Science.gov

Sample records for administration noaa satellites

  1. NOAA's NESDIS operational satellite oceanography

    NASA Astrophysics Data System (ADS)

    Bayler, E.; Chang, P.; Cheney, R.; Clark, D.; Hughes, K.; Strong, A.

    2003-04-01

    Satellite oceanography within the National Oceanic and Atmospheric Administration's (NOAA) National Environmental Satellite, Data, and Information Service (NESDIS) focuses on observation retrieval and applications to address the NOAA missions of environmental assessment, prediction, and stewardship. The satellite oceanography division encompasses three functional areas: satellite ocean sensors, ocean dynamics/ data assimilation, and marine ecosystems / climate. The breadth of scientific investigation includes sea-surface temperature, sea-surface height, sea-surface height, sea-surface roughness, ocean color, ocean surface winds, sea ice, data assimilation, and operational oceanography. The primary objective is to transition research to operations. This overview of operational oceanography within NOAA's NESDIS provides insight into the capabilities, products, and services.

  2. NASA, NOAA administrators nominated

    NASA Astrophysics Data System (ADS)

    Richman, Barbara T.

    President Ronald Reagan recently said he intended to nominate James Montgomery Beggs as NASA Administrator and John V. Byrne as NOAA Administrator. These two positions are key scientific posts that have been vacant since the start of the Reagan administration on January 20. The President also said he intends to nominate Hans Mark as NASA Deputy Administrator. At press time, Reagan had not designated his nominee for the director of the Office of Science and Technology Policy.

  3. 76 FR 53883 - Proposed Information Collection; Comment Request; NOAA Satellite Ground Station Customer...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-30

    ... Satellite Ground Station Customer Questionnaire AGENCY: National Oceanic and Atmospheric Administration... who operate ground receiving stations that receive data from NOAA satellites to complete...

  4. NOAA-L satellite arrives at Vandenberg AFB

    NASA Technical Reports Server (NTRS)

    2000-01-01

    A crated National Oceanic and Atmospheric Administration (NOAA-L) satellite arrives at Vandenberg Air Force Base, Calif. It is part of the Polar-Orbiting Operational Environmental Satellite (POES) program that provides atmospheric measurements of temperature, humidity, ozone and cloud images, tracking weather patterns that affect the global weather and climate. The launch of the NOAA-L satellite is scheduled no earlier than Sept. 12 aboard a Lockheed Martin Titan II rocket. NOAA-L satellite is lifted for mating

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Inside the B16-10 spacecraft processing hangar at Vandenberg Air Force Base, Calif., workers oversee the lifting and rotating of the National Oceanic and Atmospheric Administration (NOAA-L) satellite to allow for mating of the Apogee Kick Motor (AKM). NOAA-L is part of the Polar-Orbiting Operational Environmental Satellite (POES) program that provides atmospheric measurements of temperature, humidity, ozone and cloud images, tracking weather patterns that affect the global weather and climate. The launch of the NOAA-L satellite is scheduled no earlier than Sept. 12 aboard a Lockheed Martin Titan II rocket. NOAA-L satellite arrives at Vandenberg AFB

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Inside the B16-10 spacecraft processing hangar at Vandenberg Air Force Base, Calif., workers oversee the uncrating of the National Oceanic and Atmospheric Administration (NOAA-L) satellite. NOAA-L is part of the Polar-Orbiting Operational Environmental Satellite (POES) program that provides atmospheric measurements of temperature, humidity, ozone and cloud images, tracking weather patterns that affect the global weather and climate. The launch of the NOAA-L satellite is scheduled no earlier than Sept. 12 aboard a Lockheed Martin Titan II rocket. NOAA-L satellite arrives at Vandenberg AFB

    NASA Technical Reports Server (NTRS)

    2000-01-01

    A crated National Oceanic and Atmospheric Administration (NOAA-L) satellite is moved inside the B16-10 spacecraft processing hangar at Vandenberg Air Force Base, Calif. NOAA-L is part of the Polar- Orbiting Operational Environmental Satellite (POES) program that provides atmospheric measurements of temperature, humidity, ozone and cloud images, tracking weather patterns that affect the global weather and climate. The launch of the NOAA-L satellite is scheduled no earlier than Sept. 12 aboard a Lockheed Martin Titan II rocket. NOAA-L satellite arrives at Vandenberg AFB

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Outside the B16-10 spacecraft processing hangar at Vandenberg Air Force Base, Calif., a crated National Oceanic and Atmospheric Administration (NOAA-L) satellite is lowered to the ground before being moved inside. NOAA-L is part of the Polar-Orbiting Operational Environmental Satellite (POES) program that provides atmospheric measurements of temperature, humidity, ozone and cloud images, tracking weather patterns that affect the global weather and climate. The launch of the NOAA-L satellite is scheduled no earlier than Sept. 12 aboard a Lockheed Martin Titan II rocket. Satellite ocean remote sensing at NOAA/NESDIS

    NASA Astrophysics Data System (ADS)

    Bayler, Eric J.

    2004-10-01

    Satellite oceanography within the Center for Satellite Applications and Research (STAR) in National Oceanic and Atmospheric Administration"s (NOAA) National Environmental Satellite, Data, and Information Service (NESDIS) focuses on observation retrievals and applications to address the NOAA missions of environmental assessment, prediction, and stewardship. Satellite oceanography within NOAA/NESDIS is an end-to-end process, addressing user requirements, sensor design support, observation retrieval research and development, calibration, applications and product research and development, the transition of research to operations, continuing product validation, and operational user support. The breadth of scientific investigation encompasses three functional areas: satellite ocean sensors, ocean dynamics/data assimilation, and marine ecosystems/climate. A cross-cutting science team from these functional areas has been established for each core subject: sea-surface temperature, sea-surface height, sea-surface roughness, ocean color, ocean surface winds, and sea ice. These science teams pursue the science and issues end to end within the core subject, with the primary objective being the transition of research to operations. Data fusion opportunities between science teams are also pursued. Each science team area addresses the common themes of calibration/validation, data assimilation, climate, and operational oceanography. Experimental and operational products, as well as user support, are provided to the user community via the NOAA OceanWatch/CoastWatch program.

  5. The NOAA Satellite Observing System Architecture Study

    NASA Technical Reports Server (NTRS)

    Volz, Stephen; Maier, Mark; Di Pietro, David

    2016-01-01

    NOAA is beginning a study, the NOAA Satellite Observing System Architecture (NSOSA) study, to plan for the future operational environmental satellite system that will follow GOES and JPSS, beginning about 2030. This is an opportunity to design a modern architecture with no pre-conceived notions regarding instruments, platforms, orbits, etc. The NSOSA study will develop and evaluate architecture alternatives to include partner and commercial alternatives that are likely to become available. The objectives will include both functional needs and strategic characteristics (e.g., flexibility, responsiveness, sustainability). Part of this study is the Space Platform Requirements Working Group (SPRWG), which is being commissioned by NESDIS. The SPRWG is charged to assess new or existing user needs and to provide relative priorities for observational needs in the context of the future architecture. SPRWG results will serve as input to the process for new foundational (Level 0 and Level 1) requirements for the next generation of NOAA satellites that follow the GOES-R, JPSS, DSCOVR, Jason-3, and COSMIC-2 missions.

  6. NOAA GOES Satellite Sees March 12/13 Storm

    NASA Video Gallery

    This animation of NOAA's GOES satellite data shows the progression of the major winter storm over the U.S. Mid-Atlantic and Northeastern U.S. on March 12 and 13.Credit: NASA/NOAA GOES Project, Denn...

  7. NOAA administrator reviews agency progress and challenges

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    2011-12-01

    The approach of the new year is a traditional time to tally up successes, failures, and the path ahead. Jane Lubchenco, administrator of the U.S. National Oceanic and Atmospheric Administration (NOAA), examined some agency advances and significant challenges during the 7 December Union Agency Lecture at the AGU Fall Meeting, during a press briefing, and in an interview with Eos. Lubchenco focused on several key areas including the concern about monitoring, mitigating, and managing extreme events; budgetary pressures the agency faces in current fiscal year (FY) 2012 and in FY 2013, with President Barack Obama on 18 November having signed into law a bill, HR 2112, following congressional agreement on a budget legislation conference report; and NOAA's newly released scientific integrity policy (see "NOAA issues scientific integrity policy," Eos Trans. AGU, 92(50), 467, doi:10.1029/2011EO500004, 2011).

  8. NOAA-L satellite is mated to Apogee Kick Motor at Vandenberg AFB

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Inside the B16-10 spacecraft processing hangar at Vandenberg Air Force Base, Calif., workers oversee the mating of the Apogee Kick Motor (below) to the National Oceanic and Atmospheric Administration (NOAA-L) satellite above. NOAA-L is part of the Polar-Orbiting Operational Environmental Satellite (POES) program that provides atmospheric measurements of temperature, humidity, ozone and cloud images, tracking weather patterns that affect the global weather and climate. The launch of the NOAA-L satellite is scheduled no earlier than Sept. 12 aboard a Lockheed Martin Titan II rocket. Improved NOAA satellite scheduled for launch. [mission update

    NASA Technical Reports Server (NTRS)

    Brennan, W. J.; Mccormack, D.; Senstad, K.

    1981-01-01

    A description of the NOAA-C satellite and its Atlas launch vehicle are presented. The satellite instrumentation and data transmission systems are discussed. A flight sequence of events is given along with a listing of the mission management responsibilities.

  9. NOAA Environmental Satellite Measurements of Extreme Space Weather Events

    NASA Astrophysics Data System (ADS)

    Denig, W. F.; Wilkinson, D. C.; Redmon, R. J.

    2015-12-01

    For over 40 years the National Oceanic and Atmospheric Administration (NOAA) has continuously monitored the near-earth space environment in support of space weather operations. Data from this period have covered a wide range of geophysical conditions including periods of extreme space weather such as the great geomagnetic March 1989, the 2003 Halloween storm and the more recent St Patrick's Day storm of 2015. While not specifically addressed here, these storms have stressed our technology infrastructure in unexpected and surprising ways. Space weather data from NOAA geostationary (GOES) and polar (POES) satellites along with supporting data from the Air Force are presented to compare and contrast the space environmental conditions measured during extreme events.

  10. Terrestrial Observations from NOAA Operational Satellites.

    PubMed

    Yates, H; Strong, A; McGinnis, D; Tarpley, D

    1986-01-31

    Important applications to oceanography, hydrology, and agriculture have been developed from operational satellites of the National Oceanic and Atmospheric Administration and are currently expanding rapidly. Areas of interest involving the oceans include sea surface temperature, ocean currents, and ocean color. Satellites can monitor various hydrological phenomena, including regional and global snow cover, river and sea ice extent, and areas of global inundation. Agriculturally important quantities derived from operational satellite observations include precipitation, daily temperature extremes, canopy temperatures, insolation, and snow cover. This overview describes the current status of each area.

  11. State Geography Using NOAA Polar-Orbiting Satellites.

    ERIC Educational Resources Information Center

    Stadler, Stephen J.

    1985-01-01

    NOAA polar-orbiting satellites have the capability of providing views of entire states. This article describes the characteristics of data from these satellites, indicates their advantages and disadvantages, and shows how the satellite data can be used in a statewide representation of physical geography for students at the introductory level. (RM)

  12. Geostatistics and remote sensing using NOAA-AVHRR satellite imagery as predictive tools in tick distribution and habitat suitability estimations for Boophilus microplus (Acari: Ixodidae) in South America. National Oceanographic and Atmosphere Administration-Advanced Very High Resolution Radiometer.

    PubMed

    Estrada-Peña, A

    1999-02-01

    Remote sensing based on NOAA (National Oceanographic and Atmosphere Administration) satellite imagery was used, together with geostatistics (cokriging) to model the correlation between the temperature and vegetation variables and the distribution of the cattle tick, Boophilus microplus (Canestrini), in the Neotropical region. The results were used to map the B. microplus habitat suitability on a continental scale. A database of B. microplus capture localities was used, which was tabulated with the AVHRR (Advanced Very High Resolution Radiometer) images from the NOAA satellite series. They were obtained at 10 days intervals between 1983 and 1994, with an 8 km resolution. A cokriging system was generated to extrapolate the results. The data for habitat suitability obtained through two vegetation and four temperature variables were strongly correlated with the known distribution of B. microplus (sensitivity 0.91; specificity 0.88) and provide a good estimation of the tick habitat suitability. This model could be used as a guide to the correct interpretation of the distribution limits of B. microplus. It can be also used to prepare eradication campaigns or to make predictions about the effects of global change on the distribution of the parasite.

  13. NOAA's GOES-West Satellite Animation Shows Seymour's Start

    NASA Video Gallery

    This animation of infrared and visible imagery from NOAA's GOES-West satellite from Oct. 21 to early on Oct. 24 shows the development of Tropical Depression 20 and explosive growth into Hurricane S...

  14. Disaster warning system study summary. [cost estimates using NOAA satellites

    NASA Technical Reports Server (NTRS)

    Leroy, B. F.; Maloy, J. E.; Braley, R. C.; Provencher, C. E.; Schumaker, H. A.; Valgora, M. E.

    1977-01-01

    A conceptual satellite system to replace or complement NOAA's data collection, internal communications, and public information dissemination systems for the mid-1980's was defined. Program cost and cost sensitivity to variations in communications functions are analyzed.

  1. NOAA budget would boost satellite funding but cut some key areas

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    2012-03-01

    The White House's proposed fiscal year (FY) 2013 budget for the National Oceanic and Atmospheric Administration (NOAA), announced on 13 February, looks favorable at first glance. The administration's request calls for $5.1 billion, an increase of $153 million (3.1%) above the FY 2012 estimated budget. However, the increase for NOAA satellites is $163 million, which means that other areas within the agency would be slated for decreased funding, including programs within the National Ocean Service (NOS), National Marine Fisheries Service (NMFS), National Weather Service (NWS), and some NOAA education programs. The proposed overall budget for the agency “reflects the overarching importance of weather satellites to public safety, to national security, and to the economy,” NOAA director Jane Lubchenco said at a 16 February briefing, noting that difficult choices were made regarding the budget. “Due to significant resources required for our weather satellites and the economic conditions in the country, other parts of our budget have been reduced, in some cases quite significantly,” she said. She added that the imperative to fund both the Joint Polar Satellite System (JPSS) and geostationary satellites in FY 2013 “imposes serious constraints on the rest of NOAA's budget.”

  2. Area estimation of environmental phenomena from NOAA-n satellite data. [TIROS N satellite

    NASA Technical Reports Server (NTRS)

    Tappan, G. (Principal Investigator); Miller, G. E.

    1982-01-01

    A technique for documenting changes in size of NOAA-n pixels in order to calibrate the data for use in performing area calculations is described. Based on Earth-satellite geometry, a function for calculating the effective pixel size, measured in terms of ground area, on any given pixel was derived. The equation is an application of the law of sines plus an arclength formula. Effective pixel dimensions for NOAA 6 and 7 satellites for all pixels between nadir and the extreme view angles are presented. The NOAA 6 data were used to estimate the areas of several lakes, with an accuracy within 5%. Sources of error are discussed.

  3. Optical Passive Sensor Calibration for Satellite Remote Sensing and the Legacy of NOAA and NIST Cooperation

    PubMed Central

    Datla, Raju; Weinreb, Michael; Rice, Joseph; Johnson, B. Carol; Shirley, Eric; Cao, Changyong

    2014-01-01

    This paper traces the cooperative efforts of scientists at the National Oceanic and Atmospheric Administration (NOAA) and the National Institute of Standards and Technology (NIST) to improve the calibration of operational satellite sensors for remote sensing of the Earth’s land, atmosphere and oceans. It gives a chronological perspective of the NOAA satellite program and the interactions between the two agencies’ scientists to address pre-launch calibration and issues of sensor performance on orbit. The drive to improve accuracy of measurements has had a new impetus in recent years because of the need for improved weather prediction and climate monitoring. The highlights of this cooperation and strategies to achieve SI-traceability and improve accuracy for optical satellite sensor data are summarized1. PMID:26601030

  4. Optical Passive Sensor Calibration for Satellite Remote Sensing and the Legacy of NOAA and NIST Cooperation.

    PubMed

    Datla, Raju; Weinreb, Michael; Rice, Joseph; Johnson, B Carol; Shirley, Eric; Cao, Changyong

    2014-01-01

    This paper traces the cooperative efforts of scientists at the National Oceanic and Atmospheric Administration (NOAA) and the National Institute of Standards and Technology (NIST) to improve the calibration of operational satellite sensors for remote sensing of the Earth's land, atmosphere and oceans. It gives a chronological perspective of the NOAA satellite program and the interactions between the two agencies' scientists to address pre-launch calibration and issues of sensor performance on orbit. The drive to improve accuracy of measurements has had a new impetus in recent years because of the need for improved weather prediction and climate monitoring. The highlights of this cooperation and strategies to achieve SI-traceability and improve accuracy for optical satellite sensor data are summarized.

  5. An Analysis of the NOAA Satellite-Derived Snow-Cover Record, 1972 - Present

    NASA Technical Reports Server (NTRS)

    Robinson, David A.; Frei, Allan

    1995-01-01

    The large-scale distribution of snow cover over northern hemisphere lands has been a topic of increasing attention in recent years. This interest has been spurred, at least in part, by concerns associated with potential changes in the global climate system associated with anthropogenic and natural causes. Satellite observations using visible satellite imagery permit a hemispheric analysis of snow extent. For almost three decades the National Oceanic and Atmospheric Administration (NOAA) has been using visible imagery to produce weekly charts depicting the extent of snow cover over northern hemisphere lands. These charts constitute the longest satellite-derived environmental dataset available on a continuous basis and produced in a consistent manner. We will briefly describe the NOAA charts and then provide an update on the variability of snow extent over the hemisphere from January 1972 through August 1995. Concentration will be on snow kinematics.

  6. Low rate data bus general specification for the NOAA-OPQ polar orbiting environmental satellites and EUMETSAT polar satellite systems

    NASA Technical Reports Server (NTRS)

    1993-01-01

    The document is a reference document in the Instrument Interface Description for NOAA-2000 Instruments (GSFC-S-480-53). The requirements reflect the fact that these instruments must be compatible with a number of different polar orbiting satellite vehicles including the NOAA-OPQ satellites and the EUMETSAT METOP satellites.

  7. Lossless compression of NOAA-AVHRR satellite data

    NASA Technical Reports Server (NTRS)

    Takamura, Seishi; Takagi, Mikio

    1994-01-01

    A high-performance lossless compression system for satellite NOAA data is developed. The data is called 'high resolution picture transmission' (HRPT) data, and consists of around 93 percent advanced very high resolution radiometer (AVHRR) multi-channel image data and 7 percent of miscellaneous data. In compressing the image portion, we classify each pixel into 10 different groups and apply a multi-channel prediction and a non-linear error conversion. The entropy coder is an arithmetic coder which is adaptive and regenerates the approximation of the statistical properties of the source as an initial probability table. To compress the non-image part, we used the general compressor (gzip). From experimental results, the original information is compressed down to 25 percent to approx. 40 percent.

  8. How to Get Data from NOAA Environmental Satellites: An Overview of Operations, Products, Access and Archive

    NASA Astrophysics Data System (ADS)

    Donoho, N.; Graumann, A.; McNamara, D. P.

    2015-12-01

    In this presentation we will highlight access and availability of NOAA satellite data for near real time (NRT) and retrospective product users. The presentation includes an overview of the current fleet of NOAA satellites and methods of data distribution and access to hundreds of imagery and products offered by the Environmental Satellite Processing Center (ESPC) and the Comprehensive Large Array-data Stewardship System (CLASS). In particular, emphasis on the various levels of services for current and past observations will be presented. The National Environmental Satellite, Data, and Information Service (NESDIS) is dedicated to providing timely access to global environmental data from satellites and other sources. In special cases, users are authorized direct access to NESDIS data distribution systems for environmental satellite data and products. Other means of access include publicly available distribution services such as the Global Telecommunication System (GTS), NOAA satellite direct broadcast services and various NOAA websites and ftp servers, including CLASS. CLASS is NOAA's information technology system designed to support long-term, secure preservation and standards-based access to environmental data collections and information. The National Centers for Environmental Information (NCEI) is responsible for the ingest, quality control, stewardship, archival and access to data and science information. This work will also show the latest technology improvements, enterprise approach and future plans for distribution of exponentially increasing data volumes from future NOAA missions. A primer on access to NOAA operational satellite products and services is available at http://www.ospo.noaa.gov/Organization/About/access.html. Access to post-operational satellite data and assorted products is available at http://www.class.noaa.gov

  9. Earth radiation budget - Results of outgoing longwave radiation from Nimbus-7, NOAA-9, and ERBS satellites

    NASA Technical Reports Server (NTRS)

    Bess, T. D.; Smith, G. L.

    1993-01-01

    Outgoing longwave radiation (OLR) data from Nimbus-7 ERB wide field-of-view instruments are compared with results from the ERBE instruments aboard the NOAA-9 and NOAA-10 satellites. Over most regions of the globe, the agreement between the two sets of OLR results is generally to within 8 W/sq m. There are larger differences at higher latitudes and regions concentrated over land and desert. Results of daytime and nighttime differences suggest that the shortwave channels may be at fault due to their different design for Nimbus-7 and NOAA-9. Some of the differences may also be related to different viewing geometry of the two satellites.

  10. Command/telemetry bus general specification for the NOAA-OPQ polar orbiting environmental satellites and EUMETSAT polar satellite systems

    NASA Technical Reports Server (NTRS)

    1993-01-01

    The document is a reference document in the Instrument Interface Description for NOAA-2000 Instruments (GSFC-S-480-53). The requirements reflect the fact that these instruments must be compatible with a number of different polar orbiting satellite vehicles including the NOAA-OPQ satellites and the EUMETSAT METOP satellites. The instrument payload will interface to the spacecraft via several standardized communication busses. The document defines the multiplex data bus conforming to the MIL-STD-1553B protocol for command and telemetry transfer between a spacecraft system and all instruments.

  11. Comparison of NOAA-9 ERBE measurements with Cirrus IFO satellite and aircraft measurements

    NASA Technical Reports Server (NTRS)

    Ackerman, Steven A.; Chung, Hyosang; Cox, Stephen K.; Herman, Leroy; Smith, William L.; Wylie, Donald P.

    1990-01-01

    Earth Radiation Budget Experiment (ERBE) measurements onboard the NOAA-9 are compared for consistency with satellite and aircraft measurements made during the Cirrus Intensive Field Observation (IFO) of October 1986. ERBE scene identification is compared with NOAA-9 TIROS Operational Vertical Sounder (TOVS) cloud retrievals; results from the ERBE spectral inversion algorithms are compared with High resolution Interferometer Sounder (HIS) measurements; and ERBE radiant existance measurements are compared with aircraft radiative flux measurements.

  12. 47 CFR 25.259 - Time sharing between NOAA meteorological satellite systems and non-voice, non-geostationary...

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... satellite systems and non-voice, non-geostationary satellite systems in the 137-138 MHz band. 25.259 Section... SATELLITE COMMUNICATIONS Technical Standards § 25.259 Time sharing between NOAA meteorological satellite systems and non-voice, non-geostationary satellite systems in the 137-138 MHz band. (a) The space...

  13. 47 CFR 25.259 - Time sharing between NOAA meteorological satellite systems and non-voice, non-geostationary...

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... satellite systems and non-voice, non-geostationary satellite systems in the 137-138 MHz band. 25.259 Section... SATELLITE COMMUNICATIONS Technical Standards § 25.259 Time sharing between NOAA meteorological satellite systems and non-voice, non-geostationary satellite systems in the 137-138 MHz band. (a) A non-voice,...

  14. 47 CFR 25.259 - Time sharing between NOAA meteorological satellite systems and non-voice, non-geostationary...

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... satellite systems and non-voice, non-geostationary satellite systems in the 137-138 MHz band. 25.259 Section... SATELLITE COMMUNICATIONS Technical Standards § 25.259 Time sharing between NOAA meteorological satellite systems and non-voice, non-geostationary satellite systems in the 137-138 MHz band. (a) A non-voice,...

  15. 47 CFR 25.259 - Time sharing between NOAA meteorological satellite systems and non-voice, non-geostationary...

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... satellite systems and non-voice, non-geostationary satellite systems in the 137-138 MHz band. 25.259 Section... SATELLITE COMMUNICATIONS Technical Standards § 25.259 Time sharing between NOAA meteorological satellite systems and non-voice, non-geostationary satellite systems in the 137-138 MHz band. (a) A non-voice,...

  16. 47 CFR 25.259 - Time sharing between NOAA meteorological satellite systems and non-voice, non-geostationary...

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... satellite systems and non-voice, non-geostationary satellite systems in the 137-138 MHz band. 25.259 Section... SATELLITE COMMUNICATIONS Technical Standards § 25.259 Time sharing between NOAA meteorological satellite systems and non-voice, non-geostationary satellite systems in the 137-138 MHz band. (a) The space...

  17. NOAA/NASA/DOD Workshop on Satellite Data Assimilation

    NASA Technical Reports Server (NTRS)

    Errico, Ronald M.; Ohring, George; Derber, John; Joiner, Joanna

    2000-01-01

    A workshop on the assimilation of satellite sounding information using global forecast and climate models was held at College Park, MD, 23-25 August 1999. Topics discussed included: comparisons of assimilations of satellite retrievals versus satellite-observed radiances, planning for the use of advanced infrared sounders, the use of satellite sounding data affected by land surfaces, radiative transfer issues, and error characteristics of models and observations. The workshop concluded with a number of general and specific recommendations to advance the state of the art of assimilation of satellite sounding data.

  18. 77 FR 74174 - National Oceanic and Atmospheric Administration (NOAA) National Climate Assessment and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-12-13

    ... National Oceanic and Atmospheric Administration (NOAA) National Climate Assessment and Development Advisory... notice sets forth the schedule of a forthcoming meeting of the DoC NOAA National Climate Assessment and... the call. Please check the National Climate Assessment Web site for additional information at...

  19. NOAA's Satellite Climate Data Records: The Research to Operations Process and Current State

    NASA Astrophysics Data System (ADS)

    Privette, J. L.; Bates, J. J.; Kearns, E. J.; NOAA's Climate Data Record Program

    2011-12-01

    In support of NOAA's mandate to provide climate products and services to the Nation, the National Climatic Data Center initiated the satellite Climate Data Record (CDR) Program. The Program develops and sustains climate information products derived from satellite data that NOAA has collected over the past 30+ years. These are the longest sets of continuous global measurements in existence. Data from other satellite programs, including those in NASA, the Department of Defense, and foreign space agencies, are also used. NOAA is now applying advanced analysis techniques to these historic data. This process is unraveling underlying climate trend and variability information and returning new value from the data. However, the transition of complex data processing chains, voluminous data products and documentation into an systematic, configuration controlled context involves many challenges. In this presentation, we focus on the Program's process for research-to-operations transition and the evolving systems designed to ensure transparency, security, economy and authoritative value. The Program has adopted a two-phase process defined by an Initial Operational Capability (IOC) and a Full Operational Capability (FOC). The principles and procedures for IOC are described, as well as the process for moving CDRs from IOC to FOC. Finally, we will describe the state of the CDRs in all phases the Program, with an emphasis on the seven community-developed CDRs transitioned to NOAA in 2011. Details on CDR access and distribution will be provided.

  20. Improved NOAA weather satellite scheduled for NASA launch

    NASA Technical Reports Server (NTRS)

    1981-01-01

    A description of the GOES-E mission is presented and includes the instrumentation of the satellite, data acquisition, spacecraft description, and Delta Launch Vehicle description. The launch operations are presented and include major launch events, post-launch events, and a review of the Delta/GOES-E team.

  1. Automated monitoring of snow cover over China using FY-1C and NOAA-16 satellite data

    NASA Astrophysics Data System (ADS)

    Liu, Yujie; Zheng, Zhaojun

    2003-06-01

    In order to reduce the human labor in snow cover monitoring, recent study has been done on modification of the multi-spectral thresholds method which was developed in NSMC in 1996. Based on the analysis of the spectral characteristics of snow, cloud and other types of earth surface with multi-spectral data, an automated processing system with the new thresholds method to distinguish snow and cloud have been set up in NSMC. The devised technique is applied to multi-spectral data from FY-1C and NOAA-16 for mapping snow cover over China during winter season. To assess performance of the modification, the automatically produced snow data sets have been compared with the NOAA operational snow products and validated against in situ land surface observations in China. There is a good consistency between our results, NOAA snow data and ground measurements. The correlation coefficient between the snow cover produced by NSMC and NOAA is about 80%. The results of the comparison show us that the 1.6µm band data is very useful for snow and cloud distinguishing. The new method can reduce the human labor in snow cover monitoring and produce accurate snow cover images in China using FY-1C and NOAA-16 satellite data.

  2. NASA to launch NOAA's GOES-C earth monitoring satellite

    NASA Technical Reports Server (NTRS)

    1978-01-01

    NASA's launch of the GOES-C geostationary satellite from Kennedy Space Center, Florida is planned for June 16, 1978. The launch vehicle is a three stage Delta 2914. As its contribution, GOES-C will contribute information from a data sparse area of the world centered in the Indian Ocean. GOES-C will replace GOES-1 and will become GOES-3 once it has successfully orbited at 35,750 kilometers (22,300 miles). NASA's Spaceflight Tracking and Data Network (STDN) will provide support for the mission. Included in the article are: (1) Delta launch vehicle statistics, first, second and third stages; (2) Delta/GOES-C major launch events; (3) Launch operations; (4) Delta/GOES-C personnel.

  3. Outgoing Longwave Radiation (OLR) as signatures of pre-seismic activities before Nepal 2015 Earthquakes using onboard NOAA satellite data

    NASA Astrophysics Data System (ADS)

    Chakraborty, Suman; Chakrabarti, Sandip Kumar; Sasmal, Sudipta

    2016-07-01

    Earthquake preparation processes start almost a month before its actual occurrence. There are various tools in detecting such processes among which Outgoing Longwave Radiation (OLR) measurements is a significant one. We studied these signals before the devastating Nepal earthquake that occurred on 12 May, 2015 at 12:50 pm local time (07:05 UTC) with a Richter scale magnitude of M = 7.3 and depth 10 km (6.21 miles) at southeast of Kodari. To study the effects of seismic activities on OLR, we used the data archived by the National Environmental Satellite Data and Information Service (NESDIS) of National Oceanic and Atmospheric Administration (NOAA) onto two degree grids for a period of more than 27 years. For the period 2005 till date, data from NOAA18 satellite is used. The data has been chosen with a temporal coverage from 8th May to 17th May, 2015 and a spatial coverage from 20 ^{o}N to 36 ^{o}N latitudes, 78 ^{o}E to 94 ^{o}E longitudes. We followed the method of 'Eddy field calculation mean' to find anomalies in daily OLR curves. We found singularities in Eddy field around the earthquake epicentre three days prior to the earthquake day and its disappearance after the event. Such intensification of Eddy field and its fading away after the shock event can be due to the large amount of energy released before the earthquake.

  4. The Use of Satellites by Schools and Colleges, Part 1.

    ERIC Educational Resources Information Center

    Duff, D. A.

    1981-01-01

    Provides information about and suggestions for using orbital satellite-carrying amateur radio (OSCAR) and National Oceanic and Atmospheric Administration (NOAA) satellites for instructional purposes. (JN)

  5. Contrail Coverage Over the USA Derived from NOAA and EOS Satellite Data

    NASA Technical Reports Server (NTRS)

    Palikonda, Rabindra; Minnis, Patrick; Duda, David P.

    2004-01-01

    Contrails, like natural cirrus clouds, can cause a warming of the Earth-atmospheric system by absorbing longwave radiation from the surface and lower troposphere and radiating additional radiation back to the surface. They can also produce some cooling of the surface during the daytime by reflecting some sunlight back to space. Recently, Minnis et al. (2004) determined from surface observations of cirrus cloud cover that the overall impact appears to be a warming that is consistent with theoretical calculations, at least over the United States of America (USA) and surrounding areas. This finding highlights the need to better understand the formation and persistence of contrails and their radiative properties. To better assess the climatic impact of contrails, it is essential to determine the variability of the contrail microphysical properties, their impact on the atmospheric radiation budget, and their relationship to the atmospheric state. To that end, this paper continues the analyses of Advanced Very High Resolution Radiometer (AVHRR) data from the NOAA-15 (N15), NOAA-16 (N16), and NOAA-17 (N17) satellites, Moderate Resolution Imaging Spectroradiometer (MODIS) data from the Terra and Aqua satellites. The combination of these satellites provides a relatively comprehensive coverage of the daily cycle of air traffic. Thus, it should be possible to use these data to help understand the impact of air traffic on the upper tropospheric humidity during the day as well as determine the local-time variability of contrail coverage. The results will be valuable for developing models of contrail effects and methods for mitigating the impact of aviation on climate.

  6. NOAA Satellites Provide a Keen View of the Martin Luther King Solar Storm of January 2005

    NASA Astrophysics Data System (ADS)

    Wilkinson, D. C.; Allen, J. H.

    2005-05-01

    Solar active region 0720 rotated onto the east limb on January 10th and put on a pyrotechnic display uncharacteristic for this phase of the solar cycle before disappearing beyond the west limb on January 23rd. On January 15th this region released the first of five X-class solar flares. The last of those flares, January 20th, was associated with an extraordinary ion storm whose effect reached Earth's surface. This paper highlights the record of this event made by NOAA's GOES satellites via their Space Environment Monitor (SEM) subsystems that measures X-ray, energetic particles, and the magnetic field vector at the satellite. Displays of those data are supplemented by neutron monitor data to illustrate their relationship to the January 20th Ground Level Event. GOES-12 is also equipped with the Solar X-ray Imager (SXI) that produces an image of the Sun in X-ray wavelengths once per minute. Movies created from those data perfectly illustrate the cause-and-effect relationship between intense solar activity and satellite disruptions. The flares on January 17th and 20th are closely followed by noise in the SXI telescope resulting from energetic ions penetrating SXI. Ions with sufficient velocity and atomic number can penetrate satellite components and deposit charge along their path. Sufficient charge deposition can introduce erroneous information into solid-state devices. A survey of satellites that experienced problems of this type during this event will also be presented.

  7. The National Oceanic and Atmospheric Administration (NOAA) Climate Services Portal: A New Centralized Resource for Distributed Climate Information

    NASA Astrophysics Data System (ADS)

    Burroughs, J.; Baldwin, R.; Herring, D.; Lott, N.; Boyd, J.; Handel, S.; Niepold, F.; Shea, E.

    2010-09-01

    With the rapid rise in the development of Web technologies and climate services across NOAA, there has been an increasing need for greater collaboration regarding NOAA's online climate services. The drivers include the need to enhance NOAA's Web presence in response to customer requirements, emerging needs for improved decision-making capabilities across all sectors of society facing impacts from climate variability and change, and the importance of leveraging climate data and services to support research and public education. To address these needs, NOAA (during fiscal year 2009) embarked upon an ambitious program to develop a NOAA Climate Services Portal (NCS Portal). Four NOAA offices are leading the effort: 1) the NOAA Climate Program Office (CPO), 2) the National Ocean Service's Coastal Services Center (CSC), 3) the National Weather Service's Climate Prediction Center (CPC), and 4) the National Environmental Satellite, Data, and Information Service's (NESDIS) National Climatic Data Center (NCDC). Other offices and programs are also contributing in many ways to the effort. A prototype NCS Portal is being placed online for public access in January 2010, http://www.climate.gov. This website only scratches the surface of the many climate services across NOAA, but this effort, via direct user engagement, will gradually expand the scope and breadth of the NCS Portal to greatly enhance the accessibility and usefulness of NOAA's climate data and services.

  8. Utilization of Precipitation and Moisture Products Derived from Satellites to Support NOAA Operational Precipitation Forecasts

    NASA Astrophysics Data System (ADS)

    Ferraro, R.; Zhao, L.; Kuligowski, R. J.; Kusselson, S.; Ma, L.; Kidder, S. Q.; Forsythe, J. M.; Jones, A. S.; Ebert, E. E.; Valenti, E.

    2012-12-01

    NOAA/NESDIS operates a constellation of polar and geostationary orbiting satellites to support weather forecasts and to monitor the climate. Additionally, NOAA utilizes satellite assets from other U.S. agencies like NASA and the Department of Defense, as well as those from other nations with similar weather and climate responsibilities (i.e., EUMETSAT and JMA). Over the past two decades, through joint efforts between U.S. and international government researchers, academic partners, and private sector corporations, a series of "value added" products have been developed to better serve the needs of weather forecasters and to exploit the full potential of precipitation and moisture products generated from these satellites. In this presentation, we will focus on two of these products - Ensemble Tropical Rainfall Potential (eTRaP) and Blended Total Precipitable Water (bTPW) - and provide examples on how they contribute to hydrometeorological forecasts. In terms of passive microwave satellite products, TPW perhaps is most widely used to support real-time forecasting applications, as it accurately depicts tropospheric water vapor and its movement. In particular, it has proven to be extremely useful in determining the location, timing, and duration of "atmospheric rivers" which contribute to and sustain flooding events. A multi-sensor approach has been developed and implemented at NESDIS in which passive microwave estimates from multiple satellites and sensors are merged to create a seamless, bTPW product that is more efficient for forecasters to use. Additionally, this product is being enhanced for utilization for television weather forecasters. Examples will be shown to illustrate the roll of atmospheric rivers and contribution to flooding events, and how the bTPW product was used to improve the forecast of these events. Heavy rains associated with land falling tropical cyclones (TC) frequently trigger floods that cause millions of dollars of damage and tremendous loss

  9. Minding the gaps: new insights into R&D management and operational transitions of NOAA satellite products

    NASA Astrophysics Data System (ADS)

    Colton, Marie C.; Powell, Alfred M.; Jordan, Gretchen; Mote, Jonathon; Hage, Jerald; Frank, Donald

    2004-10-01

    The NESDIS Center for Satellite Applications and Research (STAR), formerly ORA, Office of Research and Applications, consists of three research and applications divisions that encompass satellite meteorology, oceanography, climatology, and cooperative research with academic institutions. With such a wide background of talent, and a charter to develop operational algorithms and applications, STAR scientists develop satellite-derived land, ice, ocean, and atmospheric environmental data products in support of all of NOAA"s mission goals. In addition, in close association with the Joint Center for Satellite Data Assimilation, STAR scientists actively work with the numerical modeling communities of NOAA, NASA, and DOD to support the development of new methods for assimilation of satellite data. In this new era of observations from many new satellite instruments, STAR aims to effectively integrate these data into multi-platform data products for utilization by the forecast and applications communities. Much of our work is conducted in close partnerships with other agencies, academic institutes, and industry. In order to support the nearly 400 current satellite-derived products for various users on a routine basis from our sister operations office, and to evolve to future systems requires an ongoing strategic planning approach that maps research and development activities from NOAA goals to user requirements. Since R&D accomplishments are not necessarily amenable to precise schedules, appropriate motivators and measures of scientific progress must be developed to assure that the product development cycle remains aligned with the other engineering segments of a satellite program. This article presents the status and results of this comprehensive effort to chart a course from the present set of operational satellites to the future.

  10. A Statistical Correlation Between Low L-shell Electrons Measured by NOAA Satellites and Strong Earthquakes

    NASA Astrophysics Data System (ADS)

    Fidani, C.

    2015-12-01

    More than 11 years of the Medium Energy Protons Electrons Detector data from the NOAA polar orbiting satellites were analyzed. Significant electron counting rate fluctuations were evidenced during geomagnetic quiet periods by using a set of adiabatic coordinates. Electron counting rates were compared to earthquakes by defining a seismic event L-shell obtained radially projecting the epicenter geographical positions to a given altitude. Counting rate fluctuations were grouped in every satellite semi-orbit together with strong seismic events and these were chosen with the L-shell coordinates close to each other. Electron data from July 1998 to December 2011 were compared for nearly 1,800 earthquakes with magnitudes larger than or equal to 6, occurring worldwide. When considering 30 - 100 keV energy channels by the vertical NOAA telescopes and earthquake epicenter projections at altitudes greater that 1,300 km, a 4 sigma correlation appeared where time of particle precipitations Tpp occurred 2 - 3 hour prior time of large seismic events Teq. This was in physical agreement with different correlation times obtained from past studies that considered particles with greater energies. The correlation suggested a 4-8 hour advance in preparedness of strong earthquakes influencing the ionosphere. Considering this strong correlation between earthquakes and electron rate fluctuations, and the hypothesis that such fluctuations originated with magnetic disturbances generated underground, a small scale experiment with low cost at ground level is advisable. Plans exists to perform one or more unconventional experiments around an earthquake affected area by private investor in Italy.

  11. NOAA-L

    NASA Technical Reports Server (NTRS)

    McCain, Harry G. (Technical Monitor)

    2000-01-01

    The National Oceanic and Atmospheric Administration (NOAA) and the National Aeronautics and Space Administration (NASA) have jointly developed a valuable series of polar-orbiting Earth environmental observation satellites since 1978. These satellites provide global data to NOAA's short- and long-range weather forecasting systems. The system consists of two polar-orbiting satellites known as the Advanced Television Infrared Observation Satellites (TIROS-N) (ATN). Operating as a pair, these satellites ensure that environmental data, for any region of the Earth, is no more than six hours old. These polar-orbiting satellites have not only provided cost-effective data for very immediate and real needs but also for extensive climate and research programs. The weather data (including images seen on television news programs) has afforded both convenience and safety to viewers throughout the world. The satellites also support the SARSAT (Search and Rescue Satellite Aided Tracking) part of the COSPAS-SARSAT constellation. Russia provides the COSPAS (Russian for Space Systems for the Search of Vessels in Distress) satellites. The international COSPAS-SARSAT system provides for the detection and location of emergency beacons for ships, aircraft, and people in distress and has contributed to the saving of more than 10,000 lives since its inception in 1982.

  12. Acquisition of Gulfstream IV-SP jet for environmental measurements in the upper troposphere by the National Oceanic and Atmospheric Administration (NOAA)

    SciTech Connect

    Philippsborn, F.R.

    1996-11-01

    Acquisition of a Gulfstream IV-SP jet by the National Oceanic and Atmospheric Administration (NOAA) is intended to address the critical shortage of platforms capable of making intensive in situ meteorological and atmospheric observations in the upper troposphere. Its primary function will be Hurricane Synoptic Surveillance. In its initial configuration, the jet will significantly improve the ability of NOAA scientists to predict the expected path of hurricanes by gathering vertical profiles of wind, temperature, and humidity within 1,000 km of tropical cyclones by means of dropwindsondes over the data-sparse oceanic regions of the western Atlantic, Caribbean Sea and Gulf of Mexico. Future missions proposed for the aircraft include winter storm surveillance, hurricane reconnaissance, weather research, global climate studies, air chemistry, validation of satellite data, and development of remote sensors. 5 refs.

  13. Applications systems verification and transfer project. Volume 6: Operational applications of satellite snow-cover observations NOAA/NESS support study

    NASA Technical Reports Server (NTRS)

    Schneider, S. R.

    1981-01-01

    Geostationary and polar orbiting satellite data from the National Oceanic and Atmospheric Administration were used to operationally provide field hydrologists with basin snowcover percentages for inclusion in runoff models. Data reduction is accomplished thru the use of optical rectification devices and electronic color density slicers. Over two thousand satellite-derived snow maps covering 30 different basins in the western United States were provided to users. Plans for improving snowmapping techniques on computer interactive systems and by all-digital analysis are presented. A description of the newest generation of NOAA polar orbiters, TIROS-N, and its potential for snowmapping is reviewed. Snowcover percentages for all basins determined between November 1974 and July 1978 are presented in tabular format.

  14. Simulated NASA Satellite Data Products for the NOAA Integrated Coral Reef Observation Network/Coral Reef Early Warning System

    NASA Technical Reports Server (NTRS)

    Estep, Leland; Spruce, Joseph P.

    2007-01-01

    This RPC (Rapid Prototyping Capability) experiment will demonstrate the use of VIIRS (Visible/Infrared Imager/Radiometer Suite) and LDCM (Landsat Data Continuity Mission) sensor data as significant input to the NOAA (National Oceanic and Atmospheric Administration) ICON/ CREWS (Integrated Coral Reef Observation System/Coral Reef Early Warning System). The project affects the Coastal Management Program Element of the Applied Sciences Program.

  15. NOAA Would Receive an 11% Increase Under Obama Administration's Proposed Budget

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    2013-05-01

    The White House's proposed fiscal year (FY) 2014 budget for the National Oceanic and Atmospheric Administration (NOAA) would provide the agency with 5.45 billion, 11% above the FY 2012 spend plan of 4.91 billion (see Table ). The proposal, which was sent to Congress on 10 April, would increase funding for operations, research, and facilities to 3.41 billion (up 7.97% over FY 2012) and for procurement, acquisition, and construction to 2.12 billion (up 17.51%). The budget proposal uses the FY 2012 spend plan as a comparison because Congress approved the FY 2013 appropriations only a few weeks before the FY 2014 proposal was released.

  16. Products, Data, and Science at the NOAA Space Weather Prediction Center for Satellite Anomaly Mitigation and Resolution

    NASA Astrophysics Data System (ADS)

    Green, J. C.; Onsager, T. G.; O'Brien, P.; Kunches, J.; Zwickl, R.

    2008-12-01

    The NOAA Space Weather Prediction Center (SWPC), one of the nation's primary sources for real-time operational space weather data and products, has made a renewed commitment to providing services targeted toward the needs of the satellite industry. Currently, SWPC provides data and products describing the space radiation environment at both geosynchronous and low Earth orbit. Here we review the services now available through the SPWC website and discuss future plans for a site dedicated to understanding and mitigating the effect of space radiation on satellite systems. Upcoming enhancements will include the Space Environmental Anomalies Expert System for geosynchronous orbit developed by the Aerospace Corporation that provides both a real time and historical description of the space radiation environment that can be used to gauge the likelihood of a satellite anomaly related to internal and external charging, single event upsets, and total dose effects. Suggestions for service improvements or additions are welcome.

  17. Applications of NASA and NOAA Satellite Observations by NASA's Short-term Prediction Research and Transition (SPoRT) Center in Response to Natural Disasters

    NASA Technical Reports Server (NTRS)

    Molthan, Andrew L.; Burks, Jason E.; McGrath, Kevin M.; Jedlovec, Gary J.

    2012-01-01

    NASA s Short-term Prediction Research and Transition (SPoRT) Center supports the transition of unique NASA and NOAA research activities to the operational weather forecasting community. SPoRT emphasizes real-time analysis and prediction out to 48 hours. SPoRT partners with NOAA s National Weather Service (NWS) Weather Forecast Offices (WFOs) and National Centers to improve current products, demonstrate future satellite capabilities and explore new data assimilation techniques. Recently, the SPoRT Center has been involved in several activities related to disaster response, in collaboration with NOAA s National Weather Service, NASA s Applied Sciences Disasters Program, and other partners.

  18. Use of NOAA-N satellites for land/water discrimination and flood monitoring

    NASA Technical Reports Server (NTRS)

    Tappan, G.; Horvath, N. C.; Doraiswamy, P. C.; Engman, T.; Goss, D. W. (Principal Investigator)

    1983-01-01

    A tool for monitoring the extent of major floods was developed using data collected by the NOAA-6 advanced very high resolution radiometer (AVHRR). A basic understanding of the spectral returns in AVHRR channels 1 and 2 for water, soil, and vegetation was reached using a large number of NOAA-6 scenes from different seasons and geographic locations. A look-up table classifier was developed based on analysis of the reflective channel relationships for each surface feature. The classifier automatically separated land from water and produced classification maps which were registered for a number of acquisitions, including coverage of a major flood on the Parana River of Argentina.

  19. Sentinels in the Sky: Weather Satellites.

    ERIC Educational Resources Information Center

    Haynes, Robert

    This publication describes forecasting weather activity using satellites. Information is included on the development of weather satellites, the National Oceanic and Atmospheric Administration (NOAA) Satellite System (including the polar-orbiting satellites), and the Geostationary Operational Environmental Satellite (GOES). The publication…

  20. NOAA/APT Satellite Data for Online and Real Time Monitoring of Tungurahua Volcanic Eruption and Temperature Profile in Ecuador

    NASA Astrophysics Data System (ADS)

    Jaffer, G.; Nader, R.; Koudelka, O.

    2010-12-01

    The Ecuadorian Space Agency (EXA) has built HERMES, an online and real time ground station (GS) available to participating schools/universities for free access to NOAA and other remote sensing satellites. The GS is being used by students and scientists in Austria, USA, Japan and Ecuador to access NOAA satellites and spacecrafts online using only a computer and an internet connection with immediate access to satellite imaging and science data for their educational and research projects. The accuracy of analysed data can be used in research areas like forecasting, monitoring and damage assessment caused by eruptions. The HERMES internet-to-orbit gateway transforms a laptop into a full space-qualified GS on-the-move. The purpose of this paper is to present results of Andean mountain area in Ecuador being affected by high temperatures over 30 degree Celsius located over 3000 m high. From May 15 - 20, 2010, we received images from NOAA-18 and NOAA-19 using HERMS GS and applied Surface Temperature (ST), a remote sensing tool to process these images in real-time. Moreover, measured results have been validated by the records from the local meteorological stations network. Additionally, the visual observations revealed that due to high temperature, those glaciers were in fact receding and exposing terrain, never seen before. This paper also highlights the possible causes of this rapid thermal change. The second event dealt by this paper happened on May 28th; we captured a large ash cloud emanating from Tungurahua volcano eruption in the Andean region along with a large ash cloud from the Pacaya volcano in Guatemala using far infrared images from NOAA-18 satellite with overlaid geo-reference coordinates. Both events were analysed with remote sensing tools and image enhancement schemes like 'thermal', 'hvct' and 'fire', available in weather decoding software using free APT data. The aftermath correlation results of volcanic eruption with high temperature profile in the same

  1. 75 FR 38079 - National Oceanic and Atmospheric Administration (NOAA) Science Advisory Board (SAB)

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-01

    ... Strategic Energy Review; (4) SAB discussion on its comments to the NOAA Next Generation Strategic Plan; (5... framework; (8) Strategies for Regional Coastal and Marine Spatial Planning--engaging other Federal and...

  2. Comparison of Model-Predicted Transport and Diffusion of Seeding Material with NOAA Satellite-Observed Seeding Track in Supercooled Layer Clouds.

    NASA Astrophysics Data System (ADS)

    Yu, Xing; Dai, Jin; Rosenfeld, Daniel; Lei, Hengchi; Xu, Xiaohong; Fan, Peng; Chen, Zhengqi

    2005-06-01

    From 0615 to 0749 UTC 14 March 2000, an operation of cloud seeding for precipitation enhancement by aircraft was carried out in the middle part of Shaanxi Province, China. National Oceanic and Atmospheric Administration (NOAA)-14 satellite imagery was received at 0735 UTC for the study region. A vivid cloud track appeared on the satellite imagery; its length was about 350 km, and its average width and width maximum were 9 and 14 km, respectively. Through application of a three-dimensional numerical model of the transport and diffusion of the seeding material, the simulated plume shape, the turning points, and the width and length of seeding lines agree with that of the cloud pattern indicated by the satellite imagery. The track is consistent with the transport and diffusion of the seeding line. All of these factors suggest that the cloud track that is detected by satellite imaging is the direct physical evidence of cloud seeding near the cloud top, with the cloud responding to the transport and diffusion of the seeding material and/or the propagation of the glaciation by secondary effects. The track is indeed caused by the cloud seeding, and the model can predict the evolution of the response zone of cloud seeding. For this seeding case, the duration for segments of the seeding line varies between 20 and 80 min, and the time period for each segment of the seeding line diffusing to the maximum width is about from 40 to 70 min. One hour after cloud seeding, the dispersion rate of the cloud track is 7.0 km h-1, and the predicted expansion rates of the seeding material concentrations of 1 and 4 L-1 are 7.6 and 4.6 km h-1, respectively. The comparison demonstrates that the numerical model of transport and diffusion can predict the main characteristics of transport and diffusion of the seeding effect, and the simulation results are reasonable.

  3. Mission Description and In-Flight Operations of ERBE Instruments on ERBS, NOAA 9, and NOAA 10 Spacecraft

    NASA Technical Reports Server (NTRS)

    Snyder, Dianne; Bush, Kathryn; Lee, Kam-Pui; Summerville, Jessica

    1998-01-01

    Instruments of the Earth Radiation Budget Experiment (ERBE) have operated on three different Earth-orbiting spacecraft. The Earth Radiation Budget Satellite (ERBS) is operated by the National Aeronautics and Space Administration (NASA), and the NOAA 9 and NOAA 10 weather satellites are operated by the National Oceanic and Atmospheric Administration (NOAA). This paper is one of a series that describes the ERBE mission, in-orbit environments, instrument design and operational features, and data processing and validation procedures. This paper also describes the in-flight operations for the ERBE nonscanner instruments aboard the ERBS, NOAA 9, and NOAA 10 spacecraft from January 1990 through December 1990. Validation and archives of radiation measurements made by ERBE nonscanner instruments during this period were completed in August 1996. This paper covers normal and special operations of the spacecraft and instruments, operational anomalies, and the responses of the instruments to in-orbit and seasonal variations in the solar environment.

  4. A gradient model of vegetation and climate utilizing NOAA satellite imagery. Phase 1: Texas transect

    NASA Technical Reports Server (NTRS)

    Greegor, D.; Norwine, J. (Principal Investigator)

    1981-01-01

    A climatological model/variable termed the sponge (a measure of moisture availability based on daily temperature maxima and minima, and precipitation) was tested for potential biogeograhic, ecological, and agro-climatological applications. Results, depicted in tabular and graphic form, suggest that, as generalized climatic index, sponge is particularly appropriate for large-area and global vegetation monitoring. The feasibility of utilizing NOAA/AVHRR data for vegetation classification was investigated and a vegetation gradient model that utilizes sponge and AVHRR data was initiated. Along an east-west Texas gradient, vegetation, sponge, and AVHRR pixel data (channels 1 and 2) were obtained for 12 locations. The normalized difference values for the AVHRR data when plotted against vegetation characteristics (biomass, net productivity, leaf area) and sponge values along the Texas gradient suggest that a multivariate gradient model incorporating AVHRR and sponge data may indeed be useful in global vegetation stratification and monitoring.

  5. A gradient model of vegetation and climate utilizing NOAA satellite imagery. Phase 1: Texas transect

    NASA Technical Reports Server (NTRS)

    Greegor, D. H.; Norwine, J.

    1981-01-01

    A new experimental climatological model/variable termed the sponge, a measure of moisture availability based on daily temperature maxima and minima and precipitation, is tested for potential biogeographic, ecological, and agro-climatological applications. Results, depicted in tabular and graphic from, suggest that, as a generalized climatic index, sponge's simplicity and sensitivity make particularly appropriate for trans-regional biogeographic studies (e.g., large-area and global vegetation monitoring). The feasibility of utilizing NOAA/AVHRR data for vegetation classification was investigated and a vegetation gradient model that utilizes sponge, and AVHRR pixel data (channels 1 and 2) were obtained for 12 locations. The normalized difference values for the AVHRR data when plotted against vegetation characteristics (biomass, net productivity, leaf area) and sponge values suggest that a multivariate gradient model incorporating AVHRR and sponge data may indeed be useful in global vegetation stratification and monitoring.

  6. Lessons Learned from the Deployment and Integration of a Microwave Sounder Based Tropical Cyclone Intensity and Surface Wind Estimation Algorithm into NOAA/NESDIS Satellite Product Operations

    NASA Astrophysics Data System (ADS)

    Longmore, S. P.; Knaff, J. A.; Schumacher, A.; Dostalek, J.; DeMaria, R.; Chirokova, G.; Demaria, M.; Powell, D. C.; Sigmund, A.; Yu, W.

    2014-12-01

    The Colorado State University (CSU) Cooperative Institute for Research in the Atmosphere (CIRA) has recently deployed a tropical cyclone (TC) intensity and surface wind radii estimation algorithm that utilizes Suomi National Polar-orbiting Partnership (S-NPP) satellite Advanced Technology Microwave Sounder (ATMS) and Advanced Microwave Sounding Unit (AMSU) from the NOAA18, NOAA19 and METOPA polar orbiting satellites for testing, integration and operations for the Product System Development and Implementation (PSDI) projects at NOAA's National Environmental Satellite, Data, and Information Service (NESDIS). This presentation discusses the evolution of the CIRA NPP/AMSU TC algorithms internally at CIRA and its migration and integration into the NOAA Data Exploitation (NDE) development and testing frameworks. The discussion will focus on 1) the development cycle of internal NPP/AMSU TC algorithms components by scientists and software engineers, 2) the exchange of these components into the NPP/AMSU TC software systems using the subversion version control system and other exchange methods, 3) testing, debugging and integration of the NPP/AMSU TC systems both at CIRA/NESDIS and 4) the update cycle of new releases through continuous integration. Lastly, a discussion of the methods that were effective and those that need revision will be detailed for the next iteration of the NPP/AMSU TC system.

  7. In Congress NOAA budget set

    NASA Astrophysics Data System (ADS)

    Richman, Barbara T.

    In late November, President Ronald Reagan signed into law the National Oceanic and Atmospheric Administration (NOAA) budget, which is part of the appropriations bill for the Departments of Commerce, Justice, State, the Judiciary, and related agencies; at the same time, he also signed into law an amendment attached to that bill that prohibits the sale of the weather satellites (Eos, May 17, 1983, p. 377, and March 22, 1983, p. 113). Commercialization of the land remote sensing satellite system is still being considered, however.As a result of the conference between the House of Representatives and the Senate appropriations committees, the appropriation for NOAA totals $1020.6 million, with a program level of $1073.1 million. The appropriation is the money that comes from the federal treasury; the program level represents all of the funds—including treasury funds, transfers, residuals, etc.—actually available for the program. Strictly in terms of dollars, the total fiscal 1984 NOAA appropriation is almost level with the fiscal 1983 appropriation of $1000.9 million. In fiscal 1984, NOAA's research core, called Operations, Research, and Facilities (ORF), receives an appropriation of $988.2 million, with a program level of $1014.8 million

  8. Alpine cloud climatology using long-term NOAA-AVHRR satellite data

    NASA Astrophysics Data System (ADS)

    Kästner, M.; Kriebel, K. T.

    Three different climates have been identified by our evaluation of AVHRR (Advanced Very High Resolution Radiometer) data using APOLLO (AVHRR Processing scheme Over Land, Clouds and Ocean) for a five-years cloud climatology of the Alpine region. The cloud cover data from four layers were spatially averaged in boxes of 15km by 14km. The study area only covers 540km by 560km, but contains regions with moderate, Alpine and Mediterranean climate. Data from the period July 1989 until December 1996 have been considered. The temporal resolution is one scene per day, the early afternoon pass, yielding monthly means of satellite derived cloud coverages 5% to 10% above the daily mean compared to conventional surface observation. At non-vegetated sites the cloudiness is sometimes significantly overestimated. Averaging high resolution cloud data seems to be superior to low resolution measurements of cloud properties and averaging is favourable in topographical homogeneous regions only. The annual course of cloud cover reveals typical regional features as foehn or temporal singularities as the so-called Christmas thaw. The cloud cover maps in spatially high resolution show local luff/lee features which outline the orography. Less cloud cover is found over the Alps than over the forelands in winter, an accumulation of thick cirrus is found over the High Alps and an accumulation of thin cirrus north of the Alps.

  9. User's guide to image processing applications of the NOAA satellite HRPT/AVHRR data. Part 1: Introduction to the satellite system and its applications. Part 2: Processing and analysis of AVHRR imagery

    NASA Technical Reports Server (NTRS)

    Huh, Oscar Karl; Leibowitz, Scott G.; Dirosa, Donald; Hill, John M.

    1986-01-01

    The use of NOAA Advanced Very High Resolution Radar/High Resolution Picture Transmission (AVHRR/HRPT) imagery for earth resource applications is provided for the applications scientist for use within the various Earth science, resource, and agricultural disciplines. A guide to processing NOAA AVHRR data using the hardware and software systems integrated for this NASA project is provided. The processing steps from raw data on computer compatible tapes (1B data format) through usable qualitative and quantitative products for applications are given. The manual is divided into two parts. The first section describes the NOAA satellite system, its sensors, and the theoretical basis for using these data for environmental applications. Part 2 is a hands-on description of how to use a specific image processing system, the International Imaging Systems, Inc. (I2S) Model 75 Array Processor and S575 software, to process these data.

  10. Development, Validation, and Potential Enhancements to the Second-Generation Operational Aerosol Product at the National Environmental Satellite, Data, and Information Service of the National Oceanic and Atmospheric Administration

    NASA Technical Reports Server (NTRS)

    Stowe, Larry L.; Ignatov, Alexander M.; Singh, Ramdas R.

    1997-01-01

    A revised (phase 2) single-channel algorithm for aerosol optical thickness, tau(sup A)(sub SAT), retrieval over oceans from radiances in channel 1 (0.63 microns) of the Advanced Very High Resolution Radiometer (AVHRR) has been implemented at the National Oceanic and Atmospheric Administration's National Environmental Satellite Data and Information Service for the NOAA 14 satellite launched December 30, 1994. It is based on careful validation of its operational predecessor (phase 1 algorithm), implemented for NOAA 14 in 1989. Both algorithms scale the upward satellite radiances in cloud-free conditions to aerosol optical thickness using an updated radiative transfer model of the ocean and atmosphere. Application of the phase 2 algorithm to three matchup Sun-photometer and satellite data sets, one with NOAA 9 in 1988 and two with NOAA 11 in 1989 and 1991, respectively, show systematic error is less than 10%, with a random error of sigma(sub tau) approx. equal 0.04. First results of tau(sup A)(sub SAT) retrievals from NOAA 14 using the phase 2 algorithm, and from checking its internal consistency, are presented. The potential two-channel (phase 3) algorithm for the retrieval of an aerosol size parameter, such as the Junge size distribution exponent, by adding either channel 2 (0.83 microns) from the current AVHRR instrument, or a 1.6-microns channel to be available on the Tropical Rainfall Measurement Mission and the NOAA-KLM satellites by 1997 is under investigation. The possibility of using this additional information in the retrieval of a more accurate estimate of aerosol optical thickness is being explored.

  11. The NOAA Big Data Project

    NASA Astrophysics Data System (ADS)

    de la Beaujardiere, J.

