Science.gov

Sample records for administration noaa polar

  1. NASA, NOAA administrators nominated

    NASA Astrophysics Data System (ADS)

    Richman, Barbara T.

    President Ronald Reagan recently said he intended to nominate James Montgomery Beggs as NASA Administrator and John V. Byrne as NOAA Administrator. These two positions are key scientific posts that have been vacant since the start of the Reagan administration on January 20. The President also said he intends to nominate Hans Mark as NASA Deputy Administrator. At press time, Reagan had not designated his nominee for the director of the Office of Science and Technology Policy.

  2. NOAA administrator reviews agency progress and challenges

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    2011-12-01

    The approach of the new year is a traditional time to tally up successes, failures, and the path ahead. Jane Lubchenco, administrator of the U.S. National Oceanic and Atmospheric Administration (NOAA), examined some agency advances and significant challenges during the 7 December Union Agency Lecture at the AGU Fall Meeting, during a press briefing, and in an interview with Eos. Lubchenco focused on several key areas including the concern about monitoring, mitigating, and managing extreme events; budgetary pressures the agency faces in current fiscal year (FY) 2012 and in FY 2013, with President Barack Obama on 18 November having signed into law a bill, HR 2112, following congressional agreement on a budget legislation conference report; and NOAA's newly released scientific integrity policy (see "NOAA issues scientific integrity policy," Eos Trans. AGU, 92(50), 467, doi:10.1029/2011EO500004, 2011).

  3. State Geography Using NOAA Polar-Orbiting Satellites.

    ERIC Educational Resources Information Center

    Stadler, Stephen J.

    1985-01-01

    NOAA polar-orbiting satellites have the capability of providing views of entire states. This article describes the characteristics of data from these satellites, indicates their advantages and disadvantages, and shows how the satellite data can be used in a statewide representation of physical geography for students at the introductory level. (RM)

  4. Low rate data bus general specification for the NOAA-OPQ polar orbiting environmental satellites and EUMETSAT polar satellite systems

    NASA Technical Reports Server (NTRS)

    1993-01-01

    The document is a reference document in the Instrument Interface Description for NOAA-2000 Instruments (GSFC-S-480-53). The requirements reflect the fact that these instruments must be compatible with a number of different polar orbiting satellite vehicles including the NOAA-OPQ satellites and the EUMETSAT METOP satellites.

  5. 77 FR 74174 - National Oceanic and Atmospheric Administration (NOAA) National Climate Assessment and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-12-13

    ... National Oceanic and Atmospheric Administration (NOAA) National Climate Assessment and Development Advisory... notice sets forth the schedule of a forthcoming meeting of the DoC NOAA National Climate Assessment and... the call. Please check the National Climate Assessment Web site for additional information at...

  6. Command/telemetry bus general specification for the NOAA-OPQ polar orbiting environmental satellites and EUMETSAT polar satellite systems

    NASA Technical Reports Server (NTRS)

    1993-01-01

    The document is a reference document in the Instrument Interface Description for NOAA-2000 Instruments (GSFC-S-480-53). The requirements reflect the fact that these instruments must be compatible with a number of different polar orbiting satellite vehicles including the NOAA-OPQ satellites and the EUMETSAT METOP satellites. The instrument payload will interface to the spacecraft via several standardized communication busses. The document defines the multiplex data bus conforming to the MIL-STD-1553B protocol for command and telemetry transfer between a spacecraft system and all instruments.

  7. NOAA Would Receive an 11% Increase Under Obama Administration's Proposed Budget

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    2013-05-01

    The White House's proposed fiscal year (FY) 2014 budget for the National Oceanic and Atmospheric Administration (NOAA) would provide the agency with 5.45 billion, 11% above the FY 2012 spend plan of 4.91 billion (see Table ). The proposal, which was sent to Congress on 10 April, would increase funding for operations, research, and facilities to 3.41 billion (up 7.97% over FY 2012) and for procurement, acquisition, and construction to 2.12 billion (up 17.51%). The budget proposal uses the FY 2012 spend plan as a comparison because Congress approved the FY 2013 appropriations only a few weeks before the FY 2014 proposal was released.

  8. 75 FR 38079 - National Oceanic and Atmospheric Administration (NOAA) Science Advisory Board (SAB)

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-01

    ... Strategic Energy Review; (4) SAB discussion on its comments to the NOAA Next Generation Strategic Plan; (5... framework; (8) Strategies for Regional Coastal and Marine Spatial Planning--engaging other Federal and...

  9. NOAA-L

    NASA Technical Reports Server (NTRS)

    McCain, Harry G. (Technical Monitor)

    2000-01-01

    The National Oceanic and Atmospheric Administration (NOAA) and the National Aeronautics and Space Administration (NASA) have jointly developed a valuable series of polar-orbiting Earth environmental observation satellites since 1978. These satellites provide global data to NOAA's short- and long-range weather forecasting systems. The system consists of two polar-orbiting satellites known as the Advanced Television Infrared Observation Satellites (TIROS-N) (ATN). Operating as a pair, these satellites ensure that environmental data, for any region of the Earth, is no more than six hours old. These polar-orbiting satellites have not only provided cost-effective data for very immediate and real needs but also for extensive climate and research programs. The weather data (including images seen on television news programs) has afforded both convenience and safety to viewers throughout the world. The satellites also support the SARSAT (Search and Rescue Satellite Aided Tracking) part of the COSPAS-SARSAT constellation. Russia provides the COSPAS (Russian for Space Systems for the Search of Vessels in Distress) satellites. The international COSPAS-SARSAT system provides for the detection and location of emergency beacons for ships, aircraft, and people in distress and has contributed to the saving of more than 10,000 lives since its inception in 1982.

  10. Bringing Experience from the Field into the Classroom with the NOAA Teacher at Sea and PolarTREC Teacher Research Experience Programs

    NASA Astrophysics Data System (ADS)

    Eubanks, E. D.; Kohin, S.; Oberbauer, S.

    2008-12-01

    As a participant of the National Oceanic and Atmospheric Administration (NOAA), Teacher at Sea (2007) and the Arctic Research Consortium of the U.S., PolarTREC (2008) programs, I have had the opportunity to participate in hands-on research with leading scientific researchers from the tropics to the Arctic. These Teacher Researcher Experiences (TRE's) and the resulting relationships that have developed with the scientific community have been an asset to my professional development and have greatly enhanced my students' learning. The opportunity to participate in data collection and hands-on research with a NOAA researcher, Dr. Kohin, helped me bring shark, ocean, and ship science from my expedition onboard the NOAA Ship David Starr Jordan in the Channel Island region into my classroom. The new knowledge, experiences, and resources that I brought back allowed me to create lesson plans and host Shark Month--an activity that involved all 300 students in my school. My students were able to link real data regarding the location of sharks to practical application and still meet state standards. Likewise, the scientist from my PolarTREC expedition, Dr. Oberbauer, is assisting me in a long-term plan to incorporate his data into my classroom curricula. Already, my experiences from Barrow, Alaska, have been shared through webinars with my community and as a keynote speaker to over 600 Palm Beach County science teachers. We are also working together to develop a yearlong curriculum, in which my entire school of 300 students will discover interdisciplinary polar science. Participation in TRE's has been beneficial for my students and my community, but what is the return on the investment for the scientists who invited me to participate in their research? Both scientists have transferred their knowledge out of the laboratory and made a link between their research and a different generation--our future scientists. They become instrumental science leaders in a community of young

  11. NOAA-L satellite arrives at Vandenberg AFB

    NASA Technical Reports Server (NTRS)

    2000-01-01

    A crated National Oceanic and Atmospheric Administration (NOAA-L) satellite arrives at Vandenberg Air Force Base, Calif. It is part of the Polar-Orbiting Operational Environmental Satellite (POES) program that provides atmospheric measurements of temperature, humidity, ozone and cloud images, tracking weather patterns that affect the global weather and climate. The launch of the NOAA-L satellite is scheduled no earlier than Sept. 12 aboard a Lockheed Martin Titan II rocket. NOAA-L satellite is lifted for mating

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Inside the B16-10 spacecraft processing hangar at Vandenberg Air Force Base, Calif., workers oversee the lifting and rotating of the National Oceanic and Atmospheric Administration (NOAA-L) satellite to allow for mating of the Apogee Kick Motor (AKM). NOAA-L is part of the Polar-Orbiting Operational Environmental Satellite (POES) program that provides atmospheric measurements of temperature, humidity, ozone and cloud images, tracking weather patterns that affect the global weather and climate. The launch of the NOAA-L satellite is scheduled no earlier than Sept. 12 aboard a Lockheed Martin Titan II rocket. NOAA-L satellite arrives at Vandenberg AFB

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Inside the B16-10 spacecraft processing hangar at Vandenberg Air Force Base, Calif., workers oversee the uncrating of the National Oceanic and Atmospheric Administration (NOAA-L) satellite. NOAA-L is part of the Polar-Orbiting Operational Environmental Satellite (POES) program that provides atmospheric measurements of temperature, humidity, ozone and cloud images, tracking weather patterns that affect the global weather and climate. The launch of the NOAA-L satellite is scheduled no earlier than Sept. 12 aboard a Lockheed Martin Titan II rocket. NOAA-L satellite arrives at Vandenberg AFB

    NASA Technical Reports Server (NTRS)

    2000-01-01

    A crated National Oceanic and Atmospheric Administration (NOAA-L) satellite is moved inside the B16-10 spacecraft processing hangar at Vandenberg Air Force Base, Calif. NOAA-L is part of the Polar- Orbiting Operational Environmental Satellite (POES) program that provides atmospheric measurements of temperature, humidity, ozone and cloud images, tracking weather patterns that affect the global weather and climate. The launch of the NOAA-L satellite is scheduled no earlier than Sept. 12 aboard a Lockheed Martin Titan II rocket. NOAA-L satellite arrives at Vandenberg AFB

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Outside the B16-10 spacecraft processing hangar at Vandenberg Air Force Base, Calif., a crated National Oceanic and Atmospheric Administration (NOAA-L) satellite is lowered to the ground before being moved inside. NOAA-L is part of the Polar-Orbiting Operational Environmental Satellite (POES) program that provides atmospheric measurements of temperature, humidity, ozone and cloud images, tracking weather patterns that affect the global weather and climate. The launch of the NOAA-L satellite is scheduled no earlier than Sept. 12 aboard a Lockheed Martin Titan II rocket. Researcher and Educator Long Term Collaboration with NOAA ESRL Regarding Atmospheric Ozone Changes at the South Pole Through the NSF PolarTREC Program

    NASA Astrophysics Data System (ADS)

    Bergholz, E. H.; Hofmann, D. J.; Johnson, B. J.

    2009-12-01

    The NOAA/ESRL team at South Pole has been monitoring the development of the annual ozone hole over two decades using balloon-borne and ground based instruments. Collaboration with educators has become an important aspect of NOAA/ESRL to educate the public about ozone loss and ozone hole formation. Researcher Bryan Johnson and educator Elke Bergholz worked together at South Pole in 1998/1999 as part of the NSF teacher outreach program called Teachers Experiencing Antarctica (TEA).It has been almost a decade when they collaborated again concerning the ozone changes at South Pole as part of the International Polar Year (IPY) and the PolarTREC ( http://wwpolartrec.com ) teacher outreach program sponsored by NSF. The TEA and PolarTREC programs selected teachers to travel to polar locations to work with research scientists collecting data and running experiments at various Arctic and Antarctic field sites, including Elke Bergholz working at the South Pole with the NOAA/ESRL team. While in the field, daily contact with classrooms and students around the globe was done through the internet journals, answering emails from students, and webinars. This has been followed up with presentations to schools and the public relating Ms. Bergholz’s experience and new “hands-on” understanding of ozone instruments and ozone depletion over Antarctica, and discussing what changes in the ozone we have seen at South Pole since the first outreach program nearly a decade ago. The lesson plans are available through the PolarTREC website or by contacting Elke Bergholz at ebergholz@unis.org.

  12. The National Oceanic and Atmospheric Administration (NOAA) Climate Services Portal: A New Centralized Resource for Distributed Climate Information

    NASA Astrophysics Data System (ADS)

    Burroughs, J.; Baldwin, R.; Herring, D.; Lott, N.; Boyd, J.; Handel, S.; Niepold, F.; Shea, E.

    2010-09-01

    With the rapid rise in the development of Web technologies and climate services across NOAA, there has been an increasing need for greater collaboration regarding NOAA's online climate services. The drivers include the need to enhance NOAA's Web presence in response to customer requirements, emerging needs for improved decision-making capabilities across all sectors of society facing impacts from climate variability and change, and the importance of leveraging climate data and services to support research and public education. To address these needs, NOAA (during fiscal year 2009) embarked upon an ambitious program to develop a NOAA Climate Services Portal (NCS Portal). Four NOAA offices are leading the effort: 1) the NOAA Climate Program Office (CPO), 2) the National Ocean Service's Coastal Services Center (CSC), 3) the National Weather Service's Climate Prediction Center (CPC), and 4) the National Environmental Satellite, Data, and Information Service's (NESDIS) National Climatic Data Center (NCDC). Other offices and programs are also contributing in many ways to the effort. A prototype NCS Portal is being placed online for public access in January 2010, http://www.climate.gov. This website only scratches the surface of the many climate services across NOAA, but this effort, via direct user engagement, will gradually expand the scope and breadth of the NCS Portal to greatly enhance the accessibility and usefulness of NOAA's climate data and services.

  13. Researcher and Educator Long Term Collaboration with NOAA ESRL Regarding Atmospheric Ozone Changes at the South Pole Through the NSF PolarTREC Program

    NASA Astrophysics Data System (ADS)

    Bergholz, E.; Johnson, B.; Hofmann, D.

    2008-12-01

    The NOAA/ESRL team at South Pole has been monitoring the development of the annual ozone hole over two decades using balloon-borne and ground-based instruments. Collaboration with educators has become an important aspect of NOAA/ESRL to educate the public about ozone loss and ozone hole formation. Researcher Bryan Johnson and educator Elke Bergholz worked together at South Pole in 1998/1999 as part of the NSF teacher outreach program called Teachers Experiencing Antarctica (TEA). It has been almost a decade when they collaborated again concerning the ozone changes at South Pole as part of the International Polar Year (IPY) and the PolarTREC (http://www.polartrec.com) teacher outreach program sponsored by NSF. The TEA and PolarTREC programs selected teachers to travel to polar locations to work with research scientists collecting data and running experiments at various Arctic and Antarctic field sites. While in the field, daily contact with classrooms and students around the globe was done through internet journals, answering emails from students, and webinars. This will be followed up with presentations to schools and the public relating Ms Bergholz's experience and new "hands-on" understanding of ozone measurements and ozone depletion over Antarctica, and discussing what changes in ozone we have seen at South Pole since the first outreach program nearly a decade ago.

  14. 76 FR 36094 - Draft NOAA Scientific Integrity Policy and Handbook; Availability

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-21

    ... National Oceanic and Atmospheric Administration Draft NOAA Scientific Integrity Policy and Handbook... Administration (NOAA), Department of Commerce (DOC). ACTION: Draft NOAA Scientific Integrity Policy and Handbook for Public Review. SUMMARY: NOAA's draft scientific integrity policy is available for public...

  15. 75 FR 338 - Proposed Information Collection; Comment Request; NOAA Teacher at Sea Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-05

    ... National Oceanic and Atmospheric Administration Proposed Information Collection; Comment Request; NOAA Teacher at Sea Program AGENCY: National Oceanic and Atmospheric Administration (NOAA), Commerce. ACTION....Hammond@noaa.gov . SUPPLEMENTARY INFORMATION: I. Abstract NOAA provides educators an opportunity to...

  1. Acquisition of Gulfstream IV-SP jet for environmental measurements in the upper troposphere by the National Oceanic and Atmospheric Administration (NOAA)

    SciTech Connect

    Philippsborn, F.R.

    1996-11-01

    Acquisition of a Gulfstream IV-SP jet by the National Oceanic and Atmospheric Administration (NOAA) is intended to address the critical shortage of platforms capable of making intensive in situ meteorological and atmospheric observations in the upper troposphere. Its primary function will be Hurricane Synoptic Surveillance. In its initial configuration, the jet will significantly improve the ability of NOAA scientists to predict the expected path of hurricanes by gathering vertical profiles of wind, temperature, and humidity within 1,000 km of tropical cyclones by means of dropwindsondes over the data-sparse oceanic regions of the western Atlantic, Caribbean Sea and Gulf of Mexico. Future missions proposed for the aircraft include winter storm surveillance, hurricane reconnaissance, weather research, global climate studies, air chemistry, validation of satellite data, and development of remote sensors. 5 refs.

  2. Independent NOAA considered

    NASA Astrophysics Data System (ADS)

    Richman, Barbara T.

    A proposal to pull the National Oceanic and Atmospheric Administration (NOAA) out of the Department of Commerce and make it an independent agency was the subject of a recent congressional hearing. Supporters within the science community and in Congress said that an independent NOAA will benefit by being more visible and by not being tied to a cabinet-level department whose main concerns lie elsewhere. The proposal's critics, however, cautioned that making NOAA independent could make it even more vulnerable to the budget axe and would sever the agency's direct access to the President.The separation of NOAA from Commerce was contained in a June 1 proposal by President Ronald Reagan that also called for all federal trade functions under the Department of Commerce to be reorganized into a new Department of International Trade and Industry (DITI).

  3. NOAA-L satellite is mated to Apogee Kick Motor at Vandenberg AFB

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Inside the B16-10 spacecraft processing hangar at Vandenberg Air Force Base, Calif., workers oversee the mating of the Apogee Kick Motor (below) to the National Oceanic and Atmospheric Administration (NOAA-L) satellite above. NOAA-L is part of the Polar-Orbiting Operational Environmental Satellite (POES) program that provides atmospheric measurements of temperature, humidity, ozone and cloud images, tracking weather patterns that affect the global weather and climate. The launch of the NOAA-L satellite is scheduled no earlier than Sept. 12 aboard a Lockheed Martin Titan II rocket. 78 FR 5421 - Proposed Information Collection; Comment Request; NOAA's Teacher at Sea Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-25

    ... National Oceanic and Atmospheric Administration Proposed Information Collection; Comment Request; NOAA's Teacher at Sea Program AGENCY: National Oceanic and Atmospheric Administration (NOAA), Commerce. ACTION... Hammond, (301) 713-0353, or jennifer.hammond@noaa.gov . SUPPLEMENTARY INFORMATION: I. Abstract...

  4. 75 FR 63439 - Proposed Information Collection; Comment Request; NOAA Teacher at Sea Alumni Survey

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-15

    ... National Oceanic and Atmospheric Administration Proposed Information Collection; Comment Request; NOAA Teacher at Sea Alumni Survey AGENCY: National Oceanic and Atmospheric Administration (NOAA), Commerce... Jennifer.Hammond@noaa.gov . SUPPLEMENTARY INFORMATION: I. Abstract This request is for a renewal of...

  5. GIS Services, Visualization Products, and Interoperability at the National Oceanic and Atmospheric Administration (NOAA) National Climatic Data Center (NCDC)

    NASA Astrophysics Data System (ADS)

    Baldwin, R.; Ansari, S.; Reid, G.; Lott, N.; Del Greco, S.

    2007-12-01

    The main goal in developing and deploying Geographic Information System (GIS) services at NOAA's National Climatic Data Center (NCDC) is to provide users with simple access to data archives while integrating new and informative climate products. Several systems at NCDC provide a variety of climatic data in GIS formats and/or map viewers. The Online GIS Map Services provide users with data discovery options which flow into detailed product selection maps, which may be queried using standard "region finder" tools or gazetteer (geographical dictionary search) functions. Each tabbed selection offers steps to help users progress through the systems. A series of additional base map layers or data types have been added to provide companion information. New map services include: Severe Weather Data Inventory, Local Climatological Data, Divisional Data, Global Summary of the Day, and Normals/Extremes products. THREDDS Data Server technology is utilized to provide access to gridded multidimensional datasets such as Model, Satellite and Radar. This access allows users to download data as a gridded NetCDF file, which is readable by ArcGIS. In addition, users may subset the data for a specific geographic region, time period, height range or variable prior to download. The NCDC Weather Radar Toolkit (WRT) is a client tool which accesses Weather Surveillance Radar 1988 Doppler (WSR-88D) data locally or remotely from the NCDC archive, NOAA FTP server or any URL or THREDDS Data Server. The WRT Viewer provides tools for custom data overlays, Web Map Service backgrounds, animations and basic filtering. The export of images and movies is provided in multiple formats. The WRT Data Exporter allows for data export in both vector polygon (Shapefile, Well-Known Text) and raster (GeoTIFF, ESRI Grid, VTK, NetCDF, GrADS) formats. As more users become accustom to GIS, questions of better, cheaper, faster access soon follow. Expanding use and availability can best be accomplished through

  6. NOAA's NESDIS operational satellite oceanography

    NASA Astrophysics Data System (ADS)

    Bayler, E.; Chang, P.; Cheney, R.; Clark, D.; Hughes, K.; Strong, A.

    2003-04-01

    Satellite oceanography within the National Oceanic and Atmospheric Administration's (NOAA) National Environmental Satellite, Data, and Information Service (NESDIS) focuses on observation retrieval and applications to address the NOAA missions of environmental assessment, prediction, and stewardship. The satellite oceanography division encompasses three functional areas: satellite ocean sensors, ocean dynamics/ data assimilation, and marine ecosystems / climate. The breadth of scientific investigation includes sea-surface temperature, sea-surface height, sea-surface height, sea-surface roughness, ocean color, ocean surface winds, sea ice, data assimilation, and operational oceanography. The primary objective is to transition research to operations. This overview of operational oceanography within NOAA's NESDIS provides insight into the capabilities, products, and services.

  7. 78 FR 48859 - Proposed Information Collection; Comment Request; 2013 NOAA Engagement Survey Tool

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-12

    ... Engagement Survey Tool AGENCY: National Oceanic and Atmospheric Administration (NOAA), Commerce. ACTION... Engagement Test, which the SAB recommended NOAA use for assessing engagement with constituents. One...

  8. NOAA seeks healthy budget

    NASA Astrophysics Data System (ADS)

    Bush, Susan

    The small, crowded room of the House side of the U.S. Capitol building belied the large budget of $1,611,991,000 requested for Fiscal Year 1992 by the National Oceanic and Atmospheric Administration. John A. Knauss, Undersecretary for Oceans and Atmosphere, U.S. Department of Commerce, delivered his testimony on February 28 before the House Appropriations Subcommittee on Commerce, Justice, and State, the Judiciary and Related Agencies. He told the subcommittee that the budget “attempts to balance the two goals of maintaining NOAA's position as an important science agency and addressing the serious budget problems that the government continues to face.”Climate and global change, modernization of the National Weather Service, and the Coastal Ocean Science program are NOAA's three ongoing, high-priority initiatives that the budget addresses. Also, three additional initiatives—a NOAA-wide program to improve environmental data management, President Bush's multiagency Coastal America initiative, and a seafood safety program administered jointly by NOAA and the Food and Drug Administration—are addressed.

  9. Tropospheric Airborne Meteorological Data Reporting (TAMDAR) Sensor Validation and Verification on National Oceanographic and Atmospheric Administration (NOAA) Lockheed WP-3D Aircraft

    NASA Technical Reports Server (NTRS)

    Tsoucalas, George; Daniels, Taumi S.; Zysko, Jan; Anderson, Mark V.; Mulally, Daniel J.

    2010-01-01

    As part of the National Aeronautics and Space Administration's Aviation Safety and Security Program, the Tropospheric Airborne Meteorological Data Reporting project (TAMDAR) developed a low-cost sensor for aircraft flying in the lower troposphere. This activity was a joint effort with support from Federal Aviation Administration, National Oceanic and Atmospheric Administration, and industry. This paper reports the TAMDAR sensor performance validation and verification, as flown on board NOAA Lockheed WP-3D aircraft. These flight tests were conducted to assess the performance of the TAMDAR sensor for measurements of temperature, relative humidity, and wind parameters. The ultimate goal was to develop a small low-cost sensor, collect useful meteorological data, downlink the data in near real time, and use the data to improve weather forecasts. The envisioned system will initially be used on regional and package carrier aircraft. The ultimate users of the data are National Centers for Environmental Prediction forecast modelers. Other users include air traffic controllers, flight service stations, and airline weather centers. NASA worked with an industry partner to develop the sensor. Prototype sensors were subjected to numerous tests in ground and flight facilities. As a result of these earlier tests, many design improvements were made to the sensor. The results of tests on a final version of the sensor are the subject of this report. The sensor is capable of measuring temperature, relative humidity, pressure, and icing. It can compute pressure altitude, indicated air speed, true air speed, ice presence, wind speed and direction, and eddy dissipation rate. Summary results from the flight test are presented along with corroborative data from aircraft instruments.

  10. 76 FR 41453 - Supplemental Environmental Impact Statement for Replacement of NOAA National Marine Fisheries...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-14

    ... of NOAA National Marine Fisheries Service Southwest Fisheries Science Center in La Jolla, CA AGENCY: National Marine Fisheries Service (NMFS), National Oceanic and Atmospheric Administration (NOAA), Commerce... the NOAA Southwest West Fisheries Science Center Building A and establishment of a...

  11. Design and Flight Performance of NOAA-K Spacecraft Batteries

    NASA Technical Reports Server (NTRS)

    Rao, Gopalakrishna M.; Chetty, P. R. K.; Spitzer, Tom; Chilelli, P.

    1998-01-01

    The US National Oceanic and Atmospheric Administration (NOAA) operates the Polar Operational Environmental Satellite (POES) spacecraft (among others) to support weather forecasting, severe storm tracking, and meteorological research by the National Weather Service (NWS). The latest in the POES series of spacecraft, named as NOAA-KLMNN', one is in orbit and four more are in various phases of development. The NOAA-K spacecraft was launched on May 13, 1998. Each of these spacecraft carry three Nickel-Cadmium batteries designed and manufactured by Lockheed Martin. The battery, which consists of seventeen 40 Ah cells manufactured by SAFT, provides the spacecraft power during the ascent phase, orbital eclipse and when the power demand is in excess of the solar array capability. The NOAA-K satellite is in a 98 degree inclination, 7:30AM ascending node orbit. In this orbit the satellite experiences earth occultation only 25% of the year. This paper provides a brief overview of the power subsystem, followed by the battery design and qualification, the cell life cycle test data, and the performance during launch and in orbit.

  12. Design and Flight Performance of NOAA-K Spacecraft Batteries

    NASA Technical Reports Server (NTRS)

    Rao, Gopalakrishna M.; Chetty, P. R. K.; Spitzer, Tom; Chilelli, P.

    1999-01-01

    The US National Oceanic and Atmospheric Administration (NOAA) operates the Polar Operational Environmental Satellite (POES) spacecraft (among others) to support weather forecasting, severe storm tracking, and meteorological research by the National Weather Service (NWS). The latest in the POES series of spacecraft, named as NOAA-KLMNN, is in orbit and four more are in various phases of development. The NOAA-K spacecraft was launched on May 13, 1998. Each of these spacecraft carry three Nickel-Cadmium batteries designed and manufactured by Lockheed Martin. The battery, which consists of seventeen 40 Ah cells manufactured by SAFT, provides the spacecraft power during the ascent phase, orbital eclipse and when the power demand is in excess of the solar array capability. The NOAA-K satellite is in a 98 degree inclination, 7:30AM ascending node orbit. In this orbit the satellite experiences earth occultation only 25% of the year. This paper provides a brief overview of the power subsystem, followed by the battery design and qualification, the cell life cycle test data, and the performance during launch and in orbit.

  13. NOAA Environmental Satellite Measurements of Extreme Space Weather Events

    NASA Astrophysics Data System (ADS)

    Denig, W. F.; Wilkinson, D. C.; Redmon, R. J.

    2015-12-01

    For over 40 years the National Oceanic and Atmospheric Administration (NOAA) has continuously monitored the near-earth space environment in support of space weather operations. Data from this period have covered a wide range of geophysical conditions including periods of extreme space weather such as the great geomagnetic March 1989, the 2003 Halloween storm and the more recent St Patrick's Day storm of 2015. While not specifically addressed here, these storms have stressed our technology infrastructure in unexpected and surprising ways. Space weather data from NOAA geostationary (GOES) and polar (POES) satellites along with supporting data from the Air Force are presented to compare and contrast the space environmental conditions measured during extreme events.

  14. Chlorofluorocarbon-11, -12, and nitrous oxide measurements at the NOAA/GMCC (National Oceanic and Atmospheric Administration/Geophysical Monitoring for Climatic Change) baseline stations (16 September 1973 to 31 December 1979)

    SciTech Connect

    Thompson, T.M.; Komhyr, W.D.; Dutton, E.G.

    1985-06-01

    The National Oceanic and Atmospheric Administration's Air Resources Laboratory (NOAA/ARL) began measuring chlorofluorocarbon-11 in 1973 because of the interest in this anthropogenic pollutant as a tracer for the study of mass transfer processes in the atmosphere and the oceans. Interest in chlorofluorocarbon-11, and in chlorofluorocarbon-12 and nitrous oxide, was heightened during the mid-1970's with the realization that these compounds can be decomposed by photolysis in the stratosphere to cause stratospheric ozone destruction by released chlorine atoms. Measurements of chlorofluorocarbon-12 and nitrous oxide were begun by NOAA/ARL in 1977. The report describes the evolution of the chlorofluorocarbon and N/sub 2/O measurement programs through 1979. By that time, the sample collection and analysis techniques became standardized, and have remained the same to the present.

  15. An Education Plan for NOAA

    ERIC Educational Resources Information Center

    National Oceanic and Atmospheric Administration, 2004

    2004-01-01

    U.S. Secretary of Commerce Donald L. Evans has said, "Environmental Literacy is critical to enable learners of all ages to pursue knowledge, produce advanced products, and enhance personal growth." The National Oceanic and Atmospheric Administration (NOAA) recognizes it has a role and a responsibility to the nation in advancing education leading…

  16. NOAA budget would boost satellite funding but cut some key areas

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    2012-03-01

    The White House's proposed fiscal year (FY) 2013 budget for the National Oceanic and Atmospheric Administration (NOAA), announced on 13 February, looks favorable at first glance. The administration's request calls for $5.1 billion, an increase of $153 million (3.1%) above the FY 2012 estimated budget. However, the increase for NOAA satellites is $163 million, which means that other areas within the agency would be slated for decreased funding, including programs within the National Ocean Service (NOS), National Marine Fisheries Service (NMFS), National Weather Service (NWS), and some NOAA education programs. The proposed overall budget for the agency “reflects the overarching importance of weather satellites to public safety, to national security, and to the economy,” NOAA director Jane Lubchenco said at a 16 February briefing, noting that difficult choices were made regarding the budget. “Due to significant resources required for our weather satellites and the economic conditions in the country, other parts of our budget have been reduced, in some cases quite significantly,” she said. She added that the imperative to fund both the Joint Polar Satellite System (JPSS) and geostationary satellites in FY 2013 “imposes serious constraints on the rest of NOAA's budget.”

  17. Data management in NOAA

    NASA Technical Reports Server (NTRS)

    Callicott, William M.

    1992-01-01

    NOAA has 11 terabytes of digital data stored on 240,000 computer tapes. There are an additional 100 terabytes (TB) of geostationary satellite data stored in digital form on specially configured SONY U-Matic video tapes at the University of Wisconsin. There are over 90,000,000 non-digital form records in manuscript, film, printed, and chart form which are not easily accessible. The three NOAA Data Centers service 6,000 requests per year and publish 5,000 bulletins which are distributed to 40,000 subscribers. Seventeen CD-ROM's have been produced. Thirty thousand computer tapes containing polar satellite data are being copied to 12 inch WORM optical disks for research applications. The present annual data accumulation rate of 10 TB will grow to 30 TB in 1994 and to 100 TB by the year 2000. The present storage and distribution technologies with their attendant support systems will be overwhelmed by these increases if not improved. Increased user sophistication coupled with more precise measurement technologies will demand better quality control mechanisms, especially for those data maintained in an indefinite archive. There is optimism that the future will offer improved media technologies to accommodate the volumes of data. With the advanced technologies, storage and performance monitoring tools will be pivotal to the successful long-term management of data and information.

  18. 76 FR 55362 - Proposed Information Collection; Comment Request; NOAA Customer Surveys

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-07

    ... National Oceanic and Atmospheric Administration Proposed Information Collection; Comment Request; NOAA Customer Surveys AGENCY: National Oceanic and Atmospheric Administration (NOAA), Commerce. ACTION: Notice... instrument and instructions should be directed to Sarah Brabson, (301) 628-5751 or...

  19. 78 FR 59339 - Intracoastal Waterway Route “Magenta Line” on NOAA Nautical Charts

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-26

    ... National Oceanic and Atmospheric Administration Intracoastal Waterway Route ``Magenta Line'' on NOAA Nautical Charts AGENCY: National Ocean Service, National Oceanic and Atmospheric Administration. (NOAA... without changes or updates. See more information on the history of the Intracoastal Waterway Route at...

  1. NOAA & Academia Partnership Building Conference. Highlights (3rd, Washington, DC, November 14-15, 2001).

    ERIC Educational Resources Information Center

    National Oceanic and Atmospheric Administration (DOC), Silver Spring, MD.

    In November 2001 the National Oceanic and Atmospheric Administration (NOAA) hosted the third NOAA and Academia Partnership to evaluate, maintain, and expand on efforts to optimize NOAA-university cooperation. Close partnership between the NOAA and U.S. universities has produced many benefits for the U.S. economy and the environment. Based on the…

  2. 78 FR 26616 - Draft NOAA Five Year Research and Development Plan

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-07

    ... NOAA Five Year Research and Development Plan AGENCY: National Oceanic and Atmospheric Administration (NOAA), Department of Commerce (DOC). ACTION: Draft NOAA Five Year Research and Development Plan for Public Review. SUMMARY: NOAA's draft Five Year Research and Development Plan is available for...

  3. The NOAA Big Data Project

    NASA Astrophysics Data System (ADS)

    de la Beaujardiere, J.

    2015-12-01

    The US National Oceanic and Atmospheric Administration (NOAA) is a Big Data producer, generating tens of terabytes per day from hundreds of sensors on satellites, radars, aircraft, ships, and buoys, and from numerical models. These data are of critical importance and value for NOAA's mission to understand and predict changes in climate, weather, oceans, and coasts. In order to facilitate extracting additional value from this information, NOAA has established Cooperative Research and Development Agreements (CRADAs) with five Infrastructure-as-a-Service (IaaS) providers — Amazon, Google, IBM, Microsoft, Open Cloud Consortium — to determine whether hosting NOAA data in publicly-accessible Clouds alongside on-demand computational capability stimulates the creation of new value-added products and services and lines of business based on the data, and if the revenue generated by these new applications can support the costs of data transmission and hosting. Each IaaS provider is the anchor of a "Data Alliance" which organizations or entrepreneurs can join to develop and test new business or research avenues. This presentation will report on progress and lessons learned during the first 6 months of the 3-year CRADAs.

  4. In Congress NOAA budget set

    NASA Astrophysics Data System (ADS)

    Richman, Barbara T.

    In late November, President Ronald Reagan signed into law the National Oceanic and Atmospheric Administration (NOAA) budget, which is part of the appropriations bill for the Departments of Commerce, Justice, State, the Judiciary, and related agencies; at the same time, he also signed into law an amendment attached to that bill that prohibits the sale of the weather satellites (Eos, May 17, 1983, p. 377, and March 22, 1983, p. 113). Commercialization of the land remote sensing satellite system is still being considered, however.As a result of the conference between the House of Representatives and the Senate appropriations committees, the appropriation for NOAA totals $1020.6 million, with a program level of $1073.1 million. The appropriation is the money that comes from the federal treasury; the program level represents all of the funds—including treasury funds, transfers, residuals, etc.—actually available for the program. Strictly in terms of dollars, the total fiscal 1984 NOAA appropriation is almost level with the fiscal 1983 appropriation of $1000.9 million. In fiscal 1984, NOAA's research core, called Operations, Research, and Facilities (ORF), receives an appropriation of $988.2 million, with a program level of $1014.8 million

  5. Geostatistics and remote sensing using NOAA-AVHRR satellite imagery as predictive tools in tick distribution and habitat suitability estimations for Boophilus microplus (Acari: Ixodidae) in South America. National Oceanographic and Atmosphere Administration-Advanced Very High Resolution Radiometer.

    PubMed

    Estrada-Peña, A

    1999-02-01

    Remote sensing based on NOAA (National Oceanographic and Atmosphere Administration) satellite imagery was used, together with geostatistics (cokriging) to model the correlation between the temperature and vegetation variables and the distribution of the cattle tick, Boophilus microplus (Canestrini), in the Neotropical region. The results were used to map the B. microplus habitat suitability on a continental scale. A database of B. microplus capture localities was used, which was tabulated with the AVHRR (Advanced Very High Resolution Radiometer) images from the NOAA satellite series. They were obtained at 10 days intervals between 1983 and 1994, with an 8 km resolution. A cokriging system was generated to extrapolate the results. The data for habitat suitability obtained through two vegetation and four temperature variables were strongly correlated with the known distribution of B. microplus (sensitivity 0.91; specificity 0.88) and provide a good estimation of the tick habitat suitability. This model could be used as a guide to the correct interpretation of the distribution limits of B. microplus. It can be also used to prepare eradication campaigns or to make predictions about the effects of global change on the distribution of the parasite.

  6. Budget Realities Could Put Damper on Some NOAA Programs

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    2010-12-01

    The fall meeting of the National Oceanic and Atmospheric Administration's (NOAA) Science Advisory Board was in part a study in contrasts: discussing the agency's vision, goals, and recent successes while facing the harsh economic and political landscape that will make it difficult for NOAA to receive sufficient funding for the current fiscal year (FY 2011) to do little more than tread water toward reaching some of those goals. During a 30 November presentation, NOAA administrator Jane Lubchenco provided an overview of NOAA's Next Generation Strategic Plan. The document focuses on four long-term goals: climate adaptation and mitigation, a weather-ready nation, resilient coastal communities and economies, and healthy oceans.

  7. Mapping global land surface albedo from NOAA AVHRR

    NASA Astrophysics Data System (ADS)

    Csiszar, I.; Gutman, G.

    1999-03-01

    A set of algorithms is combined for a simple derivation of land surface albedo from measurements of reflected visible and near-infrared radiation made by the advanced very high resolution radiometer (AVHRR) onboard the National Oceanic and Atmospheric Administration (NOAA) polar orbiting satellites. The system consists of a narrowband-to-broadband conversion and bidirectional correction at the top of the atmosphere and an atmospheric correction. We demonstrate the results with 1 month worth of data from the NOAA National Environmental Satellite, Data, and Information Service (NESDIS) global vegetation index (GVI) weekly data set and the NOAA/NASA Pathfinder Atmosphere (PATMOS) project daily data. Error analysis of the methodology indicates that the surface albedo can be retrieved with 10-15% relative accuracy. Monthly albedo maps derived from September 1989 GVI and PATMOS data agree well except for small discrepancies attributed mainly to different preprocessing and residual atmospheric effects. A 5-year mean September map derived from the GVI multiannual time series is consistent with that derived from low-resolution Earth Radiation Budget Experiment data as well as with a September map compiled from ground observations and used in many numerical weather and climate models. Instantaneous GVI-derived albedos were found to be consistent with surface albedo measurements over various surface types. The discrepancies found can be attributed to differences in areal coverage and representativeness of the satellite and ground data. The present pilot study is a prototype for a routine real-time production of high-resolution global surface albedo maps from NOAA AVHRR Global Area Coverage (GAC) data.

  8. NOAA Enterprise Archive Access Tool

    NASA Astrophysics Data System (ADS)

    Rank, R. H.; McCormick, S.; Cremidis, C.

    2010-12-01

    A challenge for any consumer of National Oceanic and Atmospheric Administration (NOAA) environmental data archives is that the disparate nature of these archives makes it difficult for consumers to access data in a unified manner. If it were possible for consumers to have seamless access to these archives, they would be able to better utilize the data and thus maximize the return on investment for NOAA’s archival program. When unified data access is coupled with sophisticated data querying and discovery techniques, it will be possible to provide consumers with access to richer data sets and services that extend the use of key NOAA data. Theoretically, there are two ways that unified archive access may be achieved. The first approach is to develop a single archive or archiving standard that would replace the current NOAA archives. However, the development of such an archive would pose significant technical and administrative challenges. The second approach is to develop a middleware application that would provide seamless access to all existing archives, in effect allowing each archive to exist “as is” but providing a translation service for the consumer. This approach is deemed more feasible from an administrative and technical standpoint; however, it still presents unique technical challenges due to the disparate architectures that exist across NOAA archives. NOAA has begun developing the NEAAT. The purpose of NEAAT is to provide a middleware and a simple standardized API between NOAA archives and data consumers. It is important to note that NEAAT serves two main purposes: 1) To provide a single application programming interface (API) that enables designated consumers to write their own custom applications capable of searching and acquiring data seamlessly from multiple NOAA archives. 2) To allow archive managers to expose their data to consumers in conjunction with other NOAA resources without modifying their archiving systems or way of presenting data

  9. NOAA Big Data Partnership RFI

    NASA Astrophysics Data System (ADS)

    de la Beaujardiere, J.

    2014-12-01

    In February 2014, the US National Oceanic and Atmospheric Administration (NOAA) issued a Big Data Request for Information (RFI) from industry and other organizations (e.g., non-profits, research laboratories, and universities) to assess capability and interest in establishing partnerships to position a copy of NOAA's vast data holdings in the Cloud, co-located with easy and affordable access to analytical capabilities. This RFI was motivated by a number of concerns. First, NOAA's data facilities do not necessarily have sufficient network infrastructure to transmit all available observations and numerical model outputs to all potential users, or sufficient infrastructure to support simultaneous computation by many users. Second, the available data are distributed across multiple services and data facilities, making it difficult to find and integrate data for cross-domain analysis and decision-making. Third, large datasets require users to have substantial network, storage, and computing capabilities of their own in order to fully interact with and exploit the latent value of the data. Finally, there may be commercial opportunities for value-added products and services derived from our data. Putting a working copy of data in the Cloud outside of NOAA's internal networks and infrastructures should reduce demands and risks on our systems, and should enable users to interact with multiple datasets and create new lines of business (much like the industries built on government-furnished weather or GPS data). The NOAA Big Data RFI therefore solicited information on technical and business approaches regarding possible partnership(s) that -- at no net cost to the government and minimum impact on existing data facilities -- would unleash the commercial potential of its environmental observations and model outputs. NOAA would retain the master archival copy of its data. Commercial partners would not be permitted to charge fees for access to the NOAA data they receive, but

  10. 75 FR 10755 - Proposed Information Collection; Comment Request; 2010 NOAA Engagement Survey Tool

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-09

    ... Engagement Survey Tool AGENCY: National Oceanic and Atmospheric Administration (NOAA), DOC. ACTION: Notice... Kellogg Engagement Test, which the SAB recommended NOAA use for assessing engagement with constituents... accessing engagement with constituents. II. Method of Collection Primarily, respondents will be asked...

  11. 77 FR 14347 - Proposed Information Collection; Comment Request; NOAA Restoration Center Performance Progress...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-09

    ... Restoration Center Performance Progress Report AGENCY: National Oceanic and Atmospheric Administration (NOAA... currently approved information collection. NOAA funds habitat restoration projects including grass-roots, community-based habitat restoration; debris prevention and removal; removal of barriers to migrating...

  12. The Weather Radar Toolkit, National Oceanic and Atmospheric Administration (NOAA) National Climatic Data Center's support of interoperability and the Global Earth Observation System of Systems (GEOSS)

    NASA Astrophysics Data System (ADS)

    Ansari, S.; Del Greco, S.

    2006-12-01

    In February 2005, 61 countries around the World agreed on a 10 year plan to work towards building open systems for sharing geospatial data and services across different platforms worldwide. This system is known as the Global Earth Observation System of Systems (GEOSS). The objective of GEOSS focuses on easy access to environmental data and interoperability across different systems allowing participating countries to measure the "pulse" of the planet in an effort to advance society. In support of GEOSS goals, NOAA's National Climatic Data Center (NCDC) has developed radar visualization and data exporter tools in an open systems environment. The NCDC Weather Radar Toolkit (WRT) loads Weather Surveillance Radar 1988 Doppler (WSR-88D) volume scan (S-band) data, known as Level-II, and derived products, known as Level-III, into an Open Geospatial Consortium (OGC) compliant environment. The application is written entirely in Java and will run on any Java- supported platform including Windows, Macintosh and Linux/Unix. The application is launched via Java Web Start and runs on the client machine while accessing these data locally or remotely from the NCDC archive, NOAA FTP server or any URL or THREDDS Data Server. The WRT allows the data to be manipulated to create custom mosaics, composites and precipitation estimates. The WRT Viewer provides tools for custom data overlays, Web Map Service backgrounds, animations and basic filtering. The export of images and movies is provided in multiple formats. The WRT Data Exporter allows for data export in both vector polygon (Shapefile, Well-Known Text) and raster (GeoTIFF, ESRI Grid, VTK, NetCDF, GrADS) formats. By decoding the various Radar formats into the NetCDF Common Data Model, the exported NetCDF data becomes interoperable with existing software packages including THREDDS Data Server and the Integrated Data Viewer (IDV). The NCDC recently partnered with NOAA's National Severe Storms Lab (NSSL) to decode Sigmet C-band Doppler

  13. Life-Cycle Data Management at NOAA

    NASA Astrophysics Data System (ADS)

    de la Beaujardiere, J.

    2014-12-01

    The US National Oceanic and Atmospheric Administration (NOAA) operates over a hundred observing systems which span the environment from the bottom of the ocean to the surface of the Sun. The resulting data are essential for immediate priorities such as weather forecasting, and the data also constitute an irreplaceable resource collected at great cost. It is therefore necessary to carefully preserve this information for ongoing scientific use, for new research and applications, and to ensure reproducibility of scientific conclusions. The NOAA data life-cycle includes activities in three major phases: planning and production, management of the resulting data, and usage activities. This paper will describe current work by the NOAA Environmental Data Management Committee (EDMC), Data Management Integration Team (DMIT), and the NOAA National Data Centers in areas including DM planning, documentation, cataloging, data access, and preservation and stewardship to improve and standardize policies and practices for life-cycle data management.

  14. 75 FR 57739 - Notice of Availability of a Draft NOAA Climate Service Strategic Vision and Framework for Public...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-22

    ... National Oceanic and Atmospheric Administration Notice of Availability of a Draft NOAA Climate Service...: Notice of availability of a draft NOAA Climate Service strategic vision and framework for public review... new NOAA Climate Service (NCS). The new service will directly support NOAA's vision of ``an...

  15. Joint Polar Satellite System: The United States next generation civilian polar-orbiting environmental satellite system

    NASA Astrophysics Data System (ADS)

    Goldberg, Mitchell D.; Kilcoyne, Heather; Cikanek, Harry; Mehta, Ajay

    2013-12-01

    next generation polar-orbiting environmental satellite system, designated as the Joint Polar Satellite System (JPSS), was proposed in February 2010, as part of the President's Fiscal Year 2011 budget request, to be the Civilian successor to the restructured National Polar-Orbiting Operational Environmental Satellite System (NPOESS). Beginning 1 October 2013, the JPSS baseline consists of a suite of five instruments: advanced microwave and infrared sounders critical for short- and medium-range weather forecasting; an advanced visible and infrared imager needed for environmental assessments such as snow/ice cover, droughts, volcanic ash, forest fires and surface temperature; ozone sensor primarily used for global monitoring of ozone and input to weather and climate models; and an Earth radiation budget sensor for monitoring the Earth's energy budget. NASA will fund the Earth radiation budget sensor and the ozone limb sensor for the second JPSS operational satellite--JPSS-2. JPSS is implemented through a partnership between NOAA and the U.S. National Aeronautics and Space Administration (NASA). NOAA is responsible for overall funding; maintaining the high-level requirements; establishing international and interagency partnerships; developing the science and algorithms, and user engagement; NOAA also provides product data distribution and archiving of JPSS data. NASA's role is to serve as acquisition Center of Excellence, providing acquisition of instruments, spacecraft and the multimission ground system, and early mission implementation through turnover to NOAA for operations.

  16. 76 FR 9209 - Draft NOAA National Aquaculture Policy

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-16

    ... National Aquaculture Policy and Draft DOC National Aquaculture Policy; Notices #0;#0;Federal Register / Vol... and Atmospheric Administration RIN 0648-XA214 Draft NOAA National Aquaculture Policy AGENCY: National...: Notice of availability of draft aquaculture policy; request for comments. SUMMARY: NOAA is seeking...

  17. 77 FR 65674 - Solicitation for Members of the NOAA Science Advisory Board

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-30

    ... Oceans and Atmosphere and NOAA Administrator on long- and short-range strategies for research, education... Research, Commerce. ACTION: Notice of solicitation for members of the NOAA Science Advisory Board. SUMMARY... NOAA's research enterprise. Nominations Nominations may be made by individuals themselves or by a...

  18. 76 FR 4091 - Proposed Information Collection; Comment Request; Certification Requirements for NOAA's...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-24

    ...; Certification Requirements for NOAA's Hydrographic Product Quality Assurance Program AGENCY: National Oceanic and Atmospheric Administration (NOAA), Commerce. ACTION: Notice. SUMMARY: The Department of Commerce... to David B. Enabnit, (301) 713-2770 x132, Dave.Enabnit@noaa.gov . SUPPLEMENTARY INFORMATION:...

  19. NOAA's Weather-Ready Nation: Progress and Plans

    NASA Astrophysics Data System (ADS)

    Scharfenberg, K.

    2014-12-01

    The National Oceanic and Atmospheric Administration (NOAA) Weather-Ready Nation program is about building community resilience in the face of increasing vulnerability to extreme weather and water events. Through community partnerships and infusion of new science and technology, better preparedness is reducing the devastating impacts of these extreme events. For the past three years, the National Weather Service has been leading the Weather-Ready Nation strategy through a number of initiatives, focused around a series of pilot projects for transforming internal National Weather Service Operations. The "Emergency Response Specialist" technical role and associated training has been developed to better apply new hazardous weather research and technology to critical community decisions. High-resolution storm surge inundation mapping was introduced to the public in 2014 during Hurricane Arthur with successful results. The dual-polarization upgrade to the Nation's weather radar network has also been completed, with successful application of improved tornado, flash flood, and winter storm warning services. This presentation will focus on the application of these science initiatives under the NOAA Weather-Ready Nation program, and will further discuss NWS plans for operational application of future advances in research and technology.

  20. Latest developments of geostationary microwave sounder technologies for NOAA's mission

    NASA Astrophysics Data System (ADS)

    Bajpai, Shyam; Madden, Michael; Chu, Donald; Yapur, Martin

    2006-12-01

    The National Oceanic and Atmospheric Administration (NOAA) have been flying microwave sounders since 1975 on Polar Operational Environmental Satellites (POES). Microwave observations have made significant contributions to the understanding of the atmosphere and earth surface. This has helped in improving weather and storm tracking forecasts. However, NOAA's Geostationary Operational Environmental Satellites (GOES) have microwave requirements that can not be met due to the unavailability of proven technologies. Several studies of a Geostationary Microwave Sounder (GMS) have been conducted. Among those, are the Geostationary Microwave Sounder (GEM) that uses a mechanically steered solid dish antenna and the Geostationary Synthetic Thinned Aperture Radiometer (GeoSTAR) that utilizes a sparse aperture array. Both designs take advantage of the latest developments in sensor technology. NASA/Jet Propulsion Lab (JPL) has recently successfully built and tested a prototype ground-based GeoSTAR at 50 GHz frequency with promising test results. Current GOES IR Sounders are limited to cloud top observations. Therefore, a sounding suite of IR and Microwave should be able to provide observations under clear as well as cloudy conditions all the time. This paper presents the results of the Geostationary Microwave Sounder studies, user requirements, frequencies, technologies, limitations, and implementation strategies.

  1. THE NOAA - EPA NATIONAL AIR QUALITY FORECASTING SYSTEM

    EPA Science Inventory

    Building upon decades of collaboration in air pollution meteorology research, in 2003 the National Oceanic and Atmospheric Administration (NOAA) and the United States Environmental Protection Agency (EPA) signed formal partnership agreements to develop and implement an operationa...

  2. THE SCIENTIFIC BASIS OF NOAA'S AIR QUALITY FORECASTING PROGRAM

    EPA Science Inventory

    For many years, the National Oceanic and Atmospheric Administration (NOAA) has conducted atmospheric research, including chemical and physical measurements, process studies, and the development and evaluation of experimental meteorological and photochemical air quality models. ...

  3. Mission Description and In-Flight Operations of ERBE Instruments on ERBS, NOAA 9, and NOAA 10 Spacecraft

    NASA Technical Reports Server (NTRS)

    Snyder, Dianne; Bush, Kathryn; Lee, Kam-Pui; Summerville, Jessica

    1998-01-01

    Instruments of the Earth Radiation Budget Experiment (ERBE) have operated on three different Earth-orbiting spacecraft. The Earth Radiation Budget Satellite (ERBS) is operated by the National Aeronautics and Space Administration (NASA), and the NOAA 9 and NOAA 10 weather satellites are operated by the National Oceanic and Atmospheric Administration (NOAA). This paper is one of a series that describes the ERBE mission, in-orbit environments, instrument design and operational features, and data processing and validation procedures. This paper also describes the in-flight operations for the ERBE nonscanner instruments aboard the ERBS, NOAA 9, and NOAA 10 spacecraft from January 1990 through December 1990. Validation and archives of radiation measurements made by ERBE nonscanner instruments during this period were completed in August 1996. This paper covers normal and special operations of the spacecraft and instruments, operational anomalies, and the responses of the instruments to in-orbit and seasonal variations in the solar environment.

  4. Validation of the Version 1 NOAA/NASA Pathfinder Sea Surface Temperature Data Set

    NASA Technical Reports Server (NTRS)

    Smith, Elizabeth A.

    1998-01-01

    A high-resolution, global satellite-derived sea surface temperature (SST) data set called Pathfinder, from the Advanced Very High Resolution Radiometer (AVHRR) aboard the NOAA Polar Orbiters, is available from the Jet Propulsion Laboratory Physical Oceanography Distributed Active Archive Center (JPL PO.DAAC). Suitable for research as well as education, the Pathfinder SST data set is a result of a collaboration between the National Oceanographic and Atmospheric Administration (NOAA), the National Aeronautics and Space Administration (NASA) and investigators at several universities. NOAA and NASA are the sponsors of the Pathfinder Program, which takes advantage of currently archived Earth science data from satellites. Where necessary, satellite sensors have been intercalibrated, algorithms improved and processing procedures revised, in order to produce long time-series, global measurements of ocean, land and atmospheric properties necessary for climate research. Many Pathfinder data sets are available to researchers now, nearly a decade before the first launch of NASA's Earth Observing System (EOS). The lessons learned from the Pathfinder programs will facilitate the processing and management of terabytes of data from EOS. The Oceans component of Pathfinder has undertaken to reprocess all Global Area Coverage (GAC) data acquired by the 5-channel AVHRRs since 1981. The resultant data products are consistent and stably calibrated [Rao, 1993a, Rao, 1993b, Brown et al., 1993], Earth-gridded SST fields at a variety of spatial and temporal resolutions.

  5. 76 FR 53883 - Proposed Information Collection; Comment Request; NOAA Satellite Ground Station Customer...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-30

    ... Satellite Ground Station Customer Questionnaire AGENCY: National Oceanic and Atmospheric Administration... who operate ground receiving stations that receive data from NOAA satellites to complete...

  6. Instrument interface description for NOAA 2000 instruments with European morning spacecraft and/or NOAA-OPQ spacecraft

    NASA Technical Reports Server (NTRS)

    1993-01-01

    The purpose is to describe at a high level the common interface provisions and constraints placed on the NOAA-2000 instruments and the interfacing spacecraft elements in the following areas: electrical interface, mechanical interface, thermal interface, magnetic interface, electromagnetic compatibility, structural/mechanical environmental interface, contamination control, and the ionizing radiation environment. The requirements reflect the fact that these instruments must be compatible with a number of different polar orbiting satellite vehicles including the NOAA-OPQ satellites and the EUMETSAT METOP satellites.

  7. NOAA requirements and programs

    NASA Technical Reports Server (NTRS)

    Flanders, A. F.

    1975-01-01

    Service programs in NOAA that contemplate using the Geostationary Operational Environmental Satellite (GEOS) Data Collection System (DCS) are considered. The GEOS DCS will be operated by the National Environmental Satellite Service of NOAA as an integral part of the national operation environmental satellite program. This plan is concerned with that part of the GEOS program connected with collection and relay of data from remote locations. Service programs include: (1) hydrological data collection; (2) oceanographic data collection; (3) marine observations from data buoys; (4) Tsunami warning service; and (5) meteorological service.

  8. IASI Products Processing System at the NOAA/NESDIS

    NASA Astrophysics Data System (ADS)

    Sharma, A. K.

    2010-12-01

    The Infrared Atmospheric Sounding Interferometer (IASI), is a hyperspectral infrared sounder residing on the European Space Agency’s (ESA) MetOp series of polar orbiting satellites and has 8461 spectral channels, aligned in three bands between 3.62 and 15.5 micron, with a spectral resolution of 0.5 cm-1 , after apodisation. IASI Level 1C data are made available to the National Oceanic and Atmospheric Administration (NOAA) National Environmental Satellite Data and Information Service (NESDIS) through the International Joint Polar-Orbiting Operational Satellite System (IJPS) agreement. The first priority of the IASI Product Processing System (PPS) at the NOAA/NESDIS is to generate radiance products that are produced using Level 1C data, which are ingested in a pipeline mode from the European Organization for the Exploitation Meteorological Satellites (EUMETSAT) via General File Transmission (GFT) protocol, applied to spectral and spatial sub-setting. IASI is a multi-purpose sounding instrument designed for the next generation infrared sounder having element of operational sounding system which provides global measurements with high vertical resolution and accuracy of temperature, water vapor, trace-gases such as ozone, nitrous oxide, carbon dioxide, and methane, as well as surface temperature, surface emissivity, and cloud characteristics. IASI PPS system generates Level 1C Thinned (L1CT) radiance and Level 2 profile products. Currently the IASI level 2 products from MetOp-2 satellite include temperature and humidity profiles, trace gases, and the cloud cleared radiances (CCR) on a global scale and these products are available to the operational user community. In an effort to ensure consistent levels of service and quality assurance for these suites of products, the Office of Satellite and Products Operation (OSPO) is implementing and executing new, innovative tools to better monitor performance and quality of the operational IASI products being generated. The

  9. NOAA Atmospheric Baseline Observatories in the Arctic: Alaska & Greenland

    NASA Astrophysics Data System (ADS)

    Vasel, B. A.; Butler, J. H.; Schnell, R. C.; Crain, R.; Haggerty, P.; Greenland, S.

    2013-12-01

    The National Oceanic and Atmospheric Administration (NOAA) operates two year-round, long-term climate research facilities, known as Atmospheric Baseline Observatories (ABOs), in the Arctic Region. The Arctic ABOs are part of a core network to support the NOAA Global Monitoring Division's mission to acquire, evaluate, and make available accurate, long-term records of atmospheric gases, aerosol particles, and solar radiation in a manner that allows the causes of change to be understood. The observatory at Barrow, Alaska (BRW) was established in 1973 and is now host to over 200 daily measurements. Located a few kilometers to the east of the village of Barrow at 71.3° N it is also the northernmost point in the United States. Measurement records from Barrow are critical to our understanding of the Polar Regions including exchange among tundra, atmosphere, and ocean. Multiple data sets are available for carbon cycle gases, halogenated gases, solar radiation, aerosol properties, ozone, meteorology, and numerous others. The surface, in situ carbon dioxide record alone consists of over 339,000 measurements since the system was installed in July 1973. The observatory at Summit, Greenland (SUM) has been a partnership with the National Science Foundation (NSF) Division of Polar Programs since 2004, similar to that for South Pole. Observatory data records began in 1997 from this facility located at the top of the Greenland ice sheet at 72.58° N. Summit is unique as the only high-altitude (3200m), mid-troposphere, inland, Arctic observatory, largely free from outside local influences such as thawing tundra or warming surface waters. The measurement records from Summit help us understand long-range transport across the Arctic region, as well as interactions between air and snow. Near-real-time data are available for carbon cycle gases, halogenated gases, solar radiation, aerosol properties, meteorology, ozone, and numerous others. This poster will highlight the two facilities

  10. The NOAA Big Data Project: NEXRAD on the Cloud

    NASA Astrophysics Data System (ADS)

    Sundwall, Jed; Bouffler, Brendan

    2016-04-01

    Last year, the US National Oceanic and Atmospheric Administration (NOAA) made headlines when it entered into a research agreement with Amazon Web Services (AWS) to explore sustainable models to increase the output of open NOAA data. Publicly available NOAA data drives multi-billion dollar industries and critical research efforts. Under this new agreement, AWS and its Data Alliance collaborators are looking at ways to push more NOAA data to the cloud and build an ecosystem of innovation around it. In this presentation, we will provide a brief overview of the NOAA Big Data Project and the AWS Data Alliance, then dive into a specific example of data that has been made available (high resolution Doppler radar from the NEXRAD system) and early use cases.

  11. The NOAA Big Data Project: NEXRAD on the Cloud

    NASA Astrophysics Data System (ADS)

    Gold, A.; Weber, J.

    2015-12-01

    This past April, the US National Oceanic and Atmospheric Administration (NOAA) made headlines when it entered into a research agreement with Amazon Web Services (AWS) to explore sustainable models to increase the output of open NOAA data. Publicly available NOAA data drives multi-billion dollar industries and critical research efforts. Under this new agreement, AWS and its Data Alliance collaborators are looking at ways to push more NOAA data to the cloud and build an ecosystem of innovation around it. In this presentation, we will provide a brief overview of the NOAA Big Data Project and the AWS Data Alliance, then dive into a specific example of data that has been made available (high resolution Doppler radar from the NEXRAD system) and early use cases.

  12. Joint Polar Satellite System (JPSS) Common Ground System (CGS) Block 3.0 Communications Strategies

    NASA Astrophysics Data System (ADS)

    Miller, S. W.; Grant, K. D.; Ottinger, K.

    2015-12-01

    The National Oceanic and Atmospheric Administration (NOAA) and National Aeronautics and Space Administration (NASA) are jointly acquiring the next-generation civilian weather and environmental satellite system: the Joint Polar Satellite System (JPSS). The JPSS program is the follow-on for both space and ground systems to the Polar-orbiting Operational Environmental Satellites (POES) managed by NOAA. The JPSS satellites will carry a suite of sensors designed to collect meteorological, oceanographic, climatological and geophysical observations of the Earth. The ground processing system for JPSS is known as the JPSS Common Ground System (JPSS CGS). Developed and maintained by Raytheon Intelligence, Information and Services (IIS), the CGS is a globally distributed, multi-mission system serving NOAA, NASA and their national and international partners. The CGS has demonstrated its scalability and flexibility to incorporate multiple missions efficiently and with minimal cost, schedule and risk, while strengthening global partnerships in weather and environmental monitoring. In a highly successful international partnership between NOAA and the European Organisation for the Exploitation of Meteorological Satellites (EUMETSAT), the CGS currently provides data routing from McMurdo Station in Antarctica to the EUMETSAT processing center in Darmstadt, Germany. Continuing and building upon that partnership, NOAA and EUMETSAT are collaborating on the development of a new path forward for the 2020's. One approach being explored is a concept of operations where each organization shares satellite downlink resources with the other. This paper will describe that approach, as well as modeling results that demonstrate its feasibility and expected performance.

  13. Traditional Knowledge Strengthens NOAA's Environmental Education

    NASA Astrophysics Data System (ADS)

    Stovall, W. K.; McBride, M. A.; Lewinski, S.; Bennett, S.

