Jason-3 is a EUMETSAT/NOAA/CNES/NASA mission follow-on to Jason-2, Jason-1 and previously Topex/Poseidon, thus continuing on the now 23-year homogeneous time series into a 30-year climate-relevant length. Sentinel-3 is an European mission in the frame of the Copernicus programme. A few weeks before the launches, late 2015, the United Nations Climate Change Conference 21st yearly session of the Conference of the Parties (COP 21) meeting took place in Paris end of 2015 (30 November to 11 December 2015), so the talk in France and in quite a lot of countries at that time was about climate, climate monitoring and climate change. And, at the same time, a nimportant El Niño episode was reaching its peak, with its impacts seen all over the globe. On both subjects, radar altimetry has a monitoring role to play, and from the very beginning of the CNES/NASA Topex/Poseidon-Jason series of satellites, these subjects were broached in its outreach. We will detail how those subjects were disseminated, and especially how they got into media coverages, what seem the best (nowadays) canals to outreach a subject to a more or less wide audience.

  11. Climate Literacy and Adaptation Solutions for Society

    NASA Astrophysics Data System (ADS)

    Sohl, L. E.; Chandler, M. A.

    2011-12-01

    Many climate literacy programs and resources are targeted specifically at children and young adults, as part of the concerted effort to improve STEM education in the U.S. This work is extremely important in building a future society that is well prepared to adopt policies promoting climate change resilience. What these climate literacy efforts seldom do, however, is reach the older adult population that is making economic decisions right now (or not, as the case may be) on matters that can be impacted by climate change. The result is a lack of appreciation of "climate intelligence" - information that could be incorporated into the decision-making process, to maximize opportunities, minimize risk, and create a climate-resilient economy. A National Climate Service, akin to the National Weather Service, would help provide legitimacy to the need for climate intelligence, and would certainly also be the first stop for both governments and private sector concerns seeking climate information for operational purposes. However, broader collaboration between the scientific and business communities is also needed, so that they become co-creators of knowledge that is beneficial and informative to all. The stakeholder-driven research that is the focus of NOAA's RISA (Regional Integrated Sciences and Assessments) projects is one example of how such collaborations can be developed.

  12. Climate Change

    MedlinePlus

    Climate is the average weather in a place over a period of time. Climate change is major change in temperature, rainfall, snow, ... by natural factors or by human activities. Today climate changes are occurring at an increasingly rapid rate. ...

  13. Climate Change

    MedlinePlus

    ... in a place over a period of time. Climate change is major change in temperature, rainfall, snow, or ... by natural factors or by human activities. Today climate changes are occurring at an increasingly rapid rate. Climate ...

  14. The Regional Integrated Sciences and Assessments (RISA) Program, Climate Services, and Meeting the National Climate Change Adaptation Challenge

    NASA Astrophysics Data System (ADS)

    Overpeck, J. T.; Udall, B.; Miles, E.; Dow, K.; Anderson, C.; Cayan, D.; Dettinger, M.; Hartmann, H.; Jones, J.; Mote, P.; Ray, A.; Shafer, M.; White, D.

    2008-12-01

    The NOAA-led RISA Program has grown steadily to nine regions and a focus that includes both natural climate variability and human-driven climate change. The RISAs are, at their core, university-based and heavily invested in partnerships, particularly with stakeholders, NOAA, and other federal agencies. RISA research, assessment and partnerships have led to new operational climate services within NOAA and other agencies, and have become important foundations in the development of local, state and regional climate change adaptation initiatives. The RISA experience indicates that a national climate service is needed, and must include: (1) services prioritized based on stakeholder needs; (2) sustained, ongoing regional interactions with users, (3) a commitment to improve climate literacy; (4) support for assessment as an ongoing, iterative process; (5) full recognition that stakeholder decisions are seldom made using climate information alone; (6) strong interagency partnership; (7) national implementation and regional in focus; (8) capability spanning local, state, tribal, regional, national and international space scales, and weeks to millennia time scales; and (9) institutional design and scientific support flexible enough to assure the effort is nimble enough to respond to rapidly-changing stakeholder needs. The RISA experience also highlights the central role that universities must play in national climate change adaptation programs. Universities have a tradition of trusted regional stakeholder partnerships, as well as the interdisciplinary expertise - including social science, ecosystem science, law, and economics - required to meet stakeholder climate-related needs; project workforce can also shift rapidly in universities. Universities have a proven ability to build and sustain interagency partnerships. Universities excel in most forms of education and training. And universities often have proven entrepreneurship, technology transfer and private sector

  15. NOAA/NGDC candidate models for the 12th generation International Geomagnetic Reference Field

    NASA Astrophysics Data System (ADS)

    Alken, Patrick; Maus, Stefan; Chulliat, Arnaud; Manoj, Chandrasekharan

    2015-05-01

    The International Geomagnetic Reference Field (IGRF) is a model of the geomagnetic main field and its secular variation, produced every 5 years from candidate models proposed by a number of international research institutions. For this 12th generation IGRF, three candidate models were solicited: a main field model for the 2010.0 epoch, a main field model for the 2015.0 epoch, and the predicted secular variation for the five-year period 2015 to 2020. The National Geophysical Data Center (NGDC), part of the National Oceanic and Atmospheric Administration (NOAA), has produced three candidate models for consideration in IGRF-12. The 2010 main field candidate was produced from Challenging Minisatellite Payload (CHAMP) satellite data, while the 2015 main field and secular variation candidates were produced from Swarm and Ørsted satellite data. Careful data selection was performed to minimize the influence of magnetospheric and ionospheric fields. The secular variation predictions of our parent models, from which the candidate models were derived, have been validated against independent ground observatory data.

  16. Background Mole Fractions of Hydrocarbons in North America Determined from NOAA Global Reference Network Data

    NASA Astrophysics Data System (ADS)

    Mielke-Maday, I.

    2015-12-01

    The National Oceanic and Atmospheric Administration (NOAA) Global Monitoring Division (GMD) maintains a global reference network for over 50 trace gas species and analyzes discrete air samples collected by this network throughout the world at the Earth System Research Laboratory in Boulder, Colorado. In particular, flask samples are analyzed for a number of hydrocarbons with policy and health relevance such as ozone precursors, greenhouse gases, and hazardous air pollutants. Because this global network's sites are remote and therefore minimally influenced by local anthropogenic emissions, these data yield information about background ambient mole fractions and can provide a context for observations collected in intensive field campaigns, such as the Front Range Air Pollution and Photochemistry Experiment (FRAPPE), the Southeast Nexus (SENEX) study, and the DISCOVER-AQ deployments. Information about background mole fractions during field campaigns is critical for calculating hydrocarbon enhancements in the region of study and for assessing the extent to which a particular region's local emissions sources contribute to these enhancements. Understanding the geographic variability of the background and its contribution to regional ambient mole fractions is also crucial for the development of realistic regulations. We present background hydrocarbon mole fractions and their ratios in North America using data from air samples collected in the planetary boundary layer at tall towers and aboard aircraft from 2008 to 2014. We discuss the spatial and seasonal variability in these data. We present trends over the time period of measurements and propose possible explanations for these trends.

  17. Dioxins/furans and PCBs in bivalves and sediments from NOAA national status and trends program

    SciTech Connect

    Wade, T.; Gardinali, P.; Jackson, T.; Sericano, J.; Chambers, L.

    1995-12-31

    As part of the National Oceanic and Atmospheric Administration (NOAA), National Status and Trends (NS and T) Mussel Watch Program 55 bivalves and 7 sediment samples were analyzed for 2,3,7,8-substituted polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD and PCDF) and planar PCBs. Bivalve samples were collected from selected US East Gulf and West coast sites, while the sediment samples were all from the Gulf coast. Sediment concentrations for 2,3,7,8-tetrachloro dibenzo-p-dioxin and dibenzofuran (TCDD and TCDF) ranged from 0.35 to 25 pg/g and 0.42 to 140 pg/g, respectively. The 2,3,7,8-TCDD and 2,3,7,8-TCDF represent only a small percentage of the total PCDD and PCDF in the sediments which is the case for most sediment. The concentration of TCDD and TCDF in bivalves ranged from not detected (ND) to 25 pg/g and ND to 140 pg/g, respectively. Most bivalve samples, in contrast to the sediment contained low proportions of the higher molecular weight PCDDs and PCDFs. The relative toxicological importance of 2,3,7,8-TCDD, 2,3,7,8-TCDF and dioxin-like PCB to the bivalves from different locations will be compared based on toxicity equivalency factors.

