Science.gov

Sample records for administration noaa wp-3d

  1. Tropospheric Airborne Meteorological Data Reporting (TAMDAR) Sensor Validation and Verification on National Oceanographic and Atmospheric Administration (NOAA) Lockheed WP-3D Aircraft

    NASA Technical Reports Server (NTRS)

    Tsoucalas, George; Daniels, Taumi S.; Zysko, Jan; Anderson, Mark V.; Mulally, Daniel J.

    2010-01-01

    As part of the National Aeronautics and Space Administration's Aviation Safety and Security Program, the Tropospheric Airborne Meteorological Data Reporting project (TAMDAR) developed a low-cost sensor for aircraft flying in the lower troposphere. This activity was a joint effort with support from Federal Aviation Administration, National Oceanic and Atmospheric Administration, and industry. This paper reports the TAMDAR sensor performance validation and verification, as flown on board NOAA Lockheed WP-3D aircraft. These flight tests were conducted to assess the performance of the TAMDAR sensor for measurements of temperature, relative humidity, and wind parameters. The ultimate goal was to develop a small low-cost sensor, collect useful meteorological data, downlink the data in near real time, and use the data to improve weather forecasts. The envisioned system will initially be used on regional and package carrier aircraft. The ultimate users of the data are National Centers for Environmental Prediction forecast modelers. Other users include air traffic controllers, flight service stations, and airline weather centers. NASA worked with an industry partner to develop the sensor. Prototype sensors were subjected to numerous tests in ground and flight facilities. As a result of these earlier tests, many design improvements were made to the sensor. The results of tests on a final version of the sensor are the subject of this report. The sensor is capable of measuring temperature, relative humidity, pressure, and icing. It can compute pressure altitude, indicated air speed, true air speed, ice presence, wind speed and direction, and eddy dissipation rate. Summary results from the flight test are presented along with corroborative data from aircraft instruments.

  2. Historical Data from the NOAA WP-3D Arctic Gas and Aerosol Sampling Program (AGASP) Flights: 1983, 1986, 1989 and 1992

    NASA Astrophysics Data System (ADS)

    Schnell, R. C.; Sheridan, P. J.

    2009-12-01

    A NOAA WP-3D instrumented for gas, aerosol and radiation measurements was flown 400 research hours over four periods (March-April: 1983, 1986, 1989 and 1992) covering large areas of the Arctic Basin from Alaska to Norway studying Arctic Haze and air chemistry. In 1986 the program included aircraft from the University of Washington; AES, Canada; and NILU, Norway. Profiles were conducted above the Barrow, Alert and Ny Alesund atmospheric baseline stations, and numerous profiles across the low level inversion layer over the ice cap to put surface, boundary layer and free troposphere measurements into perspective. Highlights from AGASP include observations of up to 6 stacked layers of air pollution >5,000 km from the nearest possible source regions; layers of air pollution containing high concentrations of black carbon and anthropogenic gases; photochemical ozone depletion in the Arctic boundary layer; intrusions of stratospheric air injecting stratospheric gases and aerosols deep into the Arctic troposphere; haze optical depths of up to 0.5; and data showing that heat and moisture from open leads in the Arctic ice pack can breach the boundary layer inversion and rise to near the tropopause. In most profiles,aerosol light scattering, and ozone, black carbon and condensation nucleus concentrations were much reduced beneath boundary layer temperature inversion (~1 km above the ice). Since most of the AGASP and related publications pre-date current easy electronic access, a file listing the titles and sources of 185 papers published in journals, books, and NOAA Technical Memos is available at http://www.esrl.noaa.gov/gmd/obop/schnell/.

  3. NASA, NOAA administrators nominated

    NASA Astrophysics Data System (ADS)

    Richman, Barbara T.

    President Ronald Reagan recently said he intended to nominate James Montgomery Beggs as NASA Administrator and John V. Byrne as NOAA Administrator. These two positions are key scientific posts that have been vacant since the start of the Reagan administration on January 20. The President also said he intends to nominate Hans Mark as NASA Deputy Administrator. At press time, Reagan had not designated his nominee for the director of the Office of Science and Technology Policy.

  4. NOAA administrator reviews agency progress and challenges

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    2011-12-01

    The approach of the new year is a traditional time to tally up successes, failures, and the path ahead. Jane Lubchenco, administrator of the U.S. National Oceanic and Atmospheric Administration (NOAA), examined some agency advances and significant challenges during the 7 December Union Agency Lecture at the AGU Fall Meeting, during a press briefing, and in an interview with Eos. Lubchenco focused on several key areas including the concern about monitoring, mitigating, and managing extreme events; budgetary pressures the agency faces in current fiscal year (FY) 2012 and in FY 2013, with President Barack Obama on 18 November having signed into law a bill, HR 2112, following congressional agreement on a budget legislation conference report; and NOAA's newly released scientific integrity policy (see "NOAA issues scientific integrity policy," Eos Trans. AGU, 92(50), 467, doi:10.1029/2011EO500004, 2011).

  5. 77 FR 74174 - National Oceanic and Atmospheric Administration (NOAA) National Climate Assessment and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-12-13

    ... National Oceanic and Atmospheric Administration (NOAA) National Climate Assessment and Development Advisory... notice sets forth the schedule of a forthcoming meeting of the DoC NOAA National Climate Assessment and... the call. Please check the National Climate Assessment Web site for additional information at...

  6. National Oceanic and Atmospheric Administration /NOAA/ contamination monitoring instrumentation

    NASA Technical Reports Server (NTRS)

    Maag, C. R.

    1980-01-01

    The JPL has designed and built a plume contamination monitoring package to be installed on a NOAA environmental services satellite. The package is designed to monitor any condensible contamination that occurs during the ignition and burn of a TE-M-364-15 apogee kick motor. The instrumentation and system interface are described, and attention is given to preflight analysis and test.

  7. Data compression for National Oceanic and Atmospheric Administration /NOAA/ weather satellite systems

    NASA Technical Reports Server (NTRS)

    Rice, R. F.; Schlutsmeyer, A. P.

    1980-01-01

    The National Oceanic and Atmospheric Administration (NOAA) receives high quality infrared weather images from each of its two geostationary weather satellites at an average data rate of 57 kilobits/second. These images are currently distributed to field stations over 3 kilohertz analog phone lines. The resulting loss in image quality renders the images unacceptable for proposed digital image processing. This paper documents the study leading to a current effort to implement a microprocessor-based universal noiseless coder/decoder to satisfy NOAA's requirements of high quality, good coverage and timely transmission of its infrared images.

  8. NOAA Would Receive an 11% Increase Under Obama Administration's Proposed Budget

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    2013-05-01

    The White House's proposed fiscal year (FY) 2014 budget for the National Oceanic and Atmospheric Administration (NOAA) would provide the agency with 5.45 billion, 11% above the FY 2012 spend plan of 4.91 billion (see Table ). The proposal, which was sent to Congress on 10 April, would increase funding for operations, research, and facilities to 3.41 billion (up 7.97% over FY 2012) and for procurement, acquisition, and construction to 2.12 billion (up 17.51%). The budget proposal uses the FY 2012 spend plan as a comparison because Congress approved the FY 2013 appropriations only a few weeks before the FY 2014 proposal was released.

  9. NOAA (National Oceanic and Atmospheric Administration) Aircraft Satellite Data Link (ASDL)

    NASA Astrophysics Data System (ADS)

    Parrish, J. R.; Darby, E. R.; Dugranrut, J. D.; Goldstein, A. S.

    1984-05-01

    The NOAA Aircraft Satellite Data Link (ASDL) is described, includes the data routing, aircraft system and one minute data explanations, types of messages, and radar image transmission. An aircraft ASDL operator's guide with examples of specific message formats are presented.

  10. In-flight measurement of the National Oceanic and Atmospheric Administration (NOAA)-10 static Earth sensor error

    NASA Technical Reports Server (NTRS)

    Harvie, E.; Filla, O.; Baker, D.

    1993-01-01

    Analysis performed in the Goddard Space Flight Center (GSFC) Flight Dynamics Division (FDD) measures error in the static Earth sensor onboard the National Oceanic and Atmospheric Administration (NOAA)-10 spacecraft using flight data. Errors are computed as the difference between Earth sensor pitch and roll angle telemetry and reference pitch and roll attitude histories propagated by gyros. The flight data error determination illustrates the effect on horizon sensing of systemic variation in the Earth infrared (IR) horizon radiance with latitude and season, as well as the effect of anomalies in the global IR radiance. Results of the analysis provide a comparison between static Earth sensor flight performance and that of scanning Earth sensors studied previously in the GSFC/FDD. The results also provide a baseline for evaluating various models of the static Earth sensor. Representative days from the NOAA-10 mission indicate the extent of uniformity and consistency over time of the global IR horizon. A unique aspect of the NOAA-10 analysis is the correlation of flight data errors with independent radiometric measurements of stratospheric temperature. The determination of the NOAA-10 static Earth sensor error contributes to realistic performance expectations for missions to be equipped with similar sensors.

  11. National Oceanic and Atmospheric Administration(NOAA) Arctic Climate Change Studies: A Contribution to IPY

    NASA Astrophysics Data System (ADS)

    Calder, J.; Overland, J.; Uttal, T.; Richter-Menge, J.; Rigor, I.; Crane, K.

    2004-12-01

    NOAA has initiated four activities that respond to the Arctic Climate Impact Assessment(ACIA) recommendations and represent contributions toward the IPY: 1) Arctic cloud, radiation and aerosol observatories, 2) documentation and attribution of changes in sea-ice thickness through direct measurement and modeling, 3) deriving added value from existing multivariate and historical data, and 4) following physical and biological changes in the northern Bering and Chukchi Seas. Northeast Canada, the central Arctic coast of Russia and the continuing site at Barrow have been chosen as desirable radiation/cloud locations as they exhibit different responses to Arctic Oscillation variability. NOAA is closely collaborating with Canadian groups to establish an observatory at Eureka. NOAA has begun deployment of a network of ice-tethered ice mass balance buoys complemented by several ice profiling sonars. In combination with other sea ice investigators, the Arctic buoy program, and satellites, changes can be monitored more effectively in sea ice throughout the Arctic. Retrospective data analyses includes analysis of Arctic clouds and radiation from surface and satellite measurements, correction of systematic errors in TOVS radiance data sets for the Arctic which began in 1979, addressing the feasibility of an Arctic System Reanalysis, and an Arctic Change Detection project that incorporates historical and recent physical and biological observations and news items at a website, www.arctic.noaa.gov. NOAA has begun a long-term effort to detect change in ecosystem indicators in the northern Bering and Chukchi Seas that could provide a model for other northern marine ecosystems. The first efforts were undertaken in summer 2004 during a joint Russian-US cruise that mapped the regions physical, chemical and biological parameters to set the stage for future operations over the longer term. A line of biophysical moorings provide detection of the expected warming of this area. A

  12. NARSTO SOS99NASH WP3D CHEMISTRY DATA

    Atmospheric Science Data Center

    2014-04-25

    ... Level:  L2 Platform:  Ground Station Instrument:  Chemiluminescence UV Ozone Detector ... Oxide Nitrogen Dioxide Nitrogen Oxides Ozone Total 'Reactive' Nitrogen Order Data:  ASDC Order Tool:   ...

  13. The National Oceanic and Atmospheric Administration (NOAA) Climate Services Portal: A New Centralized Resource for Distributed Climate Information

    NASA Astrophysics Data System (ADS)

    Burroughs, J.; Baldwin, R.; Herring, D.; Lott, N.; Boyd, J.; Handel, S.; Niepold, F.; Shea, E.

    2010-09-01

    With the rapid rise in the development of Web technologies and climate services across NOAA, there has been an increasing need for greater collaboration regarding NOAA's online climate services. The drivers include the need to enhance NOAA's Web presence in response to customer requirements, emerging needs for improved decision-making capabilities across all sectors of society facing impacts from climate variability and change, and the importance of leveraging climate data and services to support research and public education. To address these needs, NOAA (during fiscal year 2009) embarked upon an ambitious program to develop a NOAA Climate Services Portal (NCS Portal). Four NOAA offices are leading the effort: 1) the NOAA Climate Program Office (CPO), 2) the National Ocean Service's Coastal Services Center (CSC), 3) the National Weather Service's Climate Prediction Center (CPC), and 4) the National Environmental Satellite, Data, and Information Service's (NESDIS) National Climatic Data Center (NCDC). Other offices and programs are also contributing in many ways to the effort. A prototype NCS Portal is being placed online for public access in January 2010, http://www.climate.gov. This website only scratches the surface of the many climate services across NOAA, but this effort, via direct user engagement, will gradually expand the scope and breadth of the NCS Portal to greatly enhance the accessibility and usefulness of NOAA's climate data and services.

  14. Instrumentation and measurement strategy for the NOAA SENEX aircraft campaign as part of the Southeast Atmosphere Study 2013

    NASA Astrophysics Data System (ADS)

    Warneke, Carsten; Trainer, Michael; de Gouw, Joost A.; Parrish, David D.; Fahey, David W.; Ravishankara, A. R.; Middlebrook, Ann M.; Brock, Charles A.; Roberts, James M.; Brown, Steven S.; Neuman, Jonathan A.; Lerner, Brian M.; Lack, Daniel; Law, Daniel; Hübler, Gerhard; Pollack, Iliana; Sjostedt, Steven; Ryerson, Thomas B.; Gilman, Jessica B.; Liao, Jin; Holloway, John; Peischl, Jeff; Nowak, John B.; Aikin, Kenneth C.; Min, Kyung-Eun; Washenfelder, Rebecca A.; Graus, Martin G.; Richardson, Mathew; Markovic, Milos Z.; Wagner, Nick L.; Welti, André; Veres, Patrick R.; Edwards, Peter; Schwarz, Joshua P.; Gordon, Timothy; Dube, William P.; McKeen, Stuart A.; Brioude, Jerome; Ahmadov, Ravan; Bougiatioti, Aikaterini; Lin, Jack J.; Nenes, Athanasios; Wolfe, Glenn M.; Hanisco, Thomas F.; Lee, Ben H.; Lopez-Hilfiker, Felipe D.; Thornton, Joel A.; Keutsch, Frank N.; Kaiser, Jennifer; Mao, Jingqiu; Hatch, Courtney D.

    2016-07-01

    Natural emissions of ozone-and-aerosol-precursor gases such as isoprene and monoterpenes are high in the southeastern US. In addition, anthropogenic emissions are significant in the southeastern US and summertime photochemistry is rapid. The NOAA-led SENEX (Southeast Nexus) aircraft campaign was one of the major components of the Southeast Atmosphere Study (SAS) and was focused on studying the interactions between biogenic and anthropogenic emissions to form secondary pollutants. During SENEX, the NOAA WP-3D aircraft conducted 20 research flights between 27 May and 10 July 2013 based out of Smyrna, TN. Here we describe the experimental approach, the science goals and early results of the NOAA SENEX campaign. The aircraft, its capabilities and standard measurements are described. The instrument payload is summarized including detection limits, accuracy, precision and time resolutions for all gas-and-aerosol phase instruments. The inter-comparisons of compounds measured with multiple instruments on the NOAA WP-3D are presented and were all within the stated uncertainties, except two of the three NO2 measurements. The SENEX flights included day- and nighttime flights in the southeastern US as well as flights over areas with intense shale gas extraction (Marcellus, Fayetteville and Haynesville shale). We present one example flight on 16 June 2013, which was a daytime flight over the Atlanta region, where several crosswind transects of plumes from the city and nearby point sources, such as power plants, paper mills and landfills, were flown. The area around Atlanta has large biogenic isoprene emissions, which provided an excellent case for studying the interactions between biogenic and anthropogenic emissions. In this example flight, chemistry in and outside the Atlanta plumes was observed for several hours after emission. The analysis of this flight showcases the strategies implemented to answer some of the main SENEX science questions.

  15. Emissions of volatile organic compounds (VOCs) from oil and natural gas activities: compositional comparison of 13 major shale basins via NOAA airborne measurements

    NASA Astrophysics Data System (ADS)

    Gilman, J.; Lerner, B. M.; Aikin, K. C.; De Gouw, J. A.; Koss, A.; Yuan, B.; Warneke, C.; Peischl, J.; Ryerson, T. B.; Holloway, J. S.; Graus, M.; Tokarek, T. W.; Isaacman-VanWertz, G. A.; Sueper, D.; Worsnop, D. R.

    2015-12-01

    The recent and unprecedented increase in natural gas production from shale formations is associated with a rise in the production of non-methane volatile organic compounds (VOCs) including natural gas plant liquids (e.g., ethane, propane, and butanes) and liquid lease condensate (e.g., pentanes, hexanes, aromatics and cycloalkanes). Since 2010, the production of natural gas liquids and the amount of natural gas vented/flared has increased by factors of ~1.28 and 1.57, respectively (U.S. Energy and Information Administration), indicating an increasingly large potential source of hydrocarbons to the atmosphere. Emission of VOCs may affect local and regional air quality due to the potential to form tropospheric ozone and organic particles as well as from the release of toxic species such as benzene and toluene. The 2015 Shale Oil and Natural Gas Nexus (SONGNex) campaign studied emissions from oil and natural gas activities across the central United States in order to better understand their potential air quality and climate impacts. Here we present VOC measurements from 19 research flights aboard the NOAA WP-3D over 11 shale basins across 8 states. Non-methane hydrocarbons were measured using an improved whole air sampler (iWAS) with post-flight analysis via a custom-built gas chromatograph-mass spectrometer (GC-MS). The whole air samples are complimented by higher-time resolution measurements of methane (Picarro spectrometer), ethane (Aerodyne spectrometer), and VOCs (H3O+ chemical ionization mass spectrometer). Preliminary analysis show that the Permian Basin on the New Mexico/Texas border had the highest observed VOC mixing ratios for all basins studied. We will utilize VOC enhancement ratios to compare the composition of methane and VOC emissions for each basin and the associated reactivities of these gases with the hydroxyl radical, OH, as a proxy for potential ozone formation.

  16. 76 FR 36094 - Draft NOAA Scientific Integrity Policy and Handbook; Availability

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-21

    ... National Oceanic and Atmospheric Administration Draft NOAA Scientific Integrity Policy and Handbook... Administration (NOAA), Department of Commerce (DOC). ACTION: Draft NOAA Scientific Integrity Policy and Handbook for Public Review. SUMMARY: NOAA's draft scientific integrity policy is available for public...

  17. Acquisition of Gulfstream IV-SP jet for environmental measurements in the upper troposphere by the National Oceanic and Atmospheric Administration (NOAA)

    SciTech Connect

    Philippsborn, F.R.

    1996-11-01

    Acquisition of a Gulfstream IV-SP jet by the National Oceanic and Atmospheric Administration (NOAA) is intended to address the critical shortage of platforms capable of making intensive in situ meteorological and atmospheric observations in the upper troposphere. Its primary function will be Hurricane Synoptic Surveillance. In its initial configuration, the jet will significantly improve the ability of NOAA scientists to predict the expected path of hurricanes by gathering vertical profiles of wind, temperature, and humidity within 1,000 km of tropical cyclones by means of dropwindsondes over the data-sparse oceanic regions of the western Atlantic, Caribbean Sea and Gulf of Mexico. Future missions proposed for the aircraft include winter storm surveillance, hurricane reconnaissance, weather research, global climate studies, air chemistry, validation of satellite data, and development of remote sensors. 5 refs.

  18. Real-time Transmission and Distribution of NOAA Tail Doppler Radar Data and Other Data Products

    NASA Astrophysics Data System (ADS)

    Carswell, J.; Chang, P.; Robinson, D.; Gamache, J.; Hill, J.

    2011-12-01

    The NOAA WP-3D and G-IV aircraft have conducted and continue to conduct numerous research and operational measurement missions. However, typically only a fraction of the data collected aboard each flight is transmitted to the ground in near real-time utilizing low bandwidth satellite data links. The advancements in aircraft satellite phones have increased available bandwidth and reliability to a point where these systems can be utilized for near real-time data flow in support of decision making. A robust and flexible data delivery system has been developed by Remote Sensing Solutions with support from NOAA's National Environmental Satellite, Data and Information Service (NESDIS), Aircraft Operations Center (AOC) and Hurricane Forecast Improvement Project (HFIP). X-band Doppler/reflectivity measurements of tropical storms and cyclones collected from the NOAA WP-3D aircraft have been the most recent focus. Doppler measurements from volume backscatter precipitation profiles can provide critical observations of the horizontal winds as the precipitation advects with these winds. The data delivery system captures these profiles and send the radial Doppler profile observations to National Weather Service in near real-time over satellite communication data link. The design of this transmission system included features to enhance the reliability and robustness of the data flow from the P-3 aircraft to the end user. Routine real-time transmission, using this system, of the full resolution Tail Doppler Radar profile data to the ground and distribution to the NOAA's Hurricane Research Division for analysis and processing in support of initializing the operational HWRF model is planned. The end objective is to provide these Doppler profiles in a routine fashion to NWS and others in the forecasting community for operational utilization in support of hurricane forecasting and warning. Other data sources that are being collected and transmitted to the ground with this system for

  19. Independent NOAA considered

    NASA Astrophysics Data System (ADS)

    Richman, Barbara T.

    A proposal to pull the National Oceanic and Atmospheric Administration (NOAA) out of the Department of Commerce and make it an independent agency was the subject of a recent congressional hearing. Supporters within the science community and in Congress said that an independent NOAA will benefit by being more visible and by not being tied to a cabinet-level department whose main concerns lie elsewhere. The proposal's critics, however, cautioned that making NOAA independent could make it even more vulnerable to the budget axe and would sever the agency's direct access to the President.The separation of NOAA from Commerce was contained in a June 1 proposal by President Ronald Reagan that also called for all federal trade functions under the Department of Commerce to be reorganized into a new Department of International Trade and Industry (DITI).

  20. NOAA Educational Programs and Opportunities

    NASA Astrophysics Data System (ADS)

    Jackson, N. L.

    2005-12-01

    The National Oceanic and Atmospheric Administration (NOAA) conduct research and gather data about global oceans, atmosphere, space, and the sun. NOAA recruits and retains professional scientific and technical candidates in a variety of specialized occupations. The NOAA Satellites and Information Service is responsible for managing the nations civil operational earth observing satellites. This agency provides opportunities to teachers and students to work with researchers to learn applications or remote sensed data and to develop curricula with create both a stimulating and fruitful classroom experience. This session will offer an overview of NOAA and a discussion on the various opportunities available to teachers and students. Free materials will be given to the attendees.

  1. NOAA seeks healthy budget

    NASA Astrophysics Data System (ADS)

    Bush, Susan

    The small, crowded room of the House side of the U.S. Capitol building belied the large budget of $1,611,991,000 requested for Fiscal Year 1992 by the National Oceanic and Atmospheric Administration. John A. Knauss, Undersecretary for Oceans and Atmosphere, U.S. Department of Commerce, delivered his testimony on February 28 before the House Appropriations Subcommittee on Commerce, Justice, and State, the Judiciary and Related Agencies. He told the subcommittee that the budget “attempts to balance the two goals of maintaining NOAA's position as an important science agency and addressing the serious budget problems that the government continues to face.”Climate and global change, modernization of the National Weather Service, and the Coastal Ocean Science program are NOAA's three ongoing, high-priority initiatives that the budget addresses. Also, three additional initiatives—a NOAA-wide program to improve environmental data management, President Bush's multiagency Coastal America initiative, and a seafood safety program administered jointly by NOAA and the Food and Drug Administration—are addressed.

  2. 78 FR 5421 - Proposed Information Collection; Comment Request; NOAA's Teacher at Sea Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-25

    ... Teacher at Sea Program AGENCY: National Oceanic and Atmospheric Administration (NOAA), Commerce. ACTION... gain first-hand experience with field research activities through the NOAA Teacher at Sea...

  3. NOAA Lists 20 Coral Species as Threatened

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    2014-09-01

    Twenty coral species have been listed as threatened under the U.S. Endangered Species Act (ESA), the National Oceanic and Atmospheric Administration (NOAA) announced on 27 August. This is NOAA's largest ESA rule making. The coral species include 15 found in the Indo-Pacific region and 5 that are located in the Caribbean. They join two other Caribbean coral species that NOAA listed as threatened in 2006.

  4. Chlorofluorocarbon-11, -12, and nitrous oxide measurements at the NOAA/GMCC (National Oceanic and Atmospheric Administration/Geophysical Monitoring for Climatic Change) baseline stations (16 September 1973 to 31 December 1979)

    SciTech Connect

    Thompson, T.M.; Komhyr, W.D.; Dutton, E.G.

    1985-06-01

    The National Oceanic and Atmospheric Administration's Air Resources Laboratory (NOAA/ARL) began measuring chlorofluorocarbon-11 in 1973 because of the interest in this anthropogenic pollutant as a tracer for the study of mass transfer processes in the atmosphere and the oceans. Interest in chlorofluorocarbon-11, and in chlorofluorocarbon-12 and nitrous oxide, was heightened during the mid-1970's with the realization that these compounds can be decomposed by photolysis in the stratosphere to cause stratospheric ozone destruction by released chlorine atoms. Measurements of chlorofluorocarbon-12 and nitrous oxide were begun by NOAA/ARL in 1977. The report describes the evolution of the chlorofluorocarbon and N/sub 2/O measurement programs through 1979. By that time, the sample collection and analysis techniques became standardized, and have remained the same to the present.

  5. An Education Plan for NOAA

    ERIC Educational Resources Information Center

    National Oceanic and Atmospheric Administration, 2004

    2004-01-01

    U.S. Secretary of Commerce Donald L. Evans has said, "Environmental Literacy is critical to enable learners of all ages to pursue knowledge, produce advanced products, and enhance personal growth." The National Oceanic and Atmospheric Administration (NOAA) recognizes it has a role and a responsibility to the nation in advancing education leading…

  6. NOAA-L

    NASA Technical Reports Server (NTRS)

    McCain, Harry G. (Technical Monitor)

    2000-01-01

    The National Oceanic and Atmospheric Administration (NOAA) and the National Aeronautics and Space Administration (NASA) have jointly developed a valuable series of polar-orbiting Earth environmental observation satellites since 1978. These satellites provide global data to NOAA's short- and long-range weather forecasting systems. The system consists of two polar-orbiting satellites known as the Advanced Television Infrared Observation Satellites (TIROS-N) (ATN). Operating as a pair, these satellites ensure that environmental data, for any region of the Earth, is no more than six hours old. These polar-orbiting satellites have not only provided cost-effective data for very immediate and real needs but also for extensive climate and research programs. The weather data (including images seen on television news programs) has afforded both convenience and safety to viewers throughout the world. The satellites also support the SARSAT (Search and Rescue Satellite Aided Tracking) part of the COSPAS-SARSAT constellation. Russia provides the COSPAS (Russian for Space Systems for the Search of Vessels in Distress) satellites. The international COSPAS-SARSAT system provides for the detection and location of emergency beacons for ships, aircraft, and people in distress and has contributed to the saving of more than 10,000 lives since its inception in 1982.

  7. 78 FR 68816 - Proposed Information Collection; Comment Request; NOAA Space-Based Data Collection System (DCS...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-15

    ... National Oceanic and Atmospheric Administration Proposed Information Collection; Comment Request; NOAA Space- Based Data Collection System (DCS) Agreements AGENCY: National Oceanic and Atmospheric... National Ocean and Atmospheric Administration (NOAA) operates two space-based data collection systems...

  8. 78 FR 26616 - Draft NOAA Five Year Research and Development Plan

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-07

    ... NOAA Five Year Research and Development Plan AGENCY: National Oceanic and Atmospheric Administration (NOAA), Department of Commerce (DOC). ACTION: Draft NOAA Five Year Research and Development Plan for Public Review. SUMMARY: NOAA's draft Five Year Research and Development Plan is available for...

  9. NOAA & Academia Partnership Building Conference. Highlights (3rd, Washington, DC, November 14-15, 2001).

    ERIC Educational Resources Information Center

    National Oceanic and Atmospheric Administration (DOC), Silver Spring, MD.

    In November 2001 the National Oceanic and Atmospheric Administration (NOAA) hosted the third NOAA and Academia Partnership to evaluate, maintain, and expand on efforts to optimize NOAA-university cooperation. Close partnership between the NOAA and U.S. universities has produced many benefits for the U.S. economy and the environment. Based on the…

  10. In Congress NOAA budget set

    NASA Astrophysics Data System (ADS)

    Richman, Barbara T.

    In late November, President Ronald Reagan signed into law the National Oceanic and Atmospheric Administration (NOAA) budget, which is part of the appropriations bill for the Departments of Commerce, Justice, State, the Judiciary, and related agencies; at the same time, he also signed into law an amendment attached to that bill that prohibits the sale of the weather satellites (Eos, May 17, 1983, p. 377, and March 22, 1983, p. 113). Commercialization of the land remote sensing satellite system is still being considered, however.As a result of the conference between the House of Representatives and the Senate appropriations committees, the appropriation for NOAA totals $1020.6 million, with a program level of $1073.1 million. The appropriation is the money that comes from the federal treasury; the program level represents all of the funds—including treasury funds, transfers, residuals, etc.—actually available for the program. Strictly in terms of dollars, the total fiscal 1984 NOAA appropriation is almost level with the fiscal 1983 appropriation of $1000.9 million. In fiscal 1984, NOAA's research core, called Operations, Research, and Facilities (ORF), receives an appropriation of $988.2 million, with a program level of $1014.8 million

  11. The NOAA Big Data Project

    NASA Astrophysics Data System (ADS)

    de la Beaujardiere, J.

    2015-12-01

    The US National Oceanic and Atmospheric Administration (NOAA) is a Big Data producer, generating tens of terabytes per day from hundreds of sensors on satellites, radars, aircraft, ships, and buoys, and from numerical models. These data are of critical importance and value for NOAA's mission to understand and predict changes in climate, weather, oceans, and coasts. In order to facilitate extracting additional value from this information, NOAA has established Cooperative Research and Development Agreements (CRADAs) with five Infrastructure-as-a-Service (IaaS) providers — Amazon, Google, IBM, Microsoft, Open Cloud Consortium — to determine whether hosting NOAA data in publicly-accessible Clouds alongside on-demand computational capability stimulates the creation of new value-added products and services and lines of business based on the data, and if the revenue generated by these new applications can support the costs of data transmission and hosting. Each IaaS provider is the anchor of a "Data Alliance" which organizations or entrepreneurs can join to develop and test new business or research avenues. This presentation will report on progress and lessons learned during the first 6 months of the 3-year CRADAs.

  12. Collection development at the NOAA Central Library

    NASA Technical Reports Server (NTRS)

    Quillen, Steve R.

    1994-01-01

    The National Oceanic and Atmospheric Administration (NOAA) Central Library collection, approximately one million volumes, incorporates the holdings of its predecessor agencies. Within the library, the collections are filed separately, based on their source and/or classification schemes. The NOAA Central Library provides a variety of services to users, ranging from quick reference and interlibrary loan to in-depth research and online data bases.

  13. Budget Realities Could Put Damper on Some NOAA Programs

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    2010-12-01

    The fall meeting of the National Oceanic and Atmospheric Administration's (NOAA) Science Advisory Board was in part a study in contrasts: discussing the agency's vision, goals, and recent successes while facing the harsh economic and political landscape that will make it difficult for NOAA to receive sufficient funding for the current fiscal year (FY 2011) to do little more than tread water toward reaching some of those goals. During a 30 November presentation, NOAA administrator Jane Lubchenco provided an overview of NOAA's Next Generation Strategic Plan. The document focuses on four long-term goals: climate adaptation and mitigation, a weather-ready nation, resilient coastal communities and economies, and healthy oceans.

  14. NOAA Enterprise Archive Access Tool

    NASA Astrophysics Data System (ADS)

    Rank, R. H.; McCormick, S.; Cremidis, C.

    2010-12-01

    A challenge for any consumer of National Oceanic and Atmospheric Administration (NOAA) environmental data archives is that the disparate nature of these archives makes it difficult for consumers to access data in a unified manner. If it were possible for consumers to have seamless access to these archives, they would be able to better utilize the data and thus maximize the return on investment for NOAA’s archival program. When unified data access is coupled with sophisticated data querying and discovery techniques, it will be possible to provide consumers with access to richer data sets and services that extend the use of key NOAA data. Theoretically, there are two ways that unified archive access may be achieved. The first approach is to develop a single archive or archiving standard that would replace the current NOAA archives. However, the development of such an archive would pose significant technical and administrative challenges. The second approach is to develop a middleware application that would provide seamless access to all existing archives, in effect allowing each archive to exist “as is” but providing a translation service for the consumer. This approach is deemed more feasible from an administrative and technical standpoint; however, it still presents unique technical challenges due to the disparate architectures that exist across NOAA archives. NOAA has begun developing the NEAAT. The purpose of NEAAT is to provide a middleware and a simple standardized API between NOAA archives and data consumers. It is important to note that NEAAT serves two main purposes: 1) To provide a single application programming interface (API) that enables designated consumers to write their own custom applications capable of searching and acquiring data seamlessly from multiple NOAA archives. 2) To allow archive managers to expose their data to consumers in conjunction with other NOAA resources without modifying their archiving systems or way of presenting data

  15. NOAA Big Data Partnership RFI

    NASA Astrophysics Data System (ADS)

    de la Beaujardiere, J.

    2014-12-01

    In February 2014, the US National Oceanic and Atmospheric Administration (NOAA) issued a Big Data Request for Information (RFI) from industry and other organizations (e.g., non-profits, research laboratories, and universities) to assess capability and interest in establishing partnerships to position a copy of NOAA's vast data holdings in the Cloud, co-located with easy and affordable access to analytical capabilities. This RFI was motivated by a number of concerns. First, NOAA's data facilities do not necessarily have sufficient network infrastructure to transmit all available observations and numerical model outputs to all potential users, or sufficient infrastructure to support simultaneous computation by many users. Second, the available data are distributed across multiple services and data facilities, making it difficult to find and integrate data for cross-domain analysis and decision-making. Third, large datasets require users to have substantial network, storage, and computing capabilities of their own in order to fully interact with and exploit the latent value of the data. Finally, there may be commercial opportunities for value-added products and services derived from our data. Putting a working copy of data in the Cloud outside of NOAA's internal networks and infrastructures should reduce demands and risks on our systems, and should enable users to interact with multiple datasets and create new lines of business (much like the industries built on government-furnished weather or GPS data). The NOAA Big Data RFI therefore solicited information on technical and business approaches regarding possible partnership(s) that -- at no net cost to the government and minimum impact on existing data facilities -- would unleash the commercial potential of its environmental observations and model outputs. NOAA would retain the master archival copy of its data. Commercial partners would not be permitted to charge fees for access to the NOAA data they receive, but

  16. The Weather Radar Toolkit, National Oceanic and Atmospheric Administration (NOAA) National Climatic Data Center's support of interoperability and the Global Earth Observation System of Systems (GEOSS)

    NASA Astrophysics Data System (ADS)

    Ansari, S.; Del Greco, S.

    2006-12-01

    In February 2005, 61 countries around the World agreed on a 10 year plan to work towards building open systems for sharing geospatial data and services across different platforms worldwide. This system is known as the Global Earth Observation System of Systems (GEOSS). The objective of GEOSS focuses on easy access to environmental data and interoperability across different systems allowing participating countries to measure the "pulse" of the planet in an effort to advance society. In support of GEOSS goals, NOAA's National Climatic Data Center (NCDC) has developed radar visualization and data exporter tools in an open systems environment. The NCDC Weather Radar Toolkit (WRT) loads Weather Surveillance Radar 1988 Doppler (WSR-88D) volume scan (S-band) data, known as Level-II, and derived products, known as Level-III, into an Open Geospatial Consortium (OGC) compliant environment. The application is written entirely in Java and will run on any Java- supported platform including Windows, Macintosh and Linux/Unix. The application is launched via Java Web Start and runs on the client machine while accessing these data locally or remotely from the NCDC archive, NOAA FTP server or any URL or THREDDS Data Server. The WRT allows the data to be manipulated to create custom mosaics, composites and precipitation estimates. The WRT Viewer provides tools for custom data overlays, Web Map Service backgrounds, animations and basic filtering. The export of images and movies is provided in multiple formats. The WRT Data Exporter allows for data export in both vector polygon (Shapefile, Well-Known Text) and raster (GeoTIFF, ESRI Grid, VTK, NetCDF, GrADS) formats. By decoding the various Radar formats into the NetCDF Common Data Model, the exported NetCDF data becomes interoperable with existing software packages including THREDDS Data Server and the Integrated Data Viewer (IDV). The NCDC recently partnered with NOAA's National Severe Storms Lab (NSSL) to decode Sigmet C-band Doppler

  17. Life-Cycle Data Management at NOAA

    NASA Astrophysics Data System (ADS)

    de la Beaujardiere, J.

    2014-12-01

    The US National Oceanic and Atmospheric Administration (NOAA) operates over a hundred observing systems which span the environment from the bottom of the ocean to the surface of the Sun. The resulting data are essential for immediate priorities such as weather forecasting, and the data also constitute an irreplaceable resource collected at great cost. It is therefore necessary to carefully preserve this information for ongoing scientific use, for new research and applications, and to ensure reproducibility of scientific conclusions. The NOAA data life-cycle includes activities in three major phases: planning and production, management of the resulting data, and usage activities. This paper will describe current work by the NOAA Environmental Data Management Committee (EDMC), Data Management Integration Team (DMIT), and the NOAA National Data Centers in areas including DM planning, documentation, cataloging, data access, and preservation and stewardship to improve and standardize policies and practices for life-cycle data management.

  18. 75 FR 57739 - Notice of Availability of a Draft NOAA Climate Service Strategic Vision and Framework for Public...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-22

    ... National Oceanic and Atmospheric Administration Notice of Availability of a Draft NOAA Climate Service...: Notice of availability of a draft NOAA Climate Service strategic vision and framework for public review... new NOAA Climate Service (NCS). The new service will directly support NOAA's vision of ``an...

  19. In Brief: NOAA moving forward with scientific integrity policy

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    2011-02-01

    The U.S. National Oceanic and Atmospheric Administration (NOAA) is moving forward with an agency-wide scientific integrity policy and has released a draft policy to all of NOAA's employees for their review and comment, NOAA administrator Jane Lubchenco said on 8 February. The draft policy lays out guidance for scientific conduct at the agency, encourages scientists to publish their data and findings, provides whistle-blower protection, encourages NOAA scientists to be leaders in the scientific community, and explicitly states that NOAA science managers and supervisors “must never suppress, alter or otherwise impede the timely release of scientific or technological findings or conclusions,” Lubchenco said at a meeting of the Union of Concerned Scientists' board of directors.

  20. NOAA draft research and development plan released

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    2013-05-01

    The U.S. National Oceanic and Atmospheric Administration (NOAA) has released a new draft version of its 5-year research and development (R&D) plan for 2013-2017, Research and Development at NOAA: Environmental Understanding to Ensure America's Vital and Sustainable Future. The plan, which was announced in the Federal Register on 7 May, will chart a course for R&D in support of the agency's four long-term goals of climate, weather, oceans, and coasts, and it will guide the agency's R&D activities over the next 5 years.

  1. THE SCIENTIFIC BASIS OF NOAA'S AIR QUALITY FORECASTING PROGRAM

    EPA Science Inventory

    For many years, the National Oceanic and Atmospheric Administration (NOAA) has conducted atmospheric research, including chemical and physical measurements, process studies, and the development and evaluation of experimental meteorological and photochemical air quality models. ...

  2. THE NOAA - EPA NATIONAL AIR QUALITY FORECASTING SYSTEM

    EPA Science Inventory

    Building upon decades of collaboration in air pollution meteorology research, in 2003 the National Oceanic and Atmospheric Administration (NOAA) and the United States Environmental Protection Agency (EPA) signed formal partnership agreements to develop and implement an operationa...

  3. Mission Description and In-Flight Operations of ERBE Instruments on ERBS, NOAA 9, and NOAA 10 Spacecraft

    NASA Technical Reports Server (NTRS)

    Snyder, Dianne; Bush, Kathryn; Lee, Kam-Pui; Summerville, Jessica

    1998-01-01

    Instruments of the Earth Radiation Budget Experiment (ERBE) have operated on three different Earth-orbiting spacecraft. The Earth Radiation Budget Satellite (ERBS) is operated by the National Aeronautics and Space Administration (NASA), and the NOAA 9 and NOAA 10 weather satellites are operated by the National Oceanic and Atmospheric Administration (NOAA). This paper is one of a series that describes the ERBE mission, in-orbit environments, instrument design and operational features, and data processing and validation procedures. This paper also describes the in-flight operations for the ERBE nonscanner instruments aboard the ERBS, NOAA 9, and NOAA 10 spacecraft from January 1990 through December 1990. Validation and archives of radiation measurements made by ERBE nonscanner instruments during this period were completed in August 1996. This paper covers normal and special operations of the spacecraft and instruments, operational anomalies, and the responses of the instruments to in-orbit and seasonal variations in the solar environment.

  4. 76 FR 4091 - Proposed Information Collection; Comment Request; Certification Requirements for NOAA's...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-24

    ...; Certification Requirements for NOAA's Hydrographic Product Quality Assurance Program AGENCY: National Oceanic... a quality assurance program under which the Administrator may certify privately-made...

  5. 75 FR 338 - Proposed Information Collection; Comment Request; NOAA Teacher at Sea Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-05

    ... Teacher at Sea Program AGENCY: National Oceanic and Atmospheric Administration (NOAA), Commerce. ACTION... first-hand experience with field research activities through the Teacher at Sea Program. Through...

  6. NOAA requirements and programs

    NASA Technical Reports Server (NTRS)

    Flanders, A. F.

    1975-01-01

    Service programs in NOAA that contemplate using the Geostationary Operational Environmental Satellite (GEOS) Data Collection System (DCS) are considered. The GEOS DCS will be operated by the National Environmental Satellite Service of NOAA as an integral part of the national operation environmental satellite program. This plan is concerned with that part of the GEOS program connected with collection and relay of data from remote locations. Service programs include: (1) hydrological data collection; (2) oceanographic data collection; (3) marine observations from data buoys; (4) Tsunami warning service; and (5) meteorological service.

  7. The NOAA Big Data Project: NEXRAD on the Cloud

    NASA Astrophysics Data System (ADS)

    Sundwall, Jed; Bouffler, Brendan

    2016-04-01

    Last year, the US National Oceanic and Atmospheric Administration (NOAA) made headlines when it entered into a research agreement with Amazon Web Services (AWS) to explore sustainable models to increase the output of open NOAA data. Publicly available NOAA data drives multi-billion dollar industries and critical research efforts. Under this new agreement, AWS and its Data Alliance collaborators are looking at ways to push more NOAA data to the cloud and build an ecosystem of innovation around it. In this presentation, we will provide a brief overview of the NOAA Big Data Project and the AWS Data Alliance, then dive into a specific example of data that has been made available (high resolution Doppler radar from the NEXRAD system) and early use cases.

  8. The NOAA Big Data Project: NEXRAD on the Cloud

    NASA Astrophysics Data System (ADS)

    Gold, A.; Weber, J.

    2015-12-01

    This past April, the US National Oceanic and Atmospheric Administration (NOAA) made headlines when it entered into a research agreement with Amazon Web Services (AWS) to explore sustainable models to increase the output of open NOAA data. Publicly available NOAA data drives multi-billion dollar industries and critical research efforts. Under this new agreement, AWS and its Data Alliance collaborators are looking at ways to push more NOAA data to the cloud and build an ecosystem of innovation around it. In this presentation, we will provide a brief overview of the NOAA Big Data Project and the AWS Data Alliance, then dive into a specific example of data that has been made available (high resolution Doppler radar from the NEXRAD system) and early use cases.

  9. NOAA backscatter studies

    NASA Technical Reports Server (NTRS)

    Post, Madison J.

    1991-01-01

    In the past year, NOAA has measured and analyzed another year's worth of backscatter over Boulder, CO. The average profile was computed from 80 satellite observations of backscatter spread throughout the year, using NOAA's CO2 coherent lidar operating at a wavelength of 10.59 microns. The seasonal averages show a familiar trend (highest backscattering in spring, perhaps due to Asian dust or biomass burning, and lowest backscattering in fall). The 1990 average profile was not significantly different from the 1988 or 1989 profiles, except that it displays a slight increase in the upper troposphere, perhaps due to the Redoubt Volcano. The NOAA's backscatter processing program (BETA) was refined to enable the calculation of gaseous absorption effects based on rawinsonde measurements, as well as using atmospheric models. NOAA participated in two intercomparisons of aerosol measuring instruments near Boulder, called FRLAB (Front Range Lidar, Aircraft, and Balloon Experiment). Considerable effort was also put into developing a multiagency science proposal to NASA headquarters to work with both JPL and NASA-Marshall to produce an airborne Doppler lidar facility for the DC-8.

  10. Traditional Knowledge Strengthens NOAA's Environmental Education

    NASA Astrophysics Data System (ADS)

    Stovall, W. K.; McBride, M. A.; Lewinski, S.; Bennett, S.

    2010-12-01

    Environmental education efforts are increasingly recognizing the value of traditional knowledge, or indigenous science, as a basis to teach the importance of stewardship. The National Oceanic and Atmospheric Administration (NOAA) Pacific Services Center incorporates Polynesian indigenous science into formal and informal education components of its environmental literacy program. By presenting indigenous science side by side with NOAA science, it becomes clear that the scientific results are the same, although the methods may differ. The platforms for these tools span a vast spectrum, utilizing media from 3-D visualizations to storytelling and lecture. Navigating the Pacific Islands is a Second Life project in which users navigate a virtual Polynesian voyaging canoe between two islands, one featuring native Hawaiian practices and the other where users learn about NOAA research and ships. In partnership with the University of Hawai‘i Waikiki Aquarium, the Nana I Ke Kai (Look to the Sea) series focuses on connecting culture and science during cross-discipline, publicly held discussions between cultural practitioners and research scientists. The Indigenous Science Video Series is a multi-use, animated collection of short films that showcase the efforts of NOAA fisheries management and ship navigation in combination with the accompanying Polynesian perspectives. Formal education resources and lesson plans for grades 3-5 focusing on marine science have also been developed and incorporate indigenous science practices as examples of conservation success. By merging traditional knowledge and stewardship practices with NOAA science in educational tools and resources, NOAA's Pacific Services Center is helping to build and increase environmental literacy through the development of educational tools and resources that are applicable to place-based understanding and approaches.

  11. NOAA-L satellite is lifted for mating

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Inside the B16-10 spacecraft processing hangar at Vandenberg Air Force Base, Calif., workers oversee the lifting and rotating of the National Oceanic and Atmospheric Administration (NOAA-L) satellite to allow for mating of the Apogee Kick Motor (AKM). NOAA-L is part of the Polar-Orbiting Operational Environmental Satellite (POES) program that provides atmospheric measurements of temperature, humidity, ozone and cloud images, tracking weather patterns that affect the global weather and climate. The launch of the NOAA-L satellite is scheduled no earlier than Sept. 12 aboard a Lockheed Martin Titan II rocket. NOAA-L satellite arrives at Vandenberg AFB

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Outside the B16-10 spacecraft processing hangar at Vandenberg Air Force Base, Calif., a crated National Oceanic and Atmospheric Administration (NOAA-L) satellite is lowered to the ground before being moved inside. NOAA-L is part of the Polar-Orbiting Operational Environmental Satellite (POES) program that provides atmospheric measurements of temperature, humidity, ozone and cloud images, tracking weather patterns that affect the global weather and climate. The launch of the NOAA-L satellite is scheduled no earlier than Sept. 12 aboard a Lockheed Martin Titan II rocket. NOAA-L satellite arrives at Vandenberg AFB

    NASA Technical Reports Server (NTRS)

    2000-01-01

    A crated National Oceanic and Atmospheric Administration (NOAA-L) satellite is moved inside the B16-10 spacecraft processing hangar at Vandenberg Air Force Base, Calif. NOAA-L is part of the Polar- Orbiting Operational Environmental Satellite (POES) program that provides atmospheric measurements of temperature, humidity, ozone and cloud images, tracking weather patterns that affect the global weather and climate. The launch of the NOAA-L satellite is scheduled no earlier than Sept. 12 aboard a Lockheed Martin Titan II rocket. NOAA-L satellite arrives at Vandenberg AFB

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Inside the B16-10 spacecraft processing hangar at Vandenberg Air Force Base, Calif., workers oversee the uncrating of the National Oceanic and Atmospheric Administration (NOAA-L) satellite. NOAA-L is part of the Polar-Orbiting Operational Environmental Satellite (POES) program that provides atmospheric measurements of temperature, humidity, ozone and cloud images, tracking weather patterns that affect the global weather and climate. The launch of the NOAA-L satellite is scheduled no earlier than Sept. 12 aboard a Lockheed Martin Titan II rocket. NOAA Seeks Guidance on Ocean Acidification Research

    NASA Astrophysics Data System (ADS)

    2007-03-01

    As the concentration of carbon dioxide in the atmosphere increases, the oceans become more acidic. The U.S. National Oceanic and Atmospheric Administration (NOAA) has already developed a 5-year interdisciplinary program on ocean acidification, which includes establishing coral reef monitoring stations, research on the physiological responses of various organisms to increasing ocean acidity, modeling of ocean acidification and its socioeconomic effect, and development of technology for measuring and monitoring carbon dioxide in the oceans.

  12. NOAA Research Vessel Explores Atlantic Ocean Seamounts

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    2014-10-01

    Mike Ford, a biological oceanographer with the National Oceanic and Atmospheric Administration (NOAA), sat rapt in front of a bank of high-definition monitors. They provided live video and data feeds from a tethered pair of instrument-laden remotely operated vehicles (ROVs) that were descending 4692 meters on their deepest dive ever. Their target: an unnamed and unexplored New England seamount discovered in the North Atlantic last year.

  13. Interoperable Data Access Services for NOAA IOOS

    NASA Astrophysics Data System (ADS)

    de La Beaujardiere, J.

    2008-12-01

    The Integrated Ocean Observing System (IOOS) is intended to enhance our ability to collect, deliver, and use ocean information. The goal is to support research and decision-making by providing data on our open oceans, coastal waters, and Great Lakes in the formats, rates, and scales required by scientists, managers, businesses, governments, and the public. The US National Oceanic and Atmospheric Administration (NOAA) is the lead agency for IOOS. NOAA's IOOS office supports the development of regional coastal observing capability and promotes data management efforts to increase data accessibility. Geospatial web services have been established at NOAA data providers including the National Data Buoy Center (NDBC), the Center for Operational Oceanographic Products and Services (CO-OPS), and CoastWatch, and at regional data provider sites. Services established include Open-source Project for a Network Data Access Protocol (OpenDAP), Open Geospatial Consortium (OGC) Sensor Observation Service (SOS), and OGC Web Coverage Service (WCS). These services provide integrated access to data holdings that have been aggregated at each center from multiple sources. We wish to collaborate with other groups to improve our service offerings to maximize interoperability and enhance cross-provider data integration, and to share common service components such as registries, catalogs, data conversion, and gateways. This paper will discuss the current status of NOAA's IOOS efforts and possible next steps.

  14. NOAA-L satellite arrives at Vandenberg AFB

    NASA Technical Reports Server (NTRS)

    2000-01-01

    A crated National Oceanic and Atmospheric Administration (NOAA-L) satellite arrives at Vandenberg Air Force Base, Calif. It is part of the Polar-Orbiting Operational Environmental Satellite (POES) program that provides atmospheric measurements of temperature, humidity, ozone and cloud images, tracking weather patterns that affect the global weather and climate. The launch of the NOAA-L satellite is scheduled no earlier than Sept. 12 aboard a Lockheed Martin Titan II rocket. 78 FR 55064 - Solicitation for Members of the NOAA Science Advisory Board (SAB) Gulf Coast Ecosystem...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-09

    ... National Oceanic and Atmospheric Administration Solicitation for Members of the NOAA Science Advisory Board (SAB) Gulf Coast Ecosystem Restoration Science Program Advisory Working Group (RSPAWG) AGENCY: National... Administration is publishing this notice to solicit nominations for the NOAA Science Advisory Board Gulf...

  15. 75 FR 13259 - NOAA Is Hosting a Series of Informational Webinars for Individuals and Organizations To Learn...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-19

    ... Individuals and Organizations To Learn About the Proposed NOAA Climate Service AGENCY: Office of Oceanic and... Oceanic and Atmospheric Administration (NOAA) announced their intent to establish a new NOAA Climate... our partners to respond to the growing demands for climate information from the public,...

  1. Merging Space Weather With NOAA's National Weather Service

    NASA Astrophysics Data System (ADS)

    Lanzerotti, Louis

    2004-07-01

    A major change in the reporting structure of the National Oceanic and Atmospheric Administration's Space Environment Center (SEC) is poised to occur later this year when Congress approves the fiscal year 2005 budget proposed by the Bush administration. The activities of the center, together with its proposed budget, will move from under NOAA's research budget and administration to that of the National Weather Service (NWS), which is also administered by NOAA. The weather service will receive augmented funding to accommodate the SEC as one of the service's National Centers for Environmental Prediction.

  2. Tsunami.gov: NOAA's Tsunami Information Portal

    NASA Astrophysics Data System (ADS)

    Shiro, B.; Carrick, J.; Hellman, S. B.; Bernard, M.; Dildine, W. P.

    2014-12-01

    We present the new Tsunami.gov website, which delivers a single authoritative source of tsunami information for the public and emergency management communities. The site efficiently merges information from NOAA's Tsunami Warning Centers (TWC's) by way of a comprehensive XML feed called Tsunami Event XML (TEX). The resulting unified view allows users to quickly see the latest tsunami alert status in geographic context without having to understand complex TWC areas of responsibility. The new site provides for the creation of a wide range of products beyond the traditional ASCII-based tsunami messages. The publication of modern formats such as Common Alerting Protocol (CAP) can drive geographically aware emergency alert systems like FEMA's Integrated Public Alert and Warning System (IPAWS). Supported are other popular information delivery systems, including email, text messaging, and social media updates. The Tsunami.gov portal allows NOAA staff to easily edit content and provides the facility for users to customize their viewing experience. In addition to access by the public, emergency managers and government officials may be offered the capability to log into the portal for special access rights to decision-making and administrative resources relevant to their respective tsunami warning systems. The site follows modern HTML5 responsive design practices for optimized use on mobile as well as non-mobile platforms. It meets all federal security and accessibility standards. Moving forward, we hope to expand Tsunami.gov to encompass tsunami-related content currently offered on separate websites, including the NOAA Tsunami Website, National Tsunami Hazard Mitigation Program, NOAA Center for Tsunami Research, National Geophysical Data Center's Tsunami Database, and National Data Buoy Center's DART Program. This project is part of the larger Tsunami Information Technology Modernization Project, which is consolidating the software architectures of NOAA's existing TWC's into

  3. Envisioning Improvements in NOAA Environmental Data Management

    NASA Astrophysics Data System (ADS)

    de la Beaujardiere, J.

    2012-12-01

    The US National Oceanic and Atmospheric Administration (NOAA) produces and maintains a huge, heterogeneous and continuously updated collection of environmental data from a diverse suite of observing systems including satellites, radars, aircraft, ships, in situ sensors, and animal tagging. These data are an irreplaceable national resource and must be discoverable, accessible, well-documented, and preserved for future users. Figure 1 illustrates the concept of operations for the desired target architecture. In this paper we describe current work toward these goals. The NOAA Environmental Data Management (EDM) Committee and other collaborators in the agency are developing an EDM Framework that includes over-arching Principles, Governance, Resources, Standards, Architecture, Assessment, and Infrastructure which apply broadly to many classes of data, and individual Data Lifecycles for particular data collections. See Figure 2. This Framework will inform, organize and support NOAA data management activities. NOAA Procedural Directives regarding archiving, data management planning, metadata, and data sharing by grantees are now being implemented; new Directives regarding data access and data citation are being developed. We have begun initial assessments of how data from our primary observing systems are managed. A Dashboard to measure and encourage progress in these areas is being prototyped. We have established an EDM Wiki to share best practices. Finally, participation in standards bodies and collaboration with other agencies and organizations is helping us to maximize compatibility and leverage existing work.Figure 1: Conceptual overview of the desired target state of NOAA data management activities. Not all activities are illustrated. Figure 2: High-level overview of the conceptual framework for environmental data management activities.

  4. NASA-FAA-NOAA Partnering Strategy

    NASA Technical Reports Server (NTRS)

    Colantonio, Ron

    2003-01-01

    This viewgraph presentation provides an overview of NASA-FAA (Federal Aviation Administration) and NOAA (National Oceanic and Atmospheric Administration) collaboration efforts particularly in the area of aviation and aircraft safety. Five technology areas are being jointly by these agencies: (1) aviation weather information; (2) weather products; (3) automet technologies; (4) forward looking weather sensors and (5) turbulence controls and mitigation systems. Memorandum of Agreements (MOU) between these agencies are reviewed. A general review of the pros and pitfalls of inter-agency collaborations is also presented.

  5. NOAA Plans for Improving Public Access to Science Research (Invited)

    NASA Astrophysics Data System (ADS)

    de la Beaujardiere, J.

    2013-12-01

    The White House Office of Science and Technology Policy (OSTP) issued a memorandum on 2013 February 22 calling for federal agencies to enhance public access to research results (PARR), and required agencies to submit, within 6 months of the memo, draft plans explaining how they would implement the requirements. For the National Oceanic and Atmospheric Administration (NOAA), research results include digital data about the Earth's environment and publications based on those data. Regarding environmental data, NOAA is already very active in ensuring and improving public access. Indeed, National Weather Service (NWS) data was highlighted as one of the good examples in the OSTP memo. More generally, the NOAA National Data Centers, the Environmental Data Management Committee (EDMC), and scientific and technical personnel across the agency are striving to ensure NOAA data are discoverable and accessible on-line, well-documented and formatted for usability, and preserved for future generations as a national asset. This presentation will describe current and potential activities in support of public access to NOAA and NOAA-funded environmental data. Regarding publications, there is greater uncertainty. The fundamental issue is how to ensure no-cost access (after an embargo period) to publications that typically require subscriptions. That issue must be addressed at the interagency level with the journal publishers. The plan indicates that NOAA will adopt shared mechanisms and agreements to the extent possible rather than building new systems. Some elements remain under discussion; this presentation will be limited to those aspects on which there is general agreement.

  6. Data management in NOAA

    NASA Technical Reports Server (NTRS)

    Callicott, William M.

    1993-01-01

    The NOAA archives contain 150 terabytes of data in digital form, most of which are the high volume GOES satellite image data. There are 630 data bases containing 2,350 environmental variables. There are 375 million film records and 90 million paper records in addition to the digital data base. The current data accession rate is 10 percent per year and the number of users are increasing at a 10 percent annual rate. NOAA publishes 5,000 publications and distributes over one million copies to almost 41,000 paying customers. Each year, over six million records are key entered from manuscript documents and about 13,000 computer tapes and 40,000 satellite hardcopy images are entered into the archive. Early digital data were stored on punched cards and open reel computer tapes. In the late seventies, an advanced helical scan technology (AMPEX TBM) was implemented. Now, punched cards have disappeared, the TBM system was abandoned, most data stored on open reel tapes have been migrated to 3480 cartridges, many specialized data sets were distributed on CD ROM's, special archives are being copied to 12 inch optical WORM disks, 5 1/4 inch magneto-optical disks were employed for workstation applications, and 8 mm EXABYTE tapes are planned for major data collection programs. The rapid expansion of new data sets, some of which constitute large volumes of data, coupled with the need for vastly improved access mechanisms, portability, and improved longevity are factors which will influence NOAA's future systems approaches for data management.

  7. NOAA starts oceanographpy publication

    NASA Astrophysics Data System (ADS)

    A new NOAA publication entitled Oceanographic Monthly Summary began in January. The publication, edited by Steve Auer, replaced two other NOAA periodicals, Gulfstream and Fishing Information, and it will attempt to disseminate the monthly oceanographic information in a more timely and efficient manner than did the other two publications.Oceanographic Monthly Summary contains 15 sea surface temperature (SST) analyses, 3 oceanographic thermal feature analyses, and a Bering Sea/North Slope ice analysis. The SST analyses include monthly means, anomalies, and yearly changes for the Atlantic and Pacific oceans and the Gulf of Mexico in both 2 and 1 degrees latitude/longitude scales. The ocean feature analyses show and describe the monthly activity of the Gulf Stream system and its associated eddies for the northwest Atlantic and Gulf of Mexico as well as other observed thermal features for the western U.S. coast. The Bering Sea/North Slope ice analysis describes sea ice age, thickness, and coverage for the region.The National Weather Service and the National Earth Satellite Service jointly sponsor the publication.

  8. Data management in NOAA

    NASA Technical Reports Server (NTRS)

    Callicott, William M.

    1992-01-01

    NOAA has 11 terabytes of digital data stored on 240,000 computer tapes. There are an additional 100 terabytes (TB) of geostationary satellite data stored in digital form on specially configured SONY U-Matic video tapes at the University of Wisconsin. There are over 90,000,000 non-digital form records in manuscript, film, printed, and chart form which are not easily accessible. The three NOAA Data Centers service 6,000 requests per year and publish 5,000 bulletins which are distributed to 40,000 subscribers. Seventeen CD-ROM's have been produced. Thirty thousand computer tapes containing polar satellite data are being copied to 12 inch WORM optical disks for research applications. The present annual data accumulation rate of 10 TB will grow to 30 TB in 1994 and to 100 TB by the year 2000. The present storage and distribution technologies with their attendant support systems will be overwhelmed by these increases if not improved. Increased user sophistication coupled with more precise measurement technologies will demand better quality control mechanisms, especially for those data maintained in an indefinite archive. There is optimism that the future will offer improved media technologies to accommodate the volumes of data. With the advanced technologies, storage and performance monitoring tools will be pivotal to the successful long-term management of data and information.

  9. NOAA's National Snow Analyses

    NASA Astrophysics Data System (ADS)

    Carroll, T. R.; Cline, D. W.; Olheiser, C. M.; Rost, A. A.; Nilsson, A. O.; Fall, G. M.; Li, L.; Bovitz, C. T.