    2010-12-01

    Environmental education efforts are increasingly recognizing the value of traditional knowledge, or indigenous science, as a basis to teach the importance of stewardship. The National Oceanic and Atmospheric Administration (NOAA) Pacific Services Center incorporates Polynesian indigenous science into formal and informal education components of its environmental literacy program. By presenting indigenous science side by side with NOAA science, it becomes clear that the scientific results are the same, although the methods may differ. The platforms for these tools span a vast spectrum, utilizing media from 3-D visualizations to storytelling and lecture. Navigating the Pacific Islands is a Second Life project in which users navigate a virtual Polynesian voyaging canoe between two islands, one featuring native Hawaiian practices and the other where users learn about NOAA research and ships. In partnership with the University of Hawai‘i Waikiki Aquarium, the Nana I Ke Kai (Look to the Sea) series focuses on connecting culture and science during cross-discipline, publicly held discussions between cultural practitioners and research scientists. The Indigenous Science Video Series is a multi-use, animated collection of short films that showcase the efforts of NOAA fisheries management and ship navigation in combination with the accompanying Polynesian perspectives. Formal education resources and lesson plans for grades 3-5 focusing on marine science have also been developed and incorporate indigenous science practices as examples of conservation success. By merging traditional knowledge and stewardship practices with NOAA science in educational tools and resources, NOAA's Pacific Services Center is helping to build and increase environmental literacy through the development of educational tools and resources that are applicable to place-based understanding and approaches.

  14. Space Weather impact on the degradation of NOAA POES MEPED proton detectors

    NASA Astrophysics Data System (ADS)

    Ødegaard, Linn-Kristine Glesnes; Tyssøy, Hilde Nesse; Jakobsen Sandanger, Marit Irene; Stadsnes, Johan; Søraas, Finn

    2016-06-01

    The Medium Energy Proton and Electron Detector (MEPED) on board the National Oceanic and Atmospheric Administration Polar Orbiting Environmental Satellites (NOAA POES) is known to degrade with time. In recent years a lot of effort has been put into calibrating the degraded proton detectors. We make use of previous work and show that the degradation of the detectors can be attributed to the radiation dose of each individual instrument. However, the effectiveness of the radiation in degrading the detector is modulated when it is weighted by the mean ap index, increasing the degradation rate in periods with high geomagnetic activity, and decreasing it through periods of low activity. When taking ap and the radiation dose into account, we find that the degradation rate is independent of spacecraft and detector pointing direction. We have developed a model to estimate the correction factor for all the MEPED detectors as a function of accumulated corrected flux and the ap index. We apply the routine to NOAA POES spacecraft starting with NOAA-15, including the European satellites MetOp-02 and MetOp-01, and estimate correction factors.

  15. 75 FR 13259 - NOAA Is Hosting a Series of Informational Webinars for Individuals and Organizations To Learn...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-19

    ... Individuals and Organizations To Learn About the Proposed NOAA Climate Service AGENCY: Office of Oceanic and... Oceanic and Atmospheric Administration (NOAA) announced their intent to establish a new NOAA Climate... our partners to respond to the growing demands for climate information from the public,...

  16. Envisioning Improvements in NOAA Environmental Data Management

    NASA Astrophysics Data System (ADS)

    de la Beaujardiere, J.

    2012-12-01

    The US National Oceanic and Atmospheric Administration (NOAA) produces and maintains a huge, heterogeneous and continuously updated collection of environmental data from a diverse suite of observing systems including satellites, radars, aircraft, ships, in situ sensors, and animal tagging. These data are an irreplaceable national resource and must be discoverable, accessible, well-documented, and preserved for future users. Figure 1 illustrates the concept of operations for the desired target architecture. In this paper we describe current work toward these goals. The NOAA Environmental Data Management (EDM) Committee and other collaborators in the agency are developing an EDM Framework that includes over-arching Principles, Governance, Resources, Standards, Architecture, Assessment, and Infrastructure which apply broadly to many classes of data, and individual Data Lifecycles for particular data collections. See Figure 2. This Framework will inform, organize and support NOAA data management activities. NOAA Procedural Directives regarding archiving, data management planning, metadata, and data sharing by grantees are now being implemented; new Directives regarding data access and data citation are being developed. We have begun initial assessments of how data from our primary observing systems are managed. A Dashboard to measure and encourage progress in these areas is being prototyped. We have established an EDM Wiki to share best practices. Finally, participation in standards bodies and collaboration with other agencies and organizations is helping us to maximize compatibility and leverage existing work.Figure 1: Conceptual overview of the desired target state of NOAA data management activities. Not all activities are illustrated. Figure 2: High-level overview of the conceptual framework for environmental data management activities.

  17. Tsunami.gov: NOAA's Tsunami Information Portal

    NASA Astrophysics Data System (ADS)

    Shiro, B.; Carrick, J.; Hellman, S. B.; Bernard, M.; Dildine, W. P.

    2014-12-01

    We present the new Tsunami.gov website, which delivers a single authoritative source of tsunami information for the public and emergency management communities. The site efficiently merges information from NOAA's Tsunami Warning Centers (TWC's) by way of a comprehensive XML feed called Tsunami Event XML (TEX). The resulting unified view allows users to quickly see the latest tsunami alert status in geographic context without having to understand complex TWC areas of responsibility. The new site provides for the creation of a wide range of products beyond the traditional ASCII-based tsunami messages. The publication of modern formats such as Common Alerting Protocol (CAP) can drive geographically aware emergency alert systems like FEMA's Integrated Public Alert and Warning System (IPAWS). Supported are other popular information delivery systems, including email, text messaging, and social media updates. The Tsunami.gov portal allows NOAA staff to easily edit content and provides the facility for users to customize their viewing experience. In addition to access by the public, emergency managers and government officials may be offered the capability to log into the portal for special access rights to decision-making and administrative resources relevant to their respective tsunami warning systems. The site follows modern HTML5 responsive design practices for optimized use on mobile as well as non-mobile platforms. It meets all federal security and accessibility standards. Moving forward, we hope to expand Tsunami.gov to encompass tsunami-related content currently offered on separate websites, including the NOAA Tsunami Website, National Tsunami Hazard Mitigation Program, NOAA Center for Tsunami Research, National Geophysical Data Center's Tsunami Database, and National Data Buoy Center's DART Program. This project is part of the larger Tsunami Information Technology Modernization Project, which is consolidating the software architectures of NOAA's existing TWC's into

  18. NOAA Plans for Improving Public Access to Science Research (Invited)

    NASA Astrophysics Data System (ADS)

    de la Beaujardiere, J.

    2013-12-01

    The White House Office of Science and Technology Policy (OSTP) issued a memorandum on 2013 February 22 calling for federal agencies to enhance public access to research results (PARR), and required agencies to submit, within 6 months of the memo, draft plans explaining how they would implement the requirements. For the National Oceanic and Atmospheric Administration (NOAA), research results include digital data about the Earth's environment and publications based on those data. Regarding environmental data, NOAA is already very active in ensuring and improving public access. Indeed, National Weather Service (NWS) data was highlighted as one of the good examples in the OSTP memo. More generally, the NOAA National Data Centers, the Environmental Data Management Committee (EDMC), and scientific and technical personnel across the agency are striving to ensure NOAA data are discoverable and accessible on-line, well-documented and formatted for usability, and preserved for future generations as a national asset. This presentation will describe current and potential activities in support of public access to NOAA and NOAA-funded environmental data. Regarding publications, there is greater uncertainty. The fundamental issue is how to ensure no-cost access (after an embargo period) to publications that typically require subscriptions. That issue must be addressed at the interagency level with the journal publishers. The plan indicates that NOAA will adopt shared mechanisms and agreements to the extent possible rather than building new systems. Some elements remain under discussion; this presentation will be limited to those aspects on which there is general agreement.

  19. NASA-FAA-NOAA Partnering Strategy

    NASA Technical Reports Server (NTRS)

    Colantonio, Ron

    2003-01-01

    This viewgraph presentation provides an overview of NASA-FAA (Federal Aviation Administration) and NOAA (National Oceanic and Atmospheric Administration) collaboration efforts particularly in the area of aviation and aircraft safety. Five technology areas are being jointly by these agencies: (1) aviation weather information; (2) weather products; (3) automet technologies; (4) forward looking weather sensors and (5) turbulence controls and mitigation systems. Memorandum of Agreements (MOU) between these agencies are reviewed. A general review of the pros and pitfalls of inter-agency collaborations is also presented.

  20. Data management in NOAA

    NASA Technical Reports Server (NTRS)

    Callicott, William M.

    1993-01-01

    The NOAA archives contain 150 terabytes of data in digital form, most of which are the high volume GOES satellite image data. There are 630 data bases containing 2,350 environmental variables. There are 375 million film records and 90 million paper records in addition to the digital data base. The current data accession rate is 10 percent per year and the number of users are increasing at a 10 percent annual rate. NOAA publishes 5,000 publications and distributes over one million copies to almost 41,000 paying customers. Each year, over six million records are key entered from manuscript documents and about 13,000 computer tapes and 40,000 satellite hardcopy images are entered into the archive. Early digital data were stored on punched cards and open reel computer tapes. In the late seventies, an advanced helical scan technology (AMPEX TBM) was implemented. Now, punched cards have disappeared, the TBM system was abandoned, most data stored on open reel tapes have been migrated to 3480 cartridges, many specialized data sets were distributed on CD ROM's, special archives are being copied to 12 inch optical WORM disks, 5 1/4 inch magneto-optical disks were employed for workstation applications, and 8 mm EXABYTE tapes are planned for major data collection programs. The rapid expansion of new data sets, some of which constitute large volumes of data, coupled with the need for vastly improved access mechanisms, portability, and improved longevity are factors which will influence NOAA's future systems approaches for data management.

  1. NOAA GCOM-W1/AMSR2 Oceanic Environmental Products: Phase-2

    NASA Astrophysics Data System (ADS)

    Jelenak, Z.; Alsweiss, S.; Chang, P.; Park, J. Y.

    2014-12-01

    Passive microwave radiometry is a special application of microwave communications technology for the purpose of collecting Earth's electromagnetic radiation. With the use of radiometers onboard earth orbiting satellites, scientists are able to monitor the Earth's environment and climate system on both short- and long-term temporal scales with near global coverage. The Global Change Observation Mission (GCOM) is part of the Japanese Aerospace Exploration Agency (JAXA) broader commitment toward global and long-term observation of the Earth's environment. GCOM consists of two polar orbiting satellite series, GCOM-W (Water) and GCOM-C (Climate), with 1-year overlap between them for inter-calibration. AMSR2 onboard GCOM-W1 is a microwave radiometer system that measures dual polarized radiances at 6.9, 7.3, 10.65, 18.7, 23.8, 36.5, and 89.0 GHz. It is a sun-synchronous orbiter that acquires microwave radiances by conically scanning the Earth's surface at a nominal earth incidence angle of 55 degrees that results in a wide swath of 1450 km. As a part of Joint Polar Satellite System (JPSS) program the National Oceanic and Atmospheric Administration (NOAA) GCOM-W1 product development and validation project will provide NOAA's users access to critical geophysical products derived from AMSR-2. These products, which are detailed in NOAA's JPSS Level 1 Requirements Document Supplement, include: microwave brightness temperature, total precipitable water, cloud liquid water, precipitation type/rate, sea surface temperature, and Sea Surface Wind Speed. Phase-1 of the AMSR-2 project at NOAA included inter-calibration of AMSR-2 measured brightness temperatures with the Tropical Rainfall Measuring Mission Microwave Imager as the reference radiometer. The second phase of the project utilized the calibrated brightness temperatures in a robust Bayesian network to retrieve more accurate geophysical parameters over the ocean surface. It can handle retrievals even with missing channels and

  2. Coordinating activities between NOAA and other agencies.

    PubMed

    Fritz, A T; Buchman, M F

    1997-11-01

    The Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) and the National Oil and Hazardous Substances Pollution Contingency Plan (NCP) mandate protection of public health, welfare, and the environment at Superfund hazardous waste sites. The NCP requires lead response agenciesto integrate baseline risk assessments into the remedial process that "assess threats to the environment." EPA policy statements direct regional offices to perform thorough, consistent ecological risk assessments, and stress the importance of coordination and technical consultation with the natural resource trustees. As a Federal natural trustee, the National Oceanic and Atmospheric Administration's (NOAA) role and responsibilities within the CERCLA process also are defined and mandated by Federal law. NOAA is responsible for identifying sites in the coastal zone that may affect natural resources, evaluating injury to trust resources, and providing technical advice on assessments and remedial and restoration alternatives. Statutes require lead cleanup agencies and trustee agencies to notify and coordinate with each other during CERCLA response. Over the past ten years, NOAA has gained valuable experience and technical expertise in environmental assessments and in evaluating contaminated aquatic environments. NOAA fulfills its responsibilities through an effective network of Coastal Resource Coordinators (CRCs) who can rapidly respond to local technical requirements and priorities, and coordinate effectively with technical and trustee representatives. In addition to CRCs, an interdisciplinary support group provides technical expertise in the scientific disciplines required to respond to the needs of regional activities. NOAA provides CRCs to coastal EPA regional offices for technical support, and to act as liaisons with Federal and state natural resource trustee agencies. The CRCs help EPA and other lead response agencies identify and assess risks to coastal resources

  3. Coordinating activities between NOAA and other agencies.

    PubMed

    Fritz, A T; Buchman, M F

    1997-11-01

    The Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) and the National Oil and Hazardous Substances Pollution Contingency Plan (NCP) mandate protection of public health, welfare, and the environment at Superfund hazardous waste sites. The NCP requires lead response agenciesto integrate baseline risk assessments into the remedial process that "assess threats to the environment." EPA policy statements direct regional offices to perform thorough, consistent ecological risk assessments, and stress the importance of coordination and technical consultation with the natural resource trustees. As a Federal natural trustee, the National Oceanic and Atmospheric Administration's (NOAA) role and responsibilities within the CERCLA process also are defined and mandated by Federal law. NOAA is responsible for identifying sites in the coastal zone that may affect natural resources, evaluating injury to trust resources, and providing technical advice on assessments and remedial and restoration alternatives. Statutes require lead cleanup agencies and trustee agencies to notify and coordinate with each other during CERCLA response. Over the past ten years, NOAA has gained valuable experience and technical expertise in environmental assessments and in evaluating contaminated aquatic environments. NOAA fulfills its responsibilities through an effective network of Coastal Resource Coordinators (CRCs) who can rapidly respond to local technical requirements and priorities, and coordinate effectively with technical and trustee representatives. In addition to CRCs, an interdisciplinary support group provides technical expertise in the scientific disciplines required to respond to the needs of regional activities. NOAA provides CRCs to coastal EPA regional offices for technical support, and to act as liaisons with Federal and state natural resource trustee agencies. The CRCs help EPA and other lead response agencies identify and assess risks to coastal resources

  4. NOAA's National Snow Analyses

    NASA Astrophysics Data System (ADS)

    Carroll, T. R.; Cline, D. W.; Olheiser, C. M.; Rost, A. A.; Nilsson, A. O.; Fall, G. M.; Li, L.; Bovitz, C. T.

    2005-12-01

    NOAA's National Operational Hydrologic Remote Sensing Center (NOHRSC) routinely ingests all of the electronically available, real-time, ground-based, snow data; airborne snow water equivalent data; satellite areal extent of snow cover information; and numerical weather prediction (NWP) model forcings for the coterminous U.S. The NWP model forcings are physically downscaled from their native 13 km2 spatial resolution to a 1 km2 resolution for the CONUS. The downscaled NWP forcings drive an energy-and-mass-balance snow accumulation and ablation model at a 1 km2 spatial resolution and at a 1 hour temporal resolution for the country. The ground-based, airborne, and satellite snow observations are assimilated into the snow model's simulated state variables using a Newtonian nudging technique. The principle advantages of the assimilation technique are: (1) approximate balance is maintained in the snow model, (2) physical processes are easily accommodated in the model, and (3) asynoptic data are incorporated at the appropriate times. The snow model is reinitialized with the assimilated snow observations to generate a variety of snow products that combine to form NOAA's NOHRSC National Snow Analyses (NSA). The NOHRSC NSA incorporate all of the available information necessary and available to produce a "best estimate" of real-time snow cover conditions at 1 km2 spatial resolution and 1 hour temporal resolution for the country. The NOHRSC NSA consist of a variety of daily, operational, products that characterize real-time snowpack conditions including: snow water equivalent, snow depth, surface and internal snowpack temperatures, surface and blowing snow sublimation, and snowmelt for the CONUS. The products are generated and distributed in a variety of formats including: interactive maps, time-series, alphanumeric products (e.g., mean areal snow water equivalent on a hydrologic basin-by-basin basis), text and map discussions, map animations, and quantitative gridded products

  5. In Congress Budget Update for NOAA, USGS

    NASA Astrophysics Data System (ADS)

    Richman, Barbara T.

    Among the agenda items facing Congress as it reconvenes this week are the fiscal 1984 budgets for the National Oceanic and Atmospheric Administration (NOAA), which is part of the Department of Commerce, and for the U.S. Geological Survey (USGS), which is within the Department of the Interior. Fiscal year 1984 begins October 1, 1983. As Congress rolls up its shirtsleeves and gets down to business, Eos presents a status report on the two agency budgets.Both House and Senate appropriations committees have finished their work on the NOAA budget, which had been targeted by President Ronald Reagan for a $799.8 million appropriation request (program level of $843.2 million) in his proposed fiscal 1984 budget (Eos, February 15, 1983, p. 65). The House appropriation for NOAA (H.R. 3134 and H.R. 3222) is $998.5 million, with a program level of $1043.9 million. The Senate Appropriations Committee set its appropriation (S. 1721) at $987.8 million, with a program level of $1041.0 million.

  6. 76 FR 39385 - Payment Policy Change for Access to NOAA Environmental Data, Information, and Related Products...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-06

    ... National Oceanic and Atmospheric Administration Payment Policy Change for Access to NOAA Environmental Data...: Notice of Policy Change. SUMMARY: NOAA's National Data Centers will not accept checks (nor money orders...) National Climatic Data Center (NCDC), Asheville, NC National Geophysical Data Center (NGDC), Boulder,...

  7. NOAA's OAR program funding down

    NASA Astrophysics Data System (ADS)

    Bush, Susan

    Proposed funding for NOAA's Oceanic and Atmospheric Research (OAR) is down for most programs in fiscal year 1993. NOAA's three primary programs funded through OAR are Climate and Air Quality, Climate and Global Change ($1.14 million or 59% of OAR), Atmospheric Research, Modernization of NOAA's Atmospheric Services ($4.08 million or 21% of OAR), and Ocean and Great Lakes Programs, Coastal Ocean Program ($3.87 million or 20%).OAR conducts research in marine and atmospheric sciences through its own laboratories and offices, as well as through a network of university-based systems across the United States. OAR also provides the scientific basis for national policy formulation, such as climate and global change, the Clean Air Act, and ozone depletion. OAR is NOAA's primary contact for universities.

  8. NOAA's Education Program: Review and Critique

    ERIC Educational Resources Information Center

    Farrington, John W., Ed.; Feder, Michael A., Ed.

    2010-01-01

    There is a national need to educate the public about the ocean, coastal resources, atmosphere and climate. The National Oceanic and Atmospheric Administration (NOAA), the agency responsible for understanding and predicting changes in the Earth's environment and conserving and managing coastal and marine resources to meet the nation's…

  9. 78 FR 16254 - (NOAA) Science Advisory Board (SAB)

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-14

    ... National Oceanic and Atmospheric Administration (NOAA) Science Advisory Board (SAB) AGENCY: Office of... of Commerce (DOC). ACTION: Notice of open meeting. SUMMARY: The Science Advisory Board (SAB) was..., education, and application of science to operations and information services. SAB activities and...

  10. NOAA Looks for Advice to Make Its Data Easier to Use

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    2014-03-01

    "There is no sector in American business that wouldn't like to have better environmental information," said Joseph Klimavicz, chief information officer for the National Oceanic and Atmospheric Administration (NOAA).

  11. Draft U.S. ocean policy plan precedes proposal to move NOAA to Interior department

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    2012-01-01

    The Obama administration's ambitious plan to protect oceans was released on 12 January, just 1 day prior to the administration's apparently unrelated announcement of a proposed governmental reorganization that would move the National Oceanic and Atmospheric Administration (NOAA) from the Department of Commerce to the Department of the Interior. The proposed NOAA move is part of a larger administration proposal to consolidate six federal agencies that are focused on business and trade into one department. The action is contingent upon congressional approval. The proposal to move NOAA to the Interior department has prompted a variety of reactions, with some considering it common sense to group agencies dealing with natural resources in the same department. Others have charged that the proposed move could blunt NOAA's leading role in protecting oceans, among other concerns.

  12. 75 FR 59686 - Proposed Information Collection; Comment Request; NOAA Space-Based Data Collection System (DCS...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-28

    ... National Oceanic and Atmospheric Administration Proposed Information Collection; Comment Request; NOAA Space- Based Data Collection System (DCS) Agreements AGENCY: National Oceanic and Atmospheric... this opportunity to comment on proposed and/or continuing information collections, as required by...

  13. 78 FR 68816 - Proposed Information Collection; Comment Request; NOAA Space-Based Data Collection System (DCS...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-15

    ... National Oceanic and Atmospheric Administration Proposed Information Collection; Comment Request; NOAA Space- Based Data Collection System (DCS) Agreements AGENCY: National Oceanic and Atmospheric... this opportunity to comment on proposed and/or continuing information collections, as required by...

  14. Suomi National Polar Partnership (SNPP) Environmental Products

    NASA Astrophysics Data System (ADS)

    Thomas, W.; Grant, K. D.; Miller, S. W.; Jamilkowski, M. L.

    2012-12-01

    The National Oceanic and Atmospheric Administration (NOAA) and National Aeronautics and Space Administration (NASA) are jointly acquiring the next-generation civilian weather and environmental satellite system: the Joint Polar Satellite System (JPSS). JPSS will contribute the afternoon orbit component and ground processing system of the restructured National Polar-orbiting Operational Environmental Satellite System (NPOESS). As such, the Joint Polar Satellite System replaces the current Polar-orbiting Operational Environmental Satellites (POES) managed by the National Oceanic and Atmospheric Administration and the ground processing component of both Polar-orbiting Operational Environmental Satellites and the Defense Meteorological Satellite Program (DMSP) replacement, previously known as the Defense Weather Satellite System (DWSS), managed by the Department of Defense (DoD). The JPSS satellites will carry a suite of sensors designed to collect meteorological, oceanographic, climatological, and solar-geophysical observations of the earth, atmosphere, and space. The ground processing system for JPSS is known as the JPSS Common Ground System (JPSS CGS), and consists of a Command, Control, and Communications Segment (C3S) and an Interface Data Processing Segment (IDPS). Both segments are developed by Raytheon Intelligence and Information Systems (IIS). The C3S currently flies the Suomi National Polar Partnership (Suomi NPP) satellite and transfers mission data from Suomi NPP and between the ground facilities. The IDPS processes Suomi NPP satellite data to provide Environmental Data Records (EDRs) to NOAA and DoD processing centers operated by the United States government. When the JPSS-1 satellite is launched in early 2017, the responsibilities of the C3S and the IDPS will be expanded to support both Suomi NPP and JPSS-1. The Suomi NPP spacecraft launched on October 28, 2011 and is currently undergoing an extensive Calibration and Validation campaign. Given that public

  15. NOAA Budget Proposal Calls for a Small Increase, But Several Programs Would Be Sharply Cut

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    2014-04-01

    The White House's proposed budget of 5.497 billion for the National Oceanic and Atmospheric Administration (NOAA) for fiscal year (FY) 2015 would be good news for the agency overall if Congress goes along with the Obama administration's funding plan. The proposal would increase NOAA's discretionary budget by 174.1 million, 3.27% above the FY 2014 enacted budget (see Table ). The White House announced the overall federal budget on 4 March, and the NOAA budget "blue book" with specific funding numbers was issued in mid-March.

  16. The EUMETSAT Polar System - Achievements Two Years after Launch of Metop- A

    NASA Astrophysics Data System (ADS)

    Munro, R.; Holmlund, K.; Klaes, D.; Schmetz, J.

    2008-12-01

    Metop-A, the first of the Metop series of polar-orbiting operational meteorological satellites was launched on the 19th October 2006. The remaining two satellites in the series will be launched in 2011 and 2015. Metop is Europe's first polar-orbiting satellite dedicated to operational meteorology. It represents the European contribution to a new cooperative venture with the United States - the Initial Joint Polar System IJPS - providing data that is used to monitor our climate and improve weather forecasting. Europe serves the mid- morning orbit, whereas NOAA will continue to serve the afternoon orbit. A new generation of European instruments that offer improved remote sensing capabilities to both meteorologists and climatologists are carried along with a set of "heritage" instruments provided by the United States. The new European instruments have been respectively developed by ESA (ASCAT, GRAS, GOME-2), CNES (IASI) and EUMETSAT (MHS) and will offer advanced sounding capabilities, the measurement of ocean surface wind as well as improved observation of ozone and other trace gases. Providing unprecedented accuracy in meteorological data, the European contribution will lead to a better understanding of our climate. Meteorological "heritage" instruments provided by the United States are part of the complement of American instruments provided by the National Oceanic and Atmospheric Administration (NOAA) to fly on Metop-A and -B, and, with the exception of HIRS, also on Metop-C. They are the AMSU-A1 and A2 Advanced Microwave Sounding Units, the HIRS/4 High Resolution Infrared Sounder and the AVHRR Advanced Very High Resolution Radiometer. They fly also on the NOAA afternoon satellites (NOAA-18 and NOAA-N'). More than two years after the launch of Metop-A the achievements and perspectives for the Metop series of satellites will be presented.

  17. Mission description and in-flight operations of ERBE instruments on ERBS, NOAA 9, and NOAA 10 spacecraft

    NASA Technical Reports Server (NTRS)

    Weaver, William L.; Bush, Kathryn A.; Degnan, Keith T.; Howerton, Clayton E.; Tolson, Carol J.

    1992-01-01

    Instruments of the Earth Radiation Budget Experiment (ERBE) are operating on three different Earth-orbiting spacecraft. The Earth Radiation Budget Satellite (ERBS) is operated by NASA, and NOAA 9 and NOAA 10 weather satellites are operated by the National Oceanic and Atmospheric Administration (NOAA). This paper is the second in a series that describes the ERBE mission, and data processing and validation procedures. This paper describes the spacecraft and instrument operations for the second full year of in-orbit operations, which extend from February 1986 through January 1987. Validation and archival of radiation measurements made by ERBE instruments during this second year of operation were completed in July 1991. This period includes the only time, November 1986 through January 1987, during which all ERBE instruments aboard the ERBE, NOAA 9, and NOAA 10 spacecraft were simultaneously operational. This paper covers normal and special operations of the spacecraft and instruments, operational anomalies, and the responses of the instruments to in-orbit and seasonal variations in the solar environment.

  18. NOAA Ocean Exploration 2003: A Scientific Overview

    NASA Astrophysics Data System (ADS)

    Hammond, S. R.

    2003-12-01

    A little over three years ago, a panel of leading ocean scientists, explorers, and educators developed a national strategy for ocean exploration. Their report, "Discovering Earth's Final Frontier: A U.S. Strategy for Ocean Exploration," opened the door to a new way of thinking about ocean exploration and inspired the National Oceanic and Atmospheric Administration (NOAA) to embark on a mission to expand knowledge and appreciation of the ocean. This year, in collaboration with over 100 partners including university, international, federal, state and tribal science agencies, private research and outreach organizations, civic groups, aquariums and museums, NOAA engaged in major multidisciplinary expeditions and multiple projects around the world aimed at mapping the ocean in new ways, understanding ocean interactions, developing sensors and tools, and reaching out in new ways to stakeholders to communicate findings. Expeditions and projects undertaken this year continued to build on inaugural work in 2001 and 2002 and continue to set a precedent for high quality discovery-based ocean research and exploration. This presentation will focus on expedition highlights and future program directions.

  19. Satellite ocean remote sensing at NOAA/NESDIS

    NASA Astrophysics Data System (ADS)

    Bayler, Eric J.

    2004-10-01

    Satellite oceanography within the Center for Satellite Applications and Research (STAR) in National Oceanic and Atmospheric Administration"s (NOAA) National Environmental Satellite, Data, and Information Service (NESDIS) focuses on observation retrievals and applications to address the NOAA missions of environmental assessment, prediction, and stewardship. Satellite oceanography within NOAA/NESDIS is an end-to-end process, addressing user requirements, sensor design support, observation retrieval research and development, calibration, applications and product research and development, the transition of research to operations, continuing product validation, and operational user support. The breadth of scientific investigation encompasses three functional areas: satellite ocean sensors, ocean dynamics/data assimilation, and marine ecosystems/climate. A cross-cutting science team from these functional areas has been established for each core subject: sea-surface temperature, sea-surface height, sea-surface roughness, ocean color, ocean surface winds, and sea ice. These science teams pursue the science and issues end to end within the core subject, with the primary objective being the transition of research to operations. Data fusion opportunities between science teams are also pursued. Each science team area addresses the common themes of calibration/validation, data assimilation, climate, and operational oceanography. Experimental and operational products, as well as user support, are provided to the user community via the NOAA OceanWatch/CoastWatch program.

  20. NOAA Activities and Plans for New Operational Space Weather Platforms and Sensors

    NASA Astrophysics Data System (ADS)

    Biesecker, D. A.; Mulligan, P.; Cash, M. D.; Reinard, A.; Simpson, M.; Diedrich, B.; Socker, D. G.

    2013-12-01

    The National Oceanic and Atmospheric Administration (NOAA) is vigorously pursuing several space weather platforms that have been demonstrated as requiring replacement. In this time of limited budgets, this has led to the need for creative and innovative solutions. Just as importantly, NOAA is only 13 months away from the launch of its first L1 solar wind monitor, the DSCOVR mission. At the same time, a private company, L'Garde Inc. will be launching a solar sail mission with NOAA as a partner. Recognizing the importance of solar wind monitoring and the need for continuity, the planning process is already underway for the DSCOVR follow-on mission and scenarios for that include commercial data purchases and solar sails. Finally, NOAA planning for an operational coronagraph is moving forward, with continuing development of the Naval Research Laboratory's Compact Coronagraph (CCOR). We will provide details on the current NOAA plans for each of these missions.

  1. NOAA's Global Earth Observation - Integrated Data Environment (GEO-IDE)

    NASA Astrophysics Data System (ADS)

    McDonald, K. R.

    2007-12-01

    The international Group on Earth Observation (GEO) and the U.S. coordination group, USGEO, have identified nine societal benefit areas that require environmental data of a wide range of types and from many diverse sources. GEO has called on the nations of the world to ensure that the relevant data that they hold is made accessible and useful to these applications. In response, nations and their environmental agencies are addressing the challenges associated with data integration of these distributed and diverse data types. The National Oceanic and Atmospheric Administration (NOAA) holds extremely large collections of data describing the physical and biological properties of the Earth's environment. To date, the data collections and the systems that support them have been acquired by individually funded and managed programs with differing requirements, standards, interfaces and conventions, mirroring the data integration issues faced at the national and international level. The Global Earth Observation - Integrated Data Environment (GEO-IDE) has been initiated by NOAA to address these issues for its own interdisciplinary applications as well as those of the the broader national and international iniatives. The concept and initial plans for GEO-IDE have been developed by the Data Management Integration Team (DMIT), a group of data management professionals representing all NOAA's Line Offices, Goal Teams and the office of the CIO. The goal of GEO-IDE is to define an architecture and the associated processes necessary to establish the required standards and guidelines that allow NOAA's data providers to make their products available as a set of interoperable services. GEO-IDE is addressing the integration of existing data services while at the same time providing guidance to future data system development activities. It is intended to meet an important NOAA need while also supporting NOAA's contribution to USGEO and GEO.

  2. Distributed Datamining for NASA/NOAA databases

    NASA Astrophysics Data System (ADS)

    Chen, R.; Park, B. H.; Sivakumar, K.; Kargupta, H.; Ma, J.; da, M.

    2002-12-01

    sources: NASA DAO data and NOAA SAA data. The NASA DAO data is a subset of the Data Assimilation Office's (DAO) monthly mean data set. It has global spatial coverage and a temporal coverage ranging from March 1980 to November 1993. The NOAA SAA data is a product of NOAA and US department of defense (DOD) US Polar-orbiting environment satellites (POES). Seventeen features from NASA DAO and eight features from NOAA SAA data was used in our experiments. A Bayesian network (BN) model was first contructed from the two datasets combined. This BN, referred to as the centralized BN, served as the ground truth for comparing the performance of our collective BN learning algorithm. Our preliminary experiments reveal a number of interesting trends. Correlations between specific DAO and NOAA data features are evident. Specific features are consistently observed as root nodes in the BN, suggesting that these features could possibly be the ``cause'' for certain phenomenon. Seasonal trends in the data reflect appropriate seasonal changes in the BN model.

  3. Creating a More Inclusive Talent Pool for the GeoSciences in NOAA Mission Fields:

    NASA Astrophysics Data System (ADS)

    Rousseau, J.; Trotman, A. A.

    2014-12-01

    The National Oceanic and Atmospheric Administration (NOAA) Educational Partnership Program (EPP) with Minority Serving Institutions (MSI) is recognized as a model federal Science, Technology, Engineering, and Mathematics, (STEM) education investment. The EPP has a premier goal of increasing the numbers of students, especially from underrepresented communities, who are trained and awarded degrees in NOAA mission-relevant STEM fields. This goal is being achieved through awards to support undergraduate and graduate level student scholarships and to enhance NOAA mission-relevant education, research and internships at EPP Cooperative Science Centers located at MSIs. The internships allow undergraduate students to gain technical experience in STEM fields while gaining an understanding of a science mission agency such as NOAA. EPP has built evidence supporting the value of internships with its Undergraduate Scholarship Program (USP). Program metrics are used to refine and improve the internship to ensure student success. Scholarships are competitively awarded and requires applicants to submit a personal statement detailing the NOAA-relevant professional experience the applicant seeks to acquire, and gauges the depth of understanding of the work of NOAA.A focus is the EPP USP Student Internship at NOAA, which has two training phases. The first occurs at NOAA HQ in Maryland and incorporates exposure to NOAA professional culture including mentoring and professional development for scholarship recipients. The second occurs at NOAA facilities in the 50 states and US Territories. The internship projects are conducted under the supervision of a NOAA mentor and allow the scholars to: acquire increased science and technology skills: be attached to a research group and participate in a research activity as part of the team; and, acquire practical experience and knowledge of the day-to-day work of the NOAA facility. EPP has recently initiated the Experiential Research and Training

  4. Applications systems verification and transfer project. Volume 6: Operational applications of satellite snow-cover observations NOAA/NESS support study

    NASA Technical Reports Server (NTRS)

    Schneider, S. R.

    1981-01-01

    Geostationary and polar orbiting satellite data from the National Oceanic and Atmospheric Administration were used to operationally provide field hydrologists with basin snowcover percentages for inclusion in runoff models. Data reduction is accomplished thru the use of optical rectification devices and electronic color density slicers. Over two thousand satellite-derived snow maps covering 30 different basins in the western United States were provided to users. Plans for improving snowmapping techniques on computer interactive systems and by all-digital analysis are presented. A description of the newest generation of NOAA polar orbiters, TIROS-N, and its potential for snowmapping is reviewed. Snowcover percentages for all basins determined between November 1974 and July 1978 are presented in tabular format.

  5. 77 FR 15358 - National Oceanic and Atmospheric Administration

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-15

    ... National Oceanic and Atmospheric Administration Availability of Seats for the Monitor National Marine...), National Oceanic and Atmospheric Administration (NOAA), Department of Commerce (DOC). ACTION: Notice and..., National Ocean Service, National Oceanic and Atmospheric Administration. BILLING......

  6. A NOAA/NOS Sea Level Advisory

    NASA Astrophysics Data System (ADS)

    Sweet, W.

    2011-12-01

    In order for coastal communities to realize current impacts and become resilient to future changes, sea level advisories/bulletins are necessary that systematically monitor and document non-tidal anomalies (residuals) and flood-watch (elevation) conditions. The need became apparent after an exceptional sea level anomaly along the U.S. East Coast in June - July of 2009 when higher than normal sea levels coincided with a perigean-spring tide and flooded many coastal regions. The event spurred numerous public inquiries to the National Oceanic and Atmospheric Administration's (NOAA) Center for Operational Oceanographic Products and Services (CO-OPS) from coastal communities concerned because of the lack of any coastal storm signatures normally associated with such an anomaly. A subsequent NOAA report provided insight into some of the mechanisms involved in the event and methods for tracking their reoccurrences. NOAA/CO-OPS is the U.S. authority responsible for defining sea level datums and tracking their relative changes in support of marine navigation and national and state land-use boundaries. These efforts are supported by the National Water Level Observation Network (NWLON), whose long-term and widespread observations largely define a total water level measurement impacting a coastal community. NWLON time series provide estimates of local relative sea level trends, a product increasingly utilized by various stakeholders planning for the future. NWLON data also capture significant short-term changes and conveyance of high-water variations (from surge to seasonal scale) provides invaluable insight into inundation patterns ultimately needed for a more comprehensive planning guide. A NOAA/CO-OPS Sea Level Advisory Project will enhance high-water monitoring capabilities by: - Automatically detecting sea level anomalies and flood-watch occurrences - Seasonally calibrating the anomaly thresholds to a locality in terms of flood potential - Alerting for near

  7. NOAA's Scientific Data Stewardship Program

    NASA Astrophysics Data System (ADS)

    Bates, J. J.

    2004-12-01

    The NOAA mission is to understand and predict changes in the Earth's environment and conserve and manage coastal and marine resources to meet the Nation's economic, social and environmental needs. NOAA has responsibility for long-term archiving of the United States environmental data and has recently integrated several data management functions into a concept called Scientific Data Stewardship. Scientific Data Stewardship a new paradigm in data management consisting of an integrated suite of functions to preserve and exploit the full scientific value of NOAA's, and the world's, environmental data These functions include careful monitoring of observing system performance for long-term applications, the generation of authoritative long-term climate records from multiple observing platforms, and the proper archival of and timely access to data and metadata. NOAA has developed a conceptual framework to implement the functions of scientific data stewardship. This framework has five objectives: 1) develop real-time monitoring of all satellite observing systems for climate applications, 2) process large volumes of satellite data extending up to decades in length to account for systematic errors and to eliminate artifacts in the raw data (referred to as fundamental climate data records, FCDRs), 3) generate retrieved geophysical parameters from the FCDRs (referred to as thematic climate data records TCDRs) including combining observations from all sources, 4) conduct monitoring and research by analyzing data sets to uncover climate trends and to provide evaluation and feedback for steps 2) and 3), and 5) provide archives of metadata, FCDRs, and TCDRs, and facilitate distribution of these data to the user community. The term `climate data record' and related terms, such as climate data set, have been used for some time, but the climate community has yet to settle on a concensus definition. A recent United States National Academy of Sciences report recommends using the

  8. Noaa's Jpss Program: the Next Generation of Operational Earth Observations

    NASA Astrophysics Data System (ADS)

    Goldberg, M.

    2012-12-01

    The Joint Polar Satellite System is NOAA's new operational satellite program and includes the SUOMI National Polar-orbiting Partnership (NPP) as a bridge between NOAA's operational Polar Orbiting Environmental Satellite (POES) series, which began in 1978, and the first JPSS operational satellite scheduled for launch in 2017. The NPP was completed as originally planned and launched on October 28, 2011 and carries the following five sensors: - Visible/Infrared Imager Radiometer Suite (VIIRS) that provides advanced imaging and radiometric capabilities. - Cross-track Infrared Sounder (CrIS) that provides improved atmospheric moisture and temperature profiles in clear conditions. - Advanced Technology Microwave Sounder (ATMS) that provides improved atmospheric moisture and temperature profiles in cloudy conditions. - Ozone Mapping and Profiler Suite (OMPS) that provides improved vertical and horizontal measurements of the distribution of ozone in the Earth's atmosphere. - Clouds and the Earth's Radiant Energy System (CERES) sensor that continues precise, calibrated global measurements of the earth's radiation budget JPSS provides critical data for key NOAA product and services, which the Nation depends on. These products and services include: Weather forecasting - data from the CRIS and the ATMS are needed to forecast weather events out to 7 days. Nearly 85% of all data used in weather forecasting are from polar orbiting satellites. Environmental monitoring - data from the VIIRS are used to monitor the environment including the health of coastal ecosystems, drought conditions, hydrology, fire, smoke, dust, snow and ice, and the state of oceans, including sea surface temperature and ocean color. Climate monitoring - data from JPSS instruments, including OMPS, CERES and TSIS will provide continuity to climate data records established using NOAA POES and NASA Earth Observing System (EOS) satellite observations. These data records provide a unified and coherent long

  9. NOAA Budget Increases to $4.1 Billion, But Some Key Items Are Reduced

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    2008-02-01

    The Bush administration has proposed a US$4.1 billion budget for fiscal year (FY) 2009 for the U.S. National Oceanic and Atmospheric Administration (NOAA). The proposed budget, which would be the agency's largest ever, is $202.6 million, or 5.2%, above the FY 2008 enacted budget. By topping $4 billion and the amount Congress passed for FY 2008, the budget proposal crosses into ``a new threshold,'' according Navy Vice Admiral Conrad Lautenbacher, undersecretary of commerce for oceans and atmosphere and NOAA administrator.

  10. 77 FR 13562 - Request for Comments on the 5-Year Review of NOAA's Policy on Partnerships in the Provision of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-07

    ... on Partnerships in the Provision of Environmental Information AGENCY: National Weather Service (NWS... request for comments. SUMMARY: The National Weather Service of the National Oceanic and Atmospheric... National Weather Service of the National Oceanic and Atmospheric Administration (NOAA) is undertaking...

  11. The GOES-R Advanced Baseline Imager: polarization sensitivity and potential impacts

    NASA Astrophysics Data System (ADS)

    Pearlman, Aaron J.; Cao, Changyong; Wu, Xiangqian

    2015-09-01

    In contrast to the National Oceanic and Atmospheric Administration's (NOAA's) current geostationary imagers for operational weather forecasting, the next generation imager, the Advanced Baseline Imager (ABI) aboard the Geostationary Operational Environmental Satellite R-Series (GOES-R), will have six reflective solar bands - five more than currently available. These bands will be used for applications such as aerosol retrievals, which are influenced by polarization effects. These effects are determined by two factors: instrument polarization sensitivity and the polarization states of the observations. The former is measured as part of the pre-launch testing program performed by the instrument vendor. We analyzed the results of the pre-launch polarization sensitivity measurements of the 0.47 μm and 0.64 μm channels and used them in conjunction with simulated scene polarization states to estimate potential on-orbit radiometric impacts. The pre-launch test setups involved illuminating the ABI with an integrating sphere through either one or two polarizers. The measurement with one (rotating) polarizer yields the degree of linear polarization of ABI, and the measurements using two polarizers (one rotating and one fixed) characterized the non-ideal properties of the polarizer. To estimate the radiometric performance impacts from the instrument polarization sensitivity, we simulated polarized scenes using a radiative transfer code and accounted for the instrument polarization sensitivity over its field of regard. The results show the variation in the polarization impacts over the day and by regions of the full disk can reach up to 3.2% for the 0.47μm channel and 4.8% for the 0.64μm channel. Geostationary orbiters like the ABI give the unique opportunity to show these impacts throughout the day compared to low earth orbiters, which are more limited to certain times of day. This work may enhance the ability to diagnose anomalies on-orbit.

  12. Accuracy of total ozone retrieval from NOAA SBUV/2 measurements: Impact of instrument performance

    SciTech Connect

    Ahmad, Z.; Deland, M.T.; Cebula, R.P.; Weiss, H.; Wellemeyer, C.G.; Planet, W.G.; Lienesch, J.H.; Bowman, H.D.; Miller, A.J.; Nagatani, R.M. |

    1994-11-01

    The National Oceanic and Atmospheric Administration/National Environmental Satellite Data and Information Service (NOAA/NESDIS) has been collecting and evaluating the solar backscattered ultraviolet (SBUV/2) instrument data from NOAA 9 and NOAA 11 spacecraft since March 1985. Over 5 years (March 1985 to October 1990) of NOAA 9 (version 5.0) and over 4 years (January 1989 to June 1993) of NOAA 11 (version 6.0) reprocessed data are now available to the scientific community to study geophysical phenomena involving ozone. This paper examines the impact of the instrument performance on total ozone retrieval from the two instruments. We estimate that at the end of October 1990 the total postlaunch error for NOAA 9 due to instrument alone is -2.2%. A significant fraction of this error (-1.9%) is due to diffuser degradation which is not accounted for in the version 5 reprocessing. The estimate for NOAA 11 total postlaunch instrument error, at the end of June 1993, is -0.4%.

  13. NOAA Marine and Arctic Monitoring Using UASs

    NASA Astrophysics Data System (ADS)

    Jacobs, T.; Coffey, J. J.; Hood, R. E.; Hall, P.; Adler, J.

    2014-12-01

    Unmanned systems have the potential to efficiently, effectively, economically and safely bridging critical observation requirements in an environmentally friendly manner. As the United States' Marine and Arctic areas of interest expand and include hard-to-reach regions of the Earth (such as the Arctic and remote oceanic areas) optimizing unmanned capabilities will be needed to advance the United States' science, technology and security efforts. Through increased multi-mission and multi-agency operations using improved inter-operable and autonomous unmanned systems, the research and operations communities will better collect environmental intelligence and better protect our Country against hazardous weather, environmental, marine and polar hazards. This presentation will examine NOAA's Marine and Arctic Monitoring UAS strategies which includes developing a coordinated effort to maximize the efficiency and capabilities of unmanned systems across the federal government and research partners. Numerous intra- and inter-agency operational demonstrations and assessments have been made to verify and validated these strategies. The presentation will also discuss the requisite sUAS capabilities and our experience in using them.

  14. 78 FR 57131 - Membership of the NOAA Performance Review Board

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-17

    ... Membership of the NOAA Performance Review Board (PRB). SUMMARY: In accordance with 5 U.S.C. 4314(c)(4), NOAA announces the appointment of members who will serve on the NOAA's PRB. The NOAA PRB is responsible for... new members to the NOAA PRB will be for a period of two years. DATES: The effective date of service...

  15. NOAA's hydrolab conducts reef studies

    NASA Astrophysics Data System (ADS)

    This summer, scuba-diving scientists operating from Hydrolab, NOAA's undersea laboratory, are carrying out four experiments aimed at producing better management of coral reefs and their fishery resources. Hydrolab is located at a depth of 50 feet, near the mouth of the Salt River, off St. Croix, U.S. Virgin Islands. The lab houses four scientists for up to 2 weeks at a time, permitting them to swim out into the water to conduct research. The projects make use of both the natural coral reef near Hydrolab and the nearby artificial reef constructed for comparison studies.

  16. Rescuing NOAA's Earliest Airphoto Archive

    NASA Astrophysics Data System (ADS)

    Hsu, F. C.; Baugh, K.; Elvidge, C.; Hendy, M. V.

    2014-12-01

    In 2004 NGDC had rediscovered a previously lost collection of airphotos produced by Coast and Geodetic Survey (later NOAA-NOS National Geodetic Survey) dated from late 1920s to 1960s. The collection focuses on U.S. coastline and the primary goal of these photos was to provide reference for coastal map construction. There are approximately 200,000 frames of film and print taken by multiple instruments. The majority of the photographs were taken by multilens cameras which captures nadir and oblique imageries to cover a larger area hence reduce the number of flightlines required. This huge collection not only shows the change of U.S coast over decades but also gracefully demonstrates how the technique of photogrammetry evolved. It is regarded as the premier record of land cover and coastal features for the era prior to the advent of satellite remote sensing. The collection was stored for many years at the Federal Records Center in Takoma Park, Maryland. After aging past the retention date, the FRC was ready to dispose the collection. NGDC volunteered to pay for the shipping and the collection was transferred to NGDC in 2004. In 2009-11 approximately 10% of the collection was digitally scanned by NOAA's Climate Data Modernization Program. NGDC has organized the scanned photos based on flight lines and has built a web access system. The unscanned portion of the collection is in storage with the Federal Record Center in Denver, Colorado.

  17. The NOAA Annual Greenhouse Gas Index - 2012 Update

    NASA Astrophysics Data System (ADS)

    Butler, J. H.; Montzka, S. A.; Conway, T. J.; Dlugokencky, E. J.; Elkins, J. W.; Masari, K. A.; Schnell, R. C.; Tans, P. P.

    2012-04-01

    For the past several decades, the U.S. National Oceanic and Atmospheric Administration (NOAA) has monitored all of the long-lived atmospheric greenhouse gases. These global measurements have provided input to databases, analyses, and various relevant products, including national and international climate assessments. To make these data more useful and available, NOAA several years ago released its Annual Greenhouse Gas Index (AGGI), http://www.esrl.noaa.gov/gmd/aggi. This index, based on the climate forcing properties of long-lived greenhouse gases, was designed to enhance the connection between scientists and society by providing a normalized standard that can be easily understood and followed. The long-lived gases capture most of the radiative forcing, and uncertainty in their measurement is very small. This allows us to provide a robust measure and assessment of the long-term, radiative influence of these gases. Continuous greenhouse gas measurements are made at baseline climate observatories (Pt. Barrow, Alaska; Mauna Loa, Hawaii; American Samoa; and the South Pole) and weekly flask air samples are collected through a global network of over 60 sites, including an international cooperative program for carbon dioxide and other greenhouse gases. The gas samples are analyzed at NOAA's Earth System Research Laboratory (NOAA/ESRL) in Boulder, Colorado, using WMO standard reference gases prepared by NOAA/ESRL. The AGGI is normalized to 1.00 in 1990, the Kyoto Climate Protocol baseline year. In 2010, the AGGI was 1.29, indicating that global radiative forcing by long-lived greenhouse gases had increased 29% since 1990. During the 1980s CO2 accounted for about 50-60% of the annual increase in radiative forcing by long-lived greenhouse gases, whereas, since 2000, it has accounted for 85-90% of this increase each year. After nearly a decade of virtually level concentrations in the atmosphere, methane (CH4) increased measurably over the past 2-3 years, as did its

  18. Joint Polar Satellite System (JPSS) Common Ground System (CGS) Current Technical Performance Measures

    NASA Astrophysics Data System (ADS)

    Cochran, S.; Panas, M.; Jamilkowski, M. L.; Miller, S. W.

    2015-12-01

    ABSTRACT The National Oceanic and Atmospheric Administration (NOAA) and National Aeronautics and Space Administration (NASA) are jointly acquiring the next-generation civilian weather and environmental satellite system: the Joint Polar Satellite System (JPSS). The Joint Polar Satellite System will replace the afternoon orbit component and ground processing system of the current Polar-orbiting Operational Environmental Satellites (POES) managed by NOAA. The JPSS satellites will carry a suite of sensors designed to collect meteorological, oceanographic, climatological and geophysical observations of the Earth. The ground processing system for JPSS is known as the JPSS Common Ground System (JPSS CGS). Developed and maintained by Raytheon Intelligence, Information and Services (IIS), the CGS is a multi-mission enterprise system serving NOAA, NASA and their national and international partners. The CGS has demonstrated its scalability and flexibility to incorporate multiple missions efficiently and with minimal cost, schedule and risk, while strengthening global partnerships in weather and environmental monitoring. The CGS architecture is being upgraded to Block 2.0 in 2015 to "operationalize" S-NPP, leverage lessons learned to date in multi-mission support, take advantage of more reliable and efficient technologies, and satisfy new requirements and constraints in the continually evolving budgetary environment. To ensure the CGS meets these needs, we have developed 49 Technical Performance Measures (TPMs) across 10 categories, such as data latency, operational availability and scalability. This paper will provide an overview of the CGS Block 2.0 architecture, with particular focus on the 10 TPM categories listed above. We will provide updates on how we ensure the deployed architecture meets these TPMs to satisfy our multi-mission objectives with the deployment of Block 2.0.

  19. Joint Polar Satellite System (JPSS) System Architecture: Suomi-NPP to the Future

    NASA Astrophysics Data System (ADS)

    Furgerson, J.; Layns, A.; Feeley, J. H.; Griffin, A.; Trumbower, G.

    2014-12-01

    The National Oceanic and Atmospheric Administration (NOAA) is acquiring the next-generation weather and environmental satellite system, named the Joint Polar Satellite System (JPSS). NOAA has overall responsibility for the system including funding and requirements while the National Aeronautics and Space Administration (NASA) serves as the acquisition and development agent. The Suomi National Polar-orbiting Partnership (S-NPP) satellite was launched on 28 October, 2011, and is a pathfinder for JPSS and provides continuity for the NASA Earth Observation System and the NOAA Polar-orbiting Operational Environmental Satellite (POES) system. S-NPP and the follow-on JPSS satellites will operate in the 1330 LTAN orbit. JPSS-1 is scheduled to launch in early 2017. NASA is developing the Common Ground System which will process JPSS data and has the flexibility to process data from other satellites. This poster will provide a top level status update of the program, as well as an overview of the JPSS system architecture. The space segment carries a suite of sensors that collect meteorological, oceanographic, and climatological observations of the earth and atmosphere. The system design allows centralized mission management and delivers high quality environmental products to military, civil and scientific users through a Command, Control, and Communication Segment (C3S). The data processing for S-NPP/JPSS is accomplished through an Interface Data Processing Segment (IDPS)/Field Terminal Segment (FTS) that processes S-NPP/JPSS satellite data to provide environmental data products to U.S. and international partners as well as remote terminal users throughout the world.

  20. 77 FR 33443 - National Oceanic and Atmospheric Administration

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-06

    ... National Oceanic and Atmospheric Administration Pacific Fishery Management Council; Public Meeting AGENCY: National Marine Fisheries Service (NMFS), National Oceanic and Atmospheric Administration (NOAA), Commerce... Assessment Methods for Data-Moderate Stocks will be held at the National Marine Fisheries Service's...

  1. NOAA draft scientific integrity policy: Comment period open through 20 August

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    2011-08-01

    The National Oceanic and Atmospheric Administration (NOAA) is aiming to finalize its draft scientific integrity policy possibly by the end of the year, Larry Robinson, NOAA assistant secretary for conservation and management, indicated during a 28 July teleconference. The policy “is key to fostering an environment where science is encouraged, nurtured, respected, rewarded, and protected,” Robinson said, adding that the agency's comment period for the draft policy, which was released on 16 June, ends on 20 August. “Science underpins all that NOAA does. This policy is one piece of a broader effort to strengthen NOAA science,” Robinson said, noting that the draft “represents the first ever scientific integrity policy for NOAA. Previously, our policy only addressed research misconduct and focused on external grants. What's new about this policy is that it establishes NOAA's principles for scientific integrity, a scientific code of conduct, and a code of ethics for science supervision and management.”

  2. The NOAA Archives of the 21st Century

    NASA Astrophysics Data System (ADS)

    Casey, K. S.; Relph, J.; Kihn, E.; Bates, J. J.; McCulloch, L.; McDonald, K. R.; Vizbulis, R.

    2009-12-01

    Early in the 21st century, the Open Archival Information System Reference Model (OAIS-RM) swept across the international digital archive community, bringing with it a common language and functional framework for the long term preservation of environmental information. The OAIS-RM has had a significant impact within the National Oceanic and Atmospheric Administration (NOAA), where the archive-related roles and responsibilities of the various offices and entities within the agency were not clearly identified. This lack of clarity was especially acute with respect to interactions between the three NOAA National Data Centers - Oceanographic, Climatic, and Geophysical - and the Comprehensive Large Array-data Stewardship System (CLASS). Through 2008 and 2009, each of these offices individually, then together as a group, undertook an extensive mapping of their existing and planned capabilities to the functional entities of the OAIS-RM. The result of this process was a new clarity which puts the Data Centers forth as the NOAA Archives, with CLASS as the critical supporting information technology (IT) infrastructure. Under this new paradigm, the Data Centers lead all interactions with both data producers and consumers, reflecting their more discipline-focused involvement with and understanding of the designated communities they serve. The CLASS infrastructure focuses now on meeting the common IT requirements of the three Data Centers, reflecting its capabilities and expertise in designing and deploying rigorous IT systems. The new paradigm is allowing NOAA to move forward together in a more unified and cooperative manner, better aligned to meet the 21st century challenges of data stewardship.

  3. NOAA's Data Catalog and the Federal Open Data Policy

    NASA Astrophysics Data System (ADS)

    Wengren, M. J.; de la Beaujardiere, J.

    2014-12-01

    The 2013 Open Data Policy Presidential Directive requires Federal agencies to create and maintain a 'public data listing' that includes all agency data that is currently or will be made publicly-available in the future. The directive requires the use of machine-readable and open formats that make use of 'common core' and extensible metadata formats according to the best practices published in an online repository called 'Project Open Data', to use open licenses where possible, and to adhere to existing metadata and other technology standards to promote interoperability. In order to meet the requirements of the Open Data Policy, the National Oceanic and Atmospheric Administration (NOAA) has implemented an online data catalog that combines metadata from all subsidiary NOAA metadata catalogs into a single master inventory. The NOAA Data Catalog is available to the public for search and discovery, providing access to the NOAA master data inventory through multiple means, including web-based text search, OGC CS-W endpoint, as well as a native Application Programming Interface (API) for programmatic query. It generates on a daily basis the Project Open Data JavaScript Object Notation (JSON) file required for compliance with the Presidential directive. The Data Catalog is based on the open source Comprehensive Knowledge Archive Network (CKAN) software and runs on the Amazon Federal GeoCloud. This presentation will cover topics including mappings of existing metadata in standard formats (FGDC-CSDGM and ISO 19115 XML ) to the Project Open Data JSON metadata schema, representation of metadata elements within the catalog, and compatible metadata sources used to feed the catalog to include Web Accessible Folder (WAF), Catalog Services for the Web (CS-W), and Esri ArcGIS.com. It will also discuss related open source technologies that can be used together to build a spatial data infrastructure compliant with the Open Data Policy.

  4. REPETITIVE DIGITAL NOAA-AVHRR DATA FOR ALASKAN ENGINEERING AND SCIENTIFIC APPLICATIONS.

    USGS Publications Warehouse

    Christie, William M.; Pawlowski, Robert J.; Fleming, Michael D.

    1986-01-01

    Selected digitally enhanced NOAA - Advanced Very High Resolution Radiometer (AVHRR) images taken by the NOAA 6, 7, 8 and 9 Polar Orbiting Satellites demonstrate the capability and application of repetitive low-resolution satellite data to Alaska's engineering and science community. Selected cloud-free visible and thermal infrared images are enhanced to depict distinct oceanographic and geologic processes along Alaska's west coast and adjacent seas. Included are the advance of the Bering Sea ice field, transport of Yukon River sediment into Norton Sound, and monitoring of plume trajectories from the Mount Augustine volcanic eruptions. Presented illustrations are representative of the 94 scenes in a cooperative USGS EROS/NOAA Alaskan AVHRR Digital Archive. This paper will discuss the cooperative efforts in establishing the first year data set and identifying Alaskan applications.

  5. Adding a Mission to the Joint Polar Satellite System (JPSS) Common Ground System (CGS)

    NASA Astrophysics Data System (ADS)

    Miller, S. W.; Grant, K. D.; Jamilkowski, M. L.

    2014-12-01

    The National Oceanic and Atmospheric Administration (NOAA) and National Aeronautics and Space Administration (NASA) are jointly acquiring the next-generation civilian weather and environmental satellite system: the Joint Polar Satellite System (JPSS). The Joint Polar Satellite System will replace the afternoon orbit component and ground processing system of the current Polar-orbiting Operational Environmental Satellites (POES) managed by NOAA. The JPSS satellites will carry a suite of sensors designed to collect meteorological, oceanographic, climatological and geophysical observations of the Earth. The ground processing system for JPSS is known as the JPSS Common Ground System (JPSS CGS). Developed and maintained by Raytheon Intelligence, Information and Services (IIS), the CGS is a multi-mission enterprise system serving NOAA, NASA and their national and international partners. The CGS provides a wide range of support to a number of missions: 1) Command and control and mission management for the Suomi National Polar-orbiting Partnership (S-NPP) mission today, expanding this support to the JPSS-1 satellite and the Polar Free Flyer mission in 2017 2) Data acquisition via a Polar Receptor Network (PRN) for S-NPP, the Japan Aerospace Exploration Agency's (JAXA) Global Change Observation Mission - Water (GCOM-W1), POES, and the Defense Meteorological Satellite Program (DMSP) and Coriolis/WindSat for the Department of Defense (DoD) 3) Data routing over a global fiber Wide Area Network (WAN) for S-NPP, JPSS-1, Polar Free Flyer, GCOM-W1, POES, DMSP, Coriolis/WindSat, the NASA Space Communications and Navigation (SCaN, which includes several Earth Observing System [EOS] missions), MetOp for the European Organisation for the Exploitation of Meteorological Satellites (EUMETSAT), and the National Science Foundation (NSF) 4) Environmental data processing and distribution for S-NPP, GCOM-W1 and JPSS-1 With this established infrastructure and existing suite of missions, the CGS

  6. Mission description and in-flight operations of ERBE instruments on ERBS and NOAA 10 spacecraft, February 1987 - February 1990

    NASA Technical Reports Server (NTRS)

    Busch, Kathryn A.; Degnan, Keith T.

    1994-01-01

    Instruments of the Earth Radiation Budget Experiment (ERBE) are operating on three different Earth-orbiting spacecraft. The Earth Radiation Budget Satellite (ERBS) is operated by the National Aeronautics and Space Administration (NASA), and the NOAA 9 and NOAA 10 weather satellites are operated by the National Oceanic and Atmospheric Administration (NOAA). This paper is the third in a series that describes the ERBE mission in-orbit environments, instrument design and operational features, and data processing and validation procedures. This paper describes the in-flight operations for the ERBE instruments aboard the ERBS and NOAA 10 spacecraft for the period from February 1987 through February 1990. Validation and archival of radiation measurements made by ERBE instruments during this period were completed in May 1992. This paper covers normal and special operations of the spacecraft and instruments, operational anomalies, and the responses of the instruments to in-orbit and seasonal variations in the solar environment.

  7. Lautenbacher will face challenges as new NOAA Head

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    With a non-controversial confirmation hearing on November 8 before the U.S. Senate Commerce Committee, retired U.S. Navy Vice Admiral Conrad Lautenbacher, Jr. is gearing up to soon take over the helm at the National Oceanic and Atmospheric Administration (NOAA). His nomination by the Bush administration also includes serving as undersecretary of commerce for oceans and atmosphere.A number of sources familiar with Lautenbacher indicated that his Navy and managerial skills will be useful in these posts, as he likely will face a number of science, budget, and administrative challenges in running this $3.2-billion agency, which comprises 63% of the Commerce Department budget. These sources also sited Lautenbacher's integrity; his ability to listen to different sides of issues and to consult broadly; his connections to both the scientific and political worlds; and his persuasive ability to get things done.

  8. Assessment of NOAA Processed OceanSat-2 Scatterometer Ocean Surface Vector Wind Products

    NASA Astrophysics Data System (ADS)

    Chang, P.; Jelenak, Z.; Soisuvarn, S.

    2011-12-01

    The Indian Space Research Organization (ISRO) launched the Oceansat-2 satellite on 23 September 2009. Oceansat-2 carries a radar scatterometer instrument (OSCAT) capable of measuring ocean surface vector winds (OSVW) and an ocean color monitor (OCM), which will retrieve sea spectral reflectance. Oceansat-2 is ISRO's second in a series of satellites dedicated to ocean research. It will provide continuity to the services and applications of the Oceansat-1 OCM data along with additional data from a Ku-band pencil beam scatterometer. Oceansat-2 is a three-axis, body stabilized spacecraft placed into a near circular sun-synchronous orbit, at an altitude of 720 kilometers (km), with an equatorial crossing time of around 1200 hours. ISRO, the National Oceanic and Atmospheric Administration (NOAA), the National Aeronautics and Space Administration (NASA) and the European Organization for the Exploitation of Meteorological Satellites (EUMETSAT) share the common goal of optimizing the quality and maximizing the utility of the Oceansat-2 data for the benefit of future global and regional scientific and operational applications. NOAA, NASA and EUMETSAT have been collaboratively working with ISRO on the assessment and analysis of OSCAT data to help facilitate continuation of QuikSCAT's decade-long Ku-band scatterometer data record. NOAA's interests are focused on the utilization of OSCAT data to support operational weather forecasting and warning in the marine environment. OSCAT has the potential to significantly mitigate the loss of NASA's QuikSCAT, which has negatively impacted NOAA's marine forecasting and warning services. Since March 2011 NOAA has been receiving near real time OSCAT measurements via EumetSat. NOAA has developed its own OSCAT wind processor. This processor produces ocean surface vector winds with resolution of 25km. Performance of NOAA OSCAT product will and its availability to larger user community will be presented and discussed.