  18. Open Source Seismic Software in NOAA's Next Generation Tsunami Warning System

    NASA Astrophysics Data System (ADS)

    Hellman, S. B.; Baker, B. I.; Hagerty, M. T.; Leifer, J. M.; Lisowski, S.; Thies, D. A.; Donnelly, B. K.; Griffith, F. P.

    2014-12-01

    The Tsunami Information technology Modernization (TIM) is a project spearheaded by National Oceanic and Atmospheric Administration to update the United States' Tsunami Warning System software currently employed at the Pacific Tsunami Warning Center (Eva Beach, Hawaii) and the National Tsunami Warning Center (Palmer, Alaska). This entirely open source software project will integrate various seismic processing utilities with the National Weather Service Weather Forecast Office's core software, AWIPS2. For the real-time and near real-time seismic processing aspect of this project, NOAA has elected to integrate the open source portions of GFZ's SeisComP 3 (SC3) processing system into AWIPS2. To provide for better tsunami threat assessments we are developing open source tools for magnitude estimations (e.g., moment magnitude, energy magnitude, surface wave magnitude), detection of slow earthquakes with the Theta discriminant, moment tensor inversions (e.g. W-phase and teleseismic body waves), finite fault inversions, and array processing. With our reliance on common data formats such as QuakeML and seismic community standard messaging systems, all new facilities introduced into AWIPS2 and SC3 will be available as stand-alone tools or could be easily integrated into other real time seismic monitoring systems such as Earthworm, Antelope, etc. Additionally, we have developed a template based design paradigm so that the developer or scientist can efficiently create upgrades, replacements, and/or new metrics to the seismic data processing with only a cursory knowledge of the underlying SC3.

  19. The Importance of Educating the Public Regarding NOAA Weather Radio Reception and Placement within a Structure.

    NASA Astrophysics Data System (ADS)

    Troutman, Timothy W.; Vannozzi, Lawrence J.; Fleming, John T.

    2001-12-01

    The recent expansion of The National Oceanic and Atmospheric Administration (NOAA) Weather Radio (NWR) transmitter locations across the United States delivered the NWR signal to previously unserved areas. This paper will show that although increased NWR signal coverage is now being provided, manufactured and metal-built homes can still pose serious problems for the reception of NWR broadcasts. A series of signal reception tests were completed by the Florida Division of Emergency Management. Reception results are presented for a manufactured home and a home built with metal wall studs. This paper shows that an external antenna developed from the test results will effectively improve NWR reception in metal buildings and manufactured homes. The tests further showed that using a simple J-pole external antenna mounted on a window alleviated the attenuation problem. It is hoped that this study's results will alert the public, emergency managers, and other officials to the potential for poor NWR reception in mobile homes and metal buildings, as well as what corrective measures to take. The use of inexpensive, lightweight external antennas and the correct placement of NWRs should be stressed during NWS outreach activities. Obviously it is very important for the public to purchase a NWR, but they must be educated about proper unit placement and/or antenna availability. These education efforts should inform customers, reduce complaints regarding NWR reception, and lead to a safer public.

  20. Overview of the NOAA/NASA advanced very high resolution radiometer Pathfinder algorithm for sea surface temperature and associated matchup database

    NASA Astrophysics Data System (ADS)

    Kilpatrick, K. A.; Podestá, G. P.; Evans, R.

    2001-05-01

    The National Oceanic and Atmospheric Administration (NOAA)/NASA Oceans Pathfinder sea surface temperature (SST) data are derived from measurements made by the advanced very high resolution radiometers (AVHRRs) on board the NOAA 7, 9, 11, and 14 polar orbiting satellites. All versions of the Pathfinder SST algorithm are based on the NOAA/National Environmental Satellite Data and Information Service nonlinear SST operational algorithm (NLSST). Improvements to the NLSST operational algorithm developed by the Pathfinder program include the use of monthly calibration coefficients selected on the basis of channel brightness temperature difference (T4-T5). This channel difference is used as a proxy for water vapor regime. The latest version (version 4.2) of the Pathfinder processing includes the use of decision trees to determine objectively pixel cloud contamination and quality level (0-7) of the SST retrieval. The 1985-1998 series of AVHRR global measurements has been reprocessed using the Pathfinder version 4.2 processing protocol and is available at various temporal and spatial resolutions from NASA's Jet Propulsion Laboratory Distributed Active Archive Center. One of the highlights of the Pathfinder program is that in addition to the daily global area coverage fields, a matchup database of coincident in situ buoy and satellite SST observations also is made available for independent algorithm development and validation.

  1. 76 FR 18549 - Casmalia Disposal Site; Notice of Proposed CERCLA Administrative De Minimis Settlement

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-04

    ... Wildlife Service (USFWS) and the National Oceanic and Atmospheric Administration (NOAA). These 49 parties... Information and Electronic Systems Integration Inc.; Cenveo; ConAgra Foods, Inc.; Continental Chemical Co...; General Tire Service; Hercules, Incorporated for itself, Mica Corporation and US Filter; Hobie Cat...

  2. A federal partnership to pursue operational prediction at the weather-climate interface

    NASA Astrophysics Data System (ADS)

    Sandgathe, Scott A.; Eleuterio, Daniel; Warren, Steven

    2012-10-01

    Earth System Prediction Capability Workshop Washington, D. C., 21-23 March 2012 A meeting to advance a federal partnership toward operational prediction of the physical environment at subseasonal to decadal time scales was held in Washington, D. C. Scientists, headquarters representatives, and program managers from the Department of Energy, NASA, the National Oceanic and Atmospheric Administration (NOAA), the National Science Foundation, the U.S. Air Force, and the U.S. Navy met to discuss pressing agency requirements for extended-range environmental prediction to inform economic, energy, agricultural, national security, and infrastructure decisions. After significant review and discussion, participants agreed that the highest potential for progress was at the interseasonal to interannual (ISI) time scales (Advancing the Science of Climate Change (2010), Board on Atmospheric Sciences and Climate (BASC), http://www.nap.edu/openbook.php?record_id=12782). They agreed to pursue a joint effort, identifying five areas for near-term demonstrations of predictability and establishing volunteer coordinators to organize the demonstration efforts. The demonstrations will establish operational extended-range predictive skill, inform further research, enhance interagency collaboration, and push forward environmental prediction technical and computational capabilities.

  3. June 2013 Meteotsunami Captured by NOAA/NOS Coastal Water Level Stations

    NASA Astrophysics Data System (ADS)

    Bailey, K.; DiVeglio, C.; Welty, A.

    2014-12-01

    On June 13, 2013, a north-south oriented, long formation of strong storms passed eastward over the New Jersey coast. Three hours later, while the weather was calm, a sudden runup of water along the New Jersey and New England coasts was witnessed despite no nearby seismic activity. Post-event analysis revealed that a rare meteotsunami impacted the East Coast of the United States. The strong pressure jump associated with the storms generated an ocean wave that became amplified when the speed of the storms reached the speed of the wave, creating resonance. The wave approached the Mid-Atlantic shelf break and reflected back, explaining the time lag between the passing storms and the incoming wave. The National Water Level Observing Network (NWLON) stations maintained by the National Oceanic and Atmospheric Administration (NOAA) National Ocean Service (NOS) Center for Operational Oceanographic Products and Services (CO-OPS) measured strong water level oscillations at several stations along the eastern seaboard. The detided one-minute data show the tsunami signal with maximum amplitudes ranging from 0.16 m at Nantucket Island, MA to 0.61 m. at Newport, RI. The Narragansett Bay stations captured the meteotsunami wave propagating northward and diminishing towards the innermost part of the Bay. The Atlantic City, NJ station captured the 3.2-mb pressure jump in the six-minute barometer data from the passing storms as well as the incoming wave that hit three hours later with a maximum amplitude of 0.47 m. Along the U.S. coast, harbor shape and orientation contributed to the strength of the tsunami wave, and some stations that were in shadowed areas did not measure a strong signal despite being in an area of measurable impact. Meteotsunamis pose a threat to the U.S. coastline, and without high-resolution observations and models these events cannot be quantitatively forecasted. NOAA does not currently have an operational warning system but the June 2013 meteotsunami provides an

  4. Applying an economical scale-aware PDF-based turbulence closure model in NOAA NCEP GCMs.

    NASA Astrophysics Data System (ADS)

    Krueger, S. K.; Belochitski, A.; Moorthi, S.; Bogenschutz, P.; Pincus, R.