    2005-12-01

    NOAA's National Operational Hydrologic Remote Sensing Center (NOHRSC) routinely ingests all of the electronically available, real-time, ground-based, snow data; airborne snow water equivalent data; satellite areal extent of snow cover information; and numerical weather prediction (NWP) model forcings for the coterminous U.S. The NWP model forcings are physically downscaled from their native 13 km2 spatial resolution to a 1 km2 resolution for the CONUS. The downscaled NWP forcings drive an energy-and-mass-balance snow accumulation and ablation model at a 1 km2 spatial resolution and at a 1 hour temporal resolution for the country. The ground-based, airborne, and satellite snow observations are assimilated into the snow model's simulated state variables using a Newtonian nudging technique. The principle advantages of the assimilation technique are: (1) approximate balance is maintained in the snow model, (2) physical processes are easily accommodated in the model, and (3) asynoptic data are incorporated at the appropriate times. The snow model is reinitialized with the assimilated snow observations to generate a variety of snow products that combine to form NOAA's NOHRSC National Snow Analyses (NSA). The NOHRSC NSA incorporate all of the available information necessary and available to produce a "best estimate" of real-time snow cover conditions at 1 km2 spatial resolution and 1 hour temporal resolution for the country. The NOHRSC NSA consist of a variety of daily, operational, products that characterize real-time snowpack conditions including: snow water equivalent, snow depth, surface and internal snowpack temperatures, surface and blowing snow sublimation, and snowmelt for the CONUS. The products are generated and distributed in a variety of formats including: interactive maps, time-series, alphanumeric products (e.g., mean areal snow water equivalent on a hydrologic basin-by-basin basis), text and map discussions, map animations, and quantitative gridded products

  10. Coordinating activities between NOAA and other agencies.

    PubMed

    Fritz, A T; Buchman, M F

    1997-11-01

    The Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) and the National Oil and Hazardous Substances Pollution Contingency Plan (NCP) mandate protection of public health, welfare, and the environment at Superfund hazardous waste sites. The NCP requires lead response agenciesto integrate baseline risk assessments into the remedial process that "assess threats to the environment." EPA policy statements direct regional offices to perform thorough, consistent ecological risk assessments, and stress the importance of coordination and technical consultation with the natural resource trustees. As a Federal natural trustee, the National Oceanic and Atmospheric Administration's (NOAA) role and responsibilities within the CERCLA process also are defined and mandated by Federal law. NOAA is responsible for identifying sites in the coastal zone that may affect natural resources, evaluating injury to trust resources, and providing technical advice on assessments and remedial and restoration alternatives. Statutes require lead cleanup agencies and trustee agencies to notify and coordinate with each other during CERCLA response. Over the past ten years, NOAA has gained valuable experience and technical expertise in environmental assessments and in evaluating contaminated aquatic environments. NOAA fulfills its responsibilities through an effective network of Coastal Resource Coordinators (CRCs) who can rapidly respond to local technical requirements and priorities, and coordinate effectively with technical and trustee representatives. In addition to CRCs, an interdisciplinary support group provides technical expertise in the scientific disciplines required to respond to the needs of regional activities. NOAA provides CRCs to coastal EPA regional offices for technical support, and to act as liaisons with Federal and state natural resource trustee agencies. The CRCs help EPA and other lead response agencies identify and assess risks to coastal resources

  11. In Congress Budget Update for NOAA, USGS

    NASA Astrophysics Data System (ADS)

    Richman, Barbara T.

    Among the agenda items facing Congress as it reconvenes this week are the fiscal 1984 budgets for the National Oceanic and Atmospheric Administration (NOAA), which is part of the Department of Commerce, and for the U.S. Geological Survey (USGS), which is within the Department of the Interior. Fiscal year 1984 begins October 1, 1983. As Congress rolls up its shirtsleeves and gets down to business, Eos presents a status report on the two agency budgets.Both House and Senate appropriations committees have finished their work on the NOAA budget, which had been targeted by President Ronald Reagan for a $799.8 million appropriation request (program level of $843.2 million) in his proposed fiscal 1984 budget (Eos, February 15, 1983, p. 65). The House appropriation for NOAA (H.R. 3134 and H.R. 3222) is $998.5 million, with a program level of $1043.9 million. The Senate Appropriations Committee set its appropriation (S. 1721) at $987.8 million, with a program level of $1041.0 million.

  12. 75 FR 10755 - Proposed Information Collection; Comment Request; 2010 NOAA Engagement Survey Tool

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-09

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF COMMERCE... Engagement Survey Tool AGENCY: National Oceanic and Atmospheric Administration (NOAA), DOC. ACTION: Notice... instrument and instructions should be directed to Louisa Koch, Director, NOAA Office of Education, (202)...

  13. 75 FR 25843 - Notice of Public Review and Comment Period on NOAA's Arctic Vision and Strategy

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-10

    .... SUPPLEMENTARY INFORMATION: To view the document, go to http://www.arctic.noaa.gov/ . I. Summary of the Strategy... NOAA's Arctic Vision and Strategy AGENCY: National Oceanic and Atmospheric Administration. ACTION... Highway, Room 15749, Silver Spring, Maryland 20910 FOR FURTHER INFORMATION CONTACT: Tracy Rouleau,...

  14. 75 FR 63439 - Proposed Information Collection; Comment Request; NOAA Teacher at Sea Alumni Survey

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-15

    ... Teacher at Sea Alumni Survey AGENCY: National Oceanic and Atmospheric Administration (NOAA), Commerce... Teacher at Sea Program. Through this program, educators spend up to three weeks at sea on a NOAA research... order to better serve the participants, the Teacher at Sea Program will survey the teacher...

  15. 77 FR 65674 - Solicitation for Members of the NOAA Science Advisory Board

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-30

    ... Research, Commerce. ACTION: Notice of solicitation for members of the NOAA Science Advisory Board. SUMMARY... Oceans and Atmosphere and NOAA Administrator on long- and short-range strategies for research, education... appointed as special government employees (SGEs) and will be subject to the ethical standards applicable...

  16. NOAA's Education Program: Review and Critique

    ERIC Educational Resources Information Center

    Farrington, John W., Ed.; Feder, Michael A., Ed.

    2010-01-01

    There is a national need to educate the public about the ocean, coastal resources, atmosphere and climate. The National Oceanic and Atmospheric Administration (NOAA), the agency responsible for understanding and predicting changes in the Earth's environment and conserving and managing coastal and marine resources to meet the nation's…

  17. 78 FR 16254 - (NOAA) Science Advisory Board (SAB)

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-14

    ... National Oceanic and Atmospheric Administration (NOAA) Science Advisory Board (SAB) AGENCY: Office of... of Commerce (DOC). ACTION: Notice of open meeting. SUMMARY: The Science Advisory Board (SAB) was..., education, and application of science to operations and information services. SAB activities and...

  18. NOAA Looks for Advice to Make Its Data Easier to Use

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    2014-03-01

    "There is no sector in American business that wouldn't like to have better environmental information," said Joseph Klimavicz, chief information officer for the National Oceanic and Atmospheric Administration (NOAA).

  19. Draft U.S. ocean policy plan precedes proposal to move NOAA to Interior department

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    2012-01-01

    The Obama administration's ambitious plan to protect oceans was released on 12 January, just 1 day prior to the administration's apparently unrelated announcement of a proposed governmental reorganization that would move the National Oceanic and Atmospheric Administration (NOAA) from the Department of Commerce to the Department of the Interior. The proposed NOAA move is part of a larger administration proposal to consolidate six federal agencies that are focused on business and trade into one department. The action is contingent upon congressional approval. The proposal to move NOAA to the Interior department has prompted a variety of reactions, with some considering it common sense to group agencies dealing with natural resources in the same department. Others have charged that the proposed move could blunt NOAA's leading role in protecting oceans, among other concerns.

  20. 75 FR 59686 - Proposed Information Collection; Comment Request; NOAA Space-Based Data Collection System (DCS...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-28

    ... National Oceanic and Atmospheric Administration Proposed Information Collection; Comment Request; NOAA Space- Based Data Collection System (DCS) Agreements AGENCY: National Oceanic and Atmospheric... space-based data collection systems (DCS), the Geostationary Operational Environmental Satellite...

  1. NOAA Budget Proposal Calls for a Small Increase, But Several Programs Would Be Sharply Cut

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    2014-04-01

    The White House's proposed budget of 5.497 billion for the National Oceanic and Atmospheric Administration (NOAA) for fiscal year (FY) 2015 would be good news for the agency overall if Congress goes along with the Obama administration's funding plan. The proposal would increase NOAA's discretionary budget by 174.1 million, 3.27% above the FY 2014 enacted budget (see Table ). The White House announced the overall federal budget on 4 March, and the NOAA budget "blue book" with specific funding numbers was issued in mid-March.

  2. Differences in visible and near-IR responses, and derived vegetation indices, for the NOAA-9 and NOAA-10 AVHRRs: a case study

    USGS Publications Warehouse

    Gallo, Kevin P.; Eidenshink, Jeffery C.

    1988-01-01

    This study evaluates the differences in the visible and near-IR responses of the Advanced Very High Resolution Radiometers (AVHRR) of the National Oceanic and Atmospheric Administration (NOAA)-9 and -10 satellites for coincident sample locations. The study also evaluates the differences in vegetation indices computed from those data. Data were acquired of the southeast portion of the United States for the 6 December 1986 daylight orbits of NOAA-9 and NOAA-10 satellites. The results suggest that, with appropriate gain and offset, the vegetation indices of the two sensor systems may be interchangeable for assessment of land surfaces.

  3. Mission description and in-flight operations of ERBE instruments on ERBS, NOAA 9, and NOAA 10 spacecraft

    NASA Technical Reports Server (NTRS)

    Weaver, William L.; Bush, Kathryn A.; Degnan, Keith T.; Howerton, Clayton E.; Tolson, Carol J.

    1992-01-01

    Instruments of the Earth Radiation Budget Experiment (ERBE) are operating on three different Earth-orbiting spacecraft. The Earth Radiation Budget Satellite (ERBS) is operated by NASA, and NOAA 9 and NOAA 10 weather satellites are operated by the National Oceanic and Atmospheric Administration (NOAA). This paper is the second in a series that describes the ERBE mission, and data processing and validation procedures. This paper describes the spacecraft and instrument operations for the second full year of in-orbit operations, which extend from February 1986 through January 1987. Validation and archival of radiation measurements made by ERBE instruments during this second year of operation were completed in July 1991. This period includes the only time, November 1986 through January 1987, during which all ERBE instruments aboard the ERBE, NOAA 9, and NOAA 10 spacecraft were simultaneously operational. This paper covers normal and special operations of the spacecraft and instruments, operational anomalies, and the responses of the instruments to in-orbit and seasonal variations in the solar environment.

  4. NOAA Ocean Exploration 2003: A Scientific Overview

    NASA Astrophysics Data System (ADS)

    Hammond, S. R.

    2003-12-01

    A little over three years ago, a panel of leading ocean scientists, explorers, and educators developed a national strategy for ocean exploration. Their report, "Discovering Earth's Final Frontier: A U.S. Strategy for Ocean Exploration," opened the door to a new way of thinking about ocean exploration and inspired the National Oceanic and Atmospheric Administration (NOAA) to embark on a mission to expand knowledge and appreciation of the ocean. This year, in collaboration with over 100 partners including university, international, federal, state and tribal science agencies, private research and outreach organizations, civic groups, aquariums and museums, NOAA engaged in major multidisciplinary expeditions and multiple projects around the world aimed at mapping the ocean in new ways, understanding ocean interactions, developing sensors and tools, and reaching out in new ways to stakeholders to communicate findings. Expeditions and projects undertaken this year continued to build on inaugural work in 2001 and 2002 and continue to set a precedent for high quality discovery-based ocean research and exploration. This presentation will focus on expedition highlights and future program directions.

  5. Lessons Learned from the Application of NOAA's "What to Archive

    NASA Astrophysics Data System (ADS)

    Ritchey, N.

    2012-04-01

    A procedure for addressing the complete lifecycle of data was defined by the National Oceanographic and Atmospheric Administration (NOAA) in August 2008. The "NOAA Procedure for Scientific Records Appraisal and Archive Approval" supports US government mandates and directives for records management from the National Archives and Records Administration (NARA) and other US government agencies. This NOAA-wide procedure provides a foundation to identify, appraise, and decide what scientific records are preserved and which are to be disposed and it establishes a formally documented process. The National Climatic Data Center (NCDC) in Asheville, North Carolina implemented the procedure within our organization and applied it to multiple, diverse data types. Initial applications confirm the procedure's flexibility allowing expeditious decisions for well-documented and established records, as well as supporting complex requests requiring engagement of external record experts. With each successive use, a pattern of activities contributing to the cost, complexity, challenges and management of the process is emerging. Lessons learned from the application of NOAA's "What to Archive" process at NCDC will be presented.

  6. NOAA Activities and Plans for New Operational Space Weather Platforms and Sensors

    NASA Astrophysics Data System (ADS)

    Biesecker, D. A.; Mulligan, P.; Cash, M. D.; Reinard, A.; Simpson, M.; Diedrich, B.; Socker, D. G.

    2013-12-01

    The National Oceanic and Atmospheric Administration (NOAA) is vigorously pursuing several space weather platforms that have been demonstrated as requiring replacement. In this time of limited budgets, this has led to the need for creative and innovative solutions. Just as importantly, NOAA is only 13 months away from the launch of its first L1 solar wind monitor, the DSCOVR mission. At the same time, a private company, L'Garde Inc. will be launching a solar sail mission with NOAA as a partner. Recognizing the importance of solar wind monitoring and the need for continuity, the planning process is already underway for the DSCOVR follow-on mission and scenarios for that include commercial data purchases and solar sails. Finally, NOAA planning for an operational coronagraph is moving forward, with continuing development of the Naval Research Laboratory's Compact Coronagraph (CCOR). We will provide details on the current NOAA plans for each of these missions.

  7. Creating a More Inclusive Talent Pool for the GeoSciences in NOAA Mission Fields:

    NASA Astrophysics Data System (ADS)

    Rousseau, J.; Trotman, A. A.

    2014-12-01

    The National Oceanic and Atmospheric Administration (NOAA) Educational Partnership Program (EPP) with Minority Serving Institutions (MSI) is recognized as a model federal Science, Technology, Engineering, and Mathematics, (STEM) education investment. The EPP has a premier goal of increasing the numbers of students, especially from underrepresented communities, who are trained and awarded degrees in NOAA mission-relevant STEM fields. This goal is being achieved through awards to support undergraduate and graduate level student scholarships and to enhance NOAA mission-relevant education, research and internships at EPP Cooperative Science Centers located at MSIs. The internships allow undergraduate students to gain technical experience in STEM fields while gaining an understanding of a science mission agency such as NOAA. EPP has built evidence supporting the value of internships with its Undergraduate Scholarship Program (USP). Program metrics are used to refine and improve the internship to ensure student success. Scholarships are competitively awarded and requires applicants to submit a personal statement detailing the NOAA-relevant professional experience the applicant seeks to acquire, and gauges the depth of understanding of the work of NOAA.A focus is the EPP USP Student Internship at NOAA, which has two training phases. The first occurs at NOAA HQ in Maryland and incorporates exposure to NOAA professional culture including mentoring and professional development for scholarship recipients. The second occurs at NOAA facilities in the 50 states and US Territories. The internship projects are conducted under the supervision of a NOAA mentor and allow the scholars to: acquire increased science and technology skills: be attached to a research group and participate in a research activity as part of the team; and, acquire practical experience and knowledge of the day-to-day work of the NOAA facility. EPP has recently initiated the Experiential Research and Training

  8. NOAA-L satellite is mated to Apogee Kick Motor at Vandenberg AFB

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Inside the B16-10 spacecraft processing hangar at Vandenberg Air Force Base, Calif., workers oversee the mating of the Apogee Kick Motor (below) to the National Oceanic and Atmospheric Administration (NOAA-L) satellite above. NOAA-L is part of the Polar-Orbiting Operational Environmental Satellite (POES) program that provides atmospheric measurements of temperature, humidity, ozone and cloud images, tracking weather patterns that affect the global weather and climate. The launch of the NOAA-L satellite is scheduled no earlier than Sept. 12 aboard a Lockheed Martin Titan II rocket. NOAA's Scientific Data Stewardship Program

    NASA Astrophysics Data System (ADS)

    Bates, J. J.

    2004-12-01

    The NOAA mission is to understand and predict changes in the Earth's environment and conserve and manage coastal and marine resources to meet the Nation's economic, social and environmental needs. NOAA has responsibility for long-term archiving of the United States environmental data and has recently integrated several data management functions into a concept called Scientific Data Stewardship. Scientific Data Stewardship a new paradigm in data management consisting of an integrated suite of functions to preserve and exploit the full scientific value of NOAA's, and the world's, environmental data These functions include careful monitoring of observing system performance for long-term applications, the generation of authoritative long-term climate records from multiple observing platforms, and the proper archival of and timely access to data and metadata. NOAA has developed a conceptual framework to implement the functions of scientific data stewardship. This framework has five objectives: 1) develop real-time monitoring of all satellite observing systems for climate applications, 2) process large volumes of satellite data extending up to decades in length to account for systematic errors and to eliminate artifacts in the raw data (referred to as fundamental climate data records, FCDRs), 3) generate retrieved geophysical parameters from the FCDRs (referred to as thematic climate data records TCDRs) including combining observations from all sources, 4) conduct monitoring and research by analyzing data sets to uncover climate trends and to provide evaluation and feedback for steps 2) and 3), and 5) provide archives of metadata, FCDRs, and TCDRs, and facilitate distribution of these data to the user community. The term `climate data record' and related terms, such as climate data set, have been used for some time, but the climate community has yet to settle on a concensus definition. A recent United States National Academy of Sciences report recommends using the

  9. Design and Flight Performance of NOAA-K Spacecraft Batteries

    NASA Technical Reports Server (NTRS)

    Rao, Gopalakrishna M.; Chetty, P. R. K.; Spitzer, Tom; Chilelli, P.

    1999-01-01

    The US National Oceanic and Atmospheric Administration (NOAA) operates the Polar Operational Environmental Satellite (POES) spacecraft (among others) to support weather forecasting, severe storm tracking, and meteorological research by the National Weather Service (NWS). The latest in the POES series of spacecraft, named as NOAA-KLMNN, is in orbit and four more are in various phases of development. The NOAA-K spacecraft was launched on May 13, 1998. Each of these spacecraft carry three Nickel-Cadmium batteries designed and manufactured by Lockheed Martin. The battery, which consists of seventeen 40 Ah cells manufactured by SAFT, provides the spacecraft power during the ascent phase, orbital eclipse and when the power demand is in excess of the solar array capability. The NOAA-K satellite is in a 98 degree inclination, 7:30AM ascending node orbit. In this orbit the satellite experiences earth occultation only 25% of the year. This paper provides a brief overview of the power subsystem, followed by the battery design and qualification, the cell life cycle test data, and the performance during launch and in orbit.

  10. Design and Flight Performance of NOAA-K Spacecraft Batteries

    NASA Technical Reports Server (NTRS)

    Rao, Gopalakrishna M.; Chetty, P. R. K.; Spitzer, Tom; Chilelli, P.

    1998-01-01

    The US National Oceanic and Atmospheric Administration (NOAA) operates the Polar Operational Environmental Satellite (POES) spacecraft (among others) to support weather forecasting, severe storm tracking, and meteorological research by the National Weather Service (NWS). The latest in the POES series of spacecraft, named as NOAA-KLMNN', one is in orbit and four more are in various phases of development. The NOAA-K spacecraft was launched on May 13, 1998. Each of these spacecraft carry three Nickel-Cadmium batteries designed and manufactured by Lockheed Martin. The battery, which consists of seventeen 40 Ah cells manufactured by SAFT, provides the spacecraft power during the ascent phase, orbital eclipse and when the power demand is in excess of the solar array capability. The NOAA-K satellite is in a 98 degree inclination, 7:30AM ascending node orbit. In this orbit the satellite experiences earth occultation only 25% of the year. This paper provides a brief overview of the power subsystem, followed by the battery design and qualification, the cell life cycle test data, and the performance during launch and in orbit.

  11. The NOAA Center in Atmospheric Sciences (NCAS) at Howard University

    NASA Astrophysics Data System (ADS)

    Strachan, M. D.; Morris, V. R.

    2003-12-01

    The National Oceanic and Atmospheric Administration (NOAA) of the Department of Commerce established the NOAA Center for Atmospheric Sciences (NCAS), a Cooperative Science Center, in fall 2001 to support the development of quality education to students at minority serving institutions while meeting the prescribed goals of NOAA and the nation. NCAS was established to research some of the critical environmental conditions occurring nationally and globally, and to provide opportunities and programs for students to pursue careers in atmospheric, environmental, and oceanic sciences and remote sensing. A primary goal is to increase the number of highly qualified, well trained graduates in the fields of NOAA related atmospheric sciences. NCAS is led by Howard University, in collaboration with three partners - Jackson State University, the University of Texas at El Paso, and the University of Puerto Rico at Mayaguez. This presentation will highlight the activities and accomplishments in research, education, and outreach of NCAS over its first two years of existence. The primary benefactor of NCAS has been the Howard University Program in Atmospheric Sciences (HUPAS), a comprehensive graduate program in atmospheric sciences with core focus areas of atmospheric chemistry, atmospheric physics, and geophysical fluid dynamics.

  12. 76 FR 65183 - National Oceanic and Atmospheric Administration

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-20

    ... National Oceanic and Atmospheric Administration National Climate Assessment and Development Advisory... Administration (NOAA), Department of Commerce (DOC). ACTION: Notice of open meeting. SUMMARY: The National... of Oceanic and Atmospheric Research, National Oceanic and Atmospheric Administration. BILLING...

  13. NOAA Operational Tsunameter Support for Research

    NASA Astrophysics Data System (ADS)

    Bouchard, R.; Stroker, K.

    2008-12-01

    In March 2008, the National Oceanic and Atmospheric Administration's (NOAA) National Data Buoy Center (NDBC) completed the deployment of the last of the 39-station network of deep-sea tsunameters. As part of NOAA's effort to strengthen tsunami warning capabilities, NDBC expanded the network from 6 to 39 stations and upgraded all stations to the second generation Deep-ocean Assessment and Reporting of Tsunamis technology (DART II). Consisting of a bottom pressure recorder (BPR) and a surface buoy, the tsunameters deliver water-column heights, estimated from pressure measurements at the sea floor, to Tsunami Warning Centers in less than 3 minutes. This network provides coastal communities in the Pacific, Atlantic, Caribbean, and the Gulf of Mexico with faster and more accurate tsunami warnings. In addition, both the coarse resolution real-time data and the high resolution (15-second) recorded data provide invaluable contributions to research, such as the detection of the 2004 Sumatran tsunami in the Northeast Pacific (Gower and González, 2006) and the experimental tsunami forecast system (Bernard et al., 2007). NDBC normally recovers the BPRs every 24 months and sends the recovered high resolution data to NOAA's National Geophysical Data Center (NGDC) for archive and distribution. NGDC edits and processes this raw binary format to obtain research-quality data. NGDC provides access to retrospective BPR data from 1986 to the present. The DART database includes pressure and temperature data from the ocean floor, stored in a relational database, enabling data integration with the global tsunami and significant earthquake databases. All data are accessible via the Web as tables, reports, interactive maps, OGC Web Map Services (WMS), and Web Feature Services (WFS) to researchers around the world. References: Gower, J. and F. González, 2006. U.S. Warning System Detected the Sumatra Tsunami, Eos Trans. AGU, 87(10). Bernard, E. N., C. Meinig, and A. Hilton, 2007. Deep Ocean

  14. NOAA Budget Increases to $4.1 Billion, But Some Key Items Are Reduced

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    2008-02-01

    The Bush administration has proposed a US$4.1 billion budget for fiscal year (FY) 2009 for the U.S. National Oceanic and Atmospheric Administration (NOAA). The proposed budget, which would be the agency's largest ever, is $202.6 million, or 5.2%, above the FY 2008 enacted budget. By topping $4 billion and the amount Congress passed for FY 2008, the budget proposal crosses into ``a new threshold,'' according Navy Vice Admiral Conrad Lautenbacher, undersecretary of commerce for oceans and atmosphere and NOAA administrator.

  15. 77 FR 13562 - Request for Comments on the 5-Year Review of NOAA's Policy on Partnerships in the Provision of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-07

    ... on Partnerships in the Provision of Environmental Information AGENCY: National Weather Service (NWS... request for comments. SUMMARY: The National Weather Service of the National Oceanic and Atmospheric... National Weather Service of the National Oceanic and Atmospheric Administration (NOAA) is undertaking...

  16. 78 FR 59339 - Intracoastal Waterway Route “Magenta Line” on NOAA Nautical Charts

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-26

    ... Nautical Charts AGENCY: National Ocean Service, National Oceanic and Atmospheric Administration. (NOAA.../image/4DNo3-13 .) The U.S. Coast & Geodetic Survey published seven editions through 1935, when their... Ocean Service, National Oceanic and Atmospheric Administration. BILLING CODE 3510-JE-P...

  17. Prelaunch summary: NOAA-B launch

    NASA Technical Reports Server (NTRS)

    1980-01-01

    The NOAA-B satellite will launch from the Western Test Range into Sun-synchronous orbit to replace the TIROSN-satellite as part of the national operational environmental satellite system in support of the Global Atmospheric Research Program and the World Weather Watch. The mission objectives, primary environmental sensors, launch particulars, flight sequence of events, mission support, and project costs for NOAA-A through NOAA-G are discussed. NASA's responsibilities include launch, in-orbit evaluation and spacecraft checkout.

  18. NOAA's future GOES satellite program

    NASA Astrophysics Data System (ADS)

    Howard, Edward; Heymann, Roger; Dittberner, Gerald J.; Kirkner, Steven

    1996-10-01

    Future weather satellites for NOAA at geosynchronous orbit may be smaller, less costly, and developed by a different process than is currently done. This path is sometimes called the 'smaller, cheaper and faster' process being pursued by NASA. We believe in the future there will be less money, a focus on using the right technology and the desire to get the most value for the resources invested in space missions. In this paper we give an update on our progress to define future GOES. It will include our efforts to trade on user requirement early, to use evolutionary technology, and to consider new cost reduction and program management techniques.

  19. NOAA's hydrolab conducts reef studies

    NASA Astrophysics Data System (ADS)

    This summer, scuba-diving scientists operating from Hydrolab, NOAA's undersea laboratory, are carrying out four experiments aimed at producing better management of coral reefs and their fishery resources. Hydrolab is located at a depth of 50 feet, near the mouth of the Salt River, off St. Croix, U.S. Virgin Islands. The lab houses four scientists for up to 2 weeks at a time, permitting them to swim out into the water to conduct research. The projects make use of both the natural coral reef near Hydrolab and the nearby artificial reef constructed for comparison studies.

  1. NOAA Environmental Satellite Measurements of Extreme Space Weather Events

    NASA Astrophysics Data System (ADS)

    Denig, W. F.; Wilkinson, D. C.; Redmon, R. J.

    2015-12-01

    For over 40 years the National Oceanic and Atmospheric Administration (NOAA) has continuously monitored the near-earth space environment in support of space weather operations. Data from this period have covered a wide range of geophysical conditions including periods of extreme space weather such as the great geomagnetic March 1989, the 2003 Halloween storm and the more recent St Patrick's Day storm of 2015. While not specifically addressed here, these storms have stressed our technology infrastructure in unexpected and surprising ways. Space weather data from NOAA geostationary (GOES) and polar (POES) satellites along with supporting data from the Air Force are presented to compare and contrast the space environmental conditions measured during extreme events.

  2. 76 FR 9209 - Draft NOAA National Aquaculture Policy

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-16

    ... national approach for supporting sustainable aquaculture. The NOAA Aquaculture Program will host national.... Informational Briefings for the Public The NOAA Aquaculture Program will host a series of...

  3. The NOAA Annual Greenhouse Gas Index - 2012 Update

    NASA Astrophysics Data System (ADS)

    Butler, J. H.; Montzka, S. A.; Conway, T. J.; Dlugokencky, E. J.; Elkins, J. W.; Masari, K. A.; Schnell, R. C.; Tans, P. P.

    2012-04-01

    For the past several decades, the U.S. National Oceanic and Atmospheric Administration (NOAA) has monitored all of the long-lived atmospheric greenhouse gases. These global measurements have provided input to databases, analyses, and various relevant products, including national and international climate assessments. To make these data more useful and available, NOAA several years ago released its Annual Greenhouse Gas Index (AGGI), http://www.esrl.noaa.gov/gmd/aggi. This index, based on the climate forcing properties of long-lived greenhouse gases, was designed to enhance the connection between scientists and society by providing a normalized standard that can be easily understood and followed. The long-lived gases capture most of the radiative forcing, and uncertainty in their measurement is very small. This allows us to provide a robust measure and assessment of the long-term, radiative influence of these gases. Continuous greenhouse gas measurements are made at baseline climate observatories (Pt. Barrow, Alaska; Mauna Loa, Hawaii; American Samoa; and the South Pole) and weekly flask air samples are collected through a global network of over 60 sites, including an international cooperative program for carbon dioxide and other greenhouse gases. The gas samples are analyzed at NOAA's Earth System Research Laboratory (NOAA/ESRL) in Boulder, Colorado, using WMO standard reference gases prepared by NOAA/ESRL. The AGGI is normalized to 1.00 in 1990, the Kyoto Climate Protocol baseline year. In 2010, the AGGI was 1.29, indicating that global radiative forcing by long-lived greenhouse gases had increased 29% since 1990. During the 1980s CO2 accounted for about 50-60% of the annual increase in radiative forcing by long-lived greenhouse gases, whereas, since 2000, it has accounted for 85-90% of this increase each year. After nearly a decade of virtually level concentrations in the atmosphere, methane (CH4) increased measurably over the past 2-3 years, as did its

  4. Fine Aerosol Bulk Composition Measured on WP-3D Research Aircraft in Vicinity of the Northeastern United States - Results from NEAQS

    NASA Technical Reports Server (NTRS)

    Peltier, R. E.; Sullivan, A. P.; Weber, R. J.; Brock, C. A.; Wollny, A. G.; Holloway, J. S.; deGouw, J. A.; Warneke, C.

    2007-01-01

    During the New England Air Quality Study (NEAQS) in the summer of 2004, airborne measurements were made of the major inorganic ions and the water-soluble organic carbon (WSOC) of the submicron (PM(sub 1.0)) aerosol. These and ancillary data are used to describe the overall aerosol chemical characteristics encountered during the study. Fine particle mass was estimated from particle volume and a calculated density based on measured particle composition. Fine particle organic matter (OM) was estimated from WSOC and a mass balance analysis. The aerosol over the northeastern United States (U.S.) and Canada was predominantly sulfate and associated ammonium, and organic components, although in unique plumes additional ionic components were also periodically above detection limits. In power generation regions, and especially in the Ohio River Valley region, the aerosol tended to be predominantly sulfate (approximately 60% micro gram /micro gram) and apparently acidic, based on an excess of measured anions compared to cations. In all other regions where sulfate concentrations were lower and a smaller fraction of overall mass, the cations and anions were balanced suggesting a more neutral aerosol. In contrast, the WSOC and estimated OM were more spatially uniform and the fraction of OM relative to PM mass was largely influenced by sources of sulfate. The study median OM mass fraction was 40%. Throughout the study region, sulfate and organic aerosol mass were highest near the surface and decreased rapidly with increasing altitude. The relative fraction of organic mass to sulfate was similar throughout all altitudes within the boundary layer (altitude less than 2.5 km), but was significantly higher at altitude layers in the free troposphere (above 2.5 km). A number of distinct biomass burning plumes from fires in Alaska and the Yukon were periodically intercepted, mostly at altitudes between 3 and 4 km. These plumes were associated with highest aerosol concentrations of the study and were largely comprised of organic aerosol components (approximtely 60%).

  5. NOAA's Data Catalog and the Federal Open Data Policy

    NASA Astrophysics Data System (ADS)

    Wengren, M. J.; de la Beaujardiere, J.

    2014-12-01

    The 2013 Open Data Policy Presidential Directive requires Federal agencies to create and maintain a 'public data listing' that includes all agency data that is currently or will be made publicly-available in the future. The directive requires the use of machine-readable and open formats that make use of 'common core' and extensible metadata formats according to the best practices published in an online repository called 'Project Open Data', to use open licenses where possible, and to adhere to existing metadata and other technology standards to promote interoperability. In order to meet the requirements of the Open Data Policy, the National Oceanic and Atmospheric Administration (NOAA) has implemented an online data catalog that combines metadata from all subsidiary NOAA metadata catalogs into a single master inventory. The NOAA Data Catalog is available to the public for search and discovery, providing access to the NOAA master data inventory through multiple means, including web-based text search, OGC CS-W endpoint, as well as a native Application Programming Interface (API) for programmatic query. It generates on a daily basis the Project Open Data JavaScript Object Notation (JSON) file required for compliance with the Presidential directive. The Data Catalog is based on the open source Comprehensive Knowledge Archive Network (CKAN) software and runs on the Amazon Federal GeoCloud. This presentation will cover topics including mappings of existing metadata in standard formats (FGDC-CSDGM and ISO 19115 XML ) to the Project Open Data JSON metadata schema, representation of metadata elements within the catalog, and compatible metadata sources used to feed the catalog to include Web Accessible Folder (WAF), Catalog Services for the Web (CS-W), and Esri ArcGIS.com. It will also discuss related open source technologies that can be used together to build a spatial data infrastructure compliant with the Open Data Policy.

  6. NOAA draft scientific integrity policy: Comment period open through 20 August

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    2011-08-01

    The National Oceanic and Atmospheric Administration (NOAA) is aiming to finalize its draft scientific integrity policy possibly by the end of the year, Larry Robinson, NOAA assistant secretary for conservation and management, indicated during a 28 July teleconference. The policy “is key to fostering an environment where science is encouraged, nurtured, respected, rewarded, and protected,” Robinson said, adding that the agency's comment period for the draft policy, which was released on 16 June, ends on 20 August. “Science underpins all that NOAA does. This policy is one piece of a broader effort to strengthen NOAA science,” Robinson said, noting that the draft “represents the first ever scientific integrity policy for NOAA. Previously, our policy only addressed research misconduct and focused on external grants. What's new about this policy is that it establishes NOAA's principles for scientific integrity, a scientific code of conduct, and a code of ethics for science supervision and management.”

  7. 77 FR 33443 - National Oceanic and Atmospheric Administration

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-06

    ... National Oceanic and Atmospheric Administration Pacific Fishery Management Council; Public Meeting AGENCY: National Marine Fisheries Service (NMFS), National Oceanic and Atmospheric Administration (NOAA), Commerce... Assessment Methods for Data-Moderate Stocks will be held at the National Marine Fisheries Service's...

  8. Lautenbacher will face challenges as new NOAA Head

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    With a non-controversial confirmation hearing on November 8 before the U.S. Senate Commerce Committee, retired U.S. Navy Vice Admiral Conrad Lautenbacher, Jr. is gearing up to soon take over the helm at the National Oceanic and Atmospheric Administration (NOAA). His nomination by the Bush administration also includes serving as undersecretary of commerce for oceans and atmosphere.A number of sources familiar with Lautenbacher indicated that his Navy and managerial skills will be useful in these posts, as he likely will face a number of science, budget, and administrative challenges in running this $3.2-billion agency, which comprises 63% of the Commerce Department budget. These sources also sited Lautenbacher's integrity; his ability to listen to different sides of issues and to consult broadly; his connections to both the scientific and political worlds; and his persuasive ability to get things done.

  9. Mission description and in-flight operations of ERBE instruments on ERBS and NOAA 10 spacecraft, February 1987 - February 1990

    NASA Technical Reports Server (NTRS)

    Busch, Kathryn A.; Degnan, Keith T.

    1994-01-01

    Instruments of the Earth Radiation Budget Experiment (ERBE) are operating on three different Earth-orbiting spacecraft. The Earth Radiation Budget Satellite (ERBS) is operated by the National Aeronautics and Space Administration (NASA), and the NOAA 9 and NOAA 10 weather satellites are operated by the National Oceanic and Atmospheric Administration (NOAA). This paper is the third in a series that describes the ERBE mission in-orbit environments, instrument design and operational features, and data processing and validation procedures. This paper describes the in-flight operations for the ERBE instruments aboard the ERBS and NOAA 10 spacecraft for the period from February 1987 through February 1990. Validation and archival of radiation measurements made by ERBE instruments during this period were completed in May 1992. This paper covers normal and special operations of the spacecraft and instruments, operational anomalies, and the responses of the instruments to in-orbit and seasonal variations in the solar environment.

  10. Assessment of NOAA Processed OceanSat-2 Scatterometer Ocean Surface Vector Wind Products

    NASA Astrophysics Data System (ADS)

    Chang, P.; Jelenak, Z.; Soisuvarn, S.

    2011-12-01

    The Indian Space Research Organization (ISRO) launched the Oceansat-2 satellite on 23 September 2009. Oceansat-2 carries a radar scatterometer instrument (OSCAT) capable of measuring ocean surface vector winds (OSVW) and an ocean color monitor (OCM), which will retrieve sea spectral reflectance. Oceansat-2 is ISRO's second in a series of satellites dedicated to ocean research. It will provide continuity to the services and applications of the Oceansat-1 OCM data along with additional data from a Ku-band pencil beam scatterometer. Oceansat-2 is a three-axis, body stabilized spacecraft placed into a near circular sun-synchronous orbit, at an altitude of 720 kilometers (km), with an equatorial crossing time of around 1200 hours. ISRO, the National Oceanic and Atmospheric Administration (NOAA), the National Aeronautics and Space Administration (NASA) and the European Organization for the Exploitation of Meteorological Satellites (EUMETSAT) share the common goal of optimizing the quality and maximizing the utility of the Oceansat-2 data for the benefit of future global and regional scientific and operational applications. NOAA, NASA and EUMETSAT have been collaboratively working with ISRO on the assessment and analysis of OSCAT data to help facilitate continuation of QuikSCAT's decade-long Ku-band scatterometer data record. NOAA's interests are focused on the utilization of OSCAT data to support operational weather forecasting and warning in the marine environment. OSCAT has the potential to significantly mitigate the loss of NASA's QuikSCAT, which has negatively impacted NOAA's marine forecasting and warning services. Since March 2011 NOAA has been receiving near real time OSCAT measurements via EumetSat. NOAA has developed its own OSCAT wind processor. This processor produces ocean surface vector winds with resolution of 25km. Performance of NOAA OSCAT product will and its availability to larger user community will be presented and discussed.

  11. 15 CFR 995.28 - Use of NOAA emblem.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 15 Commerce and Foreign Trade 3 2011-01-01 2011-01-01 false Use of NOAA emblem. 995.28 Section 995... REQUIREMENTS FOR NOAA HYDROGRAPHIC PRODUCTS AND SERVICES CERTIFICATION REQUIREMENTS FOR DISTRIBUTORS OF NOAA HYDROGRAPHIC PRODUCTS Requirements for Certified Distributors and Value Added Distributors of NOAA ENC...

  12. NOAA's Space Weather Prediction Center, Forecast Office

    NASA Video Gallery

    The Forecast Office of NOAA's Space Weather Prediction Center is the nation's official source of alerts, warnings, and watches. The office, staffed 24/7, is always vigilant for solar activity that ...

  13. In Brief: NOAA predicts busy hurricane season

    NASA Astrophysics Data System (ADS)

    Zielinski, Sarah

    2007-06-01

    Scientists at NOAA's Climate Prediction Center estimate that there is a 75% chance that the 2007 Atlantic hurricane season will be more active than average, with 13-17 named storms, 7-10 hurricanes, and 3-5 hurricanes reaching Category 3 or higher. An average hurricane season has 11 named storms, 6 hurricanes, and 2 major hurricanes. According to Gerry Bell, NOAA's lead seasonal hurricane forecaster, the 2007 season could be in the higher range of predicted activity if a La Niña forms, or even higher if the La Niña is particularly strong. Last year, NOAA also predicted an above-normal Atlantic season; the actual season, however, was quiet, to which NOAA scientists credit an unexpected El Ni~o that developed rapidly and created an environment hostile to storm formation and strengthening.

  14. NOAA's Use of High-Resolution Imagery

    NASA Technical Reports Server (NTRS)

    Hund, Erik

    2007-01-01

    NOAA's use of high-resolution imagery consists of: a) Shoreline mapping and nautical chart revision; b) Coastal land cover mapping; c) Benthic habitat mapping; d) Disaster response; and e) Imagery collection and support for coastal programs.

  15. NOAA budget would boost satellite funding but cut some key areas

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    2012-03-01

    The White House's proposed fiscal year (FY) 2013 budget for the National Oceanic and Atmospheric Administration (NOAA), announced on 13 February, looks favorable at first glance. The administration's request calls for $5.1 billion, an increase of $153 million (3.1%) above the FY 2012 estimated budget. However, the increase for NOAA satellites is $163 million, which means that other areas within the agency would be slated for decreased funding, including programs within the National Ocean Service (NOS), National Marine Fisheries Service (NMFS), National Weather Service (NWS), and some NOAA education programs. The proposed overall budget for the agency “reflects the overarching importance of weather satellites to public safety, to national security, and to the economy,” NOAA director Jane Lubchenco said at a 16 February briefing, noting that difficult choices were made regarding the budget. “Due to significant resources required for our weather satellites and the economic conditions in the country, other parts of our budget have been reduced, in some cases quite significantly,” she said. She added that the imperative to fund both the Joint Polar Satellite System (JPSS) and geostationary satellites in FY 2013 “imposes serious constraints on the rest of NOAA's budget.”

  16. 78 FR 48859 - Proposed Information Collection; Comment Request; 2013 NOAA Engagement Survey Tool

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-12

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF COMMERCE... Engagement Survey Tool AGENCY: National Oceanic and Atmospheric Administration (NOAA), Commerce. ACTION... rather than the Office of Education and the Gulf of Mexico Regional Collaboration Team, as it...

  17. 75 FR 6354 - NOAA Great Lakes Habitat Restoration Program Project Grants under the Great Lakes Restoration...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-09

    ... of Grant Funds for Fiscal Year 2010, published in the Federal Register (75 FR 3101). That... contained in the Federal Register notice of February 11, 2008 (73 FR 7696), are applicable to this... National Oceanic and Atmospheric Administration RIN 0648-ZC10 NOAA Great Lakes Habitat Restoration...

  18. 77 FR 32572 - (NOAA) National Climate Assessment and Development Advisory Committee (NCADAC)

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-01

    ... National Oceanic and Atmospheric Administration (NOAA) National Climate Assessment and Development Advisory... National Climate Assessment and Development Advisory Committee (NCADAC) was established by the Secretary of... science and information pertaining to current and future impacts of climate. Time and Date: The...

  19. Accuracy assessment of NOAA's daily reference evapotranspiration maps for the Texas High Plains

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The National Oceanic and Atmospheric Administration (NOAA) provides daily reference ET for the continental U.S. using climatic data from North American Land Data Assimilation System (NLDAS). This data provides large scale spatial representation for reference ET, which is essential for regional scal...

  20. Accuracy assessment of NOAA gridded daily reference evapotranspiration for the Texas High Plains

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The National Oceanic and Atmospheric Administration (NOAA) provides daily reference evapotranspiration (ETref) maps for the contiguous United States using climatic data from North American Land Data Assimilation System (NLDAS). This data provides large-scale spatial representation of ETref, which i...

  1. 15 CFR 911.7 - Continuation of the NOAA Data Collection Systems.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 15 Commerce and Foreign Trade 3 2012-01-01 2012-01-01 false Continuation of the NOAA Data Collection Systems. 911.7 Section 911.7 Commerce and Foreign Trade Regulations Relating to Commerce and Foreign Trade (Continued) NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION, DEPARTMENT OF COMMERCE GENERAL REGULATIONS POLICIES AND PROCEDURES...

  2. 15 CFR 911.7 - Continuation of the NOAA Data Collection Systems.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 15 Commerce and Foreign Trade 3 2013-01-01 2013-01-01 false Continuation of the NOAA Data Collection Systems. 911.7 Section 911.7 Commerce and Foreign Trade Regulations Relating to Commerce and Foreign Trade (Continued) NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION, DEPARTMENT OF COMMERCE GENERAL REGULATIONS POLICIES AND PROCEDURES...

  3. 77 FR 60106 - Membership of the National Oceanic and Atmospheric Administration Performance Review Board

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-02

    ... National Oceanic and Atmospheric Administration Membership of the National Oceanic and Atmospheric Administration Performance Review Board AGENCY: National Oceanic and Atmospheric Administration (NOAA...., Director, Air Resources Laboratory, Office of Air Resources Laboratory, Office of Oceanic and......

  4. Budget Increases Proposed for NOAA and Energy Department

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    2009-05-01

    In addition to the Obama administration's proposed budget increases for NASA, the Environmental Protection Agency, and the U.S. Geological Survey (see Eos, 90(10), 83, 2009, and 90(20), 175, 2009), other federal Earth and space science agencies also would receive boosts in the proposed fiscal year (FY) 2010 budget. The proposed budget comes on top of the 2009 American Recovery and Reinvestment Act's (ARRA) US$18.3 billion in stimulus spending for research and development that can be apportioned between the FY 2009 and FY 2010 budgets. This news item focuses on the budget proposals for the National Oceanic and Atmospheric Administration (NOAA) and the Department of Energy (DOE). Next week, Eos will look at the budget proposal for the National Science Foundation.

  5. NOAA-USGS Debris-Flow Warning System - Final Report

    USGS Publications Warehouse

    NOAA-USGS Debris Flow Task Force

    2005-01-01

    Landslides and debris flows cause loss of life and millions of dollars in property damage annually in the United States (National Research Council, 2004). In an effort to reduce loss of life by debris flows, the National Oceanic and Atmospheric Administration's (NOAA) National Weather Service (NWS) and the U.S. Geological Survey (USGS) operated an experimental debris-flow prediction and warning system in the San Francisco Bay area from 1986 to 1995 that relied on forecasts and measurements of precipitation linked to empirical precipitation thresholds to predict the onset of rainfall-triggered debris flows. Since 1995, there have been substantial improvements in quantifying precipitation estimates and forecasts, development of better models for delineating landslide hazards, and advancements in geographic information technology that allow stronger spatial and temporal linkage between precipitation forecasts and hazard models. Unfortunately, there have also been several debris flows that have caused loss of life and property across the United States. Establishment of debris-flow warning systems in areas where linkages between rainfall amounts and debris-flow occurrence have been identified can help mitigate the hazards posed by these types of landslides. Development of a national warning system can help support the NOAA-USGS goal of issuing timely Warnings of potential debris flows to the affected populace and civil authorities on a broader scale. This document presents the findings and recommendations of a joint NOAA-USGS Task Force that assessed the current state-of-the-art in precipitation forecasting and debris-flow hazard-assessment techniques. This report includes an assessment of the science and resources needed to establish a demonstration debris-flow warning project in recently burned areas of southern California and the necessary scientific advancements and resources associated with expanding such a warning system to unburned areas and, possibly, to a

  6. NOAA tools to support CSC and LCC regional climate science priorities in the western Gulf of Mexico

    NASA Astrophysics Data System (ADS)

    Brown, D. P.; Marcy, D.; Robbins, K.; Shafer, M.; Stiller, H.

    2012-12-01

    The National Oceanic and Atmospheric Administration (NOAA) is an active regional partner with the Department of Interior (DOI) in supplying and supporting the delivery of climate science and services. A primary mechanism for NOAA-DOI coordination at the regional scale is the Landscape Conservation Cooperative (LCC) network, which is supported in part by DOI Climate Science Centers (CSC). Together, the CSCs and LCCs provide a framework to identify landscape-scale science and services priorities for conservation and management. As a key partner of the CSCs and an active member of many LCCs, NOAA is working to ensure its own regional product and service delivery efforts will help address these conservation and management challenges. Two examples of NOAA's regional efforts are highlighted here, with a focus on the coastal and interior geographies of the western Gulf of Mexico where NOAA partners with the South Central CSC and participates as a member of the Gulf Coast Prairie LCC. Along the Texas coastline, a sea level rise and coastal flooding impacts viewer, produced by NOAA's Coastal Services Center and available via its Digital Coast interface, allows constituents to visualize estimates of sea level rise, measures of uncertainty, flood frequencies, and environmental (e.g., marsh migration) and socioeconomic (e.g., tidal flooding of built environments) impacts. In the interior of Texas and Louisiana, NOAA's Southern Regional Climate Center is leading a consortium of partners in the development of a unified source of regional water reservoir information, including current conditions, a historical database, and web-based visualization tools to illustrate spatio-temporal variations in water availability to a broad array of hydrological, agricultural, and other customers. These two examples of NOAA products can, in their existing forms, support regional conservation and management priorities for CSCs and LCCs by informing vulnerability assessments and adaptation

  7. NOAA Plans for Geomagnetic Storm Observations

    NASA Astrophysics Data System (ADS)

    Diedrich, B. L.; Biesecker, D. A.; Mulligan, P.; Simpson, M.

    2012-12-01

    For many years, NOAA has issued geomagnetic storm watches and warnings based on coronal mass ejection (CME) imagery and in-situ solar wind measurements from research satellites. The NOAA Satellite and Information Service (NESDIS) recognizes the importance of this service to protecting technological infrastructure including power grids, polar air travel, and satellite navigation, so is actively planning to replace these assets to ensure their continued availability. NOAA, NASA, and the US Air Force are working on launching the first operational solar wind mission in 2014, the Deep Space Climate Observatory (DSCOVR), to follow NASA's Advanced Composition Explorer (ACE) in making solar wind measurements at the sun-Earth L1 for 15-60 minute geomagnetic storm warning. For continuing operations after the DSCOVR mission, one technology NOAA is looking at is solar sails that could greatly improve the lead time of geomagnetic storm warnings by stationkeeping closer to the sun than L1. We are working with NASA and private industry on the Sunjammer solar sail demonstration mission to test making solar wind measurements from a solar sail in the sun-Earth L1 region. NOAA uses CME imagery from the NASA/ESA Solar and Heliospheric Observatory (SOHO) and the NASA Solar Terrestrial Relations Observatory (STEREO) satellites to issue 1-3 day geomagnetic storm watches. For the future, NOAA worked with the Naval Research Laboratory (NRL) to develop a Compact Coronagraph (CCOR) through Phase A, and is studying ways to complete instrument development and test fly it for use in the future.

  8. Latest developments of geostationary microwave sounder technologies for NOAA's mission

    NASA Astrophysics Data System (ADS)

    Bajpai, Shyam; Madden, Michael; Chu, Donald; Yapur, Martin

    2006-12-01

    The National Oceanic and Atmospheric Administration (NOAA) have been flying microwave sounders since 1975 on Polar Operational Environmental Satellites (POES). Microwave observations have made significant contributions to the understanding of the atmosphere and earth surface. This has helped in improving weather and storm tracking forecasts. However, NOAA's Geostationary Operational Environmental Satellites (GOES) have microwave requirements that can not be met due to the unavailability of proven technologies. Several studies of a Geostationary Microwave Sounder (GMS) have been conducted. Among those, are the Geostationary Microwave Sounder (GEM) that uses a mechanically steered solid dish antenna and the Geostationary Synthetic Thinned Aperture Radiometer (GeoSTAR) that utilizes a sparse aperture array. Both designs take advantage of the latest developments in sensor technology. NASA/Jet Propulsion Lab (JPL) has recently successfully built and tested a prototype ground-based GeoSTAR at 50 GHz frequency with promising test results. Current GOES IR Sounders are limited to cloud top observations. Therefore, a sounding suite of IR and Microwave should be able to provide observations under clear as well as cloudy conditions all the time. This paper presents the results of the Geostationary Microwave Sounder studies, user requirements, frequencies, technologies, limitations, and implementation strategies.

  9. NOAA's Weather-Ready Nation: Progress and Plans

    NASA Astrophysics Data System (ADS)

    Scharfenberg, K.

    2014-12-01

    The National Oceanic and Atmospheric Administration (NOAA) Weather-Ready Nation program is about building community resilience in the face of increasing vulnerability to extreme weather and water events. Through community partnerships and infusion of new science and technology, better preparedness is reducing the devastating impacts of these extreme events. For the past three years, the National Weather Service has been leading the Weather-Ready Nation strategy through a number of initiatives, focused around a series of pilot projects for transforming internal National Weather Service Operations. The "Emergency Response Specialist" technical role and associated training has been developed to better apply new hazardous weather research and technology to critical community decisions. High-resolution storm surge inundation mapping was introduced to the public in 2014 during Hurricane Arthur with successful results. The dual-polarization upgrade to the Nation's weather radar network has also been completed, with successful application of improved tornado, flash flood, and winter storm warning services. This presentation will focus on the application of these science initiatives under the NOAA Weather-Ready Nation program, and will further discuss NWS plans for operational application of future advances in research and technology.

  10. NOAA GOES Satellite Sees March 12/13 Storm

    NASA Video Gallery

    This animation of NOAA's GOES satellite data shows the progression of the major winter storm over the U.S. Mid-Atlantic and Northeastern U.S. on March 12 and 13.Credit: NASA/NOAA GOES Project, Denn...

  11. 15 CFR 996.30 - Use of the NOAA emblem.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 15 Commerce and Foreign Trade 3 2011-01-01 2011-01-01 false Use of the NOAA emblem. 996.30 Section... REQUIREMENTS FOR NOAA HYDROGRAPHIC PRODUCTS AND SERVICES QUALITY ASSURANCE AND CERTIFICATION REQUIREMENTS FOR NOAA HYDROGRAPHIC PRODUCTS AND SERVICES Other Quality Assurance Program Matters § 996.30 Use of...

  12. Evolution of the NOAA National Weather Service Satellite Broadcast Network (SBN) to Europe's DVB-S satellite communications technology standard

    NASA Astrophysics Data System (ADS)

    Cragg, Phil; Brockman, William E.

    2006-08-01

    The National Oceanic and Atmospheric Administration's (NOAA) National Weather Service (NWS) uses a commercial Satellite Broadcast Network (SBN) to distribute weather data to the NWS AWIPS workstations and National Centers and to NWS Family of Service Users. Advances in science and technology from NOAA's observing systems, such as remote sensing satellites and NEXRAD radars, and advances in Numeric Weather Prediction have greatly increased the volume of data to be transmitted via the SBN. The NOAA-NWS SBN Evolution Program did a trade study resulting in the selection of Europe's DVB-S communication protocol as the basis for enabling a significant increase in the SBN capacity. The Digital Video Broadcast (DVB) group, started to develop digital TV for Europe through satellite broadcasting, has become the current standard for defining technology for satellite broadcasting of digital data for much of the world. NOAA-NWS implemented the DVB-S with inexpensive, Commercial Off The Shelf receiving equipment. The modernized NOAA-NWS SBN meets current performance goals and provides the basis for continued future expansion with no increase in current communication costs. This paper discusses aspects of the NOAA-NWS decision and the migration to the DVB-S standard for its commercial satellite broadcasts of observations and Numerical Weather Prediction data.

  13. The NOAA Satellite Observing System Architecture Study

    NASA Technical Reports Server (NTRS)

    Volz, Stephen; Maier, Mark; Di Pietro, David

    2016-01-01

    NOAA is beginning a study, the NOAA Satellite Observing System Architecture (NSOSA) study, to plan for the future operational environmental satellite system that will follow GOES and JPSS, beginning about 2030. This is an opportunity to design a modern architecture with no pre-conceived notions regarding instruments, platforms, orbits, etc. The NSOSA study will develop and evaluate architecture alternatives to include partner and commercial alternatives that are likely to become available. The objectives will include both functional needs and strategic characteristics (e.g., flexibility, responsiveness, sustainability). Part of this study is the Space Platform Requirements Working Group (SPRWG), which is being commissioned by NESDIS. The SPRWG is charged to assess new or existing user needs and to provide relative priorities for observational needs in the context of the future architecture. SPRWG results will serve as input to the process for new foundational (Level 0 and Level 1) requirements for the next generation of NOAA satellites that follow the GOES-R, JPSS, DSCOVR, Jason-3, and COSMIC-2 missions.

  14. NOAA Inter-Agency Networking for Open Data and Research Results

    NASA Astrophysics Data System (ADS)

    de la Beaujardiere, J.

    2015-12-01

    The US National Oceanic and Atmospheric Administration (NOAA) generates tens of terabytes of data per day from hundreds of sensors on satellites, radars, aircraft, ships, and buoys, and from numerical models. With rare exceptions, all of these data should be made publicly accessible in a usable fashion. NOAA has long been both an advocate and a practitioner of open data, and has observations going back 150 years in its archives. The NOAA data management community therefore welcomed the White House mandates on Open Data and Open Research, and has striven to improve standardization internally and in collaboration with other organizations. This paper will summarize the state of inter-agency networking by NOAA, and will discuss future perspectives, in particular the need to achieve a state where the appropriate technology choices for particular classes of geospatial data are obvious and beyond discussion, and where data sharing and metadata creation are built into agency workflows for project planning, approval, and execution, so that instead of writing and enforcing mandates we can focus on actually using data from multiple sources to improve understanding and decision-making.

  15. 15 CFR Appendix A to Part 950 - Schedule of User Fees for Access to NOAA Environmental Data

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 15 Commerce and Foreign Trade 3 2012-01-01 2012-01-01 false Schedule of User Fees for Access to NOAA Environmental Data A Appendix A to Part 950 Commerce and Foreign Trade Regulations Relating to Commerce and Foreign Trade (Continued) NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION, DEPARTMENT OF COMMERCE GENERAL REGULATIONS OF THE...

  16. Simulated NASA Satellite Data Products for the NOAA Integrated Coral Reef Observation Network/Coral Reef Early Warning System

    NASA Technical Reports Server (NTRS)

    Estep, Leland; Spruce, Joseph P.

    2007-01-01

    This RPC (Rapid Prototyping Capability) experiment will demonstrate the use of VIIRS (Visible/Infrared Imager/Radiometer Suite) and LDCM (Landsat Data Continuity Mission) sensor data as significant input to the NOAA (National Oceanic and Atmospheric Administration) ICON/ CREWS (Integrated Coral Reef Observation System/Coral Reef Early Warning System). The project affects the Coastal Management Program Element of the Applied Sciences Program.

  17. Educator House Call: On-Line Data for Educators' Needs Assessment--Summary Report. NOAA Technical Memorandum GLERL-149

    ERIC Educational Resources Information Center

    Sturtevant, Rochelle A.; Marshall, Ann

    2009-01-01

    On July 15, 2009, National Oceanic and Atmospheric Administration's (NOAA's) Great Lakes Environmental Research Laboratory (GLERL) co-hosted a focus group--Educator House Calls: On-Line Data for Educators. The focus group was conducted at GLERL's main laboratory in Ann Arbor. The workshop was organized and funded by COSEE Great Lakes with student…

  18. NOAA Climate Users Engagement Using Training Activities

    NASA Astrophysics Data System (ADS)

    Timofeyeva, M. M.; Verdin, J. P.; Jones, J.; Pulwarty, R. S.

    2009-12-01

    NOAA National Weather Service (NWS) Climate Services Training Program was initiated in 2001. The training original target audience was NOAA NWS regional and local climate services workforce. As a result of eight-year-long development of the training program, NWS offers two training courses and about 25 online distance learning modules covering various climate topics: climate data and observations, climate variability and change, NWS national and local climate products, their tools, skill, and interpretation. Leveraging climate information and expertise available at all NOAA line offices and partners allows delivery of the most relevant, advanced knowledge and is a very critical aspect of the training program. In 2009 the training program launched a pilot project that expanded the training opportunities for specific user groups. The California Department of Water Resources (DWR) requested a training course with emphasis on Climate, Drought and Remote Sensing for their water resources managers, hydrologists, and engineering staff. The National Integrated Drought Information System (NIDIS) co-sponsored the project. Developing the course NOAA, NIDIS, and DWR staff worked together testing different approaches in order to identify the most appropriate balance between gaps in the target audience climate knowledge and technical level needed for the information communication and delivery. The two-day course was offered in June 2009 for 35 trainees with classroom recording for further dissemination of the training materials in form of online audio-visual presentations (webcasts). The training event brought together NOAA staff and partners from U.S. Geological Survey, the Western Regional Climate Center, NASA, academia, and DWR staff and provided a valuable opportunity for curriculum development and expertise exchange. The course final discussion engaged participants in process of identifying additional climate products and services needed for regional and sector specific

  19. NOAA Atmospheric Baseline Observatories in the Arctic: Alaska & Greenland

    NASA Astrophysics Data System (ADS)

    Vasel, B. A.; Butler, J. H.; Schnell, R. C.; Crain, R.; Haggerty, P.; Greenland, S.

    2013-12-01

    The National Oceanic and Atmospheric Administration (NOAA) operates two year-round, long-term climate research facilities, known as Atmospheric Baseline Observatories (ABOs), in the Arctic Region. The Arctic ABOs are part of a core network to support the NOAA Global Monitoring Division's mission to acquire, evaluate, and make available accurate, long-term records of atmospheric gases, aerosol particles, and solar radiation in a manner that allows the causes of change to be understood. The observatory at Barrow, Alaska (BRW) was established in 1973 and is now host to over 200 daily measurements. Located a few kilometers to the east of the village of Barrow at 71.3° N it is also the northernmost point in the United States. Measurement records from Barrow are critical to our understanding of the Polar Regions including exchange among tundra, atmosphere, and ocean. Multiple data sets are available for carbon cycle gases, halogenated gases, solar radiation, aerosol properties, ozone, meteorology, and numerous others. The surface, in situ carbon dioxide record alone consists of over 339,000 measurements since the system was installed in July 1973. The observatory at Summit, Greenland (SUM) has been a partnership with the National Science Foundation (NSF) Division of Polar Programs since 2004, similar to that for South Pole. Observatory data records began in 1997 from this facility located at the top of the Greenland ice sheet at 72.58° N. Summit is unique as the only high-altitude (3200m), mid-troposphere, inland, Arctic observatory, largely free from outside local influences such as thawing tundra or warming surface waters. The measurement records from Summit help us understand long-range transport across the Arctic region, as well as interactions between air and snow. Near-real-time data are available for carbon cycle gases, halogenated gases, solar radiation, aerosol properties, meteorology, ozone, and numerous others. This poster will highlight the two facilities

  20. Validation of the Version 1 NOAA/NASA Pathfinder Sea Surface Temperature Data Set

    NASA Technical Reports Server (NTRS)

    Smith, Elizabeth A.

    1998-01-01

    A high-resolution, global satellite-derived sea surface temperature (SST) data set called Pathfinder, from the Advanced Very High Resolution Radiometer (AVHRR) aboard the NOAA Polar Orbiters, is available from the Jet Propulsion Laboratory Physical Oceanography Distributed Active Archive Center (JPL PO.DAAC). Suitable for research as well as education, the Pathfinder SST data set is a result of a collaboration between the National Oceanographic and Atmospheric Administration (NOAA), the National Aeronautics and Space Administration (NASA) and investigators at several universities. NOAA and NASA are the sponsors of the Pathfinder Program, which takes advantage of currently archived Earth science data from satellites. Where necessary, satellite sensors have been intercalibrated, algorithms improved and processing procedures revised, in order to produce long time-series, global measurements of ocean, land and atmospheric properties necessary for climate research. Many Pathfinder data sets are available to researchers now, nearly a decade before the first launch of NASA's Earth Observing System (EOS). The lessons learned from the Pathfinder programs will facilitate the processing and management of terabytes of data from EOS. The Oceans component of Pathfinder has undertaken to reprocess all Global Area Coverage (GAC) data acquired by the 5-channel AVHRRs since 1981. The resultant data products are consistent and stably calibrated [Rao, 1993a, Rao, 1993b, Brown et al., 1993], Earth-gridded SST fields at a variety of spatial and temporal resolutions.