    2015-12-01

    The US National Oceanic and Atmospheric Administration (NOAA) is a Big Data producer, generating tens of terabytes per day from hundreds of sensors on satellites, radars, aircraft, ships, and buoys, and from numerical models. These data are of critical importance and value for NOAA's mission to understand and predict changes in climate, weather, oceans, and coasts. In order to facilitate extracting additional value from this information, NOAA has established Cooperative Research and Development Agreements (CRADAs) with five Infrastructure-as-a-Service (IaaS) providers — Amazon, Google, IBM, Microsoft, Open Cloud Consortium — to determine whether hosting NOAA data in publicly-accessible Clouds alongside on-demand computational capability stimulates the creation of new value-added products and services and lines of business based on the data, and if the revenue generated by these new applications can support the costs of data transmission and hosting. Each IaaS provider is the anchor of a "Data Alliance" which organizations or entrepreneurs can join to develop and test new business or research avenues. This presentation will report on progress and lessons learned during the first 6 months of the 3-year CRADAs.

  12. NOAA requirements and programs

    NASA Technical Reports Server (NTRS)

    Flanders, A. F.

    1975-01-01

    Service programs in NOAA that contemplate using the Geostationary Operational Environmental Satellite (GEOS) Data Collection System (DCS) are considered. The GEOS DCS will be operated by the National Environmental Satellite Service of NOAA as an integral part of the national operation environmental satellite program. This plan is concerned with that part of the GEOS program connected with collection and relay of data from remote locations. Service programs include: (1) hydrological data collection; (2) oceanographic data collection; (3) marine observations from data buoys; (4) Tsunami warning service; and (5) meteorological service.

  13. GIS Services, Visualization Products, and Interoperability at the National Oceanic and Atmospheric Administration (NOAA) National Climatic Data Center (NCDC)

    NASA Astrophysics Data System (ADS)

    Baldwin, R.; Ansari, S.; Reid, G.; Lott, N.; Del Greco, S.

    2007-12-01

    The main goal in developing and deploying Geographic Information System (GIS) services at NOAA's National Climatic Data Center (NCDC) is to provide users with simple access to data archives while integrating new and informative climate products. Several systems at NCDC provide a variety of climatic data in GIS formats and/or map viewers. The Online GIS Map Services provide users with data discovery options which flow into detailed product selection maps, which may be queried using standard "region finder" tools or gazetteer (geographical dictionary search) functions. Each tabbed selection offers steps to help users progress through the systems. A series of additional base map layers or data types have been added to provide companion information. New map services include: Severe Weather Data Inventory, Local Climatological Data, Divisional Data, Global Summary of the Day, and Normals/Extremes products. THREDDS Data Server technology is utilized to provide access to gridded multidimensional datasets such as Model, Satellite and Radar. This access allows users to download data as a gridded NetCDF file, which is readable by ArcGIS. In addition, users may subset the data for a specific geographic region, time period, height range or variable prior to download. The NCDC Weather Radar Toolkit (WRT) is a client tool which accesses Weather Surveillance Radar 1988 Doppler (WSR-88D) data locally or remotely from the NCDC archive, NOAA FTP server or any URL or THREDDS Data Server. The WRT Viewer provides tools for custom data overlays, Web Map Service backgrounds, animations and basic filtering. The export of images and movies is provided in multiple formats. The WRT Data Exporter allows for data export in both vector polygon (Shapefile, Well-Known Text) and raster (GeoTIFF, ESRI Grid, VTK, NetCDF, GrADS) formats. As more users become accustom to GIS, questions of better, cheaper, faster access soon follow. Expanding use and availability can best be accomplished through

  14. Inter-Satellite Calibration Linkages for the Visible and Near-Infrared Channels of the Advanced Very High Resolution Radiometer on the NOAA-7, -9, and -11 Spacecraft. Revised

    NASA Technical Reports Server (NTRS)

    NagarajaRao, C. R.; Chen, J.

    1996-01-01

    The post-launch degradation of the visible (channel 1: 0.58- 068 microns) and near-infrared (channel 2: approx. 0.72 - l.l microns) channels of the Advanced Very High Resolution Radiometer (AVHRR) on the NOAA-7, -9, and -11 Polar-orbiting Operational Environmental Satellites (POES) was estimated using the south-eastern part of the Libyan Desert as a radiometrically stable calibration target. The relative annual degradation rates, in per cent, for the two channels are, respectively: 3.6 and 4.3 (NOAA-7); 5.9 and 3.5 (NOAA-9); and 1.2 and 2.0 (NOAA-11). Using the relative degradation rates thus determined, in conjunction with absolute calibrations based on congruent path aircraft/satellite radiance measurements over White Sands, New Mexico (USA), the variation in time of the absolute gain or slope of the AVHRR on NOAA-9 was evaluated. Inter-satellite calibration linkages were established, using the AVHRR on NOAA-9 as a normalization standard. Formulae for the calculation of calibrated radiances and albedos (AVHRR usage), based on these interlinkages, are given for the three AVHRRs.

  15. 76 FR 36094 - Draft NOAA Scientific Integrity Policy and Handbook; Availability

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-21

    ... National Oceanic and Atmospheric Administration Draft NOAA Scientific Integrity Policy and Handbook... Administration (NOAA), Department of Commerce (DOC). ACTION: Draft NOAA Scientific Integrity Policy and Handbook for Public Review. SUMMARY: NOAA's draft scientific integrity policy is available for public...

  16. 75 FR 338 - Proposed Information Collection; Comment Request; NOAA Teacher at Sea Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-05

    ... National Oceanic and Atmospheric Administration Proposed Information Collection; Comment Request; NOAA Teacher at Sea Program AGENCY: National Oceanic and Atmospheric Administration (NOAA), Commerce. ACTION....Hammond@noaa.gov . SUPPLEMENTARY INFORMATION: I. Abstract NOAA provides educators an opportunity to...

  17. A Satellite Time Slots Climatology of the Urban Heat Island of Guadalajara Megacity in Mexico from NOAA ¡/AVHRR THERMAL Infrared Monitoring (TIR)

    NASA Astrophysics Data System (ADS)

    Galindo, I.

    2009-04-01

    The urban heat island (UHI) of the metropolitan area of the second megacity of Mexico, named Guadalajara in Mexico is studied using thermal infrared data (TIR) (10 £ l £ 12 mm) obtained from the Advanced Very High Resolution Radiometer (AVHRR) on board the NOAA polar orbitters whose signals are received on real time at our ground station for the period 1996-2006. The TIR data are selected by means of a software, since they depend on natural causes (e.g., atmospheric transparency, surface temperature, spectral emissivity and topography) and observational (time and incidence angle of the satellite pass, season of the year, etc.). The above conditions have a variable contribution to the measurements which it can be so high that they simulate the temporal-space fluctuations considered as thermal anomalies. Using a Geographic Information System and spatial analysis techniques temperatures are obtained for diofferent times of the day (satellite slots) and dropped into a grid with a 2.5 km distance between points (latitude, longitude). The temperatures obtained for each satellite pass slot (four per day) are monthly averaged and the temperature anomalies are represented in thermal isolines for the study area. The temperature difference usually is larger at night than during the day, reaching a thermal gradient of 9 °C.

  18. Ozone measurements from the NOAA-9 and the Nimbus-7 satellites - Implications of short and long term variabilities

    NASA Technical Reports Server (NTRS)

    Chandra, S.; Mcpeters, R. D.; Hudson, R. D.; Planet, W.

    1990-01-01

    An overview of the measurements of total ozone and ozone profiles by the SBUV/2 instrument on the NOAA-9 spacecraft relative to similar measurements from the solar backscatter ultraviolet (SBUV) and TOMS instruments on Nimbus-7 is presented. During the three-year period from March 14, 1985 to February 28, 1988, when these data sets overlap, it is shown that there have been significant changes in the calibrations of the three instruments that may be attributed to diffuser plate degradation (for SBUV/TOMS) and to the drift of the NOAA-9 orbit to later equator crossing times (for SBUV/2). Though these instrument characteristic changes have effected the absolute values of the trends derived from the three instruments, their geophysical characteristics and response to short-term variations are accurate and correlate well among the three instruments. It is seen that the total column ozone measured by the three instruments shows good agreement with respect to its day-to-day, seasonal, and latitudinal variabilities.

  19. A joint NOAA/USGS study to evaluate satellite assessment of land surface features and climatic variables

    USGS Publications Warehouse

    Gallo, K.P.; Tarpley, J.D.; Howard, S.M.; Moore, D.G.

    1987-01-01

    Data collection and preliminary analyses have begun for a study that will evaluate the usefulness of satellite data for assessment of land surface features and climatic variables. The objective of the study is to determine what relationships exist between routinely available ground-based climatic and land surface information and satellite-obtained land surface information. The overall goal is to contribute to the increasingly important understanding of land surface climatology.

  20. Comparison between computer simulation of transport and diffusion of cloud seeding material within stratiform cloud and the NOAA-14 satellite cloud track

    NASA Astrophysics Data System (ADS)

    Yu, X.; Dai, J.; Lei, H. C.; Fan, P.

    2005-01-01

    A precipitation enhancement operation using an aircraft was conducted from 1415 to 1549 LST 14 March 2000 in Shaanxi Province. The NOAA-14 satellite data received at 1535 LST soon after the cloud seeding shows that a vivid cloud track appears on the satellite image. The length, average width and maximum width of the cloud track are 301 km, 8.3 and 11 km, respectively. Using a three-dimensional numerical model of transport and diffusion of seeding material within stratiform clouds, the spatial concentration distribution characteristics of seeding material at different times, especially at the satellite receiving time, are simulated. The model results at the satellite receiving time are compared with the features of the cloud track. The transported position of the cloud seeding material coincides with the position of the track. The width, shape and extent of diffusion of the cloud seeding material axe similar to that of the cloud track. The spatial variation of width is consistent with that of the track. The simulated length of each segment of the seeding line accords with the length of every segment of the track. Each segment of the cloud track corresponds to the transport and diffusion of each segment of the seeding line. These results suggest that the cloud track is the direct physical reflection of cloud seeding at the cloud top. The comparison demonstrates that the numerical model of transport and diffusion can simulate the main characteristics of transport and diffusion of seeding material, and the simulated results are sound and trustworthy. The area, volume, width, depth, and lateral diffusive rate corresponding to concentrations 1, 4, and 10 L-1 are simulated in order to understand the variations of influencing range.

  1. Independent NOAA considered

    NASA Astrophysics Data System (ADS)

    Richman, Barbara T.

    A proposal to pull the National Oceanic and Atmospheric Administration (NOAA) out of the Department of Commerce and make it an independent agency was the subject of a recent congressional hearing. Supporters within the science community and in Congress said that an independent NOAA will benefit by being more visible and by not being tied to a cabinet-level department whose main concerns lie elsewhere. The proposal's critics, however, cautioned that making NOAA independent could make it even more vulnerable to the budget axe and would sever the agency's direct access to the President.The separation of NOAA from Commerce was contained in a June 1 proposal by President Ronald Reagan that also called for all federal trade functions under the Department of Commerce to be reorganized into a new Department of International Trade and Industry (DITI).

  2. High-resolution satellite imagery for mesoscale meteorological studies

    NASA Technical Reports Server (NTRS)

    Johnson, David B.; Flament, Pierre; Bernstein, Robert L.

    1994-01-01

    In this article high-resolution satellite imagery from a variety of meteorological and environmental satellites is compared. Digital datasets from Geostationary Operational Environmental Satellite (GOES), National Oceanic and Atmospheric Administration (NOAA), Defense Meteorological Satellite Program (DMSP), Landsat, and Satellite Pour l'Observation de la Terre (SPOT) satellites were archived as part of the 1990 Hawaiian Rainband Project (HaRP) and form the basis of the comparisons. During HaRP, GOES geostationary satellite coverage was marginal, so the main emphasis is on the polar-orbiting satellites.

  3. Mission description and in-flight operations of ERBE instruments on ERBS and NOAA 10 spacecraft, February 1987 - February 1990

    NASA Technical Reports Server (NTRS)

    Busch, Kathryn A.; Degnan, Keith T.

    1994-01-01

    Instruments of the Earth Radiation Budget Experiment (ERBE) are operating on three different Earth-orbiting spacecraft. The Earth Radiation Budget Satellite (ERBS) is operated by the National Aeronautics and Space Administration (NASA), and the NOAA 9 and NOAA 10 weather satellites are operated by the National Oceanic and Atmospheric Administration (NOAA). This paper is the third in a series that describes the ERBE mission in-orbit environments, instrument design and operational features, and data processing and validation procedures. This paper describes the in-flight operations for the ERBE instruments aboard the ERBS and NOAA 10 spacecraft for the period from February 1987 through February 1990. Validation and archival of radiation measurements made by ERBE instruments during this period were completed in May 1992. This paper covers normal and special operations of the spacecraft and instruments, operational anomalies, and the responses of the instruments to in-orbit and seasonal variations in the solar environment.

  4. The solar cycle variation of ozone in the stratosphere inferred from Nimbus 7 and NOAA 11 satellites

    SciTech Connect

    Chandra, S.; Mcpeters, R.D.

    1994-10-01

    The combined Nimbus 7 solar backscattered ultraviolet (SBUV) and NOAA 11 SBUV/2 ozone data, covering a period of more than a solar cycle (about 15 years), are used to study the UV response of ozone in the stratosphere. The study shows that about 2% change in total column ozone and about 5-7% change in ozone mixing ratio in the upper stratosphere (0.7 to 2 hPa) may be attributed to the change in the solar UV flux over a solar cycle. In the upper stratosphere, where photochemical processes are expected to play a major role, the measured solar cycle variation of ozone is significantly larger than inferred either from the photochemical models or from the ozone response to the 27-day solar UV modulation. For example, the observed solar cycle related change in ozone mixing ratio at 2 hPa is about 1% for 1% change in the solar UV flux near 200 nm. The inferred change in ozone from either the photochemical models or from the 27-day ozone-UV response is about a factor of 2-3 lower than this value.

  5. Ozone measurements from the NOAA-9 and the Nimbus-7 satellites: Implications of short and long term variabilities

    NASA Technical Reports Server (NTRS)

    Chandra, S.; Mcpeters, Richard D.; Hudson, R. D.; Planet, Walter G.

    1990-01-01

    An overview is given of the measurements of total ozne and ozone profiles by the SBUV/2 instrument on the NOAA-9 spacecraft relative to similar measurements from the SBUV and TOMS instruments on Nimbus-7. It is shown that during the three year period from March 14, 1985, to February 28, 1988, when these data sets overlap, there have been significant changes in the calibrations of the three instruments which may be attributed to the drift of the NOSS-9 orbit to later equator crossing times (for SBUV/2). These changes in instrument characteristics have affected the absolute values of the trends derived from the three instruments, but their geophysical characteristics and response to short term variations are accurate and correlate well among the three instruments. For example, the total column ozone measured by the three instruments shows excellent agreement with respect to its day to day, seasonal, and latitudinal variabilities. At high latitudes, the day to day fluctuations in total ozone show a strong positive correlation with temperature in the lower stratosphere, as one might expect from the dynamical coupling of the two parameters at these latitudes.

  6. Using Ncl to Visualize and Analyse of NASA/NOAA Satellite Data in Format of Netcdf, Hdf, Hdf-Eos

    NASA Astrophysics Data System (ADS)

    Huang, W.

    2014-12-01

    The NCAR Command Language (NCL, http://www.ncl.ucar.edu), a product of National Center for Atmospheric Research (NCAR) and sponsored by the National Science Foundation, is a free interpreted language designed specifically for scientific data processing and visualization. NCL has robust file input of NetCDF, HDF, HDF-EOS, and can be OPenDAP-enabled. NCL team has developed examples to handle some of NASA data and posted at: http://www.ncl.ucar.edu/Applications/HDF.shtml. The HDF group has used developed more examples at:http://hdfeos.org/zoo. In order to serve the community better, and to handle future NASA/NOAA data, such as: AIRS, TRMM, MERRA, TOMS, OMI, HIRDLS, BUV, SWDB, GSSTF, GOSAT/ACOS, MOD, MYD, NPP, VIIRS, MCD, VIP, WELD, GED, CALIPSO, CERES, MISR, MOPITT, etc., better, the NCL team is willing to share source code, and examples used to visualize and analyze the above data, and want to hear from the community to improve our work.

  7. Mission description and in-flight operations of ERBE instruments on ERBS, NOAA 9, and NOAA 10 spacecraft

    NASA Technical Reports Server (NTRS)

    Weaver, William L.; Bush, Kathryn A.; Degnan, Keith T.; Howerton, Clayton E.; Tolson, Carol J.

    1992-01-01

    Instruments of the Earth Radiation Budget Experiment (ERBE) are operating on three different Earth-orbiting spacecraft. The Earth Radiation Budget Satellite (ERBS) is operated by NASA, and NOAA 9 and NOAA 10 weather satellites are operated by the National Oceanic and Atmospheric Administration (NOAA). This paper is the second in a series that describes the ERBE mission, and data processing and validation procedures. This paper describes the spacecraft and instrument operations for the second full year of in-orbit operations, which extend from February 1986 through January 1987. Validation and archival of radiation measurements made by ERBE instruments during this second year of operation were completed in July 1991. This period includes the only time, November 1986 through January 1987, during which all ERBE instruments aboard the ERBE, NOAA 9, and NOAA 10 spacecraft were simultaneously operational. This paper covers normal and special operations of the spacecraft and instruments, operational anomalies, and the responses of the instruments to in-orbit and seasonal variations in the solar environment.

  8. Design and Flight Performance of NOAA-K Spacecraft Batteries

    NASA Technical Reports Server (NTRS)

    Rao, Gopalakrishna M.; Chetty, P. R. K.; Spitzer, Tom; Chilelli, P.

    1998-01-01

    The US National Oceanic and Atmospheric Administration (NOAA) operates the Polar Operational Environmental Satellite (POES) spacecraft (among others) to support weather forecasting, severe storm tracking, and meteorological research by the National Weather Service (NWS). The latest in the POES series of spacecraft, named as NOAA-KLMNN', one is in orbit and four more are in various phases of development. The NOAA-K spacecraft was launched on May 13, 1998. Each of these spacecraft carry three Nickel-Cadmium batteries designed and manufactured by Lockheed Martin. The battery, which consists of seventeen 40 Ah cells manufactured by SAFT, provides the spacecraft power during the ascent phase, orbital eclipse and when the power demand is in excess of the solar array capability. The NOAA-K satellite is in a 98 degree inclination, 7:30AM ascending node orbit. In this orbit the satellite experiences earth occultation only 25% of the year. This paper provides a brief overview of the power subsystem, followed by the battery design and qualification, the cell life cycle test data, and the performance during launch and in orbit.

  9. Design and Flight Performance of NOAA-K Spacecraft Batteries

    NASA Technical Reports Server (NTRS)

    Rao, Gopalakrishna M.; Chetty, P. R. K.; Spitzer, Tom; Chilelli, P.

    1999-01-01

    The US National Oceanic and Atmospheric Administration (NOAA) operates the Polar Operational Environmental Satellite (POES) spacecraft (among others) to support weather forecasting, severe storm tracking, and meteorological research by the National Weather Service (NWS). The latest in the POES series of spacecraft, named as NOAA-KLMNN, is in orbit and four more are in various phases of development. The NOAA-K spacecraft was launched on May 13, 1998. Each of these spacecraft carry three Nickel-Cadmium batteries designed and manufactured by Lockheed Martin. The battery, which consists of seventeen 40 Ah cells manufactured by SAFT, provides the spacecraft power during the ascent phase, orbital eclipse and when the power demand is in excess of the solar array capability. The NOAA-K satellite is in a 98 degree inclination, 7:30AM ascending node orbit. In this orbit the satellite experiences earth occultation only 25% of the year. This paper provides a brief overview of the power subsystem, followed by the battery design and qualification, the cell life cycle test data, and the performance during launch and in orbit.

  10. Considerations on Daylight Operation of 1.6-VERSUS 3.7-µm Channel on NOAA and Metop Satellites.

    NASA Astrophysics Data System (ADS)

    Rosenfeld, Daniel; Cattani, Elsa; Melani, Samantha; Levizzani, Vincenzo

    2004-06-01

    The transition from the Advanced Very High Resolution Radiometer (AVHRR)/2 to AVHRR/3 on NOAA polar orbiters was associated with a switching from daylight operations of the 3.7- to 1.6-µm wave band, while retaining 3.7 µm for nighttime operations. Investigations of the daylight applicability of the two channels suggest that the 1.6-µm wave band for daylight operations does not prove to be the better choice, at least for cloud applications. The 3.7-µm wave band is much less affected by surface contamination, and measures more faithfully and unambiguously the particle effective radius near cloud tops. The 1.6-µm radiation penetrates deeper into the cloud, supplying an integrated signal throughout the inner portions of the cloud, including surface contribution. Therefore, a synergetic use of the two wave bands can provide an improved retrieval of cloud microstructure and precipitation than from any of the channels alone. However, when one channel must be selected for the AVHRR/3, 3.7 µm performs much better for these applications. Both wave bands identify equally well microphysical features in the anvils of severe storms. For other applications, such as detection of ice and snow over vegetated surfaces and desert dust aerosols, the 1.6-µm wave band does not present clear advantages with respect to 3.7 µm, except that it can be used directly as is, whereas the 3.7-µm wave band has to be corrected for the thermal emission and water vapor absorption. Anyway, the Moderate Resolution Imaging Spectroradiometer (MODIS) can be used instead for the applications to the relatively slowly changing surface properties, while prioritizing the AVHRR for the faster varying atmospheric applications. Finally, the 3.7-mm wave band is more effective in detecting fog, fires, and hot spots. All these factors need to be considered by the operators of AVHRR/3 making a justifiable choice of the channels for the maximum benefit of the user community.

  11. Flight and ground tests of a GOES satellite time receiver for satellite communications applications

    NASA Technical Reports Server (NTRS)

    Swanson, R. L.; Nichols, S. A.

    1981-01-01

    A satellite time receiver was tested in various environmental conditions during the past year. The commercial receiver designed to work with the National Oceanic and Atmospheric Administration's (NOAA) Geostationary Operational Environmental Satellites (GOES). The test program included operation at low elevation during flight in a military cargo aircraft and long term comparison with laboratory standards. The GOES satellite time receiver offers an opportunity to provide easy wide area coverage synchronization at low cost.

  12. The Veterans Administration Experiments in Health Communications on the Applications Technology Satellite (ATS-6). Final Report.

    ERIC Educational Resources Information Center

    Caldwell, Kathryn S.

    Because many of the Veterans Administration hospitals in Appalachia are located great distances from medical teaching facilities, high powered communication satellites have been employed to facilitate quality two-way communication between medical personnel scattered throughout the region. To achieve diagnostic, therapeutic, and educational…

  13. Envisioning Improvements in NOAA Environmental Data Management

    NASA Astrophysics Data System (ADS)

    de la Beaujardiere, J.

    2012-12-01

    The US National Oceanic and Atmospheric Administration (NOAA) produces and maintains a huge, heterogeneous and continuously updated collection of environmental data from a diverse suite of observing systems including satellites, radars, aircraft, ships, in situ sensors, and animal tagging. These data are an irreplaceable national resource and must be discoverable, accessible, well-documented, and preserved for future users. Figure 1 illustrates the concept of operations for the desired target architecture. In this paper we describe current work toward these goals. The NOAA Environmental Data Management (EDM) Committee and other collaborators in the agency are developing an EDM Framework that includes over-arching Principles, Governance, Resources, Standards, Architecture, Assessment, and Infrastructure which apply broadly to many classes of data, and individual Data Lifecycles for particular data collections. See Figure 2. This Framework will inform, organize and support NOAA data management activities. NOAA Procedural Directives regarding archiving, data management planning, metadata, and data sharing by grantees are now being implemented; new Directives regarding data access and data citation are being developed. We have begun initial assessments of how data from our primary observing systems are managed. A Dashboard to measure and encourage progress in these areas is being prototyped. We have established an EDM Wiki to share best practices. Finally, participation in standards bodies and collaboration with other agencies and organizations is helping us to maximize compatibility and leverage existing work.Figure 1: Conceptual overview of the desired target state of NOAA data management activities. Not all activities are illustrated. Figure 2: High-level overview of the conceptual framework for environmental data management activities.

  14. 78 FR 5421 - Proposed Information Collection; Comment Request; NOAA's Teacher at Sea Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-25

    ... National Oceanic and Atmospheric Administration Proposed Information Collection; Comment Request; NOAA's Teacher at Sea Program AGENCY: National Oceanic and Atmospheric Administration (NOAA), Commerce. ACTION... Hammond, (301) 713-0353, or jennifer.hammond@noaa.gov . SUPPLEMENTARY INFORMATION: I. Abstract...

  15. 75 FR 63439 - Proposed Information Collection; Comment Request; NOAA Teacher at Sea Alumni Survey

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-15

    ... National Oceanic and Atmospheric Administration Proposed Information Collection; Comment Request; NOAA Teacher at Sea Alumni Survey AGENCY: National Oceanic and Atmospheric Administration (NOAA), Commerce... Jennifer.Hammond@noaa.gov . SUPPLEMENTARY INFORMATION: I. Abstract This request is for a renewal of...

  16. Satellites

    SciTech Connect

    Burns, J.A.; Matthews, M.S.

    1986-01-01

    The present work is based on a conference: Natural Satellites, Colloquium 77 of the IAU, held at Cornell University from July 5 to 9, 1983. Attention is given to the background and origins of satellites, protosatellite swarms, the tectonics of icy satellites, the physical characteristics of satellite surfaces, and the interactions of planetary magnetospheres with icy satellite surfaces. Other topics include the surface composition of natural satellites, the cratering of planetary satellites, the moon, Io, and Europa. Consideration is also given to Ganymede and Callisto, the satellites of Saturn, small satellites, satellites of Uranus and Neptune, and the Pluto-Charon system.

  17. Assessment of NOAA Processed OceanSat-2 Scatterometer Ocean Surface Vector Wind Products

    NASA Astrophysics Data System (ADS)

    Chang, P.; Jelenak, Z.; Soisuvarn, S.

    2011-12-01

    The Indian Space Research Organization (ISRO) launched the Oceansat-2 satellite on 23 September 2009. Oceansat-2 carries a radar scatterometer instrument (OSCAT) capable of measuring ocean surface vector winds (OSVW) and an ocean color monitor (OCM), which will retrieve sea spectral reflectance. Oceansat-2 is ISRO's second in a series of satellites dedicated to ocean research. It will provide continuity to the services and applications of the Oceansat-1 OCM data along with additional data from a Ku-band pencil beam scatterometer. Oceansat-2 is a three-axis, body stabilized spacecraft placed into a near circular sun-synchronous orbit, at an altitude of 720 kilometers (km), with an equatorial crossing time of around 1200 hours. ISRO, the National Oceanic and Atmospheric Administration (NOAA), the National Aeronautics and Space Administration (NASA) and the European Organization for the Exploitation of Meteorological Satellites (EUMETSAT) share the common goal of optimizing the quality and maximizing the utility of the Oceansat-2 data for the benefit of future global and regional scientific and operational applications. NOAA, NASA and EUMETSAT have been collaboratively working with ISRO on the assessment and analysis of OSCAT data to help facilitate continuation of QuikSCAT's decade-long Ku-band scatterometer data record. NOAA's interests are focused on the utilization of OSCAT data to support operational weather forecasting and warning in the marine environment. OSCAT has the potential to significantly mitigate the loss of NASA's QuikSCAT, which has negatively impacted NOAA's marine forecasting and warning services. Since March 2011 NOAA has been receiving near real time OSCAT measurements via EumetSat. NOAA has developed its own OSCAT wind processor. This processor produces ocean surface vector winds with resolution of 25km. Performance of NOAA OSCAT product will and its availability to larger user community will be presented and discussed.

  18. Evaluating ammonia (NH3) predictions in the NOAA National Air Quality Forecast Capability (NAQFC) using in situ aircraft, ground-level, and satellite measurements from the DISCOVER-AQ Colorado campaign

    NASA Astrophysics Data System (ADS)

    Battye, William H.; Bray, Casey D.; Aneja, Viney P.; Tong, Daniel; Lee, Pius; Tang, Youhua

    2016-09-01

    The U.S. National Oceanic and Atmospheric Administration (NOAA) is responsible for forecasting elevated levels of air pollution within the National Air Quality Forecast Capability (NAQFC). The current research uses measurements gathered in the DISCOVER-AQ Colorado field campaign and the concurrent Front Range Air Pollution and Photochemistry Experiment (FRAPPE) to test performance of the NAQFC CMAQ modeling framework for predicting NH3. The DISCOVER-AQ and FRAPPE field campaigns were carried out in July and August 2014 in Northeast Colorado. Model predictions are compared with measurements of NH3 gas concentrations and the NH4+ component of fine particulate matter concentrations measured directly by the aircraft in flight. We also compare CMAQ predictions with NH3 measurements from ground-based monitors within the DISCOVER-AQ Colorado geographic domain, and from the Tropospheric Emission Spectrometer (TES) on the Aura satellite. In situ aircraft measurements carried out in July and August of 2014 suggest that the NAQFC CMAQ model underestimated the NH3 concentration in Northeastern Colorado by a factor of ∼2.7 (NMB = -63%). Ground-level monitors also produced a similar result. Average satellite-retrieved NH3 levels also exceeded model predictions by a factor of 1.5-4.2 (NMB = -33 to -76%). The underestimation of NH3 was not accompanied by an underestimation of particulate NH4+, which is further controlled by factors including acid availability, removal rate, and gas-particle partition. The average measured concentration of NH4+ was close to the average predication (NMB = +18%). Seasonal patterns measured at an AMoN site in the region suggest that the underestimation of NH3 is not due to the seasonal allocation of emissions, but to the overall annual emissions estimate. The underestimation of NH3 varied across the study domain, with the largest differences occurring in a region of intensive agriculture near Greeley, Colorado, and in the vicinity of Denver. The

  19. NOAA/National Weather Service Operational Applications and Training of S-NPP Imagery and Products in Preparation for JPSS Mission Readiness

    NASA Astrophysics Data System (ADS)

    Motta, B.; Miller, S. D.; Folmer, M. J.; Lindstrom, S.; Nietfeld, D.; Stevens, E.; Dankers, T.; Baker, M.; Meier, B.; Mostek, A. J.; Hillger, D.

    2014-12-01

    The National Oceanic and Atmospheric Administration's (NOAA) National Weather Service (NWS), in collaboration with the NOAA National Environmental Satellite, Data and Information Service (NESDIS) and its Cooperative Institutes, have been prototyping various operational applications of Suomi-NPP satellite imagery and products. Some of these new satellite capabilities are NOAA and S-NPP mission unique and have resulted in new science applications for high impact events and related impact-based decision support services. From detection to monitoring to recovery-phase operations, S-NPP debuts new NOAA-unique capabilities for true color RGB imagery, Near Constant Contrast Day-Night Band Imagery, Flood/Ice Detection and Monitoring, Wildfire and Smoke Detection and Monitoring, Severe Weather Environmental and Storm Analysis, Dust Detection and Monitoring, and Global Infrared and Microwave Atmospheric Soundings. These newly demonstrated applications have been part of the research to operations transitions occurring in the NOAA Satellite Proving Ground (JPSS and GOES-R) and NOAA training developed as part of the Virtual Institute for Satellite Integration and Training (VISIT).

  20. Accuracy of total ozone retrieval from NOAA SBUV/2 measurements: Impact of instrument performance

    SciTech Connect

    Ahmad, Z.; Deland, M.T.; Cebula, R.P.; Weiss, H.; Wellemeyer, C.G.; Planet, W.G.; Lienesch, J.H.; Bowman, H.D.; Miller, A.J.; Nagatani, R.M. |

    1994-11-01

    The National Oceanic and Atmospheric Administration/National Environmental Satellite Data and Information Service (NOAA/NESDIS) has been collecting and evaluating the solar backscattered ultraviolet (SBUV/2) instrument data from NOAA 9 and NOAA 11 spacecraft since March 1985. Over 5 years (March 1985 to October 1990) of NOAA 9 (version 5.0) and over 4 years (January 1989 to June 1993) of NOAA 11 (version 6.0) reprocessed data are now available to the scientific community to study geophysical phenomena involving ozone. This paper examines the impact of the instrument performance on total ozone retrieval from the two instruments. We estimate that at the end of October 1990 the total postlaunch error for NOAA 9 due to instrument alone is -2.2%. A significant fraction of this error (-1.9%) is due to diffuser degradation which is not accounted for in the version 5 reprocessing. The estimate for NOAA 11 total postlaunch instrument error, at the end of June 1993, is -0.4%.

  1. 78 FR 48859 - Proposed Information Collection; Comment Request; 2013 NOAA Engagement Survey Tool

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-12

    ... Engagement Survey Tool AGENCY: National Oceanic and Atmospheric Administration (NOAA), Commerce. ACTION... Engagement Test, which the SAB recommended NOAA use for assessing engagement with constituents. One...

  2. NOAA seeks healthy budget

    NASA Astrophysics Data System (ADS)

    Bush, Susan

    The small, crowded room of the House side of the U.S. Capitol building belied the large budget of $1,611,991,000 requested for Fiscal Year 1992 by the National Oceanic and Atmospheric Administration. John A. Knauss, Undersecretary for Oceans and Atmosphere, U.S. Department of Commerce, delivered his testimony on February 28 before the House Appropriations Subcommittee on Commerce, Justice, and State, the Judiciary and Related Agencies. He told the subcommittee that the budget “attempts to balance the two goals of maintaining NOAA's position as an important science agency and addressing the serious budget problems that the government continues to face.”Climate and global change, modernization of the National Weather Service, and the Coastal Ocean Science program are NOAA's three ongoing, high-priority initiatives that the budget addresses. Also, three additional initiatives—a NOAA-wide program to improve environmental data management, President Bush's multiagency Coastal America initiative, and a seafood safety program administered jointly by NOAA and the Food and Drug Administration—are addressed.

  3. Tropospheric Airborne Meteorological Data Reporting (TAMDAR) Sensor Validation and Verification on National Oceanographic and Atmospheric Administration (NOAA) Lockheed WP-3D Aircraft

    NASA Technical Reports Server (NTRS)

    Tsoucalas, George; Daniels, Taumi S.; Zysko, Jan; Anderson, Mark V.; Mulally, Daniel J.

    2010-01-01

    As part of the National Aeronautics and Space Administration's Aviation Safety and Security Program, the Tropospheric Airborne Meteorological Data Reporting project (TAMDAR) developed a low-cost sensor for aircraft flying in the lower troposphere. This activity was a joint effort with support from Federal Aviation Administration, National Oceanic and Atmospheric Administration, and industry. This paper reports the TAMDAR sensor performance validation and verification, as flown on board NOAA Lockheed WP-3D aircraft. These flight tests were conducted to assess the performance of the TAMDAR sensor for measurements of temperature, relative humidity, and wind parameters. The ultimate goal was to develop a small low-cost sensor, collect useful meteorological data, downlink the data in near real time, and use the data to improve weather forecasts. The envisioned system will initially be used on regional and package carrier aircraft. The ultimate users of the data are National Centers for Environmental Prediction forecast modelers. Other users include air traffic controllers, flight service stations, and airline weather centers. NASA worked with an industry partner to develop the sensor. Prototype sensors were subjected to numerous tests in ground and flight facilities. As a result of these earlier tests, many design improvements were made to the sensor. The results of tests on a final version of the sensor are the subject of this report. The sensor is capable of measuring temperature, relative humidity, pressure, and icing. It can compute pressure altitude, indicated air speed, true air speed, ice presence, wind speed and direction, and eddy dissipation rate. Summary results from the flight test are presented along with corroborative data from aircraft instruments.

  4. 76 FR 41453 - Supplemental Environmental Impact Statement for Replacement of NOAA National Marine Fisheries...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-14

    ... of NOAA National Marine Fisheries Service Southwest Fisheries Science Center in La Jolla, CA AGENCY: National Marine Fisheries Service (NMFS), National Oceanic and Atmospheric Administration (NOAA), Commerce... the NOAA Southwest West Fisheries Science Center Building A and establishment of a...

  5. Data management in NOAA

    NASA Technical Reports Server (NTRS)

    Callicott, William M.

    1993-01-01

    The NOAA archives contain 150 terabytes of data in digital form, most of which are the high volume GOES satellite image data. There are 630 data bases containing 2,350 environmental variables. There are 375 million film records and 90 million paper records in addition to the digital data base. The current data accession rate is 10 percent per year and the number of users are increasing at a 10 percent annual rate. NOAA publishes 5,000 publications and distributes over one million copies to almost 41,000 paying customers. Each year, over six million records are key entered from manuscript documents and about 13,000 computer tapes and 40,000 satellite hardcopy images are entered into the archive. Early digital data were stored on punched cards and open reel computer tapes. In the late seventies, an advanced helical scan technology (AMPEX TBM) was implemented. Now, punched cards have disappeared, the TBM system was abandoned, most data stored on open reel tapes have been migrated to 3480 cartridges, many specialized data sets were distributed on CD ROM's, special archives are being copied to 12 inch optical WORM disks, 5 1/4 inch magneto-optical disks were employed for workstation applications, and 8 mm EXABYTE tapes are planned for major data collection programs. The rapid expansion of new data sets, some of which constitute large volumes of data, coupled with the need for vastly improved access mechanisms, portability, and improved longevity are factors which will influence NOAA's future systems approaches for data management.

  6. Data management in NOAA

    NASA Technical Reports Server (NTRS)

    Callicott, William M.

    1992-01-01

    NOAA has 11 terabytes of digital data stored on 240,000 computer tapes. There are an additional 100 terabytes (TB) of geostationary satellite data stored in digital form on specially configured SONY U-Matic video tapes at the University of Wisconsin. There are over 90,000,000 non-digital form records in manuscript, film, printed, and chart form which are not easily accessible. The three NOAA Data Centers service 6,000 requests per year and publish 5,000 bulletins which are distributed to 40,000 subscribers. Seventeen CD-ROM's have been produced. Thirty thousand computer tapes containing polar satellite data are being copied to 12 inch WORM optical disks for research applications. The present annual data accumulation rate of 10 TB will grow to 30 TB in 1994 and to 100 TB by the year 2000. The present storage and distribution technologies with their attendant support systems will be overwhelmed by these increases if not improved. Increased user sophistication coupled with more precise measurement technologies will demand better quality control mechanisms, especially for those data maintained in an indefinite archive. There is optimism that the future will offer improved media technologies to accommodate the volumes of data. With the advanced technologies, storage and performance monitoring tools will be pivotal to the successful long-term management of data and information.

  7. U.S. begins merging satellite programs

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    The U.S. government has moved closer to merging and streamlining two separate environmental satellite programs operated by the Department of Defense (DOD) and the National Oceanic and Atmospheric Administration (NOAA).Earlier this month, the government installed the Integrated Polar Acquisition and Control Subsystem in a Commerce Department facility in Suitland, Maryland. Beginning next summer, the system will operate the two environmental satellites in DOD's Defense Meteorological Satellite Program. Under merger plans, NOAA will be responsible for operating the DOD satellite system as well as its own. The elimination of separate systems could save $678 million through fiscal year 1999, according to James Mannen, Director of the federal government's Integrated Program Office

  8. Future of Environmental Satellite Program Uncertain

    NASA Astrophysics Data System (ADS)

    Zielinski, Sarah

    2006-04-01

    The National Polar-orbiting environmental Satellite System (NPOESS), over budget and behind schedule, is undergoing a mandatory review process that could leave the program cut back or cancelled. However, the outcome of the review will not be known until June, witnesses testified at a 30 March hearing before the U.S. Senate Commerce, Science, and Transportation Subcommittee on Disaster Prevention and Prediction. NPOESS is a set of six satellites that are intended to replace the U.S. National Oceanic and Atmospheric Administration's (NOAA) Polar-orbiting Operational environmental Satellite (POES) program and the U.S. Department of Defense (DOD) Defense Meteorological Satellite Program, which collects weather data for the military. POeS supports many of NOAA's environmental monitoring programs.

  9. Mapping global land surface albedo from NOAA AVHRR

    NASA Astrophysics Data System (ADS)

    Csiszar, I.; Gutman, G.

    1999-03-01

    A set of algorithms is combined for a simple derivation of land surface albedo from measurements of reflected visible and near-infrared radiation made by the advanced very high resolution radiometer (AVHRR) onboard the National Oceanic and Atmospheric Administration (NOAA) polar orbiting satellites. The system consists of a narrowband-to-broadband conversion and bidirectional correction at the top of the atmosphere and an atmospheric correction. We demonstrate the results with 1 month worth of data from the NOAA National Environmental Satellite, Data, and Information Service (NESDIS) global vegetation index (GVI) weekly data set and the NOAA/NASA Pathfinder Atmosphere (PATMOS) project daily data. Error analysis of the methodology indicates that the surface albedo can be retrieved with 10-15% relative accuracy. Monthly albedo maps derived from September 1989 GVI and PATMOS data agree well except for small discrepancies attributed mainly to different preprocessing and residual atmospheric effects. A 5-year mean September map derived from the GVI multiannual time series is consistent with that derived from low-resolution Earth Radiation Budget Experiment data as well as with a September map compiled from ground observations and used in many numerical weather and climate models. Instantaneous GVI-derived albedos were found to be consistent with surface albedo measurements over various surface types. The discrepancies found can be attributed to differences in areal coverage and representativeness of the satellite and ground data. The present pilot study is a prototype for a routine real-time production of high-resolution global surface albedo maps from NOAA AVHRR Global Area Coverage (GAC) data.

  10. 77 FR 61573 - Science Advisory Board Satellite Task Force; Availability of Draft Report and Request for Comments

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-10

    ... National Oceanic and Atmospheric Administration RIN 0648-XC276 Science Advisory Board Satellite Task Force...) publishes this notice on behalf of the NOAA Science Advisory Board (SAB) to announce the availability of the... Environmental Satellite, Data, and Information Service (NESDIS) asked the SAB to review the existing and...

  11. Joint Polar Satellite System (JPSS) Common Ground System (CGS) Block 3.0 Communications Strategies

    NASA Astrophysics Data System (ADS)

    Miller, S. W.; Grant, K. D.; Ottinger, K.

    2015-12-01

    The National Oceanic and Atmospheric Administration (NOAA) and National Aeronautics and Space Administration (NASA) are jointly acquiring the next-generation civilian weather and environmental satellite system: the Joint Polar Satellite System (JPSS). The JPSS program is the follow-on for both space and ground systems to the Polar-orbiting Operational Environmental Satellites (POES) managed by NOAA. The JPSS satellites will carry a suite of sensors designed to collect meteorological, oceanographic, climatological and geophysical observations of the Earth. The ground processing system for JPSS is known as the JPSS Common Ground System (JPSS CGS). Developed and maintained by Raytheon Intelligence, Information and Services (IIS), the CGS is a globally distributed, multi-mission system serving NOAA, NASA and their national and international partners. The CGS has demonstrated its scalability and flexibility to incorporate multiple missions efficiently and with minimal cost, schedule and risk, while strengthening global partnerships in weather and environmental monitoring. In a highly successful international partnership between NOAA and the European Organisation for the Exploitation of Meteorological Satellites (EUMETSAT), the CGS currently provides data routing from McMurdo Station in Antarctica to the EUMETSAT processing center in Darmstadt, Germany. Continuing and building upon that partnership, NOAA and EUMETSAT are collaborating on the development of a new path forward for the 2020's. One approach being explored is a concept of operations where each organization shares satellite downlink resources with the other. This paper will describe that approach, as well as modeling results that demonstrate its feasibility and expected performance.

  12. Chlorofluorocarbon-11, -12, and nitrous oxide measurements at the NOAA/GMCC (National Oceanic and Atmospheric Administration/Geophysical Monitoring for Climatic Change) baseline stations (16 September 1973 to 31 December 1979)

    SciTech Connect

    Thompson, T.M.; Komhyr, W.D.; Dutton, E.G.

    1985-06-01

    The National Oceanic and Atmospheric Administration's Air Resources Laboratory (NOAA/ARL) began measuring chlorofluorocarbon-11 in 1973 because of the interest in this anthropogenic pollutant as a tracer for the study of mass transfer processes in the atmosphere and the oceans. Interest in chlorofluorocarbon-11, and in chlorofluorocarbon-12 and nitrous oxide, was heightened during the mid-1970's with the realization that these compounds can be decomposed by photolysis in the stratosphere to cause stratospheric ozone destruction by released chlorine atoms. Measurements of chlorofluorocarbon-12 and nitrous oxide were begun by NOAA/ARL in 1977. The report describes the evolution of the chlorofluorocarbon and N/sub 2/O measurement programs through 1979. By that time, the sample collection and analysis techniques became standardized, and have remained the same to the present.

  13. Automation of orbit determination functions for National Aeronautics and Space Administration (NASA)-supported satellite missions

    NASA Technical Reports Server (NTRS)

    Mardirossian, H.; Beri, A. C.; Doll, C. E.

    1990-01-01

    The Flight Dynamics Facility (FDF) at Goddard Space Flight Center (GSFC) provides spacecraft trajectory determination for a wide variety of National Aeronautics and Space Administration (NASA)-supported satellite missions, using the Tracking Data Relay Satellite System (TDRSS) and Ground Spaceflight and Tracking Data Network (GSTDN). To take advantage of computerized decision making processes that can be used in spacecraft navigation, the Orbit Determination Automation System (ODAS) was designed, developed, and implemented as a prototype system to automate orbit determination (OD) and orbit quality assurance (QA) functions performed by orbit operations. Based on a machine-resident generic schedule and predetermined mission-dependent QA criteria, ODAS autonomously activates an interface with the existing trajectory determination system using a batch least-squares differential correction algorithm to perform the basic OD functions. The computational parameters determined during the OD are processed to make computerized decisions regarding QA, and a controlled recovery process is activated when the criteria are not satisfied. The complete cycle is autonomous and continuous. ODAS was extensively tested for performance under conditions resembling actual operational conditions and found to be effective and reliable for extended autonomous OD. Details of the system structure and function are discussed, and test results are presented.

  14. Automation of orbit determination functions for National Aeronautics and Space Administration (NASA)-supported satellite missions

    NASA Technical Reports Server (NTRS)

    Mardirossian, H.; Heuerman, K.; Beri, A.; Samii, M. V.; Doll, C. E.

    1989-01-01

    The Flight Dynamics Facility (FDF) at Goddard Space Flight Center (GSFC) provides spacecraft trajectory determination for a wide variety of National Aeronautics and Space Administration (NASA)-supported satellite missions, using the Tracking Data Relay Satellite System (TDRSS) and Ground Spaceflight and Tracking Data Network (GSTDN). To take advantage of computerized decision making processes that can be used in spacecraft navigation, the Orbit Determination Automation System (ODAS) was designed, developed, and implemented as a prototype system to automate orbit determination (OD) and orbit quality assurance (QA) functions performed by orbit operations. Based on a machine-resident generic schedule and predetermined mission-dependent QA criteria, ODAS autonomously activates an interface with the existing trajectory determination system using a batch least-squares differential correction algorithm to perform the basic OD functions. The computational parameters determined during the OD are processed to make computerized decisions regarding QA, and a controlled recovery process isactivated when the criteria are not satisfied. The complete cycle is autonomous and continuous. ODAS was extensively tested for performance under conditions resembling actual operational conditions and found to be effective and reliable for extended autonomous OD. Details of the system structure and function are discussed, and test results are presented.

  15. An Education Plan for NOAA

    ERIC Educational Resources Information Center

    National Oceanic and Atmospheric Administration, 2004

    2004-01-01

    U.S. Secretary of Commerce Donald L. Evans has said, "Environmental Literacy is critical to enable learners of all ages to pursue knowledge, produce advanced products, and enhance personal growth." The National Oceanic and Atmospheric Administration (NOAA) recognizes it has a role and a responsibility to the nation in advancing education leading…

  16. Direct comparison of transient radiation belt topology and dynamics in 1991 based on measurements onboard Mir space station and NOAA satellite.

    PubMed

    Shurshakov, V A; Huston, S L; Dachev TsP; Petrov, V M; Ivanov YuV; Semkova, J V

    1998-01-01

    In March 1991 the CRRES spacecraft measured a new transient radiation belt resulting from a solar proton event and subsequent geomagnetic disturbance. The presence of this belt was also noted by dosimeter-radiometers aboard the Mir space station (approx. 400 km, 51 degrees orbit) and by particle telescopes on the NOAA-10 spacecraft (850 km, 98 degrees). This event provides a unique opportunity to compare particle flux and dose measurements made by different instruments in different orbits under changing conditions. We present here a comparison of the measurements made by the different detectors. We discuss the topology and dynamics of the transient radiation belt over a period of more than one year.

  17. Instrument interface description for NOAA 2000 instruments with European morning spacecraft and/or NOAA-OPQ spacecraft

    NASA Technical Reports Server (NTRS)

    1993-01-01

    The purpose is to describe at a high level the common interface provisions and constraints placed on the NOAA-2000 instruments and the interfacing spacecraft elements in the following areas: electrical interface, mechanical interface, thermal interface, magnetic interface, electromagnetic compatibility, structural/mechanical environmental interface, contamination control, and the ionizing radiation environment. The requirements reflect the fact that these instruments must be compatible with a number of different polar orbiting satellite vehicles including the NOAA-OPQ satellites and the EUMETSAT METOP satellites.

  18. IASI Products Processing System at the NOAA/NESDIS

    NASA Astrophysics Data System (ADS)

    Sharma, A. K.

    2010-12-01

    The Infrared Atmospheric Sounding Interferometer (IASI), is a hyperspectral infrared sounder residing on the European Space Agency’s (ESA) MetOp series of polar orbiting satellites and has 8461 spectral channels, aligned in three bands between 3.62 and 15.5 micron, with a spectral resolution of 0.5 cm-1 , after apodisation. IASI Level 1C data are made available to the National Oceanic and Atmospheric Administration (NOAA) National Environmental Satellite Data and Information Service (NESDIS) through the International Joint Polar-Orbiting Operational Satellite System (IJPS) agreement. The first priority of the IASI Product Processing System (PPS) at the NOAA/NESDIS is to generate radiance products that are produced using Level 1C data, which are ingested in a pipeline mode from the European Organization for the Exploitation Meteorological Satellites (EUMETSAT) via General File Transmission (GFT) protocol, applied to spectral and spatial sub-setting. IASI is a multi-purpose sounding instrument designed for the next generation infrared sounder having element of operational sounding system which provides global measurements with high vertical resolution and accuracy of temperature, water vapor, trace-gases such as ozone, nitrous oxide, carbon dioxide, and methane, as well as surface temperature, surface emissivity, and cloud characteristics. IASI PPS system generates Level 1C Thinned (L1CT) radiance and Level 2 profile products. Currently the IASI level 2 products from MetOp-2 satellite include temperature and humidity profiles, trace gases, and the cloud cleared radiances (CCR) on a global scale and these products are available to the operational user community. In an effort to ensure consistent levels of service and quality assurance for these suites of products, the Office of Satellite and Products Operation (OSPO) is implementing and executing new, innovative tools to better monitor performance and quality of the operational IASI products being generated. The

  19. Validation of the Version 1 NOAA/NASA Pathfinder Sea Surface Temperature Data Set

    NASA Technical Reports Server (NTRS)

    Smith, Elizabeth A.

    1998-01-01

    A high-resolution, global satellite-derived sea surface temperature (SST) data set called Pathfinder, from the Advanced Very High Resolution Radiometer (AVHRR) aboard the NOAA Polar Orbiters, is available from the Jet Propulsion Laboratory Physical Oceanography Distributed Active Archive Center (JPL PO.DAAC). Suitable for research as well as education, the Pathfinder SST data set is a result of a collaboration between the National Oceanographic and Atmospheric Administration (NOAA), the National Aeronautics and Space Administration (NASA) and investigators at several universities. NOAA and NASA are the sponsors of the Pathfinder Program, which takes advantage of currently archived Earth science data from satellites. Where necessary, satellite sensors have been intercalibrated, algorithms improved and processing procedures revised, in order to produce long time-series, global measurements of ocean, land and atmospheric properties necessary for climate research. Many Pathfinder data sets are available to researchers now, nearly a decade before the first launch of NASA's Earth Observing System (EOS). The lessons learned from the Pathfinder programs will facilitate the processing and management of terabytes of data from EOS. The Oceans component of Pathfinder has undertaken to reprocess all Global Area Coverage (GAC) data acquired by the 5-channel AVHRRs since 1981. The resultant data products are consistent and stably calibrated [Rao, 1993a, Rao, 1993b, Brown et al., 1993], Earth-gridded SST fields at a variety of spatial and temporal resolutions.

  20. 76 FR 55362 - Proposed Information Collection; Comment Request; NOAA Customer Surveys

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-07

    ... National Oceanic and Atmospheric Administration Proposed Information Collection; Comment Request; NOAA Customer Surveys AGENCY: National Oceanic and Atmospheric Administration (NOAA), Commerce. ACTION: Notice... instrument and instructions should be directed to Sarah Brabson, (301) 628-5751 or...

  1. 78 FR 59339 - Intracoastal Waterway Route “Magenta Line” on NOAA Nautical Charts

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-26

    ... National Oceanic and Atmospheric Administration Intracoastal Waterway Route ``Magenta Line'' on NOAA Nautical Charts AGENCY: National Ocean Service, National Oceanic and Atmospheric Administration. (NOAA... without changes or updates. See more information on the history of the Intracoastal Waterway Route at...

  2. Joint Polar Satellite System: The United States next generation civilian polar-orbiting environmental satellite system

    NASA Astrophysics Data System (ADS)

    Goldberg, Mitchell D.; Kilcoyne, Heather; Cikanek, Harry; Mehta, Ajay

    2013-12-01

    next generation polar-orbiting environmental satellite system, designated as the Joint Polar Satellite System (JPSS), was proposed in February 2010, as part of the President's Fiscal Year 2011 budget request, to be the Civilian successor to the restructured National Polar-Orbiting Operational Environmental Satellite System (NPOESS). Beginning 1 October 2013, the JPSS baseline consists of a suite of five instruments: advanced microwave and infrared sounders critical for short- and medium-range weather forecasting; an advanced visible and infrared imager needed for environmental assessments such as snow/ice cover, droughts, volcanic ash, forest fires and surface temperature; ozone sensor primarily used for global monitoring of ozone and input to weather and climate models; and an Earth radiation budget sensor for monitoring the Earth's energy budget. NASA will fund the Earth radiation budget sensor and the ozone limb sensor for the second JPSS operational satellite--JPSS-2. JPSS is implemented through a partnership between NOAA and the U.S. National Aeronautics and Space Administration (NASA). NOAA is responsible for overall funding; maintaining the high-level requirements; establishing international and interagency partnerships; developing the science and algorithms, and user engagement; NOAA also provides product data distribution and archiving of JPSS data. NASA's role is to serve as acquisition Center of Excellence, providing acquisition of instruments, spacecraft and the multimission ground system, and early mission implementation through turnover to NOAA for operations.

  3. Can One Satellite Data Set Validation Another? Validation of Envisat SCIAMACHY Data by Comparisons with NOAA-16 SBUV/2 and ERS-2 GOME

    NASA Technical Reports Server (NTRS)

    Hilsenrath, E.; Bojkov, B. R.; Labow, G.; Weber, M.; Burrows, J.

    2004-01-01

    Validation of satellite data remains a high priority for the construction of climate data sets. Traditionally ground based measurements have provided the primary comparison data for validation. For some atmospheric parameters such as ozone, a thoroughly validated satellite data record can be used to validate a new instrument s data product in addition to using ground based data. Comparing validated data with new satellite data has several advantages; availability of much more data, which will improve precision, larger geographical coverage, and the footprints are closer in size, which removes uncertainty due to different observed atmospheric volumes. To demonstrate the applicability and some limitations of this technique, observations from the newly launched SCIAMACHY instrument were compared with the NOM-16 SBW/2 and ERS-2 GOME instruments. The SBW/2 data had all ready undergone validation by comparing to the total ozone ground network. Overall the SCIAMACHY data were found to low by 3% with respect to satellite data and 1% low with respect to ground station data. There appears to be seasonal and or solar zenith angle dependences in the comparisons with SBW/2 where differences increase with higher solar zenith angles. It is known that accuracies in both satellite and ground based total ozone algorithms decrease at high solar zenith angles. There is a strong need for more accurate measurement from and the ground under these conditions. At the present time SCIAMACHY data are limited and longer data set with more coverage in both hemispheres is needed to unravel the cause of these differences.

  4. Direct comparison of transient radiation belt topology and dynamics in 1991 based on measurements onboard Mir space station and NOAA satellite.

    PubMed

    Shurshakov, V A; Huston, S L; Dachev TsP; Petrov, V M; Ivanov YuV; Semkova, J V

    1998-01-01

    In March 1991 the CRRES spacecraft measured a new transient radiation belt resulting from a solar proton event and subsequent geomagnetic disturbance. The presence of this belt was also noted by dosimeter-radiometers aboard the Mir space station (approx. 400 km, 51 degrees orbit) and by particle telescopes on the NOAA-10 spacecraft (850 km, 98 degrees). This event provides a unique opportunity to compare particle flux and dose measurements made by different instruments in different orbits under changing conditions. We present here a comparison of the measurements made by the different detectors. We discuss the topology and dynamics of the transient radiation belt over a period of more than one year. PMID:11542782

  5. Validation of GOES-Derived Surface Radiation Using NOAA's Physical Retrieval Method

    SciTech Connect

    Habte, A.; Sengupta, M.; Wilcox, S.

    2013-01-01

    This report was part of a multiyear collaboration with the University of Wisconsin and the National Oceanic and Atmospheric Administration (NOAA) to produce high-quality, satellite-based, solar resource datasets for the United States. High-quality, solar resource assessment accelerates technology deployment by making a positive impact on decision making and reducing uncertainty in investment decisions. Satellite-based solar resource datasets are used as a primary source in solar resource assessment. This is mainly because satellites provide larger areal coverage and longer periods of record than ground-based measurements. With the advent of newer satellites with increased information content and faster computers that can process increasingly higher data volumes, methods that were considered too computationally intensive are now feasible. One class of sophisticated methods for retrieving solar resource information from satellites is a two-step, physics-based method that computes cloud properties and uses the information in a radiative transfer model to compute solar radiation. This method has the advantage of adding additional information as satellites with newer channels come on board. This report evaluates the two-step method developed at NOAA and adapted for solar resource assessment for renewable energy with the goal of identifying areas that can be improved in the future.

  6. NOAA & Academia Partnership Building Conference. Highlights (3rd, Washington, DC, November 14-15, 2001).

    ERIC Educational Resources Information Center

    National Oceanic and Atmospheric Administration (DOC), Silver Spring, MD.

    In November 2001 the National Oceanic and Atmospheric Administration (NOAA) hosted the third NOAA and Academia Partnership to evaluate, maintain, and expand on efforts to optimize NOAA-university cooperation. Close partnership between the NOAA and U.S. universities has produced many benefits for the U.S. economy and the environment. Based on the…

  7. 78 FR 26616 - Draft NOAA Five Year Research and Development Plan

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-07

    ... NOAA Five Year Research and Development Plan AGENCY: National Oceanic and Atmospheric Administration (NOAA), Department of Commerce (DOC). ACTION: Draft NOAA Five Year Research and Development Plan for Public Review. SUMMARY: NOAA's draft Five Year Research and Development Plan is available for...

  8. Solutions Network Formulation Report. Improving NOAA's Tides and Currents Through Enhanced Data Inputs from NASA's Ocean Surface Topography Mission

    NASA Technical Reports Server (NTRS)

    Guest, DeNeice C.

    2006-01-01

    The Nation uses water-level data for a variety of practical purposes, including hydrography, nautical charting, maritime navigation, coastal engineering, and tsunami and storm surge warnings (NOAA, 2002; Digby et al., 1999). Long-term applications include marine boundary determinations, tidal predictions, sea-level trend monitoring, oceanographic research, and climate research. Accurate and timely information concerning sea-level height, tide, and ocean current is needed to understand their impact on coastal management, disaster management, and public health. Satellite altimeter data products are currently used by hundreds of researchers and operational users to monitor ocean circulation and to improve scientists understanding of the role of the oceans in climate and weather. The NOAA (National Oceanic and Atmospheric Administration) National Ocean Service has been monitoring sea-level variations for many years (NOAA, 2006). NOAA s Tides & Currents DST (decision support tool, managed by the Center for Operational Oceanographic Products and Services, is the portal to a vast collection of oceanographic and meteorological data (historical and real-time), predictions, and nowcasts and forecasts. This report assesses the capacity of NASA s satellite altimeter data to meet societal decision support needs through incorporation into NOAA s Tides & Currents.

  9. NOAA's National Snow Analyses

    NASA Astrophysics Data System (ADS)

    Carroll, T. R.; Cline, D. W.; Olheiser, C. M.; Rost, A. A.; Nilsson, A. O.; Fall, G. M.; Li, L.; Bovitz, C. T.

    2005-12-01

    NOAA's National Operational Hydrologic Remote Sensing Center (NOHRSC) routinely ingests all of the electronically available, real-time, ground-based, snow data; airborne snow water equivalent data; satellite areal extent of snow cover information; and numerical weather prediction (NWP) model forcings for the coterminous U.S. The NWP model forcings are physically downscaled from their native 13 km2 spatial resolution to a 1 km2 resolution for the CONUS. The downscaled NWP forcings drive an energy-and-mass-balance snow accumulation and ablation model at a 1 km2 spatial resolution and at a 1 hour temporal resolution for the country. The ground-based, airborne, and satellite snow observations are assimilated into the snow model's simulated state variables using a Newtonian nudging technique. The principle advantages of the assimilation technique are: (1) approximate balance is maintained in the snow model, (2) physical processes are easily accommodated in the model, and (3) asynoptic data are incorporated at the appropriate times. The snow model is reinitialized with the assimilated snow observations to generate a variety of snow products that combine to form NOAA's NOHRSC National Snow Analyses (NSA). The NOHRSC NSA incorporate all of the available information necessary and available to produce a "best estimate" of real-time snow cover conditions at 1 km2 spatial resolution and 1 hour temporal resolution for the country. The NOHRSC NSA consist of a variety of daily, operational, products that characterize real-time snowpack conditions including: snow water equivalent, snow depth, surface and internal snowpack temperatures, surface and blowing snow sublimation, and snowmelt for the CONUS. The products are generated and distributed in a variety of formats including: interactive maps, time-series, alphanumeric products (e.g., mean areal snow water equivalent on a hydrologic basin-by-basin basis), text and map discussions, map animations, and quantitative gridded products

  10. NOAA's Scientific Data Stewardship Program

    NASA Astrophysics Data System (ADS)

    Bates, J. J.