  9. 15 CFR 995.28 - Use of NOAA emblem.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 15 Commerce and Foreign Trade 3 2013-01-01 2013-01-01 false Use of NOAA emblem. 995.28 Section 995... REQUIREMENTS FOR NOAA HYDROGRAPHIC PRODUCTS AND SERVICES CERTIFICATION REQUIREMENTS FOR DISTRIBUTORS OF NOAA HYDROGRAPHIC PRODUCTS Requirements for Certified Distributors and Value Added Distributors of NOAA ENC...

  10. 15 CFR 995.28 - Use of NOAA emblem.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 15 Commerce and Foreign Trade 3 2014-01-01 2014-01-01 false Use of NOAA emblem. 995.28 Section 995... REQUIREMENTS FOR NOAA HYDROGRAPHIC PRODUCTS AND SERVICES CERTIFICATION REQUIREMENTS FOR DISTRIBUTORS OF NOAA HYDROGRAPHIC PRODUCTS Requirements for Certified Distributors and Value Added Distributors of NOAA ENC...

  11. 15 CFR 995.28 - Use of NOAA emblem.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 15 Commerce and Foreign Trade 3 2010-01-01 2010-01-01 false Use of NOAA emblem. 995.28 Section 995... REQUIREMENTS FOR NOAA HYDROGRAPHIC PRODUCTS AND SERVICES CERTIFICATION REQUIREMENTS FOR DISTRIBUTORS OF NOAA HYDROGRAPHIC PRODUCTS Requirements for Certified Distributors and Value Added Distributors of NOAA ENC...

  12. 15 CFR 995.28 - Use of NOAA emblem.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 15 Commerce and Foreign Trade 3 2012-01-01 2012-01-01 false Use of NOAA emblem. 995.28 Section 995... REQUIREMENTS FOR NOAA HYDROGRAPHIC PRODUCTS AND SERVICES CERTIFICATION REQUIREMENTS FOR DISTRIBUTORS OF NOAA HYDROGRAPHIC PRODUCTS Requirements for Certified Distributors and Value Added Distributors of NOAA ENC...

  13. 15 CFR 995.28 - Use of NOAA emblem.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 15 Commerce and Foreign Trade 3 2011-01-01 2011-01-01 false Use of NOAA emblem. 995.28 Section 995... REQUIREMENTS FOR NOAA HYDROGRAPHIC PRODUCTS AND SERVICES CERTIFICATION REQUIREMENTS FOR DISTRIBUTORS OF NOAA HYDROGRAPHIC PRODUCTS Requirements for Certified Distributors and Value Added Distributors of NOAA ENC...

  14. In Brief: NOAA predicts busy hurricane season

    NASA Astrophysics Data System (ADS)

    Zielinski, Sarah

    2007-06-01

    Scientists at NOAA's Climate Prediction Center estimate that there is a 75% chance that the 2007 Atlantic hurricane season will be more active than average, with 13-17 named storms, 7-10 hurricanes, and 3-5 hurricanes reaching Category 3 or higher. An average hurricane season has 11 named storms, 6 hurricanes, and 2 major hurricanes. According to Gerry Bell, NOAA's lead seasonal hurricane forecaster, the 2007 season could be in the higher range of predicted activity if a La Niña forms, or even higher if the La Niña is particularly strong. Last year, NOAA also predicted an above-normal Atlantic season; the actual season, however, was quiet, to which NOAA scientists credit an unexpected El Ni~o that developed rapidly and created an environment hostile to storm formation and strengthening.

  15. NOAA's Use of High-Resolution Imagery

    NASA Technical Reports Server (NTRS)

    Hund, Erik

    2007-01-01

    NOAA's use of high-resolution imagery consists of: a) Shoreline mapping and nautical chart revision; b) Coastal land cover mapping; c) Benthic habitat mapping; d) Disaster response; and e) Imagery collection and support for coastal programs.

  16. NOAA's Space Weather Prediction Center, Forecast Office

    NASA Video Gallery

    The Forecast Office of NOAA's Space Weather Prediction Center is the nation's official source of alerts, warnings, and watches. The office, staffed 24/7, is always vigilant for solar activity that ...

  17. 77 FR 32572 - (NOAA) National Climate Assessment and Development Advisory Committee (NCADAC)

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-01

    ... National Oceanic and Atmospheric Administration (NOAA) National Climate Assessment and Development Advisory... National Climate Assessment and Development Advisory Committee (NCADAC) was established by the Secretary of... science and information pertaining to current and future impacts of climate. Time and Date: The...

  18. Accuracy assessment of NOAA's daily reference evapotranspiration maps for the Texas High Plains

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The National Oceanic and Atmospheric Administration (NOAA) provides daily reference ET for the continental U.S. using climatic data from North American Land Data Assimilation System (NLDAS). This data provides large scale spatial representation for reference ET, which is essential for regional scal...

  19. Accuracy assessment of NOAA gridded daily reference evapotranspiration for the Texas High Plains

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The National Oceanic and Atmospheric Administration (NOAA) provides daily reference evapotranspiration (ETref) maps for the contiguous United States using climatic data from North American Land Data Assimilation System (NLDAS). This data provides large-scale spatial representation of ETref, which i...

  20. 75 FR 6354 - NOAA Great Lakes Habitat Restoration Program Project Grants under the Great Lakes Restoration...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-09

    ... of Grant Funds for Fiscal Year 2010, published in the Federal Register (75 FR 3101). That... contained in the Federal Register notice of February 11, 2008 (73 FR 7696), are applicable to this... National Oceanic and Atmospheric Administration RIN 0648-ZC10 NOAA Great Lakes Habitat Restoration...

  1. New Developments in NOAA's Comprehensive Large Array-Data Stewardship System

    NASA Astrophysics Data System (ADS)

    Ritchey, N. A.; Morris, J. S.; Carter, D. J.

    2012-12-01

    The Comprehensive Large Array-data Stewardship System (CLASS) is part of the NOAA strategic goal of Climate Adaptation and Mitigation that gives focus to the building and sustaining of key observational assets and data archives critical to maintaining the global climate record. Since 2002, CLASS has been NOAA's enterprise solution for ingesting, storing and providing access to a host of near real-time remote sensing streams such as the Polar and Geostationary Operational Environmental Satellites (POES and GOES) and the Defense Meteorological Satellite Program (DMSP). Since October, 2011 CLASS has also been the dedicated Archive Data Segment (ADS) of the Suomi National Polar-orbiting Partnership (S-NPP). As the ADS, CLASS receives raw and processed S-NPP records for archival and distribution to the broad user community. Moving beyond just remote sensing and model data, NOAA has endorsed a plan to migrate all archive holdings from NOAA's National Data Centers into CLASS while retiring various disparate legacy data storage systems residing at the National Climatic Data Center (NCDC), National Geophysical Data Center (NGDC) and the National Oceanographic Data Center (NODC). In parallel to this data migration, CLASS is evolving to a service-oriented architecture utilizing cloud technologies for dissemination in addition to clearly defined interfaces that allow better collaboration with partners. This evolution will require implementation of standard access protocols and metadata which will lead to cost effective data and information preservation.

  2. Budget Increases Proposed for NOAA and Energy Department

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    2009-05-01

    In addition to the Obama administration's proposed budget increases for NASA, the Environmental Protection Agency, and the U.S. Geological Survey (see Eos, 90(10), 83, 2009, and 90(20), 175, 2009), other federal Earth and space science agencies also would receive boosts in the proposed fiscal year (FY) 2010 budget. The proposed budget comes on top of the 2009 American Recovery and Reinvestment Act's (ARRA) US$18.3 billion in stimulus spending for research and development that can be apportioned between the FY 2009 and FY 2010 budgets. This news item focuses on the budget proposals for the National Oceanic and Atmospheric Administration (NOAA) and the Department of Energy (DOE). Next week, Eos will look at the budget proposal for the National Science Foundation.

  3. NOAA-NASA Coastal Zone Color Scanner reanalysis effort.

    PubMed

    Gregg, Watson W; Conkright, Margarita E; O'Reilly, John E; Patt, Frederick S; Wang, Menghua H; Yoder, James A; Casey, Nancy W

    2002-03-20

    Satellite observations of global ocean chlorophyll span more than two decades. However, incompatibilities between processing algorithms prevent us from quantifying natural variability. We applied a comprehensive reanalysis to the Coastal Zone Color Scanner (CZCS) archive, called the National Oceanic and Atmospheric Administration and National Aeronautics and Space Administration (NOAA-NASA) CZCS reanalysis (NCR) effort. NCR consisted of (1) algorithm improvement (AI), where CZCS processing algorithms were improved with modernized atmospheric correction and bio-optical algorithms and (2) blending where in situ data were incorporated into the CZCS AI to minimize residual errors. Global spatial and seasonal patterns of NCR chlorophyll indicated remarkable correspondence with modern sensors, suggesting compatibility. The NCR permits quantitative analyses of interannual and interdecadal trends in global ocean chlorophyll.

  4. 77 FR 69436 - JPSS Polar Satellite-Gap Mitigation-Request for Public Comment

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-11-19

    ... negative impacts to NOAA's numerical weather forecasts that could be introduced by a lack of polar... options, such as substitute satellite observations, alternative non-satellite data, weather modeling, and... ideas from the public on how to preserve the quality and timeliness of NOAA's numerical...

  5. Joint Polar Satellite System Common Ground System Overview

    NASA Astrophysics Data System (ADS)

    Jamilkowski, M. L.; Miller, S. W.; Grant, K. D.

    2012-12-01

    The National Oceanic and Atmospheric Administration (NOAA) and National Aeronautics and Space Administration (NASA) are jointly acquiring the next-generation civilian weather and environmental satellite system: the Joint Polar Satellite System (JPSS). JPSS will contribute the afternoon orbit component and ground processing system of the restructured National Polar-orbiting Operational Environmental Satellite System (NPOESS). As such, JPSS replaces the current Polar-orbiting Operational Environmental Satellites (POES) managed by NOAA and the ground processing component of both Polar-orbiting Operational Environmental Satellites and the Defense Meteorological Satellite Program (DMSP) replacement, previously known as the Defense Weather Satellite System (DWSS), managed by the Department of Defense (DoD). The JPSS satellites will carry a suite of sensors designed to collect meteorological, oceanographic, climatological, and solar-geophysical observations of the earth, atmosphere, and space. The ground processing system for JPSS is known as the JPSS Common Ground System (JPSS CGS), and consists of a Command, Control, and Communications Segment (C3S) and an Interface Data Processing Segment (IDPS). Both segments are developed by Raytheon Intelligence and Information Systems (IIS). The C3S currently flies the Suomi National Polar Partnership (Suomi NPP) satellite and transfers mission data from Suomi NPP and between the ground facilities. The IDPS processes Suomi NPP satellite data to provide Environmental Data Records (EDRs) to NOAA and DoD processing centers operated by the United States government. When the JPSS-1 satellite is launched in early 2017, the responsibilities of the C3S and the IDPS will be expanded to support both Suomi NPP and JPSS-1. The JPSS CGS currently provides data processing for Suomi NPP, generating multiple terabytes per day across over two dozen environmental data products; that workload will be multiplied by two when the JPSS-1 satellite is

  6. NOAA tools to support CSC and LCC regional climate science priorities in the western Gulf of Mexico

    NASA Astrophysics Data System (ADS)

    Brown, D. P.; Marcy, D.; Robbins, K.; Shafer, M.; Stiller, H.

    2012-12-01

    The National Oceanic and Atmospheric Administration (NOAA) is an active regional partner with the Department of Interior (DOI) in supplying and supporting the delivery of climate science and services. A primary mechanism for NOAA-DOI coordination at the regional scale is the Landscape Conservation Cooperative (LCC) network, which is supported in part by DOI Climate Science Centers (CSC). Together, the CSCs and LCCs provide a framework to identify landscape-scale science and services priorities for conservation and management. As a key partner of the CSCs and an active member of many LCCs, NOAA is working to ensure its own regional product and service delivery efforts will help address these conservation and management challenges. Two examples of NOAA's regional efforts are highlighted here, with a focus on the coastal and interior geographies of the western Gulf of Mexico where NOAA partners with the South Central CSC and participates as a member of the Gulf Coast Prairie LCC. Along the Texas coastline, a sea level rise and coastal flooding impacts viewer, produced by NOAA's Coastal Services Center and available via its Digital Coast interface, allows constituents to visualize estimates of sea level rise, measures of uncertainty, flood frequencies, and environmental (e.g., marsh migration) and socioeconomic (e.g., tidal flooding of built environments) impacts. In the interior of Texas and Louisiana, NOAA's Southern Regional Climate Center is leading a consortium of partners in the development of a unified source of regional water reservoir information, including current conditions, a historical database, and web-based visualization tools to illustrate spatio-temporal variations in water availability to a broad array of hydrological, agricultural, and other customers. These two examples of NOAA products can, in their existing forms, support regional conservation and management priorities for CSCs and LCCs by informing vulnerability assessments and adaptation

  7. NOAA-USGS Debris-Flow Warning System - Final Report

    USGS Publications Warehouse

    ,

    2005-01-01

    Landslides and debris flows cause loss of life and millions of dollars in property damage annually in the United States (National Research Council, 2004). In an effort to reduce loss of life by debris flows, the National Oceanic and Atmospheric Administration's (NOAA) National Weather Service (NWS) and the U.S. Geological Survey (USGS) operated an experimental debris-flow prediction and warning system in the San Francisco Bay area from 1986 to 1995 that relied on forecasts and measurements of precipitation linked to empirical precipitation thresholds to predict the onset of rainfall-triggered debris flows. Since 1995, there have been substantial improvements in quantifying precipitation estimates and forecasts, development of better models for delineating landslide hazards, and advancements in geographic information technology that allow stronger spatial and temporal linkage between precipitation forecasts and hazard models. Unfortunately, there have also been several debris flows that have caused loss of life and property across the United States. Establishment of debris-flow warning systems in areas where linkages between rainfall amounts and debris-flow occurrence have been identified can help mitigate the hazards posed by these types of landslides. Development of a national warning system can help support the NOAA-USGS goal of issuing timely Warnings of potential debris flows to the affected populace and civil authorities on a broader scale. This document presents the findings and recommendations of a joint NOAA-USGS Task Force that assessed the current state-of-the-art in precipitation forecasting and debris-flow hazard-assessment techniques. This report includes an assessment of the science and resources needed to establish a demonstration debris-flow warning project in recently burned areas of southern California and the necessary scientific advancements and resources associated with expanding such a warning system to unburned areas and, possibly, to a

  8. NOAA GOES Satellite Sees March 12/13 Storm

    NASA Video Gallery

    This animation of NOAA's GOES satellite data shows the progression of the major winter storm over the U.S. Mid-Atlantic and Northeastern U.S. on March 12 and 13.Credit: NASA/NOAA GOES Project, Denn...

  9. Improvements and Extensions for Joint Polar Satellite System Algorithms

    NASA Astrophysics Data System (ADS)

    Grant, K. D.; Feeley, J. H.; Miller, S. W.; Jamilkowski, M. L.

    2014-12-01

    The National Oceanic and Atmospheric Administration (NOAA) and National Aeronautics and Space Administration (NASA) are jointly acquiring the next-generation civilian weather and environmental satellite system: the Joint Polar Satellite System (JPSS). JPSS replaced the afternoon orbit component and ground processing system of the old POES system managed by the NOAA. JPSS satellites will carry sensors designed to collect meteorological, oceanographic, climatological, and solar-geophysical observations of the earth, atmosphere, and space. The ground processing system for the JPSS is the Common Ground System (CGS), and provides command, control, and communications (C3), data processing and product delivery. CGS's data processing capability processes the data from the JPSS satellites to provide environmental data products (including Sensor Data Records (SDRs) and Environmental Data Records (EDRs)) to the NOAA Satellite Operations Facility. The first satellite in the JPSS constellation, known as the Suomi National Polar-orbiting Partnership (S-NPP) satellite, was launched on 28 October 2011. CGS is currently processing and delivering SDRs and EDRs for S-NPP and will continue through the lifetime of the JPSS program. The EDRs for S-NPP are currently undergoing an extensive Calibration and Validation (Cal/Val) campaign. Changes identified by the Cal/Val campaign are coming available for implementation into the operational system in support of both S-NPP and JPSS-1 (scheduled for launch in 2017). Some of these changes will be available in time to update the S-NPP algorithm baseline, while others will become operational just prior to JPSS-1 launch. In addition, new capabilities, such as higher spectral and spatial resolution, will be exercised on JPSS-1. This paper will describe changes to current algorithms and products as a result of the Cal/Val campaign and related initiatives for improved capabilities. Improvements include Cross Track Infrared Sounder high spectral

  10. 15 CFR 996.30 - Use of the NOAA emblem.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 15 Commerce and Foreign Trade 3 2012-01-01 2012-01-01 false Use of the NOAA emblem. 996.30 Section... REQUIREMENTS FOR NOAA HYDROGRAPHIC PRODUCTS AND SERVICES QUALITY ASSURANCE AND CERTIFICATION REQUIREMENTS FOR NOAA HYDROGRAPHIC PRODUCTS AND SERVICES Other Quality Assurance Program Matters § 996.30 Use of...

  11. 15 CFR 996.30 - Use of the NOAA emblem.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 15 Commerce and Foreign Trade 3 2013-01-01 2013-01-01 false Use of the NOAA emblem. 996.30 Section... REQUIREMENTS FOR NOAA HYDROGRAPHIC PRODUCTS AND SERVICES QUALITY ASSURANCE AND CERTIFICATION REQUIREMENTS FOR NOAA HYDROGRAPHIC PRODUCTS AND SERVICES Other Quality Assurance Program Matters § 996.30 Use of...

  12. 15 CFR 996.30 - Use of the NOAA emblem.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 15 Commerce and Foreign Trade 3 2010-01-01 2010-01-01 false Use of the NOAA emblem. 996.30 Section... REQUIREMENTS FOR NOAA HYDROGRAPHIC PRODUCTS AND SERVICES QUALITY ASSURANCE AND CERTIFICATION REQUIREMENTS FOR NOAA HYDROGRAPHIC PRODUCTS AND SERVICES Other Quality Assurance Program Matters § 996.30 Use of...

  13. 15 CFR 996.30 - Use of the NOAA emblem.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 15 Commerce and Foreign Trade 3 2014-01-01 2014-01-01 false Use of the NOAA emblem. 996.30 Section... REQUIREMENTS FOR NOAA HYDROGRAPHIC PRODUCTS AND SERVICES QUALITY ASSURANCE AND CERTIFICATION REQUIREMENTS FOR NOAA HYDROGRAPHIC PRODUCTS AND SERVICES Other Quality Assurance Program Matters § 996.30 Use of...

  14. 15 CFR 996.30 - Use of the NOAA emblem.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 15 Commerce and Foreign Trade 3 2011-01-01 2011-01-01 false Use of the NOAA emblem. 996.30 Section... REQUIREMENTS FOR NOAA HYDROGRAPHIC PRODUCTS AND SERVICES QUALITY ASSURANCE AND CERTIFICATION REQUIREMENTS FOR NOAA HYDROGRAPHIC PRODUCTS AND SERVICES Other Quality Assurance Program Matters § 996.30 Use of...

  15. 15 CFR 922.50 - Appeals of administrative action.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Administrator for Ocean Services and Coastal Zone Management, NOAA 1305 East-West Highway, 13th Floor, Silver... reasons (see subpart D of 15 CFR part 904 for applicable procedures), an applicant for, or a holder of,...

  16. Joint Polar Satellite System (JPSS) Common Ground System (CGS) Performance for Suomi NPP

    NASA Astrophysics Data System (ADS)

    Idol, J.; Grant, K. D.; Waas, W.; Austin, J.

    2012-12-01

    The National Oceanic and Atmospheric Administration (NOAA) and National Aeronautics and Space Administration (NASA) are jointly acquiring the next-generation civilian weather and environmental satellite system: the Joint Polar Satellite System (JPSS). JPSS will contribute the afternoon orbit component and ground processing system of the restructured National Polar-orbiting Operational Environmental Satellite System (NPOESS). As such, the Joint Polar Satellite System replaces the current Polar-orbiting Operational Environmental Satellites (POES) managed by the National Oceanic and Atmospheric Administration and the ground processing component of both Polar-orbiting Operational Environmental Satellites and the Defense Meteorological Satellite Program (DMSP) replacement, previously known as the Defense Weather Satellite System (DWSS), managed by the Department of Defense (DoD). The JPSS satellites will carry a suite of sensors designed to collect meteorological, oceanographic, climatological, and solar-geophysical observations of the earth, atmosphere, and space. The ground processing system for JPSS is known as the JPSS Common Ground System (JPSS CGS), and consists of a Command, Control, and Communications Segment (C3S) and an Interface Data Processing Segment (IDPS). Both segments are developed by Raytheon Intelligence and Information Systems (IIS). The C3S currently flies the Suomi National Polar Partnership (Suomi NPP) satellite and transfers mission data from Suomi NPP and between the ground facilities. The IDPS processes Suomi NPP satellite data to provide Environmental Data Records (EDRs) to NOAA and DoD processing centers operated by the United States government. When the JPSS-1 satellite is launched in early 2017, the responsibilities of the C3S and the IDPS will be expanded to support both Suomi NPP and JPSS-1. The Suomi NPP launched on October 28, 2011. Launch was followed by a phase of sensor activation, and full volume data traffic is now flowing from the

  17. Precipitation of relativistic electrons as seen by NOAA POES

    NASA Astrophysics Data System (ADS)

    Yahnin, Alexander; Gvozdevsky, Boris; Yahnina, Tatyana; Semenova, Nadezhda

    The MEPED instrument onboard NOAA Polar-orbiting Operational Environmental Satellites (NOAA POES) was designed to measure precipitating and quasi-trapped protons and electrons in the ranges 30 keV to 200 MeV (for protons) and 30 keV to 2500 keV (for electrons). In particular, proton telescopes measure protons in six channels: P1 (30-80 keV), P2 (80-250 keV), P3 (250-800 keV), P4 (800-2500 keV), P5 (2500-6900 keV), and P6 (>6900 keV). Protons appear in the P6 channel very seldom (only during Solar Proton Events). At the same time, this channel can be contaminated by relativistic (E ~ 1 MeV) electrons. Using P6 data we performed a study of the relativistic electron precipitation (REP) within the interval of 25 July - 31 August 2005 characterizing by variable geomagnetic activity. We found that most often the REP events are observed in the night sector in relation to the isotropy boundary of relativistic electrons. It means that these REP events are due to violation of the adiabatic motion of particles in the region of a relatively weak magnetic field in the equatorial plane of magnetosphere. Further, a substantial part of REP events is observed in association with enhancements of energetic (E>30 keV) electrons equatorward of the electron isotropy boundary. We interpret the precipitation of electrons in the wide range of energies as result of scattering the particles into the loss cone by ELF/VLF waves. Finally, relativistic electrons can be scattered into the loss cone by EMIC waves. This possibility is actively discussed in the literature. It is known that EMIC waves effectively scatter energetic protons and produce proton precipitation bursts equatorward of the proton isotropic boundary. To investigate the REP/EMIC wave relationship we consider how such proton precipitation bursts seen in P1-P3 channels correlate with REP. It turned out that proton precipitation bursts observed in the morning and day sectors do not correlate with REP events, but in the evening

  18. In Brief: NOAA announces next step in Gulf of Mexico assessment

    NASA Astrophysics Data System (ADS)

    Tretkoff, Ernie

    2011-03-01

    The U.S. National Oceanic and Atmospheric Administration (NOAA) announced on 19 February that it will develop a Programmatic Environmental Impact Statement (PEIS) as the next step in its assessment of impacts from the Deepwater Horizon oil spill on the Gulf of Mexico. The PEIS is part of the Natural Resource Damage Assessment (NRDA), the legal process to determine the type and extent of environmental restoration needed to compensate the public for the harm caused to natural resources by the oil spill. The restoration would be paid for by BP and other parties deemed responsible for the oil spill. Public meetings will be held in the affected states to begin the PEIS process. NOAA administrator Jane Lubchenco stated at a press conference at the annual meeting of the American Association for the Advancement of Science (AAAS) that this “heralds the beginning of a formal public process.”

  19. NOAA Inter-Agency Networking for Open Data and Research Results

    NASA Astrophysics Data System (ADS)

    de la Beaujardiere, J.

    2015-12-01

    The US National Oceanic and Atmospheric Administration (NOAA) generates tens of terabytes of data per day from hundreds of sensors on satellites, radars, aircraft, ships, and buoys, and from numerical models. With rare exceptions, all of these data should be made publicly accessible in a usable fashion. NOAA has long been both an advocate and a practitioner of open data, and has observations going back 150 years in its archives. The NOAA data management community therefore welcomed the White House mandates on Open Data and Open Research, and has striven to improve standardization internally and in collaboration with other organizations. This paper will summarize the state of inter-agency networking by NOAA, and will discuss future perspectives, in particular the need to achieve a state where the appropriate technology choices for particular classes of geospatial data are obvious and beyond discussion, and where data sharing and metadata creation are built into agency workflows for project planning, approval, and execution, so that instead of writing and enforcing mandates we can focus on actually using data from multiple sources to improve understanding and decision-making.

  20. Educator House Call: On-Line Data for Educators' Needs Assessment--Summary Report. NOAA Technical Memorandum GLERL-149

    ERIC Educational Resources Information Center

    Sturtevant, Rochelle A.; Marshall, Ann

    2009-01-01

    On July 15, 2009, National Oceanic and Atmospheric Administration's (NOAA's) Great Lakes Environmental Research Laboratory (GLERL) co-hosted a focus group--Educator House Calls: On-Line Data for Educators. The focus group was conducted at GLERL's main laboratory in Ann Arbor. The workshop was organized and funded by COSEE Great Lakes with student…

  1. Simulated NASA Satellite Data Products for the NOAA Integrated Coral Reef Observation Network/Coral Reef Early Warning System

    NASA Technical Reports Server (NTRS)

    Estep, Leland; Spruce, Joseph P.

    2007-01-01

    This RPC (Rapid Prototyping Capability) experiment will demonstrate the use of VIIRS (Visible/Infrared Imager/Radiometer Suite) and LDCM (Landsat Data Continuity Mission) sensor data as significant input to the NOAA (National Oceanic and Atmospheric Administration) ICON/ CREWS (Integrated Coral Reef Observation System/Coral Reef Early Warning System). The project affects the Coastal Management Program Element of the Applied Sciences Program.

  2. The NOAA Satellite Observing System Architecture Study

    NASA Technical Reports Server (NTRS)

    Volz, Stephen; Maier, Mark; Di Pietro, David

    2016-01-01

    NOAA is beginning a study, the NOAA Satellite Observing System Architecture (NSOSA) study, to plan for the future operational environmental satellite system that will follow GOES and JPSS, beginning about 2030. This is an opportunity to design a modern architecture with no pre-conceived notions regarding instruments, platforms, orbits, etc. The NSOSA study will develop and evaluate architecture alternatives to include partner and commercial alternatives that are likely to become available. The objectives will include both functional needs and strategic characteristics (e.g., flexibility, responsiveness, sustainability). Part of this study is the Space Platform Requirements Working Group (SPRWG), which is being commissioned by NESDIS. The SPRWG is charged to assess new or existing user needs and to provide relative priorities for observational needs in the context of the future architecture. SPRWG results will serve as input to the process for new foundational (Level 0 and Level 1) requirements for the next generation of NOAA satellites that follow the GOES-R, JPSS, DSCOVR, Jason-3, and COSMIC-2 missions.

  3. Faster from the Depths to Decision: Collecting, Distributing, and Applying Data from NOAA`s Deep-Sea Tsunameters

    NASA Astrophysics Data System (ADS)

    Bouchard, R. H.; Wang, D.; Branski, F.

    2008-05-01

    The National Oceanic and Atmospheric Administration (NOAA) operates two tsunami warning centers (TWCs): the West Coast/Alaska Tsunami Warning Center (ATWC) and Pacific Tsunami Warning Center (PTWC). ATWC provides tsunami alerts to Canadian coastal regions, Virgin Islands, Puerto Rico, and the coasts of continental US and Alaska. PTWC provides local/regional tsunami alerts/advisories to the state of Hawaii. An operational center of the Tsunami Warning System of the Pacific, it provides tsunami alerts to most countries of the Pacific Rim. PTWC also provides tsunami alerts for the Caribbean and Indian Ocean countries on an interim basis. The TWCs aim to issue first tsunami bulletins within 10-15 minutes of the earthquake for tele-tsunamis and within a few minutes for local tsunamis. The TWCs have a requirement for offshore tsunami detection in real-time with a data latency of 1 minute or less. Offshore detection of tsunamis is the purpose of NOAA`s recently completed 39-station array of deep-sea tsunameters. The tsunameters, employing the second-generation DART (Deep-ocean Assessment and Reporting of Tsunamis) technology, can speed tsunami detection information to the TWCs in less than 3 minutes from depths of 6000 meters in the Pacific and Western Atlantic oceans. The tsunameters consist of a Bottom Pressure Recorder (BPR) and a surface buoy. Communication from the BPR to the buoy is via underwater acoustic transmissions. Satellite communications carry the data from the buoy to NOAA`s National Data Buoy Center (NDBC), which operates the tsunameters. The BPRs make pressure measurements, converts them to an equivalent water-column height, and passes them through a tsunami detection algorithm. If the algorithm detects a sufficient change in the height, the tsunameter goes into a rapid reporting mode or Event Mode. The acoustic modem-satellite telecommunications path takes approximately 50 seconds to reach the NDBC server. In a few seconds, NDBC reformats the data and

  4. In Vitro Administration of Gold Nanoparticles Functionalized with MUC-1 Protein Fragment Generates Anticancer Vaccine Response via Macrophage Activation and Polarization Mechanism

    PubMed Central

    Mocan, Teodora; Matea, Cristian; Tabaran, Flaviu; Iancu, Cornel; Orasan, Remus; Mocan, Lucian

    2015-01-01

    Therapeutic cancer vaccines (or active immunotherapy) aim to guide the patient's personal immune system to eradicate cancer cells. An exciting approach to cancer vaccines has been offered by nanoscale drug delivery systems containing tumor associated antigens (TAAs). Their capacity to stimulate the immune system has been suggested during late years. However, the role of the macrophages as key-elements in antigen-presentation process following TAAs-containing nanosystems is not completely understood. We aimed to evaluate the effect of gold nanoparticles functionalized with mucin-1 peptide (MUC-1) on murine peritoneal macrophages. Gold nanoparticles, obtained using a modified Turkevich method, were functionalized with MUC-1 protein using Clealand's reagent. The obtained GNP-MUC-1 solution was used to treat at various concentrations monolayers of peritoneum-derived macrophages that were further analyzed using confocal and hyperspectral microscopy, ELISA assays and spectroscopic techniques. The GNP-MUC-1 nano-construct had proven to function as a powerful macrophage activator with consequent release of cytokines such as: TNF-ɑ, IL-6, IL-10 and IL-12 on peritoneal macrophages we have isolated from mice. Our results demonstrate optimization of antigen-presenting process and predominant M1 polarization following exposure GNP-MUC-1. To our best knowledge this is the first study to evaluate the anticancer effects of a newly designed nano-biocompound on the complex antigen- processing apparatus of peritoneal macrophages. PMID:26000051

  5. Joint Polar Satellite System (JPSS) Common Ground System (CGS) Architecture Overview and Technical Performance Measures

    NASA Astrophysics Data System (ADS)

    Grant, K. D.; Johnson, B. R.; Miller, S. W.; Jamilkowski, M. L.

    2014-12-01

    The National Oceanic and Atmospheric Administration (NOAA) and National Aeronautics and Space Administration (NASA) are jointly acquiring the next-generation civilian weather and environmental satellite system: the Joint Polar Satellite System (JPSS). The Joint Polar Satellite System will replace the afternoon orbit component and ground processing system of the current Polar-orbiting Operational Environmental Satellites (POES) managed by NOAA. The JPSS satellites will carry a suite of sensors designed to collect meteorological, oceanographic, climatological and geophysical observations of the Earth. The ground processing system for JPSS is known as the JPSS Common Ground System (JPSS CGS). Developed and maintained by Raytheon Intelligence, Information and Services (IIS), the CGS is a multi-mission enterprise system serving NOAA, NASA and their national and international partners. The CGS provides a wide range of support to a number of missions. Originally designed to support S-NPP and JPSS, the CGS has demonstrated its scalability and flexibility to incorporate all of these other important missions efficiently and with minimal cost, schedule and risk, while strengthening global partnerships in weather and environmental monitoring. The CGS architecture will be upgraded to Block 2.0 in 2015 to satisfy several key objectives, including: "operationalizing" S-NPP, which had originally been intended as a risk reduction mission; leveraging lessons learned to date in multi-mission support; taking advantage of newer, more reliable and efficient technologies; and satisfying new requirements and constraints due to the continually evolving budgetary environment. To ensure the CGS meets these needs, we have developed 48 Technical Performance Measures (TPMs) across 9 categories: Data Availability, Data Latency, Operational Availability, Margin, Scalability, Situational Awareness, Transition (between environments and sites), WAN Efficiency, and Data Recovery Processing. This

  6. Toward consistent radiometric calibration of the NOAA AVHRR visible and near-infrared data record

    NASA Astrophysics Data System (ADS)

    Bhatt, Rajendra; Doelling, David R.; Scarino, Benjamin R.; Gopalan, Arun; Haney, Conor O.

    2015-09-01

    The 35-year Advanced Very High Resolution Radiometer (AVHRR) satellite-instrument data record is critical for studying decadal climate change, provided that the AVHRR sensors are consistently calibrated. Owing to the lack of onboard calibration capability, the AVHRR data need to be adjusted using vicarious approaches. One of the greatest challenges hampering these vicarious calibration techniques, however, is the degrading orbits of the NOAA satellites that house the instruments, or, more specifically, the fact that the satellites eventually drift into a terminator orbit several years after launch. This paper presents a uniform sensor calibration approach for the AVHRR visible (VIS) and nearinfrared (NIR) records using specifically designed NOAA-16 AVHRR-based, top-of-atmosphere (TOA) calibration models that take into account orbit degradation. These models are based on multiple invariant Earth targets, including Saharan deserts, polar ice scenes, and tropical deep-convective clouds. All invariant targets are referenced to the Aqua- MODIS Collection-6 calibration via transfer of the Aqua-MODIS calibration to NOAA-16 AVHRR using simultaneous nadir overpass (SNO) comparisons over the North Pole. A spectral band adjustment factor, based on SCanning Imaging Absorption SpectroMeter for Atmospheric CartograpHY (SCIAMACHY) spectral radiances, is used to account for the spectrally-induced biases caused by the spectral response function (SRF) differences of the AVHRR and MODIS sensors. Validation of the AVHRR Earth target calibration is performed by comparisons with contemporary MODIS SNOs. Calibration consistency between Earth targets validates the historical AVHRR record.

  7. Solutions Network Formulation Report. Improving NOAA's Tides and Currents Through Enhanced Data Inputs from NASA's Ocean Surface Topography Mission

    NASA Technical Reports Server (NTRS)

    Guest, DeNeice C.

    2006-01-01

    The Nation uses water-level data for a variety of practical purposes, including hydrography, nautical charting, maritime navigation, coastal engineering, and tsunami and storm surge warnings (NOAA, 2002; Digby et al., 1999). Long-term applications include marine boundary determinations, tidal predictions, sea-level trend monitoring, oceanographic research, and climate research. Accurate and timely information concerning sea-level height, tide, and ocean current is needed to understand their impact on coastal management, disaster management, and public health. Satellite altimeter data products are currently used by hundreds of researchers and operational users to monitor ocean circulation and to improve scientists understanding of the role of the oceans in climate and weather. The NOAA (National Oceanic and Atmospheric Administration) National Ocean Service has been monitoring sea-level variations for many years (NOAA, 2006). NOAA s Tides & Currents DST (decision support tool, managed by the Center for Operational Oceanographic Products and Services, is the portal to a vast collection of oceanographic and meteorological data (historical and real-time), predictions, and nowcasts and forecasts. This report assesses the capacity of NASA s satellite altimeter data to meet societal decision support needs through incorporation into NOAA s Tides & Currents.

  8. Optical Passive Sensor Calibration for Satellite Remote Sensing and the Legacy of NOAA and NIST Cooperation

    PubMed Central

    Datla, Raju; Weinreb, Michael; Rice, Joseph; Johnson, B. Carol; Shirley, Eric; Cao, Changyong

    2014-01-01

    This paper traces the cooperative efforts of scientists at the National Oceanic and Atmospheric Administration (NOAA) and the National Institute of Standards and Technology (NIST) to improve the calibration of operational satellite sensors for remote sensing of the Earth’s land, atmosphere and oceans. It gives a chronological perspective of the NOAA satellite program and the interactions between the two agencies’ scientists to address pre-launch calibration and issues of sensor performance on orbit. The drive to improve accuracy of measurements has had a new impetus in recent years because of the need for improved weather prediction and climate monitoring. The highlights of this cooperation and strategies to achieve SI-traceability and improve accuracy for optical satellite sensor data are summarized1. PMID:26601030

  9. Optical Passive Sensor Calibration for Satellite Remote Sensing and the Legacy of NOAA and NIST Cooperation.

    PubMed

    Datla, Raju; Weinreb, Michael; Rice, Joseph; Johnson, B Carol; Shirley, Eric; Cao, Changyong

    2014-01-01

    This paper traces the cooperative efforts of scientists at the National Oceanic and Atmospheric Administration (NOAA) and the National Institute of Standards and Technology (NIST) to improve the calibration of operational satellite sensors for remote sensing of the Earth's land, atmosphere and oceans. It gives a chronological perspective of the NOAA satellite program and the interactions between the two agencies' scientists to address pre-launch calibration and issues of sensor performance on orbit. The drive to improve accuracy of measurements has had a new impetus in recent years because of the need for improved weather prediction and climate monitoring. The highlights of this cooperation and strategies to achieve SI-traceability and improve accuracy for optical satellite sensor data are summarized.

  10. An Analysis of the NOAA Satellite-Derived Snow-Cover Record, 1972 - Present

    NASA Technical Reports Server (NTRS)

    Robinson, David A.; Frei, Allan

    1995-01-01

    The large-scale distribution of snow cover over northern hemisphere lands has been a topic of increasing attention in recent years. This interest has been spurred, at least in part, by concerns associated with potential changes in the global climate system associated with anthropogenic and natural causes. Satellite observations using visible satellite imagery permit a hemispheric analysis of snow extent. For almost three decades the National Oceanic and Atmospheric Administration (NOAA) has been using visible imagery to produce weekly charts depicting the extent of snow cover over northern hemisphere lands. These charts constitute the longest satellite-derived environmental dataset available on a continuous basis and produced in a consistent manner. We will briefly describe the NOAA charts and then provide an update on the variability of snow extent over the hemisphere from January 1972 through August 1995. Concentration will be on snow kinematics.

  11. BOREAS AFM-6 NOAA/ETL 35 GHz Cloud/Turbulence Radar GIF Images

    NASA Technical Reports Server (NTRS)

    Martner, Brooks E.; Newcomer, Jeffrey A. (Editor); Hall, Forrest G.; Smith, David E. (Technical Monitor)

    2000-01-01

    The Boreal Ecosystem-Atmosphere Study (BOREAS) Airborne Fluxes and Meteorology (AFM)-6 team from the National Oceanic and Atmospheric Administration/Environment Technology Laboratory (NOAA/ETL) operated a 35-GHz cloud-sensing radar in the Northern Study Area (NSA) near the Old Jack Pine (OJP) tower from 16 Jul 1994 to 08 Aug 1994. This data set contains a time series of GIF images that show the structure of the lower atmosphere. The NOAA/ETL 35-GHz cloud/turbulence radar GIF images are available from the Earth Observing System Data and Information System (EOSDIS) Oak Ridge National Laboratory (ORNL) Distributed Active Archive Center (DAAC). The data files are available on a CD-ROM (see document number 20010000884).

  12. At-sea test validation data needed to verify the NOAA/DOE CWP Analytic Code

    SciTech Connect

    Major, R. A.

    1980-03-12

    Test data requirements are developed in this memorandum for the one-third scale Ocean Thermal Energy Conversion (OTEC) cold water pipe (CWP) at-sea tests. A major goal of the at-sea tests is to collect sufficient data so that the National Oceanic and Atmospheric Administration (NOAA)/Department of Energy (DOE) CWP Analytic Code can be validated. The code is examined to determine the individual responses requiring verification. The wave environment is then considered for prototype survival and the scaled test. The expected response of the OTEC CWP test article in the test environment is used to form a basis of the test plan. Requirements for the tests of standard configurations of the OTEC CWP test system are first planned followed by requirements for tests of alternate configurations and evolutions. The final product is a set of justified NOAA/CWP analytic code validation requirements.

  13. Improved in Situ Space Weather Data Services from the NOAA National Geophysical Data Center

    NASA Astrophysics Data System (ADS)

    Rodriguez, J. V.; Denig, W. F.; Green, J. C.; Lotoaniu, T. M.; McGuire, R. E.; Redmon, R. J.; Rowland, W. F.; Turner, D. L.; Weigel, R. S.; Wilkinson, D. C.

    2014-12-01

    The international space weather enterprise relies heavily on in situ plasma, particle and magnetic field measurements from U. S. weather satellites. This year marks the 40th anniversary of the launch of the first U. S. geostationary weather satellite (SMS-1), which carried the direct ancestor of the current GOES Space Environment Monitor (SEM) suite. The GOES space weather observations support the issuance of real-time alerts by the NOAA Space Weather Prediction Center (SWPC). The publicly-available archive of space weather observations at the NOAA National Geophysical Data Center (NGDC) includes NOAA geostationary observations since 1974 and POES/MetOp and Air Force DMSP polar-orbiting observations since 1978 and 1982, respectively. This archive supports the retrospective aspect of the space weather enterprise, which includes model development and anomaly resolution efforts. Over the last several years, NGDC has made a concerted effort to improve its data services in cooperation with the broader space weather community. These improvements include (1) taking over the processing of existing products, (2) creating science-quality versions of existing products, (3) developing new products, (4) improving the distribution of these products, and (5) validating products via on-orbit cross-comparisons. Complementing this retrospective role, NGDC is also responsible for the next-generation GOES-R space weather instrument science and is working as part of the GOES-R calibration/validation group to ensure that these new instruments and their products meet NOAA's requirements. This presentation will survey NGDC's efforts in each of these areas, including (1) POES/MetOp SEM-2 fluxes and radiation belt indices, (2) GOES fluxes with data quality flags and error bars, (3) in situ products from GOES-R(S,T,U), (4) cooperative distribution efforts with the NASA Space Physics Data Facility (SPDF) and the Space Physics Environmental Data Analysis System (SPEDAS), and (5) inter

  14. Near real time SST retrievals from Himawari-8 at NOAA using ACSPO system

    NASA Astrophysics Data System (ADS)

    Kramar, M.; Ignatov, A.; Petrenko, B.; Kihai, Y.; Dash, P.

    2016-05-01

    Japanese Himawari-8 (H8) satellite was launched on October 7, 2014 and placed into a geostationary orbit at ~ 140.7°E. The Advanced Himawari Imager (AHI) onboard H8 provides full-disk (FD) observations every 10 minutes, in 16 solar reflectance and thermal infrared (IR) bands, with spatial resolution at nadir of 0.5-1 km and 2 km, respectively. The NOAA Advanced Clear-Sky Processor for Ocean (ACSPO) SST system, previously used with several polar-orbiting sensors, was adapted to process the AHI data. The AHI SST product is routinely validated against quality controlled in situ SSTs available from the NOAA in situ SST Quality monitor (iQuam). The product performance is monitored in the NOAA SST Quality Monitor (SQUAM) system. Typical validation statistics show a bias within +/-0.2 K and standard deviation of 0.4-0.6 K. The ACSPO H8 SST is also compared with the NOAA heritage SST produced at OSPO from the Multifunctional Transport Satellite (MTSAT-2; renamed Himawari-7, or H7 after launch) and with another H8 SST produced by JAXA (Japan Aerospace Exploration Agency). This paper describes the ACSPO AHI SST processing and results of validation and comparisons. Work is underway to generate a reduced volume ACSPO AHI SST product L2C (collated in time; e.g., 1-hr instead of current 10-min) and/or L3C (additionally gridded in space). ACSPO AHI processing chain will be applied to the data of the Advanced Baseline Imager (ABI), which will be flown onboard the next generation US geostationary satellite, GOES-R, scheduled for launch in October 2016.

  15. NOAA Climate Data Records Access for Applications

    NASA Astrophysics Data System (ADS)

    Stachniewicz, J. S.; Cecil, D.; Hollingshead, A.; Newport, B. J.; Wunder, D.

    2015-12-01

    There are many potential uses of NOAA Climate Data Records (CDRs) for decision-making and catastrophic risk management assessment activities in the federal, state, and local government and private sectors, in addition to their traditional uses by the academic/scientific community. There is growing interest in using NOAA CDRs for such applications and straightforward access to the data is essential if these applications are to be successful. User engagement activities determine the types of data that users need, as well as the spatial and temporal subsets. This talk will present the access methods currently available and in development. Alternate representations and sources of some CDRs will also be discussed. Recent improvements include: 1. CDR information web page 2. Dataset types, sizes, growth, latency, grid/swath 3. Dataset discovery, data access, and sub-setting. 4. Knowing our users and their needs. 5. Known uses of some CDRs. 6. Migration to CLASS. 7. Other representations - GeoTIFF, Obs4MIPS 8. Cloud applications - Google, Microsoft

  16. Evolution of Currents of Opposite Signs in the Flare-productive Solar Active Region NOAA 10930

    NASA Astrophysics Data System (ADS)

    Ravindra, B.; Venkatakrishnan, P.; Tiwari, Sanjiv Kumar; Bhattacharyya, R.

    2011-10-01

    Analysis of a time series of high spatial resolution vector magnetograms of the active region NOAA 10930 available from the Solar Optical Telescope SpectroPolarimeter on board Hinode revealed that there is a mixture of upward and downward currents in the two footpoints of an emerging flux rope. The flux emergence rate is almost the same in both the polarities. We observe that along with an increase in magnetic flux, the net current in each polarity increases initially for about three days after which it decreases. This net current is characterized by having exactly opposite signs in each polarity while its magnitude remains almost the same most of the time. The decrease of the net current in both the polarities is due to the increase of current having a sign opposite to that of the net current. The dominant current, with the same sign as the net current, is seen to increase first and then decreases during the major X-class flares. Evolution of non-dominant current appears to be a necessary condition for flare initiation. The above observations can be plausibly explained in terms of the superposition of two different force-free states resulting in a non-zero Lorentz force in the corona. This Lorentz force then pushes the coronal plasma and might facilitate the magnetic reconnection required for flares. Also, the evolution of the net current is found to follow the evolution of magnetic shear at the polarity inversion line.

  17. EVOLUTION OF CURRENTS OF OPPOSITE SIGNS IN THE FLARE-PRODUCTIVE SOLAR ACTIVE REGION NOAA 10930

    SciTech Connect

    Ravindra, B.; Venkatakrishnan, P.; Tiwari, Sanjiv Kumar; Bhattacharyya, R. E-mail: pvk@prl.res.in E-mail: ramit@prl.res.in

    2011-10-10

    Analysis of a time series of high spatial resolution vector magnetograms of the active region NOAA 10930 available from the Solar Optical Telescope SpectroPolarimeter on board Hinode revealed that there is a mixture of upward and downward currents in the two footpoints of an emerging flux rope. The flux emergence rate is almost the same in both the polarities. We observe that along with an increase in magnetic flux, the net current in each polarity increases initially for about three days after which it decreases. This net current is characterized by having exactly opposite signs in each polarity while its magnitude remains almost the same most of the time. The decrease of the net current in both the polarities is due to the increase of current having a sign opposite to that of the net current. The dominant current, with the same sign as the net current, is seen to increase first and then decreases during the major X-class flares. Evolution of non-dominant current appears to be a necessary condition for flare initiation. The above observations can be plausibly explained in terms of the superposition of two different force-free states resulting in a non-zero Lorentz force in the corona. This Lorentz force then pushes the coronal plasma and might facilitate the magnetic reconnection required for flares. Also, the evolution of the net current is found to follow the evolution of magnetic shear at the polarity inversion line.

  18. NOAA's Integrated Tsunami Database: Data for improved forecasts, warnings, research, and risk assessments

    NASA Astrophysics Data System (ADS)

    Stroker, Kelly; Dunbar, Paula; Mungov, George; Sweeney, Aaron; McCullough, Heather; Carignan, Kelly

    2015-04-01

    The National Oceanic and Atmospheric Administration (NOAA) has primary responsibility in the United States for tsunami forecast, warning, research, and supports community resiliency. NOAA's National Geophysical Data Center (NGDC) and co-located World Data Service for Geophysics provide a unique collection of data enabling communities to ensure preparedness and resilience to tsunami hazards. Immediately following a damaging or fatal tsunami event there is a need for authoritative data and information. The NGDC Global Historical Tsunami Database (http://www.ngdc.noaa.gov/hazard/) includes all tsunami events, regardless of intensity, as well as earthquakes and volcanic eruptions that caused fatalities, moderate damage, or generated a tsunami. The long-term data from these events, including photographs of damage, provide clues to what might happen in the future. NGDC catalogs the information on global historical tsunamis and uses these data to produce qualitative tsunami hazard assessments at regional levels. In addition to the socioeconomic effects of a tsunami, NGDC also obtains water level data from the coasts and the deep-ocean at stations operated by the NOAA/NOS Center for Operational Oceanographic Products and Services, the NOAA Tsunami Warning Centers, and the National Data Buoy Center (NDBC) and produces research-quality data to isolate seismic waves (in the case of the deep-ocean sites) and the tsunami signal. These water-level data provide evidence of sea-level fluctuation and possible inundation events. NGDC is also building high-resolution digital elevation models (DEMs) to support real-time forecasts, implemented at 75 US coastal communities. After a damaging or fatal event NGDC begins to collect and integrate data and information from many organizations into the hazards databases. Sources of data include our NOAA partners, the U.S. Geological Survey, the UNESCO Intergovernmental Oceanographic Commission (IOC) and International Tsunami Information Center

  19. Joint Polar Satellite System (JPSS) Common Ground System (CGS) Overview and Architectural Tenets

    NASA Astrophysics Data System (ADS)

    Miller, S. W.; Grant, K. D.; Jamilkowski, M. L.

    2013-12-01

    The National Oceanic and Atmospheric Administration (NOAA) and National Aeronautics and Space Administration (NASA) are jointly acquiring the next-generation civilian weather and environmental satellite system: the Joint Polar Satellite System (JPSS). The Joint Polar Satellite System will replace the afternoon orbit component and ground processing system of the current Polar-orbiting Operational Environmental Satellites (POES) managed by NOAA. The JPSS satellites will carry a suite of sensors designed to collect meteorological, oceanographic, climatological and geophysical observations of the Earth. The ground processing system for JPSS is known as the JPSS Common Ground System (JPSS CGS). Developed and maintained by Raytheon Intelligence and Information Systems (IIS), the CGS is a multi-mission enterprise system serving NOAA, NASA and their national and international partners. The CGS provides a wide range of support to a number of missions: 1) Command and control and mission management for the Suomi National Polar Partnership (S-NPP) mission today, expanding this support to the JPSS-1 satellite and the Polar Free Flyer mission in 2017 2) Data acquisition via a Polar Receptor Network (PRN) for S-NPP, the Japan Aerospace Exploration Agency's (JAXA) Global Change Observation Mission - Water (GCOM-W1), POES, and the Defense Meteorological Satellite Program (DMSP) and Coriolis/WindSat for the Department of Defense (DoD) 3) Data routing over a global fiber Wide Area Network (WAN) for S-NPP, JPSS-1, Polar Free Flyer, GCOM-W1, POES, DMSP, Coriolis/WindSat, the NASA Space Communications and Navigation (SCaN, which includes several Earth Observing System [EOS] missions), MetOp for the European Organisation for the Exploitation of Meteorological Satellites (EUMETSAT), and the National Science Foundation (NSF) 4) Environmental data processing and distribution for S-NPP, GCOM-W1 and JPSS-1 The CGS architecture will receive a technology refresh in 2015 to satisfy several key

  20. 2-D Visualization of Global D-region and Polar Cap Absorption

    NASA Astrophysics Data System (ADS)

    Baek, J.-H.; Choi, S.; Lee, J.; Bong, S.-C.

    2015-09-01

    We have visualized global D-region and polar cap absorption in two dimensions. We use the empirical relationship between solar x-ray flux (0.1-0.8 nm) and highest affected frequency at sub-solar point to calculate global D-region absorption. We also use the relation between the integral proton fluxes above certain energy thresholds and polar cap absorption. The calculation code was developed by C++ and refers to the result of Solar Position Algorithm (SPA) code of National Renewable Energy Laboratory (NREL) in C. We also consider the relation between the angles of the geomagnetic system and the geographical one. We calculate the attenuation at 8.83 MHz because it is used in High Frequency (HF) communications by airplanes. The code needs input data such as x-ray flux, proton flux, and Kp index of Geostationary Operational Environmental Satellite (GOES) and National Oceanic and Atmospheric Administration (NOAA). The attenuation is displayed in a world map, the Korean peninsula, and polar route.

  1. NOAA's Portfolio of Operational Climate Data Records

    NASA Astrophysics Data System (ADS)

    Newport, B. J.; Cecil, D.; Hutchins, C.; Preston, C.; Stachniewicz, J. S.; Wunder, D.

    2015-12-01

    NOAA's Climate Data Record (CDR) Program was established by the National Centers for Environmental Information (NCEI) (formerly the National Climatic Data Center) in order to develop and implement a robust, sustainable, and scientifically defensible approach to producing and preserving climate records from satellite data. Since its inception in 2009 the CDR Program has transitioned 30 CDRs developed by various research groups to an initial operational state at NCEI. As a result of this transition the CDR dataset, metadata, documentation, and source code are archived by NCEI and accessible to the public, and most of the datasets are being extended by the Principal Investigator with CDR Program support. Consistency is maintained by using a formal change control process, with reprocessing and re-archiving as needed. The current portfolio of operational CDRs includes 15 Atmospheric CDRs, four Oceanic CDRs, four Terrestrial CDRs, and seven Fundamental CDRs. The main features of the portfolio will be presented, along with some potential and emerging uses.

  2. The NOAA-NASA CZCS Reanalysis Effort

    NASA Technical Reports Server (NTRS)

    Gregg, Watson W.; Conkright, Margarita E.; OReilly, John E.; Patt, Frederick S.; Wang, Meng-Hua; Yoder, James; Casey-McCabe, Nancy; Koblinsky, Chester J. (Technical Monitor)

    2001-01-01

    Satellite observations of global ocean chlorophyll span over two decades. However, incompatibilities between processing algorithms prevent us from quantifying natural variability. We applied a comprehensive reanalysis to the Coastal Zone Color Scanner (CZCS) archive, called the NOAA-NASA CZCS Reanalysis (NCR) Effort. NCR consisted of 1) algorithm improvement (AI), where CZCS processing algorithms were improved using modernized atmospheric correction and bio-optical algorithms, and 2) blending, where in situ data were incorporated into the CZCS AI to minimize residual errors. The results indicated major improvement over the previously available CZCS archive. Global spatial and seasonal patterns of NCR chlorophyll indicated remarkable correspondence with modern sensors, suggesting compatibility. The NCR permits quantitative analyses of interannual and interdecadal trends in global ocean chlorophyll.

  3. The NASA/NOAA Electronic Theater

    NASA Technical Reports Server (NTRS)

    Hasler, A. F.

    2003-01-01

    The NASA/NOAA Electronic Theater presents Earth science observations and visualizations from space in a historical perspective. Fly in from outer space to Cambridge and Harvard University. Zoom through the Cosmos to SLC and site of the 2002 Winter Olympics using 1 m IKONOS "Spy Satellite" data. Contrast the 1972 Apollo 17 "Blue Marble" image of the Earth with the latest US and International global satellite images that allow us to view our Planet from any vantage point. See the latest spectacular images from NASA/NOAA remote sensing missions like Terra, GOES, TRMM, SeaWiFS, & Landsat 7, of storms & fires like Hurricane Isabel and the LNSan Diego firestorms of 2003. See how High Definition Television (HDTV) is revolutionizing the way we do science communication. Take the pulse of the planet on a daily, annual and 30-year time scale. See daily thunderstorms, the annual blooming of the northern hemisphere landmasses and oceans, fires in Africa, dust storms in Iraq, and carbon monoxide exhaust from global burning. See visualizations featured on Newsweek, TIME, National Geographic, Popular Science covers & National & International Network TV. Spectacular new global visualizations of the observed and simulated atmosphere & oceans are shown. See the currents and vortexes in the oceans that bring up the nutrients to feed tiny plankton and draw the fish, whales and fishermen. See the how the ocean blooms in response to El Niiioh Niiia climate changes. The Etheater will be presented using the latest High Definition TV (HDTV) and video projection technology on a large screen. See the global city lights, and the great NE US blackout of August 2003 observed by the "night-vision" DMSP satellite.

  4. Detection and mapping vegetation cover based on the Spectral Angle Mapper algorithm using NOAA AVHRR data

    NASA Astrophysics Data System (ADS)

    Yagoub, Houria; Belbachir, Ahmed Hafid; Benabadji, Noureddine

    2014-06-01

    Satellite data, taken from the National Oceanic and Atmospheric Administration (NOAA) have been proposed and used for the detection and the cartography of vegetation cover in North Africa. The data used were acquired at the Analysis and Application of Radiation Laboratory (LAAR) from the Advanced Very High Resolution Radiometer (AVHRR) sensor of 1 km spatial resolution. The Spectral Angle Mapper Algorithm (SAM) is used for the classification of many studies using high resolution satellite data. In the present paper, we propose to apply the SAM algorithm to the moderate resolution of the NOAA AVHRR sensor data for classifying the vegetation cover. This study allows also exploiting other classification methods for the low resolution. First, the normalized difference vegetation index (NDVI) is extracted from two channels 1 and 2 of the AVHRR sensor. In order to obtain an initial density representation of vegetal formation distribution, a methodology, based on the combination between the threshold method and the decision tree, is used. This combination is carried out due to the lack of accurate data related to the thresholds that delimit each class. In a second time, and based on spectral behavior, a vegetation cover map is developed using SAM algorithm. Finally, with the use of low resolution satellite images (NOAA AVHRR) and with only two channels, it is possible to identify the most dominant species in North Africa such as: forests of the Liege oaks, other forests, cereal's cultivation, steppes and bar soil.

  5. Polarization developments

    SciTech Connect

    Prescott, C.Y.

    1993-07-01

    Recent developments in laser-driven photoemission sources of polarized electrons have made prospects for highly polarized electron beams in a future linear collider very promising. This talk discusses the experiences with the SLC polarized electron source, the recent progress with research into gallium arsenide and strained gallium arsenide as a photocathode material, and the suitability of these cathode materials for a future linear collider based on the parameters of the several linear collider designs that exist.

  6. Neuronal polarization.

    PubMed

    Takano, Tetsuya; Xu, Chundi; Funahashi, Yasuhiro; Namba, Takashi; Kaibuchi, Kozo

    2015-06-15

    Neurons are highly polarized cells with structurally and functionally distinct processes called axons and dendrites. This polarization underlies the directional flow of information in the central nervous system, so the establishment and maintenance of neuronal polarization is crucial for correct development and function. Great progress in our understanding of how neurons establish their polarity has been made through the use of cultured hippocampal neurons, while recent technological advances have enabled in vivo analysis of axon specification and elongation. This short review and accompanying poster highlight recent advances in this fascinating field, with an emphasis on the signaling mechanisms underlying axon and dendrite specification in vitro and in vivo.

  7. NOAA/National Weather Service Operational Applications and Training of S-NPP Imagery and Products in Preparation for JPSS Mission Readiness

    NASA Astrophysics Data System (ADS)

    Motta, B.; Miller, S. D.; Folmer, M. J.; Lindstrom, S.; Nietfeld, D.; Stevens, E.; Dankers, T.; Baker, M.; Meier, B.; Mostek, A. J.; Hillger, D.

    2014-12-01

    The National Oceanic and Atmospheric Administration's (NOAA) National Weather Service (NWS), in collaboration with the NOAA National Environmental Satellite, Data and Information Service (NESDIS) and its Cooperative Institutes, have been prototyping various operational applications of Suomi-NPP satellite imagery and products. Some of these new satellite capabilities are NOAA and S-NPP mission unique and have resulted in new science applications for high impact events and related impact-based decision support services. From detection to monitoring to recovery-phase operations, S-NPP debuts new NOAA-unique capabilities for true color RGB imagery, Near Constant Contrast Day-Night Band Imagery, Flood/Ice Detection and Monitoring, Wildfire and Smoke Detection and Monitoring, Severe Weather Environmental and Storm Analysis, Dust Detection and Monitoring, and Global Infrared and Microwave Atmospheric Soundings. These newly demonstrated applications have been part of the research to operations transitions occurring in the NOAA Satellite Proving Ground (JPSS and GOES-R) and NOAA training developed as part of the Virtual Institute for Satellite Integration and Training (VISIT).

  8. A new statistical tool for NOAA local climate studies

    NASA Astrophysics Data System (ADS)

    Timofeyeva, M. M.; Meyers, J. C.; Hollingshead, A.

    2011-12-01

    The National Weather Services (NWS) Local Climate Analysis Tool (LCAT) is evolving out of a need to support and enhance the National Oceanic and Atmospheric Administration (NOAA) National Weather Service (NWS) field offices' ability to efficiently access, manipulate, and interpret local climate data and characterize climate variability and change impacts. LCAT will enable NOAA's staff to conduct regional and local climate studies using state-of-the-art station and reanalysis gridded data and various statistical techniques for climate analysis. The analysis results will be used for climate services to guide local decision makers in weather and climate sensitive actions and to deliver information to the general public. LCAT will augment current climate reference materials with information pertinent to the local and regional levels as they apply to diverse variables appropriate to each locality. The LCAT main emphasis is to enable studies of extreme meteorological and hydrological events such as tornadoes, flood, drought, severe storms, etc. LCAT will close a very critical gap in NWS local climate services because it will allow addressing climate variables beyond average temperature and total precipitation. NWS external partners and government agencies will benefit from the LCAT outputs that could be easily incorporated into their own analysis and/or delivery systems. Presently we identified five existing requirements for local climate: (1) Local impacts of climate change; (2) Local impacts of climate variability; (3) Drought studies; (4) Attribution of severe meteorological and hydrological events; and (5) Climate studies for water resources. The methodologies for the first three requirements will be included in the LCAT first phase implementation. Local rate of climate change is defined as a slope of the mean trend estimated from the ensemble of three trend techniques: (1) hinge, (2) Optimal Climate Normals (running mean for optimal time periods), (3) exponentially

  9. SENSITIVITY OF THE NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION MULTILAYER MODEL TO INSTRUMENT ERROR AND PARAMETERIZATION UNCERTAINTY

    EPA Science Inventory

    The response of the National Oceanic and Atmospheric Administration multilayer inferential dry deposition velocity model (NOAA-MLM) to error in meteorological inputs and model parameterization is reported. Monte Carlo simulations were performed to assess the uncertainty in NOA...