  1. Solutions Network Formulation Report. Improving NOAA's Tides and Currents Through Enhanced Data Inputs from NASA's Ocean Surface Topography Mission

    NASA Technical Reports Server (NTRS)

    Guest, DeNeice C.

    2006-01-01

    The Nation uses water-level data for a variety of practical purposes, including hydrography, nautical charting, maritime navigation, coastal engineering, and tsunami and storm surge warnings (NOAA, 2002; Digby et al., 1999). Long-term applications include marine boundary determinations, tidal predictions, sea-level trend monitoring, oceanographic research, and climate research. Accurate and timely information concerning sea-level height, tide, and ocean current is needed to understand their impact on coastal management, disaster management, and public health. Satellite altimeter data products are currently used by hundreds of researchers and operational users to monitor ocean circulation and to improve scientists understanding of the role of the oceans in climate and weather. The NOAA (National Oceanic and Atmospheric Administration) National Ocean Service has been monitoring sea-level variations for many years (NOAA, 2006). NOAA s Tides & Currents DST (decision support tool, managed by the Center for Operational Oceanographic Products and Services, is the portal to a vast collection of oceanographic and meteorological data (historical and real-time), predictions, and nowcasts and forecasts. This report assesses the capacity of NASA s satellite altimeter data to meet societal decision support needs through incorporation into NOAA s Tides & Currents.

  2. Improvements in NOAA's Operational Tsunameter Network since December 2004

    NASA Astrophysics Data System (ADS)

    Bouchard, R.; Kohler, C.; McArthur, S.; Burnett, W. H.; Wells, W. I.; Luke, R.

    2009-12-01

    In December 2004 during the devastating Sumatran Tsunami, the National Oceanic and Atmospheric Administration (NOAA) had five tsunameter stations established in the North Pacific Ocean and one in the South Pacific Ocean operated and maintained by NOAA’s National Data Buoy Center (NDBC). The original six tsunameters employed the technology of the first generation Deep-ocean Assessment and Reporting of Tsunamis (DART I) developed by NOAA’s Pacific Marine Environmental Laboratory (PMEL) and successfully transitioned to NDBC in 2003. The technology consists of a Bottom Pressure Recorder (BPR) that makes pressure measurements near the sea-floor and a surface buoy. It takes less than three minutes for data to get from the BPR, which can reside to depths of 6000 m, to users. The BPR contains a tsunami detection algorithm that will place the BPR in rapid reporting mode(also know as Event Mode). The two most profound improvements to the network were its expansion to 39 stations and the transition and upgrade to the second generation DART II systems. In the aftermath of the Sumatran Tsunami, NOAA expanded the network to 39 stations to bolster the US tsunami warning system by providing coastal communities in the Pacific, Atlantic, Caribbean and the Gulf of Mexico with faster and more accurate tsunami warnings. Cooperating NOAA offices selected the sites in consultation with the US Geological Survey and other interested parties. Since their initial establishment, NDBC has relocated some stations to improve data availability by reducing the risks of vessel collision, extreme winds, seas, and currents. NDBC completed the network in March 2008. During the expansion of the NOAA network, NDBC assisted several countries in the deploying and distributing data from their own DART II tsunameters. NDBC completed the upgraded of all stations to the DART II systems by the end of 2007. The significant capability fielded by the DART II technology was the bi-directional communications

  3. Optical Passive Sensor Calibration for Satellite Remote Sensing and the Legacy of NOAA and NIST Cooperation

    PubMed Central

    Datla, Raju; Weinreb, Michael; Rice, Joseph; Johnson, B. Carol; Shirley, Eric; Cao, Changyong

    2014-01-01

    This paper traces the cooperative efforts of scientists at the National Oceanic and Atmospheric Administration (NOAA) and the National Institute of Standards and Technology (NIST) to improve the calibration of operational satellite sensors for remote sensing of the Earth’s land, atmosphere and oceans. It gives a chronological perspective of the NOAA satellite program and the interactions between the two agencies’ scientists to address pre-launch calibration and issues of sensor performance on orbit. The drive to improve accuracy of measurements has had a new impetus in recent years because of the need for improved weather prediction and climate monitoring. The highlights of this cooperation and strategies to achieve SI-traceability and improve accuracy for optical satellite sensor data are summarized1. PMID:26601030

  4. At-sea test validation data needed to verify the NOAA/DOE CWP Analytic Code

    SciTech Connect

    Major, R. A.

    1980-03-12

    Test data requirements are developed in this memorandum for the one-third scale Ocean Thermal Energy Conversion (OTEC) cold water pipe (CWP) at-sea tests. A major goal of the at-sea tests is to collect sufficient data so that the National Oceanic and Atmospheric Administration (NOAA)/Department of Energy (DOE) CWP Analytic Code can be validated. The code is examined to determine the individual responses requiring verification. The wave environment is then considered for prototype survival and the scaled test. The expected response of the OTEC CWP test article in the test environment is used to form a basis of the test plan. Requirements for the tests of standard configurations of the OTEC CWP test system are first planned followed by requirements for tests of alternate configurations and evolutions. The final product is a set of justified NOAA/CWP analytic code validation requirements.

  5. BOREAS AFM-6 NOAA/ETL 35 GHz Cloud/Turbulence Radar GIF Images

    NASA Technical Reports Server (NTRS)

    Martner, Brooks E.; Newcomer, Jeffrey A. (Editor); Hall, Forrest G.; Smith, David E. (Technical Monitor)

    2000-01-01

    The Boreal Ecosystem-Atmosphere Study (BOREAS) Airborne Fluxes and Meteorology (AFM)-6 team from the National Oceanic and Atmospheric Administration/Environment Technology Laboratory (NOAA/ETL) operated a 35-GHz cloud-sensing radar in the Northern Study Area (NSA) near the Old Jack Pine (OJP) tower from 16 Jul 1994 to 08 Aug 1994. This data set contains a time series of GIF images that show the structure of the lower atmosphere. The NOAA/ETL 35-GHz cloud/turbulence radar GIF images are available from the Earth Observing System Data and Information System (EOSDIS) Oak Ridge National Laboratory (ORNL) Distributed Active Archive Center (DAAC). The data files are available on a CD-ROM (see document number 20010000884).

  6. Optical Passive Sensor Calibration for Satellite Remote Sensing and the Legacy of NOAA and NIST Cooperation.

    PubMed

    Datla, Raju; Weinreb, Michael; Rice, Joseph; Johnson, B Carol; Shirley, Eric; Cao, Changyong

    2014-01-01

    This paper traces the cooperative efforts of scientists at the National Oceanic and Atmospheric Administration (NOAA) and the National Institute of Standards and Technology (NIST) to improve the calibration of operational satellite sensors for remote sensing of the Earth's land, atmosphere and oceans. It gives a chronological perspective of the NOAA satellite program and the interactions between the two agencies' scientists to address pre-launch calibration and issues of sensor performance on orbit. The drive to improve accuracy of measurements has had a new impetus in recent years because of the need for improved weather prediction and climate monitoring. The highlights of this cooperation and strategies to achieve SI-traceability and improve accuracy for optical satellite sensor data are summarized. PMID:26601030

  7. NOAA Climate Data Records Access for Applications

    NASA Astrophysics Data System (ADS)

    Stachniewicz, J. S.; Cecil, D.; Hollingshead, A.; Newport, B. J.; Wunder, D.

    2015-12-01

    There are many potential uses of NOAA Climate Data Records (CDRs) for decision-making and catastrophic risk management assessment activities in the federal, state, and local government and private sectors, in addition to their traditional uses by the academic/scientific community. There is growing interest in using NOAA CDRs for such applications and straightforward access to the data is essential if these applications are to be successful. User engagement activities determine the types of data that users need, as well as the spatial and temporal subsets. This talk will present the access methods currently available and in development. Alternate representations and sources of some CDRs will also be discussed. Recent improvements include: 1. CDR information web page 2. Dataset types, sizes, growth, latency, grid/swath 3. Dataset discovery, data access, and sub-setting. 4. Knowing our users and their needs. 5. Known uses of some CDRs. 6. Migration to CLASS. 7. Other representations - GeoTIFF, Obs4MIPS 8. Cloud applications - Google, Microsoft

  8. Historical Space Weather Datasets within NOAA

    NASA Astrophysics Data System (ADS)

    Denig, W. F.; Mabie, J. J.; Horan, K.; Clark, C.

    2013-12-01

    The National Geophysical Data Center (NGDC) is primarily responsible for scientific data stewardship of operational space weather data from NOAA's fleet of environmental satellites in geostationary and polar, low-earth orbits. In addition to this and as the former World Data Center for Solar Terrestrial Physics from 1957 to 2011 NGDC acquired a large variety of solar and space environmental data in differing formats including paper records and on film. Management of this heterogeneous collection of environmental data is a continued responsibility of NGDC as a participant in the new World Data System. Through the former NOAA Climate Data Modernization Program many of these records were converted to digital format and are readily available online. However, reduced funding and staff have put a strain on NGDC's ability to effectively steward these historical datasets, some of which are unique and, in particular cases, were the basis of fundamental scientific breakthroughs in our understanding of the near-earth space environment. In this talk, I will provide an overview of the historical space weather datasets which are currently managed by NGDC and discuss strategies for preserving these data during these fiscally stressing times.

  9. Distributed Datamining for NASA/NOAA databases

    NASA Astrophysics Data System (ADS)

    Chen, R.; Park, B. H.; Sivakumar, K.; Kargupta, H.; Ma, J.; da, M.

    2002-12-01

    sources: NASA DAO data and NOAA SAA data. The NASA DAO data is a subset of the Data Assimilation Office's (DAO) monthly mean data set. It has global spatial coverage and a temporal coverage ranging from March 1980 to November 1993. The NOAA SAA data is a product of NOAA and US department of defense (DOD) US Polar-orbiting environment satellites (POES). Seventeen features from NASA DAO and eight features from NOAA SAA data was used in our experiments. A Bayesian network (BN) model was first contructed from the two datasets combined. This BN, referred to as the centralized BN, served as the ground truth for comparing the performance of our collective BN learning algorithm. Our preliminary experiments reveal a number of interesting trends. Correlations between specific DAO and NOAA data features are evident. Specific features are consistently observed as root nodes in the BN, suggesting that these features could possibly be the ``cause'' for certain phenomenon. Seasonal trends in the data reflect appropriate seasonal changes in the BN model.

  10. Operational applications of NOAA-VHRR imagery in Alaska

    NASA Technical Reports Server (NTRS)

    Seifert, R. D.; Carlson, R. F.; Kane, D. L.

    1975-01-01

    Near-real time operational applications of NOAA satellite enhanced thermal infrared imagery to snow monitoring for river flood forecasts, and a photographic overlay technique of imagery to enhance snowcover are presented. Ground truth comparisons show a thermal accuracy of approximately + or - 1 C for detection of surface radiative temperatures. The application of NOAA imagery to flood mapping is also presented.

  11. NOAA ESRL Atmospheric Research Operations in California

    NASA Astrophysics Data System (ADS)

    Vasel, B. A.; Borgeld, J.; Ives, M.; Conway, T.; Karion, A.; Fischer, M. L.; Andrews, A. E.; Sweeney, C.; Andrews, B.; Oltmans, S. J.; Johnson, B. J.; Patrick, L. C.; Berkoff, T.

    2009-12-01

    In 2009 the NOAA Earth System Research Laboratory (ESRL) had over two dozen operational research programs within the state of California. These diverse research missions include the Fire Weather Service and Support, the Pt Sur Debris Flow Project, and the Unmanned Aircraft Systems (UAS) regional test bed. The ESRL Global Monitoring Division had 10 atmospheric measurement programs with a common goal to understand the regional and global climate impacts in and around California. The NOAA Trinidad Head (THD) baseline observatory, run in cooperation with Humboldt State University (HSU), was recently promoted to the top-tier WMO/Global Atmospheric Watch (GAW) global station in 2009. The Trinidad Head observatory was strategically located (April 2002) along the west coast to monitor the air entering the United States and is now being impacted by effluents and anthropogenic aerosols and gases from booming Asian economies. Recent forest fire seasons in CA have had dramatic effects on aerosol properties and ozone concentrations measured at the THD site. Light aircraft flights made by NOAA/ESRL as part of the Airborne Greenhouse Emissions Survey (AGES) campaign in collaboration with Lawrence Berkeley National Lab and UC Davis in the spring and summer of 2008 captured large signals indicative of urban air plumes with highly correlated CO2, CH4, CO, as well as agricultural signatures with enhanced CH4 coincident with depleted CO2. These flights also captured a large signal from the northern CA wildfires enabling the comparison of signatures from forest fires to other sources. Ozonesonde balloon flights have been done weekly at the THD site since August of 1997 and bi-monthly vertical aircraft profiles above THD for carbon cycle gases (>50 gas species) began in September of 2003. In 2008 carbon cycle flasks were added to the HSU research vessel, the Coral Sea, to obtain surface values ~20 nautical miles offshore from the THD observatory. Particular attention will be paid to the

  12. The NOAA-NASA CZCS Reanalysis Effort

    NASA Technical Reports Server (NTRS)

    Gregg, Watson W.; Conkright, Margarita E.; OReilly, John E.; Patt, Frederick S.; Wang, Meng-Hua; Yoder, James; Casey-McCabe, Nancy; Koblinsky, Chester J. (Technical Monitor)

    2001-01-01

    Satellite observations of global ocean chlorophyll span over two decades. However, incompatibilities between processing algorithms prevent us from quantifying natural variability. We applied a comprehensive reanalysis to the Coastal Zone Color Scanner (CZCS) archive, called the NOAA-NASA CZCS Reanalysis (NCR) Effort. NCR consisted of 1) algorithm improvement (AI), where CZCS processing algorithms were improved using modernized atmospheric correction and bio-optical algorithms, and 2) blending, where in situ data were incorporated into the CZCS AI to minimize residual errors. The results indicated major improvement over the previously available CZCS archive. Global spatial and seasonal patterns of NCR chlorophyll indicated remarkable correspondence with modern sensors, suggesting compatibility. The NCR permits quantitative analyses of interannual and interdecadal trends in global ocean chlorophyll.

  13. NOAA's Portfolio of Operational Climate Data Records

    NASA Astrophysics Data System (ADS)

    Newport, B. J.; Cecil, D.; Hutchins, C.; Preston, C.; Stachniewicz, J. S.; Wunder, D.

    2015-12-01

    NOAA's Climate Data Record (CDR) Program was established by the National Centers for Environmental Information (NCEI) (formerly the National Climatic Data Center) in order to develop and implement a robust, sustainable, and scientifically defensible approach to producing and preserving climate records from satellite data. Since its inception in 2009 the CDR Program has transitioned 30 CDRs developed by various research groups to an initial operational state at NCEI. As a result of this transition the CDR dataset, metadata, documentation, and source code are archived by NCEI and accessible to the public, and most of the datasets are being extended by the Principal Investigator with CDR Program support. Consistency is maintained by using a formal change control process, with reprocessing and re-archiving as needed. The current portfolio of operational CDRs includes 15 Atmospheric CDRs, four Oceanic CDRs, four Terrestrial CDRs, and seven Fundamental CDRs. The main features of the portfolio will be presented, along with some potential and emerging uses.

  14. The NASA/NOAA Electronic Theater

    NASA Technical Reports Server (NTRS)

    Hasler, A. F.

    2003-01-01

    The NASA/NOAA Electronic Theater presents Earth science observations and visualizations from space in a historical perspective. Fly in from outer space to Cambridge and Harvard University. Zoom through the Cosmos to SLC and site of the 2002 Winter Olympics using 1 m IKONOS "Spy Satellite" data. Contrast the 1972 Apollo 17 "Blue Marble" image of the Earth with the latest US and International global satellite images that allow us to view our Planet from any vantage point. See the latest spectacular images from NASA/NOAA remote sensing missions like Terra, GOES, TRMM, SeaWiFS, & Landsat 7, of storms & fires like Hurricane Isabel and the LNSan Diego firestorms of 2003. See how High Definition Television (HDTV) is revolutionizing the way we do science communication. Take the pulse of the planet on a daily, annual and 30-year time scale. See daily thunderstorms, the annual blooming of the northern hemisphere landmasses and oceans, fires in Africa, dust storms in Iraq, and carbon monoxide exhaust from global burning. See visualizations featured on Newsweek, TIME, National Geographic, Popular Science covers & National & International Network TV. Spectacular new global visualizations of the observed and simulated atmosphere & oceans are shown. See the currents and vortexes in the oceans that bring up the nutrients to feed tiny plankton and draw the fish, whales and fishermen. See the how the ocean blooms in response to El Niiioh Niiia climate changes. The Etheater will be presented using the latest High Definition TV (HDTV) and video projection technology on a large screen. See the global city lights, and the great NE US blackout of August 2003 observed by the "night-vision" DMSP satellite.

  15. NOAA's Integrated Tsunami Database: Data for improved forecasts, warnings, research, and risk assessments

    NASA Astrophysics Data System (ADS)

    Stroker, Kelly; Dunbar, Paula; Mungov, George; Sweeney, Aaron; McCullough, Heather; Carignan, Kelly

    2015-04-01

    The National Oceanic and Atmospheric Administration (NOAA) has primary responsibility in the United States for tsunami forecast, warning, research, and supports community resiliency. NOAA's National Geophysical Data Center (NGDC) and co-located World Data Service for Geophysics provide a unique collection of data enabling communities to ensure preparedness and resilience to tsunami hazards. Immediately following a damaging or fatal tsunami event there is a need for authoritative data and information. The NGDC Global Historical Tsunami Database (http://www.ngdc.noaa.gov/hazard/) includes all tsunami events, regardless of intensity, as well as earthquakes and volcanic eruptions that caused fatalities, moderate damage, or generated a tsunami. The long-term data from these events, including photographs of damage, provide clues to what might happen in the future. NGDC catalogs the information on global historical tsunamis and uses these data to produce qualitative tsunami hazard assessments at regional levels. In addition to the socioeconomic effects of a tsunami, NGDC also obtains water level data from the coasts and the deep-ocean at stations operated by the NOAA/NOS Center for Operational Oceanographic Products and Services, the NOAA Tsunami Warning Centers, and the National Data Buoy Center (NDBC) and produces research-quality data to isolate seismic waves (in the case of the deep-ocean sites) and the tsunami signal. These water-level data provide evidence of sea-level fluctuation and possible inundation events. NGDC is also building high-resolution digital elevation models (DEMs) to support real-time forecasts, implemented at 75 US coastal communities. After a damaging or fatal event NGDC begins to collect and integrate data and information from many organizations into the hazards databases. Sources of data include our NOAA partners, the U.S. Geological Survey, the UNESCO Intergovernmental Oceanographic Commission (IOC) and International Tsunami Information Center

  16. Space Weather impact on the degradation of NOAA POES MEPED proton detectors

    NASA Astrophysics Data System (ADS)

    Glesnes Ødegaard, Linn-Kristine; Nesse Tyssøy, Hilde; Jakobsen Sandanger, Marit Irene; Stadsnes, Johan; Søraas, Finn

    2016-06-01

    The Medium Energy Proton and Electron Detector (MEPED) on board the National Oceanic and Atmospheric Administration Polar Orbiting Environmental Satellites (NOAA POES) is known to degrade with time. In recent years a lot of effort has been put into calibrating the degraded proton detectors. We make use of previous work and show that the degradation of the detectors can be attributed to the radiation dose of each individual instrument. However, the effectiveness of the radiation in degrading the detector is modulated when it is weighted by the mean ap index, increasing the degradation rate in periods with high geomagnetic activity, and decreasing it through periods of low activity. When taking ap and the radiation dose into account, we find that the degradation rate is independent of spacecraft and detector pointing direction. We have developed a model to estimate the correction factor for all the MEPED detectors as a function of accumulated corrected flux and the ap index. We apply the routine to NOAA POES spacecraft starting with NOAA-15, including the European satellites MetOp-02 and MetOp-01, and estimate correction factors.

  17. Detection and mapping vegetation cover based on the Spectral Angle Mapper algorithm using NOAA AVHRR data

    NASA Astrophysics Data System (ADS)

    Yagoub, Houria; Belbachir, Ahmed Hafid; Benabadji, Noureddine

    2014-06-01

    Satellite data, taken from the National Oceanic and Atmospheric Administration (NOAA) have been proposed and used for the detection and the cartography of vegetation cover in North Africa. The data used were acquired at the Analysis and Application of Radiation Laboratory (LAAR) from the Advanced Very High Resolution Radiometer (AVHRR) sensor of 1 km spatial resolution. The Spectral Angle Mapper Algorithm (SAM) is used for the classification of many studies using high resolution satellite data. In the present paper, we propose to apply the SAM algorithm to the moderate resolution of the NOAA AVHRR sensor data for classifying the vegetation cover. This study allows also exploiting other classification methods for the low resolution. First, the normalized difference vegetation index (NDVI) is extracted from two channels 1 and 2 of the AVHRR sensor. In order to obtain an initial density representation of vegetal formation distribution, a methodology, based on the combination between the threshold method and the decision tree, is used. This combination is carried out due to the lack of accurate data related to the thresholds that delimit each class. In a second time, and based on spectral behavior, a vegetation cover map is developed using SAM algorithm. Finally, with the use of low resolution satellite images (NOAA AVHRR) and with only two channels, it is possible to identify the most dominant species in North Africa such as: forests of the Liege oaks, other forests, cereal's cultivation, steppes and bar soil.

  18. Validation of the NOAA/NESDIS satellite aerosol product over the North Atlantic in 1989

    NASA Astrophysics Data System (ADS)

    Ignatov, Aleksandr M.; Stowe, Larry L.; Sakerin, Sergey M.; Korotaev, Gennady K.

    1995-03-01

    A validation experiment and resulting potential improvements to the operational satellite optical thickness product at the National Oceanic and Atmospheric Administration/National Environmental Satellite Data and Information Service (NOAA/NESDIS) are presented. An earlier paper described a set of Sun photometer measurements collected from the Soviet R/V Akademik Vernadsky during its cruise in the Atlantic Ocean and Mediterranean Sea from September to December 1989. The accuracy of the Sun photometer aerosol optical thickness was proven acceptable of use as a ground truth standard for validation of the NOAA product. This paper describes the validation methodology and the results of its application to the NOAA 11 satellite product. A systematic underestimation in the operational values by about 35%, relative to the ship truth, is found. Causes for this discrepancy are examined, emphasizing the importance of careful satellite instrument calibration, and a revision of the oceanic reflectance model used in the retrieval algorithm. It is shown that the remaining systematic underestimate in satellite aerosol optical thickness can be attributed only to the aerosol model used in the retrieval. Additional checks of this conclusion using independent data sets are underway. If confirmed, a fundamental revision of the presently used aerosol model would be required. An example of a simple adjustment to the present aerosol model which successfully removes the bias is given, based on the assumption of an absorbing aerosol.

  19. A new statistical tool for NOAA local climate studies

    NASA Astrophysics Data System (ADS)

    Timofeyeva, M. M.; Meyers, J. C.; Hollingshead, A.

    2011-12-01

    The National Weather Services (NWS) Local Climate Analysis Tool (LCAT) is evolving out of a need to support and enhance the National Oceanic and Atmospheric Administration (NOAA) National Weather Service (NWS) field offices' ability to efficiently access, manipulate, and interpret local climate data and characterize climate variability and change impacts. LCAT will enable NOAA's staff to conduct regional and local climate studies using state-of-the-art station and reanalysis gridded data and various statistical techniques for climate analysis. The analysis results will be used for climate services to guide local decision makers in weather and climate sensitive actions and to deliver information to the general public. LCAT will augment current climate reference materials with information pertinent to the local and regional levels as they apply to diverse variables appropriate to each locality. The LCAT main emphasis is to enable studies of extreme meteorological and hydrological events such as tornadoes, flood, drought, severe storms, etc. LCAT will close a very critical gap in NWS local climate services because it will allow addressing climate variables beyond average temperature and total precipitation. NWS external partners and government agencies will benefit from the LCAT outputs that could be easily incorporated into their own analysis and/or delivery systems. Presently we identified five existing requirements for local climate: (1) Local impacts of climate change; (2) Local impacts of climate variability; (3) Drought studies; (4) Attribution of severe meteorological and hydrological events; and (5) Climate studies for water resources. The methodologies for the first three requirements will be included in the LCAT first phase implementation. Local rate of climate change is defined as a slope of the mean trend estimated from the ensemble of three trend techniques: (1) hinge, (2) Optimal Climate Normals (running mean for optimal time periods), (3) exponentially

  20. NOAA Operational Space Environmental Monitoring - Current Capabilities and Future Directions

    NASA Astrophysics Data System (ADS)

    Denig, William; Redmon, Rob; Mulligan, Patricia

    2014-05-01

    During the next few years the U.S. National Oceanic and Atmospheric Administration (NOAA) will field new operational capabilities for monitoring the near-earth space environment in addition to maintaining continued measurements in geostationary orbit. The most exciting new capability will be transitioning routine solar wind and magnetic field measurements at L1 (240 Re) from the NASA Advanced Composition Explorer (ACE) satellite to the Deep Space Climate Observatory (DSCOVR) which will be launched in early 2015 with a projected on-orbit readiness in mid-2015. Also under consideration is a solar-sail demonstration mission, called SUNJAMMER, for acquiring plasma and field measurements at twice the L1 location. Both DSCOVR and SUNJAMMER will provide a near-term advanced warning of impending space weather events that can adversely affect communications, satellite operations, GPS positioning and commercial air transportation. NESDIS has also supported the development of a Compact Coronagraph (CCOR) which could provide a several day warning of space weather when coupled with an interplanetary disturbance propagation model like ENLIL. Routine monitoring of the ionosphere will be provided by the Constellation Observing System for Meteorology, Ionosphere and Climate (COSMIC) II as a system which is a partnership among the Taiwan's National Space Organization, the U.S. Air Force and NOAA. The new operational capabilities provided by DSCOVR, SUNJAMMER, CCOR and COSMIC II are provided against the backdrop of continued space environmental measurements from the Geostationary Operational Environmental Satellites (GOES) which, in the near future, will transition to the GOES-R series of advanced space weather sensors. Continued space environmental measurements in polar low earth orbit (LEO) will continue to be provided by the remaining Polar Operational Environmental Satellites (POES) and the European MetOp satellites. Instrument specialists at the National Geophysical Data Center

  1. Water level ingest, archive and processing system - an integral part of NOAA's tsunami database

    NASA Astrophysics Data System (ADS)

    McLean, S. J.; Mungov, G.; Dunbar, P. K.; Price, D. J.; Mccullough, H.

    2013-12-01

    The National Oceanic and Atmospheric Administration (NOAA), National Geophysical Data Center (NGDC) and collocated World Data Service for Geophysics (WDS) provides long-term archive, data management, and access to national and global tsunami data. Archive responsibilities include the NOAA Global Historical Tsunami event and runup database, damage photos, as well as other related hazards data. Beginning in 2008, NGDC was given the responsibility of archiving, processing and distributing all tsunami and hazards-related water level data collected from NOAA observational networks in a coordinated and consistent manner. These data include the Deep-ocean Assessment and Reporting of Tsunami (DART) data provided by the National Data Buoy Center (NDBC), coastal-tide-gauge data from the National Ocean Service (NOS) network and tide-gauge data from the two National Weather Service (NWS) Tsunami Warning Centers (TWCs) regional networks. Taken together, this integrated archive supports tsunami forecast, warning, research, mitigation and education efforts of NOAA and the Nation. Due to the variety of the water level data, the automatic ingest system was redesigned, along with upgrading the inventory, archive and delivery capabilities based on modern digital data archiving practices. The data processing system was also upgraded and redesigned focusing on data quality assessment in an operational manner. This poster focuses on data availability highlighting the automation of all steps of data ingest, archive, processing and distribution. Examples are given from recent events such as the October 2012 hurricane Sandy, the Feb 06, 2013 Solomon Islands tsunami, and the June 13, 2013 meteotsunami along the U.S. East Coast.

  2. NOAA/National Weather Service Operational Applications and Training of S-NPP Imagery and Products in Preparation for JPSS Mission Readiness

    NASA Astrophysics Data System (ADS)

    Motta, B.; Miller, S. D.; Folmer, M. J.; Lindstrom, S.; Nietfeld, D.; Stevens, E.; Dankers, T.; Baker, M.; Meier, B.; Mostek, A. J.; Hillger, D.

    2014-12-01

    The National Oceanic and Atmospheric Administration's (NOAA) National Weather Service (NWS), in collaboration with the NOAA National Environmental Satellite, Data and Information Service (NESDIS) and its Cooperative Institutes, have been prototyping various operational applications of Suomi-NPP satellite imagery and products. Some of these new satellite capabilities are NOAA and S-NPP mission unique and have resulted in new science applications for high impact events and related impact-based decision support services. From detection to monitoring to recovery-phase operations, S-NPP debuts new NOAA-unique capabilities for true color RGB imagery, Near Constant Contrast Day-Night Band Imagery, Flood/Ice Detection and Monitoring, Wildfire and Smoke Detection and Monitoring, Severe Weather Environmental and Storm Analysis, Dust Detection and Monitoring, and Global Infrared and Microwave Atmospheric Soundings. These newly demonstrated applications have been part of the research to operations transitions occurring in the NOAA Satellite Proving Ground (JPSS and GOES-R) and NOAA training developed as part of the Virtual Institute for Satellite Integration and Training (VISIT).

  3. The Development of NOAA Education Common Outcome Performance Measures (Invited)

    NASA Astrophysics Data System (ADS)

    Baek, J.

    2013-12-01

    The National Oceanic and Atmospheric Administration (NOAA) Education Council has embarked on an ambitious Monitoring and Evaluation (M&E) project that will allow it to assess education program outcomes and impacts across the agency, line offices, and programs. The purpose of this internal effort is to link outcome measures to program efforts and to evaluate the success of the agency's education programs in meeting the strategic goals. Using an outcome-based evaluation approach, the NOAA Education Council is developing two sets of common outcome performance measures, environmental stewardship and professional development. This presentation will examine the benefits and tradeoffs of common outcome performance measures that collect program results across a portfolio of education programs focused on common outcomes. Common outcome performance measures have a few benefits to our agency and to the climate education field at large. The primary benefit is shared understanding, which comes from our process for writing common outcome performance measures. Without a shared and agreed upon set of definitions for the measure of an outcome, the reported results may not be measuring the same things and would incorrectly indicate levels of performance. Therefore, our writing process relies on a commitment to developing a shared set of definitions based on consensus. We hope that by taking the time to debate and coming to agreement across a diverse set of programs, the strength of our common measures can indicate real progress towards outcomes we care about. An additional benefit is that these common measures can be adopted and adapted by other agencies and organizations that share similar theories of change. The measures are not without their drawbacks, and we do make tradeoffs as part of our process in order to continue making progress. We know that any measure is necessarily a narrow slice of performance. A slice that may not best represent the unique and remarkable contribution

  4. NASA/NOAA/AMS Earth Science Electronic Theater

    NASA Technical Reports Server (NTRS)

    Hasler, A. F.; Einaudi, Franco (Technical Monitor)

    2001-01-01

    The NASA/NOAA/AMS Earth Science Electronic Theater presents Earth science observations and visualizations in a historical perspective. Fly in from outer space to Florida and the KSC Visitor's Center. Go back to the early weather satellite images from the 1960s see them contrasted with the latest International global satellite weather movies including killer hurricanes & tornadic thunderstorms. See the latest spectacular images from NASA and NOAA remote sensing missions like GOES, NOAA, TRMM, SeaWiFS, Landsat7, & new Terra which will be visualized with state-of-the art tools.

  5. SENSITIVITY OF THE NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION MULTILAYER MODEL TO INSTRUMENT ERROR AND PARAMETERIZATION UNCERTAINTY

    EPA Science Inventory

    The response of the National Oceanic and Atmospheric Administration multilayer inferential dry deposition velocity model (NOAA-MLM) to error in meteorological inputs and model parameterization is reported. Monte Carlo simulations were performed to assess the uncertainty in NOA...

  6. 15 CFR 911.7 - Continuation of the NOAA Data Collection Systems.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... REGULATIONS POLICIES AND PROCEDURES CONCERNING USE OF THE NOAA SPACE-BASED DATA COLLECTION SYSTEMS § 911.7 Continuation of the NOAA Data Collection Systems. (a) NOAA expects to continue to operate DCS on its... 15 Commerce and Foreign Trade 3 2010-01-01 2010-01-01 false Continuation of the NOAA...

  7. 15 CFR 911.4 - Use of the NOAA Data Collection Systems.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 15 Commerce and Foreign Trade 3 2010-01-01 2010-01-01 false Use of the NOAA Data Collection... POLICIES AND PROCEDURES CONCERNING USE OF THE NOAA SPACE-BASED DATA COLLECTION SYSTEMS § 911.4 Use of the NOAA Data Collection Systems. (a) Use of the NOAA DCS will only be authorized in accordance with...

  8. 15 CFR 911.5 - NOAA Data Collection Systems Use Agreements.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 15 Commerce and Foreign Trade 3 2010-01-01 2010-01-01 false NOAA Data Collection Systems Use... POLICIES AND PROCEDURES CONCERNING USE OF THE NOAA SPACE-BASED DATA COLLECTION SYSTEMS § 911.5 NOAA Data Collection Systems Use Agreements. (a)(1) In order to use a NOAA DCS, each user must have an agreement...

  9. 15 CFR 911.7 - Continuation of the NOAA Data Collection Systems.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 15 Commerce and Foreign Trade 3 2011-01-01 2011-01-01 false Continuation of the NOAA Data... REGULATIONS POLICIES AND PROCEDURES CONCERNING USE OF THE NOAA SPACE-BASED DATA COLLECTION SYSTEMS § 911.7 Continuation of the NOAA Data Collection Systems. (a) NOAA expects to continue to operate DCS on...

  10. 15 CFR 911.5 - NOAA Data Collection Systems Use Agreements.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 15 Commerce and Foreign Trade 3 2011-01-01 2011-01-01 false NOAA Data Collection Systems Use... POLICIES AND PROCEDURES CONCERNING USE OF THE NOAA SPACE-BASED DATA COLLECTION SYSTEMS § 911.5 NOAA Data Collection Systems Use Agreements. (a)(1) In order to use a NOAA DCS, each user must have an agreement...

  11. Disaster warning system study summary. [cost estimates using NOAA satellites

    NASA Technical Reports Server (NTRS)

    Leroy, B. F.; Maloy, J. E.; Braley, R. C.; Provencher, C. E.; Schumaker, H. A.; Valgora, M. E.

    1977-01-01

    A conceptual satellite system to replace or complement NOAA's data collection, internal communications, and public information dissemination systems for the mid-1980's was defined. Program cost and cost sensitivity to variations in communications functions are analyzed.

  12. Improved NOAA satellite scheduled for launch. [mission update

    NASA Technical Reports Server (NTRS)

    Brennan, W. J.; Mccormack, D.; Senstad, K.

    1981-01-01

    A description of the NOAA-C satellite and its Atlas launch vehicle are presented. The satellite instrumentation and data transmission systems are discussed. A flight sequence of events is given along with a listing of the mission management responsibilities.

  13. Access High Quality Imagery from the NOAA View Portal

    NASA Astrophysics Data System (ADS)

    Pisut, D.; Powell, A. M.; Loomis, T.; Goel, V.; Mills, B.; Cowan, D.

    2013-12-01

    NOAA curates a vast treasure trove of environmental data, but one that is sometimes not easily accessed, especially for education, outreach, and media purposes. Traditional data portals in NOAA require extensive knowledge of the specific names of observation platforms, models, and analyses, along with nomenclature for variable outputs. A new website and web mapping service (WMS) from NOAA attempts to remedy such issues. The NOAA View data imagery portal provides a seamless entry point into data from across the agency: satellite, models, in-situ analysis, etc. The system provides the user with ability to browse, animate, and download high resolution (e.g., 4,000 x 2,000 pixel) imagery, Google Earth, and even proxy data files. The WMS architecture also allows the resources to be ingested into other software systems or applications.

  14. NOAA Marine and Arctic Monitoring Using UASs

    NASA Astrophysics Data System (ADS)

    Jacobs, T.; Coffey, J. J.; Hood, R. E.; Hall, P.; Adler, J.

    2014-12-01

    Unmanned systems have the potential to efficiently, effectively, economically and safely bridging critical observation requirements in an environmentally friendly manner. As the United States' Marine and Arctic areas of interest expand and include hard-to-reach regions of the Earth (such as the Arctic and remote oceanic areas) optimizing unmanned capabilities will be needed to advance the United States' science, technology and security efforts. Through increased multi-mission and multi-agency operations using improved inter-operable and autonomous unmanned systems, the research and operations communities will better collect environmental intelligence and better protect our Country against hazardous weather, environmental, marine and polar hazards. This presentation will examine NOAA's Marine and Arctic Monitoring UAS strategies which includes developing a coordinated effort to maximize the efficiency and capabilities of unmanned systems across the federal government and research partners. Numerous intra- and inter-agency operational demonstrations and assessments have been made to verify and validated these strategies. The presentation will also discuss the requisite sUAS capabilities and our experience in using them.

  15. ESTIMATING THE TRANSFER AND DEPOSITION OF DIOXIN AND ATRZINE TO THE GREAT LAKES BASIN WITH THE NOAA HYSPLIT MODEL - AN OVERVIEW

    EPA Science Inventory

    Over the last few years, the International Joint Commission has been supporting development of a PC-based transfer model, derived from the HYSPLIT model created at the National Oceanic and Atmospheric Administration (NOAA), to determine, in a cost-effective way, the extent of dep...

  16. Instrument interface description for NOAA 2000 instruments with European morning spacecraft and/or NOAA-OPQ spacecraft

    NASA Technical Reports Server (NTRS)

    1993-01-01

    The purpose is to describe at a high level the common interface provisions and constraints placed on the NOAA-2000 instruments and the interfacing spacecraft elements in the following areas: electrical interface, mechanical interface, thermal interface, magnetic interface, electromagnetic compatibility, structural/mechanical environmental interface, contamination control, and the ionizing radiation environment. The requirements reflect the fact that these instruments must be compatible with a number of different polar orbiting satellite vehicles including the NOAA-OPQ satellites and the EUMETSAT METOP satellites.

  17. NOAA tsunami water level archive - scientific perspectives and discoveries

    NASA Astrophysics Data System (ADS)

    Mungov, G.; Eble, M. C.; McLean, S. J.

    2013-12-01

    The National Oceanic and Atmospheric Administration (NOAA) National Geophysical Data Center (NGDC) and co-located World Data Service for Geophysics (WDS) provides long-term archive, data management, and access to national and global tsunami data. Currently, NGDC archives and processes high-resolution data recorded by the Deep-ocean Assessment and Reporting of Tsunami (DART) network, the coastal-tide-gauge network from the National Ocean Service (NOS) as well as tide-gauge data recorded by all gauges in the two National Weather Service (NWS) Tsunami Warning Centers' (TWCs) regional networks. The challenge in processing these data is that the observations from the deep-ocean, Pacific Islands, Alaska region, and United States West and East Coasts display commonalities, but, at the same time, differ significantly, especially when extreme events are considered. The focus of this work is on how time integration of raw observations (10-seconds to 1-minute) could mask extreme water levels. Analysis of the statistical and spectral characteristics obtained from records with different time step of integration will be presented. Results show the need to precisely calibrate the despiking procedure against raw data due to the significant differences in the variability of deep-ocean and coastal tide-gauge observations. It is shown that special attention should be drawn to the very strong water level declines associated with the passage of the North Atlantic cyclones. Strong changes for the deep ocean and for the West Coast have implications for data quality but these same features are typical for the East Coast regime.

  18. Recurrent flares in active region NOAA 11283

    NASA Astrophysics Data System (ADS)

    Romano, P.; Zuccarello, F.; Guglielmino, S. L.; Berrilli, F.; Bruno, R.; Carbone, V.; Consolini, G.; de Lauretis, M.; Del Moro, D.; Elmhamdi, A.; Ermolli, I.; Fineschi, S.; Francia, P.; Kordi, A. S.; Landi Degl'Innocenti, E.; Laurenza, M.; Lepreti, F.; Marcucci, M. F.; Pallocchia, G.; Pietropaolo, E.; Romoli, M.; Vecchio, A.; Vellante, M.; Villante, U.

    2015-10-01

    Context. Flares and coronal mass ejections (CMEs) are solar phenomena that are not yet fully understood. Several investigations have been performed to single out their related physical parameters that can be used as indices of the magnetic complexity leading to their occurrence. Aims: In order to shed light on the occurrence of recurrent flares and subsequent associated CMEs, we studied the active region NOAA 11283 where recurrent M and X GOES-class flares and CMEs occurred. Methods: We use vector magnetograms taken by HMI/SDO to calculate the horizontal velocity fields of the photospheric magnetic structures, the shear and the dip angles of the magnetic field, the magnetic helicity flux distribution, and the Poynting fluxes across the photosphere due to the emergence and the shearing of the magnetic field. Results: Although we do not observe consistent emerging magnetic flux through the photosphere during the observation time interval, we detected a monotonic increase of the magnetic helicity accumulated in the corona. We found that both the shear and the dip angles have high values along the main polarity inversion line (PIL) before and after all the events. We also note that before the main flare of X2.1 GOES class, the shearing motions seem to inject a more significant energy than the energy injected by the emergence of the magnetic field. Conclusions: We conclude that the very long duration (about 4 days) of the horizontal displacement of the main photospheric magnetic structures along the PIL has a primary role in the energy release during the recurrent flares. This peculiar horizontal velocity field also contributes to the monotonic injection of magnetic helicity into the corona. This process, coupled with the high shear and dip angles along the main PIL, appears to be responsible for the consecutive events of loss of equilibrium leading to the recurrent flares and CMEs. A movie associated to Fig. 4 is available in electronic form at http://www.aanda.org

  19. Ionosphere monitoring using NOAA's CORS network

    NASA Astrophysics Data System (ADS)

    Smith, D.

    NOAA's National Geodetic Survey is currently engaged in research to use the CORS (Continuously Operating GPS Reference Stations) network to model the ionosphere over the conterminous United States and surrounding areas. The CORS network consists of over 700 stations that continuously collect data from all GPS satellite vehicles in view; these data are available free of charge for (predominantly) positioning applications. However, the nature of the network makes it an excellent tool for continuously monitoring the nature of the ionosphere over and near the conterminous United States. From the standpoint of geodesy, the ionosphere effect is generally considered a nuisance parameter: that should be modeled and removed so that the ambiguity in dual frequency GPS carrier-phase signals may be resolved and accurate positions determined. As such, the initial direction of this research is toward modeling the ionosphere for geodetic use, using a single-layer "shell model". The results presented here show the first steps toward accurately modeling the ionosphere through the CORS network, in terms of absolute (non-differential) Total Electron Content Units (TECUs) through an innovative cross-over adjustment of "tracks". Each track is made by the intersection of a satellite/receiver vector with the ionosphere shell as the satellite moves overhead. Results of the initial research in applying the modeled ionosphere toward ambiguity resolution will be discussed. Limitations of using the one-dimensional shell will also be presented. Future plans for creating a time-stream of the ionosphere, increasing the complexity beyond the shell model, and applications toward nowcast and forecast of the ionosphere, will also be discussed.

  20. Verification of a New NOAA/NSIDC Passive Microwave Sea-Ice Concentration Climate Record

    NASA Technical Reports Server (NTRS)

    Meier, Walter N.; Peng, Ge; Scott, Donna J.; Savoie, Matt H.

    2014-01-01

    A new satellite-based passive microwave sea-ice concentration product developed for the National Oceanic and Atmospheric Administration (NOAA)Climate Data Record (CDR) programme is evaluated via comparison with other passive microwave-derived estimates. The new product leverages two well-established concentration algorithms, known as the NASA Team and Bootstrap, both developed at and produced by the National Aeronautics and Space Administration (NASA) Goddard Space Flight Center (GSFC). The sea ice estimates compare well with similar GSFC products while also fulfilling all NOAA CDR initial operation capability (IOC) requirements, including (1) self describing file format, (2) ISO 19115-2 compliant collection-level metadata,(3) Climate and Forecast (CF) compliant file-level metadata, (4) grid-cell level metadata (data quality fields), (5) fully automated and reproducible processing and (6) open online access to full documentation with version control, including source code and an algorithm theoretical basic document. The primary limitations of the GSFC products are lack of metadata and use of untracked manual corrections to the output fields. Smaller differences occur from minor variations in processing methods by the National Snow and Ice Data Center (for the CDR fields) and NASA (for the GSFC fields). The CDR concentrations do have some differences from the constituent GSFC concentrations, but trends and variability are not substantially different.

  1. Partial and preliminary inventory of NOAA data for ARM/IDASS research

    SciTech Connect

    Martner, B.E.

    1991-06-01

    The first quarter of 1991 was an extremely active time for atmospheric measurements in the Denver area. Four field projects were conducted with overlapping schedules and area domains between mid-January and mid-April. The data collected may be of mutual interest to the participants of the various projects. Data inventory catalogs for each project will assist researchers by documenting the kinds of measurements, periods of observation, the data archival mediums, and the data availability. This report provides a partial and preliminary inventory of data obtained for the Department of Energy`s Atmospheric Radiation Measurement (ARM) program Integrated Data Assimilation and Sounding System (IDASS) research. It includes only those measurements obtained by the National Oceanic and Atmospheric Administration`s Wave Propagation Laboratory and Aeronomy Laboratory (NOAA/WPL and NOAA/AL). Many of these data are currently undergoing post-processing and inspection by each instrument`s operating group to improve and insure data quality. Therefore, the information in this report is preliminary.

  2. The NOAA Near Real-time OMI-SO2 Cloud Visualization and Product Distribution System

    NASA Astrophysics Data System (ADS)

    Vicente, G.; Serafino, G.; Krueger, A.; Carn, S.; Yang, K.; Krotkov, N.; Guffanti, M.; Levelt, P.

    2007-12-01

    The Ozone Monitoring Instrument (OMI) on the NASA EOS/Aura research satellite allows measurement of SO2 concentrations at UV wavelengths with daily global coverage. SO2 is detected from space using its strong absorption band structure in the near UV (300-320 nm) as well as in IR bands near 7.3 and 8.6 mm. Thirty years of UV SO2 measurements with the Total Ozone Mapping Spectrometer (TOMS) and OMI sensors have shown that the highest concentrations of SO2 occur in volcanic clouds produced by explosive magmatic eruptions, which also emit ash. However, icing of ash particles in water-rich eruption clouds, and/or suppression of the IR split- window signal by ambient water vapor or cloud opacity can inhibit direct detection of ash from space. Large SO2 concentrations are therefore a reliable indicator of the presence of airborne volcanic ash. UV SO2 measurements are very robust and are insensitive to the factors that confound IR data. SO2 and ash can be detected in a very fresh eruption cloud due to sunlight backscattering and ash presence can be confirmed by UV derived aerosol index measurements. The lack of other large point sources of SO2 facilitates development and implementation of automated searches for volcanic clouds with a very low false alarm rate. The NASA Earth Sciences Applications Office has funded a cooperative agreement between UMBC, NOAA, GSFC, and USGS to infuse research satellite SO2 data products into volcanic hazard Decision Support Systems (DSSs) operated by the National Oceanic and Atmospheric Administration (NOAA) and the US Geological Survey (USGS). This will provide aviation alerts to the Federal Aviation Administration (FAA), that will reduce false alarms and permit more robust detection and tracking of volcanic clouds, and includes the development of an eruption alarm system, and potential recognition of pre-eruptive volcanic degassing. Near real-time (NRT) observations of SO2 and volcanic ash can therefore be incorporated into data products

  3. SSBUV and NOAA-11 SBUV/2 Solar Variability Measurements

    NASA Technical Reports Server (NTRS)

    DeLand, Matthew T.; Cebula, Richard P.; Hilsenrath, Ernest

    1998-01-01

    The Shuttle SBUV (SSBUV) and NOAA-11 SBUV/2 instruments measured solar spectral UV irradiance during the maximum and declining phase of solar cycle 22. The SSB UV data accurately represent the absolute solar UV irradiance between 200-405 nm, and also show the long-term variations during eight flights between October 1989 and January 1996. These data have been used to correct long-term sensitivity changes in the NOAA-11 SBUV/2 data, which provide a near-daily record of solar UV variations over the 170-400 nm region between December 1988 and October 1994. The NOAA-11 data demonstrate the evolution of short-term solar UV activity during solar cycle 22.

  4. NOAA-11 SBUV/2 measurements of solar UV variations

    NASA Technical Reports Server (NTRS)

    Cebula, R. P.; Deland, M. T.; Hilsenrath, E.

    1995-01-01

    The SBUV/2 instrument onboard the NOAA-11 satellite made daily solar spectral irradiance measurements in the wavelength region 160405 nm at 1.1 nm resolution between January 1989 and October 1994. These observations continued the uninterrupted series of solar measurements begun by the Nimbus-7 SBUV in 1978 and continued by NOAA-9 SBUV/2. While the measurements made by the SBUV-series instruments furnish an excellent data base for studies of solar UV variability, these instruments do not have an internal mew to evaluate and correct for long-term instrument sensitivity degradation, needed to evaluate solar cycle timescale irradiance change. During yearly Shuttle flights the Shuttle SBUV (SSBUV) also performs solar spectral irradiance measurements in the wavelength region 200 to 400 nm with an instrument that is calibrated preflight, inflight, and postflight. Comparisons between the simultaneous NOAA-11 SBUV/2 and SSBUV solar measurements are used to identify and correct long term sensitivity changes in the satellite instrument. The NOAA-11 data will then be used to evaluate long-term solar change. We present a progress report on the above process. At this preliminary stage uncertainties in the calibration transfer between SSBUV and NOAA-11 SBUV/2 are too large to accurately evaluate long-term solar change near the A1 edge, but solar rotational activity variations can be evaluated. We find that rotational activity declined from roughly 6% peak-to-peak (p-p) near the maximum of solar cycle 22 in 1989-1991 to approximately 3% p-p in mid 1992 and 2% p-p by mid 1994. Emphasizing rotational variations, comparisons between the 200 nm data and the NOAA-11 Mg II proxy index are presented.

  5. Developing NOAA's Climate Data Records From AVHRR and Other Data

    NASA Astrophysics Data System (ADS)

    Privette, J. L.; Bates, J. J.; Kearns, E. J.

    2010-12-01

    As part of the provisional NOAA Climate Service, NOAA is providing leadership in the development of authoritative, measurement-based information on climate change and variability. NOAA’s National Climatic Data Center (NCDC) recently initiated a satellite Climate Data Record Program (CDRP) to provide sustained and objective climate information derived from meteorological satellite data that NOAA has collected over the past 30+ years - particularly from its Polar Orbiting Environmental Satellites (POES) program. These are the longest sustained global measurement records in the world and represent billions of dollars of investment. NOAA is now applying advanced analysis methods -- which have improved remarkably over the last decade -- to the POES AVHRR and other instrument data. Data from other satellite programs, including NASA and international research programs and the Defense Meteorological Satellite Program (DMSP), are also being used. This process will unravel the underlying climate trend and variability information and return new value from the records. In parallel, NCDC will extend these records by applying the same methods to present-day and future satellite measurements, including the Joint Polar Satellite System (JPSS) and Jason-3. In this presentation, we will describe the AVHRR-related algorithm development activities that CDRP recently selected and funded through open competitions. We will particularly discuss some of the technical challenges related to adapting and using AVHRR algorithms with the VIIRS data that should become available with the launch of the NPOESS Preparatory Project (NPP) satellite in early 2012. We will also describe IT system development activities that will provide data processing and reprocessing, storage and management. We will also outline the maturing Program framework, including the strategies for coding and development standards, community reviews, independent program oversight, and research-to-operations algorithm

  6. The NOAA-National Geographic Society Waterspout Expedition (1993).

    NASA Astrophysics Data System (ADS)

    Golden, Joseph H.; Bluestein, Howard B.

    1994-12-01

    This paper describes afield program conducted by NOAA and the National Geographic Society in late August 1993 near Key West, Florida. The mission of the expedition was to obtain close-up photographic documentation of waterspouts. Using a NOAA helicopter as an observing platform, the participants dropped flares onto the sea surface to visualize the airflow and filmed waterspouts using a state-of-the art motion picture camera and still cameras. Over a dozen waterspouts funnel clouds wore observed, and the most detailed movies of spray vortices over taken were obtained.

  7. Evolving Data System Architectures in NOAA: Perspectives from the National Data Centers

    NASA Astrophysics Data System (ADS)

    Casey, K. S.; Mesick, S.; Kowal, D.; Kearns, E. J.; Hausman, S. A.; DelGreco, S. A.; Morris, J.

    2014-12-01

    For decades, the National Oceanic and Atmospheric Administration (NOAA) has operated three distinct National Data Centers to manage its large and diverse environmental data collections. These centers, the National Oceanographic Data Center (NODC), the National Geophysical Data Center (NGDC), and the National Climatic Data Center (NCDC), have collaborated over the years on various programs and projects to esnure the long term preservation and scientific stewardship of their archived data, workflows, and algorithms. In recent years, the pace of collaboration has accelerated dramatically as new observing missions have come online, as new designated communities have emerged, and as waves of consolidation have swept across NOAA, driven by technological, budgetary, and policy-oriented pressures. An update on how NODC, NGDC, and NCDC have responded to these pressures and have been evolving their data system architectures and operations to keep pace with the new requirements will be presented. Examples efforts in the areas of streamlined data ingest, improved data discoverability, and enhanced data interoperability will be provided to illustrate the Natonal Data Centers' committment to meeting the needs of their user communities and highlight the rapid evolution taking place in their science data systems.

  8. BOREAS AFM-1 NOAA/ATDD Long-EZ Aircraft Flux data Over the SSA

    NASA Technical Reports Server (NTRS)

    Crawford, Timothy L.; Baldocchi, Dennis; Hall, Forrest G. (Editor); Knapp, David E. (Editor); Gunter, Laureen; Dumas, Ed; Smith, David E. (Technical Monitor)

    2000-01-01

    This data set contains measurements from the Airborne Flux and Meteorology (AFM)-1 National Oceanographic and Atmospheric Administration/Atmospheric Turbulence and Diffusion Division (NOAA/ATDD) Long-EZ Aircraft collected during the 1994 Intensive Field Campaigns (IFCs) at the southern study area (SSA). These measurements were made from various instruments mounted on the aircraft. The data that were collected include aircraft altitude, wind direction, wind speed, air temperature, potential temperature, water mixing ratio, U and V components of wind velocity, static pressure, surface radiative temperature, downwelling and upwelling total radiation, downwelling and upwelling longwave radiation, net radiation, downwelling and upwelling photosynthectically active radiation (PAR), greenness index, CO2 concentration, O3 concentration, and CH4 concentration. There are also various columns that indicate the standard deviation, skewness, kurtosis, and trend of some of these data. The data are stored in tabular ASCII files. The NOAA/ATDD Long-EZ aircraft flux data are available from the Earth Observing System Data and Information System (EOSDIS) Oak Ridge National Laboratory (ORNL) Distributed Active Archive Center (DAAC). The data files are available on a CD-ROM (see document number 20010000884).

  9. Intergrating Data From NASA Missions Into NOAAs Pacific Region Intergrated Climatology Information Products (PRICIP)

    NASA Astrophysics Data System (ADS)

    Benham, L.; Chester, K.; Eisberg, A.; Iyer, S.; Lee, K.; Marra, J.; Schmidt, C.; Skiles, J.

    2008-12-01

    The Pacific Region Integrated Climatology Information Products (PRICIP) Project is developing a number of products that will successfully promote awareness and understanding of the patterns and effects of "storminess" in the Pacific Rim. The National Oceanic and Atmospheric Administration's (NOAA) Integrated Data and Environmental Applications (IDEA) Center initiated the PRICIP Project to improve our understanding of such storm processes by creating a web portal containing both scientific and socioeconomic information about Pacific storms. Working in conjunction with partners at NOAA, students from the NASA Ames DEVELOP internship program are integrating NASA satellite imagery into the PRICIP web portal by animating eight storm systems that took place in the South Pacific Ocean between 1992 and 2005, four other anomalous high water events in the Hawaiian Islands, and annual storm tracks. The primary intended audience includes coastal disaster management decision-makers and other similarly concerned agencies. The broad access of these web-based products is also expected to reach scientists, the National Weather Service (NWS), the Federal Emergency Management Agency (FEMA), and media broadcasting consumers. The newly integrated and animated hindcast data will also help educate laypersons about past storms and help them for future storms.

  10. Validation of GOES-Derived Surface Radiation Using NOAA's Physical Retrieval Method

    SciTech Connect

    Habte, A.; Sengupta, M.; Wilcox, S.

    2013-01-01

    This report was part of a multiyear collaboration with the University of Wisconsin and the National Oceanic and Atmospheric Administration (NOAA) to produce high-quality, satellite-based, solar resource datasets for the United States. High-quality, solar resource assessment accelerates technology deployment by making a positive impact on decision making and reducing uncertainty in investment decisions. Satellite-based solar resource datasets are used as a primary source in solar resource assessment. This is mainly because satellites provide larger areal coverage and longer periods of record than ground-based measurements. With the advent of newer satellites with increased information content and faster computers that can process increasingly higher data volumes, methods that were considered too computationally intensive are now feasible. One class of sophisticated methods for retrieving solar resource information from satellites is a two-step, physics-based method that computes cloud properties and uses the information in a radiative transfer model to compute solar radiation. This method has the advantage of adding additional information as satellites with newer channels come on board. This report evaluates the two-step method developed at NOAA and adapted for solar resource assessment for renewable energy with the goal of identifying areas that can be improved in the future.

  11. A Quality Control study of the distribution of NOAA MIRS Cloudy retrievals during Hurricane Sandy

    NASA Astrophysics Data System (ADS)

    Fletcher, S. J.

    2013-12-01

    Cloudy radiance present a difficult challenge to data assimilation (DA) systems, through both the radiative transfer system as well the hydrometers required to resolve the cloud and precipitation. In most DA systems the hydrometers are not control variables due to many limitations. The National Oceanic and Atmospheric Administration's (NOAA) Microwave Integrated Retrieval System (MIRS) is producing products from the NPP-ATMS satellite where the scene is cloud and precipitation affected. The test case that we present here is the life time of Hurricane and then Superstorm Sandy in October 2012. As a quality control study we shall compare the retrieved water vapor content during the lifetime of Sandy with the first guess and the analysis from the NOAA Gridpoint Statistical Interpolation (GSI) system. The assessment involves the gross error check system against the first guess with different values for the observational error's variance to see if the difference is within three standard deviations. We shall also compare against the final analysis at the relevant cycles to see if the products which have been retrieved through a cloudy radiance are similar, given that the DA system does not assimilate cloudy radiances yet.

  12. Science and applications from the next generation of particle and field instruments on the NOAA satellites

    NASA Astrophysics Data System (ADS)

    Green, Janet; Onsager, Terrance; Rodriguez, Juan; Singer, Howard

    The vision of the National Oceanic and Atmospheric Administration (NOAA) Space Weather Prediction Center (SWPC) is, "A nation prepared to mitigate the effects of space weather through the understanding and use of actionable alerts, forecasts, and data products." To achieve this vision, NOAA maintains a constellation of satellites equipped with space weather sensors in geosynchronous and low Earth orbits. The data from these sensors drive space weather models and forecasts delivered to customers such as power utilities, airlines, GPS users, and satellite operators through our operational forecast office and website. Here we describe the heritage and new sensors onboard the Geostationary Operational Environmental Satellites (GOES)-NOP, GOES-R, and Joint Polar Satellite System (JPSS) and the relevance of the data for radiation belt studies and modeling. We describe the implementation of a new radiation belt and satellite charging product known as the Space Environmental Anomalies Expert System-Real Time [O'Brien et al., 2009]. Finally, we discuss the anticipated direction for new space weather models and research at SWPC.

  13. NOAA Graphical Flood Severity Inundation Mapping: Enhancing River Forecasts with Geographic Information Systems (GIS)

    NASA Astrophysics Data System (ADS)

    Marcy, D.; Donaldson, T.

    2006-12-01

    The National Oceanic and Atmospheric Administration (NOAA) National Weather Service (NWS) provides flood forecast information in a variety of formats, including graphical hydrographs and text products. Beginning in 2002, the NOAA Coastal Services Center (CSC) and NWS have worked in partnership to develop geographic information systems (GIS) based graphical flood severity inundation products. GIS techniques are used along with the best available topographic data and flood surface profiles generated from hydraulic models to develop inundation maps of the areal extent of NWS flood categories (minor, moderate, major), along with a range of water surface elevations at selected vertical intervals. The resulting inundation map products are called NWS flood severity inundation map libraries and will become a part of the suite of new products being disseminated via the Advanced Hydrologic Prediction Service (AHPS) program. In 2006, the CSC through the contractor, Watershed Concepts, developed a methodologies and standards document and map template for new graphical flood severity products. This report, titled "Methods and Standards for National Weather Service Flood Severity Inundation Maps" will serve as the basis and guide for creating new flood severity inundation map libraries at specific NWS river forecast points. This paper will describe 1.) the history and components of these inundation maps products, 2.) the process for developing flood severity inundation maps using these methods and standards, 3.) the connection of these products to the FEMA map modernization program, 4.) and delivery of these products via the web.

  14. Comparisons of the MG II index products from the NOAA-9 and NOAA-11 SBUV/2 instruments

    NASA Technical Reports Server (NTRS)

    Deland, M. T.; Cebula, R. P.

    1994-01-01

    The Mg II index is a proxy indicator of solar UV activity which is produced from measurements of the chromospheric Mg II absortion line at 280 nm. Mg II index data sets have been derived from the NOAA-9 and NOAA-11 SBUV/2 irradiance data sets using both discrete scan measurements about the Mg II line and continuous scan (sweep) measurements over the UV spectrum from 160 - 400 nm. This paper will discuss the rationale behind the creation of the different Mg II index products, and make a quantitative assessment of the differences between these products. Recommendations for future use of the Mg II index will also be presented.

  15. NOAA GCOM-W1/AMSR2 Oceanic Environmental Products: Phase-2

    NASA Astrophysics Data System (ADS)

    Jelenak, Z.; Alsweiss, S.; Chang, P.; Park, J. Y.