    2015-12-01

    A novel unified representation of sub-grid scale (SGS) turbulence, cloudiness, and shallow convection is being implemented into the NOAA NCEP Global Forecasting System (GFS) general circulation model. The approach, known as Simplified High Order Closure (SHOC), is based on predicting a joint PDF of SGS thermodynamic variables and vertical velocity and using it to diagnose turbulent diffusion coefficients, SGS fluxes, condensation and cloudiness. Unlike other similar methods, only one new prognostic variable, turbulent kinetic energy (TKE), needs to be intoduced, making the technique computationally efficient.SHOC code was adopted for a global model environment from its origins in a cloud resolving model, and incorporated into NCEP GFS. SHOC was first tested in a non-interactive mode, a configuration where SHOC receives inputs from the host model, but its outputs are not returned to the GFS. In this configuration: a) SGS TKE values produced by GFS SHOC are consistent with those produced by SHOC in a CRM, b) SGS TKE in GFS SHOC exhibits a well defined diurnal cycle, c) there's enhanced boundary layer turbulence in the subtropical stratocumulus and tropical transition-to-cumulus areas d) buoyancy flux diagnosed from the assumed PDF is consistent with independently calculated Brunt-Vaisala frequency in identifying stable and unstable regions.Next, SHOC was coupled to GFS, namely turbulent diffusion coefficients computed by SHOC are now used in place of those currently produced by the GFS boundary layer and shallow convection schemes (Han and Pan, 2011), as well as condensation and cloud fraction diagnosed from the SGS PDF replace those calculated in the current large-scale cloudines scheme (Zhao and Carr, 1997). Ongoing activities consist of debugging the fully coupled GFS/SHOC.Future work will consist of evaluating model performance and tuning the physics if necessary, by performing medium-range NWP forecasts with prescribed initial conditions, and AMIP-type climate

  5. Developing Vocabularies to Improve Understanding and Use of NOAA Observing Systems

    NASA Astrophysics Data System (ADS)

    Austin, M.

    2014-12-01

    The NOAA Observing System Integrated Analysis project (NOSIA II), is an attempt to capture and tell the story of how valuable observing systems are in producing products and services that are required to fulfill the NOAA's diverse mission. NOAA's goals and mission areas cover a broad range of environmental data; a complexity exists in terms and vocabulary as applied to the creation of observing system derived products. The NOSIA data collection focused first on decomposing NOAA's goals in the creation and acceptance of Mission Service Areas (MSAs) by NOAA senior leadership. Products and services that supported the MSAs were then identified through the process of interviewing product producers across NOAA organization. Product Data inputs including models, databases and observing system were also identified. The NOSIA model contains over 20,000 nodes each representing levels in a network connecting products, datasources, users and desired outcomes. An immediate need became apparent that the complexity and variety of the data collected required data management to mature the quality and the content of the NOSIA model. The NOSIA Analysis Database (ADB) was developed initially to improve consistency of terms and data types to allow for the linkage of observing systems, products and NOAA's Goals and mission. The ADB also allowed for the prototyping of reports and product generation in an easily accessible and comprehensive format for the first time. Web based visualization of relationships between products, datasources, users, producers were generated to make the information easily understood This includes developing ontologies/vocabularies that are used for the development of users type specific products for NOAA leadership, Observing System Portfolio mangers and the users of NOAA data.

  6. How to Get Data from NOAA Environmental Satellites: An Overview of Operations, Products, Access and Archive

    NASA Astrophysics Data System (ADS)

    Donoho, N.; Graumann, A.; McNamara, D. P.

    2015-12-01

    In this presentation we will highlight access and availability of NOAA satellite data for near real time (NRT) and retrospective product users. The presentation includes an overview of the current fleet of NOAA satellites and methods of data distribution and access to hundreds of imagery and products offered by the Environmental Satellite Processing Center (ESPC) and the Comprehensive Large Array-data Stewardship System (CLASS). In particular, emphasis on the various levels of services for current and past observations will be presented. The National Environmental Satellite, Data, and Information Service (NESDIS) is dedicated to providing timely access to global environmental data from satellites and other sources. In special cases, users are authorized direct access to NESDIS data distribution systems for environmental satellite data and products. Other means of access include publicly available distribution services such as the Global Telecommunication System (GTS), NOAA satellite direct broadcast services and various NOAA websites and ftp servers, including CLASS. CLASS is NOAA's information technology system designed to support long-term, secure preservation and standards-based access to environmental data collections and information. The National Centers for Environmental Information (NCEI) is responsible for the ingest, quality control, stewardship, archival and access to data and science information. This work will also show the latest technology improvements, enterprise approach and future plans for distribution of exponentially increasing data volumes from future NOAA missions. A primer on access to NOAA operational satellite products and services is available at http://www.ospo.noaa.gov/Organization/About/access.html. Access to post-operational satellite data and assorted products is available at http://www.class.noaa.gov

  7. How Does Climate Change Affect the Bering Sea Ecosystem?

    NASA Astrophysics Data System (ADS)

    Sigler, Michael F.; Harvey, H. Rodger; Ashjian, Carin J.; Lomas, Michael W.; Napp, Jeffrey M.; Stabeno, Phyllis J.; Van Pelt, Thomas I.

    2010-11-01

    The Bering Sea is one of the most productive marine ecosystems in the world, sustaining nearly half of U.S. annual commercial fish catches and providing food and cultural value to thousands of coastal and island residents. Fish and crab are abundant in the Bering Sea; whales, seals, and seabirds migrate there every year. In winter, the topography, latitude, atmosphere, and ocean circulation combine to produce a sea ice advance in the Bering Sea unmatched elsewhere in the Northern Hemisphere, and in spring the retreating ice; longer daylight hours; and nutrient-rich, deep-ocean waters forced up onto the broad continental shelf result in intense marine productivity (Figure 1). This seasonal ice cover is a major driver of Bering Sea ecology, making this ecosystem particularly sensitive to changes in climate. Predicted changes in ice cover in the coming decades have intensified concern about the future of this economically and culturally important region. In response, the North Pacific Research Board (NPRB) and the U.S. National Science Foundation (NSF) entered into a partnership in 2007 to support the Bering Sea Project, a comprehensive $52 million investigation to understand how climate change is affecting the Bering Sea ecosystem, ranging from lower trophic levels (e.g., plankton) to fish, seabirds, marine mammals, and, ultimately, humans. The project integrates two research programs, the NSF Bering Ecosystem Study (BEST) and the NPRB Bering Sea Integrated Ecosystem Research Program (BSIERP), with substantial in-kind contributions from the U.S. National Oceanic and Atmospheric Administration (NOAA) and the U.S. Fish and Wildlife Service.