  10. Calibration of the advanced microwave sounding unit-A for NOAA-K

    NASA Technical Reports Server (NTRS)

    Mo, Tsan

    1995-01-01

    The thermal-vacuum chamber calibration data from the Advanced Microwave Sounding Unit-A (AMSU-A) for NOAA-K, which will be launched in 1996, were analyzed to evaluate the instrument performance, including calibration accuracy, nonlinearity, and temperature sensitivity. The AMSU-A on NOAA-K consists of AMSU-A2 Protoflight Model and AMSU-A1 Flight Model 1. The results show that both models meet the instrument specifications, except the AMSU-A1 antenna beamwidths, which exceed the requirement of 3.3 +/- 10%. We also studied the instrument's radiometric characterizations which will be incorporated into the operational calibration algorithm for processing the in-orbit AMSU-A data from space. Particularly, the nonlinearity parameters which will be used for correcting the nonlinear contributions from an imperfect square-law detector were determined from this data analysis. It was found that the calibration accuracies (differences between the measured scene radiances and those calculated from a linear two-point calibration formula) are polarization-dependent. Channels with vertical polarizations show little cold biases at the lowest scene target temperature 84K, while those with horizontal polarizations all have appreciable cold biases, which can be up to 0.6K. It is unknown where these polarization-dependent cold biases originate, but it is suspected that some chamber contamination of hot radiances leaked into the cold scene target area. Further investigation in this matter is required. The existence and magnitude of nonlinearity in each channel were established and a quadratic formula for modeling these nonlinear contributions was developed. The model was characterized by a single parameter u, values of which were obtained for each channel via least-squares fit to the data. Using the best-fit u values, we performed a series of simulations of the quadratic corrections which would be expected from the space data after the launch of AMSU-A on NOAA-K. In these simulations

  11. The Development of NOAA Education Common Outcome Performance Measures (Invited)

    NASA Astrophysics Data System (ADS)

    Baek, J.

    2013-12-01

    The National Oceanic and Atmospheric Administration (NOAA) Education Council has embarked on an ambitious Monitoring and Evaluation (M&E) project that will allow it to assess education program outcomes and impacts across the agency, line offices, and programs. The purpose of this internal effort is to link outcome measures to program efforts and to evaluate the success of the agency's education programs in meeting the strategic goals. Using an outcome-based evaluation approach, the NOAA Education Council is developing two sets of common outcome performance measures, environmental stewardship and professional development. This presentation will examine the benefits and tradeoffs of common outcome performance measures that collect program results across a portfolio of education programs focused on common outcomes. Common outcome performance measures have a few benefits to our agency and to the climate education field at large. The primary benefit is shared understanding, which comes from our process for writing common outcome performance measures. Without a shared and agreed upon set of definitions for the measure of an outcome, the reported results may not be measuring the same things and would incorrectly indicate levels of performance. Therefore, our writing process relies on a commitment to developing a shared set of definitions based on consensus. We hope that by taking the time to debate and coming to agreement across a diverse set of programs, the strength of our common measures can indicate real progress towards outcomes we care about. An additional benefit is that these common measures can be adopted and adapted by other agencies and organizations that share similar theories of change. The measures are not without their drawbacks, and we do make tradeoffs as part of our process in order to continue making progress. We know that any measure is necessarily a narrow slice of performance. A slice that may not best represent the unique and remarkable contribution

  12. NASA/NOAA/AMS Earth Science Electronic Theater

    NASA Technical Reports Server (NTRS)

    Hasler, A. F.; Einaudi, Franco (Technical Monitor)

    2001-01-01

    The NASA/NOAA/AMS Earth Science Electronic Theater presents Earth science observations and visualizations in a historical perspective. Fly in from outer space to Florida and the KSC Visitor's Center. Go back to the early weather satellite images from the 1960s see them contrasted with the latest International global satellite weather movies including killer hurricanes & tornadic thunderstorms. See the latest spectacular images from NASA and NOAA remote sensing missions like GOES, NOAA, TRMM, SeaWiFS, Landsat7, & new Terra which will be visualized with state-of-the art tools.

  13. Polar Bear

    USGS Publications Warehouse

    Amstrup, S.D.; ,; Lentfer, J.W.

    1988-01-01

    Polar bears are long-lived, late-maturing carnivores that have relatively low rates of reproduction and natural mortality. Their populations are susceptible to disturbance from human activities, such as the exploration and development of mineral resources or hunting. Polar bear populations have been an important renewable resource available to coastal communities throughout the Arctic for thousands of years.

  14. Polarized rainbow.

    PubMed

    Können, G P; de Boer, J H

    1979-06-15

    The Airy theory of the rainbow is extended to polarized light. For both polarization directions a simple analytic expression is obtained for the intensity distribution as a function of the scattering angle in terms of the Airy function and its derivative. This approach is valid at least down to droplet diameters of 0.3 mm in visible light. The degree of polarization of the rainbow is less than expected from geometrical optics; it increases with droplet size. For a droplet diameter >1 mm the locations of the supernumerary rainbows are equal for both polarization directions, but for a diameter <1 mm the supernumerary rainbows of the weaker polarization component are located between those in the strong component. PMID:20212586

  15. 15 CFR 911.5 - NOAA Data Collection Systems Use Agreements.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 15 Commerce and Foreign Trade 3 2012-01-01 2012-01-01 false NOAA Data Collection Systems Use... POLICIES AND PROCEDURES CONCERNING USE OF THE NOAA SPACE-BASED DATA COLLECTION SYSTEMS § 911.5 NOAA Data Collection Systems Use Agreements. (a)(1) In order to use a NOAA DCS, each user must have an agreement...

  16. 15 CFR 911.4 - Use of the NOAA Data Collection Systems.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 15 Commerce and Foreign Trade 3 2011-01-01 2011-01-01 false Use of the NOAA Data Collection... POLICIES AND PROCEDURES CONCERNING USE OF THE NOAA SPACE-BASED DATA COLLECTION SYSTEMS § 911.4 Use of the NOAA Data Collection Systems. (a) Use of the NOAA DCS will only be authorized in accordance with...

  17. 15 CFR 911.4 - Use of the NOAA Data Collection Systems.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 15 Commerce and Foreign Trade 3 2012-01-01 2012-01-01 false Use of the NOAA Data Collection... POLICIES AND PROCEDURES CONCERNING USE OF THE NOAA SPACE-BASED DATA COLLECTION SYSTEMS § 911.4 Use of the NOAA Data Collection Systems. (a) Use of the NOAA DCS will only be authorized in accordance with...

  18. 15 CFR 911.4 - Use of the NOAA Data Collection Systems.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 15 Commerce and Foreign Trade 3 2014-01-01 2014-01-01 false Use of the NOAA Data Collection... POLICIES AND PROCEDURES CONCERNING USE OF THE NOAA SPACE-BASED DATA COLLECTION SYSTEMS § 911.4 Use of the NOAA Data Collection Systems. (a) Use of the NOAA DCS will only be authorized in accordance with...

  19. 15 CFR 911.5 - NOAA Data Collection Systems Use Agreements.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 15 Commerce and Foreign Trade 3 2014-01-01 2014-01-01 false NOAA Data Collection Systems Use... POLICIES AND PROCEDURES CONCERNING USE OF THE NOAA SPACE-BASED DATA COLLECTION SYSTEMS § 911.5 NOAA Data Collection Systems Use Agreements. (a)(1) In order to use a NOAA DCS, each user must have an agreement...

  20. 15 CFR 911.4 - Use of the NOAA Data Collection Systems.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 15 Commerce and Foreign Trade 3 2010-01-01 2010-01-01 false Use of the NOAA Data Collection... POLICIES AND PROCEDURES CONCERNING USE OF THE NOAA SPACE-BASED DATA COLLECTION SYSTEMS § 911.4 Use of the NOAA Data Collection Systems. (a) Use of the NOAA DCS will only be authorized in accordance with...

  1. 15 CFR 911.5 - NOAA Data Collection Systems Use Agreements.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 15 Commerce and Foreign Trade 3 2011-01-01 2011-01-01 false NOAA Data Collection Systems Use... POLICIES AND PROCEDURES CONCERNING USE OF THE NOAA SPACE-BASED DATA COLLECTION SYSTEMS § 911.5 NOAA Data Collection Systems Use Agreements. (a)(1) In order to use a NOAA DCS, each user must have an agreement...

  2. 15 CFR 911.7 - Continuation of the NOAA Data Collection Systems.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 15 Commerce and Foreign Trade 3 2011-01-01 2011-01-01 false Continuation of the NOAA Data... REGULATIONS POLICIES AND PROCEDURES CONCERNING USE OF THE NOAA SPACE-BASED DATA COLLECTION SYSTEMS § 911.7 Continuation of the NOAA Data Collection Systems. (a) NOAA expects to continue to operate DCS on...

  3. 15 CFR 911.7 - Continuation of the NOAA Data Collection Systems.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 15 Commerce and Foreign Trade 3 2012-01-01 2012-01-01 false Continuation of the NOAA Data... REGULATIONS POLICIES AND PROCEDURES CONCERNING USE OF THE NOAA SPACE-BASED DATA COLLECTION SYSTEMS § 911.7 Continuation of the NOAA Data Collection Systems. (a) NOAA expects to continue to operate DCS on...

  4. 15 CFR 911.5 - NOAA Data Collection Systems Use Agreements.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 15 Commerce and Foreign Trade 3 2013-01-01 2013-01-01 false NOAA Data Collection Systems Use... POLICIES AND PROCEDURES CONCERNING USE OF THE NOAA SPACE-BASED DATA COLLECTION SYSTEMS § 911.5 NOAA Data Collection Systems Use Agreements. (a)(1) In order to use a NOAA DCS, each user must have an agreement...

  5. 15 CFR 911.4 - Use of the NOAA Data Collection Systems.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 15 Commerce and Foreign Trade 3 2013-01-01 2013-01-01 false Use of the NOAA Data Collection... POLICIES AND PROCEDURES CONCERNING USE OF THE NOAA SPACE-BASED DATA COLLECTION SYSTEMS § 911.4 Use of the NOAA Data Collection Systems. (a) Use of the NOAA DCS will only be authorized in accordance with...

  6. 15 CFR 911.7 - Continuation of the NOAA Data Collection Systems.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 15 Commerce and Foreign Trade 3 2010-01-01 2010-01-01 false Continuation of the NOAA Data... REGULATIONS POLICIES AND PROCEDURES CONCERNING USE OF THE NOAA SPACE-BASED DATA COLLECTION SYSTEMS § 911.7 Continuation of the NOAA Data Collection Systems. (a) NOAA expects to continue to operate DCS on...

  7. 15 CFR 911.7 - Continuation of the NOAA Data Collection Systems.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 15 Commerce and Foreign Trade 3 2014-01-01 2014-01-01 false Continuation of the NOAA Data... REGULATIONS POLICIES AND PROCEDURES CONCERNING USE OF THE NOAA SPACE-BASED DATA COLLECTION SYSTEMS § 911.7 Continuation of the NOAA Data Collection Systems. (a) NOAA expects to continue to operate DCS on...

  8. 15 CFR 911.7 - Continuation of the NOAA Data Collection Systems.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 15 Commerce and Foreign Trade 3 2013-01-01 2013-01-01 false Continuation of the NOAA Data... REGULATIONS POLICIES AND PROCEDURES CONCERNING USE OF THE NOAA SPACE-BASED DATA COLLECTION SYSTEMS § 911.7 Continuation of the NOAA Data Collection Systems. (a) NOAA expects to continue to operate DCS on...

  9. 15 CFR 911.5 - NOAA Data Collection Systems Use Agreements.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 15 Commerce and Foreign Trade 3 2010-01-01 2010-01-01 false NOAA Data Collection Systems Use... POLICIES AND PROCEDURES CONCERNING USE OF THE NOAA SPACE-BASED DATA COLLECTION SYSTEMS § 911.5 NOAA Data Collection Systems Use Agreements. (a)(1) In order to use a NOAA DCS, each user must have an agreement...

  10. NOAA's GOES-West Satellite Animation Shows Seymour's Start

    NASA Video Gallery

    This animation of infrared and visible imagery from NOAA's GOES-West satellite from Oct. 21 to early on Oct. 24 shows the development of Tropical Depression 20 and explosive growth into Hurricane S...

  11. Disaster warning system study summary. [cost estimates using NOAA satellites

    NASA Technical Reports Server (NTRS)

    Leroy, B. F.; Maloy, J. E.; Braley, R. C.; Provencher, C. E.; Schumaker, H. A.; Valgora, M. E.

    1977-01-01

    A conceptual satellite system to replace or complement NOAA's data collection, internal communications, and public information dissemination systems for the mid-1980's was defined. Program cost and cost sensitivity to variations in communications functions are analyzed.

  12. Improved NOAA satellite scheduled for launch. [mission update

    NASA Technical Reports Server (NTRS)

    Brennan, W. J.; Mccormack, D.; Senstad, K.

    1981-01-01

    A description of the NOAA-C satellite and its Atlas launch vehicle are presented. The satellite instrumentation and data transmission systems are discussed. A flight sequence of events is given along with a listing of the mission management responsibilities.

  13. ESTIMATING THE TRANSFER AND DEPOSITION OF DIOXIN AND ATRZINE TO THE GREAT LAKES BASIN WITH THE NOAA HYSPLIT MODEL - AN OVERVIEW

    EPA Science Inventory

    Over the last few years, the International Joint Commission has been supporting development of a PC-based transfer model, derived from the HYSPLIT model created at the National Oceanic and Atmospheric Administration (NOAA), to determine, in a cost-effective way, the extent of dep...

  14. The NOAA Weather and Climate Toolkit

    NASA Astrophysics Data System (ADS)

    Ansari, S.; Hutchins, C.; Del Greco, S.

    2008-12-01

    The NOAA Weather and Climate Toolkit (WCT) is an application that provides simple visualization and data export of weather and climate data archived at the National Climatic Data Center (NCDC) and other organizations. The WCT is built on the Unidata Common Data Model and supports defined feature types such as Grid, Radial, Point, Time Series and Trajectory. Current NCDC datasets supported include NEXRAD Radar data, GOES Satellite imagery, NOMADS Model Data, Integrated Surface Data and the U.S. Drought Monitor (part of the National Integrated Drought Information System (NIDIS)). The WCT Viewer provides tools for displaying custom data overlays, Web Map Services (WMS), animations and basic filters. The export of images and movies is provided in multiple formats. The WCT Data Exporter allows for data export in both vector polygon (Shapefile, Well-Known Text) and raster (GeoTIFF, Arc/Info ASCII Grid, VTK, NetCDF) formats. By decoding and exporting data into multiple common formats, a diverse user community can perform analysis using familiar tools such as ArcGIS, MatLAB and IDL. This brings new users to a vast array of weather and climate data at NCDC.

  15. Lessons Learned from the Deployment and Integration of a Microwave Sounder Based Tropical Cyclone Intensity and Surface Wind Estimation Algorithm into NOAA/NESDIS Satellite Product Operations

    NASA Astrophysics Data System (ADS)

    Longmore, S. P.; Knaff, J. A.; Schumacher, A.; Dostalek, J.; DeMaria, R.; Chirokova, G.; Demaria, M.; Powell, D. C.; Sigmund, A.; Yu, W.

    2014-12-01

    The Colorado State University (CSU) Cooperative Institute for Research in the Atmosphere (CIRA) has recently deployed a tropical cyclone (TC) intensity and surface wind radii estimation algorithm that utilizes Suomi National Polar-orbiting Partnership (S-NPP) satellite Advanced Technology Microwave Sounder (ATMS) and Advanced Microwave Sounding Unit (AMSU) from the NOAA18, NOAA19 and METOPA polar orbiting satellites for testing, integration and operations for the Product System Development and Implementation (PSDI) projects at NOAA's National Environmental Satellite, Data, and Information Service (NESDIS). This presentation discusses the evolution of the CIRA NPP/AMSU TC algorithms internally at CIRA and its migration and integration into the NOAA Data Exploitation (NDE) development and testing frameworks. The discussion will focus on 1) the development cycle of internal NPP/AMSU TC algorithms components by scientists and software engineers, 2) the exchange of these components into the NPP/AMSU TC software systems using the subversion version control system and other exchange methods, 3) testing, debugging and integration of the NPP/AMSU TC systems both at CIRA/NESDIS and 4) the update cycle of new releases through continuous integration. Lastly, a discussion of the methods that were effective and those that need revision will be detailed for the next iteration of the NPP/AMSU TC system.

  16. Integration of Earth Remote Sensing into the NOAA/NWS Damage Assessment Toolkit

    NASA Technical Reports Server (NTRS)

    Molthan, Andrew; Burks, Jason; Camp, Parks; McGrath, Kevin; Bell, Jordan

    2014-01-01

    Following the occurrence of severe weather, NOAA/NWS meteorologists are tasked with performing a storm damage survey to assess the type and severity of the weather event, primarily focused with the confirmation and assessment of tornadoes. This labor-intensive process requires meteorologists to venture into the affected area, acquire damage indicators through photos, eyewitness accounts, and other documentation, then aggregation of data in order to make a final determination of the tornado path length, width, maximum intensity, and other characteristics. Earth remote sensing from operational, polar-orbiting satellites can support the damage assessment process by helping to identify portions of damage tracks that are difficult to access due to road limitations or time constraints by applying change detection techniques. In addition, higher resolution commercial imagery can corroborate ground-based surveys by examining higher-resolution commercial imagery. As part of an ongoing collaboration, NASA and NOAA are working to integrate near real-time Earth remote sensing observations into the NOAA/NWS Damage Assessment Toolkit, a handheld application used by meteorologists in the survey process. The team has recently developed a more streamlined approach for delivering data via a web mapping service and menu interface, allowing for caching of imagery before field deployment. Near real-time products have been developed using MODIS and VIIRS imagery and change detection for preliminary track identification, along with conduits for higher-resolution Landsat, ASTER, and commercial imagery as they become available. In addition to tornado damage assessments, the team is also investigating the use of near real-time imagery for identifying hail damage to vegetation, which also results in large swaths of damage, particularly in the central United States during the peak growing season months of June, July, and August. This presentation will present an overview of recent activities

  17. Polarizing cues.

    PubMed

    Nicholson, Stephen P

    2012-01-01

    People categorize themselves and others, creating ingroup and outgroup distinctions. In American politics, parties constitute the in- and outgroups, and party leaders hold sway in articulating party positions. A party leader's endorsement of a policy can be persuasive, inducing co-partisans to take the same position. In contrast, a party leader's endorsement may polarize opinion, inducing out-party identifiers to take a contrary position. Using survey experiments from the 2008 presidential election, I examine whether in- and out-party candidate cues—John McCain and Barack Obama—affected partisan opinion. The results indicate that in-party leader cues do not persuade but that out-party leader cues polarize. This finding holds in an experiment featuring President Bush in which his endorsement did not persuade Republicans but it polarized Democrats. Lastly, I compare the effect of party leader cues to party label cues. The results suggest that politicians, not parties, function as polarizing cues. PMID:22400143

  18. Partial and preliminary inventory of NOAA data for ARM/IDASS research

    SciTech Connect

    Martner, B.E.

    1991-06-01

    The first quarter of 1991 was an extremely active time for atmospheric measurements in the Denver area. Four field projects were conducted with overlapping schedules and area domains between mid-January and mid-April. The data collected may be of mutual interest to the participants of the various projects. Data inventory catalogs for each project will assist researchers by documenting the kinds of measurements, periods of observation, the data archival mediums, and the data availability. This report provides a partial and preliminary inventory of data obtained for the Department of Energy`s Atmospheric Radiation Measurement (ARM) program Integrated Data Assimilation and Sounding System (IDASS) research. It includes only those measurements obtained by the National Oceanic and Atmospheric Administration`s Wave Propagation Laboratory and Aeronomy Laboratory (NOAA/WPL and NOAA/AL). Many of these data are currently undergoing post-processing and inspection by each instrument`s operating group to improve and insure data quality. Therefore, the information in this report is preliminary.

  19. Verification of a New NOAA/NSIDC Passive Microwave Sea-Ice Concentration Climate Record

    NASA Technical Reports Server (NTRS)

    Meier, Walter N.; Peng, Ge; Scott, Donna J.; Savoie, Matt H.

    2014-01-01

    A new satellite-based passive microwave sea-ice concentration product developed for the National Oceanic and Atmospheric Administration (NOAA)Climate Data Record (CDR) programme is evaluated via comparison with other passive microwave-derived estimates. The new product leverages two well-established concentration algorithms, known as the NASA Team and Bootstrap, both developed at and produced by the National Aeronautics and Space Administration (NASA) Goddard Space Flight Center (GSFC). The sea ice estimates compare well with similar GSFC products while also fulfilling all NOAA CDR initial operation capability (IOC) requirements, including (1) self describing file format, (2) ISO 19115-2 compliant collection-level metadata,(3) Climate and Forecast (CF) compliant file-level metadata, (4) grid-cell level metadata (data quality fields), (5) fully automated and reproducible processing and (6) open online access to full documentation with version control, including source code and an algorithm theoretical basic document. The primary limitations of the GSFC products are lack of metadata and use of untracked manual corrections to the output fields. Smaller differences occur from minor variations in processing methods by the National Snow and Ice Data Center (for the CDR fields) and NASA (for the GSFC fields). The CDR concentrations do have some differences from the constituent GSFC concentrations, but trends and variability are not substantially different.

  20. Horizontal flows concurrent with an X2.2 flare in the active region NOAA 11158

    NASA Astrophysics Data System (ADS)

    Beauregard, L.; Verma, M.; Denker, C.

    2012-02-01

    Horizontal proper motions were measured with local correlation tracking (LCT) techniques in active region NOAA 11158 on 2011 February 15 at a time when a major (X2.2) solar flare occurred. The measurements are based on continuum images and magnetograms of the Helioseismic and Magnetic Imager on board the Solar Dynamics Observatory. The observed shear flows along the polarity inversion line were rather weak (a few 100 m s-1). The counter-streaming region shifted toward the north after the flare. A small circular area with flow speeds of up to 1.2 km s-1 appeared after the flare near a region of rapid penumbral decay. The LCT signal in this region was provided by small-scale photospheric brigthenings, which were associated with fast traveling moving magnetic features. Umbral strengthening and rapid penumbral decay was observed after the flare. Both phenomena were closely tied to kernels of white-light flare emission. The white-light flare only lasted for about 15 min and peaked 4 min earlier than the X-ray flux. In comparison to other major flares, the X2.2 flare in active region NOAA 11158 only produced diminutive photospheric signatures.

  1. U.S. polar icebreakers

    NASA Astrophysics Data System (ADS)

    Brigham, Lawson W.

    1984-04-01

    An interagency study of the nation's polar ice-breaking requirements through the end of the century was recently completed. The Polar Icebreaker Requirements Study (PIRS) Group presented fleet size alternatives and recommended that the Icebreaker User Council define the capabilities required for new icebreakers. The User Council consists of representatives from the U.S. Navy, National Science Foundation, the Maritime Administration, and the U.S. Coast Guard.Polar icebreakers are needed for three basic purposes: (1) resupply of Antarctic and Greenland stations, (2) logistical support of polar operations, and (3) scientific research. One of the PIRS recommendations was that any new icebreaker designs should enhance science support while meeting the requirements for escort and logistics. The U.S. Coast Guard will soon begin the preliminary design for a new class of polar icebreakers.

  2. Polarization Considerations

    NASA Technical Reports Server (NTRS)

    Waluschka, Eugene

    1998-01-01

    As light passes through a optical system the reflections and refractions will in general change the polarization state of the light. If we assume that all of the materials in the thin film coatings and substrate are isotropic and homogeneous then calculating the amount of "instrumental" polarization is a relatively straight forward task. In the following sections we will present a of the steps required to perform a 'polarization ray trace' calculation for a single ray and monochromatic and hence polarized light. The thin film portion of the calculation is also shown. The reason for explicitly showing the thin film equations is that there are sign conventions imposed on the boundary value equations by the orientation and handedness of the various coordinate frames which are attached to the geometric rays. The attenuation of light through a optical system, is relatively simple, and requires at the very least a lens (average) reflectivity or transmissivity. Determining the polarization sensitivity of a optical system is still relatively straight forward requiring at least a knowledge of the behavior of the "s" and "p" components at each interface for the chief ray. Determining the thin film induced aberrations of a optical system are somewhat more demanding. Questions about the arithmetic sign of the phase factors and how this relates to the overall "OPD" of a ray are ubiquitous. Many rays are required to construct a wavefront. Thin film codes which modify the OPD's of rays are a requirement for this last mentioned computation. This requires a consistent scheme of coordinate frames and sign conventions and is probably the most demanding task of a polarization ray trace. Only the electric field will used in the discussion. This is not a restriction as the Stokes parameters are functions of the electric field. The following does not attempt to explain, but only to present all of the required concepts and formulas.

  3. VIIRS/J1 polarization narrative

    NASA Astrophysics Data System (ADS)

    Waluschka, Eugene; McCorkel, Joel; McIntire, Jeff; Moyer, David; McAndrew, Brendan; Brown, Steven W.; Lykke, Keith R.; Young, James B.; Fest, Eric; Butler, James; Wang, Tung R.; Monroy, Eslim O.; Turpie, Kevin; Meister, Gerhard; Thome, Kurtis J.

    2015-09-01

    The polarization sensitivity of the Visible/NearIR (VISNIR) bands in the Joint Polar Satellite Sensor 1 (J1) Visible Infrared Imaging Radiometer Suite (VIIRS) instrument was measured using a broadband source. While polarization sensitivity for bands M5-M7, I1, and I2 was less than 2.5 %, the maximum polarization sensitivity for bands M1, M2, M3, and M4 was measured to be 6.4 %, 4.4 %, 3.1 %, and 4.3 %, respectively with a polarization characterization uncertainty of less than 0.38%. A detailed polarization model indicated that the large polarization sensitivity observed in the M1 to M4 bands is mainly due to the large polarization sensitivity introduced at the leading and trailing edges of the newly manufactured VISNIR bandpass focal plane filters installed in front of the VISNIR detectors. This was confirmed by polarization measurements of bands M1 and M4 bands using monochromatic light. Discussed are the activities leading up to and including the two polarization tests, some discussion of the polarization model and the model results, the role of the focal plane filters, the polarization testing of the Aft-Optics-Assembly, the testing of the polarizers at the National Aeronautics and Space Administration's (NASA) Goddard center and at the National Institute of Science and Technology (NIST) facility and the use of NIST's Traveling Spectral Irradiance and Radiance responsivity Calibrations using Uniform Sources (T-SIRCUS) for polarization testing and associated analyses and results.

  4. Inter-Satellite Calibration Linkages for the Visible and Near-Infrared Channels of the Advanced Very High Resolution Radiometer on the NOAA-7, -9, and -11 Spacecraft. Revised

    NASA Technical Reports Server (NTRS)

    NagarajaRao, C. R.; Chen, J.

    1996-01-01

    The post-launch degradation of the visible (channel 1: 0.58- 068 microns) and near-infrared (channel 2: approx. 0.72 - l.l microns) channels of the Advanced Very High Resolution Radiometer (AVHRR) on the NOAA-7, -9, and -11 Polar-orbiting Operational Environmental Satellites (POES) was estimated using the south-eastern part of the Libyan Desert as a radiometrically stable calibration target. The relative annual degradation rates, in per cent, for the two channels are, respectively: 3.6 and 4.3 (NOAA-7); 5.9 and 3.5 (NOAA-9); and 1.2 and 2.0 (NOAA-11). Using the relative degradation rates thus determined, in conjunction with absolute calibrations based on congruent path aircraft/satellite radiance measurements over White Sands, New Mexico (USA), the variation in time of the absolute gain or slope of the AVHRR on NOAA-9 was evaluated. Inter-satellite calibration linkages were established, using the AVHRR on NOAA-9 as a normalization standard. Formulae for the calculation of calibrated radiances and albedos (AVHRR usage), based on these interlinkages, are given for the three AVHRRs.

  5. SSBUV and NOAA-11 SBUV/2 Solar Variability Measurements

    NASA Technical Reports Server (NTRS)

    DeLand, Matthew T.; Cebula, Richard P.; Hilsenrath, Ernest

    1998-01-01

    The Shuttle SBUV (SSBUV) and NOAA-11 SBUV/2 instruments measured solar spectral UV irradiance during the maximum and declining phase of solar cycle 22. The SSB UV data accurately represent the absolute solar UV irradiance between 200-405 nm, and also show the long-term variations during eight flights between October 1989 and January 1996. These data have been used to correct long-term sensitivity changes in the NOAA-11 SBUV/2 data, which provide a near-daily record of solar UV variations over the 170-400 nm region between December 1988 and October 1994. The NOAA-11 data demonstrate the evolution of short-term solar UV activity during solar cycle 22.

  6. Tracking Active Region NOAA 12192 in Multiple Carrington Rotations

    NASA Astrophysics Data System (ADS)

    Jain, Kiran; Tripathy, Sushant C.; Hill, Frank

    2015-04-01

    Active region NOAA 12192 appeared on the visible solar disk on October 18, 2014 and grew rapidly into the largest such region since 1990. During its entire transit across the Earth facing side of the Sun, it produced a significant number of X- and M-class flares. The combination of front-side and helioseismic far-side images clearly indicated that it lived through several Carrington rotations. In this paper, using Dopplergrams from GONG and HMI, we present a study on mode parameters, viz. oscillation frequencies, amplitude, and sub-surface flows and investigate how these vary with the evolution of active region in multiple rotations. We also present a detailed comparison between NOAA 10486 (the biggest active region in cycle 23) and NOAA 12192, and discuss the similarities/differences between them.

  7. Contracting Out. National Oceanic and Atmospheric Administration's Central Library. Report to the Chairman, Subcommittee on Commerce, Justice, State, and the Judiciary, Committee on Appropriations, U.S. Senate.

    ERIC Educational Resources Information Center

    General Accounting Office, Washington, DC.

    In response to a request by the Senate Committee on Appropriations for an examination of the A-76 program of the Department of Commerce's National Oceanic and Atmospheric Administration (NOAA), in particular NOAA's decision to contract for the operation of its Central Library, this report describes a General Accounting Office (GAO) review which:…

  8. The NOAA-National Geographic Society Waterspout Expedition (1993).

    NASA Astrophysics Data System (ADS)

    Golden, Joseph H.; Bluestein, Howard B.

    1994-12-01

    This paper describes afield program conducted by NOAA and the National Geographic Society in late August 1993 near Key West, Florida. The mission of the expedition was to obtain close-up photographic documentation of waterspouts. Using a NOAA helicopter as an observing platform, the participants dropped flares onto the sea surface to visualize the airflow and filmed waterspouts using a state-of-the art motion picture camera and still cameras. Over a dozen waterspouts funnel clouds wore observed, and the most detailed movies of spray vortices over taken were obtained.

  9. 15 CFR 904.104 - Final administrative decision.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... filed as provided in § 904.201(a), the NOVA becomes effective as the final administrative decision and order of NOAA 30 days after service of the NOVA or on the last day of any delay period granted. (b) If...

  10. 15 CFR 904.104 - Final administrative decision.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... filed as provided in § 904.201(a), the NOVA becomes effective as the final administrative decision and order of NOAA 30 days after service of the NOVA or on the last day of any delay period granted. (b) If...

  11. 15 CFR 904.104 - Final administrative decision.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... filed as provided in § 904.201(a), the NOVA becomes effective as the final administrative decision and order of NOAA 30 days after service of the NOVA or on the last day of any delay period granted. (b) If...

  12. 15 CFR 904.104 - Final administrative decision.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... filed as provided in § 904.201(a), the NOVA becomes effective as the final administrative decision and order of NOAA 30 days after service of the NOVA or on the last day of any delay period granted. (b) If...

  13. 15 CFR 904.104 - Final administrative decision.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... filed as provided in § 904.201(a), the NOVA becomes effective as the final administrative decision and order of NOAA 30 days after service of the NOVA or on the last day of any delay period granted. (b) If...

  14. Validation of GOES-Derived Surface Radiation Using NOAA's Physical Retrieval Method

    SciTech Connect

    Habte, A.; Sengupta, M.; Wilcox, S.

    2013-01-01

    This report was part of a multiyear collaboration with the University of Wisconsin and the National Oceanic and Atmospheric Administration (NOAA) to produce high-quality, satellite-based, solar resource datasets for the United States. High-quality, solar resource assessment accelerates technology deployment by making a positive impact on decision making and reducing uncertainty in investment decisions. Satellite-based solar resource datasets are used as a primary source in solar resource assessment. This is mainly because satellites provide larger areal coverage and longer periods of record than ground-based measurements. With the advent of newer satellites with increased information content and faster computers that can process increasingly higher data volumes, methods that were considered too computationally intensive are now feasible. One class of sophisticated methods for retrieving solar resource information from satellites is a two-step, physics-based method that computes cloud properties and uses the information in a radiative transfer model to compute solar radiation. This method has the advantage of adding additional information as satellites with newer channels come on board. This report evaluates the two-step method developed at NOAA and adapted for solar resource assessment for renewable energy with the goal of identifying areas that can be improved in the future.

  15. A Quality Control study of the distribution of NOAA MIRS Cloudy retrievals during Hurricane Sandy

    NASA Astrophysics Data System (ADS)

    Fletcher, S. J.

    2013-12-01

    Cloudy radiance present a difficult challenge to data assimilation (DA) systems, through both the radiative transfer system as well the hydrometers required to resolve the cloud and precipitation. In most DA systems the hydrometers are not control variables due to many limitations. The National Oceanic and Atmospheric Administration's (NOAA) Microwave Integrated Retrieval System (MIRS) is producing products from the NPP-ATMS satellite where the scene is cloud and precipitation affected. The test case that we present here is the life time of Hurricane and then Superstorm Sandy in October 2012. As a quality control study we shall compare the retrieved water vapor content during the lifetime of Sandy with the first guess and the analysis from the NOAA Gridpoint Statistical Interpolation (GSI) system. The assessment involves the gross error check system against the first guess with different values for the observational error's variance to see if the difference is within three standard deviations. We shall also compare against the final analysis at the relevant cycles to see if the products which have been retrieved through a cloudy radiance are similar, given that the DA system does not assimilate cloudy radiances yet.

  16. Intergrating Data From NASA Missions Into NOAAs Pacific Region Intergrated Climatology Information Products (PRICIP)

    NASA Astrophysics Data System (ADS)

    Benham, L.; Chester, K.; Eisberg, A.; Iyer, S.; Lee, K.; Marra, J.; Schmidt, C.; Skiles, J.

    2008-12-01

    The Pacific Region Integrated Climatology Information Products (PRICIP) Project is developing a number of products that will successfully promote awareness and understanding of the patterns and effects of "storminess" in the Pacific Rim. The National Oceanic and Atmospheric Administration's (NOAA) Integrated Data and Environmental Applications (IDEA) Center initiated the PRICIP Project to improve our understanding of such storm processes by creating a web portal containing both scientific and socioeconomic information about Pacific storms. Working in conjunction with partners at NOAA, students from the NASA Ames DEVELOP internship program are integrating NASA satellite imagery into the PRICIP web portal by animating eight storm systems that took place in the South Pacific Ocean between 1992 and 2005, four other anomalous high water events in the Hawaiian Islands, and annual storm tracks. The primary intended audience includes coastal disaster management decision-makers and other similarly concerned agencies. The broad access of these web-based products is also expected to reach scientists, the National Weather Service (NWS), the Federal Emergency Management Agency (FEMA), and media broadcasting consumers. The newly integrated and animated hindcast data will also help educate laypersons about past storms and help them for future storms.

  17. BOREAS AFM-1 NOAA/ATDD Long-EZ Aircraft Flux data Over the SSA

    NASA Technical Reports Server (NTRS)

    Crawford, Timothy L.; Baldocchi, Dennis; Hall, Forrest G. (Editor); Knapp, David E. (Editor); Gunter, Laureen; Dumas, Ed; Smith, David E. (Technical Monitor)

    2000-01-01

    This data set contains measurements from the Airborne Flux and Meteorology (AFM)-1 National Oceanographic and Atmospheric Administration/Atmospheric Turbulence and Diffusion Division (NOAA/ATDD) Long-EZ Aircraft collected during the 1994 Intensive Field Campaigns (IFCs) at the southern study area (SSA). These measurements were made from various instruments mounted on the aircraft. The data that were collected include aircraft altitude, wind direction, wind speed, air temperature, potential temperature, water mixing ratio, U and V components of wind velocity, static pressure, surface radiative temperature, downwelling and upwelling total radiation, downwelling and upwelling longwave radiation, net radiation, downwelling and upwelling photosynthectically active radiation (PAR), greenness index, CO2 concentration, O3 concentration, and CH4 concentration. There are also various columns that indicate the standard deviation, skewness, kurtosis, and trend of some of these data. The data are stored in tabular ASCII files. The NOAA/ATDD Long-EZ aircraft flux data are available from the Earth Observing System Data and Information System (EOSDIS) Oak Ridge National Laboratory (ORNL) Distributed Active Archive Center (DAAC). The data files are available on a CD-ROM (see document number 20010000884).

  18. Cell polarity

    PubMed Central

    Romereim, Sarah M

    2011-01-01

    Despite extensive genetic analysis of the dynamic multi-phase process that transforms a small population of lateral plate mesoderm into the mature limb skeleton, the mechanisms by which signaling pathways regulate cellular behaviors to generate morphogenetic forces are not known. Recently, a series of papers have offered the intriguing possibility that regulated cell polarity fine-tunes the morphogenetic process via orienting cell axes, division planes and cell movements. Wnt5a-mediated non-canonical signaling, which may include planar cell polarity, has emerged as a common thread in the otherwise distinct signaling networks that regulate morphogenesis in each phase of limb development. These findings position the limb as a key model to elucidate how global tissue patterning pathways direct local differences in cell behavior that, in turn, generate growth and form. PMID:22064549

  19. Polar Diving

    NASA Technical Reports Server (NTRS)

    2006-01-01

    3 July 2006 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows layers exposed by erosion in a trough within the north polar residual cap of Mars, diving beneath a younger covering of polar materials. The layers have, since the Mariner 9 mission in 1972, been interpreted to be composed of a combination of dust and ice in unknown proportions. In this scene, a layer of solid carbon dioxide, which was deposited during the previous autumn and winter, blankets the trough as well as the adjacent terrain. Throughout northern spring, the carbon dioxide will be removed; by summer, the layers will be frost-free.

    Location near: 81.4oN, 352.2oW Image width: 3 km (1.9 mi) Illumination from: lower left Season: Northern Spring

  20. Polar Summer

    NASA Technical Reports Server (NTRS)

    2005-01-01

    30 December 2005 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows eroding mesas of frozen carbon dioxide in the martian south polar residual cap. During the summer season, the scarps that bound each pit and mesa in the south polar region become dark as carbon dioxide sublimes away. The darkening might result from the roughening of the surfaces from which ice is subliming, or from the concentration of trace amounts of dust on these slopes, or both.

    Location near: 84.7oS, 48.2oW Image width: 3 km (1.9 mi) Illumination from: upper left Season: Southern Summer

  1. Polar Views of Planet Earth.

    ERIC Educational Resources Information Center

    Brochu, Michel

    1983-01-01

    In August, 1981, National Aeronautics and Space Administration launched Dynamics Explorer 1 into polar orbit equipped with three cameras built to view the Northern Lights. The cameras can photograph aurora borealis' faint light without being blinded by the earth's bright dayside. Photographs taken by the satellite are provided. (JN)

  2. Terrestrial Observations from NOAA Operational Satellites.

    PubMed

    Yates, H; Strong, A; McGinnis, D; Tarpley, D

    1986-01-31

    Important applications to oceanography, hydrology, and agriculture have been developed from operational satellites of the National Oceanic and Atmospheric Administration and are currently expanding rapidly. Areas of interest involving the oceans include sea surface temperature, ocean currents, and ocean color. Satellites can monitor various hydrological phenomena, including regional and global snow cover, river and sea ice extent, and areas of global inundation. Agriculturally important quantities derived from operational satellite observations include precipitation, daily temperature extremes, canopy temperatures, insolation, and snow cover. This overview describes the current status of each area.

  3. House trims NOAA's Weather Service Budget

    NASA Astrophysics Data System (ADS)

    Bush, Susan

    The National Oceanic and Atmospheric Administration's portion of the House-passed Department of Commerce appropriations bill (HR 2608) for FY 1992 is $1.4 billion, $117 million less than requested by President Bush and about $24 million over FY 1991's appropriation.The bill cut a major part of the modernization of the National Weather Service. For FY 1992, $423.7 million would go to the NWS, a cut of about $85 million from the president's request of $508.6 million and about $30 million below FY 1991's appropriations.

  4. House trims NOAA's Weather Service Budget

    NASA Astrophysics Data System (ADS)

    Bush, Susan

    The National Oceanic and Atmospheric Administration's portion of the House-passed Department of Commerce appropriations bill (HR 2608) for FY 1992 is 1.4 billion, 117 million less than requested by President Bush and about 24 million over FY 1991's appropriation.The bill cut a major part of the modernization of the National Weather Service. For FY 1992, 423.7 million would go to the NWS, a cut of about 85 million from the president's request of 508.6 million and about $30 million below FY 1991's appropriations.

  5. Exploring Seafloor Volcanoes in Cyberspace: NOAA's "Ocean Explorer" Inspires Inquiry

    ERIC Educational Resources Information Center

    Hjelm, Elizabeth

    2011-01-01

    Seafloor exploration being done by scientists is an ideal way to introduce students to technology as a tool for inquiry. The same technology that allows scientists to share data in near real time can also provide students the tools to become researchers. NOAA's Ocean Explorer Explorations website is a rich research data bank that can be used by…

  6. 75 FR 69920 - (NOAA) Science Advisory Board (SAB)

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-16

    ... meeting agenda. Place: The meeting will be held both days at Dupont Hotel, 1500 New Hampshire Ave., NW... SAB Climate Working Group; (2) Strategic Framework for the Climate Service; (3) Report on the Climate... Research; (6) NOAA Response to the Ecosystem Science and Management Working Group Recommendations on...

  7. 15 CFR 995.26 - Conversion of NOAA ENC ® files to other formats.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 15 Commerce and Foreign Trade 3 2011-01-01 2011-01-01 false Conversion of NOAA ENC ® files to... ASSURANCE AND CERTIFICATION REQUIREMENTS FOR NOAA HYDROGRAPHIC PRODUCTS AND SERVICES CERTIFICATION REQUIREMENTS FOR DISTRIBUTORS OF NOAA HYDROGRAPHIC PRODUCTS Requirements for Certified Distributors and...

  8. 15 CFR 995.26 - Conversion of NOAA ENC ® files to other formats.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 15 Commerce and Foreign Trade 3 2012-01-01 2012-01-01 false Conversion of NOAA ENC ® files to... ASSURANCE AND CERTIFICATION REQUIREMENTS FOR NOAA HYDROGRAPHIC PRODUCTS AND SERVICES CERTIFICATION REQUIREMENTS FOR DISTRIBUTORS OF NOAA HYDROGRAPHIC PRODUCTS Requirements for Certified Distributors and...

  9. 15 CFR 995.26 - Conversion of NOAA ENC ® files to other formats.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 15 Commerce and Foreign Trade 3 2013-01-01 2013-01-01 false Conversion of NOAA ENC ® files to... ASSURANCE AND CERTIFICATION REQUIREMENTS FOR NOAA HYDROGRAPHIC PRODUCTS AND SERVICES CERTIFICATION REQUIREMENTS FOR DISTRIBUTORS OF NOAA HYDROGRAPHIC PRODUCTS Requirements for Certified Distributors and...

  10. 15 CFR 995.26 - Conversion of NOAA ENC ® files to other formats.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 15 Commerce and Foreign Trade 3 2010-01-01 2010-01-01 false Conversion of NOAA ENC ® files to... ASSURANCE AND CERTIFICATION REQUIREMENTS FOR NOAA HYDROGRAPHIC PRODUCTS AND SERVICES CERTIFICATION REQUIREMENTS FOR DISTRIBUTORS OF NOAA HYDROGRAPHIC PRODUCTS Requirements for Certified Distributors and...

  11. 15 CFR 995.26 - Conversion of NOAA ENC ® files to other formats.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 15 Commerce and Foreign Trade 3 2014-01-01 2014-01-01 false Conversion of NOAA ENC ® files to... ASSURANCE AND CERTIFICATION REQUIREMENTS FOR NOAA HYDROGRAPHIC PRODUCTS AND SERVICES CERTIFICATION REQUIREMENTS FOR DISTRIBUTORS OF NOAA HYDROGRAPHIC PRODUCTS Requirements for Certified Distributors and...

  12. Improving NOAA's NWLON Through Enhanced Data Inputs from NASA's Ocean Surface Topography

    NASA Technical Reports Server (NTRS)

    Guest, DeNeice C.

    2010-01-01

    This report assesses the benefit of incorporating NASA's OSTM (Ocean Surface Topography Mission) altimeter data (C- and Ku-band) into NOAA's (National Oceanic and Atmospheric Administration) NWLON (National Water Level Observation Network) DSS (Decision Support System). This data will enhance the NWLON DSS by providing additional inforrnation because not all stations collect all meteorological parameters (sea-surface height, ocean tides, wave height, and wind speed over waves). OSTM will also provide data where NWLON stations are not present. OSTM will provide data on seasurface heights for determining sea-level rise and ocean circulation. Researchers and operational users currently use satellite altimeter data products with the GSFCOO NASA data model to obtain sea-surface height and ocean circulation inforrnation. Accurate and tirnely inforrnation concerning sea-level height, tide, and ocean currents is needed to irnprove coastal tidal predictions, tsunarni and storm surge warnings, and wetland restoration.

  13. Polar Landforms

    NASA Technical Reports Server (NTRS)

    2005-01-01

    10 August 2005 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows eroded remnants of carbon dioxide ice in the south polar residual cap of Mars. The scarps that outline each small mesa have retreated about 3 meters (10 feet) per Mars year since MGS began orbiting the red planet in 1997.

    Location near: 87.0oS, 31.9oW Image width: width: 3 km (1.9 mi) Illumination from: upper left Season: Southern Spring

  14. Polar Layers

    NASA Technical Reports Server (NTRS)

    2005-01-01

    12 August 2005 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows a slope upon which are exposed some of the layered materials that underlie the south polar cap of Mars. The layers are generally considered to be sediments--perhaps dust--that may have been cemented by water ice.

    Location near: 84.1oS, 343.9oW Image width: width: 3 km (1.9 mi) Illumination from: upper left Season: Southern Spring

  15. Solutions Network Formulation Report: Improving NOAA's PORTS(R) Through Enhanced Data Inputs from NASA's Ocean Surface Topography Mission

    NASA Technical Reports Server (NTRS)

    Guest, DeNeice

    2007-01-01

    The Nation uses water-level data for a variety of practical purposes, including nautical charting, maritime navigation, hydrography, coastal engineering, and tsunami and storm surge warnings. Long-term applications include marine boundary determinations, tidal predictions, sea-level trend monitoring, oceanographic research, and climate research. Accurate and timely information concerning sea-level height, tide, and ocean current is needed to understand their impact on coastal management, disaster management, and public health. Satellite altimeter data products are currently used by hundreds of researchers and operational users to monitor ocean circulation and to improve scientists understanding of the role of the oceans in climate and weather. The NOAA (National Oceanic and Atmospheric Administration) National Ocean Service has been monitoring sea-level variations for many years. NOAA s PORTS (Physical Oceanographic Real-Time System) DST (decision support tool), managed by the Center for Operational Oceanographic Products and Services, supports safe and cost-efficient navigation by providing ship masters and pilots with accurate real-time information required to avoid groundings and collisions. This report assesses the capacity of NASA s satellite altimeter data to meet societal decision support needs through incorporation into NOAA s PORTS. NASA has a long heritage of collecting data for ocean research, including its current Terra and Aqua missions. Numerous other missions provide additional important information for coastal management issues, and data collection will continue in the coming decade with such missions as the OSTM (Ocean Surface Topography Mission). OSTM will provide data on sea-surface heights for determining ocean circulation, climate change, and sea-level rise. We suggest that NASA incorporate OSTM altimeter data (C- and Ku-band) into NOAA s PORTS DST in support of NASA s Coastal Management National Application with secondary support to the

  16. Administrative Synergy

    ERIC Educational Resources Information Center

    Hewitt, Kimberly Kappler; Weckstein, Daniel K.

    2012-01-01

    One of the biggest obstacles to overcome in creating and sustaining an administrative professional learning community (PLC) is time. Administrators are constantly deluged by the tyranny of the urgent. It is a Herculean task to carve out time for PLCs, but it is imperative to do so. In this article, the authors describe how an administrative PLC…

  17. Enhanced biological processes associated with alopecia in polar bears (Ursus maritimus).

    PubMed

    Bowen, Lizabeth; Miles, A Keith; Stott, Jeffrey; Waters, Shannon; Atwood, Todd

    2015-10-01

    Populations of wildlife species worldwide experience incidents of mass morbidity and mortality. Primary or secondary drivers of these events may escape classical detection methods for identifying microbial insults, toxin exposure, or additional stressors. In 2012, 28% of polar bears sampled in a study in the southern Beaufort Sea region of Alaska had varying degrees of alopecia that was concomitant with reduced body condition. Concurrently, elevated numbers of sick or dead ringed seals were detected in the southern Beaufort, Chukchi, and Bering seas in 2012, resulting in the declaration of an unusual mortality event (UME) by the National Oceanic and Atmospheric Administration (NOAA). The primary and possible ancillary causative stressors of these events are unknown, and related physiological changes within individual animals have been undetectable using classical diagnostic methods. Here we present an emerging technology as a potentially guiding investigative approach aimed at elucidating the circumstances responsible for the susceptibility of certain polar bears to observed conditions. Using transcriptomic analysis we identified enhanced biological processes including immune response, viral defense, and response to stress in polar bears with alopecia. Our results support an alternative mechanism of investigation into the causative agents that, when used proactively, could serve as an early indicator for populations and species at risk. We suggest that current or classical methods for investigation into events of unusual morbidity and mortality can be costly, sometimes unfocused, and often inconclusive. Advances in technology allow for implementation of a holistic system of surveillance and investigation that could provide early warning of health concerns in wildlife species important to humans. PMID:26005754

  18. Enhanced biological processes associated with alopecia in polar bears (Ursus maritimus).

    PubMed

    Bowen, Lizabeth; Miles, A Keith; Stott, Jeffrey; Waters, Shannon; Atwood, Todd

    2015-10-01

    Populations of wildlife species worldwide experience incidents of mass morbidity and mortality. Primary or secondary drivers of these events may escape classical detection methods for identifying microbial insults, toxin exposure, or additional stressors. In 2012, 28% of polar bears sampled in a study in the southern Beaufort Sea region of Alaska had varying degrees of alopecia that was concomitant with reduced body condition. Concurrently, elevated numbers of sick or dead ringed seals were detected in the southern Beaufort, Chukchi, and Bering seas in 2012, resulting in the declaration of an unusual mortality event (UME) by the National Oceanic and Atmospheric Administration (NOAA). The primary and possible ancillary causative stressors of these events are unknown, and related physiological changes within individual animals have been undetectable using classical diagnostic methods. Here we present an emerging technology as a potentially guiding investigative approach aimed at elucidating the circumstances responsible for the susceptibility of certain polar bears to observed conditions. Using transcriptomic analysis we identified enhanced biological processes including immune response, viral defense, and response to stress in polar bears with alopecia. Our results support an alternative mechanism of investigation into the causative agents that, when used proactively, could serve as an early indicator for populations and species at risk. We suggest that current or classical methods for investigation into events of unusual morbidity and mortality can be costly, sometimes unfocused, and often inconclusive. Advances in technology allow for implementation of a holistic system of surveillance and investigation that could provide early warning of health concerns in wildlife species important to humans.

  19. Enhanced biological processes associated with alopecia in polar bears (Ursus maritimus)

    USGS Publications Warehouse

    Bowen, Lizabeth; Miles, A. Keith; Stott, Jeffrey L.; Waters, Shannon C.; Atwood, Todd C.

    2015-01-01

    Populations of wildlife species worldwide experience incidents of mass morbidity and mortality. Primary or secondary drivers of these events may escape classical detection methods for identifying microbial insults, toxin exposure, or additional stressors. In 2012, 28% of polar bears sampled in a study in the southern Beaufort Sea region of Alaska had varying degrees of alopecia that was concomitant with reduced body condition. Concurrently, elevated numbers of sick or dead ringed seals were detected in the southern Beaufort, Chukchi, and Bering seas in 2012, resulting in the declaration of an unusual mortality event (UME) by the National Oceanic and Atmospheric Administration (NOAA). The primary and possible ancillary causative stressors of these events are unknown, and related physiological changes within individual animals have been undetectable using classical diagnostic methods. Here we present an emerging technology as a potentially guiding investigative approach aimed at elucidating the circumstances responsible for the susceptibility of certain polar bears to observed conditions. Using transcriptomic analysis we identified enhanced biological processes including immune response, viral defense, and response to stress in polar bears with alopecia. Our results support an alternative mechanism of investigation into the causative agents that, when used proactively, could serve as an early indicator for populations and species at risk. We suggest that current or classical methods for investigation into events of unusual morbidity and mortality can be costly, sometimes unfocused, and often inconclusive. Advances in technology allow for implementation of a holistic system of surveillance and investigation that could provide early warning of health concerns in wildlife species important to humans.

  20. A Statistical Correlation Between Low L-shell Electrons Measured by NOAA Satellites and Strong Earthquakes

    NASA Astrophysics Data System (ADS)

    Fidani, C.

    2015-12-01

    More than 11 years of the Medium Energy Protons Electrons Detector data from the NOAA polar orbiting satellites were analyzed. Significant electron counting rate fluctuations were evidenced during geomagnetic quiet periods by using a set of adiabatic coordinates. Electron counting rates were compared to earthquakes by defining a seismic event L-shell obtained radially projecting the epicenter geographical positions to a given altitude. Counting rate fluctuations were grouped in every satellite semi-orbit together with strong seismic events and these were chosen with the L-shell coordinates close to each other. Electron data from July 1998 to December 2011 were compared for nearly 1,800 earthquakes with magnitudes larger than or equal to 6, occurring worldwide. When considering 30 - 100 keV energy channels by the vertical NOAA telescopes and earthquake epicenter projections at altitudes greater that 1,300 km, a 4 sigma correlation appeared where time of particle precipitations Tpp occurred 2 - 3 hour prior time of large seismic events Teq. This was in physical agreement with different correlation times obtained from past studies that considered particles with greater energies. The correlation suggested a 4-8 hour advance in preparedness of strong earthquakes influencing the ionosphere. Considering this strong correlation between earthquakes and electron rate fluctuations, and the hypothesis that such fluctuations originated with magnetic disturbances generated underground, a small scale experiment with low cost at ground level is advisable. Plans exists to perform one or more unconventional experiments around an earthquake affected area by private investor in Italy.

  1. Visions of our Planet's Atmosphere, Land and Oceans: NASA/NOAA Electronic Theater 2002

    NASA Technical Reports Server (NTRS)

    Haser, Fritz; Starr, David (Technical Monitor)

    2002-01-01

    The NASA/NOAA Electronic Theater presents Earth science observations and visualizations in a historical perspective. Fly in from outer space to the 2002 Winter Olympic Stadium Site of the Olympic Opening and Closing Ceremonies in Salt Lake City. Fly in and through Olympic Alpine Venues using 1 m IKONOS "Spy Satellite" data. Go back to the early weather satellite images from the 1960s and see them contrasted with the latest US and international global satellite weather movies including hurricanes and "tornadoes". See the latest visualizations of spectacular images from NASA/NOAA remote sensing missions like Terra, GOES, TRMM, SeaWiFS, Landsat 7 including new 1 - min GOES rapid scan image sequences of Nov 9th 2001 Midwest tornadic thunderstorms and have them explained. See how High-Definition Television (HDTV) is revolutionizing the way we communicate science. (In cooperation with the American Museum of Natural History in NYC) See dust storms in Africa and smoke plumes from fires in Mexico. See visualizations featured on the covers of Newsweek, TIME, National Geographic, Popular Science and on National and International Network TV. New computer software tools allow us to roam and zoom through massive global images e.g. Landsat tours of the US, and Africa, showing desert and mountain geology as well as seasonal changes in vegetation. See animations of the polar ice packs and the motion of gigantic Antarctic Icebergs from SeaWinds. data. Spectacular new visualizations of the global atmosphere and oceans are shown. See vortexes and currents in the global oceans that bring up the nutrients to feed tiny algae and draw the fish, whales and fisherman. See the how the ocean blooms in response to these currents and El Nino/La Nina climate changes. See the city lights, fishing fleets, gas flares and bio-mass burning of the Earth at night observed by the "night-vision" DMSP military satellite.

  2. Polar Markings

    NASA Technical Reports Server (NTRS)

    2006-01-01

    [figure removed for brevity, see original site] Context image for PIA02155 Polar Markings

    These bright and dark markings occurred near the end of summer in the south polar region. The dark material is likely dust that has been freed of frost cover.

    Image information: VIS instrument. Latitude -76.3N, Longitude 84.9E. 17 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  3. Polar Layers

    NASA Technical Reports Server (NTRS)

    2006-01-01

    [figure removed for brevity, see original site] Context image for PIA02153 Polar Layers

    This image of the south polar region shows layered material. It is not known if the layers are formed yearly or if they form over the period of 10s to 100s of years or more.

    Image information: VIS instrument. Latitude -80.3N, Longitude 296.2E. 17 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  4. Polar Ridges

    NASA Technical Reports Server (NTRS)

    2006-01-01

    [figure removed for brevity, see original site] Context image for PIA03662 Polar Ridges

    This ridge system is located in the south polar region.

    Image information: VIS instrument. Latitude -81.7N, Longitude 296.5E. 17 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  5. Polar Textures

    NASA Technical Reports Server (NTRS)

    2005-01-01

    [figure removed for brevity, see original site] Context image for PIA03638 Polar Textures

    This image illustrates the variety of textures that appear in the south polar region during late summer.

    Image information: VIS instrument. Latitude 80.5S, Longitude 57.9E. 17 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  6. Polar ozone

    NASA Technical Reports Server (NTRS)

    Solomon, S.; Grose, W. L.; Jones, R. L.; Mccormick, M. P.; Molina, Mario J.; Oneill, A.; Poole, L. R.; Shine, K. P.; Plumb, R. A.; Pope, V.

    1990-01-01

    The observation and interpretation of a large, unexpected ozone depletion over Antarctica has changed the international scientific view of stratospheric chemistry. The observations which show the veracity, seasonal nature, and vertical structure of the Antarctic ozone hole are presented. Evidence for Arctic and midlatitude ozone loss is also discussed. The chemical theory for Antarctic ozone depletion centers around the occurrence of polar stratospheric clouds (PSCs) in Antarctic winter and spring; the climatology and radiative properties of these clouds are presented. Lab studies of the physical properties of PSCs and the chemical processes that subsequently influence ozone depletion are discussed. Observations and interpretation of the chemical composition of the Antarctic stratosphere are described. It is shown that the observed, greatly enhanced abundances of chlorine monoxide in the lower stratosphere are sufficient to explain much if not all of the ozone decrease. The dynamic meteorology of both polar regions is given, interannual and interhemispheric variations in dynamical processes are outlined, and their likely roles in ozone loss are discussed.

  7. Polar Terrains

    NASA Technical Reports Server (NTRS)

    2005-01-01

    [figure removed for brevity, see original site] Context image for PIA03577 Polar Terrains

    The region surrounding the South Polar Cap contains many different terrain types. This image shows both etched terrain and a region of 'mounds'.

    Image information: VIS instrument. Latitude 75S, Longitude 286.5E. 17 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  8. Suomi National Polar-orbiting Partnership Environmental Data Records: Algorithm Status and Product Maturity

    NASA Astrophysics Data System (ADS)

    Csiszar, I. A.; Feeley, J.; Zhou, L.; Gottshall, E.

    2012-12-01

    The Joint Polar Satellite System's (JPSS) Data Processing Segment generates a number of environmental data products from measurements by sensors on the Suomi National Polar-orbiting Partnership (SNPP) satellite that launched on October 28, 2011. The JPSS Environmental Data Record (EDR) Algorithm Development and Validation teams have been carrying out detailed evaluation of the products. This work is stabilizing the EDR products and proposing the implementation of product improvements and major algorithm changes. Building on validation stages established by the National Aeronautics and Space Administration for their Earth Observing System program and adapted by the Committee on Earth Observation Satellites Working Group on Calibration and Validation, the JPSS program defined program-specific algorithm maturity stages. The JPSS definitions provide the rigor and comprehensiveness necessary for algorithm validation while serving the compliance needs for product requirements verification. Based on specific algorithm readiness levels, the JPSS EDR product teams established a schedule of anticipated dates for the algorithms to achieve Beta, Provisional and Validated Stage 1, 2 and 3 statuses. These schedules account for the products' dependencies on the maturity of input Sensor Data Records (SDRs), Intermediate Products, and upstream EDRs. Declaring EDR product maturity is the result of a specific review of artifacts that document that the products meet a series of criteria defined for each maturity stage. During 2012, after the SDR products achieved Beta maturity, a number of fundamental EDRs also achieved Beta status. They are now or will shortly become available to the public through the National Oceanic and Atmospheric Administration's (NOAA) Comprehensive Large Array-data Stewardship System (CLASS). In the presentation, we will provide an overview of the latest EDR algorithm updates and the maturity schedule going forward.

  9. Rice polarization scattering characteristics and paddyfield recognition

    NASA Astrophysics Data System (ADS)

    Shen, Shuanghe; Zhang, Pingping; Li, Bingbai

    2007-09-01

    Paddy rice is a staple food in China and it's growth monitoring, acreage extraction and yield estimate are of far reaching importance. It is difficult to apply conventional remote sensing technique for obtaining precise information on paddy planting and growth, for rice bowls are mostly distributed over rainy regions in China. The radar image is unlimited by cloud, rain and fog, and could proceed all weather operation and obtain more stable data, therefore it could be used for paddy monitoring. Making use of Envisat's ASAR data and NOAA data in 2004, paddy's backward-scattering characteristics with different polarizations were studied in this paper. To combine multi-temporal radar data with one view ETM image, paddyfield of experimental area in Hongze of Jiangsu Province was classified. Results show that 1) characteristics of paddy's hh and vv polarizations vary from stage to stage and vv polarization is more sensitive. The polarization ratio hh / vv of paddy during metaphase is apparently higher than other objects'. 2) paddy's polarization ratio hh / vv and growth vigor closely relate to each other , thereof two empirical time-domain models of backward- scattering were established, wherewith to estimate number of days after transplanting and growing season. 3) hh and ratio hh / vv are both well correlated with NDVI. 4) hh polarization data could be used for information extraction of towns and water bodies, and the hh / vv image in metaphase for partition of paddy from other objects. The recognition accuracy being ninety percent over, multi-temporal and -polarization radarsat data are of predominance and potential for paddy growth and/or acreage monitoring.

  10. Flux emergence in the solar active region NOAA 11158: the evolution of net current

    NASA Astrophysics Data System (ADS)

    Vemareddy, Panditi; Venkatakrishnan, Parameswaran; Karthikreddy, Solipuram

    2015-09-01

    We present a detailed investigation of the evolution of observed net vertical current using a time series of vector magnetograms of the active region (AR) NOAA 11158 obtained from the Helioseismic and Magnetic Imager. We also discuss the relation of net current to the observed eruptive events. The AR evolved from the βγ to βγδ configuration over a period of six days. The AR had two sub-regions of activity with opposite chirality: one dominated by sunspot rotation producing a strong CME, and the other showing large shear motions producing a strong flare. The net current in each polarity over the CME producing sub-region increased to a maximum and then decreased when the sunspots were separated. The time profile of net current in this sub-region followed the time profile of the rotation rate of the south-polarity sunspot in the same sub-region. The net current in the flaring sub-region showed a sudden increase at the time of the strong flare and remained unchanged until the end of the observation, while the sunspots maintained their close proximity. The systematic evolution of the observed net current is seen to follow the time evolution of total length of strongly sheared polarity inversion lines in both of the sub-regions. The observed photospheric net current could be explained as an inevitable product of the emergence of a twisted flux rope, from a higher pressure confinement below the photosphere into the lower pressure environment of the photosphere.

  11. Polar Layers

    NASA Technical Reports Server (NTRS)

    2005-01-01

    [figure removed for brevity, see original site] Context image for PIA03581 Polar Layers

    This image shows just one example of the bright and dark markings that appear during summer time. The marks are related to the polar layers. If you happen to see a wild-eyed guy sticking his tongue out at you, you'll know why this image qualifies for the old 'art' category of THEMIS releases.