    2014-12-01

    Passive microwave radiometry is a special application of microwave communications technology for the purpose of collecting Earth's electromagnetic radiation. With the use of radiometers onboard earth orbiting satellites, scientists are able to monitor the Earth's environment and climate system on both short- and long-term temporal scales with near global coverage. The Global Change Observation Mission (GCOM) is part of the Japanese Aerospace Exploration Agency (JAXA) broader commitment toward global and long-term observation of the Earth's environment. GCOM consists of two polar orbiting satellite series, GCOM-W (Water) and GCOM-C (Climate), with 1-year overlap between them for inter-calibration. AMSR2 onboard GCOM-W1 is a microwave radiometer system that measures dual polarized radiances at 6.9, 7.3, 10.65, 18.7, 23.8, 36.5, and 89.0 GHz. It is a sun-synchronous orbiter that acquires microwave radiances by conically scanning the Earth's surface at a nominal earth incidence angle of 55 degrees that results in a wide swath of 1450 km. As a part of Joint Polar Satellite System (JPSS) program the National Oceanic and Atmospheric Administration (NOAA) GCOM-W1 product development and validation project will provide NOAA's users access to critical geophysical products derived from AMSR-2. These products, which are detailed in NOAA's JPSS Level 1 Requirements Document Supplement, include: microwave brightness temperature, total precipitable water, cloud liquid water, precipitation type/rate, sea surface temperature, and Sea Surface Wind Speed. Phase-1 of the AMSR-2 project at NOAA included inter-calibration of AMSR-2 measured brightness temperatures with the Tropical Rainfall Measuring Mission Microwave Imager as the reference radiometer. The second phase of the project utilized the calibrated brightness temperatures in a robust Bayesian network to retrieve more accurate geophysical parameters over the ocean surface. It can handle retrievals even with missing channels and

  16. NOAA's Improved Fire and Smoke Analysis, A Global Disaster Information Network Initiative

    NASA Astrophysics Data System (ADS)

    Stephens, G.; McNamara, D. P.; Fennimore, R.; Ramsay, B. H.; Ruminski, M.; Ruminski, M.

    2001-05-01

    The National Environmental Satellite, Data, and Information Service (NESDIS) of The National Oceanic and Atmospheric Administration (NOAA) produces a smoke and fire monitoring product based on environmental satellite data. In response to an initiative by NOAA's Global Disaster Information Network (GDIN), NESDIS is in the process of enhancing this product to better serve the needs of its customers. Environmental satellitescan detect and monitor hot spots and smoke associated with wildfires. Infrared and visible band sensors on NESDIS' Geostationary Operational Environmental Satellites (GOES)and Polar Orbiting Operational Environmental Satellites (POES) can delineate hot spots and smoke, respectively, resulting from fire activity. In response to requirements of the Fire Weather Program of the National Weather Service (NWS), NESDIS currently twice per day produces a product delineating hot spots and smoke for selected limited geographic areas of the Continental United States (CONUS). GOES and POES imagery is analyzed on an image display system, and a graphical depiction of smoke and hot spot areas is drawn by the analyst. The product is disseminated as imagery via the Internet, and is utilized by Incident Meteorologists, SPC personnel, and U.S. Forest Service fire managers. In response to formally expressed requirements of the NWS, and informal requests from many other users, including federal, state, and local fire management agencies, for a more frequent, spatially accurate product covering all of CONUS and Alaska, GDIN has initiated a program to enhance NOAA's smoke and fire products. The Satellite Services Division (SSD) of NESDIS' Office of Satellite Data Processing and Distribution is developing the Hazard Mapping System (HMS) based on these requirements. It will use data from GOES, POES, and the Defense Meteorological Satellite Program's (DMSP) On Line Scanner, which can detect hot spots at night. Automated hot spot and smoke detections will be provided by the

  17. Contracting Out. National Oceanic and Atmospheric Administration's Central Library. Report to the Chairman, Subcommittee on Commerce, Justice, State, and the Judiciary, Committee on Appropriations, U.S. Senate.

    ERIC Educational Resources Information Center

    General Accounting Office, Washington, DC.

    In response to a request by the Senate Committee on Appropriations for an examination of the A-76 program of the Department of Commerce's National Oceanic and Atmospheric Administration (NOAA), in particular NOAA's decision to contract for the operation of its Central Library, this report describes a General Accounting Office (GAO) review which:…

  18. Exploring Seafloor Volcanoes in Cyberspace: NOAA's "Ocean Explorer" Inspires Inquiry

    ERIC Educational Resources Information Center

    Hjelm, Elizabeth

    2011-01-01

    Seafloor exploration being done by scientists is an ideal way to introduce students to technology as a tool for inquiry. The same technology that allows scientists to share data in near real time can also provide students the tools to become researchers. NOAA's Ocean Explorer Explorations website is a rich research data bank that can be used by…

  19. State Geography Using NOAA Polar-Orbiting Satellites.

    ERIC Educational Resources Information Center

    Stadler, Stephen J.

    1985-01-01

    NOAA polar-orbiting satellites have the capability of providing views of entire states. This article describes the characteristics of data from these satellites, indicates their advantages and disadvantages, and shows how the satellite data can be used in a statewide representation of physical geography for students at the introductory level. (RM)

  20. 15 CFR 995.28 - Use of NOAA emblem.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... HYDROGRAPHIC PRODUCTS Requirements for Certified Distributors and Value Added Distributors of NOAA ENC Products...)(ii) and (b)(3)(ii); and there can be no endorsement or favoritism toward the distributor or value... part does not automatically grant the distributor or value added distributor the right to use the...

  1. 75 FR 69920 - (NOAA) Science Advisory Board (SAB)

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-16

    ... meeting agenda. Place: The meeting will be held both days at Dupont Hotel, 1500 New Hampshire Ave., NW... SAB Climate Working Group; (2) Strategic Framework for the Climate Service; (3) Report on the Climate... Research; (6) NOAA Response to the Ecosystem Science and Management Working Group Recommendations on...

  2. 15 CFR 904.104 - Final administrative decision.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... filed as provided in § 904.201(a), the NOVA becomes effective as the final administrative decision and order of NOAA 30 days after service of the NOVA or on the last day of any delay period granted. (b) If...

  3. 15 CFR 904.104 - Final administrative decision.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... filed as provided in § 904.201(a), the NOVA becomes effective as the final administrative decision and order of NOAA 30 days after service of the NOVA or on the last day of any delay period granted. (b) If...

  4. 15 CFR 904.104 - Final administrative decision.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... filed as provided in § 904.201(a), the NOVA becomes effective as the final administrative decision and order of NOAA 30 days after service of the NOVA or on the last day of any delay period granted. (b) If...

  5. 15 CFR 904.104 - Final administrative decision.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... filed as provided in § 904.201(a), the NOVA becomes effective as the final administrative decision and order of NOAA 30 days after service of the NOVA or on the last day of any delay period granted. (b) If...

  6. 15 CFR 904.104 - Final administrative decision.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... filed as provided in § 904.201(a), the NOVA becomes effective as the final administrative decision and order of NOAA 30 days after service of the NOVA or on the last day of any delay period granted. (b) If...

  7. 15 CFR 995.26 - Conversion of NOAA ENC ® files to other formats.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 15 Commerce and Foreign Trade 3 2010-01-01 2010-01-01 false Conversion of NOAA ENC ® files to... ASSURANCE AND CERTIFICATION REQUIREMENTS FOR NOAA HYDROGRAPHIC PRODUCTS AND SERVICES CERTIFICATION REQUIREMENTS FOR DISTRIBUTORS OF NOAA HYDROGRAPHIC PRODUCTS Requirements for Certified Distributors and...

  8. Improving NOAA's NWLON Through Enhanced Data Inputs from NASA's Ocean Surface Topography

    NASA Technical Reports Server (NTRS)

    Guest, DeNeice C.

    2010-01-01

    This report assesses the benefit of incorporating NASA's OSTM (Ocean Surface Topography Mission) altimeter data (C- and Ku-band) into NOAA's (National Oceanic and Atmospheric Administration) NWLON (National Water Level Observation Network) DSS (Decision Support System). This data will enhance the NWLON DSS by providing additional inforrnation because not all stations collect all meteorological parameters (sea-surface height, ocean tides, wave height, and wind speed over waves). OSTM will also provide data where NWLON stations are not present. OSTM will provide data on seasurface heights for determining sea-level rise and ocean circulation. Researchers and operational users currently use satellite altimeter data products with the GSFCOO NASA data model to obtain sea-surface height and ocean circulation inforrnation. Accurate and tirnely inforrnation concerning sea-level height, tide, and ocean currents is needed to irnprove coastal tidal predictions, tsunarni and storm surge warnings, and wetland restoration.

  9. Solutions Network Formulation Report: Improving NOAA's PORTS(R) Through Enhanced Data Inputs from NASA's Ocean Surface Topography Mission

    NASA Technical Reports Server (NTRS)

    Guest, DeNeice

    2007-01-01

    The Nation uses water-level data for a variety of practical purposes, including nautical charting, maritime navigation, hydrography, coastal engineering, and tsunami and storm surge warnings. Long-term applications include marine boundary determinations, tidal predictions, sea-level trend monitoring, oceanographic research, and climate research. Accurate and timely information concerning sea-level height, tide, and ocean current is needed to understand their impact on coastal management, disaster management, and public health. Satellite altimeter data products are currently used by hundreds of researchers and operational users to monitor ocean circulation and to improve scientists understanding of the role of the oceans in climate and weather. The NOAA (National Oceanic and Atmospheric Administration) National Ocean Service has been monitoring sea-level variations for many years. NOAA s PORTS (Physical Oceanographic Real-Time System) DST (decision support tool), managed by the Center for Operational Oceanographic Products and Services, supports safe and cost-efficient navigation by providing ship masters and pilots with accurate real-time information required to avoid groundings and collisions. This report assesses the capacity of NASA s satellite altimeter data to meet societal decision support needs through incorporation into NOAA s PORTS. NASA has a long heritage of collecting data for ocean research, including its current Terra and Aqua missions. Numerous other missions provide additional important information for coastal management issues, and data collection will continue in the coming decade with such missions as the OSTM (Ocean Surface Topography Mission). OSTM will provide data on sea-surface heights for determining ocean circulation, climate change, and sea-level rise. We suggest that NASA incorporate OSTM altimeter data (C- and Ku-band) into NOAA s PORTS DST in support of NASA s Coastal Management National Application with secondary support to the

  10. NOAA Operational Ocean Products from AMSR-2 Microwave Radiometer

    NASA Astrophysics Data System (ADS)

    Jelenak, Zorana; Chang, Paul; Alsweiss, Suleiman; Park, Jun; Meyers, Patrick

    2014-05-01

    The Japanese Aerospace Exploration Agency (JAXA) Global Change Observation Mission (GCOM) consists of two satellite series, Water (GCOM-W) and Climate (GCOM-C). The first satellite of the GCOM program, GCOM-W1, was launched on May 18, 2012 carrying the follow-on to the Advanced Microwave Scanning Radiometer - Earth Observing System (AMSR-E), AMSR-2. NOAA's GCOM-W1 product development and validation project will provide NOAA's users access to critical geophysical products derived from AMSR-2. These products, which are detailed in NOAA's Joint Polar Satellite System (JPSS) Level 1 Requirements Document Supplement, include: NOAA AMSR-2 Product Requirements: Day 1 Product Capability • Microwave Brightness Temperature (MBT) • Total Precipitable Water (TPW) • Cloud Liquid Water (CLW) • Precipitation Type/Rate (PT/R) • Sea Surface Temperature (SST) • Sea Surface Wind Speed (SSW) Day 2 Product Capability • Soil Moisture (SM) • Sea Ice Characterization (SIC) • Snow Cover/Depth (SC/D) • Snow Water Equivalent (SWE) • Surface Type (ST) GCOM-W1 data is being captured at the KSAT Svalbard Ground Station and assembled into APID packets. Using the JPSS (NPP) infrastructure, the GCOM raw data (APID packets) are routed to the NOAA Interface Data Processing System (IDPS), in near-real time. Once received at the IDPS, the APID packets will be reformatted into Raw Data Records (RDRs) and sent to the NPP Data Exploitation (NDE) system for distribution to the Environmental Satellite Date Processing System where further processing to brightness temperatures (Level 1)/sensor data records (SDRs) and geophysical products (Level 2)/Environmental Data Records (EDRs) will be performed. The RDRs are processed to SDRs utilizing software provided by JAXA. The goal of the product processing system is to provide validated operational L2 products from the AMSR-2 instrument that address the GCOM-W1 requirements in the JPSS L1RD Supplemental for distribution to operational users

  11. Administrative Synergy

    ERIC Educational Resources Information Center

    Hewitt, Kimberly Kappler; Weckstein, Daniel K.

    2012-01-01

    One of the biggest obstacles to overcome in creating and sustaining an administrative professional learning community (PLC) is time. Administrators are constantly deluged by the tyranny of the urgent. It is a Herculean task to carve out time for PLCs, but it is imperative to do so. In this article, the authors describe how an administrative PLC…

  12. ARM-LBNL-NOAA Flask Sampler for Carbon Cycle Gases

    DOE Data Explorer

    Torn, Margaret

    2008-01-15

    Data from ccg-flasks are sampled at the ARM SGP site and analyzed by the NOAA Earth System Research Laboratory (ESRL) as part of the NOAA Cooperative Global Air Sampling Network. Surface samples are collected from a 60m tower at the SGP Central Facility, usually once per week on one afternoon. The aircraft samples are collected approximately weekly from a chartered aircraft, and the collection flight path is centered over the tower where the surface samples are collected. Samples are collected by the ARM/LBNL Carbon Project. CO2 flask data contains measurements of CO2 concentration and CO2 stable isotope ratios (13CO2 and C18OO) from flasks collected at the SGP site. The flask samples are collected at 2m, 4m, 25m, and 60m along the 60m tower.

  13. NOAA-9 Earth Radiation Budget Experiment (ERBE) scanner offsets determination

    NASA Technical Reports Server (NTRS)

    Avis, Lee M.; Paden, Jack; Lee, Robert B., III; Pandey, Dhirendra K.; Stassi, Joseph C.; Wilson, Robert S.; Tolson, Carol J.; Bolden, William C.

    1994-01-01

    The Earth Radiation Budget Experiment (ERBE) instruments are designed to measure the components of the radiative exchange between the Sun, Earth and space. ERBE is comprised of three spacecraft, each carrying a nearly identical set of radiometers: a three-channel narrow-field-of-view scanner, a two-channel wide-field-of-view (limb-to-limb) non-scanning radiometer, a two-channel medium field-of view (1000 km) non-scanning radiometer, and a solar monitor. Ground testing showed the scanners to be susceptible to self-generated and externally generated electromagnetic noise. This paper describes the pre-launch corrective measures taken and the post-launch corrections to the NOAA-9 scanner data. The NOAA-9 scanner has met the mission objectives in accuracy and precision, in part because of the pre-launch reductions of and post-launch data corrections for the electromagnetic noise.

  14. Non-standard Space Weather Products and Services from NOAA

    NASA Astrophysics Data System (ADS)

    Denig, W. F.; Viereck, R. A.

    2012-12-01

    The NOAA National Geophysical Data Center (NGDC) and Space Weather Prediction Center (SWPC) have developed and are continuing to develop a variety of "non-standard" data products for near real-time space weather applications. Core space weather services provided by SWPC include access to space environmental data from NOAA operational satellites and leveraged data from NASA and USAF assets. Core services also include operational space weather model results providing environmental specifications and forecasts. Non-standard products to be discussed include space weather services and applications that have either not yet reached operational maturity or are being released as beta-version test products. Included are the Forecasting Ionospheric Real-time Scintillation Tool (FIRST), the Ovation Prime Real-Time product, the Space Environment Anomaly Expert System Real Time (SEAESRT) and the PEople Empowered Product (PEEP). The status of these products, including how to access and provide comments, will be presented.

  15. NOAA 26.5 Ah LEO characterization test

    NASA Technical Reports Server (NTRS)

    Morrow, G. W.

    1986-01-01

    The General Electric (GE) 26.5 Ah NOAA-G flight nickel-cadmium cells were obtained from RCA-Astro Electronics to undergo performance characterization testing at the Goddard Space Flight Center (GSFC). This lot of cells was manufactured with passivated positive plate, to control nickel structure attack duing active material impregnation, and less electrolyte than normal (less than 3cc/Ah). The cells were tested in a parametric low Earth orbit (LEO) cycling regime that was previously used to test and characterize standard 50 Ah cells. Life cycle testing at the Naval Weapons Support Center (NWSC), in Crane, followed. The results of the test showed nominal performance in comparison with previous test data on the standard 50. Life cycle testing in the NOAA orbital regime is continuing at NWSC.

  16. Advances of NOAA Training Program in Climate Services

    NASA Astrophysics Data System (ADS)

    Timofeyeva, M. M.

    2012-12-01

    Since 2002, NOAA's National Weather Service (NWS) Climate Services Division (CSD) has offered numerous training opportunities to NWS staff. After eight-years of development, the training program offers three instructor-led courses and roughly 25 online (distance learning) modules covering various climate topics, such as: climate data and observations, climate variability and change, and NWS national / local climate products (tools, skill, and interpretation). Leveraging climate information and expertise available at all NOAA line offices and partners allows for the delivery of the most advanced knowledge and is a very critical aspect of the training program. The emerging NOAA Climate Service (NCS) requires a well-trained, climate-literate workforce at the local level capable of delivering NOAA's climate products and services as well as providing climate-sensitive decision support. NWS Weather Forecast Offices and River Forecast Centers presently serve as local outlets for the NCS climate services. Trained NWS climate service personnel use proactive and reactive approaches and professional education methods in communicating climate variability and change information to local users. Both scientifically-sound messages and amiable communication techniques are important in developing an engaged dialog between the climate service providers and users. Several pilot projects have been conducted by the NWS CSD this past year that apply the program's training lessons and expertise to specialized external user group training. The technical user groups included natural resources managers, engineers, hydrologists, and planners for transportation infrastructure. Training of professional user groups required tailoring instructions to the potential applications for each group of users. Training technical users identified the following critical issues: (1) knowledge of target audience expectations, initial knowledge status, and potential use of climate information; (2) leveraging

  17. Impact of Scatterometer Ocean Wind Vector Data on NOAA Operations

    NASA Astrophysics Data System (ADS)

    Jelenak, Z.; Chang, P.; Brennan, M. J.; Sienkiewicz, J. M.

    2015-12-01

    Near real-time measurements of ocean surface vector winds (OSVW), including both wind speed and direction from non-NOAA satellites, are being widely used in critical operational NOAA forecasting and warning activities. The scatterometer wind data data have had major operational impact in: a) determining wind warning areas for mid-latitude systems (gale, storm,hurricane force); b) determining tropical cyclone 34-knot and 50-knot wind radii. c) tracking the center location of tropical cyclones, including the initial identification of their formation. d) identifying and warning of extreme gap and jet wind events at all latitudes. e) identifying the current location of frontal systems and high and low pressure centers. f) improving coastal surf and swell forecasts Much has been learned about the importance and utility of satellite OSVW data in operational weather forecasting and warning by exploiting OSVW research satellites in near real-time. Since December 1999 when first data from QuikSCAT scatterometer became available in near real time NOAA operations have been benefiting from ASCAT scatterometer observations on MetOp-A and B, Indian OSCAT scatterometer on OceanSat-3 and lately NASA's RapidScat mission on International Space Station. With oceans comprising over 70 percent of the earth's surface, the impacts of these data have been tremendous in serving society's needs for weather and water information and in supporting the nation's commerce with information for safe, efficient, and environmentally sound transportation and coastal preparedness. The satellite OSVW experience that has been gained over the past decade by users in the operational weather community allows for realistic operational OSVW requirements to be properly stated for future missions. Successful model of transitioning research data into operation implemented by Ocean Winds Team in NOAA's NESDIS/STAR office and subsequent data impacts will be presented and discussed.

  18. NOAA Ecosystem Data Assembly Center for the Gulf of Mexico

    NASA Astrophysics Data System (ADS)

    Parsons, A. R.; Beard, R. H.; Arnone, R. A.; Cross, S. L.; Comar, P. G.; May, N.; Strange, T. P.

    2006-12-01

    Through research programs at the NOAA Northern Gulf of Mexico Cooperative Institute (CI), NOAA is establishing an Ecosystem Data Assembly Center (EDAC) for the Gulf of Mexico. The EDAC demonstrates the utility of integrating many heterogeneous data types and streams used to characterized and identify ecosystems for the purpose of determining the health of ecosystems and identifying applications of the data within coastal resource management activities. Data streams include meteorological, physical oceanographic, ocean color, benthic, biogeochemical surveys, fishery, as well as fresh water fluxes (rainfall and river flow). Additionally the EDAC will provide an interface to the ecosystem data through an ontology based on the Coastal/Marine Ecological Classification System (CMECS). Applications of the ontological approach within the EDAC will be applied to increase public knowledge on habitat and ecosystem awareness. The EDAC plans to leverage companion socioeconomic studies to identify the essential data needed for continued EDAC operations. All data-management architectures and practices within the EDAC ensure interoperability with the Integrated Ocean Observing System (IOOS) national backbone by incorporating the IOOS Data Management and Communications Plan. Proven data protocols, standards, formats, applications, practices and architectures developed by the EDAC will be transitioned to the NOAA National Data Centers.

  19. Best Practices in Mentoring in NOAA Scholarship Programs

    NASA Astrophysics Data System (ADS)

    Kaplan, M.; Sarvis, S.; Dancy, V.

    2015-12-01

    Through established scholarship programs, NOAA hosts 125 - 175 undergraduate students each summer to participate in internship opportunities at agency facilities. In order to host a scholar, NOAA labs and offices must designate a mentor who develops a project and oversees activities of the student throughout the summer. NOAA implements best practices in mentoring in the following ways: mentor and intern responsibilities are clearly defined in a manual; mentors are required to take an online mentor training class; mentors and scholars are matched through an online system and scholars conduct a site visit prior to beginning the internship; proposed internship projects are reviewed by scholarship program managers to assure they are sufficiently analytical and will advance the student in their future academic and career goals; and mentors are surveyed at the midpoint, allowing scholarship program managers to identify problems and intervene if possible. These practices have resulted in strong results. Students identify the mentor relationship, hands-on experience and networking with professionals as the three most important outcomes of the internship experience.

  20. A Restrospective and Prospective Examination of NOAA Solar Imaging

    NASA Astrophysics Data System (ADS)

    Hill, S. M.

    2015-12-01

    NOAA has provided soft X-ray imaging of the lower corona since the early 2000's. It is currently building the spacecraft and instrumentation to observe the sun in the extreme ultraviolet (EUV) through 2036. After more than 6 million calibrated images, it is appropriate to examine NOAA data as providing retrospective context for scientific missions. In particular, this presentation examines the record of GOES Solar X-ray Imager (SXI) observations, including continuity, photometric stability and comparison to other contemporary x-ray imagers. The first GOES Solar X-ray Imager was launched in 2001 and entered operations in 2003. The current SXIs will remain in operations until approximately 2020, when a new series of Solar (extreme-)Ultraviolet Imagers (SUVIs) will replace them as the current satellites reach their end of life. In the sense that the SXIs are similar to Yokoh's SXT and Hinode's XRT, the SUVI instruments will be similar to SOHO's EIT and SDO's AIA. The move to narrowband EUV imagers will better support eventual operational estimation of plasma conditions. In particular, plans are to leverage advances in automated image processing and segmentation to assist forecasters. While NOAA's principal use of these observations is real-time space weather forecasting, they will continue to provide a consistent context measurement for researchers for decades to come.

  1. Towards NOAA Forecasts of Permafrost Active Layer Thickness

    NASA Astrophysics Data System (ADS)

    Livezey, M. M.; Jonassen, R. G.; Horsfall, F. M. C.; Jafarov, E. E.; Schaefer, K. M.

    2014-12-01

    NOAA's implementation of its 2014 Arctic Action Plan (AAP) lacks services related to permafrost change yet the Interagency Working Group on Coordination of Domestic Energy Development and Permitting in Alaska noted that warming permafrost challenges land-based development and calls for agencies to provide focused information needed by decision-makers. To address this we propose to link NOAA's existing seasonal forecasts of temperature and precipitation with a high-resolution model of the thermal state of permafrost (Jafarov et al., 2012) to provide near-term (one year ahead) forecasts of active layer thickness (ALT). Such forecasts would be an official NOAA statement of the expected thermal state of permafrost ALT in Alaska and would require: (1) long-term climate outlooks, (2) a permafrost model, (3) detailed specification of local spatial and vertical controls upon soil thermal state, (4) high-resolution vertical measurements of that thermal state, and (5) demonstration of forecast skill in pilot studies. Pilot efforts should focus on oil pipelines where the cost can be justified. With skillful forecasts, engineers could reduce costs of monitoring and repair as well as ecosystem damage by positioning equipment to more rapidly respond to predicted disruptions.

  2. 75 FR 38079 - National Oceanic and Atmospheric Administration (NOAA) Science Advisory Board (SAB)

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-01

    ...The Science Advisory Board (SAB) was established by a Decision Memorandum dated September 25, 1997, and is the only Federal Advisory Committee with responsibility to advise the Under Secretary of Commerce for Oceans and Atmosphere on strategies for research, education, and application of science to operations and information services. SAB activities and advice provide necessary input to ensure......

  3. NOAA Introduces its First-Generation Reference Evapotranspiration Product

    NASA Astrophysics Data System (ADS)

    Hobbins, M.; Geli, H. M.; Lewis, C.; Senay, G. B.; Verdin, J. P.

    2013-12-01

    NOAA is producing daily, gridded operational, long-term, reference evapotranspiration (ETo) data for the National Water Census (NWC). The NWC is a congressional mandate to provide water managers with accurate, up-to-date, scientifically defensible reporting on the national water cycle; as such, it requires a high-quality record of actual ET, which we derive as a fraction of NOAA's land-based ETo a fraction determined by remotely sensed (RS) LST and/or surface reflectance in an operational version of the Simplified Surface Energy Balance (SSEBop). This methodology permits mapping of ET on a routine basis with a high degree of consistency at multiple spatial scales. This presentation addresses the ETo input to this process. NOAA's ETo dataset is generated from the American Society of Civil Engineers Standardized Penman-Monteith equation driven by hourly, 0.125-degree (~12-km) data from the North American Land Data Assimilation System (NLDAS). Coverage is CONUS-wide from Jan 1, 1979, to within five days of the present. The ETo is verified against agro-meteorological stations in western CONUS networks, while a first-order, second-moment uncertainty analysis indicates when, where, and to what extent each driver contributes to ETo variability (and so potentially require the most attention). As the NWC's mandate requires a nationwide coverage, the ETo dataset must also be verified outside of the measure's traditional, agricultural/irrigated areas of application. In this presentation, we summarize the verification of the gridded ETo product and demonstrate the drivers of ETo variability in space and time across CONUS. Beyond its primary use as a component of ET in the NWC, we further explore potential uses of the ETo product as an input to drought models and as a stand-alone index of fast-developing agricultural drought, or 'flash drought.' NOAA's product is the first consistently modeled, daily, continent-wide ETo dataset that is both up-to-date and as temporally

  4. Modernizing Administration.

    ERIC Educational Resources Information Center

    Lombardi, Vincent L.; Hildebrand, Verna

    1981-01-01

    Suggests assignment of research duties and rotation of teaching and management roles for college administrators, to increase their effectiveness and diminish the negative effects of declining enrollments. (JD)

  5. Integration of Visibility Sensors in NOAA PORTS® to aid in Decision Making for Safe Navigation

    NASA Astrophysics Data System (ADS)

    Roggenstein, E. B.

    2012-12-01

    The National Oceanic and Atmospheric Administration (NOAA) National Ocean Service (NOS) Physical Oceanographic Real-Time System (PORTS®) provides real-time water level, currents and meteorological data for aid to navigation in twenty-three major ports and harbors. In response to PORTS® users' requests for visibility data, NOS began testing several varieties of visibility sensors for operations in a marine environment. Extensive testing resulted in the selection of the Vaisala FS11 visibility sensor. The FS11 sensor uses forward scattering technology to measure the amount of scattering in a small volume of air between the transmitter and receiver, resulting in an extrapolated visibility at a set height out to 75 km. Two sensors have been successfully operating in the Mobile Bay PORTS® at Middle Bay Port and Pinto Island since installation in 2010. The sensors are positioned at a height of 3 m above the ground, 24 km apart along the western shore of the bay in areas susceptible to fog formation. Real-time data from these sensors are disseminated on NOAA's Center for Operational Oceanographic Products and Services (COOPS) PORTS® website every 6 minutes (min) and for distances up to 10 km (5.4 nm) from the instrument. This has proven to aid port pilots' decision making for safe movement of vessels in the harbor. Additionally, the Pinto Island sensor is located directly adjacent to the shipping channel - an area with high levels of atmospheric particulates of high carbon content. These particulates do not appear to have negatively affected sensor performance. This success has prompted interest in visibility sensors from other harbors with PORTS®. The ports of San Francisco, Narragansett Bay, Chesapeake Bay, Jacksonville FL, and Gulfport MS are planning or exploring the addition of visibility sensors to their PORTS® to aid in navigation. Additionally, the NOAA/COOPS Ocean System Test Evaluation Program (OSTEP) has continued with additional field testing of the FS11

  6. The Climate Change Education Evidence Base: Lessons Learned from NOAA's Monitoring and Evaluation Framework Implementation

    NASA Astrophysics Data System (ADS)

    Baek, J.

    2012-12-01

    Federal science mission agencies are under increased pressure to ensure that their STEM education investments accomplish several objectives, including the identification and use of evidence-based approaches. Climate change education and climate literacy programs fall under these broader STEM initiatives. This paper is designed as a primer for climate change education evaluators and researchers to understand the policy context on the use of evidence. Recent initiatives, that include the National Science Foundation (NSF), the National Aeronautics and Space Administration (NASA), the National Oceanic and Atmospheric Administration (NOAA), point to a need for shared goals and measurements amongst the climate change education community. The Tri-agency Climate Change Education (CCE) collaboration, which includes NSF, NASA, and NOAA, developed the Tri-Agency Climate Change Education Common Evaluation Framework Initiative Stakeholder Statement (2012). An excerpt: From the perspective of the tri-agency collaboration, and its individual agency members, the goal of the common framework is not to build a required evaluation scheme or a set of new requirements for our funded climate change education initiatives. Rather, the collaboration would be strengthened by the development of a framework that includes tools, instruments, and/or documentation to: ● Help the agencies see and articulate the relationships between the individual pieces of the tri-agency CCE portfolio; ● Guide the agencies in reporting on the progress, lessons learned, and impacts of the collaboration between the three agencies in developing a coordinated portfolio of climate education initiatives; and ● Help the individual projects, as part of this broader portfolio, understand where they fit into a larger picture. The accomplishments of this initiative to date have been based on the collaborative nature of evaluators the climate change education community within the tri-agency portfolio. While this

  7. Characterizing the Behavior of NOAA's Hydrologic Ensemble Forecast Service in California

    NASA Astrophysics Data System (ADS)

    He, M.; Whitin, B.; Brown, J.; Fickenscher, P.; Henkel, A.; Talanki, S.; Hartman, R.

    2014-12-01

    The National Oceanic and Atmospheric Administration (NOAA)'s National Weather Service (NWS) is implementing the Hydrologic Ensemble Forecast Service (HEFS) across the operating areas of the 13 NWS River Forecast Centers (RFCs). As the implementation progresses, hindcasting and validation is necessary to understand the strengths and weaknesses of the HEFS and to guide its operational use. Particularly in regions such as California that encompass a broad range of elevation, temperature, and precipitation gradients, the quality of the HEFS forecasts will vary geographically, and it is important to understand the degrees and controls on forecast quality in this context. This study aims to develop a comprehensive understanding of the quality of HEFS forecasts in California, with the aim of guiding and enhancing the implementation of the HEFS, as well as informing end-users about the expected quality of the HEFS forecasts. The HEFS was calibrated with temperature and precipitation forecasts from the Global Ensemble Forecast System (GEFS) of the National Centers for Environmental Prediction. Also, in order to determine forecast skill and to benchmark the HEFS against a simpler forecasting system, the HEFS was calibrated with a conditional ("resampled") climatology. The calibrated HEFS was used to generate retrospective forecasts of precipitation, temperature, and streamflow for a 25-year (1985-2009) period for six basins in the state. The forecast horizon was 1-14 days. The retrospective forecasts were verified conditionally on forecast lead time, magnitude, and season. Preliminary results indicate that HEFS forecasts are much more skillful when forced by inputs from the GEFS, rather than resampled climatology. However, there are noticeable differences in forecast quality among basins. These observations demonstrate the applicability of HEFS in a wide hydroclimatic gradient within California, while highlighting the difficulty in generalizing its behavior across the state.

  8. Comparison of NOAA-CREST Soil Moisture Measurements with SMOS Products

    NASA Astrophysics Data System (ADS)

    Norouzi, H.; Forbes, A.

    2014-12-01

    In October 2014, the Soil Moisture Active and Passive mission (SMAP) will launch into a near-polar and sun- synchronous orbit. SMAP includes the first 3 KM resolution product, by both radar and radiometer sensors which will transmit useful information concentrating on the global measurements of soil moisture and freeze/thaw cycles. NOAA- CREST (National Oceanic and Atmospheric Administration- Cooperative Remote Sensing Science and Technology) deploys a series of in-situ devices into the soil, and an L-BAND Radiometer close to the site ground at the Cary Institute in Millbrook, NY. The site is important for future validation of SMAP mission. Comparing mathematical and ground based remote sensing of soil moisture is beneficial to ensure the accuracy of the measurements. The focus of this research is to analyze and compare soil moisture from ESA- SMOS (Europe Space Agency- Soil Moisture Ocean Salinity) mission and the Cary Institute's soil moisture measurements within the same time period, and location. In the interest of establishing superb authentication; comparing SMOS and ground measurements will justify the accuracy of the newly launch satellite. Discrepancies can be found between field point measurement and relatively large footprint of SMOS, which affects comparison and validation. Several techniques and statistical methods will provide a more meaningful comparison to analyze soil moisture data. The results of this project will help to provide a useful method to compare the NOAA-CREST soil moisture measurements and SMAP measurements. In conclusion, the SMAP advance technology will provide more accurate feedback for modeling numerical weather and climate models. Keywords: Soil Moisture, Precipitation, CREST-SMART, Cary Institute, In-situ, Remote Sensors Accurate Soil Moisture Data, Millbrook, N.Y., CATDS, Hydrology is the branch of science concerning properties of earth's water especially its movement in relation to land. SMOS MIRAS, SMAP, Sensors (Underground)

  9. An efficient contextual algorithm to detect subsurface fires with NOAA/AVHRR data

    SciTech Connect

    Gautam, R.S.; Singh, D.; Mittal, A.

    2008-07-15

    This paper deals with the potential application of National Oceanic and Atmospheric Administration (NOAA)/Advanced Very High Resolution Radiometer (AVHRR) data to detect subsurface fire (subsurface hotspots) by proposing an efficient contextual algorithm. Although few algorithms based on the fixed-thresholding approach have been proposed for subsurface hotspot detection, however, for each application, thresholds have to be specifically tuned to cope with unique environmental conditions. The main objective of this paper is to develop an instrument-independent adaptive method by which direct threshold or multithreshold can be avoided. The proposed contextual algorithm is helpful to monitor subsurface hotspots with operational satellite data, such as the Jharia region of India, without making any region-specific guess in thresholding. Novelty of the proposed work lies in the fact that once the algorithmic model is developed for the particular region of interest after optimizing the model parameters, there is no need to optimize those parameters again for further satellite images. Hence, the developed model can be used for optimized automated detection and monitoring of subsurface hotspots for future images of the particular region of interest. The algorithm is adaptive in nature and uses vegetation index and different NOAA/AVHRR channel's statistics to detect hotspots in the region of interest. The performance of the algorithm is assessed in terms of sensitivity and specificity and compared with other well-known thresholding, techniques such as Otsu's thresholding, entropy-based thresholding, and existing contextual algorithm proposed by Flasse and Ceccato. The proposed algorithm is found to give better hotspot detection accuracy with lesser false alarm rate.

  10. Administrative Support.

    ERIC Educational Resources Information Center

    Doran, Dorothy; And Others

    This guide is intended to assist business education teachers in administrative support courses. The materials presented are based on the Arizona validated occupational competencies and tasks for the occupations of receptionist, secretary, and administrative assistant. Word processing skills have been infused into each of the three sections. The…

  11. Administrative Ecology

    ERIC Educational Resources Information Center

    McGarity, Augustus C., III; Maulding, Wanda

    2007-01-01

    This article discusses how all four facets of administrative ecology help dispel the claims about the "impossibility" of the superintendency. These are personal ecology, professional ecology, organizational ecology, and community ecology. Using today's superintendency as an administrative platform, current literature describes a preponderance of…

  12. NOAA Climate Information and Tools for Decision Support Services

    NASA Astrophysics Data System (ADS)

    Timofeyeva, M. M.; Higgins, W.; Strager, C.; Horsfall, F. M.

    2013-12-01

    NOAA is an active participant of the Global Framework for Climate Services (GFCS) contributing data, information, analytical capabilities, forecasts, and decision support services to the Climate Services Partnership (CSP). These contributions emerge from NOAA's own climate services, which have evolved to respond to the urgent and growing need for reliable, trusted, transparent, and timely climate information across all sectors of the U.S. economy. Climate services not only enhance development opportunities in many regions, but also reduce vulnerability to climate change around the world. The NOAA contribution lies within the NOAA Climate Goal mission, which is focusing its efforts on four key climate priority areas: water, extremes, coastal inundation, and marine ecosystems. In order to make progress in these areas, NOAA is exploiting its fundamental capabilities, including foundational research to advance understanding of the Earth system, observations to preserve and build the climate data record and monitor changes in climate conditions, climate models to predict and project future climate across space and time scales, and the development and delivery of decision support services focused on risk management. NOAA's National Weather Services (NWS) is moving toward provision of Decision Support Services (DSS) as a part of the Roadmap on the way to achieving a Weather Ready National (WRN) strategy. Both short-term and long-term weather, water, and climate information are critical for DSS and emergency services and have been integrated into NWS in the form of pilot projects run by National and Regional Operations Centers (NOC and ROCs respectively) as well as several local offices. Local offices with pilot projects have been focusing their efforts on provision of timely and actionable guidance for specific tasks such as DSS in support of Coastal Environments and Integrated Environmental Studies. Climate information in DSS extends the concept of climate services to

  13. NASA/NOAA/AMS Earth Science Electronic Theatre

    NASA Technical Reports Server (NTRS)

    Hasler, Fritz; Pierce, Hal; Einaudi, Franco (Technical Monitor)

    2001-01-01

    The NASA/NOAA/AMS Earth Science Electronic Theater presents Earth science observations and visualizations in a historical perspective. Fly in from outer space to Florida and the KSC Visitor's Center. Go back to the early weather satellite images from the 1960s see them contrasted with the latest International global satellite weather movies including killer hurricanes & tornadic thunderstorms. See the latest spectacular images from NASA and NOAA remote sensing missions like GOES, NOAA, TRMM, SeaWiFS, Landsat 7, & new Terra which will be visualized with state-of-the art tools. Shown in High Definition TV resolution (2048 x 768 pixels) are visualizations of hurricanes Lenny, Floyd, Georges, Mitch, Fran and Linda. See visualizations featured on covers of magazines like Newsweek, TIME, National Geographic, Popular Science and on National & International Network TV. New Digital Earth visualization tools allow us to roam & zoom through massive global images including a Landsat tour of the US, with drill-downs into major cities using 1 m resolution spy-satellite technology from the Space Imaging IKONOS satellite, Spectacular new visualizations of the global atmosphere & oceans are shown. See massive dust storms sweeping across Africa. See ocean vortexes and currents that bring up the nutrients to feed tiny plankton and draw the fish, giant whales and fisherman. See the how the ocean blooms in response to these currents and El Nino/La Nina climate changes. The demonstration is interactively driven by a SGI Octane Graphics Supercomputer with dual CPUs, 5 Gigabytes of RAM and Terabyte disk using two projectors across the super sized Universe Theater panoramic screen.

  14. 2013 Update of NOAA's Annual Greenhouse Gas Index

    NASA Astrophysics Data System (ADS)

    Butler, James H.; Montzka, Stephen A.; Dlugokencky, Edward J.; Elkins, James W.; Masari, Kenneth A.; Schnell, Russell C.; Tans, Pieter P.

    2013-04-01

    Indexes are becoming increasingly important in communicating messages about climate change to a diverse public. Indexes exist for a number of climate-related phenomena including heat, precipitation, and extreme events. These help communicate complex phenomena to the public and, at times, policy makers, to aid in understanding or making decisions. Several years ago, NOAA introduced a unique index for expressing the influence of human-emitted, long-lived greenhouse gases in the atmosphere (DJ Hofmann et al., Tellus, 2006, S8B 614-619). Essentially a condensation and normalization of radiative forcing from long-lived gases, the NOAA Annual Greenhouse Gas Index (AGGI) was designed to enhance the connection between scientists and society by providing a standard that could be easily understood and followed. The index each year is calculated from high quality, long-term observations by NOAA's Global Monitoring Division, which includes real-time measurements extending over the past five decades, as well as published ice core record that go back to 1750. The AGGI is normalized to 1.00 in 1990, the Kyoto Climate Protocol baseline year. At the end of 2011, the AGGI was 1.30, indicating that global radiative forcing by long-lived greenhouse gases had increased 30% since 1990. During the 1980s CO2 accounted for about 50-60% of the annual increase in radiative forcing by long-lived greenhouse gases, whereas, since 2000, it has accounted for 85-90% of this increase each year. After nearly a decade of virtually level concentrations in the atmosphere, methane (CH4) increased measurably over the past 2-3 years, as did its contribution to radiative forcing. In addition to presenting the AGGI for 2012, increases in radiative forcing will be evaluated and discussed with respect to the contributions from CO2, CH4, nitrous oxide (N2O), chlorofluorocarbons (CFCs), and other emerging greenhouse gases.

  15. New Directions for the NOAA Solar and Terrestrial Physics Division

    NASA Astrophysics Data System (ADS)

    Denig, W. F.

    2011-12-01

    To a large degree the Solar and Terrestrial Physics (STP) Division within the NOAA National Geophysical Data Center has been historically viewed as a final reposition for solar-geophysical data acquired from providers around the world. This perception was mostly due to STP's participation as a World Data Center (WDC) for Solar-Terrestrial Physics (Boulder) within the International Council for Science (ICSU). As such, STP was responsible for the archive, access and assessment of diverse collections of space environmental data collected worldwide, including data from the former Soviet Union and other "non-friendly" nation states. The WDC system was established during the 1957-58 International Geophysical Year at a time when the information technology infrastructure was rudimentary and central repositories of data were needed to manage and disseminate a vast quantity of environmental information. In today's internet savvy culture the need for centralized collections of data is no longer a critical element in the effective dissemination and utilization of data. The Virtual Observatory (VxO) initiative for heliophysics capitalizes on today's robust communications infrastructure to "virtually" collect and disseminate solar-geophysical data. As STP moves away from its traditional role as a central repository of environmental data it is refocusing its mission to be the authoritative provider of NOAA space weather data using dissemination tools well coupled to the VxOs. To this end and as a means to develop these tools, STP is building on revolutionary web services and user-interface technologies to create a novel and customizable interface for the presentation of original and derived data products. Overall, the focus for the division is on operational space weather data collected by NOAA's fleet of environmental satellites in polar orbit and at geosynchronous altitudes and other operational datasets acquired from the U.S. Air Force. This talk will provide both an

  16. 77 FR 40341 - Proposed Information Collection; Comment Request; Application for Appointment in the NOAA...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-09

    ... professionals trained in engineering, earth sciences, oceanography, meteorology, fisheries science, and other... credit hours of science, engineering, or other disciplines related to NOAA's missions (including...

  17. Value of Undergraduate Internship Experiences at NOAA: Analysis of Survey Results

    NASA Astrophysics Data System (ADS)

    Kaplan, M.

    2014-12-01

    This presentation will examine survey data from over 500 undergraduates who participated in summer internships at NOAA facilities as Ernest F. Hollings Scholars and Educational Partnership Program (EPP) Undergraduate Scholars. NOAA selects over 100 students per year to receive academic support in their junior and senior years and a paid summer internship at any NOAA facility in the country. Scholars are hosted by NOAA mentors who actively oversee summer research activities. Analysis of survey results identified six thematic impacts from the internship experience (McIntosh and Baek, 2013).

  18. Noaa's Jpss Program: the Next Generation of Operational Earth Observations

    NASA Astrophysics Data System (ADS)

    Goldberg, M.

    2012-12-01

    The Joint Polar Satellite System is NOAA's new operational satellite program and includes the SUOMI National Polar-orbiting Partnership (NPP) as a bridge between NOAA's operational Polar Orbiting Environmental Satellite (POES) series, which began in 1978, and the first JPSS operational satellite scheduled for launch in 2017. The NPP was completed as originally planned and launched on October 28, 2011 and carries the following five sensors: - Visible/Infrared Imager Radiometer Suite (VIIRS) that provides advanced imaging and radiometric capabilities. - Cross-track Infrared Sounder (CrIS) that provides improved atmospheric moisture and temperature profiles in clear conditions. - Advanced Technology Microwave Sounder (ATMS) that provides improved atmospheric moisture and temperature profiles in cloudy conditions. - Ozone Mapping and Profiler Suite (OMPS) that provides improved vertical and horizontal measurements of the distribution of ozone in the Earth's atmosphere. - Clouds and the Earth's Radiant Energy System (CERES) sensor that continues precise, calibrated global measurements of the earth's radiation budget JPSS provides critical data for key NOAA product and services, which the Nation depends on. These products and services include: Weather forecasting - data from the CRIS and the ATMS are needed to forecast weather events out to 7 days. Nearly 85% of all data used in weather forecasting are from polar orbiting satellites. Environmental monitoring - data from the VIIRS are used to monitor the environment including the health of coastal ecosystems, drought conditions, hydrology, fire, smoke, dust, snow and ice, and the state of oceans, including sea surface temperature and ocean color. Climate monitoring - data from JPSS instruments, including OMPS, CERES and TSIS will provide continuity to climate data records established using NOAA POES and NASA Earth Observing System (EOS) satellite observations. These data records provide a unified and coherent long

  19. Transitioning GONG data processing to NOAA SWPC operations

    NASA Astrophysics Data System (ADS)

    Reinard, Alysha; Marble, Andrew R.; Berger, Thomas

    2016-05-01

    The NOAA Space Weather Prediction Center (SWPC) is the nation's official source of space weather watches, warnings, and alerts, providing 24x7 forecasting and support to critical infrastructure operators around the world. Observations of the conditions on the Sun are crucial for determining when and if a warning is needed. The Global Oscillation Network Group (GONG) operated by the National Solar Observatory (NSO) consists of six ground stations, allowing continuous observations of the Sun. Of particular interest for space weather purposes are the H-alpha images and magnetograms. The H-alpha data are used to identify filaments and their eruptions, to assess active region evolution and plage extent, and to help localize flare locations. The magnetograms are used to identify neutral lines, to examine potential shearing areas and to characterize the magnetic structure of active regions. GONG magnetograms also provide the initial condition for models of solar wind expansion through the heliosphere such as the WSA-Enlil model. Although beyond the scope of current space weather applications, GONG helioseismology products can be used to assess active region emergence on the far side of the Sun and to indicate the flaring potential of a front-side active region. These products are being examined as future tools in flare prediction.NSO has operated GONG as a science facility since 1995 and has provided processed space weather data products to NOAA via for the past several years. In 2014 the White House Office of Management and Budget (OMB) requested that NOAA transition the GONG network to an operational space weather asset in order to ensure the continued flow of critical data for solar wind models. NSO will continue to operate and manage the instruments and sites, but the H-alpha images and 10 minute averaged magnetogram data will be sent directly to SWPC for processing and use in space weather modeling. SWPC will make these data available to NSO and the public via the

  20. Transitioning GONG data processing to NOAA SWPC operations

    NASA Astrophysics Data System (ADS)

    Reinard, A.; Marble, A.; Hill, F.; Berger, T. E.

    2015-12-01

    The NOAA Space Weather Prediction Center (SWPC) is the nation's official source of space weather watches, warnings, and alerts, providing 24x7 forecasting and support to critical infrastructure operators around the world. Observations of the conditions on the Sun are crucial for determining when and if a warning is needed. The Global Oscillation Network Group (GONG) operated by the National Solar Observatory (NSO) consists of six ground stations, allowing continuous observations of the Sun. Of particular interest for space weather purposes are the H-alpha images and magnetograms. The H-alpha data are used to identify filaments and their eruptions, to assess active region evolution and plage extent, and to help localize flare locations. The magnetograms are used to identify neutral lines, to examine potential shearing areas and to characterize the magnetic structure of active regions. GONG magnetograms also provide the initial condition for models of solar wind expansion through the heliosphere such as the WSA-Enlil model. Although beyond the scope of current space weather applications, GONG helioseismology products can be used to assess active region emergence on the far side of the Sun and to indicate the flaring potential of a front-side active region. These products are being examined as future tools in flare prediction. NSO has operated GONG as a science facility since 1995 and has provided processed space weather data products to NOAA via public internet connections for the past several years. In 2014 the White House Office of Management and Budget (OMB) requested that NOAA transition the GONG network to an operational space weather asset in order to ensure the continued flow of critical magnetogram data for solar wind models. NSO will continue to operate and manage the instruments and sites, but the H-alpha images and 10 minute averaged magnetogram data will be sent directly to SWPC for processing and use in space weather modeling. SWPC will make these data

  1. NOAA's Van-Based Mobile Atmospheric Emissions Measurement Laboratory

    NASA Astrophysics Data System (ADS)

    Dube, W. P.; Peischl, J.; Neuman, J. A.; Eilerman, S. J.; Holloway, M.; Roberts, O.; Aikin, K. C.; Ryerson, T. B.

    2015-12-01

    The Chemical Science Division (CSD) mobile atmospheric emissions measurement laboratory is the second and latest of two mobile measurement vans outfitted for atmospheric sampling by the NOAA Earth System Research Laboratory. In this presentation we will describe the modifications made to this vehicle to provide a versatile and relatively inexpensive instrument platform including: the 2 kW 120 volt instrument power system; battery back-up system; data acquisition system; real-time display; meteorological, directional, and position sensor package; and the typical atmospheric emissions instrument package. The van conversion uses commercially available, off-the-shelf components from the marine and RV industries, thus keeping the costs quite modest.

  2. NOAA AVHRR and its uses for rainfall and evapotranspiration monitoring

    NASA Technical Reports Server (NTRS)

    Kerr, Yann H.; Imbernon, J.; Dedieu, G.; Hautecoeur, O.; Lagouarde, J. P.

    1989-01-01

    NOAA-7 Advanced Very High Resolution Radiometer (AVHRR) Global Vegetation Indices (GVI) were used during the 1986 rainy season (June-September) over Senegal to monitor rainfall. The satellite data were used in conjunction with ground-based measurements so as to derive empirical relationships between rainfall and GVI. The regression obtained was then used to map the total rainfall corresponding to the growing season, yielding good results. Normalized Difference Vegetation Indices (NDVI) derived from High Resolution Picture Transmission (HRPT) data were also compared with actual evapotranspiration (ET) data and proved to be closely correlated with it with a time lapse of 20 days.

  3. A Photograph of a Wavenumber-2 Asymmetry in the Eye of Hurricane Erin.

    NASA Astrophysics Data System (ADS)

    Aberson, Sim D.; Dunion, Jason P.; Marks, Frank D., Jr.

    2006-01-01

    A photograph of a wavenumber-2 asymmetry in the eye of Hurricane Erin taken during a NOAA WP-3D research flight during the Fourth Convection and Moisture Experiment (CAMEX-4) field program on 10 September 2001 is described. The photograph of the cloud structure within the eye is evaluated using airborne and satellite remote sensing observations, and a possible explanation for the asymmetry is presented.

  4. NOAA/USGS Demonstration Flash-Flood and Debris-Flow Early-Warning System

    NASA Astrophysics Data System (ADS)

    Restrepo, P.; Cannon, S.; Laber, J.; Jorgensen, D.; Werner, K.

    2009-04-01

    Flash floods and debris flows are common following wildfires in southern California. On 25 December 2003, sixteen people were swept to their deaths by debris flows generated from basins in the San Bernardino Mountains that burned the previous fall. In an effort to reduce loss of life by floods and debris flows, the National Oceanic and Atmospheric Administration (NOAA) and the United States Geological Survey (USGS) established a prototype flash flood and debris flow early warning system for recently burned areas located in eight counties of southern California in the fall of 2005. This prototype system combines the existing NOAA's National Weather Service (NWS) Flash Flood Monitoring and Prediction (FFMP) system and USGS rainfall intensity-duration thresholds for debris flow and flash flood occurrence. Separate sets of thresholds are defined for the occurrence of debris flows and flash floods in response to storms during 1) the first winter after a fire, and 2) following a year of vegetative recovery. The FFMP was modified to identify when both flash floods and debris flows are likely to occur based on comparisons between precipitation (including radar estimates, in situ measurements, and short-term forecasts) and the rainfall intensity-duration thresholds developed specifically for burned areas. Advisory outlooks, watches, and warnings are disseminated to emergency management personnel through NOAA's Advanced Weather Information Processing System (AWIPS). The FFMP provides a cost-effective and efficient approach to implement a warning system on a 24-hour, 7-day-a-week basis. In 2004 the system was advanced to incorporate a web-based procedure developed by the NWS Weather Forecast Office (WFO) in Oxnard, CA that provides information about each fire to forecasters, and displays hazard maps generated by the USGS that show those basins most likely to produce the largest debris flow events within recently burned areas. During four years of operation, the WFOs in Oxnard

  5. A User's Guide to the Tsunami Datasets at NOAA's National Data Buoy Center

    NASA Astrophysics Data System (ADS)

    Bouchard, R. H.; O'Neil, K.; Grissom, K.; Garcia, M.; Bernard, L. J.; Kern, K. J.

    2013-12-01

    The National Data Buoy Center (NDBC) has maintained and operated the National Oceanic and Atmospheric Administration's (NOAA) tsunameter network since 2003. The tsunameters employ the NOAA-developed Deep-ocean Assessment and Reporting of Tsunamis (DART) technology. The technology measures the pressure and temperature every 15 seconds on the ocean floor and transforms them into equivalent water-column height observations. A complex series of subsampled observations are transmitted acoustically in real-time to a moored buoy or marine autonomous vehicle (MAV) at the ocean surface. The surface platform uses its satellite communications to relay the observations to NDBC. NDBC places the observations onto the Global Telecommunication System (GTS) for relay to NOAA's Tsunami Warning Centers (TWC) in Hawai'i and Alaska and to the international community. It takes less than three minutes to speed the observations from the ocean floor to the TWCs. NDBC can retrieve limited amounts of the 15-s measurements from the instrumentation on the ocean floor using the technology's two-way communications. NDBC recovers the full resolution 15-s measurements about every 2 years and forwards the datasets and metadata to the National Geophysical Data Center for permanent archive. Meanwhile, NDBC retains the real-time observations on its website. The type of real-time observation depends on the operating mode of the tsunameter. NDBC provides the observations in a variety of traditional and innovative methods and formats that include descriptors of the operating mode. Datasets, organized by station, are available from the NDBC website as text files and from the NDBC THREDDS server in netCDF format. The website provides alerts and lists of events that allow users to focus on the information relevant for tsunami hazard analysis. In addition, NDBC developed a basic web service to query station information and observations to support the Short-term Inundation Forecasting for Tsunamis (SIFT

  6. NOAA-ISRO joint science projects on Earth observation system science, technology, and applications for societal benefits

    NASA Astrophysics Data System (ADS)

    Powell, A.; Jayarman, V.; Kondragunta, S.; Kogan, F.; Kuligowski, R.; Maturi, E.

    2006-12-01

    India and the United States of America (U.S.A.) held a joint conference from June 21-25, 2004 in Bangalore, India to strengthen and expand cooperation in the area of space science, applications, and commerce. Following the recommendations in the joint vision statement released at the end of the conference, the National Oceanic and Atmospheric Administration (NOAA) and the Indian Space and Reconnaissance Organization (ISRO) initiated several joint science projects in the area of satellite product development and applications. This is an extraordinary step since it concentrates on improvements in the data and scientific exchange between India and the United States, consistent with a Memorandum of Understanding (MOU) signed by the two nations in 1997. With the relationship between both countries strengthening with President Bush's visit in early 2006 and new program announcements between the two countries, there is a renewed commitment at ISRO and other Indian agencies and at NOAA in the U.S. to fulfill the agreements reached on the joint science projects. The collaboration is underway with several science projects that started in 2005 providing initial results. NOAA and ISRO agreed that the projects must promote scientific understanding of the satellite data and lead to a satellite-based decision support systems for disaster and public health warnings. The projects target the following areas: --supporting a drought monitoring system for India --improving precipitation estimates over India from Kalpana-1 --increasing aerosol optical depth measurements and products over India --developing early indicators of malaria and other vector borne diseases via satellite monitoring of environmental conditions and linking them to predictive models --monitoring sea surface temperature (SST) from INSAT-3D to support improved forecasting of regional storms, monsoon onset and cyclones. The research collaborations and results from these projects will be presented and discussed in the

  7. The NOAA-NASA Operational System for Near-Real-Time Volcanic Eruption Detection via Satellite Observations

    NASA Astrophysics Data System (ADS)

    Vicente, G.; Serafino, G.; Krueger, A.; Schroeder, W.; Carn, S.; Yang, K.; Krotkov, N.; Guffanti, M.; Levett, P.

    2009-04-01

    The Ozone Monitoring Instrument (OMI) on the NASA EOS/Aura research satellite allows measurement of SO2 concentrations at UV wavelengths with daily global coverage. SO2 is detected from space using its strong absorption band structure in the near UV (300-320 nm) as well as in IR bands near 7.3 and 8.6 mm. UV SO2 measurements are very robust and are insensitive to the factors that confound IR data. SO2 and ash can be detected in a very fresh volcanic eruption cloud due to sunlight backscattering and ash presence can be confirmed by UV derived aerosol index measurements. This will provide aviation alerts to the Federal Aviation Administration (FAA) with reduced false alarm ratios and permit more robust detection and tracking of volcanic clouds, and includes the development of an eruption alarm system, and potential recognition of pre-eruptive volcanic degassing. Near real-time (NRT) observations of SO2 and volcanic ash can therefore be incorporated into data products compatible with Decision Support Tools (DSTs) in use at Volcanic Ash Advisory Centers (VAACs) in Washington and Anchorage, and the USGS Volcano Observatories. In this presentation we show the latest NOAA Office of Satellite Data Processing and Distribution (OSDPD) development of an online NRT image and data product distribution system that generates eruption alarms, allows the extraction of volcanic cloud subsets for special processing, and provides access to analysis tools and graphical products derived from the OMI and the Atmospheric Infrared Sounder (AIRS) and MODIS Instrument. Products are infused into DSTs including the Volcanic Ash Coordination Tool (VACT), under development by the NOAA Forecast Systems Laboratory and the FAA's Oceanic Weather Product Development Team (OWPDT), to monitor and track, drifting volcanic clouds and aerosol index. More details: http://satepsanone.nesdis.noaa.gov/pub/OMI/OMISO2/index.html

  8. Automatic cloud detection applied to NOAA-11/AVHRR imagery

    SciTech Connect

    Derrien, M.; Farki, B.; Harang, L.; LeGleau, H.; Noyalet, A.; Pochic, D.; Sairouni, A. . Centre de Meteorologie Spatiale)

    1993-12-01

    The imagery from the AVHRR on board NOAA polar orbiting satellites allows a description of cloud cover, oceanic, and continental surfaces that is used by Meteo-France for nowcasting activities and as input for numerical weather prediction models (NWP). A real-time processing scheme has been designed at the Centre de Meteorologie Spatiale (CMS) in Lannion to extract cloud cover and surface parameters from NOAA-11 AVHRR imagery received at CMS. The key step of this scheme is cloud detection. It is based upon threshold tests applied to different combinations of channels. Its main originality is its complete automation by the computation of the 11[mu]m infrared threshold from a monthly sea surface temperature (SST) climatology over the oceans and from air temperature (near the surface) forecast by NWP over land. A special test has been implemented to detect cloud edges and subpixel clouds over continental surfaces during daytime. It is applied daily in deferred time only to compute normalized difference vegetation index (NDVI). This scheme has been used operationally since February 1990, and its quality has been checked. It has enabled the routine production of various products. A nighttime cloud classification is sent to all French Forecasters; NDVI values are computed daily and used to map the vegetation cover; and SST and thermal fronts are derived operationally from nighttime imagery.

  9. 76 FR 16386 - NOAA Policy on Prohibited and Approved Uses of the Asset Forfeiture Fund

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-23

    ... of the Asset Forfeiture Fund AGENCY: National Marine Fisheries Service (NMFS), National Oceanic and... NOAA are deposited in an enforcement asset forfeiture fund. NOAA finalized its policy on March 16, 2011... Policy on Prohibited and Approved Uses of the Asset Forfeiture Fund Strong management and oversight...

  10. VIIRS ocean color data visualization and processing with IDL-based NOAA-SeaDAS

    NASA Astrophysics Data System (ADS)

    Wang, Xiaolong; Liu, Xiaoming; Jiang, Lide; Wang, Menghua; Sun, Junqiang

    2014-11-01

    The NOAA Sea-viewing Data Analysis System (NOAA-SeaDAS) is an Interactive Data Language (IDL)-based satellite data visualization, analysis, and processing system based on the version 6.4 of the NASA's Sea-viewing Wide Field-ofview (SeaWiFS) Data Analysis System (SeaDAS) released in 2012. NOAA-SeaDAS inherited all the original functionalities of SeaDAS 6.4 and was upgraded with many new functions and new sensor supports, particularly the support of the Visible Infrared Imaging Radiometer Suite (VIIRS) onboard the Suomi National Polar-Orbiting Partnership (SNPP). The main goal of the NOAA-SeaDAS development is primarily in support of NOAA ocean color team's calibration and validation activities. The current version of NOAA-SeaDAS can visualize, analyze, and process VIIRS Sensor Data Records (SDR or Level-1B data) produced by the NOAA Interface Data Processing System (IDPS), ocean color Environmental Data Records (EDR or Level-2 data) produced by the NOAA Multi-Sensor Level-1 to Level- 2 (MSL12) ocean color data processing system, and Level-3 data binned or mapped from Level-2 data produced by NOAA-MSL12. NOAA-SeaDAS is currently serving an active IDL user group at NOAA and will serve other institutions and universities in the future. The goal is to allow various scientific users to visualize, analyze, and process VIIRS data from Level-1B through Level-2 and Level-3. In addition, NOAA-SeaDAS can also visualize satellite images from the Korean Geostationary Ocean Color Imager (GOCI), as well as many other satellite ocean color sensors, e.g., SeaWiFS, the Moderate Resolution Imaging Spectroradiometer (MODIS), etc. NOAA-SeaDAS is under constant development to create new system functionalities and enhance user experience. With constantly increasing volume in the global ocean color data archive, NOAA-SeaDAS will play an important role in support of global marine environment data analysis and various scientific applications.