    2004-12-01

    The NOAA mission is to understand and predict changes in the Earth's environment and conserve and manage coastal and marine resources to meet the Nation's economic, social and environmental needs. NOAA has responsibility for long-term archiving of the United States environmental data and has recently integrated several data management functions into a concept called Scientific Data Stewardship. Scientific Data Stewardship a new paradigm in data management consisting of an integrated suite of functions to preserve and exploit the full scientific value of NOAA's, and the world's, environmental data These functions include careful monitoring of observing system performance for long-term applications, the generation of authoritative long-term climate records from multiple observing platforms, and the proper archival of and timely access to data and metadata. NOAA has developed a conceptual framework to implement the functions of scientific data stewardship. This framework has five objectives: 1) develop real-time monitoring of all satellite observing systems for climate applications, 2) process large volumes of satellite data extending up to decades in length to account for systematic errors and to eliminate artifacts in the raw data (referred to as fundamental climate data records, FCDRs), 3) generate retrieved geophysical parameters from the FCDRs (referred to as thematic climate data records TCDRs) including combining observations from all sources, 4) conduct monitoring and research by analyzing data sets to uncover climate trends and to provide evaluation and feedback for steps 2) and 3), and 5) provide archives of metadata, FCDRs, and TCDRs, and facilitate distribution of these data to the user community. The term `climate data record' and related terms, such as climate data set, have been used for some time, but the climate community has yet to settle on a concensus definition. A recent United States National Academy of Sciences report recommends using the

  11. NOAA-NASA Coastal Zone Color Scanner reanalysis effort.

    PubMed

    Gregg, Watson W; Conkright, Margarita E; O'Reilly, John E; Patt, Frederick S; Wang, Menghua H; Yoder, James A; Casey, Nancy W

    2002-03-20

    Satellite observations of global ocean chlorophyll span more than two decades. However, incompatibilities between processing algorithms prevent us from quantifying natural variability. We applied a comprehensive reanalysis to the Coastal Zone Color Scanner (CZCS) archive, called the National Oceanic and Atmospheric Administration and National Aeronautics and Space Administration (NOAA-NASA) CZCS reanalysis (NCR) effort. NCR consisted of (1) algorithm improvement (AI), where CZCS processing algorithms were improved with modernized atmospheric correction and bio-optical algorithms and (2) blending where in situ data were incorporated into the CZCS AI to minimize residual errors. Global spatial and seasonal patterns of NCR chlorophyll indicated remarkable correspondence with modern sensors, suggesting compatibility. The NCR permits quantitative analyses of interannual and interdecadal trends in global ocean chlorophyll.

  12. Market scenarios and alternative administrative frameworks for US educational satellite systems

    NASA Technical Reports Server (NTRS)

    Walkmeyer, J. E., Jr.; Morgan, R. P.; Singh, J. P.

    1975-01-01

    Costs and benefits of developing an operational educational satellite system in the U.S. are analyzed. Scenarios are developed for each educational submarket and satellite channel and ground terminal requirements for a large-scale educational telecommunications system are estimated. Alternative organizational frameworks for such a system are described.

  13. Detection and mapping vegetation cover based on the Spectral Angle Mapper algorithm using NOAA AVHRR data

    NASA Astrophysics Data System (ADS)

    Yagoub, Houria; Belbachir, Ahmed Hafid; Benabadji, Noureddine

    2014-06-01

    Satellite data, taken from the National Oceanic and Atmospheric Administration (NOAA) have been proposed and used for the detection and the cartography of vegetation cover in North Africa. The data used were acquired at the Analysis and Application of Radiation Laboratory (LAAR) from the Advanced Very High Resolution Radiometer (AVHRR) sensor of 1 km spatial resolution. The Spectral Angle Mapper Algorithm (SAM) is used for the classification of many studies using high resolution satellite data. In the present paper, we propose to apply the SAM algorithm to the moderate resolution of the NOAA AVHRR sensor data for classifying the vegetation cover. This study allows also exploiting other classification methods for the low resolution. First, the normalized difference vegetation index (NDVI) is extracted from two channels 1 and 2 of the AVHRR sensor. In order to obtain an initial density representation of vegetal formation distribution, a methodology, based on the combination between the threshold method and the decision tree, is used. This combination is carried out due to the lack of accurate data related to the thresholds that delimit each class. In a second time, and based on spectral behavior, a vegetation cover map is developed using SAM algorithm. Finally, with the use of low resolution satellite images (NOAA AVHRR) and with only two channels, it is possible to identify the most dominant species in North Africa such as: forests of the Liege oaks, other forests, cereal's cultivation, steppes and bar soil.

  14. Latest developments of geostationary microwave sounder technologies for NOAA's mission

    NASA Astrophysics Data System (ADS)

    Bajpai, Shyam; Madden, Michael; Chu, Donald; Yapur, Martin

    2006-12-01

    The National Oceanic and Atmospheric Administration (NOAA) have been flying microwave sounders since 1975 on Polar Operational Environmental Satellites (POES). Microwave observations have made significant contributions to the understanding of the atmosphere and earth surface. This has helped in improving weather and storm tracking forecasts. However, NOAA's Geostationary Operational Environmental Satellites (GOES) have microwave requirements that can not be met due to the unavailability of proven technologies. Several studies of a Geostationary Microwave Sounder (GMS) have been conducted. Among those, are the Geostationary Microwave Sounder (GEM) that uses a mechanically steered solid dish antenna and the Geostationary Synthetic Thinned Aperture Radiometer (GeoSTAR) that utilizes a sparse aperture array. Both designs take advantage of the latest developments in sensor technology. NASA/Jet Propulsion Lab (JPL) has recently successfully built and tested a prototype ground-based GeoSTAR at 50 GHz frequency with promising test results. Current GOES IR Sounders are limited to cloud top observations. Therefore, a sounding suite of IR and Microwave should be able to provide observations under clear as well as cloudy conditions all the time. This paper presents the results of the Geostationary Microwave Sounder studies, user requirements, frequencies, technologies, limitations, and implementation strategies.

  15. NASA/NOAA/AMS Earth Science Electronic Theater

    NASA Technical Reports Server (NTRS)

    Hasler, A. F.; Einaudi, Franco (Technical Monitor)

    2001-01-01

    The NASA/NOAA/AMS Earth Science Electronic Theater presents Earth science observations and visualizations in a historical perspective. Fly in from outer space to Florida and the KSC Visitor's Center. Go back to the early weather satellite images from the 1960s see them contrasted with the latest International global satellite weather movies including killer hurricanes & tornadic thunderstorms. See the latest spectacular images from NASA and NOAA remote sensing missions like GOES, NOAA, TRMM, SeaWiFS, Landsat7, & new Terra which will be visualized with state-of-the art tools.

  16. Budget Realities Could Put Damper on Some NOAA Programs

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    2010-12-01

    The fall meeting of the National Oceanic and Atmospheric Administration's (NOAA) Science Advisory Board was in part a study in contrasts: discussing the agency's vision, goals, and recent successes while facing the harsh economic and political landscape that will make it difficult for NOAA to receive sufficient funding for the current fiscal year (FY 2011) to do little more than tread water toward reaching some of those goals. During a 30 November presentation, NOAA administrator Jane Lubchenco provided an overview of NOAA's Next Generation Strategic Plan. The document focuses on four long-term goals: climate adaptation and mitigation, a weather-ready nation, resilient coastal communities and economies, and healthy oceans.

  17. NOAA Enterprise Archive Access Tool

    NASA Astrophysics Data System (ADS)

    Rank, R. H.; McCormick, S.; Cremidis, C.

    2010-12-01

    A challenge for any consumer of National Oceanic and Atmospheric Administration (NOAA) environmental data archives is that the disparate nature of these archives makes it difficult for consumers to access data in a unified manner. If it were possible for consumers to have seamless access to these archives, they would be able to better utilize the data and thus maximize the return on investment for NOAA’s archival program. When unified data access is coupled with sophisticated data querying and discovery techniques, it will be possible to provide consumers with access to richer data sets and services that extend the use of key NOAA data. Theoretically, there are two ways that unified archive access may be achieved. The first approach is to develop a single archive or archiving standard that would replace the current NOAA archives. However, the development of such an archive would pose significant technical and administrative challenges. The second approach is to develop a middleware application that would provide seamless access to all existing archives, in effect allowing each archive to exist “as is” but providing a translation service for the consumer. This approach is deemed more feasible from an administrative and technical standpoint; however, it still presents unique technical challenges due to the disparate architectures that exist across NOAA archives. NOAA has begun developing the NEAAT. The purpose of NEAAT is to provide a middleware and a simple standardized API between NOAA archives and data consumers. It is important to note that NEAAT serves two main purposes: 1) To provide a single application programming interface (API) that enables designated consumers to write their own custom applications capable of searching and acquiring data seamlessly from multiple NOAA archives. 2) To allow archive managers to expose their data to consumers in conjunction with other NOAA resources without modifying their archiving systems or way of presenting data

  18. NOAA Big Data Partnership RFI

    NASA Astrophysics Data System (ADS)

    de la Beaujardiere, J.

    2014-12-01

    In February 2014, the US National Oceanic and Atmospheric Administration (NOAA) issued a Big Data Request for Information (RFI) from industry and other organizations (e.g., non-profits, research laboratories, and universities) to assess capability and interest in establishing partnerships to position a copy of NOAA's vast data holdings in the Cloud, co-located with easy and affordable access to analytical capabilities. This RFI was motivated by a number of concerns. First, NOAA's data facilities do not necessarily have sufficient network infrastructure to transmit all available observations and numerical model outputs to all potential users, or sufficient infrastructure to support simultaneous computation by many users. Second, the available data are distributed across multiple services and data facilities, making it difficult to find and integrate data for cross-domain analysis and decision-making. Third, large datasets require users to have substantial network, storage, and computing capabilities of their own in order to fully interact with and exploit the latent value of the data. Finally, there may be commercial opportunities for value-added products and services derived from our data. Putting a working copy of data in the Cloud outside of NOAA's internal networks and infrastructures should reduce demands and risks on our systems, and should enable users to interact with multiple datasets and create new lines of business (much like the industries built on government-furnished weather or GPS data). The NOAA Big Data RFI therefore solicited information on technical and business approaches regarding possible partnership(s) that -- at no net cost to the government and minimum impact on existing data facilities -- would unleash the commercial potential of its environmental observations and model outputs. NOAA would retain the master archival copy of its data. Commercial partners would not be permitted to charge fees for access to the NOAA data they receive, but

  19. Use of Earth Observing Satellites for Operational Hazard Support

    NASA Astrophysics Data System (ADS)

    Wood, H. M.; Lauritson, L.

    The National Oceanic and Atmospheric Administration (NOAA) relies on Earth observing satellite data to carry out its operational mission to monitor, predict, and assess changes in the Earth's atmosphere, land, and oceans. NOAA's National Environmental Satellite, Data, and Information Service (NESDIS) uses satellite data to help lessen the impacts of natural and man-made disasters due to tropical cyclones, flash floods, heavy snowstorms, volcanic ash clouds (for aviation safety), sea ice (for shipping safety), and harmful algal blooms. Communications systems on NOAA satellites are used to support search and rescue and to relay data from data collection platforms to a variety of users. NOAA's Geostationary (GOES) and Polar (POES) Operational Environmental Satellites are used in conjunction with other satellites to support NOAA's operational mission. While NOAA's National Hurricane Center is responsible for predicting tropical cyclones affecting the U.S. mainland, NESDIS continuously monitors the tropics world wide, relaying valuable satellite interpretations of tropical systems strength and position to users throughout the world. Text messages are sent every six hours for tropical cyclones in the Western Pacific, South Pacific, and Indian Oceans. To support the monitoring, prediction, and assessment of flash floods and winter storms, NESDIS sends out text messages alerting U.S. weather forecast offices whenever NOAA satellite imagery indicates the occurrence of heavy rain or snow. NESDIS also produces a 24-hour rainfall composite graphic image covering those areas affected by heavy precipitation. The International Civil Aviation Organization (ICAO) and other aviation concerns recognized the need to keep aviators informed of volcanic hazards. To that end, nine Volcanic Ash Advisory Centers (VAAC's) were created to monitor volcanic ash plumes within their assigned airspace. NESDIS hosts one of the VAAC's. Although the NESDIS VAAC's primary responsibility is the

  20. 75 FR 10755 - Proposed Information Collection; Comment Request; 2010 NOAA Engagement Survey Tool

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-09

    ... Engagement Survey Tool AGENCY: National Oceanic and Atmospheric Administration (NOAA), DOC. ACTION: Notice... Kellogg Engagement Test, which the SAB recommended NOAA use for assessing engagement with constituents... accessing engagement with constituents. II. Method of Collection Primarily, respondents will be asked...

  1. 77 FR 14347 - Proposed Information Collection; Comment Request; NOAA Restoration Center Performance Progress...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-09

    ... Restoration Center Performance Progress Report AGENCY: National Oceanic and Atmospheric Administration (NOAA... currently approved information collection. NOAA funds habitat restoration projects including grass-roots, community-based habitat restoration; debris prevention and removal; removal of barriers to migrating...

  2. The Weather Radar Toolkit, National Oceanic and Atmospheric Administration (NOAA) National Climatic Data Center's support of interoperability and the Global Earth Observation System of Systems (GEOSS)

    NASA Astrophysics Data System (ADS)

    Ansari, S.; Del Greco, S.

    2006-12-01

    In February 2005, 61 countries around the World agreed on a 10 year plan to work towards building open systems for sharing geospatial data and services across different platforms worldwide. This system is known as the Global Earth Observation System of Systems (GEOSS). The objective of GEOSS focuses on easy access to environmental data and interoperability across different systems allowing participating countries to measure the "pulse" of the planet in an effort to advance society. In support of GEOSS goals, NOAA's National Climatic Data Center (NCDC) has developed radar visualization and data exporter tools in an open systems environment. The NCDC Weather Radar Toolkit (WRT) loads Weather Surveillance Radar 1988 Doppler (WSR-88D) volume scan (S-band) data, known as Level-II, and derived products, known as Level-III, into an Open Geospatial Consortium (OGC) compliant environment. The application is written entirely in Java and will run on any Java- supported platform including Windows, Macintosh and Linux/Unix. The application is launched via Java Web Start and runs on the client machine while accessing these data locally or remotely from the NCDC archive, NOAA FTP server or any URL or THREDDS Data Server. The WRT allows the data to be manipulated to create custom mosaics, composites and precipitation estimates. The WRT Viewer provides tools for custom data overlays, Web Map Service backgrounds, animations and basic filtering. The export of images and movies is provided in multiple formats. The WRT Data Exporter allows for data export in both vector polygon (Shapefile, Well-Known Text) and raster (GeoTIFF, ESRI Grid, VTK, NetCDF, GrADS) formats. By decoding the various Radar formats into the NetCDF Common Data Model, the exported NetCDF data becomes interoperable with existing software packages including THREDDS Data Server and the Integrated Data Viewer (IDV). The NCDC recently partnered with NOAA's National Severe Storms Lab (NSSL) to decode Sigmet C-band Doppler

  3. Life-Cycle Data Management at NOAA

    NASA Astrophysics Data System (ADS)

    de la Beaujardiere, J.

    2014-12-01

    The US National Oceanic and Atmospheric Administration (NOAA) operates over a hundred observing systems which span the environment from the bottom of the ocean to the surface of the Sun. The resulting data are essential for immediate priorities such as weather forecasting, and the data also constitute an irreplaceable resource collected at great cost. It is therefore necessary to carefully preserve this information for ongoing scientific use, for new research and applications, and to ensure reproducibility of scientific conclusions. The NOAA data life-cycle includes activities in three major phases: planning and production, management of the resulting data, and usage activities. This paper will describe current work by the NOAA Environmental Data Management Committee (EDMC), Data Management Integration Team (DMIT), and the NOAA National Data Centers in areas including DM planning, documentation, cataloging, data access, and preservation and stewardship to improve and standardize policies and practices for life-cycle data management.

  4. On Using SysML, DoDAF 2.0 and UPDM to Model the Architecture for the NOAA's Joint Polar Satellite System (JPSS) Ground System (GS)

    NASA Technical Reports Server (NTRS)

    Hayden, Jeffrey L.; Jeffries, Alan

    2012-01-01

    The JPSS Ground System is a lIexible system of systems responsible for telemetry, tracking & command (TT &C), data acquisition, routing and data processing services for a varied lIeet of satellites to support weather prediction, modeling and climate modeling. To assist in this engineering effort, architecture modeling tools are being employed to translate the former NPOESS baseline to the new JPSS baseline, The paper will focus on the methodology for the system engineering process and the use of these architecture modeling tools within that process, The Department of Defense Architecture Framework version 2,0 (DoDAF 2.0) viewpoints and views that are being used to describe the JPSS GS architecture are discussed. The Unified Profile for DoOAF and MODAF (UPDM) and Systems Modeling Language (SysML), as ' provided by extensions to the MagicDraw UML modeling tool, are used to develop the diagrams and tables that make up the architecture model. The model development process and structure are discussed, examples are shown, and details of handling the complexities of a large System of Systems (SoS), such as the JPSS GS, with an equally complex modeling tool, are described

  5. Looking at Earth from space: Direct readout from environmental satellites

    NASA Technical Reports Server (NTRS)

    1994-01-01

    Direct readout is the capability to acquire information directly from meteorological satellites. Data can be acquired from NASA-developed, National Oceanic and Atmospheric Administration (NOAA)-operated satellites, as well as from other nations' meteorological satellites. By setting up a personal computer-based ground (Earth) station to receive satellite signals, direct readout may be obtained. The electronic satellite signals are displayed as images on the computer screen. The images can display gradients of the Earth's topography and temperature, cloud formations, the flow and direction of winds and water currents, the formation of hurricanes, the occurrence of an eclipse, and a view of Earth's geography. Both visible and infrared images can be obtained. This booklet introduces the satellite systems, ground station configuration, and computer requirements involved in direct readout. Also included are lists of associated resources and vendors.

  6. NOAA Inter-Agency Networking for Open Data and Research Results

    NASA Astrophysics Data System (ADS)

    de la Beaujardiere, J.

    2015-12-01

    The US National Oceanic and Atmospheric Administration (NOAA) generates tens of terabytes of data per day from hundreds of sensors on satellites, radars, aircraft, ships, and buoys, and from numerical models. With rare exceptions, all of these data should be made publicly accessible in a usable fashion. NOAA has long been both an advocate and a practitioner of open data, and has observations going back 150 years in its archives. The NOAA data management community therefore welcomed the White House mandates on Open Data and Open Research, and has striven to improve standardization internally and in collaboration with other organizations. This paper will summarize the state of inter-agency networking by NOAA, and will discuss future perspectives, in particular the need to achieve a state where the appropriate technology choices for particular classes of geospatial data are obvious and beyond discussion, and where data sharing and metadata creation are built into agency workflows for project planning, approval, and execution, so that instead of writing and enforcing mandates we can focus on actually using data from multiple sources to improve understanding and decision-making.

  7. An airborne meteorological data collection system using satellite relay (ASDAR)

    NASA Technical Reports Server (NTRS)

    Bagwell, J. W.; Lindow, B. G.

    1978-01-01

    The National Aeronautics and Space Administration (NASA) has developed an airborne data acquisition and communication system for the National Oceanic and Atmospheric Administration (NOAA). This system known as ASDAR, the Aircraft to Satellite Data Relay, consists of a microprocessor based controller, time clock, transmitter and antenna. Together they acquire meteorological and position information from existing aircraft systems on B-747 aircraft, convert and format these, and transmit them to the ground via the GOES meteorological satellite series. The development and application of the ASDAR system is described with emphasis on unique features. Performance to date is exceptional, providing horizon-to-horizon coverage of aircraft flights. The data collected is of high quality and is considered a valuable addition to the data base from which NOAA generates its weather forecasts.

  8. 75 FR 57739 - Notice of Availability of a Draft NOAA Climate Service Strategic Vision and Framework for Public...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-22

    ... National Oceanic and Atmospheric Administration Notice of Availability of a Draft NOAA Climate Service...: Notice of availability of a draft NOAA Climate Service strategic vision and framework for public review... new NOAA Climate Service (NCS). The new service will directly support NOAA's vision of ``an...

  9. Space Weather impact on the degradation of NOAA POES MEPED proton detectors

    NASA Astrophysics Data System (ADS)

    Ødegaard, Linn-Kristine Glesnes; Tyssøy, Hilde Nesse; Jakobsen Sandanger, Marit Irene; Stadsnes, Johan; Søraas, Finn

    2016-06-01

    The Medium Energy Proton and Electron Detector (MEPED) on board the National Oceanic and Atmospheric Administration Polar Orbiting Environmental Satellites (NOAA POES) is known to degrade with time. In recent years a lot of effort has been put into calibrating the degraded proton detectors. We make use of previous work and show that the degradation of the detectors can be attributed to the radiation dose of each individual instrument. However, the effectiveness of the radiation in degrading the detector is modulated when it is weighted by the mean ap index, increasing the degradation rate in periods with high geomagnetic activity, and decreasing it through periods of low activity. When taking ap and the radiation dose into account, we find that the degradation rate is independent of spacecraft and detector pointing direction. We have developed a model to estimate the correction factor for all the MEPED detectors as a function of accumulated corrected flux and the ap index. We apply the routine to NOAA POES spacecraft starting with NOAA-15, including the European satellites MetOp-02 and MetOp-01, and estimate correction factors.

  10. U.S. rainfall satellite missions in flux

    NASA Astrophysics Data System (ADS)

    Zielinski, Sarah

    NASA's Tropical Rainfall Measuring Mission (TRMM) received a reprieve in September when the agency decided to continue the mission until at least fiscal year 2009 and possibly until 2012. Earlier agency plans had called for discontinuing TRMM this year while the satellite still had enough fuel for a controlled re-entry.Despite the TRMM reprieve, however, the U.S. National Oceanic and Atmospheric Administration (NOAA) is already preparing for TRMM's replacement, the Global Precipitation Measurement (GPM) mission.

  11. Meteorological satellites

    NASA Technical Reports Server (NTRS)

    Allison, L. J. (Editor); Schnapf, A.; Diesen, B. C., III; Martin, P. S.; Schwalb, A.; Bandeen, W. R.

    1980-01-01

    An overview is presented of the meteorological satellite programs that have been evolving from 1958 to the present, and plans for the future meteorological and environmental satellite systems that are scheduled to be placed into service in the early 1980's are reviewed. The development of the TIROS family of weather satellites, including TIROS, ESSA, ITOS/NOAA, and the present TIROS-N (the third generation operational system) is summarized. The contribution of the Nimbus and ATS technology satellites to the development of the operational-orbiting and geostationary satellites is discussed. Included are descriptions of both the TIROS-N and the DMSP payloads currently under development to assure a continued and orderly growth of these systems into the 1980's.

  12. 76 FR 9209 - Draft NOAA National Aquaculture Policy

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-16

    ... National Aquaculture Policy and Draft DOC National Aquaculture Policy; Notices #0;#0;Federal Register / Vol... and Atmospheric Administration RIN 0648-XA214 Draft NOAA National Aquaculture Policy AGENCY: National...: Notice of availability of draft aquaculture policy; request for comments. SUMMARY: NOAA is seeking...

  13. Satellite Movie Shows Hurricane Joaquin in the Bahamas

    NASA Video Gallery

    This animation of images captured from September 29 to October 1 from NOAA's GOES-East satellite shows Hurricane Joaquin become a major hurricane in the Bahamas. TRT: 00:32Credit: NASA/NOAA GOES Pr...

  14. Satellite Movie Shows Hurricane Cristobal Speeding Through North Atlantic

    NASA Video Gallery

    This animation of NOAA's GOES-East satellite imagery from August 26 through 29 shows Hurricane Cristobal changing into a post-tropical storm in the North Atlantic Ocean. Credit: NASA/NOAA GOES Project

  15. Satellite Movie Shows Development of Tropical Storm Julia

    NASA Video Gallery

    This animation of NOAA's GOES-East satellite imagery from Sept. 12 to Sept. 14 shows the development of Tropical Storm Julia over Florida and movement into Georgia. TRT 00:22 Credit: NASA/NOAA GOES...

  16. TRMM Satellite Rainfall Data on Iselle

    NASA Video Gallery

    TRMM satellite rainfall data overlaid on an enhanced infrared image from NOAA's GOES-West satellite shows heavy rainfall occurring around the Iselle's eye. The most intense rain was falling at a ra...

  17. TRMM Satellite Shows Heavy Rainfall in Cristina

    NASA Video Gallery

    NASA's TRMM satellite rainfall data was overlaid on an enhanced visible/infrared image from NOAA's GOES-East satellite showing cloud and rainfall extent. Green areas indicate rainfall at over 20 mm...

  18. Rescuing NOAA's Earliest Airphoto Archive

    NASA Astrophysics Data System (ADS)

    Hsu, F. C.; Baugh, K.; Elvidge, C.; Hendy, M. V.

    2014-12-01

    In 2004 NGDC had rediscovered a previously lost collection of airphotos produced by Coast and Geodetic Survey (later NOAA-NOS National Geodetic Survey) dated from late 1920s to 1960s. The collection focuses on U.S. coastline and the primary goal of these photos was to provide reference for coastal map construction. There are approximately 200,000 frames of film and print taken by multiple instruments. The majority of the photographs were taken by multilens cameras which captures nadir and oblique imageries to cover a larger area hence reduce the number of flightlines required. This huge collection not only shows the change of U.S coast over decades but also gracefully demonstrates how the technique of photogrammetry evolved. It is regarded as the premier record of land cover and coastal features for the era prior to the advent of satellite remote sensing. The collection was stored for many years at the Federal Records Center in Takoma Park, Maryland. After aging past the retention date, the FRC was ready to dispose the collection. NGDC volunteered to pay for the shipping and the collection was transferred to NGDC in 2004. In 2009-11 approximately 10% of the collection was digitally scanned by NOAA's Climate Data Modernization Program. NGDC has organized the scanned photos based on flight lines and has built a web access system. The unscanned portion of the collection is in storage with the Federal Record Center in Denver, Colorado.

  19. 77 FR 65674 - Solicitation for Members of the NOAA Science Advisory Board

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-30

    ... Oceans and Atmosphere and NOAA Administrator on long- and short-range strategies for research, education... Research, Commerce. ACTION: Notice of solicitation for members of the NOAA Science Advisory Board. SUMMARY... NOAA's research enterprise. Nominations Nominations may be made by individuals themselves or by a...

  20. 76 FR 4091 - Proposed Information Collection; Comment Request; Certification Requirements for NOAA's...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-24

    ...; Certification Requirements for NOAA's Hydrographic Product Quality Assurance Program AGENCY: National Oceanic and Atmospheric Administration (NOAA), Commerce. ACTION: Notice. SUMMARY: The Department of Commerce... to David B. Enabnit, (301) 713-2770 x132, Dave.Enabnit@noaa.gov . SUPPLEMENTARY INFORMATION:...

  1. THE NOAA - EPA NATIONAL AIR QUALITY FORECASTING SYSTEM

    EPA Science Inventory

    Building upon decades of collaboration in air pollution meteorology research, in 2003 the National Oceanic and Atmospheric Administration (NOAA) and the United States Environmental Protection Agency (EPA) signed formal partnership agreements to develop and implement an operationa...

  2. THE SCIENTIFIC BASIS OF NOAA'S AIR QUALITY FORECASTING PROGRAM

    EPA Science Inventory

    For many years, the National Oceanic and Atmospheric Administration (NOAA) has conducted atmospheric research, including chemical and physical measurements, process studies, and the development and evaluation of experimental meteorological and photochemical air quality models. ...

  3. Satellite instrument provides nighttime sensing capability

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    2012-12-01

    "This is not your father's low-light sensor," Steve Miller, senior research scientist and deputy director of the Cooperative Institute for Research in the Atmosphere at Colorado State University, Fort Collins, said at a 5 December news briefing at the AGU Fall Meeting. He and others at the briefing were showing off the nighttime sensing capability of the day/night band of the Visible Infrared Imaging Radiometer Suite (VIIRS) of instruments onboard the Suomi National Polar-orbiting Partnership (NPP) Earth-observing research satellite, a joint NASA and National Oceanic and Atmospheric Administration (NOAA) satellite that was launched on 28 October 2011. Noting that low-light satellite technology has been available for about 40 years, Miller said that the VIIRS day/night band "is truly a paradigm shift in the technology and capability."

  4. Satellite Movie Shows Erika Dissipate

    NASA Video Gallery

    This animation of visible and infrared imagery from NOAA's GOES-West satellite from Aug. 27 to 29 shows Tropical Storm Erika move through the Eastern Caribbean Sea and dissipate near eastern Cuba. ...

  5. Global Warming: Evidence from Satellite Observations

    NASA Technical Reports Server (NTRS)

    Prabhakara, C.; Iacovazzi, R.; Yoo, J.-M.; Dalu, G.; Einaudi, Franco (Technical Monitor)

    2000-01-01

    Observations made in Channel 2 (53.74 GHz) of the Microwave Sounding Unit (MSU) radiometer, flown onboard sequential, sun-synchronous, polar-orbiting NOAA (National Oceanic and Atmospheric Administration) operational satellites, indicate that the mean temperature of the atmosphere over the globe increased during the period 1980 to 1999. In this study, we have minimized systematic errors in the time series introduced by satellite orbital drift in an objective manner. This is done with the help of the onboard warm-blackbody temperature, which is used in the calibration of the MSU radiometer. The corrected MSU Channel 2 observations of the NOAA satellite series reveal that the vertically-weighted global-mean temperature of the atmosphere, with a peak weight near the mid troposphere, warmed at the rate of 0.13 +/- 0.05 K/decade during 1980 to 1999. The global warming deduced from conventional meteorological data that have been corrected for urbanization effects agrees reasonably with this satellite-deduced result.

  6. Simulation of meteorological satellite (METSAT) data using LANDSAT data

    NASA Technical Reports Server (NTRS)

    Austin, W. W.; Ryland, W. E.

    1983-01-01

    The information content which can be expected from the advanced very high resolution radiometer system, AVHRR, on the NOAA-6 satellite was assessed, and systematic techniques of data interpretation for use with meteorological satellite data were defined. In-house data from LANDSAT 2 and 3 were used to simulate the spatial, spectral, and sampling methods of the NOAA-6 satellite data.

  7. The NOAA Big Data Project: NEXRAD on the Cloud

    NASA Astrophysics Data System (ADS)

    Sundwall, Jed; Bouffler, Brendan

    2016-04-01

    Last year, the US National Oceanic and Atmospheric Administration (NOAA) made headlines when it entered into a research agreement with Amazon Web Services (AWS) to explore sustainable models to increase the output of open NOAA data. Publicly available NOAA data drives multi-billion dollar industries and critical research efforts. Under this new agreement, AWS and its Data Alliance collaborators are looking at ways to push more NOAA data to the cloud and build an ecosystem of innovation around it. In this presentation, we will provide a brief overview of the NOAA Big Data Project and the AWS Data Alliance, then dive into a specific example of data that has been made available (high resolution Doppler radar from the NEXRAD system) and early use cases.

  8. The NOAA Big Data Project: NEXRAD on the Cloud

    NASA Astrophysics Data System (ADS)

    Gold, A.; Weber, J.

    2015-12-01

    This past April, the US National Oceanic and Atmospheric Administration (NOAA) made headlines when it entered into a research agreement with Amazon Web Services (AWS) to explore sustainable models to increase the output of open NOAA data. Publicly available NOAA data drives multi-billion dollar industries and critical research efforts. Under this new agreement, AWS and its Data Alliance collaborators are looking at ways to push more NOAA data to the cloud and build an ecosystem of innovation around it. In this presentation, we will provide a brief overview of the NOAA Big Data Project and the AWS Data Alliance, then dive into a specific example of data that has been made available (high resolution Doppler radar from the NEXRAD system) and early use cases.

  9. Traditional Knowledge Strengthens NOAA's Environmental Education

    NASA Astrophysics Data System (ADS)

    Stovall, W. K.; McBride, M. A.; Lewinski, S.; Bennett, S.

    2010-12-01

    Environmental education efforts are increasingly recognizing the value of traditional knowledge, or indigenous science, as a basis to teach the importance of stewardship. The National Oceanic and Atmospheric Administration (NOAA) Pacific Services Center incorporates Polynesian indigenous science into formal and informal education components of its environmental literacy program. By presenting indigenous science side by side with NOAA science, it becomes clear that the scientific results are the same, although the methods may differ. The platforms for these tools span a vast spectrum, utilizing media from 3-D visualizations to storytelling and lecture. Navigating the Pacific Islands is a Second Life project in which users navigate a virtual Polynesian voyaging canoe between two islands, one featuring native Hawaiian practices and the other where users learn about NOAA research and ships. In partnership with the University of Hawai‘i Waikiki Aquarium, the Nana I Ke Kai (Look to the Sea) series focuses on connecting culture and science during cross-discipline, publicly held discussions between cultural practitioners and research scientists. The Indigenous Science Video Series is a multi-use, animated collection of short films that showcase the efforts of NOAA fisheries management and ship navigation in combination with the accompanying Polynesian perspectives. Formal education resources and lesson plans for grades 3-5 focusing on marine science have also been developed and incorporate indigenous science practices as examples of conservation success. By merging traditional knowledge and stewardship practices with NOAA science in educational tools and resources, NOAA's Pacific Services Center is helping to build and increase environmental literacy through the development of educational tools and resources that are applicable to place-based understanding and approaches.

  10. NOAA GCOM-W1/AMSR2 Oceanic Environmental Products: Phase-2

    NASA Astrophysics Data System (ADS)

    Jelenak, Z.; Alsweiss, S.; Chang, P.; Park, J. Y.

    2014-12-01

    Passive microwave radiometry is a special application of microwave communications technology for the purpose of collecting Earth's electromagnetic radiation. With the use of radiometers onboard earth orbiting satellites, scientists are able to monitor the Earth's environment and climate system on both short- and long-term temporal scales with near global coverage. The Global Change Observation Mission (GCOM) is part of the Japanese Aerospace Exploration Agency (JAXA) broader commitment toward global and long-term observation of the Earth's environment. GCOM consists of two polar orbiting satellite series, GCOM-W (Water) and GCOM-C (Climate), with 1-year overlap between them for inter-calibration. AMSR2 onboard GCOM-W1 is a microwave radiometer system that measures dual polarized radiances at 6.9, 7.3, 10.65, 18.7, 23.8, 36.5, and 89.0 GHz. It is a sun-synchronous orbiter that acquires microwave radiances by conically scanning the Earth's surface at a nominal earth incidence angle of 55 degrees that results in a wide swath of 1450 km. As a part of Joint Polar Satellite System (JPSS) program the National Oceanic and Atmospheric Administration (NOAA) GCOM-W1 product development and validation project will provide NOAA's users access to critical geophysical products derived from AMSR-2. These products, which are detailed in NOAA's JPSS Level 1 Requirements Document Supplement, include: microwave brightness temperature, total precipitable water, cloud liquid water, precipitation type/rate, sea surface temperature, and Sea Surface Wind Speed. Phase-1 of the AMSR-2 project at NOAA included inter-calibration of AMSR-2 measured brightness temperatures with the Tropical Rainfall Measuring Mission Microwave Imager as the reference radiometer. The second phase of the project utilized the calibrated brightness temperatures in a robust Bayesian network to retrieve more accurate geophysical parameters over the ocean surface. It can handle retrievals even with missing channels and

  11. Faster from the Depths to Decision: Collecting, Distributing, and Applying Data from NOAA`s Deep-Sea Tsunameters

    NASA Astrophysics Data System (ADS)

    Bouchard, R. H.; Wang, D.; Branski, F.

    2008-05-01

    The National Oceanic and Atmospheric Administration (NOAA) operates two tsunami warning centers (TWCs): the West Coast/Alaska Tsunami Warning Center (ATWC) and Pacific Tsunami Warning Center (PTWC). ATWC provides tsunami alerts to Canadian coastal regions, Virgin Islands, Puerto Rico, and the coasts of continental US and Alaska. PTWC provides local/regional tsunami alerts/advisories to the state of Hawaii. An operational center of the Tsunami Warning System of the Pacific, it provides tsunami alerts to most countries of the Pacific Rim. PTWC also provides tsunami alerts for the Caribbean and Indian Ocean countries on an interim basis. The TWCs aim to issue first tsunami bulletins within 10-15 minutes of the earthquake for tele-tsunamis and within a few minutes for local tsunamis. The TWCs have a requirement for offshore tsunami detection in real-time with a data latency of 1 minute or less. Offshore detection of tsunamis is the purpose of NOAA`s recently completed 39-station array of deep-sea tsunameters. The tsunameters, employing the second-generation DART (Deep-ocean Assessment and Reporting of Tsunamis) technology, can speed tsunami detection information to the TWCs in less than 3 minutes from depths of 6000 meters in the Pacific and Western Atlantic oceans. The tsunameters consist of a Bottom Pressure Recorder (BPR) and a surface buoy. Communication from the BPR to the buoy is via underwater acoustic transmissions. Satellite communications carry the data from the buoy to NOAA`s National Data Buoy Center (NDBC), which operates the tsunameters. The BPRs make pressure measurements, converts them to an equivalent water-column height, and passes them through a tsunami detection algorithm. If the algorithm detects a sufficient change in the height, the tsunameter goes into a rapid reporting mode or Event Mode. The acoustic modem-satellite telecommunications path takes approximately 50 seconds to reach the NDBC server. In a few seconds, NDBC reformats the data and

  12. Anomalous event diagnosis for environmental satellite systems

    NASA Technical Reports Server (NTRS)

    Ramsay, Bruce H.

    1993-01-01

    The National Oceanic and Atmospheric Administration's (NOAA) National Environmental Satellite, Data, and Information Service (NESDIS) is responsible for the operation of the NOAA geostationary and polar orbiting satellites. NESDIS provides a wide array of operational meteorological and oceanographic products and services and operates various computer and communication systems on a 24-hour, seven days per week schedule. The Anomaly Reporting System contains a database of anomalous events regarding the operations of the Geostationary Operational Environmental Satellite (GOES), communication, or computer systems that have degraded or caused the loss of GOES imagery. Data is currently entered manually via an automated query user interface. There are 21 possible symptoms (e.g., No Data), and 73 possible causes (e.g., Sectorizer - World Weather Building) of an anomalous event. The determination of an event's cause(s) is made by the on-duty computer operator, who enters the event in a paper based daily log, and by the analyst entering the data into the reporting system. The determination of the event's cause(s) impacts both the operational status of these systems, and the performance evaluation of the on-site computer and communication operations contractor.

  13. 75 FR 13259 - NOAA Is Hosting a Series of Informational Webinars for Individuals and Organizations To Learn...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-19

    ... Individuals and Organizations To Learn About the Proposed NOAA Climate Service AGENCY: Office of Oceanic and... Oceanic and Atmospheric Administration (NOAA) announced their intent to establish a new NOAA Climate... our partners to respond to the growing demands for climate information from the public,...

  14. Solutions Network Formulation Report: Improving NOAA's PORTS(R) Through Enhanced Data Inputs from NASA's Ocean Surface Topography Mission

    NASA Technical Reports Server (NTRS)

    Guest, DeNeice

    2007-01-01

    The Nation uses water-level data for a variety of practical purposes, including nautical charting, maritime navigation, hydrography, coastal engineering, and tsunami and storm surge warnings. Long-term applications include marine boundary determinations, tidal predictions, sea-level trend monitoring, oceanographic research, and climate research. Accurate and timely information concerning sea-level height, tide, and ocean current is needed to understand their impact on coastal management, disaster management, and public health. Satellite altimeter data products are currently used by hundreds of researchers and operational users to monitor ocean circulation and to improve scientists understanding of the role of the oceans in climate and weather. The NOAA (National Oceanic and Atmospheric Administration) National Ocean Service has been monitoring sea-level variations for many years. NOAA s PORTS (Physical Oceanographic Real-Time System) DST (decision support tool), managed by the Center for Operational Oceanographic Products and Services, supports safe and cost-efficient navigation by providing ship masters and pilots with accurate real-time information required to avoid groundings and collisions. This report assesses the capacity of NASA s satellite altimeter data to meet societal decision support needs through incorporation into NOAA s PORTS. NASA has a long heritage of collecting data for ocean research, including its current Terra and Aqua missions. Numerous other missions provide additional important information for coastal management issues, and data collection will continue in the coming decade with such missions as the OSTM (Ocean Surface Topography Mission). OSTM will provide data on sea-surface heights for determining ocean circulation, climate change, and sea-level rise. We suggest that NASA incorporate OSTM altimeter data (C- and Ku-band) into NOAA s PORTS DST in support of NASA s Coastal Management National Application with secondary support to the

  15. Satellite Video Captures the Eastern U.S. Winter Storm Track

    NASA Video Gallery

    This animation of NOAA's GOES satellite data shows the progression of the major winter storm over the U.S. Mid-Atlantic and southern states on March 2 and 3. Credit: NASA/NOAA GOES Project, Dennis ...

  16. Market Scenarios and Alternative Administrative Frameworks for U.S. Educational Satellite Systems. Memorandum No. CG-75/2.

    ERIC Educational Resources Information Center

    Walkmeyer, John E., Jr.; And Others

    Intended as a framework for analysis of the costs and benefits of developing an operational educational satellite system in the United States, this memorandum presents a series of scenarios of potential applications together with alternative organizational arrangements to support them. The number of satellite channels (25) and the number of ground…

  17. Satellite Animation Shows February Return of the Pineapple Express

    NASA Video Gallery

    An animation of satellite imagery from NOAA's GOES-West satellite from Feb. 1 to Feb. 4, 2015 captured the movement of a stream of clouds associated with moisture called "The Pineapple Express." Cr...

  18. Tsunami.gov: NOAA's Tsunami Information Portal

    NASA Astrophysics Data System (ADS)

    Shiro, B.; Carrick, J.; Hellman, S. B.; Bernard, M.; Dildine, W. P.

    2014-12-01

    We present the new Tsunami.gov website, which delivers a single authoritative source of tsunami information for the public and emergency management communities. The site efficiently merges information from NOAA's Tsunami Warning Centers (TWC's) by way of a comprehensive XML feed called Tsunami Event XML (TEX). The resulting unified view allows users to quickly see the latest tsunami alert status in geographic context without having to understand complex TWC areas of responsibility. The new site provides for the creation of a wide range of products beyond the traditional ASCII-based tsunami messages. The publication of modern formats such as Common Alerting Protocol (CAP) can drive geographically aware emergency alert systems like FEMA's Integrated Public Alert and Warning System (IPAWS). Supported are other popular information delivery systems, including email, text messaging, and social media updates. The Tsunami.gov portal allows NOAA staff to easily edit content and provides the facility for users to customize their viewing experience. In addition to access by the public, emergency managers and government officials may be offered the capability to log into the portal for special access rights to decision-making and administrative resources relevant to their respective tsunami warning systems. The site follows modern HTML5 responsive design practices for optimized use on mobile as well as non-mobile platforms. It meets all federal security and accessibility standards. Moving forward, we hope to expand Tsunami.gov to encompass tsunami-related content currently offered on separate websites, including the NOAA Tsunami Website, National Tsunami Hazard Mitigation Program, NOAA Center for Tsunami Research, National Geophysical Data Center's Tsunami Database, and National Data Buoy Center's DART Program. This project is part of the larger Tsunami Information Technology Modernization Project, which is consolidating the software architectures of NOAA's existing TWC's into

  19. NOAA Plans for Improving Public Access to Science Research (Invited)

    NASA Astrophysics Data System (ADS)

    de la Beaujardiere, J.

    2013-12-01

    The White House Office of Science and Technology Policy (OSTP) issued a memorandum on 2013 February 22 calling for federal agencies to enhance public access to research results (PARR), and required agencies to submit, within 6 months of the memo, draft plans explaining how they would implement the requirements. For the National Oceanic and Atmospheric Administration (NOAA), research results include digital data about the Earth's environment and publications based on those data. Regarding environmental data, NOAA is already very active in ensuring and improving public access. Indeed, National Weather Service (NWS) data was highlighted as one of the good examples in the OSTP memo. More generally, the NOAA National Data Centers, the Environmental Data Management Committee (EDMC), and scientific and technical personnel across the agency are striving to ensure NOAA data are discoverable and accessible on-line, well-documented and formatted for usability, and preserved for future generations as a national asset. This presentation will describe current and potential activities in support of public access to NOAA and NOAA-funded environmental data. Regarding publications, there is greater uncertainty. The fundamental issue is how to ensure no-cost access (after an embargo period) to publications that typically require subscriptions. That issue must be addressed at the interagency level with the journal publishers. The plan indicates that NOAA will adopt shared mechanisms and agreements to the extent possible rather than building new systems. Some elements remain under discussion; this presentation will be limited to those aspects on which there is general agreement.

  20. NASA-FAA-NOAA Partnering Strategy

    NASA Technical Reports Server (NTRS)

    Colantonio, Ron

    2003-01-01

    This viewgraph presentation provides an overview of NASA-FAA (Federal Aviation Administration) and NOAA (National Oceanic and Atmospheric Administration) collaboration efforts particularly in the area of aviation and aircraft safety. Five technology areas are being jointly by these agencies: (1) aviation weather information; (2) weather products; (3) automet technologies; (4) forward looking weather sensors and (5) turbulence controls and mitigation systems. Memorandum of Agreements (MOU) between these agencies are reviewed. A general review of the pros and pitfalls of inter-agency collaborations is also presented.

  1. Verification of a New NOAA/NSIDC Passive Microwave Sea-Ice Concentration Climate Record

    NASA Technical Reports Server (NTRS)

    Meier, Walter N.; Peng, Ge; Scott, Donna J.; Savoie, Matt H.

    2014-01-01

    A new satellite-based passive microwave sea-ice concentration product developed for the National Oceanic and Atmospheric Administration (NOAA)Climate Data Record (CDR) programme is evaluated via comparison with other passive microwave-derived estimates. The new product leverages two well-established concentration algorithms, known as the NASA Team and Bootstrap, both developed at and produced by the National Aeronautics and Space Administration (NASA) Goddard Space Flight Center (GSFC). The sea ice estimates compare well with similar GSFC products while also fulfilling all NOAA CDR initial operation capability (IOC) requirements, including (1) self describing file format, (2) ISO 19115-2 compliant collection-level metadata,(3) Climate and Forecast (CF) compliant file-level metadata, (4) grid-cell level metadata (data quality fields), (5) fully automated and reproducible processing and (6) open online access to full documentation with version control, including source code and an algorithm theoretical basic document. The primary limitations of the GSFC products are lack of metadata and use of untracked manual corrections to the output fields. Smaller differences occur from minor variations in processing methods by the National Snow and Ice Data Center (for the CDR fields) and NASA (for the GSFC fields). The CDR concentrations do have some differences from the constituent GSFC concentrations, but trends and variability are not substantially different.

  2. Joint Polar Satellite System (JPSS) System Architecture: Suomi-NPP to the Future

    NASA Astrophysics Data System (ADS)

    Furgerson, J.; Layns, A.; Feeley, J. H.; Griffin, A.; Trumbower, G.

    2014-12-01

    The National Oceanic and Atmospheric Administration (NOAA) is acquiring the next-generation weather and environmental satellite system, named the Joint Polar Satellite System (JPSS). NOAA has overall responsibility for the system including funding and requirements while the National Aeronautics and Space Administration (NASA) serves as the acquisition and development agent. The Suomi National Polar-orbiting Partnership (S-NPP) satellite was launched on 28 October, 2011, and is a pathfinder for JPSS and provides continuity for the NASA Earth Observation System and the NOAA Polar-orbiting Operational Environmental Satellite (POES) system. S-NPP and the follow-on JPSS satellites will operate in the 1330 LTAN orbit. JPSS-1 is scheduled to launch in early 2017. NASA is developing the Common Ground System which will process JPSS data and has the flexibility to process data from other satellites. This poster will provide a top level status update of the program, as well as an overview of the JPSS system architecture. The space segment carries a suite of sensors that collect meteorological, oceanographic, and climatological observations of the earth and atmosphere. The system design allows centralized mission management and delivers high quality environmental products to military, civil and scientific users through a Command, Control, and Communication Segment (C3S). The data processing for S-NPP/JPSS is accomplished through an Interface Data Processing Segment (IDPS)/Field Terminal Segment (FTS) that processes S-NPP/JPSS satellite data to provide environmental data products to U.S. and international partners as well as remote terminal users throughout the world.

  3. Evaluation of HWRF Synthetic Satellite Brightness Temperatures

    NASA Astrophysics Data System (ADS)

    Musgrave, K. D.; Knaff, J. A.; Slocum, C. J.; Grasso, L. D.; Demaria, M.

    2014-12-01

    The regions within and surrounding tropical cyclones (TCs) tend to be devoid of in situ measurements, making satellite observations particularly useful within these data sparse regions. Forecasters and researchers have used these observations for decades to evaluate and understand the structural evolution of TCs. Synthetic satellite brightness temperatures are produced by the Hurricane Weather Research and Forecast (HWRF) model using the Community Radiative Transfer Model (CRTM) and provided for four different channels corresponding to channels available from the Geostationary Operational Environmental Satellite (GOES). This presentation will focus on the comparison between the HWRF synthetic satellite brightness temperatures and the observed GOES-13 10.7μm (infrared) and 6.48μm (water vapor) bands, highlighting the differences between the large-scale and storm-scale environments, and evaluating the structure of TCs as represented by the simulated satellite imagery. Disclaimer: The views, opinions, and findings contained in this article are those of the authors and should not be construed as an official National Oceanic and Atmospheric Administration (NOAA) or U.S. Government position, policy, or decision.

  4. GOES Satellite Movie of 2014 Winter Storms

    NASA Video Gallery

    This new animation of NOAA's GOES-East satellite imagery shows the movement of winter storms from January 1 to March 24 making for a snowier-than-normal winter along the U.S. East coast and Midwest...

  5. GOES Satellite Data Shows Tornado Development

    NASA Video Gallery

    This animation of NOAA's GOES-East satellite data shows the development and movement of the weather system that spawned tornadoes affecting the southern and eastern U.S. states on April 27-29, 2014...

  6. Satellite Movie Sees Southern California Storms

    NASA Video Gallery

    This animation NOAA's GOES-West satellite imagery from Jan. 5 through Jan 7 shows the progression of storm systems in the Eastern Pacific Ocean that hit southern California and generated flooding a...

  7. AIR QUALITY FORECAST VERIFICATION USING SATELLITE DATA

    EPA Science Inventory

    NOAA 's operational geostationary satellite retrievals of aerosol optical depths (AODs) were used to verify National Weather Service (NWS) experimental (research mode) particulate matter (PM2.5) forecast guidance issued during the summer 2004 International Consortium for Atmosp...

  8. Satellite Tracks Double Eastern Pacific Hurricanes

    NASA Video Gallery

    This animation of NOAA's GOES-West satellite imagery from Aug. 27 to Aug. 30, 2016, shows the movement of Category 4 Hurricane Madeline approaching Hawaii in the Central Pacific Ocean and Category ...

  9. Operational Applications of Satellite Snowcover Observations

    NASA Technical Reports Server (NTRS)

    Rango, A. (Editor)

    1975-01-01

    LANDSAT and NOAA satellites data were used to study snow depth. These snow measurements were used to help forecast runoff and flooding. Many areas of California, Arizona, Colorado, and Wyoming were emphasized.

  10. GOES-West Satellite Sees 'Pineapple Express'

    NASA Video Gallery

    Visible and infrared images taken from NOAA's Geostationary Operational Environmental, or GOES-West, satellite from Feb. 7 through 9, 2014, were animated by the NASA GOES Project at NASA's Goddard ...

  11. Improving NOAA's NWLON Through Enhanced Data Inputs from NASA's Ocean Surface Topography

    NASA Technical Reports Server (NTRS)

    Guest, DeNeice C.

    2010-01-01

    This report assesses the benefit of incorporating NASA's OSTM (Ocean Surface Topography Mission) altimeter data (C- and Ku-band) into NOAA's (National Oceanic and Atmospheric Administration) NWLON (National Water Level Observation Network) DSS (Decision Support System). This data will enhance the NWLON DSS by providing additional inforrnation because not all stations collect all meteorological parameters (sea-surface height, ocean tides, wave height, and wind speed over waves). OSTM will also provide data where NWLON stations are not present. OSTM will provide data on seasurface heights for determining sea-level rise and ocean circulation. Researchers and operational users currently use satellite altimeter data products with the GSFCOO NASA data model to obtain sea-surface height and ocean circulation inforrnation. Accurate and tirnely inforrnation concerning sea-level height, tide, and ocean currents is needed to irnprove coastal tidal predictions, tsunarni and storm surge warnings, and wetland restoration.

  12. Coordinating activities between NOAA and other agencies.

    PubMed

    Fritz, A T; Buchman, M F

    1997-11-01

    The Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) and the National Oil and Hazardous Substances Pollution Contingency Plan (NCP) mandate protection of public health, welfare, and the environment at Superfund hazardous waste sites. The NCP requires lead response agenciesto integrate baseline risk assessments into the remedial process that "assess threats to the environment." EPA policy statements direct regional offices to perform thorough, consistent ecological risk assessments, and stress the importance of coordination and technical consultation with the natural resource trustees. As a Federal natural trustee, the National Oceanic and Atmospheric Administration's (NOAA) role and responsibilities within the CERCLA process also are defined and mandated by Federal law. NOAA is responsible for identifying sites in the coastal zone that may affect natural resources, evaluating injury to trust resources, and providing technical advice on assessments and remedial and restoration alternatives. Statutes require lead cleanup agencies and trustee agencies to notify and coordinate with each other during CERCLA response. Over the past ten years, NOAA has gained valuable experience and technical expertise in environmental assessments and in evaluating contaminated aquatic environments. NOAA fulfills its responsibilities through an effective network of Coastal Resource Coordinators (CRCs) who can rapidly respond to local technical requirements and priorities, and coordinate effectively with technical and trustee representatives. In addition to CRCs, an interdisciplinary support group provides technical expertise in the scientific disciplines required to respond to the needs of regional activities. NOAA provides CRCs to coastal EPA regional offices for technical support, and to act as liaisons with Federal and state natural resource trustee agencies. The CRCs help EPA and other lead response agencies identify and assess risks to coastal resources

  13. Coordinating activities between NOAA and other agencies.

    PubMed

    Fritz, A T; Buchman, M F

    1997-11-01

    The Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) and the National Oil and Hazardous Substances Pollution Contingency Plan (NCP) mandate protection of public health, welfare, and the environment at Superfund hazardous waste sites. The NCP requires lead response agenciesto integrate baseline risk assessments into the remedial process that "assess threats to the environment." EPA policy statements direct regional offices to perform thorough, consistent ecological risk assessments, and stress the importance of coordination and technical consultation with the natural resource trustees. As a Federal natural trustee, the National Oceanic and Atmospheric Administration's (NOAA) role and responsibilities within the CERCLA process also are defined and mandated by Federal law. NOAA is responsible for identifying sites in the coastal zone that may affect natural resources, evaluating injury to trust resources, and providing technical advice on assessments and remedial and restoration alternatives. Statutes require lead cleanup agencies and trustee agencies to notify and coordinate with each other during CERCLA response. Over the past ten years, NOAA has gained valuable experience and technical expertise in environmental assessments and in evaluating contaminated aquatic environments. NOAA fulfills its responsibilities through an effective network of Coastal Resource Coordinators (CRCs) who can rapidly respond to local technical requirements and priorities, and coordinate effectively with technical and trustee representatives. In addition to CRCs, an interdisciplinary support group provides technical expertise in the scientific disciplines required to respond to the needs of regional activities. NOAA provides CRCs to coastal EPA regional offices for technical support, and to act as liaisons with Federal and state natural resource trustee agencies. The CRCs help EPA and other lead response agencies identify and assess risks to coastal resources

  14. Multi-mission Satellite Management

    NASA Astrophysics Data System (ADS)

    Jamilkowski, M. L.; Teter, M. A.; Grant, K. D.; Dougherty, B.; Cochran, S.

    2015-12-01

    NOAA's next-generation environmental satellite, the Joint Polar Satellite System (JPSS) replaces the current Polar-orbiting Operational Environmental Satellites (POES). JPSS satellites carry sensors which collect meteorological, oceanographic, climatological, and solar-geophysical observations of the earth, atmosphere, and space. The first JPSS satellite was launched in 2011 and is currently NOAA's primary operational polar satellite. The JPSS ground system is the Common Ground System (CGS), and provides command, control, and communications (C3) and data processing (DP). A multi-mission system, CGS provides combinations of C3/DP for numerous NASA, NOAA, DoD, and international missions. In preparation for the next JPSS satellite, CGS improved its multi-mission capabilities to enhance mission operations for larger constellations of earth observing satellites with the added benefit of streamlining mission operations for other NOAA missions. CGS's multi-mission capabilities allows management all of assets as a single enterprise, more efficiently using ground resources and personnel and consolidating multiple ground systems into one. Sophisticated scheduling algorithms compare mission priorities and constraints across all ground stations, creating an enterprise schedule optimized to mission needs, which CGS executes to acquire the satellite link, uplink commands, downlink and route data to the operations and data processing facilities, and generate the final products for delivery to downstream users. This paper will illustrate the CGS's ability to manage multiple, enterprise-wide polar orbiting missions by demonstrating resource modeling and tasking, production of enterprise contact schedules for NOAA's Fairbanks ground station (using both standing and ad hoc requests), deconflicting resources due to ground outages, and updating resource allocations through dynamic priority definitions.

  15. In Congress Budget Update for NOAA, USGS

    NASA Astrophysics Data System (ADS)

    Richman, Barbara T.

    Among the agenda items facing Congress as it reconvenes this week are the fiscal 1984 budgets for the National Oceanic and Atmospheric Administration (NOAA), which is part of the Department of Commerce, and for the U.S. Geological Survey (USGS), which is within the Department of the Interior. Fiscal year 1984 begins October 1, 1983. As Congress rolls up its shirtsleeves and gets down to business, Eos presents a status report on the two agency budgets.Both House and Senate appropriations committees have finished their work on the NOAA budget, which had been targeted by President Ronald Reagan for a $799.8 million appropriation request (program level of $843.2 million) in his proposed fiscal 1984 budget (Eos, February 15, 1983, p. 65). The House appropriation for NOAA (H.R. 3134 and H.R. 3222) is $998.5 million, with a program level of $1043.9 million. The Senate Appropriations Committee set its appropriation (S. 1721) at $987.8 million, with a program level of $1041.0 million.

  16. The NASA/NOAA Electronic Theater

    NASA Technical Reports Server (NTRS)

    Hasler, A. F.

    2003-01-01

    The NASA/NOAA Electronic Theater presents Earth science observations and visualizations from space in a historical perspective. Fly in from outer space to Cambridge and Harvard University. Zoom through the Cosmos to SLC and site of the 2002 Winter Olympics using 1 m IKONOS "Spy Satellite" data. Contrast the 1972 Apollo 17 "Blue Marble" image of the Earth with the latest US and International global satellite images that allow us to view our Planet from any vantage point. See the latest spectacular images from NASA/NOAA remote sensing missions like Terra, GOES, TRMM, SeaWiFS, & Landsat 7, of storms & fires like Hurricane Isabel and the LNSan Diego firestorms of 2003. See how High Definition Television (HDTV) is revolutionizing the way we do science communication. Take the pulse of the planet on a daily, annual and 30-year time scale. See daily thunderstorms, the annual blooming of the northern hemisphere landmasses and oceans, fires in Africa, dust storms in Iraq, and carbon monoxide exhaust from global burning. See visualizations featured on Newsweek, TIME, National Geographic, Popular Science covers & National & International Network TV. Spectacular new global visualizations of the observed and simulated atmosphere & oceans are shown. See the currents and vortexes in the oceans that bring up the nutrients to feed tiny plankton and draw the fish, whales and fishermen. See the how the ocean blooms in response to El Niiioh Niiia climate changes. The Etheater will be presented using the latest High Definition TV (HDTV) and video projection technology on a large screen. See the global city lights, and the great NE US blackout of August 2003 observed by the "night-vision" DMSP satellite.

  17. Satellite-Respondent Buoys Identify Ocean Debris

    NASA Technical Reports Server (NTRS)

    2009-01-01

    NASA operates a series of Earth-observing satellites, which help scientists learn more about our home planet. Through partnerships with universities and other government agencies, like the National Oceanic and Atmospheric Administration (NOAA), the Space Agency helps scientists around the world capture precise movements of the Earth s crust to learn more about the underground processes related to earthquakes and volcanic eruptions, create accurate assessments of wind resources for future energy use, and preserve endangered species by generating much-needed data about their environments. This work, done primarily from space with satellites using a variety of complex instruments to take readings of the surface below, generates leagues of valuable data that aid scientists on the ground - or in some cases on the water. As much of the Earth is covered in water liquid, frozen, saltwater, or fresh much of NASA s remote sensing work focuses on the oceans and their health. This valuable, mammoth (yet fragile) resource provides insight into the overall health of our planet, as water, in addition to being abundant, is a key ingredient to all known life on Earth. As part of its ocean-observing work, NASA partnered with NOAA and private industry to develop remote sensing technologies for protecting the seas of the North Pacific from a nefarious and pervasive problem: derelict fishing gear.

  18. NOAA SBUV(/2) Ozone Merged Cohesive Climate Data Record

    NASA Astrophysics Data System (ADS)

    Long, C. S.; Wild, J.; Beach, E.

    2015-12-01

    The Solar Backscatter UltraViolet (SBUV) instrument flown on Nimbus-7 and the SBUV/2 instruments flown on the NOAA 09, 11, 14, 16, 17, 18, and 19 satellites have produced a continuous record of nadir profile ozone observations from 1979 through the present (2015). NASA's latest reprocessing of the individual satellite data sets have created a version 8.6 which strives to eliminate inter-satellite biases. However, there still are differences in data quality between the instruments flown on the various satellites. Our goal is to remove the remaining differences. Adjustments are made to individual instrument records based on periods of overlap, to account for any variations in the observed annual cycle as well as an overall bias. Rather than an average of all available observations, a single satellite is chosen for each period based on the best latitudinal coverage allowing the clean retention of satellite characteristics such as time of measurement, solar zenith angle, etc. to be identified with an ozone value. Measurements from NOAA-9 are included in a short period to allow greater global coverage in the bridge from NOAA-11 to -14. Measurements from the NASA BUV on Nimbus-4 are excluded since there is no overlap with the subsequent instruments. We will present examples of the methodology to adjust overlapping satellites. We will contrast the original unadjusted data set with our final data set. We will present results from applying a piece-wise linear trend to the data set dividing the depletion period from the recovery period. These results will be shown in comparison with other trend results from other ozone profile datasets.