  8. The Effect of Regional Climate Variability on Outbreak of Bartonellosis Epidemics in Peru

    NASA Technical Reports Server (NTRS)

    Zhou, Jia-Yu; Lau, K.-M.; Laughlin, Larry W.; Masuoka, Penny M.; Andre, Richard G.; Chamberlin, Judith; Lawyer, Phillip; Lau, William K. M. (Technical Monitor)

    2001-01-01

    Bartonellosis is a vector-borne, highly fatal, emerging infectious disease, which has been known in the Peruvian Andes since the early 1600s and has continued to be a problem in many mountain valleys in Peru and other Andean South American countries. The causative bacterium, Bartonella bacilliformis (Bb), is believed to be transmitted to humans by bites of the sand fly Lutzomyia verrucarum. According to available medical records, the transmission of infection often occurs in river valleys of the Andes Mountains at an altitude between 800 and 3500 meters above sea level. It shows a seasonal pattern, which usually begins to rise in December, peaks in February and March, and is at its lowest from July until November. The epidemics of bartonellosis also vary interannually, occurring every four to eight years, and appear to be associated with the El Nino cycle. In response to the National Oceanic and Atmospheric Administration (NOAA) announcement on climate variability and human health, which was constructed to stimulate integrated multidisciplinary research in the area of climate variability and health interactions, we have conducted a study to investigate the relationship between the El Nino induced regional climate variation and the outbreak of bartonellosis epidemics in Peru. Two test sites, Caraz and Cusco, were selected for this study. According to reports, Caraz has a long-standing history of endemic transmission and Cusco, which is located about five degrees poleward of Caraz, had no recorded epidemics until the most recent 1997/1998 El Nino event. The goal of this study is to clarify the relative importance of climatic risk factors for each area that could be predicted in advance, thus allowing implementation of cost-effective control measures, which would reduce disease morbidity and mortality.

  9. A New Climate Data Record of Solar Spectral Irradiance from 1610 to Present

    NASA Astrophysics Data System (ADS)

    Coddington, O.; Lean, J.; Pilewskie, P.; Snow, M. A.; Lindholm, D. M.

    2015-12-01

    We present a climate data record of Solar Spectral Irradiance (SSI), with associated time and wavelength dependent uncertainties, from 1610 to the present. The data record was developed jointly by the University of Colorado at Boulder's Laboratory for Atmospheric and Space Physics (LASP) and the Naval Research Laboratory (NRL) as part of the National Oceanographic and Atmospheric Administration's (NOAA) National Centers for Environmental Information (NCEI) Climate Data Record (CDR) Program, where the data record, source code, and supporting documentation are archived. SSI is constructed from models that determine the changes from quiet Sun conditions arising from bright faculae and dark sunspots on the solar disk using linear regression of proxies of solar magnetic activity with observations from the SOlar Radiation and Climate Experiment (SORCE) Spectral Irradiance Monitor (SIM); the measurements are assumed to be reliable on solar rotational time scales. We extend the SSI record to longer time scales by reproducing the integral of the SSI with independent measurements of Total Solar Irradiance (TSI) measurements made by the SORCE Total Irradiance Monitor (TIM); TSI can be separately modeled to within TIM's measurement accuracy from solar rotational to solar cycle time scales. We discuss the model formulation, uncertainty estimates, and operational implementation and present comparisons of the modeled SSI with the measurement record and with other solar irradiance models. We also discuss future work to improve the Solar Irradiance Climate Data Record with new measurements from the Total and Spectral Solar Irradiance Sensor (TSIS), different proxy representations of sunspot darkening and facular brightening, including the improved composite record of Mg II index being developed as part of the European-led SOlar Irradiance Data exploitation (SOLID) project, and to expand the uncertainty estimates to include model assumptions.

  10. Area estimation of environmental phenomena from NOAA-n satellite data. [TIROS N satellite

    NASA Technical Reports Server (NTRS)

    Tappan, G. (Principal Investigator); Miller, G. E.

    1982-01-01

    A technique for documenting changes in size of NOAA-n pixels in order to calibrate the data for use in performing area calculations is described. Based on Earth-satellite geometry, a function for calculating the effective pixel size, measured in terms of ground area, on any given pixel was derived. The equation is an application of the law of sines plus an arclength formula. Effective pixel dimensions for NOAA 6 and 7 satellites for all pixels between nadir and the extreme view angles are presented. The NOAA 6 data were used to estimate the areas of several lakes, with an accuracy within 5%. Sources of error are discussed.

  11. Regression tree modeling of forest NPP using site conditions and climate variables across eastern USA

    NASA Astrophysics Data System (ADS)

    Kwon, Y.

    2013-12-01

    , Forest Service) data set for the 31 eastern most United States. Second, 8-day composite of MODIS Land Cover, FPAR, LAI and GPP/NPP data were obtained from Jan 2001 to Dec 2004 (total 182 composite) and each product were filtered by pixel-level quality assurance data to select best quality pixels. Third, 30-year averaged climate data were collected from National Oceanic and Atmospheric Administration (NOAA) and five climatic variables were obtained: Monthly temperature, precipitation, annual heating and cooling days, and annual frost-free days. Forth, topographic data were obtained from digital elevation model (1km by 1km). This research will provide a better understanding of large-scale forest responses to environmental factors that will be beneficial for the development of important forest management applications.

  12. First look at the NOAA Aircraft-based Tropospheric Ozone Climatology

    NASA Astrophysics Data System (ADS)

    Leonard, M.; Petropavlovskikh, I. V.; McClure-Begley, A.; Lin, M.; Tarasick, D.; Johnson, B. J.; Oltmans, S. J.

    2015-12-01

    The Global Greenhouse Gas Reference Network's aircraft program has operated since the 1990s as part of the NOAA Global Monitoring Division network to capture spatial and temporal variability in greenhouse tracers (i.e. CO2, CO, N2O, methane, SF6, halo- and hydro-carbons). Since 2005 the suite of airborne measurements also includes ozone, humidity and temperature profiling through the troposphere (up to 8 km). Light commercial aircraft are equipped with modified 2B Technology ozone monitors (Model 205DB), incorporate temperature and humidity probes, and include global positioning system instrumentation. The dataset was analyzed for tropospheric ozone variability at five continental US stations. As site locations within the Tropospheric Aircraft Ozone Measurement Program have flights only once (four times at one site) a month and begun a decade ago, this raises the question of whether this sampling frequency allows the derivation of an accurate vertical climatology of ozone values. We interpret the representativeness of the vertical and seasonal ozone distribution from aircraft measurements using multi-decadal hindcast simulations conducted with the GFDL AM3 chemistry-climate model. When available, climatology derived from co-located ozone-sonde data will be used for comparisons. The results of the comparisons are analyzed to establish altitude ranges in the troposphere where the aircraft climatology would be deemed to be the most representative. Aircraft-based climatologies are tested from two approaches: comparing the aircraft-based climatology to the daily sampled model and to the subset of model data with matching aircraft dates. Whenever the model and aircraft climatologies show significant seasonal differences, further information is gathered from a seasonal Gaussian distribution plot. We will report on the minimum frequency in flights that can provide adequate climatological representation of seasonal and vertical variability in tropospheric ozone.

  13. Exploring deep sea habitats for baseline characterization using NOAA Ship Okeanos Explorer

    NASA Astrophysics Data System (ADS)

    McKenna, L.; Cantwell, K. L.; Kennedy, B. R.; Lobecker, E.; Sowers, D.; Elliott, K.

    2015-12-01

    In 2015, NOAA Ship Okeanos Explorer, the only US federal ship dedicated to ocean exploration, systematically explored previously unknown deep sea ecosystems in the Caribbean and remote regions in the vicinity of the Hawaiian Islands. Initial characterization of these areas is essential in order to establish a baseline against which to assess potential future changes due to climate and anthropogenic change. In the Caribbean, over 37,500 sq km of previously unmapped seafloor were mapped with a high resolution multibeam revealing rugged canyons along shelf breaks, intricate incised channels, and complex tectonic features. 12 ROV dives, in the 300-6,000 m depth range, visually explored seamounts, escarpments, submarine canyons, and the water column revealing diverse ecosystems and habitats. Discoveries include large assemblages of deep sea corals, range extensions, and observations of several rare and potentially new organisms - including a seastar that had not been documented since its holotype specimen. In the Pacific, over 50,000 sq km of seafloor were mapped in high-resolution, revealing long linear ridge and tectonic fracture zone features, both peaked and flat-topped seamounts, and numerous features that appear to be volcanic in origin. To better understand ecosystem dynamics in depths greater than 2,000 m, the deepest ever ROV surveys and sampling were conducted in remote Pacific island marine sanctuaries and monuments. Novel observations include range extensions and exploration of dense deep sea coral and sponge habitat. Baseline habitat characterization was also conducted on seamounts within the Prime Crust Zone (PCZ), an area with the highest expected concentration of deep-sea minerals in the Pacific. The Hawaiian operations marked the first ever ROV sampling effort conducted onboard Okeanos, and several geological and biological samples are now available at museums and sample repositories in addition to all digital data available through the National

  14. AMS Climate Studies: Improving climate literacy through undergraduate education

    NASA Astrophysics Data System (ADS)

    Brey, J. A.; Geer, I. W.; Moran, J. M.; Weinbeck, R. S.; Mills, E. W.; Blair, B. A.; Hopkins, E. J.; Kiley, T. P., Jr.; Ruwe, E. E.