    Image information: VIS instrument. Latitude 80.6S, Longitude 34.1E. 17 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  12. ARM-LBNL-NOAA Flask Sampler for Carbon Cycle Gases

    DOE Data Explorer

    Torn, Margaret

    2008-01-15

    Data from ccg-flasks are sampled at the ARM SGP site and analyzed by the NOAA Earth System Research Laboratory (ESRL) as part of the NOAA Cooperative Global Air Sampling Network. Surface samples are collected from a 60m tower at the SGP Central Facility, usually once per week on one afternoon. The aircraft samples are collected approximately weekly from a chartered aircraft, and the collection flight path is centered over the tower where the surface samples are collected. Samples are collected by the ARM/LBNL Carbon Project. CO2 flask data contains measurements of CO2 concentration and CO2 stable isotope ratios (13CO2 and C18OO) from flasks collected at the SGP site. The flask samples are collected at 2m, 4m, 25m, and 60m along the 60m tower.

  13. NOAA 26.5 Ah LEO characterization test

    NASA Technical Reports Server (NTRS)

    Morrow, G. W.

    1986-01-01

    The General Electric (GE) 26.5 Ah NOAA-G flight nickel-cadmium cells were obtained from RCA-Astro Electronics to undergo performance characterization testing at the Goddard Space Flight Center (GSFC). This lot of cells was manufactured with passivated positive plate, to control nickel structure attack duing active material impregnation, and less electrolyte than normal (less than 3cc/Ah). The cells were tested in a parametric low Earth orbit (LEO) cycling regime that was previously used to test and characterize standard 50 Ah cells. Life cycle testing at the Naval Weapons Support Center (NWSC), in Crane, followed. The results of the test showed nominal performance in comparison with previous test data on the standard 50. Life cycle testing in the NOAA orbital regime is continuing at NWSC.

  14. Impact of Scatterometer Ocean Wind Vector Data on NOAA Operations

    NASA Astrophysics Data System (ADS)

    Jelenak, Z.; Chang, P.; Brennan, M. J.; Sienkiewicz, J. M.

    2015-12-01

    Near real-time measurements of ocean surface vector winds (OSVW), including both wind speed and direction from non-NOAA satellites, are being widely used in critical operational NOAA forecasting and warning activities. The scatterometer wind data data have had major operational impact in: a) determining wind warning areas for mid-latitude systems (gale, storm,hurricane force); b) determining tropical cyclone 34-knot and 50-knot wind radii. c) tracking the center location of tropical cyclones, including the initial identification of their formation. d) identifying and warning of extreme gap and jet wind events at all latitudes. e) identifying the current location of frontal systems and high and low pressure centers. f) improving coastal surf and swell forecasts Much has been learned about the importance and utility of satellite OSVW data in operational weather forecasting and warning by exploiting OSVW research satellites in near real-time. Since December 1999 when first data from QuikSCAT scatterometer became available in near real time NOAA operations have been benefiting from ASCAT scatterometer observations on MetOp-A and B, Indian OSCAT scatterometer on OceanSat-3 and lately NASA's RapidScat mission on International Space Station. With oceans comprising over 70 percent of the earth's surface, the impacts of these data have been tremendous in serving society's needs for weather and water information and in supporting the nation's commerce with information for safe, efficient, and environmentally sound transportation and coastal preparedness. The satellite OSVW experience that has been gained over the past decade by users in the operational weather community allows for realistic operational OSVW requirements to be properly stated for future missions. Successful model of transitioning research data into operation implemented by Ocean Winds Team in NOAA's NESDIS/STAR office and subsequent data impacts will be presented and discussed.

  15. Data Homogenization of the NOAA Long-Term Ozonesonde Records

    NASA Astrophysics Data System (ADS)

    Johnson, B.; Cullis, P.; Sterling, C. W.; Jordan, A. F.; Hall, E. G.; Petropavlovskikh, I. V.; Oltmans, S. J.; Mcconville, G.

    2015-12-01

    The NOAA long term balloon-borne ozonesonde sites at Boulder, Colorado; Hilo, Hawaii; and South Pole Station, Antarctica have measured weekly ozone profiles for more than 3 decades. The ozonesonde consists of an electrochemical concentration cell (ECC) sensor interfaced with a weather radiosonde which transmits high resolution ozone and meteorological data during ascent from the surface to 30-35 km altitude. During this 30 year time period there have been several model changes in the commercially available ECC ozonesondes and radiosondes as well as three adjustments in the ozone sensor solution composition at NOAA. These changes were aimed at optimizing the ozonesonde performance. Organized intercomparison campaigns conducted at the environmental simulation facility at the Research Centre Juelich, Germany and international field site testing have been the primary process for assessing new designs, instruments, or sensor solution changes and developing standard operating procedures. NOAA has also performed in-house laboratory tests and launched 28 dual ozonesondes at various sites since 1994 to provide further comparison data to determine the optimum homogenized data set. The final homogenization effort involved reviewing and editing several thousand individual ozonesonde profiles followed by applying the optimum correction algorithms for changes in type of sensor solution composition. The results of improved data sets will be shown with long term trends and uncertainties at various altitude levels.

  16. Towards NOAA Forecasts of Permafrost Active Layer Thickness

    NASA Astrophysics Data System (ADS)

    Livezey, M. M.; Jonassen, R. G.; Horsfall, F. M. C.; Jafarov, E. E.; Schaefer, K. M.

    2014-12-01

    NOAA's implementation of its 2014 Arctic Action Plan (AAP) lacks services related to permafrost change yet the Interagency Working Group on Coordination of Domestic Energy Development and Permitting in Alaska noted that warming permafrost challenges land-based development and calls for agencies to provide focused information needed by decision-makers. To address this we propose to link NOAA's existing seasonal forecasts of temperature and precipitation with a high-resolution model of the thermal state of permafrost (Jafarov et al., 2012) to provide near-term (one year ahead) forecasts of active layer thickness (ALT). Such forecasts would be an official NOAA statement of the expected thermal state of permafrost ALT in Alaska and would require: (1) long-term climate outlooks, (2) a permafrost model, (3) detailed specification of local spatial and vertical controls upon soil thermal state, (4) high-resolution vertical measurements of that thermal state, and (5) demonstration of forecast skill in pilot studies. Pilot efforts should focus on oil pipelines where the cost can be justified. With skillful forecasts, engineers could reduce costs of monitoring and repair as well as ecosystem damage by positioning equipment to more rapidly respond to predicted disruptions.

  17. NOAA Ecosystem Data Assembly Center for the Gulf of Mexico

    NASA Astrophysics Data System (ADS)

    Parsons, A. R.; Beard, R. H.; Arnone, R. A.; Cross, S. L.; Comar, P. G.; May, N.; Strange, T. P.

    2006-12-01

    Through research programs at the NOAA Northern Gulf of Mexico Cooperative Institute (CI), NOAA is establishing an Ecosystem Data Assembly Center (EDAC) for the Gulf of Mexico. The EDAC demonstrates the utility of integrating many heterogeneous data types and streams used to characterized and identify ecosystems for the purpose of determining the health of ecosystems and identifying applications of the data within coastal resource management activities. Data streams include meteorological, physical oceanographic, ocean color, benthic, biogeochemical surveys, fishery, as well as fresh water fluxes (rainfall and river flow). Additionally the EDAC will provide an interface to the ecosystem data through an ontology based on the Coastal/Marine Ecological Classification System (CMECS). Applications of the ontological approach within the EDAC will be applied to increase public knowledge on habitat and ecosystem awareness. The EDAC plans to leverage companion socioeconomic studies to identify the essential data needed for continued EDAC operations. All data-management architectures and practices within the EDAC ensure interoperability with the Integrated Ocean Observing System (IOOS) national backbone by incorporating the IOOS Data Management and Communications Plan. Proven data protocols, standards, formats, applications, practices and architectures developed by the EDAC will be transitioned to the NOAA National Data Centers.

  18. A Restrospective and Prospective Examination of NOAA Solar Imaging

    NASA Astrophysics Data System (ADS)

    Hill, S. M.

    2015-12-01

    NOAA has provided soft X-ray imaging of the lower corona since the early 2000's. It is currently building the spacecraft and instrumentation to observe the sun in the extreme ultraviolet (EUV) through 2036. After more than 6 million calibrated images, it is appropriate to examine NOAA data as providing retrospective context for scientific missions. In particular, this presentation examines the record of GOES Solar X-ray Imager (SXI) observations, including continuity, photometric stability and comparison to other contemporary x-ray imagers. The first GOES Solar X-ray Imager was launched in 2001 and entered operations in 2003. The current SXIs will remain in operations until approximately 2020, when a new series of Solar (extreme-)Ultraviolet Imagers (SUVIs) will replace them as the current satellites reach their end of life. In the sense that the SXIs are similar to Yokoh's SXT and Hinode's XRT, the SUVI instruments will be similar to SOHO's EIT and SDO's AIA. The move to narrowband EUV imagers will better support eventual operational estimation of plasma conditions. In particular, plans are to leverage advances in automated image processing and segmentation to assist forecasters. While NOAA's principal use of these observations is real-time space weather forecasting, they will continue to provide a consistent context measurement for researchers for decades to come.

  19. Best Practices in Mentoring in NOAA Scholarship Programs

    NASA Astrophysics Data System (ADS)

    Kaplan, M.; Sarvis, S.; Dancy, V.

    2015-12-01

    Through established scholarship programs, NOAA hosts 125 - 175 undergraduate students each summer to participate in internship opportunities at agency facilities. In order to host a scholar, NOAA labs and offices must designate a mentor who develops a project and oversees activities of the student throughout the summer. NOAA implements best practices in mentoring in the following ways: mentor and intern responsibilities are clearly defined in a manual; mentors are required to take an online mentor training class; mentors and scholars are matched through an online system and scholars conduct a site visit prior to beginning the internship; proposed internship projects are reviewed by scholarship program managers to assure they are sufficiently analytical and will advance the student in their future academic and career goals; and mentors are surveyed at the midpoint, allowing scholarship program managers to identify problems and intervene if possible. These practices have resulted in strong results. Students identify the mentor relationship, hands-on experience and networking with professionals as the three most important outcomes of the internship experience.

  20. The NOAA GOES-12 Solar X-ray Imager (SXI)

    NASA Astrophysics Data System (ADS)

    Hill, S. M.; Pizzo, V. J.; Wilkinson, D. C.; Davis, J. M.

    2001-05-01

    The Solar X-ray Imager (SXI), planned for launch in July 2001 on NOAA's GOES-12 satellite, will provide nearly uninterrupted, full-disk, soft X-ray solar movies, with a continuous frame rate significantly exceeding that for previous similar instruments. The SXI provides images with a one-minute cadence and a single-image (adjustable) dynamic range near 100. A set of metallic thin-film filters provides a degree of temperature discrimination in the 0.6-6.0 nm bandpass. The spatial resolution of approximately 10 arcseconds FWHM is sampled with 5 arcsecond pixels. NOAA's operational space weather forecasting requirements drive the observing sequences toward long-term uniformity. This will yield an excellent standardized set of contextual data products for the historical record. Sequences can be selected or modified based on solar activity levels. Data products will be made available to the research community via NOAA's National Geophysical Data Center World Wide Web site in near real-time (minutes). Among the data products are raw and calibrated images in SolarSoft compliant FITS format. Other data products will include multiple image products such as standardized movies at fixed UT times and wide dynamic range composite images. The Web interface is designed to be user friendly, providing a range of search and preview capabilities.

  1. EVOLUTION OF SPINNING AND BRAIDING HELICITY FLUXES IN SOLAR ACTIVE REGION NOAA 10930

    SciTech Connect

    Ravindra, B.; Yoshimura, Keiji; Dasso, Sergio E-mail: yosimura@solar.physics.montana.edu

    2011-12-10

    The line-of-sight magnetograms from Solar Optical Telescope Narrowband Filter Imager observations of NOAA Active Region 10930 have been used to study the evolution of spinning and braiding helicities over a period of five days starting from 2006 December 9. The north (N) polarity sunspot was the follower and the south (S) polarity sunspot was the leader. The N-polarity sunspot in the active region was rotating in the counterclockwise direction. The rate of rotation was small during the first two days of observations and it increased up to 8 Degree-Sign hr{sup -1} on the third day of the observations. On the fourth and fifth days it remained at 4 Degree-Sign hr{sup -1} with small undulations in its magnitude. The sunspot rotated about 260 Degree-Sign in the last three days. The S-polarity sunspot did not complete more than 20 Degree-Sign in five days. However, it changed its direction of rotation five times over a period of five days and injected both the positive and negative type of spin helicity fluxes into the corona. Through the five days, both the positive and negative sunspot regions injected equal amounts of spin helicity. The total injected helicity is predominantly negative in sign. However, the sign of the spin and braiding helicity fluxes computed over all the regions were reversed from negative to positive five times during the five-day period of observations. The reversal in spinning helicity flux was found before the onset of the X3.4-class flare, too. Though, the rotating sunspot has been observed in this active region, the braiding helicity has contributed more to the total accumulated helicity than the spinning helicity. The accumulated helicity is in excess of -7 Multiplication-Sign 10{sup 43} Mx{sup 2} over a period of five days. Before the X3.4-class flare that occurred on 2006 December 13, the rotation speed and spin helicity flux increased in the S-polarity sunspot. Before the flare, the total injected helicity was larger than -6

  2. NOAA Introduces its First-Generation Reference Evapotranspiration Product

    NASA Astrophysics Data System (ADS)

    Hobbins, M.; Geli, H. M.; Lewis, C.; Senay, G. B.; Verdin, J. P.

    2013-12-01

    NOAA is producing daily, gridded operational, long-term, reference evapotranspiration (ETo) data for the National Water Census (NWC). The NWC is a congressional mandate to provide water managers with accurate, up-to-date, scientifically defensible reporting on the national water cycle; as such, it requires a high-quality record of actual ET, which we derive as a fraction of NOAA's land-based ETo a fraction determined by remotely sensed (RS) LST and/or surface reflectance in an operational version of the Simplified Surface Energy Balance (SSEBop). This methodology permits mapping of ET on a routine basis with a high degree of consistency at multiple spatial scales. This presentation addresses the ETo input to this process. NOAA's ETo dataset is generated from the American Society of Civil Engineers Standardized Penman-Monteith equation driven by hourly, 0.125-degree (~12-km) data from the North American Land Data Assimilation System (NLDAS). Coverage is CONUS-wide from Jan 1, 1979, to within five days of the present. The ETo is verified against agro-meteorological stations in western CONUS networks, while a first-order, second-moment uncertainty analysis indicates when, where, and to what extent each driver contributes to ETo variability (and so potentially require the most attention). As the NWC's mandate requires a nationwide coverage, the ETo dataset must also be verified outside of the measure's traditional, agricultural/irrigated areas of application. In this presentation, we summarize the verification of the gridded ETo product and demonstrate the drivers of ETo variability in space and time across CONUS. Beyond its primary use as a component of ET in the NWC, we further explore potential uses of the ETo product as an input to drought models and as a stand-alone index of fast-developing agricultural drought, or 'flash drought.' NOAA's product is the first consistently modeled, daily, continent-wide ETo dataset that is both up-to-date and as temporally

  3. Administrative Ecology

    ERIC Educational Resources Information Center

    McGarity, Augustus C., III; Maulding, Wanda

    2007-01-01

    This article discusses how all four facets of administrative ecology help dispel the claims about the "impossibility" of the superintendency. These are personal ecology, professional ecology, organizational ecology, and community ecology. Using today's superintendency as an administrative platform, current literature describes a preponderance of…

  4. Administrative Support.

    ERIC Educational Resources Information Center

    Doran, Dorothy; And Others

    This guide is intended to assist business education teachers in administrative support courses. The materials presented are based on the Arizona validated occupational competencies and tasks for the occupations of receptionist, secretary, and administrative assistant. Word processing skills have been infused into each of the three sections. The…

  5. Integration of Visibility Sensors in NOAA PORTS® to aid in Decision Making for Safe Navigation

    NASA Astrophysics Data System (ADS)

    Roggenstein, E. B.

    2012-12-01

    The National Oceanic and Atmospheric Administration (NOAA) National Ocean Service (NOS) Physical Oceanographic Real-Time System (PORTS®) provides real-time water level, currents and meteorological data for aid to navigation in twenty-three major ports and harbors. In response to PORTS® users' requests for visibility data, NOS began testing several varieties of visibility sensors for operations in a marine environment. Extensive testing resulted in the selection of the Vaisala FS11 visibility sensor. The FS11 sensor uses forward scattering technology to measure the amount of scattering in a small volume of air between the transmitter and receiver, resulting in an extrapolated visibility at a set height out to 75 km. Two sensors have been successfully operating in the Mobile Bay PORTS® at Middle Bay Port and Pinto Island since installation in 2010. The sensors are positioned at a height of 3 m above the ground, 24 km apart along the western shore of the bay in areas susceptible to fog formation. Real-time data from these sensors are disseminated on NOAA's Center for Operational Oceanographic Products and Services (COOPS) PORTS® website every 6 minutes (min) and for distances up to 10 km (5.4 nm) from the instrument. This has proven to aid port pilots' decision making for safe movement of vessels in the harbor. Additionally, the Pinto Island sensor is located directly adjacent to the shipping channel - an area with high levels of atmospheric particulates of high carbon content. These particulates do not appear to have negatively affected sensor performance. This success has prompted interest in visibility sensors from other harbors with PORTS®. The ports of San Francisco, Narragansett Bay, Chesapeake Bay, Jacksonville FL, and Gulfport MS are planning or exploring the addition of visibility sensors to their PORTS® to aid in navigation. Additionally, the NOAA/COOPS Ocean System Test Evaluation Program (OSTEP) has continued with additional field testing of the FS11

  6. An efficient contextual algorithm to detect subsurface fires with NOAA/AVHRR data

    SciTech Connect

    Gautam, R.S.; Singh, D.; Mittal, A.

    2008-07-15

    This paper deals with the potential application of National Oceanic and Atmospheric Administration (NOAA)/Advanced Very High Resolution Radiometer (AVHRR) data to detect subsurface fire (subsurface hotspots) by proposing an efficient contextual algorithm. Although few algorithms based on the fixed-thresholding approach have been proposed for subsurface hotspot detection, however, for each application, thresholds have to be specifically tuned to cope with unique environmental conditions. The main objective of this paper is to develop an instrument-independent adaptive method by which direct threshold or multithreshold can be avoided. The proposed contextual algorithm is helpful to monitor subsurface hotspots with operational satellite data, such as the Jharia region of India, without making any region-specific guess in thresholding. Novelty of the proposed work lies in the fact that once the algorithmic model is developed for the particular region of interest after optimizing the model parameters, there is no need to optimize those parameters again for further satellite images. Hence, the developed model can be used for optimized automated detection and monitoring of subsurface hotspots for future images of the particular region of interest. The algorithm is adaptive in nature and uses vegetation index and different NOAA/AVHRR channel's statistics to detect hotspots in the region of interest. The performance of the algorithm is assessed in terms of sensitivity and specificity and compared with other well-known thresholding, techniques such as Otsu's thresholding, entropy-based thresholding, and existing contextual algorithm proposed by Flasse and Ceccato. The proposed algorithm is found to give better hotspot detection accuracy with lesser false alarm rate.

  7. Polarized internal target apparatus

    DOEpatents

    Holt, Roy J.

    1986-01-01

    A polarized internal target apparatus with a polarized gas target of improved polarization and density achieved by mixing target gas atoms with a small amount of alkali metal gas atoms, and passing a high intensity polarized light source into the mixture to cause the alkali metal gas atoms to become polarized which interact in spin exchange collisions with target gas atoms yielding polarized target gas atoms.

  8. Polarized internal target apparatus

    DOEpatents

    Holt, R.J.

    1984-10-10

    A polarized internal target apparatus with a polarized gas target of improved polarization and density (achieved by mixing target gas atoms with a small amount of alkali metal gas atoms, and passing a high intensity polarized light source into the mixture to cause the alkali metal gas atoms to become polarized which interact in spin exchange collisions with target gas atoms yielding polarized target gas atoms) is described.

  9. Polar Color

    NASA Technical Reports Server (NTRS)

    2004-01-01

    [figure removed for brevity, see original site]

    Released 3 May 2004 This nighttime visible color image was collected on January 1, 2003 during the Northern Summer season near the North Polar Troughs.

    This daytime visible color image was collected on September 4, 2002 during the Northern Spring season in Vastitas Borealis. The THEMIS VIS camera is capable of capturing color images of the martian surface using its five different color filters. In this mode of operation, the spatial resolution and coverage of the image must be reduced to accommodate the additional data volume produced from the use of multiple filters. To make a color image, three of the five filter images (each in grayscale) are selected. Each is contrast enhanced and then converted to a red, green, or blue intensity image. These three images are then combined to produce a full color, single image. Because the THEMIS color filters don't span the full range of colors seen by the human eye, a color THEMIS image does not represent true color. Also, because each single-filter image is contrast enhanced before inclusion in the three-color image, the apparent color variation of the scene is exaggerated. Nevertheless, the color variation that does appear is representative of some change in color, however subtle, in the actual scene. Note that the long edges of THEMIS color images typically contain color artifacts that do not represent surface variation.

    Image information: VIS instrument. Latitude 79, Longitude 346 East (14 West). 19 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with

  10. NOAA Climate Information and Tools for Decision Support Services

    NASA Astrophysics Data System (ADS)

    Timofeyeva, M. M.; Higgins, W.; Strager, C.; Horsfall, F. M.

    2013-12-01

    NOAA is an active participant of the Global Framework for Climate Services (GFCS) contributing data, information, analytical capabilities, forecasts, and decision support services to the Climate Services Partnership (CSP). These contributions emerge from NOAA's own climate services, which have evolved to respond to the urgent and growing need for reliable, trusted, transparent, and timely climate information across all sectors of the U.S. economy. Climate services not only enhance development opportunities in many regions, but also reduce vulnerability to climate change around the world. The NOAA contribution lies within the NOAA Climate Goal mission, which is focusing its efforts on four key climate priority areas: water, extremes, coastal inundation, and marine ecosystems. In order to make progress in these areas, NOAA is exploiting its fundamental capabilities, including foundational research to advance understanding of the Earth system, observations to preserve and build the climate data record and monitor changes in climate conditions, climate models to predict and project future climate across space and time scales, and the development and delivery of decision support services focused on risk management. NOAA's National Weather Services (NWS) is moving toward provision of Decision Support Services (DSS) as a part of the Roadmap on the way to achieving a Weather Ready National (WRN) strategy. Both short-term and long-term weather, water, and climate information are critical for DSS and emergency services and have been integrated into NWS in the form of pilot projects run by National and Regional Operations Centers (NOC and ROCs respectively) as well as several local offices. Local offices with pilot projects have been focusing their efforts on provision of timely and actionable guidance for specific tasks such as DSS in support of Coastal Environments and Integrated Environmental Studies. Climate information in DSS extends the concept of climate services to

  11. A Data Gap Analysis and Efforts Towards Improving NOAA's Global Surface Temperature

    NASA Astrophysics Data System (ADS)

    Zhang, H. M.; Wuertz, D.; Nickl, E.; Banzon, P. V. F.; Gleason, B.; Huang, B.; Lawrimore, J. H.; Menne, M. J.; Rennie, J.; Thorne, P.; Williams, C. N., Jr.

    2014-12-01

    Estimates of global surface temperature trends from some sources have indicated slowing in the rate of warming over the last decade compared to the long-term warming trend since the industrial revolution. It has been debated whether this recent slowdown is due to natural variability or a missed signal due to gaps in the global observation networks, particularly over the Arctic Region. To examine this more closely, we quantify the impact of data gaps on the global surface temperature trends in several regions of the world (e.g. Polar Regions and the Continents of African and South America), using major global datasets including NOAA's Merged Land-Ocean Temperature dataset (NOAATemp). We also study the impact of the greater observational coverage in a recently released global temperature data set as part of the International Surface Temperature Initiative (ISTI), and analyze the spatial-temporal variation patterns of the homogenization effect on NOAATemp. A summary of the progress and challenges in filling in grid boxes where observations are sparse over large areas are presented.

  12. NOAA Atmospheric, Marine and Arctic Monitoring Using UASs (including Rapid Response)

    NASA Astrophysics Data System (ADS)

    Coffey, J. J.; Jacobs, T.

    2015-12-01

    Unmanned systems have the potential to efficiently, effectively, economically, and safely bridge critical observation requirements in an environmentally friendly manner. As the United States' Atmospheric, Marine and Arctic areas of interest expand and include hard-to-reach regions of the Earth (such as the Arctic and remote oceanic areas) optimizing unmanned capabilities will be needed to advance the United States' science, technology and security efforts. Through increased multi-mission and multi-agency operations using improved inter-operable and autonomous unmanned systems, the research and operations communities will better collect environmental intelligence and better protect our Country against hazardous weather, environmental, marine and polar hazards. This presentation will examine NOAA's Atmospheric, Marine and Arctic Monitoring Unmanned Aircraft System (UAS) strategies which includes developing a coordinated effort to maximize the efficiency and capabilities of unmanned systems across the federal government and research partners. Numerous intra- and inter-agency operational demonstrations and assessments have been made to verify and validated these strategies. This includes the introduction of the Targeted Autonomous Insitu Sensing and Rapid Response (TAISRR) with UAS concept of operations. The presentation will also discuss the requisite UAS capabilities and our experience in using them.

  13. Value of Undergraduate Internship Experiences at NOAA: Analysis of Survey Results

    NASA Astrophysics Data System (ADS)

    Kaplan, M.

    2014-12-01

    This presentation will examine survey data from over 500 undergraduates who participated in summer internships at NOAA facilities as Ernest F. Hollings Scholars and Educational Partnership Program (EPP) Undergraduate Scholars. NOAA selects over 100 students per year to receive academic support in their junior and senior years and a paid summer internship at any NOAA facility in the country. Scholars are hosted by NOAA mentors who actively oversee summer research activities. Analysis of survey results identified six thematic impacts from the internship experience (McIntosh and Baek, 2013).

  14. NOAA SBUV(/2) Ozone Merged Cohesive Climate Data Record

    NASA Astrophysics Data System (ADS)

    Long, C. S.; Wild, J.; Beach, E.

    2015-12-01

    The Solar Backscatter UltraViolet (SBUV) instrument flown on Nimbus-7 and the SBUV/2 instruments flown on the NOAA 09, 11, 14, 16, 17, 18, and 19 satellites have produced a continuous record of nadir profile ozone observations from 1979 through the present (2015). NASA's latest reprocessing of the individual satellite data sets have created a version 8.6 which strives to eliminate inter-satellite biases. However, there still are differences in data quality between the instruments flown on the various satellites. Our goal is to remove the remaining differences. Adjustments are made to individual instrument records based on periods of overlap, to account for any variations in the observed annual cycle as well as an overall bias. Rather than an average of all available observations, a single satellite is chosen for each period based on the best latitudinal coverage allowing the clean retention of satellite characteristics such as time of measurement, solar zenith angle, etc. to be identified with an ozone value. Measurements from NOAA-9 are included in a short period to allow greater global coverage in the bridge from NOAA-11 to -14. Measurements from the NASA BUV on Nimbus-4 are excluded since there is no overlap with the subsequent instruments. We will present examples of the methodology to adjust overlapping satellites. We will contrast the original unadjusted data set with our final data set. We will present results from applying a piece-wise linear trend to the data set dividing the depletion period from the recovery period. These results will be shown in comparison with other trend results from other ozone profile datasets.

  15. 2013 Update of NOAA's Annual Greenhouse Gas Index

    NASA Astrophysics Data System (ADS)

    Butler, James H.; Montzka, Stephen A.; Dlugokencky, Edward J.; Elkins, James W.; Masari, Kenneth A.; Schnell, Russell C.; Tans, Pieter P.

    2013-04-01

    Indexes are becoming increasingly important in communicating messages about climate change to a diverse public. Indexes exist for a number of climate-related phenomena including heat, precipitation, and extreme events. These help communicate complex phenomena to the public and, at times, policy makers, to aid in understanding or making decisions. Several years ago, NOAA introduced a unique index for expressing the influence of human-emitted, long-lived greenhouse gases in the atmosphere (DJ Hofmann et al., Tellus, 2006, S8B 614-619). Essentially a condensation and normalization of radiative forcing from long-lived gases, the NOAA Annual Greenhouse Gas Index (AGGI) was designed to enhance the connection between scientists and society by providing a standard that could be easily understood and followed. The index each year is calculated from high quality, long-term observations by NOAA's Global Monitoring Division, which includes real-time measurements extending over the past five decades, as well as published ice core record that go back to 1750. The AGGI is normalized to 1.00 in 1990, the Kyoto Climate Protocol baseline year. At the end of 2011, the AGGI was 1.30, indicating that global radiative forcing by long-lived greenhouse gases had increased 30% since 1990. During the 1980s CO2 accounted for about 50-60% of the annual increase in radiative forcing by long-lived greenhouse gases, whereas, since 2000, it has accounted for 85-90% of this increase each year. After nearly a decade of virtually level concentrations in the atmosphere, methane (CH4) increased measurably over the past 2-3 years, as did its contribution to radiative forcing. In addition to presenting the AGGI for 2012, increases in radiative forcing will be evaluated and discussed with respect to the contributions from CO2, CH4, nitrous oxide (N2O), chlorofluorocarbons (CFCs), and other emerging greenhouse gases.

  16. NASA/NOAA/AMS Earth Science Electronic Theatre

    NASA Technical Reports Server (NTRS)

    Hasler, Fritz; Pierce, Hal; Einaudi, Franco (Technical Monitor)

    2001-01-01

    The NASA/NOAA/AMS Earth Science Electronic Theater presents Earth science observations and visualizations in a historical perspective. Fly in from outer space to Florida and the KSC Visitor's Center. Go back to the early weather satellite images from the 1960s see them contrasted with the latest International global satellite weather movies including killer hurricanes & tornadic thunderstorms. See the latest spectacular images from NASA and NOAA remote sensing missions like GOES, NOAA, TRMM, SeaWiFS, Landsat 7, & new Terra which will be visualized with state-of-the art tools. Shown in High Definition TV resolution (2048 x 768 pixels) are visualizations of hurricanes Lenny, Floyd, Georges, Mitch, Fran and Linda. See visualizations featured on covers of magazines like Newsweek, TIME, National Geographic, Popular Science and on National & International Network TV. New Digital Earth visualization tools allow us to roam & zoom through massive global images including a Landsat tour of the US, with drill-downs into major cities using 1 m resolution spy-satellite technology from the Space Imaging IKONOS satellite, Spectacular new visualizations of the global atmosphere & oceans are shown. See massive dust storms sweeping across Africa. See ocean vortexes and currents that bring up the nutrients to feed tiny plankton and draw the fish, giant whales and fisherman. See the how the ocean blooms in response to these currents and El Nino/La Nina climate changes. The demonstration is interactively driven by a SGI Octane Graphics Supercomputer with dual CPUs, 5 Gigabytes of RAM and Terabyte disk using two projectors across the super sized Universe Theater panoramic screen.

  17. Transitioning GONG data processing to NOAA SWPC operations

    NASA Astrophysics Data System (ADS)

    Reinard, Alysha; Marble, Andrew R.; Berger, Thomas

    2016-05-01

    The NOAA Space Weather Prediction Center (SWPC) is the nation's official source of space weather watches, warnings, and alerts, providing 24x7 forecasting and support to critical infrastructure operators around the world. Observations of the conditions on the Sun are crucial for determining when and if a warning is needed. The Global Oscillation Network Group (GONG) operated by the National Solar Observatory (NSO) consists of six ground stations, allowing continuous observations of the Sun. Of particular interest for space weather purposes are the H-alpha images and magnetograms. The H-alpha data are used to identify filaments and their eruptions, to assess active region evolution and plage extent, and to help localize flare locations. The magnetograms are used to identify neutral lines, to examine potential shearing areas and to characterize the magnetic structure of active regions. GONG magnetograms also provide the initial condition for models of solar wind expansion through the heliosphere such as the WSA-Enlil model. Although beyond the scope of current space weather applications, GONG helioseismology products can be used to assess active region emergence on the far side of the Sun and to indicate the flaring potential of a front-side active region. These products are being examined as future tools in flare prediction.NSO has operated GONG as a science facility since 1995 and has provided processed space weather data products to NOAA via for the past several years. In 2014 the White House Office of Management and Budget (OMB) requested that NOAA transition the GONG network to an operational space weather asset in order to ensure the continued flow of critical data for solar wind models. NSO will continue to operate and manage the instruments and sites, but the H-alpha images and 10 minute averaged magnetogram data will be sent directly to SWPC for processing and use in space weather modeling. SWPC will make these data available to NSO and the public via the

  18. Transitioning GONG data processing to NOAA SWPC operations

    NASA Astrophysics Data System (ADS)

    Reinard, A.; Marble, A.; Hill, F.; Berger, T. E.

    2015-12-01

    The NOAA Space Weather Prediction Center (SWPC) is the nation's official source of space weather watches, warnings, and alerts, providing 24x7 forecasting and support to critical infrastructure operators around the world. Observations of the conditions on the Sun are crucial for determining when and if a warning is needed. The Global Oscillation Network Group (GONG) operated by the National Solar Observatory (NSO) consists of six ground stations, allowing continuous observations of the Sun. Of particular interest for space weather purposes are the H-alpha images and magnetograms. The H-alpha data are used to identify filaments and their eruptions, to assess active region evolution and plage extent, and to help localize flare locations. The magnetograms are used to identify neutral lines, to examine potential shearing areas and to characterize the magnetic structure of active regions. GONG magnetograms also provide the initial condition for models of solar wind expansion through the heliosphere such as the WSA-Enlil model. Although beyond the scope of current space weather applications, GONG helioseismology products can be used to assess active region emergence on the far side of the Sun and to indicate the flaring potential of a front-side active region. These products are being examined as future tools in flare prediction. NSO has operated GONG as a science facility since 1995 and has provided processed space weather data products to NOAA via public internet connections for the past several years. In 2014 the White House Office of Management and Budget (OMB) requested that NOAA transition the GONG network to an operational space weather asset in order to ensure the continued flow of critical magnetogram data for solar wind models. NSO will continue to operate and manage the instruments and sites, but the H-alpha images and 10 minute averaged magnetogram data will be sent directly to SWPC for processing and use in space weather modeling. SWPC will make these data

  19. A User's Guide to the Tsunami Datasets at NOAA's National Data Buoy Center

    NASA Astrophysics Data System (ADS)

    Bouchard, R. H.; O'Neil, K.; Grissom, K.; Garcia, M.; Bernard, L. J.; Kern, K. J.

    2013-12-01

    The National Data Buoy Center (NDBC) has maintained and operated the National Oceanic and Atmospheric Administration's (NOAA) tsunameter network since 2003. The tsunameters employ the NOAA-developed Deep-ocean Assessment and Reporting of Tsunamis (DART) technology. The technology measures the pressure and temperature every 15 seconds on the ocean floor and transforms them into equivalent water-column height observations. A complex series of subsampled observations are transmitted acoustically in real-time to a moored buoy or marine autonomous vehicle (MAV) at the ocean surface. The surface platform uses its satellite communications to relay the observations to NDBC. NDBC places the observations onto the Global Telecommunication System (GTS) for relay to NOAA's Tsunami Warning Centers (TWC) in Hawai'i and Alaska and to the international community. It takes less than three minutes to speed the observations from the ocean floor to the TWCs. NDBC can retrieve limited amounts of the 15-s measurements from the instrumentation on the ocean floor using the technology's two-way communications. NDBC recovers the full resolution 15-s measurements about every 2 years and forwards the datasets and metadata to the National Geophysical Data Center for permanent archive. Meanwhile, NDBC retains the real-time observations on its website. The type of real-time observation depends on the operating mode of the tsunameter. NDBC provides the observations in a variety of traditional and innovative methods and formats that include descriptors of the operating mode. Datasets, organized by station, are available from the NDBC website as text files and from the NDBC THREDDS server in netCDF format. The website provides alerts and lists of events that allow users to focus on the information relevant for tsunami hazard analysis. In addition, NDBC developed a basic web service to query station information and observations to support the Short-term Inundation Forecasting for Tsunamis (SIFT

  20. Linearly polarized fiber amplifier

    SciTech Connect

    Kliner, Dahv A.; Koplow, Jeffery P.

    2004-11-30

    Optically pumped rare-earth-doped polarizing fibers exhibit significantly higher gain for one linear polarization state than for the orthogonal state. Such a fiber can be used to construct a single-polarization fiber laser, amplifier, or amplified-spontaneous-emission (ASE) source without the need for additional optical components to obtain stable, linearly polarized operation.

  1. Nondiffracting transversally polarized beam.

    PubMed

    Yuan, G H; Wei, S B; Yuan, X-C

    2011-09-01

    Generation of a nondiffracting transversally polarized beam by means of transmitting an azimuthally polarized beam through a multibelt spiral phase hologram and then highly focusing by a high-NA lens is presented. A relatively long depth of focus (∼4.84λ) of the electric field with only radial and azimuthal components is achieved. The polarization of the wavefront near the focal plane is analyzed in detail by calculating the Stokes polarization parameters. It is found that the polarization is spatially varying and entirely transversally polarized, and the polarization singularity disappears at the beam center, which makes the central bright channel possible. PMID:21886250

  2. Crossed elliptical polarization undulator

    SciTech Connect

    Sasaki, Shigemi

    1997-05-01

    The first switching of polarization direction is possible by installing two identical helical undulators in series in a same straight section in a storage ring. By setting each undulator in a circular polarization mode in opposite handedness, one can obtain linearly polarized radiation with any required polarization direction depending on the modulator setting between two undulators. This scheme can be used without any major degradation of polarization degree in any low energy low emittance storage ring.

  3. Polarization-balanced beamsplitter

    DOEpatents

    Decker, D.E.

    1998-02-17

    A beamsplitter assembly is disclosed that includes several beamsplitter cubes arranged to define a plurality of polarization-balanced light paths. Each polarization-balanced light path contains one or more balanced pairs of light paths, where each balanced pair of light paths includes either two transmission light paths with orthogonal polarization effects or two reflection light paths with orthogonal polarization effects. The orthogonal pairing of said transmission and reflection light paths cancels polarization effects otherwise caused by beamsplitting. 10 figs.

  4. Polarization-balanced beamsplitter

    DOEpatents

    Decker, Derek E.

    1998-01-01

    A beamsplitter assembly that includes several beamsplitter cubes arranged to define a plurality of polarization-balanced light paths. Each polarization-balanced light path contains one or more balanced pairs of light paths, where each balanced pair of light paths includes either two transmission light paths with orthogonal polarization effects or two reflection light paths with orthogonal polarization effects. The orthogonal pairing of said transmission and reflection light paths cancels polarization effects otherwise caused by beamsplitting.

  5. [Dendrolimus spp. damage monitoring by using NOAA/AVHRR data].

    PubMed

    Zhang, Yushu; Ban, Xianxiu; Chen, Pengshi; Feng, Rui; Ji, Ruipeng; Xiao, Yan

    2005-05-01

    This paper approached the feasibility of quantitatively monitoring Dendrolimus spp. damage by using NOAA/ AVHRR data. The damaged rate of needle leaf was used to represent Dendrolimus spp. harming degree, and < 30%, 30%-60% and > 60% of damaged rate was defined as low, medium and severe harming degree, respectively. The correlation equation of damaged rate and normalized vegetation index (NDVI) was established, based on the ground spectrum observation. The NDVI was 0.8823 when no damage occurred. A relative NDVI value of damaged to undamaged area was used to express the remote sensing index of low, medium and severe harming degree. The index was 1 for undamaged forest, and 0.78-1, 0.57-0.78 and < 0.57 for low, medium and severe harming degrees, respectively. The mixed pixels were separated by linear addable vertical vegetation index in the monitoring, and the quantitative monitoring and analysis was accomplished for years when the three damage degrees happened. It was shown that AVHRR data could be more available in quantitatively monitoring and analyzing serious damage, while low degree damage was difficult to distinguish by AVHRR data, due to the differences of surface properties and atmospheric influences, as well as the lower space resolution of NOAA/AVHRR. The damaged area estimated by AVHRR was 12.1%-14.3% lower than that by TM.

  6. Utilization of Precipitation and Moisture Products Derived from Satellites to Support NOAA Operational Precipitation Forecasts

    NASA Astrophysics Data System (ADS)

    Ferraro, R.; Zhao, L.; Kuligowski, R. J.; Kusselson, S.; Ma, L.; Kidder, S. Q.; Forsythe, J. M.; Jones, A. S.; Ebert, E. E.; Valenti, E.

    2012-12-01

    NOAA/NESDIS operates a constellation of polar and geostationary orbiting satellites to support weather forecasts and to monitor the climate. Additionally, NOAA utilizes satellite assets from other U.S. agencies like NASA and the Department of Defense, as well as those from other nations with similar weather and climate responsibilities (i.e., EUMETSAT and JMA). Over the past two decades, through joint efforts between U.S. and international government researchers, academic partners, and private sector corporations, a series of "value added" products have been developed to better serve the needs of weather forecasters and to exploit the full potential of precipitation and moisture products generated from these satellites. In this presentation, we will focus on two of these products - Ensemble Tropical Rainfall Potential (eTRaP) and Blended Total Precipitable Water (bTPW) - and provide examples on how they contribute to hydrometeorological forecasts. In terms of passive microwave satellite products, TPW perhaps is most widely used to support real-time forecasting applications, as it accurately depicts tropospheric water vapor and its movement. In particular, it has proven to be extremely useful in determining the location, timing, and duration of "atmospheric rivers" which contribute to and sustain flooding events. A multi-sensor approach has been developed and implemented at NESDIS in which passive microwave estimates from multiple satellites and sensors are merged to create a seamless, bTPW product that is more efficient for forecasters to use. Additionally, this product is being enhanced for utilization for television weather forecasters. Examples will be shown to illustrate the roll of atmospheric rivers and contribution to flooding events, and how the bTPW product was used to improve the forecast of these events. Heavy rains associated with land falling tropical cyclones (TC) frequently trigger floods that cause millions of dollars of damage and tremendous loss

  7. Dissemination of Earth Remote Sensing Data for Use in the NOAA/NWS Damage Assessment Toolkit

    NASA Technical Reports Server (NTRS)

    Molthan, Andrew; Burks, Jason; Camp, Parks; McGrath, Kevin; Bell, Jordan

    2015-01-01

    The National Weather Service has developed the Damage Assessment Toolkit (DAT), an application for smartphones and tablets that allows for the collection, geolocation, and aggregation of various damage indicators that are collected during storm surveys. The DAT supports the often labor-intensive process where meteorologists venture into the storm-affected area, allowing them to acquire geotagged photos of the observed damage while also assigning estimated EF-scale categories based upon their observations. Once the data are collected, the DAT infrastructure aggregates the observations into a server that allows other meteorologists to perform quality control and other analysis steps before completing their survey and making the resulting data available to the public. In addition to in-person observations, Earth remote sensing from operational, polar-orbiting satellites can support the damage assessment process by identifying portions of damage tracks that may be missed due to road limitations, access to private property, or time constraints. Products resulting from change detection techniques can identify damage to vegetation and the land surface, aiding in the survey process. In addition, higher resolution commercial imagery can corroborate ground-based surveys by examining higher-resolution commercial imagery. As part of an ongoing collaboration, NASA and NOAA are working to integrate near real-time Earth remote sensing observations into the NOAA/NWS Damage Assessment Toolkit. This presentation will highlight recent developments in a streamlined approach for disseminating Earth remote sensing data via web mapping services and a new menu interface that has been integrated within the DAT. A review of current and future products will be provided, including products derived from MODIS and VIIRS for preliminary track identification, along with conduits for higher-resolution Landsat, ASTER, and commercial imagery as they become available. In addition to tornado damage

  8. Visions of our Planet's Atmosphere, Land and Oceans: NASA/NOAA Electronic Theater 2002

    NASA Technical Reports Server (NTRS)

    Hasler, A. F.; Starr, David (Technical Monitor)

    2001-01-01

    The NASA/NOAA Electronic Theater presents Earth science observations and visualizations in a historical perspective. Fly in from outer space to the Olympic Medals Plaza, the new Gateway Center, and the University of Utah Stadium Site of the Olympic Opening and Closing Ceremonies in Salt Lake City. Fly in and through the Park City, and Snow Basin sites of the 2002 Winter Olympic Alpine Venues using 1 m IKONOS "Spy Satellite" data. See the four seasons of the Wasatch Front as observed by Landsat 7 at 15m resolution and watch the trees turn color in the Fall, snow come and go in the mountains and the reservoirs freeze and melt. Go back to the early weather satellite images from the 1960s and see them contrasted with the latest US and international global satellite weather movies including hurricanes & "tornadoes". See the latest visualizations of spectacular images from NASA/NOAA remote sensing missions like Terra, GOES, TRMM, SeaWiFS, Landsat 7 including new 1 - min GOES rapid scan image sequences of Nov 9th 2001 Midwest tornadic thunderstorms and have them explained. See how High-Definition Television (HDTV) is revolutionizing the way we communicate science. (In cooperation with the American Museum of Natural History in NYC) See dust storms in Africa and smoke plumes from fires in Mexico. See visualizations featured on the covers of Newsweek, TIME, National Geographic, Popular Science & on National & International Network TV. New computer software tools allow us to roam & zoom through massive global images e.g. Landsat tours of the US, and Africa, showing desert and mountain geology as well as seasonal changes in vegetation. See animations of the polar ice packs and the motion of gigantic Antarctic Icebergs from SeaWinds data. Spectacular new visualizations of the global atmosphere & oceans are shown. See vortexes and currents in the global oceans that bring up the nutrients to feed tiny algae and draw the fish, whales and fisherman. See the how the ocean blooms in

  9. Visions of our Planet's Atmosphere, Land and Oceans: NASA/NOAA Electronic Theater 2002

    NASA Technical Reports Server (NTRS)

    Hasler, A. F.; Starr, David (Technical Monitor)

    2002-01-01

    The NASA/NOAA Electronic Theater presents Earth science observations and visualizations in a historical perspective. Fly in from outer space to the Olympic Medals Plaza, the new Gateway Center, and the University of Utah Stadium Site of the Olympic Opening and Closing Ceremonies in Salt Lake City. Fly in and through the Park City, and Snow Basin sites of the 2002 Winter Olympic Alpine Venues using 1 m IKONOS "Spy Satellite" data. See the four seasons of the Wasatch Front as observed by Landsat 7 at 15m resolution and watch the trees turn color in the Fall, snow come and go in the mountains and the reservoirs freeze and melt. Go back to the early weather satellite images from the 1960s and see them contrasted with the latest US and international global satellite weather movies Including hurricanes & "tornadoes". See the latest visualizations of spectacular images from NASA/NOAA remote sensing missions like Terra, GOES, TRMM, SeaWiFS, Landsat 7 including new 1 - min GOES rapid scan image sequences of Nov 9th 2001 Midwest tornadic thunderstorms and have them explained. See how High-Definition Television (HDTV) is revolutionizing the way we communicate science. (In cooperation with the American Museum of Natural History in NYC) See dust storms in Africa and smoke plumes from fires in Mexico. See visualizations featured on the covers Of Newsweek, TIME, National Geographic, Popular Science & on National & International Network TV. New computer software. tools allow us to roam & zoom through massive global images e.g. Landsat tours of the US, and Africa, showing desert and mountain geology as well as seasonal changes in vegetation. See animations of the polar ice packs and the motion of gigantic Antarctic Icebergs from SeaWinds data. Spectacular new visualizations of the global atmosphere & oceans are shown. See vertexes and currents in the global oceans that bring up the nutrients to feed tin) algae and draw the fish, whales and fisherman. See the how the ocean blooms in

  10. Administrative IT

    ERIC Educational Resources Information Center

    Grayson, Katherine, Ed.

    2006-01-01

    When it comes to Administrative IT solutions and processes, best practices range across the spectrum. Enterprise resource planning (ERP), student information systems (SIS), and tech support are prominent and continuing areas of focus. But widespread change can also be accomplished via the implementation of campuswide document imaging and sharing,…

  11. Database Administrator

    ERIC Educational Resources Information Center

    Moore, Pam

    2010-01-01

    The Internet and electronic commerce (e-commerce) generate lots of data. Data must be stored, organized, and managed. Database administrators, or DBAs, work with database software to find ways to do this. They identify user needs, set up computer databases, and test systems. They ensure that systems perform as they should and add people to the…

  12. ADMINISTRATIVE CLIMATE.

    ERIC Educational Resources Information Center

    BRUCE, ROBERT L.; CARTER, G.L., JR.

    IN THE COOPERATIVE EXTENSION SERVICE, STYLES OF LEADERSHIP PROFOUNDLY AFFECT THE QUALITY OF THE SERVICE RENDERED. ACCORDINGLY, MAJOR INFLUENCES ON ADMINISTRATIVE CLIMATE AND EMPLOYEE PRODUCTIVITY ARE EXAMINED IN ESSAYS ON (1) SOURCES OF JOB SATISFACTION AND DISSATISFACTION, (2) MOTIVATIONAL THEORIES BASED ON JOB-RELATED SATISFACTIONS AND NEEDS,…

  13. Engineering Administration.

    ERIC Educational Resources Information Center

    Naval Personnel Program Support Activity, Washington, DC.

    This book is intended to acquaint naval engineering officers with their duties in the engineering department. Standard shipboard organizations are analyzed in connection with personnel assignments, division operations, and watch systems. Detailed descriptions are included for the administration of directives, ship's bills, damage control, training…

  14. Understanding and Predicting Water and Energy Cycle Changes in NOAA Climate Program

    NASA Astrophysics Data System (ADS)

    Koblinsky, C. J.

    2008-05-01

    The NOAA Climate Program leads and coordinates climate activities across all line offices in NOAA. The objectives of NOAA Climate Program are: 1) to describe and understand the state of the climate system through integrated observations, monitoring, and data management, 2) to understand and predict climate variability and change from weeks to decades to a century, and 3) to improve the ability of society to plan for and respond to climate variability and change. The NOAA Climate Program consists of three major programs: Climate Observation and Monitoring, Climate Research and Modeling and Climate Service Development. Understanding and predicting water & energy cycle variability and changes and their consequences to the society have been major undertaking within NOAA Climate Program. Climate variability and change profoundly influence the health, prosperity, and well-being of the people of the United States, as well as all other nations of the world, with vital global economic and security implications. NOAA Climate Program is currently working on a new strategy to develop an improved capability and better climate services to plan for and adapt to climate variability and change. Understanding and predicting water & energy cycle variability and changes will be an important component in NOAA's new strategy for improved climate services. NOAA is willing to work with national and international partners to improve climate services in the changing climate.

  15. 75 FR 25843 - Notice of Public Review and Comment Period on NOAA's Arctic Vision and Strategy

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-10

    ... comments by one of the following methods- Electronic Submissions: strategic.planning@noaa.gov Mail... of Program Planning and Integration, at strategic.planning@noaa.gov or (301) 713- 1622 x187... Arctic. Dated: May 4, 2010. Paul N. Doremus, Director of Strategic Planning, National Oceanic...

  16. 77 FR 13095 - Intent To Prepare an Environmental Impact Statement for NOAA Restoration Center Programmatic...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-05

    ... Statement for NOAA Restoration Center Programmatic Coastal Habitat Restoration Activities AGENCY: National... environmental impacts of different ranges of coastal and marine habitat restoration project types conducted and supported by the NOAA Restoration Center. DATES: Interested parties should provide written comments by...

  17. Outgoing Longwave Radiation (OLR) as signatures of pre-seismic activities before Nepal 2015 Earthquakes using onboard NOAA satellite data

    NASA Astrophysics Data System (ADS)

    Chakraborty, Suman; Chakrabarti, Sandip Kumar; Sasmal, Sudipta

    2016-07-01

    Earthquake preparation processes start almost a month before its actual occurrence. There are various tools in detecting such processes among which Outgoing Longwave Radiation (OLR) measurements is a significant one. We studied these signals before the devastating Nepal earthquake that occurred on 12 May, 2015 at 12:50 pm local time (07:05 UTC) with a Richter scale magnitude of M = 7.3 and depth 10 km (6.21 miles) at southeast of Kodari. To study the effects of seismic activities on OLR, we used the data archived by the National Environmental Satellite Data and Information Service (NESDIS) of National Oceanic and Atmospheric Administration (NOAA) onto two degree grids for a period of more than 27 years. For the period 2005 till date, data from NOAA18 satellite is used. The data has been chosen with a temporal coverage from 8th May to 17th May, 2015 and a spatial coverage from 20 ^{o}N to 36 ^{o}N latitudes, 78 ^{o}E to 94 ^{o}E longitudes. We followed the method of 'Eddy field calculation mean' to find anomalies in daily OLR curves. We found singularities in Eddy field around the earthquake epicentre three days prior to the earthquake day and its disappearance after the event. Such intensification of Eddy field and its fading away after the shock event can be due to the large amount of energy released before the earthquake.

  18. Displaying Planetary and Geophysical Datasets on NOAAs Science On a Sphere (TM)

    NASA Astrophysics Data System (ADS)

    Albers, S. C.; MacDonald, A. E.; Himes, D.

    2005-12-01

    of Neptune's moon Triton. A map of the cosmic background radiation was produced that shows the early universe from an external perspective. Full details and credits for these maps may be viewed online at http://laps.fsl.noaa.gov/albers/sos/sos.html. Geophysical imagery recently added to SOS includes a real-time global infrared weather satellite animation of Earth. This is a 15-minute, quality controlled animation spanning the most recent month, which draws on a number of geosynchronous and polar-orbiting weather satellites for data. Other meteorological and oceanographic datasets can be displayed, such as animations depicting the three-dimensional drifting of the ARGO buoy network through the oceans. Oceanic buoy observations were overlaid on the "Blue Marble" Earth imagery displayed on Science On a Sphere(TM). A static image shows locations for five different global buoy networks. We also produced two movies that show the drift of >1000 ARGO buoys over a period of several months. The first movie shows only the horizontal buoy drift, and the second modulates the intensities to represent the timing of each buoy dive cycle. Animations in real time are also being produced for sea surface temperatures (and anomalies). These analyses are obtained from web displays provided by the DOD Fleet Numerical Operations Center. With advanced technologies, the possibilities are limitless for displaying additional global datasets on Science On a Sphere(TM) and other spherical projection screens.

  19. Polarized Electron Source Developments

    SciTech Connect

    Charles K. Sinclair

    1990-02-23

    Presently, only two methods of producing beams of polarized electrons for injection into linear accelerators are in use. Each of these methods uses optical pumping by circularly polarized light to produce electron polarization. In one case, electron polarization is established in metastable helium atoms, while in the other case, the polarized electrons are produced in the conduction band of appropriate semiconductors. The polarized electrons are liberated from the helium metastable by chemi-ionization, and from the semiconductors by lowering the work function at the surface of the material. Developments with each of these sources since the 1988 Spin Physics Conference are reviewed, and the prospects for further improvements discussed.

  20. Using NOAA AVHRR data to assess flood damage in China.

    PubMed

    Wang, Quan; Watanabe, Masataka; Hayashi, Seiji; Murakami, Shogo

    2003-03-01

    The article used two NOAA-14 Advanced Very High Resolution Radiometer (AVHRR) datasets to assess flood damage in the middle and lower reaches of China's Changjiang River (Yangtze River) in 1998. As the AVHRR is an optical sensor, it cannot penetrate the clouds that frequently cover the land during the flood season, and this technology is greatly limited in flood monitoring. However the widely used normalized difference vegetation index (NDVI) can be used to monitor flooding, since water has a much lower NDVI value than other surface features. Though many factors other than flooding (e.g. atmospheric conditions, different sun-target-satellite angles, and cloud) can change NDVI values, inundated areas can be distinguished from other types of ground cover by changes in the NDVI value before and after the flood after eliminating the effects of other factors on NDVI. AVHRR data from 26 May and 22 August, 1998 were selected to represent the ground conditions before and after flooding. After accurate geometric correction by collecting GCPs, and atmospheric and angular corrections by using the 6S code, NDVI values for both days and their differences were calculated for cloud-free pixels. The difference in the NDVI values between these two times, together with the NDVI values and a land-use map, were used to identify inundated areas and to assess the area lost to the flood. The results show a total of 358,867 ha, with 207,556 ha of cultivated fields (paddy and non-irrigated field) inundated during the flood of 1998 in the middle and lower reaches of the Changjiang River Catchment; comparing with the reported total of 321,000 and 197,000 ha, respectively. The discrimination accuracy of this method was tested by comparing the results from two nearly simultaneous sets of remote-sensing data (NOAA's AVHRR data from 10 September, 1998, and JERS-1 synthetic aperture radar (SAR) data from 11 September, 1998, with a lag of about 18.5 hr) over a representative flooded region in the

  1. Wild Fire Emissions for the NOAA Operational HYSPLIT Smoke Model

    NASA Astrophysics Data System (ADS)

    Huang, H. C.; ONeill, S. M.; Ruminski, M.; Shafran, P.; McQueen, J.; DiMego, G.; Kondragunta, S.; Gorline, J.; Huang, J. P.; Stunder, B.; Stein, A. F.; Stajner, I.; Upadhayay, S.; Larkin, N. K.

    2015-12-01

    Particulate Matter (PM) generated from forest fires often lead to degraded visibility and unhealthy air quality in nearby and downstream areas. To provide near-real time PM information to the state and local agencies, the NOAA/National Weather Service (NWS) operational HYSPLIT (Hybrid Single Particle Lagrangian Integrated Trajectory Model) smoke modeling system (NWS/HYSPLIT smoke) provides the forecast of smoke concentration resulting from fire emissions driven by the NWS North American Model 12 km weather predictions. The NWS/HYSPLIT smoke incorporates the U.S. Forest Service BlueSky Smoke Modeling Framework (BlueSky) to provide smoke fire emissions along with the input fire locations from the NOAA National Environmental Satellite, Data, and Information Service (NESDIS)'s Hazard Mapping System fire and smoke detection system. Experienced analysts inspect satellite imagery from multiple sensors onboard geostationary and orbital satellites to identify the location, size and duration of smoke emissions for the model. NWS/HYSPLIT smoke is being updated to use a newer version of USFS BlueSky. The updated BlueSky incorporates the Fuel Characteristic Classification System version 2 (FCCS2) over the continental U.S. and Alaska. FCCS2 includes a more detailed description of fuel loadings with additional plant type categories. The updated BlueSky also utilizes an improved fuel consumption model and fire emission production system. For the period of August 2014 and June 2015, NWS/HYSPLIT smoke simulations show that fire smoke emissions with updated BlueSky are stronger than the current operational BlueSky in the Northwest U.S. For the same comparisons, weaker fire smoke emissions from the updated BlueSky were observed over the middle and eastern part of the U.S. A statistical evaluation of NWS/HYSPLIT smoke predicted total column concentration compared to NOAA NESDIS GOES EAST Aerosol Smoke Product retrievals is underway. Preliminary results show that using the newer version

  2. Lossless compression of NOAA-AVHRR satellite data

    NASA Technical Reports Server (NTRS)

    Takamura, Seishi; Takagi, Mikio

    1994-01-01

    A high-performance lossless compression system for satellite NOAA data is developed. The data is called 'high resolution picture transmission' (HRPT) data, and consists of around 93 percent advanced very high resolution radiometer (AVHRR) multi-channel image data and 7 percent of miscellaneous data. In compressing the image portion, we classify each pixel into 10 different groups and apply a multi-channel prediction and a non-linear error conversion. The entropy coder is an arithmetic coder which is adaptive and regenerates the approximation of the statistical properties of the source as an initial probability table. To compress the non-image part, we used the general compressor (gzip). From experimental results, the original information is compressed down to 25 percent to approx. 40 percent.

  3. NOAA/NGDC candidate models for the 12th generation International Geomagnetic Reference Field

    NASA Astrophysics Data System (ADS)

    Alken, Patrick; Maus, Stefan; Chulliat, Arnaud; Manoj, Chandrasekharan

    2015-05-01

    The International Geomagnetic Reference Field (IGRF) is a model of the geomagnetic main field and its secular variation, produced every 5 years from candidate models proposed by a number of international research institutions. For this 12th generation IGRF, three candidate models were solicited: a main field model for the 2010.0 epoch, a main field model for the 2015.0 epoch, and the predicted secular variation for the five-year period 2015 to 2020. The National Geophysical Data Center (NGDC), part of the National Oceanic and Atmospheric Administration (NOAA), has produced three candidate models for consideration in IGRF-12. The 2010 main field candidate was produced from Challenging Minisatellite Payload (CHAMP) satellite data, while the 2015 main field and secular variation candidates were produced from Swarm and Ørsted satellite data. Careful data selection was performed to minimize the influence of magnetospheric and ionospheric fields. The secular variation predictions of our parent models, from which the candidate models were derived, have been validated against independent ground observatory data.

  4. Dioxins/furans and PCBs in bivalves and sediments from NOAA national status and trends program

    SciTech Connect

    Wade, T.; Gardinali, P.; Jackson, T.; Sericano, J.; Chambers, L.

    1995-12-31

    As part of the National Oceanic and Atmospheric Administration (NOAA), National Status and Trends (NS and T) Mussel Watch Program 55 bivalves and 7 sediment samples were analyzed for 2,3,7,8-substituted polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD and PCDF) and planar PCBs. Bivalve samples were collected from selected US East Gulf and West coast sites, while the sediment samples were all from the Gulf coast. Sediment concentrations for 2,3,7,8-tetrachloro dibenzo-p-dioxin and dibenzofuran (TCDD and TCDF) ranged from 0.35 to 25 pg/g and 0.42 to 140 pg/g, respectively. The 2,3,7,8-TCDD and 2,3,7,8-TCDF represent only a small percentage of the total PCDD and PCDF in the sediments which is the case for most sediment. The concentration of TCDD and TCDF in bivalves ranged from not detected (ND) to 25 pg/g and ND to 140 pg/g, respectively. Most bivalve samples, in contrast to the sediment contained low proportions of the higher molecular weight PCDDs and PCDFs. The relative toxicological importance of 2,3,7,8-TCDD, 2,3,7,8-TCDF and dioxin-like PCB to the bivalves from different locations will be compared based on toxicity equivalency factors.

  5. Development, Production and Validation of the NOAA Solar Irradiance Climate Data Record

    NASA Astrophysics Data System (ADS)

    Coddington, O.; Lean, J.; Pilewskie, P.; Snow, M. A.; Lindholm, D. M.

    2015-12-01

    A new climate data record of Total Solar Irradiance (TSI) and Solar Spectral Irradiance (SSI), including source code and supporting documentation is now publicly available as part of the National Oceanographic and Atmospheric Administration's (NOAA) National Centers for Environmental Information (NCEI) Climate Data Record (CDR) Program. Daily and monthly averaged values of TSI and SSI, with associated time and wavelength dependent uncertainties, are estimated from 1882 to the present with yearly averaged values since 1610, updated quarterly for the foreseeable future. The new Solar Irradiance Climate Data Record, jointly developed by the University of Colorado at Boulder's Laboratory for Atmospheric and Space Physics (LASP) and the Naval Research Laboratory (NRL), is constructed from solar irradiance models that determine the changes from quiet Sun conditions when bright faculae and dark sunspots are present on the solar disk. The magnitudes of the irradiance changes that these features produce are determined from linear regression of the proxy Mg II index and sunspot area indices against the approximately decade-long solar irradiance measurements made by instruments on the SOlar Radiation and Climate Experiment (SORCE) spacecraft. We describe the model formulation, uncertainty estimates, operational implementation and validation approach. Future efforts to improve the uncertainty estimates of the Solar Irradiance CDR arising from model assumptions, and augmentation of the solar irradiance reconstructions with direct measurements from the Total and Spectral Solar Irradiance Sensor (TSIS: launch date, July 2017) are also discussed.

  6. Open Source Seismic Software in NOAA's Next Generation Tsunami Warning System

    NASA Astrophysics Data System (ADS)

    Hellman, S. B.; Baker, B. I.; Hagerty, M. T.; Leifer, J. M.; Lisowski, S.; Thies, D. A.; Donnelly, B. K.; Griffith, F. P.