  19. 76 FR 39385 - Payment Policy Change for Access to NOAA Environmental Data, Information, and Related Products...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-06

    ... National Oceanic and Atmospheric Administration Payment Policy Change for Access to NOAA Environmental Data...: Notice of Policy Change. SUMMARY: NOAA's National Data Centers will not accept checks (nor money orders...) National Climatic Data Center (NCDC), Asheville, NC National Geophysical Data Center (NGDC), Boulder,...

  20. Joint Polar Satellite System Common Ground System Overview

    NASA Astrophysics Data System (ADS)

    Jamilkowski, M. L.; Miller, S. W.; Grant, K. D.

    2012-12-01

    The National Oceanic and Atmospheric Administration (NOAA) and National Aeronautics and Space Administration (NASA) are jointly acquiring the next-generation civilian weather and environmental satellite system: the Joint Polar Satellite System (JPSS). JPSS will contribute the afternoon orbit component and ground processing system of the restructured National Polar-orbiting Operational Environmental Satellite System (NPOESS). As such, JPSS replaces the current Polar-orbiting Operational Environmental Satellites (POES) managed by NOAA and the ground processing component of both Polar-orbiting Operational Environmental Satellites and the Defense Meteorological Satellite Program (DMSP) replacement, previously known as the Defense Weather Satellite System (DWSS), managed by the Department of Defense (DoD). The JPSS satellites will carry a suite of sensors designed to collect meteorological, oceanographic, climatological, and solar-geophysical observations of the earth, atmosphere, and space. The ground processing system for JPSS is known as the JPSS Common Ground System (JPSS CGS), and consists of a Command, Control, and Communications Segment (C3S) and an Interface Data Processing Segment (IDPS). Both segments are developed by Raytheon Intelligence and Information Systems (IIS). The C3S currently flies the Suomi National Polar Partnership (Suomi NPP) satellite and transfers mission data from Suomi NPP and between the ground facilities. The IDPS processes Suomi NPP satellite data to provide Environmental Data Records (EDRs) to NOAA and DoD processing centers operated by the United States government. When the JPSS-1 satellite is launched in early 2017, the responsibilities of the C3S and the IDPS will be expanded to support both Suomi NPP and JPSS-1. The JPSS CGS currently provides data processing for Suomi NPP, generating multiple terabytes per day across over two dozen environmental data products; that workload will be multiplied by two when the JPSS-1 satellite is

  1. A Quality Control study of the distribution of NOAA MIRS Cloudy retrievals during Hurricane Sandy

    NASA Astrophysics Data System (ADS)

    Fletcher, S. J.

    2013-12-01

    Cloudy radiance present a difficult challenge to data assimilation (DA) systems, through both the radiative transfer system as well the hydrometers required to resolve the cloud and precipitation. In most DA systems the hydrometers are not control variables due to many limitations. The National Oceanic and Atmospheric Administration's (NOAA) Microwave Integrated Retrieval System (MIRS) is producing products from the NPP-ATMS satellite where the scene is cloud and precipitation affected. The test case that we present here is the life time of Hurricane and then Superstorm Sandy in October 2012. As a quality control study we shall compare the retrieved water vapor content during the lifetime of Sandy with the first guess and the analysis from the NOAA Gridpoint Statistical Interpolation (GSI) system. The assessment involves the gross error check system against the first guess with different values for the observational error's variance to see if the difference is within three standard deviations. We shall also compare against the final analysis at the relevant cycles to see if the products which have been retrieved through a cloudy radiance are similar, given that the DA system does not assimilate cloudy radiances yet.

  2. Intergrating Data From NASA Missions Into NOAAs Pacific Region Intergrated Climatology Information Products (PRICIP)

    NASA Astrophysics Data System (ADS)

    Benham, L.; Chester, K.; Eisberg, A.; Iyer, S.; Lee, K.; Marra, J.; Schmidt, C.; Skiles, J.

    2008-12-01

    The Pacific Region Integrated Climatology Information Products (PRICIP) Project is developing a number of products that will successfully promote awareness and understanding of the patterns and effects of "storminess" in the Pacific Rim. The National Oceanic and Atmospheric Administration's (NOAA) Integrated Data and Environmental Applications (IDEA) Center initiated the PRICIP Project to improve our understanding of such storm processes by creating a web portal containing both scientific and socioeconomic information about Pacific storms. Working in conjunction with partners at NOAA, students from the NASA Ames DEVELOP internship program are integrating NASA satellite imagery into the PRICIP web portal by animating eight storm systems that took place in the South Pacific Ocean between 1992 and 2005, four other anomalous high water events in the Hawaiian Islands, and annual storm tracks. The primary intended audience includes coastal disaster management decision-makers and other similarly concerned agencies. The broad access of these web-based products is also expected to reach scientists, the National Weather Service (NWS), the Federal Emergency Management Agency (FEMA), and media broadcasting consumers. The newly integrated and animated hindcast data will also help educate laypersons about past storms and help them for future storms.

  3. Performance of Nickel-Cadmium Batteries on the POES Series of Weather Satellites

    NASA Technical Reports Server (NTRS)

    Rao, Gopalakrishna M.; Chetty, P. R. K.; Boyce, Ron; Smalls, Vanessa; Spitzer, Tom

    1998-01-01

    The advanced Television Infrared Observation satellite program is a cooperative effort between the National Aeronautics and Space Administration (NASA), the National Oceanic and Atmospheric Administration (NOAA), the United Kingdom, Canada and France, for providing day and night global environmental and associated data. NASA is responsible for procurement launch, and checkout of these spacecraft before transferring them over to NOAA, who operates the spacecraft to support weather forecasting, severe storm tracking, and 'meteorological research by the National Weather Service. These spacecraft with all weather monitoring instruments imposed challenging requirements for the onboard electrical power subsystem (EPS). This paper provides first a brief overview of the overall power subsystem, followed by a description of batteries. A unique power subsystem design which provides 'tender-loving-care' to these batteries is highlighted. This is followed by the on-orbit maintenance and performance data of the batteries since launch.

  4. Impact of Scatterometer Ocean Wind Vector Data on NOAA Operations

    NASA Astrophysics Data System (ADS)

    Jelenak, Z.; Chang, P.; Brennan, M. J.; Sienkiewicz, J. M.

    2015-12-01

    Near real-time measurements of ocean surface vector winds (OSVW), including both wind speed and direction from non-NOAA satellites, are being widely used in critical operational NOAA forecasting and warning activities. The scatterometer wind data data have had major operational impact in: a) determining wind warning areas for mid-latitude systems (gale, storm,hurricane force); b) determining tropical cyclone 34-knot and 50-knot wind radii. c) tracking the center location of tropical cyclones, including the initial identification of their formation. d) identifying and warning of extreme gap and jet wind events at all latitudes. e) identifying the current location of frontal systems and high and low pressure centers. f) improving coastal surf and swell forecasts Much has been learned about the importance and utility of satellite OSVW data in operational weather forecasting and warning by exploiting OSVW research satellites in near real-time. Since December 1999 when first data from QuikSCAT scatterometer became available in near real time NOAA operations have been benefiting from ASCAT scatterometer observations on MetOp-A and B, Indian OSCAT scatterometer on OceanSat-3 and lately NASA's RapidScat mission on International Space Station. With oceans comprising over 70 percent of the earth's surface, the impacts of these data have been tremendous in serving society's needs for weather and water information and in supporting the nation's commerce with information for safe, efficient, and environmentally sound transportation and coastal preparedness. The satellite OSVW experience that has been gained over the past decade by users in the operational weather community allows for realistic operational OSVW requirements to be properly stated for future missions. Successful model of transitioning research data into operation implemented by Ocean Winds Team in NOAA's NESDIS/STAR office and subsequent data impacts will be presented and discussed.

  5. NOAA's OAR program funding down

    NASA Astrophysics Data System (ADS)

    Bush, Susan

    Proposed funding for NOAA's Oceanic and Atmospheric Research (OAR) is down for most programs in fiscal year 1993. NOAA's three primary programs funded through OAR are Climate and Air Quality, Climate and Global Change ($1.14 million or 59% of OAR), Atmospheric Research, Modernization of NOAA's Atmospheric Services ($4.08 million or 21% of OAR), and Ocean and Great Lakes Programs, Coastal Ocean Program ($3.87 million or 20%).OAR conducts research in marine and atmospheric sciences through its own laboratories and offices, as well as through a network of university-based systems across the United States. OAR also provides the scientific basis for national policy formulation, such as climate and global change, the Clean Air Act, and ozone depletion. OAR is NOAA's primary contact for universities.

  6. NOAA's Education Program: Review and Critique

    ERIC Educational Resources Information Center

    Farrington, John W., Ed.; Feder, Michael A., Ed.

    2010-01-01

    There is a national need to educate the public about the ocean, coastal resources, atmosphere and climate. The National Oceanic and Atmospheric Administration (NOAA), the agency responsible for understanding and predicting changes in the Earth's environment and conserving and managing coastal and marine resources to meet the nation's…

  7. 78 FR 16254 - (NOAA) Science Advisory Board (SAB)

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-14

    ... National Oceanic and Atmospheric Administration (NOAA) Science Advisory Board (SAB) AGENCY: Office of... of Commerce (DOC). ACTION: Notice of open meeting. SUMMARY: The Science Advisory Board (SAB) was..., education, and application of science to operations and information services. SAB activities and...

  8. The National Aeronautics and Space Administration (NASA) Tracking and Data Relay Satellite System (TDRSS) program Economic and programmatic, considerations

    NASA Technical Reports Server (NTRS)

    Aller, R. O.

    1985-01-01

    The Tracking and Data Relay Satellite System (TDRSS) represents the principal element of a new space-based tracking and communication network which will support NASA spaceflight missions in low earth orbit. In its complete configuration, the TDRSS network will include a space segment consisting of three highly specialized communication satellites in geosynchronous orbit, a ground segment consisting of an earth terminal, and associated data handling and control facilities. The TDRSS network has the objective to provide communication and data relay services between the earth-orbiting spacecraft and their ground-based mission control and data handling centers. The first TDRSS spacecraft has been now in service for two years. The present paper is concerned with the TDRSS experience from the perspective of the various programmatic and economic considerations which relate to the program.

  9. The National Aeronautics and Space Administration (NASA) Tracking and Data Relay Satellite System (TDRSS) program Economic and programmatic, considerations

    NASA Astrophysics Data System (ADS)

    Aller, R. O.

    1985-10-01

    The Tracking and Data Relay Satellite System (TDRSS) represents the principal element of a new space-based tracking and communication network which will support NASA spaceflight missions in low earth orbit. In its complete configuration, the TDRSS network will include a space segment consisting of three highly specialized communication satellites in geosynchronous orbit, a ground segment consisting of an earth terminal, and associated data handling and control facilities. The TDRSS network has the objective to provide communication and data relay services between the earth-orbiting spacecraft and their ground-based mission control and data handling centers. The first TDRSS spacecraft has been now in service for two years. The present paper is concerned with the TDRSS experience from the perspective of the various programmatic and economic considerations which relate to the program.

  10. Improvements and Extensions for Joint Polar Satellite System Algorithms

    NASA Astrophysics Data System (ADS)

    Grant, K. D.; Feeley, J. H.; Miller, S. W.; Jamilkowski, M. L.

    2014-12-01

    The National Oceanic and Atmospheric Administration (NOAA) and National Aeronautics and Space Administration (NASA) are jointly acquiring the next-generation civilian weather and environmental satellite system: the Joint Polar Satellite System (JPSS). JPSS replaced the afternoon orbit component and ground processing system of the old POES system managed by the NOAA. JPSS satellites will carry sensors designed to collect meteorological, oceanographic, climatological, and solar-geophysical observations of the earth, atmosphere, and space. The ground processing system for the JPSS is the Common Ground System (CGS), and provides command, control, and communications (C3), data processing and product delivery. CGS's data processing capability processes the data from the JPSS satellites to provide environmental data products (including Sensor Data Records (SDRs) and Environmental Data Records (EDRs)) to the NOAA Satellite Operations Facility. The first satellite in the JPSS constellation, known as the Suomi National Polar-orbiting Partnership (S-NPP) satellite, was launched on 28 October 2011. CGS is currently processing and delivering SDRs and EDRs for S-NPP and will continue through the lifetime of the JPSS program. The EDRs for S-NPP are currently undergoing an extensive Calibration and Validation (Cal/Val) campaign. Changes identified by the Cal/Val campaign are coming available for implementation into the operational system in support of both S-NPP and JPSS-1 (scheduled for launch in 2017). Some of these changes will be available in time to update the S-NPP algorithm baseline, while others will become operational just prior to JPSS-1 launch. In addition, new capabilities, such as higher spectral and spatial resolution, will be exercised on JPSS-1. This paper will describe changes to current algorithms and products as a result of the Cal/Val campaign and related initiatives for improved capabilities. Improvements include Cross Track Infrared Sounder high spectral

  11. Satellite data-relay activities in Arizona

    USGS Publications Warehouse

    Boner, F.C.; Blee, J.W.; Shope, W.G.

    1985-01-01

    The U.S. Geological Survey (USGS) Arizona District collects data from automated streamflow stations for a wide variety of uses. Data from these stations are provided to Federal, State, and local agencies that have a responsibility to issue flood warnings; to generate forecasts of water availability; to monitor flow to insure compliance with treaties and other legal mandates; and to manage reservoirs for hydropower, flood abatement, and municipal and irrigation water supply. In the mid-1970's, the escalation of data collection costs and a need for more timely data led the Arizona District to examine alternatives for remote data acquisition. On the basis of successful data communications experiments with NASA 's Landsat satellite, an operational system for satellite-data relay was developed in 1976 using the National Oceanic and Atmospheric Administrations 's (NOAA) Geostationary Operational Environmental Satellite (GOES). A total of 62 data collection platforms (DCP's) was operated in 1983. Satellite telemetry operations are controlled at the remote data-collection stations by small battery-operated data collection platforms. The DCP 's periodically collect data from the sensors, store the data in computer memory, and at preset times transmit the data to the GOES satellite. The satellite retransmits the data to Earth where a ground-receive station transmits or transfers the data by land communications to the USGS computer in Reston, Virginia, for processing. The satellite relay transfers the data from sensor to computer in minutes; therefore, the data are available to users on a near real-time basis. (Author 's abstract)

  12. Algorithm Development Library for Environmental Satellite Missions

    NASA Astrophysics Data System (ADS)

    Smith, D. C.; Grant, K. D.; Miller, S. W.; Jamilkowski, M. L.

    2012-12-01

    The National Oceanic and Atmospheric Administration (NOAA) and National Aeronautics and Space Administration (NASA) are jointly acquiring the next-generation civilian weather and environmental satellite system: the Joint Polar Satellite System (JPSS). JPSS will contribute the afternoon orbit component and ground processing system of the restructured National Polar-orbiting Operational Environmental Satellite System (NPOESS). As such, the Joint Polar Satellite System replaces the current Polar-orbiting Operational Environmental Satellites (POES) managed by the National Oceanic and Atmospheric Administration and the ground processing component of both Polar-orbiting Operational Environmental Satellites and the Defense Meteorological Satellite Program (DMSP) replacement, previously known as the Defense Weather Satellite System (DWSS), managed by the Department of Defense (DoD). The JPSS satellites will carry a suite of sensors designed to collect meteorological, oceanographic, climatological, and solar-geophysical observations of the earth, atmosphere, and space. The ground processing system for JPSS is known as the JPSS Common Ground System (JPSS CGS), and consists of a Command, Control, and Communications Segment (C3S) and an Interface Data Processing Segment (IDPS). Both segments are developed by Raytheon Intelligence and Information Systems (IIS). The C3S currently flies the Suomi National Polar Partnership (Suomi NPP) satellite and transfers mission data from Suomi NPP and between the ground facilities. The IDPS processes Suomi NPP satellite data to provide Environmental Data Records (EDRs) to NOAA and DoD processing centers operated by the United States government. When the JPSS-1 satellite is launched in early 2017, the responsibilities of the C3S and the IDPS will be expanded to support both Suomi NPP and JPSS-1. The EDRs for Suomi NPP are currently undergoing an extensive Calibration and Validation (Cal/Val) campaign. As Cal/Val proceeds, changes to the

  13. Noaa's Jpss Program: the Next Generation of Operational Earth Observations

    NASA Astrophysics Data System (ADS)

    Goldberg, M.

    2012-12-01

    The Joint Polar Satellite System is NOAA's new operational satellite program and includes the SUOMI National Polar-orbiting Partnership (NPP) as a bridge between NOAA's operational Polar Orbiting Environmental Satellite (POES) series, which began in 1978, and the first JPSS operational satellite scheduled for launch in 2017. The NPP was completed as originally planned and launched on October 28, 2011 and carries the following five sensors: - Visible/Infrared Imager Radiometer Suite (VIIRS) that provides advanced imaging and radiometric capabilities. - Cross-track Infrared Sounder (CrIS) that provides improved atmospheric moisture and temperature profiles in clear conditions. - Advanced Technology Microwave Sounder (ATMS) that provides improved atmospheric moisture and temperature profiles in cloudy conditions. - Ozone Mapping and Profiler Suite (OMPS) that provides improved vertical and horizontal measurements of the distribution of ozone in the Earth's atmosphere. - Clouds and the Earth's Radiant Energy System (CERES) sensor that continues precise, calibrated global measurements of the earth's radiation budget JPSS provides critical data for key NOAA product and services, which the Nation depends on. These products and services include: Weather forecasting - data from the CRIS and the ATMS are needed to forecast weather events out to 7 days. Nearly 85% of all data used in weather forecasting are from polar orbiting satellites. Environmental monitoring - data from the VIIRS are used to monitor the environment including the health of coastal ecosystems, drought conditions, hydrology, fire, smoke, dust, snow and ice, and the state of oceans, including sea surface temperature and ocean color. Climate monitoring - data from JPSS instruments, including OMPS, CERES and TSIS will provide continuity to climate data records established using NOAA POES and NASA Earth Observing System (EOS) satellite observations. These data records provide a unified and coherent long

  14. Satellite altimetry

    NASA Technical Reports Server (NTRS)

    Cheney, Robert E.

    1992-01-01

    Since altimetry data are not really old enough to use the term data archaeology, Mr. Cheney referred to the stewardship of these data. He noted that it is very important to document the basis for an altimetry data set as the algorithms and corrections used to arrive at the Geophysical Data Record (GDR) have been improving and are continuing to improve the precision of sea level data derived from altimetry. He noted that the GEOSAT Exact Repeat Mission (ERM) data set has recently been reprocessed by his organization in the National Ocean Service of NOAA and made available to the scientific community on CD/ROM disks by the National Oceanographic Data Center of the U.S. (NODC). The new data set contains a satellite orbit more precise by an order of magnitude together with an improved water vapor correction. A new, comprehensive GDR Handbook has also been prepared.

  15. NOAA's Portfolio of Operational Climate Data Records

    NASA Astrophysics Data System (ADS)

    Newport, B. J.; Cecil, D.; Hutchins, C.; Preston, C.; Stachniewicz, J. S.; Wunder, D.

    2015-12-01

    NOAA's Climate Data Record (CDR) Program was established by the National Centers for Environmental Information (NCEI) (formerly the National Climatic Data Center) in order to develop and implement a robust, sustainable, and scientifically defensible approach to producing and preserving climate records from satellite data. Since its inception in 2009 the CDR Program has transitioned 30 CDRs developed by various research groups to an initial operational state at NCEI. As a result of this transition the CDR dataset, metadata, documentation, and source code are archived by NCEI and accessible to the public, and most of the datasets are being extended by the Principal Investigator with CDR Program support. Consistency is maintained by using a formal change control process, with reprocessing and re-archiving as needed. The current portfolio of operational CDRs includes 15 Atmospheric CDRs, four Oceanic CDRs, four Terrestrial CDRs, and seven Fundamental CDRs. The main features of the portfolio will be presented, along with some potential and emerging uses.

  16. The NOAA-NASA CZCS Reanalysis Effort

    NASA Technical Reports Server (NTRS)

    Gregg, Watson W.; Conkright, Margarita E.; OReilly, John E.; Patt, Frederick S.; Wang, Meng-Hua; Yoder, James; Casey-McCabe, Nancy; Koblinsky, Chester J. (Technical Monitor)

    2001-01-01

    Satellite observations of global ocean chlorophyll span over two decades. However, incompatibilities between processing algorithms prevent us from quantifying natural variability. We applied a comprehensive reanalysis to the Coastal Zone Color Scanner (CZCS) archive, called the NOAA-NASA CZCS Reanalysis (NCR) Effort. NCR consisted of 1) algorithm improvement (AI), where CZCS processing algorithms were improved using modernized atmospheric correction and bio-optical algorithms, and 2) blending, where in situ data were incorporated into the CZCS AI to minimize residual errors. The results indicated major improvement over the previously available CZCS archive. Global spatial and seasonal patterns of NCR chlorophyll indicated remarkable correspondence with modern sensors, suggesting compatibility. The NCR permits quantitative analyses of interannual and interdecadal trends in global ocean chlorophyll.

  17. Integration of Administrative, Clinical, and Environmental Data to Support the Management of Type 2 Diabetes Mellitus: From Satellites to Clinical Care.

    PubMed

    Dagliati, Arianna; Marinoni, Andrea; Cerra, Carlo; Decata, Pasquale; Chiovato, Luca; Gamba, Paolo; Bellazzi, Riccardo

    2015-12-01

    A very interesting perspective of "big data" in diabetes management stands in the integration of environmental information with data gathered for clinical and administrative purposes, to increase the capability of understanding spatial and temporal patterns of diseases. Within the MOSAIC project, funded by the European Union with the goal to design new diabetes analytics, we have jointly analyzed a clinical-administrative dataset of nearly 1.000 type 2 diabetes patients with environmental information derived from air quality maps acquired from remote sensing (satellite) data. Within this context we have adopted a general analysis framework able to deal with a large variety of temporal, geo-localized data. Thanks to the exploitation of time series analysis and satellite images processing, we studied whether glycemic control showed seasonal variations and if they have a spatiotemporal correlation with air pollution maps. We observed a link between the seasonal trends of glycated hemoglobin and air pollution in some of the considered geographic areas. Such findings will need future investigations for further confirmation. This work shows that it is possible to successfully deal with big data by implementing new analytics and how their exploration may provide new scenarios to better understand clinical phenomena.

  18. Joint Polar Satellite System (JPSS) Common Ground System (CGS) Current Technical Performance Measures

    NASA Astrophysics Data System (ADS)

    Cochran, S.; Panas, M.; Jamilkowski, M. L.; Miller, S. W.

    2015-12-01

    ABSTRACT The National Oceanic and Atmospheric Administration (NOAA) and National Aeronautics and Space Administration (NASA) are jointly acquiring the next-generation civilian weather and environmental satellite system: the Joint Polar Satellite System (JPSS). The Joint Polar Satellite System will replace the afternoon orbit component and ground processing system of the current Polar-orbiting Operational Environmental Satellites (POES) managed by NOAA. The JPSS satellites will carry a suite of sensors designed to collect meteorological, oceanographic, climatological and geophysical observations of the Earth. The ground processing system for JPSS is known as the JPSS Common Ground System (JPSS CGS). Developed and maintained by Raytheon Intelligence, Information and Services (IIS), the CGS is a multi-mission enterprise system serving NOAA, NASA and their national and international partners. The CGS has demonstrated its scalability and flexibility to incorporate multiple missions efficiently and with minimal cost, schedule and risk, while strengthening global partnerships in weather and environmental monitoring. The CGS architecture is being upgraded to Block 2.0 in 2015 to "operationalize" S-NPP, leverage lessons learned to date in multi-mission support, take advantage of more reliable and efficient technologies, and satisfy new requirements and constraints in the continually evolving budgetary environment. To ensure the CGS meets these needs, we have developed 49 Technical Performance Measures (TPMs) across 10 categories, such as data latency, operational availability and scalability. This paper will provide an overview of the CGS Block 2.0 architecture, with particular focus on the 10 TPM categories listed above. We will provide updates on how we ensure the deployed architecture meets these TPMs to satisfy our multi-mission objectives with the deployment of Block 2.0.

  19. NOAA Looks for Advice to Make Its Data Easier to Use

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    2014-03-01

    "There is no sector in American business that wouldn't like to have better environmental information," said Joseph Klimavicz, chief information officer for the National Oceanic and Atmospheric Administration (NOAA).

  20. Draft U.S. ocean policy plan precedes proposal to move NOAA to Interior department

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    2012-01-01

    The Obama administration's ambitious plan to protect oceans was released on 12 January, just 1 day prior to the administration's apparently unrelated announcement of a proposed governmental reorganization that would move the National Oceanic and Atmospheric Administration (NOAA) from the Department of Commerce to the Department of the Interior. The proposed NOAA move is part of a larger administration proposal to consolidate six federal agencies that are focused on business and trade into one department. The action is contingent upon congressional approval. The proposal to move NOAA to the Interior department has prompted a variety of reactions, with some considering it common sense to group agencies dealing with natural resources in the same department. Others have charged that the proposed move could blunt NOAA's leading role in protecting oceans, among other concerns.

  1. 75 FR 59686 - Proposed Information Collection; Comment Request; NOAA Space-Based Data Collection System (DCS...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-28

    ... National Oceanic and Atmospheric Administration Proposed Information Collection; Comment Request; NOAA Space- Based Data Collection System (DCS) Agreements AGENCY: National Oceanic and Atmospheric... this opportunity to comment on proposed and/or continuing information collections, as required by...

  2. 78 FR 68816 - Proposed Information Collection; Comment Request; NOAA Space-Based Data Collection System (DCS...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-15

    ... National Oceanic and Atmospheric Administration Proposed Information Collection; Comment Request; NOAA Space- Based Data Collection System (DCS) Agreements AGENCY: National Oceanic and Atmospheric... this opportunity to comment on proposed and/or continuing information collections, as required by...

  3. Joint Polar Satellite System (JPSS) Common Ground System (CGS) Performance for Suomi NPP

    NASA Astrophysics Data System (ADS)

    Idol, J.; Grant, K. D.; Waas, W.; Austin, J.

    2012-12-01

    The National Oceanic and Atmospheric Administration (NOAA) and National Aeronautics and Space Administration (NASA) are jointly acquiring the next-generation civilian weather and environmental satellite system: the Joint Polar Satellite System (JPSS). JPSS will contribute the afternoon orbit component and ground processing system of the restructured National Polar-orbiting Operational Environmental Satellite System (NPOESS). As such, the Joint Polar Satellite System replaces the current Polar-orbiting Operational Environmental Satellites (POES) managed by the National Oceanic and Atmospheric Administration and the ground processing component of both Polar-orbiting Operational Environmental Satellites and the Defense Meteorological Satellite Program (DMSP) replacement, previously known as the Defense Weather Satellite System (DWSS), managed by the Department of Defense (DoD). The JPSS satellites will carry a suite of sensors designed to collect meteorological, oceanographic, climatological, and solar-geophysical observations of the earth, atmosphere, and space. The ground processing system for JPSS is known as the JPSS Common Ground System (JPSS CGS), and consists of a Command, Control, and Communications Segment (C3S) and an Interface Data Processing Segment (IDPS). Both segments are developed by Raytheon Intelligence and Information Systems (IIS). The C3S currently flies the Suomi National Polar Partnership (Suomi NPP) satellite and transfers mission data from Suomi NPP and between the ground facilities. The IDPS processes Suomi NPP satellite data to provide Environmental Data Records (EDRs) to NOAA and DoD processing centers operated by the United States government. When the JPSS-1 satellite is launched in early 2017, the responsibilities of the C3S and the IDPS will be expanded to support both Suomi NPP and JPSS-1. The Suomi NPP launched on October 28, 2011. Launch was followed by a phase of sensor activation, and full volume data traffic is now flowing from the

  4. An efficient contextual algorithm to detect subsurface fires with NOAA/AVHRR data

    SciTech Connect

    Gautam, R.S.; Singh, D.; Mittal, A.

    2008-07-15

    This paper deals with the potential application of National Oceanic and Atmospheric Administration (NOAA)/Advanced Very High Resolution Radiometer (AVHRR) data to detect subsurface fire (subsurface hotspots) by proposing an efficient contextual algorithm. Although few algorithms based on the fixed-thresholding approach have been proposed for subsurface hotspot detection, however, for each application, thresholds have to be specifically tuned to cope with unique environmental conditions. The main objective of this paper is to develop an instrument-independent adaptive method by which direct threshold or multithreshold can be avoided. The proposed contextual algorithm is helpful to monitor subsurface hotspots with operational satellite data, such as the Jharia region of India, without making any region-specific guess in thresholding. Novelty of the proposed work lies in the fact that once the algorithmic model is developed for the particular region of interest after optimizing the model parameters, there is no need to optimize those parameters again for further satellite images. Hence, the developed model can be used for optimized automated detection and monitoring of subsurface hotspots for future images of the particular region of interest. The algorithm is adaptive in nature and uses vegetation index and different NOAA/AVHRR channel's statistics to detect hotspots in the region of interest. The performance of the algorithm is assessed in terms of sensitivity and specificity and compared with other well-known thresholding, techniques such as Otsu's thresholding, entropy-based thresholding, and existing contextual algorithm proposed by Flasse and Ceccato. The proposed algorithm is found to give better hotspot detection accuracy with lesser false alarm rate.

  5. NOAA Budget Proposal Calls for a Small Increase, But Several Programs Would Be Sharply Cut

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    2014-04-01

    The White House's proposed budget of 5.497 billion for the National Oceanic and Atmospheric Administration (NOAA) for fiscal year (FY) 2015 would be good news for the agency overall if Congress goes along with the Obama administration's funding plan. The proposal would increase NOAA's discretionary budget by 174.1 million, 3.27% above the FY 2014 enacted budget (see Table ). The White House announced the overall federal budget on 4 March, and the NOAA budget "blue book" with specific funding numbers was issued in mid-March.

  6. Profiler/satellite interference analysis

    NASA Astrophysics Data System (ADS)

    Chadwick, R. B.

    1987-02-01

    An engineering analysis of potential radio interference between the Wind Profiler Demonstration Network and three NOAA satellite-based systems is presented. These three systems are: Geostationary Operational Environmental Satellite (GOES) system, the Search and Rescue Satellite (SARSAT) system, and the TIROS series Data Collection System (TDCS). The Profiler considered in this analysis is the UHF Wind Profiler to be supplied by Sperry Corporation under a contract awarded June 1986. The analysis is based on the interference-to-noise ratio at the satellite receiver. Several engineering changes have been made to the original contract to reduce potential interference. The effects of these changes are presented.

  7. The Evolution of Operational Satellite Based Remote Sensing in Support of Weather Analysis, Nowcasting, and Hazard Mitigation

    NASA Astrophysics Data System (ADS)

    Hughes, B. K.

    2010-12-01

    The mission of the National Oceanic and Atmospheric Administration (NOAA) National Environmental Data Information Service (NESDIS) is to provide timely access to global environmental data from satellites and other sources to promote, protect, and enhance America’s economy, security, environment, and quality of life. To fulfill its responsibilities, NESDIS acquires and manages America’s operational environmental satellites, operates the NOAA National Data Centers, provides data and information services including Earth system monitoring, performs official assessments of the environment, and conducts related research. The Nation’s fleet of operational environmental satellites has proven to be very critical in the detection, analysis, and forecast of natural or man-made phenomena. These assets have provided for the protection of people and property while safeguarding the Nation’s commerce and enabling safe and effective military operations. This presentation will take the audience through the evolution of operational satellite based remote sensing in support of weather forecasting, nowcasting, warning operations, hazard detection and mitigation. From the very first experiments involving radiation budget to today’s fleet of Geostationary and Polar Orbiting satellites to tomorrow’s constellation of high resolution imagers and hyperspectral sounders, environmental satellites sustain key observations for current and future generations.

  8. NOAA Ocean Exploration 2003: A Scientific Overview

    NASA Astrophysics Data System (ADS)

    Hammond, S. R.

    2003-12-01

    A little over three years ago, a panel of leading ocean scientists, explorers, and educators developed a national strategy for ocean exploration. Their report, "Discovering Earth's Final Frontier: A U.S. Strategy for Ocean Exploration," opened the door to a new way of thinking about ocean exploration and inspired the National Oceanic and Atmospheric Administration (NOAA) to embark on a mission to expand knowledge and appreciation of the ocean. This year, in collaboration with over 100 partners including university, international, federal, state and tribal science agencies, private research and outreach organizations, civic groups, aquariums and museums, NOAA engaged in major multidisciplinary expeditions and multiple projects around the world aimed at mapping the ocean in new ways, understanding ocean interactions, developing sensors and tools, and reaching out in new ways to stakeholders to communicate findings. Expeditions and projects undertaken this year continued to build on inaugural work in 2001 and 2002 and continue to set a precedent for high quality discovery-based ocean research and exploration. This presentation will focus on expedition highlights and future program directions.

  9. NOAA Activities and Plans for New Operational Space Weather Platforms and Sensors

    NASA Astrophysics Data System (ADS)

    Biesecker, D. A.; Mulligan, P.; Cash, M. D.; Reinard, A.; Simpson, M.; Diedrich, B.; Socker, D. G.

    2013-12-01

    The National Oceanic and Atmospheric Administration (NOAA) is vigorously pursuing several space weather platforms that have been demonstrated as requiring replacement. In this time of limited budgets, this has led to the need for creative and innovative solutions. Just as importantly, NOAA is only 13 months away from the launch of its first L1 solar wind monitor, the DSCOVR mission. At the same time, a private company, L'Garde Inc. will be launching a solar sail mission with NOAA as a partner. Recognizing the importance of solar wind monitoring and the need for continuity, the planning process is already underway for the DSCOVR follow-on mission and scenarios for that include commercial data purchases and solar sails. Finally, NOAA planning for an operational coronagraph is moving forward, with continuing development of the Naval Research Laboratory's Compact Coronagraph (CCOR). We will provide details on the current NOAA plans for each of these missions.

  10. 77 FR 69436 - JPSS Polar Satellite-Gap Mitigation-Request for Public Comment

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-11-19

    ... negative impacts to NOAA's numerical weather forecasts that could be introduced by a lack of polar... options, such as substitute satellite observations, alternative non-satellite data, weather modeling, and... ideas from the public on how to preserve the quality and timeliness of NOAA's numerical...

  11. NASA/NOAA/AMS Earth Science Electronic Theatre

    NASA Technical Reports Server (NTRS)

    Hasler, Fritz; Pierce, Hal; Einaudi, Franco (Technical Monitor)

    2001-01-01

    The NASA/NOAA/AMS Earth Science Electronic Theater presents Earth science observations and visualizations in a historical perspective. Fly in from outer space to Florida and the KSC Visitor's Center. Go back to the early weather satellite images from the 1960s see them contrasted with the latest International global satellite weather movies including killer hurricanes & tornadic thunderstorms. See the latest spectacular images from NASA and NOAA remote sensing missions like GOES, NOAA, TRMM, SeaWiFS, Landsat 7, & new Terra which will be visualized with state-of-the art tools. Shown in High Definition TV resolution (2048 x 768 pixels) are visualizations of hurricanes Lenny, Floyd, Georges, Mitch, Fran and Linda. See visualizations featured on covers of magazines like Newsweek, TIME, National Geographic, Popular Science and on National & International Network TV. New Digital Earth visualization tools allow us to roam & zoom through massive global images including a Landsat tour of the US, with drill-downs into major cities using 1 m resolution spy-satellite technology from the Space Imaging IKONOS satellite, Spectacular new visualizations of the global atmosphere & oceans are shown. See massive dust storms sweeping across Africa. See ocean vortexes and currents that bring up the nutrients to feed tiny plankton and draw the fish, giant whales and fisherman. See the how the ocean blooms in response to these currents and El Nino/La Nina climate changes. The demonstration is interactively driven by a SGI Octane Graphics Supercomputer with dual CPUs, 5 Gigabytes of RAM and Terabyte disk using two projectors across the super sized Universe Theater panoramic screen.

  12. NOAA/NGDC candidate models for the 12th generation International Geomagnetic Reference Field

    NASA Astrophysics Data System (ADS)

    Alken, Patrick; Maus, Stefan; Chulliat, Arnaud; Manoj, Chandrasekharan

    2015-05-01

    The International Geomagnetic Reference Field (IGRF) is a model of the geomagnetic main field and its secular variation, produced every 5 years from candidate models proposed by a number of international research institutions. For this 12th generation IGRF, three candidate models were solicited: a main field model for the 2010.0 epoch, a main field model for the 2015.0 epoch, and the predicted secular variation for the five-year period 2015 to 2020. The National Geophysical Data Center (NGDC), part of the National Oceanic and Atmospheric Administration (NOAA), has produced three candidate models for consideration in IGRF-12. The 2010 main field candidate was produced from Challenging Minisatellite Payload (CHAMP) satellite data, while the 2015 main field and secular variation candidates were produced from Swarm and Ørsted satellite data. Careful data selection was performed to minimize the influence of magnetospheric and ionospheric fields. The secular variation predictions of our parent models, from which the candidate models were derived, have been validated against independent ground observatory data.

  13. Distributed Datamining for NASA/NOAA databases

    NASA Astrophysics Data System (ADS)

    Chen, R.; Park, B. H.; Sivakumar, K.; Kargupta, H.; Ma, J.; da, M.

    2002-12-01

    sources: NASA DAO data and NOAA SAA data. The NASA DAO data is a subset of the Data Assimilation Office's (DAO) monthly mean data set. It has global spatial coverage and a temporal coverage ranging from March 1980 to November 1993. The NOAA SAA data is a product of NOAA and US department of defense (DOD) US Polar-orbiting environment satellites (POES). Seventeen features from NASA DAO and eight features from NOAA SAA data was used in our experiments. A Bayesian network (BN) model was first contructed from the two datasets combined. This BN, referred to as the centralized BN, served as the ground truth for comparing the performance of our collective BN learning algorithm. Our preliminary experiments reveal a number of interesting trends. Correlations between specific DAO and NOAA data features are evident. Specific features are consistently observed as root nodes in the BN, suggesting that these features could possibly be the ``cause'' for certain phenomenon. Seasonal trends in the data reflect appropriate seasonal changes in the BN model.

  14. Lagrangian aerosol and ozone precursor forecasts utilizing NASA Aura OMI NO2 and NOAA GOES-GASP AOD Observations

    NASA Astrophysics Data System (ADS)

    Pierce, R. B.; Szykman, J.; Kondragunta, S.; Al-Saadi, J.; Hertherington, G.; Majewski, M.; Kittaka, C.

    2008-05-01

    Over the past decade, the remote sensing of trace gases and aerosols from space has dramatically improved. The emergence and application of these measurements adds a new dimension to air quality management and forecasting by enabling consistent observations of pollutants over large spatial domains. Current instruments aboard NASA and European Space Agency satellites can provide derived measurements of trace gases and aerosols relating directly to most of the EPA's criteria pollutants: ozone, NO2, SO2, CO, and particulate matter (PM10 and PM2.5). Al-Saadi et. al., (2005) provided one of the first demonstrations on the use of AOD as a forecast tool for PM2.5 through IDEA, Infusing satellite Data into Environmental air quality Applications, a joint project between NASA, EPA, and NOAA. We have developed a new approach for forecasting aerosol and ozone precursor levels that utilizes Reverse Domain Filling [Sutton, 1994] techniques and measurements of NO2 from the Ozone Monitoring Instrument (OMI) onboard the NASA Aura satellite and aerosol optical depth (AOD) from NOAA's operational geostationary satellite retrievals [Knapp et al., 2002 and Prados et al. 2007]. Using the LaRC trajectory model [Pierce and Fairlie, 1993], 72-hr back-trajectories are initialized on a uniform grid (0.25° x 0.25°) at the surface over the Midwestern US. Coincidences between the back-trajectories and previous OMI NO2 and GOES AOD observations are identified and used to map the satellite observations back onto the uniform grid at the forecast time. The resulting RDF mapped NO2 forecast is valid at 21Z on the next day. This talk will present a case study for May 2007 over the Western Great Lakes Region. We present a comparison of the RDF forecast to an RDF forecast based on hourly NO2 and SO2 emissions used for CAMx Air Quality Model along with a comparison to in-situ concentrations of PM2.5 and O3. Disclaimer: Although this work was reviewed by the U.S. Environmental Protection Agency

  15. Weather Satellite Enterprise Information Chain

    NASA Astrophysics Data System (ADS)

    Jamilkowski, M. L.; Grant, K. D.; Miller, S. W.; Cochran, S.

    2015-12-01

    NOAA & NASA are acquiring the next-generation civilian operational weather satellite: Joint Polar Satellite System (JPSS). Contributing the afternoon orbit & ground system (GS) to replace current NOAA POES Satellites, its sensors will collect meteorological, oceanographic & climatological data. The JPSS Common Ground System (CGS), consisting of C3 and IDP segments, is developed by Raytheon. It now flies the Suomi National Polar-orbiting Partnership (S-NPP) satellite, transferring data between ground facilities, processing them into environmental products for NOAA weather centers, and expanding to support JPSS-1 in 2017. As a multi-mission system, CGS provides combinations of C3, data processing, and product delivery for numerous NASA, NOAA, DoD and international missions.The CGS provides a wide range of support to a number of missions: Command and control and mission management for the S-NPP mission today, expanding this support to the JPSS-1 satellite mission in 2017 Data acquisition for S-NPP, the JAXA's Global Change Observation Mission - Water (GCOM-W1), POES, and the Defense Meteorological Satellite Program (DMSP) and Coriolis/WindSat for the DoD Data routing over a global fiber network for S-NPP, JPSS-1, GCOM-W1, POES, DMSP, Coriolis/WindSat, NASA EOS missions, MetOp for EUMETSAT and the National Science Foundation Environmental data processing and distribution for S-NPP, GCOM-W1 and JPSS-1 The CGS plays a key role in facilitating the movement and value-added enhancement of data all the way from satellite-based sensor data to delivery to the consumers who generate forecasts and produce watches and warnings. This presentation will discuss the information flow from sensors, through data routing and processing, and finally to product delivery. It will highlight how advances in architecture developed through lessons learned from S-NPP and implemented for JPSS-1 will increase data availability and reduce latency for end user applications.

  16. NOAA's Global Earth Observation - Integrated Data Environment (GEO-IDE)

    NASA Astrophysics Data System (ADS)

    McDonald, K. R.

    2007-12-01

    The international Group on Earth Observation (GEO) and the U.S. coordination group, USGEO, have identified nine societal benefit areas that require environmental data of a wide range of types and from many diverse sources. GEO has called on the nations of the world to ensure that the relevant data that they hold is made accessible and useful to these applications. In response, nations and their environmental agencies are addressing the challenges associated with data integration of these distributed and diverse data types. The National Oceanic and Atmospheric Administration (NOAA) holds extremely large collections of data describing the physical and biological properties of the Earth's environment. To date, the data collections and the systems that support them have been acquired by individually funded and managed programs with differing requirements, standards, interfaces and conventions, mirroring the data integration issues faced at the national and international level. The Global Earth Observation - Integrated Data Environment (GEO-IDE) has been initiated by NOAA to address these issues for its own interdisciplinary applications as well as those of the the broader national and international iniatives. The concept and initial plans for GEO-IDE have been developed by the Data Management Integration Team (DMIT), a group of data management professionals representing all NOAA's Line Offices, Goal Teams and the office of the CIO. The goal of GEO-IDE is to define an architecture and the associated processes necessary to establish the required standards and guidelines that allow NOAA's data providers to make their products available as a set of interoperable services. GEO-IDE is addressing the integration of existing data services while at the same time providing guidance to future data system development activities. It is intended to meet an important NOAA need while also supporting NOAA's contribution to USGEO and GEO.

  17. Creating a More Inclusive Talent Pool for the GeoSciences in NOAA Mission Fields:

    NASA Astrophysics Data System (ADS)

    Rousseau, J.; Trotman, A. A.

    2014-12-01

    The National Oceanic and Atmospheric Administration (NOAA) Educational Partnership Program (EPP) with Minority Serving Institutions (MSI) is recognized as a model federal Science, Technology, Engineering, and Mathematics, (STEM) education investment. The EPP has a premier goal of increasing the numbers of students, especially from underrepresented communities, who are trained and awarded degrees in NOAA mission-relevant STEM fields. This goal is being achieved through awards to support undergraduate and graduate level student scholarships and to enhance NOAA mission-relevant education, research and internships at EPP Cooperative Science Centers located at MSIs. The internships allow undergraduate students to gain technical experience in STEM fields while gaining an understanding of a science mission agency such as NOAA. EPP has built evidence supporting the value of internships with its Undergraduate Scholarship Program (USP). Program metrics are used to refine and improve the internship to ensure student success. Scholarships are competitively awarded and requires applicants to submit a personal statement detailing the NOAA-relevant professional experience the applicant seeks to acquire, and gauges the depth of understanding of the work of NOAA.A focus is the EPP USP Student Internship at NOAA, which has two training phases. The first occurs at NOAA HQ in Maryland and incorporates exposure to NOAA professional culture including mentoring and professional development for scholarship recipients. The second occurs at NOAA facilities in the 50 states and US Territories. The internship projects are conducted under the supervision of a NOAA mentor and allow the scholars to: acquire increased science and technology skills: be attached to a research group and participate in a research activity as part of the team; and, acquire practical experience and knowledge of the day-to-day work of the NOAA facility. EPP has recently initiated the Experiential Research and Training

  18. GOES Satellite View of Southwest Storm System (Dec. 2015)

    NASA Video Gallery

    This animation of imagery from NOAA's GOES-East satellite from Dec. 26 to 28, 2015, shows the eastward movement of the storm system that generated snow in the Four Corners region and tornadoes in T...

  19. Satellite Animation Shows Hurricane Matthew Moving Toward Bahamas

    NASA Video Gallery

    This animation of NOAA's GOES-East satellite imagery from Oct. 3 to Oct. 5 shows Hurricane Matthew make landfall on Oct. 4 in western Haiti and move toward the Bahamas on Oct. 5. TRT: 00:38 Credit:...

  20. Satellite Movie Shows Three Tropical Cyclones in Eastern Pacific

    NASA Video Gallery

    This animation of NOAA's GOES-Wast satellite imagery from August 2 through 4 shows the movement of Tropical Depression Genevieve (left) southwest of Hawaii, Hurricane Iselle (center) in the Eastern...

  1. Satellite Movie Shows Three Storms in Eastern, Central Pacific

    NASA Video Gallery

    This animation of visible and infrared imagery from NOAA's GOES-West satellite from Aug. 25 to 27 shows Tropical Storm Kilo in the Central Pacific followed by Hurricane Ignacio and Tropical Storm J...

  2. Satellite Movie Shows Major Hurricane Matthew Affecting Hispaniola

    NASA Video Gallery

    This animation of NOAA's GOES-East satellite imagery from Sept. 30 to Oct. 3 shows Matthew become a major hurricane in the Caribbean Sea. Matthew reached Category 5 status late on Oct. 1 and droppe...

  3. Satellite Movie Shows Andres Weaken to a Tropical Storm

    NASA Video Gallery

    This animation of imagery from NOAA's GOES-West satellite from June 1 to 3 shows Hurricane Andres eye disappear and weaken to a tropical storm in the Eastern Pacific Ocean, south of Baja California...

  4. Satellite Tracks Hurricanes Madeline and Lester in the Pacific

    NASA Video Gallery

    This animation of NOAA's GOES-West satellite imagery from August 29 to August 31 shows the movement of Hurricane Madeline approaching Hawaii in the Central Pacific Ocean and Hurricane Lester in the...

  5. Satellite Sees Tropical Storm Chantal Move Over Hispaniola

    NASA Video Gallery

    This NOAA GOES-East satellite animation from July 6 to July 10 shows the development of Tropical Storm Chantal in the Atlantic Ocean and movement over Hispaniola by July 10. TRT 0:06 Credit: NASA/N...

  6. Satellite Shows Landfall and Movement of Tropical Storm Andrea

    NASA Video Gallery

    This NOAA GOES-East satellite animation shows the landfall and movement of Tropical Storm Andrea from June 5 to June 7. The video ends as Andrea's center was moving over South Carolina on its way u...

  7. Satellite Movie Shows Birth of Atlantic's Tropical Storm Lorenzo

    NASA Video Gallery

    This animation of NOAA's GOES-East satellite imagery from Oct. 20 to 22 shows the development and strengthening of Tropical Depression 13L into Tropical Storm Lorenzo in the Atlantic (far right), a...

  8. Satellite Movie Sees Major Winter Storm Nearing Mid-Atlantic

    NASA Video Gallery

    This animation NOAA's GOES-East satellite imagery from Jan. 20 to 22 shows the movement of the system that is expected to bring a powerful winter storm to the U.S. Mid-Atlantic region. Credit: NASA...

  9. Satellite Tracks Tropical Storm Madeline and Hurricane Lester

    NASA Video Gallery

    This animation of NOAA's GOES-West satellite imagery from August 30 to September 2 shows Tropical Storm Madeline move past Hawaii and weaken to a depression and Hurricane Lester approaching the Haw...

  10. Satellite Animation Shows Hurricane Matthew Moving Through Bahamas

    NASA Video Gallery

    This animation of NOAA's GOES-East satellite imagery from Oct. 4 to Oct. 6 shows Hurricane Matthew making landfall on Oct. 4 in western Haiti and moving through the Bahamas on Oct. 6. TRT: 00:38. C...

  11. Satellite Movie Shows Bertha Becoming Second Atlantic Hurricane

    NASA Video Gallery

    This animation of NOAA's GOES-East satellite imagery from August 2 through 4 shows the movement of Tropical Storm Bertha over Puerto Rico, Hispaniola and the Bahamas. It became a hurricane on Augus...

  12. Satellite Sees Tropical Storm Isaac Move Slowly Over Louisiana

    NASA Video Gallery

    An animation of NOAA's GOES-13 satellite observations from August 28-30, 2012, shows Hurricane Isaac make two landfalls in southeastern Louisiana on Aug. 28 at 7:45 p.m. EDT (1145 UTC) and Aug. 29 ...

  13. REPETITIVE DIGITAL NOAA-AVHRR DATA FOR ALASKAN ENGINEERING AND SCIENTIFIC APPLICATIONS.

    USGS Publications Warehouse

    Christie, William M.; Pawlowski, Robert J.; Fleming, Michael D.

    1986-01-01

    Selected digitally enhanced NOAA - Advanced Very High Resolution Radiometer (AVHRR) images taken by the NOAA 6, 7, 8 and 9 Polar Orbiting Satellites demonstrate the capability and application of repetitive low-resolution satellite data to Alaska's engineering and science community. Selected cloud-free visible and thermal infrared images are enhanced to depict distinct oceanographic and geologic processes along Alaska's west coast and adjacent seas. Included are the advance of the Bering Sea ice field, transport of Yukon River sediment into Norton Sound, and monitoring of plume trajectories from the Mount Augustine volcanic eruptions. Presented illustrations are representative of the 94 scenes in a cooperative USGS EROS/NOAA Alaskan AVHRR Digital Archive. This paper will discuss the cooperative efforts in establishing the first year data set and identifying Alaskan applications.

  14. Adding a Mission to the Joint Polar Satellite System (JPSS) Common Ground System (CGS)

    NASA Astrophysics Data System (ADS)

    Miller, S. W.; Grant, K. D.; Jamilkowski, M. L.

    2014-12-01

    The National Oceanic and Atmospheric Administration (NOAA) and National Aeronautics and Space Administration (NASA) are jointly acquiring the next-generation civilian weather and environmental satellite system: the Joint Polar Satellite System (JPSS). The Joint Polar Satellite System will replace the afternoon orbit component and ground processing system of the current Polar-orbiting Operational Environmental Satellites (POES) managed by NOAA. The JPSS satellites will carry a suite of sensors designed to collect meteorological, oceanographic, climatological and geophysical observations of the Earth. The ground processing system for JPSS is known as the JPSS Common Ground System (JPSS CGS). Developed and maintained by Raytheon Intelligence, Information and Services (IIS), the CGS is a multi-mission enterprise system serving NOAA, NASA and their national and international partners. The CGS provides a wide range of support to a number of missions: 1) Command and control and mission management for the Suomi National Polar-orbiting Partnership (S-NPP) mission today, expanding this support to the JPSS-1 satellite and the Polar Free Flyer mission in 2017 2) Data acquisition via a Polar Receptor Network (PRN) for S-NPP, the Japan Aerospace Exploration Agency's (JAXA) Global Change Observation Mission - Water (GCOM-W1), POES, and the Defense Meteorological Satellite Program (DMSP) and Coriolis/WindSat for the Department of Defense (DoD) 3) Data routing over a global fiber Wide Area Network (WAN) for S-NPP, JPSS-1, Polar Free Flyer, GCOM-W1, POES, DMSP, Coriolis/WindSat, the NASA Space Communications and Navigation (SCaN, which includes several Earth Observing System [EOS] missions), MetOp for the European Organisation for the Exploitation of Meteorological Satellites (EUMETSAT), and the National Science Foundation (NSF) 4) Environmental data processing and distribution for S-NPP, GCOM-W1 and JPSS-1 With this established infrastructure and existing suite of missions, the CGS

  15. 77 FR 15358 - National Oceanic and Atmospheric Administration

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-15

    ... National Oceanic and Atmospheric Administration Availability of Seats for the Monitor National Marine...), National Oceanic and Atmospheric Administration (NOAA), Department of Commerce (DOC). ACTION: Notice and..., National Ocean Service, National Oceanic and Atmospheric Administration. BILLING......

  16. A NOAA/NOS Sea Level Advisory

    NASA Astrophysics Data System (ADS)

    Sweet, W.

    2011-12-01

    In order for coastal communities to realize current impacts and become resilient to future changes, sea level advisories/bulletins are necessary that systematically monitor and document non-tidal anomalies (residuals) and flood-watch (elevation) conditions. The need became apparent after an exceptional sea level anomaly along the U.S. East Coast in June - July of 2009 when higher than normal sea levels coincided with a perigean-spring tide and flooded many coastal regions. The event spurred numerous public inquiries to the National Oceanic and Atmospheric Administration's (NOAA) Center for Operational Oceanographic Products and Services (CO-OPS) from coastal communities concerned because of the lack of any coastal storm signatures normally associated with such an anomaly. A subsequent NOAA report provided insight into some of the mechanisms involved in the event and methods for tracking their reoccurrences. NOAA/CO-OPS is the U.S. authority responsible for defining sea level datums and tracking their relative changes in support of marine navigation and national and state land-use boundaries. These efforts are supported by the National Water Level Observation Network (NWLON), whose long-term and widespread observations largely define a total water level measurement impacting a coastal community. NWLON time series provide estimates of local relative sea level trends, a product increasingly utilized by various stakeholders planning for the future. NWLON data also capture significant short-term changes and conveyance of high-water variations (from surge to seasonal scale) provides invaluable insight into inundation patterns ultimately needed for a more comprehensive planning guide. A NOAA/CO-OPS Sea Level Advisory Project will enhance high-water monitoring capabilities by: - Automatically detecting sea level anomalies and flood-watch occurrences - Seasonally calibrating the anomaly thresholds to a locality in terms of flood potential - Alerting for near

  17. Mission description and in-flight operations of ERBE instruments on ERBS and NOAA 9 spacecraft, November 1984 - January 1986

    NASA Technical Reports Server (NTRS)

    Weaver, William L.; Bush, Kathryn A.; Harris, Chris J.; Howerton, Clayton E.; Tolson, Carol J.

    1991-01-01

    Instruments of the Earth Radiation Budget Experiment (ERBE) are operating on three different Earth orbiting spacecrafts: the Earth Radiation Budget Satellite (ERBS), NOAA-9, and NOAA-10. An overview is presented of the ERBE mission, in-orbit environments, and instrument design and operational features. An overview of science data processing and validation procedures is also presented. In-flight operations are described for the ERBE instruments aboard the ERBS and NOAA-9. Calibration and other operational procedures are described, and operational and instrument housekeeping data are presented and discussed.

  18. NOAA Budget Increases to $4.1 Billion, But Some Key Items Are Reduced

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    2008-02-01

    The Bush administration has proposed a US$4.1 billion budget for fiscal year (FY) 2009 for the U.S. National Oceanic and Atmospheric Administration (NOAA). The proposed budget, which would be the agency's largest ever, is $202.6 million, or 5.2%, above the FY 2008 enacted budget. By topping $4 billion and the amount Congress passed for FY 2008, the budget proposal crosses into ``a new threshold,'' according Navy Vice Admiral Conrad Lautenbacher, undersecretary of commerce for oceans and atmosphere and NOAA administrator.

  19. The NOAA Weather and Climate Toolkit

    NASA Astrophysics Data System (ADS)

    Ansari, S.; Hutchins, C.; Del Greco, S.

    2008-12-01

    The NOAA Weather and Climate Toolkit (WCT) is an application that provides simple visualization and data export of weather and climate data archived at the National Climatic Data Center (NCDC) and other organizations. The WCT is built on the Unidata Common Data Model and supports defined feature types such as Grid, Radial, Point, Time Series and Trajectory. Current NCDC datasets supported include NEXRAD Radar data, GOES Satellite imagery, NOMADS Model Data, Integrated Surface Data and the U.S. Drought Monitor (part of the National Integrated Drought Information System (NIDIS)). The WCT Viewer provides tools for displaying custom data overlays, Web Map Services (WMS), animations and basic filters. The export of images and movies is provided in multiple formats. The WCT Data Exporter allows for data export in both vector polygon (Shapefile, Well-Known Text) and raster (GeoTIFF, Arc/Info ASCII Grid, VTK, NetCDF) formats. By decoding and exporting data into multiple common formats, a diverse user community can perform analysis using familiar tools such as ArcGIS, MatLAB and IDL. This brings new users to a vast array of weather and climate data at NCDC.

  20. A Restrospective and Prospective Examination of NOAA Solar Imaging

    NASA Astrophysics Data System (ADS)

    Hill, S. M.

    2015-12-01

    NOAA has provided soft X-ray imaging of the lower corona since the early 2000's. It is currently building the spacecraft and instrumentation to observe the sun in the extreme ultraviolet (EUV) through 2036. After more than 6 million calibrated images, it is appropriate to examine NOAA data as providing retrospective context for scientific missions. In particular, this presentation examines the record of GOES Solar X-ray Imager (SXI) observations, including continuity, photometric stability and comparison to other contemporary x-ray imagers. The first GOES Solar X-ray Imager was launched in 2001 and entered operations in 2003. The current SXIs will remain in operations until approximately 2020, when a new series of Solar (extreme-)Ultraviolet Imagers (SUVIs) will replace them as the current satellites reach their end of life. In the sense that the SXIs are similar to Yokoh's SXT and Hinode's XRT, the SUVI instruments will be similar to SOHO's EIT and SDO's AIA. The move to narrowband EUV imagers will better support eventual operational estimation of plasma conditions. In particular, plans are to leverage advances in automated image processing and segmentation to assist forecasters. While NOAA's principal use of these observations is real-time space weather forecasting, they will continue to provide a consistent context measurement for researchers for decades to come.

  1. The NOAA GOES-12 Solar X-ray Imager (SXI)

    NASA Astrophysics Data System (ADS)

    Hill, S. M.; Pizzo, V. J.; Wilkinson, D. C.; Davis, J. M.

    2001-05-01

    The Solar X-ray Imager (SXI), planned for launch in July 2001 on NOAA's GOES-12 satellite, will provide nearly uninterrupted, full-disk, soft X-ray solar movies, with a continuous frame rate significantly exceeding that for previous similar instruments. The SXI provides images with a one-minute cadence and a single-image (adjustable) dynamic range near 100. A set of metallic thin-film filters provides a degree of temperature discrimination in the 0.6-6.0 nm bandpass. The spatial resolution of approximately 10 arcseconds FWHM is sampled with 5 arcsecond pixels. NOAA's operational space weather forecasting requirements drive the observing sequences toward long-term uniformity. This will yield an excellent standardized set of contextual data products for the historical record. Sequences can be selected or modified based on solar activity levels. Data products will be made available to the research community via NOAA's National Geophysical Data Center World Wide Web site in near real-time (minutes). Among the data products are raw and calibrated images in SolarSoft compliant FITS format. Other data products will include multiple image products such as standardized movies at fixed UT times and wide dynamic range composite images. The Web interface is designed to be user friendly, providing a range of search and preview capabilities.

  2. 77 FR 13562 - Request for Comments on the 5-Year Review of NOAA's Policy on Partnerships in the Provision of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-07

    ... on Partnerships in the Provision of Environmental Information AGENCY: National Weather Service (NWS... request for comments. SUMMARY: The National Weather Service of the National Oceanic and Atmospheric... National Weather Service of the National Oceanic and Atmospheric Administration (NOAA) is undertaking...

  3. NOAA Plans for Next Generation, Space-based, Operational Observations (Invited)

    NASA Astrophysics Data System (ADS)

    Kicza, M.

    2009-12-01

    This presentation will provide an overview of NOAA’s satellite plans to maintain operational continuity of current observations and to identify research measurements and missions that are high priority candidates for research to operations transition. The year 2009 was eventful with the launch of NOAA N prime (now designated NOAA-19) on February 6 and the launch of GOES-O (now designated GOES-14) on June 27. NOAA is working to ensure cost effective continuity of data, products, and services. In furtherance of this goal, Ms. Kicza will discuss NOAA plans to: - Continue the current programs: GOES-N, GOES-R, POES, NPOESS, and Ocean Altimetry - Ensure climate data continuity: Deliver climate sensors to NPP and NPOESS in the near term, with the long term strategy defined by Summer 2009 - Pursue high priority measurement candidates for research to operations transition, including ocean altimetry, radio occultation, ocean surface vector winds, and solar wind - Identify future measurement candidates and external partnerships for research to operations transitions - Continue to conduct analysis of alternatives and simulation studies to determine the best approaches to realize future transitions - Continue to work with the commercial sector for the possible purchase of satellite products and services that meet NOAA requirements

  4. NOAA View: An Exploration Tool to Simplify Data Access and Visualization

    NASA Astrophysics Data System (ADS)

    Pisut, D.; Loomis, T.; Goel, V.; Carroll, J.