    2009-12-01

    In working to promote scientific literacy among the public, the American Meteorological Society (AMS) has produced a suite of introductory college-level courses that engage students by investigating relevant topics in Earth science, and utilizing the most current, real-world environmental data. The newest of these courses, AMS Climate Studies, is a turnkey package which will be licensed by individual colleges for local offering in online, blended, or traditional lecture/lab settings. The course will place students in a dynamic learning environment where they will investigate Earth’s climate system using real-world data. This will allow the course to keep a strong focus on the science, while still addressing many of the societal impacts that draw the attention of today’s students. In this way, the course will serve as a great primer in preparing students to become responsible, scientifically-literate participants in discussions of climate science and climate change. Developed with major support from NASA, AMS Climate Studies will encourage students to investigate the atmosphere and world ocean as components of a larger Earth system. More than 500 colleges and universities throughout the United States have already offered AMS Weather Studies and AMS Ocean Studies, after which AMS Climate Studies will be modeled. The learning system will consist of a fully-integrated set of printed and online learning materials focused around a brand new, hardcover 15-chapter textbook, Climate Studies: Introduction to Climate Science and an Investigations Manual with 30 lab-style activities that will emphasize the use of authentic science data. The package will also include a course website providing weekly Current Climate Studies activities along with access to environmental data streams, including an impressive suite of NASA and NOAA images and products. The development and testing of AMS Climate Studies is currently nearing completion. A number of college and university

  15. 15 CFR 911.4 - Use of the NOAA Data Collection Systems.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... collection of environmental data by governmental and/or non-profit users. (2) Non-governmental, environmental... the NOAA DCS is only authorized for government use and non-profit users where there is a...

  16. Planetary Education and Outreach using the NOAA Science on a Sphere

    NASA Astrophysics Data System (ADS)

    Simon-Miller, A. A.; Williams, D. R.; Smith, S. M.; Friedlander, J. S.; Mayo, L. A.; Clark, P. E.; Henderson, M. A.

    2011-03-01

    The NOAA Science on a Sphere is the perfect medium for displaying planetary data that naturally map onto a spherical surface. We discuss our Jupiter and Solar System Tour movies for this system and available ancillary educational materials.

  17. 77 FR 13095 - Intent To Prepare an Environmental Impact Statement for NOAA Restoration Center Programmatic...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-05

    ... Statement for NOAA Restoration Center Programmatic Coastal Habitat Restoration Activities AGENCY: National... environmental impacts of different ranges of coastal and marine habitat restoration project types conducted and... restoring the nation's coastal, marine, and migratory fish habitat. Recognizing that the most...

  18. NOAA Response to the Deepwater Horizon Oil Spill - Protecting Oceans, Coasts and Fisheries (Invited)

    NASA Astrophysics Data System (ADS)

    Lubchenco, J.

    2010-12-01

    As the nation’s leading scientific resource for oil spills, NOAA has been on the scene of the Deepwater Horizon/BP oil spill from the start, providing coordinated scientific weather and biological response services to federal, state and local organizations. NOAA has mobilized experts from across the agency to help contain the spreading oil spill and protect the Gulf of Mexico’s many marine mammals, sea turtles, fish, shellfish and other endangered marine life. NOAA spill specialists advised the U.S. Coast Guard on cleanup options as well as advising all affected federal, state and local partners on sensitive marine resources at risk in this area of the Gulf of Mexico. As a major partner in the federal response to this incident, NOAA provided the necessary coastal and marine expertise required for sound, timely decision-making and helped protect the affected Gulf Coast communities and coastal marine environment and will continue to do so for ongoing restoration efforts.

  19. About the Pace of Climate Change: Write a Report to the President

    ERIC Educational Resources Information Center

    Khadjavi, Lily

    2013-01-01

    This project allows students to better understand the scope and pace of climate change by conducting their own analyses. Using data readily available from NASA and NOAA, students can apply their knowledge of regression models (or of the modeling of rates of change). The results lend themselves to a writing assignment in which students demonstrate…

  20. Reductions in seasonal climate forecast dependability as a result of downscaling

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This research determines whether NOAA/CPC seasonal climate forecasts are skillful enough to retain utility after they have been downscaled for use in crop models. Utility is assessed using net dependability, the product of the large-scale 3-month forecast dependability and a factor accounting for l...

  1. Trends in NOAA Solar X-ray Imager Performance

    NASA Astrophysics Data System (ADS)

    Hill, Steven M.; Darnell, John A.; Seaton, Daniel B.

    2016-05-01

    NOAA has provided operational soft X-ray imaging of the sun since the early 2000’s. After 15 years of observations by four different telescopes, it is appropriate to examine the data in terms of providing consistent context for scientific missions. In particular, this presentation examines over 7 million GOES Solar X-ray Imager (SXI) images for trends in performance parameters including dark current, response degradation, and inter-calibration. Because observations from the instrument have overlapped not only with each other, but also with research observations like Yohkoh SXT and Hinode XRT, relative performance comparisons can be made. The first GOES Solar X-ray Imager was launched in 2001 and entered operations in 2003. The current SXIs will remain in operations until approximately 2020, when a new series of Solar (extreme-)Ultraviolet Imagers (SUVIs) will replace them as the current satellites reach their end of life. In the sense that the SXIs are similar to Yokoh’s SXT and Hinode’s XRT, the SUVI instruments will be similar to SOHO’s EIT and SDO’s AIA. The move to narrowband EUV imagers will better support eventual operational estimation of plasma conditions. While NOAA’s principal use of these observations is real-time space weather forecasting, they will continue to provide a reliable context measurement for researchers for decades to come.

  2. Nonlinear Force-Free Field Extrapolation of NOAA AR 0696

    NASA Astrophysics Data System (ADS)

    Thalmann, J. K.; Wiegelmann, T.

    2007-12-01

    We investigate the 3D coronal magnetic field structure of NOAA AR 0696 in the period of November 09-11, 2004, before and after an X2.5 flare (occurring around 02:13 UT on November 10, 2004). The coronal magnetic field dominates the structure of the solar corona and consequently plays a key role for the understanding of the initiation of flares. The most accurate presently available method to derive the coronal magnetic field is currently the nonlinear force-free field extrapolation from measurements of the photospheric magnetic field vector. These vector-magnetograms were processed from stokes I, Q, U, and V measurements of the Big Bear Solar Observatory and extrapolated into the corona with the nonlinear force-free optimization code developed by Wiegelmann (2004). We analyze the corresponding time series of coronal equilibria regarding topology changes of the 3D coronal magnetic field during the flare. Furthermore, quantities such as the temporal evolution of the magnetic energy and helicity are computed.

  3. An Overview of the NOAA Drought Task Force

    NASA Technical Reports Server (NTRS)

    Schubert, S.; Mo, K.; Peters-Lidard, C.; Wood, A.