    2014-12-01

    The Tsunami Information technology Modernization (TIM) is a project spearheaded by National Oceanic and Atmospheric Administration to update the United States' Tsunami Warning System software currently employed at the Pacific Tsunami Warning Center (Eva Beach, Hawaii) and the National Tsunami Warning Center (Palmer, Alaska). This entirely open source software project will integrate various seismic processing utilities with the National Weather Service Weather Forecast Office's core software, AWIPS2. For the real-time and near real-time seismic processing aspect of this project, NOAA has elected to integrate the open source portions of GFZ's SeisComP 3 (SC3) processing system into AWIPS2. To provide for better tsunami threat assessments we are developing open source tools for magnitude estimations (e.g., moment magnitude, energy magnitude, surface wave magnitude), detection of slow earthquakes with the Theta discriminant, moment tensor inversions (e.g. W-phase and teleseismic body waves), finite fault inversions, and array processing. With our reliance on common data formats such as QuakeML and seismic community standard messaging systems, all new facilities introduced into AWIPS2 and SC3 will be available as stand-alone tools or could be easily integrated into other real time seismic monitoring systems such as Earthworm, Antelope, etc. Additionally, we have developed a template based design paradigm so that the developer or scientist can efficiently create upgrades, replacements, and/or new metrics to the seismic data processing with only a cursory knowledge of the underlying SC3.

  7. Background Mole Fractions of Hydrocarbons in North America Determined from NOAA Global Reference Network Data

    NASA Astrophysics Data System (ADS)

    Mielke-Maday, I.

    2015-12-01

    The National Oceanic and Atmospheric Administration (NOAA) Global Monitoring Division (GMD) maintains a global reference network for over 50 trace gas species and analyzes discrete air samples collected by this network throughout the world at the Earth System Research Laboratory in Boulder, Colorado. In particular, flask samples are analyzed for a number of hydrocarbons with policy and health relevance such as ozone precursors, greenhouse gases, and hazardous air pollutants. Because this global network's sites are remote and therefore minimally influenced by local anthropogenic emissions, these data yield information about background ambient mole fractions and can provide a context for observations collected in intensive field campaigns, such as the Front Range Air Pollution and Photochemistry Experiment (FRAPPE), the Southeast Nexus (SENEX) study, and the DISCOVER-AQ deployments. Information about background mole fractions during field campaigns is critical for calculating hydrocarbon enhancements in the region of study and for assessing the extent to which a particular region's local emissions sources contribute to these enhancements. Understanding the geographic variability of the background and its contribution to regional ambient mole fractions is also crucial for the development of realistic regulations. We present background hydrocarbon mole fractions and their ratios in North America using data from air samples collected in the planetary boundary layer at tall towers and aboard aircraft from 2008 to 2014. We discuss the spatial and seasonal variability in these data. We present trends over the time period of measurements and propose possible explanations for these trends.

  8. NASA/NOAA Electronic Theater: 90 Minutes of Spectacular Visualization

    NASA Technical Reports Server (NTRS)

    Hasler, A. F.

    2004-01-01

    The NASA/NOAA Electronic Theater presents Earth science observations and visualizations from space in a historical perspective. Fly in from outer space to Ashville and the Conference Auditorium. Zoom through the Cosmos to SLC and site of the 2002 Winter Olympics using 1 m IKONOS 'Spy Satellite' data. Contrast the 1972 Apollo 17 'Blue Marble' image of the Earth with the latest US and International global satellite images that allow us to view our Planet from any vantage point. See the latest spectacular images from NASA/NOAA remote sensing missions like Terra, GOES, TRMM, SeaWiFS, & Landsat 7, of storms & fires like Hurricane Isabel and the LA/San Diego Fire Storms of 2003. See how High Definition Television (HDTV) is revolutionizing the way we do science communication. Take the pulse of the planet on a daily, annual and 30-year time scale. See daily thunderstorms, the annual blooming of the northern hemisphere land masses and oceans, fires in Africa, dust storms in Iraq, and carbon monoxide exhaust from global burning. See visualizations featured on Newsweek, TIME, National Geographic, Popular Science covers & National & International Network TV. Spectacular new global visualizations of the observed and simulated atmosphere and Oceans are shown. See the currents and vortexes in the Oceans that bring up the nutrients blooms in response to El Nino/La Nina climate changes. The Etheater will be presented using the latest High Definition TV (HDTV) and video projection technology on a large screen. See the global city lights, and the great NE US blackout of August 2003 observed by the 'night-vision' DMSP satellite.

  9. NASA/NOAA Electronic Theater: An Hour of Spectacular Visualization

    NASA Technical Reports Server (NTRS)

    Hasier, A. F.

    2004-01-01

    The NASA/NOAA Electronic Theater presents Earth science observations and visualizations from space in a historical perspective. Fly in from outer space to Utah, Logan and the USU Agriculture Station. Compare zooms through the Cosmos to the sites of the 2004 Summer and 2002 Winter Olympic games using 1 m IKONOS "Spy Satellite" data. Contrast the 1972 Apollo 17 "Blue Marble" image of the Earth with the latest US and International global satellite images that allow us to view our Planet from any vantage point. See the latest spectacular images h m NASA/NOAA remote sensing missions like Terra, GOES, TRMM, SeaWiF!3,& Landsat 7, of storms & fires like Hurricanes Charlie & Isabel and the LA/San Diego Fire Storms of 2003. See how High Definition Television (HDTV) is revolutionizing the way we do science communication. Take the pulse of the planet on a daily, annual and 30-year time scale. See daily thunderstorms, the annual greening of the northern hemisphere land masses and oceans, fires in Africa, dust storms in Iraq, and carbon monoxide exhaust from global burning. See visualizations featured on Newsweek, TIME, National Geographic, Popular Science covers & National & International Network TV. Spectacular new global visualizations of the observed and simulated atmosphere & oceans are shown. See the currents and vortexes in the oceans that bring up the nutrients to feed tiny plankton and draw the fish, whales and fishermen. See the how the Ocean blooms in response to El Nino/La Nina climate changes. The E-theater will be presented using the latest High Definition TV and video projection technology on a large screen. See the global city lights, and the great NE US blackout of August 2003 observed by the "night-vision" DMSP satellite.

  10. A Translational Polarization Rotator

    NASA Technical Reports Server (NTRS)

    Chuss, David T.; Wollack, Edward J.; Pisano, Giampaolo; Ackiss, Sheridan; U-Yen, Kongpop; Ng, Ming wah

    2012-01-01

    We explore a free-space polarization modulator in which a variable phase introduction between right- and left-handed circular polarization components is used to rotate the linear polarization of the outgoing beam relative to that of the incoming beam. In this device, the polarization states are separated by a circular polarizer that consists of a quarter-wave plate in combination with a wire grid. A movable mirror is positioned behind and parallel to the circular polarizer. As the polarizer-mirror distance is separated, an incident liear polarization will be rotated through an angle that is proportional to the introduced phase delay. We demonstrate a prototype device that modulates Stokes Q and U over a 20% bandwidth.

  11. Polarization at SLAC

    SciTech Connect

    Woods, M.

    1995-01-01

    A highly polarized electron beam is a key feature. for the Current physics program at SLAC. An electron beam polarization of 80% can now be routinely achieved for typically 5000 hours of machine operation per year. Two main Physics programs utilize the polarized beam. Fixed target experiments in End Station A study the collision of polarized electrons with polarized nuclear targets to elucidate the spin structure of the nucleon and to provide an important test of QCD. Using the SLAC Linear Collider, collisions of polarized electrons with unpolarized positrons allow precise measurements of parity violation in the Z-fermion couplings and provide a very precise measurement of tile weak mixing angle. This paper discusses polarized beam operation at SLAC, and gives an overview of the polarized physics program.

  12. Polarized Light Corridor Demonstrations.

    ERIC Educational Resources Information Center

    Davies, G. R.

    1990-01-01

    Eleven demonstrations of light polarization are presented. Each includes a brief description of the apparatus and the effect demonstrated. Illustrated are strain patterns, reflection, scattering, the Faraday Effect, interference, double refraction, the polarizing microscope, and optical activity. (CW)

  13. Exploring new bands in modified multichannel regression SST algorithms for the next-generation infrared sensors at NOAA

    NASA Astrophysics Data System (ADS)

    Petrenko, B.; Ignatov, A.; Kramar, M.; Kihai, Y.

    2016-05-01

    Multichannel regression algorithms are widely used to retrieve sea surface temperature (SST) from infrared observations with satellite radiometers. Their theoretical foundations were laid in the 1980s-1990s, during the era of the Advanced Very High Resolution Radiometers which have been flown onboard NOAA satellites since 1981. Consequently, the multi-channel and non-linear SST algorithms employ the bands centered at 3.7, 11 and 12 μm, similar to available in AVHRR. More recent radiometers carry new bands located in the windows near 4 μm, 8.5 μm and 10 μm, which may also be used for SST. Involving these bands in SST retrieval requires modifications to the regression SST equations. The paper describes a general approach to constructing SST regression equations for an arbitrary number of radiometric bands and explores the benefits of using extended sets of bands available with the Visible Infrared Imager Radiometer Suite (VIIRS) flown onboard the Suomi National Polar-orbiting Partnership (SNPP) and to be flown onboard the follow-on Joint Polar Satellite System (JPSS) satellites, J1-J4, to be launched from 2017-2031; Moderate Resolution Imaging Spectroradiometers (MODIS) flown onboard Aqua and Terra satellites; and the Advanced Himawari Imager (AHI) flown onboard the Japanese Himawari-8 satellite (which in turn is a close proxy of the Advanced Baseline Imager (ABI) to be flown onboard the future Geostationary Operational Environmental Satellites - R Series (GOES-R) planned for launch in October 2016.

  14. The Evolution of the Net Twist Current and the Net Shear Current in Active Region NOAA 10930

    NASA Astrophysics Data System (ADS)

    Suthar, Yogita; Venkatakrishnan, P.; Ravindra, B.; Jaaffrey, S. N. A.

    2014-07-01

    The electric current exists because of the non-potential magnetic field in solar active regions. We present the evolution of net current in the solar active region NOAA 10930 as the sum of shear current and twist current by using 27 high-resolution vector magnetograms obtained with Hinode/SOT-SP during 9 - 15 December 2006. This active region was highly eruptive and produced a large number of flares ranging from B to X class. We derived local distribution of shear and twist current densities in this active region and studied the evolution of net shear current (NSC) and net twist current (NTC) in the N-polarity and S-polarity regions separately. We found the following: i) The twist current density was dominant in the umbrae. ii) The footpoint of the emerging flux rope showed a dominant twist current. iii) The shear current density and twist current density appeared in alternate bands around the umbrae. iv) On the scale of the active region, NTC was always larger than NSC. v) Both NTC and NSC decreased after the onset of an X3.4 class flare that occurred on 13 December 2006.

  15. AVHRR-Based Polar Pathfinder Products: Evaluation, Enhancement and Transition to MODIS

    NASA Technical Reports Server (NTRS)

    Fowler, Charles; Maslanik, James; Stone, Robert; Stroeve, Julienne; Emery, William

    2000-01-01

    Study of the environment has historically been done with observations and measurements in relatively few local areas. While some of these have been done over long time spans, most have not. The NOAA/NASA Pathfinder project was initiated to complement these data sets with satellite data that can provide information over larger spatial areas and longer time spans. The AVHRR Polar Pathfinder (APR) program was part of this project. The APR was to supply data from the NOAA AVHRR instruments that was consistently generated in a format usable to a wide range of scientific investigators. A grant was obtained from the NASA Research Announcement 97-MTPE-03 to evaluate the APP products, to provide any enhancements, and to compare with products from the new MODIS instrument. There was about a two year overlap between the projects, and this validation effort had several impacts on the APP products. The APP products are derived from the instruments aboard 4 NOAA satellites, NOAA-7, 9, 11, and 14. Initial validation efforts compared the thermal calibrations of these instruments, and differences are found. Calibration has undergone many revisions and techniques have changed since the satellites were launched. The first calibration methods were optimized for global ocean temperatures, as this was one of the primary and important uses of the AVHRR instruments. As the APP program started, newer methods that provided more accurate temperature retrievals over a wider range of temperatures were being developed. The calibration of a wider range of temperatures were necessary because of the extremely low values in the polar regions. These methods were also designed so that calibrated data was also consistent between all the NOAA satellites. These newer calibration methods were then adopted primarily because of the initial finding of this validation effort.

  16. Graphing Polar Curves

    ERIC Educational Resources Information Center

    Lawes, Jonathan F.

    2013-01-01

    Graphing polar curves typically involves a combination of three traditional techniques, all of which can be time-consuming and tedious. However, an alternative method--graphing the polar function on a rectangular plane--simplifies graphing, increases student understanding of the polar coordinate system, and reinforces graphing techniques learned…

  17. Polarity at Many Levels

    ERIC Educational Resources Information Center

    Flannery, Maura C.

    2004-01-01

    An attempt is made to find how polarity arises and is maintained, which is a central issue in development. It is a fundamental attribute of living things and cellular polarity is also important in the development of multicellular organisms and controversial new work indicates that polarization in mammals may occur much earlier than previously…

  18. Polarization feedback laser stabilization

    DOEpatents

    Esherick, Peter; Owyoung, Adelbert

    1988-01-01

    A system for locking two Nd:YAG laser oscillators includes an optical path for feeding the output of one laser into the other with different polarizations. Elliptical polarization is incorporated into the optical path so that the change in polarization that occurs when the frequencies coincide may be detected to provide a feedback signal to control one laser relative to the other.

  19. Bumblebees Learn Polarization Patterns

    PubMed Central

    Foster, James J.; Sharkey, Camilla R.; Gaworska, Alicia V.A.; Roberts, Nicholas W.; Whitney, Heather M.; Partridge, Julian C.

    2014-01-01

    Summary Foraging insect pollinators such as bees must find and identify flowers in a complex visual environment. Bees use skylight polarization patterns for navigation [1–3], a capacity mediated by the polarization-sensitive dorsal rim area (DRA) of their eye [4, 5]. While other insects use polarization sensitivity to identify appropriate habitats [6], oviposition sites, and food sources [7], to date no nonnavigational functions of polarization vision have been identified in bees. Here we investigated the ability of bumblebees (Bombus terrestris) to learn polarization patterns on artificial “flowers” in order to obtain a food reward. We show that foraging bumblebees can learn to discriminate between two differently polarized targets, but only when the target artificial “flower” is viewed from below. A context for these results is provided by polarization imaging of bee-pollinated flowers, revealing the potential for polarization patterns in real flowers. Bees may therefore have the ability to use polarization vision, possibly mediated by their polarization-sensitive DRA, both for navigation and to learn polarization patterns on flowers, the latter being the first nonnavigational function for bee polarization vision to be identified. PMID:24909321

  20. Calculation of polarization effects

    SciTech Connect

    Chao, A.W.

    1983-09-01

    Basically there are two areas of accelerator applications that involve beam polarization. One is the acceleration of a polarized beam (most likely a proton beam) in a synchrotron. Another concerns polarized beams in an electron storage ring. In both areas, numerical techniques have been very useful.

  1. Polar Ozone Workshop. Abstracts

    NASA Technical Reports Server (NTRS)

    Aikin, Arthur C.

    1988-01-01

    Results of the proceedings of the Polar Ozone Workshop held in Snowmass, CO, on May 9 to 13, 1988 are given. Topics covered include ozone depletion, ozonometry, polar meteorology, polar stratospheric clouds, remote sensing of trace gases, atmospheric chemistry and dynamical simulations.

  2. June 2013 Meteotsunami Captured by NOAA/NOS Coastal Water Level Stations

    NASA Astrophysics Data System (ADS)

    Bailey, K.; DiVeglio, C.; Welty, A.

    2014-12-01

    On June 13, 2013, a north-south oriented, long formation of strong storms passed eastward over the New Jersey coast. Three hours later, while the weather was calm, a sudden runup of water along the New Jersey and New England coasts was witnessed despite no nearby seismic activity. Post-event analysis revealed that a rare meteotsunami impacted the East Coast of the United States. The strong pressure jump associated with the storms generated an ocean wave that became amplified when the speed of the storms reached the speed of the wave, creating resonance. The wave approached the Mid-Atlantic shelf break and reflected back, explaining the time lag between the passing storms and the incoming wave. The National Water Level Observing Network (NWLON) stations maintained by the National Oceanic and Atmospheric Administration (NOAA) National Ocean Service (NOS) Center for Operational Oceanographic Products and Services (CO-OPS) measured strong water level oscillations at several stations along the eastern seaboard. The detided one-minute data show the tsunami signal with maximum amplitudes ranging from 0.16 m at Nantucket Island, MA to 0.61 m. at Newport, RI. The Narragansett Bay stations captured the meteotsunami wave propagating northward and diminishing towards the innermost part of the Bay. The Atlantic City, NJ station captured the 3.2-mb pressure jump in the six-minute barometer data from the passing storms as well as the incoming wave that hit three hours later with a maximum amplitude of 0.47 m. Along the U.S. coast, harbor shape and orientation contributed to the strength of the tsunami wave, and some stations that were in shadowed areas did not measure a strong signal despite being in an area of measurable impact. Meteotsunamis pose a threat to the U.S. coastline, and without high-resolution observations and models these events cannot be quantitatively forecasted. NOAA does not currently have an operational warning system but the June 2013 meteotsunami provides an

  3. Time Evolution of Coronal Magnetic Helicity in the Flaring Active Region NOAA 10930

    NASA Astrophysics Data System (ADS)

    Park, Sung-Hong; Chae, Jongchul; Jing, Ju; Tan, Changyi; Wang, Haimin

    2010-09-01

    To study the three-dimensional (3D) magnetic field topology and its long-term evolution associated with the X3.4 flare of 2006 December 13, we investigate the coronal relative magnetic helicity in the flaring active region (AR) NOAA 10930 during the time period of December 8-14. The coronal helicity is calculated based on the 3D nonlinear force-free magnetic fields reconstructed by the weighted optimization method of Wiegelmann, and is compared with the amount of helicity injected through the photospheric surface of the AR. The helicity injection is determined from the magnetic helicity flux density proposed by Pariat et al. using Solar and Heliospheric Observatory/Michelson Doppler Imager magnetograms. The major findings of this study are the following. (1) The time profile of the coronal helicity shows a good correlation with that of the helicity accumulation by injection through the surface. (2) The coronal helicity of the AR is estimated to be -4.3 × 1043 Mx2 just before the X3.4 flare. (3) This flare is preceded not only by a large increase of negative helicity, -3.2 × 1043 Mx2, in the corona over ~1.5 days but also by noticeable injections of positive helicity through the photospheric surface around the flaring magnetic polarity inversion line during the time period of the channel structure development. We conjecture that the occurrence of the X3.4 flare is involved with the positive helicity injection into an existing system of negative helicity.

  4. Time Evolution of Coronal Magnetic Helicity in the Flaring Active Region NOAA 10930

    NASA Astrophysics Data System (ADS)

    Park, Sung-Hong; Jing, J.; Wang, H.

    2010-05-01

    To study the three-dimensional (3D) magnetic field topology and its long-term (a few days) evolution associated with the X3.4 flare of 2006 December 13, we investigate the temporal evolution of the relative coronal magnetic helicity in NOAA active region (AR) 10930 during the time period of December 8, 21:20 UT through December 14, 5:00 UT. The coronal helicity is calculated based on the 3D nonlinear force-free (NLFF) magnetic fields reconstructed by the optimization method (Wheatland et al. 2000) as implemented by Wiegelmann (2004). As the boundary conditions for the force-free reconstruction, we use the preprocessed Hinode Spectropolarimeter (SP) vector magnetograms in which the net Lorentz force and the torque in the photosphere are minimized (see Wiegelmann et al. 2006 for the details). The major findings of this study are: (1) a negative (left-handed) helicity of -5×1043 Mx2 in the AR corona is estimated right before the X3.4 flare; (2) the major flare is preceded by a significantly and consistently large amount of negative helicity injection (-2×1043 Mx2) into the corona over 2 days; (3) the temporal variation of helicity is comparable to that of the rotational speed in the southern sunspot with positive polarity; (4) in general, the time profile of the coronal helicity is well-matched with that of the helicity accumulation by the time integration of the simplified helicity injection rate (Chae 2001) determined by using SOHO MDI magnetograms; (5) at the time period of the channel structure development (December 11, 4:00-8:00 UT) with newly emerging flux and just right before the C5.7 class flare, the time variation of the coronal helicity shows a rapid and huge increase of negative helicity, but that of the helicity accumulation by MDI magnetograms indicates a monotonous increase of negative helicity.

  5. TIME EVOLUTION OF CORONAL MAGNETIC HELICITY IN THE FLARING ACTIVE REGION NOAA 10930

    SciTech Connect

    Park, Sung-Hong; Jing, Ju; Wang Haimin; Chae, Jongchul; Tan, Changyi

    2010-09-10

    To study the three-dimensional (3D) magnetic field topology and its long-term evolution associated with the X3.4 flare of 2006 December 13, we investigate the coronal relative magnetic helicity in the flaring active region (AR) NOAA 10930 during the time period of December 8-14. The coronal helicity is calculated based on the 3D nonlinear force-free magnetic fields reconstructed by the weighted optimization method of Wiegelmann, and is compared with the amount of helicity injected through the photospheric surface of the AR. The helicity injection is determined from the magnetic helicity flux density proposed by Pariat et al. using Solar and Heliospheric Observatory/Michelson Doppler Imager magnetograms. The major findings of this study are the following. (1) The time profile of the coronal helicity shows a good correlation with that of the helicity accumulation by injection through the surface. (2) The coronal helicity of the AR is estimated to be -4.3 x 10{sup 43} Mx{sup 2} just before the X3.4 flare. (3) This flare is preceded not only by a large increase of negative helicity, -3.2 x 10{sup 43} Mx{sup 2}, in the corona over {approx}1.5 days but also by noticeable injections of positive helicity through the photospheric surface around the flaring magnetic polarity inversion line during the time period of the channel structure development. We conjecture that the occurrence of the X3.4 flare is involved with the positive helicity injection into an existing system of negative helicity.

  6. How to Get Data from NOAA Environmental Satellites: An Overview of Operations, Products, Access and Archive

    NASA Astrophysics Data System (ADS)

    Donoho, N.; Graumann, A.; McNamara, D. P.

    2015-12-01

    In this presentation we will highlight access and availability of NOAA satellite data for near real time (NRT) and retrospective product users. The presentation includes an overview of the current fleet of NOAA satellites and methods of data distribution and access to hundreds of imagery and products offered by the Environmental Satellite Processing Center (ESPC) and the Comprehensive Large Array-data Stewardship System (CLASS). In particular, emphasis on the various levels of services for current and past observations will be presented. The National Environmental Satellite, Data, and Information Service (NESDIS) is dedicated to providing timely access to global environmental data from satellites and other sources. In special cases, users are authorized direct access to NESDIS data distribution systems for environmental satellite data and products. Other means of access include publicly available distribution services such as the Global Telecommunication System (GTS), NOAA satellite direct broadcast services and various NOAA websites and ftp servers, including CLASS. CLASS is NOAA's information technology system designed to support long-term, secure preservation and standards-based access to environmental data collections and information. The National Centers for Environmental Information (NCEI) is responsible for the ingest, quality control, stewardship, archival and access to data and science information. This work will also show the latest technology improvements, enterprise approach and future plans for distribution of exponentially increasing data volumes from future NOAA missions. A primer on access to NOAA operational satellite products and services is available at http://www.ospo.noaa.gov/Organization/About/access.html. Access to post-operational satellite data and assorted products is available at http://www.class.noaa.gov

  7. Developing Vocabularies to Improve Understanding and Use of NOAA Observing Systems

    NASA Astrophysics Data System (ADS)

    Austin, M.

    2014-12-01

    The NOAA Observing System Integrated Analysis project (NOSIA II), is an attempt to capture and tell the story of how valuable observing systems are in producing products and services that are required to fulfill the NOAA's diverse mission. NOAA's goals and mission areas cover a broad range of environmental data; a complexity exists in terms and vocabulary as applied to the creation of observing system derived products. The NOSIA data collection focused first on decomposing NOAA's goals in the creation and acceptance of Mission Service Areas (MSAs) by NOAA senior leadership. Products and services that supported the MSAs were then identified through the process of interviewing product producers across NOAA organization. Product Data inputs including models, databases and observing system were also identified. The NOSIA model contains over 20,000 nodes each representing levels in a network connecting products, datasources, users and desired outcomes. An immediate need became apparent that the complexity and variety of the data collected required data management to mature the quality and the content of the NOSIA model. The NOSIA Analysis Database (ADB) was developed initially to improve consistency of terms and data types to allow for the linkage of observing systems, products and NOAA's Goals and mission. The ADB also allowed for the prototyping of reports and product generation in an easily accessible and comprehensive format for the first time. Web based visualization of relationships between products, datasources, users, producers were generated to make the information easily understood This includes developing ontologies/vocabularies that are used for the development of users type specific products for NOAA leadership, Observing System Portfolio mangers and the users of NOAA data.

  8. Hybrid polarity SAR architecture

    NASA Astrophysics Data System (ADS)

    Raney, R. Keith

    2009-05-01

    A space-based synthetic aperture radar (SAR) designed to provide quantitative information on a global scale implies severe requirements to maximize coverage and to sustain reliable operational calibration. These requirements are best served by the hybrid-polarity architecture, in which the radar transmits in circular polarization, and receives on two orthogonal linear polarizations, coherently, retaining their relative phase. This paper summarizes key attributes of hybrid-polarity dual- and quadrature-polarized SARs, reviews the associated advantages, formalizes conditions under which the signal-to-noise ratio is conserved, and describes the evolution of this architecture from first principles.

  9. Earth radiation budget - Results of outgoing longwave radiation from Nimbus-7, NOAA-9, and ERBS satellites

    NASA Technical Reports Server (NTRS)

    Bess, T. D.; Smith, G. L.

    1993-01-01

    Outgoing longwave radiation (OLR) data from Nimbus-7 ERB wide field-of-view instruments are compared with results from the ERBE instruments aboard the NOAA-9 and NOAA-10 satellites. Over most regions of the globe, the agreement between the two sets of OLR results is generally to within 8 W/sq m. There are larger differences at higher latitudes and regions concentrated over land and desert. Results of daytime and nighttime differences suggest that the shortwave channels may be at fault due to their different design for Nimbus-7 and NOAA-9. Some of the differences may also be related to different viewing geometry of the two satellites.

  10. Area estimation of environmental phenomena from NOAA-n satellite data. [TIROS N satellite

    NASA Technical Reports Server (NTRS)

    Tappan, G. (Principal Investigator); Miller, G. E.

    1982-01-01

    A technique for documenting changes in size of NOAA-n pixels in order to calibrate the data for use in performing area calculations is described. Based on Earth-satellite geometry, a function for calculating the effective pixel size, measured in terms of ground area, on any given pixel was derived. The equation is an application of the law of sines plus an arclength formula. Effective pixel dimensions for NOAA 6 and 7 satellites for all pixels between nadir and the extreme view angles are presented. The NOAA 6 data were used to estimate the areas of several lakes, with an accuracy within 5%. Sources of error are discussed.

  11. Polarization in remote sensing

    NASA Astrophysics Data System (ADS)

    Egan, Walter G.

    1992-12-01

    A review of the experimental and theoretical aspects of optical polarization is presented with definitions of the observed polarization characteristics and relationship to the Stokes parameters. A typical terrestrial soil polarization curve is characterized and related to the current theoretical knowledge. This polarization relationship is extended to cover planetary surfaces, such as the Moon, and Mars and terrestrial surfaces composed of farm areas and water surfaces. Instrumentation for imaging and non-imaging polarimetry are described including the use of focal plane arrays. Recent Space Shuttle polarimetric observations of the region around the Island of Hawaii and New Madrid, Missouri are described, as well as concurrent cloud and haze observations. Polarization is a sensitive indicator of cloud particle size distributions, soil texture, farm crops, sea state and atmospheric aerosols and haze. Cloud particle size distributions are uniquely characterized by polarization, and this cannot be achieved with photometry. An extensive bibliography of polarization in remote sensing is appended.

  12. Polarity inversion in polar-nonpolar-polar heterostructures.

    PubMed

    Cho, S; Youn, S J; Kim, Y; DiVenere, A; Wong, G K; Freeman, A J; Ketterson, J B

    2001-09-17

    We have observed an epilayer-thickness-dependent polarity inversion for the growth of CdTe on Sb(Bi)/CdTe(111)B. For films with Sb(Bi) thicknesses of less than 40 A (15 A), the CdTe layer shows a B (Te-terminated) face, but it switches to an A (Cd-terminated) face for thicker layers. On the other hand, a CdTe layer grown on Bi(Sb)/CdTe(111)A always shows the A face regardless of Sb or Bi layer thicknesses. In order to address the observations we have performed ab initio calculations, which suggest that the polarity of a polar material on a nonpolar one results from the binding energy difference between the two possible surface configurations.

  13. VIIRS Unique Fires Compared to the NOAA Hazard Mapping System Fire Analysis

    NASA Astrophysics Data System (ADS)

    Ruminski, M.; Liddick, K.

    2014-12-01

    The Visible Infrared Imaging Radiometer Suite (VIIRS) instrument on the Suomi National Polar-orbiting Partnership (S-NPP) satellite provides radiometric measurements for automated fire detection. The baseline VIIRS Active Fire Product (AFP) is very similar to the collection 4 legacy fire detection algorithm developed for the Moderate Resolution Imaging Spectroradiometer (MODIS) instrument on NASA's Terra and Aqua spacecraft and is expected to become operational and validated in the Fall of 2014. VIIRS (imagery and the AFP) will soon be incorporated into NESDIS' operational Hazard Mapping System (HMS) fire and smoke analysis. The HMS incorporates a wide variety of satellite data for use in fire detection, including GOES-East and GOES-West at least every 15 minutes, five NOAA and METOP polar orbiting satellites with the Advanced Very High Resolution Radiometer (AVHRR) instrument and MODIS Aqua/Terra. The HMS utilizes the automated fire detections from each of the sensors which are then quality controlled by an analyst. The VIIRS AFP became available for evaluation with the HMS in the Spring of 2014. The AFP was compared with the final quality controlled HMS product over the contiguous US between 8 April and 8 June 2014, which is primarily the agricultural and prescribed fire season, in order to determine the number of VIIRS unique fires. In making the comparison, any VIIRS AFP fire that was within 4 km of an HMS fire would not be considered unique, due to navigational accuracy and the 4km nominal resolution of GOES. Any VIIRS fire that was within 2km of a power plant or a known false detect location was also not considered. Based on these criteria there were 5876 VIIRS AFP unique locations compared to 71,705 HMS detections, approximately 8 percent of the HMS total. These extra locations potentially represent additional emissions that could affect air quality. The geographic distribution resembled the burning pattern during this period with the majority over the

  14. Retrieval of the polarized submarine light field from above surface measurements using polarimetric imaging

    NASA Astrophysics Data System (ADS)

    Foster, Robert; McGilloway, Anna; Ottaviani, Matteo; Carrizo, Carlos; Gilerson, Alex; El-Habashi, Ahmed; Ahmed, Sam

    2016-05-01

    Knowledge of the underwater light field is fundamental to determining the health of the world's oceans and coastal regions. For decades, traditional remote sensing retrieval methods that rely solely on the spectral intensity of the water-leaving light have provided indicators of marine ecosystem health. As the demand for retrieval accuracy rises, use of the polarized nature of light as an additional remote sensing tool is becoming necessary. For two weeks in December 2015, the NOAA NPP-VIIRS Calibration/Validation cruise continuously observed the polarized radiance of the ocean and the sky using a HyperSAS-POL system. Additionally, a full Stokes imaging polarimetric camera was used to acquire images and videos of the sea surface and sky during stations at coincident angles with HyperSAS-POL. Polarized remote sensing reflectance is computed for all viewing elevations present in the polarization images, and the results are compared to vector radiative transfer calculations.

  15. Comparison of inferred and observed interplanetary magnetic field polarities, 1970-1972

    NASA Technical Reports Server (NTRS)

    Wilcox, J. M.; Svalgaard, L.; Hedgecock, P. C.

    1975-01-01

    The inferred polarity (toward or away from the sun) of the interplanetary magnetic field at earth using polar observations of the geomagnetic field has been compared with spacecraft observations. A list published by Svalgaard (1974) of the inferred field polarities in the period from 1970 to 1972 is found to be correct on 82% of the days. A near real-time (same day) method of inferring the polarity of the interplanetary magnetic field using geomagnetic observations at Vostok and Thule is in use at the NOAA Space Environment Laboratory, Boulder, Colorado. During 1972, this method is found to be correct on 87% of the days. A list of 'well-defined' sector boundaries at earth from 1970 to 1972 is given.

  16. NOAA Response to the Deepwater Horizon Oil Spill - Protecting Oceans, Coasts and Fisheries (Invited)

    NASA Astrophysics Data System (ADS)

    Lubchenco, J.

    2010-12-01

    As the nation’s leading scientific resource for oil spills, NOAA has been on the scene of the Deepwater Horizon/BP oil spill from the start, providing coordinated scientific weather and biological response services to federal, state and local organizations. NOAA has mobilized experts from across the agency to help contain the spreading oil spill and protect the Gulf of Mexico’s many marine mammals, sea turtles, fish, shellfish and other endangered marine life. NOAA spill specialists advised the U.S. Coast Guard on cleanup options as well as advising all affected federal, state and local partners on sensitive marine resources at risk in this area of the Gulf of Mexico. As a major partner in the federal response to this incident, NOAA provided the necessary coastal and marine expertise required for sound, timely decision-making and helped protect the affected Gulf Coast communities and coastal marine environment and will continue to do so for ongoing restoration efforts.

  17. Trends in NOAA Solar X-ray Imager Performance

    NASA Astrophysics Data System (ADS)

    Hill, Steven M.; Darnell, John A.; Seaton, Daniel B.

    2016-05-01

    NOAA has provided operational soft X-ray imaging of the sun since the early 2000’s. After 15 years of observations by four different telescopes, it is appropriate to examine the data in terms of providing consistent context for scientific missions. In particular, this presentation examines over 7 million GOES Solar X-ray Imager (SXI) images for trends in performance parameters including dark current, response degradation, and inter-calibration. Because observations from the instrument have overlapped not only with each other, but also with research observations like Yohkoh SXT and Hinode XRT, relative performance comparisons can be made. The first GOES Solar X-ray Imager was launched in 2001 and entered operations in 2003. The current SXIs will remain in operations until approximately 2020, when a new series of Solar (extreme-)Ultraviolet Imagers (SUVIs) will replace them as the current satellites reach their end of life. In the sense that the SXIs are similar to Yokoh’s SXT and Hinode’s XRT, the SUVI instruments will be similar to SOHO’s EIT and SDO’s AIA. The move to narrowband EUV imagers will better support eventual operational estimation of plasma conditions. While NOAA’s principal use of these observations is real-time space weather forecasting, they will continue to provide a reliable context measurement for researchers for decades to come.

  18. Nonlinear Force-Free Field Extrapolation of NOAA AR 0696

    NASA Astrophysics Data System (ADS)

    Thalmann, J. K.; Wiegelmann, T.

    2007-12-01

    We investigate the 3D coronal magnetic field structure of NOAA AR 0696 in the period of November 09-11, 2004, before and after an X2.5 flare (occurring around 02:13 UT on November 10, 2004). The coronal magnetic field dominates the structure of the solar corona and consequently plays a key role for the understanding of the initiation of flares. The most accurate presently available method to derive the coronal magnetic field is currently the nonlinear force-free field extrapolation from measurements of the photospheric magnetic field vector. These vector-magnetograms were processed from stokes I, Q, U, and V measurements of the Big Bear Solar Observatory and extrapolated into the corona with the nonlinear force-free optimization code developed by Wiegelmann (2004). We analyze the corresponding time series of coronal equilibria regarding topology changes of the 3D coronal magnetic field during the flare. Furthermore, quantities such as the temporal evolution of the magnetic energy and helicity are computed.

  19. Assessing customer satisfaction for improving NOAA's climate products and services

    NASA Astrophysics Data System (ADS)

    Meyers, J. C.; Hawkins, M. D.; Timofeyeva, M. M.

    2009-12-01

    NOAA's National Weather Service (NWS) Climate Services Division (CSD) is developing a comprehensive climate user requirements process with the ultimate goal of producing climate services that meet the needs of NWS climate information users. An important part of this effort includes engaging users through periodical surveys conducted by the Claes Fornell International (CFI) Group using the American Customer Satisfaction Index (ACSI). The CFI Group conducted a Climate Services Satisfaction (CSS) Survey in May of 2009 to measure customer satisfaction with current products and services and to gain insight on areas for improvement. The CSS Survey rates customer satisfaction on a range of NWS climate services data and products, including Climate Prediction Center (CPC) outlooks, drought monitoring, and ENSO monitoring and forecasts, as well as NWS local climate data services. In addition, the survey assesses the users of the products to give the NWS insight into its climate customer base. The survey also addresses specific topics such as NWS forecast category names, probabilistic nature of climate products, and interpretation issues. The survey results identify user requirements for improving existing NWS climate services and introducing new ones. CSD will merge the survey recommendations with available scientific methodologies and operational capabilities to develop requirements for improved climate products and services. An overview of the 2009 survey results will be presented, such as users' satisfaction with the accuracy, reliability, display and functionality of products and services.

  20. Discovering NOAA Climate Data and Product Services (Invited)

    NASA Astrophysics Data System (ADS)

    Baldwin, R.; Ansari, S.; Reid, G.

    2009-12-01

    The National Climatic Data Center (NCDC) archives climate data for the US and the world. These data are provided through traditional web systems as well as web services. The web service implementation follows standards set by the Open Geospatial Consortium (OGC) and the World Wide Web Consortium (W3C). Simple object access protocol (SOAP) and representational state transfer (REST) are the two types of services provided. Provision of many data and product services from multiple organizations presents consumers with the difficulty of discovery. Standards based collection level metadata describe these data and products. This information delivered using a catalog service (CSW) in combination with an ontology service provides a robust mechanism for data discovery. Service endpoints or clients that use service endpoints are embedded within the metadata providing customers with tools to access and interrogate the fine details of the data. These technologies are demonstrated in current NCDC projects such as NOAA Climate Services Portal (NCSP), National Integrated Drought Information System (NIDIS), Pacific Climate Information System (PaCIS) and work with the Consortium of Universities for Advancement of Hydrologic Science (CUAHSI).

  1. Big Data Partnerships at NOAA's National Centers for Environmental Information

    NASA Astrophysics Data System (ADS)

    Casey, K. S.

    2015-12-01

    NOAA's National Centers for Environmental Information (NCEI) was created this year as the merger of the previously distinct National Climatic Data Center, National Geophysical Data Center, and National Oceanographic Data Center. Stewarding petabytes of data from thousands of institutions and individuals around the world, from thousands of platforms and data types in a wide range of data formats, NCEI sees partnerships as an essential component of its Big Data operations. To ensure the optimal reuse of all of these data, NCEI engages partners along tiers of data stewardship from long-term preservation and basic access, to enhanced access and quality control, through value-added product development, and on to national and international services. This presentation will detail how NCEI is engaged in efforts like the Big Data Partnership Cooperative Research and Development Agreements, the Big Earth Data Initiative, national and international data exchange networks, and with partners across governmental, academic, and commercial sectors to "big data enable" its data collections and serve as the Nation's trusted and authoritative source of environmental data and information.

  2. An Overview of the NOAA Drought Task Force

    NASA Technical Reports Server (NTRS)

    Schubert, S.; Mo, K.; Peters-Lidard, C.; Wood, A.

    2012-01-01

    The charge of the NOAA Drought Task Force is to coordinate and facilitate the various MAPP-funded research efforts with the overall goal of achieving significant advances in understanding and in the ability to monitor and predict drought over North America. In order to achieve this, the task force has developed a Drought Test-bed that individual research groups can use to test/evaluate methods and ideas. Central to this is a focus on three high profile North American droughts (1998-2004 western US drought, 2006-2007 SE US drought, 2011- current Tex-Mex drought) to facilitate collaboration among projects, including the development of metrics to assess the quality of monitoring and prediction products, and the development of an experimental drought monitoring and prediction system that incorporates and assesses recent advances. This talk will review the progress and plans of the task force, including efforts to help advance official national drought products, and the development of early warning systems by the National Integrated Drought Information System (NIDIS). Coordination with other relevant national and international efforts such as the emerging NMME capabilities and the international effort to develop a Global Drought Information System (GDIS) will be discussed.

  3. Comparison of NOAA-9 ERBE measurements with Cirrus IFO satellite and aircraft measurements

    NASA Technical Reports Server (NTRS)

    Ackerman, Steven A.; Chung, Hyosang; Cox, Stephen K.; Herman, Leroy; Smith, William L.; Wylie, Donald P.

    1990-01-01

    Earth Radiation Budget Experiment (ERBE) measurements onboard the NOAA-9 are compared for consistency with satellite and aircraft measurements made during the Cirrus Intensive Field Observation (IFO) of October 1986. ERBE scene identification is compared with NOAA-9 TIROS Operational Vertical Sounder (TOVS) cloud retrievals; results from the ERBE spectral inversion algorithms are compared with High resolution Interferometer Sounder (HIS) measurements; and ERBE radiant existance measurements are compared with aircraft radiative flux measurements.

  4. Retrieving hurricane wind speeds using cross-polarization C-band measurements

    NASA Astrophysics Data System (ADS)

    van Zadelhoff, G.-J.; Stoffelen, A.; Vachon, P. W.; Wolfe, J.; Horstmann, J.; Belmonte Rivas, M.

    2014-02-01

    Hurricane-force wind speeds can have a large societal impact and in this paper microwave C-band cross-polarized (VH) signals are investigated to assess if they can be used to derive extreme wind-speed conditions. European satellite scatterometers have excellent hurricane penetration capability at C-band, but the vertically (VV) polarized signals become insensitive above 25 m s-1. VV and VH polarized backscatter signals from RADARSAT-2 SAR imagery acquired during severe hurricane events were compared to collocated SFMR wind measurements acquired by NOAA's hurricane-hunter aircraft. From this data set a geophysical model function (GMF) at strong-to-extreme/severe wind speeds (i.e., 20 m s-1 < U10 < 45 m s-1) is derived. Within this wind speed regime, cross-polarized data showed no distinguishable loss of sensitivity and as such, cross-polarized data can be considered a good candidate for the retrieval of strong-to-severe wind speeds from satellite instruments. The upper limit of 45 m s-1 is defined by the currently available collocated data. The validity of the derived relationship between wind speed and VH backscatter has been evaluated by comparing the cross-polarized signals to two independent wind-speed data sets (i.e., short-range ECMWF numerical weather prediction (NWP) model forecast winds and the NOAA best estimate 1-minute maximum sustained winds). Analysis of the three comparison data sets confirm that cross-polarized signals from satellites will enable the retrieval of strong-to-severe wind speeds where VV or horizontal (HH) polarization data has saturated. The VH backscatter increases exponentially with respect to wind speed (linear against VH [dB]) and a near-real-time assessment of maximum sustained wind speed is possible using VH measurements. VH measurements thus would be an extremely valuable complement on next-generation scatterometers for hurricane forecast warnings and hurricane model initialization.

  5. [Review] Polarization and Polarimetry

    NASA Astrophysics Data System (ADS)

    Trippe, Sascha

    2014-02-01

    Polarization is a basic property of light and is fundamentally linked to the internal geometry of a source of radiation. Polarimetry complements photometric, spectroscopic, and imaging analyses of sources of radiation and has made possible multiple astrophysical discoveries. In this article I review (i) the physical basics of polarization: electromagnetic waves, photons, and parameterizations; (ii) astrophysical sources of polarization: scattering, synchrotron radiation, active media, and the Zeeman, Goldreich-Kylafis, and Hanle effects, as well as interactions between polarization and matter (like birefringence, Faraday rotation, or the Chandrasekhar-Fermi effect); (iii) observational methodology: on-sky geometry, influence of atmosphere and instrumental polarization, polarization statistics, and observational techniques for radio, optical, and X/γ wavelengths; and (iv) science cases for astronomical polarimetry: solar and stellar physics, planetary system bodies, interstellar matter, astrobiology, astronomical masers, pulsars, galactic magnetic fields, gamma-ray bursts, active galactic nuclei, and cosmic microwave background radiation.

  6. Automatic Bayesian polarity determination

    NASA Astrophysics Data System (ADS)

    Pugh, D. J.; White, R. S.; Christie, P. A. F.

    2016-07-01

    The polarity of the first motion of a seismic signal from an earthquake is an important constraint in earthquake source inversion. Microseismic events often have low signal-to-noise ratios, which may lead to difficulties estimating the correct first-motion polarities of the arrivals. This paper describes a probabilistic approach to polarity picking that can be both automated and combined with manual picking. This approach includes a quantitative estimate of the uncertainty of the polarity, improving calculation of the polarity probability density function for source inversion. It is sufficiently fast to be incorporated into an automatic processing workflow. When used in source inversion, the results are consistent with those from manual observations. In some cases, they produce a clearer constraint on the range of high-probability source mechanisms, and are better constrained than source mechanisms determined using a uniform probability of an incorrect polarity pick.

  7. Polarization feedback laser stabilization

    DOEpatents

    Esherick, P.; Owyoung, A.

    1987-09-28

    A system for locking two Nd:YAG laser oscillators includes an optical path for feeding the output of one laser into the other with different polarizations. Elliptical polarization is incorporated into the optical path so that the change in polarization that occurs when the frequencies coincide may be detected to provide a feedback signal to control one laser relative to the other. 4 figs.

  8. NOAA View: An Exploration Tool to Simplify Data Access and Visualization

    NASA Astrophysics Data System (ADS)

    Pisut, D.; Loomis, T.; Goel, V.; Carroll, J.

    2014-12-01

    A normal search for data would, ideally, start with the defining a variable of interest and eventually moving down to the acquisition method or analysis type. Too often, data archives assume the users understand the complex terminology of sensors and model names, or even worse - their acronyms. Imagine a non-subject matter expert, especially an educator or hobbyist, trying to navigate this sea of data and seemingly nonsense strings of letters like AVHRR, ESM2M, CFSR, or MLOST. At the NOAA VIsualization Lab, we deal with these issues on a routine basis, and are trying to make data discovery for formal and informal educational use much easier. In this talk, we'll describe the efforts to build the NOAA View data exploration tool, which provides access to over 100 variables from a myriad of satellite, in situ, model, and analysis sources across the agency. NOAA View, a WMS and OpenLayers based web tool and data portal, not only serves data imagery, but also links back to original sources in the data archives. The current architecture as well as plans for future versions will be detailed, along with examples of uses across the geophysical sciences. In addition to the talk, please visit NOAA View at the NOAA exhibit. www.nnvl.noaa.gov/view

  9. Observational Evidence Against Mountain-Wave Generation of Ice Nuclei as a Prerequisite for the Formation of Three Solid Nitric Acid Polar Stratospheric Clouds Observed in the Arctic in Early December 1999

    NASA Technical Reports Server (NTRS)

    Pagan, Kathy L.; Tabazadeh, Azadeh; Drdla, Katja; Hervig, Mark E.; Eckermann, Stephen D.; Browell, Edward V.; Legg, Marion J.; Foschi, Patricia G.

    2004-01-01

    A number of recently published papers suggest that mountain-wave activity in the stratosphere, producing ice particles when temperatures drop below the ice frost point, may be the primary source of large NAT particles. In this paper we use measurements from the Advanced Very High Resolution Radiometer (AVHRR) instruments on board the National Oceanic and Atmospheric Administration (NOAA) polar-orbiting satellites to map out regions of ice clouds produced by stratospheric mountain-wave activity inside the Arctic vortex. Lidar observations from three DC-8 flights in early December 1999 show the presence of solid nitric acid (Type Ia or NAT) polar stratospheric clouds (PSCs). By using back trajectories and superimposing the position maps on the AVHRR cloud imagery products, we show that these observed NAT clouds could not have originated at locations of high-amplitude mountain-wave activity. We also show that mountain-wave PSC climatology data and Mountain Wave Forecast Model 2.0 (MWFM-2) raw hemispheric ray and grid box averaged hemispheric wave temperature amplitude hindcast data from the same time period are in agreement with the AVHRR data. Our results show that ice cloud formation in mountain waves cannot explain how at least three large scale NAT clouds were formed in the stratosphere in early December 1999.

  10. Polarization at SLC

    SciTech Connect

    Swartz, M.L.

    1988-07-01

    The SLAC Linear Collider has been designed to readily accommodate polarized electron beams. Considerable effort has been made to implement a polarized source, a spin rotation system, and a system to monitor the beam polarization. Nearly all major components have been fabricated. At the current time, several source and polarimeter components have been installed. The installation and commissioning of the entire system will take place during available machine shutdown periods as the commissioning of SLC progresses. It is expected that a beam polarization of 45% will be achieved with no loss in luminosity. 13 refs., 15 figs.

  11. Polarized negative ions

    SciTech Connect

    Haeberli, W.

    1981-04-01

    This paper presents a survey of methods, commonly in use or under development, to produce beams of polarized negative ions for injection into accelerators. A short summary recalls how the hyperfine interaction is used to obtain nuclear polarization in beams of atoms. Atomic-beam sources for light ions are discussed. If the best presently known techniques are incorporated in all stages of the source, polarized H/sup -/ and D/sup -/ beams in excess of 10 ..mu..A can probably be achieved. Production of polarized ions from fast (keV) beams of polarized atoms is treated separately for atoms in the H(25) excited state (Lamb-Shift source) and atoms in the H(1S) ground state. The negative ion beam from Lamb-Shift sources has reached a plateau just above 1 ..mu..A, but this beam current is adequate for many applications and the somewhat lower beam current is compensated by other desirable characteristics. Sources using fast polarized ground state atoms are in a stage of intense development. The next sections summarize production of polarized heavy ions by the atomic beam method, which is well established, and by optical pumping, which has recently been demonstrated to yield very large nuclear polarization. A short discussion of proposed ion sources for polarized /sup 3/He/sup -/ ions is followed by some concluding remarks.

  12. The Long-term Performance of NOAA's Operational Open Ocean Tsunameter Array

    NASA Astrophysics Data System (ADS)

    Wasserman, J.; Bouchard, R. H.; Petraitis, D. C.; Rutledge, T. M.; Boudreaux, T. J.; Robbie, M. D.; Yarborough, S.; Fornea, G.

    2015-12-01

    The National Oceanic and Atmospheric Administration's (NOAA) National Data Buoy Center (NDBC) has operated and maintained the full 39-station array of open ocean tsunameters since 2008 using the second generation Deep-ocean Reporting and Assessment of Tsunamis technology. The array provides real-time, ocean bottom measurements to Tsunami Warning Centers (TWC) located in Hawai'i and Alaska. These measurements aid them in detecting the presence or absence of tsunamis in the open ocean and in determining the essential characteristics of a tsunami to support the TWC. Thirty-two of the stations span the Pacific Ocean, while seven are located in the Atlantic Ocean, Gulf of Mexico, and the Caribbean Sea. The sensors are located on the ocean floor to depths of 6000 m and the system must deliver measurements from that depth to the TWCs in 3 minutes or less. These vast horizontal and vertical distances and the often extreme conditions of the open ocean raise considerable challenges in maintaining necessary and sufficient measurements to support the TWCs. To support this effort, NDBC aims to maintain and generally achieves a goal of 80% real-time data availability. Data availability is the percentage of measurements received versus the number of expected measurements. Using seven years of data we examine operational performance parameters such as real-time and retrospective data availability and tsunami detection for trends, patterns, and the factors affecting performance and reliability of the array. We will also discuss the initial results of the Field Evaluation of the 4th Generation technology.

  13. StormReady in a Box: Enhancing NOAA's Presence in Schools

    NASA Astrophysics Data System (ADS)

    Grondin, N. S.; Franks, C.

    2015-12-01

    The National Weather Service StormReady Supporter program exists to give schools, companies, TV stations, and other facilities the opportunity to earn recognition for their weather preparedness and awareness. Requirements to earn StormReady Supporter status include having a facility warning point, use of NOAA Weather Radios, and weather hazard Emergency Operation Plans. Despite the increasing importance of weather preparedness in schools, only 1.2% of Minnesota schools are deemed StormReady by the National Weather Service. It was determined that the major impedance for schools becoming StormReady Supporters is the lack of time for administrators to engage in anything "extra" beyond their listed duties. As part of a 2015 Hollings Scholar project, the StormReady in a Box concept was developed to remedy this, by empowering teachers and students to take charge and complete the StormReady Supporter application for their school. StormReady in a Box is a project developed for Junior High School students to learn about weather preparedness and to help their school acquire StormReady status. The project was designed to be relevant to the Minnesota State Education Standards in Science, be simple for teachers to do with their students, and most importantly, to be enjoyable for Junior High School age students to do. The project was also designed to enhance critical thinking skills and logical reasoning abilities, as they relate to the StormReady Supporter application. This presentation will present the overall rationale for the undertaking of this project, the creation of, and the logical next steps for the StormReady in a Box project.

  14. An aerosol optical depth climatology for NOAA's national surface radiation budget network (SURFRAD)

    NASA Astrophysics Data System (ADS)

    Augustine, John A.; Hodges, Gary B.; Dutton, Ellsworth G.; Michalsky, Joseph J.; Cornwall, Christopher R.

    2008-06-01

    A series of algorithms developed to process spectral solar measurements for aerosol optical depth (AOD) for the National Oceanic and Atmospheric Administration's (NOAA) national surface radiation budget network (SURFRAD) is summarized, and decadal results are presented. AOD is a measure of the extinction of the Sun's beam due to aerosols. Daily files of AOD for five spectral measurements in the visible and near-infrared have been produced for 1997-2006. Comparisons of SURFRAD daily AOD averages to NASA's Aerosol Robotic Network product at two of the stations were generally good. An AOD climatology for each SURFRAD station is presented as an annual time series of composite monthly means that represents a typical intra-annual AOD variation. Results are similar to previous U.S. climatologies in that the highest AOD magnitude and greatest variability occur in summer, the lowest AOD levels are in winter, and geographically, the highest-magnitude AOD is in the eastern United States. Springtime Asian dust intrusions show up as a secondary maximum at the western stations. A time series of nationwide annual means shows that 500-nm AOD has decreased over the United States by about 0.02 AOD units over the 10-year period. However, this decline is not statistically significant nor geographically consistent within the country. The eastern U.S. stations and westernmost station at Desert Rock, Nevada, show decreasing AOD, whereas the other two western stations show an increase that is attributed to an upsurge in wildfire activity in the last half of the decade.

  15. The utility of polarized heliospheric imaging for space weather monitoring

    NASA Astrophysics Data System (ADS)

    DeForest, C. E.; Howard, T. A.; Webb, D. F.; Davies, J. A.

    2016-01-01

    A polarizing heliospheric imager is a critical next generation tool for space weather monitoring and prediction. Heliospheric imagers can track coronal mass ejections (CMEs) as they cross the solar system, using sunlight scattered by electrons in the CME. This tracking has been demonstrated to improve the forecasting of impact probability and arrival time for Earth-directed CMEs. Polarized imaging allows locating CMEs in three dimensions from a single vantage point. Recent advances in heliospheric imaging have demonstrated that a polarized imager is feasible with current component technology.Developing this technology to a high technology readiness level is critical for space weather relevant imaging from either a near-Earth or deep-space mission. In this primarily technical review, we developpreliminary hardware requirements for a space weather polarizing heliospheric imager system and outline possible ways to flight qualify and ultimately deploy the technology operationally on upcoming specific missions. We consider deployment as an instrument on NOAA's Deep Space Climate Observatory follow-on near the Sun-Earth L1 Lagrange point, as a stand-alone constellation of smallsats in low Earth orbit, or as an instrument located at the Sun-Earth L5 Lagrange point. The critical first step is the demonstration of the technology, in either a science or prototype operational mission context.

  16. RHIC Polarized proton operation

    SciTech Connect

    Huang, H.; Ahrens, L.; Alekseev, I.G.; Aschenauer, E.; Atoian, G.; Bai, M.; Bazilevsky, A.; Blaskiewicz, M.; Brennan, J.M.; Brown, K.A.; Bruno, D.; Connolly, R.; Dion, A.; D'Ottavio, T.; Drees, K.A.; Fischer, W.; Gardner, C.; Glenn, J.W.; Gu, X.; Harvey, M.; Hayes, T.; Hoff, L.; Hulsart, R.L.; Laster, J.; Liu, C.; Luo, Y.; MacKay, W.W.; Makdisi, Y.; Marr, G.J.; Marusic, A.; Meot, F.; Mernick, K.; Michnoff, R,; Minty, M.; Montag, C.; Morris, J.; Nemesure, S.; Poblaguev, A.; Ptitsyn, V.; Ranjibar, V.; Robert-Demolaize, G.; Roser, T.; J.; Severino, F.; Schmidke, B.; Schoefer, V.; Severino, F.; Smirnov, D.; Smith, K.; Steski, D.; Svirida, D.; Tepikian, S.; Trbojevic, D.; Tsoupas, N.; Tuozzolo, J. Wang, G.; Wilinski, M.; Yip, K.; Zaltsman, A.; Zelenski, A.; Zeno, K.; Zhang, S.Y.

    2011-03-28

    The Relativistic Heavy Ion Collider (RHIC) operation as the polarized proton collider presents unique challenges since both luminosity(L) and spin polarization(P) are important. With longitudinally polarized beams at the experiments, the figure of merit is LP{sup 4}. A lot of upgrades and modifications have been made since last polarized proton operation. A 9 MHz rf system is installed to improve longitudinal match at injection and to increase luminosity. The beam dump was upgraded to increase bunch intensity. A vertical survey of RHIC was performed before the run to get better magnet alignment. The orbit control is also improved this year. Additional efforts are put in to improve source polarization and AGS polarization transfer efficiency. To preserve polarization on the ramp, a new working point is chosen such that the vertical tune is near a third order resonance. The overview of the changes and the operation results are presented in this paper. Siberian snakes are essential tools to preserve polarization when accelerating polarized beams to higher energy. At the same time, the higher order resonances still can cause polarization loss. As seen in RHIC, the betatron tune has to be carefully set and maintained on the ramp and during the store to avoid polarization loss. In addition, the orbit control is also critical to preserve polarization. The higher polarization during this run comes from several improvements over last run. First we have a much better orbit on the ramp. The orbit feedback brings down the vertical rms orbit error to 0.1mm, much better than the 0.5mm last run. With correct BPM offset and vertical realignment, this rms orbit error is indeed small. Second, the jump quads in the AGS improved input polarization for RHIC. Third, the vertical tune was pushed further away from 7/10 snake resonance. The tune feedback maintained the tune at the desired value through the ramp. To calibrate the analyzing power of RHIC polarimeters at any energy above

  17. High Performance Real-Time Visualization of Voluminous Scientific Data Through the NOAA Earth Information System (NEIS).

    NASA Astrophysics Data System (ADS)

    Stewart, J.; Hackathorn, E. J.; Joyce, J.; Smith, J. S.

    2014-12-01

    Within our community data volume is rapidly expanding. These data have limited value if one cannot interact or visualize the data in a timely manner. The scientific community needs the ability to dynamically visualize, analyze, and interact with these data along with other environmental data in real-time regardless of the physical location or data format. Within the National Oceanic Atmospheric Administration's (NOAA's), the Earth System Research Laboratory (ESRL) is actively developing the NOAA Earth Information System (NEIS). Previously, the NEIS team investigated methods of data discovery and interoperability. The recent focus shifted to high performance real-time visualization allowing NEIS to bring massive amounts of 4-D data, including output from weather forecast models as well as data from different observations (surface obs, upper air, etc...) in one place. Our server side architecture provides a real-time stream processing system which utilizes server based NVIDIA Graphical Processing Units (GPU's) for data processing, wavelet based compression, and other preparation techniques for visualization, allows NEIS to minimize the bandwidth and latency for data delivery to end-users. Client side, users interact with NEIS services through the visualization application developed at ESRL called TerraViz. Terraviz is developed using the Unity game engine and takes advantage of the GPU's allowing a user to interact with large data sets in real time that might not have been possible before. Through these technologies, the NEIS team has improved accessibility to 'Big Data' along with providing tools allowing novel visualization and seamless integration of data across time and space regardless of data size, physical location, or data format. These capabilities provide the ability to see the global interactions and their importance for weather prediction. Additionally, they allow greater access than currently exists helping to foster scientific collaboration and new

  18. NASA/NOAA: Earth Science Electronic Theater 1999

    NASA Technical Reports Server (NTRS)

    Hasler, A. Fritz

    1999-01-01

    The Electronic Theater (E-theater) presents visualizations which span the period from the original Suomi/Hasler animations of the first ATS-1 GEO weather satellite images in 1966 to the latest 1999 NASA Earth Science Vision for the next 25 years. Hot off the SGI-Onyx Graphics-Supercomputer are NASA's visualizations of Hurricanes Mitch, Georges, Fran and Linda. These storms have been recently featured on the covers of National Geographic, Time, Newsweek and Popular Science. Highlights will be shown from the NASA hurricane visualization resource video tape that has been used repeatedly this season on National and International network TV. Results will be presented from a new paper on automatic wind measurements in Hurricane Luis from 1-min GOES images that appeared in the November BAMS. The visualizations are produced by the NASA Goddard Visualization and Analysis Laboratory (VAL/912), and Scientific Visualization Studio (SVS/930), as well as other Goddard and NASA groups using NASA, NOAA, ESA, and NASDA Earth science datasets. Visualizations will be shown from the Earth Science E-Theater 1999 recently presented in Tokyo, Paris, Munich, Sydney, Melbourne, Honolulu, Washington, New York, and Dallas. The presentation Jan 11-14 at the AMS meeting in Dallas used a 4-CPU SGI/CRAY Onyx Infinite Reality Super Graphics Workstation with 8 GB RAM and a Terabyte Disk at 3840 X 1024 resolution with triple synchronized BarcoReality 9200 projectors on a 60ft wide screen. Visualizations will also be featured from the new Earth Today Exhibit which was opened by Vice President Gore on July 2, 1998 at the Smithsonian Air & Space museum in Washington, as well as those presented for possible use at the American Museum of Natural History (NYC), Disney EPCOT, and other venues. New methods are demonstrated for visualizing, interpreting, comparing, organizing and analyzing immense HyperImage remote sensing datasets and three dimensional numerical model results. We call the data from many

  19. Case study of a magnetic transient in NOAA 11429 observed by SDO/HMI during the M7.9 flare on 2012 march 13

    SciTech Connect

    Harker, Brian J.; Pevtsov, Alexei A. E-mail: apevtsov@nso.edu

    2013-12-01

    NOAA 11429 was the source of an M7.9 X-ray flare at the western solar limb (N18° W63°) on 2012 March 13 at 17:12 UT. Observations of the line-of-sight magnetic flux and the Stokes I and V profiles from which it is derived were carried out by the Solar Dynamics Observatory Helioseismic and Magnetic Imager (SDO/HMI) with a 45 s cadence over the full disk, at a spatial sampling of 0.''5. During flare onset, a transient patch of negative flux can be observed in SDO/HMI magnetograms to rapidly appear within the positive polarity penumbra of NOAA 11429. We present here a detailed study of this magnetic transient and offer interpretations as to whether this highly debated phenomenon represents a 'real' change in the structure of the magnetic field at the site of the flare, or is instead a product of instrumental/algorithmic artifacts related to particular SDO/HMI data reduction techniques.

  20. Our Polar Past

    ERIC Educational Resources Information Center

    Clary, Renee; Wandersee, James

    2009-01-01

    The study of polar exploration is fascinating and offers students insights into the history, culture, and politics that affect the developing sciences at the farthest ends of Earth. Therefore, the authors think there is value in incorporating polar exploration accounts within modern science classrooms, and so they conducted research to test their…

  1. The Polar Insulation Investigation

    ERIC Educational Resources Information Center

    Urban-Rich, Juanita

    2006-01-01

    In this article, the author developed an activity called "The Polar Insulation Investigation." This activity builds on students' natural interest in "things polar" and introduces them to animal adaptations in a unique way. The aim of the exploration is to determine the role of animal coverings (e.g., blubber, fur, and feathers) and to see which is…

  2. Polar Science Is Cool!

    ERIC Educational Resources Information Center

    Weeks, Sophie

    2012-01-01

    Children are fascinated by the fact that polar scientists do research in extremely cold and dangerous places. In the Arctic they might be viewed as lunch by a polar bear. In the Antarctic, they could lose toes and fingers to frostbite and the wind is so fast it can rip skin off. They camp on ice in continuous daylight, weeks from any form of…

  3. Nomenclature of polarized light - Elliptical polarization

    NASA Technical Reports Server (NTRS)

    Clarke, D.

    1974-01-01

    Alternative handedness and sign conventions for relating the orientation of elliptical polarization are discussed. The discussion proceeds under two headings: (1) snapshot picture, where the emphasis for the convention is contained in the concept of handedness; and (2) angular momentum consideration, where the emphasis for the convention is strongly associated with mathematical convention and the sign of the fourth Stokes parameter.