    2014-12-01

    A normal search for data would, ideally, start with the defining a variable of interest and eventually moving down to the acquisition method or analysis type. Too often, data archives assume the users understand the complex terminology of sensors and model names, or even worse - their acronyms. Imagine a non-subject matter expert, especially an educator or hobbyist, trying to navigate this sea of data and seemingly nonsense strings of letters like AVHRR, ESM2M, CFSR, or MLOST. At the NOAA VIsualization Lab, we deal with these issues on a routine basis, and are trying to make data discovery for formal and informal educational use much easier. In this talk, we'll describe the efforts to build the NOAA View data exploration tool, which provides access to over 100 variables from a myriad of satellite, in situ, model, and analysis sources across the agency. NOAA View, a WMS and OpenLayers based web tool and data portal, not only serves data imagery, but also links back to original sources in the data archives. The current architecture as well as plans for future versions will be detailed, along with examples of uses across the geophysical sciences. In addition to the talk, please visit NOAA View at the NOAA exhibit. www.nnvl.noaa.gov/view

  5. 78 FR 57131 - Membership of the NOAA Performance Review Board

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-17

    ... Membership of the NOAA Performance Review Board (PRB). SUMMARY: In accordance with 5 U.S.C. 4314(c)(4), NOAA announces the appointment of members who will serve on the NOAA's PRB. The NOAA PRB is responsible for... new members to the NOAA PRB will be for a period of two years. DATES: The effective date of service...

  6. Validation of satellite rainfall products over Greece

    NASA Astrophysics Data System (ADS)

    Feidas, H.

    2010-01-01

    Six widely available satellite precipitation products were extensively validated and intercompared on monthly-to-seasonal timescales and various spatial scales, for the period 1998-2006, using a dense station network over Greece. Satellite products were divided into three groups according to their spatial resolution. The first group had high spatial (0.5°) resolution and consists only of Tropical Rainfall Measuring Mission (TRMM) products: the TRMM Microwave Imager (TMI) precipitation product (3A12) and the TRMM multisatellite precipitation analysis products (3B42 and 3B43). The second group comprised products with medium spatial (1°) resolution. These products included the TRMM 3B42 and 3B43 estimates (remapped to 1° resolution) and the Global Precipitation Climatology Project one-degree daily (GPCP-1DD) analysis. The third group consisted of low spatial (2.5°) resolution products and included the 3B43 product (remapped to 2.5° resolution), the GPCP Satellite and Gauge (GPCP-SG) product, and the National Oceanographic and Atmospheric Administration Climate Prediction Center (NOAA-CPC) Merged Analysis (CMAP). Rain gauge data were first gridded and then compared with monthly and seasonal precipitation totals as well as with long-term averages of the six satellite products at different spatial resolutions (2.5°, 1°, and 0.5°). The results demonstrated the excellent performance of the 3B43 product over Greece in all three spatial scales. 3B42 from the first and second group and CMAP from the third exhibited a reasonable skill.

  7. Dependence of NOAA-AVHRR recorded radiance on scan angle, atmospheric turbidity and unresolved cloud

    NASA Technical Reports Server (NTRS)

    Piwinski, D. J.; Schoch, L. B.; Duggin, M. J.; Whitehead, V.; Ryland, E.

    1984-01-01

    Experimental evidence on the scan angle and sun angle dependence of radiance recorded by the Advanced Very High Resolution Radiometer (AVHRR) devices on the NOAA-6 and NOAA-7 satellites is presented. The effects of atmospheric turbidity at various scan angles is shown, and simulations of angular anisotropy and recorded radiance are compared with the recorded digital data from the AVHRR obtained over the Great Plains area of the US. Evidence is presented on the effects of unresolved cloud on the recorded radiance and vegetative indices from uniform, vegetative targets.

  8. NOAA's hydrolab conducts reef studies

    NASA Astrophysics Data System (ADS)

    This summer, scuba-diving scientists operating from Hydrolab, NOAA's undersea laboratory, are carrying out four experiments aimed at producing better management of coral reefs and their fishery resources. Hydrolab is located at a depth of 50 feet, near the mouth of the Salt River, off St. Croix, U.S. Virgin Islands. The lab houses four scientists for up to 2 weeks at a time, permitting them to swim out into the water to conduct research. The projects make use of both the natural coral reef near Hydrolab and the nearby artificial reef constructed for comparison studies.

  9. Workshop on Bridging Satellite Climate Data Gaps

    PubMed Central

    Cooksey, Catherine; Datla, Raju

    2011-01-01

    Detecting the small signals of climate change for the most essential climate variables requires that satellite sensors make highly accurate and consistent measurements. Data gaps in the time series (such as gaps resulting from launch delay or failure) and inconsistencies in radiometric scales between satellites undermine the credibility of fundamental climate data records, and can lead to erroneous analysis in climate change detection. To address these issues, leading experts in Earth observations from National Aeronautics and Space Administration (NASA), National Oceanic and Atmospheric Adminstration (NOAA), United States Geological Survey (USGS), and academia assembled at the National Institute of Standards and Technology on December 10, 2009 for a workshop to prioritize strategies for bridging and mitigating data gaps in the climate record. This paper summarizes the priorities for ensuring data continuity of variables relevant to climate change in the areas of atmosphere, land, and ocean measurements and the recommendations made at the workshop for overcoming planned and unplanned gaps in the climate record. PMID:26989581

  10. Satellite observations of contrails

    NASA Astrophysics Data System (ADS)

    Mannstein, H.; Meyer, R.; Wendlimg, P.

    2003-04-01

    A direct human influence on cirrus coverage close to the tropopause is given by the contrails produced from air-traffic, which is currently increasing at approximately 7%/year. The infrared channels of the Advanced Very High Resolution Radiometer (AVHRR) onboard of the weather satellites of the NOAA series are used for the automated detection of linear contrails. Results from studies on contrail coverage and the resulting radiative impact over Europe, SE and E-Asia will be presented and compared to results from model calculations.

  11. Improved method for calibrating the visible and near-infrared channels of the National Oceanic and Atmospheric Administration Advanced Very High Resolution Radiometer.

    PubMed

    Che, N; Price, J C

    1993-12-20

    Two procedures are used to establish calibration of the visible and near-infrared channels of the National Oceanic and Atmospheric Administration-11 (NOAA-II) Advanced Very High Resolution Radiometer (AVHRR). The first procedure for visible spectra, uses satellite data, ground measurements of atmospheric conditions during satellite overpass, and historical surface reflectance values at White Sands Missile Range (WSMR) in New Mexico. The second procedure, for the near-infrared, uses knowledge of the reflective properties at the WSMR and of a low-reflectance area, as determined from the first method, that yields satellite-gain values without a requirement for ground measurements of atmospheric conditions. The accuracy of gain values is estimated at ±7% for the two methods. The WSMR combines accessibility, a wide range of surface reflectances, and generally good observing conditions, making it a desirable location for satellite calibration.

  12. A Statistical Analysis of Automated and Manually Detected Fires Using Environmental Satellites

    NASA Astrophysics Data System (ADS)

    Ruminski, M. G.; McNamara, D.

    2003-12-01

    The National Environmental Satellite and Data Information Service (NESDIS) of the National Oceanic and Atmospheric Administration (NOAA) has been producing an analysis of fires and smoke over the US since 1998. This product underwent significant enhancement in June 2002 with the introduction of the Hazard Mapping System (HMS), an interactive workstation based system that displays environmental satellite imagery (NOAA Geostationary Operational Environmental Satellite (GOES), NOAA Polar Operational Environmental Satellite (POES) and National Aeronautics and Space Administration (NASA) MODIS data) and fire detects from the automated algorithms for each of the satellite sensors. The focus of this presentation is to present statistics compiled on the fire detects since November 2002. The Automated Biomass Burning Algorithm (ABBA) detects fires using GOES East and GOES West imagery. The Fire Identification, Mapping and Monitoring Algorithm (FIMMA) utilizes NOAA POES 15/16/17 imagery and the MODIS algorithm uses imagery from the MODIS instrument on the Terra and Aqua spacecraft. The HMS allows satellite analysts to inspect and interrogate the automated fire detects and the input satellite imagery. The analyst can then delete those detects that are felt to be false alarms and/or add fire points that the automated algorithms have not selected. Statistics are compiled for the number of automated detects from each of the algorithms, the number of automated detects that are deleted and the number of fire points added by the analyst for the contiguous US and immediately adjacent areas of Mexico and Canada. There is no attempt to distinguish between wildfires and control or agricultural fires. A detailed explanation of the automated algorithms is beyond the scope of this presentation. However, interested readers can find a more thorough description by going to www.ssd.noaa.gov/PS/FIRE/hms.html and scrolling down to Individual Fire Layers. For the period November 2002 thru August

  13. The NOAA-NASA OMI/GOME-2 Near-Real-Time Monitoring System of Volcanic SO2 and Aerosol Clouds

    NASA Astrophysics Data System (ADS)

    Vicente, G.; Schroeder, W.; Krueger, A. J.; Yang, K.; Carn, S. A.; Krotkov, N. A.; Guffanti, M.; Levelt, P.

    2009-12-01

    The Ozone Monitoring Instrument (OMI) on the NASA EOS/Aura research satellite and the Global Ozone Monitoring Experiment-2 (GOME-2) instrument on the Metop-A satellite allow measurement of SO2 concentrations at UV wavelengths with daily global coverage. SO2 is detected from space using its strong absorption band structure in the near UV (300-320 nm) as well as in IR bands near 7.3 and 8.6 μm. UV SO2 measurements are very robust and are insensitive to the factors that confound IR data. SO2 and ash can be detected in a very fresh volcanic eruption cloud due to sunlight backscattering and ash presence can be confirmed by UV derived aerosol index measurements. When detected in Near Real-Time (NRT) it can be used as aviation alerts to the Federal Aviation Administration (FAA) with reduced false alarm ratios and permit more robust detection and tracking of volcanic clouds. NRT observations of SO2 and volcanic ash using UV measurements (OMI and GOME-2) and well as IR measurements can be incorporated into data products compatible with Decision Support Tools (DSTs) in use at Volcanic Ash Advisory Centers (VAACs) in Washington and Anchorage, and the USGS Volcano Observatories. In this presentation we show the latest NASA and NOAA Office of Satellite Data Processing and Distribution (OSDPD) developments of an online NRT image and data product distribution system. The system generates eruption alerts, NRT global composite images and SO2, Aerosol Index and Cloud Reflectivity images for 28 volcano regions, as well as up to 15 days of digital data files in McIDAS, NetCDF, GeoTIFF and gif formats for the OMI and GOME-2 instruments. Products are infused into DSTs including the Volcanic Ash Coordination Tool (VACT), under development by the NOAA Forecast Systems Laboratory and the FAA’s Oceanic Weather Product Development Team (OWPDT), to monitor and track, drifting volcanic clouds and aerosol index.

  14. Global data on land surface parameters from NOAA AVHRR for use in numerical climate models

    SciTech Connect

    Gutman, G.G. )

    1994-05-01

    This paper reviews satellite datasets from the NOAA Advanced Very High Resolution Radiometer that could be employed in support of numerical climate modeling at regional and global scales. Presently available NOAA operational and research datasets of different resolutions as well as the NASA-NOAA Pathfinder dataset, available in the near future, are briefly described. Specific problems in deriving surface characteristics in the context of their potential use of models are discussed. Possible ways of solving these problems are briefly described, based on the state-of-the-art level of understanding in this area of research. Some examples of seasonal variability of AVHRR-derived surface parameters, such as albedo, greenness, and clear-sky midafternoon temperature, for different climatic regions are presented. Validation issues and potential operational production of such land climate parameters are discussed.

  15. Satellite Remote Sensing of Ozone Change, Air Quality and Climate

    NASA Technical Reports Server (NTRS)

    Hilsenrath, Ernest; Bhartia, Pawan K. (Technical Monitor)

    2001-01-01

    To date satellite remote sensing of ozone depletion has been very successful. Data sets have been validated and measured trends are in agreement with model calculations. Technology developed for sensing the stratosphere is now being employed to study air quality and climate with promising results. These new data show that air quality is a transcontinental issue, but that better instrumentation is needed. Recent data show a connection between the stratosphere, troposphere and climate, which will require new technology to quantify these relationships. NASA and NOAA (National Oceanic and Atmospheric Administration) are planning and developing new missions. Recent results from TOMS (Total Ozone Mapping Spectrometer), SeaWiffs, and Terra will be discussed and upcoming missions to study atmospheric chemistry will be discussed.

  16. Climate Model Diagnostic and Evaluation: With a Focus on Satellite Observations

    NASA Technical Reports Server (NTRS)

    Waliser, Duane

    2011-01-01

    Each year, we host a summer school that brings together the next generation of climate scientists - about 30 graduate students and postdocs from around the world - to engage with premier climate scientists from the Jet Propulsion Laboratory and elsewhere. Our yearly summer school focuses on topics on the leading edge of climate science research. Our inaugural summer school, held in 2011, was on the topic of "Using Satellite Observations to Advance Climate Models," and enabled students to explore how satellite observations can be used to evaluate and improve climate models. Speakers included climate experts from both NASA and the National Oceanic and Atmospheric Administration (NOAA), who provided updates on climate model diagnostics and evaluation and remote sensing of the planet. Details of the next summer school will be posted here in due course.

  17. Visions of our Planet's Atmosphere, Land and Oceans: NASA/NOAA E-Theater 2003

    NASA Technical Reports Server (NTRS)

    Hasler, Fritz

    2003-01-01

    The NASA/NOAA Electronic Theater presents Earth science observations from space in a spectacular way. Fly in from outer space to the conference location as well as the site of the 2002 Olympic Winter Games using data from NASA satellites and the IKONOS 'Spy Satellite". See HDTV movie Destination Earth 2002 incorporating the Olympic Zooms, NBC footage of the 2002 Olympics, the shuttle, & the best NASA/NOAA Earth science visualizations. See the latest US and international global satellite weather movies including hurricanes, typhoons & "tornadoes". See the latest visualizations from NASA/NOAA and International remote sensing missions like Terra, Aqua, GOES, GMS, SeaWiFS, & Landsat. Feel the pulse of OUT planet. See how land vegetation, ocean plankton, clouds and temperatures respond to the sun & seasons. See vortexes and currents in the global oceans that bring up the nutrients to feed tiny algae and draw the fish, whales and fisherman. See the how the ocean blooms in response to these currents and El Nino/La Nina climate changes. See the city lights, fishing fleets, gas flares and bio-mass burning of the Earth at night observed by the "night-vision" DMSP satellite. The presentation will be made using the latest HDTV and video projection technology by: Dr. Fritz Hasler NASA/Goddard Space Flight Center.

  18. Visions of our Planet's Atmosphere, Land and Oceans: NASA/NOAA E-Theater 2003

    NASA Technical Reports Server (NTRS)

    Hasler, Fritz

    2003-01-01

    The NASA/NOAA Electronic Theater presents Earth science observations from space in a spectacular way. Fly in from outer space to the conference location as well as the site of the 2002 Olympic Winter Games using data from NASA satellites and the IKONOS "Spy Satellite". See HDTV movie Destination Earth 2002 incorporating the Olympic Zooms, NBC footage of the 2002 Olympics, the shuttle, & the best NASA/NOAA Earth science visualizations. See the latest US and international global satellite weather movies including hurricanes, typhoons & "tornadoes". See the latest visualizations from NASA/NOAA and International remote sensing missions like Terra, Aqua, GOES, GMS, SeaWiFS, & Landsat. Feel the pulse of our planet. See how land vegetation, ocean plankton, clouds and temperatures respond to the sun & seasons. See vortexes and currents in the global oceans that bring up the nutrients to feed tiny algae and draw the fish, whales and fisherman. See the how the ocean blooms in response to these currents and El Nino/La Nina climate changes. See the city lights, fishing fleets, gas flares and bio-mass burning of the Earth at night observed by the "night-vision" DMSP satellite. The presentation will be made using the latest HDTV and video projection technology by: Dr. Fritz Hasler NASA/Goddard Space Flight Center

  19. Visions of our Planet's Atmosphere, Land and Oceans: NASA/NOAA E-Theater 2003

    NASA Technical Reports Server (NTRS)

    Hasler, Fritz

    2003-01-01

    The NASA/NOAA Electronic Theater presents Earth science observations from space in a spectacular way. Fly in from outer space to the conference location as well as the site of the 2002 Olympic Winter Games using data from NASA satellites and the IKONOS "Spy Satellite". See HDTV movie Destination Earth 2002 incorporating the Olympic Zooms, NBC footage of the 2002 Olympics, the shuttle, & the best NASA/NOAA Earth science visualizations. See the latest US and international global satellite weather movies including hurricanes, typhoons & "tornadoes". See the latest visualizations from NASA/NOAA and International remote sensing missions like Terra, Aqua, GOES, GMS , SeaWiFS, & Landsat. Feel the pulse of our planet. See how land vegetation, ocean plankton, clouds and temperatures respond to the sun & seasons. See vortexes and currents in the global oceans that bring up the nutrients to feed tiny algae and draw the fish, whales and fisherman. See the how the ocean blooms in response to these currents and El Nino/La Nina climate changes. See the city lights, fishing fleets, gas flares and bio-mass burning of the Earth at night observed by the the "night-vision" DMSP satellite. The presentation will be made using the latest HDTV and video projection technology by: Dr. Fritz Hasler NASA/Goddard Space Flight Center

  20. Operational Applications of Satellite Snowcover Observations

    NASA Technical Reports Server (NTRS)

    Rango, A. (Editor); Peterson, R. (Editor)

    1980-01-01

    The history of remote sensing of snow cover is reviewed and the following topics are covered: various techniques for interpreting LANDSAT and NOAA satellite data; the status of future systems for continuing snow hydrology applications; the use of snow cover observations in streamflow forecasts by Applications Systems Verification and Transfer participants and selected foreign investigators; and the benefits of using satellite snow cover data in runoff prediction.

  1. The NOAA Annual Greenhouse Gas Index - 2012 Update

    NASA Astrophysics Data System (ADS)

    Butler, J. H.; Montzka, S. A.; Conway, T. J.; Dlugokencky, E. J.; Elkins, J. W.; Masari, K. A.; Schnell, R. C.; Tans, P. P.

    2012-04-01

    For the past several decades, the U.S. National Oceanic and Atmospheric Administration (NOAA) has monitored all of the long-lived atmospheric greenhouse gases. These global measurements have provided input to databases, analyses, and various relevant products, including national and international climate assessments. To make these data more useful and available, NOAA several years ago released its Annual Greenhouse Gas Index (AGGI), http://www.esrl.noaa.gov/gmd/aggi. This index, based on the climate forcing properties of long-lived greenhouse gases, was designed to enhance the connection between scientists and society by providing a normalized standard that can be easily understood and followed. The long-lived gases capture most of the radiative forcing, and uncertainty in their measurement is very small. This allows us to provide a robust measure and assessment of the long-term, radiative influence of these gases. Continuous greenhouse gas measurements are made at baseline climate observatories (Pt. Barrow, Alaska; Mauna Loa, Hawaii; American Samoa; and the South Pole) and weekly flask air samples are collected through a global network of over 60 sites, including an international cooperative program for carbon dioxide and other greenhouse gases. The gas samples are analyzed at NOAA's Earth System Research Laboratory (NOAA/ESRL) in Boulder, Colorado, using WMO standard reference gases prepared by NOAA/ESRL. The AGGI is normalized to 1.00 in 1990, the Kyoto Climate Protocol baseline year. In 2010, the AGGI was 1.29, indicating that global radiative forcing by long-lived greenhouse gases had increased 29% since 1990. During the 1980s CO2 accounted for about 50-60% of the annual increase in radiative forcing by long-lived greenhouse gases, whereas, since 2000, it has accounted for 85-90% of this increase each year. After nearly a decade of virtually level concentrations in the atmosphere, methane (CH4) increased measurably over the past 2-3 years, as did its

  2. 77 FR 33443 - National Oceanic and Atmospheric Administration

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-06

    ... National Oceanic and Atmospheric Administration Pacific Fishery Management Council; Public Meeting AGENCY: National Marine Fisheries Service (NMFS), National Oceanic and Atmospheric Administration (NOAA), Commerce... Assessment Methods for Data-Moderate Stocks will be held at the National Marine Fisheries Service's...

  3. ENVIROSAT-2000 report: Federal agency satellite requirements

    NASA Technical Reports Server (NTRS)

    Cotter, D. (Editor); Wolzer, I. (Editor); Blake, N.; Jarman, J.; Lichy, D.; Pangburn, T.; Mcardle, R.; Paul, C.; Shaffer, L.; Thorley, G.

    1985-01-01

    The requirement of Federal agencies, other than NOAA, for the data and services of civil operational environmental satellites (both polar orbiting and geostationary) are summarized. Agency plans for taking advantage of proposed future Earth sensing space systems, domestic and foreign, are cited also. Current data uses and future requirements are addressed as identified by each agency.

  4. NASA/NOAA Electronic Theater: 90 Minutes of Spectacular Visualization

    NASA Technical Reports Server (NTRS)

    Hasler, A. F.

    2004-01-01

    The NASA/NOAA Electronic Theater presents Earth science observations and visualizations from space in a historical perspective. Fly in from outer space to Ashville and the Conference Auditorium. Zoom through the Cosmos to SLC and site of the 2002 Winter Olympics using 1 m IKONOS 'Spy Satellite' data. Contrast the 1972 Apollo 17 'Blue Marble' image of the Earth with the latest US and International global satellite images that allow us to view our Planet from any vantage point. See the latest spectacular images from NASA/NOAA remote sensing missions like Terra, GOES, TRMM, SeaWiFS, & Landsat 7, of storms & fires like Hurricane Isabel and the LA/San Diego Fire Storms of 2003. See how High Definition Television (HDTV) is revolutionizing the way we do science communication. Take the pulse of the planet on a daily, annual and 30-year time scale. See daily thunderstorms, the annual blooming of the northern hemisphere land masses and oceans, fires in Africa, dust storms in Iraq, and carbon monoxide exhaust from global burning. See visualizations featured on Newsweek, TIME, National Geographic, Popular Science covers & National & International Network TV. Spectacular new global visualizations of the observed and simulated atmosphere and Oceans are shown. See the currents and vortexes in the Oceans that bring up the nutrients blooms in response to El Nino/La Nina climate changes. The Etheater will be presented using the latest High Definition TV (HDTV) and video projection technology on a large screen. See the global city lights, and the great NE US blackout of August 2003 observed by the 'night-vision' DMSP satellite.

  5. NASA/NOAA Electronic Theater: An Hour of Spectacular Visualization

    NASA Technical Reports Server (NTRS)

    Hasier, A. F.

    2004-01-01

    The NASA/NOAA Electronic Theater presents Earth science observations and visualizations from space in a historical perspective. Fly in from outer space to Utah, Logan and the USU Agriculture Station. Compare zooms through the Cosmos to the sites of the 2004 Summer and 2002 Winter Olympic games using 1 m IKONOS "Spy Satellite" data. Contrast the 1972 Apollo 17 "Blue Marble" image of the Earth with the latest US and International global satellite images that allow us to view our Planet from any vantage point. See the latest spectacular images h m NASA/NOAA remote sensing missions like Terra, GOES, TRMM, SeaWiF!3,& Landsat 7, of storms & fires like Hurricanes Charlie & Isabel and the LA/San Diego Fire Storms of 2003. See how High Definition Television (HDTV) is revolutionizing the way we do science communication. Take the pulse of the planet on a daily, annual and 30-year time scale. See daily thunderstorms, the annual greening of the northern hemisphere land masses and oceans, fires in Africa, dust storms in Iraq, and carbon monoxide exhaust from global burning. See visualizations featured on Newsweek, TIME, National Geographic, Popular Science covers & National & International Network TV. Spectacular new global visualizations of the observed and simulated atmosphere & oceans are shown. See the currents and vortexes in the oceans that bring up the nutrients to feed tiny plankton and draw the fish, whales and fishermen. See the how the Ocean blooms in response to El Nino/La Nina climate changes. The E-theater will be presented using the latest High Definition TV and video projection technology on a large screen. See the global city lights, and the great NE US blackout of August 2003 observed by the "night-vision" DMSP satellite.

  6. NOAA draft scientific integrity policy: Comment period open through 20 August

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    2011-08-01

    The National Oceanic and Atmospheric Administration (NOAA) is aiming to finalize its draft scientific integrity policy possibly by the end of the year, Larry Robinson, NOAA assistant secretary for conservation and management, indicated during a 28 July teleconference. The policy “is key to fostering an environment where science is encouraged, nurtured, respected, rewarded, and protected,” Robinson said, adding that the agency's comment period for the draft policy, which was released on 16 June, ends on 20 August. “Science underpins all that NOAA does. This policy is one piece of a broader effort to strengthen NOAA science,” Robinson said, noting that the draft “represents the first ever scientific integrity policy for NOAA. Previously, our policy only addressed research misconduct and focused on external grants. What's new about this policy is that it establishes NOAA's principles for scientific integrity, a scientific code of conduct, and a code of ethics for science supervision and management.”

  7. The NOAA Archives of the 21st Century

    NASA Astrophysics Data System (ADS)

    Casey, K. S.; Relph, J.; Kihn, E.; Bates, J. J.; McCulloch, L.; McDonald, K. R.; Vizbulis, R.

    2009-12-01

    Early in the 21st century, the Open Archival Information System Reference Model (OAIS-RM) swept across the international digital archive community, bringing with it a common language and functional framework for the long term preservation of environmental information. The OAIS-RM has had a significant impact within the National Oceanic and Atmospheric Administration (NOAA), where the archive-related roles and responsibilities of the various offices and entities within the agency were not clearly identified. This lack of clarity was especially acute with respect to interactions between the three NOAA National Data Centers - Oceanographic, Climatic, and Geophysical - and the Comprehensive Large Array-data Stewardship System (CLASS). Through 2008 and 2009, each of these offices individually, then together as a group, undertook an extensive mapping of their existing and planned capabilities to the functional entities of the OAIS-RM. The result of this process was a new clarity which puts the Data Centers forth as the NOAA Archives, with CLASS as the critical supporting information technology (IT) infrastructure. Under this new paradigm, the Data Centers lead all interactions with both data producers and consumers, reflecting their more discipline-focused involvement with and understanding of the designated communities they serve. The CLASS infrastructure focuses now on meeting the common IT requirements of the three Data Centers, reflecting its capabilities and expertise in designing and deploying rigorous IT systems. The new paradigm is allowing NOAA to move forward together in a more unified and cooperative manner, better aligned to meet the 21st century challenges of data stewardship.

  8. NOAA's Data Catalog and the Federal Open Data Policy

    NASA Astrophysics Data System (ADS)

    Wengren, M. J.; de la Beaujardiere, J.

    2014-12-01

    The 2013 Open Data Policy Presidential Directive requires Federal agencies to create and maintain a 'public data listing' that includes all agency data that is currently or will be made publicly-available in the future. The directive requires the use of machine-readable and open formats that make use of 'common core' and extensible metadata formats according to the best practices published in an online repository called 'Project Open Data', to use open licenses where possible, and to adhere to existing metadata and other technology standards to promote interoperability. In order to meet the requirements of the Open Data Policy, the National Oceanic and Atmospheric Administration (NOAA) has implemented an online data catalog that combines metadata from all subsidiary NOAA metadata catalogs into a single master inventory. The NOAA Data Catalog is available to the public for search and discovery, providing access to the NOAA master data inventory through multiple means, including web-based text search, OGC CS-W endpoint, as well as a native Application Programming Interface (API) for programmatic query. It generates on a daily basis the Project Open Data JavaScript Object Notation (JSON) file required for compliance with the Presidential directive. The Data Catalog is based on the open source Comprehensive Knowledge Archive Network (CKAN) software and runs on the Amazon Federal GeoCloud. This presentation will cover topics including mappings of existing metadata in standard formats (FGDC-CSDGM and ISO 19115 XML ) to the Project Open Data JSON metadata schema, representation of metadata elements within the catalog, and compatible metadata sources used to feed the catalog to include Web Accessible Folder (WAF), Catalog Services for the Web (CS-W), and Esri ArcGIS.com. It will also discuss related open source technologies that can be used together to build a spatial data infrastructure compliant with the Open Data Policy.

  9. Visual Data Analysis for Satellites

    NASA Technical Reports Server (NTRS)

    Lau, Yee; Bhate, Sachin; Fitzpatrick, Patrick

    2008-01-01

    The Visual Data Analysis Package is a collection of programs and scripts that facilitate visual analysis of data available from NASA and NOAA satellites, as well as dropsonde, buoy, and conventional in-situ observations. The package features utilities for data extraction, data quality control, statistical analysis, and data visualization. The Hierarchical Data Format (HDF) satellite data extraction routines from NASA's Jet Propulsion Laboratory were customized for specific spatial coverage and file input/output. Statistical analysis includes the calculation of the relative error, the absolute error, and the root mean square error. Other capabilities include curve fitting through the data points to fill in missing data points between satellite passes or where clouds obscure satellite data. For data visualization, the software provides customizable Generic Mapping Tool (GMT) scripts to generate difference maps, scatter plots, line plots, vector plots, histograms, timeseries, and color fill images.

  10. New Developments in NOAA's Comprehensive Large Array-Data Stewardship System

    NASA Astrophysics Data System (ADS)

    Ritchey, N. A.; Morris, J. S.; Carter, D. J.

    2012-12-01

    The Comprehensive Large Array-data Stewardship System (CLASS) is part of the NOAA strategic goal of Climate Adaptation and Mitigation that gives focus to the building and sustaining of key observational assets and data archives critical to maintaining the global climate record. Since 2002, CLASS has been NOAA's enterprise solution for ingesting, storing and providing access to a host of near real-time remote sensing streams such as the Polar and Geostationary Operational Environmental Satellites (POES and GOES) and the Defense Meteorological Satellite Program (DMSP). Since October, 2011 CLASS has also been the dedicated Archive Data Segment (ADS) of the Suomi National Polar-orbiting Partnership (S-NPP). As the ADS, CLASS receives raw and processed S-NPP records for archival and distribution to the broad user community. Moving beyond just remote sensing and model data, NOAA has endorsed a plan to migrate all archive holdings from NOAA's National Data Centers into CLASS while retiring various disparate legacy data storage systems residing at the National Climatic Data Center (NCDC), National Geophysical Data Center (NGDC) and the National Oceanographic Data Center (NODC). In parallel to this data migration, CLASS is evolving to a service-oriented architecture utilizing cloud technologies for dissemination in addition to clearly defined interfaces that allow better collaboration with partners. This evolution will require implementation of standard access protocols and metadata which will lead to cost effective data and information preservation.

  11. Lautenbacher will face challenges as new NOAA Head

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    With a non-controversial confirmation hearing on November 8 before the U.S. Senate Commerce Committee, retired U.S. Navy Vice Admiral Conrad Lautenbacher, Jr. is gearing up to soon take over the helm at the National Oceanic and Atmospheric Administration (NOAA). His nomination by the Bush administration also includes serving as undersecretary of commerce for oceans and atmosphere.A number of sources familiar with Lautenbacher indicated that his Navy and managerial skills will be useful in these posts, as he likely will face a number of science, budget, and administrative challenges in running this $3.2-billion agency, which comprises 63% of the Commerce Department budget. These sources also sited Lautenbacher's integrity; his ability to listen to different sides of issues and to consult broadly; his connections to both the scientific and political worlds; and his persuasive ability to get things done.

  12. Wild Fire Emissions for the NOAA Operational HYSPLIT Smoke Model

    NASA Astrophysics Data System (ADS)

    Huang, H. C.; ONeill, S. M.; Ruminski, M.; Shafran, P.; McQueen, J.; DiMego, G.; Kondragunta, S.; Gorline, J.; Huang, J. P.; Stunder, B.; Stein, A. F.; Stajner, I.; Upadhayay, S.; Larkin, N. K.

    2015-12-01

    Particulate Matter (PM) generated from forest fires often lead to degraded visibility and unhealthy air quality in nearby and downstream areas. To provide near-real time PM information to the state and local agencies, the NOAA/National Weather Service (NWS) operational HYSPLIT (Hybrid Single Particle Lagrangian Integrated Trajectory Model) smoke modeling system (NWS/HYSPLIT smoke) provides the forecast of smoke concentration resulting from fire emissions driven by the NWS North American Model 12 km weather predictions. The NWS/HYSPLIT smoke incorporates the U.S. Forest Service BlueSky Smoke Modeling Framework (BlueSky) to provide smoke fire emissions along with the input fire locations from the NOAA National Environmental Satellite, Data, and Information Service (NESDIS)'s Hazard Mapping System fire and smoke detection system. Experienced analysts inspect satellite imagery from multiple sensors onboard geostationary and orbital satellites to identify the location, size and duration of smoke emissions for the model. NWS/HYSPLIT smoke is being updated to use a newer version of USFS BlueSky. The updated BlueSky incorporates the Fuel Characteristic Classification System version 2 (FCCS2) over the continental U.S. and Alaska. FCCS2 includes a more detailed description of fuel loadings with additional plant type categories. The updated BlueSky also utilizes an improved fuel consumption model and fire emission production system. For the period of August 2014 and June 2015, NWS/HYSPLIT smoke simulations show that fire smoke emissions with updated BlueSky are stronger than the current operational BlueSky in the Northwest U.S. For the same comparisons, weaker fire smoke emissions from the updated BlueSky were observed over the middle and eastern part of the U.S. A statistical evaluation of NWS/HYSPLIT smoke predicted total column concentration compared to NOAA NESDIS GOES EAST Aerosol Smoke Product retrievals is underway. Preliminary results show that using the newer version

  13. Joint Polar Satellite System (JPSS) Common Ground System (CGS) Architecture Overview and Technical Performance Measures

    NASA Astrophysics Data System (ADS)

    Grant, K. D.; Johnson, B. R.; Miller, S. W.; Jamilkowski, M. L.

    2014-12-01

    The National Oceanic and Atmospheric Administration (NOAA) and National Aeronautics and Space Administration (NASA) are jointly acquiring the next-generation civilian weather and environmental satellite system: the Joint Polar Satellite System (JPSS). The Joint Polar Satellite System will replace the afternoon orbit component and ground processing system of the current Polar-orbiting Operational Environmental Satellites (POES) managed by NOAA. The JPSS satellites will carry a suite of sensors designed to collect meteorological, oceanographic, climatological and geophysical observations of the Earth. The ground processing system for JPSS is known as the JPSS Common Ground System (JPSS CGS). Developed and maintained by Raytheon Intelligence, Information and Services (IIS), the CGS is a multi-mission enterprise system serving NOAA, NASA and their national and international partners. The CGS provides a wide range of support to a number of missions. Originally designed to support S-NPP and JPSS, the CGS has demonstrated its scalability and flexibility to incorporate all of these other important missions efficiently and with minimal cost, schedule and risk, while strengthening global partnerships in weather and environmental monitoring. The CGS architecture will be upgraded to Block 2.0 in 2015 to satisfy several key objectives, including: "operationalizing" S-NPP, which had originally been intended as a risk reduction mission; leveraging lessons learned to date in multi-mission support; taking advantage of newer, more reliable and efficient technologies; and satisfying new requirements and constraints due to the continually evolving budgetary environment. To ensure the CGS meets these needs, we have developed 48 Technical Performance Measures (TPMs) across 9 categories: Data Availability, Data Latency, Operational Availability, Margin, Scalability, Situational Awareness, Transition (between environments and sites), WAN Efficiency, and Data Recovery Processing. This

  14. Satellite Instrument Calibration for Measuring Global Climate Change: Report of a Workshop.

    NASA Astrophysics Data System (ADS)

    Ohring, George; Wielicki, Bruce; Spencer, Roy; Emery, Bill; Datla, Raju

    2005-09-01

    Measuring the small changes associated with long-term global climate change from space is a daunting task. The satellite instruments must be capable of observing atmospheric and surface temperature trends as small as 0.1°C decade-1, ozone changes as little as 1% decade-1, and variations in the sun's output as tiny as 0.1% decade-1. To address these problems and recommend directions for improvements in satellite instrument calibration, the National Institute of Standards and Technology (NIST), National Polar-orbiting Operational Environmental Satellite System Integrated Program Office (NPOESS-IPO), National Oceanic and Atmospheric Administration (NOAA), and National Aeronautics and Space Administration (NASA) organized a workshop at the University of Maryland Inn and Conference Center, College Park, Maryland, 12 14 November 2002. Some 75 scientists participated including researchers who develop and analyze long-term datasets from satellites, experts in the field of satellite instrument calibration, and physicists working on state-of-the-art calibration sources and standards.The workshop defined the absolute accuracies and long-term stabilities of global climate datasets that are needed to detect expected trends, translated these dataset accuracies and stabilities to required satellite instrument accuracies and stabilities, and evaluated the ability of current observing systems to meet these requirements. The workshop's recommendations include a set of basic axioms or overarching principles that must guide high quality climate observations in general, and a road map for improving satellite instrument characterization, calibration, intercalibration, and associated activities to meet the challenge of measuring global climate change. The workshop also recommended that a follow-up workshop be conducted to discuss implementation of the road map developed at this workshop.


  15. A User's Guide to the Tsunami Datasets at NOAA's National Data Buoy Center

    NASA Astrophysics Data System (ADS)

    Bouchard, R. H.; O'Neil, K.; Grissom, K.; Garcia, M.; Bernard, L. J.; Kern, K. J.

    2013-12-01

    The National Data Buoy Center (NDBC) has maintained and operated the National Oceanic and Atmospheric Administration's (NOAA) tsunameter network since 2003. The tsunameters employ the NOAA-developed Deep-ocean Assessment and Reporting of Tsunamis (DART) technology. The technology measures the pressure and temperature every 15 seconds on the ocean floor and transforms them into equivalent water-column height observations. A complex series of subsampled observations are transmitted acoustically in real-time to a moored buoy or marine autonomous vehicle (MAV) at the ocean surface. The surface platform uses its satellite communications to relay the observations to NDBC. NDBC places the observations onto the Global Telecommunication System (GTS) for relay to NOAA's Tsunami Warning Centers (TWC) in Hawai'i and Alaska and to the international community. It takes less than three minutes to speed the observations from the ocean floor to the TWCs. NDBC can retrieve limited amounts of the 15-s measurements from the instrumentation on the ocean floor using the technology's two-way communications. NDBC recovers the full resolution 15-s measurements about every 2 years and forwards the datasets and metadata to the National Geophysical Data Center for permanent archive. Meanwhile, NDBC retains the real-time observations on its website. The type of real-time observation depends on the operating mode of the tsunameter. NDBC provides the observations in a variety of traditional and innovative methods and formats that include descriptors of the operating mode. Datasets, organized by station, are available from the NDBC website as text files and from the NDBC THREDDS server in netCDF format. The website provides alerts and lists of events that allow users to focus on the information relevant for tsunami hazard analysis. In addition, NDBC developed a basic web service to query station information and observations to support the Short-term Inundation Forecasting for Tsunamis (SIFT

  16. Identification of pixels with stray light and cloud shadow contaminations in the satellite ocean color data processing.

    PubMed

    Jiang, Lide; Wang, Menghua

    2013-09-20

    A new flag/masking scheme has been developed for identifying stray light and cloud shadow pixels that significantly impact the quality of satellite-derived ocean color products. Various case studies have been carried out to evaluate the performance of the new cloud contamination flag/masking scheme on ocean color products derived from the Visible Infrared Imaging Radiometer Suite (VIIRS) onboard the Suomi National Polar-orbiting Partnership (SNPP). These include direct visual assessments, detailed quantitative case studies, objective statistic analyses, and global image examinations and comparisons. The National Oceanic and Atmospheric Administration (NOAA) Multisensor Level-1 to Level-2 (NOAA-MSL12) ocean color data processing system has been used in the study. The new stray light and cloud shadow identification method has been shown to outperform the current stray light flag in both valid data coverage and data quality of satellite-derived ocean color products. In addition, some cloud-related flags from the official VIIRS-SNPP data processing software, i.e., the Interface Data Processing System (IDPS), have been assessed. Although the data quality with the IDPS flags is comparable to that of the new flag implemented in the NOAA-MSL12 ocean color data processing system, the valid data coverage from the IDPS is significantly less than that from the NOAA-MSL12 using the new stray light and cloud shadow flag method. Thus, the IDPS flag/masking algorithms need to be refined and modified to reduce the pixel loss, e.g., the proposed new cloud contamination flag/masking can be implemented in IDPS VIIRS ocean color data processing.

  17. 15 CFR 995.28 - Use of NOAA emblem.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 15 Commerce and Foreign Trade 3 2013-01-01 2013-01-01 false Use of NOAA emblem. 995.28 Section 995... REQUIREMENTS FOR NOAA HYDROGRAPHIC PRODUCTS AND SERVICES CERTIFICATION REQUIREMENTS FOR DISTRIBUTORS OF NOAA HYDROGRAPHIC PRODUCTS Requirements for Certified Distributors and Value Added Distributors of NOAA ENC...

  18. 15 CFR 995.28 - Use of NOAA emblem.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 15 Commerce and Foreign Trade 3 2014-01-01 2014-01-01 false Use of NOAA emblem. 995.28 Section 995... REQUIREMENTS FOR NOAA HYDROGRAPHIC PRODUCTS AND SERVICES CERTIFICATION REQUIREMENTS FOR DISTRIBUTORS OF NOAA HYDROGRAPHIC PRODUCTS Requirements for Certified Distributors and Value Added Distributors of NOAA ENC...

  19. 15 CFR 995.28 - Use of NOAA emblem.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 15 Commerce and Foreign Trade 3 2010-01-01 2010-01-01 false Use of NOAA emblem. 995.28 Section 995... REQUIREMENTS FOR NOAA HYDROGRAPHIC PRODUCTS AND SERVICES CERTIFICATION REQUIREMENTS FOR DISTRIBUTORS OF NOAA HYDROGRAPHIC PRODUCTS Requirements for Certified Distributors and Value Added Distributors of NOAA ENC...

  20. 15 CFR 995.28 - Use of NOAA emblem.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 15 Commerce and Foreign Trade 3 2012-01-01 2012-01-01 false Use of NOAA emblem. 995.28 Section 995... REQUIREMENTS FOR NOAA HYDROGRAPHIC PRODUCTS AND SERVICES CERTIFICATION REQUIREMENTS FOR DISTRIBUTORS OF NOAA HYDROGRAPHIC PRODUCTS Requirements for Certified Distributors and Value Added Distributors of NOAA ENC...

  1. 15 CFR 995.28 - Use of NOAA emblem.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 15 Commerce and Foreign Trade 3 2011-01-01 2011-01-01 false Use of NOAA emblem. 995.28 Section 995... REQUIREMENTS FOR NOAA HYDROGRAPHIC PRODUCTS AND SERVICES CERTIFICATION REQUIREMENTS FOR DISTRIBUTORS OF NOAA HYDROGRAPHIC PRODUCTS Requirements for Certified Distributors and Value Added Distributors of NOAA ENC...

  2. Satellite Communication.

    ERIC Educational Resources Information Center

    Technology Teacher, 1985

    1985-01-01

    Presents a discussion of communication satellites: explains the principles of satellite communication, describes examples of how governments and industries are currently applying communication satellites, analyzes issues confronting satellite communication, links mathematics and science to the study of satellite communication, and applies…

  3. In Brief: NOAA predicts busy hurricane season

    NASA Astrophysics Data System (ADS)

    Zielinski, Sarah

    2007-06-01

    Scientists at NOAA's Climate Prediction Center estimate that there is a 75% chance that the 2007 Atlantic hurricane season will be more active than average, with 13-17 named storms, 7-10 hurricanes, and 3-5 hurricanes reaching Category 3 or higher. An average hurricane season has 11 named storms, 6 hurricanes, and 2 major hurricanes. According to Gerry Bell, NOAA's lead seasonal hurricane forecaster, the 2007 season could be in the higher range of predicted activity if a La Niña forms, or even higher if the La Niña is particularly strong. Last year, NOAA also predicted an above-normal Atlantic season; the actual season, however, was quiet, to which NOAA scientists credit an unexpected El Ni~o that developed rapidly and created an environment hostile to storm formation and strengthening.

  4. NOAA's Use of High-Resolution Imagery

    NASA Technical Reports Server (NTRS)

    Hund, Erik

    2007-01-01

    NOAA's use of high-resolution imagery consists of: a) Shoreline mapping and nautical chart revision; b) Coastal land cover mapping; c) Benthic habitat mapping; d) Disaster response; and e) Imagery collection and support for coastal programs.

  5. NOAA's Space Weather Prediction Center, Forecast Office

    NASA Video Gallery

    The Forecast Office of NOAA's Space Weather Prediction Center is the nation's official source of alerts, warnings, and watches. The office, staffed 24/7, is always vigilant for solar activity that ...

  6. Satellite Movie Shows Hurricane Dolores' Remnants Bring Rains to U.S. Southwest

    NASA Video Gallery

    This animation of images captured July 17 to 22 from NOAA's GOES-West satellite shows Hurricane Dolores' remnants streaming over the southwestern U.S. The remnants dropped heavy rainfall in Califor...

  7. Satellite Sees Remnants from Hurricane Patricia Affecting Southern U.S.

    NASA Video Gallery

    This 21 second animation of infrared and visible imagery from NOAA's GOES-East satellite from Oct. 24-26 shows the remnants of Hurricane Patricia move through the Gulf of Mexico and Gulf Coast Stat...

  8. Infrared Satellite Data Indicates Severe Weather For South Central U.S.

    NASA Video Gallery

    Infrared and visible data from NOAA's GOES-13 satellite from March 17 to March 19 at 1740 UTC (1:40 p.m. EST) shows convection (rising air/thunderstorm development) exploding around 0245 UTC on Mar...

  9. 77 FR 32572 - (NOAA) National Climate Assessment and Development Advisory Committee (NCADAC)

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-01

    ... National Oceanic and Atmospheric Administration (NOAA) National Climate Assessment and Development Advisory... National Climate Assessment and Development Advisory Committee (NCADAC) was established by the Secretary of... science and information pertaining to current and future impacts of climate. Time and Date: The...

  10. Accuracy assessment of NOAA's daily reference evapotranspiration maps for the Texas High Plains

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The National Oceanic and Atmospheric Administration (NOAA) provides daily reference ET for the continental U.S. using climatic data from North American Land Data Assimilation System (NLDAS). This data provides large scale spatial representation for reference ET, which is essential for regional scal...

  11. Accuracy assessment of NOAA gridded daily reference evapotranspiration for the Texas High Plains

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The National Oceanic and Atmospheric Administration (NOAA) provides daily reference evapotranspiration (ETref) maps for the contiguous United States using climatic data from North American Land Data Assimilation System (NLDAS). This data provides large-scale spatial representation of ETref, which i...

  12. 75 FR 6354 - NOAA Great Lakes Habitat Restoration Program Project Grants under the Great Lakes Restoration...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-09

    ... of Grant Funds for Fiscal Year 2010, published in the Federal Register (75 FR 3101). That... contained in the Federal Register notice of February 11, 2008 (73 FR 7696), are applicable to this... National Oceanic and Atmospheric Administration RIN 0648-ZC10 NOAA Great Lakes Habitat Restoration...

  13. Toward consistent radiometric calibration of the NOAA AVHRR visible and near-infrared data record

    NASA Astrophysics Data System (ADS)

    Bhatt, Rajendra; Doelling, David R.; Scarino, Benjamin R.; Gopalan, Arun; Haney, Conor O.

    2015-09-01

    The 35-year Advanced Very High Resolution Radiometer (AVHRR) satellite-instrument data record is critical for studying decadal climate change, provided that the AVHRR sensors are consistently calibrated. Owing to the lack of onboard calibration capability, the AVHRR data need to be adjusted using vicarious approaches. One of the greatest challenges hampering these vicarious calibration techniques, however, is the degrading orbits of the NOAA satellites that house the instruments, or, more specifically, the fact that the satellites eventually drift into a terminator orbit several years after launch. This paper presents a uniform sensor calibration approach for the AVHRR visible (VIS) and nearinfrared (NIR) records using specifically designed NOAA-16 AVHRR-based, top-of-atmosphere (TOA) calibration models that take into account orbit degradation. These models are based on multiple invariant Earth targets, including Saharan deserts, polar ice scenes, and tropical deep-convective clouds. All invariant targets are referenced to the Aqua- MODIS Collection-6 calibration via transfer of the Aqua-MODIS calibration to NOAA-16 AVHRR using simultaneous nadir overpass (SNO) comparisons over the North Pole. A spectral band adjustment factor, based on SCanning Imaging Absorption SpectroMeter for Atmospheric CartograpHY (SCIAMACHY) spectral radiances, is used to account for the spectrally-induced biases caused by the spectral response function (SRF) differences of the AVHRR and MODIS sensors. Validation of the AVHRR Earth target calibration is performed by comparisons with contemporary MODIS SNOs. Calibration consistency between Earth targets validates the historical AVHRR record.

  14. Use and Assessment of Multi-Spectral Satellite Imagery in NWS Operational Forecasting Environments

    NASA Technical Reports Server (NTRS)

    Molthan, Andrew; Fuell, Kevin; Stano, Geoffrey; McGrath, Kevin; Schultz, Lori; LeRoy, Anita

    2015-01-01

    NOAA's Satellite Proving Grounds have established partnerships between product developers and NWS WFOs for the evaluation of new capabilities from the GOES-R and JPSS satellite systems. SPoRT has partnered with various WFOs to evaluate multispectral (RGB) products from MODIS, VIIRS and Himawari/AHI to prepare for GOES-R/ABI. Assisted through partnerships with GINA, UW/CIMSS, NOAA, and NASA Direct Broadcast capabilities.

  15. A satellite-based climatology (1989-2012) of lake surface water temperature from AVHRR 1-km for Central European water bodies

    NASA Astrophysics Data System (ADS)

    Riffler, Michael; Wunderle, Stefan

    2013-04-01

    The temperature of lakes is an important parameter for lake ecosystems influencing the speed of physio-chemical reactions, the concentration of dissolved gazes (e.g. oxygen), and vertical mixing. Even small temperature changes might have irreversible effects on the lacustrine system due to the high specific heat capacity of water. These effects could alter the quality of lake water depending on parameters like lake size and volume. Numerous studies mention lake water temperature as an indicator of climate change and in the Global Climate Observing System (GCOS) requirements it is listed as an essential climate variable. In contrast to in situ observations, satellite imagery offers the possibility to derive spatial patterns of lake surface water temperature (LSWT) and their variability. Moreover, although for some European lakes long in situ time series are available, the temperatures of many lakes are not measured or only on a non-regular basis making these observations insufficient for climate monitoring. However, only few satellite sensors offer the possibility to analyze time series which cover more than 20 years. The Advanced Very High Resolution Radiometer (AVHRR) is among these and has been flown on the National Oceanic and Atmospheric Administration (NOAA) Polar Operational Environmental Satellites (POES) and on the Meteorological Operational Satellites (MetOp) from the European Organisation for the Exploitation of Meteorological Satellites (EUMETSAT) as a heritage instrument for almost 35 years. It will be carried on for at least ten more years finally offering a unique opportunity for satellite-based climate studies. Herein we present the results from a study initiated by the Swiss GCOS office to generate a satellite-based LSWT climatology for the pre-alpine water bodies in Switzerland. It relies on the extensive AVHRR 1-km data record (1985-2012) of the Remote Sensing Research Group at the University of Bern (RSGB) and has been derived from the AVHRR/2

  16. Comparison of radiances observed from satellite and aircraft with calculations by using two atmospheric transmittance models.

    PubMed

    Murty, D G; Smith, W L; Woolf, H M; Hayden, C M

    1993-03-20

    An evaluation of two different atmospheric transmittance models is performed by using radiance data from the high-resolution infraRed Sounder (HIRS) instrument onboard the National Oceanic and Atmospheric Administration's NOAA-9 satellite and the airborne high-resolution interferometer sounder (HIS) instrument. Synthetic radiances have been derived from collocated radiosondes by using the television infrared observation satellite (TIROS) operational vertical sounder (TOVS) operational transmittance model and the fast atmospheric signature code (FASCOD2) line-by-line transmittance model for comparison with the two independent instrument observations. Radiance observations in various spectral channels from the HIRS and HIS instruments along with the synthetic radiances derived from the FASCOD2 and operational TOVS transmittance models are used for the performance evaluation. The results of the comparison reveal a significant discrepancy between 707 and 717 cm(-l) in the radiance calculation for both models. Exce llent agreement is observed between observation and calculation for the lower tropospheric long-wave temperature sounding channels. Serious problems are noted with the modeling of water vapor in the operational TOVS transmittance model. In addition, poor performance by FASCOD2 is revealed for the short-wavelength N(2)O-CO(2) HIRS spectral channels. In general the operational TOVS transmittance model is found to be only slightly inferior to the FASCOD2 model. Regarding the performance of the instruments, observations from the NOAA-9 HIRS and the aircraft HIS are comparable in terms of their agreement with theoretical computations.

  17. Integration and Visualization of Multiple Sensors in Generating the NOAA Operational Snow and Ice Cover Products

    NASA Astrophysics Data System (ADS)

    Li, M.; Helfrich, S.

    2011-12-01

    Global snow and ice cover is a key component in the climate and hydrologic system as well as daily weather forecasting. The National Oceanic and Atmospheric Administration (NOAA) has produced a daily northern hemisphere snow and ice cover chart since 1997 through the Interactive Multisensor Snow and Ice Mapping System (IMS). The IMS integrates and visualizes a wide variety of satellite data, as well as derived snow/ice products and surface observations, to provide meteorologists with the ability to interactively prepare the daily northern hemisphere snow and ice cover chart. These products are presently used as operational inputs into several weather prediction models and are applied in climate monitoring. The IMS is currently on its second version (released in 2004) and scheduled to be upgraded to the third version (V3) in 2013. The IMS V3 will have nearly 40 external inputs as data sources processed by the IMS, which fall into five data formats: binary image, HDF file, GeoTIFF image, Shapefile image and ASCII file. With the exception of the GeoTIFF and Shapefile files, which are used directly by IMS, all other types of data are pre-processed to ENVI image file format and "sectorized" for different areas around the northern hemisphere. The IMS V3 will generate daily snow and ice cover maps in five formats: ASCII, ENVI, GeoTIFF, GIF and GRIB2 and three resolutions: 24km, 4km and 1km. In this presentation, the methods are discussed for accessing and processing satellite data, model results and surface reports. All input data with varying formats and resolutions are processed to a fixed projection. The visualization methodology for IMS are provided for five different resolutions of 48km, 24km, 8km, 4km, 2km and 1km. This work will facilitate the future enhancement of IMS, provide users with an understanding of the software architecture, provide a prospectus on future data sources, and help to preserve the integrity of the long-standing satellite-derived snow and ice

  18. Budget Increases Proposed for NOAA and Energy Department

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    2009-05-01

    In addition to the Obama administration's proposed budget increases for NASA, the Environmental Protection Agency, and the U.S. Geological Survey (see Eos, 90(10), 83, 2009, and 90(20), 175, 2009), other federal Earth and space science agencies also would receive boosts in the proposed fiscal year (FY) 2010 budget. The proposed budget comes on top of the 2009 American Recovery and Reinvestment Act's (ARRA) US$18.3 billion in stimulus spending for research and development that can be apportioned between the FY 2009 and FY 2010 budgets. This news item focuses on the budget proposals for the National Oceanic and Atmospheric Administration (NOAA) and the Department of Energy (DOE). Next week, Eos will look at the budget proposal for the National Science Foundation.

  19. Monitoring Satellite-derived Surface Solar Radiation with Near Real Time Reference Data

    NASA Astrophysics Data System (ADS)

    Kim, H. Y.; Laszlo, I.; Liu, H.

    2015-12-01

    Geostationary satellite observations of the Earth are increasingly made more frequent. For example, Himawari-8 of Japanese Meteorological Agency takes images of the planet every 10 minutes in multiple bands. Similarly, the GOES-R satellite of the US National Oceanic and Atmospheric Administration (NOAA) will make observations every 5 to 15 minutes. Products, like shortwave (solar) radiation budget at the surface, derived from these observations have or will have similar rapid refresh rates. Routine, near-real time assessment of the quality of these products ideally requires the availability of near-real time reference data. Such near-real time data has recently become available from the NOAA Surface Radiation Budget Network (SURFRAD). These data are disseminated every 15 minutes. However, in contrast to non-real-time data with fully quality control, which have a latency of 24 hours or more, the near-real time data have less quality control applied to them in order to achieve low latency. To assess applicability of this near-real time SURFRAD data for the evaluation satellite products we are using them experimentally to evaluate the quality of Downward Shortwave Radiation at the surface (DSR) retrieved operationally every hour from GOES and made available in the Geostationary Surface and Insolation Product (GSIP) . Metrics (accuracy and precision) are computed to characterize the level of agreement between satellite retrievals and the near-real time reference data. These metrics are then compared with metrics from the evaluation with the non-real time, fully quality controlled reference. The comparison shows that monitoring of DSR with near-real time data is not very different from monitoring it with non-real time data and so DSR retrievals can be evaluated hourly or shorter times depending on reference data availability.

  20. An in situ-satellite blended analysis of global sea surface salinity

    NASA Astrophysics Data System (ADS)

    Xie, P.; Boyer, T.; Bayler, E.; Xue, Y.; Byrne, D.; Reagan, J.; Locarnini, R.; Sun, F.; Joyce, R.; Kumar, A.

    2014-09-01

    The blended monthly sea surface salinity (SSS) analysis, called the NOAA "Blended Analysis of Surface Salinity" (BASS), is constructed for the 4 year period from 2010 to 2013. Three data sets are employed as inputs to the blended analysis: in situ SSS measurements aggregated and quality controlled by NOAA/NODC, and passive microwave (PMW) retrievals from both the National Aeronautics and Space Administration's (NASA) Aquarius/SAC-D and the European Space Agency's (ESA) Soil Moisture-Ocean Salinity (SMOS) satellites. The blended analysis comprises two steps. First, the biases in the satellite retrievals are removed through probability distribution function (PDF) matching against temporally spatially colocated in situ measurements. The blended analysis is then achieved through optimal interpolation (OI), where the analysis for the previous time step is used as the first guess while the in situ measurements and bias-corrected satellite retrievals are employed as the observations to update the first guess. Cross validations illustrate improved quality of the blended analysis, with reduction in bias and random errors over most of the global oceans as compared to the individual inputs. Large uncertainty, however, remains in high-latitude oceans and coastal regions where the in situ networks are sparse and current-generation satellite retrievals have limitations. Our blended SSS analysis shows good agreements with the NODC in situ-based analysis over most of the tropical and subtropical oceans, but large differences are observed for high-latitude oceans and along coasts. In the tropical oceans, the BASS is shown to have coherent variability with precipitation and evaporation associated with the evolution of the El Niño-Southern Oscillation (ENSO).

  1. Near real time SST retrievals from Himawari-8 at NOAA using ACSPO system

    NASA Astrophysics Data System (ADS)

    Kramar, M.; Ignatov, A.; Petrenko, B.; Kihai, Y.; Dash, P.

    2016-05-01

    Japanese Himawari-8 (H8) satellite was launched on October 7, 2014 and placed into a geostationary orbit at ~ 140.7°E. The Advanced Himawari Imager (AHI) onboard H8 provides full-disk (FD) observations every 10 minutes, in 16 solar reflectance and thermal infrared (IR) bands, with spatial resolution at nadir of 0.5-1 km and 2 km, respectively. The NOAA Advanced Clear-Sky Processor for Ocean (ACSPO) SST system, previously used with several polar-orbiting sensors, was adapted to process the AHI data. The AHI SST product is routinely validated against quality controlled in situ SSTs available from the NOAA in situ SST Quality monitor (iQuam). The product performance is monitored in the NOAA SST Quality Monitor (SQUAM) system. Typical validation statistics show a bias within +/-0.2 K and standard deviation of 0.4-0.6 K. The ACSPO H8 SST is also compared with the NOAA heritage SST produced at OSPO from the Multifunctional Transport Satellite (MTSAT-2; renamed Himawari-7, or H7 after launch) and with another H8 SST produced by JAXA (Japan Aerospace Exploration Agency). This paper describes the ACSPO AHI SST processing and results of validation and comparisons. Work is underway to generate a reduced volume ACSPO AHI SST product L2C (collated in time; e.g., 1-hr instead of current 10-min) and/or L3C (additionally gridded in space). ACSPO AHI processing chain will be applied to the data of the Advanced Baseline Imager (ABI), which will be flown onboard the next generation US geostationary satellite, GOES-R, scheduled for launch in October 2016.

  2. Rich client data exploration and research prototyping for NOAA

    NASA Astrophysics Data System (ADS)

    Grossberg, Michael; Gladkova, Irina; Guch, Ingrid; Alabi, Paul; Shahriar, Fazlul; Bonev, George; Aizenman, Hannah

    2009-08-01

    Data from satellites and model simulations is increasing exponentially as observations and model computing power improve rapidly. Not only is technology producing more data, but it often comes from sources all over the world. Researchers and scientists who must collaborate are also located globally. This work presents a software design and technologies which will make it possible for groups of researchers to explore large data sets visually together without the need to download these data sets locally. The design will also make it possible to exploit high performance computing remotely and transparently to analyze and explore large data sets. Computer power, high quality sensing, and data storage capacity have improved at a rate that outstrips our ability to develop software applications that exploit these resources. It is impractical for NOAA scientists to download all of the satellite and model data that may be relevant to a given problem and the computing environments available to a given researcher range from supercomputers to only a web browser. The size and volume of satellite and model data are increasing exponentially. There are at least 50 multisensor satellite platforms collecting Earth science data. On the ground and in the sea there are sensor networks, as well as networks of ground based radar stations, producing a rich real-time stream of data. This new wealth of data would have limited use were it not for the arrival of large-scale high-performance computation provided by parallel computers, clusters, grids, and clouds. With these computational resources and vast archives available, it is now possible to analyze subtle relationships which are global, multi-modal and cut across many data sources. Researchers, educators, and even the general public, need tools to access, discover, and use vast data center archives and high performance computing through a simple yet flexible interface.

  3. The Role of Orograph and Parallax Corrections on High Resolution Geostationary Satellite Rainfall Estimates for Flash Flood Applications

    NASA Technical Reports Server (NTRS)

    Vicente, Gilberto A.; Davenport, Clay; Scofield, Rod

    1999-01-01

    The current generation of geosynchronous satellites exhibits considerably improved capabilities in the area of resolution, gridding accuracy, and sampling frequency as compared to their predecessors. These improvements have made it possible to accurately observe the life cycle of small scale, short-live phenomenon like rapidly developing thunderstorms, at a very high spatial and temporal resolutions. While the gain in the improved resolution is not significant for synoptic scale cloud systems, it plays a major role on the computation of precipitation values for mesoscale and stonn scale systems. Two of the important factor on the accurate precision of precipitation from satellite imagery are the position of the cloud tops as viewed by the satellite and the influence of orographic effects on the distribution of precipitation. The first problem has to do with the fact that the accurate estimation of precipitation from data collected by a satellite in geosynchronous orbit requires the knowledge of the exact position of the cloud tops with respect to the ground below. This is not a problem when a cloud is located directly below the satellite; at large viewing angles the geographic coordinates on satellite images are dependent on cloud heights and distance from the sub-satellite point. The latitude and longitude coordinates for high convective cloud tops are displaced away from the sub-satellite point and may be shifted by as much as 20 Km from the sea level coordinates. The second problem has to do with the variations in rainfall distribution with elevation. Ground observations have shown that precipitation amounts tend to increase with height and that the slope of the hill or mountain that is facing the prevailing wind normally receives greater rainfall then do the lee slopes. The purpose of the study is to show the recent developments at the Office of Research and Applications (ORA) at the National Oceanic and Atmospheric Administration (NOAA/NESDIS) in Camp Springs

  4. Radiometric correction and equalization of satellite digital data

    NASA Technical Reports Server (NTRS)

    Algazi, V. R.; Ford, G. E.; Kazakoff, J. A.