    2012-01-01

    The charge of the NOAA Drought Task Force is to coordinate and facilitate the various MAPP-funded research efforts with the overall goal of achieving significant advances in understanding and in the ability to monitor and predict drought over North America. In order to achieve this, the task force has developed a Drought Test-bed that individual research groups can use to test/evaluate methods and ideas. Central to this is a focus on three high profile North American droughts (1998-2004 western US drought, 2006-2007 SE US drought, 2011- current Tex-Mex drought) to facilitate collaboration among projects, including the development of metrics to assess the quality of monitoring and prediction products, and the development of an experimental drought monitoring and prediction system that incorporates and assesses recent advances. This talk will review the progress and plans of the task force, including efforts to help advance official national drought products, and the development of early warning systems by the National Integrated Drought Information System (NIDIS). Coordination with other relevant national and international efforts such as the emerging NMME capabilities and the international effort to develop a Global Drought Information System (GDIS) will be discussed.

  4. Space Weather Operational Products in the NOAA Space Environment Center

    NASA Astrophysics Data System (ADS)

    Murtagh, W. J.; Onsager, T. G.

    2006-12-01

    The NOAA Space Environment Center (SEC) is the Nation's official source of space weather alerts and warnings, and provides real-time monitoring and forecasting of solar and geophysical events. The SEC, a 24- hour/day operations center, provides space weather products to the scientific and user communities in the United States and around the world. This presentation will provide a brief overview of the SEC current suite of space weather products, with an emphasis on models and products recently introduced into the Operations Center. Customer uses of products will be discussed, which will highlight the diverse customer base for space weather services. Also, models in SEC's testbed will be introduced. SEC's testbed facility is dedicated to moving space environment models from a research-development mode to an operational mode. The status of efforts to replace NASA's aging real-time monitor (ACE) in the solar wind ahead of Earth, an "upstream data buoy", will also be described. Numerous existing and planned space weather products and models rely on near real-time solar wind data.

  5. Comparison of NOAA-9 ERBE measurements with Cirrus IFO satellite and aircraft measurements

    NASA Technical Reports Server (NTRS)

    Ackerman, Steven A.; Chung, Hyosang; Cox, Stephen K.; Herman, Leroy; Smith, William L.; Wylie, Donald P.

    1990-01-01

    Earth Radiation Budget Experiment (ERBE) measurements onboard the NOAA-9 are compared for consistency with satellite and aircraft measurements made during the Cirrus Intensive Field Observation (IFO) of October 1986. ERBE scene identification is compared with NOAA-9 TIROS Operational Vertical Sounder (TOVS) cloud retrievals; results from the ERBE spectral inversion algorithms are compared with High resolution Interferometer Sounder (HIS) measurements; and ERBE radiant existance measurements are compared with aircraft radiative flux measurements.

  6. Extensive summer upwelling on Lake Michigan during 1973 observed by NOAA-2 and ERTS-1 satellites

    NASA Technical Reports Server (NTRS)

    Strong, A. E.; Stumpf, H. G.; Hart, J. L.; Pritchard, J. A.

    1974-01-01

    Two studies are presented that utilize data from the NOAA-2 and ERTS-1 satellites. The studies are concentrated on two summer upwelling episodes in Lake Michigan when considerable contrast was observed in both surface water temperature as observed by NOAA-2 and surface water color as observed by ERTS-1. Physical, biological and chemical processes support the hypothesis that much of the observed 'whitening' is calcium carbonate precipitating as an immediate result of the upwelling.

  7. How is climate change impacting precipitation?

    NASA Astrophysics Data System (ADS)

    Heidari, A.; Houser, P. R.

    2015-12-01

    Water is an integrating component of the climate, energy and geochemical cycles, regulating biological and ecological activities at all spatial and temporal scales. The most significant climate warming manifestation would be a change in the distribution of precipitation and evaporation, and the exacerbation of extreme hydrologic events. Due to this phenomenon and the fact that precipitation is the most important component of the water cycle, the assumption of its stationarity for water management and engineering design should be examined closely. The precipitation Annual Maximum Series (AMS) over some stations in Virginia based on in situ data were been used as a starting point to examine this important issue. We analyzed the AMS precipitation on NOAA data for the stations close to Fairfax VA, looked for trends in extreme values, and applied our new method of Generalized Extreme Value (GEV) theory based on quadratic forms to address changes in those extreme values and to quantify non-stationarities. It is very important to address the extreme values of precipitation based on several statistical tests to have better understanding of climate change impact on the extreme water cycle events. In our study we compared our results with the conclusion on NOAA atlas 14 Ap.3 which found no sign of precipitation non-stationarity. We then assessed the impact of this uncertainty in IDF curves on the flood map of Fairfax and compared the results with the classic IDF curves.

  8. NOAA View: An Exploration Tool to Simplify Data Access and Visualization

    NASA Astrophysics Data System (ADS)

    Pisut, D.; Loomis, T.; Goel, V.; Carroll, J.

    2014-12-01

    A normal search for data would, ideally, start with the defining a variable of interest and eventually moving down to the acquisition method or analysis type. Too often, data archives assume the users understand the complex terminology of sensors and model names, or even worse - their acronyms. Imagine a non-subject matter expert, especially an educator or hobbyist, trying to navigate this sea of data and seemingly nonsense strings of letters like AVHRR, ESM2M, CFSR, or MLOST. At the NOAA VIsualization Lab, we deal with these issues on a routine basis, and are trying to make data discovery for formal and informal educational use much easier. In this talk, we'll describe the efforts to build the NOAA View data exploration tool, which provides access to over 100 variables from a myriad of satellite, in situ, model, and analysis sources across the agency. NOAA View, a WMS and OpenLayers based web tool and data portal, not only serves data imagery, but also links back to original sources in the data archives. The current architecture as well as plans for future versions will be detailed, along with examples of uses across the geophysical sciences. In addition to the talk, please visit NOAA View at the NOAA exhibit. www.nnvl.noaa.gov/view

  9. Assessing Significance of Global Climate Change in Local Climate Time Series

    NASA Astrophysics Data System (ADS)

    Livezey, M. M.; Bair, A.; Livezey, R.; Hollingshead, A.; Horsfall, F. M. C.; Meyers, J. C.

    2014-12-01

    A common question by users to NOAA National Weather Service (NWS) local offices is how significant is global climate change in their local area. The scientific community provides copious information on global climate change, including assessments, for large regions. However, most decisions are made at the local level, where little or no information typically exists. To address this need, NOAA NWS released operationally the Local Climate Analysis Tool (LCAT) in 2013 and specifically incorporated a capability into the tool to determine the local Rate of Change (ROC). Although ROC provides answers to some questions, we have seen an additional need for clarification on the significance of the ROC, such as whether or not it differentiates natural variability from a real signal of longer-term climate change. This question becomes very important for decision makers in consideration of their long term planning efforts to build local resilience to changes in climate. LCAT uses three trend adjustment methods in computing ROC: Hinge, Optimal Climate Normals (OCN), and Exponentially Weighted Moving Average (EWMA). The Hinge tracks changes in climate time series, and OCN and EWMS track changes in climate normals. ROC is the slope of the straight line fit of the trend. Standard statistical methodology in use provides guidance for confidence intervals of the slope parameter (von Storch and Zwiers, 1999), which works well for a linear regression fit and can be used for ROCs of OCN and EWMA. However the Hinge, which is a linear fit anchored on one end, needs some additional adjustments and most likely will have smaller confidence intervals than those estimated by the statistical method. An additional way to look at the problem is to assess how the climate change signal compares to climate variability in the local time series. Livezey et al. (2007) suggested the use of the signal to noise ratio to estimate the significance of the rate of climate change. The signal to noise ratio of

  10. Climate Literacy: Progress in AMS Climate Studies Undergraduate Course in Meteorology Program at Jackson State University

    NASA Astrophysics Data System (ADS)

    Reddy, S. R.