  4. NOAA's Global Network of N2O Observations

    NASA Astrophysics Data System (ADS)

    Dlugokencky, E. J.; Crotwell, A. M.; Crotwell, M.; Masarie, K. A.; Lang, P. M.; Dutton, G. S.; Hall, B. D.

    2014-12-01

    Nitrous oxide has surpassed CFC-12 to become the third largest contributor to radiative forcing. When climate impacts for equal emitted masses of N2O and CO2 are integrated over 100 years, N2O impacts are about 300 times greater than those of CO2. Increasing the atmospheric burden of N2O also decreases the abundance of O3 in the stratosphere. With reductions in emissions of ODSs as a result of the Montreal Protocol, N2O now has the largest ODP-weighted emissions of all gases. Given its long lifetime of about 130 years, today's emissions will impact climate and stratospheric O3 for a long time. Because emission rates are very small and spread over enormous areas, the detailed N2O budget has large uncertainties. It also means measurement requirements on precision and accuracy are stringent, especially for the background atmosphere. The Carbon Cycle Group of NOAA ESRL's Global Monitoring Division began measuring N2O in discrete air samples collected as part of its global cooperative air sampling network in 1998. Data from about 60 air sampling sites provide important constraints on the large-scale budget of N2O and provide boundary conditions for continental and regional-scale studies. This presentation will briefly describe the procedures used to ensure the data are of sufficient quality to meet scientific demands, and describe remaining limitations. Although sampling is infrequent (weekly), the data are quite useful in N2O budget studies. Examples will be given of large scale constraints on N2O's budget, including the global burden, trends in the burden, global emissions, spatial distributions, vertical gradients, and seasonal patterns.

  5. Rich client data exploration and research prototyping for NOAA

    NASA Astrophysics Data System (ADS)

    Grossberg, Michael; Gladkova, Irina; Guch, Ingrid; Alabi, Paul; Shahriar, Fazlul; Bonev, George; Aizenman, Hannah

    2009-08-01

    Data from satellites and model simulations is increasing exponentially as observations and model computing power improve rapidly. Not only is technology producing more data, but it often comes from sources all over the world. Researchers and scientists who must collaborate are also located globally. This work presents a software design and technologies which will make it possible for groups of researchers to explore large data sets visually together without the need to download these data sets locally. The design will also make it possible to exploit high performance computing remotely and transparently to analyze and explore large data sets. Computer power, high quality sensing, and data storage capacity have improved at a rate that outstrips our ability to develop software applications that exploit these resources. It is impractical for NOAA scientists to download all of the satellite and model data that may be relevant to a given problem and the computing environments available to a given researcher range from supercomputers to only a web browser. The size and volume of satellite and model data are increasing exponentially. There are at least 50 multisensor satellite platforms collecting Earth science data. On the ground and in the sea there are sensor networks, as well as networks of ground based radar stations, producing a rich real-time stream of data. This new wealth of data would have limited use were it not for the arrival of large-scale high-performance computation provided by parallel computers, clusters, grids, and clouds. With these computational resources and vast archives available, it is now possible to analyze subtle relationships which are global, multi-modal and cut across many data sources. Researchers, educators, and even the general public, need tools to access, discover, and use vast data center archives and high performance computing through a simple yet flexible interface.

  6. Space weather activities at NOAA s Space Environment Center

    NASA Astrophysics Data System (ADS)

    Kunches, J.

    The NOAA Space Environment Center is the focal point for real-time space weather monitoring and prediction in the United States . The Space Weather Operations (SWO) division staffs a 24-hour/day operations center, through which both in-situ and remotely sensed data and imagery flow. These diverse data streams are analyzed continuously, and that information is applied to both predictions and specifications of various aspects of the space environment. These include the behavior of the geomagnetic field, the character of the ionosphere, and the strength of the near-earth radiation environment. Models are brought to bear in each of thes e areas, as SEC has an active research-to-operations transition effort. The Rapid Prototyping Center is the venue through which pertinent models and data must pass to be brought into the operational arena. The model outputs are then made available both internally and externally. SEC is a member of the International Space Environment Service (ISES), a partnership currently consisting of eleven nations. The mission of the ISES is to encourage and facilitate near-real-time international monitoring and prediction of the space environment by: the rapid exchange of space environment information; the standardization of the methodology for space environment observations and data reduction; the uniform publication of observations and statistics; and the application of standardized space environment products and services to assist users in reducing the impact of space weather on activities of human interest. An overview of the operational attributes of the SEC, and the function of the ISES, will be presented. Additional issues related to space weather customers, new data streams to be available in the near-term, and how these new data and imagery will be integrated int o operations will be discussed.

  7. RESTful Access to NOAA's Space Weather Data and Metadata

    NASA Astrophysics Data System (ADS)

    Kihn, E. A.; Elespuru, P. R.; Zhizhin, M.

    2010-12-01

    The Space Physics Interactive Data Resource (SPIDR) (http://spidr.ngdc.noaa.gov) is a web based application for searching, accessing and interacting with NOAA’s space related data holdings. SPIDR serves as one of several interfaces to the National Geophysical Data Center's archived digital holdings. The SPIDR system while successful in delivering data and visualization to clients was also found to be limited in its ability to interact with other programs, its ability to integrate with alternate work-flows and its support for multiple user interfaces (UI). As such in 2006 the SPIDR development team implemented a SOAP based interface to SPIDR through which outside developers could make use of the resource. It was our finding however that despite our best efforts at documentation, the interface remained elusive to many users. That is to say a few strong programmers were able to format and use the XML messaging but in general it did not make the data more accessible. In response SPIDR has been extended to include a REST style web services API for all time series data. This provides direct, synchronous, simple programmatic access to over 200 individual parameters representing space weather data directly from the NGDC archive. In addition to the data service SPIDR has implemented a metadata service which allows users to get Federal Geographic Data Committee (FGDC )style metadata records describing all available data and stations. This metadata will migrate to the NASA Space Physics Archive Search and Extract ( SPASE) style in future versions in order to provide further detail. The combination of data, metadata and visualization tools available through SPIDR combine to make it a powerful virtual observatory (VO). When this is combined with a content rich metadata system we have experience vastly greater user response and usage This talk will present details of the development as well as lessons learned from 10 years of SPIDR development.

  8. Polarization and polarization fatigue in ferroelectrics

    NASA Astrophysics Data System (ADS)

    Du, Xiaofeng

    This thesis addresses some fundamental issues in ferroelectricity and its applications through a computational and experimental effort. It focuses on a variety of perovskite-type ferroelectric oxides and investigates the physical basis for spontaneous polarization, domain wall dynamics, and texture development in thin film applications. The dipole-dipole interactions between ionic species in perovskite-type materials have been calculated to determine the local field and the lattice instability. Different ferroelectric and anti-ferroelectric polarization transitions can be realized by taking into account the structure distortion of the parent perovskites. We find the local field is enhanced by short range disorder and its nature varies from disorder to disorder, causing polarization transitions in non-(100) directions. The molecular field theory has also been extended to layered perovskites, which favors in-plane polarization over c-polarization. These theoretical predictions are in agreement with the experimental observations of various perovskites and layered perovskites in both single crystal and thin film forms. Domain switching in PZT has been studied by probing the frequency dependency of polarization hysteresis. A picture of thermally activated domain wall movement is established from the frequency spectra of coercive field. The field dependence of domain wall bulging and the nature of the binding between pinning obstacles and the walls are inferred from such a study. Consistent with this picture, polarization fatigue can be defined as a process of increasing the resistance from pinning defects to domain wall motion. The chemical species that act as pinning defects have been identified through model experiments that control carrier injection, electrode interfaces, and film compositions. Based on these observations, a methodology is proposed to evaluate and predict the fatigue damage of both PZT and layered perovskite thin films. Processing of layered

  9. The Science Behind the NASA/NOAA Electronic Theater 2002

    NASA Technical Reports Server (NTRS)

    Hasler, A. Fritz; Starr, David (Technical Monitor)

    2002-01-01

    Details of the science stories and scientific results behind the Etheater Earth Science Visualizations from the major remote sensing institutions around the country will be explained. The NASA Electronic Theater presents Earth science observations and visualizations in a historical perspective. Fly in from outer space to Temple Square and the University of Utah Campus. Go back to the early weather satellite images from the 1960s see them contrasted with the latest US/Europe/Japan global weather data. See the latest images and image sequences from NASA & NOAA missions like Terra, GOES, NOAA, TRMM, SeaWiFS, Landsat 7 visualized with state-of-the art tools. A similar retrospective of numerical weather models from the 1960s will be compared with the latest "year 2002" high-resolution models. See the inner workings of a powerful hurricane as it is sliced and dissected using the University of Wisconsin Vis-5D interactive visualization system. The largest super computers are now capable of realistic modeling of the global oceans. See ocean vortexes and currents that bring up the nutrients to feed phitoplankton and zooplankton as well as draw the crill fish, whales and fisherman. See the how the ocean blooms in response to these currents and El Nino/La Nina climate regimes. The Internet and networks have appeared while computers and visualizations have vastly improved over the last 40 years. These advances make it possible to present the broad scope and detailed structure of the huge new observed and simulated datasets in a compelling and instructive manner. New visualization tools allow us to interactively roam & zoom through massive global images larger than 40,000 x 20,000 pixels. Powerful movie players allow us to interactively roam, zoom & loop through 4000 x 4000 pixel bigger than HDTV movies of up to 5000 frames. New 3D tools allow highly interactive manipulation of detailed perspective views of many changing model quantities. See the 1m resolution before and after

  10. The Science Behind the NASA/NOAA Electronic Theater 2002

    NASA Technical Reports Server (NTRS)

    Hasler, A. Fritz; Starr, David (Technical Monitor)

    2002-01-01

    Details of the science stories and scientific results behind the Etheater Earth Science Visualizations from the major remote sensing institutions around the country will be explained. The NASA Electronic Theater presents Earth science observations and visualizations in a historical perspective. Fly in from outer space to Temple Square and the University of Utah Campus. Go back to the early weather satellite images from the 1960s see them contrasted with the latest US/Europe/Japan global weather data. See the latest images and image sequences from NASA & NOAA missions like Terra, GOES, NOAA, TRMM, SeaWiFS, Landsat 7 visualized with state-of-the art tools. A similar retrospective of numerical weather models from the 1960s will be compared with the latest "year 2002" high-resolution models. See the inner workings of a powerful hurricane as it is sliced and dissected using the University of Wisconsin Vis-5D interactive visualization system. The largest super computers are now capable of realistic modeling of the global oceans. See ocean vortexes and currents that bring up the nutrients to feed phitoplankton and zooplankton as well as draw the crill fish, whales and fisherman. See the how the ocean blooms in response to these currents and El Nino/La Nina climate regimes. The Internet and networks have appeared while computers and visualizations have vastly improved over the last 40 years. These advances make it possible to present the broad scope and detailed structure of the huge new observed and simulated datasets in a compelling and instructive manner. New visualization tools allow us to interactively roam & zoom through massive global images larger than 40,000 x 20,000 pixels. Powerful movie players allow us to interactively roam, zoom & loop through 4000 x 4000 pixel bigger than HDTV movies of up to 5000 frames. New 3D tools allow highly interactive manipulation of detailed perspective views of many changing model quantities. See the 1m resolution before and after

  11. Parallel Polarization State Generation

    PubMed Central

    She, Alan; Capasso, Federico

    2016-01-01

    The control of polarization, an essential property of light, is of wide scientific and technological interest. The general problem of generating arbitrary time-varying states of polarization (SOP) has always been mathematically formulated by a series of linear transformations, i.e. a product of matrices, imposing a serial architecture. Here we show a parallel architecture described by a sum of matrices. The theory is experimentally demonstrated by modulating spatially-separated polarization components of a laser using a digital micromirror device that are subsequently beam combined. This method greatly expands the parameter space for engineering devices that control polarization. Consequently, performance characteristics, such as speed, stability, and spectral range, are entirely dictated by the technologies of optical intensity modulation, including absorption, reflection, emission, and scattering. This opens up important prospects for polarization state generation (PSG) with unique performance characteristics with applications in spectroscopic ellipsometry, spectropolarimetry, communications, imaging, and security. PMID:27184813

  12. Parallel Polarization State Generation

    NASA Astrophysics Data System (ADS)

    She, Alan; Capasso, Federico

    2016-05-01

    The control of polarization, an essential property of light, is of wide scientific and technological interest. The general problem of generating arbitrary time-varying states of polarization (SOP) has always been mathematically formulated by a series of linear transformations, i.e. a product of matrices, imposing a serial architecture. Here we show a parallel architecture described by a sum of matrices. The theory is experimentally demonstrated by modulating spatially-separated polarization components of a laser using a digital micromirror device that are subsequently beam combined. This method greatly expands the parameter space for engineering devices that control polarization. Consequently, performance characteristics, such as speed, stability, and spectral range, are entirely dictated by the technologies of optical intensity modulation, including absorption, reflection, emission, and scattering. This opens up important prospects for polarization state generation (PSG) with unique performance characteristics with applications in spectroscopic ellipsometry, spectropolarimetry, communications, imaging, and security.

  13. Polarization of clouds

    NASA Astrophysics Data System (ADS)

    Goloub, Philippe; Herman, Maurice; Parol, Frederic

    1995-12-01

    This paper reports the main results concerning polarization by clouds derived from POLDER (polarization and directionality of earth's reflectances) airborne version. These results tend to confirm the high information content in the polarization (phase, altimetry). The preliminary results of EUCREX'94 (European Cloud Radiation Experiment) evidenced the drastically different polarized signatures for ice crystals and water droplets. Here we report systematic and statistically significative observations over the whole EUCREX data set. The results show that the cirrus exhibit their own signature. Preliminary observations performed during CLEOPATRA'91 (Cloud Experiment Ober Pfaffenhofen And Transport) and EUCREX'94 campaigns have shown the feasibility of cloud altimetry using spectral information (443 nm and 865 nm) of the polarized light over liquid water droplets clouds. Altimetry technique has been generalized on ASTEX-SOFIA'92 and EUCREX'94 data sets. All these results are presented and discussed in this paper.

  14. Joint Polar Satellite System's Operational and Research Applications from Suomi NPP

    NASA Astrophysics Data System (ADS)

    Goldberg, M.

    2014-12-01

    The Joint Polar Satellite System is NOAA's new operational satellite program and includes the Suomi National Polar-orbiting Partnership (S-NPP) as a bridge between NOAA's operational Polar Orbiting Environmental Satellite (POES) series, which began in 1978, and the first JPSS operational satellite scheduled for launch in 2017. JPSS provides critical data for key operational and research applications, and includes: 1) Weather forecasting - data from the JPSS Cross-track Infrared Sounder (CrIS) and the Advanced Technology Microwave Sounder (ATMS) are needed to forecast weather events out to 7 days. Nearly 85% of all data used in weather forecasting are from polar orbiting satellites. 2) Environmental monitoring - data from the JPSS Visible Infrared Imager Radiometer Suite (VIIRS) are used to monitor the environment including the health of coastal ecosystems, drought conditions, fire, smoke, dust, snow and ice, and the state of oceans, including sea surface temperature and ocean color. 3) Climate monitoring - data from JPSS instruments, including OMPS and CERES will provide continuity to climate data records established using NOAA POES and NASA Earth Observing System (EOS) satellite observations. These data records provide a unified and coherent long-term observation of the environment; the records and products are critical to climate modelers, scientists, and decision makers concerned with advancing climate change understanding, prediction, mitigation and adaptation strategies, and policies. To bridge the gap between products and applications, the JPSS Program has established a proving ground program to optimize the use of JPSS data with other data sources to improve key products and services. A number of operational and research applications will be discussed, including the use of CrIS and ATMS for improved weather forecasting, the use of VIIRS for environmental monitoring of sea ice, smoke, fire, floods, droughts, coastal water quality (e.g. harmful algal blooms

  15. ROCK inhibition impedes macrophage polarity and functions.

    PubMed

    Liu, Yianzhu; Tejpal, Neelam; You, Junping; Li, Xian C; Ghobrial, Rafik M; Kloc, Malgorzata

    2016-02-01

    Macrophages play an important role in immune responses including allograft rejection and they are one of the potential targets of anti-rejection therapies in organ transplantation. Macrophage alloreactivity relies on their phenotype/polarity, motility, phagocytosis and matrix degradation, which in turn depend on proper functioning of actin cytoskeleton and its regulators, the small GTPase RhoA and its downstream effector the Rho-associated protein kinase (ROCK). Several laboratories showed that administration of ROCK inhibitor Y-27632 to the graft recipient inhibits chronic rejection or rodent cardiac allografts. Here we studied the effect of Y-27632 on mouse peritoneal macrophage structure, polarity and functions in in vitro assays. We show that Y-27632 inhibitor affects macrophage phenotype/polarity, phagocytosis, migration, and matrix degradation. These novel findings suggest that the impediment of macrophage structure and function via interference with the RhoA/ROCK pathway has a potential to be therapeutically effective in organ transplantation.

  16. Interplanetary magnetic sector polarity inferred from polar geomagnetic field observations

    NASA Technical Reports Server (NTRS)

    Friis-Christensen, E.; Lassen, K.; Wilcox, J. M.; Gonzalez, W.; Colburn, D. S.

    1971-01-01

    In order to infer the interplanetary sector polarity from polar geomagnetic field diurnal variations, measurements were carried out at Godhavn and Thule (Denmark) Geomagnetic Observatories. The inferred interplanetary sector polarity was compared with the polarity observed at the same time by Explorer 33 and 35 magnetometers. It is shown that the polarity (toward or away from the sun) of the interplanetary magnetic field can be reliably inferred from observations of the polar cap geomagnetic fields.

  17. Neutron Polarizers Based on Polarized 3He

    SciTech Connect

    William M. Snow

    2005-05-01

    The goal of this work, which is a collaborative effort between Indiana University, NIST, and Hamilton College, is to extend the technique of polarized neutron scattering into new domains by the development and application of polarized 3He-based neutron spin filters. After the IPNS experiment which measured Zeeman sp[litting in surface scattered neutrons using a polarized 3He cell as a polarization analyzer transporterd by car from Bloomington to Chicago, the Indiana work focused on technical developments to improve the 3He polarization of the Indiana compression system. The compression system was rebuilt with a new valve system which allows gas trapped in the dead volume of the compressors at the end of the piston stroke to be exhausted and conducted back to the optical pumping cell where it can be repolarized. We also incorporated a new intermediate storage volume made at NIST from 1720 glass which will reduce polarization losses between the compressors. Furthermore, we improved the stability of the 1083 nm laser by cooling the LMA rod. We achieved 60% 3he polarization in the optical pumping cell and 87% preservation of the polarization during compression. In parallel we built a magnetically-shielded transport solenoid for use on neutron scattering instruments such as POSY which achieves a fractional field uniformity of better than 10-3 per cm. The field was mapped using an automated 3D field mapping system for in-situ measurement of magnetic field gradients Diluted magnetic semiconductors offer many exciting opportunities for investigation of spintronic effects in solids and are certain to be one of the most active areas of condensed matter physics over then next several years. These materials can act as efficient spin injectors for devices that make use of spin-dependent transport phenomena. We just (late July 2002) finished a neutron reflectivity experiment at NIST on a GaMnAs trilayer film. This material is a ferromagnetic semiconductor which is of interest

  18. Van Allen Probes, NOAA, and Ground Observations of an Intense Pc 1 Wave Event Extending 12 Hours in MLT

    NASA Astrophysics Data System (ADS)

    Engebretson, M. J.; Posch, J. L.; Wygant, J. R.; Kletzing, C.; Lessard, M.; Horne, R. B.; Reeves, G. D.; Gkioulidou, M.; Fennell, J.; Oksavik, K.; Raita, T.

    2014-12-01

    On February 23, 2014 a Pc 1 wave event extending 8 hours in UT and 12 hours in MLT was observed at Halley, Antarctica and Ivalo, Finland in the dawn sector, and by both Van Allen Probes spacecraft from late morning through local noon. The wave activity was stimulated by a gradual 4-hour rise and subsequent sharp increases in solar wind pressure. Intense hydrogen band, linearly polarized Pc 1 wave activity (up to 25 nT p-p) with very similar time variations also appeared for over 4 hours at both Van Allen Probes, located ~8 and ~9 hours east of Halley. Waves appeared when these spacecraft were outside the plasmapause, with densities ~5-20 cm-3. Ten passes of NOAA-POES and METOP satellites near the northern hemisphere footpoint of the Van Allen Probes (over Siberia) show the presence of 30-80 keV subauroral proton precipitation. This is the longest-duration and most intense Pc1 event we have yet observed with the Van Allen Probes. The combination of its duration, intensity, and large local time extent (from before 02 to nearly 14 hours MLT) suggests that it might have a significant effect on the ring current, and possibly even electrons in the outer radiation belt.

  19. On the line profile changes observed during the X2.2 class flare in the active region NOAA 11158

    NASA Astrophysics Data System (ADS)

    Raja Bayanna, Ankala; Kumar, Brajesh; Venkatakrishnan, Parameswaran; Kunchandy Mathew, Shibu; Ravindra, Belur; Mathur, Savita; Garcia, Rafael A.

    2014-02-01

    The solar active region NOAA 11158 produced a series of flares during its passage through the solar disk. The first major flare (of class X2.2) of the current solar cycle occurred in this active region on 2011 February 15 around 01:50 UT. We have analyzed the Dopplergrams and magnetograms obtained by the Helioseismic and Magnetic Imager (HMI) instrument onboard Solar Dynamics Observatory to examine the photospheric velocity and magnetic field changes associated with this flare. The HMI instrument provides high-quality Doppler and magnetic maps of the solar disk with 0.5″ spatial scale at a cadence of 45 s along with imaging spectroscopy. We have identified five locations of velocity transients in the active region during the flare. These transient velocity signals are located in and around the flare ribbons as observed by Hinode in the Ca II H wavelength and the footpoints of hard X-ray enhancement are in the energy range 12-25 keV from RHESSI. The changes in shape and width of two circular polarization states have been observed at the time of transients in three out of five locations. Forward modeling of the line profiles shows that the change in atmospheric parameters such as magnetic field strength, Doppler velocity and source function could explain the observed changes in the line profiles with respect to the pre-flare condition.

  20. Polarization at the SLC

    SciTech Connect

    Moffeit, K.C.

    1988-10-01

    The Stanford Linear collider was designed to accommodate polarized electron beams. Longitudinally polarized electrons colliding with unpolarized positrons at a center of mass energy near the Z/sup 0/ mass can be used as novel and sensitive probes of the electroweak process. A gallium arsenide based photon emission source will provide a beam of longitudinally polarized electrons of about 45 percent polarization. A system of bend magnets and a superconducting solenoid will be used to rotate the spins so that the polarization is preserved while the 1.21 GeV electrons are stored in the damping ring. Another set of bend magnets and two superconducting solenoids orient the spin vectors so that longitudinal polarization of the electrons is achieved at the collision point with the unpolarized positrons. A system to monitor the polarization based on Moller and Compton scattering will be used. Nearly all major components have been fabricated and tested. Subsystems of the source and polarimeters have been installed, and studies are in progress. The installation and commissioning of the entire system will take place during available machine shutdown periods as the commissioning of SLC progresses. 8 refs., 16 figs., 1 tab.

  1. Compton Polarization with Nustar

    NASA Astrophysics Data System (ADS)

    Lotti, Simone; Natalucci, Lorenzo; Harrison, Fiona A.; Madsen, Kristin; Perri, Matteo; Puccetti, Simonetta

    In this study we assess the NuSTAR capabilities to detect polarized signals in the Compton regime, through the use of Monte Carlo simulations and comparison with observational data. Both NuSTAR focal plane detectors are equipped with high resolution pixilated CZT arrays, sensitive in the energy range 2.5-80 keV. These units have intrinsic polarization capabilities due to their high quality factor, very low background and scattering angles of ~90°, which is ideal for incident photon energies below 100 keV. However the sensitivity is limited by the very low efficiency of the CZT for Compton interactions and by intrinsic readout systematics, such as charge sharing between pixels. An additional source of degradation is the incompleteness of double events information in the science telemetry. We estimated the Minimum Detectable Polarization of cosmic sources as a function of intensity, and the results obtained were validated through the comparison with the first actual data from the Crab Nebula and Cygnus X-1. We also evaluated the count rate and the background expected for polarization measurements, comparing our estimates with the data measured in flight. Our simulations reproduce well the actual NuSTAR data, showing that the focal plane detectors should be able to detect polarization from highly polarized sources like the Crab and other potential bright sources, dominated by synchrotron and/or SSC emission. The background for polarization measurements was found to be negligible.

  2. Polarization Control of VCSELs

    NASA Astrophysics Data System (ADS)

    Ostermann, Johannes Michael; Michalzik, Rainer

    In most types of VCSELs, the light output polarization is inherently unstable. While, in case of single-mode oscillation, the emitted light is mainly linearly polarized, its orientation is not well defined. This is because both the resonator and the gain medium are quasi isotropic in the plane of the active layers. Since a stable polarization is required for almost all sensing and some datacom applications, extensive and in-depth investigations have been undertaken during the last twenty years in order to stabilize the polarization of VCSELs without affecting their favorable operation parameters. Polarization control of VCSELs can be achieved by introducing a polarization-dependent gain, an asymmetric resonator, or mirrors with a polarization-dependent reflectivity. It has turned out that the last approach is most promising. It can be realized by incorporating a shallow surface grating in the upper mirror of a top-emitting VCSEL. Several million grating VCSELs are in reliable operation meanwhile, mainly in optical computer mice.

  3. Polarization at the SLC

    NASA Astrophysics Data System (ADS)

    Moffeit, Kenneth C.

    1989-05-01

    The Stanford Linear Collider was designed to accommodate polarized electron beams. Longitudinally polarized electrons colliding with unpolarized positrons at a center of mass energy near the Z0 mass can be used as novel and sensitive probes of the electroweak process. A gallium arsenide based photon emission source will provide a beam of longitudinally polarized electrons of about 45 percent polarization. A system of bend magnets and a superconducting solenoid will be used to rotate the spins so that the polarization is preserved while the 1.21 GeV electrons are stored in the damping ring. Another set of bend magnets and two superconducting solenoids orient the spin vectors so that longitudinal polarization of the electrons is achieved at the collision point with the unpolarized positrons. A system to monitor the polarization based on Mo/ller and Compton scattering will be used. Nearly all major components have been fabricated and tested. Subsystems of the source and polarimeters have been installed, and studies are in progress. The installation and commissioning of the entire system will take place during available machine shutdown periods as the commissioning of SLC progresses.

  4. THE MAGNETIC SYSTEMS TRIGGERING THE M6.6 CLASS SOLAR FLARE IN NOAA ACTIVE REGION 11158

    SciTech Connect

    Toriumi, Shin; Iida, Yusuke; Bamba, Yumi; Kusano, Kanya; Imada, Shinsuke; Inoue, Satoshi

    2013-08-20

    We report a detailed event analysis of the M6.6 class flare in the active region (AR) NOAA 11158 on 2011 February 13. AR 11158, which consisted of two major emerging bipoles, showed prominent activity including one X- and several M-class flares. In order to investigate the magnetic structures related to the M6.6 event, particularly the formation process of a flare-triggering magnetic region, we analyzed multiple spacecraft observations and numerical results of a flare simulation. We observed that, in the center of this quadrupolar AR, a highly sheared polarity inversion line (PIL) was formed through proper motions of the major magnetic elements, which built a sheared coronal arcade lying over the PIL. The observations lend support to the interpretation that the target flare was triggered by a localized magnetic region that had an intrusive structure, namely, a positive polarity penetrating into a negative counterpart. The geometrical relationship between the sheared coronal arcade and the triggering region is consistent with the theoretical flare model based on the previous numerical study. We found that the formation of the trigger region was due to the continuous accumulation of small-scale magnetic patches. A few hours before the flare occurred, the series of emerged/advected patches reconnected with a pre-existing field. Finally, the abrupt flare eruption of the M6.6 event started around 17:30 UT. Our analysis suggests that in the process of triggering flare activity, all magnetic systems on multiple scales are included, not only the entire AR evolution but also the fine magnetic elements.

  5. Vector magnetic field and vector current density in and around the δ-spot NOAA 10808†

    NASA Astrophysics Data System (ADS)

    Bommier, Véronique; Landi Degl'Innocenti, Egidio; Schmieder, Brigitte; Gelly, Bernard

    2011-08-01

    The context is that of the so-called ``fundamental ambiguity'' (also azimuth ambiguity, or 180° ambiguity) in magnetic field vector measurements: two field vectors symmetrical with respect to the line-of-sight have the same polarimetric signature, so that they cannot be discriminated. We propose a method to solve this ambiguity by applying the ``simulated annealing'' algorithm to the minimization of the field divergence, added to the longitudinal current absolute value, the line-of-sight derivative of the magnetic field being inferred by the interpretation of the Zeeman effect observed by spectropolarimetry in two lines formed at different depths. We find that the line pair Fe I λ 6301.5 and Fe I λ 6302.5 is appropriate for this purpose. We treat the example case of the δ-spot of NOAA 10808 observed on 13 September 2005 between 14:25 and 15:25 UT with the THEMIS telescope. Besides the magnetic field resolved map, the electric current density vector map is also obtained. A strong horizontal current density flow is found surrounding each spot inside its penumbra, associated to a non-zero Lorentz force centripetal with respect to the spot center (i.e., oriented towards the spot center). The current wrapping direction is found to depend on the spot polarity: clockwise for the positive polarity, counterclockwise for the negative one. This analysis is made possible thanks to the UNNOFIT2 Milne-Eddington inversion code, where the usual theory is generalized to the case of a line (Fe I λ 6301.5) that is not a normal Zeeman triplet line (like Fe I λ 6302.5).

  6. NOAA Plans for Next Generation, Space-based, Operational Observations (Invited)

    NASA Astrophysics Data System (ADS)

    Kicza, M.

    2009-12-01

    This presentation will provide an overview of NOAA’s satellite plans to maintain operational continuity of current observations and to identify research measurements and missions that are high priority candidates for research to operations transition. The year 2009 was eventful with the launch of NOAA N prime (now designated NOAA-19) on February 6 and the launch of GOES-O (now designated GOES-14) on June 27. NOAA is working to ensure cost effective continuity of data, products, and services. In furtherance of this goal, Ms. Kicza will discuss NOAA plans to: - Continue the current programs: GOES-N, GOES-R, POES, NPOESS, and Ocean Altimetry - Ensure climate data continuity: Deliver climate sensors to NPP and NPOESS in the near term, with the long term strategy defined by Summer 2009 - Pursue high priority measurement candidates for research to operations transition, including ocean altimetry, radio occultation, ocean surface vector winds, and solar wind - Identify future measurement candidates and external partnerships for research to operations transitions - Continue to conduct analysis of alternatives and simulation studies to determine the best approaches to realize future transitions - Continue to work with the commercial sector for the possible purchase of satellite products and services that meet NOAA requirements

  7. Automated monitoring of snow cover over China using FY-1C and NOAA-16 satellite data

    NASA Astrophysics Data System (ADS)

    Liu, Yujie; Zheng, Zhaojun

    2003-06-01

    In order to reduce the human labor in snow cover monitoring, recent study has been done on modification of the multi-spectral thresholds method which was developed in NSMC in 1996. Based on the analysis of the spectral characteristics of snow, cloud and other types of earth surface with multi-spectral data, an automated processing system with the new thresholds method to distinguish snow and cloud have been set up in NSMC. The devised technique is applied to multi-spectral data from FY-1C and NOAA-16 for mapping snow cover over China during winter season. To assess performance of the modification, the automatically produced snow data sets have been compared with the NOAA operational snow products and validated against in situ land surface observations in China. There is a good consistency between our results, NOAA snow data and ground measurements. The correlation coefficient between the snow cover produced by NSMC and NOAA is about 80%. The results of the comparison show us that the 1.6µm band data is very useful for snow and cloud distinguishing. The new method can reduce the human labor in snow cover monitoring and produce accurate snow cover images in China using FY-1C and NOAA-16 satellite data.

  8. GUIDE FOR POLARIZED NEUTRONS

    DOEpatents

    Sailor, V.L.; Aichroth, R.W.

    1962-12-01

    The plane of polarization of a beam of polarized neutrons is changed by this invention, and the plane can be flipped back and forth quicitly in two directions in a trouble-free manner. The invention comprises a guide having a plurality of oppositely directed magnets forming a gap for the neutron beam and the gaps are spaced longitudinally in a spiral along the beam at small stepped angles. When it is desired to flip the plane of polarization the magnets are suitably rotated to change the direction of the spiral of the gaps. (AEC)

  9. Polarized noble gas MRI

    SciTech Connect

    Brookeman, James R.; Mugler, John P. III; Lange, Eduard E. de; Knight-Scott, Jack; Maier, Therese; Bogorad, Paul; Driehuys, Bastiaan; Cates, Gordon; Happer, William; Daniel, Thomas M.; Truwit, Jonathon D.

    1998-01-20

    The development of convenient methods to polarize liter quantities of the noble gases helium-3 and xenon-129 has provided the opportunity for a new MRI method to visualize the internal air spaces of the human lung. These spaces are usually poorly seen with hydrogen-based MRI, because of the limited water content of the lung and the low thermal polarization of the water protons achieved in conventional magnets. In addition, xenon, which has a relatively high solubility and a sufficiently persistent polarization level in blood and biological tissue, offers the prospect of providing perfusion images of the lung, brain and other organs.

  10. North Polar Dunes

    NASA Technical Reports Server (NTRS)

    2006-01-01

    23 January 2006 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows dark sand dunes in the north polar region of Mars. Surrounding much of the north polar ice cap are fields of sand dunes. In this case, the strongest winds responsible for the dunes blew off the polar cap (not seen here), from the north-northwest (upper left).

    Location near: 76.5oN, 63.7oW Image width: 3 km (1.9 mi) Illumination from: lower left Season: Northern Summer

  11. National Oceanic and Atmospheric Administration

    NASA Astrophysics Data System (ADS)

    Mockler, Susan Bucci

    Although slightly reduced from the 1994 funding level of $2 billion, James Baker, under secretary for Oceans and Atmosphere at NOAA, said they are “pleased with the numbers.” The total request for 1995 of $1.96 billion includes some new programmatic funds, and the decrease from fiscal 1994 reflects, in part, some one-time projects in last year's budget, Baker said. NOAA's budget request for 1995 is driven by its strategic plan, which was established in 1993 to unify the agency, identify coherent objectives that capitalize on available resources across NOAA's program elements, and develop implementation measures to maximize cost-effectiveness. The strategic plan organizes NOAA's program responsibilities into two broad “portfolios”—Environmental Stewardship and Environmental Assessment and Prediction, and two other priorities—Cross-Cut Programs and Infrastructure.

  12. Senior Administrators Should Have Administrative Contracts.

    ERIC Educational Resources Information Center

    Posner, Gary J.

    1987-01-01

    Recognizing that termination is viewed by the employee as the equivalent to capital punishment of a career, an administrative contract can reduce the emotional and financial entanglements that often result. Administrative contracts are described. (MLW)

  13. Polar Environmental Monitoring

    NASA Technical Reports Server (NTRS)

    Nagler, R. G.; Schulteis, A. C.

    1979-01-01

    The present and projected benefits of the polar regions were reviewed and then translated into information needs in order to support the array of polar activities anticipated. These needs included measurement sensitivities for polar environmental data (ice/snow, atmosphere, and ocean data for integrated support) and the processing and delivery requirements which determine the effectiveness of environmental services. An assessment was made of how well electromagnetic signals can be converted into polar environmental information. The array of sensor developments in process or proposed were also evaluated as to the spectral diversity, aperture sizes, and swathing capabilities available to provide these measurements from spacecraft, aircraft, or in situ platforms. Global coverage and local coverage densification options were studied in terms of alternative spacecraft trajectories and aircraft flight paths.

  14. Mercury's South Polar Region

    NASA Video Gallery

    This animation shows 89 wide-angle camera (WAC) images of Mercury’s south polar region acquired by the Mercury Dual Imaging System (MDIS) over one complete Mercury solar day (176 Earth days). Thi...

  15. Total carbon dioxide, hydrographic, and nitrate measurements in the Southwest Pacific during Austral autumn, 1990: Results from NOAA/PMEL CGC-90 cruise

    SciTech Connect

    Lamb, M.F.; Feely, R.A.; Moore, L.

    1995-10-01

    In support of the National Oceanic and Atmospheric Administration (NOAA) Climate and Global Change (C&GC) Program, Pacific Marine Environmental Laboratory (PMEL) scientists have been measuring the growing burden of greenhouse gases in the thermocline waters of the Pacific Ocean since 1980. Collection of data at a series of hydrographic stations along longitude 170{degrees} W during austral autumn of 1990 was designed to enhance understanding of the increase in the column burden of chlorofluorocarbons and carbon dioxide in the thermocline waters since the last expedition in 1984. This document presents the procedures and methods used to obtain total carbon dioxide (TCO{sub 2}), hydrographic, and nitrate data during the NOAA/PMEL research vessel (R/V) Malcolm Baldrige CGC-90 Cruise. Data were collected along two legs; sampling for Leg 1 began along 170{degrees} W from 15{degrees} S to 60{degrees} S, then angled northwest toward New Zealand across the Western Boundary Current. Leg 2 included a reoccupation of some stations between 30{degrees} S and 15{degrees} S on 170{degrees} W and measurements from 15{degrees} S to 5{degrees} N along 170{degrees} W. The following data report summarizes the TCO{sub 2}, salinity, temperature, and nitrate measurements from 63 stations. The TCO, concentration in seawater samples was measured using a coulometric/extraction system (Models 5011 and 5030, respectively) originated by Ken Johnson. The NOAA/PMEL R/V Malcolm Baldrige CGC-90 Cruise data set is available without charge as a numeric data package (NDP) from the Carbon Dioxide Information Analysis Center. The NDP consists of two oceanographic data files, two FORTRAN 77 data retrieval routine files, a {open_quotes}readme{close_quotes} file, and this printed documentation, which describes the contents and format of all files as well as the procedures and methods used to obtain the data.

  16. EDITORIAL: Polarization Optics

    NASA Astrophysics Data System (ADS)

    Turunen, Jari; Friesem, Asher A.; Friberg, Ari T.

    2004-03-01

    This special issue on Polarization Optics contains one review article and 23 research papers, many of which are based on presentations at the International Commission for Optics Topical Meeting on Polarization Optics, held in Polvijärvi, Finland, between 30 June and 3 July 2003. While this issue should not in any sense be considered as a `proceedings' of this meeting, the possibility of submitting papers to it was widely advertised during the meeting, which was attended by a large fraction of prominent scientists in the field of polarization optics. Thus the quality of papers in this special issue is high. In announcing both the meeting and this special issue, we emphasized that the concept of `polarization optics' should be understood in a wide sense. In fact, all contributions dealing with the vectorial nature of light were welcome. As a result, the papers included here cover a wide range of different aspects of linear and nonlinear polarization optics. Both theoretical and experimental features are discussed. We are pleased to see that the conference and this special issue both reflect the wide diversity of important and novel polarization phenomena in optics. The papers in this special issue, and other recently published works, demonstrate that even though polarization is a fundamental property of electromagnetic fields, interest in it is rapidly increasing. The fundamental relations between partial coherence and partial polarization are currently under vigorous research in electromagnetic coherence theory. In diffractive optics it has been found that the exploitation of the vectorial nature of light can be of great benefit. Fabrication of sophisticated, spatially variable polarization-control elements is becoming possible with the aid of nanolithography. Polarization singularities and the interplay of bulk properties and topology in nanoscale systems have created much enthusiasm. In nonlinear optics, the second harmonic waves generated on reflection and

  17. NOAA's Big Data Partnership at the National Centers for Environmental Information

    NASA Astrophysics Data System (ADS)

    Kearns, E. J.

    2015-12-01

    In April of 2015, the U.S. Department of Commerce announced NOAA's Big Data Partnership (BDP) with Amazon Web Services, Google Cloud Platform, IBM, Microsoft Corp., and the Open Cloud Consortium through Cooperative Research and Development Agreements. Recent progress on the activities with these Partners at the National Centers for Environmental Information (NCEI) will be presented. These activities include the transfer of over 350 TB of NOAA's archived data from NCEI's tape-based archive system to BDP cloud providers; new opportunities for data mining and investigation; application of NOAA's data maturity and stewardship concepts to the BDP; and integration of both archived and near-realtime data streams into a synchronized, distributed data system. Both lessons learned and future opportunities for the environmental data community will be presented.

  18. Statistical Validation of Calibrated Wind Data Collected From NOAA's Hurricane Hunter Aircraft

    NASA Astrophysics Data System (ADS)

    Graham, K.; Sears, I. T.; Holmes, M.; Henning, R. G.; Damiano, A. B.; Parrish, J. R.; Flaherty, P. T.

    2015-12-01

    Obtaining accurate in situ meteorological measurements from the NOAA G-IV Hurricane Hunter Aircraft currently requires annual wind calibration flights. This project attempts to demonstrate whether an alternate method to wind calibration flights can be implemented using data collected from many previous hurricane, winter storm, and surveying flights. Wind derivations require using airplane attack and slip angles, airplane pitch, pressure differentials, dynamic pressures, ground speeds, true air speeds, and several other variables measured by instruments on the aircraft. Through the use of linear regression models, future wind measurements may be fit to past statistical models. This method of wind calibration could replace the need for annual wind calibration flights, decreasing NOAA expenses and providing more accurate data. This would help to ensure all data users have reliable data and ultimately contribute to NOAA's goal of building of a Weather Ready Nation.

  19. Global data on land surface parameters from NOAA AVHRR for use in numerical climate models

    SciTech Connect

    Gutman, G.G. )

    1994-05-01

    This paper reviews satellite datasets from the NOAA Advanced Very High Resolution Radiometer that could be employed in support of numerical climate modeling at regional and global scales. Presently available NOAA operational and research datasets of different resolutions as well as the NASA-NOAA Pathfinder dataset, available in the near future, are briefly described. Specific problems in deriving surface characteristics in the context of their potential use of models are discussed. Possible ways of solving these problems are briefly described, based on the state-of-the-art level of understanding in this area of research. Some examples of seasonal variability of AVHRR-derived surface parameters, such as albedo, greenness, and clear-sky midafternoon temperature, for different climatic regions are presented. Validation issues and potential operational production of such land climate parameters are discussed.

  20. Polar Warming Drivers

    NASA Astrophysics Data System (ADS)

    McDunn, T. L.; Bougher, S. W.; Mischna, M. A.; Murphy, J. R.

    2012-12-01

    Polar warming is a dynamically induced temperature enhancement over mid-to-high latitudes that results in a reversed (poleward) meridional temperature gradient. This phenomenon was recently characterized over the 40-90 km altitude region [1] based on nearly three martian years of Mars Climate Sounder observations [2, 3]. Here we investigate which forcing mechanisms affect the magnitude and distribution of the observed polar warming by conducting simulations with the Mars Weather Research and Forecasting General Circulation Model [4, 5]. We present simulations confirming the influence topography [6] and dust loading [e.g., 7] have upon polar warming. We then present simulations illustrating the modulating influence gravity wave momentum deposition exerts upon polar warming, consistent with previous modeling studies [e.g., 8]. The results of this investigation suggest the magnitude and distribution of polar warming in the martian middle atmosphere is modified by gravity wave activity and that the characteristics of the gravity waves that most significantly affect polar warming vary with season. References: [1] McDunn, et al., 2012 (JGR), [2]Kleinböhl, et al., 2009 (JGR), [3] Kleinböhl, et al., 2011 (JQSRT), [4] Richardson, et al., 2007 (JGR), [5] Mischna, et al., 2011 (Planet. Space Sci.), [6] Richardson and Wilson, 2002 (Nature), [7] Haberle, et al., 1982 (Icarus), [8] Barnes, 1990 (JGR).

  1. Polarization Imaging Apparatus

    NASA Technical Reports Server (NTRS)

    Zou, Yingyin K.; Chen, Qiushui

    2010-01-01

    A polarization imaging apparatus has shown promise as a prototype of instruments for medical imaging with contrast greater than that achievable by use of non-polarized light. The underlying principles of design and operation are derived from observations that light interacts with tissue ultrastructures that affect reflectance, scattering, absorption, and polarization of light. The apparatus utilizes high-speed electro-optical components for generating light properties and acquiring polarization images through aligned polarizers. These components include phase retarders made of OptoCeramic (registered TradeMark) material - a ceramic that has a high electro-optical coefficient. The apparatus includes a computer running a program that implements a novel algorithm for controlling the phase retarders, capturing image data, and computing the Stokes polarization images. Potential applications include imaging of superficial cancers and other skin lesions, early detection of diseased cells, and microscopic analysis of tissues. The high imaging speed of this apparatus could be beneficial for observing live cells or tissues, and could enable rapid identification of moving targets in astronomy and national defense. The apparatus could also be used as an analysis tool in material research and industrial processing.

  2. Lagrangian aerosol and ozone precursor forecasts utilizing NASA Aura OMI NO2 and NOAA GOES-GASP AOD Observations

    NASA Astrophysics Data System (ADS)

    Pierce, R. B.; Szykman, J.; Kondragunta, S.; Al-Saadi, J.; Hertherington, G.; Majewski, M.; Kittaka, C.

    2008-05-01

    Over the past decade, the remote sensing of trace gases and aerosols from space has dramatically improved. The emergence and application of these measurements adds a new dimension to air quality management and forecasting by enabling consistent observations of pollutants over large spatial domains. Current instruments aboard NASA and European Space Agency satellites can provide derived measurements of trace gases and aerosols relating directly to most of the EPA's criteria pollutants: ozone, NO2, SO2, CO, and particulate matter (PM10 and PM2.5). Al-Saadi et. al., (2005) provided one of the first demonstrations on the use of AOD as a forecast tool for PM2.5 through IDEA, Infusing satellite Data into Environmental air quality Applications, a joint project between NASA, EPA, and NOAA. We have developed a new approach for forecasting aerosol and ozone precursor levels that utilizes Reverse Domain Filling [Sutton, 1994] techniques and measurements of NO2 from the Ozone Monitoring Instrument (OMI) onboard the NASA Aura satellite and aerosol optical depth (AOD) from NOAA's operational geostationary satellite retrievals [Knapp et al., 2002 and Prados et al. 2007]. Using the LaRC trajectory model [Pierce and Fairlie, 1993], 72-hr back-trajectories are initialized on a uniform grid (0.25° x 0.25°) at the surface over the Midwestern US. Coincidences between the back-trajectories and previous OMI NO2 and GOES AOD observations are identified and used to map the satellite observations back onto the uniform grid at the forecast time. The resulting RDF mapped NO2 forecast is valid at 21Z on the next day. This talk will present a case study for May 2007 over the Western Great Lakes Region. We present a comparison of the RDF forecast to an RDF forecast based on hourly NO2 and SO2 emissions used for CAMx Air Quality Model along with a comparison to in-situ concentrations of PM2.5 and O3. Disclaimer: Although this work was reviewed by the U.S. Environmental Protection Agency

  3. Polarization properties of linearly polarized parabolic scaling Bessel beams

    NASA Astrophysics Data System (ADS)

    Guo, Mengwen; Zhao, Daomu

    2016-10-01

    The intensity profiles for the dominant polarization, cross polarization, and longitudinal components of modified parabolic scaling Bessel beams with linear polarization are investigated theoretically. The transverse intensity distributions of the three electric components are intimately connected to the topological charge. In particular, the intensity patterns of the cross polarization and longitudinal components near the apodization plane reflect the sign of the topological charge.

  4. NOAA Unique CrIS/ATMS Processing System (NUCAPS) Environmental Data Record and Validation

    NASA Astrophysics Data System (ADS)

    Liu, Q.; Nalli, N. R.; Gambacorta, A.; Iturbide, F.; Tan, C.; Zhang, K.; Wilson, M.; Reale, A.; Sun, B.; Mollner, A.

    2015-12-01

    This presentation introduces the NOAA sounding products to AGU community. The NOAA Unique CrIS/ATMS Processing System (NUCAPS) operationally generates vertical profiles of atmospheric temperature (AVTP), moisture (AVMP), carbonate products (CO, CO2, and CH4) and other trace gases as well as outgoing long-wave radiation (OLR). These products have been publicly released through NOAA CLASS from April 8, 2014 to present. This paper presents the validation of these products. For AVTP and AVMP are validated by comparing against ECMWF analysis data and dedicated radiosondes. The dedicated radiosondes achieve higher quality and reach higher altitudes than conventional radiosondes. In addition, the launch times of dedicated radiosondes specifically fit Suomi NPP overpass times within 1 hour generally. We also use ground based lidar data provided by collaborators (The Aerospace Corporation) to validate the retrieved temperature profiles above 100 hPa up to 1 hPa. Both NOAA VALAR and NPROVS validation systems are applied. The Suomi NPP FM5-Ed1A OLR from CERES prior to the end of May 2012 is available now for us to validate real-time CrIS OLR environmental data records (EDRs) for NOAA/CPC operational precipitation verification. However, the quality of CrIS sensor data records (SDRs) for this time frame on CLASS is suboptimal and many granules (more than three-quarters) are invalid. Using the current offline ADL reprocessed CrIS SDR data from NOAA/STAR AIT, which includes all CrIS SDR improvements to date, we have subsequently obtained a well-distributed OLR EDR. This paper will also discuss the validation of the CrIS infrared ozone profile.

  5. National Oceanic and Atmospheric Administration's Cetacean and Sound Mapping Effort: Continuing Forward with an Integrated Ocean Noise Strategy.

    PubMed

    Harrison, Jolie; Ferguson, Megan; Gedamke, Jason; Hatch, Leila; Southall, Brandon; Van Parijs, Sofie

    2016-01-01

    To help manage chronic and cumulative impacts of human activities on marine mammals, the National Oceanic and Atmospheric Administration (NOAA) convened two working groups, the Underwater Sound Field Mapping Working Group (SoundMap) and the Cetacean Density and Distribution Mapping Working Group (CetMap), with overarching effort of both groups referred to as CetSound, which (1) mapped the predicted contribution of human sound sources to ocean noise and (2) provided region/time/species-specific cetacean density and distribution maps. Mapping products were presented at a symposium where future priorities were identified, including institutionalization/integration of the CetSound effort within NOAA-wide goals and programs, creation of forums and mechanisms for external input and funding, and expanded outreach/education. NOAA is subsequently developing an ocean noise strategy to articulate noise conservation goals and further identify science and management actions needed to support them.

  6. Rectilinear lattices of polarization vortices with various spatial polarization distributions.

    PubMed

    Fu, Shiyao; Zhang, Shikun; Wang, Tonglu; Gao, Chunqing

    2016-08-01

    In this paper, we propose a type of rectilinear lattices of polarization vortices, each spot in which has mutually independent, and controllable spatial polarization distributions. The lattices are generated by two holograms under special design. In the experiment, the holograms are encoded on two spatial light modulators, and the results fit very well with theory. Our scheme makes it possible to generate multiple polarization vortices with various polarization distributions simultaneously, for instance, radially and azimuthally polarized beams, and can be used in the domains as polarization-based data transmission system, optical manufacture, polarization detection and so on. PMID:27505812

  7. Status of the NOAA/CU trans-Pacific profiler network

    NASA Astrophysics Data System (ADS)

    Gage, K. S.; Ecklund, W. L.; Carter, D. A.; McAfee, J. R.; Balsley, B. B.; Riddle, A. C.; Johnston, P. E.; Avery, S. K.; Cole, H.; Woodman, R. F.

    1993-08-01

    The NOAA/CU Network of VHF wind profilers was an outgrowth of MST/ST radar research in NOAA's Aeronomy Laboratory, most notably the Poker Flat MST radar. After the completion of the Poker Flat Project in Alaska elements of the Poker flat system were used at several locations including Pohnpei, Federated States of Micronesia and Piura, Peru to begin construction of a tropical ST radar network. Construction of the network began in 1988 with the support of the U.S. National Science Foundation. The network was designed to provide unique observations of equatorial waves over the pacific ocean as well as observations of convective systems in the tropics.

  8. Dependence of NOAA-AVHRR recorded radiance on scan angle, atmospheric turbidity and unresolved cloud

    NASA Technical Reports Server (NTRS)

    Piwinski, D. J.; Schoch, L. B.; Duggin, M. J.; Whitehead, V.; Ryland, E.

    1984-01-01

    Experimental evidence on the scan angle and sun angle dependence of radiance recorded by the Advanced Very High Resolution Radiometer (AVHRR) devices on the NOAA-6 and NOAA-7 satellites is presented. The effects of atmospheric turbidity at various scan angles is shown, and simulations of angular anisotropy and recorded radiance are compared with the recorded digital data from the AVHRR obtained over the Great Plains area of the US. Evidence is presented on the effects of unresolved cloud on the recorded radiance and vegetative indices from uniform, vegetative targets.

  9. Use of NOAA-N satellites for land/water discrimination and flood monitoring

    NASA Technical Reports Server (NTRS)

    Tappan, G.; Horvath, N. C.; Doraiswamy, P. C.; Engman, T.; Goss, D. W. (Principal Investigator)

    1983-01-01

    A tool for monitoring the extent of major floods was developed using data collected by the NOAA-6 advanced very high resolution radiometer (AVHRR). A basic understanding of the spectral returns in AVHRR channels 1 and 2 for water, soil, and vegetation was reached using a large number of NOAA-6 scenes from different seasons and geographic locations. A look-up table classifier was developed based on analysis of the reflective channel relationships for each surface feature. The classifier automatically separated land from water and produced classification maps which were registered for a number of acquisitions, including coverage of a major flood on the Parana River of Argentina.

  10. Polarized nuclear target based on parahydrogen induced polarization

    NASA Astrophysics Data System (ADS)

    Budker, D.; Ledbetter, M. P.; Appelt, S.; Bouchard, L. S.; Wojtsekhowski, B.

    2012-12-01

    We discuss a novel concept of a polarized nuclear target for accelerator fixed-target scattering experiments, which is based on parahydrogen induced polarization (PHIP). One may be able to reach a 33% free-proton polarization in the ethane molecule. The potential advantages of such a target include operation at zero magnetic field, fast (˜100 Hz) polarization oscillation (akin to polarization reversal), and operation with large intensity of an electron beam.

  11. Polarized nuclear target based on parahydrogen induced polarization

    SciTech Connect

    D. Budker, M.P. Ledbetter, S. Appelt, L.S. Bouchard, B. Wojtsekhowski

    2012-12-01

    We discuss a novel concept of a polarized nuclear target for accelerator fixed-target scattering experiments, which is based on parahydrogen induced polarization (PHIP). One may be able to reach a 33% free-proton polarization in the ethane molecule. The potential advantages of such a target include operation at zero magnetic field, fast ({approx}100 HZ) polarization oscillation (akin to polarization reversal), and operation with large intensity of an electron beam.

  12. Polar low dynamics

    SciTech Connect

    Montgomery, M.T.; Farrell, B.F. )

    1992-12-15

    Polar lows are intense subsynoptic-scale cyclones that form over high-latitude oceans in association with deep cumulus convection and strong ambient baroclinicity. Recent observations indicate that polar lows are generally initiated by a nonaxisymmetric interaction between a surface disturbance and an upper-level mobile trough. Extant theories of polar low formation preclude study of such a process since they either constrain their models to be axisymmetric, or do not explicitly account for his transient interaction. In this work the physics of interacting upper- and lower-level potential vorticity structures is studied as an initial-value problem using a three-dimensional nonlinear geostrophic momentum model that incorporates moist processes and includes strong baroclinic dynamics. Model results illustrate the rapid formation of an intense small-scale cyclone whose structure is consistent with observations of mature polar lows. A conceptual model of polar low development is proposed. In the first stage of development, called induced self-development, a mobile upper trough initiates a rapid low-level spinup due to the enhanced omega response in a conditionally neutral baroclinic atmosphere. A secondary development follows, called diabatic destabilization, that is associated with the production of low-level potential vorticity by diabatic processes. Diabatic destabilization represents a simple mechanism for maintaining the intensity of polar lows until they reach land. In exceptional instances of negligible upper-level forcing, the latter may also describe the gradual intensification of small-scale cyclones in regions of sustained neutrality and surface baroclinicity. Ideas regarding polar low equilibration and prospects for a unified theory of arctic and midlatitude cyclones are discussed. 75 refs., 4 figs., 1 tab.

  13. PAST AND PRESENT: 50 YEARS OF AIR QUALITY MODELING RESEARCH AND ITS APPLICATIONS BY THE NOAA ATMOSPHERIC SCIENCES MODELING DIVISION

    EPA Science Inventory

    The NOAA Atmospheric Sciences Modeling Division (ASMD) celebrated its Golden Jubilee in September 2005. The partnership between NOAA and EPA began when the Air Pollution Unit of the Public Health Service, which later became part of the EPA, requested the Weather Bureau provide ...

  14. Feasibility studies for the follow-on EUMETSAT polar system

    NASA Astrophysics Data System (ADS)

    Banfi, S.; Schlüssel, P.; Diebel, D.; Clarke, P.; Betto, M.; Lin, Chung-Chi; Kangas, V.; Kraft, S.; Bensi, P.; Zerfowski, I.; Saccoccio, M.; Maciaszek, T.

    2010-10-01

    replace the current satellite system in the 2020 timeframe and contribute to the Joint Polar System to be set up with NOAA. Through consultation with users and application experts, requirements have been defined for a range of candidate missions mainly in support of operational meteorology and climate monitoring. A number of on-board instruments, satellite platforms and ground support infrastructure are under study in coordination with ESA, NOAA, DLR and CNES. The satellites will fly in a sun synchronous, low earth orbit at 817 km altitude and 09:30 descending equatorial crossing time, providing observations with global coverage every 12 to 24 hours depending on instrument. The instruments exploit a range of techniques including multi spectral imaging, atmospheric sounding in the optical and microwave spectral domains, radio occultation sounding, scatterometry and microwave imaging. The raw instrument data will be broadcast directly by the satellites, as well as being stored on board for their transmission, in sets spanning up to a full orbit, to polar ground stations. These data will be collected at EUMETSAT facilities and processed to obtain calibrated and geo-located measurements, and records of well defined geophysical variables. The data will be distributed to the users in near real time and archived together with the data of other EUMETSAT satellite systems, making available long term records also suitable for climate monitoring. Feasibility studies for the space and ground systems will be done until early 2012 with the main objective to select the baseline configuration for preliminary definition, development and operation programmes to be proposed and coordinated within the involved organisations.

  15. Sequential Polarity-Reversing Circuit

    NASA Technical Reports Server (NTRS)

    Labaw, Clayton C.

    1994-01-01

    Proposed circuit reverses polarity of electric power supplied to bidirectional dc motor, reversible electro-mechanical actuator, or other device operating in direction depending on polarity. Circuit reverses polarity each time power turned on, without need for additional polarity-reversing or direction signals and circuitry to process them.

  16. Polar low monitoring

    NASA Astrophysics Data System (ADS)

    Bobylev, Leonid; Zabolotskikh, Elizaveta; Mitnik, Leonid

    2010-05-01

    Polar lows are intense mesoscale atmospheric low pressure weather systems, developing poleward of the main baroclinic zone and associated with high surface wind speeds. Small size and short lifetime, sparse in-situ observations in the regions of their development complicate polar low study. Our knowledge of polar lows and mesocyclones has come almost entirely during the period of satellite remote sensing since, by virtue of their small horizontal scale, it was rarely possible to analyse these lows on conventional weather charts using only the data from the synoptic observing network. However, the effects of intense polar lows have been felt by coastal communities and seafarers since the earliest times. These weather systems are thought to be responsible for the loss of many small vessels over the centuries, although the nature of the storms was not understood and their arrival could not be predicted. The actuality of the polar low research is stipulated by their high destructive power: they are a threat to such businesses as oil and gas exploration, fisheries and shipping. They could worsen because of global warming: a shrinking of sea ice around the North Pole, which thawed to its record minimum in the summer of 2007, is likely to give rise to more powerful storms that form only over open water and can cause hurricane-strength winds. Therefore, study of polar lows, their timely detection, tracking and forecasting represents a challenge for today meteorology. Satellite passive microwave data, starting from Special Sensor Microwave Imager (SSM/I) onboard Defense Meteorological Satellite Program (DMSP) satellite, remain invaluable source of regularly available remotely sensed data to study polar lows. The sounding in this spectral range has several advantages in comparison with observations in visible and infrared ranges and Synthetic Aperture Radar (SAR) data: independence on day time and clouds, regularity and high temporal resolution in Polar Regions. Satellite

  17. Polarization twist in perovskite ferrielectrics

    PubMed Central

    Kitanaka, Yuuki; Hirano, Kiyotaka; Ogino, Motohiro; Noguchi, Yuji; Miyayama, Masaru; Moriyoshi, Chikako; Kuroiwa, Yoshihiro

    2016-01-01

    Because the functions of polar materials are governed primarily by their polarization response to external stimuli, the majority of studies have focused on controlling polar lattice distortions. In some perovskite oxides, polar distortions coexist with nonpolar tilts and rotations of oxygen octahedra. The interplay between nonpolar and polar instabilities appears to play a crucial role, raising the question of how to design materials by exploiting their coupling. Here, we introduce the concept of ‘polarization twist’, which offers enhanced control over piezoelectric responses in polar materials. Our experimental and theoretical studies provide direct evidence that a ferrielectric perovskite exhibits a large piezoelectric response because of extended polar distortion, accompanied by nonpolar octahedral rotations, as if twisted polarization relaxes under electric fields. The concept underlying the polarization twist opens new possibilities for developing alternative materials in bulk and thin-film forms. PMID:27586824

  18. Polarization twist in perovskite ferrielectrics.

    PubMed

    Kitanaka, Yuuki; Hirano, Kiyotaka; Ogino, Motohiro; Noguchi, Yuji; Miyayama, Masaru; Moriyoshi, Chikako; Kuroiwa, Yoshihiro

    2016-09-02

    Because the functions of polar materials are governed primarily by their polarization response to external stimuli, the majority of studies have focused on controlling polar lattice distortions. In some perovskite oxides, polar distortions coexist with nonpolar tilts and rotations of oxygen octahedra. The interplay between nonpolar and polar instabilities appears to play a crucial role, raising the question of how to design materials by exploiting their coupling. Here, we introduce the concept of 'polarization twist', which offers enhanced control over piezoelectric responses in polar materials. Our experimental and theoretical studies provide direct evidence that a ferrielectric perovskite exhibits a large piezoelectric response because of extended polar distortion, accompanied by nonpolar octahedral rotations, as if twisted polarization relaxes under electric fields. The concept underlying the polarization twist opens new possibilities for developing alternative materials in bulk and thin-film forms.

  19. Polarization twist in perovskite ferrielectrics.

    PubMed

    Kitanaka, Yuuki; Hirano, Kiyotaka; Ogino, Motohiro; Noguchi, Yuji; Miyayama, Masaru; Moriyoshi, Chikako; Kuroiwa, Yoshihiro

    2016-01-01

    Because the functions of polar materials are governed primarily by their polarization response to external stimuli, the majority of studies have focused on controlling polar lattice distortions. In some perovskite oxides, polar distortions coexist with nonpolar tilts and rotations of oxygen octahedra. The interplay between nonpolar and polar instabilities appears to play a crucial role, raising the question of how to design materials by exploiting their coupling. Here, we introduce the concept of 'polarization twist', which offers enhanced control over piezoelectric responses in polar materials. Our experimental and theoretical studies provide direct evidence that a ferrielectric perovskite exhibits a large piezoelectric response because of extended polar distortion, accompanied by nonpolar octahedral rotations, as if twisted polarization relaxes under electric fields. The concept underlying the polarization twist opens new possibilities for developing alternative materials in bulk and thin-film forms. PMID:27586824

  20. A Compact Polarization Imager

    NASA Technical Reports Server (NTRS)

    Thompson, Karl E.; Rust, David M.; Chen, Hua

    1995-01-01

    A new type of image detector has been designed to analyze the polarization of light simultaneously at all picture elements (pixels) in a scene. The Integrated Dual Imaging Detector (IDID) consists of a polarizing beamsplitter bonded to a custom-designed charge-coupled device with signal-analysis circuitry, all integrated on a silicon chip. The IDID should simplify the design and operation of imaging polarimeters and spectroscopic imagers used, for example, in atmospheric and solar research. Other applications include environmental monitoring and robot vision. Innovations in the IDID include two interleaved 512 x 1024 pixel imaging arrays (one for each polarization plane), large dynamic range (well depth of 10(exp 6) electrons per pixel), simultaneous readout and display of both images at 10(exp 6) pixels per second, and on-chip analog signal processing to produce polarization maps in real time. When used with a lithium niobate Fabry-Perot etalon or other color filter that can encode spectral information as polarization, the IDID can reveal tiny differences between simultaneous images at two wavelengths.