    1979-01-01

    Satellite digital data from Landsat and NOAA satellites is often marred by striping or streaking errors due to variations in the response of the radiometric sensors. In this paper, we discuss the equalization of the digital data as a preprocessing step, prior to image enhancement or automatic classification. The methods described make use of statistics of the data itself to generate nonlinear or linear memory-less equalization algorithms. These algorithms, by contrast to multidimensional filtering, do not result in a loss of spatial resolution. Examples of applications to Landsat and NOAA-3 thermal infrared data are given and illustrated.

  5. Utilization of Meteorological Satellite Imagery for World-Wide Environmental Monitoring the Lower Mississippi River Flood of 1979 - Case 1. [St. Louis, Missouri

    NASA Technical Reports Server (NTRS)

    Helfert, M. R.; Mccrary, D. G.; Gray, T. I. (Principal Investigator)

    1981-01-01

    The 1979 Lower Mississippi River flood was selected as a test case of environmental disaster monitoring utilizing NOAA-n imagery. A small scale study of the St. Louis Missouri area comparing ERTS-1 (LANDSAT) and NOAA-2 imagery and flood studies using only LANDSAT imagery for mapping the Rad River of the North, and Nimbus-5 imagery for East Australia show the nonmeteorological applications of NOAA satellites. While the level of NOAA-n imagery detail is not that of a LANDSAT image, for operational environmental monitoring users the NOAA-n imagery may provide acceptable linear resolution and spectral isolation.

  6. NOAA tools to support CSC and LCC regional climate science priorities in the western Gulf of Mexico

    NASA Astrophysics Data System (ADS)

    Brown, D. P.; Marcy, D.; Robbins, K.; Shafer, M.; Stiller, H.

    2012-12-01

    The National Oceanic and Atmospheric Administration (NOAA) is an active regional partner with the Department of Interior (DOI) in supplying and supporting the delivery of climate science and services. A primary mechanism for NOAA-DOI coordination at the regional scale is the Landscape Conservation Cooperative (LCC) network, which is supported in part by DOI Climate Science Centers (CSC). Together, the CSCs and LCCs provide a framework to identify landscape-scale science and services priorities for conservation and management. As a key partner of the CSCs and an active member of many LCCs, NOAA is working to ensure its own regional product and service delivery efforts will help address these conservation and management challenges. Two examples of NOAA's regional efforts are highlighted here, with a focus on the coastal and interior geographies of the western Gulf of Mexico where NOAA partners with the South Central CSC and participates as a member of the Gulf Coast Prairie LCC. Along the Texas coastline, a sea level rise and coastal flooding impacts viewer, produced by NOAA's Coastal Services Center and available via its Digital Coast interface, allows constituents to visualize estimates of sea level rise, measures of uncertainty, flood frequencies, and environmental (e.g., marsh migration) and socioeconomic (e.g., tidal flooding of built environments) impacts. In the interior of Texas and Louisiana, NOAA's Southern Regional Climate Center is leading a consortium of partners in the development of a unified source of regional water reservoir information, including current conditions, a historical database, and web-based visualization tools to illustrate spatio-temporal variations in water availability to a broad array of hydrological, agricultural, and other customers. These two examples of NOAA products can, in their existing forms, support regional conservation and management priorities for CSCs and LCCs by informing vulnerability assessments and adaptation

  7. NOAA-USGS Debris-Flow Warning System - Final Report

    USGS Publications Warehouse

    ,

    2005-01-01

    Landslides and debris flows cause loss of life and millions of dollars in property damage annually in the United States (National Research Council, 2004). In an effort to reduce loss of life by debris flows, the National Oceanic and Atmospheric Administration's (NOAA) National Weather Service (NWS) and the U.S. Geological Survey (USGS) operated an experimental debris-flow prediction and warning system in the San Francisco Bay area from 1986 to 1995 that relied on forecasts and measurements of precipitation linked to empirical precipitation thresholds to predict the onset of rainfall-triggered debris flows. Since 1995, there have been substantial improvements in quantifying precipitation estimates and forecasts, development of better models for delineating landslide hazards, and advancements in geographic information technology that allow stronger spatial and temporal linkage between precipitation forecasts and hazard models. Unfortunately, there have also been several debris flows that have caused loss of life and property across the United States. Establishment of debris-flow warning systems in areas where linkages between rainfall amounts and debris-flow occurrence have been identified can help mitigate the hazards posed by these types of landslides. Development of a national warning system can help support the NOAA-USGS goal of issuing timely Warnings of potential debris flows to the affected populace and civil authorities on a broader scale. This document presents the findings and recommendations of a joint NOAA-USGS Task Force that assessed the current state-of-the-art in precipitation forecasting and debris-flow hazard-assessment techniques. This report includes an assessment of the science and resources needed to establish a demonstration debris-flow warning project in recently burned areas of southern California and the necessary scientific advancements and resources associated with expanding such a warning system to unburned areas and, possibly, to a

  8. Satellite communications for disaster relief operations

    NASA Technical Reports Server (NTRS)

    Sivo, J. N.

    1979-01-01

    The use of existing and planned communication satellite systems to provide assistance in the implementation of disaster relief operations on a global basis was discussed along with satellite communications system implications and their potential impact on field operations in disaster situations. Consideration are given to the utilization of both INTELSAT and MARISAT systems operating at frequencies ranging from 1.5 to 4 GHz and to the size and type of ground terminals necessary for satellite access. Estimates of communication requirements for a global system are given. Some discussion of cost estimates for satellite services to support operations are included. Studies of communication satellites for both pre and post disaster applications conducted for NOAA are included as well as recent experiments conducted in conjunction with the Office of Foreign Disaster Assistance of the Agency for International Development.

  9. Real-time Transmission and Distribution of NOAA Tail Doppler Radar Data and Other Data Products

    NASA Astrophysics Data System (ADS)

    Carswell, J.; Chang, P.; Robinson, D.; Gamache, J.; Hill, J.

    2011-12-01

    The NOAA WP-3D and G-IV aircraft have conducted and continue to conduct numerous research and operational measurement missions. However, typically only a fraction of the data collected aboard each flight is transmitted to the ground in near real-time utilizing low bandwidth satellite data links. The advancements in aircraft satellite phones have increased available bandwidth and reliability to a point where these systems can be utilized for near real-time data flow in support of decision making. A robust and flexible data delivery system has been developed by Remote Sensing Solutions with support from NOAA's National Environmental Satellite, Data and Information Service (NESDIS), Aircraft Operations Center (AOC) and Hurricane Forecast Improvement Project (HFIP). X-band Doppler/reflectivity measurements of tropical storms and cyclones collected from the NOAA WP-3D aircraft have been the most recent focus. Doppler measurements from volume backscatter precipitation profiles can provide critical observations of the horizontal winds as the precipitation advects with these winds. The data delivery system captures these profiles and send the radial Doppler profile observations to National Weather Service in near real-time over satellite communication data link. The design of this transmission system included features to enhance the reliability and robustness of the data flow from the P-3 aircraft to the end user. Routine real-time transmission, using this system, of the full resolution Tail Doppler Radar profile data to the ground and distribution to the NOAA's Hurricane Research Division for analysis and processing in support of initializing the operational HWRF model is planned. The end objective is to provide these Doppler profiles in a routine fashion to NWS and others in the forecasting community for operational utilization in support of hurricane forecasting and warning. Other data sources that are being collected and transmitted to the ground with this system for

  10. NOAA's Weather-Ready Nation: Progress and Plans

    NASA Astrophysics Data System (ADS)

    Scharfenberg, K.

    2014-12-01

    The National Oceanic and Atmospheric Administration (NOAA) Weather-Ready Nation program is about building community resilience in the face of increasing vulnerability to extreme weather and water events. Through community partnerships and infusion of new science and technology, better preparedness is reducing the devastating impacts of these extreme events. For the past three years, the National Weather Service has been leading the Weather-Ready Nation strategy through a number of initiatives, focused around a series of pilot projects for transforming internal National Weather Service Operations. The "Emergency Response Specialist" technical role and associated training has been developed to better apply new hazardous weather research and technology to critical community decisions. High-resolution storm surge inundation mapping was introduced to the public in 2014 during Hurricane Arthur with successful results. The dual-polarization upgrade to the Nation's weather radar network has also been completed, with successful application of improved tornado, flash flood, and winter storm warning services. This presentation will focus on the application of these science initiatives under the NOAA Weather-Ready Nation program, and will further discuss NWS plans for operational application of future advances in research and technology.

  11. Advanced technologies for future environmental satellite systems

    NASA Astrophysics Data System (ADS)

    Dittberner, Gerald J.; Crison, Michael J.; Bajpai, Shyam; Diedrich, Benjamin L.

    2004-09-01

    Environmental satellites today are designed to meet the most requirements possible within the constraints of budget, reliability, availability, robustness, manufacturability, and the state of the art in affordable technology. As we learn more and more about observing and forecasting, requirements continue to be developed and validated for measurements that can benefit from for advances in technology. The goal is to incorporate new technologies into operational systems as quickly as possible. Technologies that exist or are being developed in response to growing requirements can be categorized as "requirements pull" whereas technologies rooted in basic research and engineering exploration fall in to a "technology push" category. NOAA has begun exploration into technologies for future NOAA satellite systems. Unmet requirements exist that drive the need to locate, explore, exploit, assess, and encourage development in several technologies. Areas needing advanced technologies include: atmospheric aerosols; cloud parameters; precipitation; profiles of temperature, moisture, pressure, and wind; atmospheric radiation; trace gas abundance and distribution; land surface; ocean surface; and space weather components such as neutral density and electron density. One of the more interesting ideas in the technology push category is a constellation of satellites at Medium Earth Orbit (MEO) altitudes, here described as circular orbits near 11,000 km altitude. Consider the vision of being able to observe the environment anywhere on the Earth, at anytime, with any repeat look frequency, and being able to communicate these measurements to anyone, anywhere, anytime, in real time. Studies suggest that a constellation of MEO satellites occupying equatorial and polar orbits (inclination = 90 degrees) could, in principle, accomplish this task. Also new on the horizon is solar sail technology. NOAA has been looking at solar sails as providing a propulsive system that could be used to

  12. Satellite Meteorology Education Resources Freely Available from COMET°

    NASA Astrophysics Data System (ADS)

    Abshire, W. E.; Dills, P. N.

    2011-12-01

    The COMET° Program (www.comet.ucar.edu) receives funding from NOAA NESDIS, EUMETSAT, and the Meteorological Service of Canada to support education and training efforts in satellite meteorology. These partnerships enable COMET to create educational materials of global interest on the application of products from geostationary and polar-orbiting remote sensing platforms. Recently, COMET's satellite education programs have focused on both current and next generation satellites and their relevance to operational forecasters and other communities. By partnering with experts from the Naval Research Laboratory, NOAA-NESDIS and its Cooperative Institutes, MSC, and other user communities, COMET stimulates greater utilization of satellite data and products. COMET also continues to broaden the scope of its training to include materials on the EUMETSAT Polar-orbiting System (EPS) and Meteosat geostationary satellites. EPS represents an important contribution to the Initial Joint Polar System between NOAA and EUMETSAT, while Meteosat Second Generation imaging capabilities provide an authentic proving ground for the next-generation GOES-R imager. This presentation provides an overview of COMET's recent satellite education efforts including courses and publications that focus on topics like multispectral RGB products, detecting atmospheric dust, and climate monitoring from satellites. Over 50 satellite-focused self-paced online materials are freely available via the Satellite Topic area of the MetEd Web site (www.meted.ucar.edu/topics/modules/satellite) and COMET's Environmental Satellite Resource Center (ESRC)(www.meted.ucar.edu/esrc). The ESRC, another important resource developed for use by the geosciences and education communities, is a searchable, database driven Web site that provides easy access to a wide range of useful information and training materials on Earth-observing satellites. Simple free online registration is required to access all training materials and the

  13. The NOAA-9 Earth Radiation Budget Experiment Wide Field-of-View Data Set

    NASA Technical Reports Server (NTRS)

    Bush, Kathryn A.; Smith, G. Louis; Young, David F.

    1999-01-01

    The Earth Radiation Budget Experiment (ERBE) consisted of wide field-of-view (WFOV) radiometers and scanning radiometers for measuring outgoing longwave radiation and solar radiation reflected from the Earth. These instruments were carried by the dedicated Earth Radiation Budget Satellite (ERBS) and by the NOAA-9 and -10 operational spacecraft. The WFOV radiometers provided data from which instantaneous fluxes at the top of the atmosphere (TOA) are computed by use of a numerical filter algorithm. Monthly mean fluxes over a 5-degree equal angle grid are computed from the instantaneous TOA fluxes. The WFOV radiometers aboard the NOAA-9 spacecraft operated from February 1985 through December 1992, at which time a failure of the shortwave radiometer ended the usable data after nearly 8 years. This paper examines the monthly mean products from that data set.

  14. 15 CFR 996.30 - Use of the NOAA emblem.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 15 Commerce and Foreign Trade 3 2012-01-01 2012-01-01 false Use of the NOAA emblem. 996.30 Section... REQUIREMENTS FOR NOAA HYDROGRAPHIC PRODUCTS AND SERVICES QUALITY ASSURANCE AND CERTIFICATION REQUIREMENTS FOR NOAA HYDROGRAPHIC PRODUCTS AND SERVICES Other Quality Assurance Program Matters § 996.30 Use of...

  15. 15 CFR 996.30 - Use of the NOAA emblem.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 15 Commerce and Foreign Trade 3 2013-01-01 2013-01-01 false Use of the NOAA emblem. 996.30 Section... REQUIREMENTS FOR NOAA HYDROGRAPHIC PRODUCTS AND SERVICES QUALITY ASSURANCE AND CERTIFICATION REQUIREMENTS FOR NOAA HYDROGRAPHIC PRODUCTS AND SERVICES Other Quality Assurance Program Matters § 996.30 Use of...

  16. 15 CFR 996.30 - Use of the NOAA emblem.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 15 Commerce and Foreign Trade 3 2010-01-01 2010-01-01 false Use of the NOAA emblem. 996.30 Section... REQUIREMENTS FOR NOAA HYDROGRAPHIC PRODUCTS AND SERVICES QUALITY ASSURANCE AND CERTIFICATION REQUIREMENTS FOR NOAA HYDROGRAPHIC PRODUCTS AND SERVICES Other Quality Assurance Program Matters § 996.30 Use of...

  17. 15 CFR 996.30 - Use of the NOAA emblem.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 15 Commerce and Foreign Trade 3 2014-01-01 2014-01-01 false Use of the NOAA emblem. 996.30 Section... REQUIREMENTS FOR NOAA HYDROGRAPHIC PRODUCTS AND SERVICES QUALITY ASSURANCE AND CERTIFICATION REQUIREMENTS FOR NOAA HYDROGRAPHIC PRODUCTS AND SERVICES Other Quality Assurance Program Matters § 996.30 Use of...

  18. 15 CFR 996.30 - Use of the NOAA emblem.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 15 Commerce and Foreign Trade 3 2011-01-01 2011-01-01 false Use of the NOAA emblem. 996.30 Section... REQUIREMENTS FOR NOAA HYDROGRAPHIC PRODUCTS AND SERVICES QUALITY ASSURANCE AND CERTIFICATION REQUIREMENTS FOR NOAA HYDROGRAPHIC PRODUCTS AND SERVICES Other Quality Assurance Program Matters § 996.30 Use of...

  19. Using NOAA AVHRR data to assess flood damage in China.

    PubMed

    Wang, Quan; Watanabe, Masataka; Hayashi, Seiji; Murakami, Shogo

    2003-03-01

    The article used two NOAA-14 Advanced Very High Resolution Radiometer (AVHRR) datasets to assess flood damage in the middle and lower reaches of China's Changjiang River (Yangtze River) in 1998. As the AVHRR is an optical sensor, it cannot penetrate the clouds that frequently cover the land during the flood season, and this technology is greatly limited in flood monitoring. However the widely used normalized difference vegetation index (NDVI) can be used to monitor flooding, since water has a much lower NDVI value than other surface features. Though many factors other than flooding (e.g. atmospheric conditions, different sun-target-satellite angles, and cloud) can change NDVI values, inundated areas can be distinguished from other types of ground cover by changes in the NDVI value before and after the flood after eliminating the effects of other factors on NDVI. AVHRR data from 26 May and 22 August, 1998 were selected to represent the ground conditions before and after flooding. After accurate geometric correction by collecting GCPs, and atmospheric and angular corrections by using the 6S code, NDVI values for both days and their differences were calculated for cloud-free pixels. The difference in the NDVI values between these two times, together with the NDVI values and a land-use map, were used to identify inundated areas and to assess the area lost to the flood. The results show a total of 358,867 ha, with 207,556 ha of cultivated fields (paddy and non-irrigated field) inundated during the flood of 1998 in the middle and lower reaches of the Changjiang River Catchment; comparing with the reported total of 321,000 and 197,000 ha, respectively. The discrimination accuracy of this method was tested by comparing the results from two nearly simultaneous sets of remote-sensing data (NOAA's AVHRR data from 10 September, 1998, and JERS-1 synthetic aperture radar (SAR) data from 11 September, 1998, with a lag of about 18.5 hr) over a representative flooded region in the

  20. Precipitation of relativistic electrons as seen by NOAA POES

    NASA Astrophysics Data System (ADS)

    Yahnin, Alexander; Gvozdevsky, Boris; Yahnina, Tatyana; Semenova, Nadezhda

    The MEPED instrument onboard NOAA Polar-orbiting Operational Environmental Satellites (NOAA POES) was designed to measure precipitating and quasi-trapped protons and electrons in the ranges 30 keV to 200 MeV (for protons) and 30 keV to 2500 keV (for electrons). In particular, proton telescopes measure protons in six channels: P1 (30-80 keV), P2 (80-250 keV), P3 (250-800 keV), P4 (800-2500 keV), P5 (2500-6900 keV), and P6 (>6900 keV). Protons appear in the P6 channel very seldom (only during Solar Proton Events). At the same time, this channel can be contaminated by relativistic (E ~ 1 MeV) electrons. Using P6 data we performed a study of the relativistic electron precipitation (REP) within the interval of 25 July - 31 August 2005 characterizing by variable geomagnetic activity. We found that most often the REP events are observed in the night sector in relation to the isotropy boundary of relativistic electrons. It means that these REP events are due to violation of the adiabatic motion of particles in the region of a relatively weak magnetic field in the equatorial plane of magnetosphere. Further, a substantial part of REP events is observed in association with enhancements of energetic (E>30 keV) electrons equatorward of the electron isotropy boundary. We interpret the precipitation of electrons in the wide range of energies as result of scattering the particles into the loss cone by ELF/VLF waves. Finally, relativistic electrons can be scattered into the loss cone by EMIC waves. This possibility is actively discussed in the literature. It is known that EMIC waves effectively scatter energetic protons and produce proton precipitation bursts equatorward of the proton isotropic boundary. To investigate the REP/EMIC wave relationship we consider how such proton precipitation bursts seen in P1-P3 channels correlate with REP. It turned out that proton precipitation bursts observed in the morning and day sectors do not correlate with REP events, but in the evening

  1. 15 CFR 922.50 - Appeals of administrative action.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Administrator for Ocean Services and Coastal Zone Management, NOAA 1305 East-West Highway, 13th Floor, Silver... reasons (see subpart D of 15 CFR part 904 for applicable procedures), an applicant for, or a holder of,...

  2. Improved in Situ Space Weather Data Services from the NOAA National Geophysical Data Center

    NASA Astrophysics Data System (ADS)

    Rodriguez, J. V.; Denig, W. F.; Green, J. C.; Lotoaniu, T. M.; McGuire, R. E.; Redmon, R. J.; Rowland, W. F.; Turner, D. L.; Weigel, R. S.; Wilkinson, D. C.

    2014-12-01

    The international space weather enterprise relies heavily on in situ plasma, particle and magnetic field measurements from U. S. weather satellites. This year marks the 40th anniversary of the launch of the first U. S. geostationary weather satellite (SMS-1), which carried the direct ancestor of the current GOES Space Environment Monitor (SEM) suite. The GOES space weather observations support the issuance of real-time alerts by the NOAA Space Weather Prediction Center (SWPC). The publicly-available archive of space weather observations at the NOAA National Geophysical Data Center (NGDC) includes NOAA geostationary observations since 1974 and POES/MetOp and Air Force DMSP polar-orbiting observations since 1978 and 1982, respectively. This archive supports the retrospective aspect of the space weather enterprise, which includes model development and anomaly resolution efforts. Over the last several years, NGDC has made a concerted effort to improve its data services in cooperation with the broader space weather community. These improvements include (1) taking over the processing of existing products, (2) creating science-quality versions of existing products, (3) developing new products, (4) improving the distribution of these products, and (5) validating products via on-orbit cross-comparisons. Complementing this retrospective role, NGDC is also responsible for the next-generation GOES-R space weather instrument science and is working as part of the GOES-R calibration/validation group to ensure that these new instruments and their products meet NOAA's requirements. This presentation will survey NGDC's efforts in each of these areas, including (1) POES/MetOp SEM-2 fluxes and radiation belt indices, (2) GOES fluxes with data quality flags and error bars, (3) in situ products from GOES-R(S,T,U), (4) cooperative distribution efforts with the NASA Space Physics Data Facility (SPDF) and the Space Physics Environmental Data Analysis System (SPEDAS), and (5) inter

  3. Weather, land satellite sale

    NASA Astrophysics Data System (ADS)

    Richman, Barbara T.

    President Ronald Reagan announced on March 8 plans to sell to private industry the nation's land and meteorological remote-sensing satellites, including the responsibility for any future ocean-observing systems. According to the plan, the private firm successful in its bid to buy the five satellites would sell back to the government the data received by the satellites. The Reagan administration says the sale will save money and will put activities appropriate for commercial ventures into the commercial sector. Response to the announcement from scientists and congressmen has been anything but dulcet; one senator, in fact, charges that the Commerce Department and the corporation most likely to purchase the satellites are engaged in a ‘sweetheart deal.’

  4. CO2 annual and semiannual cycles from multiple satellite retrievals and models

    NASA Astrophysics Data System (ADS)

    Jiang, Xun; Crisp, David; Olsen, Edward T.; Kulawik, Susan S.; Miller, Charles E.; Pagano, Thomas S.; Liang, Maochang; Yung, Yuk L.

    2016-02-01

    Satellite CO2 retrievals from the Greenhouse gases Observing SATellite (GOSAT), Atmospheric Infrared Sounder (AIRS), and Tropospheric Emission Spectrometer (TES) and in situ measurements from the National Oceanic and Atmospheric Administration - Earth System Research Laboratory (NOAA-ESRL) Surface CO2 and Total Carbon Column Observing Network (TCCON) are utilized to explore the CO2 variability at different altitudes. A multiple regression method is used to calculate the CO2 annual cycle and semiannual cycle amplitudes from different data sets. The CO2 annual cycle and semiannual cycle amplitudes for GOSAT XCO2 and TCCON XCO2 are consistent but smaller than those seen in the NOAA-ESRL surface data. The CO2 annual and semiannual cycles are smallest in the AIRS midtropospheric CO2 compared with other data sets in the Northern Hemisphere. The amplitudes for the CO2 annual cycle and semiannual cycle from GOSAT, TES, and AIRS CO2 are small and comparable to each other in the Southern Hemisphere. Similar regression analysis is applied to the Model for OZone And Related chemical Tracers-2 and CarbonTracker model CO2. The convolved model CO2 annual cycle and semiannual cycle amplitudes are similar to those from the satellite CO2 retrievals, although the models tend to underestimate the CO2 seasonal cycle amplitudes in the Northern Hemisphere midlatitudes and underestimate the CO2 semiannual cycle amplitudes in the high latitudes. These results can be used to better understand the vertical structures for the CO2 annual cycle and semiannual cycle and help identify deficiencies in the models, which are very important for the carbon budget study.

  5. Impact of GMI rain rate on East Asian Multi-Satellite Integrated Precipitation Estimates

    NASA Astrophysics Data System (ADS)

    Xu, B.; Shi, C.; Xie, P.

    2015-12-01

    During the last three years, the East Asian Multi-Satellite Integrated Precipitation (EMSIP) was developed at China Meteorological Administration (CMA) National Meteorological Information Center (NMIC), partially through cooperation with NOAA/CPC. IR TBB data from the FY-2 Geostationary satellite and PMW rain rate retrievals from FY-3B, TRMM, NOAA-18/19, METOP-A/B, and DMSP-F16/17/18 were integrated to produce high-resolution satellite precipitation estimates over East Asia. While the current version of the product relies on retrievals from TMI to inter-calibrate inputs from other platforms, work is underway to improve the quality of EMSIP using retrievals from the GMI. As an important step to infuse the GMI into our integration system, a comprehensive evaluation is performed for the precipitation retrievals from the GMI and the 8 other above mentioned PMW sensors with an emphasis on their performance on detecting and quantifying light rain and snowfall. PMW retrievals are compared against in situ measurements from a dense network of automatic rain gauges over China for a cold season month (January 2015). Impacts of infusing GMI precipitation retrievals into our integrated estimates are examined. Results showed improved capacity of the current version GMI retrievals in capturing light rain and snowfall than other sensors for the test period over China. The FAR score, however, is about the same as that for the TMI's. Partially due to the limited test period, only minor improvements are observed in the EMSIP through infusing GMI. Compared with CMORPH, the correlation of EMSIP and the GMI infused EMSIP is still a little lower over whole china, but sometimes over Tibet Plateau the correlation of EMSIP+GMI is higher than EMSIP and CMORPH.

  6. Joint Polar Satellite System (JPSS) Common Ground System (CGS) Overview and Architectural Tenets

    NASA Astrophysics Data System (ADS)

    Miller, S. W.; Grant, K. D.; Jamilkowski, M. L.

    2013-12-01

    The National Oceanic and Atmospheric Administration (NOAA) and National Aeronautics and Space Administration (NASA) are jointly acquiring the next-generation civilian weather and environmental satellite system: the Joint Polar Satellite System (JPSS). The Joint Polar Satellite System will replace the afternoon orbit component and ground processing system of the current Polar-orbiting Operational Environmental Satellites (POES) managed by NOAA. The JPSS satellites will carry a suite of sensors designed to collect meteorological, oceanographic, climatological and geophysical observations of the Earth. The ground processing system for JPSS is known as the JPSS Common Ground System (JPSS CGS). Developed and maintained by Raytheon Intelligence and Information Systems (IIS), the CGS is a multi-mission enterprise system serving NOAA, NASA and their national and international partners. The CGS provides a wide range of support to a number of missions: 1) Command and control and mission management for the Suomi National Polar Partnership (S-NPP) mission today, expanding this support to the JPSS-1 satellite and the Polar Free Flyer mission in 2017 2) Data acquisition via a Polar Receptor Network (PRN) for S-NPP, the Japan Aerospace Exploration Agency's (JAXA) Global Change Observation Mission - Water (GCOM-W1), POES, and the Defense Meteorological Satellite Program (DMSP) and Coriolis/WindSat for the Department of Defense (DoD) 3) Data routing over a global fiber Wide Area Network (WAN) for S-NPP, JPSS-1, Polar Free Flyer, GCOM-W1, POES, DMSP, Coriolis/WindSat, the NASA Space Communications and Navigation (SCaN, which includes several Earth Observing System [EOS] missions), MetOp for the European Organisation for the Exploitation of Meteorological Satellites (EUMETSAT), and the National Science Foundation (NSF) 4) Environmental data processing and distribution for S-NPP, GCOM-W1 and JPSS-1 The CGS architecture will receive a technology refresh in 2015 to satisfy several key

  7. In Brief: NOAA announces next step in Gulf of Mexico assessment

    NASA Astrophysics Data System (ADS)

    Tretkoff, Ernie

    2011-03-01

    The U.S. National Oceanic and Atmospheric Administration (NOAA) announced on 19 February that it will develop a Programmatic Environmental Impact Statement (PEIS) as the next step in its assessment of impacts from the Deepwater Horizon oil spill on the Gulf of Mexico. The PEIS is part of the Natural Resource Damage Assessment (NRDA), the legal process to determine the type and extent of environmental restoration needed to compensate the public for the harm caused to natural resources by the oil spill. The restoration would be paid for by BP and other parties deemed responsible for the oil spill. Public meetings will be held in the affected states to begin the PEIS process. NOAA administrator Jane Lubchenco stated at a press conference at the annual meeting of the American Association for the Advancement of Science (AAAS) that this “heralds the beginning of a formal public process.”

  8. Generating the Nighttime Light of the Human Settlements by Identifying Periodic Components from DMSP/OLS Satellite Imagery.

    PubMed

    Letu, Husi; Hara, Masanao; Tana, Gegen; Bao, Yuhai; Nishio, Fumihiko

    2015-09-01

    Nighttime lights of the human settlements (hereafter, "stable lights") are seen as a valuable proxy of social economic activity and greenhouse gas emissions at the subnational level. In this study, we propose an improved method to generate the stable lights from Defense Meteorological Satellite Program/Operational Linescan System (DMSP/OLS) daily nighttime light data for 1999. The study area includes Japan, China, India, and other 10 countries in East Asia. A noise reduction filter (NRF) was employed to generate a stable light from DMSP/OLS time-series daily nighttime light data. It was found that noise from amplitude of the 1-year periodic component is included in the stable light. To remove the amplitude of the 1-year periodic component noise included in the stable light, the NRF method was improved to extract the periodic component. Then, new stable light was generated by removing the amplitude of the 1-year periodic component using the improved NRF method. The resulting stable light was evaluated by comparing it with the conventional nighttime stable light provided by the National Oceanic and Atmosphere Administration/National Geophysical Data Center (NOAA/NGDC). It is indicated that DNs of the NOAA stable light image are lower than those of the new stable light image. This might be attributable to the influence of attenuation effects from thin warm water clouds. However, due to overglow effect of the thin cloud, light area in new stable light is larger than NOAA stable light. Furthermore, the cumulative digital numbers (CDNs) and number of light area pixels (NLAP) of the generated stable light and NOAA/NGDC stable light were applied to estimate socioeconomic variables of population, electric power consumption, gross domestic product, and CO2 emissions from fossil fuel consumption. It is shown that the correlations of the population and CO2FF with new stable light data are higher than those in NOAA stable light data; correlations of the EPC and GDP with NOAA

  9. The Calibration of AVHRR Visible Dual Gain using Meteosat-8 for NOAA-16 to 18

    NASA Technical Reports Server (NTRS)

    Doelling, David R.; Garber, Donald P.; Avey, L. A.; Nguyen, Louis; Minnis, Patrick

    2007-01-01

    The NOAA AVHRR program has given the remote sensing community over 25 years of imager radiances to retrieve global cloud, vegetation, and aerosol properties. This dataset can be used for long-term climate research, if the AVHRR instrument is well calibrated. Unfortunately, the AVHRR instrument does not have onboard visible calibration and does degrade over time. Vicarious post-launch calibration is necessary to obtain cloud properties that are not biased over time. The recent AVHRR-3 instrument has a dual gain in the visible channels in order to achieve greater radiance resolution in the clear-sky. This has made vicarious calibration of the AVHRR-3 more difficult to unravel. Reference satellite radiances from well-calibrated instruments, usually equipped with solar diffusers, such as MODIS, have been used to successfully vicariously calibrate other visible instruments. Transfer of calibration from one satellite to another using co-angled, collocated, coincident radiances has been well validated. Terra or Aqua MODIS and AVHRR comparisons can only be performed over the poles during summer. However, geostationary satellites offer a transfer medium that captures both parts of the dual gain. This AVHRR-3 calibration strategy uses, calibrated with MODIS, Meteosat-8 radiances simultaneously to determine the dual gains using 50km regions. The dual gain coefficients will be compared with the nominal coefficients. Results will be shown for all visible channels for NOAA-17.

  10. GOES Satellite Video of Feb. 12, 2014 Snowstorm

    NASA Video Gallery

    This animation of NOAA's GOES satellite data shows the progression of the major winter storm in the U.S. south from Feb. 10 at 1815 UTC/1:15 p.m. EST to Feb. 12 to 1845 UTC/1:45 p.m. EST. Credit: N...

  11. Third International Satellite Direct Broadcast Services User's Conference

    NASA Technical Reports Server (NTRS)

    Kamowski, J.; Vermillion, C.

    1988-01-01

    A workshop titled, The Third International Satellite Direct Broadcast Services User's Conference, jointly sponsored by NASA and NOAA/NESDIS was scheduled to be held June 20 to 24, 1988, at the International Hotel located at the Baltimore-Washington Airport. Details concerning the organizing of the conference are given.

  12. Solutions Network Formulation Report. The Potential Contribution of the International GPM Program to the NOAA Estuarine Reserves Division's System-wide Monitoring Program

    NASA Technical Reports Server (NTRS)

    Hilbert, Kent; Anderson, Daniel; Lewis, David

    2007-01-01

    Data collected via the International GPM Program could be used to provide a solution for the NOAA Estuarine Reserves Division s System-wide Monitoring Program by augmenting in situ rainfall measurements with data acquired via future satellite-acquired precipitation data. This Candidate Solution is in alignment with the Coastal Management National Application and will benefit society by assisting in estuary preservation.

  13. GSICS Satellite Intercalibration Products

    NASA Astrophysics Data System (ADS)

    Bali, M.; Flynn, L. E.

    2015-12-01

    Monitoring satellite instrument measurements (Top of Atmosphere radiances) while they are orbiting by comparing them with in-orbit stable references has emerged as a key component of ensuring quality (the stability and accuracy) of their measurements and correcting any biases that emerge during the mission. In 2006 the World Meteorological Organization (WMO) and the CGMS together initiated the Gobal Space Based Inter-Calibration System (GSICS,gsics.wmo.int) with the aim of monitoring the quality of measurement from satellite instruments launched by member including NASA, NOAA, EUMETSAT, ISRO CMA KMA CNES. In recent years, GSICS, via collaboration among member agencies across nations has successfully monitored instrument records for both GEO (GOES, SEVIRI, MTSAT) and LEO (AVHRR) based instruments by comparing them to in-orbit references such as IASI, AIRS and MODIS. The cross comparison products undergo stringent quality checks and standarizations and a scientific review of the theoretical bases and are assigned a GSICS maturity level. The accepted products are distributed freely as GSICS correction products. These products have wide applications. The goal of the presentation is to introduce GSICS cross calibration products and demonstrate their applications in developing products such as Fundamental Climate Data Records (FCDRs), evaluating Spectral Response Function status, and providing bias corrections. The impact of the GSICS bias corrections on retrieval of downstream variables such as Cloud Height Sea Surface Temperature will be one component of the presentation.

  14. Normalization and calibration of geostationary satellite radiances for the International Satellite Cloud Climatology Project

    NASA Technical Reports Server (NTRS)

    Desormeaux, Yves; Rossow, William B.; Brest, Christopher L.; Campbell, G. G.

    1993-01-01

    Procedures are described for normalizing the radiometric calibration of image radiances obtained from geostationary weather satellites that contributed data to the International Satellite Cloud Climatology Project. The key step is comparison of coincident and collocated measurements made by each satellite and the concurrent AVHRR on the 'afternoon' NOAA polar-orbiting weather satellite at the same viewing geometry. The results of this comparison allow transfer of the AVHRR absolute calibration, which has been established over the whole series, to the radiometers on the geostationary satellites. Results are given for Meteosat-2, 3, and 4, for GOES-5, 6, and 7, for GMS-2, 3, and 4 and for Insat-1B. The relative stability of the calibrations of these radiance data is estimated to be within +/- 3 percent; the uncertainty of the absolute calibrations is estimated to be less than 10 percent. The remaining uncertainties are at least two times smaller than for the original radiance data.

  15. Experiment In Aeronautical-Mobile/Satellite Communication

    NASA Technical Reports Server (NTRS)

    Jedrey, Thomas C.; Lay, Norman E.; Dessouky, Khaled

    1992-01-01

    Report describes study of performance of digital mobile/satellite communication terminals of advanced design intended for use in ground stations and airplanes in aeronautical-mobile service. Study was collaboration of NASA, Federal Aviation Administration (FAA), Communications Satellite Corp. (COMSAT), and International Maritime Satellite System (INMARSAT).

  16. Does absorption of ultraviolet B by stratospheric ozone and urban aerosols influence colon and breast cancer mortality rates? Contributions from NASA and NOAA data

    NASA Astrophysics Data System (ADS)

    Gorham, Edward D.; Garland, Frank C.; Mohr, Sharif B.; Grant, William B.; Garland, Cedric F.

    2005-08-01

    Although most ultraviolet B (UVB) radiation is absorbed by stratospheric ozone, dense anthropogenic sulfate aerosols in the troposphere may further attenuate UVB in some regions. Mortality rates from colon and breast cancer tend to be much higher in areas with low levels of UVB radiation. These high rates may be due in part to inadequate cutaneous photosynthesis of vitamin D. Satellite data on atmospheric aerosols, stratospheric ozone, and cloud cover were obtained from the National Aeronautics and Space Administration (NASA) and the National Oceanic and Atmospheric Administration (NOAA). These data were combined with age-adjusted mortality rates from 175 countries reporting to the World Health Organization. Regression was used to assess the relationship of stratospheric ozone thickness, aerosol optical depth, cloud cover, solar UVB irradiance at the top of the atmosphere, average skin exposure, and a dietary factor with colon and breast cancer mortality rates. Solar UVB irradiance at the top of the atmosphere, total cloud cover, and atmospheric aerosols had the strongest associations with mortality rates, apart from a strong influence of diet. Since 95% of circulating vitamin D is derived from current or stored products of photosynthesis, which may be nonexistent or minimal much of the year above 37°N or below 37°S, attenuation of UVB by atmospheric aerosols and clouds may have a greater than expected adverse effect on human health.

  17. Satellite RNAs and Satellite Viruses.

    PubMed

    Palukaitis, Peter

    2016-03-01

    Satellite RNAs and satellite viruses are extraviral components that can affect either the pathogenicity, the accumulation, or both of their associated viruses while themselves being dependent on the associated viruses as helper viruses for their infection. Most of these satellite RNAs are noncoding RNAs, and in many cases, have been shown to alter the interaction of their helper viruses with their hosts. In only a few cases have the functions of these satellite RNAs in such interactions been studied in detail. In particular, work on the satellite RNAs of Cucumber mosaic virus and Turnip crinkle virus have provided novel insights into RNAs functioning as noncoding RNAs. These effects are described and potential roles for satellite RNAs in the processes involved in symptom intensification or attenuation are discussed. In most cases, models describing these roles involve some aspect of RNA silencing or its suppression, either directly or indirectly involving the particular satellite RNA.

  18. Educator House Call: On-Line Data for Educators' Needs Assessment--Summary Report. NOAA Technical Memorandum GLERL-149

    ERIC Educational Resources Information Center

    Sturtevant, Rochelle A.; Marshall, Ann

    2009-01-01

    On July 15, 2009, National Oceanic and Atmospheric Administration's (NOAA's) Great Lakes Environmental Research Laboratory (GLERL) co-hosted a focus group--Educator House Calls: On-Line Data for Educators. The focus group was conducted at GLERL's main laboratory in Ann Arbor. The workshop was organized and funded by COSEE Great Lakes with student…

  19. Calibration of NOAA-7 AVHRR, GOES-5 and GOES-6 VISSR/VAS solar channels

    NASA Technical Reports Server (NTRS)

    Frouin, R.; Gautier, C.

    1986-01-01

    The NOAA-7, GOES-5 and GOES-6 Visible Infrared Spin Scan Radiometer/Vertical Atmospheric Sounder (VISSR/VAS) solar channels were calibrated. The White Sands Monument area in New Mexico, whose reflectance properties are well known, and space are used as calibration targets. The shortwave reflected terrestrial irradiance that is measured at satellite altitude is computed using a fairly accurate radiative transfer model which accounts for multiple scattering and bidirectional effects. The ground target reflectance and relevant characteristics of the overlying atmosphere are estimated from climatological data and observation at the nearest meteorological sites. The approach is believed to produce accuracies of 8 to 13% depending on the channel considered.

  20. Feature Detection Systems Enhance Satellite Imagery

    NASA Technical Reports Server (NTRS)

    2009-01-01

    In 1963, during the ninth orbit of the Faith 7 capsule, astronaut Gordon Cooper skipped his nap and took some photos of the Earth below using a Hasselblad camera. The sole flier on the Mercury-Atlas 9 mission, Cooper took 24 photos - never-before-seen images including the Tibetan plateau, the crinkled heights of the Himalayas, and the jagged coast of Burma. From his lofty perch over 100 miles above the Earth, Cooper noted villages, roads, rivers, and even, on occasion, individual houses. In 1965, encouraged by the effectiveness of NASA s orbital photography experiments during the Mercury and subsequent Gemini manned space flight missions, U.S. Geological Survey (USGS) director William Pecora put forward a plan for a remote sensing satellite program that would collect information about the planet never before attainable. By 1972, NASA had built and launched Landsat 1, the first in a series of Landsat sensors that have combined to provide the longest continuous collection of space-based Earth imagery. The archived Landsat data - 37 years worth and counting - has provided a vast library of information allowing not only the extensive mapping of Earth s surface but also the study of its environmental changes, from receding glaciers and tropical deforestation to urban growth and crop harvests. Developed and launched by NASA with data collection operated at various times by the Agency, the National Oceanic and Atmospheric Administration (NOAA), Earth Observation Satellite Company (EOSAT, a private sector partnership that became Space Imaging Corporation in 1996), and USGS, Landsat sensors have recorded flooding from Hurricane Katrina, the building boom in Dubai, and the extinction of the Aral Sea, offering scientists invaluable insights into the natural and manmade changes that shape the world. Of the seven Landsat sensors launched since 1972, Landsat 5 and Landsat 7 are still operational. Though both are in use well beyond their intended lifespans, the mid

  1. Aviation Applications for Satellite-Based Observations of Cloud Properties, Convection Initiation, In-flight Icing, Turbulence and Volcanic Ash

    NASA Technical Reports Server (NTRS)

    Mecikalski, John R.; Feltz, Wayne F.; Murray, John J.; Johnson, David B.; Bedka, Kristopher M.; Bedka, Sarah M.; Wimmers, Anthony J.; Pavolonis, Michael; Berendes, Todd A.; Haggerty, Julie; Minnis, Pat; Bernstein, Ben; Williams, Earl

    2006-01-01

    Advanced Satellite Aviation Weather Products (ASAP) was jointly initiated by the NASA Applied Sciences Program and the NASA Aviation Safety and Security Program in 2002. The initiative provides a valuable bridge for transitioning new and existing satellite information and products into Federal Aviation Administration (FAA) Aviation Weather Research Program (AWRP) efforts to increase the safety and efficiency of the airspace system. The ASAP project addresses hazards such as convective weather, turbulence (clear-air and cloud-induced), icing and volcanic ash and is particularly applicable in extending the monitoring of weather over data-sparse areas such as the oceans and other observationally remote locations. ASAP research is conducted by scientists from NASA, the FAA AWRP's Product Development Teams (PDT), NOAA and the academic research community. In this paper we provide a summary of activities since the inception of ASAP that emphasize the use of current-generation satellite technologies toward observing and mitigating specified aviation hazards. A brief overview of future ASAP goals is also provided in light of the next generation of satellite sensors (e.g., hyperspectral; high spatial resolution) to become operational in the 2006-2013 timeframe.

  2. Trends in NOAA Solar X-ray Imager Performance

    NASA Astrophysics Data System (ADS)

    Hill, Steven M.; Darnell, John A.; Seaton, Daniel B.

    2016-05-01

    NOAA has provided operational soft X-ray imaging of the sun since the early 2000’s. After 15 years of observations by four different telescopes, it is appropriate to examine the data in terms of providing consistent context for scientific missions. In particular, this presentation examines over 7 million GOES Solar X-ray Imager (SXI) images for trends in performance parameters including dark current, response degradation, and inter-calibration. Because observations from the instrument have overlapped not only with each other, but also with research observations like Yohkoh SXT and Hinode XRT, relative performance comparisons can be made. The first GOES Solar X-ray Imager was launched in 2001 and entered operations in 2003. The current SXIs will remain in operations until approximately 2020, when a new series of Solar (extreme-)Ultraviolet Imagers (SUVIs) will replace them as the current satellites reach their end of life. In the sense that the SXIs are similar to Yokoh’s SXT and Hinode’s XRT, the SUVI instruments will be similar to SOHO’s EIT and SDO’s AIA. The move to narrowband EUV imagers will better support eventual operational estimation of plasma conditions. While NOAA’s principal use of these observations is real-time space weather forecasting, they will continue to provide a reliable context measurement for researchers for decades to come.

  3. NOAA Atmospheric Baseline Observatories in the Arctic: Alaska & Greenland

    NASA Astrophysics Data System (ADS)

    Vasel, B. A.; Butler, J. H.; Schnell, R. C.; Crain, R.; Haggerty, P.; Greenland, S.

    2013-12-01

    The National Oceanic and Atmospheric Administration (NOAA) operates two year-round, long-term climate research facilities, known as Atmospheric Baseline Observatories (ABOs), in the Arctic Region. The Arctic ABOs are part of a core network to support the NOAA Global Monitoring Division's mission to acquire, evaluate, and make available accurate, long-term records of atmospheric gases, aerosol particles, and solar radiation in a manner that allows the causes of change to be understood. The observatory at Barrow, Alaska (BRW) was established in 1973 and is now host to over 200 daily measurements. Located a few kilometers to the east of the village of Barrow at 71.3° N it is also the northernmost point in the United States. Measurement records from Barrow are critical to our understanding of the Polar Regions including exchange among tundra, atmosphere, and ocean. Multiple data sets are available for carbon cycle gases, halogenated gases, solar radiation, aerosol properties, ozone, meteorology, and numerous others. The surface, in situ carbon dioxide record alone consists of over 339,000 measurements since the system was installed in July 1973. The observatory at Summit, Greenland (SUM) has been a partnership with the National Science Foundation (NSF) Division of Polar Programs since 2004, similar to that for South Pole. Observatory data records began in 1997 from this facility located at the top of the Greenland ice sheet at 72.58° N. Summit is unique as the only high-altitude (3200m), mid-troposphere, inland, Arctic observatory, largely free from outside local influences such as thawing tundra or warming surface waters. The measurement records from Summit help us understand long-range transport across the Arctic region, as well as interactions between air and snow. Near-real-time data are available for carbon cycle gases, halogenated gases, solar radiation, aerosol properties, meteorology, ozone, and numerous others. This poster will highlight the two facilities

  4. Satellite Meteorology Education & Training Resources from COMET

    NASA Astrophysics Data System (ADS)

    Abshire, W. E.; Dills, P. N.; Weingroff, M.; Lee, T. F.

    2012-12-01

    The COMET® Program (www.comet.ucar.edu) receives funding from NOAA NESDIS as well as EUMETSAT and the Meteorological Service of Canada to support education and training in satellite meteorology. These partnerships enable COMET to create educational materials of global interest on geostationary and polar-orbiting remote sensing platforms. These materials focus on the capabilities and applications of current and next-generation satellites and their relevance to operational forecasters and other user communities. By partnering with experts from the Naval Research Laboratory, NOAA-NESDIS and its Cooperative Institutes, Meteorological Service of Canada, EUMETSAT, and other user communities, COMET stimulates greater use of satellite data observations and products. This presentation provides an overview of COMET's recent satellite education efforts in the area of polar orbiting satellites. COMET has a new module on Suomi NPP, which describes the satellite system and discusses the improvements that it is bringing to forecasting, numerical weather prediction, and environmental monitoring. COMET has also published an updated version of its module on the VIIRS instrument. "Imaging with VIIRS: A Convergence of Technologies and Experience, 2nd Edition" covers the instrument's enhanced capabilities by examining the systems that contributed to its development. Special attention is paid to the Day/Night Visible channel as VIIRS is the first instrument on a civilian satellite to image atmospheric and terrestrial features with and without moonlight. An upcoming module will exclusively focus on nighttime imaging with the VIIRS Day/Night Band (DNB). "Applications of the VIIRS Day-Night Band" will introduce the capabilities of DNB imagery to a wide audience ranging from forecasters and emergency managers to wildfire fighters and oceanographers. DNB products will be compared to traditional satellite products made from infrared data, including the "fog" product. Users will learn how DNB

  5. NOAA Utilization of the Global Hawk Unmanned Aircraft for Atmospheric Research and Forecast Improvement

    NASA Astrophysics Data System (ADS)

    Wick, G. A.; Hood, R. E.; Black, M. L.; Spackman, J. R.; Ralph, F. M.; Intrieri, J. M.; Hock, T. F.; Neiman, P. J.

    2014-12-01

    High altitude, long endurance unmanned aircraft provide a tremendous new capability for monitoring the atmosphere in support of weather research and forecast improvement. The NOAA Unmanned Aircraft Systems (UAS) program is collaborating with NASA on the use of their Global Hawk (GH) aircraft for research into better understanding and forecasting high-impact weather events. NOAA has participated in multiple field campaigns either in partnership with NASA including the Genesis and Rapid Intensification Processes (GRIP, 2010) and the Hurricane and Severe Storm Sentinel (HS3, 2011-2014) experiments, or under NOAA leadership during the Winter Storms and Pacific Atmospheric Rivers (WISPAR, 2011) experiment. This past year, NOAA began a 3-year project, Sensing Hazards with Operational Unmanned Technology (SHOUT), to quantify the influence of UAS data on high-impact weather prediction and assess the operational effectiveness of UAS to help mitigate the risk of potential satellite observing gaps. The NOAA UAS system partnered with the National Center for Atmospheric Research in the development of a dropsonde system for the GH which has been flown along with other remote sensing instrumentation. This presentation summarizes our key results to date and describes our planned activities over the next two years. Flights during WISPAR provided measurements of water vapor transport within atmospheric rivers for evaluation of numerical weather prediction forecasts and analyses. A flight sampling the Arctic atmosphere north of Alaska included the first dropsondes released in the Arctic since the 1950's and extensive measurements of boundary-layer variability over an ocean-ice lead feature. Assimilation of GH dropsonde data collected in the environment around tropical storms during HS3 has demonstrated significant positive forecast improvements. Data are also being employed in the validation of multiple satellite-derived products. In SHOUT, campaigns are planned targeting Atlantic

  6. Calibration results for NOAA-11 AVHRR channels 1 and 2 from congruent path aircraft observations

    NASA Technical Reports Server (NTRS)

    Abel, Peter; Guenther, B.; Galimore, Reginald N.; Cooper, John W.

    1993-01-01

    A method for using congruent atmospheric path aircraft-satellite observations to calibrate a satellite radiometer is presented. A calibrated spectroradiometer aboard a NASA ER-2 aircraft at an altitude of 19 km above White Sands (New Mexico) was oriented to view White Sands at the overpass time of the NOAA-11 AVHRR instrument along the same view vector as the satellite instrument. The data from six flights between November 1988 and October 1990 were transformed into corresponding estimates of AVHRR channel radiance at the satellite (derived from the aircraft measurements), and average counts (from the AVHRR measurements), both averaged across the footprint of the spectroradiometer. Prelaunch measurements of the AVHRR spectral response profiles are assumed, and the radiance spectrum measured by the spectroradiometer was adjusted to satellite altitude using the LOWTRAN-7 computer code. Results show reduced gains in both channel 1 (0.65 micron) and channel 2 (0.85 micron), compared to prelaunch values, with little further reduction in gain after 200 days in orbit. Results for the gain ratio (channel 1/channel 2), which is important for the calculation of the normalized vegetation index, show constant in-orbit values 5 percent above the prelaunch value.

  7. Mapping crop key phenological stages in the North China Plain using NOAA time series images

    NASA Astrophysics Data System (ADS)

    Xin, Jingfeng; Yu, Zhenrong; van Leeuwen, Louise; Driessen, Paul M.

    2002-11-01

    Six key phenological stages were defined based on NOAA/AVHRR NDVI time series data collected in the Huang-Huai-Hai (HHH) Plain of China from 1990 through 2000. In a winter wheat-summer maize rotation, the recovering, heading and maturity stages of winter wheat and the emergence, tasseling and maturity stages of summer maize were recorded using 6 km resolution 10-day composite NDVI. The satellite-derived data proved to be consistent with the 'green wave' moving through the HHH Plain in spring. The recovering stage of winter wheat recorded by satellite was closely correlated to the temperatures measured in February whereas summer maize yields (at zone level) were correlated well with the satellite-derived length of the crop cycle. Comparison with synchronous phenological observations on the ground confirmed the coherence of satellite-derived phenology data. It is expected that satellite data with greater spatial and temporal resolutions and improved smoothing methods will increase the precision of the estimated data still further.

  8. Space time soil wetness variations monitoring by a multi-temporal microwave satellite records analysis

    NASA Astrophysics Data System (ADS)

    Lacava, T.; Di Leo, E. V.; Pergola, N.; Tramutoli, V.

    In the last few years, remote sensing observations have become a useful tool for providing hydrological information, including the quantification of the main physical characteristics of the catchment, such as topography and land use, and of its variables, like soil moisture or snow cover. Moreover, satellite data have also been largely used in the framework of hydro-meteorological risk mitigation. Recently, an innovative Soil Wetness Variation Index (SWVI) has been proposed, using data acquired by the microwave radiometer AMSU (Advanced Microwave Sounding Unit) which flies aboard NOAA (National Oceanic and Atmospheric Administration) satellites. SWVI is based on a general approach for multi-temporal satellite data analysis (RAT - Robust AVHRR Techniques). This approach exploits the analysis of long-term multi-temporal satellite records in order to obtain a former characterization of the measured signal, in term of expected value and natural variability, providing a further identification of signal anomalies by an automatic, unsupervised change-detection step. Such an approach has already demonstrated, in several studies carried out on extreme flooding events which occurred in Europe in the past few years, its capability in reducing spurious effects generated by natural/observational noise. In this paper, the proposed approach is applied to the analysis of the flooding event which occurred in Europe (primarily in NW Spain) in June 2000. Results obtained, in terms of reliability as well as efficiency in space-time monitoring of soil wetness variation, are presented. Future prospects, in terms of exportability of the methodology on the new dedicated satellite missions, like ESA-SMOS and NASA-HYDROS, are also discussed.

  9. Case studies of NOAA 6/TIROS N data impact on numerical weather forecasts

    NASA Technical Reports Server (NTRS)

    Druyan, L. M.; Alperson, Z.; Ben-Amram, T.

    1984-01-01

    The impact of satellite temperatures from systems which predate the launching of the third generation of vertical sounding instruments aboard TIROS N (13 Oct 1978) and NOAA 6 (27 June 1979) is reported. The first evaluation of soundings from TIROS N found that oceanic, cloudy retrievals over NH mid latitudes show a cold bias in winter. It is confirmed for both satellite systems using a larger data base. It is shown that RMS differences between retrievals and colocated radiosonde observations within the swath 30-60N during the 1979-80 winter were generally 2-3K in clear air and higher for cloudy columns. A positive impact of TIROS N temperatures on the analysis of synoptic weather systems is shown. Analyses prepared from only satellite temperatures seemed to give a better definition to weather systems' thermal structure than that provided by corresponding NMC analyses without satellite data. The results of a set of 14 numerical forecast experiments performed with the PE model of the Israel Meteorological Service (IMS) are summarized; these were designed to test the impact of TIROS N and NOAA 6 temperatures within the IMS analysis and forecast cycle. The satellite data coverage over the NH, the mean area/period S1 and RMS verification scores and the spatial distribution of SAT versus NO SAT forecast differences are discussed and it is concluded that positive forecast impact occurs over ocean areas where the extra data improve the specification which is otherwise available from conventional observations. The forecast impact for three cases from the same set of experiments was examined and it is found that satellite temperatures, observed over the Atlantic Ocean contribute to better forecasts over Iceland and central Europe although a worse result was verified over Spain. It is also shown that the better scores of a forecast based also on satellite data and verified over North America actually represent a mixed impact on the forecast synoptic patterns. A superior 48 hr

  10. Compendium of meteorological space programs, satellites, and experiments

    NASA Technical Reports Server (NTRS)

    Dubach, Leland L.; Ng, Carolyn

    1988-01-01

    This compendium includes plans and events known to the authors through January 1987. Compilation of the information began in 1967. This document is intended: (1) as a historical record of all satellites and instrumentation that has been useful for meteorological research or operational uses; and (2) as a working document to be used to assist meteorologists in identifying meteorological satellites, locating data from these satellites, and understanding experiment operation which is related to satellite data that may be of interest to them. A summary of all known launched satellites for all countries and their experiments, which were concerned with meteorological operations or research, are included. Programs covered include AEM, Apollo, ATS, Bhaskara, Cosmos, Discoverer, DMSP, DOD, DODGE, EOLE, ERBE, ESSA, Explorer, Gemini, GMS, GOES/SMS, INSAT, IRS, LANDSAT, Mercury, Meteor 1 and 2, Meteosat, Molniya, MOS, Nimbus, NOAA (1-5)/ITOS, NOAA (6,7,D)/TIROS-N, NOAA (8-10, H-J)/ATN, Salyut, Seasat, Shuttle 1, Shuttle 2: Spacelab, Skylab, Soyuz, TIROS, TOPEX, Vanguard, Voskhod, Vostok, and Zond.

  11. Monitoring Weather Impact and Crop Yield from Noaa Avhrr Data in Argentina

    NASA Astrophysics Data System (ADS)

    Seiler, R. A.; Kogan, F.; Wei, Guo

    Satellite observations over the last two decades have contributed to improve the understanding of climate variations and the physical and biological relations of the environment. In this study the application of NOAA-AVHRR satellite data for monitoring weather conditions and corn yield in the main cropping area of Argentina was analyzed. The results have shown that images of VCI and TCI are an effective tool for monitoring regional weather conditions, droughts and their evolution, providing greater and on time spatial and temporal coverage than the one is possible from ground-based measurements. Corn yield developed models based on VCI and TCI can provide reliable and timely yield estimates of regional agricultural production. Yield estimates can be made about two months before harvesting

  12. Global Warming: Evidence from Satellite Observations

    NASA Technical Reports Server (NTRS)

    Prabhakara, C.; Iacovazzi, R., Jr.; Yoo, J.-M.

    2001-01-01

    Observations made in Channel 2 (53.74 GHz) of the Microwave Sounding Unit (MSU) radiometer, flown on-board sequential, sun-synchronous, polar orbiting NOAA operational satellites, indicate that the mean temperature of the atmosphere over the globe increased during the period 1980 to 1999. In this study we have minimized systematic errors in the time series introduced by the satellite orbital drift in an objective manner. This is done with the help the onboard warm black body temperature, which is used in the calibration of the MSU radiometer. The corrected MSU Channel 2 observations of the NOAA satellite series reveal that the vertically weighted global mean temperature of the atmosphere, with a peak weight near the mid-troposphere, warmed at the rate of 0.13 K per decade (with an uncertainty of 0.05 K per decade) during 1980 to 1999. The global warming deduced from conventional meteorological data that have been corrected for urbanization effects agrees reasonably with this satellite deuced result.

  13. NASA/NOAA: Earth Science Electronic Theater 1999

    NASA Technical Reports Server (NTRS)

    Hasler, A. Fritz

    1999-01-01

    The Electronic Theater (E-theater) presents visualizations which span the period from the original Suomi/Hasler animations of the first ATS-1 GEO weather satellite images in 1966 to the latest 1999 NASA Earth Science Vision for the next 25 years. Hot off the SGI-Onyx Graphics-Supercomputer are NASA's visualizations of Hurricanes Mitch, Georges, Fran and Linda. These storms have been recently featured on the covers of National Geographic, Time, Newsweek and Popular Science. Highlights will be shown from the NASA hurricane visualization resource video tape that has been used repeatedly this season on National and International network TV. Results will be presented from a new paper on automatic wind measurements in Hurricane Luis from 1-min GOES images that appeared in the November BAMS. The visualizations are produced by the NASA Goddard Visualization and Analysis Laboratory (VAL/912), and Scientific Visualization Studio (SVS/930), as well as other Goddard and NASA groups using NASA, NOAA, ESA, and NASDA Earth science datasets. Visualizations will be shown from the Earth Science E-Theater 1999 recently presented in Tokyo, Paris, Munich, Sydney, Melbourne, Honolulu, Washington, New York, and Dallas. The presentation Jan 11-14 at the AMS meeting in Dallas used a 4-CPU SGI/CRAY Onyx Infinite Reality Super Graphics Workstation with 8 GB RAM and a Terabyte Disk at 3840 X 1024 resolution with triple synchronized BarcoReality 9200 projectors on a 60ft wide screen. Visualizations will also be featured from the new Earth Today Exhibit which was opened by Vice President Gore on July 2, 1998 at the Smithsonian Air & Space museum in Washington, as well as those presented for possible use at the American Museum of Natural History (NYC), Disney EPCOT, and other venues. New methods are demonstrated for visualizing, interpreting, comparing, organizing and analyzing immense HyperImage remote sensing datasets and three dimensional numerical model results. We call the data from many

  14. Visions of our Planet's Atmosphere, Land and Oceans: NASA/NOAA Electronic Theater 2002

    NASA Technical Reports Server (NTRS)

    Haser, Fritz; Starr, David (Technical Monitor)

    2002-01-01

    The NASA/NOAA Electronic Theater presents Earth science observations and visualizations in a historical perspective. Fly in from outer space to the 2002 Winter Olympic Stadium Site of the Olympic Opening and Closing Ceremonies in Salt Lake City. Fly in and through Olympic Alpine Venues using 1 m IKONOS "Spy Satellite" data. Go back to the early weather satellite images from the 1960s and see them contrasted with the latest US and international global satellite weather movies including hurricanes and "tornadoes". See the latest visualizations of spectacular images from NASA/NOAA remote sensing missions like Terra, GOES, TRMM, SeaWiFS, Landsat 7 including new 1 - min GOES rapid scan image sequences of Nov 9th 2001 Midwest tornadic thunderstorms and have them explained. See how High-Definition Television (HDTV) is revolutionizing the way we communicate science. (In cooperation with the American Museum of Natural History in NYC) See dust storms in Africa and smoke plumes from fires in Mexico. See visualizations featured on the covers of Newsweek, TIME, National Geographic, Popular Science and on National and International Network TV. New computer software tools allow us to roam and zoom through massive global images e.g. Landsat tours of the US, and Africa, showing desert and mountain geology as well as seasonal changes in vegetation. See animations of the polar ice packs and the motion of gigantic Antarctic Icebergs from SeaWinds. data. Spectacular new visualizations of the global atmosphere and oceans are shown. See vortexes and currents in the global oceans that bring up the nutrients to feed tiny algae and draw the fish, whales and fisherman. See the how the ocean blooms in response to these currents and El Nino/La Nina climate changes. See the city lights, fishing fleets, gas flares and bio-mass burning of the Earth at night observed by the "night-vision" DMSP military satellite.