    2013-12-01

    AMS Climate Studies is an introductory college-level course developed by the American Meteorological Society for implementation at undergraduate institutions nationwide and increasing involvement of under-represented groups The course places students in a dynamic and highly motivational educational environment where they investigate Earth's climate system using real-world environmental data. The AMS Climate Studies course package consists of a textbook, investigations manual, course website, and course management system-compatible files. Instructors can use these resources in combinations that make for an exciting learning experience for their students. The AMS Climate Studies Diversity Project Workshop participation is on a first-come, first-serve basis as determined by the date-of-receipt of the License Order Form. To grow AMS Diversity Programs to their fullest extent, institutions are encouraged to nominate course instructors who did not previously attend Diversity Project workshops. Until three months before the workshop, two-thirds of the workshop positions would be reserved for institutions new to AMS Diversity Projects. The AMS five day course implementation workshop was held in Washington, DC, during May 24-29, 2012. It covered essential course topics in climate science and global climate change, and strategies for course implementation. Talks would feature climate science and sustainability experts from Federal agencies and area research institutions, such as NASA, NOAA, University of Maryland, Howard University, George Mason University, and other Washington, DC, area institutions. The workshop would also include visits to NASA Goddard Space Flight Center and NOAA's Climate Prediction Center. JSU Meteorology Program will be offering AMS Climate Studies undergraduate course under MET 210: Climatology in spring 2014. AMS Climate Studies is offered as a 3 credit hour laboratory course with 2 lectures and 1 lab sessions per week. Although this course places

  11. Network Connectedness, Sense of Community, and Risk Perception of Climate Change Professionals in the Pacific Islands Region

    NASA Astrophysics Data System (ADS)

    Corlew, L. K.; Keener, V. W.; Finucane, M.

    2013-12-01

    The Pacific Regional Integrated Sciences and Assessments (Pacific RISA) Program conducted social network analysis research of climate change professionals (broadly defined) who are from or work in Hawaii and the U.S.-Affiliated Pacific Islands (USAPI) region. This study is supported by the National Oceanic and Atmospheric Administration (NOAA) and the Pacific Islands Climate Science Center (PICSC) to address an identified need for a resource that quantifies the region's collaborative network of climate change professionals, and that supports the further development of cross-regional and inter-sectoral collaborations for future research and adaptation activities. A survey was distributed to nearly 1,200 people who are from and/or work in climate change related fields in the region. The Part One Survey questions (not confidential) created a preferential attachment network by listing major players in Hawaii and the USAPI, with additional open fields to identify important contacts in the greater professional network. Participants (n=340) identified 975 network contacts and frequency of communications (weekly, monthly, seasonally, yearly, at least once ever). Part Two Survey questions (confidential, n=302) explored climate change risk perceptions, Psychological Sense of Community (PSOC), sense of control over climate change impacts, sense of responsibility to act, policy beliefs and preferences regarding climate change actions, concern and optimism scales about specific impacts, and demographic information. Graphical representations of the professional network are being developed for release in September 2013 as a free online tool to promote and assist collaboration building among climate professionals in the region. The graphs are partitioned according to network 'hubs' (high centrality), participant location, and profession to clearly identify network strengths and opportunities for future collaborations across spatial and professional boundaries. For additional

  12. Promoting Climate Literacy and Enhancing Student Achievement Through a Worldwide Student Research Campaign on Climate Change

    NASA Astrophysics Data System (ADS)

    Geary, E. E.

    2008-12-01

    In 2011, the GLOBE (Global Learning and Observations to Benefit the Environment) program in collaboration with numerous U.S. and international scientific and educational organizations, will launch a worldwide student research campaign on Climate Change. The goals of the campaign are: (1) to engage over 1 million K-16 students and teachers in collaborative, grade-level appropriate climate research, (2) enhance climate and environmental literacy for students, teachers, parents, and citizens in tens of thousands of communities around the world, and (3) encourage action stewardship on climate-related environmental issues at local and regional levels. "Climate Literacy: Essential Principles and Fundamental Concepts" (NOAA, 2008) will provide a foundation for student learning, research, and stewardship activities. Planning is currently underway between scientists, students, and teachers from around the world to identify the key questions that will guide student research investigations on topics ranging from Climate, Carbon and Energy to Climate, Weather, and Water to Climate and Ecosystems to Climate and Human Health. Once a set of key climate questions and investigation topics have been selected, high quality climate resources including learning activities, data sets, images, models, and professional development modules and courses, will be found, assembled, and made available to Climate Change Campaign participants through the GLOBE Research Collaboratory. The Collaboratory, which is currently under development, will be a virtual learning, research, and collaboration environment that will include easy to use data collection, analysis, sharing, review, and reporting tools as well as tools and services to promote school to school and student-scientist- teacher collaborations. The formal portion of the Climate Campaign will end in 2013 with a high-profile student research conference at which students will share the results of their research and their local and regional

  13. NASA/NOAA: Earth Science Electronic Theater 1999

    NASA Technical Reports Server (NTRS)

    Hasler, A. Fritz

    1999-01-01

    The Electronic Theater (E-theater) presents visualizations which span the period from the original Suomi/Hasler animations of the first ATS-1 GEO weather satellite images in 1966 to the latest 1999 NASA Earth Science Vision for the next 25 years. Hot off the SGI-Onyx Graphics-Supercomputer are NASA's visualizations of Hurricanes Mitch, Georges, Fran and Linda. These storms have been recently featured on the covers of National Geographic, Time, Newsweek and Popular Science. Highlights will be shown from the NASA hurricane visualization resource video tape that has been used repeatedly this season on National and International network TV. Results will be presented from a new paper on automatic wind measurements in Hurricane Luis from 1-min GOES images that appeared in the November BAMS. The visualizations are produced by the NASA Goddard Visualization and Analysis Laboratory (VAL/912), and Scientific Visualization Studio (SVS/930), as well as other Goddard and NASA groups using NASA, NOAA, ESA, and NASDA Earth science datasets. Visualizations will be shown from the Earth Science E-Theater 1999 recently presented in Tokyo, Paris, Munich, Sydney, Melbourne, Honolulu, Washington, New York, and Dallas. The presentation Jan 11-14 at the AMS meeting in Dallas used a 4-CPU SGI/CRAY Onyx Infinite Reality Super Graphics Workstation with 8 GB RAM and a Terabyte Disk at 3840 X 1024 resolution with triple synchronized BarcoReality 9200 projectors on a 60ft wide screen. Visualizations will also be featured from the new Earth Today Exhibit which was opened by Vice President Gore on July 2, 1998 at the Smithsonian Air & Space museum in Washington, as well as those presented for possible use at the American Museum of Natural History (NYC), Disney EPCOT, and other venues. New methods are demonstrated for visualizing, interpreting, comparing, organizing and analyzing immense HyperImage remote sensing datasets and three dimensional numerical model results. We call the data from many

  14. StormReady in a Box: Enhancing NOAA's Presence in Schools

    NASA Astrophysics Data System (ADS)

    Grondin, N. S.; Franks, C.

    2015-12-01

    The National Weather Service StormReady Supporter program exists to give schools, companies, TV stations, and other facilities the opportunity to earn recognition for their weather preparedness and awareness. Requirements to earn StormReady Supporter status include having a facility warning point, use of NOAA Weather Radios, and weather hazard Emergency Operation Plans. Despite the increasing importance of weather preparedness in schools, only 1.2% of Minnesota schools are deemed StormReady by the National Weather Service. It was determined that the major impedance for schools becoming StormReady Supporters is the lack of time for administrators to engage in anything "extra" beyond their listed duties. As part of a 2015 Hollings Scholar project, the StormReady in a Box concept was developed to remedy this, by empowering teachers and students to take charge and complete the StormReady Supporter application for their school. StormReady in a Box is a project developed for Junior High School students to learn about weather preparedness and to help their school acquire StormReady status. The project was designed to be relevant to the Minnesota State Education Standards in Science, be simple for teachers to do with their students, and most importantly, to be enjoyable for Junior High School age students to do. The project was also designed to enhance critical thinking skills and logical reasoning abilities, as they relate to the StormReady Supporter application. This presentation will present the overall rationale for the undertaking of this project, the creation of, and the logical next steps for the StormReady in a Box project.

  15. The Long-term Performance of NOAA's Operational Open Ocean Tsunameter Array

    NASA Astrophysics Data System (ADS)

    Wasserman, J.; Bouchard, R. H.; Petraitis, D. C.; Rutledge, T. M.; Boudreaux, T. J.; Robbie, M. D.; Yarborough, S.; Fornea, G.