  11. Outgoing Longwave Radiation (OLR) as signatures of pre-seismic activities before Nepal 2015 Earthquakes using onboard NOAA satellite data

    NASA Astrophysics Data System (ADS)

    Chakraborty, Suman; Chakrabarti, Sandip Kumar; Sasmal, Sudipta

    2016-07-01

    Earthquake preparation processes start almost a month before its actual occurrence. There are various tools in detecting such processes among which Outgoing Longwave Radiation (OLR) measurements is a significant one. We studied these signals before the devastating Nepal earthquake that occurred on 12 May, 2015 at 12:50 pm local time (07:05 UTC) with a Richter scale magnitude of M = 7.3 and depth 10 km (6.21 miles) at southeast of Kodari. To study the effects of seismic activities on OLR, we used the data archived by the National Environmental Satellite Data and Information Service (NESDIS) of National Oceanic and Atmospheric Administration (NOAA) onto two degree grids for a period of more than 27 years. For the period 2005 till date, data from NOAA18 satellite is used. The data has been chosen with a temporal coverage from 8th May to 17th May, 2015 and a spatial coverage from 20 ^{o}N to 36 ^{o}N latitudes, 78 ^{o}E to 94 ^{o}E longitudes. We followed the method of 'Eddy field calculation mean' to find anomalies in daily OLR curves. We found singularities in Eddy field around the earthquake epicentre three days prior to the earthquake day and its disappearance after the event. Such intensification of Eddy field and its fading away after the shock event can be due to the large amount of energy released before the earthquake.

  12. Mid tropospheric CO2 concentration observed from space (NOAA-10) and in situ (aircraft campaigns): a first qualitative comparison

    NASA Astrophysics Data System (ADS)

    Serrar, S.; Chédin, A.; Scott, N. A.; Armante, R.; Ciais, P.

    In a recent study, we have shown that atmospheric concentration variations (monthly, seasonal, annual) of CO2 may be retrieved from observations of the National Oceanic and Atmospheric Administration (NOAA) polar meteorological satellite series, in addition to their main mission of measuring atmospheric temperature and moisture global fields. The method developed, a non-linear regression inverse model based on the Multi-Layer Perceptron (MLP), was applied to the platform NOAA-10, providing global monthly maps of mid-tropospheric mean CO2 concentration over the tropics (20N-20S), at the spatial resolution of 15 longitude by 15 latitude, for the period July 1987 to June 1991. A rough estimate of the method-induced standard deviation of these retrievals (resolution of 15x15 and one month) is of the order of 3.0 ppm (less than 1%). These results have been compared qualitatively (the time periods covered not being the same) to a number of in situ aircraft measurements of the CO2 concentration made approximately at the altitude ``seen'' by the satellite (peak of the response function at about 10 km). These in situ measurements include: properly equipped commercial airliners flying between Japan and Australia (1993-1999), scientific campaigns like TRACE-A PEMWEST A and B, PEMTROPICS A and B, ACE-1, etc. This comparison focuses on the concentration gradients (latitudinal, longitudinal, or along aircraft tracks), and proposes explanations linked to transport, convection, biomass burning, pollution, etc.

  13. Wild Fire Emissions for the NOAA Operational HYSPLIT Smoke Model

    NASA Astrophysics Data System (ADS)

    Huang, H. C.; ONeill, S. M.; Ruminski, M.; Shafran, P.; McQueen, J.; DiMego, G.; Kondragunta, S.; Gorline, J.; Huang, J. P.; Stunder, B.; Stein, A. F.; Stajner, I.; Upadhayay, S.; Larkin, N. K.

    2015-12-01

    Particulate Matter (PM) generated from forest fires often lead to degraded visibility and unhealthy air quality in nearby and downstream areas. To provide near-real time PM information to the state and local agencies, the NOAA/National Weather Service (NWS) operational HYSPLIT (Hybrid Single Particle Lagrangian Integrated Trajectory Model) smoke modeling system (NWS/HYSPLIT smoke) provides the forecast of smoke concentration resulting from fire emissions driven by the NWS North American Model 12 km weather predictions. The NWS/HYSPLIT smoke incorporates the U.S. Forest Service BlueSky Smoke Modeling Framework (BlueSky) to provide smoke fire emissions along with the input fire locations from the NOAA National Environmental Satellite, Data, and Information Service (NESDIS)'s Hazard Mapping System fire and smoke detection system. Experienced analysts inspect satellite imagery from multiple sensors onboard geostationary and orbital satellites to identify the location, size and duration of smoke emissions for the model. NWS/HYSPLIT smoke is being updated to use a newer version of USFS BlueSky. The updated BlueSky incorporates the Fuel Characteristic Classification System version 2 (FCCS2) over the continental U.S. and Alaska. FCCS2 includes a more detailed description of fuel loadings with additional plant type categories. The updated BlueSky also utilizes an improved fuel consumption model and fire emission production system. For the period of August 2014 and June 2015, NWS/HYSPLIT smoke simulations show that fire smoke emissions with updated BlueSky are stronger than the current operational BlueSky in the Northwest U.S. For the same comparisons, weaker fire smoke emissions from the updated BlueSky were observed over the middle and eastern part of the U.S. A statistical evaluation of NWS/HYSPLIT smoke predicted total column concentration compared to NOAA NESDIS GOES EAST Aerosol Smoke Product retrievals is underway. Preliminary results show that using the newer version

  14. Precipitation of relativistic electrons as seen by NOAA POES

    NASA Astrophysics Data System (ADS)

    Yahnin, Alexander; Gvozdevsky, Boris; Yahnina, Tatyana; Semenova, Nadezhda

    The MEPED instrument onboard NOAA Polar-orbiting Operational Environmental Satellites (NOAA POES) was designed to measure precipitating and quasi-trapped protons and electrons in the ranges 30 keV to 200 MeV (for protons) and 30 keV to 2500 keV (for electrons). In particular, proton telescopes measure protons in six channels: P1 (30-80 keV), P2 (80-250 keV), P3 (250-800 keV), P4 (800-2500 keV), P5 (2500-6900 keV), and P6 (>6900 keV). Protons appear in the P6 channel very seldom (only during Solar Proton Events). At the same time, this channel can be contaminated by relativistic (E ~ 1 MeV) electrons. Using P6 data we performed a study of the relativistic electron precipitation (REP) within the interval of 25 July - 31 August 2005 characterizing by variable geomagnetic activity. We found that most often the REP events are observed in the night sector in relation to the isotropy boundary of relativistic electrons. It means that these REP events are due to violation of the adiabatic motion of particles in the region of a relatively weak magnetic field in the equatorial plane of magnetosphere. Further, a substantial part of REP events is observed in association with enhancements of energetic (E>30 keV) electrons equatorward of the electron isotropy boundary. We interpret the precipitation of electrons in the wide range of energies as result of scattering the particles into the loss cone by ELF/VLF waves. Finally, relativistic electrons can be scattered into the loss cone by EMIC waves. This possibility is actively discussed in the literature. It is known that EMIC waves effectively scatter energetic protons and produce proton precipitation bursts equatorward of the proton isotropic boundary. To investigate the REP/EMIC wave relationship we consider how such proton precipitation bursts seen in P1-P3 channels correlate with REP. It turned out that proton precipitation bursts observed in the morning and day sectors do not correlate with REP events, but in the evening

  15. Administrative IT

    ERIC Educational Resources Information Center

    Grayson, Katherine, Ed.

    2006-01-01

    When it comes to Administrative IT solutions and processes, best practices range across the spectrum. Enterprise resource planning (ERP), student information systems (SIS), and tech support are prominent and continuing areas of focus. But widespread change can also be accomplished via the implementation of campuswide document imaging and sharing,…

  16. Engineering Administration.

    ERIC Educational Resources Information Center

    Naval Personnel Program Support Activity, Washington, DC.

    This book is intended to acquaint naval engineering officers with their duties in the engineering department. Standard shipboard organizations are analyzed in connection with personnel assignments, division operations, and watch systems. Detailed descriptions are included for the administration of directives, ship's bills, damage control, training…

  17. ADMINISTRATIVE CLIMATE.

    ERIC Educational Resources Information Center

    BRUCE, ROBERT L.; CARTER, G.L., JR.

    IN THE COOPERATIVE EXTENSION SERVICE, STYLES OF LEADERSHIP PROFOUNDLY AFFECT THE QUALITY OF THE SERVICE RENDERED. ACCORDINGLY, MAJOR INFLUENCES ON ADMINISTRATIVE CLIMATE AND EMPLOYEE PRODUCTIVITY ARE EXAMINED IN ESSAYS ON (1) SOURCES OF JOB SATISFACTION AND DISSATISFACTION, (2) MOTIVATIONAL THEORIES BASED ON JOB-RELATED SATISFACTIONS AND NEEDS,…

  18. Database Administrator

    ERIC Educational Resources Information Center

    Moore, Pam

    2010-01-01

    The Internet and electronic commerce (e-commerce) generate lots of data. Data must be stored, organized, and managed. Database administrators, or DBAs, work with database software to find ways to do this. They identify user needs, set up computer databases, and test systems. They ensure that systems perform as they should and add people to the…

  19. Education and Outreach in NOAA's Ocean Exploration Program: An Example From a Gulf of Alaska Alvin Cruise

    NASA Astrophysics Data System (ADS)

    Martinez, C.; Keller, R.; Keener-Chavis, P.; Doenges, S.; Fisk, M.; Duncan, R.; Guilderson, T.; Shirley, T.

    2002-12-01

    The report of the President's Panel on Ocean Exploration, Discovering Earth's Final Frontier: A U.S. Strategy for Ocean Exploration, outlined a strategy for a national ocean exploration program that included a strong educational outreach component. The National Oceanic and Atmospheric Administration's (NOAA) new Office of Ocean Exploration (OE), now in its second year, is carrying out the recommendations of the President's Panel through exciting exploratory and educational initiatives. With the establishment of OE, NOAA now has a great opportunity to reach out in new ways to teachers, students, and the general public to share the excitement of daily discoveries while at sea and to demonstrate the science behind these exploration initiatives. In 2002, OE sponsored several major exploration initiatives involving AGU scientists in various regions of our world's oceans, such as the Arctic, the Galápagos, the Gulf of Mexico, and the Gulf of Alaska. An excellent example of the broad spectrum of opportunities that can be developed through a research cruise was the Gulf of Alaska Seamount Exploration Expedition (GOASEX). This Alvin submersible cruise included geologists studying how the seamounts formed, biologists studying crab distribution and reproductive strategies, and oceanographers sampling sediments and deep-sea corals for paleo-oceanographic information. Outreach and education products from this cruise were updated frequently on the Ocean Explorer web site, and included detailed lesson plans, logs, images, video clips, maps, and essays from the field so that students and the general public could follow the expedition. This cruise was also used as an educational platform for fisheries observer trainers from the North Pacific Fisheries Observer Training Center, a 5th grade teacher from Illinois, and several undergraduate and graduate students from various institutions. Cruise participants have already shared their experiences with K-12 students and educators, and

  20. Analysis of NOAA-MSFC GOES X-ray telescope

    NASA Technical Reports Server (NTRS)

    Shealy, D. L.

    1979-01-01

    The general telescope system was assumed to be a paraboloid-hyperboloid in a Wolter Type 1 configuration. The equations which specify the telescope parameters and the resolution as a function of the collecting area are discussed as well as the spot size and point response function for off-axis rays. The measured resolution of the Goddard ATM X-ray telescope (S-056) is compared to the rms blur circle radius and the full width half maximum of the line spread function. An empirical scaling formula, Eq. 26, which transforms the rms blur circle radius into a more accurate measure of resolution, is introduced. The geometrical imaging properties of the proposed NOAA-MSFC GOES X-ray telescope are considered. Conclusions and alternate mirror designs are included.

  1. A new method of recalibrating NOAA MEPED proton measurements

    NASA Astrophysics Data System (ADS)

    Sandanger, Marit Irene; Glesnes Ødegaard, Linn-Kristine; Nesse Tyssøy, Hilde; Stadsnes, Johan; Søraas, Finn; Oksavik, Kjellmar

    2014-05-01

    Since 1978 the NOAA/POES satellites have continuously monitored energetic particles with the MEPED instrument. After some years of operation, the particle detectors become degraded due to radiation damage. Fortunately, both new and older satellites are operational at the same time. By comparing the monthly averaged proton energy spectra from a newly launched satellite with all the older satellites in the same altitude range, we derive the correction factor due to radiation damage. For the years in between new satellites, we calculate the correction factor using two different methods based on cumulative flux and the Ap index. The cumulated flux for each satellite gives an estimate of the amount of radiation damage and therefor the degradation. The Ap index describes the level of geomagnetic activity the detector environment.

  2. Vegetation monitoring and classification using NOAA/AVHRR satellite data

    NASA Technical Reports Server (NTRS)

    Greegor, D. H., Jr.; Norwine, J. R.

    1983-01-01

    A vegetation gradient model, based on a new surface hydrologic index and NOAA/AVHRR meteorological satellite data, has been analyzed along a 1300 km east-west transect across the state of Texas. The model was developed to test the potential usefulness of such low-resolution data for vegetation stratification and monitoring. Normalized Difference values (ratio of AVHRR bands 1 and 2, considered to be an index of greenness) were determined and evaluated against climatological and vegetation characteristics at 50 sample locations (regular intervals of 0.25 deg longitude) along the transect on five days in 1980. Statistical treatment of the data indicate that a multivariate model incorporating satellite-measured spectral greenness values and a surface hydrologic factor offer promise as a new technique for regional-scale vegetation stratification and monitoring.

  3. Homologous flares and the evolution of NOAA Active Region 2372

    NASA Technical Reports Server (NTRS)

    Strong, K. T.; Smith, J. B., Jr.; Mccabe, M. K.; Machado, M. E.; Saba, J. L. R.; Simnett, G. M.

    1984-01-01

    A detailed record of the evolution of NOAA Active Region 2372 has been compiled by the FBS Homology Study Group. It was one of the most prolific flare-producing regions observed by SMM. The flares occurred in distinct stages which corresponded to particular evolutionary phases in the development of the active region magnetic field. By comparison with a similar but less productive active region, it is found that the activity seems to be related to the magnetic complexity of the region and the amount of shear in the field. Further, the soft X-ray emission in the quiescent active region is related to its flare rate. Within the broader definition of homology adopted, there was a degree of homology between the events within each stage of evolution of AR2372.

  4. NASA/NOAA Electronic Theater: 90 Minutes of Spectacular Visualization

    NASA Technical Reports Server (NTRS)

    Hasler, A. F.

    2004-01-01

    The NASA/NOAA Electronic Theater presents Earth science observations and visualizations from space in a historical perspective. Fly in from outer space to Ashville and the Conference Auditorium. Zoom through the Cosmos to SLC and site of the 2002 Winter Olympics using 1 m IKONOS 'Spy Satellite' data. Contrast the 1972 Apollo 17 'Blue Marble' image of the Earth with the latest US and International global satellite images that allow us to view our Planet from any vantage point. See the latest spectacular images from NASA/NOAA remote sensing missions like Terra, GOES, TRMM, SeaWiFS, & Landsat 7, of storms & fires like Hurricane Isabel and the LA/San Diego Fire Storms of 2003. See how High Definition Television (HDTV) is revolutionizing the way we do science communication. Take the pulse of the planet on a daily, annual and 30-year time scale. See daily thunderstorms, the annual blooming of the northern hemisphere land masses and oceans, fires in Africa, dust storms in Iraq, and carbon monoxide exhaust from global burning. See visualizations featured on Newsweek, TIME, National Geographic, Popular Science covers & National & International Network TV. Spectacular new global visualizations of the observed and simulated atmosphere and Oceans are shown. See the currents and vortexes in the Oceans that bring up the nutrients blooms in response to El Nino/La Nina climate changes. The Etheater will be presented using the latest High Definition TV (HDTV) and video projection technology on a large screen. See the global city lights, and the great NE US blackout of August 2003 observed by the 'night-vision' DMSP satellite.

  5. NASA/NOAA Electronic Theater: An Hour of Spectacular Visualization

    NASA Technical Reports Server (NTRS)

    Hasier, A. F.

    2004-01-01

    The NASA/NOAA Electronic Theater presents Earth science observations and visualizations from space in a historical perspective. Fly in from outer space to Utah, Logan and the USU Agriculture Station. Compare zooms through the Cosmos to the sites of the 2004 Summer and 2002 Winter Olympic games using 1 m IKONOS "Spy Satellite" data. Contrast the 1972 Apollo 17 "Blue Marble" image of the Earth with the latest US and International global satellite images that allow us to view our Planet from any vantage point. See the latest spectacular images h m NASA/NOAA remote sensing missions like Terra, GOES, TRMM, SeaWiF!3,& Landsat 7, of storms & fires like Hurricanes Charlie & Isabel and the LA/San Diego Fire Storms of 2003. See how High Definition Television (HDTV) is revolutionizing the way we do science communication. Take the pulse of the planet on a daily, annual and 30-year time scale. See daily thunderstorms, the annual greening of the northern hemisphere land masses and oceans, fires in Africa, dust storms in Iraq, and carbon monoxide exhaust from global burning. See visualizations featured on Newsweek, TIME, National Geographic, Popular Science covers & National & International Network TV. Spectacular new global visualizations of the observed and simulated atmosphere & oceans are shown. See the currents and vortexes in the oceans that bring up the nutrients to feed tiny plankton and draw the fish, whales and fishermen. See the how the Ocean blooms in response to El Nino/La Nina climate changes. The E-theater will be presented using the latest High Definition TV and video projection technology on a large screen. See the global city lights, and the great NE US blackout of August 2003 observed by the "night-vision" DMSP satellite.

  6. Improving Climate Literacy of NOAA Staff and Users

    NASA Astrophysics Data System (ADS)

    Timofeyeva, M. M.; Bair, A.; Staudenmaier, M.; Meyers, J. C.; Mayes, B.; Zdrojewski, J.

    2010-12-01

    Since 2002, NOAA’s National Weather Service (NWS) Climate Services Division (CSD) has offered numerous training opportunities to NWS staff. After eight-years of development, the training program offers three instructor-led courses and roughly 25 online (distance learning) modules covering various climate topics, such as: climate data and observations, climate variability and change, and NWS national / local climate products (tools, skill, and interpretation). Leveraging climate information and expertise available at all NOAA line offices and partners allows for the delivery of the most advanced knowledge and is a very critical aspect of the training program. The emerging NOAA Climate Service (NCS) requires a well-trained, climate-literate workforce at the local level capable of delivering NOAA’s climate products and services as well as providing climate-sensitive decision support. NWS Weather Forecast Offices and River Forecast Centers presently serve as local outlets for the NCS climate services. Trained NWS climate service personnel use proactive and reactive approaches and professional education methods in communicating climate variability and change information to local users. Both scientifically-sound messages and amiable communication techniques are important in developing an engaged dialog between the climate service providers and users. Several pilot projects have been conducted by the NWS CSD this past year that apply the program’s training lessons and expertise to specialized external user group training. The technical user groups included natural resources managers, engineers, hydrologists, and planners for transportation infrastructure. Training of professional user groups required tailoring instructions to the potential applications for each group of users. Training technical users identified the following critical issues: (1) knowledge of target audience expectations, initial knowledge status, and potential use of climate information; (2

  7. NOAA/NGDC candidate models for the 12th generation International Geomagnetic Reference Field

    NASA Astrophysics Data System (ADS)

    Alken, Patrick; Maus, Stefan; Chulliat, Arnaud; Manoj, Chandrasekharan

    2015-05-01

    The International Geomagnetic Reference Field (IGRF) is a model of the geomagnetic main field and its secular variation, produced every 5 years from candidate models proposed by a number of international research institutions. For this 12th generation IGRF, three candidate models were solicited: a main field model for the 2010.0 epoch, a main field model for the 2015.0 epoch, and the predicted secular variation for the five-year period 2015 to 2020. The National Geophysical Data Center (NGDC), part of the National Oceanic and Atmospheric Administration (NOAA), has produced three candidate models for consideration in IGRF-12. The 2010 main field candidate was produced from Challenging Minisatellite Payload (CHAMP) satellite data, while the 2015 main field and secular variation candidates were produced from Swarm and Ørsted satellite data. Careful data selection was performed to minimize the influence of magnetospheric and ionospheric fields. The secular variation predictions of our parent models, from which the candidate models were derived, have been validated against independent ground observatory data.

  8. Development, Production and Validation of the NOAA Solar Irradiance Climate Data Record

    NASA Astrophysics Data System (ADS)

    Coddington, O.; Lean, J.; Pilewskie, P.; Snow, M. A.; Lindholm, D. M.

    2015-12-01

    A new climate data record of Total Solar Irradiance (TSI) and Solar Spectral Irradiance (SSI), including source code and supporting documentation is now publicly available as part of the National Oceanographic and Atmospheric Administration's (NOAA) National Centers for Environmental Information (NCEI) Climate Data Record (CDR) Program. Daily and monthly averaged values of TSI and SSI, with associated time and wavelength dependent uncertainties, are estimated from 1882 to the present with yearly averaged values since 1610, updated quarterly for the foreseeable future. The new Solar Irradiance Climate Data Record, jointly developed by the University of Colorado at Boulder's Laboratory for Atmospheric and Space Physics (LASP) and the Naval Research Laboratory (NRL), is constructed from solar irradiance models that determine the changes from quiet Sun conditions when bright faculae and dark sunspots are present on the solar disk. The magnitudes of the irradiance changes that these features produce are determined from linear regression of the proxy Mg II index and sunspot area indices against the approximately decade-long solar irradiance measurements made by instruments on the SOlar Radiation and Climate Experiment (SORCE) spacecraft. We describe the model formulation, uncertainty estimates, operational implementation and validation approach. Future efforts to improve the uncertainty estimates of the Solar Irradiance CDR arising from model assumptions, and augmentation of the solar irradiance reconstructions with direct measurements from the Total and Spectral Solar Irradiance Sensor (TSIS: launch date, July 2017) are also discussed.

  9. Background Mole Fractions of Hydrocarbons in North America Determined from NOAA Global Reference Network Data

    NASA Astrophysics Data System (ADS)

    Mielke-Maday, I.

    2015-12-01

    The National Oceanic and Atmospheric Administration (NOAA) Global Monitoring Division (GMD) maintains a global reference network for over 50 trace gas species and analyzes discrete air samples collected by this network throughout the world at the Earth System Research Laboratory in Boulder, Colorado. In particular, flask samples are analyzed for a number of hydrocarbons with policy and health relevance such as ozone precursors, greenhouse gases, and hazardous air pollutants. Because this global network's sites are remote and therefore minimally influenced by local anthropogenic emissions, these data yield information about background ambient mole fractions and can provide a context for observations collected in intensive field campaigns, such as the Front Range Air Pollution and Photochemistry Experiment (FRAPPE), the Southeast Nexus (SENEX) study, and the DISCOVER-AQ deployments. Information about background mole fractions during field campaigns is critical for calculating hydrocarbon enhancements in the region of study and for assessing the extent to which a particular region's local emissions sources contribute to these enhancements. Understanding the geographic variability of the background and its contribution to regional ambient mole fractions is also crucial for the development of realistic regulations. We present background hydrocarbon mole fractions and their ratios in North America using data from air samples collected in the planetary boundary layer at tall towers and aboard aircraft from 2008 to 2014. We discuss the spatial and seasonal variability in these data. We present trends over the time period of measurements and propose possible explanations for these trends.

  10. Dioxins/furans and PCBs in bivalves and sediments from NOAA national status and trends program

    SciTech Connect

    Wade, T.; Gardinali, P.; Jackson, T.; Sericano, J.; Chambers, L.

    1995-12-31

    As part of the National Oceanic and Atmospheric Administration (NOAA), National Status and Trends (NS and T) Mussel Watch Program 55 bivalves and 7 sediment samples were analyzed for 2,3,7,8-substituted polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD and PCDF) and planar PCBs. Bivalve samples were collected from selected US East Gulf and West coast sites, while the sediment samples were all from the Gulf coast. Sediment concentrations for 2,3,7,8-tetrachloro dibenzo-p-dioxin and dibenzofuran (TCDD and TCDF) ranged from 0.35 to 25 pg/g and 0.42 to 140 pg/g, respectively. The 2,3,7,8-TCDD and 2,3,7,8-TCDF represent only a small percentage of the total PCDD and PCDF in the sediments which is the case for most sediment. The concentration of TCDD and TCDF in bivalves ranged from not detected (ND) to 25 pg/g and ND to 140 pg/g, respectively. Most bivalve samples, in contrast to the sediment contained low proportions of the higher molecular weight PCDDs and PCDFs. The relative toxicological importance of 2,3,7,8-TCDD, 2,3,7,8-TCDF and dioxin-like PCB to the bivalves from different locations will be compared based on toxicity equivalency factors.

  11. Open Source Seismic Software in NOAA's Next Generation Tsunami Warning System

    NASA Astrophysics Data System (ADS)

    Hellman, S. B.; Baker, B. I.; Hagerty, M. T.; Leifer, J. M.; Lisowski, S.; Thies, D. A.; Donnelly, B. K.; Griffith, F. P.

    2014-12-01

    The Tsunami Information technology Modernization (TIM) is a project spearheaded by National Oceanic and Atmospheric Administration to update the United States' Tsunami Warning System software currently employed at the Pacific Tsunami Warning Center (Eva Beach, Hawaii) and the National Tsunami Warning Center (Palmer, Alaska). This entirely open source software project will integrate various seismic processing utilities with the National Weather Service Weather Forecast Office's core software, AWIPS2. For the real-time and near real-time seismic processing aspect of this project, NOAA has elected to integrate the open source portions of GFZ's SeisComP 3 (SC3) processing system into AWIPS2. To provide for better tsunami threat assessments we are developing open source tools for magnitude estimations (e.g., moment magnitude, energy magnitude, surface wave magnitude), detection of slow earthquakes with the Theta discriminant, moment tensor inversions (e.g. W-phase and teleseismic body waves), finite fault inversions, and array processing. With our reliance on common data formats such as QuakeML and seismic community standard messaging systems, all new facilities introduced into AWIPS2 and SC3 will be available as stand-alone tools or could be easily integrated into other real time seismic monitoring systems such as Earthworm, Antelope, etc. Additionally, we have developed a template based design paradigm so that the developer or scientist can efficiently create upgrades, replacements, and/or new metrics to the seismic data processing with only a cursory knowledge of the underlying SC3.

  12. The Importance of Educating the Public Regarding NOAA Weather Radio Reception and Placement within a Structure.

    NASA Astrophysics Data System (ADS)

    Troutman, Timothy W.; Vannozzi, Lawrence J.; Fleming, John T.

    2001-12-01

    The recent expansion of The National Oceanic and Atmospheric Administration (NOAA) Weather Radio (NWR) transmitter locations across the United States delivered the NWR signal to previously unserved areas. This paper will show that although increased NWR signal coverage is now being provided, manufactured and metal-built homes can still pose serious problems for the reception of NWR broadcasts. A series of signal reception tests were completed by the Florida Division of Emergency Management. Reception results are presented for a manufactured home and a home built with metal wall studs. This paper shows that an external antenna developed from the test results will effectively improve NWR reception in metal buildings and manufactured homes. The tests further showed that using a simple J-pole external antenna mounted on a window alleviated the attenuation problem. It is hoped that this study's results will alert the public, emergency managers, and other officials to the potential for poor NWR reception in mobile homes and metal buildings, as well as what corrective measures to take. The use of inexpensive, lightweight external antennas and the correct placement of NWRs should be stressed during NWS outreach activities. Obviously it is very important for the public to purchase a NWR, but they must be educated about proper unit placement and/or antenna availability. These education efforts should inform customers, reduce complaints regarding NWR reception, and lead to a safer public.

  13. Overview of the NOAA/NASA advanced very high resolution radiometer Pathfinder algorithm for sea surface temperature and associated matchup database

    NASA Astrophysics Data System (ADS)

    Kilpatrick, K. A.; Podestá, G. P.; Evans, R.

    2001-05-01

    The National Oceanic and Atmospheric Administration (NOAA)/NASA Oceans Pathfinder sea surface temperature (SST) data are derived from measurements made by the advanced very high resolution radiometers (AVHRRs) on board the NOAA 7, 9, 11, and 14 polar orbiting satellites. All versions of the Pathfinder SST algorithm are based on the NOAA/National Environmental Satellite Data and Information Service nonlinear SST operational algorithm (NLSST). Improvements to the NLSST operational algorithm developed by the Pathfinder program include the use of monthly calibration coefficients selected on the basis of channel brightness temperature difference (T4-T5). This channel difference is used as a proxy for water vapor regime. The latest version (version 4.2) of the Pathfinder processing includes the use of decision trees to determine objectively pixel cloud contamination and quality level (0-7) of the SST retrieval. The 1985-1998 series of AVHRR global measurements has been reprocessed using the Pathfinder version 4.2 processing protocol and is available at various temporal and spatial resolutions from NASA's Jet Propulsion Laboratory Distributed Active Archive Center. One of the highlights of the Pathfinder program is that in addition to the daily global area coverage fields, a matchup database of coincident in situ buoy and satellite SST observations also is made available for independent algorithm development and validation.

  14. Atmospheric carbon dioxide at Mauna Loa Observatory 1. NOAA global monitoring for climatic change measurements with a nondispersive infrared analyzer, 1974--1985

    SciTech Connect

    Komhyr, W. D.; Harris, T. B.; Waterman, L. S.; Chin, J. F. S.; Thoning, K. W.

    1989-06-20

    Atmospheric CO/sub 2/ measurements made with a nondispersive infrared analyzer during 1974--1985 at Mauna Lao Observatory, Hawaii, are described, with emphasis on the measurement methodology, calibrations, and data accuracy. Monthly mean CO/sub 2/ data, representative of global background conditions, are presented for the period of record. The monthly means were derived from an all-data base of CO/sub 2/ hourly averged archived at the National Oceanic and Atmospheric Administration (NOAA) Geophysical Monitoring for Climatic Change (GMCC) facility in Boulder, Colorado; at the Carbon Dioxide Information Analysis Center (CDIAC) in Oak Ridge, Tennessee; and in the microfiche version of this paper. Flags in the all-data base identify CO/sub 2/ hourly averages that have been deemed unreliable because of sampling and analysis problems or that are unrepresentative of clean background air because of influences of the local environment, for example, CO/sub 2/ uptake by nearby vegetation or contamination and pollution effects. The select NOAA GMCC monthly mean data are compared with similar data obtained independently at Mauna Loa Observatory by the Scripps Institution of Oceanography. The averge difference of corresponding monthly mean CO/sub 2/ values for the two data sets is 0.15/plus minus/0.18 ppm, where the indicated variability is the standard deviation. Careful scrutiny of the NOAA GMCC measurement, calibration, and data processing procedures that might have caused the small bias in the data has revealed no unusual errors. /copyright/ American Geophysical Union 1989

  15. 76 FR 18549 - Casmalia Disposal Site; Notice of Proposed CERCLA Administrative De Minimis Settlement

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-04

    ... Wildlife Service (USFWS) and the National Oceanic and Atmospheric Administration (NOAA). These 49 parties... Information and Electronic Systems Integration Inc.; Cenveo; ConAgra Foods, Inc.; Continental Chemical Co...; General Tire Service; Hercules, Incorporated for itself, Mica Corporation and US Filter; Hobie Cat...

  16. June 2013 Meteotsunami Captured by NOAA/NOS Coastal Water Level Stations

    NASA Astrophysics Data System (ADS)

    Bailey, K.; DiVeglio, C.; Welty, A.

    2014-12-01

    On June 13, 2013, a north-south oriented, long formation of strong storms passed eastward over the New Jersey coast. Three hours later, while the weather was calm, a sudden runup of water along the New Jersey and New England coasts was witnessed despite no nearby seismic activity. Post-event analysis revealed that a rare meteotsunami impacted the East Coast of the United States. The strong pressure jump associated with the storms generated an ocean wave that became amplified when the speed of the storms reached the speed of the wave, creating resonance. The wave approached the Mid-Atlantic shelf break and reflected back, explaining the time lag between the passing storms and the incoming wave. The National Water Level Observing Network (NWLON) stations maintained by the National Oceanic and Atmospheric Administration (NOAA) National Ocean Service (NOS) Center for Operational Oceanographic Products and Services (CO-OPS) measured strong water level oscillations at several stations along the eastern seaboard. The detided one-minute data show the tsunami signal with maximum amplitudes ranging from 0.16 m at Nantucket Island, MA to 0.61 m. at Newport, RI. The Narragansett Bay stations captured the meteotsunami wave propagating northward and diminishing towards the innermost part of the Bay. The Atlantic City, NJ station captured the 3.2-mb pressure jump in the six-minute barometer data from the passing storms as well as the incoming wave that hit three hours later with a maximum amplitude of 0.47 m. Along the U.S. coast, harbor shape and orientation contributed to the strength of the tsunami wave, and some stations that were in shadowed areas did not measure a strong signal despite being in an area of measurable impact. Meteotsunamis pose a threat to the U.S. coastline, and without high-resolution observations and models these events cannot be quantitatively forecasted. NOAA does not currently have an operational warning system but the June 2013 meteotsunami provides an

  17. Developing Vocabularies to Improve Understanding and Use of NOAA Observing Systems

    NASA Astrophysics Data System (ADS)

    Austin, M.

    2014-12-01

    The NOAA Observing System Integrated Analysis project (NOSIA II), is an attempt to capture and tell the story of how valuable observing systems are in producing products and services that are required to fulfill the NOAA's diverse mission. NOAA's goals and mission areas cover a broad range of environmental data; a complexity exists in terms and vocabulary as applied to the creation of observing system derived products. The NOSIA data collection focused first on decomposing NOAA's goals in the creation and acceptance of Mission Service Areas (MSAs) by NOAA senior leadership. Products and services that supported the MSAs were then identified through the process of interviewing product producers across NOAA organization. Product Data inputs including models, databases and observing system were also identified. The NOSIA model contains over 20,000 nodes each representing levels in a network connecting products, datasources, users and desired outcomes. An immediate need became apparent that the complexity and variety of the data collected required data management to mature the quality and the content of the NOSIA model. The NOSIA Analysis Database (ADB) was developed initially to improve consistency of terms and data types to allow for the linkage of observing systems, products and NOAA's Goals and mission. The ADB also allowed for the prototyping of reports and product generation in an easily accessible and comprehensive format for the first time. Web based visualization of relationships between products, datasources, users, producers were generated to make the information easily understood This includes developing ontologies/vocabularies that are used for the development of users type specific products for NOAA leadership, Observing System Portfolio mangers and the users of NOAA data.

  18. How to Get Data from NOAA Environmental Satellites: An Overview of Operations, Products, Access and Archive

    NASA Astrophysics Data System (ADS)

    Donoho, N.; Graumann, A.; McNamara, D. P.

    2015-12-01

    In this presentation we will highlight access and availability of NOAA satellite data for near real time (NRT) and retrospective product users. The presentation includes an overview of the current fleet of NOAA satellites and methods of data distribution and access to hundreds of imagery and products offered by the Environmental Satellite Processing Center (ESPC) and the Comprehensive Large Array-data Stewardship System (CLASS). In particular, emphasis on the various levels of services for current and past observations will be presented. The National Environmental Satellite, Data, and Information Service (NESDIS) is dedicated to providing timely access to global environmental data from satellites and other sources. In special cases, users are authorized direct access to NESDIS data distribution systems for environmental satellite data and products. Other means of access include publicly available distribution services such as the Global Telecommunication System (GTS), NOAA satellite direct broadcast services and various NOAA websites and ftp servers, including CLASS. CLASS is NOAA's information technology system designed to support long-term, secure preservation and standards-based access to environmental data collections and information. The National Centers for Environmental Information (NCEI) is responsible for the ingest, quality control, stewardship, archival and access to data and science information. This work will also show the latest technology improvements, enterprise approach and future plans for distribution of exponentially increasing data volumes from future NOAA missions. A primer on access to NOAA operational satellite products and services is available at http://www.ospo.noaa.gov/Organization/About/access.html. Access to post-operational satellite data and assorted products is available at http://www.class.noaa.gov

  19. Area estimation of environmental phenomena from NOAA-n satellite data. [TIROS N satellite

    NASA Technical Reports Server (NTRS)

    Tappan, G. (Principal Investigator); Miller, G. E.

    1982-01-01

    A technique for documenting changes in size of NOAA-n pixels in order to calibrate the data for use in performing area calculations is described. Based on Earth-satellite geometry, a function for calculating the effective pixel size, measured in terms of ground area, on any given pixel was derived. The equation is an application of the law of sines plus an arclength formula. Effective pixel dimensions for NOAA 6 and 7 satellites for all pixels between nadir and the extreme view angles are presented. The NOAA 6 data were used to estimate the areas of several lakes, with an accuracy within 5%. Sources of error are discussed.

  20. 15 CFR 911.4 - Use of the NOAA Data Collection Systems.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... collection of environmental data by governmental and/or non-profit users. (2) Non-governmental, environmental... the NOAA DCS is only authorized for government use and non-profit users where there is a...

  1. Planetary Education and Outreach using the NOAA Science on a Sphere

    NASA Astrophysics Data System (ADS)

    Simon-Miller, A. A.; Williams, D. R.; Smith, S. M.; Friedlander, J. S.; Mayo, L. A.; Clark, P. E.; Henderson, M. A.

    2011-03-01

    The NOAA Science on a Sphere is the perfect medium for displaying planetary data that naturally map onto a spherical surface. We discuss our Jupiter and Solar System Tour movies for this system and available ancillary educational materials.

  2. 77 FR 13095 - Intent To Prepare an Environmental Impact Statement for NOAA Restoration Center Programmatic...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-05

    ... Statement for NOAA Restoration Center Programmatic Coastal Habitat Restoration Activities AGENCY: National... environmental impacts of different ranges of coastal and marine habitat restoration project types conducted and... restoring the nation's coastal, marine, and migratory fish habitat. Recognizing that the most...

  3. NOAA Response to the Deepwater Horizon Oil Spill - Protecting Oceans, Coasts and Fisheries (Invited)

    NASA Astrophysics Data System (ADS)

    Lubchenco, J.

    2010-12-01

    As the nation’s leading scientific resource for oil spills, NOAA has been on the scene of the Deepwater Horizon/BP oil spill from the start, providing coordinated scientific weather and biological response services to federal, state and local organizations. NOAA has mobilized experts from across the agency to help contain the spreading oil spill and protect the Gulf of Mexico’s many marine mammals, sea turtles, fish, shellfish and other endangered marine life. NOAA spill specialists advised the U.S. Coast Guard on cleanup options as well as advising all affected federal, state and local partners on sensitive marine resources at risk in this area of the Gulf of Mexico. As a major partner in the federal response to this incident, NOAA provided the necessary coastal and marine expertise required for sound, timely decision-making and helped protect the affected Gulf Coast communities and coastal marine environment and will continue to do so for ongoing restoration efforts.

  4. Big Data Partnerships at NOAA's National Centers for Environmental Information

    NASA Astrophysics Data System (ADS)

    Casey, K. S.

    2015-12-01

    NOAA's National Centers for Environmental Information (NCEI) was created this year as the merger of the previously distinct National Climatic Data Center, National Geophysical Data Center, and National Oceanographic Data Center. Stewarding petabytes of data from thousands of institutions and individuals around the world, from thousands of platforms and data types in a wide range of data formats, NCEI sees partnerships as an essential component of its Big Data operations. To ensure the optimal reuse of all of these data, NCEI engages partners along tiers of data stewardship from long-term preservation and basic access, to enhanced access and quality control, through value-added product development, and on to national and international services. This presentation will detail how NCEI is engaged in efforts like the Big Data Partnership Cooperative Research and Development Agreements, the Big Earth Data Initiative, national and international data exchange networks, and with partners across governmental, academic, and commercial sectors to "big data enable" its data collections and serve as the Nation's trusted and authoritative source of environmental data and information.

  5. Assessing customer satisfaction for improving NOAA's climate products and services

    NASA Astrophysics Data System (ADS)

    Meyers, J. C.; Hawkins, M. D.; Timofeyeva, M. M.

    2009-12-01

    NOAA's National Weather Service (NWS) Climate Services Division (CSD) is developing a comprehensive climate user requirements process with the ultimate goal of producing climate services that meet the needs of NWS climate information users. An important part of this effort includes engaging users through periodical surveys conducted by the Claes Fornell International (CFI) Group using the American Customer Satisfaction Index (ACSI). The CFI Group conducted a Climate Services Satisfaction (CSS) Survey in May of 2009 to measure customer satisfaction with current products and services and to gain insight on areas for improvement. The CSS Survey rates customer satisfaction on a range of NWS climate services data and products, including Climate Prediction Center (CPC) outlooks, drought monitoring, and ENSO monitoring and forecasts, as well as NWS local climate data services. In addition, the survey assesses the users of the products to give the NWS insight into its climate customer base. The survey also addresses specific topics such as NWS forecast category names, probabilistic nature of climate products, and interpretation issues. The survey results identify user requirements for improving existing NWS climate services and introducing new ones. CSD will merge the survey recommendations with available scientific methodologies and operational capabilities to develop requirements for improved climate products and services. An overview of the 2009 survey results will be presented, such as users' satisfaction with the accuracy, reliability, display and functionality of products and services.

  6. Trends in NOAA Solar X-ray Imager Performance

    NASA Astrophysics Data System (ADS)

    Hill, Steven M.; Darnell, John A.; Seaton, Daniel B.

    2016-05-01

    NOAA has provided operational soft X-ray imaging of the sun since the early 2000’s. After 15 years of observations by four different telescopes, it is appropriate to examine the data in terms of providing consistent context for scientific missions. In particular, this presentation examines over 7 million GOES Solar X-ray Imager (SXI) images for trends in performance parameters including dark current, response degradation, and inter-calibration. Because observations from the instrument have overlapped not only with each other, but also with research observations like Yohkoh SXT and Hinode XRT, relative performance comparisons can be made. The first GOES Solar X-ray Imager was launched in 2001 and entered operations in 2003. The current SXIs will remain in operations until approximately 2020, when a new series of Solar (extreme-)Ultraviolet Imagers (SUVIs) will replace them as the current satellites reach their end of life. In the sense that the SXIs are similar to Yokoh’s SXT and Hinode’s XRT, the SUVI instruments will be similar to SOHO’s EIT and SDO’s AIA. The move to narrowband EUV imagers will better support eventual operational estimation of plasma conditions. While NOAA’s principal use of these observations is real-time space weather forecasting, they will continue to provide a reliable context measurement for researchers for decades to come.

  7. Nonlinear Force-Free Field Extrapolation of NOAA AR 0696

    NASA Astrophysics Data System (ADS)

    Thalmann, J. K.; Wiegelmann, T.

    2007-12-01

    We investigate the 3D coronal magnetic field structure of NOAA AR 0696 in the period of November 09-11, 2004, before and after an X2.5 flare (occurring around 02:13 UT on November 10, 2004). The coronal magnetic field dominates the structure of the solar corona and consequently plays a key role for the understanding of the initiation of flares. The most accurate presently available method to derive the coronal magnetic field is currently the nonlinear force-free field extrapolation from measurements of the photospheric magnetic field vector. These vector-magnetograms were processed from stokes I, Q, U, and V measurements of the Big Bear Solar Observatory and extrapolated into the corona with the nonlinear force-free optimization code developed by Wiegelmann (2004). We analyze the corresponding time series of coronal equilibria regarding topology changes of the 3D coronal magnetic field during the flare. Furthermore, quantities such as the temporal evolution of the magnetic energy and helicity are computed.

  8. An Overview of the NOAA Drought Task Force

    NASA Technical Reports Server (NTRS)

    Schubert, S.; Mo, K.; Peters-Lidard, C.; Wood, A.

    2012-01-01

    The charge of the NOAA Drought Task Force is to coordinate and facilitate the various MAPP-funded research efforts with the overall goal of achieving significant advances in understanding and in the ability to monitor and predict drought over North America. In order to achieve this, the task force has developed a Drought Test-bed that individual research groups can use to test/evaluate methods and ideas. Central to this is a focus on three high profile North American droughts (1998-2004 western US drought, 2006-2007 SE US drought, 2011- current Tex-Mex drought) to facilitate collaboration among projects, including the development of metrics to assess the quality of monitoring and prediction products, and the development of an experimental drought monitoring and prediction system that incorporates and assesses recent advances. This talk will review the progress and plans of the task force, including efforts to help advance official national drought products, and the development of early warning systems by the National Integrated Drought Information System (NIDIS). Coordination with other relevant national and international efforts such as the emerging NMME capabilities and the international effort to develop a Global Drought Information System (GDIS) will be discussed.

  9. Discovering NOAA Climate Data and Product Services (Invited)

    NASA Astrophysics Data System (ADS)

    Baldwin, R.; Ansari, S.; Reid, G.

    2009-12-01

    The National Climatic Data Center (NCDC) archives climate data for the US and the world. These data are provided through traditional web systems as well as web services. The web service implementation follows standards set by the Open Geospatial Consortium (OGC) and the World Wide Web Consortium (W3C). Simple object access protocol (SOAP) and representational state transfer (REST) are the two types of services provided. Provision of many data and product services from multiple organizations presents consumers with the difficulty of discovery. Standards based collection level metadata describe these data and products. This information delivered using a catalog service (CSW) in combination with an ontology service provides a robust mechanism for data discovery. Service endpoints or clients that use service endpoints are embedded within the metadata providing customers with tools to access and interrogate the fine details of the data. These technologies are demonstrated in current NCDC projects such as NOAA Climate Services Portal (NCSP), National Integrated Drought Information System (NIDIS), Pacific Climate Information System (PaCIS) and work with the Consortium of Universities for Advancement of Hydrologic Science (CUAHSI).

  10. Space Weather Operational Products in the NOAA Space Environment Center

    NASA Astrophysics Data System (ADS)

    Murtagh, W. J.; Onsager, T. G.

    2006-12-01

    The NOAA Space Environment Center (SEC) is the Nation's official source of space weather alerts and warnings, and provides real-time monitoring and forecasting of solar and geophysical events. The SEC, a 24- hour/day operations center, provides space weather products to the scientific and user communities in the United States and around the world. This presentation will provide a brief overview of the SEC current suite of space weather products, with an emphasis on models and products recently introduced into the Operations Center. Customer uses of products will be discussed, which will highlight the diverse customer base for space weather services. Also, models in SEC's testbed will be introduced. SEC's testbed facility is dedicated to moving space environment models from a research-development mode to an operational mode. The status of efforts to replace NASA's aging real-time monitor (ACE) in the solar wind ahead of Earth, an "upstream data buoy", will also be described. Numerous existing and planned space weather products and models rely on near real-time solar wind data.

  11. Progress and Processes for Generating NOAA's Climate Data Records

    NASA Astrophysics Data System (ADS)

    Johnston, S. S.; Glance, W. J.; Bates, J. J.; Kearns, E. J.

    2011-12-01

    NOAA established a satellite Climate Data Record Program (CDRP) at its National Climatic Data Center (NCDC) to provide a systematic reprocessing capability which will generate sustained and authoritative climate information from 30+ years of satellite data. CDRP implements a unique approach in archiving not only the data products themselves, but also the software, ancillary data, and enough documentation to allow any user with the processing power, to reproduce the data. Best practices, such as a common maturity matrix, software guidelines, and format standards, are employed to facilitate both the transition of research algorithms to operational software, and the long-term maintenance of the software. Throughout the implementation and execution of the program, CDRP seeks to adhere to production guidelines from Global Climate Observing System (GCOS) and World Meteorological Organization's (WMO's) Sustained, Coordinated Processing of Environmental Satellite Data for Climate Monitoring (SCOPE-CM activity. Elements of the CDR Adaptive Processing System (CAPS) are described, along with the system's implementation approach, performance expectations, and plans for growth to accommodate increased CDR processing. In addition, a cost model has been implemented to capture the cost of CDR generation and maintenance, considering variables such as CDR complexity, source, and maturity at the beginning of the process.

  12. Forest classification of southeast Asia using NOAA AVHRR data

    SciTech Connect

    Achard, F.; Estreguil, C.

    1995-12-01

    Tropical deforestation is one of the most significant forms of global environmental change. It has been identified as an important component of the global carbon cycle while also having been shown to effect regional climate and hydrology. Methodologies using the 1 km resolution data of the NOAA AVHRR instrument were developed for tropical forest spectral discrimination and mapping at a regional scale. Tropical Southeast Asia was selected as a cause study using a multitemporal AVHRR data set of 1990--1992. This study documents first the relevance of AVHRR data to assess the extent of seasonal and dense forest and, moreover, reports on the derivation of a specific fragmented/disturbed forest class. A geographically dependent methodology is developed: for continental Southeast Asia, where generally good cloud-free images are available during the dry season and seasonal vegetation formations are present, multitemporal AVHRR mosaics were produced before the classification process. For insular Southeast Asia, which is particularly affected by the cloud cover and where only humid vegetation formations are present, a multitemporal set of single-date AVHRR images was first classified, and then the classifications were mosaicked together using a combination of two criteria (image quality and maximum occurrence). Unsupervised classifications using NDVI and Channel 3 radiance were processed in both cases. Verification of the AVHRR class assignment was carried out locally using a few high spatial resolution satellite images. It highlights the sources of misclassification.

  13. Comparison of NOAA-9 ERBE measurements with Cirrus IFO satellite and aircraft measurements

    NASA Technical Reports Server (NTRS)

    Ackerman, Steven A.; Chung, Hyosang; Cox, Stephen K.; Herman, Leroy; Smith, William L.; Wylie, Donald P.

    1990-01-01

    Earth Radiation Budget Experiment (ERBE) measurements onboard the NOAA-9 are compared for consistency with satellite and aircraft measurements made during the Cirrus Intensive Field Observation (IFO) of October 1986. ERBE scene identification is compared with NOAA-9 TIROS Operational Vertical Sounder (TOVS) cloud retrievals; results from the ERBE spectral inversion algorithms are compared with High resolution Interferometer Sounder (HIS) measurements; and ERBE radiant existance measurements are compared with aircraft radiative flux measurements.

  14. Extensive summer upwelling on Lake Michigan during 1973 observed by NOAA-2 and ERTS-1 satellites

    NASA Technical Reports Server (NTRS)

    Strong, A. E.; Stumpf, H. G.; Hart, J. L.; Pritchard, J. A.

    1974-01-01

    Two studies are presented that utilize data from the NOAA-2 and ERTS-1 satellites. The studies are concentrated on two summer upwelling episodes in Lake Michigan when considerable contrast was observed in both surface water temperature as observed by NOAA-2 and surface water color as observed by ERTS-1. Physical, biological and chemical processes support the hypothesis that much of the observed 'whitening' is calcium carbonate precipitating as an immediate result of the upwelling.

  15. NOAA View: An Exploration Tool to Simplify Data Access and Visualization

    NASA Astrophysics Data System (ADS)

    Pisut, D.; Loomis, T.; Goel, V.; Carroll, J.

    2014-12-01

    A normal search for data would, ideally, start with the defining a variable of interest and eventually moving down to the acquisition method or analysis type. Too often, data archives assume the users understand the complex terminology of sensors and model names, or even worse - their acronyms. Imagine a non-subject matter expert, especially an educator or hobbyist, trying to navigate this sea of data and seemingly nonsense strings of letters like AVHRR, ESM2M, CFSR, or MLOST. At the NOAA VIsualization Lab, we deal with these issues on a routine basis, and are trying to make data discovery for formal and informal educational use much easier. In this talk, we'll describe the efforts to build the NOAA View data exploration tool, which provides access to over 100 variables from a myriad of satellite, in situ, model, and analysis sources across the agency. NOAA View, a WMS and OpenLayers based web tool and data portal, not only serves data imagery, but also links back to original sources in the data archives. The current architecture as well as plans for future versions will be detailed, along with examples of uses across the geophysical sciences. In addition to the talk, please visit NOAA View at the NOAA exhibit. www.nnvl.noaa.gov/view

  16. NASA/NOAA: Earth Science Electronic Theater 1999

    NASA Technical Reports Server (NTRS)

    Hasler, A. Fritz

    1999-01-01

    The Electronic Theater (E-theater) presents visualizations which span the period from the original Suomi/Hasler animations of the first ATS-1 GEO weather satellite images in 1966 to the latest 1999 NASA Earth Science Vision for the next 25 years. Hot off the SGI-Onyx Graphics-Supercomputer are NASA's visualizations of Hurricanes Mitch, Georges, Fran and Linda. These storms have been recently featured on the covers of National Geographic, Time, Newsweek and Popular Science. Highlights will be shown from the NASA hurricane visualization resource video tape that has been used repeatedly this season on National and International network TV. Results will be presented from a new paper on automatic wind measurements in Hurricane Luis from 1-min GOES images that appeared in the November BAMS. The visualizations are produced by the NASA Goddard Visualization and Analysis Laboratory (VAL/912), and Scientific Visualization Studio (SVS/930), as well as other Goddard and NASA groups using NASA, NOAA, ESA, and NASDA Earth science datasets. Visualizations will be shown from the Earth Science E-Theater 1999 recently presented in Tokyo, Paris, Munich, Sydney, Melbourne, Honolulu, Washington, New York, and Dallas. The presentation Jan 11-14 at the AMS meeting in Dallas used a 4-CPU SGI/CRAY Onyx Infinite Reality Super Graphics Workstation with 8 GB RAM and a Terabyte Disk at 3840 X 1024 resolution with triple synchronized BarcoReality 9200 projectors on a 60ft wide screen. Visualizations will also be featured from the new Earth Today Exhibit which was opened by Vice President Gore on July 2, 1998 at the Smithsonian Air & Space museum in Washington, as well as those presented for possible use at the American Museum of Natural History (NYC), Disney EPCOT, and other venues. New methods are demonstrated for visualizing, interpreting, comparing, organizing and analyzing immense HyperImage remote sensing datasets and three dimensional numerical model results. We call the data from many

  17. StormReady in a Box: Enhancing NOAA's Presence in Schools

    NASA Astrophysics Data System (ADS)

    Grondin, N. S.; Franks, C.

    2015-12-01

    The National Weather Service StormReady Supporter program exists to give schools, companies, TV stations, and other facilities the opportunity to earn recognition for their weather preparedness and awareness. Requirements to earn StormReady Supporter status include having a facility warning point, use of NOAA Weather Radios, and weather hazard Emergency Operation Plans. Despite the increasing importance of weather preparedness in schools, only 1.2% of Minnesota schools are deemed StormReady by the National Weather Service. It was determined that the major impedance for schools becoming StormReady Supporters is the lack of time for administrators to engage in anything "extra" beyond their listed duties. As part of a 2015 Hollings Scholar project, the StormReady in a Box concept was developed to remedy this, by empowering teachers and students to take charge and complete the StormReady Supporter application for their school. StormReady in a Box is a project developed for Junior High School students to learn about weather preparedness and to help their school acquire StormReady status. The project was designed to be relevant to the Minnesota State Education Standards in Science, be simple for teachers to do with their students, and most importantly, to be enjoyable for Junior High School age students to do. The project was also designed to enhance critical thinking skills and logical reasoning abilities, as they relate to the StormReady Supporter application. This presentation will present the overall rationale for the undertaking of this project, the creation of, and the logical next steps for the StormReady in a Box project.

  18. The Long-term Performance of NOAA's Operational Open Ocean Tsunameter Array

    NASA Astrophysics Data System (ADS)

    Wasserman, J.; Bouchard, R. H.; Petraitis, D. C.; Rutledge, T. M.; Boudreaux, T. J.; Robbie, M. D.; Yarborough, S.; Fornea, G.

    2015-12-01

    The National Oceanic and Atmospheric Administration's (NOAA) National Data Buoy Center (NDBC) has operated and maintained the full 39-station array of open ocean tsunameters since 2008 using the second generation Deep-ocean Reporting and Assessment of Tsunamis technology. The array provides real-time, ocean bottom measurements to Tsunami Warning Centers (TWC) located in Hawai'i and Alaska. These measurements aid them in detecting the presence or absence of tsunamis in the open ocean and in determining the essential characteristics of a tsunami to support the TWC. Thirty-two of the stations span the Pacific Ocean, while seven are located in the Atlantic Ocean, Gulf of Mexico, and the Caribbean Sea. The sensors are located on the ocean floor to depths of 6000 m and the system must deliver measurements from that depth to the TWCs in 3 minutes or less. These vast horizontal and vertical distances and the often extreme conditions of the open ocean raise considerable challenges in maintaining necessary and sufficient measurements to support the TWCs. To support this effort, NDBC aims to maintain and generally achieves a goal of 80% real-time data availability. Data availability is the percentage of measurements received versus the number of expected measurements. Using seven years of data we examine operational performance parameters such as real-time and retrospective data availability and tsunami detection for trends, patterns, and the factors affecting performance and reliability of the array. We will also discuss the initial results of the Field Evaluation of the 4th Generation technology.

  19. NOAA Surveys; Stabalizing Economy and Ecology on The U.S. Coast

    NASA Astrophysics Data System (ADS)

    Hylton, L. L.

    2008-12-01

    NOAA TEACHER AT SEA: LISHA LANDER HYLTON ONBOARD NOAA SHIP: DELAWARE II JUNE 29TH -JULY 11TH, 2008 MISSION: The mission of my trip with NOAA was to provide me (a teacher of third grade students) an extraordinary opportunity to take part in genuine-world experiences being conducted by NOAA in order for me to achieve a clearer insight into our ocean planet and a superior perceptive of NOAA-related careers. With the knowledge that I obtained on-board THE DELAWAREII - I am now able to teach the lesson plans created on my field study to my students, giving them insight as to how much power they have on their lives and this world we live in. My students are able to play a part in maritime activities as we study together, valuing the work and expertise that is required to sustain oceanic and atmospheric research. The students' enthusiasm, inquisitiveness and yearning to learn is only heightened with the hands-on, motivational activities that I gained from my research with this NOAA team. As a Part of this NOAA team, on-board we conducted clam surveys at various stations along the northeastern coast of the United States. I learned that clams are a very important part of economy and ecology in this region. Surveying clams and other marine species was performed on my field study with NOAA for the purpose of conserving marine life. NOAA realizes the importance of the fishing industry and conducts fishery surveys in order to stabilize fishery industries without destroying the marine ecosystems completely. Clams play a very important part in marine fishery; therefore these surveys are helping to maintain stability in the economy and ecology of The United States. By comparing past and present fishery surveys, our team made conclusions regarding the stability of these marine populations. After dredging, collecting, sorting, counting, measuring and weighing (clams with shells and shucked clam meat only) - the data was obtained and recorded then entered into computers filed under

  20. NOAA's Approach to Community Building and Governance for Data Integration and Standards Within IOOS

    NASA Astrophysics Data System (ADS)

    Willis, Z.; Shuford, R.

    2007-12-01

    This presentation will review NOAA's current approach to the Integrated Ocean Observing System (IOOS) at a national and regional level within the context of our United States Federal and Non-Federal partners. Further, it will discuss the context of integrating data and the necessary standards definition that must be done not only within the United States but in a larger global context. IOOS is the U.S. contribution to the Global Ocean Observing System (GOOS), which itself is the ocean contribution to the Global Earth Observation System of Systems (GEOSS). IOOS is a nationally important network of distributed systems that forms an infrastructure providing many different users with the diverse information they require to characterize, understand, predict, and monitor changes in dynamic coastal and open ocean environments. NOAA recently established an IOOS Program Office to provide a focal point for its ocean observation programs and assist with coordination of regional and national IOOS activities. One of the Program's initial priorities is the development of a data integration framework (DIF) proof-of-concept for IOOS data. The initial effort will focus on NOAA sources of data and be implemented incrementally over the course of three years. The first phase will focus on the integration of five core IOOS variables being collected, and disseminated, for independent purposes and goals by multiple NOAA observing sources. The goal is to ensure that data from different sources is interoperable to enable rapid and routine use by multiple NOAA decision-support tool developers and other end users. During the second phase we expect to ingest these integrated variables into four specific NOAA data products used for decision-support. Finally, we will systematically test and evaluate enhancements to these products, and verify, validate, and benchmark new performance specifications. The outcome will be an extensible product for operational use that allows for broader community

  1. NOAA's Global Network of N2O Observations

    NASA Astrophysics Data System (ADS)

    Dlugokencky, E. J.; Crotwell, A. M.; Crotwell, M.; Masarie, K. A.; Lang, P. M.; Dutton, G. S.; Hall, B. D.

    2014-12-01

    Nitrous oxide has surpassed CFC-12 to become the third largest contributor to radiative forcing. When climate impacts for equal emitted masses of N2O and CO2 are integrated over 100 years, N2O impacts are about 300 times greater than those of CO2. Increasing the atmospheric burden of N2O also decreases the abundance of O3 in the stratosphere. With reductions in emissions of ODSs as a result of the Montreal Protocol, N2O now has the largest ODP-weighted emissions of all gases. Given its long lifetime of about 130 years, today's emissions will impact climate and stratospheric O3 for a long time. Because emission rates are very small and spread over enormous areas, the detailed N2O budget has large uncertainties. It also means measurement requirements on precision and accuracy are stringent, especially for the background atmosphere. The Carbon Cycle Group of NOAA ESRL's Global Monitoring Division began measuring N2O in discrete air samples collected as part of its global cooperative air sampling network in 1998. Data from about 60 air sampling sites provide important constraints on the large-scale budget of N2O and provide boundary conditions for continental and regional-scale studies. This presentation will briefly describe the procedures used to ensure the data are of sufficient quality to meet scientific demands, and describe remaining limitations. Although sampling is infrequent (weekly), the data are quite useful in N2O budget studies. Examples will be given of large scale constraints on N2O's budget, including the global burden, trends in the burden, global emissions, spatial distributions, vertical gradients, and seasonal patterns.

  2. LLNL data collection during NOAA/ETL COPE experiment

    SciTech Connect

    Mantrom, D.D.