  15. BOREAS AFM-6 NOAA/ETL 35 GHz Cloud/Turbulence Radar GIF Images

    NASA Technical Reports Server (NTRS)

    Martner, Brooks E.; Newcomer, Jeffrey A. (Editor); Hall, Forrest G.; Smith, David E. (Technical Monitor)

    2000-01-01

    The Boreal Ecosystem-Atmosphere Study (BOREAS) Airborne Fluxes and Meteorology (AFM)-6 team from the National Oceanic and Atmospheric Administration/Environment Technology Laboratory (NOAA/ETL) operated a 35-GHz cloud-sensing radar in the Northern Study Area (NSA) near the Old Jack Pine (OJP) tower from 16 Jul 1994 to 08 Aug 1994. This data set contains a time series of GIF images that show the structure of the lower atmosphere. The NOAA/ETL 35-GHz cloud/turbulence radar GIF images are available from the Earth Observing System Data and Information System (EOSDIS) Oak Ridge National Laboratory (ORNL) Distributed Active Archive Center (DAAC). The data files are available on a CD-ROM (see document number 20010000884).

  16. At-sea test validation data needed to verify the NOAA/DOE CWP Analytic Code

    SciTech Connect

    Major, R. A.

    1980-03-12

    Test data requirements are developed in this memorandum for the one-third scale Ocean Thermal Energy Conversion (OTEC) cold water pipe (CWP) at-sea tests. A major goal of the at-sea tests is to collect sufficient data so that the National Oceanic and Atmospheric Administration (NOAA)/Department of Energy (DOE) CWP Analytic Code can be validated. The code is examined to determine the individual responses requiring verification. The wave environment is then considered for prototype survival and the scaled test. The expected response of the OTEC CWP test article in the test environment is used to form a basis of the test plan. Requirements for the tests of standard configurations of the OTEC CWP test system are first planned followed by requirements for tests of alternate configurations and evolutions. The final product is a set of justified NOAA/CWP analytic code validation requirements.

  17. Calibration of long term satellite ozone data sets using the space shuttle

    NASA Technical Reports Server (NTRS)

    Hilsenrath, Ernest

    1990-01-01

    Trends in atmospheric ozone continue to be an environmental concern. Drifts in satellite observations are the major obstacle in the detection of changes in global ozone over the long term. Careful re-analysis of satellite ozone data along with groundbased observations have more or less corroborated photochemical models which predict ozone depletion. However, there remains the margin of error in the observations that is as large as the trend itself. The National Plan for Stratospheric Monitoring calls for monitoring global ozone for at lease the next ten years employing the NOAA polar orbiting satellites. Ozone observations will be made with the Solar Backscatter Ultraviolet Spectral Radiometer Mod 2 (SBUV/2) which ia a refinement of the SBUV instrument flying on NASA's Nimbus-7 satellite. The first instrument in the operational series began taking data from the NOAA-9 spacecraft in February 1985. A second instrument was launched on NOAA-11 in September 1988. Both continue to operate. Earlier attempts to calibrate satellite data relied on comparisons with ground based observations. However, differences in instrumental techniques severely complicated these efforts. This problem will be over come by regular flights, about once per year, of the Shuttle Solar Backscatter Ultraviolet radiometer (SSBUV). The data from the SSBUV instrument will be compared with nearly coincident data taken by the NOAA satellite instruments. This procedure will permit a direct calibration transfer in space, since the two instruments observe the same qualities thereby bypassing the inversion algorithm which converts the observations to ozone amounts.

  18. ECMWF's Global Snow Analysis: Assessment and Revision Based on Satellite Observations.

    NASA Astrophysics Data System (ADS)

    Drusch, Matthias; Vasiljevic, Drasko; Viterbo, Pedro

    2004-09-01

    Snow water equivalent and snow extent are key parameters for the earth's energy and water budget. In this study, the current operational snow-depth analysis (2D spatial Cressman interpolation) at the European Centre for Medium-Range Weather Forecasts (ECMWF), which relies on real-time observations of snow depth, the short-range forecast, and snow-depth climatic data, is presented. The operational product is compared with satellite-derived snow cover. It is found that the total area of grid boxes affected by snow is approximately 10% larger in the analysis than in the National Oceanic and Atmospheric Administration National Environmental Satellite, Data, and Information Service (NOAA/NESDIS) snow-extent product. The differences are persistent in time and space and cover the entire Northern Hemisphere. They comprise areas with intermittent and/or patchy snow cover, for example, the Tibetan Plateau, the edges of snow fields, and areas with a low density of observations, which are difficult to capture in the current operational analysis. A modified snow analysis is presented, in which the operational NESDIS snow product is incorporated. The current analysis and the revised analysis are compared with high-resolution snow-cover datasets derived from the Moderate-Resolution Imaging Spectroradiometer (MODIS) and independent ground-based snow-depth observations from the Meteorological Service of Canada. Using the NOAA/NESDIS snow-extent dataset in the operational analysis leads to a more realistic description of the actual snow extent.


  19. NOAA Climate Data Records Access for Applications

    NASA Astrophysics Data System (ADS)

    Stachniewicz, J. S.; Cecil, D.; Hollingshead, A.; Newport, B. J.; Wunder, D.

    2015-12-01

    There are many potential uses of NOAA Climate Data Records (CDRs) for decision-making and catastrophic risk management assessment activities in the federal, state, and local government and private sectors, in addition to their traditional uses by the academic/scientific community. There is growing interest in using NOAA CDRs for such applications and straightforward access to the data is essential if these applications are to be successful. User engagement activities determine the types of data that users need, as well as the spatial and temporal subsets. This talk will present the access methods currently available and in development. Alternate representations and sources of some CDRs will also be discussed. Recent improvements include: 1. CDR information web page 2. Dataset types, sizes, growth, latency, grid/swath 3. Dataset discovery, data access, and sub-setting. 4. Knowing our users and their needs. 5. Known uses of some CDRs. 6. Migration to CLASS. 7. Other representations - GeoTIFF, Obs4MIPS 8. Cloud applications - Google, Microsoft

  20. Satellite myths

    NASA Astrophysics Data System (ADS)

    Easton, Roger L.; Hall, David

    2008-01-01

    Richard Corfield's article “Sputnik's legacy” (October 2007 pp23-27) states that the satellite on board the US Vanguard rocket, which exploded during launch on 6 December 1957 two months after Sputnik's successful take-off, was “a hastily put together contraption of wires and circuitry designed only to send a radio signal back to Earth”. In fact, the Vanguard satellite was developed over a period of several years and put together carefully using the best techniques and equipment available at the time - such as transistors from Bell Laboratories/Western Electric. The satellite contained not one but two transmitters, in which the crystal-controlled oscillators had been designed to measure both the temperature of the satellite shell and of the internal package.

  1. Satellite Videoconferences

    NASA Technical Reports Server (NTRS)

    1990-01-01

    NASA is helping thousands of teachers to learn more about aerospace matters, improve their classroom skills, and expand significantly the content of their aerospace education curricula by means of live educational satellite videoconferences. The 1 1/2 hour 'Update for Teachers' programs originate at Oklahoma State University (OSU) Telecommunications Center. The television signals are transmitted to the WESTAR IV communications satellite, which remits them to participating schools across the U.S. and in parts of Mexico and Canada. The schools are equipped with small home style satellite reception dishes. Education Satellite Videoconference programs are conducted four times yearly, covering a variety of aerospace subjects. Teachers can call toll-free and have questions answered after the speaker's presentations. Information about NASA educational resources and how to obtain them will be provided.

  2. Building a COTS archive for satellite data

    NASA Technical Reports Server (NTRS)

    Singer, Ken; Terril, Dave; Kelly, Jack; Nichols, Cathy

    1994-01-01

    The goal of the NOAA/NESDIS Active Archive was to provide a method of access to an online archive of satellite data. The archive had to manage and store the data, let users interrogate the archive, and allow users to retrieve data from the archive. Practical issues of the system design such as implementation time, cost and operational support were examined in addition to the technical issues. There was a fixed window of opportunity to create an operational system, along with budget and staffing constraints. Therefore, the technical solution had to be designed and implemented subject to constraint imposed by the practical issues. The NOAA/NESDIS Active Archive came online in July of 1994, meeting all of its original objectives.

  3. Satellite positioning

    NASA Technical Reports Server (NTRS)

    Colombo, Oscar L.; Watkins, Michael M.

    1991-01-01

    Developments in satellite positioning techniques and their applications are reviewed on the basis of the theoretical and practical work published by U.S. researchers in 1987-1990. Current techniques are classified into two main categories: satellite laser tracking and radio tracking. Particular attention is given to the Geoscience Laser Ranging System, the Lunar Laser Ranging concept; GPS ephemerides determination, fiducial networks, and reference frame; static GPS positioning; and kinematic GPS positioning.

  4. Direct Broadcast Satellite: Radio Program

    NASA Technical Reports Server (NTRS)

    Hollansworth, James E.

    1992-01-01

    NASA is committed to providing technology development that leads to the introduction of new commercial applications for communications satellites. The Direct Broadcast Satellite-Radio (DBS-R) Program is a joint effort between The National Aeronautics and Space Administration (NASA) and The United States Information Agency/Voice of America (USIA/VOA) directed at this objective. The purpose of this program is to define the service and develop the technology for a direct-to-listener satellite sound broadcasting system. The DBS-R Program, as structured by NASA and VOA, is now a three-phase program designed to help the U.S. commercial communications satellite and receiver industry bring about this new communications service. Major efforts are being directed towards frequency planning hardware and service development, service demonstration, and experimentation with new satellite and receiver technology.

  5. GEOSAT Follow-On Radar Altimeter Satellite Performance Studies

    NASA Astrophysics Data System (ADS)

    Finkelstein, J. L.; Rau, M.; McMillan, J. D.

    2002-12-01

    Under a Navy Contract with Ball Aerospace and Technologies Corporation, the first GFO satellite was completed in 1997 and launched on 10 February 1998 on an Orbital Taurus launch vehicle. The satellite was operationally accepted on 29 November 2000. With an anticipated 8-year or more life, GFO (http://gfo.bmpcoe.org/Gfo) is a DoD satellite mission managed by the Space and Naval Warfare Systems Command's (SPAWAR's) Meteorological and Oceanographic (METOC) Systems Program Office (PMW 155) located in San Diego, California. The satellite is in the same Exact Repeat Orbit (ERO) as the original GEOSAT (800 km by 108 degrees inclination). All GFO's data products are available to the scientific community and are distributed by NOAA's Laboratory for Satellite Altimetry. The primary program objective was to develop an operational series of radar altimeter satellites to maintain continuous ocean observation for accurate global measurements of both mesoscale and basin-scale oceanography. Since its acceptance, Computer Sciences Corporation (CSC), under contract with the Navy, has provided a team known as the GFO Cal/Val and assisted by NASA and NOAA personnel has undertaken extensive and continuing calibration and validation activities on an exact repeat cycle basis. This paper will discuss the results of those Cal/Val efforts and present charts showing the performance history of the satellite, its sensors (both the Radar Altimeter and the Water Vapor Radiometer), and other relevant performance measures such as orbit accuracy.

  6. 77 FR 30046 - Ninth Meeting: RTCA Special Committee 222, Inmarsat Aeronautical Mobile Satellite (Route) Services

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-21

    ... Satellite (Route) Services AGENCY: Federal Aviation Administration (FAA), U.S. Department of Transportation (DOT). ACTION: Meeting Notice of RTCA Special Committee 222, Inmarsat Aeronautical Mobile Satellite... RTCA Special Committee 222, Inmarsat Aeronautical Mobile Satellite (Route) Services. DATES: The...

  7. 76 FR 66350 - Eighth Meeting: RTCA Special Committee 222 Inmarsat Aeronautical Mobile Satellite (Route) Services

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-26

    ... Satellite (Route) Services AGENCY: Federal Aviation Administration (FAA), U.S. Department of Transportation (DOT). ACTION: Notice of RTCA Special Committee 222, Inmarsat Aeronautical Mobile Satellite (Route... Committee 222, Inmarsat Aeronautical Mobile Satellite (Route) Services for the Eighth Meeting. DATES:...

  8. 77 FR 48584 - Tenth Meeting: RTCA Special Committee 222, Inmarsat Aeronautical Mobile Satellite (Route) Services

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-14

    ... Satellite (Route) Services AGENCY: Federal Aviation Administration (FAA), U.S. Department of Transportation (DOT). ACTION: Meeting Notice of RTCA Special Committee 222, Inmarsat Aeronautical Mobile Satellite... RTCA Special Committee 222, Inmarsat Aeronautical Mobile Satellite (Route) Services. DATES: The...

  9. NOAA's contribution to an informed society anticipating and responding to climate and its impacts through Climate.gov

    NASA Astrophysics Data System (ADS)

    Niepold, F.

    2012-12-01

    Societal concern about the impacts of climate change is growing. Citizens in public and private sectors want easy access to credible climate science information to help them make informed decisions affecting their lives and livelihoods. Weather and climate influences almost every sector of society, and affects up to 40 percent of the United States' 10 trillion annual economy. (NRC report, 2003 entitled "Satellite Observations of the Earth's Environment: Accelerating the Transition of Research to Operations"). As the leading provider of climate, weather, and water information to the nation and the world, NOAA is a logical source for citizens to turn to for climate information. NOAA must expand and improve the way it communicates, educates, reaches out to, and engages with public stakeholders to better meet the nation's needs for timely, authoritative climate data and information. Citizens are increasingly going online to seek credible, authoritative climate information. However, users report having difficulty locating and using NOAA's online data products and services. Thus, resolving this online accessibility issue will be one of the Climate Portal's main benefits. The use of portal technology and emerging data integration and visualization tools provide an opportunity for NOAA to bring together multiple datasets from diverse disciplines and sources to deliver a more comprehensive picture of climate in the context of affected resources, communities and businesses. Additional benefits include wider extension of NOAA's data to other media such as television and free-choice learning venues, thereby increasing public exposure and engagement. The Climate Portal teams take an audience-focused approach to promoting climate science literacy among the public. The program communicates the challenges, processes, and results of NOAA-supported climate science through stories and data visualizations on the Web and in popular media. They provide information to a range of

  10. GOES satellite time code dissemination

    NASA Technical Reports Server (NTRS)

    Beehler, R. E.

    1983-01-01

    The GOES time code system, the performance achieved to date, and some potential improvements in the future are discussed. The disseminated time code is originated from a triply redundant set of atomic standards, time code generators and related equipment maintained by NBS at NOAA's Wallops Island, VA satellite control facility. It is relayed by two GOES satellites located at 75 W and 135 W longitude on a continuous basis to users within North and South America (with overlapping coverage) and well out into the Atlantic and Pacific ocean areas. Downlink frequencies are near 468 MHz. The signals from both satellites are monitored and controlled from the NBS labs at Boulder, CO with additional monitoring input from geographically separated receivers in Washington, D.C. and Hawaii. Performance experience with the received time codes for periods ranging from several years to one day is discussed. Results are also presented for simultaneous, common-view reception by co-located receivers and by receivers separated by several thousand kilometers.

  11. Exploring new bands in modified multichannel regression SST algorithms for the next-generation infrared sensors at NOAA

    NASA Astrophysics Data System (ADS)

    Petrenko, B.; Ignatov, A.; Kramar, M.; Kihai, Y.

    2016-05-01

    Multichannel regression algorithms are widely used to retrieve sea surface temperature (SST) from infrared observations with satellite radiometers. Their theoretical foundations were laid in the 1980s-1990s, during the era of the Advanced Very High Resolution Radiometers which have been flown onboard NOAA satellites since 1981. Consequently, the multi-channel and non-linear SST algorithms employ the bands centered at 3.7, 11 and 12 μm, similar to available in AVHRR. More recent radiometers carry new bands located in the windows near 4 μm, 8.5 μm and 10 μm, which may also be used for SST. Involving these bands in SST retrieval requires modifications to the regression SST equations. The paper describes a general approach to constructing SST regression equations for an arbitrary number of radiometric bands and explores the benefits of using extended sets of bands available with the Visible Infrared Imager Radiometer Suite (VIIRS) flown onboard the Suomi National Polar-orbiting Partnership (SNPP) and to be flown onboard the follow-on Joint Polar Satellite System (JPSS) satellites, J1-J4, to be launched from 2017-2031; Moderate Resolution Imaging Spectroradiometers (MODIS) flown onboard Aqua and Terra satellites; and the Advanced Himawari Imager (AHI) flown onboard the Japanese Himawari-8 satellite (which in turn is a close proxy of the Advanced Baseline Imager (ABI) to be flown onboard the future Geostationary Operational Environmental Satellites - R Series (GOES-R) planned for launch in October 2016.

  12. NOAA's Integrated Tsunami Database: Data for improved forecasts, warnings, research, and risk assessments

    NASA Astrophysics Data System (ADS)

    Stroker, Kelly; Dunbar, Paula; Mungov, George; Sweeney, Aaron; McCullough, Heather; Carignan, Kelly

    2015-04-01

    The National Oceanic and Atmospheric Administration (NOAA) has primary responsibility in the United States for tsunami forecast, warning, research, and supports community resiliency. NOAA's National Geophysical Data Center (NGDC) and co-located World Data Service for Geophysics provide a unique collection of data enabling communities to ensure preparedness and resilience to tsunami hazards. Immediately following a damaging or fatal tsunami event there is a need for authoritative data and information. The NGDC Global Historical Tsunami Database (http://www.ngdc.noaa.gov/hazard/) includes all tsunami events, regardless of intensity, as well as earthquakes and volcanic eruptions that caused fatalities, moderate damage, or generated a tsunami. The long-term data from these events, including photographs of damage, provide clues to what might happen in the future. NGDC catalogs the information on global historical tsunamis and uses these data to produce qualitative tsunami hazard assessments at regional levels. In addition to the socioeconomic effects of a tsunami, NGDC also obtains water level data from the coasts and the deep-ocean at stations operated by the NOAA/NOS Center for Operational Oceanographic Products and Services, the NOAA Tsunami Warning Centers, and the National Data Buoy Center (NDBC) and produces research-quality data to isolate seismic waves (in the case of the deep-ocean sites) and the tsunami signal. These water-level data provide evidence of sea-level fluctuation and possible inundation events. NGDC is also building high-resolution digital elevation models (DEMs) to support real-time forecasts, implemented at 75 US coastal communities. After a damaging or fatal event NGDC begins to collect and integrate data and information from many organizations into the hazards databases. Sources of data include our NOAA partners, the U.S. Geological Survey, the UNESCO Intergovernmental Oceanographic Commission (IOC) and International Tsunami Information Center

  13. Small satellites

    NASA Technical Reports Server (NTRS)

    Thomas, P.; Veverka, J.; Dermott, S.

    1986-01-01

    Satellites smaller than Mimas (r = 195 km) are distinguished by irregular overall shapes and by rough limb topography. Material properties and impact cratering dominate the shaping of these objects. Long fragmentation histories can produce a variety of internal structures, but so far there is no direct evidence that any small satellite is an equilibrium ellipsoid made up of noncohesive gravitationally bound rubble. One many bodies that orbit close to their primary the tidal and rotational components of surface gravity strongly affect the directions of local g and thereby affect the redistribution of regolith by mass wasting. Downslope movement of regolith is extensive on Deimos, and is probably effective on many other small satellites. It is shown that in some cases observed patterns of downslope mass wasting cold produce useful constraints on the satellite's mean density. The diversity of features seen in the few high-resolution images of small satellites currently available suggests that these objects have undergone complex histories of cratering, fragmentation, and regolith evolution.

  14. NOAA People Empowered Products (PeEP): Combining social media with scientific models to provide eye-witness confirmed products

    NASA Astrophysics Data System (ADS)

    Codrescu, S.; Green, J. C.; Redmon, R. J.; Denig, W. F.; Kihn, E. A.

    2012-12-01

    NOAA products and alerts rely on combinations of models and data to provide the public with information regarding space and terrestrial weather hazards. This operational paradigm, while effective, neglects an abundant free source of measurements: millions of eyewitnesses viewing weather events. Here we present a prototype product that combines user reports with scientific model output and discuss the possibilities for creating a generic PeEP framework for use in a wide range of applications. We demonstrate the capabilities of a proto-PeEP that combines the OVATION prime auroral model running at the NOAA National Geophysical Data Center with Twitter reports of observable aurora. The combined product displays the model aurora in real time on Google Earth with markers showing the location and text of tweets from people actually observing the aurora. We discuss how the application can be extended and incorporated to other space weather products such as ionospheric induced GPS errors and radiation related satellite anomalies.

  15. Spatial degradation of satellite data

    NASA Technical Reports Server (NTRS)

    Justice, C. O.; Markham, B. L.; Townshend, J. R. G.; Kennard, R. L.

    1989-01-01

    Consideration is given to a technique for spatially degrading high-resolution satellite data to produce comparable data sets over a range of coarser resolutions. Landsat MSS data is used to produce seven spatial resolution data sets by applying a spatial filter designed to simulate sensor response. Also, spatial degradation of coarse resolution data to provide data compression for the production of global-scale data sets is examined. NOAA AVHRR Global Area Coverage data is compared to other sampling procedures. It is found that sampling procedures that incorporate averaging result in decreased variance, while sampling procedures adopting single-value selection have higher variances and produce data values comparable with those from the original data.

  16. Optimum employment of satellite indirect soundings as numerical model input

    NASA Technical Reports Server (NTRS)

    Horn, L. H.; Derber, J. C.; Koehler, T. L.; Schmidt, B. D.

    1981-01-01

    The characteristics of satellite-derived temperature soundings that would significantly affect their use as input for numerical weather prediction models were examined. Independent evaluations of satellite soundings were emphasized to better define error characteristics. Results of a Nimbus-6 sounding study reveal an underestimation of the strength of synoptic scale troughs and ridges, and associated gradients in isobaric height and temperature fields. The most significant errors occurred near the Earth's surface and the tropopause. Soundings from the TIROS-N and NOAA-6 satellites were also evaluated. Results again showed an underestimation of upper level trough amplitudes leading to weaker thermal gradient depictions in satellite-only fields. These errors show a definite correlation to the synoptic flow patterns. In a satellite-only analysis used to initialize a numerical model forecast, it was found that these synoptically correlated errors were retained in the forecast sequence.

  17. Mesoscale temperature and moisture fields from satellite infrared soundings

    NASA Technical Reports Server (NTRS)

    Hillger, D. W.; Vonderhaar, T. H.

    1976-01-01

    The combined use of radiosonde and satellite infrared soundings can provide mesoscale temperature and moisture fields at the time of satellite coverage. Radiance data from the vertical temperature profile radiometer on NOAA polar-orbiting satellites can be used along with a radiosonde sounding as an initial guess in an iterative retrieval algorithm. The mesoscale temperature and moisture fields at local 9 - 10 a.m., which are produced by retrieving temperature profiles at each scan spot for the BTPR (every 70 km), can be used for analysis or as a forecasting tool for subsequent weather events during the day. The advantage of better horizontal resolution of satellite soundings can be coupled with the radiosonde temperature and moisture profile both as a best initial guess profile and as a means of eliminating problems due to the limited vertical resolution of satellite soundings.

  18. Calibration of the visible and near-infrared channels of the NOAA-9 AVHRR using high-altitude aircraft measurements from August 1985 and October 1986

    NASA Technical Reports Server (NTRS)

    Smith, Gilbert R.; Levin, Robert H.; Koyanagi, Robert S.; Wrigley, Robert C.

    1989-01-01

    Visible and near infrared wavelength sensors mounted on operational satellites now in use do not have onboard absolute calibration devices. One means of establishing an in-orbit calibration for a satellite sensor is to make simultaneous measurement of a bright, relatively uniform scene along the satellite view vector from a calibrated instrument on board a high altitude aircraft. Herein, aircraft data were recorded over White Sands, New Mexico at satellite overpass time. Comparison of the coincident aircraft and orbiting satellite data for the visible and near infrared wavelength channels of the NOAA-9 Advanced Very High Resolution Radiometer shows that the calibration of the visible channel was unchanged from prelaunch values, but that the near infrared channel has degraded 6 percent by Aug. 1985. By Oct. 1986 the visible channel had degraded 13 percent and the near infrared channel had degraded 19 percent.

  19. Temporal Variability of Surface Solar Irradiance as a Function of Satellite-retrieved Cloud

    NASA Astrophysics Data System (ADS)

    Hinkelman, L. M.; Sengupta, M.; Habte, A.

    2014-12-01

    Studies of the impact of renewables on the electrical transmission grid are needed as power production from renewable energy resources increases. These studies require estimates of high temporal and spatial resolution power output under various scenarios. Satellite-based solar resource estimates are the best source of long-term irradiance data but are generally of lower temporal and spatial resolution than needed and thus require downscaling. Likewise, weather forecast models cannot provide high spatial or temporal irradiance predictions. Downscaling requires information about solar irradiance variability in both space and time, which is primarily a function of cloud properties. In this study, we analyze the relationships between the temporal variability of surface solar irradiance and satellite-based cloud properties. One-minute resolution surface solar irradiance data were obtained from the National Oceanic and Atmospheric Administration's Surface Radiation (SURFRAD) network. These sites are distributed across the United States to cover a range of meteorological conditions. Cloud information at a nominal 4 km resolution and half hour intervals was retrieved from NOAA's Geostationary Operation Environmental Satellites (GOES). The retrieved cloud properties were then used to select and composite irradiance data from the measurement sites in order to identify the cloud properties that exert the strongest control over short-term irradiance variability. The irradiance variability was characterized using statistics of both the irradiances themselves and of irradiance differences computed for short time scales (minutes). The relationships derived using this method will be presented, comparing and contrasting the statistics computed for the different cloud properties. The implications for downscaling irradiance from satellites or forecast models will also be discussed.

  20. Assessing Climate Change Effect on the World's Largest Lakes Using Satellite Observation

    NASA Astrophysics Data System (ADS)

    Wang, C.; Gabriel, R.; Norouzi, H.

    2014-12-01

    The Landsat program offers the longest continuous global record of the Earth's surface using satellite imagery for over forty years (1972-2014). Millions of images and relevant data have since been acquired using the instrument on the Landsat satellite to monitor the Earth's interesting phenomena. There are Landsat receiving stations around the world including the United States that process and archive the images that are a unique resource for global change research and applications in agriculture, forestry, regional planning, geology, cartography and global warming. So far, National Oceanic Atmospheric and Administration (NOAA) and National Aeronautics and Space Administration (NASA), have launched a total of eight successfully orbiting satellites throughout its forty-two years of service. The main objective of this project aims to use Landsat images to monitor the changes of the world's largest lakes from 1972 to present. We focus on areas around the planet that are home to large scale lakes such as Lake Urmia, Lake Vanern, Lake Winnipegosis, Lake Albert and Lake Mweru. Then using U.S Geological Survey (USGS) database as a source for gathering cloud free images that are covering each lake, we were able to download and obtain necessary data. For larger lakes, images were mosaic to cover the entire area of the lake and using a Maximum Likelihood technique images were specifically classified into land and water content using ENVI software. The extent of the water content was quantified for each year and a temporal analysis of the area was performed. It is also found that the lakes which locates near the equator or at low latitude are seriously facing threats of becoming mostly dry. Future work is needed for establishing the dynamic characteristic of more lakes' water extent changes and also to compare them with other available information such as precipitation and soil moisture in each region. In lakes where high latitude, the change in extent of ice during winter

  1. A new statistical tool for NOAA local climate studies

    NASA Astrophysics Data System (ADS)

    Timofeyeva, M. M.; Meyers, J. C.; Hollingshead, A.

    2011-12-01

    The National Weather Services (NWS) Local Climate Analysis Tool (LCAT) is evolving out of a need to support and enhance the National Oceanic and Atmospheric Administration (NOAA) National Weather Service (NWS) field offices' ability to efficiently access, manipulate, and interpret local climate data and characterize climate variability and change impacts. LCAT will enable NOAA's staff to conduct regional and local climate studies using state-of-the-art station and reanalysis gridded data and various statistical techniques for climate analysis. The analysis results will be used for climate services to guide local decision makers in weather and climate sensitive actions and to deliver information to the general public. LCAT will augment current climate reference materials with information pertinent to the local and regional levels as they apply to diverse variables appropriate to each locality. The LCAT main emphasis is to enable studies of extreme meteorological and hydrological events such as tornadoes, flood, drought, severe storms, etc. LCAT will close a very critical gap in NWS local climate services because it will allow addressing climate variables beyond average temperature and total precipitation. NWS external partners and government agencies will benefit from the LCAT outputs that could be easily incorporated into their own analysis and/or delivery systems. Presently we identified five existing requirements for local climate: (1) Local impacts of climate change; (2) Local impacts of climate variability; (3) Drought studies; (4) Attribution of severe meteorological and hydrological events; and (5) Climate studies for water resources. The methodologies for the first three requirements will be included in the LCAT first phase implementation. Local rate of climate change is defined as a slope of the mean trend estimated from the ensemble of three trend techniques: (1) hinge, (2) Optimal Climate Normals (running mean for optimal time periods), (3) exponentially

  2. Quantification of Surface Suspended Sediments along a River Dominated Coast with NOAA AVHRR and SeaWiFS Measurements: Louisiana, USA

    NASA Technical Reports Server (NTRS)

    Myint, S. W.; Walker, N. D.

    2002-01-01

    The ability to quantify suspended sediment concentrations accurately over both time and space using satellite data has been a goal of many environmental researchers over the past few decades This study utilizes data acquired by the NOAA Advanced Very High Resolution Radiometer (AVHRR) and the Orbview-2 Sea-viewing wide field-of-view (SeaWiFS) ocean colour sensor, coupled with field measurements to develop statistical models for the estimation of near-surface suspended sediment and suspended solids "Ground truth" water samples were obtained via helicopter, small boat and automatic water sampler within a few hours of satellite overpasses The NOAA AVHRR atmospheric correction was modified for the high levels of turbidity along the Louisiana coast. Models were developed based on the field measurements and reflectance/radiance measurements in the visible and near infrared Channels of NOAA-14 and Orbview-2 SeaWiFS. The best models for predicting surface suspended sediment concentrations were obtained with a NOAA AVHRR Channel 1 (580-680nm) cubic model, Channel 2 (725-1100 nm) linear mod$ and SeaWiFs Channel 6 (660-68Onm) power modeL The suspended sediment models developed using SeaWiFS Channel 5 (545-565 nm) were inferior, a result that we attribute mainly to the atmospheric correction technique, the shallow depth of the water samples and absorption effects from non-sediment water constituents.

  3. SENSITIVITY OF THE NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION MULTILAYER MODEL TO INSTRUMENT ERROR AND PARAMETERIZATION UNCERTAINTY

    EPA Science Inventory

    The response of the National Oceanic and Atmospheric Administration multilayer inferential dry deposition velocity model (NOAA-MLM) to error in meteorological inputs and model parameterization is reported. Monte Carlo simulations were performed to assess the uncertainty in NOA...

  4. Cloud Detection from Satellite Imagery: A Comparison of Expert-Generated and Automatically-Generated Decision Trees

    NASA Technical Reports Server (NTRS)

    Shiffman, Smadar

    2004-01-01

    Automated cloud detection and tracking is an important step in assessing global climate change via remote sensing. Cloud masks, which indicate whether individual pixels depict clouds, are included in many of the data products that are based on data acquired on- board earth satellites. Many cloud-mask algorithms have the form of decision trees, which employ sequential tests that scientists designed based on empirical astrophysics studies and astrophysics simulations. Limitations of existing cloud masks restrict our ability to accurately track changes in cloud patterns over time. In this study we explored the potential benefits of automatically-learned decision trees for detecting clouds from images acquired using the Advanced Very High Resolution Radiometer (AVHRR) instrument on board the NOAA-14 weather satellite of the National Oceanic and Atmospheric Administration. We constructed three decision trees for a sample of 8km-daily AVHRR data from 2000 using a decision-tree learning procedure provided within MATLAB(R), and compared the accuracy of the decision trees to the accuracy of the cloud mask. We used ground observations collected by the National Aeronautics and Space Administration Clouds and the Earth s Radiant Energy Systems S COOL project as the gold standard. For the sample data, the accuracy of automatically learned decision trees was greater than the accuracy of the cloud masks included in the AVHRR data product.

  5. Satellite imagery in the fight against Malaria, the case for Genetic Programming

    NASA Astrophysics Data System (ADS)

    Ssentongo, J. S.; Hines, E. L.

    The analysis of multi-temporal data is a critical issue in the field of remote sensing and presents a constant challenge The approach used here relies primarily on utilising a method commonly used in statistics and signal processing Empirical Orthogonal Function EOF analysis Normalized Difference Vegetation Index NDVI and Rainfall Estimate RFE satellite images pertaining to the Sub-Saharan Africa region were obtained The images are derived from the Advanced Very High Resolution Radiometer AVHRR on the United States National Oceanic and Atmospheric Administration NOAA polar orbiting satellites spanning from January 2000 to December 2002 The region of interest was narrowed down to the Limpopo Province Northern Province of South Africa EOF analyses of the space-time-intensity series of dekadal mean NDVI values was been performed They reveal that NDVI can be accurately approximated by its principal component time series and contains a near sinusoidal oscillation pattern Peak greenness essentially what NDVI measures seasons last approximately 8 weeks This oscillation period is very similar to that of Malaria cases reported in the same period but lags behind by 4 dekads about 40 days Singular Value Decomposition SVD of Coupled Fields is performed on the spacetime-intensity series of dekadal mean NDVI and RFE values Correlation analyses indicate that both Malaria and greenness appear to be dependant on rainfall the onset of their seasonal highs always following an arrival of rain There is a greater

  6. The Development of NOAA Education Common Outcome Performance Measures (Invited)

    NASA Astrophysics Data System (ADS)

    Baek, J.

    2013-12-01

    The National Oceanic and Atmospheric Administration (NOAA) Education Council has embarked on an ambitious Monitoring and Evaluation (M&E) project that will allow it to assess education program outcomes and impacts across the agency, line offices, and programs. The purpose of this internal effort is to link outcome measures to program efforts and to evaluate the success of the agency's education programs in meeting the strategic goals. Using an outcome-based evaluation approach, the NOAA Education Council is developing two sets of common outcome performance measures, environmental stewardship and professional development. This presentation will examine the benefits and tradeoffs of common outcome performance measures that collect program results across a portfolio of education programs focused on common outcomes. Common outcome performance measures have a few benefits to our agency and to the climate education field at large. The primary benefit is shared understanding, which comes from our process for writing common outcome performance measures. Without a shared and agreed upon set of definitions for the measure of an outcome, the reported results may not be measuring the same things and would incorrectly indicate levels of performance. Therefore, our writing process relies on a commitment to developing a shared set of definitions based on consensus. We hope that by taking the time to debate and coming to agreement across a diverse set of programs, the strength of our common measures can indicate real progress towards outcomes we care about. An additional benefit is that these common measures can be adopted and adapted by other agencies and organizations that share similar theories of change. The measures are not without their drawbacks, and we do make tradeoffs as part of our process in order to continue making progress. We know that any measure is necessarily a narrow slice of performance. A slice that may not best represent the unique and remarkable contribution

  7. Engineering calculations for communications satellite systems planning

    NASA Technical Reports Server (NTRS)

    Walton, E.; Aebker, E.; Mata, F.; Reilly, C.

    1991-01-01

    The final phase of a satellite synthesis project is described. Several methods for generating satellite positionings with improved aggregate carrier to interference characteristics were studied. Two general methods for modifying required separation values are presented. Also, two methods for improving aggregate carrier to interference (C/I) performance of given satellite synthesis solutions are presented. A perturbation of the World Administrative Radio Conference (WARC) synthesis is presented.

  8. Declassified Intelligence Satellite Photographs

    USGS Publications Warehouse

    ,

    2008-01-01

    Declassified photographs from U.S. intelligence satellites provide an important worldwide addition to the public record of the Earth's land surface. This imagery was released to the National Archives and Records Administration (NARA) and the U.S. Geological Survey (USGS) in accordance with Executive Order 12951 on February 23, 1995. The NARA has the original declassified film and a viewing copy. The USGS has another copy of the film to complement the Landsat archive. The declassified collection involves more than 990,000 photographs taken from 1959 through 1980 and was released on two separate occasions: February 1995 (Declass 1) and September 2002 (Declass 2). The USGS copy is maintained by the Earth Resources Observation and Science (EROS) Center, near Sioux Falls, South Dakota. Both the NARA and EROS provide public access to this unique collection that extends the record of land-surface change back another decade from the advent of the Landsat program that began satellite operations in 1972.

  9. Satellite detection of tropical burning in Brazil

    NASA Technical Reports Server (NTRS)

    Matson, Michael; Holben, Brent

    1987-01-01

    Tropical burning often occurs in remote areas of the world. Satellite remote sensing is the only practical solution for detecting and monitoring this burning. The capability of the Advanced Very High Resolution Radiometer on board the National Oceanic and Atmospheric Administration polar orbiting satellites to detect tropical fire activity in the Manaus, Brazil area is demonstrated.

  10. Integration of Earth Remote Sensing into the NOAA/NWS Damage Assessment Toolkit

    NASA Technical Reports Server (NTRS)

    Molthan, Andrew; Burks, Jason; Camp, Parks; McGrath, Kevin; Bell, Jordan

    2014-01-01

    Following the occurrence of severe weather, NOAA/NWS meteorologists are tasked with performing a storm damage survey to assess the type and severity of the weather event, primarily focused with the confirmation and assessment of tornadoes. This labor-intensive process requires meteorologists to venture into the affected area, acquire damage indicators through photos, eyewitness accounts, and other documentation, then aggregation of data in order to make a final determination of the tornado path length, width, maximum intensity, and other characteristics. Earth remote sensing from operational, polar-orbiting satellites can support the damage assessment process by helping to identify portions of damage tracks that are difficult to access due to road limitations or time constraints by applying change detection techniques. In addition, higher resolution commercial imagery can corroborate ground-based surveys by examining higher-resolution commercial imagery. As part of an ongoing collaboration, NASA and NOAA are working to integrate near real-time Earth remote sensing observations into the NOAA/NWS Damage Assessment Toolkit, a handheld application used by meteorologists in the survey process. The team has recently developed a more streamlined approach for delivering data via a web mapping service and menu interface, allowing for caching of imagery before field deployment. Near real-time products have been developed using MODIS and VIIRS imagery and change detection for preliminary track identification, along with conduits for higher-resolution Landsat, ASTER, and commercial imagery as they become available. In addition to tornado damage assessments, the team is also investigating the use of near real-time imagery for identifying hail damage to vegetation, which also results in large swaths of damage, particularly in the central United States during the peak growing season months of June, July, and August. This presentation will present an overview of recent activities

  11. 15 CFR 911.5 - NOAA Data Collection Systems Use Agreements.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 15 Commerce and Foreign Trade 3 2012-01-01 2012-01-01 false NOAA Data Collection Systems Use... POLICIES AND PROCEDURES CONCERNING USE OF THE NOAA SPACE-BASED DATA COLLECTION SYSTEMS § 911.5 NOAA Data Collection Systems Use Agreements. (a)(1) In order to use a NOAA DCS, each user must have an agreement...

  12. 15 CFR 911.4 - Use of the NOAA Data Collection Systems.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 15 Commerce and Foreign Trade 3 2011-01-01 2011-01-01 false Use of the NOAA Data Collection... POLICIES AND PROCEDURES CONCERNING USE OF THE NOAA SPACE-BASED DATA COLLECTION SYSTEMS § 911.4 Use of the NOAA Data Collection Systems. (a) Use of the NOAA DCS will only be authorized in accordance with...

  13. 15 CFR 911.4 - Use of the NOAA Data Collection Systems.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 15 Commerce and Foreign Trade 3 2012-01-01 2012-01-01 false Use of the NOAA Data Collection... POLICIES AND PROCEDURES CONCERNING USE OF THE NOAA SPACE-BASED DATA COLLECTION SYSTEMS § 911.4 Use of the NOAA Data Collection Systems. (a) Use of the NOAA DCS will only be authorized in accordance with...

  14. 15 CFR 911.4 - Use of the NOAA Data Collection Systems.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 15 Commerce and Foreign Trade 3 2014-01-01 2014-01-01 false Use of the NOAA Data Collection... POLICIES AND PROCEDURES CONCERNING USE OF THE NOAA SPACE-BASED DATA COLLECTION SYSTEMS § 911.4 Use of the NOAA Data Collection Systems. (a) Use of the NOAA DCS will only be authorized in accordance with...

  15. 15 CFR 911.5 - NOAA Data Collection Systems Use Agreements.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 15 Commerce and Foreign Trade 3 2014-01-01 2014-01-01 false NOAA Data Collection Systems Use... POLICIES AND PROCEDURES CONCERNING USE OF THE NOAA SPACE-BASED DATA COLLECTION SYSTEMS § 911.5 NOAA Data Collection Systems Use Agreements. (a)(1) In order to use a NOAA DCS, each user must have an agreement...

  16. 15 CFR 911.4 - Use of the NOAA Data Collection Systems.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 15 Commerce and Foreign Trade 3 2010-01-01 2010-01-01 false Use of the NOAA Data Collection... POLICIES AND PROCEDURES CONCERNING USE OF THE NOAA SPACE-BASED DATA COLLECTION SYSTEMS § 911.4 Use of the NOAA Data Collection Systems. (a) Use of the NOAA DCS will only be authorized in accordance with...

  17. 15 CFR 911.5 - NOAA Data Collection Systems Use Agreements.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 15 Commerce and Foreign Trade 3 2011-01-01 2011-01-01 false NOAA Data Collection Systems Use... POLICIES AND PROCEDURES CONCERNING USE OF THE NOAA SPACE-BASED DATA COLLECTION SYSTEMS § 911.5 NOAA Data Collection Systems Use Agreements. (a)(1) In order to use a NOAA DCS, each user must have an agreement...

  18. 15 CFR 911.7 - Continuation of the NOAA Data Collection Systems.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 15 Commerce and Foreign Trade 3 2011-01-01 2011-01-01 false Continuation of the NOAA Data... REGULATIONS POLICIES AND PROCEDURES CONCERNING USE OF THE NOAA SPACE-BASED DATA COLLECTION SYSTEMS § 911.7 Continuation of the NOAA Data Collection Systems. (a) NOAA expects to continue to operate DCS on...

  19. 15 CFR 911.7 - Continuation of the NOAA Data Collection Systems.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 15 Commerce and Foreign Trade 3 2012-01-01 2012-01-01 false Continuation of the NOAA Data... REGULATIONS POLICIES AND PROCEDURES CONCERNING USE OF THE NOAA SPACE-BASED DATA COLLECTION SYSTEMS § 911.7 Continuation of the NOAA Data Collection Systems. (a) NOAA expects to continue to operate DCS on...

  20. 15 CFR 911.5 - NOAA Data Collection Systems Use Agreements.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 15 Commerce and Foreign Trade 3 2013-01-01 2013-01-01 false NOAA Data Collection Systems Use... POLICIES AND PROCEDURES CONCERNING USE OF THE NOAA SPACE-BASED DATA COLLECTION SYSTEMS § 911.5 NOAA Data Collection Systems Use Agreements. (a)(1) In order to use a NOAA DCS, each user must have an agreement...

  1. 15 CFR 911.4 - Use of the NOAA Data Collection Systems.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 15 Commerce and Foreign Trade 3 2013-01-01 2013-01-01 false Use of the NOAA Data Collection... POLICIES AND PROCEDURES CONCERNING USE OF THE NOAA SPACE-BASED DATA COLLECTION SYSTEMS § 911.4 Use of the NOAA Data Collection Systems. (a) Use of the NOAA DCS will only be authorized in accordance with...

  2. 15 CFR 911.7 - Continuation of the NOAA Data Collection Systems.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 15 Commerce and Foreign Trade 3 2010-01-01 2010-01-01 false Continuation of the NOAA Data... REGULATIONS POLICIES AND PROCEDURES CONCERNING USE OF THE NOAA SPACE-BASED DATA COLLECTION SYSTEMS § 911.7 Continuation of the NOAA Data Collection Systems. (a) NOAA expects to continue to operate DCS on...

  3. 15 CFR 911.7 - Continuation of the NOAA Data Collection Systems.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 15 Commerce and Foreign Trade 3 2014-01-01 2014-01-01 false Continuation of the NOAA Data... REGULATIONS POLICIES AND PROCEDURES CONCERNING USE OF THE NOAA SPACE-BASED DATA COLLECTION SYSTEMS § 911.7 Continuation of the NOAA Data Collection Systems. (a) NOAA expects to continue to operate DCS on...

  4. 15 CFR 911.7 - Continuation of the NOAA Data Collection Systems.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 15 Commerce and Foreign Trade 3 2013-01-01 2013-01-01 false Continuation of the NOAA Data... REGULATIONS POLICIES AND PROCEDURES CONCERNING USE OF THE NOAA SPACE-BASED DATA COLLECTION SYSTEMS § 911.7 Continuation of the NOAA Data Collection Systems. (a) NOAA expects to continue to operate DCS on...

  5. 15 CFR 911.5 - NOAA Data Collection Systems Use Agreements.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 15 Commerce and Foreign Trade 3 2010-01-01 2010-01-01 false NOAA Data Collection Systems Use... POLICIES AND PROCEDURES CONCERNING USE OF THE NOAA SPACE-BASED DATA COLLECTION SYSTEMS § 911.5 NOAA Data Collection Systems Use Agreements. (a)(1) In order to use a NOAA DCS, each user must have an agreement...

  6. Spacecraft design sensitivity for a disaster warning satellite system

    NASA Technical Reports Server (NTRS)

    Maloy, J. E.; Provencher, C. E.; Leroy, B. E.; Braley, R. C.; Shumaker, H. A.

    1977-01-01

    A disaster warning satellite (DWS) is described for warning the general public of impending natural catastrophes. The concept is responsive to NOAA requirements and maximizes the use of ATS-6 technology. Upon completion of concept development, the study was extended to establishing the sensitivity of the DWSS spacecraft power, weight, and cost to variations in both warning and conventional communications functions. The results of this sensitivity analysis are presented.

  7. Analysis of thickness fields retrieved from NOAA-7 observations through the 3I (Improved Initialization Inversion) method. Interest for weather forecasting

    NASA Astrophysics Data System (ADS)

    Chedin, A.; Scott, N. A.; Flobert, J.; Husson, N.; Levy, C.; Rochard, G.; Quere, J.; Bellec, B.; Simeon, J.

    1987-08-01

    The improved initialization inversion method for the 3 dimensional analysis of the atmospheric structure from satellite obsevations (TIROS-N series) was applied to NOAA-7 data over Europe. The scenes selected correspond to complex meteorological situations and resulted in substantial errors in forecasting. One of the situations is presented. Comparisons between retrieved and operational (conventional) thickness charts show that the method is ready for operational use.

  8. ESTIMATING THE TRANSFER AND DEPOSITION OF DIOXIN AND ATRZINE TO THE GREAT LAKES BASIN WITH THE NOAA HYSPLIT MODEL - AN OVERVIEW

    EPA Science Inventory

    Over the last few years, the International Joint Commission has been supporting development of a PC-based transfer model, derived from the HYSPLIT model created at the National Oceanic and Atmospheric Administration (NOAA), to determine, in a cost-effective way, the extent of dep...

  9. First Results From the NOAA GOES-12 Solar X-ray Imager (SXI)

    NASA Astrophysics Data System (ADS)

    Hill, S. M.; Pizzo, V. J.; Balch, C. C.

    2001-12-01

    NOAA's GOES-12 weather satellite, launched into geosynchronus orbit on 23 July 2001, carries NOAA's first Solar X-ray Imager (SXI). When it enters regular operations this instrument will provide nearly uninterrupted, full-disk, broadband soft X-ray solar movies, with a continuous frame rate significantly exceeding that for previous similar instruments. The SXI provides images with a one-minute cadence and a single-image (adjustable) dynamic range near 100. A set of metallic thin-film filters provides a degree of temperature discrimination in the 0.6-6.0 nm bandpass. The spatial resolution of approximately 10 arcseconds FWHM is sampled with 5 arcsecond pixels. We present first observational results for the SXI from its post-launch check-out period. Observed coronal phenomenology -- some of it perhaps unique to SXI's spectral band, cadence and continuity of observations -- is presented. Multi-band observations of coronal holes, X-ray bright points, active regions, flares and post-flare loops are presented and qualitatively compared to contemporaneous observations by Yohkoh SXT and SOHO EIT.

  10. NOAA Marine and Arctic Monitoring Using UASs

    NASA Astrophysics Data System (ADS)

    Jacobs, T.; Coffey, J. J.; Hood, R. E.; Hall, P.; Adler, J.

    2014-12-01

    Unmanned systems have the potential to efficiently, effectively, economically and safely bridging critical observation requirements in an environmentally friendly manner. As the United States' Marine and Arctic areas of interest expand and include hard-to-reach regions of the Earth (such as the Arctic and remote oceanic areas) optimizing unmanned capabilities will be needed to advance the United States' science, technology and security efforts. Through increased multi-mission and multi-agency operations using improved inter-operable and autonomous unmanned systems, the research and operations communities will better collect environmental intelligence and better protect our Country against hazardous weather, environmental, marine and polar hazards. This presentation will examine NOAA's Marine and Arctic Monitoring UAS strategies which includes developing a coordinated effort to maximize the efficiency and capabilities of unmanned systems across the federal government and research partners. Numerous intra- and inter-agency operational demonstrations and assessments have been made to verify and validated these strategies. The presentation will also discuss the requisite sUAS capabilities and our experience in using them.

  11. Central Satellite Data Repository Supporting Research and Development

    NASA Astrophysics Data System (ADS)

    Han, W.; Brust, J.

    2015-12-01

    Near real-time satellite data is critical to many research and development activities of atmosphere, land, and ocean processes. Acquiring and managing huge volumes of satellite data without (or with less) latency in an organization is always a challenge in the big data age. An organization level data repository is a practical solution to meeting this challenge. The STAR (Center for Satellite Applications and Research of NOAA) Central Data Repository (SCDR) is a scalable, stable, and reliable repository to acquire, manipulate, and disseminate various types of satellite data in an effective and efficient manner. SCDR collects more than 200 data products, which are commonly used by multiple groups in STAR, from NOAA, GOES, Metop, Suomi NPP, Sentinel, Himawari, and other satellites. The processes of acquisition, recording, retrieval, organization, and dissemination are performed in parallel. Multiple data access interfaces, like FTP, FTPS, HTTP, HTTPS, and RESTful, are supported in the SCDR to obtain satellite data from their providers through high speed internet. The original satellite data in various raster formats can be parsed in the respective adapter to retrieve data information. The data information is ingested to the corresponding partitioned tables in the central database. All files are distributed equally on the Network File System (NFS) disks to balance the disk load. SCDR provides consistent interfaces (including Perl utility, portal, and RESTful Web service) to locate files of interest easily and quickly and access them directly by over 200 compute servers via NFS. SCDR greatly improves collection and integration of near real-time satellite data, addresses satellite data requirements of scientists and researchers, and facilitates their primary research and development activities.

  12. Managing Satellites

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Integral Systems, Inc.'s EPOCH 2000 forms the core of NASA's Near Earth Asteroid Rendezvous (NEAR) mission's command and control center. EPOCH 2000, which allows ground operators to monitor and control satellites over a wide area network, owes part of its heritage from work completed to support Goddard Space Flight Center. The software automates telemetry processing, commanding, anomaly detection, and archiving collected data. The NEAR spacecraft, launched in February 1996, will rendezvous in early 1999 and orbit the Asteroid Eros for a year. Integral Systems also provided Low Earth Orbit Autonomous Ground Terminals (LEO-Ts) to NASA. The LEO-T is designed to make it easier and less expensive for principal investigators to obtain telemetry, tracking and control services for their science missions. The company products have supported well over 70 satellite missions aimed at scientific research, meteorology, or communications applications.

  13. Virtual Satellite

    NASA Technical Reports Server (NTRS)

    Hammrs, Stephan R.

    2008-01-01

    Virtual Satellite (VirtualSat) is a computer program that creates an environment that facilitates the development, verification, and validation of flight software for a single spacecraft or for multiple spacecraft flying in formation. In this environment, enhanced functionality and autonomy of navigation, guidance, and control systems of a spacecraft are provided by a virtual satellite that is, a computational model that simulates the dynamic behavior of the spacecraft. Within this environment, it is possible to execute any associated software, the development of which could benefit from knowledge of, and possible interaction (typically, exchange of data) with, the virtual satellite. Examples of associated software include programs for simulating spacecraft power and thermal- management systems. This environment is independent of the flight hardware that will eventually host the flight software, making it possible to develop the software simultaneously with, or even before, the hardware is delivered. Optionally, by use of interfaces included in VirtualSat, hardware can be used instead of simulated. The flight software, coded in the C or C++ programming language, is compilable and loadable into VirtualSat without any special modifications. Thus, VirtualSat can serve as a relatively inexpensive software test-bed for development test, integration, and post-launch maintenance of spacecraft flight software.

  14. The determination of surface albedo from meteorological satellites

    NASA Technical Reports Server (NTRS)

    Johnson, W. T.

    1977-01-01

    A surface albedo was determined from visible data collected by the NOAA-4 polar orbiting meteorological satellite. To filter out the major cause of atmospheric reflectivity, namely clouds, techniques were developed and applied to the data resulting in a map of global surface albedo. Neglecting spurious surface albedos for regions with persistent cloud cover, sun glint effects, insufficient reflected light and, at this time, some unresolved influences, the surface albedos retrieved from satellite data closely matched those of a global surface albedo map produced from surface and aircraft measurements and from characteristic albedos for land type and land use.

  15. Let's Get into Some Scijinks! Lessons from Modernizing a Classic NOAA/NASA Kids' Weather Website

    NASA Astrophysics Data System (ADS)

    Leon, N.; Kasprak, A. H.; Mansfield, K. J.; Novati, A.; Gaches, L.; Karlson, D.

    2014-12-01

    SciJinks.gov—short for Science Hijinks—is a joint NOAA and NASA website that has been in operation for a decade. Filled with information about weather, Earth science, and satellite meteorology, it has always been a helpful resource for students and educators in and outside of the classroom. Geared toward upper middle school and early high school students, we replace around 20% of our audience each year. That means it is imperative to keep the site properly geared toward the needs of a rapidly changing group of students. Our team has recently redesigned SciJinks.gov to be mobile-friendly, modern looking, and teen-friendly. Here, we discuss our strategies and rational for this redesign and highlight the many exciting benefits to this newly imagined weather-adventure website.

  16. Determining coniferous forest cover and forest fragmentation with NOAA-9 advanced very high resolution radiometer data

    SciTech Connect

    Ripple, W.J.

    1994-05-01

    NOAA-9 satellite data from the Advanced Very High Resolution Radiometer (AVHRR) were used in conjunction with Landsat Multispectral Scanner (MSS) data to determine the proportion of closed canopy conifer forest cover in the Cascade Range of Oregon. A closed canopy conifer map, as determined from the MSS, was registered with AVHRR pixels. Regression was used to relate closed canopy conifer forest cover to AVHRR spectral data. A two-variable (band) regression model accounted for more variance in conifer cover than the Normalized Difference Vegetation Index (NDVI). The spectral signatures of various conifer successional stages were also examined. A map of Oregon was produced showing the proportion of closed canopy conifer cover for each AVHRR pixel. The AVHRR was responsive to both the percentage of closed canopy conifer cover and the successional stage in these temperate coniferous forests in this experiment.

  17. Determining coniferous forest cover and forest fragmentation with NOAA-9 advanced very high resolution radiometer data

    NASA Technical Reports Server (NTRS)

    Ripple, William J.

    1995-01-01

    NOAA-9 satellite data from the Advanced Very High Resolution Radiometer (AVHRR) were used in conjunction with Landsat Multispectral Scanner (MSS) data to determine the proportion of closed canopy conifer forest cover in the Cascade Range of Oregon. A closed canopy conifer map, as determined from the MSS, was registered with AVHRR pixels. Regression was used to relate closed canopy conifer forest cover to AVHRR spectral data. A two-variable (band) regression model accounted for more variance in conifer cover than the Normalized Difference Vegetation Index (NDVI). The spectral signatures of various conifer successional stages were also examined. A map of Oregon was produced showing the proportion of closed canopy conifer cover for each AVHRR pixel. The AVHRR was responsive to both the percentage of closed canopy conifer cover and the successional stage in these temperate coniferous forests in this experiment.

  18. Displaying Planetary and Geophysical Datasets on NOAAs Science On a Sphere (TM)

    NASA Astrophysics Data System (ADS)

    Albers, S. C.; MacDonald, A. E.; Himes, D.

    2005-12-01

    NOAAs Science On a Sphere(TM)(SOS)was developed to educate current and future generations about the changing Earth and its processes. This system presents NOAAs global science through a 3D representation of our planet as if the viewer were looking at the Earth from outer space. In our presentation, we will describe the preparation of various global datasets for display on Science On a Sphere(TM), a 1.7-m diameter spherical projection system developed and patented at the Forecast Systems Laboratory (FSL) in Boulder, Colorado. Four projectors cast rotating images onto a spherical projection screen to create the effect of Earth, planet, or satellite floating in space. A static dataset can be prepared for display using popular image formats such as JPEG, usually sized at 1024x2048 or 2048x4096 pixels. A set of static images in a directory will comprise a movie. Imagery and data for SOS are obtained from a variety of government organizations, sometimes post-processed by various individuals, including the authors. Some datasets are already available in the required cylindrical projection. Readily available planetary maps can often be improved in coverage and/or appearance by reprojecting and combining additional images and mosaics obtained by various spacecraft, such as Voyager, Galileo, and Cassini. A map of Mercury was produced by blending some Mariner 10 photo-mosaics with a USGS shaded-relief map. An improved high-resolution map of Venus was produced by combining several Magellan mosaics, supplied by The Planetary Society, along with other spacecraft data. We now have a full set of Jupiter's Galilean satellite imagery that we can display on Science On a Sphere(TM). Photo-mosaics of several Saturnian satellites were updated by reprojecting and overlaying recently taken Cassini flyby images. Maps of imagery from five Uranian satellites were added, as well as one for Neptune. More image processing was needed to add a high-resolution Voyager mosaic to a pre-existing map

  19. The Geostationary Operational Satellite R Series SpaceWire Based Data System

    NASA Technical Reports Server (NTRS)

    Anderson, William; Birmingham, Michael; Krimchansky, Alexander; Lombardi, Matthew

    2016-01-01

    The Geostationary Operational Environmental Satellite R-Series Program (GOES-R, S, T, and U) mission is a joint program between National Oceanic & Atmospheric Administration (NOAA) and National Aeronautics & Space Administration (NASA) Goddard Space Flight Center (GSFC). SpaceWire was selected as the science data bus as well as command and telemetry for the GOES instruments. GOES-R, S, T, and U spacecraft have a mission data loss requirement for all data transfers between the instruments and spacecraft requiring error detection and correction at the packet level. The GOES-R Reliable Data Delivery Protocol (GRDDP) [1] was developed in house to provide a means of reliably delivering data among various on board sources and sinks. The GRDDP was presented to and accepted by the European Cooperation for Space Standardization (ECSS) and is part of the ECSS Protocol Identification Standard [2]. GOES-R development and integration is complete and the observatory is scheduled for launch November 2016. Now that instrument to spacecraft integration is complete, GOES-R Project reviewed lessons learned to determine how the GRDDP could be revised to improve the integration process. Based on knowledge gained during the instrument to spacecraft integration process the following is presented to help potential GRDDP users improve their system designs and implementation.

  20. Partial and preliminary inventory of NOAA data for ARM/IDASS research

    SciTech Connect

    Martner, B.E.

    1991-06-01

    The first quarter of 1991 was an extremely active time for atmospheric measurements in the Denver area. Four field projects were conducted with overlapping schedules and area domains between mid-January and mid-April. The data collected may be of mutual interest to the participants of the various projects. Data inventory catalogs for each project will assist researchers by documenting the kinds of measurements, periods of observation, the data archival mediums, and the data availability. This report provides a partial and preliminary inventory of data obtained for the Department of Energy`s Atmospheric Radiation Measurement (ARM) program Integrated Data Assimilation and Sounding System (IDASS) research. It includes only those measurements obtained by the National Oceanic and Atmospheric Administration`s Wave Propagation Laboratory and Aeronomy Laboratory (NOAA/WPL and NOAA/AL). Many of these data are currently undergoing post-processing and inspection by each instrument`s operating group to improve and insure data quality. Therefore, the information in this report is preliminary.