  1. POLARBEAR CMB Polarization Experiment

    NASA Astrophysics Data System (ADS)

    Nishino, H.; Ade, P.; Akiba, Y.; Anthony, A.; Arnold, K.; Barron, D.; Boettger, D.; Borrill, J.; Chapmann, S.; Chinone, Y.; Dobbs, M. A.; Errard, J.; Fabbian, G.; Feng, C.; Flanigan, D.; Fuller, G.; Ghribi, A.; Grainger, W.; Halverson, N.; Hasegawa, M.; Hattori, K.; Hazumi, M.; Holzapfel, W. L.; Howard, J.; Hyland, P.; Inoue, Y.; Jaffe, A.; Jaehnig, G.; Kaneko, Y.; Katayama, N.; Keating, B.; Kermish, Z.; Kimura, N.; Kisner, T.; Lee, A. T.; Le Jeune, M.; Linder, E.; Lungu, M.; Matsuda, F.; Matsumura, T.; Miller, N. J.; Morii, H.; Moyerman, S.; Myers, M. J.; O'Brient, R.; Okamura, T.; Paar, H.; Peloton, J.; Quealy, E.; Reichardt, C. L.; Richards, P. L.; Ross, C.; Shimizu, A.; Shimon, M.; Shimmin, C.; Sholl, M.; Siritanasak, P.; Spieler, H.; Stebor, N.; Steinbach, B.; Stompor, R.; Suzuki, A.; Suzuki, J.; Tanaka, K.; Tomaru, T.; Tucker, C.; Yadav, A.; Zahn, O.

    POLARBEAR is a ground-based experiment in the Atacama desert in hile, measuring the polarization of the Cosmic Microwave Background (CMB) radiation. One of the science goals of POLARBEAR is to detect the B-mode polarization pattern of the CMB produced by primordial gravitational waves from the epoch of inflation. The detection of the B-mode polarization provides strong evidence for inflationary cosmological models. POLARBEAR is expected to reach a sensitivity to the tensor-to-scalar ratio r = 0.025 at 95% confidence level, using the data from two years of observation. With a beam size of 3.5 arcminutes, POLARBEAR is also sensitive to B-mode polarization signals at small-angular scales produced by weak gravitational lensing of large-scale structure. POLARBEAR is expected to provide a constraint on the sum of neutrino masses because of their effect on the large-scale structure. POLARBEAR was deployed in late 2011 and started observing in early 2012 at 150 GHz with an array of 1,274 polarization sensitive antenna-coupled Transition Edge Sensor (TES) bolometers. The current status of the POLARBEAR experiment is reported.

  2. Polarized protons at RHIC

    SciTech Connect

    Makdisi, Y.

    1992-10-01

    The approval for construction of the Relativistic Heavy Ion Collider (RHIC) provides a potential opportunity to collide polarized proton beams at energies up to 500 GeV in the center of mass and high luminosities approaching 2 {times} 10{sup 32}/cm{sup 2}/sec. This capability is enhanced by the fact that the AGS has already accelerated polarized protons and relies on the newly completed Accumulator/Booster for providing the required polarized proton intensity and a system of spin rotators (Siberian snakes) to retain the polarization. The RHIC Spin Collaboration was formed and submitted a Letter of Intent to construct this polarized collider capability and utilize its physics opportunities. In this presentation, I will discuss the plans to upgrade the AGS, the proposed layout of the RHIC siberian snakes, and timetables. The physics focus is the measurement of the spin dependent parton distributions with such accessible probes including high p(t) jets, direct photons, and Drell Yan. The attainable sensitivities and the progress that has been reached in defining the detector requirements will be outlined.

  3. Polarized protons at RHIC

    SciTech Connect

    Makdisi, Y.

    1992-01-01

    The approval for construction of the Relativistic Heavy Ion Collider (RHIC) provides a potential opportunity to collide polarized proton beams at energies up to 500 GeV in the center of mass and high luminosities approaching 2 {times} 10{sup 32}/cm{sup 2}/sec. This capability is enhanced by the fact that the AGS has already accelerated polarized protons and relies on the newly completed Accumulator/Booster for providing the required polarized proton intensity and a system of spin rotators (Siberian snakes) to retain the polarization. The RHIC Spin Collaboration was formed and submitted a Letter of Intent to construct this polarized collider capability and utilize its physics opportunities. In this presentation, I will discuss the plans to upgrade the AGS, the proposed layout of the RHIC siberian snakes, and timetables. The physics focus is the measurement of the spin dependent parton distributions with such accessible probes including high p(t) jets, direct photons, and Drell Yan. The attainable sensitivities and the progress that has been reached in defining the detector requirements will be outlined.

  4. Artificial polarization components

    NASA Astrophysics Data System (ADS)

    Cescato, L.; Gluch, Ekkehard; Stork, Wilhelm; Streibl, Norbert

    1990-07-01

    High frequency surface relief structures are optically anisotropic and show interesting polarisation properties 1 . These properties can be used to produce polarizations components such as wave plates polarizers. polarizing beamsplitters etc. Our experimental results show that even gratings with relatively low spatial frequency ( periods A ) exhibit a strong phase retardation and can be used as quarter-wave plates. k INTRODUC11ON The artificial birefringence exhibited by ultrahigh frequency gratings of dielectric materials can be used to produce various polarization components2 . Such components have applications in integrated optics as well as in free space optics. In order to produce the high spatial frequencies complex processes such as electron-beam lithography and reactive ion etching are needed. We show in this paper that sinusoidal holographic gratings in photoresist exhibit also a strong phase ret even at relatively long periods. L EXPERIMENTAL MEASUREMENTS To obtain the phase retardation of a lower frequency ( period A ) grating a simple setup as used by Enger and 2 can be applied. In our case however there are three measurements necessary to obtain the phase retardation because transmission of the two perpendicularly polarized beams is different from each other. I GRATING PRODUCTION grating 2 3 4 5 6 7 8 9 period (pmj 0. 74 0. 74 0. 61 0. 54 0. 46 0. 32 0. 54 0. 54 0. 54 ne (sec) 60

  5. Polarization analysis of optical systems

    NASA Technical Reports Server (NTRS)

    Chipman, Russell A.

    1989-01-01

    For most optical systems it is typically assumed that the transmitted wavefront has uniform (or Gaussian) amplitude and constant polarization state. This is the default assumption of geometrical optics. This paper considers methods suitable for analyzing systems for which this assumption is not valid. Such methods of polarization analysis include polarization ray tracing and polarization aberration theory. Definitions of the basic classes of polarization phenomena and a review of the Jones calculus are included to form a basis for the discussion.

  6. Integration and Visualization of Multiple Sensors in Generating the NOAA Operational Snow and Ice Cover Products

    NASA Astrophysics Data System (ADS)

    Li, M.; Helfrich, S.

    2011-12-01

    Global snow and ice cover is a key component in the climate and hydrologic system as well as daily weather forecasting. The National Oceanic and Atmospheric Administration (NOAA) has produced a daily northern hemisphere snow and ice cover chart since 1997 through the Interactive Multisensor Snow and Ice Mapping System (IMS). The IMS integrates and visualizes a wide variety of satellite data, as well as derived snow/ice products and surface observations, to provide meteorologists with the ability to interactively prepare the daily northern hemisphere snow and ice cover chart. These products are presently used as operational inputs into several weather prediction models and are applied in climate monitoring. The IMS is currently on its second version (released in 2004) and scheduled to be upgraded to the third version (V3) in 2013. The IMS V3 will have nearly 40 external inputs as data sources processed by the IMS, which fall into five data formats: binary image, HDF file, GeoTIFF image, Shapefile image and ASCII file. With the exception of the GeoTIFF and Shapefile files, which are used directly by IMS, all other types of data are pre-processed to ENVI image file format and "sectorized" for different areas around the northern hemisphere. The IMS V3 will generate daily snow and ice cover maps in five formats: ASCII, ENVI, GeoTIFF, GIF and GRIB2 and three resolutions: 24km, 4km and 1km. In this presentation, the methods are discussed for accessing and processing satellite data, model results and surface reports. All input data with varying formats and resolutions are processed to a fixed projection. The visualization methodology for IMS are provided for five different resolutions of 48km, 24km, 8km, 4km, 2km and 1km. This work will facilitate the future enhancement of IMS, provide users with an understanding of the software architecture, provide a prospectus on future data sources, and help to preserve the integrity of the long-standing satellite-derived snow and ice

  7. Magnetospheric polar cap

    NASA Astrophysics Data System (ADS)

    Akasofu, S. I.; Kan, J. R.

    Mount Denali (McKinley), the Alaska Range, and countless glaciers welcomed all 86 participants of the Chapman Conference on the Magnetospheric Polar Cap, which was held on the University of Alaska, Fairbanks campus (UAF), on August 6-9, 1984. The magnetospheric polar cap is the highest latitude region of the earth which is surrounded by the ring of auroras (the auroral oval). This particular region of the earth has become a focus of magnetospheric physicists during the last several years. This is because a number of upper atmospheric phenomena in the polar cap are found to be crucial in understanding the solar wind—magnetosphere interaction. The conference was opened by J. G. Roederer, who was followed by the UAF Chancellor, P. J. O'Rourke, who officially welcomed the participants.

  8. A lunar polar expedition

    NASA Technical Reports Server (NTRS)

    Dowling, Richard; Staehle, Robert L.; Svitek, Tomas

    1992-01-01

    Advanced exploration and development in harsh environments require mastery of basic human survival skill. Expeditions into the lethal climates of Earth's polar regions offer useful lessons for tommorrow's lunar pioneers. In Arctic and Antarctic exploration, 'wintering over' was a crucial milestone. The ability to establish a supply base and survive months of polar cold and darkness made extensive travel and exploration possible. Because of the possibility of near-constant solar illumination, the lunar polar regions, unlike Earth's may offer the most hospitable site for habitation. The World Space Foundation is examining a scenario for establishing a five-person expeditionary team on the lunar north pole for one year. This paper is a status report on a point design addressing site selection, transportation, power, and life support requirements.

  9. Polarized electron sources

    SciTech Connect

    Clendenin, J.E.

    1995-05-01

    Polarized electron sources for high energy accelerators took a significant step forward with the introduction of a new laser-driven photocathode source for the SLC in 1992. With an electron beam polarization of >80% and with {approximately}99% uptime during continuous operation, this source is a key factor in the success of the current SLC high-energy physics program. The SLC source performance is used to illustrate both the capabilities and the limitations of solid-state sources. The beam requirements for future colliders are similar to that of the SLC with the addition in most cases of multiple-bunch operation. A design for the next generation accelerator source that can improve the operational characteristics and at least minimize some of the inherent limitations of present sources is presented. Finally, the possibilities for producing highly polarized electron beams for high-duty-factor accelerators are discussed.

  10. South Polar Scarps

    NASA Technical Reports Server (NTRS)

    2003-01-01

    MGS MOC Release No. MOC2-438, 31 July 2003

    The terrain of the south polar residual ice cap, made up mostly of frozen carbon dioxide, has come to be known by many as 'swiss cheese terrain,' because many areas of the cap resemble slices of swiss cheese. However, not all of the south polar cap looks like a tasty lunch food. This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows a series of curving scarps formed by erosion and sublimation of carbon dioxide from the south polar cap. This area is located near 86.3oS, 51.2oW. The image is illuminated by sunlight from the upper left; the area is about 1.5 km (0.9 mi) wide.

  11. North Polar Cap

    NASA Technical Reports Server (NTRS)

    2004-01-01

    7 September 2004 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows a 1.4 m/pixel (5 ft/pixel) view of a typical martian north polar ice cap texture. The surface is pitted and rough at the scale of several meters. The north polar residual cap of Mars consists mainly of water ice, while the south polar residual cap is mostly carbon dioxide. This picture is located near 85.2oN, 283.2oW. The image covers an area approximately 1 km wide by 1.4 km high (0.62 by 0.87 miles). Sunlight illuminates this scene from the lower left.

  12. North Polar Layers

    NASA Technical Reports Server (NTRS)

    2004-01-01

    3 December 2004 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows an exposure of finely-detailed layers in the martian north polar region. The polar ice cap, which is made up of frozen water (whereas the south polar cap is mostly frozen carbon dioxide), is underlain by a thick sequence of layers. Some have speculated that these layers may record the history of changes in martian climate during the past few hundreds of millions of years. This picture is located near 86.0oN, 30.2oW, and covers an area approximately 3 km (1.9 mi) across. Sunlight illuminates the scene from the lower left.

  13. Diurnal polar motion

    NASA Technical Reports Server (NTRS)

    Mcclure, P.

    1973-01-01

    An analytical theory is developed to describe diurnal polar motion in the earth which arises as a forced response due to lunisolar torques and tidal deformation. Doodson's expansion of the tide generating potential is used to represent the lunisolar torques. Both the magnitudes and the rates of change of perturbations in the earth's inertia tensor are included in the dynamical equations for the polar motion so as to account for rotational and tidal deformation. It is found that in a deformable earth with Love's number k = 0.29, the angular momentum vector departs by as much as 20 cm from the rotation axis rather than remaining within 1 or 2 cm as it would in a rigid earth. This 20 cm separation is significant in the interpretation of submeter polar motion observations because it necessitates an additional coordinate transformation in order to remove what would otherwise be a 20 cm error source in the conversion between inertial and terrestrial reference systems.

  14. POLARIZED NEUTRONS IN RHIC

    SciTech Connect

    COURANT,E.D.

    1998-04-27

    There does not appear to be any obvious way to accelerate neutrons, polarized or otherwise, to high energies by themselves. To investigate the behavior of polarized neutrons the authors therefore have to obtain them by accelerating them as components of heavier nuclei, and then sorting out the contribution of the neutrons in the analysis of the reactions produced by the heavy ion beams. The best neutron carriers for this purpose are probably {sup 3}He nuclei and deuterons. A polarized deuteron is primarily a combination of a proton and a neutron with their spins pointing in the same direction; in the {sup 3}He nucleus the spins of the two protons are opposite and the net spin (and magnetic moment) is almost the same as that of a free neutron. Polarized ions other than protons may be accelerated, stored and collided in a ring such as RHIC provided the techniques proposed for polarized proton operation can be adapted (or replaced by other strategies) for these ions. To accelerate polarized particles in a ring, one must make provisions for overcoming the depolarizing resonances that occur at certain energies. These resonances arise when the spin tune (ratio of spin precession frequency to orbit frequency) resonates with a component present in the horizontal field. The horizontal field oscillates with the vertical motion of the particles (due to vertical focusing); its frequency spectrum is dominated by the vertical oscillation frequency and its modulation by the periodic structure of the accelerator ring. In addition, the magnet imperfections that distort the closed orbit vertically contain all integral Fourier harmonics of the orbit frequency.

  15. NOAA Data Rescue of Key Solar Databases and Digitization of Historical Solar Images

    NASA Astrophysics Data System (ADS)

    Coffey, H. E.

    2006-08-01

    Over a number of years, the staff at NOAA National Geophysical Data Center (NGDC) has worked to rescue key solar databases by converting them to digital format and making them available via the World Wide Web. NOAA has had several data rescue programs where staff compete for funds to rescue important and critical historical data that are languishing in archives and at risk of being lost due to deteriorating condition, loss of any metadata or descriptive text that describe the databases, lack of interest or funding in maintaining databases, etc. The Solar-Terrestrial Physics Division at NGDC was able to obtain funds to key in some critical historical tabular databases. Recently the NOAA Climate Database Modernization Program (CDMP) funded a project to digitize historical solar images, producing a large online database of historical daily full disk solar images. The images include the wavelengths Calcium K, Hydrogen Alpha, and white light photos, as well as sunspot drawings and the comprehensive drawings of a multitude of solar phenomena on one daily map (Fraunhofer maps and Wendelstein drawings). Included in the digitization are high resolution solar H-alpha images taken at the Boulder Solar Observatory 1967-1984. The scanned daily images document many phases of solar activity, from decadal variation to rotational variation to daily changes. Smaller versions are available online. Larger versions are available by request. See http://www.ngdc.noaa.gov/stp/SOLAR/ftpsolarimages.html. The tabular listings and solar imagery will be discussed.

  16. 78 FR 45604 - Funding Opportunity Title: Notice of Allocation Availability (NOAA) Inviting Applications for the...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-29

    ... from CY 2012 round: 1. Allocation Amounts: As described in Section IIA, the CDFI Fund anticipates that... Revenue Service (26 CFR 1.45D-1, published on December 28, 2004), as amended and related guidance, notices... claimed, as permitted under IRC Sec. 45D(f)(1)(D). Pursuant to this NOAA, the CDFI Fund anticipates...

  17. NOAA's National Geodetic Survey Utilization of Aerial Sensors for Emergency Response Efforts

    NASA Technical Reports Server (NTRS)

    White, Stephen

    2007-01-01

    Remote Sensing Division has a Coastal Mapping program and a Airport Survey program and research and development that support both programs. NOAA/NGS/RSD plans to acquire remotely sensed data to support the agency's homeland security and emergency response requirements.

  18. NOAA's Satellite Climate Data Records: The Research to Operations Process and Current State

    NASA Astrophysics Data System (ADS)

    Privette, J. L.; Bates, J. J.; Kearns, E. J.; NOAA's Climate Data Record Program

    2011-12-01

    In support of NOAA's mandate to provide climate products and services to the Nation, the National Climatic Data Center initiated the satellite Climate Data Record (CDR) Program. The Program develops and sustains climate information products derived from satellite data that NOAA has collected over the past 30+ years. These are the longest sets of continuous global measurements in existence. Data from other satellite programs, including those in NASA, the Department of Defense, and foreign space agencies, are also used. NOAA is now applying advanced analysis techniques to these historic data. This process is unraveling underlying climate trend and variability information and returning new value from the data. However, the transition of complex data processing chains, voluminous data products and documentation into an systematic, configuration controlled context involves many challenges. In this presentation, we focus on the Program's process for research-to-operations transition and the evolving systems designed to ensure transparency, security, economy and authoritative value. The Program has adopted a two-phase process defined by an Initial Operational Capability (IOC) and a Full Operational Capability (FOC). The principles and procedures for IOC are described, as well as the process for moving CDRs from IOC to FOC. Finally, we will describe the state of the CDRs in all phases the Program, with an emphasis on the seven community-developed CDRs transitioned to NOAA in 2011. Details on CDR access and distribution will be provided.

  19. 78 FR 55064 - Solicitation for Members of the NOAA Science Advisory Board (SAB) Gulf Coast Ecosystem...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-09

    ... (SAB) Gulf Coast Ecosystem Restoration Science Program Advisory Working Group (RSPAWG) AGENCY: National... Ecosystem Restoration Science Program Advisory Working Group (RSPAWG). The RSPAWG is being formed to provide... Restoration Science, Observation, Monitoring and Technology Program, commonly known as the NOAA RESTORE...

  20. Observations of Solar Spectral Irradiance Change During Cycle 22 from NOAA-9 SBUV/2

    NASA Technical Reports Server (NTRS)

    DeLand, Matthew T.; Cebula, Richard P.; Hilsenrath, Ernest

    2003-01-01

    The NOM-9 Solar Backscatter Ultraviolet, model 2 (SBUV/2) instrument is one of a series of instruments providing daily solar spectral irradiance measurements in the middle and near ultraviolet since 1978. The SBUV/2 instruments are primarily designed to measure stratospheric profile and total column ozone, using the directional albedo as the input to the ozone processing algorithm. As a result, the SBUV/2 instrument does not have onboard monitoring of all time-dependent response changes. We have applied internal comparisons and vicarious (external) comparisons to determine the long-term instrument characterization for NOAA-9 SBUV/2 to derive accurate solar spectral irradiances from March 1985 to May 1997 spanning two solar cycle minima with a single instrument. The NOAA-9 data show an amplitude of 9.3(+/- 2.3)% (81-day averaged) at 200-205 nm for solar cycle 22. This is consistent with the result of (Delta)F(sub 200-205) = 8.3(+/- 2.6)% for cycle 21 from Nimbus-7 SBUV and (Delta)F(sub 200-205) = 10(+/- 2)% (daily values) for cycle 23 from UARS SUSIM. NOAA-9 data at 245-250 nm show a solar cycle amplitude of (Delta)F(sub 245-250) = 5.7(+/- 1.8)%. NOAA-9 SBUV/2 data can be combined with other instruments to create a 25-year record of solar UV irradiance.

  1. 78 FR 37795 - Draft NOAA Procedures for Government to Government Consultation With Federally Recognized Indian...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-24

    ... Governments'' (65 FR 67249, November 9, 2000) and Presidential Memorandum of November 5, 2009 ``Tribal Consultation'' (74 FR 57881, November 9, 2009). Dated: June 14, 2013. Eric C. Schwaab, Acting Assistant... With Federally Recognized Indian Tribes. This Draft Handbook is intended to assist NOAA staff...

  2. 75 FR 60085 - NOAA Proposed Policy on Prohibited and Authorized Uses of the Asset Forfeiture Fund

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-29

    ..., expert witness fees, case support contracts, or required forensic or evidence handling supplies..., NOAA will examine the use of fines and penalties collected for violations of the Northeast Multispecies... respect to that fish or other property; (B) a reward of not less than 20 percent of the penalty...

  3. Femtosecond polarization pulse shaping.

    PubMed

    Brixner, T; Gerber, G

    2001-04-15

    We report computer-controlled femtosecond polarization pulse shaping where intensity, momentary frequency, and light polarization are varied as functions of time. For the first time to our knowledge, a pulse shaper is used to modulate the degree of ellipticity as well as the orientation of the elliptical principal axes within a single laser pulse by use of a 256-pixel two-layer liquid-crystal display inside a zero-dispersion compressor. Interferometric stability of the setup is not required. Complete pulse characterization is achieved by dual-channel spectral interferometry. This technology has a large range of applications, especially in the field of quantum control.

  4. Microwave Frequency Polarizers

    NASA Technical Reports Server (NTRS)

    Ha, Vien The; Mirel, Paul; Kogut, Alan J.

    2013-01-01

    This article describes the fabrication and analysis of microwave frequency polarizing grids. The grids are designed to measure polarization from the cosmic microwave background. It is effective in the range of 500 to 1500 micron wavelength. It is cryogenic compatible and highly robust to high load impacts. Each grid is fabricated using an array of different assembly processes which vary in the types of tension mechanisms to the shape and size of the grids. We provide a comprehensive study on the analysis of the grids' wire heights, diameters, and spacing.

  5. Polarization encoded color camera.

    PubMed

    Schonbrun, Ethan; Möller, Guðfríður; Di Caprio, Giuseppe

    2014-03-15

    Digital cameras would be colorblind if they did not have pixelated color filters integrated into their image sensors. Integration of conventional fixed filters, however, comes at the expense of an inability to modify the camera's spectral properties. Instead, we demonstrate a micropolarizer-based camera that can reconfigure its spectral response. Color is encoded into a linear polarization state by a chiral dispersive element and then read out in a single exposure. The polarization encoded color camera is capable of capturing three-color images at wavelengths spanning the visible to the near infrared. PMID:24690806

  6. Linking ultracold polar molecules.

    PubMed

    Avdeenkov, A V; Bohn, John L

    2003-01-31

    We predict that pairs of polar molecules can be weakly bound together in an ultracold environment, provided that a dc electric field is present. The field that links the molecules together also strongly influences the basic properties of the resulting dimer, such as its binding energy and predissociation lifetime. Because of their long-range character, these dimers will be useful in disentangling cold collision dynamics of polar molecules. As an example, we estimate the microwave photoassociation yield for OH-OH cold collisions.

  7. Physics with Polarized Antiprotons

    SciTech Connect

    Lenisa, Paolo

    2008-04-30

    Polarized antiprotons will provide access to a wealth of double- (and single-) spin observables, thereby opening a window to physics uniquely accessible with the HESR at FAIR. This include a first direct measurement of the transversity distribution of the valence quarks in the proton and a first measurement of the moduli and phase of the time-like electric and magnetic form factors G{sub E,M} of the proton. Additional applications of a polarized antiproton beam can be forseen in hadron spectroscopy, and nucleon-antinucleon scattering.

  8. South Polar Variety

    NASA Technical Reports Server (NTRS)

    2005-01-01

    28 July 2005 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows a view of linear troughs and mesas formed in the frozen carbon dioxide of the martian south polar residual cap. This image, obtained in May 2005, is a reminder that not all of the south polar cap landscapes resemble 'swiss cheese.'

    Location near: 86.7oS, 24.8oW Image width: width: 3 km (1.9 mi) Illumination from: upper left Season: Southern Spring

  9. Polar Ozone Losses

    NASA Technical Reports Server (NTRS)

    Newman, Paul A.; Bhartia, P. K. (Technical Monitor)

    2001-01-01

    Since the discovery of the Antarctic ozone hole, a great deal of attention has been focused on the polar regions to both identify the chemistry and physics of the large losses, and to provide an understanding of the future of polar ozone. In this review talk, I will discuss the secular trends of ozone in both the Antarctic and Arctic regions, and I will review some of the principal research results of the last few years. In particular, I will emphasize some of the results from the SOLVE-THESEO 2000 campaign that occurred over the course of the winter of 1999-2000.

  10. North Polar Dust Storm

    NASA Technical Reports Server (NTRS)

    2003-01-01

    MGS MOC Release No. MOC2-334, 18 April 2003

    This composite of Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) wide angle daily global images shows a north polar dust storm on March 7, 2003. Similar late summer storms occurred nearly every day from late February well into April 2003; these were also seen in late summer in 1999 and 2001. The white features at the top of the image are the water ice surfaces of the north polar residual cap. Sunlight illuminates the scene from the lower left.

  11. North Polar Layer Exposure

    NASA Technical Reports Server (NTRS)

    2004-01-01

    20 November 2004 Both the north and south polar ice caps overlie a thick accumulation of layered material. For more than three decades, these deposits have been assumed to consist of a mixture of dust and ice. This October 2004 Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows some of the north polar layers exposed on a slope located near 79.1oN, 348.4oW. The image covers an area approximately 3 km (1.9 mi) wide. Sunlight illuminates the scene from the lower left.

  12. North Polar Scarp

    NASA Technical Reports Server (NTRS)

    2004-01-01

    3 March 2004 The north polar cap of Mars overlies a series of layered materials. The upper-most layers are light-toned and may include ice and perhaps dust. The lower layers may be less icy and contain some amount of dark sand. This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows an exposure of north polar layers located near 83.9oN, 237.9oW. This view covers an area 3 km (1.9 mi) wide and is illuminated by sunlight from the lower left.

  13. South Polar Cap

    NASA Technical Reports Server (NTRS)

    2005-01-01

    8 December 2005 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows landforms created by sublimation processes on the south polar residual cap of Mars. The bulk of the ice in the south polar residual cap is frozen carbon dioxide.

    Location near: 86.6oS, 342.2oW Image width: width: 3 km (1.9 mi) Illumination from: upper left Season: Southern Summer

  14. Femtosecond polarization pulse shaping.

    PubMed

    Brixner, T; Gerber, G

    2001-04-15

    We report computer-controlled femtosecond polarization pulse shaping where intensity, momentary frequency, and light polarization are varied as functions of time. For the first time to our knowledge, a pulse shaper is used to modulate the degree of ellipticity as well as the orientation of the elliptical principal axes within a single laser pulse by use of a 256-pixel two-layer liquid-crystal display inside a zero-dispersion compressor. Interferometric stability of the setup is not required. Complete pulse characterization is achieved by dual-channel spectral interferometry. This technology has a large range of applications, especially in the field of quantum control. PMID:18040384

  15. Monitoring land cover changes in Morocco using environmental indicators derived from NDVI and LST data of NOAA-AVHRR imagery

    NASA Astrophysics Data System (ADS)

    Erraji, A.; Yessef, M.; Bouhaloua, M.; Bicheron, P.

    With regard to the rapid evolution of natural resources and man made structures, Morocco is facing increasing needs for data and information to assess land cover changes and impacts at broad spatial scales. The proposed paper presents the results of a study on the potential of low resolution images (the National Oceanic and Atmospheric Administration (NOAA) Advanced Very High Resolution Radiometer (AVHRR)) for global and spatial-temporal monitoring of vegetation changes. Based on the Normalized Vegetation Index (NDVI) and Land Surface Temperature (LST) two indicators are produced for the monitoring of land cover dynamics in the whole country. This method was inspired by the method called Vector of Land Cover Dynamic (VLCD) published by Raissouni and Sobrino (2001). Using the 1-km AVHRR data from 1996 to 2003 and a global stratification as mapping criterion several graphs and change maps are elaborated. The analysis of the spatial-temporal evolution of the representative zones has shown a concentrated land cover dynamic in areas localized in the central and the south to south-east part of the country. These land cover changes are essentially related to the conjugated actions of severe climate conditions and human actions during this period.

  16. Project PROBE Leg I - Report and archive of multibeam bathymetry and acoustic backscatter , CTD/XBT and GPS navigation data collected during USGS Cruise 02051 (NOAA Cruise RB0208) Puerto Rico Trench September 24, 2002 to September 30, 2002

    USGS Publications Warehouse

    ten Brink, Uri S.; Worley, Charles R.; Smith, Shep; Stepka, Thomas; Williams, Glynn F.

    2006-01-01

    On September 24-30, 2002, six days of scientific surveying to map a section of the Puerto Rico Trench (PRT) took place aboard the National Oceanic and Atmospheric Administration (NOAA) ship Ron Brown. The cruise was funded by NOAA's Office of Ocean Exploration. Multibeam bathymetry and acoustic-backscatter data were collected over an area of about 25,000 sq. km of the Puerto Rico trench and its vicinity at water depths of 4000-8400 m. Weather conditions during the entire survey were good; there were light to moderate winds and 1-2 foot swells experiencing minor chop. The roll and pitch of the ship's interaction with the ocean were not conspicuous. Cruise participants included personnel from USGS, NOAA, and University of New Hampshire Center for Coastal and Ocean Mapping/Joint Hydrographic Center. The cruise resulted in the discovery of a major active strike-slip fault system close to the trench, submarine slides on the descending North American tectonic plate, and an extinct mud volcano, which was cut by the strike-slip fault system. Another strike-slip fault system closer to Puerto Rico that was previously considered to accommodate much of the relative plate motion appears to be inactive. The seaward continuation of the Mona Rift, a zone of extension between Puerto Rico and the Dominican Republic that generated a devastating tsunami in 1918, was mapped for the first time.

  17. Phase-Controlled Polarization Modulators

    NASA Technical Reports Server (NTRS)

    Chuss, D. T.; Wollack, E. J.; Novak, G.; Moseley, S. H.; Pisano, G.; Krejny, M.; U-Yen, K.

    2012-01-01

    We report technology development of millimeter/submillimeter polarization modulators that operate by introducing a a variable, controlled phase delay between two orthogonal polarization states. The variable-delay polarization modulator (VPM) operates via the introduction of a variable phase delay between two linear orthogonal polarization states, resulting in a variable mapping of a single linear polarization into a combination of that Stokes parameter and circular (Stokes V) polarization. Characterization of a prototype VPM is presented at 350 and 3000 microns. We also describe a modulator in which a variable phase delay is introduced between right- and left- circular polarization states. In this architecture, linear polarization is fully modulated. Each of these devices consists of a polarization diplexer parallel to and in front of a movable mirror. Modulation involves sub-wavelength translations of the mirror that change the magnitude of the phase delay.

  18. The Climate Variability & Predictability (CVP) Program at NOAA - Recent Program Advancements

    NASA Astrophysics Data System (ADS)

    Lucas, S. E.; Todd, J. F.

    2015-12-01

    The Climate Variability & Predictability (CVP) Program supports research aimed at providing process-level understanding of the climate system through observation, modeling, analysis, and field studies. This vital knowledge is needed to improve climate models and predictions so that scientists can better anticipate the impacts of future climate variability and change. To achieve its mission, the CVP Program supports research carried out at NOAA and other federal laboratories, NOAA Cooperative Institutes, and academic institutions. The Program also coordinates its sponsored projects with major national and international scientific bodies including the World Climate Research Programme (WCRP), the International and U.S. Climate Variability and Predictability (CLIVAR/US CLIVAR) Program, and the U.S. Global Change Research Program (USGCRP). The CVP program sits within NOAA's Climate Program Office (http://cpo.noaa.gov/CVP). The CVP Program currently supports multiple projects in areas that are aimed at improved representation of physical processes in global models. Some of the topics that are currently funded include: i) Improved Understanding of Intraseasonal Tropical Variability - DYNAMO field campaign and post -field projects, and the new climate model improvement teams focused on MJO processes; ii) Climate Process Teams (CPTs, co-funded with NSF) with projects focused on Cloud macrophysical parameterization and its application to aerosol indirect effects, and Internal-Wave Driven Mixing in Global Ocean Models; iii) Improved Understanding of Tropical Pacific Processes, Biases, and Climatology; iv) Understanding Arctic Sea Ice Mechanism and Predictability;v) AMOC Mechanisms and Decadal Predictability Recent results from CVP-funded projects will be summarized. Additional information can be found at http://cpo.noaa.gov/CVP.

  19. NOAA Ship Okeanos Explorer: Evolving Models Enabling Remote Science Participation via Telepresence

    NASA Astrophysics Data System (ADS)

    Elliott, K.; Potter, J.; Martinez, C.; Pinner, W.; Russell, C. W.; Verplanck, N.

    2014-12-01

    Since 2005 NOAA's Office of Ocean Exploration and Research (OER) and partners have tested and developed uses of telepresence to extend ocean exploration expeditions to shore-based scientists and students in real-time. Telepresence increases the potential pace and scope of ocean exploration by enabling experts to join an expedition from anywhere, providing unlimited access to intellectual capital, while simultaneously expanding the reach of ocean science expeditions to public audiences worldwide. "America's Ship for Ocean Exploration", NOAA Ship Okeanos Explorer, is the first and only federal vessel purpose-outfitted for conducting telepresence-enabled ocean exploration. As a platform for testing new technologies and methodologies, her primary operating paradigm focuses on using telepresence to enable the majority of expedition scientists to participate and guide explorations from shore in real-time. Between 2010-2014, NOAA and partners implemented different models to conduct telepresence-enabled ocean exploration on NOAA Ship Okeanos Explorer, all with the majority of the participating expedition scientists located on shore. These expeditions tested different scientist participation models, communication technologies, operating procedures, internet video streams, data distribution methods, and internet-based collaboration tools, and provided varying levels of real-time access to ongoing expeditions. Each expedition provided new insights into what makes remote science participation "work", and identified challenges that remain to be overcome. This presentation will provide an overview of the different methods and tools used by NOAA's Okeanos Explorer Program to enable remote science participation in expeditions over the last five years, highlighting successes, lessons learned, and challenges for the future.

  20. Optical neutron polarizers

    SciTech Connect

    Hayter, J.B.

    1990-01-01

    A neutron wave will be refracted by an appropriately varying potential. Optical neutron polarizers use spatially varying, spin- dependent potentials to refract neutrons of opposite spin states into different directions, so that an unpolarized beam will be split into two beams of complementary polarization by such a device. This paper will concentrate on two methods of producing spin-dependent potentials which are particularly well-suited to polarizing cold neutron beams, namely thin-film structures and field-gradient techniques. Thin-film optical devices, such as supermirror multilayer structures, are usually designed to deviate only one spin-state, so that they offer the possibility of making insertion (transmission) polarizers. Very good supermirrors may now be designed and fabricated, but it is not always straightforward to design mirror-based devices which are useful in real (divergent beam) applications, and some practical configurations will be discussed. Field-gradient devices, which are usually based on multipolar magnets, have tended to be too expensive for general use, but this may change with new developments in superconductivity. Dipolar and hexapolar configurations will be considered, with emphasis on the focusing characteristics of the latter. 21 refs., 7 figs.

  1. Titan Polar Landscape Evolution

    NASA Technical Reports Server (NTRS)

    Moore, Jeffrey M.

    2016-01-01

    With the ongoing Cassini-era observations and studies of Titan it is clear that the intensity and distribution of surface processes (particularly fluvial erosion by methane and Aeolian transport) has changed through time. Currently however, alternate hypotheses substantially differ among specific scenarios with respect to the effects of atmospheric evolution, seasonal changes, and endogenic processes. We have studied the evolution of Titan's polar region through a combination of analysis of imaging, elevation data, and geomorphic mapping, spatially explicit simulations of landform evolution, and quantitative comparison of the simulated landscapes with corresponding Titan morphology. We have quantitatively evaluated alternate scenarios for the landform evolution of Titan's polar terrain. The investigations have been guided by recent geomorphic mapping and topographic characterization of the polar regions that are used to frame hypotheses of process interactions, which have been evaluated using simulation modeling. Topographic information about Titan's polar region is be based on SAR-Topography and altimetry archived on PDS, SAR-based stereo radar-grammetry, radar-sounding lake depth measurements, and superposition relationships between geomorphologic map units, which we will use to create a generalized topographic map.

  2. Optical polarizer material

    DOEpatents

    Ebbers, Christopher A.

    1999-01-01

    Several crystals have been identified which can be grown using standard single crystals growth techniques and which have a high birefringence. The identified crystals include Li.sub.2 CO.sub.3, LiNaCO.sub.3, LiKCO.sub.3, LiRbCO.sub.3 and LiCsCO.sub.3. The condition of high birefringence leads to their application as optical polarizer materials. In one embodiment of the invention, the crystal has the chemical formula LiK.sub.(1-w-x-y) Na.sub.(1-w-x-z) Rb.sub.(1-w-y-z) Cs.sub.(1-x-y-z) CO.sub.3, where w+x+y+z=1. In another embodiment, the crystalline material may be selected from a an alkali metal carbonate and a double salt of alkali metal carbonates, where the polarizer has a Wollaston configuration, a Glan-Thompson configuration or a Glan-Taylor configuration. A method of making an LiNaCO.sub.3 optical polarizer is described. A similar method is shown for making an LiKCO.sub.3 optical polarizer.

  3. Optical polarizer material

    DOEpatents

    Ebbers, C.A.

    1999-08-31

    Several crystals have been identified which can be grown using standard single crystals growth techniques and which have a high birefringence. The identified crystals include Li.sub.2 CO.sub.3, LiNaCO.sub.3, LiKCO.sub.3, LiRbCO.sub.3 and LiCsCO.sub.3. The condition of high birefringence leads to their application as optical polarizer materials. In one embodiment of the invention, the crystal has the chemical formula LiK.sub.(1-w-x-y) Na.sub.(1-w-x-z) Rb.sub.(1-w-y-z) Cs.sub.(1-x-y-z) CO.sub.3, where w+x+y+z=1. In another embodiment, the crystalline material may be selected from a an alkali metal carbonate and a double salt of alkali metal carbonates, where the polarizer has a Wollaston configuration, a Glan-Thompson configuration or a Glan-Taylor configuration. A method of making an LiNaCO.sub.3 optical polarizer is described. A similar method is shown for making an LiKCO.sub.3 optical polarizer.

  4. Variable polarity arc welding

    NASA Technical Reports Server (NTRS)

    Bayless, E. O., Jr.

    1991-01-01

    Technological advances generate within themselves dissatisfactions that lead to further advances in a process. A series of advances in welding technology which culminated in the Variable Polarity Plasma Arc (VPPA) Welding Process and an advance instituted to overcome the latest dissatisfactions with the process: automated VPPA welding are described briefly.

  5. Anodic Polarization Curves Revisited

    ERIC Educational Resources Information Center

    Liu, Yue; Drew, Michael G. B.; Liu, Ying; Liu, Lin

    2013-01-01

    An experiment published in this "Journal" has been revisited and it is found that the curve pattern of the anodic polarization curve for iron repeats itself successively when the potential scan is repeated. It is surprising that this observation has not been reported previously in the literature because it immediately brings into…

  6. North Polar Ice Cap

    NASA Technical Reports Server (NTRS)

    1997-01-01

    North polar ice cap of Mars, as seen during mid summer in the northern hemisphere. The reddish areas consist of eolian dust, bright white areas consist of a mixture of water ice and dust, and the dark blue areas consist of sand dunes forming a huge 'collar' around the polar ice cap. (The colors have been enhanced with a decorrelation stretch to better show the color variability.) Shown here is an oblique view of the polar region, as seen with the Viking 1 spacecraft orbiting Mars over latitude 39 degrees north. The spiral bands consist of valleys which form by a combination of the Coriolis forces, wind erosion, and differential sublimation and condensation. In high-resolution images the polar caps are seen to consist of thick sequences of layered deposits, suggesting that cyclical climate changes have occurred on Mars. Cyclical climate changes are readily explained by quasi-periodic changes in the amount and distribution of solar heating resulting from perturbations in orbital and axial elements. Variations in the Earth's orbit have also been linked to the terrestrial climate changes during the ice ages.

  7. Titan's Polar Atmosphere

    NASA Astrophysics Data System (ADS)

    Flasar, F. M.; Achterberg, R. K.; Schinder, P. J.

    2015-12-01

    Cassini CIRS and Radio-Occultation measurements obtained in 2004-2015 have tracked the evolution of temperatures and winds in Titan's polar atmosphere, as the winter season shifted from the northern hemisphere to the southern. The dissolution of the strong circumpolar vortex initially seen in the northern hemisphere has been gradual. There is no evidence of the rapid distortion and disruption forced by planetary waves that can occur on Earth. Indeed, neither Cassini experiment has identified any thermal signature attributable to planetary-scale waves. The south-polar region has turned wintry fairly abruptly: temperature and zonal wind maps from CIRS data show that the 1-mbar temperatures at high southern latitudes in late autumn are already much colder than those at the corresponding latitudes in the north in midwinter, when the first extensive polar measurements were obtained. The south-polar region now has a strong circumpolar vortex, with maximum stratospheric winds occurring near 60° S, in contrast to the northern hemisphere in winter, where the polar vortex was much broader, extending to 20°-30° N. Potential vorticity maps now indicate steep meridional gradients at high southern latitudes, implying a barrier to efficient mixing between the polar region and lower latitudes. Radio-occultations have higher vertical resolution than CIRS, and they have recently probed latitudes as high as 65° in both hemispheres (latitudes closer to the pole are precluded because of the geometry of Earth occultations and the season). Above 80 km at these latitudes, where the radiative damping times are small enough that temperatures have large seasonal variations, the stratosphere in the north has warmed, and it has become much colder in the south. The abrupt transition region with negative vertical temperature gradient between 80 and 100 km, which was seen at high northern latitudes in winter, has weakened, but it is still visible. In the south, one can see the early stage of

  8. Lunar Polar Coring Lander

    NASA Technical Reports Server (NTRS)

    Angell, David; Bealmear, David; Benarroche, Patrice; Henry, Alan; Hudson, Raymond; Rivellini, Tommaso; Tolmachoff, Alex

    1990-01-01

    Plans to build a lunar base are presently being studied with a number of considerations. One of the most important considerations is qualifying the presence of water on the Moon. The existence of water on the Moon implies that future lunar settlements may be able to use this resource to produce things such as drinking water and rocket fuel. Due to the very high cost of transporting these materials to the Moon, in situ production could save billions of dollars in operating costs of the lunar base. Scientists have suggested that the polar regions of the Moon may contain some amounts of water ice in the regolith. Six possible mission scenarios are suggested which would allow lunar polar soil samples to be collected for analysis. The options presented are: remote sensing satellite, two unmanned robotic lunar coring missions (one is a sample return and one is a data return only), two combined manned and robotic polar coring missions, and one fully manned core retrieval mission. One of the combined manned and robotic missions has been singled out for detailed analysis. This mission proposes sending at least three unmanned robotic landers to the lunar pole to take core samples as deep as 15 meters. Upon successful completion of the coring operations, a manned mission would be sent to retrieve the samples and perform extensive experiments of the polar region. Man's first step in returning to the Moon is recommended to investigate the issue of lunar polar water. The potential benefits of lunar water more than warrant sending either astronauts, robots or both to the Moon before any permanent facility is constructed.

  9. Interplanetary magnetic sector polarity inferred from polar geomagnetic field observations

    NASA Technical Reports Server (NTRS)

    Eriss-Christensen, E.; Lassen, K.; Wilcox, J. M.; Gonzalez, W.; Colburn, D. S.

    1971-01-01

    With the use of a prediction technique it is shown that the polarity (toward or away from the sun) of the interplanetary magnetic field can be reliably inferred from observations of the polar geomagnetic field.

  10. On Helium 1083 nm Line Polarization during the Impulsive Phase of an X1 Flare

    NASA Astrophysics Data System (ADS)

    Judge, Philip G.; Kleint, Lucia; Sainz Dalda, Alberto

    2015-12-01

    We analyze spectropolarimetric data of the He i 1083 nm multiplet (1s2s{}3{S}1-1s2p{}3{P}2,1,0o) during the X1 flare SOL2014-03-29T17:48, obtained with the Facility Infrared Spectrometer (FIRS) at the Dunn Solar Telescope. While scanning active region NOAA 12017, the FIRS slit crossed a flare ribbon during the impulsive phase, when the helium line intensities turned into emission at ≲twice the continuum intensity. Their linear polarization profiles are of the same sign across the multiplet including 1082.9 nm, intensity-like, at ≲5% of the continuum intensity. Weaker Zeeman-induced linear polarization is also observed. Only the strongest linear polarization coincides with hard X-ray (HXR) emission at 30-70 keV observed by RHESSI. The polarization is generally more extended and lasts longer than the HXR emission. The upper J = 0 level of the 1082.9 nm component is unpolarizable thus, lower-level polarization is the culprit. We make non-LTE radiative transfer calculations in thermal slabs optimized to fit only intensities. The linear polarizations are naturally reproduced, through a systematic change of sign with wavelength of the radiation anisotropy when slab optical depths of the 1082.9 component are ≲1. Neither are collisions with beams of particles needed, nor can they produce the same sign of polarization of the 1082.9 and 1083.0 nm components. The He i line polarization merely requires heating sufficient to produce slabs of the required thickness. Widely different polarizations of Hα, reported previously, are explained by different radiative anisotropies arising from slabs of different optical depths.

  11. Enhanced polarization by the coherent heterophase interface between polar and non-polar phases

    NASA Astrophysics Data System (ADS)

    Kim, Gi-Yeop; Sung, Kil-Dong; Rhyim, Youngmok; Yoon, Seog-Young; Kim, Min-Soo; Jeong, Soon-Jong; Kim, Kwang-Ho; Ryu, Jungho; Kim, Sung-Dae; Choi, Si-Young

    2016-03-01

    A piezoelectric composite containing the ferroelectric polar (Bi(Na0.8K0.2)0.5TiO3: f-BNKT) and the non-polar (0.94Bi(Na0.75K0.25)0.5TiO3-0.06BiAlO3: BNKT-BA) phases exhibits synergetic properties which combine the beneficial aspects of each phase, i.e., the high saturated polarization (Ps) of the polar phase and the low coercive field (Ec) of the non-polar phase. To understand the origin of such a fruitful outcome from this type of polar/non-polar heterophase structure, comprehensive studies are conducted, including transmission electron microscopy (TEM) and finite element method (FEM) analyses. The TEM results show that the polar/non-polar composite has a core/shell structure in which the polar phase (core) is surrounded by a non-polar phase (shell). In situ electrical biasing TEM experiments visualize that the ferroelectric domains in the polar core are aligned even under an electric field of ~1 kV mm-1, which is much lower than its intrinsic coercive field (~3 kV mm-1). From the FEM analyses, we can find that the enhanced polarization of the polar phase is promoted by an additional internal field at the phase boundary which originates from the preferential polarization of the relaxor-like non-polar phase. From the present study, we conclude that the coherent interface between polar and non-polar phases is a key factor for understanding the enhanced piezoelectric properties of the composite.A piezoelectric composite containing the ferroelectric polar (Bi(Na0.8K0.2)0.5TiO3: f-BNKT) and the non-polar (0.94Bi(Na0.75K0.25)0.5TiO3-0.06BiAlO3: BNKT-BA) phases exhibits synergetic properties which combine the beneficial aspects of each phase, i.e., the high saturated polarization (Ps) of the polar phase and the low coercive field (Ec) of the non-polar phase. To understand the origin of such a fruitful outcome from this type of polar/non-polar heterophase structure, comprehensive studies are conducted, including transmission electron microscopy (TEM) and finite element

  12. Global Geospace Science/Polar Plasma Laboratory: POLAR

    NASA Technical Reports Server (NTRS)

    1996-01-01

    The Global Geospace Science (GGS) Project is discussed as part of the International Solar-Terrestrial Physics (ISTP) Science Initiative. The objectives of Polar Plasma Laboratory (POLAR), one of the two spacecraft to be used by the Project to fill critical gaps in the scientific understanding of solar and plasma physics, are outlined. POLAR Laboratory is described, along with POLAR instrumentation, support subsystems, and orbits. Launch vehicle and injection into orbit are also addressed.

  13. Full Spectral Resolution Data Generation from the Cross-track Infrared Sounder on S-NPP at NOAA and its Use to Investigate Uncertainty in Methane Absorption Band Near 7.66 µm

    NASA Astrophysics Data System (ADS)

    Xiong, X.; Peischl, J.; Ryerson, T. B.; Sasakawa, M.; Han, Y.; Chen, Y.; Wang, L.; Tremblay, D.; Jin, X.; Zhou, L.; Liu, Q.; Weng, F.; Machida, T.

    2015-12-01

    The Cross-track Infrared Sounder (CrIS) on Suomi National Polar-orbiting Partnership Satellite (S-NPP) is a Fourier transform spectrometer for atmospheric sounding. CrIS on S-NPP started to provide measurements in 1305 channels in its normal mode since its launch on November 2011 to December 4, 2014, and after that it was switched to the full spectral resolution (FSR) mode, in which the spectral resolutions are 0.625 cm-1 in all the MWIR (1210-1750 cm-1), SWIR (2155-2550 cm-1) and the LWIR bands (650-1095 cm-1) with a total of 2211 channels. While the NOAA operational Sensor Data Record (SDR) processing (IDPS) continues to produce the normal resolution SDRs by truncating full spectrum RDR data, NOAA STAR started to process the FSR SDRs data since December 4, 2014 to present, and the data is being delivered through NOAA STAR website (ftp://ftp2.star.nesdis.noaa.gov/smcd/xxiong/). The current FSR processing algorithm was developed on basis of the CrIS Algorithm Development Library (ADL), and is the baseline of J-1 CrIS SDR algorithm. One major benefit to use the FSR data is to improve the retrieval of atmospheric trace gases, such as CH4, CO and CO2 . From our previous studies to retrieve CH4 using Atmospheric Infrared Sounder (AIRS) and Infrared Atmospheric Sounding Interferometer (IASI), it was found the uncertainty in the CH4 absorption band is up to 1-2%. So, in this study we computed the radiance using the community radiative transfer model (CRTM) and line-by-line model, with the inputs of "truth" of atmospheric temperature and moisture profiles from ECMWF model (and/or RAOB sounding) and CH4 profiles from in-situ aircraft measurements, then convoluted with the response function of CrIS. The difference between the simultaed radiance and the collocated CrIS FSR data is used to exam the uncertainty in these strong absorption channels.Through the improved fitting to the transmittance in these channels, it is expected to improve the retrieval of CH4 using CrIS on S

  14. Three-dimensional magnetic restructuring in two homologous solar flares in the seismically active NOAA AR 11283

    SciTech Connect

    Liu, Chang; Deng, Na; Lee, Jeongwoo; Wang, Haimin; Wiegelmann, Thomas; Jiang, Chaowei; Dennis, Brian R.; Su, Yang; Donea, Alina

    2014-11-10

    We carry out a comprehensive investigation comparing the three-dimensional magnetic field restructuring, flare energy release, and the helioseismic response of two homologous flares, the 2011 September 6 X2.1 (FL1) and September 7 X1.8 (FL2) flares in NOAA AR 11283. In our analysis, (1) a twisted flux rope (FR) collapses onto the surface at a speed of 1.5 km s{sup –1} after a partial eruption in FL1. The FR then gradually grows to reach a higher altitude and collapses again at 3 km s{sup –1} after a fuller eruption in FL2. Also, FL2 shows a larger decrease of the flux-weighted centroid separation of opposite magnetic polarities and a greater change of the horizontal field on the surface. These imply a more violent coronal implosion with corresponding more intense surface signatures in FL2. (2) The FR is inclined northward and together with the ambient fields, it undergoes a southward turning after both events. This agrees with the asymmetric decay of the penumbra observed in the peripheral regions. (3) The amounts of free magnetic energy and nonthermal electron energy released during FL1 are comparable to those of FL2 within the uncertainties of the measurements. (4) No sunquake was detected in FL1; in contrast, FL2 produced two seismic emission sources S1 and S2 both lying in the penumbral regions. Interestingly, S1 and S2 are connected by magnetic loops, and the stronger source S2 has a weaker vertical magnetic field. We discuss these results in relation to the implosion process in the low corona and the sunquake generation.

  15. Initiation and Eruption Process of Magnetic Flux Rope from Solar Active Region NOAA 11719 to Earth-directed CME

    NASA Astrophysics Data System (ADS)

    Vemareddy, P.; Zhang, J.

    2014-12-01

    An eruption event launched from the solar active region (AR) NOAA 11719 is investigated based on coronal EUV observations and photospheric magnetic field measurements obtained from the Solar Dynamic Observatory. The AR consists of a filament channel originating from a major sunspot and its south section is associated with an inverse-S sigmoidal system as observed in Atmospheric Imaging Assembly passbands. We regard the sigmoid as the main body of the flux rope (FR). There also exists a twisted flux bundle crossing over this FR. This overlying flux bundle transforms in shape similar to kink-rise evolution, which corresponds with the rise motion of the FR. The emission measure and temperature along the FR exhibits an increasing trend with its rising motion, indicating reconnection in the thinning current sheet underneath the FR. Net magnetic flux of the AR, evaluated at north and south polarities, showed decreasing behavior whereas the net current in these fluxes exhibits an increasing trend. Because the negative (positive) flux has a dominant positive (negative) current, the chirality of AR flux system is likely negative (left handed) in order to be consistent with the chirality of inverse S-sigmoidal FR. This analysis of magnetic fields of the source AR suggests that the cancelling fluxes are prime factors of the monotonous twisting of the FR system, reaching to a critical state to trigger kink instability and rise motion. This rise motion may have led to the onset of the torus instability, resulting in an Earth-directed coronal mass ejection, and the progressive reconnection in the thinning current sheet beneath the rising FR led to the M6.5 flare.

  16. Three-Dimensional Magnetic Restructuring in Two Homologous Solar Flares in the Seismically Active NOAA AR 11283

    NASA Technical Reports Server (NTRS)

    Liu, Chang; Deng, Na; Lee, Jeongwoo; Wiegelmann, Thomas; JIang, Chaowei; Dennis, Brian R.; Su, Yang; Donea, Alina; Wang, Haimin

    2014-01-01

    We carry out a comprehensive investigation comparing the three-dimensional magnetic field restructuring, flare energy release, and the helioseismic response of two homologous flares, the 2011 September 6 X2.1 (FL1) and September 7 X1.8 (FL2) flares in NOAA AR 11283. In our analysis, (1) a twisted flux rope (FR) collapses onto the surface at a speed of 1.5 km s(exp-1) after a partial eruption in FL1. The FR then gradually grows to reach a higher altitude and collapses again at 3 km s(exp-1) after a fuller eruption in FL2. Also, FL2 shows a larger decrease of the flux-weighted centroid separation of opposite magnetic polarities and a greater change of the horizontal field on the surface. These imply a more violent coronal implosion with corresponding more intense surface signatures in FL2. (2) The FR is inclined northward and together with the ambient fields, it undergoes a southward turning after both events. This agrees with the asymmetric decay of the penumbra observed in the peripheral regions. (3) The amounts of free magnetic energy and nonthermal electron energy released during FL1 are comparable to those of FL2 within the uncertainties of the measurements. (4) No sunquake was detected in FL1; in contrast, FL2 produced two seismic emission sources S1 and S2 both lying in the penumbral regions. Interestingly, S1 and S2 are connected by magnetic loops, and the stronger source S2 has a weaker vertical magnetic field. We discuss these results in relation to the implosion process in the low corona and the sunquake generation.

  17. Evaluating the Global Precipitation Measurement mission with NOAA/NSSL Multi-Radar Multisensor: current status and future directions.

    NASA Astrophysics Data System (ADS)

    Kirstetter, P. E.; Hong, Y.; Gourley, J. J.; Carr, N.; Petersen, W. A.; Schwaller, M.; Anagnostou, E. N.; Kummerow, C. D.; Ferraro, R. R.; Wang, N. Y.; Tanelli, S.; Turk, J.; Huffman, G. J.

    2015-12-01

    Accurate characterization of uncertainties in precipitation estimates derived from space-borne measurements is critical for many applications including water budget studies or prediction of natural hazards caused by extreme rainfall events. The GPM precipitation Level II (active and passive) and Level III (IMERG) estimates are compared to the NEXRAD-based precipitation estimates derived from NOAA/NSSL's Multi-Radar, Multi-Sensor (MRMS) platform. The NEXRAD network has undergone an upgrade in technology with dual-polarization capabilities and the MRMS products, after having been adjusted by rain gauges and passing several quality controls and filtering procedures, are 1) accurate with known uncertainty bounds and 2) measured at a resolution below the pixel sizes any GPM estimates. They are used by a number of NASA investigators to evaluate Level II and Level III satellite precipitation algorithms. A comparison framework was developed to examine the consistency of the ground and space-based sensors in term of precipitation detection, typology (e.g. convective, stratiform) and quantification. At the Level II precipitation features are introduced to analyze satellite estimates under various precipitation processes. Specific factors for passive (e.g. surface conditions for GMI) and active (e.g. attenuation of the radar signal, non uniform beam filling for DPR) sensors are investigated. Prognostic analysis directly provides feedback to algorithm developers on how to improve the satellite estimates. Comparison with TRMM products serves as a benchmark to evaluate GPM precipitation estimates. A the Level III the contribution of Level II is explicitly characterized and a rigorous characterization is performed to migrate across scales fully understanding the propagation of errors. This cross products characterization acts as a bridge to intercalibrate microwave measurements from the GPM constellation satellites and propagate to the combined and global precipitation estimates

  18. INITIATION AND ERUPTION PROCESS OF MAGNETIC FLUX ROPE FROM SOLAR ACTIVE REGION NOAA 11719 TO EARTH-DIRECTED CME

    SciTech Connect

    Vemareddy, P.; Zhang, J.

    2014-12-20

    An eruption event launched from the solar active region (AR) NOAA 11719 is investigated based on coronal EUV observations and photospheric magnetic field measurements obtained from the Solar Dynamic Observatory. The AR consists of a filament channel originating from a major sunspot and its south section is associated with an inverse-S sigmoidal system as observed in Atmospheric Imaging Assembly passbands. We regard the sigmoid as the main body of the flux rope (FR). There also exists a twisted flux bundle crossing over this FR. This overlying flux bundle transforms in shape similar to kink-rise evolution, which corresponds with the rise motion of the FR. The emission measure and temperature along the FR exhibits an increasing trend with its rising motion, indicating reconnection in the thinning current sheet underneath the FR. Net magnetic flux of the AR, evaluated at north and south polarities, showed decreasing behavior whereas the net current in these fluxes exhibits an increasing trend. Because the negative (positive) flux has a dominant positive (negative) current, the chirality of AR flux system is likely negative (left handed) in order to be consistent with the chirality of inverse S-sigmoidal FR. This analysis of magnetic fields of the source AR suggests that the cancelling fluxes are prime factors of the monotonous twisting of the FR system, reaching to a critical state to trigger kink instability and rise motion. This rise motion may have led to the onset of the torus instability, resulting in an Earth-directed coronal mass ejection, and the progressive reconnection in the thinning current sheet beneath the rising FR led to the M6.5 flare.

  19. Visions of our Planet's Atmosphere, Land and Oceans: NASA/NOAA Electronic-Theater 2002. Spectacular Visualizations of our Blue Marble

    NASA Technical Reports Server (NTRS)

    Hasler, A. F.; Starr, David (Technical Monitor)

    2002-01-01

    Spectacular Visualizations of our Blue Marble The NASA/NOAA Electronic Theater presents Earth science observations and visualizations in a historical perspective. Fly in from outer space to the 2002 Winter Olympic Stadium Site of the Olympic Opening and Closing Ceremonies in Salt Lake City. Fly in and through Olympic Alpine Venues using 1 m IKONOS "Spy Satellite" data. Go back to the early weather satellite images from the 1960s and see them contrasted with the latest US and international global satellite weather movies including hurricanes & "tornadoes". See the latest visualizations of spectacular images from NASA/NOAA remote sensing missions like Terra, GOES, TRMM, SeaWiFS, Landsat 7 including new 1 - min GOES rapid scan image sequences of Nov 9th 2001 Midwest tornadic thunderstorms and have them explained. See how High-Definition Television (HDTV) is revolutionizing the way we communicate science. (In cooperation with the American Museum of Natural History in NYC). See dust storms in Africa and smoke plumes from fires in Mexico. See visualizations featured on the covers of Newsweek, TIME, National Geographic, Popular Science & on National & International Network TV. New computer software tools allow us to roam & zoom through massive global images e.g. Landsat tours of the US, and Africa, showing desert and mountain geology as well as seasonal changes in vegetation. See animations of the polar ice packs and the motion of gigantic Antarctic Icebergs from SeaWinds data. Spectacular new visualizations of the global atmosphere & oceans are shown. See vertexes and currents in the global oceans that bring up the nutrients to feed tiny algae and draw the fish, whales and fisherman. See the how the ocean blooms in response to these currents and El Nicola Nina climate changes. See the city lights, fishing fleets, gas flares and biomass burning of the Earth at night observed by the "night-vision" DMSP military satellite.

  20. Calibration of the NOAA 11 solar backscatter ultraviolet (SBUV/2) ozone data set from 1989 to 1993 using in-flight calibration data and SSBUV

    NASA Technical Reports Server (NTRS)

    Hilsenrath, E.; Cebula, R. P.; Deland, M. T.; Laamann, K.; Taylor, S.; Wellemeyer, C.; Bhartia, P. K.

    1995-01-01

    Total ozone and ozone profiles are currently being measured by solar backscatter ultraviolet (SBUV/2) instruments onboard NOAA polar orbiting spacecraft using the backscattered ultraviolet technique. The NOAA 11 SBUV/2 operational data set, reprocessed from January 1989 to May 1993 (version 6), includes an updated algorithm and revised prelaunch and postlaunch calibrations of the geometrical albedo observations used to derive ozone values. The postlaunch calibration revisions remove time dependent errors in the ozone amounts due to instrument drift, while the revised prelaunch calibration corrects the absolute value of retrieved ozone. The prelaunch corrections are a result of calibration checks from in-orbit comparisons of ultraviolet geometric albedos measured by shuttle SBUV (SSBUV) and the NOAA 11 SBUV/2. Geometric albedo comparison data are further corrected using a radiative transfer code to account for the small difference in observing conditions between the two spacecraft. The postlaunch corrections rely on in-flight calibration and solar irradiance data to account for time dependent changes in instrument gain, thermal response, and instrument diffuser degradation over time. Comparison of data from three SSBUV flights, which occurred about one year apart, with concurrent SBUV/2 data provided an independent check of the time dependent change derived from the in-flight calibration data. Time independent corrections result in an increase of about 1% for total ozone, 5% for ozone at 1 mbar, and near 0% at 15 mbar. The time dependent corrections amount to an increase of 2% for total ozone, 10% for ozone near 1 mbar, and 3% at 15 mbar at the end of the current record in May 1993. Recent laboratory studies indicate that the absolute radiance calibrations may still be in error by a few percent which results in ozone profile values that are too low. The SBUV/2 total and ozone profile data are compared to the Nimbus SBUV data during the period when the data