    1995-09-06

    COPE is the acronym for the Coastal Ocean Probe Experiment, to be conducted by NOAA/ETL off the northern Oregon coast in September--October 1995. In general terms, ETL desires to collect data on how various types of microwave sensors including radar would respond to internal wave-induced modulations to the ocean surface, and what effects propagation through the atmosphere might have on the data collected. In COPE, ETL will field a broad suite of microwave sensors, and a variety of sea-truth and atmospheric-truth instruments. These will include a land-based, high power, X and Ka-band real aperture radar (RAR) located atop a 3,000 ft high coastal peak, various water column, surface wave, air-sea interface, and atmospheric sensors on the FLIP measurement platform to be moored approximately 15 miles offshore, various active and passive microwave devices onboard a blimp which will fly at 6,000--8,000 ft altitude, two ground-based CODARs that measure large-scale surface currents, various wind profilers, and others. Lawrence Livermore National Laboratory`s Imaging and Detection Program will take advantage of this unique site and opportunity to collect imagery with the radar that will be well ground-truthed with subsurface, surface, and above-water environmental data and possibly be compared to radar image data collected simultaneously or nearly simultaneously with another radar. Specifically, the authors are planning to conduct a short data collection with their Airborne Experimental Test Bed (AETB) jet aircraft-based X-band, HH-polarization synthetic aperture radar (SAR) as a piggyback to the planned COPE operation.

  3. NOAA/AVHRR vegetation indices as agrometeorological growth parameter

    NASA Astrophysics Data System (ADS)

    Gupta, R. K.

    1993-05-01

    This paper deals with the utility of NOAA/AVHRR vegetation indices as agrometeorological growth parameters. The area chosen to the study was the Punjab and the Haryana states of India, both comprising districts primarily under wheat cultivation with 68-76% geographical area under agriculture and 89-96% agricultural area under wheat. Application of geometric correction to visible and near IR band images followed by computation of NDVI and RVI images yielded less error than the conventional method of correction to NDVI/RVI images. Images having far-side boundary pixel upto 38 degree scan angle did not cause significant error at district level statistics. RVI was more sensitive than NDVI from emergence to near jointing and maturity to senescence stages. Prior to jointing stage and after dough stage RVI can be transformed to NDVI, to enable its joint use with NDVI. The maximum and mean air temperatures based growing degree days (GDD) related well with the NDVI/RVI temporal profile over the entire crop growth cycle at 98-99% significance level. However, shapewise the maximum temperature based GDD was superior to mean temperature based GDD, whereas minimum temperature based GDD had statistically significant relationship only upto dough stage at 95% significance level. The integrated NDVI (INDVI) values computed for mid of late-tillering to jointing stage were significantly related to the yield (r-square = 0.867, at 99.34% significance level). When INDVI at this stage was coupled with that of mid of milking and dough - nearing maturity stages, the predictability of wheat yields increased (r-square = 0.891, at 99.32% significance level).

  4. The Science Behind the NASA/NOAA Electronic Theater 2002

    NASA Technical Reports Server (NTRS)

    Hasler, A. Fritz; Starr, David (Technical Monitor)

    2002-01-01

    Details of the science stories and scientific results behind the Etheater Earth Science Visualizations from the major remote sensing institutions around the country will be explained. The NASA Electronic Theater presents Earth science observations and visualizations in a historical perspective. Fly in from outer space to Temple Square and the University of Utah Campus. Go back to the early weather satellite images from the 1960s see them contrasted with the latest US/Europe/Japan global weather data. See the latest images and image sequences from NASA & NOAA missions like Terra, GOES, NOAA, TRMM, SeaWiFS, Landsat 7 visualized with state-of-the art tools. A similar retrospective of numerical weather models from the 1960s will be compared with the latest "year 2002" high-resolution models. See the inner workings of a powerful hurricane as it is sliced and dissected using the University of Wisconsin Vis-5D interactive visualization system. The largest super computers are now capable of realistic modeling of the global oceans. See ocean vortexes and currents that bring up the nutrients to feed phitoplankton and zooplankton as well as draw the crill fish, whales and fisherman. See the how the ocean blooms in response to these currents and El Nino/La Nina climate regimes. The Internet and networks have appeared while computers and visualizations have vastly improved over the last 40 years. These advances make it possible to present the broad scope and detailed structure of the huge new observed and simulated datasets in a compelling and instructive manner. New visualization tools allow us to interactively roam & zoom through massive global images larger than 40,000 x 20,000 pixels. Powerful movie players allow us to interactively roam, zoom & loop through 4000 x 4000 pixel bigger than HDTV movies of up to 5000 frames. New 3D tools allow highly interactive manipulation of detailed perspective views of many changing model quantities. See the 1m resolution before and after

  5. The Science Behind the NASA/NOAA Electronic Theater 2002

    NASA Technical Reports Server (NTRS)

    Hasler, A. Fritz; Starr, David (Technical Monitor)

    2002-01-01

    Details of the science stories and scientific results behind the Etheater Earth Science Visualizations from the major remote sensing institutions around the country will be explained. The NASA Electronic Theater presents Earth science observations and visualizations in a historical perspective. Fly in from outer space to Temple Square and the University of Utah Campus. Go back to the early weather satellite images from the 1960s see them contrasted with the latest US/Europe/Japan global weather data. See the latest images and image sequences from NASA & NOAA missions like Terra, GOES, NOAA, TRMM, SeaWiFS, Landsat 7 visualized with state-of-the art tools. A similar retrospective of numerical weather models from the 1960s will be compared with the latest "year 2002" high-resolution models. See the inner workings of a powerful hurricane as it is sliced and dissected using the University of Wisconsin Vis-5D interactive visualization system. The largest super computers are now capable of realistic modeling of the global oceans. See ocean vortexes and currents that bring up the nutrients to feed phitoplankton and zooplankton as well as draw the crill fish, whales and fisherman. See the how the ocean blooms in response to these currents and El Nino/La Nina climate regimes. The Internet and networks have appeared while computers and visualizations have vastly improved over the last 40 years. These advances make it possible to present the broad scope and detailed structure of the huge new observed and simulated datasets in a compelling and instructive manner. New visualization tools allow us to interactively roam & zoom through massive global images larger than 40,000 x 20,000 pixels. Powerful movie players allow us to interactively roam, zoom & loop through 4000 x 4000 pixel bigger than HDTV movies of up to 5000 frames. New 3D tools allow highly interactive manipulation of detailed perspective views of many changing model quantities. See the 1m resolution before and after

  6. High Performance Real-Time Visualization of Voluminous Scientific Data Through the NOAA Earth Information System (NEIS).

    NASA Astrophysics Data System (ADS)

    Stewart, J.; Hackathorn, E. J.; Joyce, J.; Smith, J. S.

    2014-12-01

    Within our community data volume is rapidly expanding. These data have limited value if one cannot interact or visualize the data in a timely manner. The scientific community needs the ability to dynamically visualize, analyze, and interact with these data along with other environmental data in real-time regardless of the physical location or data format. Within the National Oceanic Atmospheric Administration's (NOAA's), the Earth System Research Laboratory (ESRL) is actively developing the NOAA Earth Information System (NEIS). Previously, the NEIS team investigated methods of data discovery and interoperability. The recent focus shifted to high performance real-time visualization allowing NEIS to bring massive amounts of 4-D data, including output from weather forecast models as well as data from different observations (surface obs, upper air, etc...) in one place. Our server side architecture provides a real-time stream processing system which utilizes server based NVIDIA Graphical Processing Units (GPU's) for data processing, wavelet based compression, and other preparation techniques for visualization, allows NEIS to minimize the bandwidth and latency for data delivery to end-users. Client side, users interact with NEIS services through the visualization application developed at ESRL called TerraViz. Terraviz is developed using the Unity game engine and takes advantage of the GPU's allowing a user to interact with large data sets in real time that might not have been possible before. Through these technologies, the NEIS team has improved accessibility to 'Big Data' along with providing tools allowing novel visualization and seamless integration of data across time and space regardless of data size, physical location, or data format. These capabilities provide the ability to see the global interactions and their importance for weather prediction. Additionally, they allow greater access than currently exists helping to foster scientific collaboration and new

  7. Climate Change, Salmon in the NOAA Budget Spotlight

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    2004-05-01

    A U.S. Senate hearing on 29 April about the administration's proposed budget for the National Oceanic and Atmospheric Administration fiscal year 2005 turned testy when senators pressed for specific information about the agency's programs on abrupt climate change and protecting wild salmon. Sen. Olympia Snowe (R-Maine), chair of the Senate Commerce, Science, and Transportation's Subcommittee on Oceans, Fisheries, and Coast Guard, expressed concern that funding for the agency's program on abrupt climate change appears to be eliminated in the proposed budget.

  8. Downscaling the NOAA CarbonTracker Inversion for North America

    NASA Astrophysics Data System (ADS)

    Petron, G.; Andrews, A. E.; Chen, H.; Trudeau, M. E.; Eluszkiewicz, J.; Nehrkorn, T.; Henderson, J.; Sweeney, C.; Karion, A.; Masarie, K.; Bruhwiler, L.; Miller, J. B.; Miller, B. R.; Peters, W.; Gourdji, S. M.; Mueller, K. L.; Michalak, A. M.; Tans, P. P.

    2011-12-01

    We are developing a regional extension of the NOAA CarbonTracker CO2 data-assimilation system for a limited domain covering North America. The regional assimilation will use pre-computed and species-independent atmospheric sampling footprints from a Lagrangian Particle Dispersion Model. Each footprint relates an observed trace gas concentration to upwind fluxes. Once a footprint library has been computed, it can be used repeatedly to quickly test different inversion strategies and, importantly, for inversions using multiple species data (e.g., anthropogenic tracers such as radiocarbon and carbon monoxide and biological tracers such as carbonyl sulfide and stable isotopes of CO2). The current global CarbonTracker (CT) assimilation framework has some important limitations. For example, the assimilation adjusts scaling factors for different vegetation classes within large regions. This means, for example, that all crops within temperate North America are scaled together. There is currently no distinction between crops such as corn and sorghum, which utilize the C4 photosynthesis pathway and C3 crops like soybeans, wheat, cotton, etc. The optimization scales only the net CO2 flux, rather than adjusting photosynthesis and respiration fluxes separately, which limits the flexibility of the inversion and sometimes results in unrealistic diurnal cycles of CO2 flux. The time-series of residuals (CT - observed) for continental sites in North America reveals a persistent excess of CO2 during summer. This summertime positive bias is also apparent in the comparison of CT posterior CO2 with aircraft data and with data from Pacific marine boundary layer sites, suggesting that some of the problem may originate outside of North America. For the regional inversion, we will use footprints from the Stochastic Time-Inverted Lagrangian Transport Model driven by meteorological fields from a customized high-resolution simulation with the Weather Research Forecast (WRF) model. We will use

  9. Resolution of the Scripps/NOAA Marine Gravity Field from satellite altimetry

    NASA Astrophysics Data System (ADS)

    Marks, Karen M.

    The July 1995 declassification of the entire Geosat GM satellite altimeter data set enabled a joint Scripps/NOAA effort to compute a new (version 7.2) marine gravity field on a 2-minute grid. This gravity field covers the world's oceans between 72°N and 72°S, and is derived from a combination of ERS-1 and Geosat GM and ERM data. An earlier NOAA Geosat-only gravity field solution was confined to the southern latitudes because the 1992 declassification was limited to GM data south of 30°S. A simple coherence analysis between accurately-navigated ship gravity profiles and comparable gravity profiles obtained from the gravity grids reveals that the Scripps/NOAA gravity field is coherent with ship gravity down to ˜≥ 23-30 km. This slight increase in resolution over the previous NOAA Geosat-only gravity field (short-wavelength resolution of ˜26-30 km) implies that the increased spatial coverage provided by the ERS-I altimeter, when combined with Geosat, improves the solution. Coherence analyses between satellite gravity and ship topography, and ship gravity and ship topography, show that even shorter wavelength gravity anomalies (˜13 km) are present in sea-surface measurements made by ship. Even so, the Scripps/NOAA marine gravity field does an excellent job of resolving most of the short-wavelength gravity anomalies covering the world’s oceans.

  10. 78 FR 57131 - Membership of the NOAA Performance Review Board

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-17

    ... Atmosphere. Tyra D. Smith Deputy Director, Office of Human Resources Management, U.S. Department of Commerce... Atmosphere. Steven S. Fine, Ph.D Deputy Assistant Administrator for Laboratories and Cooperative Institutes... 4, 2013. Kathryn D. Sullivan, Acting Under Secretary of Commerce for Oceans and Atmosphere....

  11. Calibration and Validation of the 36-year NOAA/AVHRR Imager Visible Channel Data record in support of the NOAA Climate Data Records program.

    NASA Astrophysics Data System (ADS)

    Gopalan, A.; Doelling, D.; Bhatt, R.; Scarino, B. R.; Bedka, K. M.; Minnis, P.

    2015-12-01

    The NOAA/AVHRR (Advanced Very High Resolution Radiometer) series of polar-orbiting earth-imagers have been flying since 1978 to the present and provide an opportunity to derive a long-term consistent set of well calibrated visible channel radiances for cloud, aerosol, and land use retrievals. This will allow climate modelers to investigate climate natural variability, intra-seasonal oscillations such as the ENSO, and feedback mechanisms over a 36-year record. Large climate perturbations, such as the 1982 and 1998 El Ninos as well as the 1982 El Chichon and 1992 Mt Pinatubo volcanic eruptions, have not been observed since 2000. The vicarious calibration method relies on temporally well characterized multiple pseudo-invariant calibration sites (PICS) referenced to the Aqua-MODIS calibration. The PICS are characterized by NOAA-16 TOA reflectances, over the full range of observed solar zenith angles of a NOAA degrading orbit culminating in a terminator orbit. The NOAA-16 reflectances are first calibrated against Aqua-MODIS using the simultaneous nadir overpass (SNO) method. Site characterization with NOAA-16 has the advantage of reducing the uncertainties associated with spectral band adjustments, since the AVHRR sensor spectral responses are similar. Consistent calibration between the individual desert, polar ice and deep convective cloud PICS approaches validates the methodology. The individual calibration gains are combined to provide the final merged calibration by weighting them by the inverse of their temporal variance. By combining by site stability ensures that site anomalous reflectance drifts do not adversely impact the calibration. Also the merged gain has a lower temporal variability than any individual PICS. In this study we describe the methodology used to derive a new set of calibration coefficients for Channel-1 0.65 (um) and Channel-2 (0.86 um) of the NOAA/AVHRR series of Polar-Orbiting imagers beginning in 1978. We will demonstrate the consistency of

  12. NOAA's Big Data Partnership at the National Centers for Environmental Information

    NASA Astrophysics Data System (ADS)

    Kearns, E. J.

    2015-12-01

    In April of 2015, the U.S. Department of Commerce announced NOAA's Big Data Partnership (BDP) with Amazon Web Services, Google Cloud Platform, IBM, Microsoft Corp., and the Open Cloud Consortium through Cooperative Research and Development Agreements. Recent progress on the activities with these Partners at the National Centers for Environmental Information (NCEI) will be presented. These activities include the transfer of over 350 TB of NOAA's archived data from NCEI's tape-based archive system to BDP cloud providers; new opportunities for data mining and investigation; application of NOAA's data maturity and stewardship concepts to the BDP; and integration of both archived and near-realtime data streams into a synchronized, distributed data system. Both lessons learned and future opportunities for the environmental data community will be presented.

  13. REPETITIVE DIGITAL NOAA-AVHRR DATA FOR ALASKAN ENGINEERING AND SCIENTIFIC APPLICATIONS.

    USGS Publications Warehouse

    Christie, William M.; Pawlowski, Robert J.; Fleming, Michael D.

    1986-01-01

    Selected digitally enhanced NOAA - Advanced Very High Resolution Radiometer (AVHRR) images taken by the NOAA 6, 7, 8 and 9 Polar Orbiting Satellites demonstrate the capability and application of repetitive low-resolution satellite data to Alaska's engineering and science community. Selected cloud-free visible and thermal infrared images are enhanced to depict distinct oceanographic and geologic processes along Alaska's west coast and adjacent seas. Included are the advance of the Bering Sea ice field, transport of Yukon River sediment into Norton Sound, and monitoring of plume trajectories from the Mount Augustine volcanic eruptions. Presented illustrations are representative of the 94 scenes in a cooperative USGS EROS/NOAA Alaskan AVHRR Digital Archive. This paper will discuss the cooperative efforts in establishing the first year data set and identifying Alaskan applications.

  14. Total carbon dioxide, hydrographic, and nitrate measurements in the Southwest Pacific during Austral autumn, 1990: Results from NOAA/PMEL CGC-90 cruise

    SciTech Connect

    Lamb, M.F.; Feely, R.A.; Moore, L.

    1995-10-01

    In support of the National Oceanic and Atmospheric Administration (NOAA) Climate and Global Change (C&GC) Program, Pacific Marine Environmental Laboratory (PMEL) scientists have been measuring the growing burden of greenhouse gases in the thermocline waters of the Pacific Ocean since 1980. Collection of data at a series of hydrographic stations along longitude 170{degrees} W during austral autumn of 1990 was designed to enhance understanding of the increase in the column burden of chlorofluorocarbons and carbon dioxide in the thermocline waters since the last expedition in 1984. This document presents the procedures and methods used to obtain total carbon dioxide (TCO{sub 2}), hydrographic, and nitrate data during the NOAA/PMEL research vessel (R/V) Malcolm Baldrige CGC-90 Cruise. Data were collected along two legs; sampling for Leg 1 began along 170{degrees} W from 15{degrees} S to 60{degrees} S, then angled northwest toward New Zealand across the Western Boundary Current. Leg 2 included a reoccupation of some stations between 30{degrees} S and 15{degrees} S on 170{degrees} W and measurements from 15{degrees} S to 5{degrees} N along 170{degrees} W. The following data report summarizes the TCO{sub 2}, salinity, temperature, and nitrate measurements from 63 stations. The TCO, concentration in seawater samples was measured using a coulometric/extraction system (Models 5011 and 5030, respectively) originated by Ken Johnson. The NOAA/PMEL R/V Malcolm Baldrige CGC-90 Cruise data set is available without charge as a numeric data package (NDP) from the Carbon Dioxide Information Analysis Center. The NDP consists of two oceanographic data files, two FORTRAN 77 data retrieval routine files, a {open_quotes}readme{close_quotes} file, and this printed documentation, which describes the contents and format of all files as well as the procedures and methods used to obtain the data.

  15. Long Term Monitoring of Greenhouse Gases at NOAA - a Forty Year Record

    NASA Astrophysics Data System (ADS)

    Butler, J. H.

    2009-04-01

    NOAA's Earth System Research Laboratory and its precursor organizations have been monitoring trends and distributions of greenhouse gases and other climatically relevant constituents in the atmosphere for over 40 years (http://www.esrl.noaa.gov/gmd). The focus of these measurements has been to obtain reliable records of global trends and distributions, but the experimental design and use of these measurements have advanced over time with evolving scientific questions. In earlier days, measurements and data products were global in nature (e.g., Annual Greenhouse Gas Index, http://www.esrl.noaa.gov/gmd/aggi). Later, they addressed intra-hemispheric properties, continental contributions, and eventually regional sources and sinks (e.g., http://CarbonTracker.noaa.gov). Today, and into this century, scientific questions continue to progress and the observation systems will need to progress accordingly. Critical questions likely will center on greenhouse gas emission reduction efforts, ecosystem feedbacks, and climate surprises. Regional information will become increasingly important for supporting greenhouse gas emission reduction efforts, and this information must be accurate, precise, and without bias. With emerging diverse, regionalized efforts to monitor greenhouse gases, comparability of measurements and measurement systems becomes more important than ever. NOAA, with its long-standing networks and its role as the WMO Central Calibration Laboratory for the major greenhouse gases, is well positioned to provide the linkages necessary to assure that regional measurements are comparable. Policy-makers, businesses, and regulatory organizations will need the best information available for decision-making. This presentation will identify major, climate-relevant findings that have come from NOAA's networks and those of others over the past several decades and will address the long-term monitoring needs to support decision-making over the next decades as society begins to

  16. Fire and Smoke Monitoring at NOAA' Satellite Service; Applications to Smoke Forecasting

    NASA Astrophysics Data System (ADS)

    Stephens, G.; Ruminski, M.

    2005-12-01

    The Hazard Mapping System (HMS), developed and run operationally by NOAA's Satellite Services Division (SSD), is a multiplatform remote sensing approach to detecting fires and smoke over the US and adjacent areas of Canada and Mexico. The system utilizes sensors on 7 different NOAA and NASA satellites. Automated detection algorithms are employed for each of the satellites for the fire detects while smoke is delineated by an image analyst. Analyses are quality control by an analyst who inspects all available imagery and automated fire detects, deleting suspected false detects and adding fires that the automated routines miss. Graphical, text, and GIS compatible analyses are posted to a web site as soon as updates are performed, and a final product for a given day is posted early the following morning. All products are archived at NOAA's National Geophysical Data Center. Areal extent of detectable smoke is outlined using animated visible imagery, for input to a dispersion and transport model, the HYbrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT), developed by NOAA's Air Resources Laboratory (ARL). Resulting smoke forecasts will soon be used as input to NOAA's Air Quality forecasts. The GOES Aerosol and Smoke Product (GASP) is an experimental GOES imagery based aerosol optical depth (AOD) product developed by the NESDIS Office of Research and Applications, being implemented for evaluation by the NESDIS Satellite Analysis Branch for use in smoke and volcanic ash monitoring. Currently, research is underway in NESDIS' Office of Research and Applications to objectivize smoke delineation using GASP and MODIS AOD retrievals. NOAA's Operational Significant Event Imagery (OSEI) program processes satellite imagery of environmentally significant events, including fire, smoke and volcanic ash, visible in operational satellite data. This imagery is often referred to by fire managers and air quality agencies. Future plans include the integration of high resolution

  17. Senior Administrators Should Have Administrative Contracts.

    ERIC Educational Resources Information Center

    Posner, Gary J.

    1987-01-01

    Recognizing that termination is viewed by the employee as the equivalent to capital punishment of a career, an administrative contract can reduce the emotional and financial entanglements that often result. Administrative contracts are described. (MLW)

  18. NOAA GCOM-W1/AMSR2 Product Processing and Validation System (Invited)

    NASA Astrophysics Data System (ADS)

    Chang, P.; Jelenak, Z.; Ferraro, R. R.; Alsweiss, S.; Park, J.; Meyers, P. C.; Zhan, X.; Liu, J.; Key, J.; Kongoli, C.; Weng, F.; Maturi, E.; Harris, A.; Wolf, W.; Thomas, K. S.; Soulliard, L.

    2013-12-01

    The Japanese Aerospace Exploration Agency (JAXA) Global Change Observation Mission (GCOM) consists of two satellite series, Water (GCOM-W) and Climate (GCOM-C). The first satellite of the GCOM program, GCOM-W1, was launched on May 18, 2012 carrying the follow-on to the Advanced Microwave Scanning Radiometer - Earth Observing System (AMSR-E), AMSR-2. NOAA's GCOM-W1 product development and validation project will provide NOAA's users access to critical geophysical products derived from AMSR-2. These products, which are detailed in NOAA's Joint Polar Satellite System (JPSS) Level 1 Requirements Document Supplement, include: NOAA AMSR-2 Product Requirements: Day 1 Product Capability Microwave Brightness Temperature (MBT) Total Precipitable Water (TPW) Cloud Liquid Water (CLW) Precipitation Type/Rate (PT/R) Sea Surface Temperature (SST) Sea Surface Wind Speed (SSW) Day 2 Product Capability Soil Moisture (SM) Sea Ice Characterization (SIC) Snow Cover/Depth (SC/D) Snow Water Equivalent (SWE) GCOM-W1 data will be captured at the KSAT Svalbard Ground Station and assembled into APID packets. Using the JPSS (NPP) infrastructure, the GCOM raw data (APID packets) are routed to the NOAA Interface Data Processing System (IDPS), in near-real time. Once received at the IDPS, the APID packets will be reformatted into Raw Data Records (RDRs) and sent to the NPP Data Exploitation (NDE) system for distribution to the Environmental Satellite Data Processing System where further processing to brightness temperatures (Level 1, sensor data records (SDRs)) and geophysical products (Level 2, Environmental Data Records (EDRs)) will be performed. The RDRs are processed to SDRs utilizing software provided by JAXA. The EDRs are generated utilizing NOAA's AMSR-2 product processing system. The goal of the product processing system is to provide validated operational Level 2 products from the AMSR-2 instrument that address the GCOM-W1 requirements in the JPSS L1RD Supplemental for distribution to

  19. Status of the NOAA/CU trans-Pacific profiler network

    NASA Astrophysics Data System (ADS)

    Gage, K. S.; Ecklund, W. L.; Carter, D. A.; McAfee, J. R.; Balsley, B. B.; Riddle, A. C.; Johnston, P. E.; Avery, S. K.; Cole, H.; Woodman, R. F.

    1993-08-01

    The NOAA/CU Network of VHF wind profilers was an outgrowth of MST/ST radar research in NOAA's Aeronomy Laboratory, most notably the Poker Flat MST radar. After the completion of the Poker Flat Project in Alaska elements of the Poker flat system were used at several locations including Pohnpei, Federated States of Micronesia and Piura, Peru to begin construction of a tropical ST radar network. Construction of the network began in 1988 with the support of the U.S. National Science Foundation. The network was designed to provide unique observations of equatorial waves over the pacific ocean as well as observations of convective systems in the tropics.

  20. Use of NOAA-N satellites for land/water discrimination and flood monitoring

    NASA Technical Reports Server (NTRS)

    Tappan, G.; Horvath, N. C.; Doraiswamy, P. C.; Engman, T.; Goss, D. W. (Principal Investigator)

    1983-01-01

    A tool for monitoring the extent of major floods was developed using data collected by the NOAA-6 advanced very high resolution radiometer (AVHRR). A basic understanding of the spectral returns in AVHRR channels 1 and 2 for water, soil, and vegetation was reached using a large number of NOAA-6 scenes from different seasons and geographic locations. A look-up table classifier was developed based on analysis of the reflective channel relationships for each surface feature. The classifier automatically separated land from water and produced classification maps which were registered for a number of acquisitions, including coverage of a major flood on the Parana River of Argentina.

  1. NOAA POES Observations of Relativistic Electron Precipitation during a Radiation Belt Depletion Event

    NASA Astrophysics Data System (ADS)

    Millan, R. M.; Yando, K.; Green, J. C.

    2008-12-01

    We present POES observations of relativistic electron precipitation during an electron depletion event observed by GOES and GPS. On January 19, 2000 NOAA-15 passed very near the MAXIS balloon payload (L=4.7) which detected an intense duskside precipitation event (Millan et al., 2007). Recent work has shown that the NOAA MEPED proton detector responds to electrons above ~700 keV. We combine data from this high energy channel with data from the MEPED electron detector to examine the energy distribution and spatial extent of precipitation during this period. The results are compared with the MAXIS balloon observations.

  2. Observation of total ozone fields in the Antarctic atmosphere from TOVS of TIROS-N/NOAA

    NASA Technical Reports Server (NTRS)

    Yamanouchi, T.; Kawaguchi, S.; Iwashina, I.; Suzuki, K.

    1985-01-01

    Total ozone amounts in the Antarctic atmosphere are derived from infrared nadir scanning data of TIROS Operational Vertical Sounder (TOVS) of NOAA-6 and 7. HRPT data of the TIROS-N NOAA series of meteorological satellites have been received at Syowa Station (69 deg 00'S, 39 deg 35'E), Antarctica, about once a day since February 1980, by the Japanese Antarctic Research Expedition. HIRS/2 data of TOVS were extracted from HRPT data after being converted into CCT at the home institute. Total ozone amounts were derived for the northeastern part of the Antarctic, for about 100 orbits in 1981 and 1982.

  3. Identification of Solar Cycle 23 Minimum from Solar UV Measurements: NOAA-9 and NOAA-11 SBUV/2, UARS SUSIM, UARS Solstice

    NASA Technical Reports Server (NTRS)

    DeLand, Matthew T.; Cebula, Richard P.

    1997-01-01

    The purpose of this report is to present results from the study of solar cycles from solar UV measurements from March 1985 to May 1997. The study determined solar minimum date from daily spectral irradiance data sensitive to noise and the means through which long-term calibration was obtained. In this study magnesium II time series was determined from NOAA-9, and UARS (Upper Atmosphere Research Satellite) SUMIM and SOLSTICE satellites.

  4. Novice Administrators: Personality and Administrative Style Changes.

    ERIC Educational Resources Information Center

    Schmidt, Linda J.; Kosmoski, Georgia J.; Pollack, Dennis R.

    Since the advent of effective-schools research findings, educational administration experts have advocated a democratic and collegial leadership style for school administrators. This paper provides the findings of a study that examined 43 beginning administrators (25 females, 32 Caucasians, 9 African-Americans, 2 Hispanics) to determine what…

  5. 75 FR 4043 - Science Advisory Board; Draft Report of the NOAA Science Advisory Board Oceans and Health Working...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-26

    ... explore opportunities to enhance NOAA's ongoing ocean health efforts and their impacts on ecosystem and... roles in addressing ocean health issues? (2) What are the right ocean health science questions, products and services for NOAA? (3) Are there additional ocean health science issues that should be included...

  6. PAST AND PRESENT: 50 YEARS OF AIR QUALITY MODELING RESEARCH AND ITS APPLICATIONS BY THE NOAA ATMOSPHERIC SCIENCES MODELING DIVISION

    EPA Science Inventory

    The NOAA Atmospheric Sciences Modeling Division (ASMD) celebrated its Golden Jubilee in September 2005. The partnership between NOAA and EPA began when the Air Pollution Unit of the Public Health Service, which later became part of the EPA, requested the Weather Bureau provide ...

  7. 78 FR 35638 - Certificate of Alternative Compliance for the NOAA Research Vessel FSV-6 RUBEN LASKER, 9664988

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-13

    .... The vessel's primary purpose is to conduct oceanographic research around the world. The unique design... SECURITY Coast Guard Certificate of Alternative Compliance for the NOAA Research Vessel FSV-6 RUBEN LASKER... Alternative Compliance was issued for the NOAA research vessel FSV-6 RUBEN LASKER as required by 33...

  8. 47 CFR 25.259 - Time sharing between NOAA meteorological satellite systems and non-voice, non-geostationary...

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ..., a NVNG licensee shall use an earth station elevation angle of five degrees towards the NOAA... NVNG licensee shall use an earth station elevation angle of zero degrees, or less if reasonably... contact person and telephone number so that claims of harmful interference into NOAA earth station...

  9. 47 CFR 25.259 - Time sharing between NOAA meteorological satellite systems and non-voice, non-geostationary...

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ..., a NVNG licensee shall use an earth station elevation angle of five degrees towards the NOAA... NVNG licensee shall use an earth station elevation angle of zero degrees, or less if reasonably... contact person and telephone number so that claims of harmful interference into NOAA earth station...

  10. Low rate data bus general specification for the NOAA-OPQ polar orbiting environmental satellites and EUMETSAT polar satellite systems

    NASA Technical Reports Server (NTRS)

    1993-01-01

    The document is a reference document in the Instrument Interface Description for NOAA-2000 Instruments (GSFC-S-480-53). The requirements reflect the fact that these instruments must be compatible with a number of different polar orbiting satellite vehicles including the NOAA-OPQ satellites and the EUMETSAT METOP satellites.

  11. NOAA/USAID SMALL-SCALE SHRIMP PRODUCER TECHNICAL ASSISTANCE PROGRAM FOR NICARAGUA, ENVIRONMENTAL MONITORING COMPONENT - FINAL REPORT

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Through the NOAA/USAID Small Shrimp Producer Assistance Program for Nicaragua: Environmental Monitoring Component, a water quality monitoring program for the Estero Real system was designed in consultation with the NOAA Consultative Group for Aquaculture and implemented by the Center for Environmen...

  12. National Oceanic and Atmospheric Administration's Cetacean and Sound Mapping Effort: Continuing Forward with an Integrated Ocean Noise Strategy.

    PubMed

    Harrison, Jolie; Ferguson, Megan; Gedamke, Jason; Hatch, Leila; Southall, Brandon; Van Parijs, Sofie

    2016-01-01

    To help manage chronic and cumulative impacts of human activities on marine mammals, the National Oceanic and Atmospheric Administration (NOAA) convened two working groups, the Underwater Sound Field Mapping Working Group (SoundMap) and the Cetacean Density and Distribution Mapping Working Group (CetMap), with overarching effort of both groups referred to as CetSound, which (1) mapped the predicted contribution of human sound sources to ocean noise and (2) provided region/time/species-specific cetacean density and distribution maps. Mapping products were presented at a symposium where future priorities were identified, including institutionalization/integration of the CetSound effort within NOAA-wide goals and programs, creation of forums and mechanisms for external input and funding, and expanded outreach/education. NOAA is subsequently developing an ocean noise strategy to articulate noise conservation goals and further identify science and management actions needed to support them. PMID:26610985

  13. Classification and evaluation of vegetation dynamics of major ecosystems in Colorado using NOAA satellite data

    NASA Astrophysics Data System (ADS)

    Shahmoradi-Varnamkhasti, Amrali

    The objective of this study was to determine performance and year-to-year consistency of land cover/land use classification in the state of Colorado, based on intra-annual variations of greenness, and to evaluate vegetation dynamics in major rangeland ecosystems in the state. Data used for the study included biweekly Normalized Difference Vegetation Index (NDVI) data from the Advanced Very High Resolution Radiometer (AVHRR) of the National Oceanic and Atmospheric Administration (NOAA) satellite, and climatic, edaphic, and topographic data. The data were obtained from 1990 to 1993. Overall accuracies of classification performance for eleven major cover types were 57.1, 53.3, 52.5, and 52.8 percent for 1990. 1991, 1992, and 1993, respectively. No significant differences were found between the four years. However, using four-year combined data improved classification performance to an overall accuracy of 61.7 percent. Regression analyses between precipitation, temperature, and biweekly NDVI were conducted for grassland ecosystems of the study site. NDVI values did not show a strong relationship between the sum of precipitation and average temperature for time periods of four weeks. Some NDVI-related variables were used to evaluate vegetation dynamics of rangeland ecosystems. Stepwise regression procedures showed that annual precipitation is not an effective explanatory variable for NDVI-related indicators of primary production for the rangelands tested. Annual temperature, however, showed some correlation with indicators of primary production and rain use efficiency for six of ten rangeland types of mountains and plains. Soil texture showed significant correlation with most NDVI-related variables for major grasslands. For shrublands, however, there was little correlation between soil texture and NDVI-related variables. Topographic variables of aspect and slope correlated with NDVI-related variables, and correlations were more significant for vegetation types of the

  14. Integration and Visualization of Multiple Sensors in Generating the NOAA Operational Snow and Ice Cover Products

    NASA Astrophysics Data System (ADS)

    Li, M.; Helfrich, S.

    2011-12-01

    Global snow and ice cover is a key component in the climate and hydrologic system as well as daily weather forecasting. The National Oceanic and Atmospheric Administration (NOAA) has produced a daily northern hemisphere snow and ice cover chart since 1997 through the Interactive Multisensor Snow and Ice Mapping System (IMS). The IMS integrates and visualizes a wide variety of satellite data, as well as derived snow/ice products and surface observations, to provide meteorologists with the ability to interactively prepare the daily northern hemisphere snow and ice cover chart. These products are presently used as operational inputs into several weather prediction models and are applied in climate monitoring. The IMS is currently on its second version (released in 2004) and scheduled to be upgraded to the third version (V3) in 2013. The IMS V3 will have nearly 40 external inputs as data sources processed by the IMS, which fall into five data formats: binary image, HDF file, GeoTIFF image, Shapefile image and ASCII file. With the exception of the GeoTIFF and Shapefile files, which are used directly by IMS, all other types of data are pre-processed to ENVI image file format and "sectorized" for different areas around the northern hemisphere. The IMS V3 will generate daily snow and ice cover maps in five formats: ASCII, ENVI, GeoTIFF, GIF and GRIB2 and three resolutions: 24km, 4km and 1km. In this presentation, the methods are discussed for accessing and processing satellite data, model results and surface reports. All input data with varying formats and resolutions are processed to a fixed projection. The visualization methodology for IMS are provided for five different resolutions of 48km, 24km, 8km, 4km, 2km and 1km. This work will facilitate the future enhancement of IMS, provide users with an understanding of the software architecture, provide a prospectus on future data sources, and help to preserve the integrity of the long-standing satellite-derived snow and ice

  15. NOAA Education: Adventures in Strategic Planning, External Review, and Evaluation

    NASA Astrophysics Data System (ADS)

    Michalopoulos, C.

    2010-12-01

    Since late 2007, the National Oceanic and Atmospheric Administration has undertaken the development of a 20-year Education Strategic Plan, has undergone an external review by the National Research Council of the National Academies, and has drafted a guiding document on an agency-wide approach for monitoring and evaluation of its education activities and programs. This presentation will review all these processes with special emphasis on lessons learned and on the implications of each one on NOAA’s ability to improve and better coordinate its educational portfolio.

  16. New Developments in NOAA's Comprehensive Large Array-Data Stewardship System

    NASA Astrophysics Data System (ADS)

    Ritchey, N. A.; Morris, J. S.; Carter, D. J.

    2012-12-01

    The Comprehensive Large Array-data Stewardship System (CLASS) is part of the NOAA strategic goal of Climate Adaptation and Mitigation that gives focus to the building and sustaining of key observational assets and data archives critical to maintaining the global climate record. Since 2002, CLASS has been NOAA's enterprise solution for ingesting, storing and providing access to a host of near real-time remote sensing streams such as the Polar and Geostationary Operational Environmental Satellites (POES and GOES) and the Defense Meteorological Satellite Program (DMSP). Since October, 2011 CLASS has also been the dedicated Archive Data Segment (ADS) of the Suomi National Polar-orbiting Partnership (S-NPP). As the ADS, CLASS receives raw and processed S-NPP records for archival and distribution to the broad user community. Moving beyond just remote sensing and model data, NOAA has endorsed a plan to migrate all archive holdings from NOAA's National Data Centers into CLASS while retiring various disparate legacy data storage systems residing at the National Climatic Data Center (NCDC), National Geophysical Data Center (NGDC) and the National Oceanographic Data Center (NODC). In parallel to this data migration, CLASS is evolving to a service-oriented architecture utilizing cloud technologies for dissemination in addition to clearly defined interfaces that allow better collaboration with partners. This evolution will require implementation of standard access protocols and metadata which will lead to cost effective data and information preservation.

  17. NOAA Data Rescue of Key Solar Databases and Digitization of Historical Solar Images

    NASA Astrophysics Data System (ADS)

    Coffey, H. E.

    2006-08-01

    Over a number of years, the staff at NOAA National Geophysical Data Center (NGDC) has worked to rescue key solar databases by converting them to digital format and making them available via the World Wide Web. NOAA has had several data rescue programs where staff compete for funds to rescue important and critical historical data that are languishing in archives and at risk of being lost due to deteriorating condition, loss of any metadata or descriptive text that describe the databases, lack of interest or funding in maintaining databases, etc. The Solar-Terrestrial Physics Division at NGDC was able to obtain funds to key in some critical historical tabular databases. Recently the NOAA Climate Database Modernization Program (CDMP) funded a project to digitize historical solar images, producing a large online database of historical daily full disk solar images. The images include the wavelengths Calcium K, Hydrogen Alpha, and white light photos, as well as sunspot drawings and the comprehensive drawings of a multitude of solar phenomena on one daily map (Fraunhofer maps and Wendelstein drawings). Included in the digitization are high resolution solar H-alpha images taken at the Boulder Solar Observatory 1967-1984. The scanned daily images document many phases of solar activity, from decadal variation to rotational variation to daily changes. Smaller versions are available online. Larger versions are available by request. See http://www.ngdc.noaa.gov/stp/SOLAR/ftpsolarimages.html. The tabular listings and solar imagery will be discussed.

  18. 76 FR 32392 - Notice of Allocation Availability (NOAA) Inviting Applications for the CY 2011 Allocation Round...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-06

    ... published by the CDFI Fund on how an entity may apply to become certified as a CDE (66 FR 65806, December 20... Community Development Financial Institutions Fund Notice of Allocation Availability (NOAA) Inviting... note the Community Development Financial Institutions Fund (the CDFI Fund) will only...

  19. 76 FR 39385 - Payment Policy Change for Access to NOAA Environmental Data, Information, and Related Products...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-06

    ...NOAA's National Data Centers will not accept checks (nor money orders) in payment for orders. Prepayment is required and the accepted forms of payment are Visa, MasterCard, American Express, Discover, wire transfers and Automated Clearing House. Please refer to the NNDC Non- Federal Customer Payment Policy for additional...

  20. 75 FR 30383 - NOAA's Arctic Vision and Strategy; Comment Period Extension

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-01

    ...NOAA wishes to ensure its Arctic Vision and Strategy document reaches the broadest possible audience and allows adequate time for review, and therefore is extending the public comment period by fifteen days. The Arctic has profound significance for climate and functioning of ecosystems around the globe. The region is particularly vulnerable and prone to rapid change. Increasing air and ocean......

  1. NOAA's Satellite Climate Data Records: The Research to Operations Process and Current State

    NASA Astrophysics Data System (ADS)

    Privette, J. L.; Bates, J. J.; Kearns, E. J.; NOAA's Climate Data Record Program

    2011-12-01

    In support of NOAA's mandate to provide climate products and services to the Nation, the National Climatic Data Center initiated the satellite Climate Data Record (CDR) Program. The Program develops and sustains climate information products derived from satellite data that NOAA has collected over the past 30+ years. These are the longest sets of continuous global measurements in existence. Data from other satellite programs, including those in NASA, the Department of Defense, and foreign space agencies, are also used. NOAA is now applying advanced analysis techniques to these historic data. This process is unraveling underlying climate trend and variability information and returning new value from the data. However, the transition of complex data processing chains, voluminous data products and documentation into an systematic, configuration controlled context involves many challenges. In this presentation, we focus on the Program's process for research-to-operations transition and the evolving systems designed to ensure transparency, security, economy and authoritative value. The Program has adopted a two-phase process defined by an Initial Operational Capability (IOC) and a Full Operational Capability (FOC). The principles and procedures for IOC are described, as well as the process for moving CDRs from IOC to FOC. Finally, we will describe the state of the CDRs in all phases the Program, with an emphasis on the seven community-developed CDRs transitioned to NOAA in 2011. Details on CDR access and distribution will be provided.

  2. Observations of Solar Spectral Irradiance Change During Cycle 22 from NOAA-9 SBUV/2

    NASA Technical Reports Server (NTRS)

    DeLand, Matthew T.; Cebula, Richard P.; Hilsenrath, Ernest

    2003-01-01

    The NOM-9 Solar Backscatter Ultraviolet, model 2 (SBUV/2) instrument is one of a series of instruments providing daily solar spectral irradiance measurements in the middle and near ultraviolet since 1978. The SBUV/2 instruments are primarily designed to measure stratospheric profile and total column ozone, using the directional albedo as the input to the ozone processing algorithm. As a result, the SBUV/2 instrument does not have onboard monitoring of all time-dependent response changes. We have applied internal comparisons and vicarious (external) comparisons to determine the long-term instrument characterization for NOAA-9 SBUV/2 to derive accurate solar spectral irradiances from March 1985 to May 1997 spanning two solar cycle minima with a single instrument. The NOAA-9 data show an amplitude of 9.3(+/- 2.3)% (81-day averaged) at 200-205 nm for solar cycle 22. This is consistent with the result of (Delta)F(sub 200-205) = 8.3(+/- 2.6)% for cycle 21 from Nimbus-7 SBUV and (Delta)F(sub 200-205) = 10(+/- 2)% (daily values) for cycle 23 from UARS SUSIM. NOAA-9 data at 245-250 nm show a solar cycle amplitude of (Delta)F(sub 245-250) = 5.7(+/- 1.8)%. NOAA-9 SBUV/2 data can be combined with other instruments to create a 25-year record of solar UV irradiance.

  3. 75 FR 60085 - NOAA Proposed Policy on Prohibited and Authorized Uses of the Asset Forfeiture Fund

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-29

    ... Authorized Uses of the Asset Forfeiture Fund AGENCY: National Marine Fisheries Service (NMFS), National..., and forfeitures of property received by NOAA are deposited in an enforcement asset forfeiture fund... the following identifier: ``Draft Asset Forfeiture Fund Policy Comments.''; Mail or hand deliver to...

  4. Advancing Fire Weather Research via Interagency Collaboration: The NOAA/USFS MOU

    NASA Astrophysics Data System (ADS)

    Schranz, S.; Pouyat, R.

    2012-12-01

    In 2005, the Western Governors' Association (WGA) first articulated the need for closer collaboration between NOAA and the land management agencies to improve our services - and to ensure the best new technology and scientific advances are infused into fire weather information and services. NOAA has taken the WGA advice very seriously and, over the past few years, have followed up by polling users of our fire weather information. This was done both by our Office of the Federal Coordinator for Meteorology, and via an examination of internal and collaborative research activities as conducted by NOAA's Science Advisory Board. Through these processes, and given the tight budget environment, it's become clear we can't make needed progress alone. We need to call upon our joint expertise, along with the expertise of partners across the federal, state, academic, and research communities. This talk will outline the NOAA/USFS MOU signed in August, 2012 and the collaborative research already begun with the USFS and other partners.

  5. NOAA's National Geodetic Survey Utilization of Aerial Sensors for Emergency Response Efforts

    NASA Technical Reports Server (NTRS)

    White, Stephen

    2007-01-01

    Remote Sensing Division has a Coastal Mapping program and a Airport Survey program and research and development that support both programs. NOAA/NGS/RSD plans to acquire remotely sensed data to support the agency's homeland security and emergency response requirements.

  6. NOAA Ship Okeanos Explorer: Evolving Models Enabling Remote Science Participation via Telepresence

    NASA Astrophysics Data System (ADS)

    Elliott, K.; Potter, J.; Martinez, C.; Pinner, W.; Russell, C. W.; Verplanck, N.

    2014-12-01

    Since 2005 NOAA's Office of Ocean Exploration and Research (OER) and partners have tested and developed uses of telepresence to extend ocean exploration expeditions to shore-based scientists and students in real-time. Telepresence increases the potential pace and scope of ocean exploration by enabling experts to join an expedition from anywhere, providing unlimited access to intellectual capital, while simultaneously expanding the reach of ocean science expeditions to public audiences worldwide. "America's Ship for Ocean Exploration", NOAA Ship Okeanos Explorer, is the first and only federal vessel purpose-outfitted for conducting telepresence-enabled ocean exploration. As a platform for testing new technologies and methodologies, her primary operating paradigm focuses on using telepresence to enable the majority of expedition scientists to participate and guide explorations from shore in real-time. Between 2010-2014, NOAA and partners implemented different models to conduct telepresence-enabled ocean exploration on NOAA Ship Okeanos Explorer, all with the majority of the participating expedition scientists located on shore. These expeditions tested different scientist participation models, communication technologies, operating procedures, internet video streams, data distribution methods, and internet-based collaboration tools, and provided varying levels of real-time access to ongoing expeditions. Each expedition provided new insights into what makes remote science participation "work", and identified challenges that remain to be overcome. This presentation will provide an overview of the different methods and tools used by NOAA's Okeanos Explorer Program to enable remote science participation in expeditions over the last five years, highlighting successes, lessons learned, and challenges for the future.

  7. Project PROBE Leg I - Report and archive of multibeam bathymetry and acoustic backscatter , CTD/XBT and GPS navigation data collected during USGS Cruise 02051 (NOAA Cruise RB0208) Puerto Rico Trench September 24, 2002 to September 30, 2002

    USGS Publications Warehouse

    ten Brink, Uri S.; Worley, Charles R.; Smith, Shep; Stepka, Thomas; Williams, Glynn F.

    2006-01-01

    On September 24-30, 2002, six days of scientific surveying to map a section of the Puerto Rico Trench (PRT) took place aboard the National Oceanic and Atmospheric Administration (NOAA) ship Ron Brown. The cruise was funded by NOAA's Office of Ocean Exploration. Multibeam bathymetry and acoustic-backscatter data were collected over an area of about 25,000 sq. km of the Puerto Rico trench and its vicinity at water depths of 4000-8400 m. Weather conditions during the entire survey were good; there were light to moderate winds and 1-2 foot swells experiencing minor chop. The roll and pitch of the ship's interaction with the ocean were not conspicuous. Cruise participants included personnel from USGS, NOAA, and University of New Hampshire Center for Coastal and Ocean Mapping/Joint Hydrographic Center. The cruise resulted in the discovery of a major active strike-slip fault system close to the trench, submarine slides on the descending North American tectonic plate, and an extinct mud volcano, which was cut by the strike-slip fault system. Another strike-slip fault system closer to Puerto Rico that was previously considered to accommodate much of the relative plate motion appears to be inactive. The seaward continuation of the Mona Rift, a zone of extension between Puerto Rico and the Dominican Republic that generated a devastating tsunami in 1918, was mapped for the first time.

  8. NOAA to develop strategy to protect coral and sponge habitat

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    The U.S. National Marine Fisheries Service (NMFS) will develop a strategy to address research, conservation, and management issues regarding deep-ocean coral and sponge habitat, the agency indicated in an 11 July Federal Register notice. The Service, which is a unit of the National Oceanic and Atmospheric Administration, indicated that this strategy "eventually may result in rulemaking for some fisheries" but that "emergency rulemaking is not warranted."The NMFS announcement is in response to a 24 March 2004 petition to the Commerce Department filed by Oceana, a non-governmental organization. That petition urged the department through NMFS to "initiate immediate rulemaking" to protect coral and sponge habitats in the U.S. exclusive economic zone through mapping, monitoring, research, and enforcement measures.

  9. NOAA to develop strategy to protect coral and sponge habitat

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    The U.S. National Marine Fisheries Service (NMFS) will develop a strategy to address research, conservation, and management issues regarding deep-ocean coral and sponge habitat, the agency indicated in an 11 July Federal Register notice. The Service, which is a unit of the National Oceanic and Atmospheric Administration, indicated that this strategy “eventually may result in rulemaking for some fisheries” but that “emergency rulemaking is not warranted.”The NMFS announcement is in response to a 24 March 2004 petition to the Commerce Department filed by Oceana, a non-governmental organization. That petition urged the department through NMFS to “initiate immediate rulemaking” to protect coral and sponge habitats in the U.S. exclusive economic zone through mapping, monitoring, research, and enforcement measures.

  10. Applications systems verification and transfer project. Volume 6: Operational applications of satellite snow-cover observations NOAA/NESS support study

    NASA Technical Reports Server (NTRS)

    Schneider, S. R.

    1981-01-01

    Geostationary and polar orbiting satellite data from the National Oceanic and Atmospheric Administration were used to operationally provide field hydrologists with basin snowcover percentages for inclusion in runoff models. Data reduction is accomplished thru the use of optical rectification devices and electronic color density slicers. Over two thousand satellite-derived snow maps covering 30 different basins in the western United States were provided to users. Plans for improving snowmapping techniques on computer interactive systems and by all-digital analysis are presented. A description of the newest generation of NOAA polar orbiters, TIROS-N, and its potential for snowmapping is reviewed. Snowcover percentages for all basins determined between November 1974 and July 1978 are presented in tabular format.

  11. Organization/Administration.

    ERIC Educational Resources Information Center

    Chaffee, Ellen Earle

    Patterns that emerged from reviewing 26 syllabi for courses on organization and administration in higher education are discussed, and six sample syllabi are presented. The syllabi focused more on organization than administration. Of the 26 syllabi, 19 dealt with organization and administration generally; 5 with administration in a specific…

  12. Mission description and in-flight operations of ERBE instruments on ERBS and NOAA 9 spacecraft, November 1984 - January 1986

    NASA Technical Reports Server (NTRS)

    Weaver, William L.; Bush, Kathryn A.; Harris, Chris J.; Howerton, Clayton E.; Tolson, Carol J.

    1991-01-01

    Instruments of the Earth Radiation Budget Experiment (ERBE) are operating on three different Earth orbiting spacecrafts: the Earth Radiation Budget Satellite (ERBS), NOAA-9, and NOAA-10. An overview is presented of the ERBE mission, in-orbit environments, and instrument design and operational features. An overview of science data processing and validation procedures is also presented. In-flight operations are described for the ERBE instruments aboard the ERBS and NOAA-9. Calibration and other operational procedures are described, and operational and instrument housekeeping data are presented and discussed.

  13. Mapping of airborne Doppler radar data

    SciTech Connect

    Lee, W.; Dodge, P.; Marks, F.D. Jr.; Hildebrand, P.H. NOAA, Miami, FL )

    1994-04-01

    Two sets of equations are derived to (1) map airborne Doppler radar data from an aircraft-relative coordinate system to an earth-relative coordinate system, and (2) remove the platform motion from the observed Doppler velocities. These equations can be applied to data collected by the National Oceanic and Atmospheric Administration WP-3D system, the National Center for Atmospheric Research Electra Doppler Radar (ELDORA) system, and other airborne radar systems.

  14. New NOAA resources for safeguarding the satellite infrastructure from space weather

    NASA Astrophysics Data System (ADS)

    Green, J. C.; Denig, W. F.; Rodriguez, J. V.; Redmon, R. J.; Onsager, T. G.; Singer, H. J.; Murtagh, W.; Rutledge, R.; Stankiewicz, J.; Kunches, J.; Wilkinson, D. C.

    2012-12-01

    Satellites orbiting Earth are subjected to intense electron and proton radiation that can degrade spacecraft performance or cause complete failure. The radiation intensity near Earth fluctuates dramatically depending on the current space weather conditions. In response to this threat to the world's technological infrastructure, NOAA is enhancing its support for understanding and resolving satellite anomalies caused by space weather. Here we report on our efforts to turn data from the fleet of NOAA operational satellites into actionable information on the likely cause and probable occurrence of satellite anomalies. We focus on a list of products and services prioritized by satellite industry participants at the Space Weather Workshop. The list of desirable products includes information such as integrated proton event fluences, internal accumulated charge, and an anomaly database.

  15. The NOAA-9 Earth Radiation Budget Experiment Wide Field-of-View Data Set

    NASA Technical Reports Server (NTRS)

    Bush, Kathryn A.; Smith, G. Louis; Young, David F.

    1999-01-01

    The Earth Radiation Budget Experiment (ERBE) consisted of wide field-of-view (WFOV) radiometers and scanning radiometers for measuring outgoing longwave radiation and solar radiation reflected from the Earth. These instruments were carried by the dedicated Earth Radiation Budget Satellite (ERBS) and by the NOAA-9 and -10 operational spacecraft. The WFOV radiometers provided data from which instantaneous fluxes at the top of the atmosphere (TOA) are computed by use of a numerical filter algorithm. Monthly mean fluxes over a 5-degree equal angle grid are computed from the instantaneous TOA fluxes. The WFOV radiometers aboard the NOAA-9 spacecraft operated from February 1985 through December 1992, at which time a failure of the shortwave radiometer ended the usable data after nearly 8 years. This paper examines the monthly mean products from that data set.

  16. Anemone structure of AR NOAA 10798 and related geo-effective flares and CMEs

    NASA Astrophysics Data System (ADS)

    Asai, A.; Ishii, T. T.; Shibata, K.; Gopalswamy, N.

    We report coronal features of an active region NOAA 10798 This active region was located in the middle of a small coronal hole and generated 3 M-class flares The flares are associated with high speed CMEs which produced a magnetic storm on 2005 August 24 We examined the coronal features by using observational data in soft X-rays in extreme ultraviolets and in microwaves obtained with GOES SOHO TRACE satellites and Nobeyama Radioheliograph

  17. New Results from the NOAA CREST Lidar Network (CLN) Observations in the US Eastcoast

    NASA Astrophysics Data System (ADS)

    Moshary, Fred; Han, Zaw; Wu, Yonghua; Gross, Barry; Wesloh, Daniel; Hoff, Raymond M.; Delgado, Ruben; Su, Jia; Lei, Liqiao; Lee, Robert B.; McCormick, M. Pat; Diaz, Jesus; Cruz, Carlos; Parsiani, Hamed

    2016-06-01

    This paper presents coordinated ground-based observations by the NOAA-CREST Lidar Network (CLN) for profiling of aerosols, cloud, water vapor, and wind along the US east coast including Caribbean region at Puerto Rico. The instrumentation, methodology and observation capability are reviewed. The applications to continental and intercontinental-scale transport of smoke and dust plumes, and their large scale regional impact are discussed.

  18. Near real time SST retrievals from Himawari-8 at NOAA using ACSPO system

    NASA Astrophysics Data System (ADS)

    Kramar, M.; Ignatov, A.; Petrenko, B.; Kihai, Y.; Dash, P.

    2016-05-01

    Japanese Himawari-8 (H8) satellite was launched on October 7, 2014 and placed into a geostationary orbit at ~ 140.7°E. The Advanced Himawari Imager (AHI) onboard H8 provides full-disk (FD) observations every 10 minutes, in 16 solar reflectance and thermal infrared (IR) bands, with spatial resolution at nadir of 0.5-1 km and 2 km, respectively. The NOAA Advanced Clear-Sky Processor for Ocean (ACSPO) SST system, previously used with several polar-orbiting sensors, was adapted to process the AHI data. The AHI SST product is routinely validated against quality controlled in situ SSTs available from the NOAA in situ SST Quality monitor (iQuam). The product performance is monitored in the NOAA SST Quality Monitor (SQUAM) system. Typical validation statistics show a bias within +/-0.2 K and standard deviation of 0.4-0.6 K. The ACSPO H8 SST is also compared with the NOAA heritage SST produced at OSPO from the Multifunctional Transport Satellite (MTSAT-2; renamed Himawari-7, or H7 after launch) and with another H8 SST produced by JAXA (Japan Aerospace Exploration Agency). This paper describes the ACSPO AHI SST processing and results of validation and comparisons. Work is underway to generate a reduced volume ACSPO AHI SST product L2C (collated in time; e.g., 1-hr instead of current 10-min) and/or L3C (additionally gridded in space). ACSPO AHI processing chain will be applied to the data of the Advanced Baseline Imager (ABI), which will be flown onboard the next generation US geostationary satellite, GOES-R, scheduled for launch in October 2016.

  19. Improved in Situ Space Weather Data Services from the NOAA National Geophysical Data Center

    NASA Astrophysics Data System (ADS)

    Rodriguez, J. V.; Denig, W. F.; Green, J. C.; Lotoaniu, T. M.; McGuire, R. E.; Redmon, R. J.; Rowland, W. F.; Turner, D. L.; Weigel, R. S.; Wilkinson, D. C.

    2014-12-01

    The international space weather enterprise relies heavily on in situ plasma, particle and magnetic field measurements from U. S. weather satellites. This year marks the 40th anniversary of the launch of the first U. S. geostationary weather satellite (SMS-1), which carried the direct ancestor of the current GOES Space Environment Monitor (SEM) suite. The GOES space weather observations support the issuance of real-time alerts by the NOAA Space Weather Prediction Center (SWPC). The publicly-available archive of space weather observations at the NOAA National Geophysical Data Center (NGDC) includes NOAA geostationary observations since 1974 and POES/MetOp and Air Force DMSP polar-orbiting observations since 1978 and 1982, respectively. This archive supports the retrospective aspect of the space weather enterprise, which includes model development and anomaly resolution efforts. Over the last several years, NGDC has made a concerted effort to improve its data services in cooperation with the broader space weather community. These improvements include (1) taking over the processing of existing products, (2) creating science-quality versions of existing products, (3) developing new products, (4) improving the distribution of these products, and (5) validating products via on-orbit cross-comparisons. Complementing this retrospective role, NGDC is also responsible for the next-generation GOES-R space weather instrument science and is working as part of the GOES-R calibration/validation group to ensure that these new instruments and their products meet NOAA's requirements. This presentation will survey NGDC's efforts in each of these areas, including (1) POES/MetOp SEM-2 fluxes and radiation belt indices, (2) GOES fluxes with data quality flags and error bars, (3) in situ products from GOES-R(S,T,U), (4) cooperative distribution efforts with the NASA Space Physics Data Facility (SPDF) and the Space Physics Environmental Data Analysis System (SPEDAS), and (5) inter

  20. Marine Microbes & NOAA: Scoping Science, Application and Observing Needs and Opportunities

    NASA Astrophysics Data System (ADS)

    Bohan, M.; Valette-Silver, N. J.

    2012-12-01

    Marine microbes are ubiquitous in the environment and play many varied roles in the ocean. Yet, where microbes are concerned, we have only a rudimentary understanding of how our planetary biogeochemical balance (or imbalance) is being achieved, how emerging diseases are responding to global change (warming, acidification, pollution), and how microbial processes should be integrated into our ecological forecasts. As we learn more about the diversity of microorganisms and their associated potential for detrimental and beneficial activity, our view of the world's functioning ecosystems is being transformed, and the relevance of microbes to the discussion of human health, ocean resiliency and sustainable marine resource management is becoming more and more apparent. Strengthening NOAA's holistic comprehension of the ocean's physical, biological, chemical and geologic components is key to improving the agency's ability to conduct its stewardship mission. Spurred on by new insights into the breadth of the microbial realm, as well as the desire to know more about marine microbes, NOAA held a workshop to engage community experts, November 29-30, 2011, to discuss ways to enhance the agency's knowledge of the marine ecosystems' microbial components and to identify tools, insights and roles specific to microbe science that NOAA should embrace. The workshop established that NOAA has a strong role to play in the marine microbe science arena, given its significant environmental sampling capability and responsibilities, its stewardship function in re: marine ecosystem health, and its capacity in forecasting biogeochemical cycles to better inform short- and long-term environmental status, trends and variability, as well as management of our marine living resources. Our intent is to engage a broader segment of the scientific community via the annual AGU Fall Meeting to discuss the specific workshop outcomes and the possibility of expanding this dialogue to include more partners.

  1. Training NOAA Staff on Effective Communication Methods with Local Climate Users

    NASA Astrophysics Data System (ADS)

    Timofeyeva, M. M.; Mayes, B.

    2011-12-01

    Since 2002 NOAA National Weather Service (NWS) Climate Services Division (CSD) offered training opportunities to NWS staff. As a result of eight-year-long development of the training program, NWS offers three training courses and about 25 online distance learning modules covering various climate topics: climate data and observations, climate variability and change, NWS national and local climate products, their tools, skill, and interpretation. Leveraging climate information and expertise available at all NOAA line offices and partners allows delivery of the most advanced knowledge and is a very critical aspect of the training program. NWS challenges in providing local climate services includes effective communication techniques on provide highly technical scientific information to local users. Addressing this challenge requires well trained, climate-literate workforce at local level capable of communicating the NOAA climate products and services as well as provide climate-sensitive decision support. Trained NWS climate service personnel use proactive and reactive approaches and professional education methods in communicating climate variability and change information to local users. Both scientifically-unimpaired messages and amiable communication techniques such as story telling approach are important in developing an engaged dialog between the climate service providers and users. Several pilot projects NWS CSD conducted in the past year applied the NWS climate services training program to training events for NOAA technical user groups. The technical user groups included natural resources managers, engineers, hydrologists, and planners for transportation infrastructure. Training of professional user groups required tailoring the instructions to the potential applications of each group of users. Training technical user identified the following critical issues: (1) Knowledge of target audience expectations, initial knowledge status, and potential use of climate

  2. Noaa chlorofluorocarbon tracer program air and seawater measurements: 1986-1989. Data file

    SciTech Connect

    Wisegarver, D.P.; Bullister, J.L.; Gammon, R.H.; Menzia, F.A.; Kelly, K.C.