  1. Evaluation of the latest satellite-gauge precipitation products and their hydrologic applications over the Huaihe River basin

    NASA Astrophysics Data System (ADS)

    Sun, Ruochen; Yuan, Huiling; Liu, Xiaoli; Jiang, Xiaoman

    2016-05-01

    Satellite-gauge quantitative precipitation estimate (QPE) products may reduce the errors in near real-time satellite precipitation estimates by combining rain gauge data, which provides great potential to hydrometeorological applications. This study aims to comprehensively evaluate four of the latest satellite-gauge QPEs, including NASA's Tropical Rainfall Measuring Mission (TRMM) 3B42V7 product, NOAA's Climate Prediction Center (CPC) MORPHing technique (CMORPH) bias-corrected product (CMORPH CRT), CMORPH satellite-gauge merged product (CMORPH BLD) and CMORPH satellite-gauge merged product developed at the National Meteorological Information Center (NMIC) of the China Meteorological Administration (CMA) (CMORPH CMA). These four satellite-gauge QPEs are statistically evaluated over the Huaihe River basin during 2003-2012 and applied into the distributed Variable Infiltration Capacity (VIC) model to assess hydrologic utilities. Compared to the China Gauge-based Daily Precipitation Analysis (CGDPA) newly developed at CMA/NMIC, the four satellite-gauge QPEs generally depict the spatial distribution well, with the underestimation in the southern mountains and overestimation in the northern plain of the Huaihe River basin. Specifically, both TRMM and CMORPH CRT adopt simple gauge adjustment algorithms and exhibit relatively poor performance, with evidently deteriorated quality in winter. In contrast, the probability density function-optimal interpolation (PDF-OI) gauge adjustment procedure has been applied in CMORPH BLD and CMORPH CMA, resulting in higher quality and more stable performance. CMORPH CMA further benefits from a merged dense gauge observation network and outperforms the other QPEs with significant improvements in rainfall amount and spatial/temporal distributions. Due to the insufficient gauge observations in the merging process, CMORPH BLD features the similar error characteristics of CMORPH CRT with a positive bias of light precipitation and a negative

  2. Application of satellite infrared data for mapping of thermal plume contamination in coastal ecosystem of Korea.

    PubMed

    Ahn, Yu-Hwan; Shanmugam, Palanisamy; Lee, Jae-Hak; Kang, Yong Q

    2006-03-01

    The 5900 MW Younggwang nuclear power station on the west coast of Korea discharges warm water affecting coastal ecology [KORDI report (2003). Wide area observation of the impact of the operation of Younggwang nuclear power plant 5 and 6, No. BSPI 319-00-1426-3, KORDI, Seoul, Korea]. Here the spatial and temporal characteristics of the thermal plume signature of warm water are reported from a time series (1985-2003) of space-borne, thermal infrared data from Landsat and National Oceanic and Atmospheric Administration (NOAA) satellites. Sea surface temperature (SST) were characterized using advanced very high resolution radiometer data from the NOAA satellites. These data demonstrated the general pattern and extension of the thermal plume signature in the Younggwang coastal areas. In contrast, the analysis of SST from thematic mapper data using the Landsat-5 and 7 satellites provided enhanced information about the plume shape, dimension and direction of dispersion in these waters. The thermal plume signature was detected from 70 to 100 km to the south of the discharge during the summer monsoon and 50 to 70 km to the northwest during the winter monsoon. The mean detected plume temperature was 28 degrees C in summer and 12 degrees C in winter. The DeltaT varied from 2 to 4 degrees C in winter and 2 degrees C in summer. These values are lower than the re-circulating water temperature (6-9 degrees C). In addition the temperature difference between tidal flats and offshore (SSTtidal flats - SSToffsore) was found to vary from 5.4 to 8.5 degrees C during the flood tides and 3.5 degrees C during the ebb tide. The data also suggest that water heated by direct solar radiation on the tidal flats during the flood tides might have been transported offshore during the ebb tide. Based on these results we suggest that there is an urgent need to protect the health of Younggwang coastal marine ecosystem from the severe thermal impact by the large quantity of warm water discharged from

  3. Application of satellite infrared data for mapping of thermal plume contamination in coastal ecosystem of Korea.

    PubMed

    Ahn, Yu-Hwan; Shanmugam, Palanisamy; Lee, Jae-Hak; Kang, Yong Q

    2006-03-01

    The 5900 MW Younggwang nuclear power station on the west coast of Korea discharges warm water affecting coastal ecology [KORDI report (2003). Wide area observation of the impact of the operation of Younggwang nuclear power plant 5 and 6, No. BSPI 319-00-1426-3, KORDI, Seoul, Korea]. Here the spatial and temporal characteristics of the thermal plume signature of warm water are reported from a time series (1985-2003) of space-borne, thermal infrared data from Landsat and National Oceanic and Atmospheric Administration (NOAA) satellites. Sea surface temperature (SST) were characterized using advanced very high resolution radiometer data from the NOAA satellites. These data demonstrated the general pattern and extension of the thermal plume signature in the Younggwang coastal areas. In contrast, the analysis of SST from thematic mapper data using the Landsat-5 and 7 satellites provided enhanced information about the plume shape, dimension and direction of dispersion in these waters. The thermal plume signature was detected from 70 to 100 km to the south of the discharge during the summer monsoon and 50 to 70 km to the northwest during the winter monsoon. The mean detected plume temperature was 28 degrees C in summer and 12 degrees C in winter. The DeltaT varied from 2 to 4 degrees C in winter and 2 degrees C in summer. These values are lower than the re-circulating water temperature (6-9 degrees C). In addition the temperature difference between tidal flats and offshore (SSTtidal flats - SSToffsore) was found to vary from 5.4 to 8.5 degrees C during the flood tides and 3.5 degrees C during the ebb tide. The data also suggest that water heated by direct solar radiation on the tidal flats during the flood tides might have been transported offshore during the ebb tide. Based on these results we suggest that there is an urgent need to protect the health of Younggwang coastal marine ecosystem from the severe thermal impact by the large quantity of warm water discharged from

  4. Visions of our Planet's Atmosphere, Land and Oceans: NASA/NOAA Electronic Theater 2002

    NASA Technical Reports Server (NTRS)

    Hasler, A. F.; Starr, David (Technical Monitor)

    2001-01-01

    The NASA/NOAA Electronic Theater presents Earth science observations and visualizations in a historical perspective. Fly in from outer space to the Olympic Medals Plaza, the new Gateway Center, and the University of Utah Stadium Site of the Olympic Opening and Closing Ceremonies in Salt Lake City. Fly in and through the Park City, and Snow Basin sites of the 2002 Winter Olympic Alpine Venues using 1 m IKONOS "Spy Satellite" data. See the four seasons of the Wasatch Front as observed by Landsat 7 at 15m resolution and watch the trees turn color in the Fall, snow come and go in the mountains and the reservoirs freeze and melt. Go back to the early weather satellite images from the 1960s and see them contrasted with the latest US and international global satellite weather movies including hurricanes & "tornadoes". See the latest visualizations of spectacular images from NASA/NOAA remote sensing missions like Terra, GOES, TRMM, SeaWiFS, Landsat 7 including new 1 - min GOES rapid scan image sequences of Nov 9th 2001 Midwest tornadic thunderstorms and have them explained. See how High-Definition Television (HDTV) is revolutionizing the way we communicate science. (In cooperation with the American Museum of Natural History in NYC) See dust storms in Africa and smoke plumes from fires in Mexico. See visualizations featured on the covers of Newsweek, TIME, National Geographic, Popular Science & on National & International Network TV. New computer software tools allow us to roam & zoom through massive global images e.g. Landsat tours of the US, and Africa, showing desert and mountain geology as well as seasonal changes in vegetation. See animations of the polar ice packs and the motion of gigantic Antarctic Icebergs from SeaWinds data. Spectacular new visualizations of the global atmosphere & oceans are shown. See vortexes and currents in the global oceans that bring up the nutrients to feed tiny algae and draw the fish, whales and fisherman. See the how the ocean blooms in

  5. Visions of our Planet's Atmosphere, Land and Oceans: NASA/NOAA Electronic Theater 2002

    NASA Technical Reports Server (NTRS)

    Hasler, A. F.; Starr, David (Technical Monitor)

    2002-01-01

    The NASA/NOAA Electronic Theater presents Earth science observations and visualizations in a historical perspective. Fly in from outer space to the Olympic Medals Plaza, the new Gateway Center, and the University of Utah Stadium Site of the Olympic Opening and Closing Ceremonies in Salt Lake City. Fly in and through the Park City, and Snow Basin sites of the 2002 Winter Olympic Alpine Venues using 1 m IKONOS "Spy Satellite" data. See the four seasons of the Wasatch Front as observed by Landsat 7 at 15m resolution and watch the trees turn color in the Fall, snow come and go in the mountains and the reservoirs freeze and melt. Go back to the early weather satellite images from the 1960s and see them contrasted with the latest US and international global satellite weather movies Including hurricanes & "tornadoes". See the latest visualizations of spectacular images from NASA/NOAA remote sensing missions like Terra, GOES, TRMM, SeaWiFS, Landsat 7 including new 1 - min GOES rapid scan image sequences of Nov 9th 2001 Midwest tornadic thunderstorms and have them explained. See how High-Definition Television (HDTV) is revolutionizing the way we communicate science. (In cooperation with the American Museum of Natural History in NYC) See dust storms in Africa and smoke plumes from fires in Mexico. See visualizations featured on the covers Of Newsweek, TIME, National Geographic, Popular Science & on National & International Network TV. New computer software. tools allow us to roam & zoom through massive global images e.g. Landsat tours of the US, and Africa, showing desert and mountain geology as well as seasonal changes in vegetation. See animations of the polar ice packs and the motion of gigantic Antarctic Icebergs from SeaWinds data. Spectacular new visualizations of the global atmosphere & oceans are shown. See vertexes and currents in the global oceans that bring up the nutrients to feed tin) algae and draw the fish, whales and fisherman. See the how the ocean blooms in

  6. The Science Behind the NASA/NOAA Electronic Theater 2002

    NASA Technical Reports Server (NTRS)

    Hasler, A. Fritz; Starr, David (Technical Monitor)

    2002-01-01

    Details of the science stories and scientific results behind the Etheater Earth Science Visualizations from the major remote sensing institutions around the country will be explained. The NASA Electronic Theater presents Earth science observations and visualizations in a historical perspective. Fly in from outer space to Temple Square and the University of Utah Campus. Go back to the early weather satellite images from the 1960s see them contrasted with the latest US/Europe/Japan global weather data. See the latest images and image sequences from NASA & NOAA missions like Terra, GOES, NOAA, TRMM, SeaWiFS, Landsat 7 visualized with state-of-the art tools. A similar retrospective of numerical weather models from the 1960s will be compared with the latest "year 2002" high-resolution models. See the inner workings of a powerful hurricane as it is sliced and dissected using the University of Wisconsin Vis-5D interactive visualization system. The largest super computers are now capable of realistic modeling of the global oceans. See ocean vortexes and currents that bring up the nutrients to feed phitoplankton and zooplankton as well as draw the crill fish, whales and fisherman. See the how the ocean blooms in response to these currents and El Nino/La Nina climate regimes. The Internet and networks have appeared while computers and visualizations have vastly improved over the last 40 years. These advances make it possible to present the broad scope and detailed structure of the huge new observed and simulated datasets in a compelling and instructive manner. New visualization tools allow us to interactively roam & zoom through massive global images larger than 40,000 x 20,000 pixels. Powerful movie players allow us to interactively roam, zoom & loop through 4000 x 4000 pixel bigger than HDTV movies of up to 5000 frames. New 3D tools allow highly interactive manipulation of detailed perspective views of many changing model quantities. See the 1m resolution before and after

  7. The Science Behind the NASA/NOAA Electronic Theater 2002

    NASA Technical Reports Server (NTRS)

    Hasler, A. Fritz; Starr, David (Technical Monitor)

    2002-01-01

    Details of the science stories and scientific results behind the Etheater Earth Science Visualizations from the major remote sensing institutions around the country will be explained. The NASA Electronic Theater presents Earth science observations and visualizations in a historical perspective. Fly in from outer space to Temple Square and the University of Utah Campus. Go back to the early weather satellite images from the 1960s see them contrasted with the latest US/Europe/Japan global weather data. See the latest images and image sequences from NASA & NOAA missions like Terra, GOES, NOAA, TRMM, SeaWiFS, Landsat 7 visualized with state-of-the art tools. A similar retrospective of numerical weather models from the 1960s will be compared with the latest "year 2002" high-resolution models. See the inner workings of a powerful hurricane as it is sliced and dissected using the University of Wisconsin Vis-5D interactive visualization system. The largest super computers are now capable of realistic modeling of the global oceans. See ocean vortexes and currents that bring up the nutrients to feed phitoplankton and zooplankton as well as draw the crill fish, whales and fisherman. See the how the ocean blooms in response to these currents and El Nino/La Nina climate regimes. The Internet and networks have appeared while computers and visualizations have vastly improved over the last 40 years. These advances make it possible to present the broad scope and detailed structure of the huge new observed and simulated datasets in a compelling and instructive manner. New visualization tools allow us to interactively roam & zoom through massive global images larger than 40,000 x 20,000 pixels. Powerful movie players allow us to interactively roam, zoom & loop through 4000 x 4000 pixel bigger than HDTV movies of up to 5000 frames. New 3D tools allow highly interactive manipulation of detailed perspective views of many changing model quantities. See the 1m resolution before and after

  8. A satellite system synthesis model for orbital arc allotment optimization

    NASA Technical Reports Server (NTRS)

    Reilly, Charles H.

    1987-01-01

    A mixed integer programming formulation of a satellite system synthesis problem if presented, which is referred to as the arc allotment problem (AAP). Each satellite administration is to be allotted a weighted-length segment of the geostationary orbital arc within which its satellites may be positioned at any longitudes. The objective function maximizes the length of the unweighted arc segment allotted to every administration, subject to single-entry co-channel interference restrictions and constraints imposed by the visible arc for each administration. Useful relationships between special cases of AAP and another satellite synthesis problem are established. Solutions to two example problems are presented.

  9. Evaluation of Bias Correction Method for Satellite-Based Rainfall Data.

    PubMed

    Bhatti, Haris Akram; Rientjes, Tom; Haile, Alemseged Tamiru; Habib, Emad; Verhoef, Wouter

    2016-06-15

    With the advances in remote sensing technology, satellite-based rainfall estimates are gaining attraction in the field of hydrology, particularly in rainfall-runoff modeling. Since estimates are affected by errors correction is required. In this study, we tested the high resolution National Oceanic and Atmospheric Administration's (NOAA) Climate Prediction Centre (CPC) morphing technique (CMORPH) satellite rainfall product (CMORPH) in the Gilgel Abbey catchment, Ethiopia. CMORPH data at 8 km-30 min resolution is aggregated to daily to match in-situ observations for the period 2003-2010. Study objectives are to assess bias of the satellite estimates, to identify optimum window size for application of bias correction and to test effectiveness of bias correction. Bias correction factors are calculated for moving window (MW) sizes and for sequential windows (SW's) of 3, 5, 7, 9, …, 31 days with the aim to assess error distribution between the in-situ observations and CMORPH estimates. We tested forward, central and backward window (FW, CW and BW) schemes to assess the effect of time integration on accumulated rainfall. Accuracy of cumulative rainfall depth is assessed by Root Mean Squared Error (RMSE). To systematically correct all CMORPH estimates, station based bias factors are spatially interpolated to yield a bias factor map. Reliability of interpolation is assessed by cross validation. The uncorrected CMORPH rainfall images are multiplied by the interpolated bias map to result in bias corrected CMORPH estimates. Findings are evaluated by RMSE, correlation coefficient (r) and standard deviation (SD). Results showed existence of bias in the CMORPH rainfall. It is found that the 7 days SW approach performs best for bias correction of CMORPH rainfall. The outcome of this study showed the efficiency of our bias correction approach.

  10. Evaluation of Bias Correction Method for Satellite-Based Rainfall Data.

    PubMed

    Bhatti, Haris Akram; Rientjes, Tom; Haile, Alemseged Tamiru; Habib, Emad; Verhoef, Wouter

    2016-01-01

    With the advances in remote sensing technology, satellite-based rainfall estimates are gaining attraction in the field of hydrology, particularly in rainfall-runoff modeling. Since estimates are affected by errors correction is required. In this study, we tested the high resolution National Oceanic and Atmospheric Administration's (NOAA) Climate Prediction Centre (CPC) morphing technique (CMORPH) satellite rainfall product (CMORPH) in the Gilgel Abbey catchment, Ethiopia. CMORPH data at 8 km-30 min resolution is aggregated to daily to match in-situ observations for the period 2003-2010. Study objectives are to assess bias of the satellite estimates, to identify optimum window size for application of bias correction and to test effectiveness of bias correction. Bias correction factors are calculated for moving window (MW) sizes and for sequential windows (SW's) of 3, 5, 7, 9, …, 31 days with the aim to assess error distribution between the in-situ observations and CMORPH estimates. We tested forward, central and backward window (FW, CW and BW) schemes to assess the effect of time integration on accumulated rainfall. Accuracy of cumulative rainfall depth is assessed by Root Mean Squared Error (RMSE). To systematically correct all CMORPH estimates, station based bias factors are spatially interpolated to yield a bias factor map. Reliability of interpolation is assessed by cross validation. The uncorrected CMORPH rainfall images are multiplied by the interpolated bias map to result in bias corrected CMORPH estimates. Findings are evaluated by RMSE, correlation coefficient (r) and standard deviation (SD). Results showed existence of bias in the CMORPH rainfall. It is found that the 7 days SW approach performs best for bias correction of CMORPH rainfall. The outcome of this study showed the efficiency of our bias correction approach. PMID:27314363

  11. Assessing satellite-derived start-of-season measures in the conterminous USA

    USGS Publications Warehouse

    Schwartz, Mark D.; Reed, Bradley C.; White, Michael A.

    2002-01-01

    National Oceanic and Atmospheric Administration (NOAA)-series satellites, carrying advanced very high-resolution radiometer (AVHRR) sensors, have allowed moderate resolution (1 km) measurements of the normalized difference vegetation index (NDVI) to be collected from the Earth's land surfaces for over 20 years. Across the conterminous USA, a readily accessible and decade-long data set is now available to study many aspects of vegetation activity in this region. One feature, the onset of deciduous plant growth at the start of the spring season (SOS) is of special interest, as it appears to be crucial for accurate computation of several important biospheric processes, and a sensitive measure of the impacts of global change. In this study, satellite-derived SOS dates produced by the delayed moving average (DMA) and seasonal midpoint NDVI (SMN) methods, and modelled surface phenology (spring indices, SI) were compared at widespread deciduous forest and mixed woodland sites during 1990–93 and 1995–99, and these three measures were also matched to native species bud-break data collected at the Harvard Forest (Massachusetts) over the same time period. The results show that both SOS methods are doing a modestly accurate job of tracking the general pattern of surface phenology, but highlight the temporal limitations of biweekly satellite data. Specifically, at deciduous forest sites: (1) SMN SOS dates are close in time to SI first bloom dates (average bias of +0.74 days), whereas DMA SOS dates are considerably earlier (average bias of −41.24 days) and also systematically earlier in late spring than in early spring; (2) SMN SOS tracks overall yearly trends in deciduous forests somewhat better than DMA SOS, but with larger average error (MAEs 8.64 days and 7.37 days respectively); and (3) error in both SOS techniques varies considerably by year. Copyright © 2002 Royal Meteorological Society.

  12. Operational Satellite-based Surface Oil Analyses (Invited)

    NASA Astrophysics Data System (ADS)

    Streett, D.; Warren, C.

    2010-12-01

    During the Deepwater Horizon spill, NOAA imagery analysts in the Satellite Analysis Branch (SAB) issued more than 300 near-real-time satellite-based oil spill analyses. These analyses were used by the oil spill response community for planning, issuing surface oil trajectories and tasking assets (e.g., oil containment booms, skimmers, overflights). SAB analysts used both Synthetic Aperture Radar (SAR) and high resolution visible/near IR multispectral satellite imagery as well as a variety of ancillary datasets. Satellite imagery used included ENVISAT ASAR (ESA), TerraSAR-X (DLR), Cosmo-Skymed (ASI), ALOS (JAXA), Radarsat (MDA), ENVISAT MERIS (ESA), SPOT (SPOT Image Corp.), Aster (NASA), MODIS (NASA), and AVHRR (NOAA). Ancillary datasets included ocean current information, wind information, location of natural oil seeps and a variety of in situ oil observations. The analyses were available as jpegs, pdfs, shapefiles and through Google, KML files and also available on a variety of websites including Geoplatform and ERMA. From the very first analysis issued just 5 hours after the rig sank through the final analysis issued in August, the complete archive is still publicly available on the NOAA/NESDIS website http://www.ssd.noaa.gov/PS/MPS/deepwater.html SAB personnel also served as the Deepwater Horizon International Disaster Charter Project Manager (at the official request of the USGS). The Project Manager’s primary responsibility was to acquire and oversee the processing and dissemination of satellite data generously donated by numerous private companies and nations in support of the oil spill response including some of the imagery described above. SAB has begun to address a number of goals that will improve our routine oil spill response as well as help assure that we are ready for the next spill of national significance. We hope to (1) secure a steady, abundant and timely stream of suitable satellite imagery even in the absence of large-scale emergencies such as

  13. Operational Applications from the Suomi Npp and Jpss Satellites

    NASA Astrophysics Data System (ADS)

    Goldberg, M.; Furgerson, J.; Sjoberg, W.; Weng, F.; Csiszar, I. A.; Kilcoyne, H.; Gleason, J. F.

    2012-12-01

    The Joint Polar Satellite System is NOAA's new operational satellite program and includes the SUOMI National Polar Partnership (NPP) as a bridge between NOAA's operational Polar Orbiting Environmental Satellite (POES) series, which began in 1978, and the first JPSS operational satellite scheduled for launch in 2017. JPSS provides critical data for key NOAA product and services, which the Nation depends on. These products and services include: Weather forecasting - data from the JPSS Cross-track Infrared Sounder (CrIS) and the Advanced Technology Microwave Sounder (ATMS) are needed to forecast weather events out to 7 days. Nearly 85% of all data used in weather forecasting are from polar orbiting satellites. Environmental monitoring - data from the JPSS Visible Infrared Imager Radiometer Suite (VIIRS) are used to monitor the environment including the health of coastal ecosystems, drought conditions, fire, smoke, dust, snow and ice, and the state of oceans, including sea surface temperature and ocean color. Climate monitoring - data from JPSS instruments, including OMPS, CERES and TSIS will provide continuity to climate data records established using NOAA POES and NASA Earth Observing System (EOS) satellite observations. These data records provide a unified and coherent long-term observation of the environment; the records and products are critical to climate modelers, scientists, and decision makers concerned with advancing climate change understanding, prediction, mitigation and adaptation strategies, and policies. Data collection - JPSS satellites continue the POES data collection instruments that relay in situ data and observations from remote transmitters. These instruments relay data from remote, unmanned stations including wind, temperature and salinity readings from ocean buoys, which allow for the monitoring of the ocean. These instruments are also used to track wildlife. Search and rescue - JPSS will continue the search and rescue instruments on POES that

  14. Meteorological satellites

    NASA Astrophysics Data System (ADS)

    1981-10-01

    Meteor-2 (second generation meteorological satellite) and an experimental satellite on which instruments are being tested and modified for the requirements of hydrometeorology and a determination of natural resources are presently operational in the U.S.S.R. Television devices with a 1-10 km terrain image resolution operating in the visible and infrared region are used to determine the space system, velocity and direction of cloud movements and provide information about the snow and ice cover, cyclones, storms, vortices in the atmosphere, and velocity and direction of wind. Images with a 50-1000 m resolution make possible geological and hydrological surveys, an evaluation of the state of vegetation and crops, detection of forest fires, determination of pollution of the atmosphere and sea and determination of optimal fishing regions in the ocean. Measurement of the intensity of atmospheric radiation in narrow infrared regions and very high frequencies allows remote evaluation of the temperature and humidity distribution in the vertical cross section of the Earth's atmosphere.

  15. Outer planet satellites

    NASA Astrophysics Data System (ADS)

    Schenk, Paul M.

    Recent findings on the outer-planet satellites are presented, with special consideration given to data on the rheologic properties of ice on icy satellites, the satellite surfaces and exogenic processes, cratering on dead cratered satellites, volcanism, and the interiors of outer-planet satellites. Particular attention is given to the state of Titan's surface and the properties of Triton, Pluto, and Charon.

  16. Post Launch Calibration and Testing of the Geostationary Lightning Mapper on GOES-R Satellite

    NASA Technical Reports Server (NTRS)

    Rafal, Marc; Cholvibul, Ruth; Clarke, Jared

    2016-01-01

    The Geostationary Operational Environmental Satellite R (GOES-R) series is the planned next generation of operational weather satellites for the United States National Oceanic and Atmospheric Administration (NOAA). The National Aeronautics and Space Administration (NASA) is procuring the GOES-R spacecraft and instruments with the first launch of the GOES-R series planned for October 2016. Included in the GOES-R Instrument suite is the Geostationary Lightning Mapper (GLM). GLM is a single-channel, near-infrared optical detector that can sense extremely brief (800 s) transient changes in the atmosphere, indicating the presence of lightning. GLM will measure total lightning activity continuously over the Americas and adjacent ocean regions with near-uniform spatial resolution of approximately 10 km. Due to its large CCD (1372x1300 pixels), high frame rate, sensitivity and onboard event filtering, GLM will require extensive post launch characterization and calibration. Daytime and nighttime images will be used to characterize both image quality criteria inherent to GLM as a space-based optic system (focus, stray light, crosstalk, solar glint) and programmable image processing criteria (dark offsets, gain, noise, linearity, dynamic range). In addition ground data filtering will be adjusted based on lightning-specific phenomenology (coherence) to isolate real from false transients with their own characteristics. These parameters will be updated, as needed, on orbit in an iterative process guided by pre-launch testing. This paper discusses the planned tests to be performed on GLM over the six-month Post Launch Test period to optimize and demonstrate GLM performance.

  17. Post Launch Calibration and Testing of the Geostationary Lightning Mapper on the GOES-R Satellite

    NASA Technical Reports Server (NTRS)

    Rafal, Marc D.; Clarke, Jared T.; Cholvibul, Ruth W.

    2016-01-01

    The Geostationary Operational Environmental Satellite R (GOES-R) series is the planned next generation of operational weather satellites for the United States National Oceanic and Atmospheric Administration (NOAA). The National Aeronautics and Space Administration (NASA) is procuring the GOES-R spacecraft and instruments with the first launch of the GOES-R series planned for October 2016. Included in the GOES-R Instrument suite is the Geostationary Lightning Mapper (GLM). GLM is a single-channel, near-infrared optical detector that can sense extremely brief (800 microseconds) transient changes in the atmosphere, indicating the presence of lightning. GLM will measure total lightning activity continuously over the Americas and adjacent ocean regions with near-uniform spatial resolution of approximately 10 km. Due to its large CCD (1372x1300 pixels), high frame rate, sensitivity and onboard event filtering, GLM will require extensive post launch characterization and calibration. Daytime and nighttime images will be used to characterize both image quality criteria inherent to GLM as a space-based optic system (focus, stray light, crosstalk, solar glint) and programmable image processing criteria (dark offsets, gain, noise, linearity, dynamic range). In addition ground data filtering will be adjusted based on lightning-specific phenomenology (coherence) to isolate real from false transients with their own characteristics. These parameters will be updated, as needed, on orbit in an iterative process guided by pre-launch testing. This paper discusses the planned tests to be performed on GLM over the six-month Post Launch Test period to optimize and demonstrate GLM performance.

  18. Post launch calibration and testing of the Geostationary Lightning Mapper on GOES-R satellite

    NASA Astrophysics Data System (ADS)

    Rafal, Marc; Clarke, Jared T.; Cholvibul, Ruth W.

    2016-05-01

    The Geostationary Operational Environmental Satellite R (GOES-R) series is the planned next generation of operational weather satellites for the United States National Oceanic and Atmospheric Administration (NOAA). The National Aeronautics and Space Administration (NASA) is procuring the GOES-R spacecraft and instruments with the first launch of the GOES-R series planned for October 2016. Included in the GOES-R Instrument suite is the Geostationary Lightning Mapper (GLM). GLM is a single-channel, near-infrared optical detector that can sense extremely brief (800 μs) transient changes in the atmosphere, indicating the presence of lightning. GLM will measure total lightning activity continuously over the Americas and adjacent ocean regions with near-uniform spatial resolution of approximately 10 km. Due to its large CCD (1372x1300 pixels), high frame rate, sensitivity and onboard event filtering, GLM will require extensive post launch characterization and calibration. Daytime and nighttime images will be used to characterize both image quality criteria inherent to GLM as a space-based optic system (focus, stray light, crosstalk, solar glint) and programmable image processing criteria (dark offsets, gain, noise, linearity, dynamic range). In addition ground data filtering will be adjusted based on lightning-specific phenomenology (coherence) to isolate real from false transients with their own characteristics. These parameters will be updated, as needed, on orbit in an iterative process guided by pre-launch testing. This paper discusses the planned tests to be performed on GLM over the six-month Post Launch Test period to optimize and demonstrate GLM performance.

  19. SSBUV and NOAA-11 SBUV/2 Solar Variability Measurements

    NASA Technical Reports Server (NTRS)

    DeLand, Matthew T.; Cebula, Richard P.; Hilsenrath, Ernest

    1998-01-01

    The Shuttle SBUV (SSBUV) and NOAA-11 SBUV/2 instruments measured solar spectral UV irradiance during the maximum and declining phase of solar cycle 22. The SSB UV data accurately represent the absolute solar UV irradiance between 200-405 nm, and also show the long-term variations during eight flights between October 1989 and January 1996. These data have been used to correct long-term sensitivity changes in the NOAA-11 SBUV/2 data, which provide a near-daily record of solar UV variations over the 170-400 nm region between December 1988 and October 1994. The NOAA-11 data demonstrate the evolution of short-term solar UV activity during solar cycle 22.

  20. Tracking Active Region NOAA 12192 in Multiple Carrington Rotations

    NASA Astrophysics Data System (ADS)

    Jain, Kiran; Tripathy, Sushant C.; Hill, Frank

    2015-04-01

    Active region NOAA 12192 appeared on the visible solar disk on October 18, 2014 and grew rapidly into the largest such region since 1990. During its entire transit across the Earth facing side of the Sun, it produced a significant number of X- and M-class flares. The combination of front-side and helioseismic far-side images clearly indicated that it lived through several Carrington rotations. In this paper, using Dopplergrams from GONG and HMI, we present a study on mode parameters, viz. oscillation frequencies, amplitude, and sub-surface flows and investigate how these vary with the evolution of active region in multiple rotations. We also present a detailed comparison between NOAA 10486 (the biggest active region in cycle 23) and NOAA 12192, and discuss the similarities/differences between them.

  1. Landsat—Earth observation satellites

    USGS Publications Warehouse

    ,

    2015-11-25

    Since 1972, Landsat satellites have continuously acquired space-based images of the Earth’s land surface, providing data that serve as valuable resources for land use/land change research. The data are useful to a number of applications including forestry, agriculture, geology, regional planning, and education. Landsat is a joint effort of the U.S. Geological Survey (USGS) and the National Aeronautics and Space Administration (NASA). NASA develops remote sensing instruments and the spacecraft, then launches and validates the performance of the instruments and satellites. The USGS then assumes ownership and operation of the satellites, in addition to managing all ground reception, data archiving, product generation, and data distribution. The result of this program is an unprecedented continuing record of natural and human-induced changes on the global landscape.

  2. Reprocessing MSU/AMSU/SSU long-term satellite instruments for climate monitoring and reanalyses

    NASA Astrophysics Data System (ADS)

    Zou, C.

    2009-12-01

    Climate monitoring requires generation of long-term satellite data products using satellite retrieval algorithms. Alternatively, satellite radiance data can be assimilated into numerical climate models to generate comprehensive reanalysis data products for climate monitoring and research. However, calibration and data consistency have been a major issue in producing reliable satellite and reanalysis climate products. Many long-term satellite climate products and earlier-generation reanalyses suffer from spurious climate jumps and variability induced by satellite transition and calibration-related instrument changes. Future satellite and reanalysis climate products require satellite data to be well calibrated so that instrument-related time-varying intersatellite biases are removed before they are used for climate analysis and data assimilation. Instrument characteristics such as frequency response functions are also required to be well described for accurately simulating radiances by radiative transfer models in reanalyses. For these purposes, NOAA/NESDIS is reprocessing and recalibrating radiance data from the NOAA and DMSP polar-orbiting satellite series. The instruments being investigated include MSU/AMSU/ATMS, SSU, HIRS, AVHRR, and SSM/I, etc. Recently, the NESDIS MSU/AMSU/SSU reprocessing effort has been funded by the NOAA Scientific Data Stewardship Program. In this presentation, we will review the current status on the NESDIS recalibration/reprocessing of the 30-year MSU/AMSU radiance data using simultaneous nadir overpass (SNO) method. We present results of the merged MSU/AMSU long-term atmospheric temperature climate data records derived from the recalibration. We also present preliminary results on bias correction and reprocessing of the SSU long-term time series using the SNO method.

  3. Satellites in Education.

    ERIC Educational Resources Information Center

    Jones, David

    1988-01-01

    Describes the methods and materials used to obtain satellite pictures from weather satellites. Discusses possible physics lessons which can be done using this equipment including orbital mechanics, and how the satellite works. (CW)

  4. Comparison of Cirrus height and optical depth derived from satellite and aircraft measurements

    SciTech Connect

    Kastner, M.; Kriebel, K.T.; Meerkoetter, R.; Renger, W.; Ruppersberg, G.H.; Wendling, P. )

    1993-10-01

    During the International Cirrus Experiment (ICE'89) simultaneous measurements of cirrus cloud-top height and optical depth by satellite and aircraft have been taken. Data from the Advanced Very High Resolution Radiometer (AVHRR) onboard the NOAA polar-orbiting meteorological satellite system have been used together with the algorithm package AVHRR processing scheme over clouds, land and ocean (APOLLO) to derive optical depth. NOAA High-Resolution Infrared Radiation Sounder (HIRS) data have been used together with a bispectral technique to derive cloud-top height. Also, the optical depth of some contrails could be estimated. Airborne measurements have been performed simultaneously by using the Airborne Lidar Experiment (ALEX), a backscatter lidar. Comparison of satellite data with airborne data showed agreement of the top heights to about 500 m and of the optical depths to about 30%. These uncertainties are within the limits obtained from error estimates. 34 refs., 8 figs.

  5. Contracting Out. National Oceanic and Atmospheric Administration's Central Library. Report to the Chairman, Subcommittee on Commerce, Justice, State, and the Judiciary, Committee on Appropriations, U.S. Senate.

    ERIC Educational Resources Information Center

    General Accounting Office, Washington, DC.

    In response to a request by the Senate Committee on Appropriations for an examination of the A-76 program of the Department of Commerce's National Oceanic and Atmospheric Administration (NOAA), in particular NOAA's decision to contract for the operation of its Central Library, this report describes a General Accounting Office (GAO) review which:…

  6. The NOAA-National Geographic Society Waterspout Expedition (1993).

    NASA Astrophysics Data System (ADS)

    Golden, Joseph H.; Bluestein, Howard B.

    1994-12-01

    This paper describes afield program conducted by NOAA and the National Geographic Society in late August 1993 near Key West, Florida. The mission of the expedition was to obtain close-up photographic documentation of waterspouts. Using a NOAA helicopter as an observing platform, the participants dropped flares onto the sea surface to visualize the airflow and filmed waterspouts using a state-of-the art motion picture camera and still cameras. Over a dozen waterspouts funnel clouds wore observed, and the most detailed movies of spray vortices over taken were obtained.

  7. How NOAA/DSCOVR Will Perform during Extreme Space Weather and Why Lead Time Exceeds Expectations

    NASA Astrophysics Data System (ADS)

    Biesecker, D. A.

    2014-12-01

    The NOAA/DSCOVR satellite is expected to launch in January, 2015 and replace the NASA/ACE satellite as the L1 Sentinel in early Summer, 2015. Having relied on ACE to provide critical warnings of geomagnetic storms since 1998, it is important for the space weather community to understand how DSCOVR will perform relative to ACE in real-time operations. The WIND/SWE instrument is sufficiently similar to the DSCOVR Faraday Cup that it can be used as a proxy for DSCOVR, with some caveats. We compare the ACE/SWEPAM and WIND/SWE observations for all geomagnetic storm events meeting the criteria of severe or extreme. We also examine time periods where ACE data were compromised by solar energetic particles. We find that DSCOVR will provide a more robust data stream than was provided by ACE during solar cycle 23. We will briefly address the magnetometer, supra-thermal particle measurements, and relativistic proton measurements provided by ACE, of which only the magnetometer is retained on DSCOVR. We also demonstrate that lead time for geomagnetic storm notifications to customers far exceeds the L1 to Earth delay time.

  8. Potential for early warning of maalria in India using NOAA-AVHRR based vegetation health indices

    NASA Astrophysics Data System (ADS)

    Dhiman, R. C.; Kogan, Felix; Singh, Neeru; Singh, R. P.; Dash, A. P.

    Malaria is still a major public health problem in India with about 1 82 million cases annually and 1000 deaths As per World Health Organization WHO estimates about 1 3 million Disability Adjusted Life Years DALYs are lost annually due to malaria in India Central peninsular region of India is prone to malaria outbreaks Meteorological parameters changes in ecological conditions development of resistance in mosquito vectors development of resistance in Plasmodium falciparum parasite and lack of surveillance are the likely reasons of outbreaks Based on satellite data and climatic factors efforts have been made to develop Early Warning System EWS in Africa but there is no headway in this regard in India In order to find out the potential of NOAA satellite AVHRR derived Vegetation Condition Index VCI Temperature Condition Index TCI and a cumulative indicator Vegetation Health Index VHI were attempted to find out their potential for development of EWS Studies were initiated by analysing epidemiological data of malaria vis-a-vis VCI TCI and VHI from Bikaner and Jaisalmer districts of Rajasthan and Tumkur and Raichur districts of Karnataka Correlation coefficients between VCI and monthly malaria cases for epidemic years were computed Positive correlation 0 67 has been found with one-month lag between VCI and malaria incidence in respect of Tumkur while a negative correlation with TCI -0 45 is observed In Bikaner VCI is found to be negatively related -0 71 with malaria cases in epidemic year of 1994 Weekly

  9. Satellite marine remote sensing in China

    NASA Astrophysics Data System (ADS)

    Pan, Delu

    2003-05-01

    Since the 1980s, a great attention has been paid to the advanced technique remote sensing in China, especially to development of satellite programs for marine environment. On September 7, 1988, China launched her first polar orbit satellite FY-1A for meteorological and oceanographic application (water color and temperature) and second satellite FY-1B two years later. In May 1999, China launched her second generation of environment satellite FY-1C with higher sensitivity, more channels and stable operation. The special ocean color satellite HY-1 has been in the orbit on May 15, 2002, whose main purpose is detection of marine environment of China Sea. HY-1 is a first Chinese ocean color satellite which was launched as a piggyback satellite on FY-1 satellite using Long March rocket. On the satellite there are two sensors, one is the Chinese Ocean Color and Temperature Scanner (COCTS), the other is CCD Coastal Zone Imager (CZI). The technique systems of ocean color remote sensing have been developed by Second Institute of Oceanography (SIO), State Oceanic Administration (SOA), in 1997 and by National Satellite Ocean Application Service (NSOAS) in 2002. Those systems include the functions of data receiving, processing, distribution, calibration, validation and application. SIO has capability to receive and process the FY-1 and AVHRR data since 1989. It is also a SeaWiFS scientific research station authorized by NASA, USA, to freely receive SeaWiFS data Since September 16, 1997. NSOAS has capability to receive and process the data of HY-1, AVHRR, MODIS and Geo satellite. In the recent years, some local algorithms of atmospheric correction and inversion of ocean color are developed for FY-1C , SeaWiFS and HY-1 to improve the accuracy of the measurement from satellites efficiently. The satellite data have being applied in monitoring marine environment, such as the spatial distribution of chlorophyll, primary products, suspended material, transparency and yellow substance

  10. Cold climate mapping using satellite high resolution thermal imagery. [weather forecasting improvement

    NASA Technical Reports Server (NTRS)

    Bartholic, J. F.; Sutherland, R. A.

    1977-01-01

    In an attempt to improve cold climate mapping and freeze forecasting techniques, thermal imagery from the NOAA-2 and -3 satellites and the Synchronous Meteorological Satellite (SMS) were obtained and analyzed. Enhanced image transparencies showed detailed temperature patterns over the peninsula of Florida. The analysis was superior to hand-drawn isotherms drawn from the 300 to 500 thermograph stations presently in use. Satellite data on several cold nights with similar synoptic conditions showed that similar cold patterns existed. Thus, cold climate mapping is possible.

  11. 15 CFR 904.104 - Final administrative decision.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... filed as provided in § 904.201(a), the NOVA becomes effective as the final administrative decision and order of NOAA 30 days after service of the NOVA or on the last day of any delay period granted. (b) If...

  12. 15 CFR 904.104 - Final administrative decision.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... filed as provided in § 904.201(a), the NOVA becomes effective as the final administrative decision and order of NOAA 30 days after service of the NOVA or on the last day of any delay period granted. (b) If...

  13. 15 CFR 904.104 - Final administrative decision.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... filed as provided in § 904.201(a), the NOVA becomes effective as the final administrative decision and order of NOAA 30 days after service of the NOVA or on the last day of any delay period granted. (b) If...

  14. 15 CFR 904.104 - Final administrative decision.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... filed as provided in § 904.201(a), the NOVA becomes effective as the final administrative decision and order of NOAA 30 days after service of the NOVA or on the last day of any delay period granted. (b) If...

  15. 15 CFR 904.104 - Final administrative decision.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... filed as provided in § 904.201(a), the NOVA becomes effective as the final administrative decision and order of NOAA 30 days after service of the NOVA or on the last day of any delay period granted. (b) If...

  16. BOREAS AFM-1 NOAA/ATDD Long-EZ Aircraft Flux data Over the SSA

    NASA Technical Reports Server (NTRS)

    Crawford, Timothy L.; Baldocchi, Dennis; Hall, Forrest G. (Editor); Knapp, David E. (Editor); Gunter, Laureen; Dumas, Ed; Smith, David E. (Technical Monitor)

    2000-01-01

    This data set contains measurements from the Airborne Flux and Meteorology (AFM)-1 National Oceanographic and Atmospheric Administration/Atmospheric Turbulence and Diffusion Division (NOAA/ATDD) Long-EZ Aircraft collected during the 1994 Intensive Field Campaigns (IFCs) at the southern study area (SSA). These measurements were made from various instruments mounted on the aircraft. The data that were collected include aircraft altitude, wind direction, wind speed, air temperature, potential temperature, water mixing ratio, U and V components of wind velocity, static pressure, surface radiative temperature, downwelling and upwelling total radiation, downwelling and upwelling longwave radiation, net radiation, downwelling and upwelling photosynthectically active radiation (PAR), greenness index, CO2 concentration, O3 concentration, and CH4 concentration. There are also various columns that indicate the standard deviation, skewness, kurtosis, and trend of some of these data. The data are stored in tabular ASCII files. The NOAA/ATDD Long-EZ aircraft flux data are available from the Earth Observing System Data and Information System (EOSDIS) Oak Ridge National Laboratory (ORNL) Distributed Active Archive Center (DAAC). The data files are available on a CD-ROM (see document number 20010000884).

  17. From scientific understanding to operational utility: New concepts and tools for monitoring space weather effects on satellites

    NASA Astrophysics Data System (ADS)

    Green, J. C.; Rodriguez, J. V.; Denig, W. F.; Redmon, R. J.; Blake, J. B.; Mazur, J. E.; Fennell, J. F.; O'Brien, T. P.; Guild, T. B.; Claudepierre, S. G.; Singer, H. J.; Onsager, T. G.; Wilkinson, D. C.

    2013-12-01

    NOAA space weather sensors have monitored the near Earth space radiation environment for more than three decades providing one of the only long-term records of these energetic particles that can disable satellites and pose a threat to astronauts. These data have demonstrated their value for operations for decades, but they are also invaluable for scientific discovery. Here we describe the development of new NOAA tools for assessing radiation impacts to satellites and astronauts working in space. In particular, we discuss the new system implemented for processing and delivering near real time particle radiation data from the POES/MetOp satellites. We also describe the development of new radiation belt indices from the POES/MetOp data that capture significant global changes in the environment needed for operational decision making. Lastly, we investigate the physical processes responsible for dramatic changes of the inner proton belt region and the potential consequences these new belts may have for satellite operations.

  18. Relativity in Satellite Laser Ranging

    NASA Astrophysics Data System (ADS)

    Ries, John C.

    2009-05-01

    Satellite laser ranging (SLR) is the measurement of the round-trip light time of ultra-short laser pulses to satellites deploying specifically designed retroreflectors. The ranging data are used to determine cm-precision satellite orbits, temporal variations in the Earth's gravity field, mm/yr accuracy determinations of station motion on a global scale, and fundamental physical constants. The SLR stations form an important part of the international network of space geodetic observatories that define and maintain the International Terrestrial Reference System. Starting in 1964, the precision of satellite laser ranging has improved from a few meters to a few mm for the better stations. With a measurement accuracy better than the part-per-billion level, the effects General Relativity must be considered. These include additional perturbations to the orbit dynamics, corrections to the round-trip light-time computation, and fundamental aspects of space-time in the definition of the geocentric reference frame. While these effects are significant, they are generally not large enough to provide useful tests of General Relativity. An important exception, however, is the relativistic prediction of the Lense-Thirring orbit precession, i.e the effect of `frame-dragging’ on the satellite orbit due to the spinning Earth's mass. While the signal is large enough to be easily observed with satellite laser ranging, the Lense-Thirring measurement uncertainty is limited by the knowledge of the even zonal harmonics of the Earth's gravity field that also produce Newtonian secular orbit precessions. However, this problem has been overcome with the dramatically improved models resulting from the joint NASA-DLR Gravity Recovery and Climate Experiment (GRACE) mission. Using laser ranging to the LAGEOS satellites, it is possible to confirm the General Relativity prediction of the Lense-Thirring precession with an uncertainty better than 15%. This research was supported by the National

  19. Using Cell Phones From Satellites

    NASA Technical Reports Server (NTRS)

    Horan, Stephen

    2000-01-01

    During the past several years, an interest has grown in using commercial telecommunications techniques to supply Telemetry and Command (T&C) services. Recently, the National Aeronautics and Space Administration (NASA) Space Operations Management Office (SOMO) has outlined plans to utilize satellite-based telecommunications services to support space operations in space missions over the next several decades. NASA currently obtains the bulk of its telecommunications services for earth-orbiting satellites via the existing government-owned and controlled Space Network (SN) system. This system consists of the constellation of Tracking and Data Relay Satellites (TDRS) in Geostationary Earth Orbit (GEO) and the associated ground terminals and communications intrastructure. This system is valuable and effective for scientific satellites costing over one million dollars. However, for smaller satellites, this system becomes problematic due to the cost of transponders and support infrastructure. The nominal transponders for using the TDRS cannot be obtained for a cost in dollars, and size, weight, or power that the 3 Corner Satellite project can afford. For these types of nanosatellite missions, alternatives that fit the mission cost and satellite profiles are needed. In particular, low-cost access using existing commercial infrastructure would be useful to mission planners. In particular, the ability to obtain low data rate T&C services would be especially valuable. The nanosatellites generally have low T&C requirements and therefore would benefit from using commercial services that could operate in the 2400 bps - 9600 bps range, especially if contact times longer than the 5 - 10 minute ground station passes could be found.

  20. Validation of satellite Land Surface Temperature products using ground-based measurements and heritage satellite data - Protocol, limitations and results

    NASA Astrophysics Data System (ADS)

    Guillevic, P. C.; Biard, J. C.; Hulley, G. C.; Goettsche, F. M.; Ghent, D.; Privette, J. L.

    2013-12-01

    ) onboard the geostationary Meteosat satellite. Field measurements are from NOAA's Surface Radiation (SURFRAD) network and from permanent validation stations operated by Karlsruhe Institute of Technology. This work is part of the EarthTemp initiative, the main goal of which is to develop more integrated, collaborative approaches to observing and understanding Earth's surface temperatures.

  1. House trims NOAA's Weather Service Budget

    NASA Astrophysics Data System (ADS)

    Bush, Susan

    The National Oceanic and Atmospheric Administration's portion of the House-passed Department of Commerce appropriations bill (HR 2608) for FY 1992 is $1.4 billion, $117 million less than requested by President Bush and about $24 million over FY 1991's appropriation.The bill cut a major part of the modernization of the National Weather Service. For FY 1992, $423.7 million would go to the NWS, a cut of about $85 million from the president's request of $508.6 million and about $30 million below FY 1991's appropriations.

  2. House trims NOAA's Weather Service Budget

    NASA Astrophysics Data System (ADS)

    Bush, Susan

    The National Oceanic and Atmospheric Administration's portion of the House-passed Department of Commerce appropriations bill (HR 2608) for FY 1992 is 1.4 billion, 117 million less than requested by President Bush and about 24 million over FY 1991's appropriation.The bill cut a major part of the modernization of the National Weather Service. For FY 1992, 423.7 million would go to the NWS, a cut of about 85 million from the president's request of 508.6 million and about $30 million below FY 1991's appropriations.

  3. Exploring Seafloor Volcanoes in Cyberspace: NOAA's "Ocean Explorer" Inspires Inquiry

    ERIC Educational Resources Information Center

    Hjelm, Elizabeth

    2011-01-01

    Seafloor exploration being done by scientists is an ideal way to introduce students to technology as a tool for inquiry. The same technology that allows scientists to share data in near real time can also provide students the tools to become researchers. NOAA's Ocean Explorer Explorations website is a rich research data bank that can be used by…

  4. 75 FR 69920 - (NOAA) Science Advisory Board (SAB)

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-16

    ... meeting agenda. Place: The meeting will be held both days at Dupont Hotel, 1500 New Hampshire Ave., NW... SAB Climate Working Group; (2) Strategic Framework for the Climate Service; (3) Report on the Climate... Research; (6) NOAA Response to the Ecosystem Science and Management Working Group Recommendations on...

  5. 15 CFR 995.26 - Conversion of NOAA ENC ® files to other formats.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 15 Commerce and Foreign Trade 3 2011-01-01 2011-01-01 false Conversion of NOAA ENC ® files to... ASSURANCE AND CERTIFICATION REQUIREMENTS FOR NOAA HYDROGRAPHIC PRODUCTS AND SERVICES CERTIFICATION REQUIREMENTS FOR DISTRIBUTORS OF NOAA HYDROGRAPHIC PRODUCTS Requirements for Certified Distributors and...

  6. 15 CFR 995.26 - Conversion of NOAA ENC ® files to other formats.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 15 Commerce and Foreign Trade 3 2012-01-01 2012-01-01 false Conversion of NOAA ENC ® files to... ASSURANCE AND CERTIFICATION REQUIREMENTS FOR NOAA HYDROGRAPHIC PRODUCTS AND SERVICES CERTIFICATION REQUIREMENTS FOR DISTRIBUTORS OF NOAA HYDROGRAPHIC PRODUCTS Requirements for Certified Distributors and...

  7. 15 CFR 995.26 - Conversion of NOAA ENC ® files to other formats.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 15 Commerce and Foreign Trade 3 2013-01-01 2013-01-01 false Conversion of NOAA ENC ® files to... ASSURANCE AND CERTIFICATION REQUIREMENTS FOR NOAA HYDROGRAPHIC PRODUCTS AND SERVICES CERTIFICATION REQUIREMENTS FOR DISTRIBUTORS OF NOAA HYDROGRAPHIC PRODUCTS Requirements for Certified Distributors and...

  8. 15 CFR 995.26 - Conversion of NOAA ENC ® files to other formats.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 15 Commerce and Foreign Trade 3 2010-01-01 2010-01-01 false Conversion of NOAA ENC ® files to... ASSURANCE AND CERTIFICATION REQUIREMENTS FOR NOAA HYDROGRAPHIC PRODUCTS AND SERVICES CERTIFICATION REQUIREMENTS FOR DISTRIBUTORS OF NOAA HYDROGRAPHIC PRODUCTS Requirements for Certified Distributors and...

  9. 15 CFR 995.26 - Conversion of NOAA ENC ® files to other formats.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 15 Commerce and Foreign Trade 3 2014-01-01 2014-01-01 false Conversion of NOAA ENC ® files to... ASSURANCE AND CERTIFICATION REQUIREMENTS FOR NOAA HYDROGRAPHIC PRODUCTS AND SERVICES CERTIFICATION REQUIREMENTS FOR DISTRIBUTORS OF NOAA HYDROGRAPHIC PRODUCTS Requirements for Certified Distributors and...

  10. Iodine Satellite

    NASA Technical Reports Server (NTRS)

    Kamhawi, Hani; Dankanich, John; Martinez, Andres; Petro, Andrew

    2015-01-01

    The Iodine Satellite (iSat) spacecraft will be the first CubeSat to demonstrate high change in velocity from a primary propulsion system by using Hall thruster technology and iodine as a propellant. The mission will demonstrate CubeSat maneuverability, including plane change, altitude change and change in its closest approach to Earth to ensure atmospheric reentry in less than 90 days. The mission is planned for launch in fall 2017. Hall thruster technology is a type of electric propulsion. Electric propulsion uses electricity, typically from solar panels, to accelerate the propellant. Electric propulsion can accelerate propellant to 10 times higher velocities than traditional chemical propulsion systems, which significantly increases fuel efficiency. To enable the success of the propulsion subsystem, iSat will also demonstrate power management and thermal control capabilities well beyond the current state-of-the-art for spacecraft of its size. This technology is a viable primary propulsion system that can be used on small satellites ranging from about 22 pounds (10 kilograms) to more than 1,000 pounds (450 kilograms). iSat's fuel efficiency is ten times greater and its propulsion per volume is 100 times greater than current cold-gas systems and three times better than the same system operating on xenon. iSat's iodine propulsion system consists of a 200 watt (W) Hall thruster, a cathode, a tank to store solid iodine, a power processing unit (PPU) and the feed system to supply the iodine. This propulsion system is based on a 200 W Hall thruster developed by Busek Co. Inc., which was previously flown using xenon as the propellant. Several improvements have been made to the original system to include a compact PPU, targeting greater than 80 percent reduction in mass and volume of conventional PPU designs. The cathode technology is planned to enable heaterless cathode conditioning, significantly increasing total system efficiency. The feed system has been designed to

  11. An Unconventional Path Toward the Operational Leveraging of Research-Grade Environmental Satellites

    NASA Astrophysics Data System (ADS)

    Miller, S.; Hawkins, J.; Turk, J.

    2007-12-01

    The traditional and proper path followed in transitioning research applications to operational support entails a rigorous gamut of quality control, testing, validation, technical documentation, and software optimization. In times of dire need when observations are in high demand and resources are few, however, convention must sometimes give way to outside-of-the-box thinking. Here, considerations made for manageable compromises forge a pathway to accelerated transition of developing technologies. Such was the case in Coalition mobilizations immediately following the 9/11 attacks, when the United States Office of Naval Research issued a challenge to the environmental research and development community to expedite the delivery of any and all capabilities bearing support relevance to mission planners and executors involved in the increasingly likely military response. It was under this directive that the Naval Research Laboratory's (NRL) Satellite Meteorological Applications Section reconfigured its base research program and internal processing infrastructure to effectively transform itself into an agile operational production system for rapid transition of value-added satellite environmental characterization products centered around next-generation 'research grade' satellite observing systems. Integral to this transformation was the coincident establishment of the Near Real-Time Processing Effort (NRTPE) coordinated among members of the National Oceanic and Atmospheric Administration (NOAA), the National Aeronautics and Space Administration (NASA), and Department of Defense (DoD; Air Force and Navy participants) working in a 'badgeless environment'. The NRTPE provided a portal for acquisition of NASA's MODerate resolution Imaging Spectroradiometer (MODIS) data at 2-4 hr latency worldwide. By virtue of NRTPE modifications to the Terra and Aqua satellite telemetry downlinks and transmission across the high-speed Defense Research/Engineering Network, data previously

  12. Quantifying Error in the CMORPH Satellite Precipitation Estimates

    NASA Astrophysics Data System (ADS)

    Xu, B.; Yoo, S.; Xie, P.

    2010-12-01

    As part of the collaboration between China Meteorological Administration (CMA) National Meteorological Information Centre (NMIC) and NOAA Climate Prediction Center (CPC), a new system is being developed to construct hourly precipitation analysis on a 0.25olat/lon grid over China by merging information derived from gauge observations and CMORPH satellite precipitation estimates. Foundation to the development of the gauge-satellite merging algorithm is the definition of the systematic and random error inherent in the CMORPH satellite precipitation estimates. In this study, we quantify the CMORPH error structures through comparisons against a gauge-based analysis of hourly precipitation derived from station reports from a dense network over China. First, systematic error (bias) of the CMORPH satellite estimates are examined with co-located hourly gauge precipitation analysis over 0.25olat/lon grid boxes with at least one reporting station. The CMORPH exhibits biases of regional variations showing over-estimates over eastern China, and seasonal changes with over-/under-estimates during warm/cold seasons. The CMORPH bias presents range-dependency. In general, the CMORPH tends to over-/under-estimate weak / strong rainfall. The bias, when expressed in the form of ratio between the gauge observations and the CMORPH satellite estimates, increases with the rainfall intensity but tends to saturate at a certain level for high rainfall. Based on the above results, a prototype algorithm is developed to remove the CMORPH bias through matching the PDF of original CMORPH estimates against that of the gauge analysis using data pairs co-located over grid boxes with at least one reporting gauge over a 30-day period ending at the target date. The spatial domain for collecting the co-located data pairs is expanded so that at least 5000 pairs of data are available to ensure statistical availability. The bias-corrected CMORPH is then compared against the gauge data to quantify the

  13. Navy satellite communications

    NASA Astrophysics Data System (ADS)

    Clair, William C.

    1992-03-01

    The history, current status, and future plans of Navy satellite communications are reviewed. Particular attention is given to Fleet Satellites; the Defense Satellite Communications System; the International Maritime Satellite; Core Command and Control (Core C2), General Purpose Communications, and Navy EHF SATCOM program; and the Copernicus architecture.

  14. Tethered Communication Satellites

    NASA Technical Reports Server (NTRS)

    Von Tiesenhausen, G.

    1986-01-01

    Report describes concept for placing several communication satellites in geostationary orbit without taking up more space than assigned to single satellite. Proposed scheme eases orbital crowding more economically than space platforms. Concept requires minimal redesign of existing satellites and accommodates many satellites in just one orbital slot. System much lighter in weight than geostationary platform and easier and more economical to transport.

  15. Satellite Television Corporations's DBS system - An update

    NASA Astrophysics Data System (ADS)

    Martin, E. R.

    In late 1980, a request was made for approval of a direct broadcast satellite (DBS) system. The considered DBS system is to provide nationwide pay-television service on a subscription basis. The system proposed in the application to the Federal Communications Commission would provide three channels of television, using four three-channel satellites. Attention is given to the system configuration, system tradeoffs, a plan of the 1983 Regional Administrative Radio Conference, orbit locations and channel frequencies, satellite status, home equipment status, advanced concepts, and the status of the Las Vegas Broadcast Complex. AIAA Paper 84-0664

  16. Performance of Nickel-Cadmium Batteries on the GOES I-K Series of Weather Satellites

    NASA Technical Reports Server (NTRS)

    Singhal, Sat P.; Rao, Gopalakrishna M.; Alsbach, Walter G.

    1997-01-01

    The US National Oceanic and Atmospheric Administration (NOAA) operates the Geostationary Operational Environmental Satellite (GOES) spacecraft (among others) to support weather forecasting, severe storm tracking, and meteorological research by the National Weather Service (NWS). The latest in the GOES series consists of 5 spacecraft (originally named GOES I-M), three of which are in orbit and two more in development. Each of five spacecraft carry two Nickel-Cadmium batteries, with batteries designed and manufactured by Space Systems Loral (SS/L) and cells manufactured by Gates Aerospace Batteries (sold to SAFT in 1993). The battery, which consists of 28 cells with a 12 Ah capacity, provides the spacecraft power needs during the ascent phase and during the semi-annual eclipse seasons lasting for approximately 45 days each. The maximum duration eclipses are 72 minutes long which result in a 60 percent depth of discharge (DOD) of the batteries. This paper provides a description of the batteries, reconditioning setup, DOD profile during a typical eclipse season, and flight performance from the 3 launched spacecraft (now GOES 8, 9, and 10) in orbit.

  17. Performance of Nickel-Cadmium Batteries on the GOES 1-K Series of Weather Satellites

    NASA Technical Reports Server (NTRS)

    Singhal, Sat P.; Alsbach, Walter G.; Rao, Gopalakrishna M.

    1998-01-01

    The US National Oceanic and Atmospheric Administration (NOAA) operates the Geostationary Operational Environmental Satellite (GOES) spacecraft (among others) to support weather forecasting, severe storm tracking, and meteorological research by the National Weather Service (NWS). The latest in the GOES series consists of five spacecraft (originally named GOES 1-M), three of which are in orbit and and two more in development. Each of the five spacecraft carries two Nickel-Cadmium battery, with batteries designed by Space Systems Loral (SS/L) and cells manufactured by Gates Aerospace Batteries (sold to SAFT in 1993). The battery, which consists of 28 cells with a 12 Ah capacity, provides the spacecraft power needs during the ascent phase and during the semi-annual eclipse seasons lasting for approximately 45 days each. The maximum duration eclipses are 72 minutes long which result in a 60 percent depth of discharge (DOD) of the batteries. This paper provides a description of the batteries, reconditioning setup, DOD profile during a typical eclipse season, and flight performance from the three launched spacecraft (now GOES 8, 9, and 10) in orbit.

  18. Outer planet satellites

    SciTech Connect

    Schenk, P.M. )

    1991-01-01

    Recent findings on the outer-planet satellites are presented, with special consideration given to data on the rheologic properties of ice on icy satellites, the satellite surfaces and exogenic processes, cratering on dead cratered satellites, volcanism, and the interiors of outer-planet satellites. Particular attention is given to the state of Titan's surface and the properties of Triton, Pluto, and Charon. 210 refs.

  19. Administrative Synergy

    ERIC Educational Resources Information Center

    Hewitt, Kimberly Kappler; Weckstein, Daniel K.

    2012-01-01

    One of the biggest obstacles to overcome in creating and sustaining an administrative professional learning community (PLC) is time. Administrators are constantly deluged by the tyranny of the urgent. It is a Herculean task to carve out time for PLCs, but it is imperative to do so. In this article, the authors describe how an administrative PLC…

  20. Intercomparison of Global Upper-Air Temperature Datasets from Radiosondes and Satellites

    NASA Astrophysics Data System (ADS)

    Seidel, D.; Angell, J.; Christy, J.; Free, M.; Klein, S.; Lanzante, J.; Mears, C.; Parker, D.; Schabel, M.; Spencer, R.; Sterin, A.; Thorne, P.; Wentz, F.

    2002-05-01

    Constructing global upper-air temperature datasets for climate monitoring is a time-consuming activity that involves making many decisions about data selection, quality-control, adjustment, and aggregation. Until recently, only one or two groups have endeavored to assemble climate-quality data products using either satellite or radiosonde data. Now, however, several more data products are either available or under construction for release in the near future. We will compare global and hemispheric tropospheric and stratospheric temperature anomalies from four radiosonde data products (RIHMI, HadRT, NOAA/Angell, and NOAA/LKS - the precursor to NOAA/RATPAC) and two Microwave Sounding Unit products (UAH and RSS). Statistical measures of variability, correlation, and trends will be compared.