    2015-12-01

    The National Oceanic and Atmospheric Administration's (NOAA) National Data Buoy Center (NDBC) has operated and maintained the full 39-station array of open ocean tsunameters since 2008 using the second generation Deep-ocean Reporting and Assessment of Tsunamis technology. The array provides real-time, ocean bottom measurements to Tsunami Warning Centers (TWC) located in Hawai'i and Alaska. These measurements aid them in detecting the presence or absence of tsunamis in the open ocean and in determining the essential characteristics of a tsunami to support the TWC. Thirty-two of the stations span the Pacific Ocean, while seven are located in the Atlantic Ocean, Gulf of Mexico, and the Caribbean Sea. The sensors are located on the ocean floor to depths of 6000 m and the system must deliver measurements from that depth to the TWCs in 3 minutes or less. These vast horizontal and vertical distances and the often extreme conditions of the open ocean raise considerable challenges in maintaining necessary and sufficient measurements to support the TWCs. To support this effort, NDBC aims to maintain and generally achieves a goal of 80% real-time data availability. Data availability is the percentage of measurements received versus the number of expected measurements. Using seven years of data we examine operational performance parameters such as real-time and retrospective data availability and tsunami detection for trends, patterns, and the factors affecting performance and reliability of the array. We will also discuss the initial results of the Field Evaluation of the 4th Generation technology.

  16. Climate Informatics

    NASA Technical Reports Server (NTRS)

    Monteleoni, Claire; Schmidt, Gavin A.; Alexander, Francis J.; Niculescu-Mizil, Alexandru; Steinhaeuser, Karsten; Tippett, Michael; Banerjee, Arindam; Blumenthal, M. Benno; Ganguly, Auroop R.; Smerdon, Jason E.; Tedesco, Marco

    2013-01-01

    The impacts of present and potential future climate change will be one of the most important scientific and societal challenges in the 21st century. Given observed changes in temperature, sea ice, and sea level, improving our understanding of the climate system is an international priority. This system is characterized by complex phenomena that are imperfectly observed and even more imperfectly simulated. But with an ever-growing supply of climate data from satellites and environmental sensors, the magnitude of data and climate model output is beginning to overwhelm the relatively simple tools currently used to analyze them. A computational approach will therefore be indispensable for these analysis challenges. This chapter introduces the fledgling research discipline climate informatics: collaborations between climate scientists and machine learning researchers in order to bridge this gap between data and understanding. We hope that the study of climate informatics will accelerate discovery in answering pressing questions in climate science.

  17. NOAA Surveys; Stabalizing Economy and Ecology on The U.S. Coast

    NASA Astrophysics Data System (ADS)

    Hylton, L. L.

    2008-12-01

    NOAA TEACHER AT SEA: LISHA LANDER HYLTON ONBOARD NOAA SHIP: DELAWARE II JUNE 29TH -JULY 11TH, 2008 MISSION: The mission of my trip with NOAA was to provide me (a teacher of third grade students) an extraordinary opportunity to take part in genuine-world experiences being conducted by NOAA in order for me to achieve a clearer insight into our ocean planet and a superior perceptive of NOAA-related careers. With the knowledge that I obtained on-board THE DELAWAREII - I am now able to teach the lesson plans created on my field study to my students, giving them insight as to how much power they have on their lives and this world we live in. My students are able to play a part in maritime activities as we study together, valuing the work and expertise that is required to sustain oceanic and atmospheric research. The students' enthusiasm, inquisitiveness and yearning to learn is only heightened with the hands-on, motivational activities that I gained from my research with this NOAA team. As a Part of this NOAA team, on-board we conducted clam surveys at various stations along the northeastern coast of the United States. I learned that clams are a very important part of economy and ecology in this region. Surveying clams and other marine species was performed on my field study with NOAA for the purpose of conserving marine life. NOAA realizes the importance of the fishing industry and conducts fishery surveys in order to stabilize fishery industries without destroying the marine ecosystems completely. Clams play a very important part in marine fishery; therefore these surveys are helping to maintain stability in the economy and ecology of The United States. By comparing past and present fishery surveys, our team made conclusions regarding the stability of these marine populations. After dredging, collecting, sorting, counting, measuring and weighing (clams with shells and shucked clam meat only) - the data was obtained and recorded then entered into computers filed under

  18. NOAA's Approach to Community Building and Governance for Data Integration and Standards Within IOOS

    NASA Astrophysics Data System (ADS)

    Willis, Z.; Shuford, R.

    2007-12-01

    This presentation will review NOAA's current approach to the Integrated Ocean Observing System (IOOS) at a national and regional level within the context of our United States Federal and Non-Federal partners. Further, it will discuss the context of integrating data and the necessary standards definition that must be done not only within the United States but in a larger global context. IOOS is the U.S. contribution to the Global Ocean Observing System (GOOS), which itself is the ocean contribution to the Global Earth Observation System of Systems (GEOSS). IOOS is a nationally important network of distributed systems that forms an infrastructure providing many different users with the diverse information they require to characterize, understand, predict, and monitor changes in dynamic coastal and open ocean environments. NOAA recently established an IOOS Program Office to provide a focal point for its ocean observation programs and assist with coordination of regional and national IOOS activities. One of the Program's initial priorities is the development of a data integration framework (DIF) proof-of-concept for IOOS data. The initial effort will focus on NOAA sources of data and be implemented incrementally over the course of three years. The first phase will focus on the integration of five core IOOS variables being collected, and disseminated, for independent purposes and goals by multiple NOAA observing sources. The goal is to ensure that data from different sources is interoperable to enable rapid and routine use by multiple NOAA decision-support tool developers and other end users. During the second phase we expect to ingest these integrated variables into four specific NOAA data products used for decision-support. Finally, we will systematically test and evaluate enhancements to these products, and verify, validate, and benchmark new performance specifications. The outcome will be an extensible product for operational use that allows for broader community

  19. Impact of climate on energy sector in economic analysis

    SciTech Connect

    Warren, H.E.; LeDuc, S.K.

    1981-12-01

    Assessments of economic conditions by region or sector attempt to include relevant climatic variability through residual adjustment techniques. There is no direct consideration of climatic fluctuations. Three recent severe winters combined with the increasing price of energy have intensified the need to quantify the interaction of climate with the energy sector of the economy. This paper presents examples of the uses of climatic data by utilities, public service commissions and the NOAA Center for Environmental Assessment Services to determine econoclimatic energy relationships at the local, state, regional and national levels. A technique based on the linear relationships between heating degree days and natural gas consumption for space heating is used to quantify the interaction of climate and prices on gas consumption. This provides regional estimates of the response of gas consumption to degree days and price.

  20. LLNL data collection during NOAA/ETL COPE experiment

    SciTech Connect

    Mantrom, D.D.

    1995-09-06

    COPE is the acronym for the Coastal Ocean Probe Experiment, to be conducted by NOAA/ETL off the northern Oregon coast in September--October 1995. In general terms, ETL desires to collect data on how various types of microwave sensors including radar would respond to internal wave-induced modulations to the ocean surface, and what effects propagation through the atmosphere might have on the data collected. In COPE, ETL will field a broad suite of microwave sensors, and a variety of sea-truth and atmospheric-truth instruments. These will include a land-based, high power, X and Ka-band real aperture radar (RAR) located atop a 3,000 ft high coastal peak, various water column, surface wave, air-sea interface, and atmospheric sensors on the FLIP measurement platform to be moored approximately 15 miles offshore, various active and passive microwave devices onboard a blimp which will fly at 6,000--8,000 ft altitude, two ground-based CODARs that measure large-scale surface currents, various wind profilers, and others. Lawrence Livermore National Laboratory`s Imaging and Detection Program will take advantage of this unique site and opportunity to collect imagery with the radar that will be well ground-truthed with subsurface, surface, and above-water environmental data and possibly be compared to radar image data collected simultaneously or nearly simultaneously with another radar. Specifically, the authors are planning to conduct a short data collection with their Airborne Experimental Test Bed (AETB) jet aircraft-based X-band, HH-polarization synthetic aperture radar (SAR) as a piggyback to the planned COPE operation.