    1993-04-01

    The NOAA Chlorofluorocarbon (CFC) Tracer Program at PMEL has been measuring the growing burden of these anthropogenic gases in the thermocline waters of the Pacific Ocean since 1980. The central goals of the NOAA CFC Tracer Program are to document the transient invasion of the CFC tracers into the Pacific Ocean, by means of repeat occupations of key hydrographic sections at 5-year intervals, and to interpret these changing distributions in terms of coupled ocean-atmosphere models. Studies are underway to use the CFC observations in model-validation studies, and to help develop predictive capabilities on the decade-to-century timescale. The report includes measurements of trichlorofluoromethane (CFC-11) and dichlorodifluoromethane (CFC-12) dissolved in seawater samples collected in the Pacific Ocean by the NOAA CFC Tracer Program on six cruises during the period of 1986-1989. Measurements of depth, pressure, salinity, temperature, and dissolved oxygen are included with the CFC data. Measurements of CFC-11 and CFC-12 in air samples collected along the cruise tracks are also included in the report. Data from the report are also available from the authors in digital format.

  3. NOAA Drought Task Force: A Coordinated Research Initiative to Advance Drought Understanding, Monitoring and Prediction

    NASA Astrophysics Data System (ADS)

    Mariotti, A.; Barrie, D.

    2014-12-01

    The NOAA's Drought Task Force was first established in October 2011 and renewed in October 2014 with the goal of achieving significant new advances in the ability to understand, monitor and predict drought over North America. The Task Force is an initiative of NOAA's Climate Program Office Modeling, Analysis, Predictions, and Projections (MAPP) program in support of the National Integrated Drought Information System NIDIS. The Drought Task Force also represents an important research contribution to efforts to develop an international Global Drought Information System (GDIS). The Drought Task Force brings together leading drought scientists research laboratories and/or operational centers from NOAA, other U.S. agencies laboratories and academia. Their concerted research effort builds on individual MAPP research projects and related drought-research sector developments. The projects span the wide spectrum of drought research needed to make fundamental advances, from those aimed at the basic understanding of drought mechanisms to those evaluating new drought monitoring and prediction tools for operational and service purposes. This contribution will present an overview of Drought Task Force activities and plans to date, including highlights of research activities and how the group has been working in partnership with NIDIS and synergy with GDIS to advance the science underpinning the development, assessment and provision of drought information.

  4. Visions of our Planet's Atmosphere, Land and Oceans: NASA/NOAA E-Theater 2003

    NASA Technical Reports Server (NTRS)

    Hasler, Fritz

    2003-01-01

    The NASA/NOAA Electronic Theater presents Earth science observations from space in a spectacular way. Fly in from outer space to the conference location as well as the site of the 2002 Olympic Winter Games using data from NASA satellites and the IKONOS "Spy Satellite". See HDTV movie Destination Earth 2002 incorporating the Olympic Zooms, NBC footage of the 2002 Olympics, the shuttle, & the best NASA/NOAA Earth science visualizations. See the latest US and international global satellite weather movies including hurricanes, typhoons & "tornadoes". See the latest visualizations from NASA/NOAA and International remote sensing missions like Terra, Aqua, GOES, GMS , SeaWiFS, & Landsat. Feel the pulse of our planet. See how land vegetation, ocean plankton, clouds and temperatures respond to the sun & seasons. See vortexes and currents in the global oceans that bring up the nutrients to feed tiny algae and draw the fish, whales and fisherman. See the how the ocean blooms in response to these currents and El Nino/La Nina climate changes. See the city lights, fishing fleets, gas flares and bio-mass burning of the Earth at night observed by the the "night-vision" DMSP satellite. The presentation will be made using the latest HDTV and video projection technology by: Dr. Fritz Hasler NASA/Goddard Space Flight Center

  5. Visions of our Planet's Atmosphere, Land and Oceans: NASA/NOAA E-Theater 2003

    NASA Technical Reports Server (NTRS)

    Hasler, Fritz

    2003-01-01

    The NASA/NOAA Electronic Theater presents Earth science observations from space in a spectacular way. Fly in from outer space to the conference location as well as the site of the 2002 Olympic Winter Games using data from NASA satellites and the IKONOS 'Spy Satellite". See HDTV movie Destination Earth 2002 incorporating the Olympic Zooms, NBC footage of the 2002 Olympics, the shuttle, & the best NASA/NOAA Earth science visualizations. See the latest US and international global satellite weather movies including hurricanes, typhoons & "tornadoes". See the latest visualizations from NASA/NOAA and International remote sensing missions like Terra, Aqua, GOES, GMS, SeaWiFS, & Landsat. Feel the pulse of OUT planet. See how land vegetation, ocean plankton, clouds and temperatures respond to the sun & seasons. See vortexes and currents in the global oceans that bring up the nutrients to feed tiny algae and draw the fish, whales and fisherman. See the how the ocean blooms in response to these currents and El Nino/La Nina climate changes. See the city lights, fishing fleets, gas flares and bio-mass burning of the Earth at night observed by the "night-vision" DMSP satellite. The presentation will be made using the latest HDTV and video projection technology by: Dr. Fritz Hasler NASA/Goddard Space Flight Center.

  6. Visions of our Planet's Atmosphere, Land and Oceans: NASA/NOAA E-Theater 2003

    NASA Technical Reports Server (NTRS)

    Hasler, Fritz

    2003-01-01

    The NASA/NOAA Electronic Theater presents Earth science observations from space in a spectacular way. Fly in from outer space to the conference location as well as the site of the 2002 Olympic Winter Games using data from NASA satellites and the IKONOS "Spy Satellite". See HDTV movie Destination Earth 2002 incorporating the Olympic Zooms, NBC footage of the 2002 Olympics, the shuttle, & the best NASA/NOAA Earth science visualizations. See the latest US and international global satellite weather movies including hurricanes, typhoons & "tornadoes". See the latest visualizations from NASA/NOAA and International remote sensing missions like Terra, Aqua, GOES, GMS, SeaWiFS, & Landsat. Feel the pulse of our planet. See how land vegetation, ocean plankton, clouds and temperatures respond to the sun & seasons. See vortexes and currents in the global oceans that bring up the nutrients to feed tiny algae and draw the fish, whales and fisherman. See the how the ocean blooms in response to these currents and El Nino/La Nina climate changes. See the city lights, fishing fleets, gas flares and bio-mass burning of the Earth at night observed by the "night-vision" DMSP satellite. The presentation will be made using the latest HDTV and video projection technology by: Dr. Fritz Hasler NASA/Goddard Space Flight Center

  7. Administration for Community Living

    MedlinePlus

    ... by Acting Assistant Secretary for Aging and ACL Administrator Edwin Walker at the HCBS Conference (08/29/ ... Remarks by Assistant Secretary on Aging and ACL Administrator Kathy Greenlee at the n4a Answers on Aging ...

  8. The New Administrative Computing.

    ERIC Educational Resources Information Center

    Green, Kenneth C.

    1988-01-01

    The past decade has seen dramatic changes in administrative computing, including more systems, more applications, a new group of computer users, and new opportunities for computer use in campus administration. (Author/MSE)

  9. Transportation Security Administration

    MedlinePlus

    ... content Official website of the Department of Homeland Security Transportation Security Administration When I fly can I bring my... ... to know if you could bring through the security checkpoint. Main menu Administrator Travel Security Screening Special ...

  10. A Philosophy of Administration.

    ERIC Educational Resources Information Center

    Bruening, William H.

    Justification is given for paying relatively large salaries to college administrators, specifically the president or chancellor and the chief academic officer. Three administrative task areas are discussed as criteria: management, administration per se, and leadership. It is contended that only leadership can be used as a criterion for…

  11. School Business Administration.

    ERIC Educational Resources Information Center

    Jordan, K. Forbis; And Others

    This textbook reviews the principal concerns within each of 13 major responsibility areas in school business administration. The first chapter assesses the political, social, and economic context in which schools function and school administrators work. The role and function of the school business administrator within this context is addressed in…

  12. Using NOAA-AVHRR estimates of land surface temperature for regional agrometeorogical modelling

    NASA Astrophysics Data System (ADS)

    de Wit, A. J. W.; Boogaard, H. L.; van Diepen, C. A.

    2004-09-01

    Agrometeorological crop simulation models are used increasingly in spatial applications like regional crop monitoring and yield forecasting. The spatial application of these models involves gathering spatially representative values of meteorological input variables (temperature, radiation and precipitation). This is usually accomplished by interpolating meteorological variables measured at point locations. This paper explores the use of advanced very high resolution radiometer (AVHRR)-derived surface temperature as a replacement for interpolated maximum air temperature in a spatial crop monitoring and yield forecasting system. A 2-year set of daily National Oceanic And Atmospheric Administration (NOAA)-AVHRR images over western Europe was used to derive estimates of daily surface temperature aggregated over 50 km × 50 km gridcells, a land cover database was used to select only pixels that were classified as 'arable land'. On days that did not yield data due to cloud cover, the monthly average surface temperature was substituted. The AVHRR-derived surface temperature is usually higher than the maximum air temperature measured at a weather station. To account for this difference, an empirical model was used that relates surface temperature to maximum air temperature. The model parameters were obtained using calibration with the maximum air temperature measured at five weather stations. Next, it was applied to the entire AVHRR data set in order to convert AVHRR surface temperature into a simulated maximum air temperature. Finally, a case study was carried out by using the WOrld FOod Studies (WOFOST) crop model to simulate growth of winter-wheat and sunflower for Spain using both the simulated maximum air temperature and the interpolated maximum air temperature from weather stations. Our results demonstrate that the spatial patterns of the yearly temperature sums over Spain are similar for both sources of temperature. Therefore, it can be concluded that the AVHRR

  13. Hurricane Directional Wave Spectrum Spatial Variation at Landfall

    NASA Technical Reports Server (NTRS)

    Walsh, E. J.; Wright, C. W.; Vandemark, D.; Krabill, W. B.; Garcia, A. W.

    1999-01-01

    On 26 August 1998, hurricane Bonnie was making landfall near Wilmington, NC. The NASA airborne scanning radar altimeter (SRA) carried aboard one of the NOAA WP-3D hurricane hunter aircraft at 2.2 km height documented the sea surface directional wave spectrum in the region between Charleston, SC and Cape Hatteras, NC. The aircraft ground track included both segments along the shoreline and Pamlico Sound as well as far offshore. An animation of the directional wave spectrum spatial variation at landfall will be presented and contrasted with the spatial variation when Bonnie was in the open ocean on 24 August 1998.

  14. Hurricane Directional Wave Spectrum Spatial Variation at Landfall

    NASA Technical Reports Server (NTRS)

    Walsh, Edward J.; Wright, C. Wayne; Vandemark, Douglas C.; Krabill, William B.; Garcia, Andrew W.; Houston, Samuel H.; Powell, Mark D.; Black, Peter G.; Marke, Frank D.; Busalacchi, Antonio J. (Technical Monitor)

    2000-01-01

    On 26 August 1998, hurricane Bonnie was making landfall near Wilmington, NC. The NASA airborne scanning radar altimeter (SRA) carried aboard one of the NOAA WP-3D hurricane hunter aircraft at 2.2 km height documented the sea surface directional wave spectrum in the region between Charleston, SC and Cape Hatteras, NC. The aircraft ground track included both segments along the shoreline and Pamlico Sound as well as far offshore. An animation of the directional wave spectrum spatial variation at landfall will be presented and contrasted with the spatial variation when Bonnie was in the open ocean on 24 August 1998.

  15. Transition of NOAA's GPS-Met Data Acquisition and Processing System to the Commercial Sector

    NASA Astrophysics Data System (ADS)

    Jackson, M. E.; Holub, K.; Callahan, W.; Blatt, S.

    2014-12-01

    In April of 2014, NOAA/OAR/ESRL Global Systems Division (GSD) and Trimble, in collaboration with Earth Networks, Inc. (ENI) signed a Cooperative Research and Development Agreement (CRADA) to transfer the existing NOAA GPS-Met Data Acquisition and Processing System (GPS-Met DAPS) technology to a commercial Trimble/ENI partnership. NOAA's GPS-Met DAPS is currently operated in a pseudo-operational mode but has proven highly reliable and running at over 95% uptime. The DAPS uses the GAMIT software to ingest dual frequency carrier phase GPS/GNSS observations and ancillary information such as real-time satellite orbits to estimate the zenith-scaled tropospheric (ZTD) signal delays and, where surface MET data are available, retrieve integrated precipitable water vapor (PWV). The NOAA data and products are made available to end users in near real-time. The Trimble/ENI partnership will use the Trimble Pivot™ software with the Atmosphere App to calculate zenith tropospheric (ZTD), tropospheric slant delay, and integrated precipitable water vapor (PWV). Evaluation of the Trimble software is underway starting with a comparison of ZTD and PWV values determined from GPS stations located near NOAA Radiosonde Observation (Upper-Air Observation) launch sites. A success metric was established that requires Trimble's PWV estimates to match ESRL/GSD's to within 1.5 mm 95% of the time, which corresponds to a ZTD uncertainty of less than 10 mm 95% of the time. Initial results indicate that Trimble/ENI data meet and exceed the ZTD metric, but for some stations PWV estimates are out of specification. These discrepancies are primarily due to how offsets between MET and GPS stations are handled and are easily resolved. Additional test networks are proposed that include low terrain/high moisture variability stations, high terrain/low moisture variability stations, as well as high terrain/high moisture variability stations. We will present results from further testing along with a timeline

  16. NOAA Utilization of the Global Hawk Unmanned Aircraft for Atmospheric Research and Forecast Improvement

    NASA Astrophysics Data System (ADS)

    Wick, G. A.; Hood, R. E.; Black, M. L.; Spackman, J. R.; Ralph, F. M.; Intrieri, J. M.; Hock, T. F.; Neiman, P. J.

    2014-12-01

    High altitude, long endurance unmanned aircraft provide a tremendous new capability for monitoring the atmosphere in support of weather research and forecast improvement. The NOAA Unmanned Aircraft Systems (UAS) program is collaborating with NASA on the use of their Global Hawk (GH) aircraft for research into better understanding and forecasting high-impact weather events. NOAA has participated in multiple field campaigns either in partnership with NASA including the Genesis and Rapid Intensification Processes (GRIP, 2010) and the Hurricane and Severe Storm Sentinel (HS3, 2011-2014) experiments, or under NOAA leadership during the Winter Storms and Pacific Atmospheric Rivers (WISPAR, 2011) experiment. This past year, NOAA began a 3-year project, Sensing Hazards with Operational Unmanned Technology (SHOUT), to quantify the influence of UAS data on high-impact weather prediction and assess the operational effectiveness of UAS to help mitigate the risk of potential satellite observing gaps. The NOAA UAS system partnered with the National Center for Atmospheric Research in the development of a dropsonde system for the GH which has been flown along with other remote sensing instrumentation. This presentation summarizes our key results to date and describes our planned activities over the next two years. Flights during WISPAR provided measurements of water vapor transport within atmospheric rivers for evaluation of numerical weather prediction forecasts and analyses. A flight sampling the Arctic atmosphere north of Alaska included the first dropsondes released in the Arctic since the 1950's and extensive measurements of boundary-layer variability over an ocean-ice lead feature. Assimilation of GH dropsonde data collected in the environment around tropical storms during HS3 has demonstrated significant positive forecast improvements. Data are also being employed in the validation of multiple satellite-derived products. In SHOUT, campaigns are planned targeting Atlantic

  17. NOAA Ocean Exploration: Science, Education and Ocean Literacy Online and in Social Media

    NASA Astrophysics Data System (ADS)

    Keener-Chavis, P.

    2012-12-01

    "Engagement" in ocean science initially might seem like a simple concept, however within an agency like NOAA, with a broad mission and a wide variety of stakeholders, the concept of engagement becomes quite complex. Several years ago, a Kellogg Commission Report was submitted to NOAA's Science Advisory Board to assist the Agency with more closely defining-and refining-how it could more effectively engage with the multiple audiences with which it works. For NOAA, engagement is a two-way relationship that unfolds in a commitment of service to society. It is an Enterprise-wide capability represented in NOAA's Next Generation Strategic Plan and carries the same weight across the Agency as science and technology. NOAA's Office of Ocean Exploration and Research (OER) engages scientists, educators and the public through a variety of online and social media offerings explicitly tied to the exploration science of its expeditions. The principle platform for this engagement is the Ocean Explorer website (http://oceanexplorer.noaa.gov). It is the single point of entry for formal and informal educators and the public to chronicled OER expeditions to little known regions of the world ocean. The site also enables access to live streaming video and audio from the United States' first ship solely dedicated to ocean exploration, the NOAA Ship Okeanos Explorer and the Institute for Exploration's E/V Nautilus. Video includes footage from the remotely operated vehicles, sonar displays, navigation displays, and mapping data displays. Through telepresence technologies and other online communication tools, scientists at remote locations around the world, including Exploration Command Centers, collaborate in deep-sea exploration conducted by the Okeanos Explorer. Those wanting access to the ship's track, oceanographic data, daily updates, web logs, and imagery during an expedition can access the online Okeanos Explorer Digital Atlas. Information on archived expeditions can be accessed

  18. Study to assess the importance of errors introduced by applying NOAA 6 and NOAA 7 AVHRR data as an estimator of vegetative vigor: Feasibility study of data normalization

    NASA Technical Reports Server (NTRS)

    Duggin, M. J. (Principal Investigator); Piwinski, D.

    1982-01-01

    The use of NOAA AVHRR data to map and monitor vegetation types and conditions in near real-time can be enhanced by using a portion of each GAC image that is larger than the central 25% now considered. Enlargement of the cloud free image data set can permit development of a series of algorithms for correcting imagery for ground reflectance and for atmospheric scattering anisotropy within certain accuracy limits. Empirical correction algorithms used to normalize digital radiance or VIN data must contain factors for growth stage and for instrument spectral response. While it is not possible to correct for random fluctuations in target radiance, it is possible to estimate the necessary radiance difference between targets in order to provide target discrimination and quantification within predetermined limits of accuracy. A major difficulty lies in the lack of documentation of preprocessing algorithms used on AVHRR digital data.

  19. The NOAA-NASA OMI/GOME-2 Near-Real-Time Monitoring System of Volcanic SO2 and Aerosol Clouds

    NASA Astrophysics Data System (ADS)

    Vicente, G.; Schroeder, W.; Krueger, A. J.; Yang, K.; Carn, S. A.; Krotkov, N. A.; Guffanti, M.; Levelt, P.

    2009-12-01

    The Ozone Monitoring Instrument (OMI) on the NASA EOS/Aura research satellite and the Global Ozone Monitoring Experiment-2 (GOME-2) instrument on the Metop-A satellite allow measurement of SO2 concentrations at UV wavelengths with daily global coverage. SO2 is detected from space using its strong absorption band structure in the near UV (300-320 nm) as well as in IR bands near 7.3 and 8.6 μm. UV SO2 measurements are very robust and are insensitive to the factors that confound IR data. SO2 and ash can be detected in a very fresh volcanic eruption cloud due to sunlight backscattering and ash presence can be confirmed by UV derived aerosol index measurements. When detected in Near Real-Time (NRT) it can be used as aviation alerts to the Federal Aviation Administration (FAA) with reduced false alarm ratios and permit more robust detection and tracking of volcanic clouds. NRT observations of SO2 and volcanic ash using UV measurements (OMI and GOME-2) and well as IR measurements can be incorporated into data products compatible with Decision Support Tools (DSTs) in use at Volcanic Ash Advisory Centers (VAACs) in Washington and Anchorage, and the USGS Volcano Observatories. In this presentation we show the latest NASA and NOAA Office of Satellite Data Processing and Distribution (OSDPD) developments of an online NRT image and data product distribution system. The system generates eruption alerts, NRT global composite images and SO2, Aerosol Index and Cloud Reflectivity images for 28 volcano regions, as well as up to 15 days of digital data files in McIDAS, NetCDF, GeoTIFF and gif formats for the OMI and GOME-2 instruments. Products are infused into DSTs including the Volcanic Ash Coordination Tool (VACT), under development by the NOAA Forecast Systems Laboratory and the FAA’s Oceanic Weather Product Development Team (OWPDT), to monitor and track, drifting volcanic clouds and aerosol index.

  20. NOAA Ship Okeanos Explorer 2012 Field Season in the Northern Gulf of Mexico and U.S. Atlantic Continental Margin

    NASA Astrophysics Data System (ADS)

    Skarke, A. D.; Lobecker, E.; Malik, M.; VerPlanck, N.

    2012-12-01

    The NOAA Ship Okeanos Explorer, jointly operated by the NOAA Office of Ocean Exploration and Research and the NOAA Office of Marine and Aviation Operations, is America's only federally managed ship dedicated solely to ocean exploration. The 2012 field season was spent exploring the northern Gulf of Mexico and the U.S. Atlantic continental shelf break and slope. In the Gulf of Mexico, mapping and remotely operated vehicle operations focused on the salt domes and canyons offshore Mississippi and Louisiana, and characterized several of the hundreds of seeps that were detected in the water column backscatter data collected with the ship's Kongsberg EM 302 multibeam sonar (30 kHz) during the 2011 field season. A team of NOAA and non-NOAA partners identified priority frontier areas along the continental shelf and slope between North Carolina and Cape Cod, mapping numerous canyons selected for focused mapping exploration in partnership with the North East Fisheries Science Center, the Mid-Atlantic Regional Council on the Ocean (a state level partnership between various states including NY, NJ, DE, MD, and VA), Woods Hole Oceanographic Institution (WHOI) and Virginia Sea Grant. The 2012 mapping efforts built on data collected during the 2011 field season. Okeanos Explorer data were leveraged by NOAA Ship Henry B. Bigelow to conduct towed camera operations to ground truth multibeam backscatter data for deepwater coral habitat assessment. The Blake Ridge and Cape Fear Diapirs offshore North Carolina were a third focus of exploration operations. Seven 900 meter high cold seeps were discovered in the diapir province. Exploration incorporated WHOI's Sentry autonomous underwater vehicle and its full suite of mapping and oceanographic sensors were used to characterize six seep sites. All data collected by Okeanos Explorer are available via the NOAA public archives with metadata records within 60 to 90 days of the end of each cruise.

  1. Veterans Administration Databases

    Cancer.gov

    The Veterans Administration Information Resource Center provides database and informatics experts, customer service, expert advice, information products, and web technology to VA researchers and others.

  2. Does absorption of ultraviolet B by stratospheric ozone and urban aerosols influence colon and breast cancer mortality rates? Contributions from NASA and NOAA data

    NASA Astrophysics Data System (ADS)

    Gorham, Edward D.; Garland, Frank C.; Mohr, Sharif B.; Grant, William B.; Garland, Cedric F.

    2005-08-01

    Although most ultraviolet B (UVB) radiation is absorbed by stratospheric ozone, dense anthropogenic sulfate aerosols in the troposphere may further attenuate UVB in some regions. Mortality rates from colon and breast cancer tend to be much higher in areas with low levels of UVB radiation. These high rates may be due in part to inadequate cutaneous photosynthesis of vitamin D. Satellite data on atmospheric aerosols, stratospheric ozone, and cloud cover were obtained from the National Aeronautics and Space Administration (NASA) and the National Oceanic and Atmospheric Administration (NOAA). These data were combined with age-adjusted mortality rates from 175 countries reporting to the World Health Organization. Regression was used to assess the relationship of stratospheric ozone thickness, aerosol optical depth, cloud cover, solar UVB irradiance at the top of the atmosphere, average skin exposure, and a dietary factor with colon and breast cancer mortality rates. Solar UVB irradiance at the top of the atmosphere, total cloud cover, and atmospheric aerosols had the strongest associations with mortality rates, apart from a strong influence of diet. Since 95% of circulating vitamin D is derived from current or stored products of photosynthesis, which may be nonexistent or minimal much of the year above 37°N or below 37°S, attenuation of UVB by atmospheric aerosols and clouds may have a greater than expected adverse effect on human health.

  3. Integration of Earth Remote Sensing into the NOAA/NWS Damage Assessment Toolkit

    NASA Astrophysics Data System (ADS)

    Molthan, A.; Burks, J. E.; Camp, P.; McGrath, K.; Bell, J. R.

    2014-12-01

    Following the occurrence of severe weather, NOAA/NWS meteorologists are tasked with performing a storm damage survey to assess the type and severity of the weather event, primarily focused with the confirmation and assessment of tornadoes. This labor-intensive process requires meteorologists to venture into the affected area, acquire damage indicators through photos, eyewitness accounts, and other documentation, then aggregation of data in order to make a final determination of the tornado path length, width, maximum intensity, and other characteristics. Earth remote sensing from operational, polar-orbiting satellites can support the damage assessment process by helping to identify portions of damage tracks that are difficult to access due to road limitations or time constraints by applying change detection techniques. In addition, higher resolution commercial imagery can corroborate ground-based surveys by examining higher-resolution commercial imagery. As part of an ongoing collaboration, NASA and NOAA are working to integrate near real-time Earth remote sensing observations into the NOAA/NWS Damage Assessment Toolkit (DAT), a suite of applications used by meteorologists in the survey process. The DAT includes a handheld application used by meteorologists in the survey process. The team has recently developed a more streamlined approach for delivering data via a web mapping service and menu interface, allowing for caching of imagery before field deployment. Near real-time products have been developed using MODIS and VIIRS imagery and change detection for preliminary track identification, along with conduits for higher-resolution Landsat, ASTER, and commercial imagery as they become available. In addition to tornado damage assessments, the team is also investigating the use of near real-time imagery for identifying hail damage to vegetation, which also results in large swaths of damage, particularly in the central United States during the peak growing season

  4. Contrail Coverage Over the USA Derived from NOAA and EOS Satellite Data

    NASA Technical Reports Server (NTRS)

    Palikonda, Rabindra; Minnis, Patrick; Duda, David P.

    2004-01-01

    Contrails, like natural cirrus clouds, can cause a warming of the Earth-atmospheric system by absorbing longwave radiation from the surface and lower troposphere and radiating additional radiation back to the surface. They can also produce some cooling of the surface during the daytime by reflecting some sunlight back to space. Recently, Minnis et al. (2004) determined from surface observations of cirrus cloud cover that the overall impact appears to be a warming that is consistent with theoretical calculations, at least over the United States of America (USA) and surrounding areas. This finding highlights the need to better understand the formation and persistence of contrails and their radiative properties. To better assess the climatic impact of contrails, it is essential to determine the variability of the contrail microphysical properties, their impact on the atmospheric radiation budget, and their relationship to the atmospheric state. To that end, this paper continues the analyses of Advanced Very High Resolution Radiometer (AVHRR) data from the NOAA-15 (N15), NOAA-16 (N16), and NOAA-17 (N17) satellites, Moderate Resolution Imaging Spectroradiometer (MODIS) data from the Terra and Aqua satellites. The combination of these satellites provides a relatively comprehensive coverage of the daily cycle of air traffic. Thus, it should be possible to use these data to help understand the impact of air traffic on the upper tropospheric humidity during the day as well as determine the local-time variability of contrail coverage. The results will be valuable for developing models of contrail effects and methods for mitigating the impact of aviation on climate.

  5. Integration of Earth Remote Sensing into the NOAA/NWS Damage Assessment Toolkit

    NASA Technical Reports Server (NTRS)

    Molthan, Andrew; Burks, Jason; Camp, Parks; McGrath, Kevin; Bell, Jordan

    2014-01-01

    Following the occurrence of severe weather, NOAA/NWS meteorologists are tasked with performing a storm damage survey to assess the type and severity of the weather event, primarily focused with the confirmation and assessment of tornadoes. This labor-intensive process requires meteorologists to venture into the affected area, acquire damage indicators through photos, eyewitness accounts, and other documentation, then aggregation of data in order to make a final determination of the tornado path length, width, maximum intensity, and other characteristics. Earth remote sensing from operational, polar-orbiting satellites can support the damage assessment process by helping to identify portions of damage tracks that are difficult to access due to road limitations or time constraints by applying change detection techniques. In addition, higher resolution commercial imagery can corroborate ground-based surveys by examining higher-resolution commercial imagery. As part of an ongoing collaboration, NASA and NOAA are working to integrate near real-time Earth remote sensing observations into the NOAA/NWS Damage Assessment Toolkit, a handheld application used by meteorologists in the survey process. The team has recently developed a more streamlined approach for delivering data via a web mapping service and menu interface, allowing for caching of imagery before field deployment. Near real-time products have been developed using MODIS and VIIRS imagery and change detection for preliminary track identification, along with conduits for higher-resolution Landsat, ASTER, and commercial imagery as they become available. In addition to tornado damage assessments, the team is also investigating the use of near real-time imagery for identifying hail damage to vegetation, which also results in large swaths of damage, particularly in the central United States during the peak growing season months of June, July, and August. This presentation will present an overview of recent activities

  6. The Navy/NOAA Joint Ice Center's role in the climate and global change program

    NASA Astrophysics Data System (ADS)

    Kniskern, Franklin E.

    1991-07-01

    The Navy/NOAA Joint Ice Center (JIC) is responsible for producing global, regional, and local ice analyses and forecasts for the Arctic, Antarctic, and Great Lakes. Presently, satellite image products are the primary source of sea ice data at the JIC and the NOAA polar orbiting series satellites are the primary source of satellite data. In the future when the JIC's Digital Ice Forecasting and Analysis system (DIFAS) becomes operational, digital satellite data from the NOAA polar orbiters will be used. The JIC is the only organization in the free world that produces weekly global sea ice analyses. These analyses will likely become a good source of data for the cryospheric section of the Climate and Global Change program. Many scientists expect that a change in sea ice extent in the polar regions will be one of the first signals for a change in the earth's climate. A very important new source of data for ice operations and the Climate and Global Change program will be the Synthetic Aperture Radar (SAR) data which will be available in limited amounts starting in 1991. This high-resolution, all-weather data source will allow the JIC, in some polar regions, to provide more detailed analyses of ice extent, ice concentration, ice age and certain ice features such as leads and polynyas. Detailed lead and polynya analyses will yield a better estimate of the heat budget in the polar regions which is an important parameter for the Climate and Global Change program. This paper will describe the various products produced at the JIC and how these products and future ice data and products analyzed on DIFAS will contribute to the cryospheric section of the Climate and Global Change program.

  7. Flux rope proxies and fan-spine structures in active region NOAA 11897

    NASA Astrophysics Data System (ADS)

    Hou, Y. J.; Li, T.; Zhang, J.

    2016-08-01

    Context. Flux ropes are composed of twisted magnetic fields and are closely connected with coronal mass ejections. The fan-spine magnetic topology is another type of complex magnetic fields. It has been reported by several authors, and is believed to be associated with null-point-type magnetic reconnection. Aims: We try to determine the number of flux rope proxies and reveal fan-spine structures in the complex active region (AR) NOAA 11897. Methods: Employing the high-resolution observations from the Solar Dynamics Observatory (SDO) and the Interface Region Imaging Spectrograph (IRIS), we statistically investigated flux rope proxies in NOAA AR 11897 from 14 November 2013 to 19 November 2013 and display two fan-spine structures in this AR. Results: For the first time, we detect flux rope proxies of NOAA 11897 for a total of 30 times in four different locations during this AR's transference from solar east to west on the disk. Moreover, we notice that these flux rope proxies were tracked by active or eruptive material of filaments 12 times, while for the remaining 18 times they appeared as brightenings in the corona. These flux rope proxies were either tracked in both lower and higher temperature wavelengths or only detected in hot channels. None of these flux rope proxies was observed to erupt; they faded away gradually. In addition to these flux rope proxies, we detect for the first time a secondary fan-spine structure. It was covered by dome-shaped magnetic fields that belong to a larger fan-spine topology. Conclusions: These new observations imply that many flux ropes can exist in an AR and that the complexity of AR magnetic configurations is far beyond our imagination. Movies 1-8 are available in electronic form at http://www.aanda.org

  8. REGIONAL COORDINATION OF NOAA/NATIONAL WEATHER SERVICE CLIMATE SERVICES IN THE WEST (Invited)

    NASA Astrophysics Data System (ADS)

    Bair, A.

    2009-12-01

    The climate services program is an important component in the National Weather Service’s (NWS) mission, and is one of the National Oceanic and Atmospheric Administration’s (NOAA) top five priorities. The Western Region NWS started building a regional and local climate services program in late 2001, with input from local NWS offices and key partners. The original goals of the Western Region climate services program were to strive to provide climate services that were useful, easily accessible, well understood, coordinated and supported by partners, and reflect customer needs. While the program has evolved, and lessons have been learned, these goals are still guiding the program. Regional and local level Climate Services are a fundamental part of NOAA/NWS’s current and future role in providing climate services. There is an ever growing demand for climate information and services to aid the public in decision-making and no single entity alone can provide the range of information and services needed. Coordination and building strong partnerships at the local and regional levels is the key to providing optimal climate services. Over the past 8 years, Western Region NWS has embarked on numerous coordination efforts to build the regional and local climate services programs, such as: collaboration (both internally and externally to NOAA) meetings and projects, internal staff training, surveys, and outreach efforts. In order to gain regional and local buy-in from the NWS staff, multiple committees were utilized to plan and develop goals and structure for the program. While the regional and local climate services program in the NWS Western Region has had many successes, there have been several important lessons learned from efforts that have not been as successful. These lessons, along with past experience, close coordination with partners, and the need to constantly improve/change the program as the climate changes, form the basis for future program development and

  9. The Climate Variability & Predictability (CVP) Program at NOAA - DYNAMO Recent Project Advancements

    NASA Astrophysics Data System (ADS)

    Lucas, S. E.; Todd, J. F.; Higgins, W.

    2013-12-01

    The Climate Variability & Predictability (CVP) Program supports research aimed at providing process-level understanding of the climate system through observation, modeling, analysis, and field studies. This vital knowledge is needed to improve climate models and predictions so that scientists can better anticipate the impacts of future climate variability and change. To achieve its mission, the CVP Program supports research carried out at NOAA and other federal laboratories, NOAA Cooperative Institutes, and academic institutions. The Program also coordinates its sponsored projects with major national and international scientific bodies including the World Climate Research Programme (WCRP), the International Geosphere-Biosphere Programme (IGBP), and the U.S. Global Change Research Program (USGCRP). The CVP program sits within the Earth System Science (ESS) Division at NOAA's Climate Program Office. Dynamics of the Madden-Julian Oscillation (DYNAMO): The Indian Ocean is one of Earth's most sensitive regions because the interactions between ocean and atmosphere there have a discernable effect on global climate patterns. The tropical weather that brews in that region can move eastward along the equator and reverberate around the globe, shaping weather and climate in far-off places. The vehicle for this variability is a phenomenon called the Madden-Julian Oscillation, or MJO. The MJO, which originates over the Indian Ocean roughly every 30 to 90 days, is known to influence the Asian and Australian monsoons. It can also enhance hurricane activity in the northeast Pacific and Gulf of Mexico, trigger torrential rainfall along the west coast of North America, and affect the onset of El Niño. CVP-funded scientists participated in the DYNAMO field campaign in 2011-12. Results from this international campaign are expected to improve researcher's insights into this influential phenomenon. A better understanding of the processes governing MJO is an essential step toward

  10. Geographical and Temporal Differences in NOAA Observed Ground-Level Ozone in the Arctic

    NASA Astrophysics Data System (ADS)

    McClure-Begley, Audra; Petropavlovskikh, Irina; Andrews, Betsy; Hageman, Derek; Oltmans, Samuel; Uttal, Taneil

    2016-04-01

    The Arctic region is rapidly gaining interest and support for scientific studies to help understand and characterize the processes, sources, and chemical composition of the Arctic environment. In order to understand the Arctic climate system and the changes that are occurring, it is imperative to know the behavior and impact of atmospheric constituents. Surface level ozone in the Arctic is variable in both time and space and plays an essential role on the oxidation capacity of the atmosphere. NOAA Global Monitoring Division (NOAA/GMD) maintains continuous measurements and long-term records of ground-level ozone from Barrow, Alaska (since 1973) and Summit, Greenland (since 2000). Measurements taken by Thermo-Scientific ozone monitors are collected and examined with the NOAA/GMD Aerosol LiveCPD acquisition and software. These quality controlled data are used to develop seasonal climatologies, understand diurnal variation, and analyze differences in stations specifics by addressing spatial variability in the Arctic. Once typical ozone behavior is characterized, anomalies in the record are defined and investigated. Increased ozone events associated with transported pollution and photochemical production of ozone, and ozone depletion episodes related to sea-ice halogen release and chemical destruction of ozone are the primary processes which lead to deviations from typical ground-level ozone conditions. The measurements taken from Barrow and Summit are a critical portion of the IASOA network of observations of ground-level ozone and are investigated to ensure proper data management and quality control, as well as provide the fundamental understanding of ground-level ozone behavior in the Arctic.

  11. NPP VIIRS Land Surface Temperature EDR validation using NOAA's observation networks

    NASA Astrophysics Data System (ADS)

    Guillevic, P. C.; Privette, J. L.

    2012-12-01

    NOAA will soon use the new Visible Infrared Imager Radiometer Suite (VIIRS) on the Joint Polar Satellite System (JPSS) as its primary polar-orbiting satellite imager. Employing a near real-time processing system, NOAA will generate a series of Environmental Data Records (EDRs) from VIIRS data. For example, the VIIRS Land Surface Temperature (LST) EDR will estimate the surface skin temperature over all global land areas and provide key information for monitoring Earth surface energy and water fluxes. Because both VIIRS and its processing algorithms are new, NOAA is conducting a rigorous calibration and validation program to understand and improve product quality. This work presents a new validation methodology to estimate the quantitative uncertainty in the LST EDR, and contribute to improving the retrieval algorithm. It employs a physically-based approach to scaling up point LST measurements currently made operationally at many field and weather stations around the world. The scaling method consists of the merging information collected at different spatial resolutions within a land surface model to fully characterize large area (km x km scale) satellite products. The approach can be used to explore scaling issues over terrestrial surfaces spanning a large range of climate regimes and land cover types, including forests and mixed vegetated areas. First results show that VIIRS and MODIS (collection 5) LST products are very consistent. Over vegetated areas, VIIRS LST EDRs verify JPSS program quality requirements - bias and precision specifications of VIIRS LST EDRs are 1.5K and 2.5K. However, VIIRS agrees better with scaled-up field data than with non-scaled field observations. Over desert areas, current VIIRS LST EDRs do not verify JPSS specifications. VIIRS and MODIS LST products tend to underestimate surface temperature at night. Ultimately, this validation approach should lead to an accurate and continuously-assessed VIIRS LST products suitable to support weather

  12. What we learn from updates of NOAA's Annual Greenhouse Gas Index (AGGI)

    NASA Astrophysics Data System (ADS)

    Butler, James H.; Montzka, Stephen A.; Dlugokencky, Edward; Elkins, James W.; Masarie, Kenneth; Schnell, Russell C.; Tans, Pieter; Dutton, Geoff; Miller, Ben R.

    2014-05-01

    Several years ago, NOAA introduced a unique index for expressing the influence of human-emitted, long-lived greenhouse gases in the atmosphere (D.J. Hofmann et al., Tellus, 2006, S8B, 614-619). Being a condensation and normalization of radiative forcing from long-lived gases, the NOAA Annual Greenhouse Gas Index (AGGI) was designed to enhance the connection between scientists and society by providing a standard that could be easily understood and followed. The index each year is calculated from high quality, long-term observations by NOAA's Global Monitoring Division, which includes real-time measurements extending over the past five decades, as well as published ice core records that go back to 1750. The AGGI is radiative forcing from these long-lived gases, normalized to 1.00 in 1990, the Kyoto Climate Protocol baseline year. For 2012, the AGGI was 1.32, indicating that global radiative forcing by long-lived greenhouse gases had increased 32% since 1990. During the 1980s CO2 accounted for about 50-60% of the annual increase in radiative forcing (and the AGGI) by long-lived greenhouse gases, whereas, since 2000, it has accounted for 80-90% of this increase each year. After nearly a decade of virtually level concentrations in the atmosphere, methane (CH4) has increased measurably over the past 6 years, as did its contribution to radiative forcing (and the AGGI). This year, in addition to updating the AGGI for 2013, increases in radiative forcing will be evaluated and discussed with respect to time-dependent changes in the contributions from CO2, CH4, nitrous oxide (N2O), chlorofluorocarbons (CFCs), and other emerging greenhouse gases.

  13. New NOAA-15 Advanced Microwave Sounding Unit (AMSU) Datasets for Stratospheric Research

    NASA Technical Reports Server (NTRS)

    Spencer, Roy W.; Braswell, William D.

    1999-01-01

    The NOAA-15 spacecraft launched in May 1998 carried the first Advanced Microwave Sounding Unit (AMSU). The AMSU has eleven oxygen absorption channels with weighting functions peaking from near the surface to 2 mb. Twice-daily, limb-corrected I degree gridded datasets of layer temperatures have been constructed since the AMSU went operational in early August 1998. Examples of AMSU imagery will be shown, as will preliminary analyses of daily fluctuations in tropical stratospheric temperatures and their relationship to daily variations in tropical-average rainfall measured by the Special Sensor Microwave Imager (SSM/I). The AMSU datasets are now available for other researchers to utilize.

  14. Atmospheric CO/sub 2/ concentrations the NOAA/GMCC flask and continuous sampling network

    SciTech Connect

    Gammon, R.; Peterson, J.T.; Komhyr, W.D.

    1984-09-01

    Atmospheric CO/sub 2/ concentrations have and are being monitored in the NOAA Geophysical Monitoring for Climatic Change (GMCC) program at 20 sites during the 1970s and continuing into the 1980s. There are four continuous monitoring sites and 20 flask sampling sites. The continuous monitoring data are reported as monthly averages corrected and converted to the 1981 WMO X81 mole fraction scale. The flask samples are reported as individual samples (some sites have data for the late 1960s also) which can be summarized into monthly averages.

  15. Calibration of NOAA-7 AVHRR, GOES-5 and GOES-6 VISSR/VAS solar channels

    NASA Technical Reports Server (NTRS)

    Frouin, R.; Gautier, C.

    1986-01-01

    The NOAA-7, GOES-5 and GOES-6 Visible Infrared Spin Scan Radiometer/Vertical Atmospheric Sounder (VISSR/VAS) solar channels were calibrated. The White Sands Monument area in New Mexico, whose reflectance properties are well known, and space are used as calibration targets. The shortwave reflected terrestrial irradiance that is measured at satellite altitude is computed using a fairly accurate radiative transfer model which accounts for multiple scattering and bidirectional effects. The ground target reflectance and relevant characteristics of the overlying atmosphere are estimated from climatological data and observation at the nearest meteorological sites. The approach is believed to produce accuracies of 8 to 13% depending on the channel considered.

  16. Chromospheric Evolution and the Flare Activity of Super-Active Region NOAA 6555

    NASA Technical Reports Server (NTRS)

    PrasadC, Debi; Ambastha, Ashok; Srivastava, Nandita; Tripathy, Sushanta C.; Hagyard, Mona J.

    1997-01-01

    Super-active region NOAA 6555 was highly flare productive during the period March 21st - 27th, 1991 of its disk passage. We have studied its chromospheric activity using high spatial resolution H alpha filtergrams taken at Udaipur along with MSFC vector magnetograms. A possible relationship of flare productivity and the variation in shear has been explored. Flares were generally seen in those subareas of the active region which possessed closed magnetic field configuration, whereas only minor flares and/or surges occurred in subareas showing open magnetic field configuration. Physical mechanisms responsible for the observed surges are also discussed.

  17. Failure of the ERBE scanner instrument aboard NOAA 10 spacecraft and results of failure analysis

    NASA Technical Reports Server (NTRS)

    Miller, J. B.; Weaver, W. L.; Kopia, L. P.; Howerton, C. E.; Payton, M. G.; Harris, C. J.

    1990-01-01

    The Earth Radiation Budget Experiment (ERBE) scanner instrument on the NOAA 10 spacecraft malfunctioned on May 22, 1989, after more than 4 years of in-flight operation. After the failure, all instrument operational mode commands were tested and the resulting data analyzed. Details of the tests and analysis of output data are discussed therein. The radiometric and housekeeping data appear to be valid. However, the instrument will not correctly execute operational scan mode commands or the preprogrammed calibration sequences. The data indicate the problem is the result of a failure in the internal address decoding circuity in one of the ROM (read only memory) chips of the instrument computer.

  18. Integrating Data Distribution and Data Assimilation Between the OOI CI and the NOAA DIF

    NASA Astrophysics Data System (ADS)

    Meisinger, M.; Arrott, M.; Clemesha, A.; Farcas, C.; Farcas, E.; Im, T.; Schofield, O.; Krueger, I.; Klacansky, I.; Orcutt, J.; Peach, C.; Chave, A.; Raymer, D.; Vernon, F.

    2008-12-01

    The Ocean Observatories Initiative (OOI) is an NSF funded program to establish the ocean observing infrastructure of the 21st century benefiting research and education. It is currently approaching final design and promises to deliver cyber and physical observatory infrastructure components as well as substantial core instrumentation to study environmental processes of the ocean at various scales, from coastal shelf-slope exchange processes to the deep ocean. The OOI's data distribution network lies at the heart of its cyber- infrastructure, which enables a multitude of science and education applications, ranging from data analysis, to processing, visualization and ontology supported query and mediation. In addition, it fundamentally supports a class of applications exploiting the knowledge gained from analyzing observational data for objective-driven ocean observing applications, such as automatically triggered response to episodic environmental events and interactive instrument tasking and control. The U.S. Department of Commerce through NOAA operates the Integrated Ocean Observing System (IOOS) providing continuous data in various formats, rates and scales on open oceans and coastal waters to scientists, managers, businesses, governments, and the public to support research and inform decision-making. The NOAA IOOS program initiated development of the Data Integration Framework (DIF) to improve management and delivery of an initial subset of ocean observations with the expectation of achieving improvements in a select set of NOAA's decision-support tools. Both OOI and NOAA through DIF collaborate on an effort to integrate the data distribution, access and analysis needs of both programs. We present details and early findings from this collaboration; one part of it is the development of a demonstrator combining web-based user access to oceanographic data through ERDDAP, efficient science data distribution, and scalable, self-healing deployment in a cloud computing

  19. A NOAA/SWPC Perspective on Space Weather Forecasts That Fail

    NASA Astrophysics Data System (ADS)

    Biesecker, D. A.

    2014-12-01

    The Space Weather Prediction Center (SWPC) at NOAA is the Official US source for space weather watches, warning and alerts. These alerts are provided to a breadth of customers covering a range of industries, including electric utilities, airlines, emergency managers, and users of precision GPS to name a few. This talk will review the current tools used by SWPC to forecast geomagnetic storms, solar flares, and solar energetic particle events and present the SWPC performance in each of these areas. We will include a discussion of the current limitations and examples of events that proved difficult to forecast.

  20. A 30 year High -Spatial Resolution Cloud Climatology from NOAA's PATMOS-x Project

    NASA Astrophysics Data System (ADS)

    Heidinger, A. K.; Walther, A.; Foster, M. J.

    2010-12-01

    The Pathfinder Atmospheres Extended (PATMOS-x) project at NOAA has recently developed a new higher spatial resolution data set derived from over 30 years of data from the Advanced Very High Resolution Radiometer. The PATMOS-x data is now online and has been submitted into the GEWEX cloud climatology assessment library of cloud climate data sets. This data also benefits from a recent recalibration of the solar reflectance channels. This work will present our latest analysis and provide our insights into the strengths and limitations of this new data. Comparisons with GEWEX data sets and to the recently generated AVHRR cloud climatology from EUMETSAT will be shown.

  1. NOAA-EPA's New National Air Quality Forecast Capability: Initial Steps

    NASA Astrophysics Data System (ADS)

    Davidson, P.

    2005-12-01

    In partnership with the US EPA, NOAA has developed, tested and implemented the first two stages of a national air quality forecast capability into the National Weather Service (NWS) operational suite. The initial capability was implemented in September, 2004 and provided ground-level ozone predictions over Northeastern United States. In a program of phased development and testing to expand this capability, the domain has been extended over the entire Eastern United states as of August 31, 2005. Predictions are made with the NOAA-EPA Community Model for Air Quality (CMAQ) driven by NOAA's operational mesoscale weather prediction model (Eta-12). The capability is an end-to-end forecast guidance system providing twice daily predictions of hour-by-hour ground-level ozone concentrations on a 12km grid, disseminated over operational NWS and EPA dataservers. Forecast guidance products are hosted on operational dataservers: fully backed up, with archiving and near-real-time verification in place to monitor forecast accuracy. In order to demonstrate readiness for operational implementation, required accuracy of 90% and reliability of 95% on-time delivery have been demonstrated in the pre-deployment testing. During the Summers of 2004 and 2005, pre-deployment testing of forecast domains over Northeastern US and Eastern US, respectively, have led to operational implementation of the first two stages of the capability. Prior to pre-deployment testing, developmental testing was conducted to demonstrate feasibility of the prototype operational configuration using forecast components for air quality (CMAQ and pollutant emissions pre-processing) adapted from research and assessment simulations. Developmental testing identified priorities for system enhancements needed to improve guidance accuracy; for example: improved model linkage, updated emissions information, improved treatments of solar radiation for photolysis rate estimation, and improved treatments of vertical mixing and

  2. CDS - Database Administrator's Guide

    NASA Astrophysics Data System (ADS)

    Day, J. P.

    This guide aims to instruct the CDS database administrator in: o The CDS file system. o The CDS index files. o The procedure for assimilating a new CDS tape into the database. It is assumed that the administrator has read SUN/79.

  3. Vocational Education Administration Handbook.

    ERIC Educational Resources Information Center

    Ryals, Karen, Ed.; Doherty, Susan Sloan, Ed.

    This handbook for vocational administrators presents an overview of vocational education programs, services, and administrative structures in Alaska. The manual contains three parts. The first, brief section introduces secondary vocational education and lists its enabling legislation. The second part presents a detailed overview of vocational…

  4. Reframing Research Administration

    ERIC Educational Resources Information Center

    Cole, Sharon Stewart

    2010-01-01

    The purpose of this paper is to inform administrators and organizational leaders that a change in the support offered to faculty and the environment of research administration is desirable. This recommendation is supported by the results of a Delphi study that was undertaken to gather expert opinions and recommendations from research faculty…

  5. Justifying Educational Administration.

    ERIC Educational Resources Information Center

    Evers, Colin; Lakomski, Gabriele

    1993-01-01

    The traditional conceptions of science dominating educational administration are mistaken. Unacceptable epistemologies, like those implicit in logical positivism, justify knowledge solely in terms of empirical adequacy. An improved science of educational administration embraces a coherent global theory accounting for all the phenomena of human…

  6. Migrant Education Administrative Guide.

    ERIC Educational Resources Information Center

    North Carolina State Dept. of Public Instruction, Raleigh. Div. of Compensatory Education.

    Relating specifically to the North Carolina migrant education program's administrative responsibilities, this guide is designed to aid administrators in program management, monitoring project activities, project evaluation, self-assessment, determining needs for training and staff development, site-visit preparation, policy development, and…

  7. DIMENSIONS OF ADMINISTRATIVE PERFORMANCE.

    ERIC Educational Resources Information Center

    HEMPHILL, JOHN; AND OTHERS

    THE MAJOR OBJECTIVES WERE TO DEVELOP CRITERIA FOR THE EVALUATION OF SCHOOL ADMINISTRATION, TO DEFINE THE NATURE OF THE JOB, AND TO DEVELOP AN INSTRUMENT FOR THE SELECTION OF ADMINISTRATORS. THE ELEMENTARY SCHOOL PRINCIPAL WAS CHOSEN FOR THE STUDY BECAUSE OF THE HOST OF PROBLEMS RELATED TO THE CONDUCT OF AN EDUCATIONAL PROGRAM, INCLUDING THE…

  8. Test Administration Models

    ERIC Educational Resources Information Center

    Becker, Kirk A.; Bergstrom, Betty A.

    2013-01-01

    The need for increased exam security, improved test formats, more flexible scheduling, better measurement, and more efficient administrative processes has caused testing agencies to consider converting the administration of their exams from paper-and-pencil to computer-based testing (CBT). Many decisions must be made in order to provide an optimal…

  9. Networked Administration Streamlines Operations.

    ERIC Educational Resources Information Center

    School Planning and Management, 1996

    1996-01-01

    An Iowa school district has retooled its computer systems for more standardized administration. In addition to administration, the district is doing inhouse databasing of financial accounting, and doing inhouse scheduling and grade reporting. A partnership with the Chamber of Commerce contributed $500,000 for the network system. (MLF)

  10. The Administrative Power Grab

    ERIC Educational Resources Information Center

    Sorenson, Richard D.

    2007-01-01

    Administrative power for some school teachers can be an aphrodisiac that can be applied negatively, especially when a leader has devastating instinct for the weaknesses of others. A leader's intellect and heart closes shop and ceases to function when drunk on power. In this article, the author describes how the use of administrative power can be…

  11. Champions of Children. Administrators . . .

    ERIC Educational Resources Information Center

    Chaffee, John; Olds, H. Robert

    Today, in an era of taxpayer revolts, lack of clarity in values, and changing family structure, children need advocates in the political arena as well as in the schools. This pamphlet suggests that administrators are in an excellent position to defend the rights of children on all fronts. It focuses on what administrators have done and specific…

  12. Administration for Student Development.

    ERIC Educational Resources Information Center

    Bergen, J. J., Ed.

    This collection of papers focuses on school administration and its relation to students. It is contended that toay's student matures earlier; has higher expectations; is more affluent; is more isolated from adults; is more critical and outspoken; and, therefore, must be heard by teachers and administrators. A related document is EA 001578.…

  13. Administration of Computer Resources.

    ERIC Educational Resources Information Center

    Franklin, Gene F.

    Computing at Stanford University has, until recently, been performed at one of five facilities. The Stanford hospital operates an IBM 370/135 mainly for administrative use. The university business office has an IBM 370/145 for its administrative needs and support of the medical clinic. Under the supervision of the Stanford Computation Center are…

  14. Rural Administrative Leadership Handbook.

    ERIC Educational Resources Information Center

    Tift, Carolyn

    This resource book on rural administrative leadership is the result of 1988 interviews with school administrators involved in successful rural educational programs. The material is divided into eight chapters, each self-contained for separate use. Chapter 1, "Getting to Know the Community," addresses qualities of living and working in rural…

  15. School Business Administration.

    ERIC Educational Resources Information Center

    Jordan, K. Forbis; Webb, L. Dean

    1986-01-01

    Reviews the societal and organizational changes affecting school business administration, describes major activities encompassed in the practice of school business administration, and reviews current literature specifically related to such activities as electronic data processing, fiscal planning and budgeting, purchasing and property management,…

  16. The Administrative Team.

    ERIC Educational Resources Information Center

    Ohio Association of Elementary School Principals, Westerville.

    Although needs of school districts vary with size, degree of teacher negotiation procedures, and type of community involvement, the administrative team model is presented as an effective, appropriate administrative organization. Based on an assumption that each level of authority in a school district possesses and exercises expertise and unique…

  17. Handbook for Alumni Administration.

    ERIC Educational Resources Information Center

    Webb, Charles H., Ed.

    A definitive look at the field of alumni administration is presented, noting that the subject has until now received little attention. The 34 chapters are divided into nine sections: an overview of alumni administration; alumni as an essential resource; people management; budget and records; programming; communications; alumni education programs…

  18. 47 CFR 54.715 - Administrative expenses of the Administrator.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 3 2011-10-01 2011-10-01 false Administrative expenses of the Administrator. 54.715 Section 54.715 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) COMMON CARRIER SERVICES (CONTINUED) UNIVERSAL SERVICE Administration § 54.715 Administrative expenses of the Administrator. (a) The annual administrative expenses...

  19. 47 CFR 54.715 - Administrative expenses of the Administrator.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 3 2010-10-01 2010-10-01 false Administrative expenses of the Administrator. 54.715 Section 54.715 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) COMMON CARRIER SERVICES (CONTINUED) UNIVERSAL SERVICE Administration § 54.715 Administrative expenses of the Administrator. (a) The annual administrative expenses...

  20. Head of Administration

    NASA Astrophysics Data System (ADS)

    2005-03-01

    Purpose and scope of the position: The main task is to provide efficient administrative services and advice to the Director General, Division Leaders and to staff members in the scientific and technical areas in the fields of financial planning and accounting, personnel management, purchasing, legal and contractual matters, information systems and building and site maintenance. As a member of the ESO Management the Head of Administration contributes essentially to the development of the overall policy, strategic planning, relations to the members of the personnel and maintains professional contacts at highest level outside the Organisation. ESO employs in total approximately 650 staff members and the Administration Division comprises the Administration at the Headquarters in Garching near Munich and the Administration in Santiago (Chile). The successful candidate will be supported by some 50 qualified staff members.

  1. NOAA's contribution to an informed society anticipating and responding to climate and its impacts through Climate.gov

    NASA Astrophysics Data System (ADS)

    Niepold, F.

    2012-12-01

    Societal concern about the impacts of climate change is growing. Citizens in public and private sectors want easy access to credible climate science information to help them make informed decisions affecting their lives and livelihoods. Weather and climate influences almost every sector of society, and affects up to 40 percent of the United States' 10 trillion annual economy. (NRC report, 2003 entitled "Satellite Observations of the Earth's Environment: Accelerating the Transition of Research to Operations"). As the leading provider of climate, weather, and water information to the nation and the world, NOAA is a logical source for citizens to turn to for climate information. NOAA must expand and improve the way it communicates, educates, reaches out to, and engages with public stakeholders to better meet the nation's needs for timely, authoritative climate data and information. Citizens are increasingly going online to seek credible, authoritative climate information. However, users report having difficulty locating and using NOAA's online data products and services. Thus, resolving this online accessibility issue will be one of the Climate Portal's main benefits. The use of portal technology and emerging data integration and visualization tools provide an opportunity for NOAA to bring together multiple datasets from diverse disciplines and sources to deliver a more comprehensive picture of climate in the context of affected resources, communities and businesses. Additional benefits include wider extension of NOAA's data to other media such as television and free-choice learning venues, thereby increasing public exposure and engagement. The Climate Portal teams take an audience-focused approach to promoting climate science literacy among the public. The program communicates the challenges, processes, and results of NOAA-supported climate science through stories and data visualizations on the Web and in popular media. They provide information to a range of

  2. The NOAA Integrated Surface Irradiance Study (ISIS) - A new surface radiation monitoring program

    SciTech Connect

    Hicks, B.B.; DeLuisi, J.J.

    1996-12-01

    This paper describes a new radiation monitoring program, the Integrated Surface Irradiance Study (ISIS), that builds upon and takes over from earlier NOAA networks monitoring components of solar radiation [both the visible component (SOLRAD) and the shortwave component that causes sunburn, UV-B] across the continental United States. ISIS is implemented in two levels. Level 1 addresses incoming radiation only, and level 2 addresses the surface radiation balance. Level 2 also constitutes the SURFRAD (Surface Radiation) program of the NOAA Office of Global Programs, specifically intended to provide radiation data to support large-scale hydrologic studies that will be conducted under the Global Energy and Water Cycle Experiment. Eventually, it is planned for level 2 sites to monitor all components of the surface energy balance. Both levels of ISIS will eventually measure both visible and UV radiation components. At present, there are nine sites that are considered to be at ISIS level 1 standard and an additional four level 2 SURFRAD sites. A 10th level 1 site will be in operation soon. Plans call for an increase in the number of sites of both kinds, up to about 15 ISIS sites, of which 6 will be at the SURFRAD level. 20 refs., 2 figs., 1 tab.

  3. Novel algorithm for sea water quality monitoring by NOAA-AVHRR optical channels

    NASA Astrophysics Data System (ADS)

    Carla, Roberto; Maccioni, Andrea

    2000-12-01

    Many techniques have ben developed for the assessment and monitoring of sea suspended matter (SSM) by the two optical channels of the NOAA-AVHRR. However, they are useful only for cloudless conditions. In this work a new algorithm is proposed, which is based on the two AVHRR optical channels revealing SSM patterns also in hazy conditions or under thin clouds. It combines two indexes derived from the AVHRR optical bands in order to account for the effect of the atmosphere on albedo and moreover on the sea spatial patterns. A criterion based on the statistical comparison of the two indexes discriminates between clear areas and pixels belonging to one of two different classes of suspended sediments. The performance of the proposed algorithm has been tested on a set of NOAA-AVHRR imagery of the Adriatic sea acquired in the winter and summer 1997-98. The results showed spatial patterns steadily varying in time, which are recognized as inorganic sediments or chlorophyll.

  4. Contamination in Chesapeake Bay and Delaware Estuary: Results from the NOAA NS and T program

    SciTech Connect

    Valette-Silver, N.J.; Daskalakis, K.D.; Velinsky, D.J.

    1994-12-31

    Since 1986, the NOAA National Status and Trends Program through its Mussel Watch Project has been collecting and analyzing sediments and bivalves (oysters and mussels) at about 350 sites distributed around the United States. Since 1984, sediments where also collected and analyzed through the Benthic Surveillance Project. The data used for the sediments include most of the data previously available as well as the NOAA newly developed COSED data base. The analysis includes 17 trace metals and over 70 organic compounds. When comparing the results obtained for the bivalves collected in the Chesapeake Bay and the Delaware Estuary to those obtained in the rest of the United States, it appears that the concentrations of Cd in Chesapeake and Cd, Ni, and total DDT in Delaware Estuary, are high. In an effort to understand the reasons for these high concentrations, the authors compared bivalves and sediments data in relation to the various inputs (including river transport, point source, urban runoff and atmospheric deposition) to these estuarine systems. From this study, it appears that depending on the compound and on the location, natural and/or anthropogenic inputs are responsible for the observed concentrations. For example, in Chesapeake Bay, urban runoff and riverine transport appear to play major roles.

  5. The Calibration of AVHRR Visible Dual Gain using Meteosat-8 for NOAA-16 to 18

    NASA Technical Reports Server (NTRS)

    Doelling, David R.; Garber, Donald P.; Avey, L. A.; Nguyen, Louis; Minnis, Patrick

    2007-01-01

    The NOAA AVHRR program has given the remote sensing community over 25 years of imager radiances to retrieve global cloud, vegetation, and aerosol properties. This dataset can be used for long-term climate research, if the AVHRR instrument is well calibrated. Unfortunately, the AVHRR instrument does not have onboard visible calibration and does degrade over time. Vicarious post-launch calibration is necessary to obtain cloud properties that are not biased over time. The recent AVHRR-3 instrument has a dual gain in the visible channels in order to achieve greater radiance resolution in the clear-sky. This has made vicarious calibration of the AVHRR-3 more difficult to unravel. Reference satellite radiances from well-calibrated instruments, usually equipped with solar diffusers, such as MODIS, have been used to successfully vicariously calibrate other visible instruments. Transfer of calibration from one satellite to another using co-angled, collocated, coincident radiances has been well validated. Terra or Aqua MODIS and AVHRR comparisons can only be performed over the poles during summer. However, geostationary satellites offer a transfer medium that captures both parts of the dual gain. This AVHRR-3 calibration strategy uses, calibrated with MODIS, Meteosat-8 radiances simultaneously to determine the dual gains using 50km regions. The dual gain coefficients will be compared with the nominal coefficients. Results will be shown for all visible channels for NOAA-17.

  6. Development of digital interactive processing system for NOAA satellites AVHRR data

    NASA Astrophysics Data System (ADS)

    Gupta, R. K.; Murthy, N. N.

    The paper discusses the digital image processing system for NOAA/AVHRR data including Land applications - configured around VAX 11/750 host computer supported with FPS 100 Array Processor, Comtal graphic display and HP Plotting devices; wherein the system software for relational Data Base together with query and editing facilities, Man-Machine Interface using form, menu and prompt inputs including validation of user entries for data type and range; preprocessing software for data calibration, Sun-angle correction, Geometric Corrections for Earth curvature effect and Earth rotation offsets and Earth location of AVHRR image have been accomplished. The implemented image enhancement techniques such as grey level stretching, histogram equalization and convolution are discussed. The software implementation details for the computation of vegetative index and normalized vegetative index using NOAA/AVHRR channels 1 and 2 data together with output are presented; scientific background for such computations and obtainability of similar indices from Landsat/MSS data are also included. The paper concludes by specifying the further software developments planned and the progress envisaged in the field of vegetation index studies.

  7. Breaking it down, using modular services to improve the NOAA Earth Information System (NEIS)

    NASA Astrophysics Data System (ADS)

    Stewart, J.; Smith, J. S.; Joyce, J.; Hackathorn, E. J.

    2015-12-01

    The NOAA Earth Information System (NEIS) developed by NOAA's Earth System Research Laboratory (ESRL) is a framework providing real-time high performance data discovery, access, and visualization. Along with a ESRL's unique visualization client, TerraViz, this framework provides seamless visualization and integration of data across time and space regardless of data size, physical location, or data format. An enabling technology is the services behind the scenes. The NEIS team has continued research into improving the asynchronous, event driven architecture which supports and drives the performance of the framework. Services are continually evaluated and broken down into smaller, more modular, self contained components. The benefits have been numerous. Through this effort the NEIS team has improved many aspects of the overall framework including performance, fault tolerance, testing coverage, scalability, reliability, and agility. This modular service approach provides the capability to monitor and pinpoint bottlenecks within the framework. Depending on the impact, the service can either be improved or scaled up to meet the requirements. Additionally, the modular nature reduces coupling between various components of the framework allowing individual services to be upgraded without taking down the entire system, decreasing the overall time to respond and fix to problems. This talk will focus on our approach to developing these services to support the NEIS framework and TerraViz, along with discussion on findings, challenges, and future research.

  8. Vegetation monitoring and yield prediction from NOAA-AVHRR GAC data in the Argentinean Pampa

    NASA Astrophysics Data System (ADS)

    Kerdiles, Herve; Magrin, G.; Rebella, Cesar M.; Seguin, B.

    1995-01-01

    Ten years of NOAA GAC data over the Argentinean Pampa were analyzed in relation with climate and crop production. Correlations between crop yield and monthly NDVI (cumulated or not, weighted by the global radiation or not) reached 0.87 for wheat, 0.85 for soybean and 0.83 for corn, despite the classical limitations of AVHRR data (mixed response, atmospheric and directional noise, sensor calibration), the monthly frequency and the size of the test areas (10,000 km2). The quality of these results was partly due to the extensive character of the Pampa's cropping system since the correlation between final yield and NDVI relies on the following two hypothesis: NDVI can predict biomass and biomass is a good indicator of final grain yield. The best correlations were observed with the NDVI sensed at maximum green biomass, hence permitting yield estimations one to two months before harvest. Standard errors of regression were of 0.22, 0.17, and 0.63 t/ha for wheat, soybean, and maize respectively, for a mean yield around 1.7, 2.2, and 3.8 t/ha, respectively. Last, the complement between NDVI data and crop physiologically based models was examined. Despite the data related limitations, the relationship between CERES wheat predicted LAI and NOAA monthly GAC NDVI appeared as promising.

  9. Advancing Weather and Climate Literacy via NOAA Science On a Sphere Exhibits

    NASA Astrophysics Data System (ADS)

    Rowley, P.; Pisut, D.; Ackerman, S. A.; Mooney, M. E.; Schollaert Uz, S.

    2013-12-01

    The EarthNow project (http://sphere.ssec.wisc.edu/) regularly creates weather and climate visualizations for spherical display exhibits, like Science On a Sphere (SOS), using near real-time data such as NOAA's National Climate Data Center's (NCDC) monthly climate reports and the Climate Prediction Center's (CPC) seasonal outlooks. Viewing timely weather and climate stories on a large sphere-format allows museum visitors to more intuitively learn about global-scale earth system science. Along with producing large animations for SOS exhibits with background content, the EarthNow team also visits SOS museums (there are now over 100 SOS sites around the world) to conduct best-practice trainings and consultancies. These training sessions provide museums with implementation methods tailored to each museum's goals, allowing for a more personalized learning experience for museum visitors. This presentation will convey evaluation and feedback results from these training sites. The EarthNow project is led by the Cooperative Institute for Meteorological Satellite Studies (CIMSS), in collaboration with the Cooperative Institute for Climate and Satellites (CICS-MD) and the NOAA Environmental Visualization Lab.

  10. Solutions Network Formulation Report. The Potential Contribution of the Ocean Surface Topography Mission to the General NOAA Oil Monitoring Environment

    NASA Technical Reports Server (NTRS)

    Hilbert, Kent; Anderson, Daniel; Lewis, David

    2007-01-01

    Data collected by the OSTM could be used to provide a solution for the GNOME DST. GNOME, developed by NOAA?s Office of Response and Restoration Hazardous Materials Response Division, geospatially models oil spill trajectories using wind, current, river flow, and tidal data. Data collected by the OSTM would supply information about ocean currents and wind speeds. This Candidate Solution is in alignment with the Coastal Management, Water Management, Disaster Management, Public Health, Ecological Forecasting, and Homeland Security National Applications and will benefit society by improving the capabilities of emergency responders who evaluate an oil spill?s probable threat.

  11. An atlas of polar cap energetic particle observations. Volume 2: NOAA-6, 8 July 1979 to 10 May 1983

    NASA Astrophysics Data System (ADS)

    Sauer, H. H.

    1984-09-01

    This series presents graphical displays of the polar cap (herein defined as geomagnetic latitudes greater than 70 degrees) averages of the proton and electron fluxes precipitating into the polar atmosphere, over the energy range of 30 keV to greater than 80 MeV for protons and greater than 300 keV for electrons. Volume 2 presents data from the NOAA-6 spacecraft from 8 July 1979 to 10 May 1983. Subsequent volumes using data from the NOAA-6, -7 and -8 satellites will extend the data presentations.

  12. Long-term air quality monitoring at the South Pole by the NOAA program Geophysical Monitoring for Climatic Change

    SciTech Connect

    Robinson, E.; Rodhaine, B.A.; Komhyr, W.D.; Oltmans, S.J.; Steele, L.P.

    1988-02-01

    The objectives of the NOAA program of Geophysical Monitoring for Climatic Change (GMCC) for the South Pole include measurements of atmospheric changes which can potentially impact climate. This paper discusses the long-term GMCC South Pole air chemistry data for carbon dioxide, total ozone, surface ozone, methane, halocarbons, nitrous oxide, and aerosol concentrations, comparing the findings with GMCC data for other regions. Special consideration is given to the results of recent GMCC ozonesonde operations and to an asessment of Dobson ozone spectrophotometer data taken at South Pole by NOAA since 1964. Data are discussed in the framework of Antarctic ozone hole phenomenon. 49 references.

  13. High-rate data link general specification for the NOAA-OPQ polar orbiting environmental satellites and EUMETSAT satellite systems

    NASA Technical Reports Server (NTRS)

    1993-01-01

    The document is a reference document in the Instrument Interface Description for NOAA-2000 Instruments (GSFC-S-480-53). The requirements reflect the fact that these instruments must be compatible with a number of different polar orbiting satellite vehicles including the NOAA-OPQ satellites and the EUMETSAT METOP satellites. The instrument payload will interface to the spacecraft via several standardized communication busses. The document defines a uni-directional point-to-point single-user interface for transfer of high rate data (greater than 100 kbs) between instruments and a spacecraft system.

  14. Command/telemetry bus general specification for the NOAA-OPQ polar orbiting environmental satellites and EUMETSAT polar satellite systems

    NASA Technical Reports Server (NTRS)

    1993-01-01

    The document is a reference document in the Instrument Interface Description for NOAA-2000 Instruments (GSFC-S-480-53). The requirements reflect the fact that these instruments must be compatible with a number of different polar orbiting satellite vehicles including the NOAA-OPQ satellites and the EUMETSAT METOP satellites. The instrument payload will interface to the spacecraft via several standardized communication busses. The document defines the multiplex data bus conforming to the MIL-STD-1553B protocol for command and telemetry transfer between a spacecraft system and all instruments.

  15. Joint NOAA/NWS/USGS prototype debris flow warning system for recently burned areas in Southern California

    USGS Publications Warehouse

    Restrepo, P.; Jorgensen, D.P.; Cannon, S.H.; Costa, J.; Laber, J.; Major, J.; Martner, B.; Purpura, J.; Werner, K.

    2008-01-01

    Debris flows, also known as mudslides, are composed gravity-driven mixtures of sediment and water that travel through steep channels, over open hillslopes, and the like. Addressing this issue, US Geological Survey (USGS) and NOAA have established a debris-flow warning system that has the ability to monitor and forecast precipitation and issue timely weather hazard warning. In 2005, this joint NOAA-USGS prototype debris-flow warning system was issued in Southern California and as a result, it has provided valuable information to emergency managers in affected communities.

  16. Serving the Space Administration

    ERIC Educational Resources Information Center

    Campbell, Jack E.; Thompson, Arthur W.

    1974-01-01

    The purpose of the current program was to establish an upward mobility program that afforded employees an opportunity to improve their credibility in job opportunity selection under the directives of the National Aeronautics and Space Administration. (Author/RK)

  17. Copyright Implications for Administrators.

    ERIC Educational Resources Information Center

    Simpson, Carol Mann

    1994-01-01

    Discusses copyright compliance policies for school administrators and the librarian's role in policy implementation. Topics addressed include fines; court litigation; monitoring compliance; training sessions for teachers and staff; computer software audits; and sources for more information. (LRW)

  18. Goldstone (GDSCC) administrative computing

    NASA Technical Reports Server (NTRS)

    Martin, H.

    1981-01-01

    The GDSCC Data Processing Unit provides various administrative computing services for Goldstone. Those activities, including finance, manpower and station utilization, deep-space station scheduling and engineering change order (ECO) control are discussed.

  19. Confrontation and Administrative Response

    ERIC Educational Resources Information Center

    Auerbach, Arnold J.

    1969-01-01

    Describes some of the sociological and psychological effects of organizational conflict and offers 10 operational principles to guide public administrators of schools and social agencies in meeting the confrontation tactics of activist groups. (JH)

  20. One for the Administrators

    ERIC Educational Resources Information Center

    American School and University, 1978

    1978-01-01

    Earth berms, a heavily insulated roof, and a narrow band of thermal pane windows, save energy at the administrative headquarters of the Anoka Hennepin school district in Coon Rapids, a suburb of Minneapolis, Minnesota. (Author/MLF)

  1. The Purchasing Administrator.

    ERIC Educational Resources Information Center

    Ferguson, Joyce E.

    1985-01-01

    Discusses the professional purchasing administrator's most common areas of responsibility: (1) staffing the department, (2) maintaining professional objectivity in vendor relationships, (3) following bidding policies, (4) receiving user input and feedback, and (5) seeking local equipment service and maintenance. (MLF)

  2. Introducing Public Administration

    ERIC Educational Resources Information Center

    Stein, Jay W.

    1975-01-01

    The use of documents and the analysis of definitions are recommended as a means for adding zest to an introduction to public administration course to obtain student interest and motivation. (Author/ND)

  3. VERIFICATION OF SURFACE LAYER OZONE FORECASTS IN THE NOAA/EPA AIR QUALITY FORECAST SYSTEM IN DIFFERENT REGIONS UNDER DIFFERENT SYNOPTIC SCENARIOS

    EPA Science Inventory

    An air quality forecast (AQF) system has been established at NOAA/NCEP since 2003 as a collaborative effort of NOAA and EPA. The system is based on NCEP's Eta mesoscale meteorological model and EPA's CMAQ air quality model (Davidson et al, 2004). The vision behind this system is ...

  4. Improvements in NOAA SURFRAD and ISIS sites for near real-time solar irradiance for verification of NWP solar forecasts for the DOE NOAA Solar Forecast Improvement Project (SFIP)

    NASA Astrophysics Data System (ADS)

    Lantz, K. O.; McComiskey, A. C.; Long, C. N.; Marquis, M.; Olson, J. B.; James, E.; Benjamin, S.; Clack, C.

    2015-12-01

    The DOE-NOAA Solar Forecasting Improvement Project's (SFIP) main goal is to improve solar forecasting and thereby increase penetration of solar renewable energy on the electric grid. NOAA's ISIS and SURFRAD network is part of this initiative by providing high quality solar irradiance measurements for verification of improvements in solar forecasting for the short-term, day ahead, and ramp events. There are 14 ISIS and SURFRAD stations across the continental United States. We will give an overview of recent improvements in the networks for this project. The NOAA SURFRAD team has three main components: 1) In addition to the existing stations, two mobile SURFRAD stations have been built and deployed for 1 year each at two separate solar utility plants. 2) NOAA SURFRAD/ISIS will update the communications at their sites to provide near real-time data for verification activities at the 14 sites. 3) Global horizontal irradiance (GHI), direct normal solar irradiance (DNI), and aerosol optical depth at various spatial and temporal averaging will be compared to forecasts from the 3-km High-Resolution Rapid Refresh (HRRR) and an advanced version of the 13-km Rapid Refresh (RAP) models. We will explore statistical correlations between in-coming and out-going shortwave radiation and longwave radiation at the surface for specific meteorological regimes and how well these are captured by NWP models.

  5. Teaching Sustainability and Resource Management Using NOAA's Voices Of The Bay Community Fisheries Education Curriculum

    NASA Astrophysics Data System (ADS)

    Hams, J. E.; Uttal, L.; Hunter-Thomson, K.; Nachbar, S.

    2010-12-01

    This presentation highlights the implementation of the NOAA VOICES OF THE BAY education curriculum at a two-year college. The VOICES OF THE BAY curriculum provides students with an understanding of the marine ecology, economy, and culture of fisheries through three interdisciplinary modules that use hands-on activities while meeting a wide range of science, math, social science, and communications standards. In the BALANCE IN THE BAY module, students use critical-thinking skills and apply principles of ecosystem-based management to analyze data, debate and discuss their findings, and make decisions that recognize the complex dynamics associated with maintaining a balance in fisheries. Through role-playing, teamwork, and a little fate, the FROM OCEAN TO TABLE module provides students with an opportunity to get an insider’s view of what it takes to be an active stakeholder in a commercial fishery. In the CAPTURING THE VOICES OF THE BAY module, students research, plan, and conduct personal interviews with citizens of the local fishing community and explore the multiple dimensions of fisheries and how they inter-connect through the lives of those who live and work in the region. The VOICES OF THE BAY modules were introduced into the curriculum at Los Angeles Valley College during the Fall 2009 semester and are currently being used in the introductory Oceanography lecture, introductory Oceanography laboratory, and Environmental Science laboratory courses. Examples of curriculum materials being used (power point presentations, module worksheets and simulated fishing activities) will be presented. In addition, samples of completed student worksheets for the three interdisciplinary modules are provided. Students commented that their overall awareness and knowledge of the issues involved in sustainable fishing and managing fishery resources increased following completion of the VOICES OF THE BAY education curriculum. Students enrolled in the laboratory sections commented

  6. Evaluating Modeled Variables Included in the NOAA Water Vapor Flux Tool

    NASA Astrophysics Data System (ADS)

    Darby, L. S.; White, A. B.; Coleman, T.

    2015-12-01

    The NOAA/ESRL/Physical Sciences Division has a Water Vapor Flux Tool showing observed and forecast meteorological variables related to heavy precipitation. Details about this tool will be presented in a companion paper by White et al. (2015, this conference). We evaluate 3-hr precipitation forecasts from four models (the HRRR, HRRRexp, RAP, and RAPexp) that were added to the tool in Dec. 2014. The Rapid Refresh (RAP) and the High-Resolution Rapid Refresh (HRRR) models are run operationally by NOAA, are initialized hourly, and produce forecasts out to 15 hours. The RAP and HRRR have experimental versions (RAPexp and HRRRexp, respectively) that are run near-real time at the NOAA/ESRL/Global Systems Division. Our analysis of eight rain days includes atmospheric river events in Dec. 2014 and Feb. 2015. We evaluate the forecasts using observations at two sites near the California coast - Bodega Bay (BBY, 15 m ASL) and Cazadero (CZC, 478 m ASL), and an inland site near Colfax, CA (CFC, 643 m ASL). Various criteria were used to evaluate the forecasts. (1) The Pielke criteria: we compare the RMSE and unbiased RMSE of the model output to the standard deviation of the observations, and we compare the standard deviation of the model output to the standard deviation of the observations; (2) we compare the modeled 24-hr precipitation to the observed 24-hr precipitation; and (3) we assess the correlation coefficient between the modeled and observed precipitation. Based on these criteria, the RAP slightly outperformed the other models. Only the RAP and the HRRRexp had forecasts that met the Pielke criteria. All of the models were able to predict the observed 24-hour precipitation, within 10%, in only 8-16% of their forecasts. All models achieved a correlation coefficient value above the 90th percentile in 12.5% of their forecasts. The station most likely to have a forecast that met any of the criteria was the inland mountain station CFC; the least likely was the coastal mountain

  7. Threats, Challenges, and Promise of Marine Microbes: A NOAA Perspective with Emphasis on Ecological Forecasting

    NASA Astrophysics Data System (ADS)

    Sandifer, P. A.

    2012-12-01

    Fully functioning ecosystems, as well as healthy humans, depend on robust and diverse communities of microbes. The diversity of microbes in the marine environment is estimated to be huge, dwarfing diversity of other life forms, and crucial for many ecosystem processes. Despite the ubiquity and extreme importance of microbial life in the sea - from the air-surface interface to the deepest abyss and sediments - we know relatively little about this biotic component that may compose a large proportion of the total biomass on the planet. As the nation's principal steward of marine living resources, NOAA is both responsible for and vitally interested in marine microbes, from a variety of perspectives. These include (1) health threats to humans and other organisms and how these may be affected by climate change and ecosystem alteration; (2) detoxification of organic pollutants such as hydrocarbons (e.g., in the Deep Water Horizon oil catastrophe); (3) production of valuable natural products including potential new pharmaceuticals; (4) roles in biogeochemical cycles (e.g., for carbon, nitrogen, phosphorus, iron, etc.) and how human activities may affect these roles; (5) development and deployment of new methods to detect and quantify certain marine microbes, and incorporation of these into ocean observing systems; (6) development of Earth System models that include much improved understanding of microbial functional diversity and microbially mediated biogeochemical processes; (7) dynamics of bacterial, phyto- and zooplankton blooms, including for harmful algae and bacteria; (8) effects of climate change factors (e.g., temperature, CO2 concentrations, ocean acidification, changes in habitats and species distribution, etc.) on marine microbes; and others. Many of these topics likely will be discussed by others in this session. This presentation will focus primarily on NOAA's activities in addressing health threats emanating from a variety of microbes in the marine

  8. Calibration of the advanced microwave sounding unit-A for NOAA-K

    NASA Technical Reports Server (NTRS)

    Mo, Tsan

    1995-01-01

    The thermal-vacuum chamber calibration data from the Advanced Microwave Sounding Unit-A (AMSU-A) for NOAA-K, which will be launched in 1996, were analyzed to evaluate the instrument performance, including calibration accuracy, nonlinearity, and temperature sensitivity. The AMSU-A on NOAA-K consists of AMSU-A2 Protoflight Model and AMSU-A1 Flight Model 1. The results show that both models meet the instrument specifications, except the AMSU-A1 antenna beamwidths, which exceed the requirement of 3.3 +/- 10%. We also studied the instrument's radiometric characterizations which will be incorporated into the operational calibration algorithm for processing the in-orbit AMSU-A data from space. Particularly, the nonlinearity parameters which will be used for correcting the nonlinear contributions from an imperfect square-law detector were determined from this data analysis. It was found that the calibration accuracies (differences between the measured scene radiances and those calculated from a linear two-point calibration formula) are polarization-dependent. Channels with vertical polarizations show little cold biases at the lowest scene target temperature 84K, while those with horizontal polarizations all have appreciable cold biases, which can be up to 0.6K. It is unknown where these polarization-dependent cold biases originate, but it is suspected that some chamber contamination of hot radiances leaked into the cold scene target area. Further investigation in this matter is required. The existence and magnitude of nonlinearity in each channel were established and a quadratic formula for modeling these nonlinear contributions was developed. The model was characterized by a single parameter u, values of which were obtained for each channel via least-squares fit to the data. Using the best-fit u values, we performed a series of simulations of the quadratic corrections which would be expected from the space data after the launch of AMSU-A on NOAA-K. In these simulations

  9. 77 FR 75014 - Schedule of Fees for Access to NOAA Environmental Data, Information, and Related Products and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-12-19

    ... increased. Users have the ability to access the data offline, online and through the NESDIS e-Commerce... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF COMMERCE... (NOAA), Department of Commerce. ACTION: Final rule. SUMMARY: In this final rule, NESDIS establishes...

  10. 75 FR 81110 - Schedule of Fees for Access to NOAA Environmental Data, Information, and Related Products and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-27

    ... data offline, online and through the NESDIS. e-Commerce System (NeS) online store. Our ability to... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF COMMERCE... (NOAA), Department of Commerce. ACTION: Final rule. SUMMARY: In this final rule, NESDIS establishes...

  11. 75 FR 37405 - Notice of Public Review and Comment Period on NOAA's Next Generation Strategic Plan (NGSP)

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-29

    ... domains. NOAA's Long-Term Goals: Climate Adaptation and Mitigation: An informed society anticipating and... goals: Long-term goal: Climate Adaptation and Mitigation - An informed society anticipating and... and adaptation efforts supported by sustained, reliable, and timely climate services. ] Objective:...

  12. 76 FR 26254 - NOAA's Office of Ocean Exploration and Research (OER) Strategic Plan FY 2011-FY 2015

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-06

    ...NOAA'S Office of Ocean Exploration and Research (OER) is electronically publishing the OER Strategic Plan for Fiscal Year (FY) 2011-2015. The strategic plan is published to meet the requirement for program direction under Public Law 111-11, Section 12104(b). The OER Strategic Plan describes the vision, mission, goals, core activities, and organization of the Office of Ocean Exploration and......

  13. A status report on the analysis of the NOAA-9 SBUV/2 sweep mode solar irradiance data

    NASA Technical Reports Server (NTRS)

    Cebula, R. P.; Deland, M. T.; Schlesinger, B. M.; Hudson, R. D.

    1990-01-01

    Monitoring of the near ultraviolet (UV) solar irradiance is important because the solar UV radiation is the primary energy source in the upper atmosphere. The solar irradiance at wavelengths shortward of roughly 300 nm heats the stratosphere via photodissociation of ozone in the Hartley bands. Shortward of 242 nm the solar UV flux photodissociates O2, which is then available for ozone formation. Upper stratosphere ozone variations coincident with UV solar rotational modulation have been previously reported (Gille et al., 1984). Clearly, short and long term solar irradiance observations are necessary to separate solar-forced ozone variations from anthropogenic changes. The SBUV/2 instrument onboard the NOAA-9 spacecraft has made daily measurements of the solar spectral irradiance at approximately 0.15 nm intervals in the wavelength region 160-405 nm at 1 nm resolution since March 1985. These data are not needed to determine the terrestrial ozone overburden or altitude profile, and hence are not utilized in the NOAA Operational Ozone Product System (OOPS). Therefore, assisted by the ST System Corporation, NASA has developed a scientific software system to process the solar sweep mode data from the NOAA-9 instrument. This software will also be used to process the sweep mode solar irradiance data from the NOAA-11 and later SBUV/2 instruments. An overview of the software system and a brief discussion of analysis findings to date are provided. Several outstanding concerns/problems are also presented.

  14. 15 CFR Appendix A to Part 950 - Schedule of User Fees for Access to NOAA Environmental Data

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ..., App. A Appendix A to Part 950—Schedule of User Fees for Access to NOAA Environmental Data Name of...: Mini Poster 1.00 1.00 Icosahedron Globe 0.50 3.00 Convert Data to Standard Image 5.00 5.00 Single...

  15. 47 CFR 25.259 - Time sharing between NOAA meteorological satellite systems and non-voice, non-geostationary...

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... satellite systems and non-voice, non-geostationary satellite systems in the 137-138 MHz band. 25.259 Section... SATELLITE COMMUNICATIONS Technical Standards § 25.259 Time sharing between NOAA meteorological satellite systems and non-voice, non-geostationary satellite systems in the 137-138 MHz band. (a) A non-voice,...

  16. 47 CFR 25.259 - Time sharing between NOAA meteorological satellite systems and non-voice, non-geostationary...

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... satellite systems and non-voice, non-geostationary satellite systems in the 137-138 MHz band. 25.259 Section... SATELLITE COMMUNICATIONS Technical Standards § 25.259 Time sharing between NOAA meteorological satellite systems and non-voice, non-geostationary satellite systems in the 137-138 MHz band. (a) The space...

  17. 47 CFR 25.259 - Time sharing between NOAA meteorological satellite systems and non-voice, non-geostationary...

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... satellite systems and non-voice, non-geostationary satellite systems in the 137-138 MHz band. 25.259 Section... SATELLITE COMMUNICATIONS Technical Standards § 25.259 Time sharing between NOAA meteorological satellite systems and non-voice, non-geostationary satellite systems in the 137-138 MHz band. (a) The space...

  18. 77 FR 76000 - Notice of Availability of Draft Report of the NOAA Research and Development Portfolio Review Task...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-12-26

    ... Availability of Draft Report of the NOAA Research and Development Portfolio Review Task Force and Request for... draft report of the SAB Research and Development Portfolio Review Task Force (PRTF) for public comment..., and application of science to resource management and environmental assessment and prediction....

  19. 75 FR 30380 - NOAA's Office of Ocean Exploration and Research; Fiscal Year 2011 Ocean Exploration of the...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-01

    ...The Office of Ocean Exploration and Research (OER) is seeking pre-proposals and full proposals to support its mission, consistent with NOAA's Strategic Plan, to search, investigate, and document poorly-known and unknown areas of the Aleutian Trench, through interdisciplinary exploration, and to advance and disseminate knowledge of the ocean environment and its physical, chemical, and......

  20. 75 FR 82377 - NOAA's Office of Ocean Exploration and Research (OER) Strategic Plan FY 2011-FY 2015

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-30

    ...NOAA's Office of Ocean Exploration and Research (OER) is seeking comments on the revised draft OER STRATEGIC PLAN Fiscal Year (FY) 2011-2015, submitted to meet the requirement for program direction under Public Law 111-11, Section 12104(b). The draft OER STRATEGIC PLAN describes the vision, mission, core activities, and organization of the Office of Ocean Exploration and...

  1. Visualization at NOAA: Serving multiple audiences; Forming multiple partnerships; Developing scientific awareness

    NASA Astrophysics Data System (ADS)

    Pisut, D.; Powell, A. M.

    2010-12-01

    Television, print, social media, blogs, websites, schools, museums and science centers - all are used in varying ways by people to learn about Earth processes, and effective communication and outreach strategies should attempt to fill as many of these information venues as possible. The NOAA Environmental Visualization Laboratory considers all of these possible distributions when developing and publishing its simplified visualizations of Earth-systems data. Though different audiences have different needs with respect to the final product, many can be met with some simple modifications. Ultimately, the goal is to produce visualizations that are used and understood by the media, educators, and the general public. To achieve this objective, the Lab focuses on succinct visualizations that clearly communicate the topic, and developing such visualizations in partnership with external users. In this session, we’ll discuss insights on work-flow, visualization techniques and tips, pedagogy, distribution strategies, and partnerships.

  2. Anemone structure of Active Region NOAA 10798 and related geo-effective flares/ CMEs

    NASA Astrophysics Data System (ADS)

    Asai, A.; Ishii, T. T.; Shibata, K.; Gopalswamy, N.

    2006-08-01

    Introduction: We report the evolution and the coronal features of an active region NOAA 10798, and the related magnetic storms. Method: We examined in detail the photospheric and coronal features of the active region by using observational data in soft X-rays, in extreme ultraviolet images, and in magnetogram obtained with GOES, SOHO satellites. We also examined the interplanetary disturbances from the ACE data. Results: This active region was located in the middle of a small coronal hole, and generated 3 M-class flares. The flares are associated with high speed CMEs up to 2000 km/s. The interplanetary disturbances also show a structure with southward strong magnetic field. These produced a magnetic storm on 2005 August 24. Conclusions: The anemone structure may play a role for producing the high-speed and geo-effective CMEs even the near limb locations.

  3. Determining coniferous forest cover and forest fragmentation with NOAA-9 advanced very high resolution radiometer data

    NASA Technical Reports Server (NTRS)

    Ripple, William J.

    1995-01-01

    NOAA-9 satellite data from the Advanced Very High Resolution Radiometer (AVHRR) were used in conjunction with Landsat Multispectral Scanner (MSS) data to determine the proportion of closed canopy conifer forest cover in the Cascade Range of Oregon. A closed canopy conifer map, as determined from the MSS, was registered with AVHRR pixels. Regression was used to relate closed canopy conifer forest cover to AVHRR spectral data. A two-variable (band) regression model accounted for more variance in conifer cover than the Normalized Difference Vegetation Index (NDVI). The spectral signatures of various conifer successional stages were also examined. A map of Oregon was produced showing the proportion of closed canopy conifer cover for each AVHRR pixel. The AVHRR was responsive to both the percentage of closed canopy conifer cover and the successional stage in these temperate coniferous forests in this experiment.

  4. Let's Get into Some Scijinks! Lessons from Modernizing a Classic NOAA/NASA Kids' Weather Website

    NASA Astrophysics Data System (ADS)

    Leon, N.; Kasprak, A. H.; Mansfield, K. J.; Novati, A.; Gaches, L.; Karlson, D.

    2014-12-01

    SciJinks.gov—short for Science Hijinks—is a joint NOAA and NASA website that has been in operation for a decade. Filled with information about weather, Earth science, and satellite meteorology, it has always been a helpful resource for students and educators in and outside of the classroom. Geared toward upper middle school and early high school students, we replace around 20% of our audience each year. That means it is imperative to keep the site properly geared toward the needs of a rapidly changing group of students. Our team has recently redesigned SciJinks.gov to be mobile-friendly, modern looking, and teen-friendly. Here, we discuss our strategies and rational for this redesign and highlight the many exciting benefits to this newly imagined weather-adventure website.

  5. A gradient model of vegetation and climate utilizing NOAA satellite imagery. Phase 1: Texas transect

    NASA Technical Reports Server (NTRS)

    Greegor, D. H.; Norwine, J.

    1981-01-01

    A new experimental climatological model/variable termed the sponge, a measure of moisture availability based on daily temperature maxima and minima and precipitation, is tested for potential biogeographic, ecological, and agro-climatological applications. Results, depicted in tabular and graphic from, suggest that, as a generalized climatic index, sponge's simplicity and sensitivity make particularly appropriate for trans-regional biogeographic studies (e.g., large-area and global vegetation monitoring). The feasibility of utilizing NOAA/AVHRR data for vegetation classification was investigated and a vegetation gradient model that utilizes sponge, and AVHRR pixel data (channels 1 and 2) were obtained for 12 locations. The normalized difference values for the AVHRR data when plotted against vegetation characteristics (biomass, net productivity, leaf area) and sponge values suggest that a multivariate gradient model incorporating AVHRR and sponge data may indeed be useful in global vegetation stratification and monitoring.

  6. A gradient model of vegetation and climate utilizing NOAA satellite imagery. Phase 1: Texas transect

    NASA Technical Reports Server (NTRS)

    Greegor, D.; Norwine, J. (Principal Investigator)

    1981-01-01

    A climatological model/variable termed the sponge (a measure of moisture availability based on daily temperature maxima and minima, and precipitation) was tested for potential biogeograhic, ecological, and agro-climatological applications. Results, depicted in tabular and graphic form, suggest that, as generalized climatic index, sponge is particularly appropriate for large-area and global vegetation monitoring. The feasibility of utilizing NOAA/AVHRR data for vegetation classification was investigated and a vegetation gradient model that utilizes sponge and AVHRR data was initiated. Along an east-west Texas gradient, vegetation, sponge, and AVHRR pixel data (channels 1 and 2) were obtained for 12 locations. The normalized difference values for the AVHRR data when plotted against vegetation characteristics (biomass, net productivity, leaf area) and sponge values along the Texas gradient suggest that a multivariate gradient model incorporating AVHRR and sponge data may indeed be useful in global vegetation stratification and monitoring.

  7. NONPOTENTIALITY OF CHROMOSPHERIC FIBRILS IN NOAA ACTIVE REGIONS 11092 AND 9661

    SciTech Connect

    Jing Ju; Yuan Yuan; Xu Yan; Wang Haimin; Reardon, Kevin; Wiegelmann, Thomas E-mail: yy46@njit.edu E-mail: haimin@flare.njit.edu E-mail: wiegelmann@linmpi.mpg.de

    2011-10-01

    In this paper, we present a method to automatically segment chromospheric fibrils from H{alpha} observations and further identify their orientation. We assume that chromospheric fibrils are aligned with the magnetic field. By comparing the orientation of the fibrils with the azimuth of the embedding chromospheric magnetic field extrapolated from a potential field model, the shear angle, a measure of nonpotentiality, along the fibrils is readily deduced. Following this approach, we make a quantitative assessment of the nonpotentiality of fibrils in two NOAA active regions (ARs): (1) the relatively simple AR 11092, observed with very high resolution by Interferometric Bidimensional Spectrometer, and (2) a {beta}-{gamma}-{delta} AR 9661, observed with median resolution by Big Bear Solar Observatory before and after an X1.6 flare.

  8. A seismic signal processor suitable for use with the NOAA/GOES satellite data collection system

    NASA Technical Reports Server (NTRS)

    Webster, W. J., Jr.; Miller, W. H.; Whitley, R.; Allenby, R. J.; Dennison, R. T.

    1981-01-01

    Because of the high data-rate requirements, a practical system capable of collecting seismic information in the field and relaying it, via satellite, to a central collection point is not yet available. A seismic signal processor has been developed and tested for use with the NOAA/GOES satellite data collection system. Performance tests on recorded, as well as real time, short period signals indicate that the event recognition technique used is nearly perfect in its rejection of environmental noise and other non-seismic signals and that, with the use of solid state buffer memories, data can be acquired in many swarm situations. The design of a complete field data collection platform is discussed based on the prototype evaluation.

  9. Experience Transitioning Models and Data at the NOAA Space Weather Prediction Center

    NASA Astrophysics Data System (ADS)

    Berger, Thomas

    2016-07-01

    The NOAA Space Weather Prediction Center has a long history of transitioning research data and models into operations and with the validation activities required. The first stage in this process involves demonstrating that the capability has sufficient value to customers to justify the cost needed to transition it and to run it continuously and reliably in operations. Once the overall value is demonstrated, a substantial effort is then required to develop the operational software from the research codes. The next stage is to implement and test the software and product generation on the operational computers. Finally, effort must be devoted to establishing long-term measures of performance, maintaining the software, and working with forecasters, customers, and researchers to improve over time the operational capabilities. This multi-stage process of identifying, transitioning, and improving operational space weather capabilities will be discussed using recent examples. Plans for future activities will also be described.

  10. Application of a genetic algorithm for crop model steering using NOAA-AVHRR data

    NASA Astrophysics Data System (ADS)

    de Wit, Allard J. W.

    1999-12-01

    The main objective of this study was to investigate whether AVHRR data could be useful for crop model simulation steering by intrinsically taking the mixed pixel effects into account. The second objective was to determine if the application of a genetic algorithm could be an effective technique for crop model steering. The principles were tested for the Seville test site using synthetic data and AVHRR data from 1995 and 1996 because these years show a large contrast in crop development. The main conclusions are that a genetic algorithm is a very powerful technique for crop model optimization, but adaptations are needed to the current optimization scheme in order to be able to steer the WOFOST crop model on the basis of NOAA-AVHRR data.

  11. Large-area relation of Landsat MSS and NOAA-6 AVHRR spectral data to wheat yields

    NASA Technical Reports Server (NTRS)

    Barnett, T. L.; Thompson, D. R.

    1983-01-01

    Landsat MSS data transformed into Kauth-Thomas greenness were averaged over 5 n.mi x 6 n.mi. sample segments from the U.S. Great Plains winter and spring wheat (Triticum aestivum) regions, and related by regression analysis to yields reported by county, crop reporting district (CRD) and state levels. Evidence of a linear relation between winter- and spring-wheat yields and Landsat spectral data at a broad scale is shown for 1978 and 1979. A common slope of about 1.6 (Bu/A)/unit greenness is discerned for the relation between yield and spectral greenness. Tests at both a smaller scale on sets of field-level spectal data and yield and at a large scale on 25 mi. x 25 mi. gridded spectral data from the NOAA-6 AVHRR sensor support the relation. The implications of these results to yield estimation from satellite spectral data are discussed.

  12. Assimilating NOAA SST data into BSH operational circulation model for North and Baltic Seas

    NASA Astrophysics Data System (ADS)

    Losa, Svetlana; Schroeter, Jens; Nerger, Lars; Janjic, Tijana; Danilov, Sergey; Janssen, Frank

    A data assimilation (DA) system is developed for BSH operational circulation model in order to improve forecast of current velocities, sea surface height, temperature and salinity in the North and Baltic Seas. Assimilated data are NOAA sea surface temperature (SST) data for the following period: 01.10.07 -30.09.08. All data assimilation experiments are based on im-plementation of one of the so-called statistical DA methods -Singular Evolutive Interpolated Kalman (SEIK) filter, -with different ways of prescribing assumed model and data errors statis-tics. Results of the experiments will be shown and compared against each other. Hydrographic data from MARNET stations and sea level at series of tide gauges are used as independent information to validate the data assimilation system. Keywords: Operational Oceanography and forecasting

  13. Determining coniferous forest cover and forest fragmentation with NOAA-9 advanced very high resolution radiometer data

    SciTech Connect

    Ripple, W.J.

    1994-05-01

    NOAA-9 satellite data from the Advanced Very High Resolution Radiometer (AVHRR) were used in conjunction with Landsat Multispectral Scanner (MSS) data to determine the proportion of closed canopy conifer forest cover in the Cascade Range of Oregon. A closed canopy conifer map, as determined from the MSS, was registered with AVHRR pixels. Regression was used to relate closed canopy conifer forest cover to AVHRR spectral data. A two-variable (band) regression model accounted for more variance in conifer cover than the Normalized Difference Vegetation Index (NDVI). The spectral signatures of various conifer successional stages were also examined. A map of Oregon was produced showing the proportion of closed canopy conifer cover for each AVHRR pixel. The AVHRR was responsive to both the percentage of closed canopy conifer cover and the successional stage in these temperate coniferous forests in this experiment.

  14. Astronaut Administrator Richard Truly

    NASA Technical Reports Server (NTRS)

    1979-01-01

    Astronaut Richard H. Truly, pilot of the Space Shuttle Columbia on mission STS-2 and Commander of Shuttle Challenger on mission STS-8, became NASA's eighth Administrator on July 1, 1989. One day earlier he concluded a 30 year Naval career retiring as a Vice Admiral. He was the first astronaut to head the nation's civilian space agency. Truly became Deputy Associate Administrator for Space Flight on February 20, 1986. In this position, he led the painstaking rebuilding of the Space Shuttle program less than one month after the Challenger disaster. This was highlighted by the much heralded 'Return to Flight' on September 29, 1988 with the launch of Shuttle Discovery, 32 months after Challenger's final flight. On February 12th, 1992 Richard Truly resigned as NASA Administrator at the request of President George Bush.

  15. A Statistical Correlation Between Low L-shell Electrons Measured by NOAA Satellites and Strong Earthquakes

    NASA Astrophysics Data System (ADS)

    Fidani, C.

    2015-12-01

    More than 11 years of the Medium Energy Protons Electrons Detector data from the NOAA polar orbiting satellites were analyzed. Significant electron counting rate fluctuations were evidenced during geomagnetic quiet periods by using a set of adiabatic coordinates. Electron counting rates were compared to earthquakes by defining a seismic event L-shell obtained radially projecting the epicenter geographical positions to a given altitude. Counting rate fluctuations were grouped in every satellite semi-orbit together with strong seismic events and these were chosen with the L-shell coordinates close to each other. Electron data from July 1998 to December 2011 were compared for nearly 1,800 earthquakes with magnitudes larger than or equal to 6, occurring worldwide. When considering 30 - 100 keV energy channels by the vertical NOAA telescopes and earthquake epicenter projections at altitudes greater that 1,300 km, a 4 sigma correlation appeared where time of particle precipitations Tpp occurred 2 - 3 hour prior time of large seismic events Teq. This was in physical agreement with different correlation times obtained from past studies that considered particles with greater energies. The correlation suggested a 4-8 hour advance in preparedness of strong earthquakes influencing the ionosphere. Considering this strong correlation between earthquakes and electron rate fluctuations, and the hypothesis that such fluctuations originated with magnetic disturbances generated underground, a small scale experiment with low cost at ground level is advisable. Plans exists to perform one or more unconventional experiments around an earthquake affected area by private investor in Italy.

  16. Strengthening Climate Services Capabilities and Regional Engagement at NOAA's National Climatic Data Center

    NASA Astrophysics Data System (ADS)

    Shea, E.

    2008-12-01

    The demand for sector-based climate information is rapidly expanding. In order to support this demand, it is crucial that climate information is managed in an effective, efficient, and user-conscious manner. NOAA's National Climatic Data Center is working closely with numerous partners to develop a comprehensive interface that is authoritative, accessible, and responsive to a variety of sectors, stakeholders, and other users. This talk will explore these dynamics and activities, with additional perspectives on climate services derived from the regional and global experiences of the NOAA Integrated Data and Environmental Applications (IDEA) Center in the Pacific. The author will explore the importance of engaging partners and customers in the development, implementation and emergence of a national climate service program. The presentation will draw on the author's experience in climate science and risk management programs in the Pacific, development of regional and national climate services programs and insights emerging from climate services development efforts in NCDC. In this context, the author will briefly discuss some of guiding principles for effective climate services and applications including: - Early and continuous dialogue, partnership and collaboration with users/customers; - Establishing and sustaining trust and credibility through a program of shared learning and joint problem- solving; - Understanding the societal context for climate risk management and using a problem-focused approach to the development of products and services; - Addressing information needs along a continuum of timescales from extreme events to long-term change; and - Embedding education, outreach and communications activities as critical program elements in effective climate services. By way of examples, the author will reference lessons learned from: early Pacific Island climate forecast applications and climate assessment activities; the implementation of the Pacific Climate

  17. In-flight calibration of NOAA POES proton detectors—Derivation of the MEPED correction factors

    NASA Astrophysics Data System (ADS)

    Sandanger, Marit Irene; Ødegaard, Linn-Kristine Glesnes; Nesse Tyssøy, Hilde; Stadsnes, Johan; Søraas, Finn; Oksavik, Kjellmar; Aarsnes, Kjell

    2015-11-01

    The MEPED instruments on board the NOAA POES and MetOp satellites have been continuously measuring energetic particles in the magnetosphere since 1978. However, degradation of the proton detectors over time leads to an increase in the energy thresholds of the instrument and imposes great challenges to studies of long-term variability in the near-Earth space environment as well as a general quantification of the proton fluxes. By comparing monthly mean accumulated integral flux from a new and an old satellite at the same magnetic local time (MLT) and time period, we estimate the change in energy thresholds. The first 12 monthly energy spectra of the new satellite are used as a reference, and the derived monthly correction factors over a year for an old satellite show a small spread, indicating a robust calibration procedure. The method enables us to determine for the first time the correction factors also for the highest-energy channels of the proton detector. In addition, we make use of the newest satellite in orbit (MetOp-01) to find correction factors for 2013 for the NOAA 17 and MetOp-02 satellites. Without taking into account the level of degradation, the proton data from one satellite cannot be used quantitatively for more than 2 to 3 years after launch. As the electron detectors are vulnerable to contamination from energetic protons, the corrected proton measurements will be of value for electron flux measurements too. Thus, the correction factors ensure the correctness of both the proton and electron measurements.

  18. Evaluation of the NOAA CAREERS Weather Camp's Effectiveness in Promoting Atmospheric Science amongst High School Students

    NASA Astrophysics Data System (ADS)

    Olgin, J. G.; Fitzgerald, R. M.; Morris, V. R.

    2013-12-01

    The NOAA Center for Atmospheric Science (NCAS) sponsors the Channeling Atmospheric Research into Educational Experiences Reaching Students program (CAREERS); a program that manages a network of weather camps for students in secondary education with particular focus on increasing access for students from traditionally underrepresented backgrounds. Hosted by a college or university, the primary mission goals of the program are to engage students in discussions, lectures and interactive projects to better learn and comprehend a suite of atmospheric science disciplines (i.e. weather forecasting, environmental modeling, atmospheric data acquisition), and guide talented students towards higher education to pursue careers in atmospheric science primarily, or toward other STEM field professions. The need to evaluate and analyze the program's efficacy is crucial for continued growth and sustainability. Therefore a means to identify and measure the success of the program's initiatives will be addressed. Two Hispanic serving institutions, the University of Texas at El Paso (UTEP) and the University of Puerto Rico in Mayaguez (UPRM), both hosted the CAREER weather camps during the summers of 2012 and 2013, and provide the basis of this initial analysis. Participants performed entrance surveys of their knowledge of atmospheric science prior to the course. They were then re-evaluated through exit surveys over the topics covered during the weather camp. These data will be analyzed to correlate which program activities worked best in increasing participant awareness (i.e. geology tours of the local area, discussion on local climate variations, geophysical and geochemical demonstrations), and comprehension of atmospheric science. A comparison between the two universities on their uniqueness in program design and execution will also highlight those activities that best progressed CAREERS' program goals. Results from this analysis, along with possible new strategies for improved

  19. The NOAA Ship Okeanos Explorer Education Materials Collection: Bringing Ocean Exploration Alive for Teachers and Students

    NASA Astrophysics Data System (ADS)

    Haynes, S.

    2012-12-01

    The NOAA Ship Okeanos Explorer, America's first Federal ship dedicated to ocean exploration, is envisioned as the ship upon which learners of all ages embark together on scientific voyages of exploration to poorly-known or unexplored areas of the global ocean. Through a combination of lessons, web pages, a ship tracker and dynamic imagery and video, learners participate as ocean explorers in breakthrough discoveries leading to increased scientific understanding and enhanced literacy about our ocean world. The Okeanos Explorer Education Materials Collection was developed to encourage educators and students to become personally involved with the ship's voyages and discoveries. This collection is presented in two volumes: Volume 1: Why Do We Explore? (modern reasons for ocean exploration - specifically, climate change, energy, human health and ocean health) and Volume 2: How Do We Explore? (21st Century strategies and tools for ocean exploration, including telepresence, sonar mapping, water column exploration and remotely operated vehicles). These volumes have been developed into full-day professional development opportunities provided at NOAA OER Alliance Partner sites nationwide and include lessons for grades 5-12 designed to support the evolving science education needs currently articulated in the K-12 Framework for Science Education. Together, the lessons, web pages, ship tracker and videos provide a dynamic education package for teachers to share modern ocean exploration in the classroom and inspire the next generation of explorers. This presentation will share these two Volumes, highlights from current explorations of the Okeanos Explorer and how they are used in ocean explorer lessons, and methods for accessing ocean explorer resources and following along with expeditions.;

  20. NOAA In Situ - Satellite Blended Analysis of Surface Salinity (BASS): Prototype Algorithm and Applications

    NASA Astrophysics Data System (ADS)

    Xie, P.; Boyer, T.; Bayler, E. J.; Xue, Y.; Byrne, D. A.; Reagan, J. R.; Locarnini, R. A.; Kumar, A.

    2012-12-01

    A prototype analysis of monthly sea surface salinity (SSS) has been constructed on a 1olat/lon grid over the global ocean by blending information from in situ measurements and satellite retrievals. Three data sets are included as inputs to the blended analysis, i.e., in situ SSS measurements aggregated and quality controlled by NOAA/NODC, and the passive microwave (PMW) retrievals from the Aquarius/SAC-D and SMOS satellites, received and post-processed at NOAA/STAR. The in situ SSS measurements used here are mainly from the Argo program, but also include those from the tropical moored buoy array (TAO/TRITON, PIRATA, RAMA) data and CTDs and glider data. The blended analysis is defined in two sequential steps. First, the bias in the satellite retrievals is removed through PDF matching against the co-located in situ measurements. The final blended analysis is then defined through the optimal interpolation (OI), where the analysis for the previous time step is used as the first guess while the in situ measurements and the bias-corrected satellite retrievals are employed as the observations to update the first guess. Cross-validations tests are conducted by comparing the blended analysis against the withdrawn SSS measurements from the PIRATA arrays. Results showed improved quantitative accuracy of the blended analysis compared to the satellite estimates and the in situ data alone analysis in the tropical Atlantic. The blended analysis, constructed from January 2010 to the present, is used to examine the co-variability among the SSS, E-P, SST, SSH, and surface wind stress in the annual cycle over the tropical Atlantic and to estimate the SSS bias in the NCEP's Climate Forecast System Reanalysis (CFSR) and Global Ocean Data Assimilation System (GODAS) . Results will be reported at the meeting.

  1. Visions of our Planet's Atmosphere, Land and Oceans: NASA/NOAA Electronic Theater 2002

    NASA Technical Reports Server (NTRS)

    Haser, Fritz; Starr, David (Technical Monitor)

    2002-01-01

    The NASA/NOAA Electronic Theater presents Earth science observations and visualizations in a historical perspective. Fly in from outer space to the 2002 Winter Olympic Stadium Site of the Olympic Opening and Closing Ceremonies in Salt Lake City. Fly in and through Olympic Alpine Venues using 1 m IKONOS "Spy Satellite" data. Go back to the early weather satellite images from the 1960s and see them contrasted with the latest US and international global satellite weather movies including hurricanes and "tornadoes". See the latest visualizations of spectacular images from NASA/NOAA remote sensing missions like Terra, GOES, TRMM, SeaWiFS, Landsat 7 including new 1 - min GOES rapid scan image sequences of Nov 9th 2001 Midwest tornadic thunderstorms and have them explained. See how High-Definition Television (HDTV) is revolutionizing the way we communicate science. (In cooperation with the American Museum of Natural History in NYC) See dust storms in Africa and smoke plumes from fires in Mexico. See visualizations featured on the covers of Newsweek, TIME, National Geographic, Popular Science and on National and International Network TV. New computer software tools allow us to roam and zoom through massive global images e.g. Landsat tours of the US, and Africa, showing desert and mountain geology as well as seasonal changes in vegetation. See animations of the polar ice packs and the motion of gigantic Antarctic Icebergs from SeaWinds. data. Spectacular new visualizations of the global atmosphere and oceans are shown. See vortexes and currents in the global oceans that bring up the nutrients to feed tiny algae and draw the fish, whales and fisherman. See the how the ocean blooms in response to these currents and El Nino/La Nina climate changes. See the city lights, fishing fleets, gas flares and bio-mass burning of the Earth at night observed by the "night-vision" DMSP military satellite.

  2. Computer hardware fault administration

    DOEpatents

    Archer, Charles J.; Megerian, Mark G.; Ratterman, Joseph D.; Smith, Brian E.

    2010-09-14

    Computer hardware fault administration carried out in a parallel computer, where the parallel computer includes a plurality of compute nodes. The compute nodes are coupled for data communications by at least two independent data communications networks, where each data communications network includes data communications links connected to the compute nodes. Typical embodiments carry out hardware fault administration by identifying a location of a defective link in the first data communications network of the parallel computer and routing communications data around the defective link through the second data communications network of the parallel computer.

  3. MCS Systems Administration Toolkit

    2001-09-30

    This package contains a number of systems administration utilities to assist a team of system administrators in managing a computer environment by automating routine tasks and centralizing information. Included are utilities to help install software on a network of computers and programs to make an image of a disk drive, to manage and distribute configuration files for a number of systems, and to run self-testss on systems, as well as an example of using amore » database to manage host information and various utilities.« less

  4. The Applicability of Geographic Information Systems (GIS) and Remote Sensing in Identifying Polybrominated Diphenyl Ethers (PBDEs) sources using NOAA National Status & Trends Mussel Watch Program Data (Invited)

    NASA Astrophysics Data System (ADS)

    Bly, P. L.; Edwards, M.; Branch, B. D.

    2009-12-01

    - With an ongoing assessment of more than two decades, the Mussel Watch Program is one of the longest running contaminant monitoring programs in coastal ocean research. Mussel Watch uses bivalves (Mussels, Oysters, and Zebra Mussels) as a means to assess water quality. The purpose of the program was geared towards assessing contaminants nationally. Utilizing tools such as Geographic Information Systems (GIS) and Remote Sensing data assessment, an attempt was made within this project to identify possible releasers of effluent waste into the major coastal watershed regions pertaining to ongoing research conducted within monitored mussel watch sites. The categorization of possible contaminating locations was made available through spatial data verification development. This dataset was derived from agencies such as the United States Environmental Protection Agency (U.S. EPA), National Oceanic and Atmospheric Administration (NOAA), and the United States Geological Survey (USGS ), as well as independent state government databases. Utilizing platforms such as ESRI® ArcMap™ software, spatially referenced locations, via point data, vector data, line data, and polygons depicting points and sites of interest was created using latitude and longitude information. Points and areas of interest (AOI) were verified using Remote Sensing imagery. As such, Polybrominated Diphenyl Ethers (PBDEs) within observable mussel watch sites were assessed by NOAA’s Center for Coastal Monitoring and Assessment (CCMA). Using this data, present and future researchers will be more able to identify possible sources of contributors to the present contaminant areas.

  5. Surface Vector Velocity Estimates and Gulf Stream Observations From the UMass Dual Beam Interferometer

    NASA Astrophysics Data System (ADS)

    Perkovic, D.; Toporkov, J. V.; Sletten, M. A.; Farquharson, G.; Frasier, S. J.; Marmorino, G. O.; Judd, K. P.

    2004-12-01

    The Dual Beam Interferometer (DBI) developed by University of Massachusetts (UMass) consists of two C-band along-track interferometric synthetic aperture radars (ATI-SAR). The beams of this airborne system are squinted 20 degrees forward and aft of broadside allowing surface vector velocity estimation in a single aircraft pass. The instrument has been deployed several times over the period of last two years off coastal areas of Florida on a National Oceanic and Atmospheric Administration's (NOAA) WP-3D plane in collaboration with the Naval Research Laboratory (NRL). During 2002-2003 the instrument has undergone a series of tests and engineering flights with the August 2003 data producing the first interferogram. March 2004 flights were mainly focused on the western boundary of the Gulf Stream off Cape Canaveral, Florida. Simultaneous imagery of the sea-surface temperature field were obtained using NRL's Infrared (IR) camera, which was mounted in belly of the aircraft. Multiple passes over the Gulf Stream were made under a range of environmental conditions and viewing geometries relative to the Gulf Stream current and the wind. Additional flights were made over the barrier islands west of Ft. Meyers, Florida at times of near maximum ebb tidal flow. This paper will present initial estimates of the surface vector velocities for each area. The Gulf Stream velocity estimates show a current maximum of 1.5 m/s across the edge of the Stream which is consistent with estimates of the current from IR imagery using feature tracking. Estimates of the flow between the barrier islands are of the order of 1.5 to 2 m/s, which agrees well with the predicted tidal flow.

  6. Telecommunications administration standard

    SciTech Connect

    Gustwiller, K.D.

    1996-05-01

    The administration of telecommunications is critical to proper maintenance and operation. The intent is to be able to properly support telecommunications for the distribution of all information within a building/campus. This standard will provide a uniform administration scheme that is independent of applications, and will establish guidelines for owners, installers, designers and contractors. This standard will accommodate existing building wiring, new building wiring and outside plant wiring. Existing buildings may not readily adapt to all applications of this standard, but the requirement for telecommunications administration is applicable to all buildings. Administration of the telecommunications infrastructure includes documentation (labels, records, drawings, reports, and work orders) of cables, termination hardware, patching and cross-connect facilities, telecommunications rooms, and other telecommunications spaces (conduits, grounding, and cable pathways are documented by Facilities Engineering). The investment in properly documenting telecommunications is a worthwhile effort. It is necessary to adhere to these standards to ensure quality and efficiency for the operation and maintenance of the telecommunications infrastructure for Sandia National Laboratories.

  7. Study Shows Administrative Shortage.

    ERIC Educational Resources Information Center

    Sullivan, John R., Jr.

    1989-01-01

    Summarizes "Administrative Shortage in New England: The Evidence, the Causes, the Recommendations." High pressure, long hours, low salaries, and high housing costs are among the reasons cited for the shortage. Recommendations are centered on role identity, staff support, training, and recruitment. (SI)

  8. Central Administration. Interim Report.

    ERIC Educational Resources Information Center

    Duke Univ., Durham, NC.

    Because the configuration of the central administration of Duke University has recently been modified, this report was prepared: (1) to describe the changes and rearrangements thus far introduced; (2) to propose desirable clarifications not yet provided; (3) to recommend certain additional changes where these may already appear to be needed; and…

  9. Guidebook for School Administrators.

    ERIC Educational Resources Information Center

    Hess, Fritz, Ed.

    To provide guidance and advice regarding day-to-day responsibilities of new and experienced school administrators and superintendents in New York State, this compendium of knowledge and advice submitted by practitioners is presented with emphasis on all major aspects of superintendency. The section on general aspects of superintendency includes…

  10. Redis database administration tool

    2013-02-13

    MyRedis is a product of the Lorenz subproject under the ASC Scirntific Data Management effort. MyRedis is a web based utility designed to allow easy administration of instances of Redis databases. It can be usedd to view and manipulate data as well as run commands directly against a variety of different Redis hosts.

  11. Female Administrator Acceptance.

    ERIC Educational Resources Information Center

    Pawlitschek, Elizabeth Ann

    The number of women in educational administration is declining, despite official efforts to end sex discrimination. Women are hampered on the way to obtaining an adequate education, finding roadblocks from sex bias in elementary readers to discrimination in graduate programs; are considered responsible for home and children even when working full…

  12. Hospital Library Administration.

    ERIC Educational Resources Information Center

    Cramer, Anne

    The objectives of a hospital are to improve patient care, while the objectives of a hospital library are to improve services to the staff which will support their efforts. This handbook dealing with hospital administration is designed to aid the librarian in either implementing a hospital library, or improving services in an existing medical…

  13. Discretionary Grants Administration Manual.

    ERIC Educational Resources Information Center

    Office of Human Development Services (DHHS), Washington, DC.

    This manual sets forth applicable administrative policies and procedures to recipients of discretionary project grants or cooperative agreements awarded by program offices in the Office of Human Development Services (HDS). It is intended to serve as a basic reference for project directors and business officers of recipient organizations who are…

  14. [Rural School Administrator's Resources.

    ERIC Educational Resources Information Center

    AEL, Inc., Charleston, WV.

    This packet contains resources on five topics relevant to rural school administrators. "Assessing Parent Involvement: A Checklist for Rural Schools": discusses educator beliefs that support successful parent engagement programs, challenges and advantages of rural schools attempting to involve parents and community, and aspects of successful…

  15. Information for School Administrators.

    ERIC Educational Resources Information Center

    Kowitz, Gerald T.; And Others

    Modern management theory, based on the reduction of uncertainties, demands the collection and manipulation of large amounts of information. School Administrators choke in the process of trying to digest a proliferation of data, only some of which are useful. The aims of the study were to explore the extent to which large amounts of data could be…

  16. Research Administration: Lessons Learned.

    ERIC Educational Resources Information Center

    Dummer, George H.

    1995-01-01

    The ways in which accountability issues have affected federal-university relationships, particularly in the area of academic research, are examined. Lessons university administrators have learned since issuance of Office of Management and Budget Circular A-21 in 1958, Congressional hearings on the operations of the National Institutes of Health…

  17. Administrators Confront Student "Sexting"

    ERIC Educational Resources Information Center

    Manzo, Kathleen Kennedy

    2009-01-01

    Cellphone-savvy students have created instructional and disciplinary challenges for educators for years. But the recent emergence of "sexting" by adolescents over their mobile phones caught many school administrators off guard, and the practice is prompting efforts around the country to craft policy responses. Students' sharing of nude or…

  18. Championing the Latino Administrator

    ERIC Educational Resources Information Center

    Garcia, Carlos A.

    2011-01-01

    When the author worked as a vice principal at a K-8 school in Watsonville, California, a school predominantly filled with migrant workers' children, he felt a lack of support as a Latino as he began moving up into school administration. He also continued to see what he had seen as a teacher--which was how underserved minority students were. These…

  19. Hispanic Administrators in Kentucky

    ERIC Educational Resources Information Center

    Ballestero, Victor; Wright, Sam

    2008-01-01

    The study was designed to provide information on Hispanic administrators in the Commonwealth of Kentucky. The data was obtained from Kentucky school Superintendents or their designees in 175 public school districts. The Hispanic survey contained six questions. The survey was mailed to Kentucky Superintendents on April 21, 2008. A follow-up survey…

  20. Educational Administration's Weber.

    ERIC Educational Resources Information Center

    Gronn, Peter

    1994-01-01

    Discusses Max Weber's importance in Greenfield's work, particularly in Greenfield and Ribbins'"Greenfield on Educational Administration" (1993). In concentrating on human actors' subjective understanding, Greenfield was a faithful Weberian. However, he deviated from Weber by disavowing structural explanations of social and organizational…